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Zusammenfassung

In der vorliegenden Arbeit wird der Prozess der spinodalen Entmischung und der
einhergehenden Vergröberung am Beispiel des bleifreien, binären Hartlotes Ag-Cu
sowohl theoretisch als auch experimentell untersucht.

Wir starten in Abschnitt 1 mit einer Einleitung in die Problematik. Hierbei werden
zuerst die technologischen und die ökologischen Tendenzen im Bereich der Mikroelek-
tronik diskutiert und Schlussfolgerungen bzgl. der Aufgaben und Probleme aus Sicht
der Materialwissenschaften gezogen.

Abschnitt 2 konzentriert sich auf die kontinuumsmechanische und thermodynamis-
che Beschreibung der Phasenbildung in elastisch deformierten Festkörpern. Hierzu
beginnen wir mit den fundamentalen Prinzipien der Thermodynamik, insbesondere
mit dem zweiten Hauptsatz, und entwickeln die notwendigen Materialgleichungen,
die zur Beschreibung der auftretenden Diffusionsprozesse in mehrphasigen Systemen
notwendig sind. Es wird gezeigt, dass die aus dem postulierten Entropie Prinzip
gewonnenen Resultate im Einklang mit der klassischen Thermodynamik der Fluide
stehen. Anschließend wird eine Phasenfeldtheorie, basierend auf der Einführung sog.
höherer Gradienten, entwickelt. Hierbei wird für den Spezialfall von binären Legierun-
gen eine erweiterte Diffusionsgleichung abgeleitet, die es erlaubt, Phasenseparation
und Vergröberung unter Berücksichtigung von thermo-elastischen Verzerrungen im
Festkörper zu beschreiben.

Im darauf folgenden Abschnitt 3 widmen wir uns der Bestimmung der für die Sim-
ulation notwendigen Materialparameter. Insbesondere wird eine atomistische The-
orie entwickelt, um die elastischen Konstanten als auch die aus der Phasenfeldthe-
orie stammenden Höheren Gradienten Koeffizienten (HGKs) theoretisch zu berech-
nen. Grundlage hierbei sind so genannte interatomare Wechselwirkungspotentiale
auf der Basis der Embedded-Atom-Method, aus denen ein Energieausdruck für den
Festkörper abgeleitet werden kann. Dieser wiederum gestattet es, die elastischen
Konstanten als auch die HGKs als Funktionen der Konzentration und der Verzerrun-
gen zu berechnen. Abschließend wird der feste Bereich des Ag-Cu Phasendiagramms
berechnet, dessen gute Übereinstimmung mit den Literaturwerten die Zuverlässigkeit
der gewonnenen Materialdaten untermauert.

Im Anschluss daran werden in Abschnitt 4 numerische Simulationen vorgestellt. Wir
beginnen mit einem kurzen Abriss der notwendigen numerischen Werkzeuge, die zum
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viii Zusammenfassung

Lösen der erweiterten Diffusionsgleichung, einer nichtlineare partielle Differentialgle-
ichung (PDG) vierter Ordnung, notwendig sind. Insbesondere verwenden wir hierbei
die Methode der Diskreten Fourier Transformation sowie sog. Einschritt- Zeitinte-
grationsverfahren und lösen die PDG für den eindimensionalen und zweidimension-
alen Fall. Verschiedene Szenarien werden untersucht und bzgl. ihres numerischen
Aufwandes als auch ihres Vergröberungsverhalten diskutiert.

Abschnitt 5 bezieht sich auf die experimentelle Untersuchung der in Abschnitt 4
simulierten Phasenevolution in Ag-Cu. Hierzu werden eingangs die verwendeten ex-
perimentellen Methoden, insbesondere die metallografische Präparation, die Mikrosko-
pie und die digitale Bildanalyse, vorgestellt. Anschließend erläutern wir, wie die
gewonnenen mikroskopischen Aufnahmen bzgl. der Phasenvergröberung quantifiziert
werden können. Der Abschnitt schließt mit der Darstellung verschiedener Bildreihen
und mit der empirischen Bestimmung eines Vergröberungsgesetzes.

Die vorliegende Doktorarbeit endet mit einem Vergleich der theoretischen und ex-
perimentellen Resultate sowie deren Diskussion. Außerdem wird abschließend eine
Zusammenfassung der Arbeit als auch ein kleiner Ausblick auf eventuell weiterzuführ-
ende Untersuchungen gegeben.
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Chapter 1

Introduction

Das Fehlen von Wissenschaft, das heißt Unkenntnis von Ursachen,
macht dazu geneigt, oder besser, zwingt dazu, sich auf den Rat

und die Autorität anderer zu verlassen.

Thomas Hobbes, (1588 - 1679)

1.1 Tendencies in Microelectronic Packaging

1.1.1 Technological Trends

As a consequence of the “technological revolution” in the last 20 years there is an
ongoing miniaturization in the area of microelectronics driven by an increasing re-
quirement for mobility (e.g., mobile phones or notebooks) and more complex func-
tionalities (e.g., multimedia or fly-by-wire systems). Therefore the minimal feature
size1 within semiconductors continuously decreases whereas the number of transistors
rapidly grows (cf., Fig. 1.1). This process results in the use of smaller and smaller
amounts of matter, and, consequently, the demands on strength and lifetime of the
used materials considerably rise while the structural size is continuously reduced.

1.1.2 Environmental Concerns

In addition to the technological trends environmental initiatives become increasingly
important, in particular in the high-technology countries. The purpose of these activ-
ities is the reduction of electronic waste and/or the hazardous substances within (e.g.,
Cd, Hg, Pb). So, for instance the annual amount of the German electronic waste is
more than four times of the volume of the 140 m high Cheops pyramid in Egypt
(estimation of the German environmental organization BUND, [118]) or 130 million
cell phones were estimated to be retired in 2005 in the US. This value corresponds to
81.250 pounds of lead resulting from the lead solder used in the printed wiring boards,
which enter the waste stream. (estimation of the environmental organization Inform,
[48]).

1The minimal feature size defines 1/2 of the distance between cells in a dynamic RAM (DRAM).

1
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Figure 1.1: The development of the minimal feature size (partially expected) and the
number of transistors in microelectronics, source: Intel, [62] and ITRS, [63].

These citations underscore the problems following from the technological progress
and, thus, environmental initiatives are strongly necessary. In what follows the eco-
logical efforts are briefly explained for the three regions of Europe, Asia, and the USA.
However, although the regulations differ, the remaining time for broad-scale use of
traditional Sn-Pb-based solders is certainly limited and, consequently, adequate lead-
free materials must be investigated and evaluated, in particular from a theoretical
and experimental materials science point of view.

a. Europe, in particular Germany

In the EU two initiatives are worth mentioning: the directives WEEE (directive on
Waste Electrical and Electronic Equipment, [33]) and the RoHS (Restriction of the
use of certain Hazardous Substances in electrical and electronic equipment, [32]),
which require the industry to take care of the disposal of electronic devices and which
regulate/forbid the use of certain substances, such as Pb, Hg, or Cd in electronics.
These directives must be transposed into national law by the member states. Ger-
many, for example, passed the so-called “ElektroG” law, [53], which, among other
things, restricts the use of Pb as of July, 1st, 2006. However, the technological
progress could not follow the original RoHS restrictions in the pre-defined period, so
that exemptions2 were subsequently included, [56].

2For example, Pb and Cd in optical and filter glasses, Pb in high melting temperature type
solders (i.e. Sn-Pb solders with more than 85% Pb) and in solders, which internally complete a
viable electrical connection to certain integrated circuit packages (Flip Chips) are further permitted
(exemption until 2010).
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b. Asia, in particular Japan and China

Undoubtedly, Japan represents the “trendsetter” in the area of so-called “green elec-
tronics”. Already since 1990 the Japanese companies voluntarily committed in so-
called Environmental Protection Charters to avoid waste and to save natural re-
courses. Based on the JEIDA3 roadmap, [50], which appeared in 1999 these agree-
ments were successively extended by specific aims, in particular with respect to the
lead-free legalization process in the microelectronic sector. In April 2001 (i.e., two
years before the adequate EU directive WEEE were passed) the Home Electric Ap-
pliance Recycling Law were put into full force, which regulates the response of the
manufacturer for the disposal of old electronics, [107].

The fast environmental progress in Japan is also based on the fact, that the leading
electronic companies, such as Fujitsu, Toshiba, Sony or Panasonic use the environ-
mental awareness for marketing strategies and compete for an ecological image. For
instance, Sony already introduced in March 2001 the first lead-free camcorder on the
market, [50]. Moreover, up to the middle of 2002 about 50% of the Pb solders were
eliminated by the most Japanese electronic companies compared with the level of
1997, [95].

In China the Ministry of Information Industry has introduced an RoHS-like law called
Management Methods for Pollution Prevention and Control in the Production of Elec-
tronic Information Products, [95], which represents Chinese policy on reduction of
hazardous substances used in electronic information products. It includes manufac-
turing, imports, and packing, but explicitly exclude exporting products. In a first
step, products containing certain toxic constituent parts must be labeled since March
2007, [49]. First concrete restriction, and without exceptions as in the RoHS, are
planned for 2008.

c. USA

The U.S. Environmental Protection Agency has introduced a Toxic Release Inven-
tory rule, which lowers the reporting thresholds for the emission of lead and lead
compounds to 100 pounds (approx. 45 kg) for facilities and companies, [95], by April
2001. Furthermore one finds in different states rules regulating the use of lead for ex-
ample in paint and batteries. However, although various states plan lead-free and/or
recycling regulations for electronic appliances, there is no communicated federal po-
sition.

In 2003 California passed the so-called Electronic Waste Recycling Act, which includes
the recycling and the design of optical electronic equipment, [95]. Furthermore the
law restrict, similar to the EU RoHS directive, the use of certain hazardous substances

3Japan Electronics Industry Development Association.
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(e.g. Pb, Hg, Cd) by January 2007, [49].

Beside these “governmental efforts” various globally acting companies increasingly
head toward lead-free products. For example, Intel recently announced the change to
lead-free processors, [99].

1.2 Solder Materials

1.2.1 Solders in Microelectronic Packaging

The last paragraph already indicates the key role of solder materials in microelectron-
ics. Consequently the question arise: Where and for which reasons solders are used in
microelectronic packaging. Figure 1.2 illustrates various packaging variants typically
used. Obviously, solder materials assume two important tasks: (a) they guarantee

compression bonding wire bonding

substrate

Flip-Chip“rigid substrate CSP”

“flexible interposer CSPs”

Micro-Chip

solder ball

Figure 1.2: Different types of Chip Scale Packaging (CSPs).

the electrical connection between the chip-unit and the electronic circuits within the
substrate and (b) they provide the mechanical connection of the different electronic
components on the printed circuit board. Consequently there is a specific demand on
strength and lifetime of the used materials.

Furthermore the assembling by means of Surface Mount Technology4 (SMT) and
reflow soldering5 requires moderate melting temperatures for the solder materials,

4In this manufacturing procedure the electronic components are directly – i.e., without the use
of pins – soldered on the circuit board.

5Here the substrate/board is firstly completely assembled, and the joining connection is realized
by a subsequent heat treatment of the whole electronic device, i.e., chip unit, substrate and (solid)
solder.
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so that the supersensitive chip units do not fail during the joining process. Indeed,
the above manufacturing procedures allow an extremely compact packaging (e.g.,
the application of chips on both sides of the substrate), but, in contradiction to the
conventional Pin-Through-Hole (PTH) assembling, SMT solder joints increasingly
tend to rupture, [105]. Here the conventional eutectic Sn-Pb solder (cSn = 0.63)
represents a good compromise. On the one hand both components as well as the
mixtures have sufficiently low melting temperatures, namely, [119, 1]:

Tmelt
Sn = 232 ◦C , Tmelt

Pb = 327 ◦C , T eut
Sn−Pb = 183 ◦C .

On the other hand the containing Pb enables the components at the joint interface,
e.g., Sn and Cu, to immediately form InterMetallic Compounds (IMCs) in the molten
state (see also Section 1.3). Additionally, Pb reduces the surface tension of Sn, which,
in turn, increases the wetting properties of Sn, [1]. Hence lead plays an important
role for the resistance of the joining connection and, under the background of the
lead-free legalization process, the question about an adequate alternative arises.

1.2.2 Lead-free Materials

In the last years various lead-free alloys became important for the use in microelec-
tronics. Table 1.1 shows different solders, which are under consideration. Here the
first five items represent so-called soft solders , whereas the last item, Ag-Cu, identifies
a typical brazing alloy (i.e., Tmelt > 450 ◦C). Obviously, there is no material, which is
uniquely favored by the companies due to diverse application fields, country-specific
material costs or different material properties. For instance Sn-Cu cannot be used
for reflow soldering since the relatively high melting temperature (cf., Table 1.1) does
not allow sufficiently long soldering time. Here experts recommend to use Sn-Ag,
whereas Sn-Cu is considered for wave soldering applications, [1].

Solder Composition (mass concentration) Tmelt in ◦C

Sn-Ag-Cu cAg = 0.038, cCu = 0.007 (eutectic) 217
Sn-Bi cBi = 0.580 (eutectic) 138
Sn-Cu cCu = 0.007 (eutectic) 227
Sn-Ag cAg = 0.035 (eutectic) 221
Sn-Zn cZn = 0.090 199
Ag-Cu cCu = 0.290 (eutectic) 778

Table 1.1: Various lead-free solder materials under discussion, source: [83],[112]

In contrast to soft solders, brazing materials, such as the binary solder Ag-Cu, are
usually employed for highly-stressed or high temperature connections, e.g., for gas
pipe joints. In particular, in microelectronics brazing materials are used for high-
performance applications, in which – due to lower thermal expansion – ceramics-
based packages are preferred over plastics. Here the silicon chip must be fixed to
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a metallized ceramic substrate, whereas the occurring ceramic-metal connection is
realized by means of brazing solders, [69, 97].

However, soft solders as well as brazing materials show similar material phenomena,
in particular micro-structural changes.

1.3 Microstructures in Solders

1.3.1 Phenomenology

From a microscopic point-of-view solder balls as illustrated in Figure 1.2 are basically
subjected to four different micro-structural changes, cf., Fig. 1.3:

Cu pad

Sn-Ag-Cu solder

Cu6Sn5 scallops

20 mm

Ag3Sn needles

β-phase (Cu-rich)

α-phase (Ag-rich)

Sn-Ag-Cu

Cu

Cu6Sn5

Cu3Sn layer

Kirkendall voids

Figure 1.3: Various mircrostructural effects observed in solder materials. 1st row (left):
IMC scallops (Cu6Sn5) at the interface solder/substrate. 1st row (right): IMC needles
(Ag3Sn) in the solder bulk, source: [92]. 2nd row (left): Phase separation by spinodal
decomposition in eutectic Ag-Cu after 40h heat treatment. 2nd row (right): Kirkendall

void formation in the thin Cu3Sn layer at the interface solder/substrate, source: [120].
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(a) Formation and growth of scallop-shaped InterMetallic Compounds6 (IMCs) at
the interface solder/substrate: Here the IMCs are formed and grow in the
molten state due to an interfacial reaction. In the case of a Cu substrate and
an Sn-containing solder (e.g., Sn-Ag-Cu) this reaction takes place between Cu
and Sn and necessitates a mass transport from the substrate to the solder, [70].
Primarily by means of repeating reflow soldering the “scallops” further expand
and may have a positive influence on the strength and lifetime of the solder
joints, because they guarantee a “dovetail connection”. In contrast, there are
stress peaks in the vicinity of the IMCs leading to crack initiation. Consequently,
the positive effects are limited by a critical size of the scallops.

(b) IMC formation in the interior of the solder : One of the most popular ex-
amples for this phenomenon are Ag3Sn precipitates observed in lead-free SAC
solders (Sn-Ag-Cu). These IMCs typically occur in form of needles or plates
and are formed due to a chemical reaction in the molten state during soldering.
However, once developed, they do not essentially grow within the solid state.
Nevertheless, the IMCs are - in contradiction to the solder - extremely stiff and
brittle, which yields stress peaks and mismatching during, e.g., thermal cycling
of the electronic device.

(c) Phase separation and coarsening through spinodal decomposition and Ostwald

ripening in the solder bulk : In contrast to IMC-formation phase separation
and coarsening are diffusion processes exclusively driven by aspects of thermo-
dynamical stability and interfacial energy minimization, cf., Section 1.3.2 and
[23]. The resulting “composite” of different phases can be interpreted as a “par-
ticle reinforced material” in which the stiffer phase acts as the reinforcement.
Unfortunately mechanical failure, such as cracks, favorably grow along the phase
boundary (cf., Figure 1.4) which result, among other reasons, from thermal mis-
matching. Thus the benefit of phase dispersion is limited by a critical phase
size.

(d) Kirkendall voiding at the interface solder/substrate: Generally speaking,
the Kirkendall effect is induced due to a difference in the diffusion coeffi-
cients of to neighboring regions, [25]. In particular the occurring IMCs show
considerably different diffusion coefficients with respect to Cu. Therefore, the
diffusion of Cu from the pad via the interface Cu/Cu3Sn into Cu3Sn is much
slower than the diffusion of Cu from Cu3Sn into the Cu6Sn5 scallops, which
also cannot be corrected by the invers diffusion of Sn through the Cu6Sn5/Cu3

interface, [120]. As a consequence vacancies on the lattice sites remain within
the Cu3Sn layer, which coalesce to macroscopic voids by means of vacancy dif-
fusion. Additionally, stress peaks in the vicinity of the voids result in further
void growth and micro crack formation, which may proceed failure.

6The IMCs are often called in literature “Intermetallic Phases” or “ordered phases.” This notation
is quite misleading, since it leads to the confusion with phases known from thermodynamics, which
are not formed from chemical reactions.
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crack
cracks (global/zoomed)

Figure 1.4: Mechanical failure by crack initiation and propagation along the phase bound-
ary. Left: Crack propagation in the bulk, [76]. Right: Global and zoomed view on rupture
of a solder bump, [47].

It is reasonable that the various evolving microstructures influent the material prop-
erties, which, in turn, also change in time. In particular they considerably determine
strength and lifetime of the solders and, therefore, there is a considerable interest
in predicting the micro-structural evolution. Note that the form of appearance and
the source of the above explained microstructures is completely different. Hence the
development of a common theory suitable for a unique description of all these phe-
nomena is quite sophisticated, if not impossible.

For this reason the present work is subjected to the theoretical and experimental
investigation of phase separation and coarsening, cf., item (c). The different
phases resulting from these phenomena and two typical failure mechanism are illus-
trated in Figure 1.4 for eutectic Sn-Pb (cSn = 0.63), [76, 47]. Here crack propagation
primarily occurs at the phase boundary and probably results in total loss of the solder
joint. Furthermore the binary brazing alloy Ag-Cu is chosen to be in the focus
of this work, in which spinodal decomposition and Ostwald ripening yields two
equilibrium phases, the Ag-rich α-phase and the Cu-rich β-phase, cf., Fig. 1.3 (lower
left). It has qualitatively a similar miscibility gap (i.e., phase equilibrium data) as
the Sn-Pb solder, illustrated in Figure 1.4 and all required material parameters can
easily be obtained.

1.3.2 Spinodal Decomposition and Coarsening

From a thermodynamical point-of-view a binary alloy A-B decomposes below a critical
temperature Tcrit into two equilibrium phases α and β due to amiscibility gap resulting
in a gain of theGibbs free energyG(y, T ), which is a function of particle concentration
y ≡ yB (with yA+yB = 1) and temperature T . Without loss of generality we consider
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an initially eutectic mixture (Tcrit ≡ Teut), which is quenched from T > Teut (liquid)
to T < Teut (solid), cf., Figure 1.5 (first row).

In the liquid state theGibbs free energy of the system is given by the energetically ad-
vantageous convex curve illustrated in Figure 1.5 (upper left). Obviously the mixture
is stable to all fluctuations. This fact becomes evident if we imagine in Figure 1.5 (up-
per left) a fluctuated two-phase-system, represented by the concentrations y1 and y2

in the neighborhood of the original one-phase-state given by y0. The resulting energy
G of the two-phase-mixture is given by the energetically disadvantageous connecting
line. Therefore the system remains in the one-phase-state with the concentration y0.

This fact changes for the solid state as illustrated in Figure 1.5 (upper right). In
this case the crucial curve of G(y, T ) is piecewise concave. This region is called the
spinodal area, enclosed by the spinodal concentrations ysp

1/2:

∂2G(y, T )

∂y2

∣∣∣∣∣
ysp
1/2

= 0 (spinodal concentrations) . (1.1)

The spinodal area, in which the curvature of G is negative, characterizes the con-
centrations for which the system is unstable. Evidently any fluctuating system rep-
resented by the connecting line of the neighboring perturbed states is energetically
advantageous. Consequently the system will decompose until it reaches a state, in
which the connecting line of two pertubated neighboring states is completely situated
above the original curve of G. Such a state is given by the equilibrium concentrations
yα/β, which can be constructed by the so-called common tangent rule resulting from
a thermodynamical stability analysis by assuming a uniform stress field, [89]:

∂G(y, T )

∂y

∣∣∣
y=yα/β

=
G(yβ, T )−G(yα, T )

yβ − yα

. (1.2)

Figure 1.5 (upper right) illustrates the construction of the equilibrium concentrations
yα/β of the two solid phases α and β. The process, during which a one-phase sys-
tem is quenched into the unstable area and subsequently decomposes into different
equilibrium phases is called spinodal decomposition.

Figure 1.5 (upper middle) displays the intermediate situation for the critical temper-
ature T = Teut, which is passed during the quenching process. Here the common
tangent rule yields three equilibrium concentrations, so that three phases coexist
within the systems: two solid phases with the concentrations yα/β and one liquid
phase with the concentration y0. Constructing the various equilibrium phases for
different temperatures yields so-called phase diagrams as given in Figure 1.5 (second
row) exemplarily for the binary mixture Ag-Cu, [83].
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Figure 1.5: First row: Illustration of
the eutectic solidification process and of
the characteristic concentrations within
the miscibility gap. Second row: Phase
diagram of Ag-Cu, source [83].

After the whole system reaches the equilibrium concentrations coarsening begins in
such a way that the number of precipitated phase regions decreases whereas the size
of the phases increases. Here the bigger phases grow at the expense of the smaller
ones due to theGibbs-Thomson effect, [116]. In particular, the concentration on the
boundary of the smaller phases is greater due to the larger curvature. Consequently
there is an (uphill) diffusion flux from the smaller phases to the bigger ones. This
process is often called coarsening or Ostwald-ripening, [96], and minimizes the total
interfacial energy of the system, [79, 116, 115].

1.4 Organisation of this Work

In what follows the process of spinodal decomposition and coarsening, in particular
for the brazing alloy Ag-Cu, is investigated theoretically as well as experimentally.

The presented work starts in Chapter 2 with fundamental thermodynamical consid-
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erations allowing for the description of diffusion processes in multi-component and
multi-phase solid mixtures. First, we show that the introduced thermodynamical
principles reproduce the classical results of fluid thermodynamics. Subsequently a
phase field theory is developed by means of so-called Higher Gradient (HG) terms.
The section ends with the special cases of binary alloys, for which an Extended Dif-
fusion Equation (EDE) can be derived, which is suitable to investigate the spinodal
decomposition and coarsening process in binary solid mixtures under the presence of
thermo-elastic stresses.

In the following Chapter 3 an atomistic approach for the exact calculation of the so-
called Higher Gradient Coefficients (HGCs) is presented. These coefficients enter the
theory due to the phase field model, in which the free energy not only depends on the
composition but also on gradients of the composition. Based on the Embedded-Atom-
Method (EAM) the HGCs are calculated for the binary alloy Ag-Cu as functions of
concentration and strains.

Subsequently, the derived theories are applied to numerical simulations. Based on
Discrete Fourier Transforms (DFT) and discrete time integration methods the EDE
is solved for the one and two dimensional case. Different case studies are investigated
for illustrating purposes and in order to point out the numerical difficulties.

Chapter 6 is devoted to the experimental investigation of the micromorphological
changes in Ag-Cu. Starting with an explanation of the experimental methods it is
outlined how the observed micromorphologies can be exploited for the quantification
of the coarsening process. After that various obtained micrographs are presented and
analyzed with respect to coarsening.

The work ends with a critical discussion of the obtained results and gives a brief
outlook on receivable investigations.
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Chapter 2

A Higher Gradient Theory of
Mixtures1

Die Mathematik ist eine Art Spielzeug, welches die Natur uns zuwarf
zum Troste und zur Unterhaltung in der Finsternis.

Jean-Baptist le Rond D’Alembert, (1717 - 1783)

2.1 Historical Remarks about Diffusion

Due to the explanations in Chapter 1 it is reasonable that the theoretical description
of diffusion processes in solid mixtures represents an important aspect in modern
materials science. A review of the literature shows that the theoretical description of
diffusion processes in mixtures has a history of more than 150 years. In 1855 Fick

proposed to treat diffusion analogously to Fourier’s law of heat conduction, [46].
The resulting first and second Fick’s laws allow the characterization of “downhill”
diffusion, i.e., of material transfers from high to low concentrations. However, they
are not suitable to explain “uphill” diffusion, such as spinodal decomposition during
which concentrations gradients are amplified. Although this process is well-known
from the experimental point of view, cf., [96], a commonly accepted general theory
for the effective prediction of interfaces, phase boundaries and other diffusion-induced
inhomogeneities in solids, in particular under the consideration of arbitrary conditions
(e.g., thermal misfits, local stresses, etc.), is still a pending problem.

However, there are various pioneering works in the literature dedicated to diffusion
under the presence of inhomogeneities. Already Gibbs (1892) was concerned about
the conditions for the stability and formation of “discontinuities” in liquids and solids,
[55]. However, it seems that the first popular theoretical work stems from Becker &
Döring (1935) in which they present a statistical model for the nucleation of liquid
droplets, [8]. In 1937 Becker also published a molecular model in order to describe
the formation of superstructures and precipitations within binary solids, [7]. Based
on that work Hillert (1961) developed a one dimensional model for the qualitative
prediction of the nonuniform concentration field by spinodal decomposition and nu-
cleation in “inhomogeneous solids” (sic!), [61]. This approach was generalized in 1958

1Some of the considerations of this Chapter already appeared in [10].
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by Cahn and Hilliard2, [24]. They first presented a general phenomenological theory
of spinodal decomposition and nucleation adding interfacial energy contributions to
the free energy by means of concentration gradient terms in order to characterize the
nonuniform concentration field. The resulting Cahn-Hilliard equation, cf., [22, 23],
allows for an explicit simulation of the formation and growth of (coarsening) phases
separated by smooth interfaces and denotes the starting point for so-called Phase
Field Models (PFM). From then on phase field equations were studied from different
point-of-views, e.g. [74], and one finds a multitude of modifications, [54], extentions,
e.g. [2], and generalizations, [58].

Parallel to this chronology so-called Sharp Interface Models (SIM) were developed in
which the nonuniform system is assumed to involve well-defined phases separated by
sharp interfaces whose motion is determined by the jump conditions following from the
balances on discontinuities. It is reasonable to postulate that the SIM equations must
follow from the equations according to the PFM. For that reason one has to reduce
“suitably” the finite width of the smooth interfaces into sharp interfaces which is
usually done by transforming the corresponding equations to the limit case of infinite
width, [59, 39]. However, note that it is also possible to treat a nonzero interface
width within the SIM framework, [45]. A “subgroup” within SIM are so-called LSW
theories, named after the seminal works of Lifshitz and Slyozov (1961) and Wagner
(1961), [79, 116]. They start from the Gibbs-Thomson effect and investigate the
temporal development of the radius distribution of spherical precipitations embedded
in supersaturated solutions. Due to a dissolving process they found that the average
radius r̄(t) increases with t−1/3 whereas the number of precipitates N(t) reduces with
t−1. Thus bigger inclusions grow at the expense of smaller ones. On the other hand
experimental investigations could not reflect these predictions quantitatively, cf., [4].
For example, the theoretically predicted distribution function is too narrow and the
coarsening rate depends on the precipitate’s volume fraction, originally assumed to
be infinitely small. However, according to these shortcomings various improvements
were developed, cf., [115].

Nevertheless, in view of the ongoing miniaturization, e.g., in microelectronic solders,
questions about the impact of local mechanical fields on diffusion increasingly raised.
Indeed, Cahn incorporated ad hoc a separate elastic energy term for isotropic solids,
[22, 23]. However, consequences on the interfacial energy contributions or eigenstrain
effects due to a misfit between the different phases did not enter the theory. These
shortcomings were, in fact, later partially diminished by Larché and Cahn, [75]. They
modified the elastic energy expression by a concentration dependent stiffness matrix
but questions about the influence of strains to the interfacial energy remain.

Regardless of the open questions the focus has recently changed to quantitative nu-
merical simulations initiated by the fast increasing computational capacities. The
applied algorithms are mainly based on discrete Fourier transforms, [117], or finite

2Here the work of Hillert appears before the work of Cahn and Hilliard, because Hillert

already derived the formulae in 1956 in his PhD thesis.
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elements, [52], in order to solve the governing PDEs. In particular PFMs have been
applied to simulations of the microstructure in solders, cf., [37, 113] as well as to
solidification problems, [9].

In the present Chapter we want to turn the attention back to the theoretical aspects of
diffusion. The purpose is to provide both a general and a systematic theoretical frame-
work in order to investigate nonuniform mixtures subjected to thermo-mechanical
fields. We start with the classical local balance equations for mass, momentum and
internal energy density and exploit the Second Law of Thermodynamics in order to
deduce the required constitutive relations for the diffusion flux, the stress tensor and
the heat flux. For that reason four statements of an entropy principle are proposed,
which reflect the “undisputed elements” within the already existing principles (cf.,
Section 2.3.4). For the sake of transparency and in order to emphasize the potential
of the presented procedure we, first, consider a single phase of a mixture and illus-
trate the consistency of the obtained results with classical thermodynamics. Second,
we turn the attention to multiphase and multicomponent solids including so-called
higher gradients into the domain of the constitutive equations and demonstrate how
the classical results change, due to the heterogeneities of the material. We end with
the specialization of the theory to binary mixtures in order to predict the phase
evolution within the brazing alloy Ag-Cu.

2.2 Symbols and Notation

For better readability we present various symbols, that are frequently used. Addi-
tional symbols, which are used only occasionally are explained when required. Fur-
thermore throughout this work the sum convention xiyi .=

∑3
i=1 x

iyi holds3.

quantities of motion

X i Lagrange position (cartesian)
xi = χi(Xj, t) current position
ui = xi −X i displacements

vi = dxi/dt = ẋi (barycentric) velocity

F ij = ∂χi(Xk, t)/∂Xj deformation gradient
J = detF ij ≥ 0 Jacobian
Cij = FmiFmj ∧ detCij = J2 right Cauchy-Green tensor
cij = J−2/3Cij ∧ detcij = 1 unimodular right Cauchy-Green tensor
σij Cauchy stress tensor

tij = J(F im)
−1
σmn(F jn)

−1
2nd Piola-Kirchhoff tensor

3Here the index notation of Cartesian vectors (v ≡ vi) and tensors (e.g., T ≡ T ij) is used.
Furthermore throughout this Chapter an upper index does not refer to contravariant coordinates.
Rather it is used to avoid confusion with indices characterizing a particular constituent.
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thermodynamical quantities
ν number of components of the mixture
α ∈ {1, . . . , ν} label for the constituents
Nα number of particles of the component α
N =

∑ν
α=1Nα total number of particles of the mixture

nα particle density of component α
n =

∑ν
α=1 nα particle density of the mixture

yα = nα/n = Nα/N Mole fraction/particle concentration of α

mH = 1.66 · 10−27 kg 1/12 of the carbon 12 isotope (reference mass)
Mα molecular weight (dimensionless)
mα = mHMα molecular mass (in kg) of component α
m =

∑ν
α=1Nαmα total mass (in kg)

ρα = mαnα mass density of component α
ρ =

∑ν
α=1mαnα total mass density of the mixture

M = M̃(yα) =
∑ν

α=1Mαyα mean molecular weight of a mixture particle
cα = ρα/ρ = nαmα/(nm) mass concentration of component α

T , p, V (absolute) temperature, pressure, total volume
ǫ, η internal energy, entropy per unit mass
ϕ = ǫ− Tη Helmholtz free energy per unit mass
ψ = ϕ+ p/ρ Gibbs free energy per unit mass
µα chemical potential (in J/particle) of component α
ji
α particle diffusion flux of component α

J i
α mass diffusion flux of component α
qi heat flux

2.3 Elements of Nonequilibrium Thermodynamics

2.3.1 Description of Motion and Deformation

In order to measure the motion and deformation of a body a reference state (t = t0)
is required, in which the position of the material points is referred to X i. The symbol
xi denotes the position at time t of that material point which is at X i in the reference
configuration, and the function

xi = χi(t,X1, X2, X3) (2.1)

is called the motion of the body.

The function χi can be used to determine the barycentric velocity vi
0 as well as the
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displacements of the material points, viz.:

vi
0(t,X

j) =
∂χi(t,Xj)

∂t
and U i = U i(t,Xj) = χi(t,Xj)−Xj . (2.2)

Furthermore the displacement gradient H ij and the deformation gradient F ij is de-
fined as:

H ij =
∂U i

∂Xj
and F ij =

∂χi

∂Xj
= δij +H ij . (2.3)

Note that the quantities introduced above contain the reference position Xj as ar-
guments, i.e., a Lagrange or material description is used. However, one can alter-
natively use the so-called Euler or spatial description. To this end we assume the
Jacobian J = detF ij > 0, so that we may invert xi = χi(t,Xj). We write:

X i = (χ−1)i(t, xj) . (2.4)

Analogously to Eq. (2.2) and (2.3) we note (also see Section 2.2):

vi(t, xj) = vi
0

(
t, (χ−1)j(t, xk)

)
, ui(t, xj) = U i

(
t, (χ−1)j(t, xk)

)
,

hij = H ij
(
t, (χ−1)j(t, xk)

)
=
∂ui

∂xj
, (F−1)ij =

∂(χ−1)i

∂xj
= δij − hij . (2.5)

Beyond this, further “measures of strain” can be considered, e.g., the right Cauchy-
Green tensor, Cij, the Green strain tensor, Gij or the linearized strains, εij. It
holds:

Cij = FmiFmj , Gij =
1

2
(Cij − δij) and εij =

1

2

(
H ij −Hji

)
. (2.6)

Other than Cij the unimodular right Cauchy-Green tensor, cij, will prove very
useful. It results from the decomposition of the deformation gradient into a pure
volume-changing part, J1/3δmi, and into a unimodular part, Fmj

u , as follows:

F ij = (J1/3δmi)Fmj
u ⇒ Cij = J2/3Fmi

u Fmj
u = J2/3cij . (2.7)

Thus Cij is split into a pure volume-changing, J2/3, and into a volume-preserving
part, cij (with det cij = 1), which describes pure changes of the shape of the body.
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2.3.2 Balance Equations and Mass Diffusion Flux

In order to investigate mixtures, in particular the temporal change of the internal com-
position, the partial mass density ρα(x

j, t) of the different constituents, the barycentric
velocity vi(xj, t) (in case of liquids) or the displacements ui(xj, t) (in case of solids),
and the internal energy density ρǫ(xj, t) of the thermodynamical system need to be
determined. These fields are used in the partial mass balance, the momentum balance
and in the internal energy balance which read in regular points in case of absence of
external forces and energy supplies:

∂ρα

∂t
= −∂(ραv

i
α)

∂xi
+ τ ρ

α (partial mass balance) , (2.8)

∂ρvi

∂t
= − ∂

∂xj

(
ρvjvi − σij

)
(momentum balance) , (2.9)

∂ρǫ

∂t
= − ∂

∂xj

(
ρǫvj + qj

)
+ σij ∂v

i

∂xj
(internal energy balance) . (2.10)

Note that the internal energy density is used instead of the temperature T because
ρǫ appears under the time derivative ∂/∂t in Eq. (2.10). The temperature, which is
more important from a experimental point of view, will be defined later. In general
the different components of a mixture can react chemically, which gives rise to a pro-
duction term, τ ρ

α, on the right hand side of Eq. (2.8). Consequently the conservation
of mass does not hold for the individual component α.

By summation of Eq. (2.8) w.r.t. all constituents α ∈ {1, . . . , ν} the conservation
law of mass for the whole mixture results. We write:

∂ρ

∂t
= −∂(ρv

i)

∂xi
(2.11)

with
ν∑

α=1

ρα
(def)
= ρ ,

ν∑

α=1

ραv
i
α

(def)
= ρvi ,

ν∑

α=1

τ ρ
α = 0 . (2.12)

An alternative form of Eq. (2.11) is given by J = ρ0/ρ where ρ0 represents the mass
density of the reference state, cf., [86]. This relation follows by integrating Eq. (2.11)
and by using the relation dJ/dt = J · ∂vi/∂xi, cf., Eq. (A.2).

The mass diffusion flux characterizes the mass transport resulting from the deviation
between the partial velocity of the component α, vi

α, and the barycentric velocity and
is defined as:

J i
α

(def)
= ρα(v

i
α − vi) which implies

ν∑

α=1

J i
α = 0 , (2.13)

by means of Eq. (2.12)2. The definition of the mass diffusion flux, viz. Eq. (2.13)1,
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can be used in order to rewrite Eq. (2.8) in the following form:

∂ρα

∂t
= −∂(ραv

i + J i
α)

∂xi
+ τ ρ

α (alternative partial mass balance) . (2.14)

2.3.3 Particle Diffusion Flux

A general mixture theory of solids should also allow for the treatment of vacancies
which may be considered as massless constituents. Therefore it is more practical to
examine the balance of the individual particle densities nα(x

i, t) instead of Eq. (2.8).
By means of ρα = mαnα one finds:

∂nα

∂t
= −∂(nαv

i
α)

∂xi
+ τn

α with τ ρ
α = mατ

n
α ,

ν∑

α=1

mατ
n
α = 0 . (2.15)

The particle diffusion flux is defined analogously to Eq. (2.13), viz.:

ji
α

(def)
= nα(v

i
α − vi) and J i

α = mαj
i
α ,

ν∑

α=1

mαj
i
α = 0 . (2.16)

Hence Eq. (2.15) can be written correspondingly to Eq. (2.14):

∂nα

∂t
= −∂(nαv

i + ji
α)

∂xi
+ τn

α (alternative partial particle balance) . (2.17)

It is worth mentioning that the sum
∑

α τ
n
α is not necessarily zero: due to chemical

reactions an overall particle conservation of the mixture does not hold.

We use the quantities that occur under the time derivative in the balances, viz.
{ρα or nα, v

i or ui, ρǫ}, as primary variables. Beyond these variables further quanti-

ties, so-called constitutive quantities , such as σij, qi, J i
α, j

i
α and τ

ρ/n
α , occur. They

must be specified by means of constitutive equations which relate them to the vari-
ables and their derivatives in a material-dependent manner. The resulting so-called
field equations represent a system of Partial Differential Equations (PDE) for the
variables, which, in turn, can be solved with initial/boundary conditions.

2.3.4 Entropy Principle

Clausius introduced the concept of entropy in the 19th century, cf., [38] for a detailed
overview of the physical and historical background. Originally his objective was to
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establish a rational basis to Carnot’s study which had lead to an upper bound for
the maximal work that can be produced by a heat engine. Clausius was aware of
many serious errors in Carnot’s paper, which he had to correct at first. The most
prominent error concerns the fact that even the conservation law of energy, the 1st Law
of Thermodynamics, is found to be violated, i.e. Carnot assumed that the heat that
is needed to produce mechanical work is conserved during the process. Surprisingly,
Carnot’s final result is correct and Clausius re-derived it from the simple axiom:
Heat cannot flow by it itself from a colder body to a hotter body . This is the first
version of the 2nd Law of Thermodynamics . Based on his axiom Clausius, however,
derived a further law that goes far beyond the characterization of efficiencies of heat
engines. Nowadays this law is called the 2nd Law of Thermodynamics (2nd law), and
it reads without a contribution from radiation:

dS

dt
≥ Q̇

T
or

d

dt

∫

V

ρη dV ≥ − 1

T

∮

∂V

qini dA . (2.18)

The inequality concerns an arbitrary body with volume V , whose surface ∂V may
exchange heat with the environment with rate Q̇ at a homogeneous temperature T .
By means of this version of the 2nd Law Clausius introduced a new additive quantity,
which he called the entropy of the body. The equality sign holds in equilibrium and
in non-equilibrium the variation of the entropy is larger than Q̇/T .

After some generalizations, which we will explain in the following, the entropy in-
equality is used today for many purposes. Among them we have: (i) it restricts
the admissible class of constitutive functions, (ii) it establishes stability criteria for
thermodynamic processes, (iii) it may guarantee uniqueness of initial boundary value
problems, (iv) it controls the approach to equilibrium of a technical system and it
gives the possible equilibria.

In this paper we focus on the materials science point-of-view, and here the Eq. (2.18)
is rather impracticable and the question about a local form of the inequality must
be posed. However, the usual procedure (Reynold’s transport theorem) that trans-
forms Eq. (2.18)2 into a local form fails since the temperature stands outside the
integral. In other words, the question about the local form of the (non-convective
part of the) entropy flux φi occurring in Eq. (2.35)1 arises.

Various attempts were undertaken in the past to find a general form for the entropy
flux. The most obvious way is to simply “write” the temperature T under the integral.
The resulting equation is called the Clausius-Duhem inequality:

d

dt

∫

V

ρη dV ≥ −
∮

∂V

qini

T
dA ⇒ ∂ρη

∂t
+∇i

(
ρηvi +

qi

T

)
≥ 0 . (2.19)

Consequently the entropy flux is φi = qi/T , as used in [27] or [57]. However, this
form of φi already fails in case of ideal gases, cf., [38], or binary fluid mixtures, cf.,
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[84]. This shortcoming was, as far as we know, in a systematic manner first reme-
died by the seminal works of Müller (1968) and, later, Liu (1972), [84, 80]. Here, in
contradiction to the preliminary definition of the local form of φi, the entropy flux
is considered to be a material-dependent quantity and thus relies on a constitutive
law whose explicit form results from the exploitation of the 2nd law according to
the strategies of Müller and Liu. However, recent investigations show that the ex-
plicit determination of the entropy flux by means of the eponymous method of Liu,
which uses the balance equations as constraints during the exploitation of the 2nd
law, might become impossible or at least very subtle if complex materials are under
consideration, for example those that need higher derivatives in their constitutive
laws. In such a case the entropy density and entropy flux may do not form a unique
pair, cf., [51]. In particular it is a priori not clear, as to whether only the balances
or, additionally, higher derivatives of the balances must be considered. Therefore we
present a revision of the entropy principle based on four, well accepted statements,
which - in an astonishing simple, but general way - allows to exploit the 2nd law
in order to examine the constitutive relations for complex materials. It avoids the
difficulties of the existing methods by prescribing a particular form of the entropy
production, ζ, based on established thermodynamical concepts.

a. Simple One-dimensional Example: Thermoelasticity with Strain Gra-
dients

In this section we give a simple illustration how an a priori assumption on the entropy
flux can be avoided in order to base the entropy principle on firm grounds.

To this end we consider a one-dimensional thermo-elastic body with reference mass
density ρ0 = 1kg/m3, whose state at time t is given by the fields internal energy den-
sity, e(t, x), or temperature, T (t, x), and the displacement u(t, x) which we consider
as the basic variables. In this section x denotes a Lagrange coordinate.

The field equations for the variables rely on the equations of balance for momentum
and internal energy

ü− ∂σ

∂x
= 0, ė+

∂q

∂x
= σu̇x . (2.20)

For abbreviation we indicate in this section the spatial derivatives of the displacement
by ux, uxx and so on.

In order to end up with a closed set of field equation we have to relate the two
quantities stress, σ, and and heat flux, q, which are not among the basic variables, via
constitutive laws to the variables and their derivatives. Within the setting of a phase
field model, a popular constitutive law for the stress to describe phase transitions in
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a thermo-elastic body is given by

σ = σ0(e, ux)− a(e, ux)uxxx − b(e, ux)u
2
xx, (2.21)

where σ0 is a non-monotone function of ux of van der Waals type and a and b are
not specified in more detail at this moment. The constitutive law for the heat flux
will be given later on.

As we shall see, the structure of the system (2.20) with (2.21) is already sufficiently
rich to allow an interesting consequence. We start the following discussion with the
introduction of a function that relates the entropy density s to the variables and their
derivatives, viz.

s = h(e, ux, uxx, uxxx). (2.22)

We do not discuss here how to obtain that function. For example, it could be calcu-
lated within the framework of statistical mechanics, as it is in fact usually done, cf.,
[11].

We now form the time derivative of s:

ṡ =
∂h

∂e
ė+

∂h

∂ux

u̇x +
∂h

∂uxx

u̇xx +
∂h

∂uxxx

u̇xxx, (2.23)

and proceed with the elimination of ė by means of the balance equation (2.20)2. Next
the product rule is used to rearrange terms. The result is:

ṡ = − ∂

∂x

(
∂h

∂e
q −

(
∂h

∂uxx

− ∂

∂x

∂h

∂uxxx

)
u̇x +

∂h

∂uxxx

u̇xx

)
+

+

(
∂h

∂ux

− ∂

∂x

∂h

∂uxx

+
∂2

∂x2

∂h

∂uxxx

+
∂h

∂e
σ

)
u̇x + q

∂

∂x

∂h

∂e
. (2.24)

This identity forms the basis to establish the entropy inequality by two definitions,
Clausius’ axiom and a conclusion.

1. We define the (absolute) temperature, T , and subsequently define the entropy flux,
φ, according to:

1

T
=
∂h

∂e
, and φ =

q

T
−

(
∂h

∂uxx

− ∂

∂x

∂h

∂uxxx

)
u̇x +

∂h

∂uxxx

u̇xx . (2.25)

2. We satisfy Clausius’ axiom, according to which heat cannot flow by itself from a
cold to a hot place, by:

q
∂ 1

T

∂x
≥ 0, (2.26)
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i.e., the heat flux must be antiparallel to the temperature gradient.

3. The identity (2.24) is linear in the velocity gradient u̇x, however, it can arbitrarily
chosen to construct an arbitrary solution of the system (2.20) and (2.21). In partic-
ular, it can be chosen so that the last line of (2.24) becomes negative. This can only
be avoided by the requirement that the factor of u̇x in (2.24) must vanish, i.e.:

σ

T
= − ∂h

∂ux

+
∂

∂x

∂h

∂uxx

− ∂2

∂x2

∂h

∂uxxx

. (2.27)

Thus the identity (2.24) has turned into the entropy inequality :

ṡ+
∂φ

∂x
≥ 0 , (2.28)

which results here as a consequence of the field equations and some additional as-
sumptions: (i) The definition (2.25)1 of the temperature in non-equilibrium is the
same as in equilibrium. (ii) The entropy production is of the form irreversible flux
× driving force, which is in a thermoelastic body the heat flux times the derivative
of 1 / T . (iii) The constitutive functions for the stress and for the heat flux, are re-
stricted by (2.27), and (2.26), respectively, so that the field equations imply a further
equation of balance, viz. (2.28), with a non-negative production.

Note that the described strategy requires in particular, as a prerequisite, the identi-
fication of the irreversible fluxes and the corresponding driving forces in the system
of field equations. These are those that are known to be zero in equilibrium.

We now proceed to exploit the consequences of the entropy principle concerning the
constitutive laws for the stress and the heat flux. We start from the assumption that
the entropy density (2.22) is given by the representation

s = h0(e, ux)−
1

2
α(e, ux)u

2
xx + γ(e, ux)uxxx . (2.29)

In order to describe two existing phases, the function h0(e, ux) is non-concave with
respect to ux, and α > 0, so that the homogeneous body has maximal entropy.

The exploitation of (2.25)2 and (2.27) then yields the entropy flux

φ = (α+ γ′)uxxu̇x − γuxx , (2.30)

and the constitutive function for the stress

σ

T
= −h′0 − (α+ 2γ′)uxxx −

1

2
(α′ + 2γ′′)u2

xx . (2.31)
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A comparison of this result with (2.21) implies that we have σ0 = −Th′0, a = T (α +
2γ′) and b = T 1

2
(α′ + 2γ′′). We conclude that the entropy principle requires that the

coefficient functions a and b are not independent of each other but must satisfy

b =
1

2
a′ . (2.32)

A further important conclusion is that the alternative choices (α 6= 0,γ = 0) or
(α = 0,γ 6= 0) lead to the same stress-strain relation. Thus there is no unique
correspondence between the chosen entropy/entropy flux pair and the constitutive
law for the stress.

Finally we give the constitutive law for the heat flux by the simplest possibility to
satisfy the inequality (2.26), which is the classical Fourier law

q = −κ∂T
∂x

with κ > 0 . (2.33)

Note that Dunn & Serrin, [41], obtained a different law for the heat flux because they
relied their treatment of the same subject on the Clausius-Duhem inequality.

The complete procedure to change from the energy density e to the temperature T
as a variable is described in detail in Section 2.4.2.

b. Statement of the Entropy Principle

The entropy principle presented here consists of four parts:

§1) We postulate the existence of the constitutive quantities called entropy density,
ρη, and entropy flux, φi. The constitutive relation of ρη has the form:

ρη = S
(
variables, (functions of) derivatives of the variables

)
, (2.34)

in which the variables are the arguments of the time derivatives of the balances.
All constitutive equations are of this type but, by abandoning the Principle of
Equipresence, [110], the arguments can differ.

§2) There exists a local entropy balance

∂ρη

∂t
+
∂(ρηvk + φk)

∂xk
= ζ with ζ ≥ 0 (dissipation inequality) . (2.35)

The constraint of Eq. (2.35)2, viz. the non-negative entropy-production ζ,
represents the Second Law of Thermodynamics .
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§3) We define the absolute temperature to be:

1

T

(def)
=

∂ρη

∂ρǫ
, (2.36)

which corresponds to the concept of the integrating factor within classical ther-
modynamics.

§4) (a) Analogously to the concept of thermodynamical fluxes (Fz) and driving
forces (Dz) known from the Thermodynamics of Irreversible Processes, [43], we
postulate the following form for the entropy production:

ζ =
∑

z

FzDz , Fz
e.g.
= {jk

α or J
k
α, σ

ij
diss, q

k} . (2.37)

σij
diss (with σ

ij = σij
el + σij

diss) gives the dissipative, also called irreversible, con-
tribution to the stress. Note that there was no such part in the example of the
last section. It is well known, [43], that the driving forces corresponding to the
fluxes in (2.37) are

Dz =
{
∇i

(µα − µν

T

)
,∇(iv

j),∇i(1/T )
}
, (2.38)

The newly introduced quantities µα are the chemical potentials, see Section 2.4
for their definition in the current study.

(b) For equilibrium the fluxes Fz vanish, i.e., Fz|eq .
= 0, which, in turn,

guarantees the absence of dissipation, i.e., ζ|eq = 0, within equilibrium. Hence
it follows that ζ|eq is minimal. Relying on the assumption that the Fz depend
on the Dz, we may conclude that Dz|eq = 0 holds additionally.

c. The Role of the 2nd Law

The field equations (i.e., balances + constitutive relations) represent a system of
partial differential equations for the determination of the variables. Such a solution
must satisfy the 2nd law (cf., Statement 2 of the last paragraph) and consequently
the constitutive relations must be constructed such, that the 2nd law follows for any
solution of the field equations.

For that reason we interpret the balances (2.9, 2.10,2.14) as a system of algebraic
equations , in which the right hand sides can be chosen arbitrarily in order to calculate
the left hand sides, see also [3]. Due to the product rule the arbitrary terms on the
right hand sides are:

{
ρα,

∂vi

∂xi
, vi,

∂ρα

∂xi
,
∂J i

α

∂xi
, τ ρ

α
︸ ︷︷ ︸

partial mass balance

, ρ, ρvi,
∂v〈i

∂xj〉
,
∂σij

∂xj︸ ︷︷ ︸
momentum balance

, ρǫ,
∂ρǫ

∂xi
,
∂qi

∂xi
, σij

︸ ︷︷ ︸
internal energy balance

}
. (2.39)
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Alternatively, in order to investigate particle diffusion (cf., Section 2.3.3), one must
consider the balances (2.9, 2.10,2.17). Hence the quantities ρα, J

i
α and τ ρ

α in Eq.
(2.39) must be replaced by nα, j

i
α and τn

α .

Thus one has to construct the constitutive relations such that the 2nd law follows
for an arbitrary choice of the list of elements in Eq. (2.39) representing an arbitrary
solution of the balances.

2.4 Investigations of a Single Phase

2.4.1 Exploitation of the 2nd Law for non-reacting, thermo-
elastic Solids

In what follows we consider a thermo-elastic solid mixture consisting of ν non-reacting
components, i.e., σij

diss = 0 ⇒ σij = σij
el and τ

n
α = 0. In particular we assume for the

constitutive function of the entropy density ρη in Eq. (2.34) a quite simple form, for
which we need, as we shall see, four alternative functional representations:

ρη = S̃(ρǫ, n1, . . . , nν , c
ij) = Ŝ(T, n1, . . . , nν , c

ij)

= S̄(T, y1, . . . , yν−1, ρ, c
ij) = Ś(T, y1, . . . , yν−1, C

ij) . (2.40)

ρǫ identifies the thermal variable whereas the symbols nα, α ∈ {1, . . . , ν}, and cij

characterizes the composition and the deformation of the solid. Note that cij only
contains five independent elements due to the relation det cij = (J−2/3)3J2 = 1
whereas Cij in Eq. (2.40)4 incorporates six independent elements. The set {ρ, cij}
can be used alternatively instead of Cij, which is reasonable since ρ and Cij are not
independent due to the relation ρ0/ρ = J = detF ij = det

√
Cij (cf., Section 2.3.2).

The alternative representations of the Eqs. (2.40)1−4 give ρη by ν +6 arguments and
will be needed for different purposes. For instance we will see that the function S̃ is
extremely useful for the exploitation of the 2nd law whereas the sets of arguments
in S̄, Ŝ and Ś can be used for the definition of the chemical potential µα or for the
calculation of the pressure p and the stresses tij.

In what follows we write for the entropy balance in Eq. (2.35)1 by means of the
product rule:

∂S̃
∂t︸︷︷︸
A

+vi ∂S̃
∂xi︸︷︷︸
B

+S̃ ∂v
i

∂xi
+
∂φi

∂xi
= ζ . (2.41)
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The expressions A and B can be re-written using Eq. (2.40)1 and the chain rule, viz.

∂S̃
∂t

=
∂S̃
∂ρǫ

∂ρǫ

∂t
+

ν∑

α=1

∂S̃
∂nα

∂nα

∂t
+
∂S̃
∂cij

∂cij

∂t
, (2.42)

∂S̃
∂xi

=
∂S̃
∂ρǫ

∂ρǫ

∂xi
+

ν∑

α=1

∂S̃
∂nα

∂nα

∂xi
+

∂S̃
∂ckl

∂ckl

∂xi
. (2.43)

The terms ∂ρǫ/∂t and ∂nα/∂t in Eq. (2.42) can be substituted by the right hand
sides of the according balances, Eqs. (2.10) and (2.17). The resulting equation as
well as the Eqs. (2.43) and (2.36) can be inserted into Eq. (2.41). It follows:

ζ =
1

T

[
− ∂

∂xj

(
ρǫvj + qj

)
+ σij

el

∂vi

∂xj

]
+

ν∑

α=1

∂S̃
∂nα

[
−∂(nαv

i + jα
i )

∂xi

]
+

∂S̃
∂ckl

(
∂ckl

∂t
+ vi∂c

kl

∂xi

)

︸ ︷︷ ︸
=dckl/dt

+vi

(
1

T

∂ρǫ

∂xi
+

ν∑

α=1

∂S̃
∂nα

∂nα

∂xi

)
+ S̃ ∂v

i

∂xi
+
∂φi

∂xi
.

(2.44)

The expression under the brace, dtc
kl = ċkl (def)

= ∂ckl

∂t
+ vi ∂ckl

∂xi , stands for the total
temporal derivative of ckl and can be replaced by the relation (cf., Appendix A.1):

ċkl = −2
3
J−2/3 ∂v

i

∂xi
Ckl + J−2/3 ∂v

i

∂xj

(
F jkF il + F jlF ik

)
. (2.45)

Rearrangement and reduction of the terms in Eq. (2.44) yield:

ζ =
∂

∂xi

(
φi − qi

T
−

ν∑

α=1

ji
α

∂S̃
∂nα

)
+

ν∑

α=1

ji
α

∂

∂xi

(
∂S̃
∂nα

)
+ qi∂1/T

∂xi

︸ ︷︷ ︸
Q

+

∂vi

∂xj

[
σij

el

T
+ J−2/3

(
F jkF il + F jlF ik

) ∂S̃
∂ckl

+

δij

(
S̃ − ρǫ

T
−

ν∑

α=1

nα
∂S̃
∂nα

− 2

3
J−2/3Ckl ∂S̃

∂ckl

)]
≥ 0 , (2.46)

in which the symbol δij stands for the Kronecker symbol. Note that all terms that
are linear in vi vanish, and, therefore, Eq. (2.46) is in agreement with the Principle
of Objectivity formulated by Coleman and Noll, [27].
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The arrangement of Eq.(2.46) presumes a priori knowledge on the entropy production
ζ according to Statement 4 of Section 2.3.4. In particular we arrange the expression Q
to be of the form

∑
FzDz and extract the terms linear in ∂v

i/∂xj due to the arbitrary
list elements in Eq. (2.39). Now we define the entropy flux φi as:

φi (def)
=

qi

T
+

ν∑

α=1

ji
α

∂S̃
∂nα

. (2.47)

Thus the parenthesis of the first summand in Eq. (2.46) vanishes and we obtain the
form:

Px+ Q ≥ 0 , ∀x ∈ R ⇒ P = 0 ∧ Q ≥ 0 , (2.48)

with the abbreviations x = ∂vi/∂xj for the velocity gradient and P = [. . .] for the
bracket of the fourth term. The conclusion in Eq. (2.48) results since Eq. (2.48)1 is
linear in x, which can be arbitrarily chosen. Therefore we can violate the inequality
except for the case P = 0 ∧ Q ≥ 0.

Finally the definition of the entropy flux in Eq. (2.47) remedied the aforementioned
flaw within the works of Coleman and Noll and Green and Naghdi, [27, 57], in which
the entropy flux is assumed to be φi = qi/T . The flux φi in Eq. (2.47) additionally
incorporates diffusional contributions, which corresponds to the results of Müller, [87].

2.4.2 Selected Results

a. Heat Flux and Diffusion Flux

As a consequence of Eq. (2.46) and (2.48) we conclude:

qi∂1/T

∂xi
+

ν∑

α=1

ji
α

∂

∂xi

(
∂S̃
∂nα

)
≥ 0 . (2.49)

A further evaluation of Eqs. (2.49) requires the substitution of the experimentally
unmanageable expression ∂S̃/∂nα by a measurable physical value. For this reason
we introduce the following functional representations for the Helmholtz free energy
density ρϕ according to Eq. (2.40):

ρϕ = F̃(ρǫ, n1, . . . , nν , c
ij) = F̂(T, n1, . . . , nν , c

ij)

= F̄(T, y1, . . . , yν−1, ρ, c
ij) = F́(T, y1, . . . , yν−1, C

ij) , (2.50)
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and define the chemical potential µα as:

µα
(def)
=

∂F̂
∂nα

. (2.51)

Moreover, the Legendre transform as outlined in Appendix A.2 yields:

∂S̃
∂nα

= − 1

T

∂F̂
∂nα

= −µα

T
. (2.52)

By additionally applying the mass conservation of Eq. (2.16)3, j
i
ν = −∑ν−1

β=1
mβ

mν
ji
β,

the following form of Eq. (2.49) is obtained:

qi∂1/T

∂xi
+

ν∑

α=1

ji
α

∂

∂xi

(
∂S̃
∂nα

)
= qi∂1/T

∂xi
+

ν−1∑

β=1

ji
β

∂
(

mβ

mν
µν − µβ

)
/T

∂xi
=

= qi∂1/T

∂xi
+

ν−1∑

β=1

mβj
i
β

∂
(

µν

mν
− µβ

mβ

)
/T

∂xi
≥ 0 . (2.53)

The simplest way to achieve a non-negative expression for the right hand side of Eq.
(2.53)1,2 is to choose q

i, σij
diss, j

i
β or J i

β = mβj
i
β such that quadratic expressions in

∂1/T
∂xi ,

∂(mβµν/mν−µβ)/T

∂xi or
∂(µν/mν−µβ/mβ)/T

∂xi with positive coefficients result. If thermo-
diffusion coupling (Ludwig-Soret and Dufour effect, cf., [31]) is neglected we
put:

ji
β =

ν−1∑

δ=1

M ij
βδ

∂
(

mδ

mν
µν − µδ

)
/T

∂xj
, J i

β =
ν−1∑

δ=1

Bij
βδ

∂ (µ∗ν − µ∗δ) /T

∂xj
,

qi = κij ∂1/T

∂xj
, (2.54)

with the alternative definition µ∗α
(def)
= µα/mα and furthermore:

µ∗α =
∂
̂̂F(T, ρ1, . . . , ρν , c

ij)

∂ρα

=
1

mα

∂F̂
∂nα

, α = {1, . . . , ν} . (2.55)

Note that the material-specific, positive definite diagonal matrices M ij
βδ, B

ij
βδ and κ

ij

in Eq. (2.54) are not necessarily constant and, in general, can depend on the same
arguments used in the Eqs. (2.40/2.50).
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By means of the chain rule, viz. ∂1/T
∂xj = − 1

T 2
∂T
∂xj , Eq. (2.54)3 changes to qi =

−κ̄ij(T ) ∂T
∂xj , with κ̄

ij(T ) = κij/T 2. If κ̄ij = const this equation is called Fourier’s
law of heat conduction in which the symbol κ̄ij denotes the matrix of thermal conduc-
tivity. On the other side Eqs. (2.54)1,2 reveals that the diffusion flux is proportional
to the gradient of the difference of the chemical potentials µα or µ∗α. The matrices
M ij

βδ and B
ij
βδ are often called mobilities .

b. Mechanical Constitutive Equations

In order to determine the pressure and the stress tensor we consider the condition
P = 0 in Eq. (2.48). The trace of σij defines the pressure. One obtains from Eq.
(2.46):

p = −1
3
σkk =

1

3
J−2/3T

(
FmkFml + FmlFmk

) ∂S̃
∂ckl

+

+ T

(
ρη − ρǫ

T
−

ν∑

α=1

nα
∂S̃
∂nα

− 2

3
J−2/3Ckl ∂S̃

∂ckl

)
. (2.56)

Note that Cij and cij are symmetric since CT = (FTF)T = FTF ∧ c = const · C
holds. Therefore the terms containing ∂S̃/∂ckl vanish and it follows by means of Eqs.
(A.10) and (A.16)2 in Appendix A.2 and A.3:

p = −ρϕ− T
ν∑

α=1

nα
∂S̃
∂nα

(App. A.2)
= −ρϕ+

ν∑

α=1

nα
∂F̂
∂nα

(App. A.3)
= −ρϕ+

ν∑

α=1

nαmα
∂F̄
∂ρ

+
ν∑

α=1

ν−1∑

β=1

yα
∂F̄
∂yβ

(
δαβ − nβ

n

)

︸ ︷︷ ︸
=0

(2.57)

= −ρϕ+ ρ
∂F̄
∂ρ

= ρ2∂ϕ̄

∂ρ
. (2.58)

The 2nd Piola-Kirchhoff stress tensor tij can be also expressed by a partial deriva-
tive of the Helmholtz free energy. For this purpose we use the definition of tij in
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Section 2.2 and analyze the constraint P = 0 with respect to Eq. (2.46):

tij = J(F im)−1σmn(F jn)−1

= −J1/3T
[
δjkδil + δjlδik

] ∂S̃
∂ckl

−

JT (F in)−1(F jn)−1

︸ ︷︷ ︸
=(Cij)−1

(
S̃ − ρǫ

T
−

ν∑

α=1

nα
∂S̃
∂nα

− 2

3
J−2/3Ckl ∂S̃

∂ckl

)

= −2J1/3T
∂S̃
∂cij

+ J(Cij)−1

(
ρϕ+ T

ν∑

α=1

nα
∂S̃
∂nα

+
2

3
J−2/3TCkl ∂S̃

∂ckl

)
.

(2.59)

This equation can be further simplified by successively applying the Legendre trans-
forms of Appendix A.2, A.3 and A.4. One obtains:

tij
(App. A.2,A.3)

= 2J1/3 ∂F̄
∂cij

+ J(Cij)−1

(
ρϕ− ρ

F̄
∂ρ
− 2

3
J−2/3Ckl ∂F̄

∂ckl

)

(App. A.4)
= 2J1/3 ∂F́

∂Ckl

(
ρ0

ρ

)2/3

+ J(Cij)−1 ×

×
(
ρϕ+

2

3
J2/3ckl ∂F́

∂Ckl
− 2

3
Ckl 1

2
(δmkδnl + δnkδml)

∂F́
∂Cmn

)

= 2J
∂F́
∂Cij

+ J(Cij)−1
(
ρϕ

)

= 2J
∂ρ

∂Cij
ϕ+ 2Jρ

∂ϕ́

∂Cij
+ J(Cij)−1

(
ρϕ

)

= 2Jρ
∂ϕ́

∂Cij
= 2ρ0

∂ϕ́

∂Cij
. (2.60)

For the last step in Eq. (2.60) we used the relation ∂ρ/∂Cij = ∂
∂Cij

(
ρ0

(detC)1/2

)
=

−ρ0

2
(detC)−3/2 ∂

∂Cij (detC) = −ρ0

2
(detC)−1/2(Cij)−1 = −ρ

2
(Cij)−1.

c. Gibbs-Duhem Relation and Gibbs Equation

In order to underline the power of the present entropy principle we additionally derive
two important equations of thermodynamics, namely the Gibbs-Duhem relation and
the Gibbs equation. The first one follows directly from Eq. (2.57)2:

p

ρ
+ ϕ =

1

ρ

ν∑

α=1

nα
∂F̂
∂nα

=
1

ρ

ν∑

α=1

nαµα , (Gibbs-Duhem equation) . (2.61)
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The latter one relates the Helmholtz free energy density to the entropy, stresses
and chemical potential. Therefore we consider the total differential d(ρϕ) = dF̂ :

d(ρϕ) =
∂F̂
∂T

dT +
ν∑

α=1

∂F̂
∂nα

dnα +
∂F̂
∂cij

dcij . (2.62)

For the coefficients ∂F̂/∂T and ∂F̂/∂cij, and ∂F̂/∂nα we apply the Legendre trans-
forms of Appendices A.2, A.3 and A.4; it follows:

∂F̂
∂T

=
∂

∂T

(
Ê − T Ŝ

)
(App. A.2)

= −ρη ,
∂F̂
∂nα

= µα , (2.63)

∂F̂
∂cij

(App. A.3)
=

∂F̄
∂cij

= ρ
∂ϕ

∂cij
(App. A.4)

= ρJ2/3 ∂ϕ

∂Cij

(2.60)
=

1

2
J−1/3tij . (2.64)

In particular Eq. (2.64)2 holds since ρ and c
ij are independent arguments within F̄ .

Thus we can finally write:

d(ρϕ) = −ρη dT +
1

2
J−1/3tij dcij +

ν∑

α=1

µα dnα , (Gibbs equation) . (2.65)

Eq. (2.65) can be used for the direct identification of ρη and µα but cannot be used
for the calculation of tij since the constraint det cij = 1⇔ (cij)−1dcij = 0 holds. For
the identification of the pressure and the 2nd Piola-Kirchhoff tensor one needs
the Gibbs equation - according to Eqs. (2.58) and (2.60) - in terms of ϕ̄ and ϕ́. Here
a straightforward calculation yields the two alternative forms of the Gibbs equation:

dF̄ = ρdϕ̄+ ϕ̄dρ =
∂F̄
∂T

dT +
∂F̄
∂ρ

dρ+
∂F̄
∂cij

dcij +
ν−1∑

β

∂F̄
∂yβ

dyβ

⇔ dϕ̄ = −ηdT +
p

ρ2
dρ+

1

ρ

∂F̄
∂cij

dcij +
1

ρ

ν−1∑

β

∂F̄
∂yβ

dyβ , (2.66)

and

dF́ = ρdϕ́+ ϕ́dρ =
∂F́
∂T

dT +
∂F́
∂Cij

dCij +
ν−1∑

β

∂F́
∂yβ

dyβ

⇔ dϕ́ = −ηdT +
1

2ρ0

tijdCij +
1

ρ

ν−1∑

β

∂F́
∂yβ

dyβ . (2.67)

Eqs. (2.66) and (2.67) allow for a direct identification of p and tij as partial deriva-
tives of ϕ̄ or ϕ́, respectively. However, the prize we pay is loss of the closed form
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for the chemical potential µα. Furthermore Eqs. (2.65, 2.66) can be used for the
liquid matter, where for purely volumetric deformations cij = δij ⇔ dcij = 0 holds.
Consequently, one obtains from (2.65)

d(ρϕ) = −ρηdT +
∑

µαdnα (Gibbs equation for liquid mixtures) (2.68)

and from (2.66):

dϕ = −ηdT +
p

ρ2
dρ (Gibbs equation for pure liquids) , (2.69)

which matches the classical results of thermodynamics, [88].

d. Splitting of the Free Energy into a Mechanical and a Chemical Part4

In order to study diffusion processes in thermo-elastic solid mixtures one needs an
explicit expression for ρϕ that allows to determine the chemical potentials µα or µ∗α
according to Eqs. (2.51,2.55), which are necessary during calculation of the diffusion
fluxes ji

α or J i
α in Eq. (2.54)1,2.

(I) Concept We start with the observation that the deformation of the solid results
from two independent effects, viz.:

1) (inelastic) deformations, resulting from internal diffusion processes (e.g., mis-
fits, which follow from the redistribution of the atoms) and from temperature
changes (i.e., thermal expansion),

2) elastic deformations resulting from the change of the stress state according to
the application of external loadings.

In order to distinguish between these processes we consider three different states, char-
acterized by temperature, particle concentrations, and deformation gradient, namely
(T, yβ, F

ij) with β = {1, 2, . . . , ν − 1}. These states are specified by the settings
indicated in Table 2.2.

Furthermore the following conditions for the Cauchy stresses, σij, and for the de-
formation gradient, F ij, are formulated for the transformations between the states,
cf., Figure 2.1:

σij

{
= −p̄δij !

= const. , for S0 → S∗
6= −p̄δij , for S∗ → S

, F ij

{
= F ij

∗ , for S0 → S∗
= F ij

el , for S∗ → S
, (2.70)

4This paragraph is based on the preliminary considerations by Dreyer and Duderstadt, [35].
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Table 2.2: Specification of the three states required for the distinction between elastic and
inelastic deformations in multi-component, thermo-elastic, diffusive solids.

reference state S0 intermediate
state S∗

current state S

temperature T T0 T∗ = T T

composition yβ y0
β y∗β = yβ yβ

deform. gradient F ij F ij
0 = δij F ij

∗ F ij

in which p̄ is the reference pressure.

In summary, the deformation gradient F ij
∗ represents the inelastic part of the deforma-

tion at constant reference stress, whereas F ij
el contains the purely elastic deformation.

Note that neither the concentration, i.e., the distribution of the constituents over the
lattice sites, nor the temperature do change for S∗ → S, cf., Figure 2.1.

Finally we note that chemical experiments, especially phase equilibria measurements,
typically refer to the state S∗ or, with other words, the process, which is observed
during the experiment is given by the transformation S0 → S∗.

(II) Mass densities, particle densities, concentrations, and Jacobians Now
we calculate for the three different states S0, S∗, and S the mass densities ρ0, ρ∗ and
ρ, and the Jacobians J∗, Jel and J , in terms of concentrations and particle densities.
For the mass densities we obtain (see also Section 2.2):

ρ0 = mH · n0 ·M(y0
α) , ρ∗ = mH · n∗ ·M(yα) , ρ = mH · n ·M(yα) (2.71)

and the calculations of the Jacobians yields:

J∗
(def)
= detF ij

∗ =
ρ0

ρ∗
=
M(y0

α)

M(yα)

(def)
= ν(yβ)

n0

n∗
, Jel

(def)
= detF ij

el =
ρ∗
ρ
=
n∗
n

,

J
(def)
= detF ij =

ρ0

ρ
= ν(yβ)

n0

n
. (2.72)

From Eq. (2.72) the multiplicative decomposition of the Jacobian J directly follows:

J = JelJ∗ . (2.73)
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reference state

intermediate state

current state

F ij
∗ ,

σij = −p̄δij

F ij
el ,
σij 6= −p̄δij

α β

control volume
V0

control volume V 6= V∗

control volume
V∗ 6= V0

total deformation, F ij

e.g.,
diffusion

or thermal
expansion

arbitrary, elastic
deformation

Figure 2.1: Three states of a multi-component thermo-elastic solid. (a) The reference
state S0 with the reference temperature T , the reference composition y0

β , and the reference

(undeformed) strain state described by F ij
0 = δij . (b) The intermediate state S∗ with

T∗ = T , y∗β = yβ , and F ij
∗ . (c) The current state S with T , yβ , and with F ij for S0 → S or

with F ij
el for S∗ → S.

(III) Relations between the deformation gradients In addition to Eq. (2.73)
there is a corresponding decomposition of the total deformation gradient. If the
concept of the three introduced states S0, S∗, and S is accepted then we have

F ij = F ik
el F

kj
∗ . (2.74)

The proof of Eq. (2.74) directly follows from the three motions of the body (see
Section 2.3.1):

xi = χi(t,Xj) , X i
∗ = χi

∗(t,X
j) , xi = χi

el(t,X
j
∗) , (2.75)
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so that by virtue of the chain rule we may write

F ij =
∂χi

∂Xj
=
∂χi

el

∂Xk
∗

=F ik
el

∂χk
∗

∂Xj

=F kj
∗

. (2.76)

(IV) Example At this point we briefly consider an example to illustrate the de-
formation that might lead to the intermediate state, characterized by F ij

∗ . At first
we consider isotropic thermal expansion. Usually the thermal expansion coefficient is
measured without considering any changes of the composition within the body, cf.,
[64], or [101]. In this case we may write

J∗ = ν(yβ)

=1

n0

n∗
=
n0

n∗
=
V∗
V0

= [1 + α(T − T0)]
3 , (2.77)

where α denotes the linear thermal expansion coefficient. In other words, the change
of the volume from V0 to V∗ is measured.

If we now consider a process that incorporates thermal expansion and diffusion, then
we have to use in the model

J∗ = ν(yβ)
n0

n∗
= ν(yβ)

V∗
V0

= detF ij
∗ = ν(yβ) [1 + α(T − T0)]

3 . (2.78)

Next we investigate the case of anisotropic thermal expansion with diffusion. In-
stead of the volume of the body we now have to determine the deformation gradient
experimentally, which relies, in analogy to the above equations, on the ansatz:

F ij
∗ = ν(yβ)

1/3
[
δij + αij(T − T0)

]
. (2.79)

(V) Second Piola-Kirchhoff & Cauchy stress tensor According to Section
2.2 the Cauchy stress tensor can be written as:

σij =
1

J
F imF jntmn , σij =

1

Jel

F im
el F

jn
el z

mn , (2.80)

where tij refers to the reference state S0 and zij to the intermediate state S∗. A
combination of Eq. (2.80)1,2 yields the relation:

tij = J∗(F
−1
∗ )im(F−1

∗ )jnzmn . (2.81)
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(VI) St. Venant-Kirchhoff law The St. Venant-Kirchhoff law relates a
second Piola-Kirchhoff stress tensor to the elastic strains, cf., [108]. Since for the
case illustrated in Figure 2.1 the elastic deformation starts at S∗ and ends in S, we
have to formulate that law for zij. It reads:

zij = −p̄Jel(C
−1
el )

ij +
1

2
K̄ijkl(T, yβ)

(
Ckl

el − δkl
)

with Ckl
el = Fmk

el Fml
el , (2.82)

where the symbol K̄ijkl = K̄jikl = K̄ijlk = K̄klij stands for the stiffness matrix, which
is generally assumed to be a function of T and yβ.

However, in order to calculate the free energy density by means of the exploitation
of the 2nd law, cf., Eq. (2.60), we also need to know the second Piola-Kirchhoff

stress tensor tij. By inserting Eq. (2.82) into Eq. (2.81) we find after some rearrange-
ments of the terms:

tij = −p̄J(C−1)ij +
1

2
Kijkl(T, yβ)

(
Ckl − Ckl

∗ (T, yβ)
)

(2.83)

with the relations:

Ckl
∗ = Fmk

∗ Fml
∗ , Ckl = FmkFml and

Kijkl = J∗(F
−1
∗ )im(F−1

∗ )jn(F−1
∗ )kp(F−1

∗ )lqK̄mnpq . (2.84)

The Jacobian J∗ as well as the deformation gradient F ij
∗ depend on temperature T

and on the concentrations yβ, cf., Eqs. (2.79)2 and (2.78). Thus C
ij
∗ = Cij

∗ (T, yβ) and
Kijkl = Kijkl(T, yβ) depend on the same variables. The newly introduced quantity
Cij
∗ is often called misfit strain or eigen-strain.

(VI) Chemical and mechanical part of the free energy According to the
decomposition of the deformation gradient in Eq. (2.74) we now present a decompo-
sition of the Helmholtz free energy. We assume that the Helmholtz free energy
can be represented by two additive contributions:

ϕ = ϕmech + ϕchem , (2.85)

namely a chemical part and a mechanical part, which, in this context, refers to the
elastic deformations. The chemical part is exclusively subjected to the change of the
concentration and the temperature, i.e., to diffusion and thermal expansion. There-
fore ϕchem represents the Helmholtz free energy of S∗, for which the stress state
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σij = −p̄δij and the strain state Cij = Cij
∗ holds. Therefore we define analogously to

Eqs. (2.40, 2.50):

ϕchem (def)
= ϕ́

(
T, y1, . . . , yν−1, C

ij = Cij
∗

)
,

ϕmech (def)
= ϕ́

(
T, y1, . . . , yν−1, C

ij
)
− ϕchem . (2.86)

The chemical part, ϕchem, is typically obtained from phase equilibrium measurements
performed under the pressure p̄ or by calculations within the settings of statistical
mechanics. The mechanical part, ϕmech, which is exclusively related to the elastic
deformations during the transformation S∗ → S, is calculated from a given stress-
strain relation, e.g., from Eq. (2.60). To this end recall that Eq. (2.83) only depends
on {T, y1, . . . , yν−1, C

ij} using the relation J = J́(Ckl) =
√
detCkl. Therefore we can

insert Eq. (2.83) into Eq. (2.60) and integrate the result w.r.t. Cij. We obtain:

ϕ́(T, yβ, C
ij) =

Kijkl(T, yβ)

8ρ0

(
Cij − Cij

∗

)(
Ckl − Ckl

∗

)
− p̄

ρ0

[
J∗(T, yβ)− J́

]

+ K(T, yβ) , (2.87)

in which K and p̄J∗/ρ0 denote integration “constants” because they depend exclu-
sively on the variables {T, y1, . . . , yν−1}. Furthermore we made use of the relation
(C−1)ij = (detCkl)−1∂Cij(detCkl).

Thus, one finds for the functional representation of ρϕ:

F́ =
Kijkl(T, yβ)

8J́

(
Cij−Cij

∗

)(
Ckl−Ckl

∗

)
− p̄

(
J∗(T, yβ)

J́
− 1

)
+ ρ́K(T, yβ) ,(2.88)

with ρ = ρ́(Cij) = ρ0/J́(C
ij). The mechanical part, ρϕmech, must vanish for the case

Cij = Cij
∗ and J = J∗. Thus we conclude:

ρϕmech = F́mech =
Kijkl(T, yβ)

8J́

(
Cij − Cij

∗

)(
Ckl − Ckl

∗

)
− p̄

(
J∗(T, yβ)

J́
− 1

)
,

(2.89)

ρϕchem = F́ chem = ρ́K(T, yβ) . (2.90)

In order to calculate the chemical potentials, µα, according to in Eq. (2.51) we have
to rewrite F́mech/chem in terms of {T, nα, c

ij} with α = {1, . . . , ν}. By means of the
relations:

ρ = ρ̂(nα) =
∑

α

mαnα , J = Ĵ(nα) =
ρ0∑

αmαnα

, (2.91)

Cij = Ĵ2/3cij , yβ = ŷβ(nα) =
nβ∑
α nα

(2.92)
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we reformulate Eq. (2.88) as follows:

F̂ = F̂mech + F̂ chem =

=
Kijkl(T, ŷβ)

8Ĵ

(
Ĵ2/3cij − Cij

∗ (T, ŷβ)
)(

Ĵ2/3ckl − Ckl
∗ (T, ŷβ)

)

+ ρ̂K(T, ŷβ)− p̄

(
J∗(T, ŷβ)

Ĵ
− 1

)
, (2.93)

which can be now differentiated w.r.t. nα. We find for the chemical potential:

µα
(def)
=

∂F̂
∂nα

=
(Kijkl)′

8J

∂ŷβ

nα

(
Cij − Cij

∗

)(
Ckl − Ckl

∗

)

+
Kijklmα

8ρ0

(
Cij − Cij

∗

)(
Ckl − Ckl

∗

)

+
Kijkl

8J

(
−2
3

mα

ρ
Cij − (Cij

∗ )
′ ∂ŷβ

∂nα

)(
Ckl − Ckl

∗

)

+
Kijkl

8J

(
−2
3

mα

ρ
Ckl − (Ckl

∗ )
′ ∂ŷβ

∂nα

)(
Cij − Cij

∗

)

− p̄
(
J ′∗
J

∂ŷβ

∂nα

+ J∗
mα

ρ0

)
+mαK + ρK′ ∂ŷβ

∂nα

, (2.94)

where the symbol (♦)′ stands for the partial derivative ∂♦/∂yβ. Furthermore holds:
∂ŷβ/∂nα =

1
n
(δαβ − yβ), which follows directly from Eq. (2.92)2.

2.4.3 Comparison with the Literature: Gibbs and Helmholtz
Free Energy, Strain Energy, Complementary Strain En-
ergy, and Theorems of Castigliano

Finally we compare some of the derived equations with the literature. To this end
we specialize to pure substances and start with the corresponding alternative form of
the Gibbs relation in Eq. (2.67):

dϕ = −ηdT +
1

2ρ0

tijdCij (2.95)

⇔ dw⋆ = −ηdT − 1

2ρ0

Cijdtij with w⋆ (def)
= ϕ− 1

2ρ0

tijCij , (2.96)

where ϕ = ϕ̃(T,Cij) and w⋆ = ŵ⋆(T, tij).

Note that Eq. (2.96) - in which we temporarily call the introduced quantity w⋆

the strain potential - holds solely, if the stress strain relation, e.g., Eq. (2.83), is
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invertible5. Furthermore Eq. (2.95) and (2.96) imply the following hyper-elastic
relations for the stresses and strains:

2ρ0
∂ϕ̃

∂Cij
= tij , 2ρ0

∂ŵ⋆

∂tij
= −Cij . (2.97)

Another version of the Gibbs relations can be found by using the definition for the
first Piola Kirchhoff stress tensor :

pij (def)
= Jσik(F−1)

jk
(2.98)

and the differentiation rule dCij = (dF ki)F kj +F kidF kj. Then one obtains from Eq.
(2.95):

dϕ = −ηdT +
1

ρ0

pijdF ij (2.99)

⇔ dw⋆ = −ηdT − 1

ρ0

F ijdpij with w⋆ (def)
= ϕ− 1

ρ0

pijF ij , (2.100)

where ϕ = ϕ̄(T, F ij) and w⋆ =
⌢
w ⋆(T, pij). Hence follows:

ρ0
∂ϕ̄

∂F ij
= pij , ρ0

∂
⌢
w ⋆

∂pij
= −F ij . (2.101)

It is worth mentioning that ϕ̄(T, F ij) cannot depend on all nine independent coeffi-
cients of F ij due to the Principle of Objectivity, [27]. In particular ϕ only depend on
six components following from symmetric combinations of F ij, e.g., C = FTF.

Landau and Lifschitz, [73], used a third form of the Gibbs relations to be obtained
with the linearization dCij ≈ d(2εij + δij) = 2dεij and tij = σij in Eq. (2.95).
Consequently they found (in our notation):

dϕ = −ηdT +
1

ρ0

σijdεij (2.102)

⇔ dw⋆ = −ηdT − 1

ρ0

εijdσij with6 w⋆ (def)
= ϕ− 1

ρ0

σijεij , (2.103)

where ϕ = ϕ̆(T, εij), w⋆ = ẃ⋆(T, σij) and furthermore

ρ0
∂ϕ̆

∂εij
= σij , ρ0

∂ẃ⋆

∂σij
= −εij . (2.104)

5A popular counter-example are rubber balloons, cf., [90].
6Note that the definitions of w⋆ in Eq. (2.103)2 is not equivalent to the ones in Eqs. (2.100,2.96)2

due to the performed linearization. This is evident replacing in, e.g., Eq. (2.96)2 the term tijCij by
the linearized form σij(2εij + δij).
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The energetic formulations for the stresses and strains in Eqs. (2.97,2.101,2.104)
are frequently found in literature, e.g., [109], and can be interpreted as the contin-
uum mechanical version of the first and second theorem of Castigliano, [6]. The
quantities ϕ and w⋆ are typically called the (mass-)specific strain energy7 and the
complementary specific strain energy .

In this context we point out that there is a considerable confusion about the meaning
of w⋆ in the literature. So, for instance, Landau and Lifschitz, [73], Becker and Bürger,
[6], and Truedsell and Toupin, [111], wrongly identify the complementary specific
strain energy w⋆ with the Gibbs free energy ψ. In turn, Landau and Lifschitz are
puzzled in [73] that their definition of the Gibbs free energy for solids does not agree
with the “classical” ones, ψ = ϕ+ p/ρ, used in fluid thermodynamics. This irritation
is remedied within the present work, in which - for solids as well as for liquids - the
same definition holds for the Gibbs free energy, viz.:

ψ = ϕ+
p

ρ
with p = −σ

kk

3
= − 1

3J
tijCij = − 1

3J
pijF ij . (2.105)

Note that for the case of solids this form of the Gibbs free energy cannot be derived
from the Legendre transforms performed in the Eqs. (2.95,2.96), (2.99,2.100) and
(2.102,2.103).

2.5 Multiphase Mixtures

2.5.1 Exploitation of the 2nd Law by Considering Higher
Gradients

In this section materials that consist of different phases are considered. First of all,
one has to clarify of which nature the various occurring phases are and which physical
quantity can be used for their characterization. Note that multi-phase materials are
manifold. The phases can vary for instance in their compositions, e.g., Ag-rich α- or
Cu-rich β-phases in eutectic Ag-Cu below the eutectic temperature, or in the lattice
structures, e.g., ferrite (α-phase, BCT) and austenite (γ-phase, FCC) in iron.

According to the Introduction we turn the attention to diffusion-induced phase trans-
formations, such as spinodal decomposition, nucleation and subsequent coarsening in
non-reacting, multi-component, elastically stressed solids (τn

α = 0 and σij = σij
el ).

Consequently the occurring phases differ in its composition, i.e., in the partial parti-
cle densities n1, . . . , nν . Therefore we must incorporate phase boundaries containing
considerable gradients ∇inα, ∇ijnα, . . . etc. (α = {1, . . . , ν}), and we modify the

7Another notation frequently found is specific stored energy .
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functional representation of ρη according to Eq. (2.40) as follows:

ρη = S̃(ρǫ, nα,∇inα,∇ijnα, c
ij) = Ŝ(T, nα,∇inα,∇ijnα, c

ij) =

= S̄(T, yβ,∇iyβ,∇ijyβ,∇iρ,∇ijρ, ρ, c
ij) =

= Ś(T, yβ,∇iyβ,∇ijyβ,∇iρ,∇ijρ, C
ij) . (2.106)

The index α = {1, ..., ν} and β = {1, ..., ν − 1} were used as abbreviations. The
expressions A and B of the dissipation inequality, Eq. (2.41), are now re-written
analogously to Eqs. (2.42,2.43):

∂S̃

∂t
=

∂S̃

∂ρǫ

∂ρǫ

∂t
+

∂S̃

∂cij
∂cij

∂t
+

ν∑

α=1

(
∂S̃

∂nα

∂nα

∂t
+

∂S̃

∂∇inα

∂∇inα

∂t
+

∂S̃

∂∇ijnα

∂∇ijnα

∂t

)

(2.107)

∂S̃

∂xi
=

∂S̃

∂ρǫ

∂ρǫ

∂xi
+

∂S̃

∂ckl

∂ckl

∂xi
+

ν∑

α=1

(
∂S̃

∂nα

∂nα

∂xi
+

∂S̃

∂∇knα

∂∇knα

∂xi
+

∂S̃

∂∇klnα

∂∇klnα

∂xi

)

(2.108)

The terms ∂ρǫ/∂t and ∂nα/∂t are substituted in the same manner as in Section 2.4.1,
namely by the right hand sides of Eqs. (2.10,2.17). The additional terms ∂∇inα/∂t
and ∂∇ijnα/∂t are replaced by the right hand side of the differentiated partial particle
balance, Eq. (2.17), viz.:

∂∇knα

∂t
= − ∂

∂xk

[
vi∂nα

∂xi
+ nα

∂vi

∂xi
+
∂ji

α

∂xi

]

= − ∂v
i

∂xk

∂nα

∂xi
− vi ∂

2nα

∂xi∂xk
− ∂nα

∂xk

∂vi

∂xi
− nα

∂2vi

∂xi∂xk
− ∂2ji

α

∂xi∂xk
, (2.109)

∂∇klnα

∂t
= − ∂2vi

∂xk∂xl

∂nα

∂xi
− 2

∂vi

∂xk

∂2nα

∂xi∂xl
− vi ∂3nα

∂xi∂xk∂xl
− ∂2nα

∂xk∂xl

∂vi

∂xi

−2∂nα

∂xk

∂2vi

∂xi∂xl
− nα

∂3vi

∂xi∂xk∂xl
− ∂3ji

α

∂xi∂xk∂xl
. (2.110)

Note, that Eq. (2.107) gives directly rise, which balances and which differentiated
balances must be considered during the exploitation of the 2nd law. Indeed, this
fact remedies the aforementioned shortcoming of Liu’s procedure, cf., Section 2.3.4.
Here the occurring temporal derivatives of Eq. (2.107) occur due to Statement 1 of
the Entropy Principle, proposed in Section 2.3.4, and depend on the choice of the
arguments in Eq. (2.106)1.

By inserting Eqs. (2.10, 2.17, 2.109, 2.110) into Eq. (2.107) one obtains for the
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entropy production ζ according to Eq. (2.41):

ζ =
∂

∂xi

[
φi − qi

T
−

ν∑

α=1

ji
α

∂S̃

∂nα

]
+ qi∂1/T

∂xi
+

ν∑

α=1

ji
α

∂

∂xi

(
∂S̃

∂nα

)

+
∂vi

∂xj

[
σij

el

T
+ J−2/3(F jkF il + F ikF jl)

∂S̃

∂ckl

−δij

(
ρǫ

T
− S̃+

ν∑

α=1

nα
∂S̃

∂nα

+
2

3
J−2/3Ckl S̃

∂ckl

)]

−
ν∑

α=1

∂S̃

∂∇knα

(
∂vi

∂xk

∂nα

∂xi

=a

+
∂nα

∂xk

∂vi

∂xi

=b

+nα
∂2vi

∂xi∂xk

=c

+
∂2ji

α

∂xi∂xk

=d

)

−
ν∑

α=1

∂S̃

∂∇klnα

(
∂2vi

∂xk∂xl

∂nα

∂xi

=e

+2
∂vi

∂xk

∂2nα

∂xi∂xl

=f

+
∂2nα

∂xk∂xl

∂vi

∂xi

=g

+ 2
∂nα

∂xk

∂2vi

∂xi∂xl

=h

+nα
∂3vi

∂xi∂xk∂xl

=i

+
∂3ji

α

∂xi∂xk∂xl

=j

)
. (2.111)

The first four summands correspond to the result in Eq. (2.46). In what follows one

has to include the HG-terms ∂S̃

∂∇knα
(a+ . . .+ d) and ∂S̃

∂∇klnα
(e+ . . .+ j) “suitably” into

the first three rows of Eq. (2.111), which will later be used in order to define the
entropy flux φi, the diffusion flux ji

α, and the mechanical constitutive relations. For
this reason we use the following strategy according to the previous section:

a) Rearrange the diffusion flux terms (d) and (j) such that terms linear in ji
α and

linear in the divergence operator ∂/∂xi will result.

b) Transpose the velocity terms (a-c) and (e-i) in such a way that terms linear in
∂vi/∂xi and ∂vi/∂xj or terms linear in ∂/∂xi, respectively, will result.

From the first item one finds:

− ∂S̃

∂∇knα

(d) =
∂

∂xi

[
ji
α

∂

∂xk

(
∂S̃

∂∇knα

)
− ∂S̃

∂∇inα

∂jk
α

∂xk

]
− ji

α

∂

∂xi

[
∂

∂xk

(
∂S̃

∂∇knα

)]
,

(2.112)

− ∂S̃

∂∇klnα

(j) =
∂

∂xi

[
− ji

α

∂2

∂xk∂xl

(
∂S̃

∂∇klnα

)
+
∂jl

α

∂xl

∂

∂xk

(
∂S̃

∂∇kinα

)

− ∂

∂xk

(
∂jl

α

∂xl

)
∂S̃

∂∇kinα

]
+ ji

α

∂

∂xi

[
∂2

∂xk∂xl

(
∂S̃

∂∇klnα

)]
. (2.113)



44 A Higher Gradient Theory of Mixtures

According to the second “strategy point” we re-arrange as follows:

− ∂S̃

∂∇knα

(a+ b+ c) = nα
∂vi

∂xi

∂

∂xk

(
∂S̃

∂∇knα

)
− ∂vi

∂xk

∂nα

∂xi

∂S̃

∂∇knα

− ∂

∂xi

[
nα
∂vk

∂xk

∂S̃

∂∇inα

]
, (2.114)

− ∂S̃

∂∇klnα

(e+ f) =
∂vi

∂xk

[
∂nα

∂xi

∂

∂xl

(
∂S̃

∂∇klnα

)
− ∂2nα

∂xi∂xl

∂S̃

∂∇klnα

]

− ∂

∂xi

(
∂vk

∂xl

∂nα

∂xk

∂S̃

∂∇linα

)
, (2.115)

− ∂S̃

∂∇klnα

(g+ h+ i) =
∂

∂xi

[
nα
∂vk

∂xk

∂

∂xl

(
∂S̃

∂∇ilnα

)
− ∂S̃

∂∇kinα

∂

∂xk

(
nα
∂vl

∂xl

)]

− nα
∂vi

∂xi

∂2

∂xk∂xl

(
∂S̃

∂∇klnα

)
. (2.116)

Eq. (2.112-2.116) can be substituted into Eq. (2.111). By means of the Euler-

Lagrange derivative:

δ♦

δnα

(def)
=

∂♦

∂nα

−∇k ·
∂♦

∂∇knα

+∇kl ·
∂♦

∂∇klnα

(2.117)

and the partial particle balance in the form:

ṅα
(def)
=

∂nα

∂t
+ vi∂nα

∂xi

(2.17)
= −nα

∂vi

∂xi
− ∂ji

α

∂xi
. (2.118)
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one can finally write for the entropy production ζ:

ζ =
∂

∂xi

{
φi − qi

T
−

ν∑

α

ji
α

δS̃

δnα

+
ν∑

α

ṅα

[
∂S̃

∂∇inα

− ∂

∂xl

(
∂S̃

∂∇linα

)]

+
ν∑

α

∂ṅα

∂xl

∂S̃

∂∇linα

−
ν∑

α

∂vl

∂xk

∂nα

∂xl

∂S̃

∂∇kinα

}

+ qi∂1/T

∂xi
+

ν∑

α

ji
α

∂

∂xi

(
δS̃

δnα

)

+
∂vi

∂xj

{
σij

el

T
+ J−2/3(F jkF il + F ikF jl)

∂S̃

∂ckl

−
ν∑

α

∂nα

∂xi

[
∂S̃

∂∇jnα

− ∂

∂xl

(
∂S̃

∂∇jlnα

)]
−

ν∑

α

∂2nα

∂xi∂xl

∂S̃

∂∇jlnα

− δij

[
ρǫ

T
− S̃+

ν∑

α

nα
δS̃

δnα

+
2

3
J−2/3Ckl ∂S̃

∂ckl

]}
≥ 0 . (2.119)

Indeed, the calculations leading to Eqs. (2.112-2.116) are lengthy but easily repro-
ducible. In particular the divergence term of Eq. (2.116) was arranged in this form
because of the last two summands of the divergence term in Eq. (2.113) and keeping
the partial particle balance of Eq. (2.118) in mind. In the same manner one can
combine the last term of Eq. (2.114) and the second part of the divergence term in
Eq. (2.112).

2.5.2 Entropy, Heat and Diffusion Flux and Mechanical Con-
stitutive Equations

Eq. (2.119) can now be exploited in the same manner as in Section 2.4.1. First, we
define the entropy flux such that the divergence term of the first two rows vanishes:

♦ Entropy flux :

φi =
qi

T
+

ν∑

α

ji
α

δS̃

δnα

−
ν∑

α

ṅα

[
∂S̃

∂∇inα

− ∂

∂xl

(
∂S̃

∂∇linα

)]
−

ν∑

α

∂ṅα

∂xl

∂S̃

∂∇linα

+
ν∑

α

∂vl

∂xk

∂nα

∂xl

∂S̃

∂∇kinα

. (2.120)
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Consequently the remaining equation takes the form P · x+Q ≥ 0, ∀(x = ∇jvi); and
it follows P = 0 and Q ≥ 0. In particular it holds that:

qi∂1/T

∂xi
+

ν∑

α

ji
α

∂

∂xi

(
δS̃

δnα

)
≥ 0 , (2.121)

− σij
el

T
= J−2/3(F jkF il + F ikF jl)

∂S̃

∂ckl
−

ν∑

α

∂nα

∂xi

[
∂S̃

∂∇jnα

− ∂

∂xl

(
∂S̃

∂∇jlnα

)]
−

ν∑

α

∂2nα

∂xi∂xl

∂S̃

∂∇jlnα

− δij

[
ρǫ

T
− S̃+

ν∑

α

nα
δS̃

δnα

+
2

3
J−2/3Ckl ∂S̃

∂ckl

]
.

(2.122)

Eq. (2.121) and (2.122) represent important results which allow to derive the con-
stitutive equations for the heat flux , the diffusion flux and for the stresses in multi-
component, multi-phase solid mixtures. The partial derivatives of S̃ must be substi-
tuted using the different functional representations of the Helmholtz free energy
(α = 1, . . . , ν and β = 1, . . . , ν − 1):

ρϕ = F̃(ρǫ, nα,∇inα,∇ijnα, c
ij) = F̂(T, nα,∇inα,∇ijnα, c

ij)

= F̄(T, yβ,∇iyβ,∇ijyβ,∇iρ,∇ijρ, ρ, c
ij)

= F́(T, yβ,∇iyβ,∇ijyβ,∇iρ,∇ijρ, C
ij) (2.123)

and applying the Legendre transforms of Appendix A.5 - A.7.

As an example we consider the heat and the diffusion flux in Eq. (2.121). To this end
we define the chemical potential µα in multi-phase mixtures according to Eq. (2.51)
and (2.55) as:

µα

T

(def)
=

δF̂/T

δnα

or
µ∗α
T

(def)
=

δ
̂̂
F/T

δρα

=
1

mα

δF̂/T

δnα

(2.124)

with the alternative functional representation of the Helmholtz free energy ρϕ =
̂̂
F(T, ρα,∇iρα,∇ijρα, c

ij) and the Euler-Lagrange derivative introduced in Eq.
(2.117).

In order to guarantee a non-negative entropy production in Eq. (2.121) we choose
ji
α and qi such that quadratic expressions result, cf., Section 2.4.2. The Legendre

transform in Appendix A.5 yields δS̃/δnα = −δ(F̂/T )/δnα. Therefore we find (with-
out thermo-diffusion coupling):



2.5 Multiphase Mixtures 47

♦ Diffusion flux :

ji
β =

ν−1∑

δ=1

M ij
βδ

∂ 1
T

(
mδ

mν
µν − µδ

)

∂xj
and J i

β =
ν−1∑

δ=1

Bij
βδ

∂ 1
T
(µ∗ν − µ∗δ)

∂xj
, (2.125)

♦ Heat flux :

qi = κij ∂1/T

∂xj
(Fourier’s law) , (2.126)

where the symbols M ij
βδ, B

ij
βδ and κ

ij stand for the (positive definite) coefficients of
the mobility and conductivity matrix. Moreover, the sums range from 1 to ν − 1,
and the difference of the chemical potentials occurs due to the incorporation of the
constraints ji

ν = −
∑ν−1

β=1
mβ

mν
ji
β or J

i
ν = −

∑ν−1
β=1 J

i
β, respectively.

Note that the higher gradients do not enter the classical Fourier’s law in Eq. (2.126)
whereas the diffusion flux incorporates higher gradients due to the re-definition of the
chemical potentials in terms of the Euler-Lagrange derivative according to Eq.
(2.124).

The mechanical constitutive equations, e.g., for the pressure p or the 2nd Piola-

Kirchhoff tensor tij follow in an analogous manner as illustrated in Section 2.4.2,
i.e., from the exploitation of Eq. (2.122) and the Legendre transforms examined in
the Appendices A.5 - A.7 .

2.5.3 Isothermal Diffusion in Binary Mixtures

a. Preliminary Calculations on the Chemical Potential

As we shall see below it may be practical to express the chemical potential µα or µ∗α
in terms of δF̄/δyβ or δF/δcβ, respectively. To this end we consider the Legendre

transform in Appendix A.6 and write for the case of isothermal diffusion (i.e., T =
const):

µα
(2.124)1
=

δF̂

δnα

(App. A.6)
= mα

δF̄

δρ
+

ν−1∑

λ=1

δF̄

δyλ

(
δαλ

n
− nλ

n2

)
. (2.127)

Thus one obtains for the difference term in Eq. (2.125)1:

mδ

mν

µν − µδ =
mδ

mν

ν−1∑

λ=1

δF̄

δyλ

(
δνλ

n
− nλ

n2

)
−

ν−1∑

λ=1

δF̄

δyλ

(
δδλ

n
− nλ

n2

)
. (2.128)
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Note that the calculation of Eq. (2.127)2 directly follows by applying the relations
of Eqs. (A.61-A.63) to the three summands of the Euler-Lagrange derivative
defined in Eq. (2.117).

For the consideration of the alternative definition of the chemical potential µ∗α in
Eq. (2.124)2 one needs the Legendre transform between the following functional
representations of ρϕ:

ρϕ =
̂̂
F(T, ρα,∇iρα,∇ijρα, c

ij) = F(T, cβ,∇icβ,∇ijcβ,∇iρ,∇ijρ, ρ, c
ij) , (2.129)

where α = 1, . . . , ν and β = 1, . . . , ν − 1. By means of the relations derived in
Appendix A.8 the following relations hold:

µ∗α
(2.124)2
=

δ
̂̂
F

δρα

(App. A.8)
=

δF

δρ
+

ν−1∑

λ=1

δF̄

δcλ

(
δαλ

ρ
− ρλ

ρ2

)
, (2.130)

and for the difference term in Eq. (2.125)2:

µ∗ν − µ∗δ =
ν−1∑

λ=1

δF

δcλ

(
δνλ

ρ
− ρλ

ρ2

)
−

ν−1∑

λ=1

δF

δcλ

(
δδλ

ρ
− ρλ

ρ2

)

= −
ν−1∑

λ=1

δF

δcλ

δδλ

ρ
= −1

ρ

δF

δcδ
. (2.131)

Note that the variational derivatives δF̄/δρ and δF/δρ vanish in the difference of the
chemical potentials in Eqs. (2.128, 2.131).

b. Particle Diffusion Flux

In what follows we specify to a binary mixture A-B characterized by the following
relations:

n = nA + nB , yB = 1− yA . (2.132)

For the case of isothermal diffusion as defined before, Eq. (2.125)1 reduces to:

ji
A =

M ij
AA

T

∂
(

mA

mB
µB − µA

)

∂xj
and ji

B = −
mA

mB

ji
A . (2.133)
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The difference of the chemical potentials reads according to Eq. (2.128):

mA

mB

µB − µA =
mA

mB

δF̂

δnB

− δF̂

δnA

(2.128)
=

mA

mB

δF̄

δyA

(
δBA

n︸︷︷︸
=0

−nA

n2

)
− δF̄

δyA

(
δAA

n
− nA

n2

)

= − 1
n

δF̄

δyA

(
mA

mB

yA + yB

)
. (2.134)

Thus a combination of Eq. (2.134) and (2.133)1 yields for the particle diffusion flux
of component A:

ji
A = −M

ij
AA

T
∇j

[
1

n

δF̄

δyA

(
mA

mB

yA + yB

)]

(App. A.7)
= −M

ij
AA

T
∇j

[
1

n

δF́

δyA

(
mA

mB

yA + yB

)]
, (2.135)

in which the diffusion flux of component B is determined by the relation of Eq.
(2.133)2.

c. Mass Diffusion Flux

Analogously to Eq. (2.132) and (2.133) we write for the total mass density, the mass
concentrations and the mass diffusion flux of component A:

ρ = ρA + ρB , cA = 1− cB (2.136)

and with Eq. (2.125)2

J i
A =

Bij
AA

T

∂ (µ∗B − µ∗A)

∂xj
with J i

B = −J i
A . (2.137)

By using the relation of Eq. (2.131) the difference of the chemical potentials reduces
to:

µ∗B − µ∗A =
δ
̂̂
F

δρB

− δ
̂̂
F

δρA

(2.131)
=

δF

δcA

(
δBA

ρ︸︷︷︸
=0

−ρA

ρ2

)
− δF

δcA

(
δAA

ρ
− ρA

ρ2

)
= −1

ρ

δF

δcA
. (2.138)
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Hence we finally obtain from Eq. (2.137) and (2.138) and the Legendre transforms
in Appendix A.7 and A.8:

J i
A = −B

ij
AA

T
∇j

(
1

ρ

δ
⋄

F

δcA

)
and J i

B = −
Bij

AA

T
∇j

(
1

ρ

δ
⋄

F

δcB

)
, (2.139)

in which the functional representation: ρϕ =
⋄

F (T, cβ,∇icβ,∇ijcβ,∇iρ,∇ijρ, C
ij) was

used.

Eq. (2.139) implies that, in contrast to the ‘multiphase-field approach’ of Eiken et al.

in [44], the relation ρ(µ∗B−µ∗A) = δ
⋄

F /δcB = −δ
⋄

F /δcA holds exclusively, if the mass
concentration cβ is used, otherwise the relations in Eq. (2.135) must be considered.

d. Expansion of the Free Energy Density

In order to investigate Eq. (2.139) in more detail the question arise, how
⋄

F depends
on the higher gradients, e.g., ∇icB, ∇ijcB, ∇iρ, and ∇ijρ. To this end we follow the
strategy of Cahn and Hilliard in [24] and expand the Helmholtz free energy into a
Taylor series around the homogeneous (i.e., no gradients) state8:

F = F0(T, cB, C
ij) +

∂F0

∂∇kcB︸ ︷︷ ︸
(def)
= lk

·∇kcB +
∂F0

∂∇klcB︸ ︷︷ ︸
(def)
= −akl

·∇klcB +

1

2

∂2
F0

∂∇kcB∂∇lcB︸ ︷︷ ︸
(def)
= 2 bkl

·∇kcB · ∇lcB + . . . , (2.140)

where the introduced so-called Higher Gradient Coefficients (HGCs) depend on the
temperature T , the (homogeneous) composition cB, and the strain tensor Cij, i.e.,
lk = lk(T, cB, C

ij), akl = akl(T, cB, C
ij), and bkl = bkl(T, cB, C

ij). Furthermore we
neglect in Eq. (2.140) the higher gradients ∇iρ and ∇ijρ, since they do not enter the
diffusion flux in Eq. (2.139).

The HGCs in Eq. (2.140) characterize the (smoothly) changing composition within
the phase boundaries and are directly linked to the surface tensions between the
different phases, cf., [39]. Moreover, they can be exactly determined by means of mi-
croscopic theories taking interatomic potentials into account, e.g., Lennard-Jones

potentials, cf., [36], or Embedded-Atom-Method potentials as explained in Chapter

8In the following we write by convenience F =
⋄

F.
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3. For instance it follows in the case of cubic lattices (due to the periodic arrangement
of the crystal) that lk = 0 and in case of no lattice deformations that akl = a · δkl and
bkl = b · δkl.

The Helmholtz free energy of the homogeneous state (e.g., of the melt), F0, consists
of a pure chemical part and a pure mechanical part : F0 = F

chem
0 + F

mech
0 , cf., Section

2.4.2(d.). The chemical part can be found from phase equilibrium data, typically
provided by thermodynamical databases, e.g., MTdata, [83]. The mechanical part
follows from the integration of the stress-strain relation as explained for the case of
the St. Venant Kirchhoff law in Section 2.4.2(d.).

e. Extended Diffusion Equation

For the investigation of the temporal and spatial evolution of the mass concentration
field cB = c(xi, t) within a non-reacting elastic solid mixture we rewrite Eq. (2.14) by
means of the relation ρα = cαρ as follows:

ρ
dc

dt
+
∂J i

∂xi
= 0 (partial mass balance) , (2.141)

where we put J i
B = J i and used the total temporal derivative dtc = ∂tc+ vi(∇ic). In

order to calculate the Euler-Lagrange derivative δF/δc in Eq. (2.139) we obtain
by means of Eq. (2.140) and lk = 0:

∂F

∂c
=
∂F0

∂c
− ∂akl

∂c

∂2c

∂xk∂xl
+
∂bkl

∂c

∂c

∂xk

∂c

∂xl
,

∂F

∂(∂c/∂xm)
= 2bml ∂c

∂xl
,

∂F

∂(∂2c/∂xm∂xn)
= −akl . (2.142)

Thus it follows by virtue of the chain rule:

∂

∂xm

(
∂F

∂(∂c/∂xm)

)
= 2

∂bml

∂c

∂c

∂xm

∂c

∂xl
+ 2

∂bml

∂Crs

∂Crs

∂xm

∂c

∂xl
+ 2bml ∂2c

∂xm∂xl
, (2.143)

∂2

∂xm∂xn

(
∂F

∂(∂2c/∂xm∂xn)

)
= −∂

2amn

∂c2
∂c

∂xm

∂c

∂xn
− ∂amn

∂c

∂2c

∂xm∂xn
−

2
∂2amn

∂c∂Crs

∂Crs

∂xm

∂c

∂xn
− ∂2amn

∂CopCrs

∂Cop

∂xm

∂Crs

∂xn
− ∂amn

∂Crs

∂2Crs

∂xm∂xn
. (2.144)

The relation (2.142)1-(2.143)+(2.144) defines the variational derivative δF/δc. Con-
sequently one obtains for the diffusion flux in Eq. (2.139)2 by using the abbreviation
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Aij = ∂aij

∂c
+ bij:

J i = −B
ij
AA

T
∇j

[
1

ρ

(
∂F0

∂c
− 2Akl ∂2c

∂xk∂xl
− ∂Akl

∂c

∂c

∂xk

∂c

∂xl

−2 ∂A
kl

∂Cmn

∂c

∂xk

∂Cmn

∂xl
− ∂2akl

∂CopCmn

∂Cop

∂xk

∂Cmn

∂xl
− ∂akl

∂Cmn

∂2Cmn

∂xk∂xl

)]
. (2.145)

Eq. (2.141) and Eq. (2.145) represent the Extended Diffusion Equation (EDE). It is a
non-linear Partial Differential Equation (PDE) of fourth order for the concentration
field c(xi, t) and can be interpreted as the generalization of the Cahn-Hilliard

equation9.

Note that the Eqs. (2.141) and (2.145) are formulated in Euler coordinates and refer
to large deformations, which is indicated by the right Cauchy-Green tensor Cij.
In what follows we want to restrict to small deformations, i.e., to linear elastic
deformations. Consequently, we use for the functional representations the linearized
strains εij instead of the right Cauchy-Green strain tensor, i.e., F0 = F0(T, c, ε

ij),
akl = akl(T, c, εij), bkl = bkl(T, c, εij), and Akl = Akl(T, c, εij). For this case and by
means of Lagrange coordinates (cf., Section 2.3.1) Dreyer and Müller derived in [37]
an analogous version of the above EDE for the concentration field c(Xj, t), namely:

ρ0
dc

dt
+
∂J i

∂X i
= 0 (partial mass balance) (2.146)

and

J i = −ρ0Mij(T )∇j

[
∂F0

∂c
− 2Akl ∂2c

∂Xk∂X l
− ∂Akl

∂c

∂c

∂Xk

∂c

∂X l

−2 ∂A
kl

∂εmn

∂c

∂Xk

∂εmn

∂X l
− ∂2akl

∂εopεmn

∂εop

∂Xk

∂εmn

∂X l
− ∂akl

∂εmn

∂2εmn

∂Xk∂X l

]
. (2.147)

Here the reference configuration is typically chosen to be the one of the melt, char-
acterized by the homogeneous mass density ρ0 = const. , ∀X i. Consequently, the
different mobilities, Bij in Eq. (2.145) and Mij(T ) in Eq. (4.53), are connected by
the relation ρ2

0Mij(T ) = Bij
AA/T with the unit [Mij] = m5/(Js).

In order to calculate the strains, εij, the static momentum balance - which determines
the displacements U i(Xj, t) - must be considered:

∂pij

∂Xj
= 0 (static momentum balance) . (2.148)

9The Cahn-Hilliard equation follows for constant HGCs Akl and akl. In this case only the first
two summands within the parenthesis (. . .) of Eq. (2.145) remain.
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In the limit case of small deformations, in which the differences between the reference
and the current configuration are neglected, both stress tensors, the first and the
second Piola-Kirchhoff tensor, pij and tij, respectively, are approximated by the
Cauchy stresses σij. Thus one can write by means of Eq. (2.104)1 with ρ0 = const.:

pij ≈ σij ≈ ∂F

∂εij

(2.140)
=

∂F0

∂εij︸︷︷︸
=σij

local

−∂a
kl

∂εij

∂2c

∂Xk∂X l
+
∂bkl

∂εij

∂c

∂Xk

∂c

∂X l
. (2.149)

Here the local stresses σij
local can be calculated, e.g., by Hooke’s law, viz. σij

local =
Kijkl(T, c)

(
εkl − αkl∆T

)
, where akl = α · δkl stands for the linear thermal expansion

coefficient.

A quantitative predictions of the microstructural evolution, based on the numerical
treatment of the EDE in the Eqs. (2.141/2.145) or (4.51/4.53), respectively, presumes
reliable material data. In particular, the question about the exact determination of
the HGCs arises. To this end a microscopic theory will be developed in the next
Chapter, which is based on different atomic interactions and which allows for the
calculation of the HGCs, namely as functions of the mass concentration and the
strains.
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Chapter 3

Calculation of Higher Gradient
and Stiffness Coefficients by using
the Embedded Atom Method1

Die Wissenschaft besteht nur aus Irrtümern.
Aber diese muss man begehen. Es sind die Schritte zur Wahrheit.

Jules Verne, (1828 - 1905)

3.1 Introductional Remarks

In the last Chapter an extended diffusion equation for binary alloys was derived, which
represents a nonlinear PDE for the concentration field c(X i, t), cf., Eqs. (4.51/4.53).
Here the (extended) diffusion flux J i incorporates influences of concentration gra-
dients, surface tensions along the phase boundaries, and local thermo-mechanical
strains taking so-called higher gradients of the concentration into account, cf., Sec-
tion 2.5.3(d.).

For a quantitative assessment of the diffusion process realistic material data are re-
quired, i.e., in particular the HGCs and the stiffness of the binary mixture Akl, akl,
bkl and Kijkl must be specified. Note that, for a prescribed external load, the stiffness
constants, Kijkl, are, in the simplest case, combined with the linearized strains, εkl,
according to Hooke’s law, cf., subsequent explanations w.r.t. Eq. (4.54).

To this end we consider in the present Chapter a binary alloy A-B below its critical
temperature (melting point). Usually such systems consist of two or more phases,
which differ in their composition, i.e., in the concentrations of the components, cA
or cB = (1− cA), respectively. For instance in pure solid mixtures below the eutectic
temperature two different phases can be observed, the α-phase (A-rich) and the β-
phase (B-rich) with equilibrium concentrations, cα and cβ, respectively (cf., Figure 1.3
(lower left)). Moreover, the EDE in Eq. (4.51/4.53) allows for a “smooth” change of
the concentration within the interface between the α- and β-phases, which is typical
for so-called phase field theories. Consequently, it is reasonable to concentrate on

1The considerations of this Chapter already appeared in a modified form in [11].
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the material data of, first, the α-phase, second, the β-phase and, third, of the phase
boundary.

The purpose of this Chapter is to provide a theoretical approach for the determination
of the stiffness Kijkl and the higher gradient coefficients akl, bkl and Akl of the different
phases in binary alloys. This is particularly useful in the case of the HGCs for which
there is a considerable lack of data in the literature. The approach is based on
the evaluation of interatomic potentials and allows for a quantitative calculation of
these material data in order to perform computer simulations based on the equations
(4.51/4.53). With respect to the material data within the phase boundary a linear
interpolation

Ξ(c) = Θ(c)Ξα +
(
1−Θ(c)

)
Ξβ , Θ(c) =

cβ − c

cβ − cα
(shape function) , (3.1)

between the material data Ξα/β = {Kijkl
α/β, A

kl
α/β, a

kl
α/β, b

kl
α/β} of the equilibrium phases

can be performed. Consequently it only remains to specify Ξα/β. However, this linear
approach is only a first approximation, and it is more desirable to find the general
dependence Ξ = Ξ̃(c). Then the interpolation of Eq. (3.1) becomes superfluous.

Atomistic arguments for the calculation of stiffness coefficients as well as higher gra-
dient coefficients of Ag-Cu have already been presented by Dreyer and Müller in [36].
However, problems arose already during the prediction of the stiffness constants of
the pure substances, Kijkl

Ag and Kijkl
Cu , respectively. Due to the use of pair potentials

(Lennard-Jones potentials) the Cauchy paradox (K1122 = K2323) could a priori
not be avoided and, consequently, the deviation from experimental data was consid-
erable. Moreover, for alloys showing a higher degree of anisotropy than cubic crystal
structure (e.g., Sn-Pb, BCT-structure), negative shear moduli were obtained, [36].

Consequently the predicted HGCs seemed also questionable and alternative atomistic
methods should be used that avoid the aforementioned shortcomings. The Embedded-
Atom Method (EAM) is such a technique. It is a powerful, semi-empirical approach
that allows to capture the state of energy of an atomic system reasonably well. It
was developed in the eighties by Daw and Baskes, [28] and [29], and considerably
improves the quality of data when predicting physical properties of alloys, especially
for those of the FCC type.

In the following a brief introduction to the general idea of EAM and to the underlying
assumptions is given. After that we concentrate on the analytic EAM-model proposed
by Johnson, [67], which holds for nearest neighbor interactions. It is shown how
the expression for the energy can be evaluated for binary alloys to obtain atomistic
relations for the stiffness and the higher gradient coefficients. After that the brazing
binary alloy Ag-Cu is considered, which has a simple FCC-structure. In particular,
we illustrate the fitting procedure and present results for the elastic constants and
the HGCs. Finally we construct the part of the phase diagram pertinent to the solid
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in order to emphasize the trustworthiness of the predicted values.

3.2 Introduction to EAM

3.2.1 Basic Concepts

The principle of EAM is illustrated in Figure 3.1. If effects of lattice dynamics
are ignored the energy of a solid is exclusively given by static atomic interactions.
Unlike during the use of pair-potentials2 the mathematical key to EAM consists of
introducing a nonlinear function Fα = F̃α(ρ̄α) in the energy expression for atom α,
in addition to the pairwise-interaction term:

Eα =
1

2

∑

β

(β 6=α)

φαβ(rαβ) + Fα(ρ̄α) where ρ̄α =
∑

β

(β 6=α)

ρβ(rαβ). (3.2)

Fα is known as the embedding function and ρ̄α is the (constant) electron density at
the position ri

α of atom α due to all neighbors β. The first term in (3.2)1 refers to
interactions between the nuclei and the second to atom-electron interactions. This
type of separation was proposed by Daw and Baskes and can be justified by arguments
from quantum mechanics, [28, 29]. The contribution to the electron density by the
neighbor β, ρβ, is a function of the scalar distance rαβ between atom α and the
nucleus of β. Summation of the contributions from all neighbors yields ρ̄α, which can
be interpreted as a constant background electron density of a homogeneous electron
gas. Thus ρ̄α denotes the resulting electron density, which is “felt” by atom α due to
the presence of its neighbors β.

The embedding function, Fα(ρ̄α), can be interpreted as the energy required to incor-
porate an atom α in a homogeneous electron gas with the constant electron density
ρ̄α. Note that the functional form of Fα depends only on the type of the (embedded)
atom α and the argument of Fα refers to the electron density of the medium in which
atom α is embedded.

φαβ = φ̃αβ(rαβ) characterizes the (purely repulsive) interactions between the nuclei
of atom α and β. It depends on the scalar distance rαβ between α and β and is,
according to [67], a positive, monotonically decreasing function.

In summary we may say that in order to determine the energy Eα of a particle α in
a binary alloy A-B it is required to know the following quantities: FA, FB, ρA, ρB,

2Here the energy Eα of an particle (atom) α is given by Eα = 1
2

∑
β(α6=β) ϕαβ(rαβ), where ϕαβ

denotes the pairwise interaction potential between the atoms α and β and depends only upon the
radial distance rαβ between α and β.
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Figure 3.1: The general principle of EAM as proposed by Daw and Baskes, [28], [29].
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φAA, φBB, and φAB. With the exception of φAB all of these functions can easily be
related to (macroscopic) mechanical and calorimetric data of the pure substances A
and B. In order to obtain φAB a model will be used that relates this quantity to the
interactions φAA and φBB of the pure substances.

In the following sections it is assumed that every atom in the solid interacts only with
its nearest neighbors (first shell). This assumption leads to a special modification of
EAM introduced by Johnson in [67].

3.2.2 Johnson’s Analytic Nearest-Neighbor Model

Consider Figure 3.2 and recall that in an FCC-lattice an arbitrary atom α is sur-
rounded by exactly twelve nearest neighbors from which it is separated by the dis-
tance rαβ ≡ r = a/

√
2 (or, in equilibrium, R = ae/

√
2), where a denotes the lattice

parameter.

8
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Figure 3.2: The nearest neighbors for an arbitrary atom α in a FCC-lattice.

In order to obtain Eα in Eq. (3.2) it is necessary to specify φαβ, Fα and ρβ (⇒ ρ̄α).
More specifically we have to choose a suitable functional form. In particular for a
binary alloy A-B the functions FA, FB, ρA, ρB, φAA, φBB, and φAB must be specified.
For that reason Johnson proposed in [67] to use the following form3 for ρA/B and
φAA/BB (where the indices A and B of the two atom species have been omitted for
simplicity):

ρ(r) = ρe exp
[
−β
( r
R
− 1
)]

, φ(r) = φe exp
[
−γ
( r
R
− 1
)]
. (3.3)

3Especially the form of the atomic electron density ρ is borrowed from atoms with isotropic
s-orbitals. This (for special cases) unrealistic assumption is later corrected by the fitting procedure.
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The four parameters ρe, φe, β, and γ depend on the type of the atom and will be
determined using information from both pure substances, A and B. Furthermore the
nearest neighbor distance R must be known or calculated from the lattice parameter
ae as indicated before.

For the interaction φAB between nuclei of different atom types Johnson used the
following form:

φAB(r) =
1

2

[
ρB(r)

ρA(r)
φAA(r) +

ρA(r)

ρB(r)
φBB(r)

]
. (3.4)

This relation can easily be quantified using data for the pure substances A and B.

Finally it remains to specify FA and FB. For this purpose a universal function of state
is used as suggested by Rose et al. in [103]. According to them the particle-specific
energy for a broad range of materials can be approximated by:

E(a) = −Esub

[
1 + a∗(a)

]
e−a∗(a) , a∗(a) =

(
a

ae

− 1

)(
Esub

9κΩ0

)− 1
2

, (3.5)

where Esub denotes the sublimation energy per atom of the material, κ is the incom-
pressibility (bulk modulus) and Ω0 is the volume occupied by an atom in the lattice
at equilibrium. Hence Ω0 is a function of ae and, for an FCC-lattice, can be obtained
from

Ω0 =
a3

e

4
, (3.6)

since there are four atoms in the unit cell (8 × 1
8
atoms in the corner; 6 × 1

2
atoms

on the faces). All quantities in Eq. (3.5) can be found in the literature or databases,
e.g., [119].

By combining the relation E(a) = Eα with Eq. (3.2) and substituting a = r
√
2 and

ae = R
√
2 by the inverse relation resulting from Eq. (3.3), namely:

ln
ρ̄

ρ̄e

= −β
( r
R
− 1
)

,
φ

φe

=

(
ρ̄

ρ̄e

) γ
β

(3.7)

the following form is obtained for F :

F (ρ̄) = −Esub

[
1− α

β
ln

(
ρ̄

ρ̄e

)](
ρ̄

ρ̄e

)α
β

−6φe

(
ρ̄

ρ̄e

) γ
β

with α = 3

(
κΩ0

Esub

) 1
2

(3.8)
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For this result the relations:

ρ̄(r) =
∑

β

ρ(r) = 12ρ(r) ,
1

2

∑

β

φ(r) =
1

2
12φ(r) = 6φ(r) (3.9)

were used which hold for FCC crystals and nearest neighbor interactions. Note that
the explicit form of F = F̃ (ρ̄) only arises because of the special functional forms in
Eq. (3.3), which allow an inversion from r to ρ̄.

In order to determine all relevant functions for a binary alloy in Eq. (3.2) it is
necessary to know the various material parameters introduced in Eqs. (3.3) and
(3.8), namely α, β, γ, φe, and ρ̄e = 12ρe for the pure substances A and B. How to
obtain these quantities through a fitting procedure will be explained in one of the
following sections.

3.3 Evaluation of the EAM Energy Expression

3.3.1 Lattice Deformation and Strain Measures

We consider an arbitrary lattice for which the equilibrium state is given by the un-
deformed (reference) configuration. In this case the position of an arbitrary atom α
is given by its reference position vector X i

α. Analogously the atom of the deformed
lattice configuration outside of equilibrium is characterized by the current position
vector xi

α = X i
α + ξi

α, where ξ
i
α denotes the displacement of atom α from its ref-

erence position. In the same manner all lattice atoms β, γ, δ, . . . are characterized,
i.e., the conglomerate of all reference positions (X i

α, X
i
β, X

i
γ , . . .) and current positions

(xi
α, x

i
β, x

i
γ , . . .) contains the whole information on the undeformed and deformed lat-

tice, respectively. Moreover, the distance between two arbitrary atoms α and β is
written as Ri

αβ ≡ X i
β −X i

α or ri
αβ ≡ xi

β − xi
α (also note Figure 3.3 for an illustration

of the situation). Consequently the following relations can easily be obtained:

xi
α = X i

α + ξi
α , xi

β = X i
β + ξi

β, (3.10)

ri
αβ = xi

β − xi
α = X i

β −X i
α + ξi

β − ξi
α = Ri

αβ + ξi
β − ξi

α. (3.11)

By performing the so-called mean field limit , i.e., by introducing a continuous dis-
placement function U i = Ũ i(Xj

α) instead of the discrete displacements ξ
i
α, a Taylor
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expansion, [36], yields:

ξi
α = U i(Xj

α) ≡ U i(Xj), (3.12)

ξi
β = U i(Xj

β) = U i(Xj
α +Rj

αβ) = U i(Xj) +
∂U i

∂Xj
Rj

αβ + . . . , (3.13)

⇒ ri
αβ = Ri

αβ +
∂U i

∂Xj
Rj

αβ =
(
δij +H ij

)
Rj

αβ ≡ F ijRj
αβ. (3.14)

Here F ij = δij +H ij denotes the coefficients of the deformation gradient and H ij =
∂U i

∂Xj stands for coefficients of the displacement gradient.

In order to identify the elastic constants in atomistic theories numerous publications
based on interatomic interactions (e.g., two-body atom-atom interactions) can be
found, e.g., [65, 66]. Usually the authors consider the total energy of theN (deformed)
lattice bonds, Φ(ri

1, . . . , r
i
N), as a function of the current distance vector between the

atoms and expand the energy in a Taylor series as follows, [65]:

Φ(ri
1, . . . , r

i
N) = Φ(Ri

1 +H ijRj
1, . . . , R

i
N +H ijRj

N) =

= Φ(Ri
1, . . . , R

i
N) +

∑

b

∂Φ

∂rj
b

∣∣∣∣∣
Rj

b

ϑj
b +

1

2

∑

b

∂2Φ

∂rk
b∂r

l
b

∣∣∣∣∣
Rk

b ,Rl
b

ϑk
bϑ

l
b + . . . . (3.15)

In this equation the index b identifies the bond between the different atoms α and
β and the symbol ϑi

b denotes the coefficients of the difference vector between the

displacements of α and β, namely ξi
β − ξi

α ≈ ∂U i

∂XjR
j
αβ according to ϑ

i
αβ in Figure 3.3.

Thus Eq. (3.15) can be recast as follows:

Φ(ri
1, . . . , r

i
N) = Φ(Ri

1, . . . , R
i
N) +

+ H ij
∑

b

∂Φ

∂ri
αβ

∣∣∣∣∣
Ri

αβ

Rj
αβ +

1

2
H ijHkl

∑

b

∂2Φ

∂rj
αβ∂r

l
αβ

∣∣∣∣∣
Rj

αβ ,Rl
αβ

Ri
αβR

k
αβ. (3.16)
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The first derivatives of Φ vanish at equilibrium. Therefore the total elastic energy of
the lattice is represented in Eq. (3.16) by the term with second-derivatives. Substi-
tuting H ij by its symmetric part (i.e., the coefficients of the strain tensor εij) this
term can be linked to the stiffness coefficients Kijkl, [66].

Unfortunately I could not find a completely convincing argument to justify the sub-
stitution H ij → εij and, consequently, we want to use another strain measure in order
to avoid further irritations and misunderstandings. For this purpose we consider the
square of Eq. (3.14):

r2
αβ = ri

αβr
i
αβ = F ijF ikRj

αβR
k
αβ = CjkRj

αβR
k
αβ = R2

αβ + (Cjk − δjk)Rj
αβR

k
αβ

= R2
αβ + 2GjkRj

αβR
k
αβ , (3.17)

where Cjk = F ijF ik ≡ FT · F stands for the right Cauchy-Green tensor and
Gjk = 1

2
(Cjk − δjk) ≡ 1

2
(C − I) for Green’s strain tensor. By means of Gjk we can

write for the energy of a lattice:

Φ(r2
αβ) = Φ(R2

αβ + 2GjkRj
αβR

k
αβ) = Φ(R2

αβ) +

+ 2Gij
∑

b

∂Φ

∂r2
αβ

∣∣∣∣∣
R2

αβ

Ri
αβR

j
αβ +

+
4

2
GijGkl

∑

b

∂2Φ

∂r2
αβ∂r

2
αβ

∣∣∣∣∣
R2

αβ

Ri
αβR

j
αβR

k
αβR

l
αβ + . . . . (3.18)

This equation can be linked to the stiffness coefficients without any further substi-
tutions. However, the underlying interatomic potentials have to be reformulated in
terms of r2

αβ.

3.3.2 Equilibrium Condition and Stiffness Coefficients

According to Section 3.2 the EAM energy expression of the whole system is given by
the sum of the energies of all atoms in the system, Etot =

∑
αEα, where Eα is given

by Eq. (3.2). Since φαβ, ρβ and ρ̄α depend only on the scalar distance rαβ between
α and β it is also possible to use r2

αβ in the argument. The corresponding functions

are φ̂ =
˜̂
φ(r2

αβ) and ρ̂β = ˜̂ρβ(r
2
αβ) and one can write:

Etot =
∑

α

Eα =
1

2

∑

α,β

(β 6=α)

φ̂αβ(r
2
αβ) +

∑

α

F̂α(ˆ̄ρα) and ˆ̄ρα =
∑

β

(β 6=α)

ρ̂β(r
2
αβ). (3.2a)

For convenience we will omit the circumflexes ˆ in the following sections. φαβ, ρβ and
ρ̄α implicitly refer to the argument r2

αβ. The individual energy contributions of Eq.
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(3.2a) can be expanded in a Taylor series at equilibrium (undeformed state). The
following steps seem worth mentioning:

φαβ(r
2
αβ) = φαβ(R

2
αβ + 2GijRi

αβR
j
αβ) =

= φαβ(R
2
αβ) + 2φ′αβ(R

2
αβ)G

ijRi
αβR

j
αβ + 2φ′′αβ(R

2
αβ)G

ijGklRi
αβR

j
αβR

k
αβR

l
αβ. (3.19)

In an analogous manner one obtains:

ρβ(r
αβ2

) =

= ρβ(R
αβ2

) + 2ρ′β(R
αβ2

)GijR
αβ
j Rαβ

j + 2ρ′′β(R
αβ2

)GijGklR
αβ
i Rαβ

j Rαβ
k Rαβ

l . (3.20)

Here the abbreviations (⋄)′(R2
αβ) and (⋄)′′(R2

αβ) represent the derivatives of (⋄) with
respect to its argument r2

αβ evaluated at R
2
αβ. Furthermore Eq. (3.20) is of the form

ρβ(r
2
αβ) = Aβ + BβXαβ +

1
2
CβX 2

αβ with Aβ = ρβ(R
2
αβ), Bβ = ρ′β(R

2
αβ), Cβ = ρ′′β(R

2
αβ)

and Xαβ = 2GijRi
αβR

j
αβ. Consequently a Taylor expansion of Fα(ρ̄α) at Aβ can be

performed as follows:

Fα

(∑

β

ρβ(r
αβ2

)

)
= Fα

(∑

β

[
Aβ + BβXαβ +

1

2
CβX 2

αβ

])
=

= Fα

(∑

β

Aβ

)
+

∑

β

∂Fα

∂Xαβ

∣∣∣∣
Xαβ=0

Xαβ +
1

2

∑

β,γ

∂2Fα

∂Xαβ∂Xαγ

∣∣∣∣
Xαβ=Xαγ=0

XαβXαγ .

(3.21)

By introducing

Aij
α =

∑

β

φ′αβ(R
2
αβ)R

i
αβR

j
αβ , Bijkl

α =
∑

β

φ′′αβ(R
2
αβ)R

i
αβR

j
αβR

k
αβR

l
αβ , (3.22)

V ij
α =

∑

β

ρ′β(R
2
αβ)R

i
αβR

j
αβ , W ijkl

α =
∑

β

ρ′′β(R
2
αβ)R

i
αβR

j
αβR

k
αβR

l
αβ (3.23)

one can find the following important relation for the energy of an arbitrary atom α:

Eα =
1

2

∑

β

φαβ(R
2
αβ) + Fα

(
ρ̄0

α

)
+Gij

[
Aij

α + 2F ′α
(
ρ̄0

α

)
V ij

α

]
+

+ GijGkl

[
Bijkl

α + 2F ′α
(
ρ̄0

α

)
W ijkl

α + 2F ′′α
(
ρ̄0

α

)
V ij

α V
kl
α

]
, (3.24)

where F ′α(ρ̄
0
α) and F

′′
α(ρ̄

0
α) refer the derivatives with respect to the argument at ρ̄

0
α =∑

β Aβ =
∑

β ρβ(R
2
αβ). Note that in order to derive Eq. (3.24) the chain rule was
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applied as follows:

∂Fα

∂Xαβ

∣∣∣∣
Xαβ=0

= F ′α

(∑

β

Aβ

)
·
∑

β

Bβ , (3.25)

∂2Fα

∂Xαβ∂Xαγ

∣∣∣∣
Xαβ=Xαγ=0

= F ′′α

(∑

β

Aβ

)
·
∑

β,γ

BβBγ + F ′α

(∑

β

Aβ

)
·
∑

β

Cβ . (3.26)

Eq. (3.24) represents an important relation for the energy of atom α. It is valid in
pure substances as well as in solid mixtures. In the case of solid mixtures one can
find different types of atoms in the lattice, and we have to specify the type of α and
of its neighbors β in more detail.

Moreover, if thermal expansion is neglected, it is reasonable to postulate that Eα

assumes a minimum at equilibrium. Thus in Eq. (3.24) the first bracket on the right
hand side must vanish and we find for the equilibrium condition:

Aij
α + 2F ′α

(
ρ̄0

α

)
V ij

α = 0 . (3.27)

Furthermore it holds thatEelast/V = 1
2
GijKijklGkl (law of St.-Venant-Kirchhoff),

[40]. Defining Ωα
0 as the volume occupied by an atom α we obtain for the stiffness

coefficients from Eq. (3.24):

Kijkl
α =

1

Ωα
0

[
2Bijkl

α + 4F ′α
(
ρ̄0

α

)
W ijkl

α + 4F ′′α
(
ρ̄0

α

)
V ij

α V
kl
α

]
. (3.28)

It should be pointed out that the underlying potentials of Eqs. (3.27,3.28) depend
on the argument R2

αβ. Taking into account the chain rule and, in particular, the

relations φ̂′αβ(R
2
αβ) =

φ′αβ(Rαβ)

2Rαβ
, ρ̂′β(R

2
αβ) =

ρ′β(Rαβ)

2Rαβ
, φ̂′′αβ(R

2
αβ) =

1
4
(

φ′′αβ(Rαβ)

R2
αβ

− φ′αβ(Rαβ)

R3
αβ

),

and ρ̂′′β(R
2
αβ) = 1

4
(

ρ′′β(Rαβ)

R2
αβ

− ρ′β(Rαβ)

R3
αβ

), Eqs. (3.27,3.28) are in agreement with the

accepted results communicated by Daw and Baskes in [29].

We already indicated the importance of Eqs. (3.24,3.27,3.28) for solid mixtures. More
specifically the question arises, how to specify these equations for different types of
atoms. In the next section we want to turn the attention to binary alloys and present
a procedure yielding all corresponding equations for binary mixtures.
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3.4 EAM for Binary Alloys

3.4.1 Specification of the Energy-Expression: DPC Operator
and Higher Gradients

In context with Eq. (3.24) the question arises of how to exploit this energy expression
for binary alloys or, in other words, how additional information on the different types
of atoms can be incorporated in this equation. In the case of a binary alloy A-B
three different forms of interactions can be distinguished: A↔A, B↔B and A↔B. In
order to include these interaction terms in Eq. (3.24) one can use a so-called Discrete
Particle Concentration (DPC) operator , introduced for example by de Fontaine, [30].

ŷγ =

{
0 , γ = A

1 , γ = B
. (3.29)

We now have to specify the following expressions of Eq. (3.24): φαβ, ρ̄
0
α, Fα, A

ij
α ,

Bijkl
α , F ′αV

ij
α , F ′′αV

ij
α V

kl
α and F ′αW

ijkl
α . For this purpose we begin the analysis with the

decomposition of φαβ and ρ̄
0
α in the following manner:

φαβ = (1− ŷα) (1− ŷβ)φAA + ŷαŷβφBB +
[
(1− ŷα) ŷβ + (1− ŷβ) ŷα

]
φAB

= φAA +
[
ŷα + (1− 2ŷα) ŷβ

]
φ+ (ŷα + ŷβ) φ̃ , (3.30)

ρ̄0
α =

∑

β

[
(1− ŷβ) ρA + ŷβρB

]
=

∑

β

[
ŷβ (ρB − ρA) + ρA

]
(3.31)

with the definitions φ = φAB − 1
2
(φAA + φBB) and φ̃ = 1

2
(φBB − φAA). Obviously

the DCP operator acts as a “selector” and “chooses” the corresponding interaction
depending on which types of atoms are considered. If for example α and β are two
A-atoms, ŷα as well as ŷβ are zero and only the terms φAA and ρ̄0

A =
∑

β ρA remain

in Eq. (3.30) and (3.31). In the same manner one can obtain φBB, φAB and ρ̄0
B.

Moreover the DCP operator can be replaced by its continuous counterpart if the mean
field limit is applied. Thus a Taylor expansion results in:

ŷα = y(Xα
i ) ≡ y(Xi), (3.32)

ŷβ = y(Xβ
i ) = y(Xi +Rαβ

i ) =

= y(Xi) +
∂y

∂Xi︸︷︷︸
=∇iy

Rαβ
i +

1

2

∂2y

∂Xi∂Xj︸ ︷︷ ︸
=∇2

ijy

Rαβ
i Rαβ

j + . . . . (3.33)
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The symbols ∇iy and ∇2
ijy are referred to as higher gradients and are characteristic

of phase field theories. After a straightforward calculation we find:

φαβ = φAA + 2y(1− y)φ+ 2yφ̃+∇iy
[
(1− 2y)φ+ φ̃

]
Ri

αβ +

1

2
∇2

ijy
[
(1− 2y)φ+ φ̃

]
Ri

αβR
j
αβ, (3.34)

ρ̄0
α =

∑

β

ρA + y
∑

β

(ρB − ρA) +∇iy
∑

β

(ρB − ρA)R
i
αβ +

1

2
∇2

ijy
∑

β

(ρB − ρA)R
i
αβR

j
αβ (3.35)

= ρ̄A + yρ̄△ + (∇iy)ρ̄
i
△ +

1

2
(∇2

ijy)ρ̄
ij
△ (3.36)

with the definitions ρ̄A =
∑

β ρA; ρ̄△ =
∑

β(ρB − ρA); ρ̄
i
△ =

∑
β(ρB − ρA)R

i
αβ and

ρ̄ij
△ =

∑
β(ρB − ρA)R

i
αβR

j
αβ. At this point it is important to mention that for any

scalar function f(Rαβ) depending only on the radial distance Rαβ between atom α
and β the following sum vanishes:

∑

β

f(R2
αβ)R

i1
αβ . . . R

iN
αβ = 0 , (∀N = odd number). (3.37)

This relation stems from the fact that in an arbitrary lattice, due to its periodic
arrangement, for all vectors Ri

αβ a vector −Ri
αβ in opposite direction can be found (if

boundary effects are neglected). Thus Eqs. (3.34,3.36) result in:

φαβ = φAA + 2y(1− y)φ+ 2yφ̃+
1

2
∇2

ijy
[
(1− 2y)φ+ φ̃

]
Ri

αβR
j
αβ, (3.38)

ρ̄0
α = ρ̄A + yρ̄△ +

1

2
(∇2

ijy)ρ̄
ij
△ . (3.39)

Using Eq. (3.36) the embedding function Fα(ρ̄
0
α) can be also expanded into a Taylor

series evaluated at a weighted average electron density ρ̄av = ρ̄A + yρ̄△ = (1− y)ρ̄A +
yρ̄B:

Fα(ρ̄
0
α) = Fα

(
ρ̄A + yρ̄△︸ ︷︷ ︸

=ρ̄av

+
1

2
(∇2

ijy)ρ̄
ij
△

)
= Fα

(
ρ̄av) +

1

2
F ′α

(
ρ̄av

)
ρ̄ij
△(∇2

ijy) + . . . .

(3.40)

Note that gradient terms of higher than second order were assumed not to contribute
to the energy of the system. Moreover Fα itself is also decomposed analogously to
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Eq. (3.31) and we write:

Fα(ρ̄
0
α) = (1− y)FA + yFB , (3.41)

FA = FA

(
ρ̄av

)
+
1

2
F ′A

(
ρ̄av

)
ρ̄△ij (∇2

ijy) . . . ,

FB = FB

(
ρ̄av

)
+
1

2
F ′B

(
ρ̄av

)
ρ̄△ij (∇2

ijy) . . . . (3.42)

Thus the first two terms of the right hand side of Eq. (3.24) are specified in terms of
concentration gradients by Eqs. (3.34) and (3.41-3.42).

In what follows we want to investigate the symbols Aij
α , B

ijkl
α , F ′αV

ij
α , F ′′αV

ij
α V

kl
α and

F ′αW
ijkl
α of Eq. (3.24). Here it is worth mentioning that the products of the last

three expressions F ′αV
ij
α , F ′′αV

ij
α V

kl
α and F ′αW

ijkl
α cannot be separated and evaluated

separately since they are coupled by the same index α. Hence the decomposition by
means of the DCP-operator must be applied to the complete product.

The first two abbreviations, Aij
α and Bijkl

α , can be written in the same manner as in
Eq. (3.34):

Aij
α = Aij

A + 2y(1− y)Aij
φ + 2yAij

φ̃
+
1

2
∇2

kly
[
(1− 2y)Aijkl

φ + Aijkl

φ̃

]
, (3.43)

Bijkl
α = Bijkl

A + 2y(1− y)Bijkl
φ + 2yBijkl

φ̃
+
1

2
∇2

mny
[
(1− 2y)Bijklmn

φ +Bijklmn

φ̃

]

(3.44)

with the definitions:

Aij
A =

∑

β

φ′AA(R
2
αβ)R

i
αβR

j
αβ , Aijkl

φ =
∑

β

φ′(R2
αβ)R

i
αβR

j
αβR

k
αβR

l
αβ , (3.45)

Aijkl

φ̃
=

∑

β

φ̃′(R2
αβ)R

i
αβR

j
αβR

k
αβR

l
αβ , Bijkl

A =
∑

β

φ′′AA(R
2
αβ)R

i
αβR

j
αβR

k
αβR

l
αβ ,

(3.46)

Bijklmn
φ =

∑

β

φ′′(R2
αβ)R

i
αβ . . . R

n
αβ , Bijklmn

φ̃
=

∑

β

φ̃′′(R2
αβ)R

i
αβ . . . R

n
αβ . (3.47)

Analogously to Eq. (3.41) the following relations hold:

F ′α(ρ̄
0
α)V

ij
α = (1− y)F ′A V

ij
α

∣∣∣
α=A

+ yF ′B V
ij
α

∣∣∣
α=B

, (3.48)

F ′α(ρ̄
0
α)W

ijkl
α = (1− y)F ′A W

ijkl
α

∣∣∣
α=A

+ yF ′B W
ijkl
α

∣∣∣
α=B

, (3.49)

F ′′α(ρ̄
0
α)V

ij
α V

kl
α = (1− y)F ′′A V

ij
α V

kl
α

∣∣∣
α=A

+ yF ′′B V
ij
α V

kl
α

∣∣∣
α=B

. (3.50)
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The derivatives F ′α and F
′′
α can be calculated analogously to Eqs. (3.42). We increase

the order of derivatives in these equations consistently:

F ′A/B = F ′A/B

(
ρ̄av

)
+
1

2
F ′′A/B

(
ρ̄av

)
ρ̄ij
△(∇2

ijy) , (3.51)

F ′′A/B = F ′′A/B

(
ρ̄av

)
+
1

2
F ′′′A/B

(
ρ̄av

)
ρ̄ij
△(∇2

ijy) . (3.52)

By combination of Eqs. (3.23) and (3.39) we finally find (α = {A,B}):

V ij
α = V ij

A + yV ij
△ +

1

2
(∇2

kly)V
ijkl
△ , (3.53)

W ijkl
α = W ijkl

A + yW ijkl
△ +

1

2
(∇2

mny)W
ijklmn
△ (3.54)

with the abbreviations:

V ij
A =

∑

β

ρ′A(R
2
αβ)R

i
αβR

j
αβ , V i1,...,in

△ =
∑

β

[
ρ′B(R

2
αβ)− ρ′A(R

2
αβ)

]
Ri1

αβ . . . R
in
αβ ,

(3.55)

W ijkl
A =

∑

β

ρ′′A(R
2
αβ)R

i
αβ . . . R

l
αβ , W i1,...,in

△ =
∑

β

[
ρ′′B(R

2
αβ)− ρ′′A(R

2
αβ)

]
Ri1

αβ . . . R
in
αβ

(3.56)

and all terms of Eq. (3.24) are now specified for a binary alloy A-B. In the following
section it is shown how these cumbersome equations can be structured in order to
obtain information regarding the equilibrium condition, the stiffness and the HGCs.

3.4.2 Equilibrium Condition, Stiffness and Higher Gradient
Coefficients

By combination of Eq. (3.24) with Eqs. (3.38, 3.41, 3.42, 3.43, 3.44, 3.48-3.54) and
by means of the definitions:

gAA =
∑

β

φAA , gφ =
∑

β

φ , gφ̃ =
∑

β

φ̃ , (3.57)

gij
φ =

∑

β

φRi
αβR

j
αβ , gij

φ̃
=

∑

β

φ̃Ri
αβR

j
αβ . (3.58)
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we obtain for the energy of atom α:

Eα =
1

2
gAA + y(1− y)gφ + ygφ̃ +

1

4
(∇2

ijy)
[
(1− 2y)gij

φ + gij

φ̃

]

+ FA + y
(
FB − FA

)
+
1

2
(∇2

ijy) ρ̄
ij
△

[
F ′A + y

(
F ′B − F ′A

)]

+Gij

{
Aij

A + 2y(1− y)Aij
φ + 2yAij

φ̃
+
1

2
(∇2

kly)
[
(1− 2y)Aijkl

φ + Aijkl

φ̃

]

+ 2
(
V ij

A + yV ij
△

)(
F ′A + y(F ′B − F ′A)

)

+ (∇2
kly)

[
V ijkl
△

(
F ′A + y(F ′B − F ′A)

)
+ ρ̄kl

△

(
V ij

A + yV ij
△

)(
F ′′A + y(F ′′B − F ′′A)

)]}

+
1

2
GijGkl

{
2Bijkl

A + 4y(1− y)Bijkl
φ + 4yBijkl

φ̃
+ (∇2

mny)
[
(1− 2y)Bijklmn

φ +Bijklmn

φ̃

]

+ 4
(
W ijkl

A + yW ijkl
△

)(
F ′A + y(F ′B − F ′A)

)

+ 2(∇2
mny)

[
W ijklmn
△

(
F ′A + y(F ′B − F ′A)

)
+ ρ̄mn

△

(
W ijkl

A + yW ijkl
△

)
×

×
(
F ′′A + y(F ′′B − F ′′A)

)]
+ 4

(
V ij

A + yV ij
△

)(
V kl

A + yV kl
△

)(
F ′′A + y(F ′′B − F ′′A)

)

+ 2(∇2
mny)

[
V klmn
△

(
V ij

A + yV ij
△

)(
F ′′A + y(F ′′B − F ′′A)

)
+ V ijmn

△

(
V kl

A + yV kl
△

)
×

×
(
F ′′A + y(F ′′B − F ′′A)

)
+ ρ̄mn

△

(
V ij

A + yV ij
△

)(
V kl

A + yV kl
△

)(
F ′′′A + y(F ′′′B − F ′′′A )

)]}

(3.59)

where FA/B and all derivatives of FA/B depend on the argument ρ̄av .

Following Cahn and Hilliard in [24] and Dreyer and Müller in [37, 39] (see also Sec-
tion 2.5.3(d.)) the Helmholtz free energy density F of a two-component system
with an inhomogeneous mass-concentration profile c(xi, t) can be characterized by
the equation (without eigenstrains and thermal expansion):

F = F0(c,G
ij)− akl(c,Gij)∇2

klc+ bkl(c,Gij)(∇kc)(∇lc) . (3.60)

The first term, F0(c,G
ij), represents the Helmholtz free energy density of the cor-

responding system with a homogeneous concentration profile. It also includes a me-
chanical energy term, F

mech
0 , as reflected by the strains Gkl. Therefore one can split
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F0 into two parts (here for pure elastic deformations):

F0(c,G
ij) = F

chem
0 (c) +

1

2
Gij Kijkl(c) Gkl

︸ ︷︷ ︸
=Fmech

0

, (3.61)

where the first part stands for the energy density without elastic energy contributions.
Moreover it is important to mention that F

mech
0 does not contain higher gradients and,

consequently, it is reasonable to rearrange Eq. (3.59) as follows:

Eα =
1

2
gAA + y(1− y)gφ + ygφ̃ + FA + y

(
FB − FA

)

+
1

2
GijGkl

{
2Bijkl

A + 4y(1− y)Bijkl
φ + 4yBijkl

φ̃
+ 4
(
W ijkl

A + yW ijkl
△

)
×

×
(
F ′A + y(F ′B − F ′A)

)
+ 4
(
V ij

A + yV ij
△

)(
V kl

A + yV kl
△

)(
F ′′A + y(F ′′B − F ′′A)

)}

+ (∇2
mny)

{
1

4

(
(1− 2y)gmn

φ + gmn
φ̃

)
+
1

2
ρ̄mn
△

(
F ′A + y(F ′B − F ′A)

)

+
1

2
Gij

[
(1− 2y)Aijmn

φ + Aijmn

φ̃
+ 2V ijmn

△

(
F ′A + y(F ′B − F ′A)

)

+ 2ρ̄mn
△

(
V ij

A + yV ij
△

)(
F ′′A + y(F ′′B − F ′′A)

)]

+
1

2
GijGkl

[
(1− 2y)Bijklmn

φ +Bijklmn

φ̃

+ 2W ijklmn
△

(
F ′A + y(F ′B − F ′A)

)
+ 2ρ̄mn

△

(
W ijkl

A + yW ijkl
△

)(
F ′′A + y(F ′′B − F ′′A)

)

+ 2V klmn
△

(
V ij

A + yV ij
△

)(
F ′′A + y(F ′′B − F ′′A)

)
+ 2V ijmn

△

(
V kl

A + yV kl
△

)
×

×
(
F ′′A + y(F ′′B − F ′′A)

)
+ 2ρ̄mn

△

(
V ij

A + yV ij
△

)(
V kl

A + yV kl
△

)(
F ′′′A + y(F ′′′B − F ′′′A )

)]}

+Gij

{
Aij

A + 2y(1− y)Aij
φ + 2yAij

φ̃
+ 2
(
V ij

A + yV ij
△

)(
F ′A + y(F ′B − F ′A)

)}
. (3.62)

Equation (3.62) consists of four parts (1st row; 2nd and 3rd row; 4th-10th row; last
row).

• The first part represents the energy of an atom α in an undeformed, homoge-
neous (i.e., without concentration gradients) solid, according to F

chem
0 in Eq.

(3.61).
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• The second part denotes the elastic energy F
mech
0 of a mixture with particle

concentration y.

• The third part can be related to the HGCs. Note that in Eq. (3.62) only
derivatives ∇2

kly occur. A substitution to ∇2
klc will later allow the identification

of akl and bkl of Eq. (3.60).

• The last part stands for the equilibrium condition of a binary mixture A-B
(minimum of energy), namely ∂Eα/∂G

ij
∣∣
Gij=0,y=yeq = 0⇒ Aij

A +2y(1− y)Aij
φ +

2yAij

φ̃
+ 2(V ij

A + yV ij
△ )(F

′
A + y(F ′B − F ′A)) = 0. By knowing the equilibrium

concentration yeq this condition can be used to obtain the equilibrium nearest
neighbor distance R in the different equilibrium phases.

At this point it should be mentioned that all atomistic considerations are performed
with respect to the particle concentration y. In order to identify the quantities in the
EDE, cf., Eq. (2.145/4.53), we have to switch to mass concentrations c. Following
the arguments of Appendix B.1 we finally find:

♦ equilibrium condition:

Aij
A + 2y(c)(1− y(c))Aij

φ + 2y(c)Aij

φ̃
+ 2
(
V ij

A + y(c)V ij
△

)(
F ′A + y(c)(F ′B − F ′A)

)
= 0

(3.63)

♦ Stiffness coefficients :

Kijkl(c) =
1

Ωα
0

[
2Bijkl

A + 4y(c)(1− y(c))Bijkl
φ + 4y(c)Bijkl

φ̃

+ 4
(
W ijkl

A + y(c)W ijkl
△

)(
F ′A + y(c)(F ′B − F ′A)

)

+ 4
(
V ij

A + y(c)V ij
△

)(
V kl

A + y(c)V kl
△

)(
F ′′A + y(c)(F ′′B − F ′′A)

)]
(3.64)

♦ Higher gradient coefficients:

amn(c,Gpq) = −δ(c) M(2)(c) H
mn(c,Gpq) , (3.65)

bmn(c,Gpq) = δ(c) M(1)(c) H
mn(c,Gpq) , (3.66)

Amn(c,Gpq) =
∂amn(c,Gpq)

∂c
+ bmn(c,Gpq) (3.67)
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with

δ(c) =
ρ0

mHM(c)
,

M(1)(c) =
2MA MB(MB −MA)

[MB − (MB −MA)c]3
, M(2)(c) =

MAMB

[MB − (MB −MA)c]2
, (3.68)

H
mn(c,Gpq) =

1

4

(
(1− 2y(c))gmn

φ + gmn
φ̃

)
+
1

2
ρ̄mn
△

(
F ′A + y(c)(F ′B − F ′A)

)

+
1

2
Gij

[
(1− 2y(c))Aijmn

φ + Aijmn

φ̃
+ 2V ijmn

△

(
F ′A + y(c)(F ′B − F ′A)

)

+ 2ρ̄mn
△

(
V ij

A + y(c)V ij
△

)(
F ′′A + y(c)(F ′′B − F ′′A)

)]

+
1

2
GijGkl

[
(1− 2y(c))Bijklmn

φ +Bijklmn

φ̃

+ 2W ijklmn
△

(
F ′A + y(c)(F ′B − F ′A)

)
+ 2ρ̄mn

△

(
W ijkl

A + y(c)W ijkl
△

)
×

×
(
F ′′A + y(c)(F ′′B − F ′′A)

)
+ 2V klmn

△

(
V ij

A + y(c)V ij
△

)(
F ′′A + y(c)(F ′′B − F ′′A)

)

+ 2V ijmn
△

(
V kl

A + y(c)V kl
△

)(
F ′′A + y(c)(F ′′B − F ′′A)

)

+ 2ρ̄mn
△

(
V ij

A + y(c)V ij
△

)(
V kl

A + y(c)V kl
△

)(
F ′′′A + y(c)(F ′′′B − F ′′′A )

)]
. (3.69)

Recall that all atomistic quantities refer to arguments R2
αβ and ρ̄av, respectively. In

the following section we consider the specific binary alloy Ag-Cu and will explicitly
determine the stiffness and the higher gradient coefficients.

3.5 Application to the Ag-Cu System

In what follows we choose y ≡ yCu (c ≡ cCu) and consider the solid eutectic binary
alloy Ag-Cu at 1000 Kelvin (yeut = 0.41, ceut = 0.29, Teut ≈ 1052 Kelvin) which, from
a technological point of view, serves as a brazing material. Two different equilibrium
phases are observed, the α- and the β-phase, with the equilibrium concentrations cα
and cβ, respectively (cf., Fig. 1.3 (lower left)). Fig. 3.4 shows the Helmholtz free
energy density curve4, (ρϕ)(c), at 1000 Kelvin. It was obtained from a commercial
database, [83]. By means of the common tangent rule construction the following

4Note that MTdata makes no difference between the Gibbs free energy and the Helmholtz free
energy.
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equilibrium concentrations cα/β were determined:

cα = 0.063 ⇔ yα = 0.102 , (3.70)

cβ = 0.945 ⇔ yβ = 0.967 . (3.71)

Moreover both species Ag and Cu as well as the random alloy Ag-Cu form a simple
Face-Centered-Cubic (FCC) lattice so that this material is particularly suited for our
atomistic investigations performed at the two equilibrium concentrations, cα/β. Before
we turn to the fitting procedure some remarks, assumptions, and interpretations in
context with Eq. (3.62) will be made which are required for further investigations:

• Eα stands for the energy of an atom α in a binary lattice where two types of
atoms (A and B) and three types of interactions (A-A, B-B, A-B) are possible.

• Independently of these different interactions and atom-types it is assumed that
only one equilibrium distance R to the nearest neighbors can be found in the
lattice5. Indeed, this fact represents a serious assumption and is put up for
discussion.

• All quantities of the right hand side of Eq. (3.62): gAA/φ/φ̃, B
ijkl

A/φ/φ̃
, FA/B, F

′
A/B,

F ′′A/B, F
′′′
A/B, V

ij
A/△, W

ijkl
A/△, etc., can be calculated from the pure substances A

and B. The “combination” of these quantities according to Eq. (3.62) in terms
of y, (1 − y), ∇2

mny, etc. is interpreted as a suitable average describing the
energy of an arbitrary particle in the mixture A-B.

The second bullet point gives rise to the
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Figure 3.4: Helmholtz free energy den-
sity F

chem
0 (c) for Ag-Cu at 1000 Kelvin.

question of how to find the equilibrium near-
est neighbor distance of a given phase (mix-
ture) with the equilibrium concentration ceq.
In this context we can revert to the equilib-
rium condition given by Eq. (3.63), pro-
vided that ceq is known (e.g., from experi-
ments).

For the sake of transparency I will now give
an overview of all procedures required to ob-
tain the different EAM potentials, the stiff-
ness and the higher gradient coefficients: (1)
The EAM potentials for the pure substances
Ag and Cu are fitted in terms of R2

αβ. (2)
We calculate the stiffness coefficients for the pure substances and compare them with
experimental results (for the purpose of checking). (3) An exploitation of the equilib-
rium condition is performed in order to determine the nearest neighbor distances of

5This assumption can be interpreted as an “effective” lattice, owing the same total cohesive
energy as an lattice, where three different nearest neighbor distances occur, depending on the three
different interactions.
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the α- and β-phase in Ag-Cu at 1000 K. (4) The stiffness coefficients of the different
phases Kijkl

α/β are determined and the pure-substance-limit (i.e., for Ag: lim cα/β = 0

and for Cu: lim cα/β = 1) is performed. (5) The HGCs in the α- and β-phases and
as functions of the concentration are calculated. (6) The phase-diagram of Ag-Cu is
constructed and the results are compared with measurements in order to emphasize
the “quality” of the predicted HGCs.

3.5.1 The Fitting Procedure for Ag and Cu

Recall the advantages of the use of potentials in terms of r2
αβ or R

2
αβ, respectively as

outlined in Section 3.3.1 For this reason we modify Johnson’s functional representation
from Eq. (3.3) as follows:

ρ(r2) = ρe exp

[
−β
(
r2

R2
− 1

)]
, φ(r2) = φe exp

[
−γ
(
r2

R2
− 1

)]
. (3.72)

The symbols r and R denote the nearest neighbor distance in the deformed and in
the undeformed lattice and, in an FCC ensemble, are given by a/

√
2 or ae/

√
2 (cf.,

Fig. 3.2). Moreover the following relations hold:

ρ̄(r2) = 12ρ(r2) , ρ̄e = 12ρe ,
1

2

∑

β

φ(r2) = 6φ(r2) , 6φe ≡ Φe . (3.73)

In order to arrive at an explicit relation for the embedding function F (ρ̄) analogously
to Eq. (3.8) we follow the strategy explained in Section 3.2.2 and use the following
inversions:

r

R
=

√
1− 1

β
ln
ρ̄

ρ̄e

,
φ

φe

=

(
ρ̄

ρ̄e

) γ
β

. (3.74)

By means of the universal function of state E(a) from Section 3.2.2 and Eq. (3.74)
the following result is obtained:

F (ρ̄) = −Esub

[
1 + α

(√
1− 1

β
ln
ρ̄

ρ̄e

− 1

)]
×

× exp
[
−α
(√

1− 1

β
ln
ρ̄

ρ̄e

− 1

)]
− Φe

(
ρ̄

ρ̄e

) γ
β

, (3.75)

with α = 3
√

κΩ0

Esub
.
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In what follows we focus on the pure substances Ag and Cu as well as on the binary
alloy Ag-Cu (silver-copper). In the case of the pure materials the following functions
must be determined: φAgAg, φCuCu, ρAg (= 1/12ρ̄Ag), ρCu (= 1/12ρ̄Cu), FAg(ρ̄Ag), and
FCu(ρ̄Cu). Thus for both pure components five parameters must be adjusted, namely
α, β, γ, φe, ρe. Consequently ten parameters are unknown. Note that the interaction
between an Ag and a Cu nucleus, i.e., φAgCu, follows directly from considering the
pure species Ag and Cu (cf., Eq. (3.4)). For the fitting procedure the following ten
experimental parameters of both substances are used:

1. Voigt average of the shear modulus G

2. bulk modulus κ

3. sublimation energy Esub (with respect to one particle)

4. (unrelaxed) vacancy formation energy Euvf

5. (equilibrium) lattice parameter ae

α is already given by Eq. (3.8)2, i.e., it only remains to determine β, γ, φe, and ρe.

a. Determination of φe and ρe

Following Johnson in [68] the sublimation energy per atom (i.e., the cohesive energy)
of an arbitrary atom is represented by the nuclei-nuclei interactions with its neighbors:
Esub =

1
2
· 12 · φ(r2). Hence it follows for equilibrium:

φe =
Esub

6
. (3.76)

From the physical point of view it is plausible to establish that ρe ∝ 1/Ω0 and
ρe ∝ Esub and, consequently, we simply write:

ρe =
Esub

Ω0

. (3.77)

The last two equations represent two relations for the unknown material parameters
φe und ρe.
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b. Determination of β and γ

The starting point to obtain these quantities are the equations for the unrelaxed
vacancy formation energy Euvf and the Voigt average of the shear modulus G:

Euvf = −1
2

12∑

β=1

φ(r2)−
12∑

β=1

F
[
12ρ(r2)

]
+

12∑

β=1

F
[
11ρ(r2)

]
, (3.78)

G =
1

5
(3K2323 + 2K∗) , K∗ =

1

2
(K1111 −K1122) (3.79)

where K1111, K1122, and K2323 denote the elastic constants of the forth order stiffness
matrix. These constants are characterized by derivatives of the energy expression of
a solid (Eq. (3.2)). Recall that for the stiffness Kijkl of a pure substance A (cf., Eq.
(3.28)) we have:

Kijkl
A =

1

ΩA
0

[
2Bijkl

AA + 4F ′A
(
ρ̄0

A

)
W ijkl

A + 4F ′′A
(
ρ̄0

A

)
V ij

A V
kl
A

]
(3.28a)

with the definitions:

ρ̄0
A =

∑

β

ρA (R2
αβ) , Bijkl

AA =
∑

β

φ′′AA(R
2
αβ)R

i
αβR

j
αβR

k
αβR

l
αβ , (3.80)

V ij
A =

∑

β

ρ′A(R
2
αβ)R

i
αβR

j
αβ , W ijkl

A =
∑

β

ρ′′A(R
2
αβ)R

i
αβR

j
αβR

k
αβR

l
αβ , (3.81)

F ′A =
∂FA

∂ρ̄A

∣∣∣∣
ρ̄A=ρ̄0

A

, F ′′A =
∂2FA

∂ρ̄2
A

∣∣∣∣
ρ̄A=ρ̄0

A

, φ′′AA =
∂2φAA

∂(r2
αβ)

2

∣∣∣∣
r2
αβ=R2

αβ

, (3.82)

ρ′A =
∂ρA

∂r2
αβ

∣∣∣∣
r2
αβ=R2

αβ

, ρ′′A =
∂2ρA

∂(r2
αβ)

2

∣∣∣∣
r2
αβ=R2

αβ

, (3.83)

where r2
αβ or R2

αβ represent the distance between the atoms α and β and can be
identified with r2 or R2 in the nearest neighbor model.

Relation (3.28a) for the elastic constants can be used in Eq. (3.79)1,2. Then together
with the parameterizations (3.72,3.73,3.75) it follows that (cf., Appendix B.2):

G =
8

5

φeγ(γ − β)

Ω0

. (3.84)

In a similar manner it is possible to approximate the unrelaxed vacancy formation
energy Euvf in Eq. (3.78) by (cf., Appendix B.2):

Euvf ≈
15

4

GΩ0

γβ
= 6φe

γ − β

β
. (3.85)



78 Calculation of Higher Gradient and Stiffness Coefficients by using the EAM

The last two relations represent two equations for β and γ. As input we use theVoigt

average of the shear modulus and the unrelaxed vacancy formation energy. Using now
Eqs. (3.8)2, (3.76), (3.77), (3.84), and (3.85), we can determine all parameters for Ag
and Cu. The experimental data required during this procedure are compiled in Table
3.1, [68]:

Table 3.1: Experimental data for Ag and Cu.

type of Input

atom Ω0 in Å
3

Esub in eV Euvf in eV Ω0κ in eV Ω0G in eV

Ag 17.10 2.85 1.10 11.10 3.61
Cu 11.81 3.54 1.30 10.17 4.05

In particular the following values can be used to obtain the second column of Table
3.1:

aAg = 4.09 Å , RAg = 2.89 Å , R2
Ag = 8.36 Å

2
(3.86)

aCu = 3.61 Å , RCu = 2.56 Å , R2
Cu = 6.53 Å

2
(3.87)

From this data the parameters and corresponding functions shown in Table 3.2 and
in Figure 3.5 were obtained.

Table 3.2: Parameters for Ag and Cu calculated.

type of atom α β γ φe in eV ρe in eV/Å
3

ρ̄e in eV/Å
3

Ag 5.9205 2.9799 4.1300 0.4750 0.1672 2.0064
Cu 5.0849 2.9232 3.9966 0.5900 0.2998 3.5971

3.5.2 The Elastic Constants of Ag and Cu

With the fitted and illustrated functions from the last section it becomes possible to
calculate the elastic constants for pure Ag and Cu according to Eq. (3.28a). The
results are compiled in Table 3.3.

In comparison with the results obtained by means of pair potentials, [36], the discrep-
ancy between experimental data and theoretically predicted values is visibly reduced
and the agreement is reasonably good, the error ranging between 4.1% (K1122

Ag ) and
9.4% (K1111

Cu ). Moreover the Cauchy-Paradox (K1122 = K2323) no longer exists which
is a considerable improvement.
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nucleus-nulceus interactions between
atoms of the same type

nucleus-nulceus interactions between
atoms of different type

atomic electron-density for a silver and a
copper atom

embedding function for a silver and a
copper atom

atomic energy for a silver and a copper
atom in an FCC crystal as a function of

r2

Figure 3.5: Various functions relevant in Eq. (3.72,3.75) and the resulting atomic energy
Eα for Ag and Cu. Note that in the upper right picture φAgCu = φCuAg.
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Table 3.3: Elastic constants for Ag and Cu in GPa. The values in parentheses stem from
experiments, [71].

Kijkl
Ag kl 11 22 33 23 31 12 Kijkl

Cu kl 11 22 33 23 31 12

ij ij

11 132.6 90.2 90.2 0 0 0 11 183.7 115.1 115.1 0 0 0
(124) (94) (94) (168) (121) (121)

22 90.2 132.6 90.2 0 0 0 22 115.1 183.7 115.1 0 0 0
(94) (124) (94) (121) (168) (121)

33 90.2 90.2 132.6 0 0 0 33 115.1 115.1 183.7 0 0 0
(94) (94) (124) (121) (121) (168)

23 0 0 0 42.4 0 0 23 0 0 0 68.7 0 0
(46) (75)

31 0 0 0 0 42.4 0 31 0 0 0 0 68.7 0
(46) (75)

12 0 0 0 0 0 42.4 12 0 0 0 0 0 68.7
(46) (75)

3.5.3 The Alloy Ag-Cu I: Evaluation of the Equilibrium Con-
dition

In this section we investigate the equilibrium condition shown in Eq. (3.63). We
choose A=Ag and B=Cu and the corresponding equilibrium concentrations cα =
0.063 and cβ = 0.945 at 1000 K. Eq. (3.63) has a non-trivial solution only for the
index-pair i = j since in an FCC lattice the following relation holds for an arbitrary
scalar function f :

∑
f(R2)RiRj = 0, (i 6= j) and

∑
f(R2)RiRi = const, (∀i, j =

{1, 2, 3}). Consequently we may plot the left side (for the index 11) of Eq. (3.63)
as shown in Figure 3.6 (Left). The point of intersection with the abscissa defines
the nearest neighbor distances in equilibrium of a crystal consisting of α or β phase,
respectively.

On the other side it is possible to vary the concentration in the equilibrium condition
(3.63) and determine the nearest neighbor distance in equilibrium as a function of
the concentration c. The corresponding points of intersection were determined for
various discrete concentrations c = 0, 0.05, 0.10, . . . , 0.90, 0.95, 1, cf., Figure 3.6
(Right). As one can see the obtained values of R are in good agreement with the
weighed average R = (1− c)RAg + cRCu which is represented by the continuous line
in Figure 3.6 (Right). Especially for the α− and β-phase we can conclude:

Rα =
√
8.202 Å = 2.864 Å , Ωα

0 = 16.61 Å
3
, (3.88)

Rβ =
√
6.631 Å = 2.575 Å , Ωβ

0 = 12.07 Å
3
. (3.89)
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The equilibrium condition for the α- and
β-phase (i = j)

Equilibrium nearest neighbor distances
for different concentrations c.

Figure 3.6: Illustration of different results following from the exploitation of the equilib-
rium condition (3.63).

3.5.4 The Alloy Ag-Cu II: The Stiffness Coefficients

Equation (3.64) allows us to obtain the stiffness coefficients as a function of the mass
concentration c. Note that for every value of c one must first evaluate the equilibrium
condition in order to find the nearest neighbor distance R in equilibrium. If R is
determined for a certain value of c the unit cell volume Ωα

0 occupied by an atom α as
well as all quantities in (3.64) can be calculated. In order to investigate the stiffness
of the different phases in Ag-Cu we consider the equilibrium concentrations cα and cβ
and analyze Eq. (3.64) at the distances Rα and Rβ presented in the previous section.
The results are compiled in Table 3.4.

Table 3.4: Elastic constants in GPa predicted for the α- and β-phases in an Ag-Cu system
at 1000 K.

Kijkl
α kl 11 22 33 23 31 12 Kijkl

β kl 11 22 33 23 31 12

ij ij

11 135.3 92.2 92.2 0 0 0 11 181.3 115.2 115.2 0 0 0

22 92.2 135.3 92.2 0 0 0 22 115.2 181.3 115.2 0 0 0

33 92.2 92.2 135.3 0 0 0 33 115.2 115.2 181.3 0 0 0

23 0 0 0 43.1 0 0 23 0 0 0 66.0 0 0

31 0 0 0 0 43.1 0 31 0 0 0 0 66.0 0

12 0 0 0 0 0 43.1 12 0 0 0 0 0 66.0

On the other hand it is of interest to determine the stiffness of the alloy with an ar-
bitrary mass concentration c. This problem is equivalent to a somewhat hypothetical
experiment in which the atoms of a pure Ag lattice are successively replaced by Cu
atoms. For this purpose we use the calculated equilibrium distances R illustrated in
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Figure 3.6, right, and the corresponding concentrations values. The (discrete) values
of the calculated stiffness coefficients are shown as bullets in Figure 3.7. Obviously

Figure 3.7: Calculated elastic constants for Ag-Cu as a function of the mass concentration
c. The continuous line represents the linear interpolation between the values of pure Ag
and Cu.

the pure-substance-limit is exactly fulfilled, i.e., the elastic constants lead to Kijkl
Ag

and Kijkl
Cu for c = 0 or c = 1, respectively.

3.5.5 The Alloy Ag-Cu III: The Higher Gradient Coefficients

In order to calculate the higher gradient coefficients for the strain-free case (G = 0,
for simplicity) we use the reduced form of Eq. (3.69):

H
mn(c,Gij = 0) =

1

4

[(
1− 2y(c)

)
gmn

φ + gmn
φ̃

]
+
1

2
ρ̄mn
△

[
F ′A + y(c)

(
F ′B − F ′A

)]
.

(3.90)

Furthermore the following data can be compiled for eutectic Ag-Cu:

ρAg = 10490
kg

m3
, ρCu = 8920

kg

m3
, ρ0 = 9980.57

kg

m3
, δ(c) =

ρ0

mHM(c)
.

(3.91)
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By applying cα/β and Rα/β in Eqs. (3.65,3.66,3.90,3.914) one can determine the higher
gradient coefficients aij and bij for the α- and β-phase (cf., Table 3.5). Moreover,
together with the calculated nearest neighbor distances in equilibrium which depend
on c (Figure 3.6, Right) we calculate aij(c) and bij(c) (cf., Figure 3.8). Note that for
an (undeformed) FCC crystal we have aij = bij = 0 for i 6= j and a11 = a22 = a33 or
b11 = b22 = b33, respectively.

Table 3.5: Calculated higher gradient coefficients for the different α- and β-phases in
eutectic Ag-Cu.

phase a11 in N b11 in N A11 in N ∂A11/∂c in N

α 4.59 · 10−11 6.14 · 10−11 1.55 · 10−10 7.34 · 10−11

β 1.23 · 10−10 1.03 · 10−10 1.88 · 10−10 2.86 · 10−11

For the determination of Aij
α/β or (more generally) Aij(c) and the corresponding

derivative one has to find a closed form expression for the equilibrium distances
Rα/β = R(cα/β) or R = R(c) first. Note that the derivatives ∂aij/∂c, ∂2aij/∂c2

and ∂bij/∂c must be calculated and evaluated at the equilibrium distances R which
also depend on c. Here we want to use the numerically obtained results from Section
3.5.3, i.e.,

R(c) ≈ (1− c)RAg + cRCu . (3.92)

Now we can evaluate Aij
α/β (cf., Table 3.5) as well as Aij(c) and the corresponding

derivatives with respect to c (cf., Figure 3.8). Analogously we have for FCC crystals
Aij = 0 for i 6= j and A11 = A22 = A33 for i = j.

Eqs. (3.65-3.69) also allow the calculation of the HGCs as functions of the mass
concentration c and of the six independent coefficients of the strain tensor Gij = Gji.
However, for a graphical illustration of these dependencies we consider the following
two strain states:

i) isotropic strains, i.e.:

Gij ≃ εij = ε · δij . (3.93)

In this case the calculated HGCs have the following isotropic form (for FCC
structures):

Ξij =




Ξ11 0 0
0 Ξ11 0
0 0 Ξ11



 with Ξ = {a, b, A} . (3.94)
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Figure 3.8: Higher gradient coefficients calculated for Ag-Cu as a function of the mass
concentration c (strain free case).

ii) so-called “line” strains, i.e.:

Gij ≃ εij = ε · δi1δj1δij =




ε 0 0
0 0 0
0 0 0



 . (3.95)

As we will see in the next Chapter the assumption of such a strain state is very
convenient for the investigation of the EDE in one dimension. In particular we
will see, that the restriction on “line” strains allows to find a closed expression
for the strain field ε(X i, t) within the multiphase material.

In contrast to item (i) the calculated HGCs are of the following non-isotropic
form:

Ξij =




Ξ11 0 0
0 Ξ22 0
0 0 Ξ22



 with Ξ = {a, b, A} . (3.96)

Figure 3.9 shows the calculated HGCs w.r.t. the isotropic strain state in item (i).
Here we calculated the HGCs for the discrete values of ε =0.2, 0.15, 0.1, 0.05, 0.0,
-0.05, -0.1, -0.15, and -0.2 and as continuous functions of the mass concentration c.
Figure 3.10 illustrates the according curves for the line strain state of item (ii).
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Figure 3.9: Higher gradient coefficients calculated for Ag-Cu as a function of the mass
concentration c and of the strains εij = ε · δij (isotropic strains).

Obviously, the HGCs are not symmetric w.r.t. positive (i.e., tensile loading) and
negative (i.e., pressure loading) strains. This asymmetry directly influent the EDE
and, consequently, it is possible to separately investigate the impact of positive and
negative loading regimes on the phase evolution process.

Furthermore it is worth mentioning that the range ε = −0.2, . . . ,+0.2 was chosen
ad hoc, in order to illustrate the strain-dependency of the HGCs. Here the “middle
curves” for ε = 0 in Figure 3.9 and 3.10 agree with the corresponding curves in
Figure 3.8. However, the atomistic calculations leading the graphs in Figures 3.8–3.10
are extremely time-consuming. Therefore it is reasonable - in particular under the
background of the numerical simulation of the EDE - to perform a polynomial fit of the
HGC functions (cf., next Chapter). However, in order to distinguish between tensile
and pressure loading within the simulations the fit procedure must be performed
separately for positive and negative strains.
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Figure 3.10: Higher gradient coefficients calculated for Ag-Cu as a function of the mass
concentration c and of the strains εij = ε · δi1δj1δij (line strains).
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3.6 Construction of the Phase Diagram

In order to point out the reliability of the predicted stiffness coefficients and the
HGCs we want to calculate finally the equilibrium particle concentrations yα/β for
different temperatures using the EAM and compare them with experimental data.
The resulting phase diagram represents the coexisting phases in the binary alloy at
different temperatures.

In principle, Eq. (2.127) and the atomistic energy expression in Eq. (3.62) allow
for the calculation of the chemical potentials, which incorporate a local thermo-
mechanical stress field. By means of the jump conditions at the interface between the
α- and β-phase, [34], the equilibrium concentrations yα/β can be calculated. However,
for convenience we want to neglect in the following considerations any mechanical
contributions to the chemical potentials µAg/Cu. Consequently, the subsequent for-
malism relies on the following jump conditions: [[µAg/Cu]] = 0 and [[µCu − µAg]] = 0
with [[♦]] = ♦β − ♦α, [39].

From (phenomenological) thermodynamics of mixtures it is well-known that the equi-
librium concentrations of a binary mixture can be constructed from theGibbs free en-
ergy g(y, T ), (pressure p =const) for a given temperature by applying the Maxwell

tangent construction. In this technique the derivatives of the g(y, T )-curve at the
equilibrium concentrations yα/β must be identical to the slope of the common tan-
gent.

Starting from the atomistic point-of-view the Gibbs free energy g(y, T ) per atom can
be identified according to Eq. (3.62) as follows:

g(y, T ) ≡ Eα − Ts =
1

2
gAA + y(1− y)gφ + ygφ̃ + FA + y(FB − FA )− Ts

= (1− y)
(
6φAA(R

2) + FA

(
ρ̄av(R

2)
))

+ y
(
6φBB(R

2) + FB

(
ρ̄av(R

2)
))

+ 12y(1− y)gφ(R
2) + kBT

(
y ln y + (1− y) ln(1− y)

)
. (3.97)

In this expression the temperature-dependence of g(y, T ) is only characterized by the
entropic part, namely by −Ts. Moreover the Maxwell tangent construction reads:

∂g(y, T )

∂y

∣∣∣
y=yα

=
∂g(y, T )

∂y

∣∣∣
y=yβ

=
g(yβ, T )− g(yα, T )

yβ − yα

. (3.98)

Note that in Eq. (3.97) all terms, i.e., gAA, gφ, gφ̃ and FA/B depend on the equilibrium
nearest neighbor distance R2 which is a function of the mass concentration c (cf., Eq.
(3.92)). In order to find R = R(y) one can use the inverse relation c = c(y) of Eq.
(B.3):

cCu ≡ c =
mCu

mCu +mAg

=
yMCu

yMCu + (1− y)MAg

. (3.99)
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In the same manner one can analyze the Gibbs free energy density (ρψ)(c, T ) =
g(y(c), T )/δ(c) as a function of the mass concentration c. Then the resulting equilib-
rium concentrations are represented by cα/β in the phase diagram. Both approaches
are equivalent and y can be transferred to c through Eq. (3.99). At this point we
want to investigate g(y, T ) and calculate the equilibrium concentrations yα/β as well
as the corresponding phase diagram in order to allow for a better comparison with
experimental and literature data.

Figure 3.11 shows the particle-specific Gibbs free energy for the temperature 1000
Kelvin following from Eq. (3.97) and the corresponding ρψ-curve (1st row) as well
as the relation R(y) (2nd row). Note that the ρψ-curves of Figure 3.4 and Figure

Figure 3.11: 1st row: Theoretical curves of g(y, T ) and (ρψ)(c, T ) for 1000 Kelvin in-
cluding Maxwell’s tangent (dashed line) and the constructed equilibrium points (dots).
2nd row: The nearest-neighbor-distance R(y) for equilibrium and its deviation from linear
interpolation (Vegard’s law, dashed line).

3.11 can not directly be compared due to different zero points on the energy scale.
Furthermore one can find a considerable deviation between R(y) and Vegard’s law.
A transformation to R(c) can remedy this shortcoming.

Evaluating Eq. (3.97) for different temperatures, in particular for 700, 800, 900, and
1000 Kelvin yields the curves illustrated in Figure 3.12 (1st row). In this viewgraph
Maxwell’s tangent was subtracted from the values of g. Thus the minima of these
functions represent the equilibrium concentrations for the corresponding temperature.
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Note that there are also minima on the right hand side of the curve, as emphasized
in the close-up shown in the second picture. Furthermore the calculated and exper-
imental equilibrium concentrations yα/β and cα/β are juxtaposed in Table 3.6. The
resulting (theoretically determined) phase diagram is shown in Figure 3.12 (2nd row,
left). The full diagram on the right hand side is the one obtained from MTdataTM,
[83]. A comparison of the values in Table 3.6 as well as the theoretical and experimen-
tal phase diagram shows that the theoretically predicted equilibrium concentrations
have qualitatively the same tendency as the experimental ones. Furthermore the ab-
solute values of the α-phase (left part of the phase diagram) are in good agreement
but, nevertheless, the values of the β-phase are poorly reproduced.

Table 3.6: Calculated and experimental equilibrium concentrations for Ag-Cu at different
temperatures. The experimental data for 700, 800, 900 Kelvin stem from [94] and for 1000
Kelvin from [119].

Temp. predicted by EAM experimental data

in K yα yβ cα cβ yα yβ cα cβ

700 0.024 0.999999 0.014 0.999999 0.015 0.993 0.0089 0.9882
800 0.039 0.999996 0.023 0.999994 0.033 0.986 0.0197 0.9765
900 0.056 0.999986 0.033 0.999976 0.063 0.976 0.0381 0.9599
1000 0.075 0.999957 0.045 0.999928 0.102 0.967 0.0627 0.9452

Let us abbreviate the difference of Gibbs free energy g(y, T ) and Maxwells’s tangent
with g∗(y, T ) (cf., Figure 3.12, 1st row) and the corresponding values of (ρψ)(c, T )
with (ρψ)∗(c, T ). In order to investigate the reason for the difference between the ex-
perimental and calculated equilibrium concentrations one can now compare g∗(y, T =
1000K) as well as (ρψ)∗(c, T = 1000K) following from the atomistic calculations and
from MTdataTM. Moreover it is also possible to calculate the so-called excess en-
thalpy gex, the non-ideal heat of mixing, which can be obtained from the following
relation:

g(y, T ) = yg(y = 0, T ) + (1− y)g(y = 1, T )

+ kBT
(
y ln y + (1− y) ln(1− y)

)
+ gex(y, T ). (3.100)

Figure 3.13 shows the corresponding curves for 1000 Kelvin. Obviously the crucial
value that determines the quality of the calculated phase diagram is the excess en-
thalpy gex. In particular, its asymmetry is the source of the asymmetry in the phase
diagram related to the solid state and its absolute values compete with the entropic
part −Ts and determine the horizontal position of the minima of gmix. Thus values
of gex that are too large lead to a shift of the minima (and, consequently, of the
equilibrium concentrations) in the vicinity of y = 0 or y = 1, respectively. This fact
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Figure 3.12: 1st row: The calculated Gibbs free energy g∗(y, T ) for different temperatures
700, 800, 900, 1000 Kelvin. 2nd row, left: Calculated phase diagram of the solid phases in
Ag-Cu (filled and joined dots) vs. experimental data (unfilled dots). Right: The phase
diagram generated by MTdataTM.

is observable in our theoretical calculations where the calculated gex is considerably
larger than the experimental curve but, nevertheless, have the same magnitude and
the same functional characteristics (asymmetry) as the other curves. The source of
the deviation of gex is due to the use of the calculated nearest neighbor distance R in
equilibrium, a measure for the relaxation of the lattice caused by different atom-types.
This value can only be as realistic as the (fitted) EAM potentials because they enter
the equilibrium condition used to find R. In spite of these shortcomings our phase
diagram calculations qualitatively reproduce the experimental values and are of the
same magnitude as literature data.
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Figure 3.13: A comparison of the calculated functions g∗(y, T = 1000K), (ρψ)∗(c, T =
1000K), and gex(y, T = 1000K) with the corresponding functions from MTdataTM (dashed
line).

3.7 Some Concluding Remarks about this Chapter

In this Chapter a microscopic theory was presented which allows for an atomistic
identification of mechanical, thermodynamical, as well as thermo-mechanical material
parameters in binary alloys. It is based on EAM potentials and results in an energy
expression for an arbitrary atom α, given by Eq. (3.62). Undoubtedly this equation
represents the central element in the outlined procedure and is generally valid, i.e.,
it does not depend on the functional form of the EAM-functions.

By considering a binary (multiphase) mixture, here Ag-Cu, the equilibrium (atomic)
nearest neighbor distance R, the stiffness coefficients, the higher gradient coefficients,
and the (temperature-depending) equilibrium concentrations of the different phases
can easily be calculated. Moreover it is also possible to determine these quanti-
ties as (continuous) functions of mass or particle concentrations, c and y, respec-
tively. Furthermore the equilibrium condition following from Eq. (3.62) represents
the energy-minimization-principle and provides a theoretical tool for an estimate of
lattice relaxations due to different atom-types in the lattice.

However, the main focus of this Chapter was the theoretical description of the HGCs,
since so far the communicated data is mostly estimated or its origin is unclear. This
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is why the existing data is questionable. In order to substantiate the reliability of
the predicted HGCs we also determined the stiffness coefficients and constructed the
phase diagram for the solid phases. Especially we chose the binary alloy Ag-Cu to
illustrate how the aforementioned parameters can be determined theoretically.

For the whole investigation the nearest neighbor model as proposed by Johnson, [67],
was used. In this approach a very simple functional dependence for the EAM func-
tions is considered by assuming only nearest neighbor interactions and s-orbitals for
the electron densities. Nevertheless, the determined quantities, for instance the stiff-
ness coefficients, are in good agreement with the experimental data. Only some of the
calculated equilibrium concentrations in the phase diagram reproduce the experimen-
tal values inaccurately. It seems that the underlying assumptions, namely the neglect
of lattice dynamics (vibrations), Johnson’s parametrization, and the consideration
of one equilibrium nearest neighbor distance, only allow a qualitative calculation of
phase diagram data. For further improvement one could use other functional forms for
the potentials, extensions of Johnson’s model and/or one could consider lattice vibra-
tions, [94]. One possibility is to consider more than just nearest-neighbor-interaction
as suggested by Daw and Baskes in [29].

Moreover new modifications of EAM were developed in the last years in order to
apply this method to other than FCC lattices, [5, 77]. As an example the Modi-
fied Embedded-Atom Method (MEAM) allows the investigation of BCC-metals, for
instance Fe. HCP structures were also investigated successfully using EAM, [98].
Therefore, in principle, it is possible to determine the HGCs of more complex lattice
structures using EAM/MEAM. Other applications of EAM, which could be interest-
ing in the future, are simulations and investigations of fracture, plasticity behavior,
impurities, surfaces, or grain boundaries.

In summary one can say that the predicted HGCs originated from a microscopic
theory based on interatomic interactions are reliable as indicated by the quality of
the stiffness coefficients and (despite of some deviations) by the phase diagram con-
struction. Indeed, the value of Aij is close to those found in literature (e.g., [72],
Aij = 2 · 10−10δij N), and it is considerably smaller than the corresponding results
following from pairwise interactions, [36]. An investigation of the influence of the
calculated HGCs on phase separation and the coarsening processes in binary alloys
according to Eqs. (2.145/4.53) will be given in the next Chapter.



Chapter 4

Numerical Simulations

Gute Sitten haben für die Gesellschaft mehr Wert
als alle Berechnungen Newtons.

Friedrich II., preußischer König (1712 - 1786)

The extended diffusion equation, Eq. (4.51/4.53), derived in Chapter 2 represents a
nonlinear Partial Differential Equation (PDE) of fourth order for the concentration
field c(X i, t), which generally reads, [15]:

F

(
c(X i, t),

∂c(X i, t)

∂t
,
∂mc(X i, t)

(∂Xj)m

)
= 0 , m = {1, 2, 3, 4} . (4.1)

In order to simulate the development of the concentration field within the multi-phase
material one needs suitable numerical methods, especially for the numerical treatment
of the spatial and time derivatives. To this end we apply in this work the method of
Discrete Fourier Transforms (DFT) in combination with Finite Differences (FD),
which allow to substitute the spatial derivatives by an algebraic expression, cf., [37].
The resulting (first order) Ordinary Differential Equation (ODE), viz.

dĉ

dt
= f(ĉ, t) , (general form) (4.2)

can be solved by means of, e.g., One-Step-Time-Integration (OSTI) methods, such
as an explicit Euler procedure. In the following some mathematical background of
the required numerical methods will be presented.

4.1 Some Elements of Numerical Mathematics

4.1.1 Discrete Fourier Transforms and Spatial Discretization

We start with the introduction of the concept of the so-called Representative Volume
Element (RVE), the side length of which, 2πL, must be chosen sufficiently large so

93
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Figure 4.1: Left: Discretization of the representative volume element in the two-
dimensional case (N = 6). Right: Characterization of the microstructure by periodic
continuation of RVE’s.

that it contains sufficient information about the microstructure of the material. On
the other hand it must also be sufficiently small in order to reproduce the differ-
ent forms of the phases realistically after discretization of the RVE. Moreover, we
postulate, that the microstructure of the material is characterized by the periodic
continuation of the RVE’s, cf., Figure 4.1 (Right).

Now we consider a discretization of the RVE by N ∈ Z (one dimension), N ×N (two
dimensions) or N ×N ×N (three dimensions) equidistant grid points, cf., Figure 4.1
(Left). Consequently, the position vector, X i, of an arbitrary material point within
the RVE reads:

X i =
2πL

N
αi with αi (3D)

=




α1

α2

α3



 ∧ α1/2/3 ∈ {0, 1, 2, . . . , N − 1} , (4.3)

where the grid point vector αi identifies the position of an arbitrary grid point within
the discrete grid-point-array, [91].

For a scalar function :

c : {0, 1, 2, . . . , N − 1}3 → R

αi 7→ c(αi) (4.4)
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with the following periodicity property:

c(αi) = c(αi +Nri) and ri (3D)
=




r1

r2

r3



 ∧ r1/2/3 ∈ Z (4.5)

the discrete Fourier transform ĉ(kj) = F[c(αj)] and the according inverse transform
c(αj) = F−1[ĉ(kj)] are defined as, [16, 91]:

F[c(αj)] ≡ ĉ(kj)
(def)
=

1

Nd/2

N−1∑

α1=0

. . .

N−1∑

αd=0

c(αj) exp

[
i
2πL

N
kl αl

]
, (4.6)

F−1[ĉ(kj)]
(def)
=

1

Nd/2

N−1∑

α1=0

. . .
N−1∑

αd=0

ĉ(kj) exp

[
−i2πL

N
kl αl

]
, (4.7)

where j ∈ {1, ..., d} and d stands for the dimension, i.e., d = 1 (one dimension), d = 2
(two dimensions), or d = 3 (three dimensions). Furthermore the symbol kj denotes –
analogously to αj in real space – the discrete position vector in Fourier space and
is often called the wave vector . For the one-dimensional case Eqs. (4.6) and (4.7)
reduce to the following form:

F[c(α)]
(def)
=

1

N1/2

N−1∑

α=0

c(α) exp

[
i
2πL

N
k α

]
, (4.8)

F−1[ĉ(k)]
(def)
=

1

N1/2

N−1∑

α=0

ĉ(k) exp

[
−i2πL

N
k α

]
. (4.9)

Following from the definition of the DFT the shift theorem holds:

F[c(αj + βj)] = exp

[
−i2πL

N
βj kj

]
· F

[
c
(
α(j)

)]
(4.10)

and for the one-dimensional case:

F[c(α+ β)] = exp

[
−i2πL

N
β k

]
· F[c(α)] , (4.11)

which can be easily shown by means of Eqs. (4.6, 4.7), (4.8, 4.9) and the constraint
of periodicity in Eq. (4.5), [91].
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For the numerical treatment of spatial derivatives of the scalar function c(X i, t) oc-
curring in the EDE we replace the spatial derivatives by finite differences defined on
an arbitrary discrete grid-point (α1, α2, α3) = (k, l,m):

∂c(X i)

∂X1
≃ ∆c(αi)

∆α1

(def)
=

c(k + 1, l,m)− c(k − 1, l,m)

2h
,

∂c(X i)

∂X2
≃ ∆c(αi)

∆α2

(def)
=

c(k, l + 1,m)− c(k, l − 1,m)

2h
,

∂c(X i)

∂X3
≃ ∆c(αi)

∆α3

(def)
=

c(k, l,m+ 1)− c(k, l,m− 1)

2h
, (4.12)

with h = 2πL/N . For the second derivatives the following finite differences approxi-
mation is used1 [17, 91]:

∂2c(X i)

∂(X1)2
≃ ∆2c(αi)

∆(α1)2
(def)
=

c(k + 1, l,m) + c(k − 1, l,m)− 2c(k, l,m)

h2
,

∂2c(X i)

∂(X2)2
≃ ∆2c(αi)

∆(α2)2
(def)
=

c(k, l + 1,m) + c(k, l − 1,m)− 2c(k, l,m)

h2
,

∂2c(X i)

∂(X3)2
≃ ∆2c(αi)

∆(α3)2
(def)
=

c(k, l,m+ 1) + c(k, l,m− 1)− 2c(k, l,m)

h2
. (4.13)

A transformation of the finite differences schemes in Eqs. (4.12)1,2,3 and (4.13)1,2,3 into
Fourier space by means of the definitions in the Eqs. (4.6-4.9) yields the following
algebraic relations for the spatial derivatives:

F

[
∆c(αi)

∆αj

]
= F[c(αi)] · ξ(1)

j , ξ
(1)
j = − i

h
sin

(
2πL

N
kj

)
, (4.14)

F

[
∆2c(αi)

∆(αj)2

]
= F[c(αi)] · ξ(2)

j , ξ
(2)
j =

2

h2

[
cos

(
2πL

N
kj

)
− 1

]
. (4.15)

The corresponding relations in one dimension read:

F

[
∆c(α)

∆α

]
= F[c(α)] · ξ(1) , ξ(1) = − i

h
sin

(
2πL

N
k

)
, (4.16)

F

[
∆2c(α)

∆α2

]
= F[c(α)] · ξ(2) , ξ(2) =

2

h2

[
cos

(
2πL

N
k

)
− 1

]
. (4.17)

1Mixed derivatives of the form ∂2c/∂Xi∂xj with (i 6= j) are not considered since – as we will see
below – they are not required during the simulations. However, the corresponding relations for the
mixed derivatives can be found, e.g., in [91].
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Eqs. (4.14–4.17) can be easily verified by applying the shift theorem of Eq. (4.10)
for βj = ±1 and by using Euler’s relation exp[iα] = cosα+ i sinα, [91].

As a consequence of these considerations one may conclude that it is useful to trans-
form the EDE into Fourier space, in which the spatial derivatives of c(X i, t) in Eq.
(4.53) can be approximate by the algebraic relations presented in Eqs. (4.14–4.17).
Consequently the resulting EDE in Fourier space represents an ODE of the form:

dĉj(t)

dt
= f

(
ĉj(t)

)
with ĉj = ĉ(kj) = F[c(αj)] , (4.18)

which can be numerically solved by means of OSTI methods, [17].

However, it is worth mentioning, that the application of the Fourier transform in
combination with the shift theorem presumes periodic boundary conditions for the
concentration field c(X i, t) within the RVE. This assumptions is necessary due to the
use of the relation (4.5) in order to establish the shift theorem and is in agreement
with the periodic continuation of RVE’s as illustrated in Figure 4.1 (Right).

4.1.2 One-Step-Time-Integration Methods

In order to explain the numerical solution of the ODE in Eq. (4.18) we consider the
autonomous, one-dimensional form2 [18]:

dĉ

dt
= f(ĉ) , (4.19)

in which – according to the EDE – the time t does not explicitly occur in the function
f on the right hand side.

The aim of OSTI methods is to successively construct the solution ĉ(ti + ∆t) by
starting from a known initial value ĉi = ĉ(ti) and applying the discrete time step
∆t. To this end various procedures with different orders of accuracy exist. The most
popular ones will be briefly explained in what follows.

a. Explicit Methods

Euler Method In order to find a numerical solution of Eq. (4.19) we consider the
initial condition ĉ(t = t0) = ĉ0 and discretize the time t by tk = t0 + k · ∆t (k =

2The same arguments hold for each component of the N dimensional ODE, given in Eq. (4.18).
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ĉ(t3)
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Figure 4.2: Left: Illustration of the explicit Euler approximation. Right: Correction of
the slope according to the v. Heun procedure.

1, 2, 3, . . .) using the equidistant time intervals ∆t. The ODE is now approximated by
finite differences as follows:

f(ĉ) =
ĉ(t+∆t)− ĉ(t)

∆t
or ĉ(t+∆t) = ĉ(t) + ∆t · f(ĉ) , (4.20)

Furthermore the approximation of the solution ĉi = ĉ(ti) is defined by ηi with η0
(def)
=

ĉ0. Then the explicit Euler method is given by the formulae, [106]:

ηi+1 = ηi +∆t · f(ηi) and ti+1 = ti +∆t (4.21)

or in a more general way:

ηi+1 = ηi +∆t · Γ(ĉi,∆t) with

Euler : Γ(ĉi,∆t) = f(ĉi) = dĉ(ti)/dt , (4.22)

i.e., in case of the Euler method the function Γ is independent from ∆t. Figure 4.2
(Left) illustrates the principle of this methods for the case of an arbitrary nonlinear
monoton increasing function ĉ(t).

The order of accuracy is typically quantified by the local error of discretization τ .
For this reason we define the difference quotient of the exact solution by:

∆(ĉ,∆t) =

{
ĉ(t+∆t)−ĉ(t)

∆t
if ∆t 6= 0

f(ĉ) if ∆t = 0
(4.23)
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From Eq. (4.22)1 one finds the the corresponding difference quotient of the approxi-
mated solution, namely:

Γ(ĉi,∆t) =
ηi+1 − ηi

∆t
. (4.24)

The derivation τ(ĉi,∆t) = ∆(ĉi,∆t)−Γ(ĉi,∆t) (local error of discretization) charac-
terizes the quality of the approximation between ĉi and ηi. If, in addition

lim
∆t→0

τ = 0 (4.25)

holds, then the method is called consistent , [81]. Obviously it follows by means of
Eq. (4.22)2, that the Euler method is consistent. Moreover, in order to predict the
order of which τ converges to 0 for ∆t → 0, we assume f to be sufficiently smooth
(differentiable). The Taylor series of ĉ reads:

ĉ(t+∆t) = ĉ(t) + ∆t · f(ĉ) + (∆t)2

2
· f ′(ĉ) + . . .+

(∆t)p

p !
· f (p−1)(ĉ) (4.26)

and by means of the relations τ(ĉ,∆t) = ∆(ĉ,∆t)−Γ(ĉ,∆t) and Γ(ĉ,∆t) (Euler)
= f(ĉ)

it follows from Eq. (4.26):

τ(ĉ,∆t) =
∆t

2
· f ′(ĉ) + . . . = O(∆t) . (4.27)

In general a method is called to be of convergence-order p, if τ = O[(∆t)p]. Conse-
quently the Euler method is of the convergence-order 1, [106].

v. Heun Approximation Typically, the convergence-order of the Euler method
is not sufficiently large and, consequently, alternative methods may be used (at least
for comparison). In order to find a method of higher order the strategy is to use
an alternative/better slope Γ(ĉi,∆t) in Eq. (4.22)1,2 such, that after the Taylor

expansion in Eq. (4.26) and after the calculation of τ in Eq. (4.27) higher order
terms of ∆t remain.

The simplest correction of the slope in Eq. (4.22) is given by:

ηi+1 = ηi +∆t · Γ(ĉi,∆t) with

v. Heun : Γ(ĉi,∆t) =
1

2

[
f(ĉi) + f(ĉi +∆t · f(ĉi))

]
, (4.28)

which can be understood as the average between the slope of ĉi and ĉi+1, cf., Figure
4.2 (Right). This method is called the v. Heun approximation and its convergence-
order is 2, [106].
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Runge-Kutta Methods An algorithm of the convergence-order n is provided by
the general Runge-Kutta method, which reads:

ηi+1 = ηi +∆t · Γ(ĉi,∆t) with

n-th-order R.-K. : Γ(ĉi,∆t) = γ1k1 + γ2k2 + γ3k3 + . . .+ γnkn . (4.29)

The different ki’s (i = 1, 2, 3, . . . , n) can be calculated by the following relations, [82]:

k1 = f(ĉi) ,

k2 = f(ĉi +∆t · β21 · k1) ,

k3 = f(ĉi +∆t · [β31 · k1 + β32 · k2]) ,
...

kn = f(ĉi +∆t · [βn1 · k1 + βn2 · k2 + . . .+ βn(n−1) · kn−1]) . (4.30)

The coefficients βkl and γk (k =, 1, 2, 3, . . . , n and l = 1, 2, 3, . . . , (n− 1)) are constant
and can be found from the so-called Butcher-diagram, [82], which has the form:

0
α2 β21

α3 β31
. . .

...
...

αn βn1 . . . βn(n−1)

γ1 . . . γn−1 γn

Table 4.1: General form of the Butcher-diagram.

Note that the coefficients αk are not included into the above formalism. They refer to
the corresponding algorithm for non-autonomous ODE’s, in which the time t explicitly
occurs on the right hand side of Eq. (4.19), [18]. They are reported here, but for the
numerical solution of the EDE they are not required.

Finally two popular Runge-Kutta methods, namely the classical Runge-Kutta

method (4th-order) and the Simpson rule (Kutta method, 3rd-order) are mentioned.
In these cases the Butcher-diagrams illustrated in Table 4.2 hold, cf., [42].

Consequently, the following relations are derived according to the formalism in the
Eqs. (4.29, 4.30):
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0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

0
1
2

1
2

1 −1 2
1
6

4
6

1
6

Table 4.2: Left: Butcher-diagram for the classical Runge-Kutta method. Right: Butcher-
diagram for the Simpson rule.

♦ classical Runge-Kutta method (4th order):

ηi+1 = ηi +∆t · Γ(ĉi,∆t) with

Γ(ĉi,∆t) =
1

6
[k1 + 2 · k2 + 2 · k3 + k4] and (4.31)

k1 = f(ĉi) , (4.32)

k2 = f

(
ĉi +

1

2
·∆t · k1

)
, (4.33)

k3 = f

(
ĉi +

1

2
·∆t · k2

)
, (4.34)

k4 = f (ĉi +∆t · k3) (4.35)

♦ Kutta method / Simpson rule (3th order):

ηi+1 = ηi +∆t · Γ(ĉi,∆t) with

Γ(ĉi,∆t) =
1

6
[k1 + 4 · k2 + k3] and (4.36)

k1 = f(ĉi) , (4.37)

k2 = f

(
ĉi +

1

2
·∆t · k1

)
, (4.38)

k3 = f (ĉi +∆t · [−k1 + 2 · k2]) . (4.39)

b. (Semi-)Implicit Methods

For various problems (for example for ODE’s with exponentially decreasing solutions,
e.g., dtc(t) = λ · c(t), c(0) = 1 and λ < 0, cf., [19]) the numerical solution calculated
by explicit methods tend to considerably oscillate around the exact solution. In
such cases one says, that the numerical solution is unstable. Such behavior is also
observable for so-called stiff ODE’s. Stiffness typically occurs if a set of two or more
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ODE’s would be considered, in which the independent variables change by different
scales, [102].

In order to numerically treat such (sets of) differential equations one has to use so-
called (semi-)implicit methods . During the following explanations we will restrict
ourselves to the (semi-)implicit Euler method. Corresponding higher order algo-
rithms are frequently explained in the literature, e.g., in [82].

We start with the investigation of the following N dimensional initial value problem,
with f i : R

N → R:

dĉi

dt
= f i(ĉj) , ĉi(t0) = ĉi0 , (i, j = 1, 2, 3, . . . , N) . (4.40)

We denote the approximation of the exact solution, ĉn = ĉ(tn) ∧ tn+1 = tn + ∆t,
according to the previous paragraph, by ηn. Then the implicit Euler scheme3 is
defined by the recursive equation, [19]:

ηi
n+1 = ηi

n +∆t · f i(ηj
n+1) , ηi

0

(def)
= ĉi0 (impl. Euler sheme) . (4.41)

For known variables ηi
n in Eq. (4.41) generally represents a (most cumbersome)

nonlinear, algebraic system of equations of the form:

gi(ηj
n+1) = 0 (4.42)

for the unknown variables ηj
n+1, which must be solved numerically. One possibility is

to perform a Newton iteration, which follows from a Taylor expansion by starting
from an initial value ηj

n+1,(0) in the vicinity of the root η̄
j
n+1:

0 = gi(η̄j
n+1) = gi(ηj

n+1,(0)) +
∂gi

∂ηj
n+1

∣∣∣∣
ηj

n+1,(0)

· (η̄j
n+1 − ηj

n+1,(0)) + . . . . (4.43)

By means of Eq. (4.43) the following iteration rule can be established, [20]:

ηj
n+1,(k+1) = ηj

n+1,(k) −
gi(ηj

n+1,(k))

[Dg]ij(ηj
n+1,(k))

(Newton iteration) , (4.44)

where [Dg]ij stands for the so-called Jacobi matrix ∂gi

∂ηj
n+1

∣∣∣∣
ηj

n+1,(k)

. Note that Eq.

(4.44) contains three independent indices: j for the vector components of η, n for the

3Another notation frequently found is backward Euler sheme/method.
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ηn+1

g(ηn+1)

g(ηn+1)

g(η̄n+1) = 0
g(ηn+1,(0))

g(ηn+1,(1))
g(ηn+1,(2))

η̄n+1ηn+1,(0)

ηn+1,(1)

ηn+1,(2)

ηn+1,(k+1) = ηn+1,(k) − g(ηn+1,(k))

g′(ηn+1,(k))

Figure 4.3: Illustration of the Newton iteration in order to find the root of the nonlinear
function g(ηn+1).

time integration, and k for the Newton iteration. The principle of the Newton

iteration is finally illustrated in Figure 4.3 for the one-dimensional case of g(ηn+1) = 0.

For many cases only one Newton iteration yields a sufficiently good approximation
of the root. For such cases, we can linearize the function f i by means of a Taylor

expansion, as performed analogously in Eq. (4.43), and insert the result into the
implicit scheme of Eq. (4.41). One obtains:

ηi
n+1 = ηi

n +∆t ·
[
f i(ηj

n) +
∂f i(ηj

n)

∂ηj
n

· (ηj
n+1 − ηj

n) + . . .

]
(4.45)

and by rearrangement:

ηj
n+1 = ηj

n +∆t ·
[
δij −∆t · ∂f

i(ηj
n)

∂ηj
n

]−1

︸ ︷︷ ︸
=[1−∆t·Df ]−1

·f i(ηj
n) , (semi-impl. Euler) . (4.46)

The resulting algorithm, Eq. (4.46), following from the linearization of f i in Eq.
(4.45), i.e., by performing only one Newton iteration, is called the semi-implicit
Euler method . Here one has to invert at each time step the matrix [1 − ∆t · Df ]
containing the Jacobi matrix Df ∈ R

N×N .

Usually semi-implicit methods yield - in comparison with explicit methods - a suf-
ficient improvement w.r.t the stability of the numerical solution. However, in the
majority of cases the inversion of the matrix above the brace in Eq. (4.46) is ex-
tremely time and memory-capacity consuming, in particular for large values of N .
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Thus it may be advantageous to compare different methods, for instance the explicit
Euler scheme with very small time steps and the semi-implicit Euler method with
moderate time steps, in order to find the best compromise between accuracy, stability
and computational efforts.

c. Time Adaptation

An additional tool that allows to optimize the computational time during the numer-
ical solution of ODE’s is given by the time adaption. Here the idea is to compare
the numerical solutions of two methods with different converge orders, p and q, with
q > p ∧ p, q ∈ N\{0}, and to adjust the time step such that the derivation between
the different solutions goes below a critical (user specific) tolerance value ε.

Without loss of generality we explain the strategy in the following for two explicit
methods with the convergence-order p and q. The different numerical solutions read:

(p)
η i

n+1 =
(p)
η i

n +∆t ·
(p)

Γ i

(
(p)
η j

n,∆t

)
,

(q)
η i

n+1 =
(q)
η i

n +∆t ·
(q)

Γ i

(
(q)
η j

n,∆t

)
. (4.47)

Furthermore we consider an arbitrary tolerance value ε > 0 and define a scalar mea-

sure, z, for the derivation between
(p)
η i

n+1 and
(q)
η i

n+1, for instance:

z = max
i

∣∣(q)η i
n+1 −

(p)
η i

n+1

∣∣ or z =

√√√√
N∑

i=1

(
(q)
η i

n+1 −
(p)
η i

n+1

)2

. (4.48)

Hence the time adaption can be realized by the following programming rule, [82]:

IF THE RELATION

ε

10
≤ z < ε , (ε > 0) (4.49)

HOLDS, THEN KEEP ∆t AND GO TO THE NEXT TIME ITERATION,

ELSE REPEAT THE ITERATION WITH

(∆t)new = ∆t · p

√
α
ε

z
, p = (2, 3, . . .) , α

e.g.
=

9

10
. (4.50)
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It is easily to show, that the algorithm in Eq. (4.50)1 reduces the time step (∆t)new,
if z is larger than ε and increases the time step for values z > ε. Furthermore p and
α are constants, which must be individually adjusted in order to optimize the time
adaption. Moreover, it is worth mentioning that the use of the maximum norm in Eq.
(4.48)1 is stricter than the average quadratic deviation in Eq. (4.48)2. However, which
norm is used depends on the considered problem and, partially, on the programmer’s
preference.

A typically methods, which is frequently found in literature represents the Runge-

Kutta-Fehlberg 4(5) procedure, see, e.g., [21]. Here a 4th-order Runge-Kutta

method is used for the time integration, whereas a 5th-order Runge-Kutta method
is performed in order to evaluate the “4th-order solution,” which is required for time
adaptation. The outstanding advantage of this procedure is that one can refer to the
calculated ki’s obtained from the 4th-order method in order to calculate the “5th-
order solution,” a fact, that saves much computational time, [21].

4.2 Simulation of Phase Separation and Coarsen-

ing in Ag-Cu

4.2.1 Restrictions and Assumptions

In order to reduce the computational efforts during the simulations we restrict our-
selves in what follows to linear elastic loading regimes, as explained at the end of
Section 2.5.3(e.). Consequently, the primary variables – in Lagrange coordinates –
are the concentration field c(Xj, t) and the displacements U i(Xj, t), which are deter-
mined by the following balances:

ρ0
dc

dt
+
∂J i

∂X i
= 0 (partial mass balance) , (4.51)

∂pij

∂Xj
= 0 (static momentum balance) . (4.52)

The required constitutive relations for the diffusion flux and for the stresses read:

J i = −ρ0Mij(T )∇j

[
∂(Fchem

0 + F
mech
0 )

∂c
− 2Akl ∂2c

∂Xk∂X l
− ∂Akl

∂c

∂c

∂Xk

∂c

∂X l

−2 ∂A
kl

∂εmn

∂c

∂Xk

∂εmn

∂X l
− ∂2akl

∂εopεmn

∂εop

∂Xk

∂εmn

∂X l
− ∂akl

∂εmn

∂2εmn

∂Xk∂X l

]
, (4.53)

pij ≈ σij ≈ ∂F

∂εij
= σij

local −
∂akl

∂εij

∂2c

∂Xk∂X l
+
∂bkl

∂εij

∂c

∂Xk

∂c

∂X l
, (4.54)
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in which the following dependencies exist: ρ0 = const., F0 = F0(T, c, ε
ij), akl =

akl(T, c, εij), bkl = bkl(T, c, εij), and Akl = Akl(T, c, εij). By considering Eq. (4.54)
we assume that σij

local represents the leading term, and, therefore, we neglect in the
following the last two terms on the right hand side of Eq. (4.54). The local thermo-
mechanical stresses, σij

local, can be calculated from Hooke’s law, i.e.,

σij
local = Kijkl(T, c)

(
εkl − αkl∆T

)
, F

mech
0 =

1

2
σij

(
εij − αij∆T

)
, (4.55)

εij =
1

2

(
∂U i

∂Xj
+
∂U j

∂X i

)
, αij = αδij (therm. expan. coeff.) . (4.56)

Eq. (4.54) implies that we do not distinguish between the Cauchy stresses and the
first Piola-Kirchhoff stress tensor, which is characteristic for small deformations
since the differences between the reference and the current configuration are neglected.

In order to solve the PDE system (4.51–4.54) for the unknown variables c and U i

numerically we restrict ourselves to three cases:

(a) 1D simulations without local thermo-mechanical strains, i.e., εkl
elast = εkl −

αkl∆T = 0, ∀ {k, l}.

(b) 1D simulations under the presence of one-dimensional local thermo-mechanical
strains4 (“line strains”), i.e., ε11

elast = εelast 6= 0 ∧ εkl
elast = 0, ∀{k, l} = {k, l |k · l >

0}.

(c) 2D simulations without local thermo-mechanical strains.

The restriction to line strains according to Case (b) requires overestimated stresses
to be applied in order to avoid deformations in the second and third dimension.
However, this 1D-case enables us to find a closed expression for the strains εelast =
εelast(X, t) with X ≡ X1. To this end we assume linearity for the stiffness Kijkl

and for the thermal expansion coefficient αkl within the smoothly changing phase
boundary between the two equilibrium phase α and β, viz.:

Ξ(c) = Θ(c) Ξα + (1−Θ(c)) Ξβ , Ξα/β = {Kijkl
α/β, α

kl
α/β} ,

Θ(c) =
cβ − c(X, t)

cβ − cα
(shape function). (4.57)

For cubic lattice structures (as given for Ag, Cu and Ag-Cu) all elements of the
stiffness matrix vanish except of K11 = K22 = K33, K12 = K13 = K23, and K44 =

4This strain state denotes the one-dimensional equivalent to the two-dimensional case of plane
strains.
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K55 = K66 (Voigt notation), cf., Table 3.3. By assuming in Eq. (4.54) σij
local to be

the leading term one obtains from Hooke’s law:

σ11 =
[
K11

β −Θ(c)(K11
β −K11

α )
]
(ε11 − α11∆T ) , (4.58)

σ22 =
[
K12

β −Θ(c)(K12
β −K12

α )
]
(ε11 − α11∆T ) , (4.59)

σ33 =
[
K13

β −Θ(c)(K13
β −K13

α )
]
(ε11 − α11∆T ) , (4.60)

σ12 = σ13 = σ23 = 0 . (4.61)

From the static balance of momentum in the form ∂σij/∂Xj = 0 and with the de-
pendencies σ11 = σ11(X), σ22 = σ22(X), and σ33 = σ33(X) one obtains the only
non-trivial solution:

dσ11

dX
= 0 ⇒ σ11 = σ0 = const. (4.62)

and consequently for the elastic strains, cf., Eq. (4.58) and for the mechanical part
of the Helmholtz free energy:

ε11
elast =

σ0

K11
β − cβ−c(X,t)

cβ−cα
(K11

β −K11
α )

, (4.63)

F
mech
0 =

1

2

σ2
0

K11
β − cβ−c(X,t)

cβ−cα
(K11

β −K11
α )

. (4.64)

Eqs. (4.63, 4.64) can be directly used in order to substitute the F
mech
0 -term as well

as the εij-term in Eq. (4.53). In order to solve the resulting EDE one needs reliable
material data, in particular for

(i) the chemical part of the Helmholtz free energy F
chem
0 ,

(ii) the stiffness matrix K11
α/β and the thermal expansion coefficients α

11,

(iii) the mobilityMij, and

(iv) the HGCs akl, bkl, and Akl.

For this reason we consider the eutectic binary alloy Ag-Cu at 1000 Kelvin and
put A ≡ Ag, B ≡ Cu, and c ≡ cCu.
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4.2.2 Compilation of Materials Data

a. Chemical Part of the Free Energy

In order to determine F
chem
0 we use the commercial MTdataTM database5 [83], which

provides a field of discrete values F
chem
0 (ci), ci = {0, 0.01, 0.02, . . . , 0.99, 1} from phase

equilibrium measurements. In order to obtain a closed functional form of this data re-
quired for the numerical computation and the coding we simply perform a polynomial
fit according to the Margules-ansatz

F
chem
0 (c) = (1− c)ga + cgb + gcRT [c ln c+ (1− c) ln(1− c)] +

c(1− c) [χIc+ χII(1− c)] , (4.65)

where R = 8.314 [J/(mol K)] stands for the universal gas constant. The introduced
fit parameters ga, gb, gc, χI , and χII have no physical meaning and are compiled in
Table 4.3, together with the resulting equilibrium concentrations, cα/β, following from
the common tangent rule and the spinodal concentrations, csp1/2, resulting from the

roots of ∂2
F

chem
0 /∂c2. The corresponding curves are displayed in Figure 4.4.

Table 4.3: Fit parameters according to the Margules-ansatz and characteristic concen-
trations.

ga

[
GJ
m3

]
gb

[
GJ
m3

]
gc

[
mole
m3

]
χI

[
GJ
m3

]
χII

[
GJ
m3

]
ceut cα cβ csp1 csp2

-5.20 -7.27 1.11 · 105 2.97 3.01 0.29 0.063 0.945 0.19 0.79

F
ch

em
0

in
G
J
/m

3

c

∂
2
F

ch
em

0
/∂
c2
in
G
J
/m

3

c

Figure 4.4: Free energy density and its second derivative as functions of the mass concen-
tration for Ag-Cu at T = 1000 Kelvin.

5Note that MTdata make no difference between the Helmholtz and the Gibbs free energy.



4.2 Simulation of Phase Separation and Coarsening in Ag-Cu 109

b. Mobility, Stiffness, and Thermal Expansion Coefficient

By comparison of the first and second Fick’s law, i.e., dtc = −∂J i/∂X i with J i =
−Dij(∂c/∂Xj) with the EDE for the limit case of classical Fickian diffusion (no
mechanical and HGC terms) one obtains the following relations between the diffusion
coefficients Dij and the mobilityMij:

Dij =Mij ∂
2
F

chem
0

∂c2
⇒ Mij

α/β =
Dij

α/β

∂2Fchem
0

∂c2

∣∣∣∣∣
c=cα/β

. (4.66)

The diffusion coefficients for the pure substances Dij
Ag/Cu = DAg/Cuδ

ij can be easily

found in the literature, e.g., [13], where they are measured by means of tracer exper-
iments w.r.t Cu in Ag and vice versa. Obviously the sign of the mobility depends
on the curvature of F

chem
0 , which is positive outside the spinodal area (enclosed by

the spinodal concentrations) and negative for csp1 < c < csp2 . In particular a negative
mobility gives rise for “uphill” diffusion (e.g., spinodal decomposition), during which
concentrations gradients are amplified.

As indicated by the equilibrium concentrations, cα/β, cf., Table 4.3, the equilibrium
α- and β-phases are extremely Ag- or Cu-containing. Therefore it is reasonable to
approximate for the equilibrium phases:

Ξα ≈ ΞAg and Ξβ ≈ ΞCu with Ξ = {K11, α11,Mij}. (4.67)

In order to determine the corresponding values within the phase boundaries we assume
a linear dependence according to Eq. (4.57). Table 4.4 and 4.5 finally shows the
according quantities used during the simulations.

Table 4.4: Stiffness matrix of pure silver and copper in GPa and in Voigt notation,
Source: [71].

Kkl
ij

∣∣∣
Ag

11 22 33 23 31 12 Kkl
ij

∣∣∣
Cu

11 22 33 23 31 12

11 168 121 121 0 0 0 11 124 94 94 0 0 0
22 121 168 121 0 0 0 22 94 124 94 0 0 0
33 121 121 168 0 0 0 33 94 94 124 0 0 0
23 0 0 0 75 0 0 23 0 0 0 46 0 0
31 0 0 0 0 75 0 31 0 0 0 0 46 0
12 0 0 0 0 0 75 12 0 0 0 0 0 46
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Table 4.5: Diffusion, mobility, and thermal expansion coefficients for the pure substances
Ag and Cu Source: [13], [119].

Dα [m2/s] Dβ [m
2/s] Mα [m5/Js] Mβ [m

5/Js] α11
α [106/K] α11

β [106/K]

1.01×10−14 4.09×10−15 7.25×10−25 3.65×10−25 18.9 16.5

c. Interpolation of the HGCs

The HGCs represent the crucial data that determines the coarsening rate of the
Ostwald ripening process in the two-phase system. In particular HGC values which
are too high lead to overestimated coarsening and vice versa. Unfortunately the
HGCs are extremely poorly documented, and, even if found, they are frequently
ad hoc estimates the source of which is not clear. Furthermore we could only find
constant HGCs so that Eq. (4.53) would reduce to the first two terms within the
brackets, [72, 78, 113].

Because of these shortcomings an atomistic theory was developed in Chapter 3, which
allows for the exact calculation of the HGCs as functions of the mass concentration c
and of the strains εkl, cf., Section 3.4.2 and 3.5.5. According to Eqs. (3.65–3.69) the
following compact form holds for the HGCs:

akl(c, εij) = −δ(c)∂ỹ(c)
∂c

·Hkl(c, εij) , bkl(c, εij) = δ(c)
∂2ỹ(c)

∂c2
·Hkl(c, εij) , (4.68)

Akl (def)
=

∂akl

∂c
+ bkl , ỹ(c) =

cMA

MB − c(MB −MA)
, and (4.69)

H
kl(c, εij) = H

kl
0 (c) + εmn

H
mnkl
1 (c) + εmnεpq

H
mnpqkl
2 (c) . (4.70)

The functions H
kl
0 (cf., first row of Eq. (3.69)), H

mnkl
1 (cf., second and third row of Eq.

(3.69)), and H
mnpqkl
2 (cf., last five rows of Eq. (3.69)), introduced as abbreviations,

represent combinations of the different contributions to the interatomic potentials and
depend explicitly and implicitly (via the equilibrium lattice parameter R = R(c)) on
c. Obviously, H

kl contains a linear term w.r.t. εij, and, consequently, the HGCs
are not symmetric with respect to positive or negative strains. Therefore we can
distinct between the effects of compressive and tensile loadings during the diffusion
simulations.

Recalling the restrictions on the simulations (a–c) introduced in Section 4.2.1 we ex-
clusively investigate the interpolation of a11, b11, and A11 in the following. This is
reasonable, because for the 1D simulations (X i = X1 = X) only the index combina-
tions -11- is of interest, whereas the relation Ξkl = Ξ11δkl with Ξ = {a, b, A} holds
for the (strain-free) 2D simulations. Hence the values resulting from the curves illus-
trated in Figure 3.10 (first column) and in Figure 3.8 (first row) must be used during
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the simulations. Here it is worth mentioning that the curves displayed in Figure 3.8
(first row) represent the curve for ε = 0 in Figure 3.10 (first column).

Note that - due to the micromorphological evolution - the local mass concentration
as well as the local strains continuously change during the simulations. Thus, the
values of the HGCs must be updated for each time step ∆t and for each material
point, X i, of the simulated RVE. However, the atomistic calculations underlying the
graphs of the Figures 3.8 – 3.10 are extremely time-consuming and, consequently, it
is reasonable to perform a polynomial fit for the corresponding curves in order to save
computational times. Here we apply a bilinear interpolation of the form:

Ξ(c, ε) = kΞ
ε · ε+ kΞ

c · c+ kΞ
cε · ε · c+ kΞ

0 with Ξ =
{
a11, b11, A11

}
, (4.71)

in which the fitting procedure must be performed separately for positive and negative
strains. Therefore one needs four data points in order to determine the fit parameters
kΞ

ε , k
Ξ
c , k

Ξ
cε, and k

Ξ
0 . For this reason the HGC values following from the curves in Figure

3.10 (first column) with the ad hoc chosen arguments

(c, ε) =
{
(cα, 0) , (cβ, 0) , (cα,±0.2) , (cβ,±0.2)

}
(4.72)

are used. Table 4.6 shows the fit parameters following form the interpolation. The
corresponding bilinear functions are illustrated in Figure 4.5.

Table 4.6: Interpolated coefficients for the HGCs as bilinear functions of c and ε.

Ξ kΞ
ε in N kΞ

c in N kΞ
cε in N kΞ

0 in N

ε > 0 (tensile loading)

a11 −3.79·10−10 8.74 · 10−11 −6.40·10−11 4.04 · 10−11

b11 −5.22·10−10 4.72 · 10−11 1.64 · 10−10 5.84 · 10−11

A11 −5.74·10−10 3.74 · 10−11 1.50 · 10−10 1.53 · 10−10

ε < 0 (compres. loading)

a11 −1.11 · 10−9 8.74 · 10−11 1.91 · 10−10 4.04 · 10−11

b11 −1.52 · 10−9 4.72 · 10−11 7.77 · 10−10 5.84 · 10−11

A11 −1.10 · 10−9 3.74 · 10−11 3.80 · 10−10 1.53 · 10−10

The values a11, b11, and A11 for the strain free case follow directly from the interpola-
tion by putting kΞ

ε = kΞ
cε = 0. The resulting linear functions a11(c), b11(c), and A11(c)

are given by the lines along the “kink” in Figure 4.5.
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in N

e

in N

e

in N

e

Figure 4.5: Interpolated HGCs as bilinear functions of the mass concentration and the
strains.

4.2.3 Remarks on the Numerical Realization

For the numerical treatment we, first, transform the EDE to a dimensionless form
by replacing X i, F0, and t by the dimensionless quantities X̃

i, F̃0, and t̃ using the
relations, cf., [78]:

X̃ i =
X i

L
, F̃0 =

F0

Ψ0

, t̃ =
Ψ0Mβ

L2(cβ − cα)
=

t

t0
, (4.73)

in which the factors L, Ψ0, and t0 must be “appropriately” chosen. Table 4.7 shows
the corresponding values, which were used during the simulations.6

The resulting dimensionless EDE is implemented in a FORTRAN 90 program. Fur-
thermore the spatial derivatives are discretized by finite differences (with N grid
points in 1D and N × N grid points in 2D, cf., Table 4.7) and replaced by an alge-
braic expression in Fourier space, cf., [37, 12]. For the required discrete Fourier

transforms we use the free available FFTPACK5 package, [104]. The time integration
is performed by means of an explicit Euler method with the constant time step ∆t̃

6See also [14] for a detailed investigation of the impact of the different numerical parameters on
the simulation.
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Table 4.7: Numerical parameters used during the simulations.

Simulations Ψ0 in
GJ
m3 2πL in µm t0 in s N (N ×N) ∆t̃

1D (strain-free) 0.1 0.06 2.105 256 0.4 · 10−6

1D (5000 MPa) 0.1 0.06 2.105 256 0.4 · 10−6

1D (-5000 MPa) 0.1 0.06 2.105 256 0.2 · 10−6

2D (Euler, 1 fluc.) 0.1 0.05 1.462 128× 128 0.1 · 10−5

2D (Euler, 16 fluc.) 0.1 0.05 1.462 128× 128 0.1 · 10−5

2D (RADAU) 0.1 0.05 1.462 128× 128 —

and, partially, by an implicit and time adaptive Runge-Kutta procedure using the
free available RADAU package, [60].

In the case of one dimension, the dimensionless ODE following from the spatial dis-
cretization of the EDE (X → α, cf., Section 4.1.1) and the subsequent transformation
into the Fourier space reads:

dĉ

dt̃
=
dF[c]

dt̃
=

=

(
cβMβ

Mα
− cα

)
ξ̃(2)(s)F[Υ] +

(
1− Mα

Mβ

){
F

[
∆c

∆α

∆Υ

∆α

]
+ F

[
c
∆2Υ

∆α2

]}
(4.74)

with the definition for the symbol Υ:

Υ =
∂F̃0

∂c
− 2

Ψ0L2
(kA

0 + kA
c c+ kA

ε εelast + kA
cεεelast · c)

∆2c

∆α2

− 1

Ψ0L2
(kA

c + kA
cεεelast)

(
∆c

∆α

)2

− 2

Ψ0L2
(kA

ǫ + kA
cǫc)

(
∂εelast

∂c

)(
∆c

∆α

)2

− 1

Ψ0L2
(ka

ǫ + ka
cǫc)

[(
∂2εelast

∂c2

)(
∆c

∆α

)2

+

(
∂εelast

∂c

)(
∆2c

∆α2

)]
. (4.75)

Here, analogously to the Eqs. (4.16, 4.17), the dimensionless relations:

F

[
∆c(α)

∆α

]
= F[c(α)] · ξ̃(1) , ξ̃(1)(s) = − i

h̃
sin

(
2πs

N

)
, (4.76)

F

[
∆2c(α)

∆α2

]
= F[c(α)] · ξ̃(2) , ξ̃(2)(s) =

2

h̃2

[
cos

(
2πs

N

)
− 1

]
. (4.77)

hold, in which the symbol s = L · k = 0, 0, 2, . . . , N − 1 denotes the position vector
in Fourier space, and h̃ = 2π

N
represents the dimensionless distance between the N

grid points in real space.
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Note that in Eq. (4.74) and (4.75) the (discretized) spatial derivatives ∆c
∆α

and ∆2c
∆α2

occur as a matter of a better readability. They must be substituted by the alge-
braic expressions following from the stepwise application of the forward and back-
ward Fourier transform, F and F−1. For instance, the full expression, which is
implemented for the first summand within the parenthesis {. . .} of Eq. (4.74), reads:

F[∆αc ·∆αΥ] = F
{

F−1 [ ξ̃(1) · ĉ ] · F−1 [ ξ̃(1) · F(Υ) ]
}
. (4.78)

Furthermore the quantities F0 = F
chem
0 + F

mech
0 and εelast are determined by the rela-

tions in Eqs. (4.63), (4.64), and (4.65), and, consequently, the corresponding deriva-
tives in Eq. (4.75) can be directly calculated.

Eq. (4.74) as well as the two dimensional counterpart, which can be derived in the
same manner, [14], must be numerically solved by means of OSTI methods. A final
inverse Fourier transform, F−1, of the resulting discretized concentration field, ĉi(s),
yields the concentration field in real space, ci(α), which characterizes the temporal
phase evolution within the binary alloy Ag-Cu.

4.2.4 One-Dimensional Simulations7

First, we investigate the one dimensional case according to Eq. (4.74). Figures 4.6–
4.8 display the spinodal decomposition and coarsening process along a “line” in Ag-
Cu at 1000 Kelvin. Here we started with an eutectic homogeneous concentration
profile (ceut = 0.29), which is disturbed by a slight fluctuation in order to enforce the
unstable state to decompose. The outermost dashed lines represent the corresponding
equilibrium concentrations of the α- and β-phase, whereas the innermost lines identify
the spinodal concentrations, cf., Table 4.3. Obviously, the system immediately begins
to decompose after starting the simulations. When the whole mixture reaches the
equilibrium concentrations coarsening proceeds such that the bigger phases grow at
the expense of the smaller ones.

At this point it is worth mentioning that the total simulation times are in the range
of some minutes, which is notedly short w.r.t. the experimental observations of these
phenomena, cf., next Chapter or [93]. The reason for that are the extremely small
HGCs used during the simulations. In fact, typical values found in literature are
much larger, cf., [113],8 which is more convenient to have from the numerical point
of view since it results in bigger time steps ∆t̃. However, in some rare cases there are
also similarly small HGC values in the literature, cf., [72],9 in which the simulation

7The assistance of A. Brandmair during the numerical implementation is gratefully acknowl-
edged. His diploma thesis developed in this context contains further interesting simulations, e.g.,
for different loading regimes, [14].

8The authors used a constant value of γCH = κλ2 = 1 · 10−5 N (in their notation).
9Within this work the authors considered an Al-In system and chose a constant HGC of γ =

2 · 10−10 N (in their notation).
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Figure 4.6: One-dimensional simulation of spinodal decomposition and coarsening in Ag-
Cu at 1000 Kelvin (strain-free case).
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Figure 4.7: One-dimensional simulation of spinodal decomposition and coarsening in Ag-
Cu at 1000 Kelvin (tensile loading of σ0 = 5000 MPa).
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Figure 4.8: One-dimensional simulation of spinodal decomposition and coarsening in Ag-
Cu at 1000 Kelvin (pressure loading of σ0 = −5000 MPa).
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times are also extremely short.

Moreover, smaller HGCs result in a sharper width of the phase boundary and, conse-
quently, the discretization N must be chosen sufficiently large, whereas the simulated
volume element 2πL must be chosen small in order to model the interface boundary
realistically,10 cf., Table 4.7. In particular, the discretization of N = 256 yields ap-
proximately nine grid points within the phase boundary as illustrated in Figure 4.9
(second row, left). From this fact we calculate:

256 grid points = 0.06µm ⇔ 9 grid points = 2.1 nm = 21
◦

A , (4.79)

which corresponds to approximately seven atomic distances (rAg = 2.88
◦

A) and
underscores a realistically sharp interface boundary.

The impact of the HGCs on the interface width is illustrated in Figure 4.9 (second
row), in which we varied the magnitude of A11 under the constraint of ∂A11/∂c =
constant. The corresponding coarsening behavior is displayed in Figure 4.9 (first
row), in which the larger interfaces widths result in faster coarsening rates. From the
phenomenological point-of-view this fact is clear since sharper interfaces increase the
separation of the different phases and, thus, decrease their interaction and, in turn,
their coarsening behavior.
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Figure 4.9: The impact of the magnitude of the HGCs on the phase boundary width and
on the coarsening rate. First Row: Coarsening stages after 20000 loops (strain-free case)
using a HGC of A11 = A11

EAM, A11 = 2 ·A11
EAM, and A11 = 4 ·A11

EAM. Second Row: According
zoomed interface areas.

10See also [14].
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Finally the application of very large loading regimes during the simulations illustrated
in the Figure 4.7 and 4.8 is noticeable. This was done in order to investigate the ef-
fect of thermo-mechanical stresses within manageable computational times. However,
although the applied stresses of σ0 = ±5000 MPa are extremely large, the result-
ing strains are moderate, as indicated in Figure 4.10. Indeed, tensile and pressure
stresses increase the coarsening rate. In particular it seems that pressure loading has
a stronger influence on coarsening than tensile loading.
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Figure 4.10: The inhomogeneous strain field following from the phase evolution exem-
plarily calculated for a discretization of N = 128. First Row: tensile loading. Second Row:
pressure loading.

4.2.5 Two-Dimensional Simulations11

For the two-dimensional simulations we start with a eutectic homogeneous concen-
tration profile disturbed by one, two and 18 fluctuations, as indicated in Figure 4.11.
Furthermore we use a spatial discretization of N × N = 128 × 128 so that approxi-
mately 4–5 grid points are within the phase boundary. Figures 4.12 and 4.13 display
the obtained micrographs and the decomposition and coarsening process, in which the
white areas belong to the Cu-rich β-phase. In particular, we performed – as already
used for the one-dimensional simulations – an explicit Euler method for the time
integration.

Note that the 2D-simulations are extremely time-consuming and, consequently we
searched for optimization possibilities. To this end we realized the time integration
by means of a time-adaptive Implicit Runge-Kutta (IRK) method provided by the

11See footnote 7.
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Figure 4.11: Initial concentration profiles used for the two-dimensional simulations.

RADAU routine, [60]. The corresponding simulations are illustrated in Figure 4.14.
Unfortunately the complex IRK procedure considerably increases the computational
time, which cannot be compensated by the larger adaptive time steps ∆t̃. Therefore
the investigated coarsening stages are much smaller than the corresponding ones in
Figures 4.12 and 4.13. In particular, the final stage in Figure 4.14 approximately
corresponds to the right graph of the middle row in Figure 4.12 and to the left graph
of the middle row in Figure 4.13. Finally, Figure 4.15 illustrates the resolution of
the interface width between the different phases following from the discretization of
N ×N = 128× 128. Here the different shades of gray indicate the phase boundary,
cf., marked dashed square in the zoomed picture of Figure 4.15 (Right). Thus one
may say, that approximately 4–5 grid points are situated within the interface.

4.2.6 Quantification of the Coarsening Rate

At the end of this chapter we investigate the coarsening rate of the precipitated β-
phase resulting from the 1D- and 2D-simulations. For this reason we restrict the
analysis, on the one hand side, to the no-loading case and consider the 1D simulation
in Figure 4.6 and the 2D simulations in Figure 4.12 and 4.14. On the other hand side,
we analyze the coarsening behavior under tensile and pressure loading, cf., Figure 4.7
and 4.8, in order to predict their impact on the phase evolution.
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Figure 4.12: Two dimensional simulation of spinodal decomposition and coarsening in Ag-
Cu at 1000 Kelvin without thermo-mechanical loading by using the explicit Euler method
(one initial fluctuation). From upper left to lower right: after t̃ = 0.005; 0.01; 0.015; 0.035;
0.1; 0.4; 1; 2.1; 4.9.
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Figure 4.13: Two dimensional simulation of spinodal decomposition and coarsening in Ag-
Cu at 1000 Kelvin without thermo-mechanical loading by using the explicit Euler method
(18 initial fluctuation). From upper left to lower right: after t̃ = 0.004; 0.006; 0.015; 0.04;
0.06; 0.1; 0.6; 1.5; 4.3.
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Figure 4.14: Two dimensional simulation of spinodal decomposition and coarsening in Ag-
Cu at 1000 Kelvin without thermo-mechanical loading by using the time adaptive implicit
Runge-Kutta method provided by the RADAU routine (two initial fluctuation). From
upper left to lower right: after t̃ = 0.0038; 0.0077; 0.0088; 0.0131; 0.0163; 0.0217; 0.0307;
0.0354; 0.0486.
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Figure 4.15: On the resolution of the interface width for the two dimensional case with
N = 128 (the dashed square marks the interface).

(i) 1D-analysis In order to determine the coarsening rate following from the 1D
simulation one has, first, to eliminate the continuous phase boundaries. For this
reason the c-profiles are modified to a step function, which “jumps” between the
equilibrium values cα/β. Here the interface boundary is eliminated by the formula:

c =

{
cα if c ≤ ccrit

cβ if c ≥ ccrit
with ccrit =

cα + cβ
2

. (4.80)

Furthermore note that the left and right boundary phases of the simulated RVE’s
in Figures 4.6–4.8 belong to the same phase because of the periodic continuative
structure of the material.

According to these considerations Figure 4.16 exemplarily documents the stepwise
modification of the c-profiles taken from Figure 4.6 for the times t = 8.42 s (10 000 000
loops) and t = 151.6 s (180 000 000 loops). Each row represents a separate coarsening
stage. In particular, the first column contains the originally simulated micromorphol-
ogy, the second row contains the corresponding step functions after the elimination
of the phase boundary, and the third row shows the c-profiles, in which the left phase
is eliminated and added to the right phase.

The right graphs of Figure 4.16 can be analyzed by means the program Mathemat-
icaTM in order to determine the total intercept length, lβ, as well as the total num-
ber, N , of the β-phases. From these values we calculate the mean intercept length,
l̄β = lβ/N , which can be used to derive the mean phase radius , cf., Table 4.8. At this
point we emphasize that the exploitation of the c-profiles in Figure 4.6–4.8 represents
a 1D-analysis of a (by nature) 3D-problem, cf., the explanations in Section 5.2 on
page 135ff.. Analogously to the Eqs. (5.4,5.5) one can use the following relations to
calculate a 3D-equivalent mean phase radius (see [114] for a detailed derivation of the
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Figure 4.16: Modification of the 1D concentration profiles exemplarily for two coarsening
stages. First Column: original profiles. Second column: after the elimination of the phase
boundary. Third row: after the merging of the left and right phases.

relations):

r̄β =
3

4
· l̄β (spherical phases) , (4.81)

āβ =
1

1.278
· l̄β (oblate spheroids with b/a = 0.5, cf., Figure 5.3) , (4.82)

where we assumed the phases to be spherical with the mean phase radius r̄β or oblate-
spheroid with āβ, respectively.

The calculated values are compiled in Table 4.8. The resulting coarsening behavior is
illustrated in Figure 4.17, which shows the development of the mean phase radii for
the strain-free case. Recalling the proportionality r̄ ∝ t1/3 or ā ∝ t1/3, respectively,
which is well-known from the LSW-theory, [115], we fit the curves of Figure 4.17
(right) and obtain:

r̄β = 0.00082 · t1/3 and āβ = 0.00086 · t1/3 (1D, strain-free case) . (4.83)

Finally, we consider the coarsening behavior under tensile and pressure loading (±5000
MPa), cf., Figure 4.7 and 4.8. The corresponding curves are displayed in Figure 4.18.
Two characteristics are worth mentioning. First, the relation r̄β ∝ t1/3 is violated,
which results from the application of mechanical loadings. Second, the “guess” men-
tioned in Section 4.2.4, namely pressure loading leading to faster coarsening than
tensile loading, is verified by comparison of Figures 4.18 (left) and (right).
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Table 4.8: Coarsening values obtained from the analysis of the simulated 1D-micrographs
in Figure 4.6–4.8.

t̃ in sec l̄β in µm r̄β in µm āβ in µm

strain-free

0.019 0.0018 0.0014 0.0014
0.053 0.0027 0.0020 0.0021
8.422 0.0032 0.0024 0.0025
50.53 0.0040 0.0030 0.0031
151.6 0.0053 0.0040 0.0041

tensile loading

0.035 0.0026 0.0020 0.0020
1.600 0.0040 0.0030 0.0031
16.84 0.0040 0.0030 0.0031
25.27 0.0053 0.0040 0.0041
151.6 0.0081 0.0061 0.0063
235.8 0.0162 0.0122 0.0127

pressure loading

0.011 0.0023 0.0017 0.0018
0.019 0.0031 0.0023 0.0024
1.432 0.0052 0.0039 0.0041
50.53 0.0081 0.0061 0.0063
105.3 0.0162 0.0122 0.0127
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Figure 4.17: The temporal development of the mean phase radius r̄β and āβ in eutectic
Ag-Cu at ≈ 1000 Kelvin obtained from the strain-free 1D simulations.
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Figure 4.18: The temporal development of the mean phase radius r̄β and āβ in eutectic
Ag-Cu at ≈ 1000 Kelvin obtained from the 1D simulations. Left: tensile loading of 5000
MPa. Right: pressure loading of −5000 MPa.

(ii) 2D-analysis For the quantification of the coarsening rate following from the
2D-simulations we exemplarily investigate the micrographs of Figures 4.12 and 4.14.
In particular, we examined the pictures by means of the metallurgical image analy-
sis software package DHS c©, which yields the total number, N , as well as the total
intercept area, Aβ, of the β-phases. Following the considerations in Section 5.2 on
page 135ff. we calculate the mean radii r̄β (for spherical shapes) and āβ (for oblate-
spheroid shapes) of the β-phase. The obtained values are shown in Table 4.9 and 4.10
for the different coarsening stages.

The resulting curves are displayed in Figure 4.19 and 4.20, where the right graphs
can be fitted to the t1/3-law. We obtain for the Euler method:

r̄β = 0.0071 · t1/3 , āβ = 0.0092 · t1/3 (2D, strain-free, Euler) , (4.84)

and for the RADAU solver:

r̄β = 0.0098 · t1/3 , āβ = 0.013 · t1/3 (2D, strain-free, RADAU) . (4.85)

Obviously, the 2D-simulations lead to much larger coarsening rates than the (strain-
free) 1D simulations, cp., Eq. (4.83) and (4.84/4.85). In particular the fit of pro-
portionality between r̄ and t1/3 approximately deviates by ≈ 11. Thus there is a
considerable effect of the dimension during the simulations and we expect that 3D-
simulations lead to a further increase of the coarsening rate.
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Table 4.9: Different values obtained from the digital image analysis of the simulated 2D
micrographs in Figure 4.12.

t̃ · t0 in sec N Āβ in µm2 r̄β in µm āβ in µm

0.015 · 1.462 101 9.2300 · 10−6 2.09929 · 10−3 2.73380 · 10−3

0.035 · 1.462 37 22.710 · 10−6 3.29291 · 10−3 4.28820 · 10−3

0.10 · 1.462 12 58.500 · 10−6 5.28504 · 10−3 6.88247 · 10−3

0.40 · 1.462 9 78.440 · 10−6 6.11983 · 10−3 7.96958 · 10−3

1.0 · 1.462 4 123.08 · 10−6 7.66593 · 10−3 9.98298 · 10−3

2.1 · 1.462 2 197.17 · 10−6 9.70267 · 10−3 12.63534 · 10−3

Table 4.10: Different values obtained from the digital image analysis of the simulated 2D
micrographs in Figure 4.14.

t̃ · t0 in sec N Āβ in µm2 r̄β in µm āβ in µm

0.0088 · 1.462 99 9.2500 · 10−6 2.1016 · 10−3 2.7368 · 10−3

0.0131 · 1.462 80 12.020 · 10−6 2.3957 · 10−3 3.1197 · 10−3

0.0163 · 1.462 71 13.790 · 10−6 2.5660 · 10−3 3.3416 · 10−3

0.0217 · 1.462 51 19.350 · 10−6 3.0396 · 10−3 3.9583 · 10−3

0.0307 · 1.462 36 27.740 · 10−6 3.6394 · 10−3 4.7394 · 10−3

0.0354 · 1.462 30 31.420 · 10−6 3.8732 · 10−3 5.0439 · 10−3

0.0486 · 1.462 26 37.020 · 10−6 4.2043 · 10−3 5.4750 · 10−3
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Figure 4.19: The temporal development of the mean phase radius r̄β and āβ in eutectic
Ag-Cu at ≈ 1000 Kelvin obtained from the 2D simulations in Figure 4.12.
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Figure 4.20: The temporal development of the mean phase radius r̄β and āβ in eutectic
Ag-Cu at ≈ 1000 Kelvin obtained from the 2D simulations in Figure 4.14.
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Chapter 5

Experimental Investigations

Der Gebildete unterscheidet sich dadurch vom Ungebildeten,
daß er seine Bildung stets für unvollkommen hält.

Konstantin Simonow (1915 - 1979)

In this section the eutectic, binary brazing alloy Ag-Cu is considered in order to verify
and document the phase separation and coarsening process resulting from spinodal
decomposition, nucleation and subsequent Ostwald ripening. The aim is to provide
experimental reference data, which can be used to analyze and assess the results
theoretically obtained from the simulations.

5.1 Methodology and Realization

According to the schematically illustrated different procedures of Figure 5.1 one can
distinct between four tasks/steps:

1. The making of eutectic Ag-Cu (i.e., 71 wt% Ag and 29 wt% Cu).

2. Metallographic surface preparation of the specimen, viz. sawing, embedding,
grinding, polishing, etching (if necessary).

3. Microscopic investigation and documentation followed by digital analysis of the
micrographs..

4. Heat treatment (before: deflasking) of the material, during which the mi-
crostructural development within the bulk is initiated and proceeds, using a
fixed temperature and different time intervals.

Now these items are explained in more detail.

131
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Specimen

Preparation

Digital image
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Heat treatment

Microscopic
investigations

(sawing, grinding, polishing,
etching)

Figure 5.1: Schematic procedures performed during the experimental investigations of
Ag-Cu.

5.1.1 Purchase of the Material and Making of the Specimen

In cooperation with Dr.-Ing. Klaus Müller from the company Neue Materialien
Bayreuth GmbH (provision of Ag and Cu) and Dr.-Ing. Rainer Völkl from the Chair
of Metallic Materials, University Bayreuth (melting and casting of Ag and Cu1) a
“splodge- or button-like” sample of eutectic Ag-Cu was produced (diameter: ≈ 40

1Note that the binary alloy Ag-Cu has a comparatively low eutectic temperature of Teut
∼= 779 ◦C

whereas the pure substances Ag and Cu have melting temperatures of Teut
∼= 962 ◦C (Ag) and

Teut
∼= 1085 ◦C (Cu), i.e., considerably higher values. In order to mix both constituents within the

liquid state, one needs an electric arc melting furnace, which can provide temperatures beyond
1100 ◦C.
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mm). In order to prepare the surface of the sample one needs to bring the specimen
into a suitable form. For that reason the sample is cut into various cubes (cf., Figure
5.2), which can be easily embedded into especially fabricated epoxy cylinders (cf.,
Figure 5.1 A, B). Note, that, subsequently to the preparation and the microscopic
investigations, the analyzed material will be aged in a furnace. Therefore it is impor-
tant to perform the embedding procedure reversibly so, that the specimen can easily
be deflasked (cf., Figure 5.1 A, B).

≈
2
m
m

original size

Ag-C
u

9.0− 10.0 mm

rectangular block specimen

Figure 5.2: Illustration of making the rectangular specimen from the “buttton-like” sam-
ple.

5.1.2 Metallographic Preparation

For an optical visualization of the different phases within the material its surface must
be suitably prepared. This can be done, in a first step, by means of multiple grinding
and successively finer grained polishing. The number, time and intensity (pressure)
of each routine depends on the material (cf., Figure 5.1 C, D and Table 5.1). Note,
that these steps are extremely time-consuming. However, they are necessary for the
subsequent microscopy in order to eliminate the various scratches usually found at
the surface.

After this procedure the different phases are still planar at the surface, and, conse-
quently, they cannot be distinct by means of optical microscopy. Therefore one of the
components (i.e., Ag or Cu) must be (selectively) etched resulting in vertical differ-
ences at the surface, which, in turn, are observable under the microscope. According
to [100] the following silver-etching solution were used:

• distilled H2O: five drops,
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Table 5.1: Performed grinding and polishing steps for eutectic Ag-Cu.

grinding

step graining (grain diameter in µm) press capacity time

01. 220 (66) 10 N 15 s

02. 500 (30) 20 N 60 s

03. 1000 (18) 20 N 60 s

04. 1000 10 N 60 s

05. 4000 (4) 30 N 60 s

06. 4000 10 N 120 s

07. 4000 5 N 60 s

polishing

step polishing agent press capacity time

08. DiaDuo Diamant-Polish (Struers corp.) 20 N 180 s

09. OP-S Suspension (Struers corp.) 20 N 120 s

10. OP-S Suspension (Struers corp.) 10 N 60 s

• diluted ammoniac, (25%): five drops,

• diluted hydrogen peroxide (30%, H2O2): ten drops,

which corresponds to a ratio of 1:1:2. It is worthwhile mentioning that the specimen
should be in contact with the above solution only for a fraction of seconds (max. 1 s)
and subsequently be cleaned with distilled water and ethanol, otherwise the surface
of the Ag-Cu sample is “burned” and the preparation must be repeated.

5.1.3 Optical Microscopy and Digital Image Analysis

As a consequence of the etching procedure the Ag-rich (α) phase is vertically lower
situated at the surface of the material, which results in optical contrasts allowing for
the visualization of the different phases during microscopy.

In the following the observed and saved micrographs can be analyzed using (com-
mercial) Digital Imaging Analysis software, cf., Figure 5.1 F, G. On the basis of the
different colors of the photos it is possible to identify the different phases, to assess
their number and to measure the surface area. Under the assumption of spherical
phases (or similar shapes) one can calculate an equivalent phase radius for each phase
and, considering all phases, an average phase radius. The latter quantity character-
izes the coarsening progress for the investigated aging stage and is suitable to quantify
the temporal development of the microstructure.
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5.1.4 Heat Treatment

After the microscopic examinations the solder cubes are heat-treated for a predefined
period (e.g., 5 h), cf., Figure 5.1 E. In order to observe the diffusion-induced micro-
morphological changes within manageable times a temperature considerably above

the homologeous temperature Thom
(def)
= T/Tmelt = 0.5 is required. For eutectic Ag-Cu

the following working temperature is chosen in these experiments:

T = 700 ◦C = 973.15K ⇒ Thom =
T

Teut

= 0.899 . (5.1)

After the heat treatment the “experimental cycle” is finished and one can repeat the
procedure starting from the embedding of the specimen, surface preparation, etching,
microscopy, heat treatment, etc. . Hence the aging time increases, and, consequently,
the temporal change of the microstructure, in particular the coarsening process, can
be observed and documented.

During the experiments explained in this work the coarsening stage after 0 h (i.e., after
the solidification), 2 h, 5 h, 10 h, 20 h, and 40 h were examined. As a result micro-
photos with a scaling factor of 1:200, 1:500 and 1:1000 were obtained, cp., Section 5.3.
Furthermore one finds that after a sufficient long aging-time the coarsening state is so
advanced that the different phases are observable without preliminary etching. That
means for the current case, that additional micro-photos with un-etched surfaces were
documented for heat treatment times t ≥ 5 h.

5.2 On the Quantification of Coarsening

In order to determine the coarsening rate of the precipitated Cu-rich (β) phase quan-
titatively one must preliminarily clarify two questions :

1. Which parameter is suitable for the quantification of microstructural changes?

2. How can one determine this parameter?

Regarding the first point two quantities can be found: (a) the surface area A of the
precipitated phase or (b) the phase perimeter U . For the analysis in the work (see
Section 5.3) the surface area A of the precipitated β-phase is chosen. The reason for
this is simply that the image analysis software available at the institute supports the
determination of this quantity.

Concerning the second question it is worth mentioning the the exploitation of the
micro-graphs presented in Section 5.3 denotes a 2D-analysis of a 3D problem. In
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particular the software only allows the investigation of the different β-phases for a
fixed intercept area. Consequently the observed amount of β-precipitations can vary
for different intercept areas (cf., Figure 5.3).

Sphere obate Spheroid

r

Aβ
I

Aβ
II

Aβ
I > Aβ

II

l

l

l

l

l

c

b

a

a = c

intercept area II

intercept area I

Figure 5.3: 1st row: On the dependence of the total surface area of the observed phases
on the intercept area. 2nd row: Particle shapes to be considered in the analysis.

This “shortcoming” can be remedied by means of statistical averaging in two ways:

• The investigation of an sufficient large area of intersection l× l containing many
precipitated phases.

• The analysis of various microphotos at the same coarsening stage representing
different intercept areas.

For the analysis that was performed here, six pictures for each coarsening stage are
investigated, three photos with a scale factor 1:500 (i.e., many precipitates) and
three photos with a scale factor 1:1000. For better readability the following notation
required in the subsequent analysis is introduced:
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Aβ
i : surface area of a single β-phase,

Aβ: averaged surface area of a β-phase of an individual photo (i.e., for a fixed
intercept area),

Āβ: averaged surface area of a β-phase of the coarsening stage (results from all
photos of a fixed stage),

N : number of β-phases of one photo/intercept area,

r̄β: mean phase radius using the assumption of spherical phase shapes,

āβ: mean phase radius using the assumption of oblate spheroids.

Thus the following relations can be formulated:

Aβ =
1

N

N∑

i=1

Aβ
i (for the individual photos) , (5.2)

Āβ =
1

6

∑

photos

Aβ (for the individual stages) . (5.3)

Additionally one can also calculate the mean phase radius r̄ and ā. Here it holds with
[114]:

r̄β =

√
3Āβ

2π
(spherical phases) , (5.4)

āβ =

√
Āβ

1.235
(oblate spheroids with b/a = 0.5) . (5.5)

Note that the volume of the oblate spheroid is given by V = 4
3
πa2b for a = b (cf.,

Figure 5.3, second row).

5.3 Selected Results

In the following some selected results are presented and we restrict ourselves only to
the most important ones. For instance, as a consequence of the performed experi-
mental investigations, more than 50 microphotos were obtained, which document the
different stages of coarsening in eutectic Ag-Cu at ≈ 1000 K. Obviously, a presenta-
tion of all these pictures goes beyond the scope of this work and will unnecessarily
“strain” the reader’s concentration.
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5.3.1 Micrographs

In what follows various micrographs with a scale factor of 1:200, 1:500 and 1:1000
are shown. The light areas represent the Ag-rich α-matrix (cα = 0.063), whereas the
dark areas denote the Cu-rich β-phase (cβ = 0.945).

Figure 5.4: Un-etched photos of the tem-
poral development of the micromorphology
in Ag-Cu. From upper left to lower right: af-
ter 10 h, 20 h, 40 h (scale factor 1:200).

The pictures illustrated in Figures 5.4-5.8 clearly show the the different phases and the
corresponding coarsening process. In particular one can see that Ostwald ripening
proceeds in such a way that the bigger phases grow at the expense of the smaller ones,
i.e., the number of precipitates decreases whereas the surface area of the remaining
β-phases increases.

Furthermore it is worth mentioning that some of the pictures contain unusually
“dark areas”, cf., e.g., Figure 5.6, (lower-right) or Figure 5.8 (middle-right). These
(nonphysical) regions simply results from the etching process, which were performed
slightly too long, so that the surface of the specimen is a little “burned”, cf., expla-
nations in Section 5.1.2. Furthermore the (oversized) light spherical areas in Figure
5.6 (upper-right) and Figure 5.8 (upper-right) denote water stains remained from the
etching and the subsequent cleaning procedure.
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Figure 5.5: Un-Etched photos of the temporal development of the micromorphology in
Ag-Cu. From upper left to lower right: after 5 h, 10 h, 20 h, 40 h (scale factor 1:500).
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Figure 5.6: Etched photos of the temporal development of the micromorphology in Ag-Cu.
From upper left to lower right: after solidification, 2 h, 5 h, 10 h, 20 h, 40 h (scale factor
1:500).
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Figure 5.7: Un-Etched photos of the temporal development of the micromorphology in
Ag-Cu. From upper left to lower right: after 5 h, 10 h, 20 h, 40 h (scale factor 1:1000).
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Figure 5.8: Etched photos of the temporal development of the micromorphology in Ag-Cu.
From upper left to lower right: after solidification, 2 h, 5 h, 10 h, 20 h, 40 h (scale factor
1:1000).
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5.3.2 Determination of the Mean Phase Radius

In the following the microphotos were quantitatively analyzed by means of digital
image analyzing in order to find the mean phase radius r̄ or ā, respectively. For
this reason one has to extract a representative area from the micrographs preferably
such that no imperfections are included. Otherwise the analysis software will identify
them as one of the phases, which distorts the results. Furthermore the domains used
for the analysis should approximately have similar volume fractions V β/V total w.r.t.
the β-phase. Hence it is guaranteed that differences in the spatial distribution of the
phases do not influence the experimentally determined coarsening rates.

Figure 5.9: Analyzed microphotos after 2 h heat treatment with a scaling factor of 1:500
(first row) and 1:1000 (second row). Left: Selected area used for the exploitation. Right:
Corresponding B-W picture required for the digital image analysis.

The Figures 5.9-5.13 explain the procedure applied for digital image analysis. They
show exemplarily one of three analyzed photos with a scaling factor of 1:500 and
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1:1000, respectively, used in order to quantify the coarsening stage after 2 h, 5 h, 10
h, 20 h, and 40 h.

Note that the transformation to the B-W (Black and White) pictures is required by
the underlying algorithm of the analysis software, which yields the number of dark
phases as well as their surface areas. The best results are achieved if the pictures are
transformed to B-W format.

Figure 5.10: Analyzed microphotos after 5 h heat treatment with a scaling factor of 1:500
(first row) and 1:1000 (second row). Left: Selected area used for the exploitation. Right:
Corresponding B-W picture required for the digital image analysis.

Hence the analysis software calculated the following values for Aβ and N illustrated,
exemplarily for the displayed photos, in Table 5.2. The software ignored all regions
with a value of Ai

β = 0µm2 (e.g. small dark points), which are assumed to be
imperfections2 (e.g., due to uncleanliness).

2The limit value, under which the software set Ai
β = 0µm2 is an intern parameter of the image
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Figure 5.11: Analyzed microphotos after 10 h heat treatment with a scaling factor of 1:500
(first row) and 1:1000 (second row). Left: Selected area used for the exploitation. Right:
Corresponding B-W picture required for the digital image analysis.

Note that these values only denote one of six statistical series used for the calculations
of the averaged surface area Āβ according to Eq. (5.3). Furthermore one must
emphasize that the number of phases N specified in Table 5.2 cannot be used for the
determination of an empirical law for the temporal development of the precipitate
number since the total areas used for the analysis are not uniform for all coarsening
stages, cf., Figure 5.9-5.13 (left).

Analyzing the six microphotos for each aging stage and applying the formulae of Eq.
(5.4,5.5) yields the mean phase radii r̄ and ā as illustrated in Table 5.3. The declared
error boundaries denote the maximal deviation between the mean phase radius of the
coarsening stage (including six photos) and the corresponding values resulting from

analysis package.
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Figure 5.12: Analyzed microphotos after 20 h heat treatment with a scaling factor of 1:500
(first row) and 1:1000 (second row). Left: Selected area used for the exploitation. Right:
Corresponding B-W picture required for the digital image analysis.

the individually analyzed photos.

Figure 5.14 illustrates the temporal development of the mean phase radius following
from Table 5.3. Obviously the assumption of oblate spheroid-shaped phases results
in faster coarsening rates, which already follows by a comparison of Eq. (5.4) and
(5.5). Furthermore it holds that r̄ ∝ t1/3 or ā ∝ t1/3 (with the exception of the 2 h
data), respectively. In particular one can finally write the following empirical laws by
means of a fit procedure:

r̄β = 0.024 · t1/3 and āβ = 0.032 · t1/3 . (5.6)

Indeed, Eq. (5.6)1,2 is noteworthy. The t1/3 dependence is well-known from so-
called LSW-theories, labeled to the authors of the seminal works in the area of the
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Figure 5.13: Analyzed microphotos after 40 h heat treatment with a scaling factor of 1:500
(first row) and 1:1000 (second row). Left: Selected area used for the exploitation. Right:
Corresponding B-W picture required for the digital image analysis.

theoretical description of precipitate’s growth in a (supersaturated) matrix, cf., [79,
116], which describe the surface-energy-minimization process - so-called Ostwald-
ripening, [96] - by means of the Gibbs-Thomson effect.
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Table 5.2: Values calculated by the image analysis software, exemplarily for the illustrated
Figures 5.9-5.13.

Time Scaling factor Aβ in µm
2 No. of phases Vol. fraction V β/V total

2 h 1:500 3.07 675 0.46
1:1000 2.43 131 0.45

5 h 1:500 1.59 154 0.61
1:1000 0.75 262 0.61

10 h 1:500 2.72 179 0.20
1:1000 1.29 95 0.41

20 h 1:500 3.57 67 0.45
1:1000 6.52 65 0.46

40 h 1:500 5.86 393 0.45
1:1000 2.52 193 0.41

Table 5.3: Mean phase radii for different coarsening stages and different types of phase
shapes (assumed).

time spherical shaped oblate spheroid shaped

r̄β in µm āβ in µm
2 h 0.76± 0.28 0.99± 0.37
5 h 0.61± 0.18 0.79± 0.23
10 h 0.82± 0.33 1.07± 0.43
20 h 1.04± 0.48 1.36± 0.63
40 h 1.24± 0.30 1.62± 0.39
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Figure 5.14: The temporal development of the mean phase radius r̄β and āβ in eutectic
Ag-Cu at ≈ 1000 Kelvin observed in experiments. Dashed line: spherical phase shape.
Continuous line: oblate spheroid-shaped phase.



Chapter 6

Résumé

Wir alle lassen uns vom Streben nach Anerkennung mitreißen.
Gerade die besten lassen sich durch den Gedanken an Ruhm leiten.

Denn selbst jene Philosophen, die über die Geringschätzung
des Ruhmes schreiben, setzten ihre Namen auf die Bücher.

Cicero, (106 - 43 v. Chr.)

6.1 Theory vs. Experiment

At the end of this work we will discuss the agreement between the simulations and
the experimental investigations. To this end we compare the obtained coarsening
rate of the 1D strain-free simulation in Eq. (4.83) with the rates following from
the 2D-simulations, cf., Eqs. (4.84,4.85) and the coarsening rates resulting from the
experiments in Eq. (5.6). Table 6.1 compiles the fitted results, and the corresponding
curves are shown in Figure 6.1. Three characteristics are worth mentioning:

Table 6.1: Comparison of the different coarsening rates following from the simulations and
the experiment.

source ks (sphere, r̄
β = ks · t1/3) ko (oblate-spheroids, ā

β = ko ·
t1/3)

1D Sim. 0.00082 0.00086
2D Sim. (Euler) 0.00710 0.00920
2D Sim. (RADAU) 0.00980 0.01300

Experiment 0.02400 0.03200

• The factors ks and ko (factor of proportionality between r̄
β or āβ and t1/3) found

from the 1D simulations are much smaller (approximately 30–37 times smaller)
than the corresponding factors obtained from the experiment.

• The factors ks and ko following from the 2D-simulations are approximately 2.4–
3.4 times smaller than the experimentally obtained factors, i.e., in comparison
to the 1D-simulations the deviation is considerably reduced.

• The 2D-simulations performed by means of the RADAU routine yields the best
agreement with the experimental coarsening rates.

149
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As a consequence of these observations one may expect that 3D-simulations presum-
ably lead to a further reduction of the deviation between theory and experiment. This
is reasonable since the coarsening process observed during the experiments represents
a three-dimensional process, although the documented and analyzed micrographs are
in 2D.

However, there are also a few, obvious shortcomings accompanying with the above
comparison. On the one hand side, some of the analyzed micrographs are here and
there slightly burned (extra dark areas), which results from the (too long) etching
procedure. This “uncleanliness” within the pictures lead to a overestimation of the
coarsening rate during digital image analysis. On the other hand side, the underlying
analysis presumes spherical or oblate-spheroid phase shapes, which - obviously - do
not match the situation for early coarsening stages, in which a net-like structure domi-
nates, cf., Figure 5.10. Finally note that the total simulation time ranges within some
minutes whereas the experimental aging was performed for 2–40 h. Consequently, a
comparison of the results is only possible if the theoretically obtained coarsening rates
would be strongly extrapolated.

Nevertheless, the theoretical results, in particular the 2D simulations, show an a pri-
ori unexpected, good agreement with the experiments. In this context it should be
mentioned, that all parameters used during the simulations (e.g., mobilities, HGCs,
elastic constants) are taken from the literature or determined from microscopic the-
ories. No parameter was fitted to aging experiments! This fact denotes a distinctive
difference to various simulations in the literature , cf., e.g., [113], in which, e.g., the
mobility is adjusted to experiments in order to ensure agreement between theory and
the really observed aging process.
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Figure 6.1: Comparison of the coarsening behavior predicted from the (strain-free) simu-
lations and from the experiment.
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6.2 Conclusion and Outlook

In this work we investigated the process of phase separation and coarsening in multi-
phase alloys from a theoretical as well as experimental point-of-view. We concentrated
on the brazing material Ag-Cu representative for lead-free solder materials, which
are currently favored for microelectronic solder joints. We started with an overview
about the different technological and environmental tendencies in microelectronics
and pointed out the relevance of the lead-free legalization in this sector. Due to
these tendencies we turned the attention to lead-free solder materials and briefly
gave an introduction into the various microstructural phenomena and their impact
on microelectronic reliability.

In Chapter 2 a thermodynamically consistent phase field theory was developed, which
allows modeling of the diffusion-induced phase evolution in multicomponent materials,
especially under the presence of local thermo-mechanical strains. After a historical
overview of the development of diffusion theories for solids we discussed existing short-
comings and open questions within the models and approaches. Four statements for
an entropy principle were formulated, which allow to deduce the constitutive equa-
tions required for the theoretical description of spinodal decomposition andOstwald

ripening in solid mixtures. We, first, considered a single phase, which corresponds
to the case of classical mixtures, and derived the established results for the entropy,
heat, and diffusion flux as well as for the pressure and the second Piola-Kirchhoff

stress tensor. Moreover, we also deduced the Gibbs-Duhem equation as well as vari-
ous Gibbs relations. Furthermore an additive decomposition of the Helmholtz free
energy ϕ = ϕmech+ϕchem into a mechanical and into a chemical part was introduced,
which allows to distinguish between elastic deformations and deformations due to
eigen-strains. Second, we exploited the entropy principle for multi-phase mixtures
by incorporating so-called higher gradients. In particular, we turned the attention
to the diffusion flux and derived, after the restriction to binary alloys, an extended
diffusion equation, which represents - in combination with the partial mass balance
- a generalization of the well-established Cahn-Hilliard equation. This generaliza-
tion relies on the fact that the HGCs depend on the concentration and on the local
thermo-mechanical strains, which lead to additional contributions to the diffusion
flux.

Subsequently, we developed in Chapter 3 an atomistic theory to determine the mate-
rial parameters, such as the elastic constants and the HGCs, which are required for
a quantitative investigation of the extended diffusion equation derived in Chapter 2.
The obtained equations are based on the embedded-atom-method, [29], and allow to
calculate the stiffness matrix as well as the higher gradient coefficients as functions
of the concentration and the strains. Regarding the considerations in Chapter 1 we
turned the attention to Ag-Cu and, first, calculated the elastic constants of the pure
substances, Ag and Cu, which show a good agreement with (experimentally obtained)
literature values. Second, we calculated the corresponding values for Ag-Cu as well
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as the HGCs. In order to stress the reliability of the determined material data we
finally performed phase equilibria calculations and constructed the solid part of the
Ag-Cu phase diagram by means of the EAM potentials.

The equations obtained in Chapter 2 in combination with the calculated materials
data of Chapter 3 allow for quantitative simulations of the spinodal decomposition
and coarsening process in Ag-Cu, as performed in Chapter 4. We begun with a brief
explanation of the numerical methods required for the solution of the extended dif-
fusion equation, which represents a nonlinear partial differential equations for the
concentration field. In particular we used Discrete Fourier Transforms for the spa-
tial discretization and one-step time integration methods (such as the Euler or the
Runge-Kutta method) for the time discretization. Various simulated micromor-
phologies of Ag-Cu in 1D and 2D were presented, and the results were discussed in
view of the numerical efforts. During the 1D simulations special attention was paid
to the impact of positive and negative strains on the phase evolution process. This
distinction became possible for a first time due to the theoretically predicted HGCs
followed from the considerations in Section 3. Chapter 4 ends with the quantifi-
cation of the different coarsening rates of the simulations, which show considerable
deviations between the 1D- and 2D-simulations.

In Section 6 experimental investigations w.r.t. Ag-Cu were performed. After a de-
tailed explanation of the experimental methods (i.e., the metallographic preparation
process, the microscopy, and the aging of the material by heat treatment) we pre-
sented selected micrographs for the different coarsening stages, which documented
the phase evolution by Ostwald ripening. The chapter was ended with the quan-
tification of the coarsening rates by means of digital image analysis, allowing for a
direct comparison between the theoretical and the experimental results.

However, the present Ph.D. thesis, in particular the developed theoretical framework
as well as the obtained results gives rise to further investigations. More specifically,
the theoretical approach of Chapter 2 allows to (1) incorporate chemical reactions

(τ
ρ/n
α 6= 0) as required for the description of the formation of intermetallic compounds

(IMCs). Furthermore investigations of (2) the impact of large deformations as well
as dissipative effects (σij

diss 6= 0) are conceivable for future studies. Nevertheless,
questions regarding (3) the microstructural evolution in ternary systems, such as
Sn-Ag-Cu, still remain open which, in principle, can be also investigated within the
presented framework. On the other hand, (4) alternative numerical methods can
be performed, such as finite element techniques, cf., [113, 52], in order to optimize
the numerical efforts and to (eventually) increase convergence and stability of the
numerical solution of the extended diffusion equation. In this context, this work has
shown that (5) 3D-simulations are desirable for a further reduction of the deviation
between the coarsening rates following from the simulations and the experiments, cf.,
the previous section. If the microstructural evolution can be reliably simulated, then
(6) questions about the effective material properties and their impact on strength
and lifetime will occur. Homogenization methods, [26], can be used in this context to
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predict the behavior of the heterogeneous material. Finally the investigation should
be extended to (7) alternative solders, such as Sn-Ag or Sn-Cu. These alloys show
a more complex lattice structure due to the anisotropy of Sn, which has a BCT-
structure. Here the modified-embedded-atom-method, cf., [77], can be used to predict
the required materials data, such as the elastic constants or the HGCs.
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Appendix A

Additional Calculations required
for Chapter 2

In der Wissenschaft gleichen wir alle nur den Kindern,
die am Rande des Wissens hie und da einen Kiesel aufheben,

während sich der weite Ozean des Unbekannten vor unseren Augen erstreckt.

Isaac Newton, (1643 - 1727)

A.1 Proof of Equation (2.45)

The following relation holds between the derivatives of the reduced right Cauchy-

Green tensor ckl and the Cauchy-Green tensor Ckl according to Section 2.2:

ċkl =
d

dt

(
J−2/3Ckl

)
= −2

3
J−5/3J̇Ckl + J−2/3Ċkl . (A.1)

Moreover we have the identity:

J̇ =
d

dt

(
detF ij

)
=

[
∂

∂F kl

(
detF ij

)]
Ḟ kl =

[
(detF ij)(F−1)lk

] ∂vk

∂X l
= J

∂vk

∂xk

(A.2)

and

Ċkl =
d

dt

(
FmkFml

)
= ḞmkFml + FmkḞml =

∂vm

∂Xk
Fml +

∂vm

∂X l
Fmk

=
∂vm

∂xs

∂xs

∂Xk
Fml +

∂vm

∂xs

∂xs

∂X l
Fmk =

∂vi

∂xj

(
F jkF il + F jlF ik

)
. (A.3)

The result of Eqs. (A.3) and (A.2) can be inserted into Eq. (A.1). We finally find:

ċkl = −2
3
J−2/3 ∂v

i

∂xi
Ckl + J−2/3 ∂v

i

∂xj

(
F jkF il + F jlF ik

)
. (A.4)

�
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A.2 Legendre Transform between S̃ and Ŝ

We start with the functional representation S̃ of the entropy density ρη and write for
the total differential:

d(ρη) = dS̃ = ∂S̃
∂ρǫ

d(ρǫ) +
ν∑

α=1

∂S̃
∂nα

dnα +
∂S̃
∂cij

dcij (A.5)

= dŜ = ∂Ŝ
∂T

dT +
ν∑

α=1

∂Ŝ
∂nα

dnα +
∂Ŝ
∂cij

dcij , (A.6)

with ∂S̃
∂ρǫ

= 1/T . Furthermore it holds with ρǫ = Ê(T, n1, . . . , nν , c
ij):

d(ρǫ) = dÊ = ∂Ê
∂T

dT +
ν∑

α=1

∂Ê
∂nα

dnα +
∂Ê
∂cij

dcij . (A.7)

The term d(ρǫ) in Eq. (A.5) can now be substituted by the left hand side of Eq. (A.7).
By means of the definition of the absolute temperature, Eq. (2.36), one obtains:

d(ρη) =
1

T

∂Ê
∂T︸ ︷︷ ︸

= ∂Ŝ
∂T

dT +
ν∑

α=1

(
∂S̃
∂nα

+
1

T

∂Ê
∂nα

)

︸ ︷︷ ︸
= ∂Ŝ

∂nα

dnα +

(
∂S̃
∂cij

+
1

T

∂Ê
∂cij

)

︸ ︷︷ ︸
= ∂Ŝ

∂cij

dcij (A.8)

and we identify with d(ρη) = dŜ :

∂Ŝ
∂T

=
1

T

∂Ê
∂T

,
∂Ŝ
∂nα

=
∂S̃
∂nα

+
1

T

∂Ê
∂nα

,
∂Ŝ
∂cij

=
∂S̃
∂cij

+
1

T

∂Ê
∂cij

. (A.9)

Since the variables T and nα are independent within the domain of Ŝ one can, in
particular, find from Eq. (A.9)2 the relation (β 6= α):

∂S̃
∂nα

= − 1

T

(
∂Ê
∂nα

− T
∂Ŝ
∂nα

)
= − 1

T

∂F̂
∂nα

= − 1

T

∂(ρϕ)

∂nα

∣∣∣∣
T,nβ ,cij

. (A.10)
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A.3 Legendre Transform between F̂ and F̄

Recall the functional representations shown in Eq. (2.50)2,3. Consequently we can
write:

d(ρϕ) = dF̂ =
∂F̂
∂T

dT +
ν∑

α=1

∂F̂
∂nα

dnα +
∂F̂
∂cij

dcij , (A.11)

= dF̄ =
∂F̄
∂T

dT +
ν−1∑

β=1

∂F̄
∂yβ

dyβ +
∂F̄
∂ρ

dρ+
∂F̄
∂cij

dcij . (A.12)

Obviously the transfer from F̄ to F̂ requires the substitution of dyβ and dρ by dnα.
For this reason we calculate:

ρ(n1, . . . , nν) =
ν∑

α=1

mαnα ⇒ dρ =
ν∑

α=1

∂ρ

∂nα

dnα =
ν∑

α=1

mαdnα (A.13)

yβ(n1, . . . , nν) =
nβ∑ν

α=1 nα

⇒ dyβ =
ν∑

α=1

∂yβ

∂nα

dnα =
ν∑

α=1

(
δαβ

n
− nβ

n2

)
dnα .

(A.14)

Eqs. (A.13) and (A.14) can be inserted into Eq. (A.12). We obtain:

d(ρϕ) =
∂F̄
∂T

dT +
ν∑

α=1

[
mα

∂F̄
∂ρ

+
ν−1∑

β=1

∂F̄
∂yβ

(
δαβ

n
− nβ

n2

)]
dnα +

∂F̄
∂cij

dcij .(A.15)

By comparing the coefficients between Eqs. (A.11) and (A.15) results:

∂F̂
∂T

=
∂F̄
∂T

,
∂F̂
∂nα

= mα
∂F̄
∂ρ

+
ν−1∑

β=1

∂F̄
∂yβ

(
δαβ

n
− nβ

n2

)
,

∂F̂
∂cij

=
∂F̄
∂cij

. (A.16)

A.4 Legendre Transform between F̄ and F́

According to Eq. (2.50)3,4 we write:

d(ρϕ) = dF̄ =
∂F̄
∂T

dT +
ν−1∑

β=1

∂F̄
∂yβ

dyβ +
∂F̄
∂ρ

dρ+
∂F̄
∂cij

dcij (A.12)

= dF́ =
∂F́
∂T

dT +
ν−1∑

β=1

∂F́
∂yβ

dyβ ++
∂F́
∂Cij

dCij . (A.17)
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Hence we have to substitute dρ and dcij by means of dCij. For this reason we find:

Cij(cij, ρ) = J2/3cij = cij
(
ρ0

ρ

)2/3

⇒ dCij =
∂Cij

∂ckl
dckl +

∂Cij

∂ρ
dρ , (A.18)

with
∂Cij

∂ckl

(Cij=Cji)
=

1

2

∂

∂ckl
(Cij + Cji) =

1

2

(
ρ0

ρ

)2/3

(δikδjl + δjkδil) (A.19)

and
∂Cij

∂ρ
= −2

3

cij

ρ

(
ρ0

ρ

)2/3

. (A.20)

Insertion of Eqs. (A.18)2, (A.19) and (A.20) into Eq. (A.17) results in:

d(ρϕ) =
∂F́
∂T

dT +
ν−1∑

β=1

∂F́
∂yβ

dyβ +

∂F́
∂Cij

[
1

2

(
ρ0

ρ

)2/3

(δikδjl + δjkδil)dckl − 2

3

cij

ρ

(
ρ0

ρ

)2/3

dρ

]
. (A.21)

Comparison of Eqs. (A.12) and (A.21) yields for the coefficients:

∂F̄
∂T

=
∂F́
∂T

,
∂F̄
∂yβ

=
∂F́
∂yβ

,
∂F̄
∂ρ

= −2
3

cij

ρ

(
ρ0

ρ

)2/3
∂F́
∂Cij

,

∂F̄
∂ckl

=
1

2

∂F́
∂Cij

(
ρ0

ρ

)2/3

(δikδjl + δjkδil) . (A.22)

A.5 Legendre Transform between S̃ and Ŝ

According to the functional representations in Eq. (2.106)1,2 the following total dif-
ferentials are formulated (α = 1, . . . , ν):

d(ρη) = dS̃ =
∂S̃

∂ρǫ
d(ρǫ) +

∂S̃

∂nα

dnα +
∂S̃

∂∇inα

d(∇inα) +
∂S̃

∂∇ijnα

d(∇ijnα) +
∂S̃

∂cij
dcij

(A.23)

= dŜ =
∂Ŝ

∂T
dT +

∂Ŝ

∂nα

dnα +
∂Ŝ

∂∇inα

d(∇inα) +
∂Ŝ

∂∇ijnα

d(∇ijnα) +
∂Ŝ

∂cij
dcij ,

(A.24)

with the definition of the absolute temperature ∂S̃
∂ρǫ

= 1/T . The total differential

of the internal energy density ρǫ = Ê(T, nα,∇inα,∇ijnα, c
ij) in Eq. (A.23) can be
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replaced by means of:

d(ρǫ) = dÊ =
∂Ê

∂T
dT +

∂Ê

∂nα

dnα +
∂Ê

∂∇inα

d(∇inα) +
∂Ê

∂∇ijnα

d(∇ijnα) +
∂Ê

∂cij
dcij .

(A.25)

Hence it follows from Eq. (A.23):

dS̃ =
1

T

∂Ê

∂T
dT +

(
1

T

∂Ê

∂nα

+
∂S̃

∂nα

)
dnα +

(
1

T

∂Ê

∂∇inα

+
∂S̃

∂∇inα

)
d(∇inα)

+

(
1

T

∂Ê

∂∇ijnα

+
∂S̃

∂∇ijnα

)
d(∇ijnα) +

(
1

T

∂Ê

∂cij
+

∂S̃

∂cij

)
dcij . (A.26)

Since T and nα are independent arguments within the functional representations Ê

and Ŝ we identify:

∂Ŝ

∂T
=

1

T

∂Ê

∂T
, −T ∂S̃

∂nα

=
∂F̂

∂nα

, −T ∂S̃

∂∇inα

=
∂F̂

∂∇inα

−T ∂S̃

∂∇ijnα

=
∂F̂

∂∇ijnα

, −T ∂S̃

∂cij
=

∂F̂

∂cij
, (A.27)

where F̂(T, nα,∇inα,∇ijnα, c
ij) is the functional representation of the Helmholtz

free energy density ρϕ.

A.6 Legendre Transform between F̂ and F̄

Using the representations in Eq. (2.123) we find the following total differentials
(α = 1, . . . , ν and β = 1, . . . , ν − 1):

d(ρϕ) = dF̂ =
∂F̂

∂T
dT +

∂F̂

∂nα

dnα +
∂F̂

∂∇inα

d(∇inα) +
∂F̂

∂∇ijnα

d(∇ijnα) +
∂F̂

∂cij
dcij

(A.28)

= dF̄ =
∂F̄

∂T
dT +

∂F̄

∂yβ

dyβ +
∂F̄

∂∇iyβ

d(∇iyβ) +
∂F̄

∂∇ijyβ

d(∇ijyβ) +
∂F̄

∂ρ
dρ

+
∂F̄

∂∇iρ
d(∇iρ) +

∂F̄

∂∇ijρ
d(∇ijρ) +

∂F̄

∂cij
dcij . (A.29)
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Now the terms with brackets must be “suitably” replaced by expressions of dnα,
d(∇inα) and d(∇ijnα). For this reason we write as follows:

ρ =
∑

α

mαnα ⇒ dρ =
∑

α

mαdnα , (A.30)

∇iρ =
∑

α

mα∇inα ⇒ d(∇iρ) =
∑

α

mαd(∇inα) , (A.31)

∇ijρ =
∑

α

mα∇ijnα ⇒ d(∇ijρ) =
∑

α

mαd(∇ijnα) . (A.32)

Furthermore holds:

yβ =
nβ∑
α nα

⇒ yβ = Ŷβ(nα) , (A.33)

∇iyβ = ∇i

(
nβ∑
α nα

)
⇒ ∇iyβ = Ŷ

i
β(nα,∇inα) , (A.34)

∇ijyβ = ∇ij

(
nβ∑
α nα

)
⇒ ∇ijyβ = Ŷ

ij
β (nα,∇inα,∇ijnα) (A.35)

and after a straightforward calculation:

dyβ =
∑

α

∂Ŷβ

∂nα

dnα =
∑

α

(
δαβ

n
− nβ

n2

)
dnα (A.36)

d(∇iyβ) =
∑

α

∂Ŷ
i
β

∂nα

dnα +
∑

α

∂Ŷ
i
β

∂∇inα

d(∇inα)

=
∑

α

∇i

(
δαβ

n
− nβ

n2

)
dnα +

∑

α

(
δαβ

n
− nβ

n2

)
d(∇inα) (A.37)

d(∇ijyβ) =
∑

α

∂Ŷ
ij
β

∂nα

dnα +
∑

α

∂Ŷ
ij
β

∂∇knα

d(∇knα) +
∑

α

∂Ŷ
ij
β

∂∇klnα

d(∇klnα)

=
∑

α

∇ij

(
δαβ

n
− nβ

n2

)
dnα + 2

∑

α

∇j

(
δαβ

n
− nβ

n2

)
d(∇inα)

+
∑

α

(
δαβ

n
− nβ

n2

)
d(∇ijnα) . (A.38)
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Substituting the underbracket terms in Eq. (A.29) by the results in Eqs. (A.30-A.32)
and (A.36-A.38) yields:

dF̄ =
∂F̄

∂T
dT +

∂F̄

∂cij
dcij +

+
∑

α

{
mα

∂F̄

∂ρ
+

∑

β

[
∂F̄

∂yβ

(
δαβ

n
− nβ

n2

)
+

∂F̄

∂∇iyβ

∇i

(
δαβ

n
− nβ

n2

)
+

∂F̄

∂∇ijyβ

∇ij

(
δαβ

n
− nβ

n2

)]}
dnα

+
∑

α

{
mα

∂F̄

∂∇iρ
+

∑

β

[
∂F̄

∂∇iyβ

(
δαβ

n
− nβ

n2

)
+

2
∂F̄

∂∇ijyβ

∇j

(
δαβ

n
− nβ

n2

)]}
d(∇inα)

+
∑

α

{
mα

∂F̄

∂∇ijρ
+

∑

β

∂F̄

∂∇ijyβ

(
δαβ

n
− nβ

n2

)}
d(∇ijnα) . (A.39)

and we identify with dF̄ = dF̂:

∂F̂

∂T
=

∂F̄

∂T
,

∂F̂

∂cij
=

∂F̄

∂cij
, (A.40)

∂F̂

∂nα

= mα
∂F̄

∂ρ
+

∑

β

[
∂F̄

∂yβ

(
δαβ

n
− nβ

n2

)
+

∂F̄

∂∇iyβ

∇i

(
δαβ

n
− nβ

n2

)
+

∂F̄

∂∇ijyβ

∇ij

(
δαβ

n
− nβ

n2

)]
, (A.41)

∂F̂

∂∇inα

= mα
∂F̄

∂∇iρ
+

∑

β

[
∂F̄

∂∇iyβ

(
δαβ

n
− nβ

n2

)
+

2
∂F̄

∂∇ijyβ

∇j

(
δαβ

n
− nβ

n2

)]
, (A.42)

∂F̂

∂∇ijnα

= mα
∂F̄

∂∇ijρ
+

∑

β

∂F̄

∂∇ijyβ

(
δαβ

n
− nβ

n2

)
. (A.43)
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A.7 Legendre Transform between F̄ and F́

This calculation is similar to that one of Appendix A.4. We start with the total
differentials for F̄ and F́, viz :

d(ρϕ) = dF̄ = dF́ =

=
∂F̄

∂T
dT +

∂F̄

∂yβ

dyβ +
∂F̄

∂∇iyβ

d(∇iyβ) +
∂F̄

∂∇ijyβ

d(∇ijyβ) +
∂F̄

∂ρ
dρ

+
∂F̄

∂∇iρ
d(∇iρ) +

∂F̄

∂∇ijρ
d(∇ijρ) +

∂F̄

∂cij
dcij (A.44)

=
∂F̄

∂T
dT +

∂F̄

∂yβ

dyβ +
∂F̄

∂∇iyβ

d(∇iyβ) +
∂F̄

∂∇ijyβ

d(∇ijyβ)

+
∂F̄

∂∇iρ
d(∇iρ) +

∂F̄

∂∇ijρ
d(∇ijρ) +

∂F̄

∂Cij
dCij . (A.45)

The term with the bracket, i.e., dCij, can be substituted by the relation

dCij =
1

2

(
ρ0

ρ

)2/3

(δikδjl + δjkδil)dckl − 2

3

cij

ρ

(
ρ0

ρ

)2/3

dρ (A.46)

following the calculations shown in Eqs. (A.18-A.20). The resulting total differential
for dF̄ can be used to identify the coefficients ∂F̄/∂T, . . . , ∂F̄/∂cij. In particular it
follows that:

∂F̄

∂Ξ
=
∂F́

∂Ξ
, Ξ = {T, yβ,∇iyβ,∇ijyβ,∇iρ,∇ijρ} (A.47)

and

∂F̄

∂ρ
= −2

3

Cij

ρ

∂F́

∂Cij
,

∂F̄

∂ckl
=
1

2

(
ρ0

ρ

) 2
3

(δikδjl + δilδkj)
∂F́

∂Cij
. (A.48)
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A.8 Legendre Transform between
̂̂
F and F

According to the functional representations introduced in Eq. (2.129) we write for
the total differentials of ρϕ (α = 1, . . . , ν and β = 1, . . . , ν − 1):

d(ρϕ) = d
̂̂
F =

∂
̂̂
F

∂T
dT +

∂
̂̂
F

∂ρα

dρα +
∂
̂̂
F

∂∇iρα

d(∇iρα) +
∂
̂̂
F

∂∇ijρα

d(∇ijρα) +
∂
̂̂
F

∂cij
dcij

(A.49)

= dF =
∂F

∂T
dT +

∂F

∂cβ
dcβ +

∂F

∂∇icβ
d(∇icβ) +

∂F

∂∇ijcβ
d(∇ijcβ)

+
∂F

∂∇iρ
d(∇iρ) +

∂F

∂∇ijρ
d(∇ijρ) +

∂F

∂ρ
dρ +

∂F

∂cij
dcij . (A.50)

The highlighted terms must be substituted by the expressions dρα, d(∇iρα) and
d(∇ijρα). Analogously to the Eqs. (A.30-A.32) and (A.33-A.35) one finds:

ρ =
∑

α

ρα ⇒ dρ =
∑

α

dρα , (A.51)

∇iρ =
∑

α

∇iρα ⇒ d(∇iρ) =
∑

α

d(∇iρα) , (A.52)

∇ijρ =
∑

α

mα∇ijnα ⇒ d(∇iρ) =
∑

α

d(∇ijρα) , (A.53)

and

cβ =
ρβ∑
α ρα

⇒ cβ =
̂̂
Cβ(ρα) , (A.54)

∇icβ = ∇i

(
ρβ∑
α ρα

)
⇒ ∇icβ =

̂̂
C

i
β(ρα,∇iρα) , (A.55)

∇ijcβ = ∇ij

(
ρβ∑
α ρα

)
⇒ ∇ijcβ =

̂̂
C

ij
β (ρα,∇iρα,∇ijρα) . (A.56)

Thus we derive in the same manner as in the Eqs. (A.36-A.38):

dcβ =
∑

α

∂
̂̂
Cβ

∂ρα

dρα =
∑

α

(
δαβ

ρ
− ρβ

ρ2

)
dρα , (A.57)
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d(∇icβ) =
∑

α

∂
̂̂
C

i
β

∂ρα

dρα +
∑

α

∂
̂̂
C

i
β

∂∇iρα

d(∇iρα)

=
∑

α

∇i

(
δαβ

ρ
− ρβ

ρ2

)
dρα +

∑

α

(
δαβ

ρ
− ρβ

ρ2

)
d(∇iρα) , (A.58)

d(∇ijcβ) =
∑

α

∂
̂̂
C

ij
β

∂ρα

dρα +
∑

α

∂
̂̂
C

ij
β

∂∇kρα

d(∇kρα) +
∑

α

∂
̂̂
C

ij
β

∂∇klρα

d(∇klρα)

=
∑

α

∇ij

(
δαβ

ρ
− ρβ

ρ2

)
dρα + 2

∑

α

∇j

(
δαβ

ρ
− ρβ

ρ2

)
d(∇iρα) +

∑

α

(
δαβ

ρ
− ρβ

ρ2

)
d(∇ijρα) . (A.59)

Eqs. (A.51-A.59) can be inserted into Eq. (A.50). A following comparison of the
coefficients between the Eqs. (A.49) and (A.50) allows to identify the final relations:

∂
̂̂
F

∂T
=

∂F

∂T
,

∂
̂̂
F

∂cij
=

∂F

∂cij
, (A.60)

∂
̂̂
F

∂ρα

=
∂F

∂ρ
+

∑

β

[
∂F

∂cβ

(
δαβ

ρ
− ρβ

ρ2

)
+

∂F

∂∇icβ
∇i

(
δαβ

ρ
− ρβ

ρ2

)
+

∂F

∂∇ijcβ
∇ij

(
δαβ

ρ
− ρβ

ρ2

)]
, (A.61)

∂
̂̂
F

∂∇iρα

=
∂F

∂∇iρ
+

∑

β

[
∂F

∂∇icβ

(
δαβ

ρ
− ρβ

ρ2

)
+ 2

∂F

∂∇ijcβ
∇j

(
δαβ

ρ
− ρβ

ρ2

)]
,

(A.62)

∂
̂̂
F

∂∇ijρα

=
∂F

∂∇ijρ
+

∑

β

∂F

∂∇ijcβ

(
δαβ

ρ
− ρβ

ρ2

)
. (A.63)



Appendix B

Additional Calculations required
for Chapter 3

Wer von Anfang an schon sicher weiß, wohin sein Weg führen wird,
wird es nicht sehr weit bringen.

Napoleon, (1769 - 1821)

B.1 Conversion of Particle to Mass Concentration

The total Helmholtz free energy Φ of an equilibrium phase γ follows by summation
from Eq. (3.62):

Φγ =
∑

α∈γ

Eα − TSγ , Sγ = −kB

∑

α∈γ

[y ln y + (1− y) ln(1− y)] ,

Eα
(3.62)
=

1

2
gAA + y(1− y)gφ + ygφ̃ + FA + y(FB − FA) +

+
1

2
GijGkl

{
. . .

}ijkl
(y) + (∇2

mny)
{
. . .

}mn
(y) , (B.1)

where {. . .}ijkl and {. . .}mn represent the expressions within the curly brackets of the
second and third block in Eq. (3.62). Furthermore kB denotes Boltzmann’s constant
and TSγ the entropic part of Φγ . Moreover, the sum is carried out with respect
to all particles α of the phase γ, and Eα represents the energy of a particle due to
its interactions with the neighbors β. The quantities gAA, gφ, gφ̃, FA, FB, {. . .}ijkl,
and {. . .}mn are defined by means of the EAM potentials (cf., Eq. (3.62)) which, in
turn, are determined by the distance R2

αβ between atom α and β. In order to obtain
the stiffness coefficients and the HGCs as functions of c the following procedure is
performed:

(1) Relate the “macroscopic” Helmholtz free energy density F to the microscopic
equation (B.1).

165
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(2) Substitute the derivatives of the particle concentration y for terms of the mass
concentration c. Here one can use the relation:

cB = (1− cA) ≡ c =
mB

mB +mA

=
yBMB

yBMB + (1− yB)MA

(B.2)

⇒ yB = (1− yA) ≡ y = ỹ(c) =
cMA

MB − c(MB −MA)
, (B.3)

whereMA/B is the molecular weight of the components A/B, and cB is the mass
concentration of B.

(3) Compare the resulting equations with the macroscopic equations (3.60,3.61)
and identify the HGCs and stiffness coefficients.

We recall the following thermodynamics relations for one mol:

Φ̂ = NA (Eα − Ts) , F = ρ0
Φ̂

m
, m = NA mHM(c) (B.4)

⇒ F = δ(c)(Eα − Ts) (B.5)

with δ(c) =
1

Ω0(c)
=

ρ0

mHM(c)
and

1

ρ0

=
c0
ρCu

+
1− c0
ρAg

. (B.6)

Φ̂ stands for theHelmholtz free energy per one mol, NA = 6.0237·1023 is the number
of particles in one mol (Avogadro’s constant) and s = −kB [y ln y+(1−y) ln(1−y)]
represents the entropy with respect to one particle. Furthermore m denotes the total
mass, ρ0 identifies the mass density of the alloy in the homogeneous reference state
with the (homogeneous) concentration c0 and mH = 1.66 · 10−27kg stands for 1

12
of

the weight of a carbon 12 atom. The symbol M(c) denotes an averaged molecular
weight of the binary alloy A-B and can be obtained from the molecular weights of
the pure components through the relation M = M̃(c) = y(c)MB + [1 − y(c)]MA.
The symbol δ identifies the reciprocal volume occupied by an atom and yields the
following expression:

F

δ(c)
=
1

2
gAA + y(1− y)gφ + ygφ̃ + FA + y(FB − FA)+

+
1

2
GijGkl

{
. . .

}ijkl
(y) + (∇2

mny)
{
. . .

}mn
(y) + kBT [y ln y + (1− y) ln(1− y)] .

(B.7)
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Considering the function ỹ(c) in Eq. (B.3) and applying the chain rule one can replace
∇2

mny with the following relation:

∇2
mny =

∂2y

∂c2
∂c

∂Xm

∂c

∂Xn
+
∂y

∂c

∂2c

∂Xm∂Xn

=
2MA MB(MB −MA)

[MB − (MB −MA)c]3
(∇mc)(∇nc) +

MAMB

[MB − (MB −MA)c]2
∇2

mnc (B.8)

≡M(c) · Dmn(c) , (B.9)

with the symbolic notation for the vector M(c) and for the vectorial differential
operator Dmn(⋄) as follows:

M(c) =

(
M(1)(c)

M(2)(c)

)
=

(
2MA MB(MB−MA)
[MB−(MB−MA)c]3

MAMB

[MB−(MB−MA)c]2

)
and

Dmn(⋄) =

(
D(1)

mn

D(2)
mn

)
=

(
∇m(⋄)∇n(⋄)
∇2

mn(⋄)

)
. (B.10)

A combination of the relations (B.3,B.8) with Eq. (B.7) yields the following expres-
sions:

ψ0(c)

δ(c)
=
1

2
gAA + y(c)(1− y(c))gφ + y(c)gφ̃ + FA + y(c)(FB − FA) , (B.11)

F
mech
0 (c)

δ(c)
= Emech

α =
Ωα

0

2
Gij Kijkl(c) Gkl , (B.12)

amn(c,Gpq)

δ(c)
= −M(2)(c) H

mn(c,Gpq) , (B.13)

bmn(c,Gpq)

δ(c)
= M(1)(c) H

mn(c,Gpq) , (B.14)

Kijkl(c) =
1

Ωα
0

[
2Bijkl

A + 4y(c)(1− y(c))Bijkl
φ + 4y(c)Bijkl

φ̃

+ 4
(
W ijkl

A + y(c)W ijkl
△

)(
F ′A + y(c)(F ′B − F ′A)

)

+ 4
(
V ij

A + y(c)V ij
△

)(
V kl

A + y(c)V kl
△

)(
F ′′A + y(c)(F ′′B − F ′′A)

)]
, (B.15)
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H
mn(c,Gpq) =

1

4

(
(1− 2y(c))gmn

φ + gmn
φ̃

)
+
1

2
ρ̄mn
△

(
F ′A + y(c)(F ′B − F ′A)

)

+
1

2
Gij

[
(1− 2y(c))Aijmn

φ + Aijmn

φ̃
+ 2V ijmn

△

(
F ′A + y(c)(F ′B − F ′A)

)

+ 2ρ̄mn
△

(
V ij

A + y(c)V ij
△

)(
F ′′A + y(c)(F ′′B − F ′′A)

)]

+
1

2
GijGkl

[
(1− 2y(c))Bijklmn

φ +Bijklmn

φ̃

+ 2W ijklmn
△

(
F ′A + y(c)(F ′B − F ′A)

)

+ 2ρ̄mn
△

(
W ijkl

A + y(c)W ijkl
△

)(
F ′′A + y(c)(F ′′B − F ′′A)

)

+ 2V klmn
△

(
V ij

A + y(c)V ij
△

)(
F ′′A + y(c)(F ′′B − F ′′A)

)

+ 2V ijmn
△

(
V kl

A + y(c)V kl
△

)(
F ′′A + y(c)(F ′′B − F ′′A)

)

+ 2ρ̄mn
△

(
V ij

A + y(c)V ij
△

)(
V kl

A + y(c)V kl
△

)(
F ′′′A + y(c)(F ′′′B − F ′′′A )

)]
. (B.16)

The HGCs Akl can directly be calculated from (B.13) and (B.14) by means of the

relation Akl = ∂akl

∂c
+ bkl. Moreover it should be mentioned that Eqs. (B.11-B.14)

hold for an equilibrium phase consisting of two components in which the composition
is characterized by the mass concentration c ≡ cB.

B.2 Two Equations for G and for Euvf

We consider the Eqs. (3.79) and (3.28a) together with the definitions shown in Eqs.
(3.80-3.83). In order to determine the coefficients K1111, K1122, and K2323 we first
calculate all the required derivatives:

ρ′(R2) = −β ρe

R2
, ρ′′(R2) = β2 ρe

R4
, φ′(R2) = −γ φe

R2
, φ′′(R2) = γ2 φe

R4
,

(B.17)

F ′(ρ̄e) = −6
γφe

βρ̄e

, F ′′(ρ̄e) =
Esub α

2 + 24γφe(β − γ)

4β2ρ̄2
e

. (B.18)

Due to nearest neighbor interactions all neighbors of an atom α are separated by the
same distance R. Thus the derivatives ρ′, ρ′′, and φ′′ do not depend on the sum and
one can write for a pure substance:

Kijkl =
1

Ω0

[
2φ′′

(∑

β

RiRjRkRl
)
+ 4F ′ρ′′

(∑

β

RiRjRkRl
)

+ 4F ′′ρ′ρ′
(∑

β

RiRj
)(∑

β

RkRl
)]

(B.19)
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Note that for an FCC crystal the following relations hold:
∑
(R1)4 = 8(a/2)4,∑

(R1)2 =
∑
(R2)2 = 8(a/2)2,

∑
(R2)2(R3)2 = 4(a/2)2(a/2)2, and

∑
R2R3 = 0,

cf., Figure B.1. Therefore one finally finds for the elastic constants:
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Figure B.1: The number of atoms with a contribution in x1, x2 and x3 direction (the
unshaded atoms do not contribute in the considered direction)

K1111 = Ξa + Ξb , K1122 =
1

2
Ξa + Ξb , K2323 =

1

2
Ξa (B.20)

with the definitions:

Ξa =
a4

Ω0

[
φ′′(R2) + 2F ′(ρ̄e)ρ

′′(R2)
]

, Ξb = 16
a4

Ω0

F ′′(ρ̄e)ρ
′(R2)ρ′(R2) . (B.21)

In the case of the average of the Voigt shear modulus it follows (a4 = 4R4) that:

G =
2

5
Ξa =

2a4

5Ω0

[
φ′′(R2) + 2F ′(ρ̄e)ρ

′′(R2)
]
=
8

5

φeγ(γ − β)

Ω0

(B.22)

or:

G =
24

15

Φeγ(γ − β)

Ω0

. (B.23)

In the same manner one can show for the bulk modulus: κ = 2
3
Ξa + Ξb.

We now consider the vacancy formation energy Euvf. For this purpose we follow the
strategy of R.A. Johnson in [67] and note that according to Eq. (3.78) the following
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relation holds in equilibrium:

Euvf = −6φe − 12F (ρ̄e) + 12F (
11

12
ρ̄e) =

(3.75)
= −Φe + 12(Esub + Φe)− 12Esub

[
1 + h

(
11

12

)]
×

× exp
[
−h
(
11

12

)]
− 12Φe

(
11

12

) γ
β

(B.24)

with h(x) = α
(√

1− 1
β
lnx− 1

)
. We consider Taylor-expansions of the form:

h(x) = −1
2

α

β
(x− 1) +

1

4

α

β

(
1− 1

2β

)
(x− 1)2 + . . . , (B.25)

exp[−h(x)] = 1 +
1

2

α

β
(x− 1)− 1

4

α

β

(
1− 1

2β
− α

2β

)
(x− 1)2 + . . . , (B.26)

x
γ
β = 1 +

γ

β
(x− 1) +

1

2

γ

β

(
γ

β
− 1

)
(x− 1)2 + . . . . (B.27)

and evaluate them at x = 11
12
so that:

Euvf =
Esub

24

(
α

β

)2 [
337

1152
+

1

2304
β2

(
1

2
+
a

2

)]
+ Φe

(
γ − β

β

)(
1− 1

24

γ

β

)
.

(B.28)

The various contributions in this equation can be also investigated by means of quan-
tum mechanics. Following Johnson in [67] the leading term of Eq. (B.28) is Φe (

γ−β
β
).

Therefore it is reasonable to consider the approximation:

Euvf
∼= Φe

(
γ − β

β

)
. (B.29)
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[8] R. Becker and W. Döring. Kinetische Behandlung der Keimbildung in
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Die vollkommene Kontinuierlichkeit einer Bewegung ist dem menschlichen Verstande unfasslich.
Dem Menschen werden die Gesetze jeder Art von Bewegung nur dann fasslich, wenn er willkürlich
aus ihrem Zusammenhang gerissene Teilstücke dieser Bewegung betrachtet. Indessen fliesst der
grösste Teil der menschlichen Irrtümer gerade aus diesem willkürlichen Zerteilen der kontinuierlichen
Bewegung. [...] Um genau das gleiche handelt es sich, wenn es gilt, die Bewegungsgesetze der
Geschichte zu erforschen.

Lew N. Tolstoi (1828-1910)
aus Krieg und Frieden


