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Summary

The present work is intended to make a contribution to the monitoring of civil engineering structures. The detec-
tion of damage to structures is based on the evaluation of spatially and temporally distributed hybrid measurements.
The acquired data can be evaluated purely geometrically or physically. It is preferable to do the latter, since the cause
of damage can be determined by means of geometrical-physical laws in order to be able to intervene in time and
ensure the further use of the structures. For this reason, the continuum mechanical �eld equations in conjunction
with the �nite element method and hybrid measurements are combined into a single evaluation method by the
adjustment calculation. This results in two challenges.
The �rst task deals with the relationship between the �nite element method and the method of least squares. The
�nite element method solves certain problem classes, which are described by a system of elliptical partial di�erential
equations. Whereas the method of least squares solves another class of problems, which is formulated as an overde-
termined system of equations. The striking similarity between both methods is known since many decades. How-
ever, it remains unresolved why this resemblance exists. The contribution is to clarify this by examining the varia-
tional calculus, especially with regard to its methodological procedure. Although the well-knownGauss-Markov
model within the method of least squares and the �nite element method solve inherently di�erent problem classes,
it is shown that both methods can be derived by following the same methodological steps of the variational calcu-
lus. From a methodical viewpoint, this implies that both methods are not only similar, but actually the same. In
addition, it is pointed out where a possible cross-connection to other methods exists.
The second task introduces a Measurement- and Model-based Structural Analysis (MeMoS) by integrating the
�nite element method into the adjustment calculation. It is shown in numerical examinations how this integrated
analysis can be used for parameter identi�cation of simple as well as arbitrarily shaped structural components. Based
on this, it is examined with which observation types, with which precision and at which location of the structure
these measurements must be carried out in order to determine the material parameters as precisely as possible. This
serves to determine an optimal and economic measurement set-up. With this integrated analysis, a substitute model
of a geometrically complex structure can also be determined. The issue of the detection and localisation of damage
within a structure is studied by means of this structural analysis. The Measurement and Model-based Structural
Analysis is validated using two di�erent test setups, an aluminum model bridge and a bending beam.



Zusammenfassung

Die vorliegende Arbeit soll einen Beitrag zur Überwachung von Ingenieurbauwerken leisten. Die Detektion von
Schäden an Bauwerken basiert auf der Auswertung von räumlich und zeitlich verteilten Hybridmessungen. Die
erfassten Daten können rein geometrisch oder physikalisch ausgewertet werden. Letzteres ist vorzuziehen, da die
Schadensursache mittels geometrisch-physikalischer Gesetze ermittelt werden kann, um rechtzeitig eingreifen und
die weitere Nutzung der Bauwerke sicherstellen zu können. Aus diesem Grund werden die kontinuumsmechani-
schen Feldgleichungen in Verbindung mit der Finite-Elemente-Methode und Hybridmessungen durch die Ausglei-
chungsrechnung zu einer einzigen Auswertemethode kombiniert. Dabei ergeben sich zwei Aufgabenstellungen.
Die erste Aufgabe beschäftigt sich mit der Beziehung zwischen der Finite-Elemente-Methode und der Ausglei-
chungsrechnung. Die Finite-Elemente-Methode löst bestimmte Problemklassen, die durch ein System elliptischer
partieller Di�erentialgleichungen beschrieben werden. Während die Methode der kleinsten Quadrate eine weitere
Klasse von Problemen löst, die als ein überdeterminiertes Gleichungssystem formuliert ist. Die au�allende Ähnlich-
keit zwischen den beiden Methoden ist seit vielen Jahrzehnten bekannt. Es bleibt jedoch ungeklärt, warum diese
Ähnlichkeit besteht. Der Beitrag soll dies klären, indem die Variationsrechnung im Hinblick auf ihr methodisches
Vorgehen untersucht wird. Obwohl das bekannte Gauss-Markov-Modell innerhalb der Methode der kleinsten
Quadrate und die Finite-Elemente-Methode inhärent unterschiedliche Problemklassen lösen, wird gezeigt, dass
beide Methoden durch die gleichen methodischen Schritte der Variationsrechnung abgeleitet werden können. Aus
methodischer Sicht bedeutet dies, dass beide Methoden nicht nur ähnlich, sondern sogar gleich sind. Außerdem
wird darauf hingewiesen, wo eine mögliche Querverbindung zu anderen Methoden besteht.
Die zweite Aufgabenstellung stellt eine Messungs- und Modellbasierte Strukturanalyse (MeMoS) durch die Integra-
tion der Finite-Elemente-Methode in die Ausgleichungsrechnung vor. In numerischen Untersuchungen wird ge-
zeigt, wie diese integrierte Analyse zur Parameteridenti�kation sowohl einfacher als auch beliebig geformter Struk-
turbauteile eingesetzt werden kann. Darauf aufbauend wird untersucht, mit welchen Beobachtungstypen, mit wel-
cher Genauigkeit und an welcher Stelle der Struktur diese Messungen durchgeführt werden müssen, um die Ma-
terialparameter möglichst genau zu bestimmen. Dies dient der Ermittlung eines optimalen und wirtschaftlichen
Messaufbaus. Mit dieser integrierten Analyse kann auch ein Ersatzmodell einer geometrisch komplexen Struktur
ermittelt werden. Die Frage der Erkennung und Lokalisierung von Schäden innerhalb einer Struktur wird mit Hilfe
dieser Strukturanalyse behandelt. Die Messungs- und Modellbasierte Strukturanalyse wird mit zwei verschiedenen
Testaufbauten, einer Aluminium-Modellbrücke und einem Biegebalken, validiert.
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tively Êζ , the ratio rel = Ê22
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1 Prologue

Nothing shocks me. I’m a scientist.

– Dr. Henry Walton “Indiana” Jones, Jr.,
Indiana Jones and the Temple of Doom (1984)

Technical Diagnostics (Czichos 2013) is concerned with diagnostic procedures and methods for the determina-
tion of faults or failures in technical objects. The examination may reveal symptoms or even syndromes (groups of
symptoms) that indicate of abnormal condition. On a continuous or scheduled basis, the diagnosis can be carried
out. The technical diagnostics may be principally broken down into two applications: Condition Monitoring (ISO

13372:2012 2012) and Structural Health Monitoring (SHM) (Farrar and Worden 2013). Both diagnostics are
dedicated to the acquisition of data and to the process of information that indicate the state of a technical object.
The scope of condition monitoring is mainly on machines, while the focus of structural health monitoring is set
on civil engineering structures such as buildings, bridges, dams, main road, railways, processing plants, etc.
The objective of structural health monitoring is to guarantee the functionality, quality, reliability and safety of
civil engineering structures. The important outcome from structural monitoring is to avoid catastrophic failures
and unintended downtime, to identify suspicious behaviour before it becomes a problem, to support maintenance
and overhaul management and to provide assistance to research and development for innovative structural designs
and to standardised guidelines and practices. The monitoring procedure begins with data acquisition of structural
behaviour to evaluate structural performance under designated environmental and operational conditions. Unex-
pected results may indicate the damage or deterioration of the structure and can be a valuable indicator of the state
or condition of the structure.
Daum (2013, p. 413 �) speci�es a generic design procedure common to all structural health monitoring systems
designs. This generic design process ultimately de�nes the basic concept of monitoring which can be summarised
as:

1. characterisation of the structure and identi�cation of the required measurands as well as of the signi�cant pa-
rameters for damage evaluation,

2. selection of suitable sensors and data acquisition system,

3. application of an appropriate diagnostic method.

In this thesis, the Measurement- and Model-based Structural Analysis for early damage detection and localisation
is presented following the term monitoring as de�ned above.
Firstly, the structural behaviour is described by means of a physical model. This in turn leads to �eld equations that
connect the primitive variables to the material parameters as well as to a set of boundary conditions. Mass density,
velocity, temperature, electric �eld, magnetic �ux density and their spatial and temporal derivatives are considered
as primitive variables. The boundary conditions describe the environmental and operational e�ects on engineer-
ing structure. The material parameters characterise the substances which the structure is made of. The required
measurands for structural health monitoring are identi�ed by determining the quantities that can be measured in
the �eld equations and in the boundary conditions. Material parameters are regarded as unmeasurable as they can
only be drawn from observations of measurable quantities. Furthermore, they serve as a key feature for the damage
evaluation.
Secondly, once the measurands have been identi�ed, decisions regarding the selection of suitable sensors and data
acquisition system have to be made based on the following three criteria: performance and quantity of sensors,
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environmental sensor operating conditions and economical aspects. A model-based sensitivity analysis is carried
out to evaluate the impact of stochastic characteristics of sensors on the material parameters computation. The
results of this analysis provide the information about the minimum requirement for the performance and quantity
of sensors. Consequently, these results are used to assess the economic feasibility of a structural monitoring plan.
Thirdly and lastly, as stated in Worden et al. (2007), sensors are incapable to measure damage. However, from
the measurements they collect, tangible features such as material parameters can be extracted. Then, structural
damages are identi�ed by comparing features from di�erent states of the structure. In this comparison, hypothesis
testings from statistical analysis are applied to detect and localise damages. The success rate of damage detection
and localisation depends on the sensor precision, on the correctness of the physical modelling and on the structural
damage severity. In a Monte Carlo simulation this dependence can be clari�ed beforehand.
Therefore, the Measurement- and Model-based Structural Analysis can be placed as part of the group of technical
diagnostics. However, from a civil engineering perspective, the four main aims in structural health monitoring are

1. the detection,

2. the localisation,

3. the causes and

4. the prognoses of damages

in a structure. This perspective does not necessary contradict the generic design procedure of the technical diagnos-
tics, rather the physical characterisation / description of the structure becomes utmost important. While structural
damages can be detected and localised by non-physical approaches, the causes of damages and the following prog-
noses rely heavily on a physical model. Even though, the Measurement- and Model-based Structural Analysis does
not claim to be the ultimate method that can determine all the causal links between measurements and the sources
of damages, the presented analysis lays down the fundamental framework that will allow progressing toward the
goal in further researches. Hence, the Measurement- and Model-based Structural Analysis requires a coherent eval-
uation between physical model and measurements by means of an adjustment method with the capability to assess
statistically the results in regard of precision and reliability.

Related Works

According to Welsch and Heunecke (2001), engineering surveys are involved in all phases of the life cycle phase
of a structure: Planning phase, construction, commissioning, operation and maintenance, renovation or demo-
lition. Deformation measurements between commissioning, operation and maintenance are of particular impor-
tance. The main task of the deformation measurements and its corresponding analysis in these phases are to obtain
a detailed and relevant description of the structure in order to examine its condition. The aim and purpose of
the monitoring measures is the early detection of damages, failures and hazards for operational safety in order to
be able to take measures in good time. Monitoring measures are only one aspect that improves operational safety.
Therefore engineering surveying is unable to cover all aspects, however it is an important component. As a result,
the monitoring of structures today is a multidisciplinary task.
In accordance with Welsch and Heunecke (2001), there are four deformation models: congruence, kinematic,
static and dynamic model. Each individual model is discussed as follows.
Conventional deformation analysis aims to clarify the geometry of the structure and its motion geometry by captur-
ing the structural body with discrete points at a given point in time. The causes of the movement are not examined.
The captured motion of each point is then used to reconstruct the displacement and deformation of the structure.
The congruence models in conventional deformation analysis is a classical approach for monitoring a structure. The
geometry of the structure is compared at two or more points in time. A statistical test is then carried out to de-
termine whether a deformation has occurred or not. For example, Heunecke et al. (2013, p. 488 �) examine a
control point network that spans the surface of the structure. By means of stochastic evaluations, signi�cant posi-
tion changes of the points of the network are determined from di�erent states of the structure.
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In the conventional deformation analysis the congruence models can be understood as a special case of the so-called
kinematic models. In these models, the motion functions of the discrete points are explicitly estimated from quasi-
continuous measurements. The determined time-dependent motion functions can then be further analysed. For
example, Welsch (1986) shows the determination of the velocity and strain rate �eld from continuous position
measurements of a geodetic network. The results were developed with regard to the assessment of structure move-
ments or distortions.
While conventional methods examine the spatial and temporal deformation changes of a structure purely geometri-
cally, the advanced deformation analysis also considers the cause of deformation. Both the physical properties and
the external in�uences of the structure are taken into account as the reason for the deformation. In terms of system
theory, the causal forces are input parameters which are transformed by the structure as a transfer function into
the resulting deformation as output quantities. This creates a causal chain that is referred to as a dynamic system.
The modelling of this dynamic system is a complex issue that can only be successfully addressed through interdis-
ciplinary collaboration. The advanced deformation analysis is formally divided into static and dynamic models,
whereby the static variants can be understood as a special case of the dynamic cases.
First, the static models evaluate between di�erent structural states in which the structure is in equilibrium with
forces. The forces acting on the structure can di�er between the equilibrium states. The advantage over the con-
gruence model is that this makes it possible to compare deformation states of the structure under di�erent external
conditions in order to detect possible damage to the structure. For example, Brandes et al. (2012) evaluate two
static states of a wooden bridge, one loaded with external forces and one unloaded. With the help of discrete dis-
placement measurements on a wooden bridge and a mechanical model, combined with an evaluation method of
the adjustment calculation with Lagrange multipliers, drilling damage could be detected.
Second, The dynamic models evaluate a structure in the non-equilibrium state. The structural motion under time-
dependent in�uences is examined. For example, the vibration behaviour of the structure can be examined in order
to determine possible damage. The Ambient Vibration Monitoring from Wenzel and Pichler (2005) analyses
distinct dynamic structural behaviour. When a structure, such as a bridge, is monitored, it can be observed that
the structure is constantly in motion due to the excitation by the environment. And for a brief moment, the struc-
ture might be relieved of the environmental in�uences. At that moment, a decaying vibration is observed. This be-
haviour suggests that a structure can be adequately described by a (physical) spring-damping system, i. e., structural
deformation can be decomposed into two parts: reversible and irreversible. Deformation that recovers completely
after removal of the external in�uences is considered as reversible and as such this part can be represented as spring
components within a structural system. A remaining deformation is referred to as irreversible part that is imagined
in a system as damping components. The Forced Vibration Analysis also analyses the dynamic structural behaviour
as described above, see for example Brincker and Ventura (2015). The di�erence is that controlled vibration is
induced.
If both the cause and the reactions of a structure are measurable, the transfer function can be determined from
them. The formulation of a suitable mathematical representation of the transfer function of a dynamic system
(dynamic and static models) is called system identification. The identi�cation of the transfer function may be based
on physical reasoning. This is called parametric identification in the terms of system theory. Alternatively, the
system can be identi�ed without rational justi�cation by an empirical mathematical description which is referred
to as non-parametric identification. In both cases, however, suitable input and output data must be available for a
successful system identi�cation.
A �owchart in Fig. 1.1, based on the idealized �owchart in Chrzanowski et al. (1990), is used to classify
Measurement- and Model-based Structural Analysis with regard to deformation analysis. In Fig. 1.1, the upper
part represents the structure to be examined. A deformable body, such as a structure, is deformed by external loads.
Without loss of generality, two observers are shown who measure the deformation of the structure in di�erent
states. The �rst observer measures the deformation of the structure under de�ned loads in an essentially arbitrary
reference state at initial times for which a damage-free state can be assumed. The second observer measures the de-
formation of the same structure at a later time under possible changed loads and under possible changed conditions
of the structure. The lower part represents Measurement- and Model-based Structural Analysis. By means of con-
tinuum mechanics, a deterministic relationship is established between the two quantities, material parameters and
structural deformation, in the form of a system of partial di�erential equations. Using the �nite element method,
the partial di�erential equations are converted into a system of equations, so that it is then possible to integrate
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Figure 1.1: A �owchart for classifying Measurement- and Model-based Structural Analysis

as a dynamic deformation model or as an integrated deformation analysis accord-
ing to Chrzanowski et al. (1990); the structure to be examined in the sense
of system theory (top part); Measurement- and Model-based Structural Analysis

(bottom part)
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them into the adjustment calculation. This makes it possible to estimate the material parameters from the deforma-
tion measurements (system identi�cation). In addition, it is possible to perform sensitivity analyses using synthetic
deformation measurements to identify the optimal sensor placement. The estimated material parameters from the
undamaged state of the structure can be used as observed unknowns together with deformation measurements from
later epochs to detect and localize possible damage to the structure.
In the sense of Welsch and Heunecke (2001) and Chrzanowski et al. (1990) it can be stated that Measure-

ment- and Model-based Structural Analysis can be regarded as a dynamic deformation model or as an integrated
deformation analysis. Due to computer limitations, there is a trade-o� between dealing with dynamic topics or
geometric complexity. Although the theoretical foundations for the treatment of time-dependent problems are
discussed, this work deals only with the static issue. This decision has no in�uence on the fact that Measurement-

and Model-based Structural Analysis is still a dynamic model.
The Measurement- and Model-based Structural Analysis is to be applied to bridge monitoring. In terms of Struc-
tural Health Monitoring, this dissertation implements a complete process of strategies and techniques for damage
detection and localisation of engineering structures as proof-of-concept:

• construction of a small test bridge,

• acquisition of the bridge behaviour with suitable sensors,

• determination of damage-relevant quantities from the measurements,

• statistical analysis of the extracted parameters for the determination of the current structural condition.

Scope of the Work

Structural Health Monitoring requires interdisciplinary knowledge from various parts of engineering. The scope of
this dissertation is to identify damage with a rigorous analysis by fusing the fundamentals belonging to continuum
mechanics and geodesy. On one hand, continuum mechanics provides the framework to describe the behaviour
of the structure in terms of the relationship between the primitive �eld quantities to the boundary conditions
and to the material parameters. On the other hand, adjustment theory in geodesy provides methods to determine
unknown parameters from observations and �xed values as well as to evaluate the results in regard to precision and
reliability. The presented Measurement- and Model-based Structural Analysis is based on the expertise of these
two engineering �elds. Material parameters characterise and quantify physical properties of matters. Changes that
occur to the substances are noticed in alteration in these parameters. In this thesis, material constants are used as
main features for the assessment of early damage detection on structures. The challenge is to extract and to assess
material parameters from the measurements of di�erent epochs. The stochastic evaluation of material parameters
leads to the detection of damage. If defects is detected in the structure, individual local material parameters are
further analysed to locate the damage. In summary, the objectives of Measurement- and Model-based Structural

Analysis can be addressed in the context of structural health monitoring as follows: Damage is to be detected and
localised as well as explained by a decrease in the material parameter value. Since the focus here is on early detection
of damage, the damage prognosis is omitted in this dissertation.
Aforesaid, structural health monitoring combines know-how from di�erent �elds of engineering. It should be
generally understood that to include everything about engineering science would go beyond the scope in this dis-
sertation. Even if there is a limitation to materials, say steel, concrete, wood, that are the usual building materials,
it is still impossible to complete this dissertation in a reasonable time. As a matter of fact, there are di�erent types
of material, and they behave di�erently under the same conditions. Therefore, there are individual departments,
each is dealing with specialised material such as department for metallic materials, department for construction
chemistry, department for biological materials, etc. The common feature of all building materials is that they be-
have in a linearly elastic manner. This idealisation is a necessary simpli�cation that has to be made. Anything that
signi�cantly deviates from this assumption can be interpreted as damage. Certainly, damping elements that are
installed on bridges to shift the resonance frequency would disturb this premise immensely. However, in further
research as well as the ambient vibration monitoring already suggests, one can use linear viscoelasticity, combina-
tion of linear elasticity and linear viscosity, to characterise the building materials to overcome this limitation. In this
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dissertation, the foundation for a general method for structural health monitoring is laid: Continuum mechanics
is known for its generality to analyse physical systems in an axiomatic deductive way. While adjustment theory, in a
broader sense, is a general method to convert mathematical and physical relationships into useful results. Both have
the generalisation in common. The commitment in this work is to keep approaches to any given task as general as
possible.
The �nite element method and the least squares adjustment are essential for the Measurement- and Model-based

Structural Analysis. A more academic perspective in this dissertation deals with the relationship between those two
methods. As stated in Lienhart (2007), he referred in his dissertation that many geodesists already knew about
the striking similarity between the mentioned methods. Analogies between �nite element method and least squares
adjustment were presented, but the mentioned geodesists failed to show that both methods can be derived from
the so-called variational calculus even though each method is apparently trying to solve di�erent types of problems.
While the development of the �nite element method is often considered coming from mechanics, it is shown here
that �nite element method should be seen as a part of the adjustment theory.

Scientific and Technological Significance

Approximation, optimisation, �ltering, projection, biological evolution, genetic algorithm, machine learning, data
encryption and decryption, data compression, building information modelling, industry 4.0, internet of things and
many more are in no doubt inherently di�erent. But, what if all these notions can be consolidated, to be precise,
the methodological approaches that are attached to those notions, in a single uni�ed method, a uni�ed adjustment
theory? The advantages lie ahead: One would be able to comprehend all these di�erent ideas and concepts in an
instant, because they are perceived as similar. The bene�t would be that they could be combined and be applied
for di�erent engineering tasks. This could lead to new and innovative approaches. In a long run, it is a lucrative
objective to show the connections between, at �rst sight, di�erent methods. In a short-term, in this dissertation, the
connections between the �nite element method and least squares adjustment are tied by means of the calculus of
variations. Both methods share inherently di�erent notions, while the �nite element method solves certain classes
of problems described by a system of elliptic partial di�erential equations, the method of least squares solves another
class of problems formulated as overdetermined system of equations. At the end of the day, both methods follow
the very same methodological steps that were developed byLagrange andEulerback in 1755. Theadjustment
theory is more than a main tool used only in geodesy. In this dissertation, adjustment theory is being extended
by assimilation of variation calculus in the hope of unifying all known methods. The aim is to reach the ultimate
method that can solve any mathematically describable problem. In the end, when liberated from the burden of the
many confusing origins and being uni�ed, it will be simply called: The Method.
The aims that are demanded by structural health monitoring can only be reached by interdisciplinary collaborative
e�ort of di�erent engineering and scienti�c �elds. Material science deals with research of designing and characteris-
ing materials. The civil engineers plan and construct structures. In computational science simulations of structures
are performed. In order to combine their forces to achieve the aims of structural health monitoring, in a �rst step,
a common framework has to be established. On the one hand, continuum mechanics appear in every branch of
physical engineering. On the other hand, the adjustment theory comes into play when dealing with experimental
data or parameter adjustments in simulation. This has made both, continuum mechanics and adjustment theory,
a great unifying framework for structural health monitoring. Moreover, a more deductive path is followed to build
up this framework. This rational way of working requires that well-established knowledge are integrated in the
framework in the �rst place. Then, more experimental or more intuition-based approaches can be built on top of
it. In doing so, the framework is more clearly arranged and enable problems to be solved in a problem-oriented way.

Research Topics

For the sake of clarity, the important points are summarised in the form of hypotheses and questions.
The finite element method and the least squares method can be derived from the variation calculus. Both methods
solve fundamentally di�erent problems. Nevertheless, both methods establish a system of linear equations that
leads to the solution of their respective problem. From a geodetic perspective, the linear system of equations of the
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�nite element method is fascinating, since analogies can be drawn with respect to geodesy and mechanics. However,
it has been ignored that the procedure of both methods is identical. Thus, the objective is to show that the varia-

tional calculus as an overarching method leads to both methods when the corresponding problem formulation is
speci�ed:

• What is variational calculus?

• What formulations are there to describe the same problem?

• How to show with simple examples that the two methods are related by means of variational calculus?

• What consequences result from the fact that both methods can be derived using the variational calculus?

Detect and locate damage with rigorous analysis by merging the basics of geodesy and continuum theory. After the �-
nite element method and the least squares method have been discussed in detail, the two methods can be combined
with each other to develop a test method suitable for monitoring civil engineering structures. The combination of
the two methods is nothing new in itself, but so far the combination of the two methods has meant that they still
work as a separate and independent module and only exchange information with each other. In this case, a combina-
tion is preferred in which the derived variables of both methods are used in each other so that the wanted quantities
can be calculated directly from the given values. This requires a certain degree of rigour. From continuum mechan-
ics, physical models can be derived, from whose components suitable measurands and parameters can be identi�ed
in order to �nd appropriate sensor types and damage parameters. Furthermore, the physical model establishes the
causal relationship between the measurand and the desired parameters. Based on this, the adjustment calculation
can calculate the desired parameters and their stochastic properties from redundant measurements. The questions
of interest for monitoring can be examined:

• What quantity has to be measured where, with which sensor type and with which precision in order to detect
and locate the damage?

• How can the concept of observed unknowns and deformation analysis from geodesy assist in deducing the
location of the damage from the elastic parameters?

For any shaped body, the following problem must be solved beforehand:

• How to determine the elastic parameters from the measurements for any shape of body under any load?

Overly complicated shaped bodies can cause numerical complications, so it is inevitable to �nd a substitute model
with the same deformational behaviour.

• How can the �nite element method and the least squares method use their combined e�ort to �nd a substi-
tute model?

Finally, appropriate experiments must be developed to validate the e�ectiveness of this integrated analysis to answer
the question whether the Measurement- and Model-based Structural Analysis is capable of detecting and locating
damage?
Since the focus of this thesis is on the structural evaluation of arbitrary geometric complexity, dynamic processes
are not explicitly dealt with here due to limitations of the available computing speed and memory. However, it is
wrong to conclude that this is a fundamental limitation of Measurement- and Model-based Structural Analysis. For
example, by using the aforementioned substitute model in conjunction with specially developed �nite elements, dy-
namic problems can be solved in a reasonable time by means of Measurement- and Model-based Structural Analysis.
However, this goes beyond the scope of this dissertation.
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Methods and Organisation of the Dissertation

In this dissertation, the �nite element method and adjustment calculation are the main components. The relation-
ship between these two methods as well as their combined utilisation for structural health monitoring are exam-
ined. In Chap. 2 the basics of continuum mechanics are recapitulated. Furthermore, an excursion to �nite element
method is enriched at the end of this chapter. The basic notions of continuum mechanics are presented as follows.
Often used notations are brie�y summarised in Sec. 2.1. This is followed by the three main ingredients to formulate
a �eld equations system, namely: the kinematics also known as the geometrical description of motion in Sec. 2.2,
the physical axioms in form of balance equations in Sec. 2.3 and material laws formulated as so-called constitutive
equations in Sec. 2.4. Finally, this leads to �eld equations expressed as partial di�erential equations in Sec. 2.5.
Then, a practical approach of �nite element method with Python source codes in Sec. 2.6 completes the chapter.
The basics of adjustment calculation are summarised in Chap. 3. Basic notions are brie�y reviewed in Sec. 3.1. This
is followed by the two models of the least squares adjustment in Sec. 3.2, namely: theGauss-Helmertmodel and
Gauss-Markov model. A practical approach to statistical assessments are recapitulated in Sec. 3.3. In Chap. 4
the Variational Calculus is introduced in order to discuss the relationship between �nite element method and least
squares adjustment. Finally, in Chap. 5, the �nite element method and adjustment calculation are brought together.
Detection and localisation of structural damage are being analysed in a shared e�ort in form of the Measurement-

and Model-based Structural Analysis. As an initial examination in Sec. 5.1, theEuler-Bernoulli beam equation,
expressed mathematically as an one-dimensional Poisson di�erential equation, is being treated numerically with
�nite element method. Afterwards, a sensitivity analysis is numerically conducted in regard to elastic parameter and
to hybrid measurements for a slender beam. In a further numerical examination, a geodetic approach the deforma-

tion analysis is being recast and reused to detect and localise material degradation damage within a slender beam.
Finally, the Measurement- and Model-based Structural Analysis is put into practical application. An experiment is
carried out in Sec. 5.3. A slender aluminium beam is tested on a bending apparatus. However, in general, bridges
are anything but slender beams. Therefore, in Sec. 5.4 the plunge was taken in this development and an geometrical
arbitrary formed elastostatic body is being analysed in regard to its anisotropic elastic parameters and displacement
�eld measurements. In Sec. 5.5, a workaround has to be elaborated. Due to computer memory limitation, a simple
geometric substitute body has to be found to replace an original complex body. And to rea�rm this presented anal-
ysis, in Sec. 5.6 a small-sized aluminium bridge model is build as an experimental set-up. To complete this work, a
concluding review is given in Chap. 6.
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2 Basics of Continuum Mechanics

Ray, pretend for a moment that I don’t know anything
about metallurgy, engineering, or physics, and just tell
me what the Hell is going on.

– Peter Venkman, Ph.D., Ghostbusters (1984)

When a deformable and thermal conductible body is subjected to external forces and heating, the body reacts with
changes in its mass density, its velocity and its temperature. One of the main engineering objectives of examin-
ing such a body is to compute these continuously distributed responses that are depending on space and time.
Continuum mechanics can assist for this purpose to derive the functional relationships between responses and
material-speci�c parameters known as the field equations.
In continuum mechanics, as the name already suggest, a physical entity is modelled as a continuum body. It is
a volume which is �lled with continuously distributed matter. However, by this, the continuum mechanics is
incapable to describe microscopic or mesoscopic properties in detail, such as molecular structure or materials with
complex inner structure, e. g., concrete. Nevertheless, the continuum mechanics can comprehend these e�ects by
means of equivalent descriptions. For instance, smeared or homogenized representation can be used. Likewise,
results from statistical mechanics which set up relationships between microscopic and macroscopic properties can
be incorporated. Apart from modelling of internal characteristics of a body, external in�uences have to taken into
consideration. For that matter, a continuum body is divided into in�nitesimal volume elements. These continuum
particles obey the same law as in classical mechanics as well as thermodynamics. Thus, their methods may also be
applied to continuum mechanics as well. In this view, continuum mechanics can be seen as a generalisation of
(classical) particle mechanics augmented with thermodynamics.
Concerning the continuum mechanical approach, an (almost) well-de�ned procedure is followed. In Sec. 2.1, in-
dicial notation that is used in this thesis is brie�y introduced. Kinematic consideration is accounted for in Sec. 2.2.
In Sec. 2.3, a number of balance laws are formulated. In accordance to the responses and environmental in�uences,
one has to choose and use the suitable set of balance equations. Then, for materials in which the examined body
is made of, adequate material laws have to be used. Selected material equations relevant for solid are presented in
Sec. 2.4. Finally, the �eld equations result from the combination of balance and material laws. Three �eld equations
of signi�cant importance are presented in Sec. 2.5: elastodynamic equations, Euler-Bernoulli beam theory and
heat equation. Field equations appear as coupled partial di�erential equations. This leads to the next issue: a �eld
equation shows no direct link between responses and material-speci�c parameters. In order to solve di�erential
equations, appropriate initial and boundary as well as transition conditions have to be provided. Further, a work-
ing method to solve the speci�c type of di�erential equation has to exist.
It is to be noted that regular balances in Cartesian coordinate system are covered in this thesis.

2.1 Notation

Since only the descriptions and representations in Cartesian coordinate system is used, aspects of arbitrary coor-
dinates are not discussed. In this section, the basics of indicial notation, which are necessary to gain elementary
insight into continuum mechanics, are brie�y covered.
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Einstein Summation Convention

The purpose to use the Einstein summation convention is to simplify and clarify mathematical expressions by
suppressing summation signs, see for example Bronshtein et al. (2007, p. 262). This summation rule states that
a term is implicitly summed over from 1 to 3 whenever an index occurs twice. Indices that appear twice are called
free indices. To preserve this agreement, the number of appearance of each free index can not be exceeded than twice.
Indices that occur once in a term are referred to as bounded indices. For adding up terms, each term is obliged to
contain the same bounded indices.
For example:

zi =
3∑
j=1

aijbj +
3∑
j=1

3∑
k=1

cijdjkgk ≡ aijbj + cijdjkgk .

Kronecker Symbol

The Kronecker delta (cf. Bronshtein et al. 2007, p. 253) with indices i and j running over the set {1, 2, 3}
takes value

δij =

®
1 for δ11 , δ22 , δ33 ,

0 else .
(2.1)

Levi-Civita Symbol

The completely antisymmetric tensor of third order εijk, also known as the alternating tensor in Bronshtein et al.
(2007, p. 265), with the indices i, j, k running over the set {1, 2, 3} takes value

εijk =


1 for ε123, ε231, ε312 ,

−1 for ε213, ε132, ε321 ,

0 else .
(2.2)

The product of two alternating symbols can be described by Kronecker deltas as follows

εijkεlmn =

∣∣∣∣∣∣
δil δim δin
δjl δjm δjn
δkl δkm δkn

∣∣∣∣∣∣
= + δilδjmδkn − δilδjnδkm

+ δimδjnδkl − δimδjlδkn
+ δinδjlδkm − δinδjmδkl . (2.3)

From the above equation, the following useful identities can be derived

εijkεimn = δjmδkn − δjnδkm , (2.4)
εijkεijn = 2δkn , (2.5)
εijkεijk = 6 . (2.6)

The Levi-Civita symbol can be used to represent the cross product of two vectors x1
j and x2

k

~x3 = ~x1 × ~x2 ≡ x3
i = εijkx

1
jx

2
k . (2.7)

Furthermore, the permutation symbol can be applied to compute the determinant of a second order tensorXij

det
(
X
)

=

∣∣∣∣∣∣
X11 X12 X13

X21 X22 X23

X31 X32 X33

∣∣∣∣∣∣ = εijkX1iX2jX3k . (2.8)
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It can be explicitly shown by switching any pair of the indices 1, 2 and 3, the following identity holds

εlmn det
(
X
)

= εijkXliXmjXnk . (2.9)

Multiply both sides with εlmn an useful expressions can be obtained

det
(
X
)

=
1

6
εlmnεijkXliXmjXnk . (2.10)

2.2 Kinematics

The kinematics describes the geometrical aspect of motion (Gross, Hauger, Schröder, Wall, and Ra-
japakse 2009, p. 2). First, two equivalent descriptions of motion are introduced. Afterwards, a deformation
mapping that connects between deformed and undeformed con�guration is shown. Finally, this in turn serves as
basis for the development of strain measures and geometric changes. The cause of movements is not covered by
kinematics, but rather, the kinetics predicts the resulting motion due to the impact of mechanical and thermal
loads. This will be discussed in the section of balance equations.

2.2.1 Description of Motion

In the Eulerian spatial description of motion (cf. Irgens 2008, p. 37 �), a de�nitive propertyψi within a �xed net
of coordinates is expressed as a functional of time t and position vector xj

ψi = ψ̄i
(
t, xj

)
. (2.11)

Whereas in the Lagrangian material description (cf. Irgens 2008, p. 37 �), the movement of each body particle is
governed by the continuous motion

xj = x̃j
(
t,Xk

)
. (2.12)

In consideration of identifying uniquely the particles, a �xed reference time t0 has to be chosen and each individual
material point is distinguished by a functional in spatial perception

Xk = X̄k

(
t0, xj

)
. (2.13)

Using the total di�erential on Eq. (2.12), the velocity can be calculated

dxj
dt

=
d

dt

(
x̃j
(
t,Xk

))
=

∂

∂t

(
x̃j
(
t,Xk

))dt

dt
+

∂

∂Xk

(
x̃j
(
t,Xk

))dXk

dt
=

=
∂

∂t

(
x̃j
(
t,Xk

))
=
∂xj
∂t
≡ vj , (2.14)

where
dXk

dt
= 0 (2.15)

because the reference frame is time-independent by de�nition. The swap between both points of view is carried
out as follows

ψi = ψ̄i
(
t, xj

)
= ψ̄i

(
t, x̃j

(
t,Xk

))
= ψ̃i

(
t,Xk

)
= ψ̃i

(
t, X̄k

(
t0, xj

))
= ψ̄i

(
t, xj

)
, (2.16)

where the functionals of the property ψi are marked with bar or tilde for notation in Eulerian or Lagrangian per-
ception. Both descriptions have consequences in regard of time derivative. In the spatial description the focus lies
on the observation of temporal change of a certain quantity ψi at a speci�c spatial position. The total di�erential
is used to determine the change over time in the property ψi which is known as material time derivative

dψi
dt

=
d

dt

(
ψ̄i
(
t, xj

))
=

∂

∂t

(
ψ̄i
(
t, xj

))dt

dt
+

∂

∂xj

(
ψ̄i
(
t, xj

))dxj
dt

=
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=
∂

∂t

(
ψ̄i
(
t, xj

))
+

∂

∂xj

(
ψ̄i
(
t, xj

))
vj =

ï
∂ψi
∂t

+
∂ψi
∂xj

vj

ò
spatial

. (2.17)

Alternatively, in the material description, particles are speci�ed in a reference con�guration and their trajectories are
examined by following the travel paths of material points. The material time derivative can be obtained by applying
the total di�erential as follows

dψi
dt

=
d

dt

(
ψ̃i
(
t,Xk

))
=

∂

∂t

(
ψ̃i
(
t,Xk

))dt

dt
+

∂

∂Xk

(
ψ̃i
(
t,Xk

))dXk

dt
=

=
∂

∂t

(
ψ̃i
(
t,Xk

))
=

ï
∂ψi
∂t

ò
material

. (2.18)

In both perceptions, the total temporal change of a quantityψi is a�ected by a local change over time. Additionally,
in spatial point of view, the quantity ψi is in�uenced by a convective part. This part describes the space of a spatial
point in which particles may enter or leave. In contrast, there is no convective part in the material point of view,
since a speci�c unique material particle is followed.

2.2.2 Deformation Gradient

The relationship between the in�nitesimal distance of two neighbouring particles in a current con�guration dxj
and in the corresponding reference frame dXl can be calculated using the total derivative

dxj
dXl

=
d

dXl

(
x̃j
(
t,Xk

))
=

∂

∂t

(
x̃j
(
t,Xk

)) dt

dXl

+
∂

∂Xk

(
x̃j
(
t,Xk

))dXk

dXl

=

=
∂xj
∂Xk

δkl =
∂xj
∂Xl

=⇒ dxj =
∂xj
∂Xl

dXl , (2.19)

where
Fjl =

∂xj
∂Xl

(2.20)

is known as deformation gradient (cf. Haupt 2010, p. 23 �). Analogously, one can write

dXk

dxi
=

d

dxi

(
X̄k

(
t0, xj

))
=

∂

∂xj

(
X̄k

(
t0, xj

))dxj
dxi

=
∂Xk

∂xj

dxj
dxi

=

=
∂Xk

∂xj
δji =

∂Xk

∂xi
=⇒ dXk =

∂Xk

∂xi
dxi =

(
F−1

)
ki

dxi , (2.21)

The deformation gradient Fjl rotates and stretches the in�nitesimal neighbourhood in the reference state dXl to
the current frame dxj . In contrary, the deformation gradient

(
F−1

)
ki

reverses the transformation. The invertibil-
ity is only possible following the inverse function theorem, which the Jacobian J of the deformation gradient must
have a non-zero positive value

J = det
(
Fjl
)
> 0 . (2.22)

The time-derivative of the deformation gradient is calculated as follows

dFjl
dt

=
d

dt

Å
∂xj
∂Xl

ã
=

d

dt

Å
∂

∂Xl

(
x̃j
(
t,Xk

))ã
=

=
∂

∂t

Å
∂xj
∂Xl

ã
dt

dt
+

∂

∂Xk

Å
∂xj
∂Xl

ã
dXk

dt
=

∂

∂t

Å
∂xj
∂Xl

ã
=

∂

∂Xl

Å
∂xj
∂t

ã
=

=
∂

∂Xl

Å
dxj
dt

ã
=
∂vj
∂Xl

=
dvj
dXl

=
d

dXl

(
v̄j
(
t, xm

))
=

=
∂

∂t

(
v̄j
(
t, xm

)) dt

dXl

+
∂

∂xm

(
v̄j
(
t, xm

))dxm
dXl

=
∂vj
∂xm

∂xm
∂Xl

=

=
∂vj
∂xm

Fml . (2.23)
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2.2.3 Strain Tensor

A body undergoes a transformation, when it changes from a reference to a current con�guration. However, the
body deforms only due to a certain part of this transformation, the so-called non-rigid body transformation. The
strain ε is a measure to capture the deformation (cf. Liu 2002, p. 8 �). For example, the Euler-Almansi strain is
de�ned as follows

ε =
1

2

Å
l2 − L2

L2

ã
, (2.24)

where L and l are the length of in�nitesimal distance between two neighbouring particles within a body in the
reference dXj and the current con�guration dxi. Accordantly, theEuler-Almansi strain tensor can be extracted
as follows

ε =
1

2

Å ∣∣dxi∣∣2 − ∣∣dXj

∣∣2∣∣dxk∣∣2
ã

=
1

2

Å
dxidxi − dXjdXj

dxkdxk

ã
=

1

2

Åδildxlδimdxm −
(
F−1

)
jl

dxl
(
F−1

)
jm

dxm

δkldxlδkmdxm

ã
=

1

2

Ådxlδlmdxm − dxl
(
F−1

)
jl

(
F−1

)
jm

dxm

dxlδlmdxm

ã
=

1

2

(
dxl

(
δlm −

(
Flj Fmj

)−1
)

dxm

dxlδlmdxm

)

=
dxlelmdxm
dxlδlmdxm

,

where
elm =

1

2

(
δlm −

(
Flj Fmj

)−1
)

=
1

2

(
δlm −

(
Blm

)−1
)

(2.25)

is known as Euler-Almansi strain tensor with so-called left Cauchy-Green deformation tensor

Blm = Flj Fmj = Flj
(
FT
)
jm
. (2.26)

When a displacement vector ui is introduced as follows

xi = ui +Xi , (2.27)

the Euler-Almansi strain tensor can be recast as

elm =
1

2

Å
δlm −

( ∂xl
∂Xj

∂xm
∂Xj

)−1
ã

=
1

2

Å
δlm −

∂Xj

∂xl

∂Xj

∂xm

ã
=

1

2

(
δlm −

∂

∂xl

(
xj − uj

) ∂

∂xm

(
xj − uj

))
=

1

2

Å
δlm −

(∂xj
∂xl
−
∂uj
∂xl

)( ∂xj
∂xm

−
∂uj
∂xm

)ã
=

1

2

Å
δlm −

(
δjl −

∂uj
∂xl

)(
δjm −

∂uj
∂xm

)ã
=

1

2

(
δlm − δljδjm + δlj

∂uj
∂xm

+ δmj
∂uj
∂xl
−
∂uj
∂xl

∂uj
∂xm

)
=

1

2

( ∂ul
∂xm

+
∂um
∂xl
−
∂uj
∂xl

∂uj
∂xm

)
.

For small deformations, the second order term of the above strain tensor can be neglected, the infinitesimal strain

tensor

εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
(2.28)

is obtained.
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2.2.4 Volumetric Changes

The current in�nitesimal volume dV and the volume element dV 0 in the reference con�guration can be computed
by taking the triple product of three given in�nitesimal distance vectors dx1

i , dx2
j , dx3

k in the current and dX1
i ,

dX2
j , dX3

k in the reference state

dV = d~x1 ·
(
d~x2 × d~x3

)
= dx1

i εijk dx2
j dx3

k and

dV 0 = d ~X1 ·
(
d ~X2 × d ~X3

)
= dX1

i εijk dX2
j dX3

k . (2.29)

The volumetric changes of a particle between both states can be described by a ratio J as follows

dV = dx1
i εijk dx2

j dx3
k = εijk

∂x1
i

∂X1
l

dX1
l

∂x2
j

∂X2
m

dX2
m

∂x3
k

∂X3
n

dX3
n

= εijk
∂x1

i

∂X1
l

∂x2
j

∂X2
m

∂x3
k

∂X3
n

dX1
l dX2

m dX3
n = εijkFil FjmFkn dX1

l dX2
m dX3

n

= εlmn det
(
F
)

dX1
l dX2

m dX3
n = det

(
F
)
εlmn dX1

l dX2
m dX3

n = J dV 0 . (2.30)

The ratio J (cf. Irgens 2008, p. 166) describes a local volume change

J = det
(
F
)

=
1

6
εlmnεijkFliFmj Fnk . (2.31)

The time-derivative of the volumetric change ratio (cf. Irgens 2008, p. 166) is computed as follows

dJ

dt
=

d

dt

(
det
(
F
))

=
1

6
εlmnεijk

d

dt

(
FliFmj Fnk

)
=

=
1

6
εlmnεijk

dFli
dt

Fmj Fnk +
1

6
εlmnεijkFli

dFmj
dt

Fnk +

+
1

6
εlmnεijkFliFmj

dFnk
dt

=
1

6
εlmnεijk

∂vl
∂xo

FoiFmj Fnk +
1

6
εlmnεijkFli

∂vm
∂xo

Foj Fnk +

+
1

6
εlmnεijkFliFmj

∂vn
∂xo

Fok

=
1

6
εlmnεijk

∂vl
∂xo

FoiFmj Fnk +
1

6
εlmnεijk

∂vm
∂xo

Foj FliFnk +

+
1

6
εlmnεijk

∂vn
∂xo

Fok FliFmj

=
1

6
εlmnεijk

∂vl
∂xo

FoiFmj Fnk +
1

6

(
−εmln

)(
−εjik

)∂vm
∂xo

Foj FliFnk +

+
1

6
εnlmεkij

∂vn
∂xo

Fok FliFmj

=
1

2
εlmnεijk

∂vl
∂xo

FoiFmj Fnk =
1

2
εlmnεomn

∂vl
∂xo

det
(
F
)

= δlo
∂vl
∂xo

J =
∂vl
∂xl

J . (2.32)

2.3 Regular Balance Equations

A vector-valued extensive quantityΨi of a physical body that can change in time t due to external as well as internal
in�uences is described by a balance equation. E�ects on and in the body are divided into three categories: �ux Fi ,
supply Si and production Pi . The �ux manipulates the body across the surface, whereas the other occur within
the body. The di�erence between supply and production is that the former can be regulated and the latter can not
be controlled at all. The balance equation (cf. W. H. Müller 2014, p. 54) reads as follows

dΨi
dt

= Fi + Si + Pi . (2.33)
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Applying the balance equation to extended bodies, the above equation can be rewritten by means of densities in
the following global form

d

dt

ˆ
ψi dV =

ˆ
fi dA+

ˆ
si dV +

ˆ
pi dV , (2.34)

whereψi , fi , si , pi are the �eld density of the vector valued extensive quantity Ψi , the �eld densities of the �ux, of
the supply and of the production. In the Eulerian point of view, the �elds depend on position xi within a body
and time t, and the �ux density can be varied additionally by the surface normal unit ni

ψi = ψ̄i
(
t, xj

)
, fi = f̄i

(
t, xj , nj

)
, si = s̄i

(
t, xj

)
, pi = p̄i

(
t, xj

)
. (2.35)

On the one hand, global balances are suitable for physical interpretation, but on the other hand they are inappro-
priate for computation of �eld quantities. For this purpose, integral balances are transformed into local form. The
local balances have the advantage that the integrals are suppressed and the relationship between �eld densities are
described in form of partial di�erential equations. Then, various methods are available for dealing with partial
di�erential equations. To proceed from global form to local form, the left-hand side of Eq. (2.34) has to be re-
formulated into the Lagrangian description, so that it is possible to di�erentiate with respect to time t under the
integral sign. The Reynold’s Transport Theorem (cf. W. H. Müller 2014, p. 59) is utilized as follows

d

dt

ˆ

V=V
(
t
)ψi dV =

d

dt

ˆ

V 0=V
(
t0

)ψ̃i
(
t,Xk

)
J dV 0

=

ˆ Å
d

dt

(
ψ̃i
(
t,Xk

))
J + ψ̃i

(
t,Xk

)dJ

dt

ã
dV 0

=

ˆ Å
d

dt

(
ψ̄i
(
t, xj

))
J + ψ̄i

(
t, xj

)∂vj
∂xj

J

ã
1

J
dV

=

ˆ Å
∂

∂t

(
ψ̄i
(
t, xj

))
+

∂

∂xj

(
ψ̄i
(
t, xj

))
vj + ψ̄i

(
t, xj

)∂vj
∂xj

ã
dV

=

ˆ Å
∂ψi
∂t

+
∂ψi
∂xj

vj + ψi
∂vj
∂xj

ã
dV =

ˆ Å
∂ψi
∂t

+
∂

∂xj

(
ψivj

)ã
dV

=

ˆ
∂ψi
∂t

dV +

ˆ
∂

∂xj

(
ψivj

)
dV =

ˆ
∂ψi
∂t

dV +

ˆ
ψivjnj dA . (2.36)

This theorem states that the quantityΨi can be changed over time t either by the temporal change of the densityψi
or by quantity transport across the surface or both. The volumetric change ratio J in Eq. (2.30) and its time-
derivative in Eq. (2.32) as well as the time-independence of the reference volumeV 0 are used to obtain the transport
theorem. Furthermore, in the last step of the derivation Gauss’ Theorem (cf. Tadmor et al. 2012, pp. 64–66) for
g = ψivj is applied so that

ˆ
gnj dA =

∑
∀k

ˆ

∂Vk

gnj dA

=
∑
∀k

lim
∆xj→0

Åˆ
∂Ak

ḡ
(
xj
)(
−nj

)
dA+

ˆ
∂Ak

ḡ
(
xj + ∆xj

)
nj dA

ã
=
∑
∀k

lim
∆xj→0

(
−ḡ
(
xj
)
∆Ak + ḡ

(
xj + ∆xj

)
∆Ak

)
=
∑
∀k

lim
∆xj→0

Å
ḡ
(
xj + ∆xj

)∆Ak
∆Vk

− ḡ
(
xj
)∆Ak

∆Vk

ã
∆Vk

=
∑
∀k

lim
∆xj→0

(
ḡ
(
xj + ∆xj

)
− ḡ
(
xj
)

∆xj

)
∆Vk =

∑
∀k

∂g
∂xj

∆Vk

=

ˆ
∂g
∂xj

dV . (2.37)
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The divergence theorem states that net �ux of g in and out of the body is equal to the source and sink of g within
the body. For the proof of this theorem, the body is virtually divided into k number of cubes. Then, for each cube
two opposing sides in normal direction nj are evaluated with the mean value theorem. The partial derivative is
obtained by examining the limit ∆xj → 0. Reconstructing all cubes into the body yields the theorem in Eq. (2.37).
The Reynold’s transport theorem and Gauss’ divergence theorem are used in context with the global balance
equation to obtain ˆ Å

∂ψi
∂t

+
∂

∂xj

(
ψivj

)
− si − pi

ã
dV =

ˆ
fi dA . (2.38)

For the sake of clarity, the left-hand side integrand can be written with φi as
ˆ
φi dV =

ˆ
fi dA . (2.39)

To proceed, the �ux on the right-hand side with the Cauchy’s Theorem (cf. Tadmor et al. 2012, pp. 113–117) is
examined. The purpose of this theorem is to show that the �ux density fi , besides being a function of position xj
and time t, depends linearly on normal vector to a surface nj . Here, the focus is mainly on vector valued �ux
density fi , for example, force- and couple-traction, ti andµi. Forces and couples are acting across the body surface.
Consequently, �ux vectors depend on time, position and the direction of the surface normal. The Cauchy’s
tetrahedron is studied to show the linear dependence between �ux vector and normal of the surface. Four �uxes
are acting on the surface of the tetrahedron

ˆ

Vtetrahedron

φi dV =

ˆ

∂V1

f̄i
(
−e1

)
dA+

ˆ

∂V2

f̄i
(
−e2

)
dA+

ˆ

∂V3

f̄i
(
−e3

)
dA+

ˆ

∂V4

f̄i
(
n
)

dA

φ∗i

ˆ

Vtetrahedron

dV = f̄ ∗i
(
−e1

) ˆ
∂V1

dA+ f̄ ∗i
(
−e2

) ˆ
∂V2

dA+ f̄ ∗i
(
−e3

) ˆ
∂V3

dA+ f̄ ∗i
(
n
) ˆ
∂V4

dA

φ∗i
1

3
A4h = f̄ ∗i

(
−e1

)
A1 + f̄ ∗i

(
−e2

)
A2 + f̄ ∗i

(
−e3

)
A3 + f̄ ∗i

(
n
)
A4

φ∗i
1

3
A4h = f̄ ∗i

(
−e1

)
A4n1 + f̄ ∗i

(
−e2

)
A4n2 + f̄ ∗i

(
−e3

)
A4n3 + f̄ ∗i

(
n
)
A4

φ∗i
1

3
h = f̄ ∗i

(
−e1

)
n1 + f̄ ∗i

(
−e2

)
n2 + f̄ ∗i

(
−e3

)
n3 + f̄ ∗i

(
n
)

φ∗i
1

3
h = −f̄ ∗i

(
e1

)
n1 − f̄ ∗i

(
e2

)
n2 − f̄ ∗i

(
e3

)
n3 + f̄ ∗i

(
n
)
.

For the derivation, the mean value theorem as well as the area projection Aj = A4nj are used. Additionally, for
the last step the reaction-principle is applied as follows. For this purpose, imagine a small cylinder that is virtually
cut out of the body in order to compute the Eq. (2.39)

ˆ

Vcylinder

φi dV =

ˆ

∂Vtop

f̄i
(
nj
)

dA+

ˆ

∂Vbottom

f̄i
(
−nj

)
dA+

ˆ

∂Vbarrel

f̄i
(
n?j
)

dA

φ∗i

ˆ

Vcylinder

dV = f̄ ∗i
(
nj
) ˆ
∂Vtop

dA+ f̄ ∗i
(
−nj

) ˆ
∂Vbottom

dA+ f̄ ∗i
(
n?j
) ˆ
∂Vbarrel

dA

φ∗iπr
2h = f̄ ∗i

(
nj
)
πr2 + f̄ ∗i

(
−nj

)
πr2 + f̄ ∗i

(
n?j
)
2πrh

For h→ 0 and divided by πr2,
f̄i
(
−nj

)
= −f̄i

(
nj
)

(2.40)

is obtained. In the same way for the tetrahedron, for h→ 0, this gives

f̄i
(
n
)

= f̄i
(
e1

)
n1 + f̄i

(
e2

)
n2 + f̄i

(
e3

)
n3 = f̄i

(
ej
)
nj . (2.41)

One can write
fi = fij nj , (2.42)
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if the second order tensor
fij = f̄i

(
ej
)

(2.43)

is identi�ed as stress tensor fij ≡ σij for force traction fi ≡ ti or surface couple-stress tensor fij ≡ mij for
couple traction fi ≡ µi. Using Cauchy’s formula as well as the divergence theorem in Eq. (2.38) yields

ˆ Å
∂ψi
∂t

+
∂

∂xj

(
ψivj

)
−
∂fij
∂xj

− si − pi

ã
dV = 0 . (2.44)

By means of fundamental lemma of calculus of variations, it becomes possible to obtain the local balance (cf. W. H.
Müller 2014, pp. 70–71) in Eulerian framework

dψi
dt

+ ψi
∂vj
∂xj

=
∂fij
∂xj

+ si + pi . (2.45)

In the next sections, this local balance equation is applied to di�erent mechanical and thermodynamical quantities:
mass, linear momentum, angular momentum and total energy. And based on these local balances, the following
balance laws can be established: moment of linear momentum, intrinsic moment of linear momentum, kinetic and
internal energies as well as entropy.

2.3.1 Mass

A body is a well-de�ned virtual region of interest. In this con�ned system, mass can not be created or destroyed, i. e.,
mass abides by the conservation law. Furthermore, mass is not allowed to move into or out of this region. This
means that the total massm of the body does not change over time t and can be expressed by

dm

dt
= 0 . (2.46)

The total massm can be rewritten for an extended body by means of mass density % as

m =

ˆ
%dV with % = %̄

(
t, xj

)
. (2.47)

Consequently, the global balance of mass becomes

d

dt

ˆ
%dV = 0 . (2.48)

Following the global balance in Eq. (2.34) for scalar valued case, one recognizes

ψ = % , f = 0 , s = 0 , p = 0 . (2.49)

According to Eq. (2.45), this in turn yields the local balance law of mass (cf. W. H. Müller 2014, p. 72)

d%

dt
+ %

∂vi
∂xi

= 0 . (2.50)

This equation will be used to facilitate other balance laws.

2.3.2 Linear Momentum

The state of translational motion of a body is characterised by the linear momentum Pi , while the change of the
linear movement is in�uenced by addictive forces. These forces can be categorised into two types: short-range and
long-range forces, Ti and Fi . Surface forces are mostly identi�ed as short-range, as this force type is only able to
interact with the body when it is acting in close range, i. e., on the body surface. In contrast, the long-range type
of forces can in�uence not only a body from long distance, but it has also the capability to interact directly with
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every particle of the inside of the body, for example gravity forces. The balance law of linear momentum (cf. W. H.
Müller 2014, p. 52) can be written as follows

dPi
dt

= Ti + Fi . (2.51)

For an extended body, the global balance law of linear momentum is written as

d

dt

ˆ
%vi dV =

ˆ
ti dA+

ˆ
%fi dV (2.52)

with the densities
vi = v̄i

(
t, xj

)
, ti = t̄i

(
t, xj

)
, fi = f̄i

(
t, xj

)
, (2.53)

where vi , ti, fi are the velocity, the force-traction and the speci�c volume force �eld. Following the global balance
in Eq. (2.34), one recognises

ψi = %vi , fi = ti , si = %fi , pi = 0 . (2.54)

The force traction ti can be imagined as hooks that are continuously distributed over and attached to the surface of
a body. Each hook can pull or push with di�erent intensity. As shown with the Cauchy’s tetrahedron argument,
the force traction ti linearly depends on the normal vector nj where the coe�cients σij are called stress tensor

ti = σijnj . (2.55)

The speci�c volume force fi is mainly associated with the gravitational acceleration to compute the dead load. The
zero-valued production density pi indicates that the balance equation of linear momentum obeys the conservation
law. Following Eq. (2.45), it yields

d

dt

(
%vi
)

+ %vi
∂vj
∂xj

=
∂σij
∂xj

+ %fi (2.56)

The expression on the left-hand side can be rewritten as

d

dt

(
%vi
)

+ %vi
∂vj
∂xj

=
d%

dt
vi + %

dvi
dt

+ %vi
∂vj
∂xj

=

Å
d%

dt
+ %

∂vj
∂xj

ã
vi + %

dvi
dt

. (2.57)

Hereby, the local balance law of linear momentum resultsÅ
d%

dt
+ %

∂vj
∂xj

ã
vi + %

dvi
dt

=
∂σij
∂xj

+ %fi . (2.58)

This local balance equation is the origin of translational kinetic energy and moment of linear momentum. Inserting
the local balance of mass from Eq. (2.50), the local balance of linear momentum that satis�es the local balance of
mass results

%
dvi
dt

=
∂σij
∂xj

+ %fi . (2.59)

Combined with appropriate material laws for stress tensor σij and volume force fi , the primary usage of the above
local balance is to formulate �eld equations for the velocity or displacement.

2.3.3 Translational Kinetic Energy

The translational kinetic energy (cf. W. H. Müller 2014, p. 75) can be derived by multiplying the local balance of
linear momentum in Eq. (2.58) with velocity vi . This yieldsÅ

d%

dt
+ %

∂vj
∂xj

ã
vivi + %vi

dvi
dt

= vi
∂σij
∂xj

+ %vifi . (2.60)
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The second term on the left-hand side can be rewritten as

%vi
dvi
dt

=
1

2
%

d

dt

(
vivi

)
(2.61)

and the �rst expression on the right-hand side as

vi
∂σij
∂xj

=
∂

∂xj

(
viσij

)
− ∂vi
∂xj

σij (2.62)

to obtain the local balance of translational kinetic energyÅ
d%

dt
+ %

∂vj
∂xj

ã
vivi +

1

2
%

d

dt

(
vivi

)
=

∂

∂xj

(
viσij

)
+ %vifi −

∂vi
∂xj

σij . (2.63)

In order to derive the global balance law, the following identity to reformulate the left-hand side of the local balance
is used

1

2

∂

∂t

(
%vivi

)
+

1

2

∂

∂xj

(
%vivivj

)
=

=
1

2

∂%

∂t
vivi + %

∂vi
∂t
vi +

1

2

∂%

∂xj
vivivj + %

∂vi
∂xj

vivj +
1

2
%vivi

∂vj
∂xj

=
1

2

Å
∂%

∂t
+

∂%

∂xj
vj + %

∂vj
∂xj

ã
vivi + %

∂vi
∂t
vi + %

∂vi
∂xj

vivj

=
1

2

Å
d%

dt
+ %

∂vj
∂xj

ã
vivi +

1

2
%

d

dt

(
vivi

)
. (2.64)

Applying the integration and using the Reynold’s Transport followed by the Gauss’ theorem gives the global
balance of the translational kinetic energy

ˆ
1

2

Å
d%

dt
+ %

∂vj
∂xj

ã
vivi dV +

d

dt

ˆ
1

2
%vivi dV =

=

ˆ
viσijnj dA+

ˆ
%vifi dV −

ˆ
∂vi
∂xj

σij dV . (2.65)

With the exception of the �rst term, we can identify by means of scalar valued version of Eq. (2.34)

ψ =
1

2
%vivi , f = viσijnj , s = %vifi , p = − ∂vi

∂xj
σij . (2.66)

Due to the existence of a production term p, translational kinetic energy does not obey the conservation law. The
�rst expression of the global and local balance of translational kinetic energy in Eq. (2.65) and in Eq. (2.63) vanish
by satisfying the local balance of mass from Eq. (2.50). We have the translational kinetic energy balance as global
form

d

dt

ˆ
1

2
%vivi dV =

ˆ
viσijnj dA+

ˆ
%vifi dV −

ˆ
∂vi
∂xj

σij dV (2.67)

and local form
1

2
%

d

dt

(
vivi

)
=

∂

∂xj

(
viσij

)
+ %vifi −

∂vi
∂xj

σij . (2.68)

The most common use of (translational) kinetic energy is to �nd the production term of the internal energy from
the total energy.
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2.3.4 Moment of Linear Momentum

The rotational counterpart to translational momentum is, in part, the moment of linear momentum (cf. W. H.
Müller 2014, p. 79). By applying the cross product to the local balance of linear momentum in Eq. (2.58) with
xl, we �nd Å

d%

dt
+ %

∂vj
∂xj

ã
εklixlvi + %εklixl

dvi
dt

= εklixl
∂σij
∂xj

+ %εklixlfi . (2.69)

We rewrite the second expression on the left-hand side as

%εklixl
dvi
dt

= %
d

dt

(
εklixlvi

)
− %εkli

dxl
dt
vi = %

d

dt

(
εklixlvi

)
. (2.70)

To proceed, it is opportune to use the angular velocity

vi = εirsωrxs , (2.71)

so that the expression becomes

εklixlvi = εklixlεirsωrxs = εiklεirsxlxsωr =
(
δkrδls − δksδlr

)
xlxsωr =

=
(
δkrxlδlsxs − δksxsxlδlr

)
ωr =

(
δkrxlxl − xkxr

)
ωr = θkrωr , (2.72)

where the speci�c inertia tensor is introduced as

θkr = δkrxlxl − xkxr . (2.73)

We reformulate the �rst term on the right-hand side as

εklixl
∂σij
∂xj

=
∂

∂xj

(
εklixlσij

)
− εkli

∂xl
∂xj

σij =
∂

∂xj

(
εklixlσij

)
− εkliδljσij =

=
∂

∂xj

(
εklixlσij

)
− εkjiσij =

∂

∂xj

(
εklixlσij

)
+ εkijσij . (2.74)

The local balance of moment of linear momentum isÅ
d%

dt
+ %

∂vj
∂xj

ã
θkrωr + %

d

dt

(
θkrωr

)
=

∂

∂xj

(
εklixlσij

)
+ %εklixlfi + εkijσij . (2.75)

For the global variant of moment of linear momentum, we substitute the following identity into the local form of
moment of linear momentum

∂

∂t

(
%θkrωr

)
+

∂

∂xj

(
%θkrωrvj

)
=

=
∂%

∂t
θkrωr + %

∂

∂t

(
θkrωr

)
+

∂%

∂xj
θkrωrvj + %

∂

∂xj

(
θkrωr

)
vj + %θkrωr

∂vj
∂xj

=
∂%

∂t
θkrωr +

∂%

∂xj
θkrωrvj + %θkrωr

∂vj
∂xj

+ %
∂

∂t

(
θkrωr

)
+ %

∂

∂xj

(
θkrωr

)
vj

=

Å
∂%

∂t
+

∂%

∂xj
vj + %

∂vj
∂xj

ã
θkrωr + %

d

dt

(
θkrωr

)
=

Å
d%

dt
+ %

∂vj
∂xj

ã
θkrωr + %

d

dt

(
θkrωr

)
. (2.76)

Applying the integration and using the Reynold’s Transport followed by the Gauss’ theorem gives the global
balance of moment of linear momentum

d

dt

ˆ
%θkrωr dV =

ˆ
εklixlσijnj dA+

ˆ
%εklixlfi dV +

ˆ
εkijσij dV . (2.77)
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By means of Eq. (2.34), we can identify

ψk = %θkrωr , fk = εklixlσijnj , sk = %εklixlfi , pk = εkijσij . (2.78)

As a result of a non-zero production term pk , the moment of linear momentum is not conserved. Note that due to
the cross product the moment of linear momentum is independent of linear momentum. By satisfying the balance
of mass in Eq. (2.50), the local balance of moment of linear momentum in Eq. (2.75) can be written as

%
d

dt

(
θkrωr

)
=

∂

∂xj

(
εklixlσij

)
+ %εklixlfi + εkijσij . (2.79)

This balance equation can be used to derive the Euler-Bernoulli beam equation.

2.3.5 Rotational Kinetic Energy

To get the balance of rotational kinetic energy (cf. Serway and Jewett 2008, pp. 287–289), we multiply the local
balance of moment of linear momentum in Eq. (2.75) with angular velocity ωkÅ

d%

dt
+ %

∂vj
∂xj

ã
ωkθkrωr + %ωk

d

dt

(
θkrωr

)
=

= ωk
∂

∂xj

(
εklixlσij

)
+ %ωkεklixlfi + ωkεkijσij . (2.80)

Exploiting the symmetry of the speci�c inertia tensor θkr , the second expression on the left-hand side of the above
equation can be rewritten as

%ωk
d

dt

(
θkrωr

)
= %ωk

dθkr
dt

ωr + %ωkθkr
dωr
dt

=

Å
1

2
%ωk

dθkr
dt

ωr +
1

2
%ωk

dθkr
dt

ωr

ã
+

Å
1

2
%ωkθkr

dωr
dt

+
1

2
%ωrθrk

dωk
dt

ã
=

1

2
%ωk

dθkr
dt

ωr +

Å
1

2
%ωkθkr

dωr
dt

+
1

2
%ωk

dθkr
dt

ωr +
1

2
%

dωk
dt

θkrωr

ã
=

1

2
%

d

dt

(
ωkθkrωr

)
, (2.81)

where this identity is used in the last step

ωk
dθkr
dt

ωr = ωk
d

dt

(
δkrxlxl − xkxr

)
ωr =

= ωk

Å
2δkr

dxl
dt
xl −

dxk
dt

xr − xk
dxr
dt

ã
ωr

= ωk
(
2δkrvlxl − vkxr − xkvr

)
ωr

= ωk
(
2δkrεlmnωmxnxl − εkmnωmxnxr − xkεrmnωmxn

)
ωr

= 2ωrωr
(
xlεlmnxn

)
ωm −

(
ωkεkmnωm

)
xnxrωr − ωkxk

(
ωrεrmnωm

)
xn

= 0 . (2.82)

The �rst term on the right-hand side can be rewritten as

ωk
∂

∂xj

(
εklixlσij

)
=

∂

∂xj

(
ωkεklixlσij

)
−
∂ωk
∂xj

εklixlσij

=
∂

∂xj

(
ωkεklixlσij

)
− ∂

∂xj

(
ωkεklixl

)
σij + ωkεkli

∂xl
∂xj

σij

=
∂

∂xj

(
εiklωkxlσij

)
− ∂

∂xj

(
εiklωkxl

)
σij + ωkεkliδljσij
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=
∂

∂xj

(
εiklωkxlσij

)
− ∂

∂xj

(
εiklωkxl

)
σij + ωkεkjiσij

=
∂

∂xj

(
εiklωkxlσij

)
− ∂

∂xj

(
εiklωkxl

)
σij − ωkεkijσij . (2.83)

This yields the local balance of rotational kinetic energyÅ
d%

dt
+ %

∂vj
∂xj

ã
ωkθkrωr +

1

2
%

d

dt

(
ωkθkrωr

)
=

=
∂

∂xj

(
εiklωkxlσij

)
+ %ωkεklixlfi −

∂

∂xj

(
εiklωkxl

)
σij . (2.84)

To compute the global balance equation of the rotational kinetic energy, we substitute the following expression
into the local balance

∂

∂t

(
%ωkθkrωr

)
+

∂

∂xj

(
%ωkθkrωrvj

)
=

=
∂%

∂t
ωkθkrωr + %

∂

∂t

(
ωkθkrωr

)
+

+
∂%

∂xj
ωkθkrωrvj + %

∂

∂xj

(
ωkθkrωr

)
vj + %ωkθkrωr

∂vj
∂xj

=
∂%

∂t
ωkθkrωr +

∂%

∂xj
ωkθkrωrvj + %ωkθkrωr

∂vj
∂xj

+

+ %
∂

∂t

(
ωkθkrωr

)
+ %

∂

∂xj

(
ωkθkrωr

)
vj

=

Å
∂%

∂t
+

∂%

∂xj
vj + %

∂vj
∂xj

ã
ωkθkrωr + %

d

dt

(
ωkθkrωr

)
=

Å
d%

dt
+ %

∂vj
∂xj

ã
ωkθkrωr + %

d

dt

(
ωkθkrωr

)
. (2.85)

We integrate and use theReynold’s Transport as well as theGauss’ theorem to get the global balance of rotational
kinetic energy

ˆ
1

2

Å
d%

dt
+ %

∂vj
∂xj

ã
ωkθkrωr dV +

d

dt

ˆ
1

2
%ωkθkrωr dV =

=

ˆ
εiklωkxlσijnj dA+

ˆ
%εiklωkxlfi dV −

ˆ
∂

∂xj

(
εiklωkxl

)
σij dV . (2.86)

With the exception of the �rst term, we can identify each terms by means of Eq. (2.34) as follows

ψ =
1

2
%ωkθkrωr , f = εiklωkxlσijnj , s = %εiklωkxlfi , p = − ∂

∂xj

(
εiklωkxl

)
σij . (2.87)

Also here the production term p is non-zero, thus the rotational kinetic energy does not abide by the conservation
law. By means of Eq. (2.71) and Eq. (2.72), it can be shown that the balance of rotational kinetic energy can be
rewritten as translational kinetic energy and vice versa. As the case arise, the representation of kinetic energy can be
expressed in one way or the other, or a combination of both. But care must be taken to avoid double counting of
the kinetic energy balance.

2.3.6 Angular Momentum

The state of rotational motion of a body is described by the angular momentumLk (cf. Serway and Jewett2008,
p. 315). The rate of change of the angular momentum is governed by the sum of short-range and long-range torques:
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torque �ux M�ux
k and torque supply M supply

k . Analogously to short-range and long-range forces, the torque �ux
is interacting on the body surface, whereas the torque supply has an impact on the body volume. The balance
equation of angular momentum reads as follows

dLk
dt

= M�ux
k +M

supply
k . (2.88)

The total angular momentum of a body Lk constitutes of the sum of moment of linear momentum Lmoment
k and

spinLspin
k

Lk = Lmoment
k + L

spin
k . (2.89)

The moment of linear momentum is identi�ed on the left-hand side in Eq. (2.77)

Lmoment
k =

ˆ
%θkrωr dV (2.90)

and the spin for extended body is written as

L
spin
k =

ˆ
%sk dV , (2.91)

where sk is the speci�c spin. The torque �ux

M�ux
k =

ˆ
εklixlσijnj dA+

ˆ
µk dA (2.92)

compromises of two additive parts. The �rst one is induced by surface force that is the �rst expression on the right-
hand side in Eq. (2.77) and the second one is caused by force couple. Similarly, the torque supply

M
supply
k =

ˆ
%εklixlfi dV +

ˆ
%lk dV . (2.93)

consists additively of the volume force term that can be found in the second expression on the right-hand side in
Eq. (2.77) and volume couple term. In the forthcoming section the spin, the surface and volume couples will be
discussed. The global balance law of angular momentum can be rewritten as follows

d

dt

ˆ
%
(
θkrωr + sk

)
dV =

ˆ (
εklixlσijnj + µk

)
dA+

ˆ
%
(
εklixlfi + lk

)
dV . (2.94)

According to Eq. (2.34), we recognise

ψk = %
(
θkrωr + sk

)
, fk = εklixlσijnj + µk , sk = %

(
εklixlfi + lk

)
, pk = 0 . (2.95)

We recall that the production term pk vanished due to the conservation of angular momentum. The sum of
Eq. (2.75) and Eq. (2.103) yields the local balance of angular momentumÅ

d%

dt
+ %

∂vj
∂xj

ã(
θkrωr + sk

)
+ %

d

dt

(
θkrωr + sk

)
=

=
∂

∂xj

(
εklixlσij +mkj

)
+ %
(
εklixlfi + lk

)
. (2.96)

In order to write the balance of spin, its the production term needs to be determined. This is possible by using
conservation property of the balance of angular momentum in conjunction with the balance of moment of linear
momentum.
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2.3.7 Spin

Another rotational counterpart to translational momentum is the intrinsic moment of momentum (cf. W. H.
Müller 2014, p. 78), or in short: spin. This approach is applied for Cosserat continuum (E. Cosserat and
F. Cosserat 1909) or micropolar bodies (Eringen 2012). These are materials with complex inner microstructure
such as foams, porous media, liquid crystals (Warner and Terentjev 2003), concrete (Chesnais et al. 2011),
rock masses (Stojanović 1972). Besides their apparent translational or rotational motion, these materials have an
additional internal degrees of freedom in form of an intrinsic rotation. An overview about this topic can be found
in (Altenbach et al. 2011).
By subtracting the global balance of angular momentum in Eq. (2.94) from the balance law of moment of linear
momentum in Eq. (2.77), we obtain the global balance equation of spin

d

dt

ˆ
%sk dV =

ˆ
µk dA+

ˆ
%lk dV −

ˆ
εkijσij dV (2.97)

with the densities
sk = s̄k

(
t, xj

)
, µk = µ̄k

(
t, xj

)
, lk = l̄k

(
t, xj

)
(2.98)

where sk, µk, lk are the speci�c spin, the surface couple and the speci�c volume couple density. Following the
global balance in Eq. (2.34), we can identify

ψk = %sk , fk = µk , sk = %lk , pk = −εkijσij . (2.99)

The surface couple µk can be imagined as screwdrivers that are continuously distributed over and attached to the
surface of a body. Each screwdriver turns and twists with di�erent intensity. Following the Cauchy’s tetrahedron
argument, the surface couple µk linearly depends on the normal vector nj where the coe�cients mkj are called
surface couple stress tensor

µk = mkjnj . (2.100)

The speci�c volume couple �eld lk can be associated with electromagnetic induction that a�ects the lattice. There-
fore, this �eld e�ects the spin balance within the interior of a body. Following Eq. (2.45), we write

d

dt

(
%sk
)

+ %sk
∂vj
∂xj

=
∂mkj

∂xj
+ %lk − εkijσij . (2.101)

The expression on the left hand side can be reformulated as

d

dt

(
%sk
)

+ %sk
∂vj
∂xj

=
d%

dt
sk + %

dsk
dt

+ %sk
∂vj
∂xj

=

Å
d%

dt
+ %

∂vj
∂xj

ã
sk + %

dsk
dt

. (2.102)

The local balance law of spin readsÅ
d%

dt
+ %

∂vj
∂xj

ã
sk + %

dsk
dt

=
∂mkj

∂xj
+ %lk − εkijσij . (2.103)

The aspect of spin can be ignored for materials with simple inner structure such as steel and negligible spin-a�ecting
torques. If this holds true, the speci�c spin sk, the surface couple µk and the speci�c volume couple density lk
vanished. Thus, we have

0 = εkijσij . (2.104)

As a consequence we have a symmetric stress tensor by expanding the above equation, see I. Müller (1973, p. 32)

σij = σji . (2.105)
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2.3.8 Kinetic Energy of Spin

To obtain the kinetic energy balance of spin as brie�y mentioned in Yamaguchi (2008, p. 56), the local balance
of spin is multiplied with the angular velocity ωkÅ

d%

dt
+ %

∂vj
∂xj

ã
ωksk + %ωk

dsk
dt

= ωk
∂mkj

∂xj
+ %ωk lk − ωkεkijσij . (2.106)

If it is admissible to assume that the spin features a symmetric intrinsic specific inertia tensor jkr , so that we can
write

sk = jkrωr , (2.107)

then the second expression on the left-hand side can be rearranged in a similar way to moment of linear momentum
as

%ωk
dsk
dt

=
1

2
%

d

dt

(
ωksk

)
. (2.108)

To proceed, we transform the �rst term of the right-hand side

ωk
∂mkj

∂xj
=

∂

∂xj

(
ωkmkj

)
−
∂ωk
∂xj

mkj . (2.109)

The local balance of spin energy readsÅ
d%

dt
+ %

∂vj
∂xj

ã
ωksk +

1

2
%

d

dt

(
ωksk

)
=

=
∂

∂xj

(
ωkmkj

)
+ %ωk lk −

Å
∂ωk
∂xj

mkj + ωkεkijσij

ã
.

To get the global variant of spin energy, the following identity is used

∂

∂t

(
%ωksk

)
+

∂

∂xj

(
%ωkskvj

)
=

=
∂%

∂t
ωksk + %

∂

∂t

(
ωksk

)
+

∂%

∂xj
ωkskvj + %

∂

∂xj

(
ωksk

)
vj + %ωksk

∂vj
∂xj

=
∂%

∂t
ωksk +

∂%

∂xj
ωkskvj + %ωksk

∂vj
∂xj

+ %
∂

∂t

(
ωksk

)
+ %

∂

∂xj

(
ωksk

)
vj

=

Å
∂%

∂t
+

∂%

∂xj
vj + %

∂vj
∂xj

ã
ωksk + %

d

dt

(
ωksk

)
=

Å
d%

dt
+ %

∂vj
∂xj

ã
ωksk + %

d

dt

(
ωksk

)
. (2.110)

This in turn yields the global balance of spin energy after the integration, followed by Reynold’s transport and
applying the Gauss’ theorem

ˆ
1

2

Å
d%

dt
+ %

∂vj
∂xj

ã
ωksk dV +

ˆ
1

2
%ωksk dV =

=

ˆ
ωkmkjnj dA+

ˆ
%ωk lk dV −

ˆ Å
∂ωk
∂xj

mkj + ωkεkijσij

ã
dV . (2.111)

With the exception of the �rst term, we analyse each terms by means of Eq. (2.34) as follows

ψ =
1

2
%ωksk , f = ωkmkjnj , s = %ωk lk , p = −

Å
∂ωk
∂xj

mkj + ωkεkijσij

ã
. (2.112)

The spin energy does not obey the conservation law due to the non-zero production term p.
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2.3.9 Total Energy

The conservation of the total sum of energies is known as the first law of thermodynamics. We can write the sum
of the global equation of translational, rotational and spin energies in Eq. (2.65), Eq. (2.86) and Eq. (2.111) as the
total sum of kinetic energies. However, we observe that the production term of the total kinetic energy still remains.
Thus, an other kind of energy has to be identi�ed in order to complete the total energy: It is the internal energy.
The global balance of total energy (cf. W. H. Müller 2014, p. 77) reads as follows

ˆ
1

2

Å
d%

dt
+ %

∂vj
∂xj

ã(
vivi + ωkθkrωr + ωksk

)
dV +

d

dt

(
E + U

)
= Ẇ + Q̇ , (2.113)

whereE,U , Ẇ , Q̇ are the total kinetic energy, the internal energy, work and heat transfer rate. By writing the sum
of the global balance of kinetic energies, we recognize that the total kinetic energy is

E =

ˆ
1

2
%vivi dV +

ˆ
1

2
%ωkθkrωr dV +

ˆ
1

2
%ωksk dV (2.114)

and the work transfer rate is

Ẇ =

ˆ (
viσijnj + εiklωkxlσijnj + ωkmkjnj

)
dA+

+

ˆ (
%vifi + %εiklωkxlfi + %ωk lk

)
dV . (2.115)

The internal energyU can be rewritten for extended body by means of speci�c internal energy u

U =

ˆ
%u dV (2.116)

and the heat transfer rate Q̇ consists of additive heat conduction and radiation components

Q̇ = −
ˆ
qini dA+

ˆ
%r dV , (2.117)

where qi , r are the heat �ux and the speci�c radiation. The internal energy as well as the heat transfer is discussed
in the next section. The global balance of total energy is

ˆ
1

2

Å
d%

dt
+ %

∂vj
∂xj

ã(
vivi + ωkθkrωr + ωksk

)
dV+

+
d

dt

ˆ Å
1

2
%vivi +

1

2
%ωkθkrωr +

1

2
%ωksk + %u

ã
dV =

=

ˆ (
viσijnj + εiklωkxlσijnj + ωkmkjnj − qjnj

)
dA+

+

ˆ (
%vifi + %εiklωkxlfi + %ωk lk + %r

)
dV , (2.118)

According to the scalar valued version of Eq. (2.34), we can identify with exception of the �rst term on the left-hand
side that

ψ =
1

2
%vivi +

1

2
%ωkθkrωr +

1

2
%ωksk + %u ,

f = viσijnj + εiklωkxlσijnj + ωkmkjnj − qjnj ,
s = %vifi + %εiklωkxlfi + %ωk lk + %r ,

p = 0 .

The absence of the production p shows that the balance of total energy is conserved.
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2.3.10 Internal Energy

Velocity is a measure for the kinetic energy of continuum particles and describes the apparent motion of them. In
addition, temperature is introduced to incorporate the imperceptible and random movement of molecules or atoms
within the continuum particles. The temperature is a measure for the intrinsic mean kinetic energy of molecules
or atoms, or in short: internal energy (cf. I. Müller 2007, pp. 59–64). By subtracting the global balance of
total energy in Eq. (2.118) from the global equations of total sum of kinetic energies in Eq. (2.65), Eq. (2.86) and
Eq. (2.111), the global balance law of internal energy reads

d

dt

ˆ
%u dV = −

ˆ
qini dA+

ˆ
%r dV+

+

ˆ Å
∂vi
∂xj

σij +
∂ωk
∂xj

εklixlσij +
∂ωk
∂xj

mkj

ã
dV (2.119)

with densities
u = ū

(
t, xj

)
, qi = q̄i

(
t, xj

)
, r = r̄

(
t, xj

)
, (2.120)

where u, qi , r are the speci�c internal energy, the heat �ux and the speci�c radiation. According to Eq. (2.34) in
scalar valued variant, we can identify

ψ = %u , f = −qini , s = %r , p =
∂vi
∂xj

σij +
∂ωk
∂xj

εklixlσij +
∂ωk
∂xj

mkj . (2.121)

Following Eq. (2.45), we write

d

dt

(
%u
)

+ %u
∂vj
∂xj

= −∂qi
∂xi

+ %r +
∂vi
∂xj

σij +
∂ωk
∂xj

εklixlσij +
∂ωk
∂xj

mkj . (2.122)

The expression on the left hand side can be rewritten as

d

dt

(
%u
)

+ %u
∂vj
∂xj

=
d%

dt
u+ %

du

dt
+ %u

∂vj
∂xj

=

Å
d%

dt
+ %

∂vj
∂xj

ã
u+ %

du

dt
. (2.123)

The local balance law of internal energy readsÅ
d%

dt
+ %

∂vi
∂xi

ã
u+ %

du

dt
= −∂qi

∂xi
+ %r +

∂vi
∂xj

σij +
∂ωk
∂xj

εklixlσij +
∂ωk
∂xj

mkj . (2.124)

We obtain the local balance law of internal energy that satis�es the local balance of mass by inserting the Eq. (2.50)
into the above equation. Further, ignoring any rotational motion, we have

%
du

dt
= −∂qi

∂xi
+ %r +

∂vi
∂xj

σij . (2.125)

Combined with suitable material equations for speci�c internal energyu, heat �ux qi , speci�c radiation r and stress
tensor σij , we can formulate a �eld equation for the temperature T .

2.3.11 Entropy

The entropy principle is applied to prevent construction of cyclic devices that are impossible to operate. This
also known as the second law of thermodynamics. This principle serves us to reduce the degrees of freedom of
material equations by restricting their properties, i. e., form and dependency, see for example (Abali 2014, p. 21 �).
Furthermore, the entropy production can be used to evaluate process models and de�ne them as possible, ideal or
impossible. Further insight to this topic can be found in, e. g., (W. H. Müller 2014, p. 307 �), (I. Müller 1973)
as well as (Eckart 1940).
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We follow Tadmor et al. (2012, p. 148 �) and assume that the internal energy is completely determined by the
independent state variables speci�c entropy s and extensive kinematic variables Γi

u = ŭ(s, Γi ) . (2.126)

The total di�erential of internal energy is known as entropy form of the first law and it reads

du =
∂u

∂s
ds+

n∑
i=1

∂u

∂Γi
dΓi = T ds+

n∑
i=1

$i dΓi , (2.127)

where T is the absolute temperature and $i is the thermodynamic tensions. Inserting the above equation into the
local balance of internal energy and divided by absolute temperature T , it yieldsÅ

d%

dt
+ %

∂vi
∂xi

ã
1

T
u+ %

ds

dt
= − 1

T

∂qi
∂xi

+

+
1

T
%r +

1

T

∂vi
∂xj

σij +
1

T

∂ωk
∂xj

εklixlσij +
1

T

∂ωk
∂xj

mkj −
n∑
i=1

1

T
%$i

dΓi
dt

. (2.128)

The �rst expression on the right-hand side can be rewritten as

− 1

T

∂qi
∂xi

= − ∂

∂xi

Å
1

T
qi

ã
+
∂
(

1
T

)
∂xi

qi = − ∂

∂xi

Å
1

T
qi

ã
+
∂
(

1
T

)
∂T

∂T

∂xi
qi =

= − ∂

∂xi

Å
1

T
qi

ã
− 1

T 2

∂T

∂xi
qi . (2.129)

The local balance of entropy follows asÅ
d%

dt
+ %

∂vi
∂xi

ã
u

T
+ %

ds

dt
= − ∂

∂xi

Å
1

T
qi

ã
+

1

T
%r−

− 1

T 2

∂T

∂xi
qi +

1

T

∂vi
∂xj

σij +
1

T

∂ωk
∂xj

εklixlσij +
1

T

∂ωk
∂xj

mkj −
n∑
i=1

1

T
%$i

dΓi
dt

. (2.130)

To determine the global balance of entropy, the following identity is used

∂

∂t

(
%s
)

+
∂

∂xi

(
%svi

)
=
∂%

∂t
s+ %

∂s

∂t
+
∂%

∂xi
svi + %

∂s

∂xi
vi + %s

∂vi
∂xi

=
∂%

∂t
s+

∂%

∂xi
svi + %s

∂vi
∂xi

+ %
∂s

∂t
+ %

∂s

∂xi
vi

=

Å
∂%

∂t
+
∂%

∂xi
vi + %

∂vi
∂xi

ã
s+ %

ds

dt

=

Å
d%

dt
+ %

∂vi
∂xi

ã
s+ %

ds

dt
. (2.131)

Applying the integration and using the Reynold’s Transport followed by the Gauss’ theorem gives the global
balance of entropy

ˆ Å
d%

dt
+ %

∂vi
∂xi

ãÅ
u

T
− s
ã

dV +
d

dt

ˆ
%s dV = −

ˆ
1

T
qini dA+

ˆ
1

T
%r dV+

+

ˆ Å
− 1

T 2

∂T

∂xi
qi +

1

T

∂vi
∂xj

σij +
1

T

∂ωk
∂xj

εklixlσij +
1

T

∂ωk
∂xj

mkj−

−
n∑
i=1

1

T
%$i

dΓi
dt

ã
dV . (2.132)
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Ignoring the �rst term, we can identify by means of scalar valued version of Eq. (2.34)

ψ = %s , f = − 1

T
qini , s =

1

T
%r ,

p = − 1

T 2

∂T

∂xi
qi +

1

T

∂vi
∂xj

σij +
1

T

∂ωk
∂xj

εklixlσij +
1

T

∂ωk
∂xj

mkj −
n∑
i=1

1

T
%$i

dΓi
dt

. (2.133)

The thermodynamic compatibility of material equations can be examined in conjunction with the entropy produc-
tion term p. The second law of thermodynamics states that if

p > 0 , (2.134)

it is possible that the material equations exist. For idealised material behaviour or processes, it is p = 0.

2.4 Material Equations

The balance laws alone are insu�cient to formulate the �eld equations that describe the functional relationship
between the responses (mass density, velocity and temperature) and material-speci�c parameters. Additional equa-
tions are required to cover the material-speci�c response behaviour (cf. W. H. Müller 2014, pp. 129–130), specif-
ically for the stress tensor σij , the internal energy u, the heat �ux qi , the speci�c volume force fi and speci�c
radiation r. For linear elastic solids, we will present the material laws for the �rst three quantities. For the latter two,
we will use the gravitational acceleration for the speci�c volume force and the speci�c radiation will be assumed to
be known.

2.4.1 Linear Elastic Deformation and Thermal Expansion

The total linear strain for small deformation εkl can be additive decompose into di�erent summands (cf. Het-
narski and Eslami 2009, p. 21). Each strain part is associated to an phenomenon such as elastic deformation and
thermal expansion

εkl = εelastic
kl + εthermal

kl . (2.135)

Other types of strain can be added to cover more phenomena, e. g., plasticity or viscosity, but they are beyond
the scope of this work. For small elastic deformation and ignoring the aspect of spin, the symmetric stress σij in
Eq. (2.105) and elastic strain tensor εelastic

kl relation has a linear proportional. The elastic response is described by
Hooke’s law

σij = Cijklε
elastic
kl , (2.136)

whereCijkl is the elasticity tensor with 81 entries. By using the symmetrical properties of the stress, see Eq. (2.105),
as well as the strain tensor, the number of the parameters is reduced to 36. Within the range of linear elastic de-
formation, the stored energy is equal to its complementary part. Therefore, the number of parameters is further
decreased to 21 independent constants for anisotropic elastic materials. Thus, the Hooke’s law can be rewritten
as Voigt’s matrix notation as follows

σ11

σ22

σ33

σ23

σ13

σ12

 =


C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

C1313 C1312

symmetrical C1212




εelastic

11

εelastic
22

εelastic
33

2εelastic
23

2εelastic
13

2εelastic
12

 (2.137)

respectively in matrix notation
σσσ = Cεεεelastic . (2.138)

An overview of the eight di�erent symmetry classes (triclinic, monoclinic, orthotropic, tetragonal, trigonal, hexago-
nal, cubic, isotropic) of the elasticity tensor can be found inChadwick et al. (2001). The linear thermal expansion
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is described as a relation between thermal strain εthermal
kl and the change of the temperature ∆T from a reference to

a current state
εthermal
kl = αkl

(
T − TReference) = αkl∆T , (2.139)

where αkl is the coe�cient of thermal expansion. The stress to strain and temperature change relationship for
anisotropic materials can be obtained by inserting elastic strain from Eq. (2.135) into Hooke’s law in Eq. (2.136)
and followed by the linear thermal expansion law in Eq. (2.139)

σij = Cijkl
(
εkl − εthermal

kl

)
= Cijkl

(
εkl − αkl∆T

)
. (2.140)

For isotropic elastic materials, the following elasticity tensor applies

Cijkl = λδijδkl + µ
(
δikδjl + δilδjk

)
(2.141)

or respectively in Voigt’s notation

C =


λ+ 2µ λ λ

λ+ 2µ λ
λ+ 2µ

µ
µ

symmetrical µ

 , (2.142)

where the parameters λ and µ are called Lamé constants. The conversion to Young’s modulusE and Poisson’s
ratio ν can be found for example in Szabó (1966, p. 93)

λ =
Eν(

1 + ν
)(

1− 2ν
) , µ =

E

2
(
1 + ν

) . (2.143)

The Hooke’s law reads
σij = λδijε

elastic
kk + 2µεelastic

ij . (2.144)

The following thermal expansion coe�cient is applied for isotropic materials

αkl = αδkl . (2.145)

Refer to, for example, Grote and Antonsson (2009, p. 124), to �nd thermal expansion coe�cients for selected
materials. The relationship of stress to strain and to temperature change for isotropic materials can be computed
by inserting the elasticity tensor in Eq. (2.141) and thermal expansion coe�cient in Eq. (2.145) into Eq. (2.139).
Taking the linear strain from Eq. (2.135) into account, we have

σij = λδijεkk + 2µεij −
(
3λ+ 2µ

)
αδij∆T . (2.146)

2.4.2 Caloric State Equation for Solids

Recall an obsolete unit for energy: the Calorie, see e. g. (I.Müller and W. H.Müller2008, p. 54). The de�nition
was the amount of heat energy that is needed to increase one gram of water by one Kelvin. Furthermore, the speci�c
heat capacity of water that was used to de�ne the Calorie was �xed at atmospheric pressure and at initial water
temperature of T0 = 15 ◦C. Observe the local balance of internal energy in Eq. (2.125) where the local balance of
mass is satis�ed and spin and rotational in�uences are neglected

%
du

dt
= −∂qi

∂xi
+ %r +

∂vi
∂xj

σij . (2.125)

For a �uid almost at rest, we can use a simpli�ed Navier-Stokes Equation where the frictional parts are ignored

σij = −pδij , (2.147)
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where p is the pressure. This in turn yields

du

dt
= −1

%

∂qi
∂xi

+ r − 1

%

∂vi
∂xi

p = q̇ − dv

dt
p , (2.148)

where the heat �ux and radiation parts are combined as heat transfer rate

q̇ = −1

%

∂qi
∂xi

+ r . (2.149)

The speci�c volume is v = 1/% so that the local balance of mass in Eq. (2.50) can be rewritten as

dvi
dxi

= −1

%

d%

dt
= −v

d
(

1/v
)

dt
= −v

d
(

1/v
)

dv

dv

dt
=

1

v

dv

dt
. (2.150)

For the right-hand side of Eq. (2.148), we assume that the speci�c internal energy is completely determined by the
temperature T and speci�c volume v

u = ŭ
(
T, v

)
. (2.151)

This leads to

∂u

∂T

dT

dt
+
∂u

∂v

dv

dt
+ p

dv

dt
=
∂u

∂T

dT

dt
+

Å
∂u

∂v
+ p

ã
dv

dt
= cv

dT

dt
+

Å
∂u

∂v
+ p

ã
dv

dt
= q̇ . (2.152)

For isochoric process dv = 0, we can obtain the heat capacity at constant speci�c volume cv = c̆v
(
T = T0

)
for an

initial temperature T0 by measuring the transferred heat energy Q =
´

q̇ dt as well as the rise of temperature ∆T

cv
dT

dt
= q̇ ⇒

ˆ
cv dT =

ˆ
q̇ dt ⇒ c̆v

(
T = T0

)
=

Q
∆T

. (2.153)

Since the above equation is inappropriate to compute the heat capacity at constant pressure cp = c̆p
(
T = T0

)
for an reference temperature T0 , we reformulate the equation by means of speci�c volume that is completely deter-
mined by the temperature T and pressure p

v = v̆
(
T, p

)
(2.154)

and this yields

cv
dT

dt
+

Å
∂u

∂v
+ p

ãÅ
∂v

∂T

dT

dt
+
∂v

∂p

dp

dt

ã
=

=

(
cv +

Å
∂u

∂v
+ p

ã
∂v

∂T

)
dT

dt
+

(Å
∂u

∂v
+ p

ã
∂v

∂p

)
dp

dt
=

= cp
dT

dt
+

(Å
∂u

∂v
+ p

ã
∂v

∂p

)
dp

dt
= q̇ .

For isobaric process dp = 0, we can compute the heat capacity at constant pressure cp = c̆p
(
T = T0

)
for a starting

temperature T0 by measuring the transferred heat energy Q =
´

q̇ dt as well as the increase of temperature ∆T

cp
dT

dt
= q̇ ⇒

ˆ
cp dT =

ˆ
q̇ dt ⇒ c̆p

(
T = T0

)
=

Q
∆T

. (2.155)

For ideal solid, a di�erent approach is followed. First, the internal energy is completely determined by tempera-
ture T and linear strain εkl

u = ŭ
(
T, εkl

)
. (2.156)

Second, for isostrain process dεkl = 0, the heat capacity at constant strain cεkl is described by the Dulong-Petit
law

cεkl
= 3

R

M
, (2.157)

where R is the universal gas constant and M is the atomic or molecular weight. This law is derived by means of
statistical mechanics, see for example (Girifalco 2000, p. 104), and is valid for room temperature and above.
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2.4.3 Law of Heat Conduction

The heat conduction law by Fourier described the heat transfer rate per area element qi . The heat transfer occurs
in the normal direction of an in�nitesimal cubic element with a thickness in the same direction ∂xi when the two
opposing sides have di�erent temperatures, i. e., temperature di�erence ∂T . The Fourier’s law reads

qi = −κ ∂T
∂xi

, (2.158)

where κ is the thermal conductivity. For example in Grote and Antonsson (2009, p. 281), the thermal conduc-
tivities of some materials can be found. An historical overview about the development and in�uences of Fourier’s
heat conduction equation can be found in Narasimhan (1999).

2.5 Field Equations

The �eld equations connect the responses and material-speci�c parameters in form of partial di�erential equations
(cf. W. H. Müller 2014, pp. 153–154). They can be obtained by combining the balance equations and material
laws. Each response type is associated with a balance law. The mass density �eld % is linked to the balance of
mass. The velocity �eld vi is connected with the balance of linear momentum. The angular velocity ωr �eld is
intertwined with the balance of angular momentum. The temperature �eld T is tied to the balance of internal
energy. The material-speci�c parameters originate from the material equations.

2.5.1 Elastodynamic Equations

Inserting the Hooke’s law with linear thermal expansion in Eq. (2.140) into the local balance of linear moment
which satis�es the balance of mass in Eq. (2.59) and using the linear strain for small deformation in Eq. (2.28) (cf.
Abali 2017, pp. 2–9), this results

%
dvi
dt

=
∂

∂xj

(
Cijkl

(
εkl − αkl∆T

))
+ %fi =

∂

∂xj

(
Cijklεkl − Cijklαkl∆T

)
+ %fi =

= Cijkl
∂εkl
∂xj
− Cijklαkl

∂T

∂xj
+ %fi =

= Cijkl
∂

∂xj

Å
1

2

(∂uk
∂xl

+
∂ul
∂xk

)ã
− Cijklαkl

∂T

∂xj
+ %fi =

=
1

2
Cijkl

∂2uk
∂xj∂xl

+
1

2
Cijkl︸ ︷︷ ︸
=Cijlk

∂2ul
∂xj∂xk

− Cijklαkl
∂T

∂xj
+ %fi =

= Cijkl
∂2uk
∂xj∂xl

− Cijklαkl
∂T

∂xj
+ %fi . (2.159)

For the right-hand side, the velocity vi can be rewritten as

vi =
dxi
dt

=
d

dt

(
ui +Xi

)
=

dui
dt
. (2.160)

This yields the elastodynamic equations

%
d2ui
dt2

= Cijkl
∂2uk
∂xj∂xl

− Cijklαkl
∂T

∂xj
+ %fi . (2.161)

One special case of dynamic is the static equilibrium. In this steady state, the displacement is time-independent
and therefore the left-hand side of the elastodynamic equations can be omitted. The speci�c volume force fi is
mostly associated with the gravitational acceleration and is used to incorporate the aspect of the dead load. It can
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F 1 F 2

Figure 2.1: A four-point bending test apparatus.

be ignored if the applied forces are much greater than the force of gravitation. When the body has an overall con-
stant temperature, the temperature gradient drops out from the analysis. Thus, the thermal expansion part can
be neglected. For a body consists of isotropic material, the so-called Lamé-Navier equations (cf. W. H. Müller
2014, p. 161)

0 = Cijkl
∂2uk
∂xj∂xl

= λ
∂2uk
∂xi∂xk

+ µ

Å
∂2ui
∂xj∂xj

+
∂2uj
∂xj∂xi

ã
=

=
(
λ+ µ

) ∂2uj
∂xi∂xj

+ µ
∂2ui
∂xj∂xj

=⇒ 0 =
∂2ui
∂xj∂xj

+

Å
λ

µ
+ 1

ã
∂2uj
∂xi∂xj

(2.162)

is obtained.

2.5.2 Euler-Bernoulli Beam Theory

A bending test is an experimental set-up to determine structural deformation behaviour by applying prede�ned
forces to a specimen, see Fig. 2.1. For a bending test, a specimen is shaped as a slender beam with speci�c geometry.
Then the beam specimen is clamped with bearings. At speci�c positions on top of the beam, forces of prede�ned
strength are applied. For a given bending test con�guration, the de�ection of the beam in the deformed state can be
computed by theEuler-Bernoulli beam equation (cf.Gross,Hauger, Schröder,Wall, andBonet 2011,
pp. 125–129). To this, observe the local balance of angular momentum in Eq. (2.96) which satis�es the balance of
mass in Eq. (2.50)

%
d

dt

(
θkrωr + sk

)
=

∂

∂xj

(
εklixlσij +mkj

)
+ %
(
εklixlfi + lk

)
. (2.163)

For materials with non-complex inner structure, the spin sk as well as the in�uences of the surface and volume
couple, mkj and lk , are neglected, thus we have a symmetric stress tensor in Eq. (2.105). For statically bended
beams, the dynamic part in the left-hand side of the balance equation vanishes. Furthermore, the gravitational
speci�c volume force fi can be ignored due to the much greater applied bending forces. Consequently, we obtain
the momentum equilibrium

0 =
∂

∂xj

(
εklixlσij

)
. (2.164)

FIELD EQUATIONS | BASICS OF CONTINUUM MECHANICS 33



F 0

F 1

F 2

F 3

x1

x̆p

xp

Figure 2.2: The Method of Sections generates a free-body diagram for revealing the inner
stresses within a beam. The forces F p are applied on the rectangular traction
areas with depth d and widthw which are marked in red.

Integrating over the volume of the beam body, followed by the application of the Gauss’ theorem, we �nd

0 =

ˆ
∂

∂xj

(
εklixlσij

)
dV =

ˆ
εklixlσijnj dA =

=

ˆ

∂Binternal

εklixlσijnj dA+

ˆ

∂Bexternal

εklixlti dA = M internal
k +M external

k . (2.165)

In the last step, we decompose the total momentum into internal and external parts in order to reveal the inte-
rior stress of the beam. This is possible by means of the method of sections, see for example in Gross, Hauger,
Schröder, Wall, and Rajapakse (2009, p. 10) or in Gere and Goodno (2013, p. 8). As shown in Fig. 2.2, we
section a imaginary cut to the beam perpendicular to direction 1 at position x1 and examine the right-hand side
part. The internal momentum M internal

k is computed from the cutting area at the cutting point x1. In a bending
testing apparatus, the beam specimen is subjected to two types of external forcesF p: active and reactive. Prede�ned
line forces, applied on top of the beam at speci�c positions xp, are considered active, while the reactive forces oc-
curs as a response to the constraints induced by the supports at positions xp. The superscript p identi�es uniquely
the active and reactive forces and are numbered from 0 to N . A line force comprises the acting force F p that are
distributed on rectangular area of depth d and widthw at position xp. The rectangular areas are marked in red in
Fig. 2.2. The external momentum M external

k is determined by the external forces F p on the right-hand side part at
the cutting point x1.
To proceed, we apply the so-called semi-inverse method for

M internal
k =

ˆ

∂Binternal

εklixlσijnj dA . (2.166)

In this method, the displacement functions are supposed to have certain form by geometrical considerations and
simpli�ed assumptions. For theEuler-Bernoulli beam theory, we have to ensure that the tested beam specimen
ful�ls the Bernoulli’s hypothesis that the cross sections of the beam remain plane and perpendicular in the bent
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Figure 2.3: Explanation of the semi-inverse method.

con�guration to the set of lines that don’t extend or contract. This can be ascertained for small deformation. The
black dashed line in Fig. 2.1 indicates this set of lines that is known as the neutral surface. Furthermore, in Fig. 2.1,
the red line shows that the cross section remains perpendicular in the deformed beam. This in turn leads to the
following displacement functions

u1 = tan
(
α
)
x2 =

∂u

∂x1

x2 , u2 = u = ŭ
(
x1

)
, u3 = 0 . (2.167)

The displacement u3 vanishes due to the set-up of the bending apparatus that excludes deformation in direction 3.
For small deformation, the displacement u2 depends only on x1. The displacement u1 is determined by the cross
section in the bent con�guration of the beam, see Fig. 2.3. While u1 is a function of x1 and x2, its slope tan

(
α
)

depends only on x1 due to the Bernoulli’s hypothesis. The slope tan
(
α
)

is determined as depicted in Fig. 2.4.
It shows that the slope tan

(
α
)

is also determined by an in�nitesimal change of displacement u2, ∂u2, divided by
an in�nitesimal change of position x1, ∂x1.
For small deformation, we use the linear strain in Eq. (2.28) with the displacement functions to determine non-zero
strains as follows

ε11 =
∂u1

∂x1

=
∂2u

∂x 2
1

x2 and ε12 =
1

2

Å
∂u1

∂x2

+
∂u2

∂x1

ã
=

∂u

∂x1

. (2.168)

Since the total length of a slender beam is much greater than the de�ection for small deformation, it is feasible to
assume that the inclination of the deformed beam is negligibly small

∂u

∂x1

≈ 0 . (2.169)

Furthermore, the beam consists of isotropic material which obeys Hooke’s law. This results in the following non-
zero entries of the stress tensor

σ11 =
(
λ+ 2µ

)
ε11 , σ22 = σ33 = λε11 . (2.170)

The Poisson’s ratio ν vanishes as a consequence of the chosen displacement functions

ν = −ε22

ε11

= −ε33

ε11

= 0 , (2.171)

therefore the Lamé constants become
λ = 0 , µ =

E

2
. (2.172)

The only non-vanishing stress entry left is
σ11 = Eε11 . (2.173)

Therefore, the remaining internal momentums are

M internal
2 =

ˆ
ε231x3σ11n1 dA =

ˆ
x3σ11 dx2 dx3 =

ˆ
x3Eε11 dx2 dx3 =
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Figure 2.4: Explanation of the semi-inverse method.

=

ˆ
x3Ex2

∂2u

∂x 2
1

dx2 dx3 = E
∂2u

∂x 2
1

h
2ˆ

−h
2

x2 dx2

w
2ˆ

−w
2

x3 dx3 =

= E
∂2u

∂x 2
1

1

2

[
x 2

2

] h
2

−h
2︸ ︷︷ ︸

=0

1

2

[
x 2

3

] w
2

−w
2︸ ︷︷ ︸

=0

= 0 (2.174)

and

M internal
3 =

ˆ
ε321x2σ11n1 dA =

ˆ
−x2σ11

(
−1
)

dx2 dx3 =

ˆ
x2Eε11 dx2 dx3 =

=

ˆ
x2Ex2

∂2u

∂x 2
1

dx2 dx3 = E
∂2u

∂x 2
1

w
2ˆ

−w
2

h
2ˆ

−h
2

x 2
2 dx2 dx3

︸ ︷︷ ︸
=I22

= EI22

∂2u

∂x 2
1

,

where I22 is known as moment of inertia of plane area.
For the external momentum

M external
k =

ˆ

∂Bexternal

εklixlti dA , (2.175)

the tractions ti that are acting on the beam are considered. Due to the apparatus set-up, the active and reactive
forces point along the direction x2-axis. Therefore, the only remaining traction vector component is

t2 = t̆
(
x1, x2

)
=


tp for x1 ∈

[
xp − d

2 , x
p + d

2

]
, x2 = h

2 ,

tp for x1 ∈
[
xp − d

2 , x
p + d

2

]
, x2 = −h

2 ,

0 otherwise ,
(2.176)

where tp is a constant for each acting force point p. The remaining external momentums are

M external
1 =

ˆ
ε132x3t2 dA =

ˆ
−x3t2 dA =

ˆ
ε132x3t2 dA =

ˆ
−x3t2 dx1 dx3 =

=

N∑
p=1

w
2ˆ

−w
2

xp+ d
2ˆ

xp− d
2

−x3t
p dx1 dx3 =

N∑
p=1

−1

2

[
x 2

3

] w
2

−w
2︸ ︷︷ ︸

=0

tpd = 0 . (2.177)

and

M external
3 =

ˆ
ε312x1t2 dA =

ˆ
x1t2 dA =

ˆ
x1t2 dx1 dx3 =
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=
N∑
p=1

w
2ˆ

−w
2

xp+ d
2ˆ

xp− d
2

x1t
p dx1 dx3 =

N∑
p=1

xp tpdw︸︷︷︸
=F p

=
N∑
p=1

xpF p . (2.178)

We obtain the momentum equilibrium for the Euler-Bernoulli beam as follows

0 = M internal
3 +M external

3 = EI22

∂2u

∂x 2
1

+
N∑
p=1

xpF p . (2.179)

For k = 1 and k = 2 momentum equilibrium are ful�lled without contradiction. The bending moment M in
dependence of position x1 is determined as resistive moment of the external momentum M external

3 at sectioning
point x1. Each moment lever arm xp is computed by the distance between the imaginary cut position x1 and the
force acting point x̆p

xp = x1 − x̆p . (2.180)

The bending moment is computed as follows

M external
3 =

N∑
p=1

xpF p =

N∑
p=1

(
x1 − x̆p

)
F p = M̆

(
x1

)
= M . (2.181)

We rewrite the momentum equilibrium in the form known as the Euler-Bernoulli beam equation

EI22

∂2u

∂x 2
1

= −M . (2.182)

2.5.3 Heat Equation

To examine a solid which is heated solely by thermal conduction and radiation, the temperature distribution within
its body is computed (cf. W. H. Müller 2014, pp. 176–178). Observe the local balance of internal energy in
Eq. (2.125) where we exclude rotational in�uences

%
du

dt
= −∂qi

∂xi
+ %r +

∂vi
∂xj

σij . (2.125)

We assume that the internal energy is completely determined by the state variables speci�c entropy s and linear
strain εkl

u = ŭ
(
s, εkl

)
. (2.183)

The total di�erential of internal energy leads to

du =
∂u

∂s
ds+

∂u

∂εkl
dεkl = T ds+

1

%
σkl dεkl , (2.184)

where by means of Gibbs’ equation the partial derivatives are identi�ed as ∂u∂s = T and ∂u
∂εkl

= 1
%σkl . Since the

speci�c entropy is irrelevant, the dependency of the internal energy has to be converted

u = ŭ
(
s, εkl

)
−→ u = ǔ

(
T, εkl

)
. (2.185)

This is obtained by assuming that for solids the speci�c entropy is completely determined by the state variables
temperature and linear strain

s = š
(
T, εkl

)
. (2.186)

The total di�erential of speci�c entropy is

ds =
∂s

∂T
dT +

∂s

∂εkl
dεkl . (2.187)
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Inserting the above equation into the Gibbs’ equation in Eq. (2.184), we �nd the internal energy with the depen-
dency of temperature and linear strain on right-hand side as follows

du = T
∂s

∂T
dT + T

∂s

∂εkl
dεkl +

1

%
σkl dεkl = T

∂s

∂T
dT +

Å
T
∂s

∂εkl
+

1

%
σkl

ã
dεkl . (2.188)

The left-hand side of the equation above can now be rewritten as

du =
∂u

∂T
dT +

∂u

∂εkl
dεkl (2.189)

and we �nd
∂u

∂T
dT +

∂u

∂εkl
dεkl = T

∂s

∂T
dT +

Å
T
∂s

∂εkl
+

1

%
σkl

ã
dεkl . (2.190)

The �rst partial derivative on the left-hand side is identi�ed as the heat capacity at constant linear strain which obeys
the law of Dulong-Petit law in Eq. (2.157)

∂u

∂T
= cεkl

. (2.191)

To identify the second derivative ∂u
∂εkl

, we equate the coe�cients to obtain

∂u

∂T
= T

∂s

∂T
and (2.192)

∂u

∂εkl
= T

∂s

∂εkl
+

1

%
σkl . (2.193)

A mutual di�erentiation is applied on the above equations by di�erentiating the �rst one with respect to linear
strain and the second one with respect to temperature

∂2u

∂εkl∂T
= T

∂2s

∂εkl∂T
and (2.194)

∂2u

∂T∂εkl
=

∂s

∂εkl
+ T

∂2s

∂T∂εkl
+

1

%

∂σkl
∂T

. (2.195)

Subtracting the second equation with the �rst one, we have

∂s

∂εkl
= −1

%

∂σkl
∂T

. (2.196)

By inserting the above relation into Eq. (2.193), the second derivative is found

∂u

∂εkl
= −T

%

∂σkl
∂T

+
1

%
σkl . (2.197)

Substitute both derivatives, Eq. (2.191) and Eq. (2.197), into Eq. (2.189) for left-hand side of the local balance of
total energy in Eq. (2.125) gives

%cεkl
dT

dt
− T

∂σkl
∂T

dεkl
dt

+ σkl
dεkl
dt

= −
∂qj
∂xj

+ %r +
∂vi
∂xj

σij . (2.198)

The third expression on the left-hand side can be rewritten as

σkl
dεkl
dt

= σkl
d

dt

(
1

2

Å
∂uk
∂xl

+
∂ul
∂xk

ã)
=

1

2
σkl

d

dt

Å
∂uk
∂xl

ã
+

1

2
σkl︸︷︷︸
=σlk

d

dt

Å
∂uk
∂xl

ã
=

= σkl
d

dt

Å
∂uk
∂xl

ã
= σkl

∂

∂t

Å
∂uk
∂xl

ã
+ σkl

∂

∂xm

Å
∂uk
∂xl

ã
vm =
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= σkl

Å
∂2uk
∂t∂xl

+
∂2uk
∂xm∂xl

vm

ã
= σkl

∂

∂xl

Å
∂uk
∂t

+
∂uk
∂xm

vm

ã
=

= σkl
∂

∂xl

Å
duk
dt

ã
= σkl

∂

∂xl

Å
d

dt

(
xk −Xk

)ã
= σkl

∂

∂xl

Å
dxk
dt

ã
= σkl

∂vk
∂xl

(2.199)

and is recognized as the production term of internal energy. It cancels the third expression on the right-hand side
out. Then, the heat equation reads

%cεkl
dT

dt
= −

∂qj
∂xj

+ %r + T
∂σkl
∂T

dεkl
dt

. (2.200)

Applying the Fourier’s law for heat conduction qj in Eq. (2.158) with constant thermal conductivity κ as well as
the Hooke’s law for the stress tensor σkl in Eq. (2.140), we �nd

%cεkl
dT

dt
= κ

∂2T

∂xj∂xj
+ %r − TCklijαij

dεkl
dt

. (2.201)

A special case is where the solid is at rest vj = 0. For this, the material time derivative is applied for the temporal
change of temperature on the left-hand side

dT

dt
=
∂T

∂t
+
∂T

∂xj
vj (2.202)

and the thermal expansion on right-hand side

dεkl
dt

=
∂εkl
∂t

+
∂εkl
∂xj

vj . (2.203)

This in turn yields

%cεkl
∂T

∂t
= κ

∂2T

∂xj∂xj
+ %r − TCklijαij

∂εkl
∂t

. (2.204)

For isotropic materials in Eq. (2.146), we obtain

%cεkl
∂T

∂t
= κ

∂2T

∂xj∂xj
+ %r − T

(
3λ+ 2µ

)
α
∂εkk
∂t

. (2.205)

Further simpli�cation is obtained by assuming that the process of thermal expansion is slow, thus the e�ect of the
strain rate can be neglected. This gives

%cεkl
∂T

∂t
= κ

∂2T

∂xj∂xj
+ %r . (2.206)

2.6 Numerical Treatment with Finite Element Method

Continuum mechanics serves as the basic to cover the thermomechanical modelling of an engineering problem.
The model has to describe the task as close to reality as possible, but on condition that the task can be accomplished
in a feasible manner. Therefore, whenever it is possible one has to simplify the model by using admissible assump-
tions. We end up with the �eld equations that describe the problem in form of partial di�erential equations. In
this formulation, we �nd the relationship between the derivatives of the responses and material constants. How-
ever, we are more interested in the direct dependency between the responses and the material-speci�c parameters.
And that is the solutions of the di�erential equations. For certain classes of di�erential equations, their unique
solution is known to exist and can be obtained by taking into account the problem-speci�c geometry, initial and
boundary conditions. Still, it is not always possible to determine a close-form solution for it. This is often the case
for complex-shaped structures made of non-linear materials. Consequently, it is more convenient to approximate
the solution by applying a numerical method like, for instance, �nite element method.
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The �nite element method is mainly applied to second order partial di�erential equations of elliptic, parabolic or
hyperbolic type. This method transforms partial di�erential equations into a system of linear equations by subdi-
viding the whole structure into parts with simpler shape, which are called elements. The response behaviour of each
element is then approximated by a function such as polynomial function. Thus, the summation over all elements
yields the numerical solution. A profound introduction to �nite element method is provided by the standard text
books by, for example, (Zienkiewicz et al. 2013) and (Strang and Fix 2008).
For a numerical treatment of the �eld equations with �nite element method, we follow the procedure that is known
as theRitz-Galerkinmethod in mechanics. Although, according toGander andWanner (2012),Galerkin
(1915) himself refer this method as Ritz method that is published in (Ritz 1908) and (Ritz 1909). Firstly, we
convert the di�erential equations into their variational form as follows. Each di�erential equation is multiplied
by a so-called test function that is associated with the primary response variable in the �eld equation. The at least
once di�erentiable test functions are arbitrary but compatible. To ful�l the compatibility, the test functions have
to vanish at Dirichlet boundaries. In this area, the primary response variables take given values as conditions.
Furthermore, in regard of compatibility, the capability to assemble a square matrix at the end has to be guaranteed
by the choice of suitable function to approximate the test functions. Then, we integrate over the whole body.
Using integration by parts, the order of spatial di�erentiation in the integral is reduced. At this end, we �nd the
variational formulation of the �eld equations. Secondly, the complete structure is discretised into a �nite number
of elements. Finally, for each element, we approximate its response by a polynomial function. Thus, the sum of
all polynomial functions represents the approximated response of the whole structure. Since the test function is
associated with the response, we chose the same polynomial function as for the response to approximate the test
function. Additionally to Ritz-Galerkin method, considerations are required for dealing with transient part in
the variational formulation and numerical integration.
From Secs. 2.6.1 to 2.6.8, we apply the �nite element method to the elastodynamic �eld equations to show a step-
by-step work �ow to transform hyperbolic partial di�erential equations to a system of linear equations. For this
purpose, linear tetrahedron elements are used. In Sec. 2.6.9, it is shown how non-linear �nite elements can be
utilised. To this end, we apply the �nite element method for non-linear elements to Euler-Bernoulli beam
equation.

2.6.1 Variational Formulation

The �rst step of applying of theRitz-Galerkinmethod is to reformulate the �eld equations into their variational
form. Consider the elastodynamic equations in Eq. (2.161), uncoupled from the temperature �eld,

%
d2ui
dt2

= Cijkl
∂2uk
∂xj∂xl

+ %fi , (2.207)

where the mass density % and the speci�c volume force fi are given as constants. The primary response variable
is the displacement ui. Therefore, we multiply each equation by its associated test function δui and obtain after
integration over the whole body

ˆ
%δui

d2ui
dt2

dV =

ˆ
δuiCijkl

∂2uk
∂xj∂xl

dV +

ˆ
%δuifi dV . (2.208)

The transient part is on the left-hand side of above equation. The temporal di�erentiation can be approximated
with the finite di�erence method

d2ui
dt2
≈
ui − 2ut−1

i + ut−2
i

∆t2
, (2.209)

where t − 1 and t − 2 denote the previous and pre-previous time step. The �rst expression on the right-hand side
is the elliptic part. By applying integration by parts, the order of spatial di�erentiation of the displacement uk can
be reduced by increasing the order of spatial di�erentiation of the test function δui as follows

ˆ
Cijkl

∂

∂xj

(
δui

∂uk
∂xl

)
dV =

ˆ
δuiCijkl

∂2uk
∂xj∂xl

dV +

ˆ
Cijkl

∂δui
∂xj

∂uk
∂xl

dV . (2.210)
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Furthermore, the term on the left-hand side of above equation can be rewritten as
ˆ
Cijkl

∂

∂xj

(
δui

∂uk
∂xl

)
dV =

ˆ
δuiCijkl

∂uk
∂xl

nj dA =

ˆ
δuiti dA , (2.211)

where the Gauss theorem of Eq. (2.37) is used followed by Eq. (2.159), the Hooke’s law in Eq. (2.136) and the
traction in Eq. (2.55). The variational form of the elastodynamic equations in Eq. (2.207) is

ˆ
%δui

ui − 2ut−1
i + ut−2

i

∆t2
dV =

= −
ˆ
Cijkl

∂δui
∂xj

∂uk
∂xl

dV +

ˆ
δuiti dA+

ˆ
%δuifi dV . (2.212)

The variational form can be further rearranged as
ˆ

%

∆t2
δuiui dV +

ˆ
Cijkl

∂δui
∂xj

∂uk
∂xl

dV =

=

ˆ
%

∆t2
δui
(
2ut−1

i − ut−2
i

)
dV +

ˆ
δuiti dA+

ˆ
%δuifi dV . (2.213)

In this arrangement, we have a �rst glance on the �nal form of the �nite element approach. The method transforms
the partial di�erential equations into linear algebraic systems that then can be solved with known algorithm such
as Gaussian elimination. The expressions of the left-side hand side becomes the so-called sti�ness matrix and dis-

placement vector. The terms on the right-hand side lead to the so-called load vector and contain the natural (�rst
and last terms) and Neumann boundary conditions (second terms).

2.6.2 Discretisation in Linear Tetrahedron Elements

The complete body is discretised into a �nite number of elementsN . Here, we explicitly use tetrahedron elements
for 3-D problems. The presented approach is also applicable for triangular elements for 2-D problems and straight
elements for 1-D problems. Every element and every node have to be uniquely identi�ed. Therefore, each node ν
and each element ζ are numbered with natural numbers, where n is the number of nodes and N is the number
of elements. The unique identi�er and the coordinate of each node, as well as the identi�cation number and the
corner nodes for each element can be stored in tables, e. g.,

ν x1 x2 x3

1
...
n

and

ζ ν1 ν2 ν3 ν4

1
...
N

.

2.6.3 Approximation with Linear Functions

The displacement �eld uζ k within each element ζ can be approximated with a linear function such as

uζ k ≈ aζ 0 + aζ 1x1 + aζ 2x2 + aζ 3x3 (2.214)

in such a way that the sum of all linear functions yields the approximated displacement �eld

uk ≈
N∑
ζ=1

uζ k , (2.215)

where the scalar valued constants aζ 0, aζ 1, aζ 2, aζ 3 are the coe�cients of the linear function. But, it is a frequent
practice in �nite element method that the linear function in Eq. (2.214) is rewritten, so that

aζ 0 + aζ 1x1 + aζ 2x2 + aζ 3x3 = uζν1 k ξ
ζ
ν1

+ uζν2 k ξ
ζ
ν2

+ uζν3 k ξ
ζ
ν3

+ uζν4 k ξ
ζ
ν4
, (2.216)
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where the coe�cients uζν1 k, uζν2 k, uζν3 k, uζν4 k correspond to displacement values at the corner points of each

element ζ with ξζ ν1 , ξζ ν2 , ξζ ν3 and ξζ ν4 as their basis functions. The advantage of rewriting the polynomial
functions is that the converted set of coe�cients

(
uζν1 k, uζν2 k, uζν3 k, uζν4 k

)
are the sought values at that positions.

Meanwhile, using the original set of coe�cients
(
aζ 0, a

ζ
1, a
ζ

2, a
ζ

3

)
in Eq. (2.214), the displacement value for a

speci�c position has to be computed once the original set of coe�cients is determined. To rewrite the expression
as shown in the above equation, we write

uζν1 k = aζ 0 + aζ 1 xζν1 1 + aζ 2 xζν1 2 + aζ 3 xζν1 3

uζν2 k = aζ 0 + aζ 1 xζν2 1 + aζ 2 xζν2 2 + aζ 3 xζν2 3

uζν3 k = aζ 0 + aζ 1 xζν3 1 + aζ 2 xζν3 2 + aζ 3 xζν3 3

uζν4 k = aζ 0 + aζ 1 xζν4 1 + aζ 2 xζν4 2 + aζ 3 xζν4 3 , (2.217)

where the coordinates xζνz 1, xζνz 2, xζνz 3 of the four corner nodes (z = 1, 2, 3, 4) forming a tetrahedron element ζ
are inserted in the left-hand side of Eq. (2.216). At each of the corners z, the linear function takes the displacement
value uζνz k. It is helpful to use matrix notation for Eq. (2.217)

uζν1 k

uζν2 k

uζν3 k

uζν4 k

 =


1 xζν1 1 xζν1 2 xζν1 3

1 xζν2 1 xζν2 2 xζν2 3

1 xζν3 1 xζν3 2 xζν3 3

1 xζν4 1 xζν4 2 xζν4 3



aζ 0

aζ 1

aζ 2

aζ 3

 (2.218)

and for Eq. (2.216)

[
1 x1 x2 x3

]

aζ 0

aζ 1

aζ 2

aζ 3

 =
î
ξζ ν1 ξζ ν2 ξζ ν3 ξζ ν4

ó uζν1 k

uζν2 k

uζν3 k

uζν4 k

 . (2.219)

Substituting Eq. (2.218) into Eq. (2.219), we have after equating coe�cients
1
x1

x2

x3

 =


1 1 1 1

xζν1 1 xζν2 1 xζν3 1 xζν4 1

xζν1 2 xζν2 2 xζν3 2 xζν4 2

xζν1 3 xζν2 3 xζν3 3 xζν4 3



ξζ ν1

ξζ ν2

ξζ ν3

ξζ ν4

 . (2.220)

The above matrix equation shows the conversion between normalized Barycentric (or Areal) and Cartesian coordi-
nates x1

x2

x3

 = ξζ ν1

 xζν1 1

xζν1 2

xζν1 3

+ ξζ ν2

 xζν2 1

xζν2 2

xζν2 3

+ ξζ ν3

 xζν3 1

xζν3 2

xζν3 3

+ ξζ ν4

 xζν4 1

xζν4 2

xζν4 3

 (2.221)

with normalization relation
1 = ξζ ν1

+ ξζ ν2
+ ξζ ν3

+ ξζ ν4
. (2.222)

The basis functions ξζ ν1 , ξζ ν2 , ξζ ν3 , ξζ ν4 occur on the right-hand side in Eq. (2.216) are barycentric basis functions
that can be determined as follows

ξζ ν1

ξζ ν2

ξζ ν3

ξζ ν4

 =


1 1 1 1

xζν1 1 xζν2 1 xζν3 1 xζν4 1

xζν1 2 xζν2 2 xζν3 2 xζν4 2

xζν1 3 xζν2 3 xζν3 3 xζν4 3


−1 

1
x1

x2

x3
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=


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44




1
x1

x2

x3

 . (2.223)

Now the rewritten linear function with barycentric basis functions is applied to approximate the displacement �eld
vector

uk ≈
N∑
ζ=1

uζ k =
N∑
ζ=1

uζν1 k ξ
ζ
ν1

+ uζν2 k ξ
ζ
ν2

+ uζν3 k ξ
ζ
ν3

+ uζν4 k ξ
ζ
ν4
. (2.224)

Since the test function δui is associated with the displacement �eld uk, we also approximate the test function with
linear function with barycentric basis functions

δui ≈
N∑
ζ=1

δuζ i =

N∑
ζ=1

δuζν1 i ξ
ζ
ν1

+ δuζν2 i ξ
ζ
ν2

+ δuζν3 i ξ
ζ
ν3

+ δuζν4 i ξ
ζ
ν4
. (2.225)

As stated previously, the test function is arbitrary but compatible and at least once di�erentiable. Due to the use
of linear functions with barycentric basis functions for the test function, the stated requirements are satis�ed. Any
linear function can be di�erentiated once. The test functions are arbitrary due to their coe�cients that can take
any values. In part for compatibility, the coe�cients are able to vanish at Dirichlet boundaries. The other part
regarding the compatibility is that the outcome has to result in square matrices. We shall later see that it is true due
to the approach to use the same form of the linear function as in the displacement �eld for the test function. Note
that the coe�cients for the displacement �eld approximation are treated as unknowns, while the coe�cients of the
test function are considered to be known.

2.6.4 Stiffness Matrix

Observe the second expression on the left-hand side of Eq. (2.213)

ˆ
Cijkl

∂δui
∂xj

∂uk
∂xl

dV ≈
N∑
ζ=1

ˆ
Cijkl

∂ δuζ i

∂xj

∂ uζ k

∂xl
d Vζ =

=

N∑
ζ=1

Cijkl
∂ δuζ i

∂xj

∂ uζ k

∂xl

ˆ
d Vζ =

=
N∑
ζ=1

Cijkl
∂ δuζ i

∂xj

∂ uζ k

∂xl
Vζ , (2.226)

where we know that the elasticity tensor Cijkl as well as the partial derivatives are constants. We substitute the
displacement vector and its test functions with the approximation in Eq. (2.224) and in Eq. (2.225) and obtain for
each tetrahedron element ζ

Cijkl
∂ δuζ i

∂xj

∂ uζ k

∂xl
Vζ =

4∑
m=1

4∑
n=1

Cijkl δuζνm i uζνn k

∂ ξζ νm

∂xj

∂ ξζ νn

∂xl
Vζ = uζ T Kζ δuζ Vζ . (2.227)

After the last equal sign, the matrix notation is introduced where

uζ T =
î
uζν1 k uζν2 k uζν3 k uζν4 k

ó
,

Kζ =



Cijkl
∂ ξζ ν1
∂xj

∂ ξζ ν1
∂xl

Cijkl
∂ ξζ ν1
∂xj

∂ ξζ ν2
∂xl

Cijkl
∂ ξζ ν1
∂xj

∂ ξζ ν3
∂xl

Cijkl
∂ ξζ ν1
∂xj

∂ ξζ ν4
∂xl

Cijkl
∂ ξζ ν2
∂xj

∂ ξζ ν1
∂xl

Cijkl
∂ ξζ ν2
∂xj

∂ ξζ ν2
∂xl

Cijkl
∂ ξζ ν2
∂xj

∂ ξζ ν3
∂xl

Cijkl
∂ ξζ ν2
∂xj

∂ ξζ ν4
∂xl

Cijkl
∂ ξζ ν3
∂xj

∂ ξζ ν1
∂xl

Cijkl
∂ ξζ ν3
∂xj

∂ ξζ ν2
∂xl

Cijkl
∂ ξζ ν3
∂xj

∂ ξζ ν3
∂xl

Cijkl
∂ ξζ ν3
∂xj

∂ ξζ ν4
∂xl

Cijkl
∂ ξζ ν4
∂xj

∂ ξζ ν1
∂xl

Cijkl
∂ ξζ ν4
∂xj

∂ ξζ ν2
∂xl

Cijkl
∂ ξζ ν4
∂xj

∂ ξζ ν3
∂xl

Cijkl
∂ ξζ ν4
∂xj

∂ ξζ ν4
∂xl


,
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δuζ =


δuζν1 i

δuζν2 i

δuζν3 i

δuζν4 i

 , (2.228)

where Kζ , uζ , δuζ are the sti�ness matrix, the displacement vector and the vector containing the coe�cients of
the test function of a single tetrahedron element ζ . Moreover, each entry in the above sti�ness matrix Kζ contains
a 3× 3 sub-matrix. Therefore, the total size of the sti�ness matrix Kζ is 12× 12. Likewise, the size of the vectors
uζ and δuζ is 12. An implementation in Python to generate the sti�ness matrix Kζ of a single tetrahedron element
ζ is given in Listing A.1.

2.6.5 Mass Matrix

Observe the �rst expression on the left-hand side of Eq. (2.213) that is approximated by a �nite number of tetrahe-
dron elements ˆ

%

∆t2
δuiui dV ≈

N∑
ζ=1

ˆ
%

∆t2
δuζ i u

ζ
i d Vζ . (2.229)

For each tetrahedron element, we substitute the displacement vector and its test function with Eq. (2.224) and
Eq. (2.225) and arrive at

ˆ
%

∆t2
δuζ i u

ζ
i d Vζ =

ˆ
%

∆t2

(
δuζν1 i ξ

ζ
ν1

+ δuζν2 i ξ
ζ
ν2

+ δuζν3 i ξ
ζ
ν3

+ δuζν4 i ξ
ζ
ν4

)
(

uζν1 i ξ
ζ
ν1

+ uζν2 i ξ
ζ
ν2

+ uζν3 i ξ
ζ
ν3

+ uζν4 i ξ
ζ
ν4

)
d Vζ

= uζ T Mζ δuζ . (2.230)

The matrix notation is used after the last equal sign and where the components of this equation are

uζ T =
î
uζν1 k uζν2 k uζν3 k uζν4 k

ó
,

Mζ =



m11 m12 m13 m14

m11 m12 m13 m14

m11 m12 m13 m14

m21 m22 m23 m24

m21 m22 m23 m24

m21 m22 m23 m24

m31 m32 m33 m34

m31 m32 m33 m34

m31 m32 m33 m34

m41 m42 m43 m44

m41 m42 m43 m44

m41 m42 m43 m44


withmmn =

ˆ
%

∆t2
ξζ νm

ξζ νn
d Vζ ,

δuζ =


δuζν1 i

δuζν2 i

δuζν3 i

δuζν4 i

 . (2.231)

Here, for each tetrahedron element ζ , we de�ne Mζ as mass matrix, and uζ and δuζ are the displacement vector
and the vector containing the coe�cients of the test function. The 12 × 12 entries mmn in the mass matrix Mζ
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can be computed by means of barycentric coordinates (cf. Deb 2006, pp. 346–348) as follows

mmn =

ˆ
%

∆t2
ξζ νm

ξζ νn
d Vζ =

a3ˆ

0

a2ˆ

0

a1ˆ

0

%

∆t2
ξζ νm

ξζ νn
6 Vζ d ξζ ν1

d ξζ ν2
d ξζ ν3

, (2.232)

where for m,n = 1, 2, 3, 4 the limits are a3 = 1, a2 = 1 − ξζ ν3 and a1 = 1 − ξζ ν3 − ξζ ν2 . Afterwards, the
above expression can be computed by means of Gauss-Legendre quadrature as follows

a3ˆ

0

a2ˆ

0

a1ˆ

0

%

∆t2
ξζ νm

ξζ νn
6 Vζ d ξζ ν1

d ξζ ν2
d ξζ ν3

=

=

a3ˆ

0

a2ˆ

0

∑
r

a1

2
ωr

%

∆t2
ξζ νm

ξζ νn
6 Vζ

∣∣∣∣∣
ξζ ν1

=
a1
2
nr+

a1
2

d ξζ ν2
d ξζ ν3

=

a3ˆ

0

∑
q

∑
r

a2

2
ωq
a1

2
ωr

%

∆t2
ξζ νm

ξζ νn
6 Vζ

∣∣∣∣∣
ξζ ν2

=
a2
2
nq+

a2
2

d ξζ ν3

=
∑
p

∑
q

∑
r

a3

2
ωp
a2

2
ωq
a1

2
ωr

%

∆t2
ξζ νm

ξζ νn
6 Vζ

∣∣∣∣∣
ξζ ν3

=
a3
2
np+

a3
2

=
∑
p

∑
q

∑
r

a3ωpa2ωqa1ωr
%

∆t2
ξζ νm

ξζ νn

3

4
Vζ . (2.233)

An implementation to generate the mass matrix Mζ of a single tetrahedron element ζ is provided in Listing A.2.

2.6.6 Load Vector

The evaluation of the three termsˆ
%

∆t2
δui
(
2ut−1

i − ut−2
i

)
dV ,

ˆ
δuiti dA and

ˆ
%δuifi dV (2.234)

on the right-hand side of Eq. (2.213) leads to the load vector. We observe that the �rst and third expressions are vol-
ume integrals. Hence, they can be evaluated with the same computational method that is described in the following
section about load vector of volume forces. The second term is a surface integral and its calculation is presented in
the following section about load vector of surface forces.
In order to evaluate the integrals, two aspects must be respected. Firstly, for convenient computation, the integrals
have to be reformulated in barycentric coordinate system. For the reformulation, useful relations and proofs can
be found in Eisenberg and Malvern (1973). Secondly, we obtain de�nite integrals that can be approximate
numerically by means of Gaussian quadrature. More detailed information on quadrature can be obtained for
example in Dasgupta (2006, pp. 238–244).

Load Vector of Volume Forces

To evaluate the third expression on the right-hand side of Eq. (2.213)

ˆ
%δuifi dV ≈

N∑
ζ=1

ˆ
% δuζ ifi d Vζ , (2.235)

we substitute the test functions δui with the approximation in Eq. (2.225). For each tetrahedron element ζ , we
have ˆ

% δuζ ifi d Vζ =

ˆ
%
(

δuζν1 i ξ
ζ
ν1

+ δuζν2 i ξ
ζ
ν2

+ δuζν3 i ξ
ζ
ν3

+ δuζν4 i ξ
ζ
ν4

)
fi d Vζ
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= fζ T
fi
δuζ , (2.236)

where matrix notation is used after the last equal sign and where

fζ T
fi

=
î´

ξζ ν1 %fi d Vζ
´
ξζ ν2 %fi d Vζ

´
ξζ ν3 %fi d Vζ

´
ξζ ν4 %fi d Vζ

ó
,

δuζ =


δuζν1 i

δuζν2 i

δuζν3 i

δuζν4 i

 . (2.237)

The entries in the load vector for the long range forces fζ T
fi

can be computed by means of barycentric coordinates
(cf. Deb 2006, pp. 346–348) as follows

ˆ
ξζ νm

%fi d Vζ =

a3ˆ

0

a2ˆ

0

a1ˆ

0

ξζ νm
%fi 6 Vζ d ξζ ν1

d ξζ ν2
d ξζ ν3

, (2.238)

where for m = 1, 2, 3, 4 the limits are a3 = 1, a2 = 1 − ξζ ν3 and a1 = 1 − ξζ ν3 − ξζ ν2 . Then, the above
expression can be approximated with Gauss-Legendre quadrature as follows

a3ˆ

0

a2ˆ

0

a1ˆ

0

ξζ νm
%fi 6 Vζ d ξζ ν1

d ξζ ν2
d ξζ ν3

=

=

a3ˆ

0

a2ˆ

0

∑
r

a1

2
ωr ξ

ζ
νm
%fi 6 Vζ

∣∣∣∣∣
ξζ ν1

=
a1
2
nr+

a1
2

d ξζ ν2
d ξζ ν3

=

a3ˆ

0

∑
q

∑
r

a2

2
ωq
a1

2
ωr ξ

ζ
νm
%fi 6 Vζ

∣∣∣∣∣
ξζ ν2

=
a2
2
nq+

a2
2

d ξζ ν3

=
∑
p

∑
q

∑
r

a3

2
ωp
a2

2
ωq
a1

2
ωr ξ

ζ
νm
%fi 6 Vζ

∣∣∣∣∣
ξζ ν3

=
a3
2
np+

a3
2

=
∑
p

∑
q

∑
r

a3ωpa2ωqa1ωr ξ
ζ
νm
%fi

3

4
Vζ . (2.239)

The implementation to compute the load vector for volume integral of a single tetrahedron is given in Listing A.3.

Mass Vector

The �rst term on the right-hand side of Eq. (2.213) can be evaluated in exactly the same fashion as for the volume
forces. Instead of computing the integrand part %fi , we can replace it by %

∆t2

(
2ut−1

i − ut−2
i

)
. We obtain

ˆ
%

∆t2
δui
(
2ut−1

i − ut−2
i

)
dV ≈

N∑
ζ=1

ˆ
%

∆t2
δuζ i

(
2ut−1

i − ut−2
i

)
d Vζ , (2.240)

where for each tetrahedron element we have
ˆ

%

∆t2
δuζ i

(
2ut−1

i − ut−2
i

)
d Vζ = fζ T

t δuζ . (2.241)

Here we de�ne fζ T
t as mass vector and it can be implemented as shown in Listing A.3.
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Load Vector of Surface Forces

To compute the second expression on the right-hand side of Eq. (2.213)

ˆ
δuiti dA ≈

N∑
ζ=1

ˆ
δuζ iti d Aζ , (2.242)

we substitute the test functions δui with the approximation in Eq. (2.225). For each tetrahedron ζ , we write
ˆ

δuζ iti d Aζ =

ˆ (
δuζν1 i ξ

ζ
ν1

+ δuζν2 i ξ
ζ
ν2

+ δuζν3 i ξ
ζ
ν3

+ δuζν4 i ξ
ζ
ν4

)
ti d Aζ

= fζ T
ti
δuζ , (2.243)

where we use the matrix notation for

fζ T
ti

=
î´

ξζ ν1 ti d Aζ
´
ξζ ν2 ti d Aζ

´
ξζ ν3 ti d Aζ

´
ξζ ν4 ti d Aζ

ó
,

δuζ =


δuζν1 i

δuζν2 i

δuζν3 i

δuζν4 i

 . (2.244)

For each entry in the load vector for short-range forces fζ T
ti

, we can calculate it as follows

ˆ
ξζ νm

ti d Aζ =

a2ˆ

0

a1ˆ

0

ξζ νm
ti2 Aζ d ξζ ν1

d ξζ ν2
, (2.245)

where form = 1, 2, 3, 4 the limits are a2 = 1 and a1 = 1− ξζ ν2 . Using Gauss-Legendre quadrature, we �nd
the approximation for the de�nite integral

a2ˆ

0

a1ˆ

0

ξζ νm
ti2 Aζ d ξζ ν1

d ξζ ν2
=

=

a2ˆ

0

∑
q

a1

2
ωq ξ

ζ
νm
ti2 Aζ

∣∣∣∣∣
ξζ ν1

=
a1
2
nq+

a1
2

d ξζ ν2

=
∑
p

∑
q

a2

2
ωp
a1

2
ωq ξ

ζ
νm
ti2 Aζ

∣∣∣∣∣
ξζ ν2

=
a2
2
np+

a2
2

=
∑
p

∑
q

a2ωpa1ωq ξ
ζ
νm
ti

1

2
Aζ . (2.246)

The implementation to compute the load vector for surface integral is provided in Listing A.4.

2.6.7 Assembly

The assembly describes the process on how to build the sti�ness matrix and load vector for the complete body
from all its �nite element parts. In our case, we claim that the condition of continuity has to be ful�lled. As a result,
the nodes of each element serve as the connecting points of its neighbouring elements. Apart from this, some
vertices are shared by many elements. Nevertheless, this information is stored in tables as shown in Sec. 2.6.2 and is
used to assemble the sti�ness matrix and load vector. The continuity condition can be seen as constraints and can
be implemented by means of the Lagrangian multiplier method. But, it will considerably enlarge the sti�ness
matrix and hence the computational time is increased. Therefore, in practise, another approach is used. First, the
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global sti�ness matrix is initialised by de�ning am×nmatrix in which each entry contains a 3×3 zero sub-matrix.
Afterwards, for each computed local sti�ness matrix, its sub-matrices are assigned to the global sti�ness matrix in
accordance to the table. The table contains the global numbering of local nodes for all elements. In case of multiple
assignment to an entry of the global sti�ness matrix due to sharing of a single node with multiple elements, the
sub-matrices are summed up. Similarly, the load vector is assembled following the same rules.
By inserting the Eq. (2.230) into Eq. (2.229), Eq. (2.227) into Eq. (2.226), Eq. (2.241) into Eq. (2.240), Eq. (2.236)
into Eq. (2.235) and Eq. (2.243) into Eq. (2.242), we obtain

ˆ
%

∆t2
δuiui dV ≈

N∑
ζ=1

uζ T Mζ δuζ = uTMδu ,

ˆ
Cijkl

∂δui
∂xj

∂uk
∂xl

dV ≈
N∑
ζ=1

uζ T Kζ δuζ Vζ = uTKδu ,

ˆ
%

∆t2
δui
(
2ut−1

i − ut−2
i

)
dV ≈

N∑
ζ=1

fζ T
t δuζ = fTt δu ,

ˆ
%δuifi dV ≈

N∑
ζ=1

fζ T
fi
δuζ = fTfi δu ,

ˆ
δuiti dA ≈

N∑
ζ=1

fζ T
ti
δuζ = fTti δu , (2.247)

where M, K, u, ft, ffi , fti , δu are the global variant of the mass matrix, the sti�ness matrix, the displacement vector,
the mass vector, the load vector for volume and surface forces and the vector containing the coe�cients of the test
function. The above equations are used to evaluate the expression in Eq. (2.213). Equating the coe�cients by δu
and transposing gives

uTMδu + uTKδu = fTt δu + fTfi δu + fTti δu

uTM + uTK = fTt + fTfi + fTti

uT
(
M + K

)
= fT

uTKt = fT

Ktu = f . (2.248)

2.6.8 Incorporating the Dirichlet Boundary Conditions

The Dirichlet boundary conditions prescribe certain values that the solution has to take at the pre-speci�ed
boundaries. To incorporate the Dirichlet boundary conditions, we can also apply the Lagrangian multiplier
method as the Dirichlet boundary conditions can be interpreted as constraints. But, using this method, the
computational e�ort is increased due to the enlargement of the sti�ness matrix. Therefore, we choose an alternative
way to incorporate the boundary conditions. First, the row in the sti�ness matrix and load vector in Eq. (2.248)
to which the conditions apply are determined by means of the table in Sec. 2.6.2. Second, for each condition, the
entries of the associated row and column in the sti�ness matrix are overwritten with zeros. At the intersection of
the row and column line, the entry takes the value one. At the same time, the row entry of the load vector takes the
given value of the prescribed condition.

2.6.9 Non-linear Finite Elements

To improve the approximation of the solution, two possible options are available. The number of �nite elements
can be increased or a higher order polynomial for the elements can be used. The latter one is attractive and we
show how a �fth-order polynomial can be used to approximate �eld quantity in �nite element method. Observe
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the Euler-Bernoulli beam equation in Eq. (2.182)

∂2u

∂x 2
1

= − M

EI22

, (2.249)

where u, x1, M , E and I22 are the de�ection, the position, the bending moment, the Young’s modulus and
the moment of inertia. Due to the set-up of the bending apparatus, the course of the bending moment M is
given. Apart from this, the geometry of the beam specimen is also known, therefore the moment of inertia I22

is determined from the specimen cross section. The �eld variable is the displacement u, hence we multiply the
di�erential equation by its associated test function δu. We obtain the variational form of the beam equation after
integration over the whole beam body respectively the total beam length

lˆ

0

∂2u

∂x 2
1

δu dx1 = −
lˆ

0

M

EI22

δu dx1

lˆ

0

∂

∂x1

Å
∂u

∂x1

δu

ã
dx1 −

lˆ

0

∂u

∂x1

∂δu

∂x1

dx1 = −
lˆ

0

M

EI22

δu dx1

∂u

∂x1

∣∣∣∣
x=l

δu

∣∣∣∣
x=l

− ∂u

∂x1

∣∣∣∣
x=0

δu

∣∣∣∣
x=0

−
lˆ

0

∂u

∂x1

∂δu

∂x1

dx1 = −
lˆ

0

M

EI22

δu dx1

lˆ

0

∂u

∂x1

∂δu

∂x1

dx1 =

lˆ

0

M

EI22

δu dx1 , (2.250)

where integration by parts is applied and we bene�t from the property that the test function vanishes on the
Dirichlet boundary conditions δu

∣∣
x=l

= δu
∣∣
x=0

= 0. Then, we discretise the beam into a �nite number
of straight elementsN with the length of

∣∣ νζ 2− νζ 1

∣∣ for each element ζ . Within each element ζ , the displacement
uζ is approximated by a Lagrange basis polynomial up to �fth order

uζ ≈ aζ 0 + aζ 1 x̃ζ + aζ 2 x̃ζ 2 + aζ 3 x̃ζ 3 + aζ 4 x̃ζ 4 + aζ 5 x̃ζ 5 , (2.251)

where the scalar-valued constants aζ 0, aζ 1, aζ 2, aζ 3, aζ 4, aζ 5 are the coe�cients of the basis function

x̃ζ =
x1 − νζ 1

νζ 2 − νζ 1

. (2.252)

And thus, the sum of all polynomial functions results in the approximated displacement �eld

u ≈
N∑
ζ=1

uζ , (2.253)

Now, we rewrite the non-linear function in Eq. (2.251), so that we can compute the values of the de�ection(
uζν1 , uζν2

)
, the �rst

(
u′ζ

ν1
, u′ζ
ν2

)
and the second derivatives

(
u′′ζ

ν1
, u′′ζ
ν2

)
at both ends νζ 1 and νζ 2 of an element

aζ 0 + aζ 1 x̃ζ + aζ 2 x̃ζ 2 + aζ 3 x̃ζ 3 + aζ 4 x̃ζ 4 + aζ 5 x̃ζ 5 =

= uζν1 hζ 00 + uζν2 hζ 01 + u′
ζ
ν1

hζ 10 + u′
ζ
ν2

hζ 11 + u′′
ζ
ν1

hζ 20 + u′′
ζ
ν2

hζ 21 , (2.254)

where hζ 00, hζ 01, hζ 10, hζ 11, hζ 20, hζ 21 are another set of basis functions. To convert the expression as shown in
the above equation, we evaluate Eq. (2.254) and its �rst and second derivatives on both ends of a straight element
at x̃ζ = 0 and x̃ζ = 1

uζν1 = aζ 0
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uζν2 = aζ 0 + aζ 1 + aζ 2 + aζ 3 + aζ 4 + aζ 5

u′
ζ
ν1

=
1

lζ
aζ 1

u′
ζ
ν2

=
1

lζ
(
aζ 1 + 2 aζ 2 + 3 aζ 3 + 4 aζ 4 + 5 aζ 5

)
u′′
ζ
ν1

=
2

lζ 2
aζ 2

u′′
ζ
ν2

=
1

lζ 2

(
2 aζ 2 + 6 aζ 3 + 12 aζ 4 + 20 aζ 5

)
, (2.255)

where lζ = νζ 2 − νζ 1 is the length of a straight element ζ . It is helpful to use matrix notation for the above
equations 

uζν1
uζν2
u′ζ

ν1

u′ζ
ν2

u′′ζ
ν1

u′′ζ
ν2


=



1 0 0 0 0 0
1 1 1 1 1 1
0 1

lζ
0 0 0 0

0 1
lζ

2
lζ

3
lζ

4
lζ

5
lζ

0 0 2
lζ 2 0 0 0

0 0 2
lζ 2

6
lζ 2

12
lζ 2

20
lζ 2





aζ 0

aζ 1

aζ 2

aζ 3

aζ 4

aζ 5


(2.256)

and for Eq. (2.254)

[
1 x̃ζ x̃ζ 2 x̃ζ 3 x̃ζ 4 x̃ζ 5

]


aζ 0

aζ 1

aζ 2

aζ 3

aζ 4

aζ 5


=

=
î
hζ 00 hζ 01 hζ 10 hζ 11 hζ 20 hζ 21

ó
uζν1
uζν2
u′ζ

ν1

u′ζ
ν2

u′′ζ
ν1

u′′ζ
ν2


. (2.257)

Substituting Eq. (2.256) into Eq. (2.257), we have after equating coe�cients


1
x̃ζ

x̃ζ 2

x̃ζ 3

x̃ζ 4

x̃ζ 5

 =



1 1 0 0 0 0
0 1 1

lζ
1
lζ

0 0

0 1 0 2
lζ

2
lζ 2

2
lζ 2

0 1 0 3
lζ

0 6
lζ 2

0 1 0 4
lζ

0 12
lζ 2

0 1 0 5
lζ

0 20
lζ 2





hζ 00

hζ 01

hζ 10

hζ 11

hζ 20

hζ 21


. (2.258)

Solving the above system of linear equations, we obtain

hζ 00

hζ 01

hζ 10

hζ 11

hζ 20

hζ 21


=


1 0 0 −10 15 −6
0 0 0 10 −15 6
0 lζ 0 −6 lζ 8 lζ −3 lζ

0 0 0 −4 lζ 7 lζ −3 lζ

0 0 1
2 lζ 2 −3

2 lζ 2 3
2 lζ 2 −1

2 lζ 2

0 0 0 1
2 lζ 2 − lζ 2 1

2 lζ 2




1
x̃ζ

x̃ζ 2

x̃ζ 3

x̃ζ 4

x̃ζ 5

 (2.259)
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respectively

hζ 00 = 1− 10 x̃ζ 3 + 15 x̃ζ 4 − 6 x̃ζ 5

hζ 01 = 10 x̃ζ 3 − 15 x̃ζ 4 + 6 x̃ζ 5

hζ 10 = lζ
(
x̃ζ − 6 x̃ζ 3 + 8 x̃ζ 4 − 3 x̃ζ 5

)
hζ 11 = lζ

(
−4 x̃ζ 3 + 7 x̃ζ 4 − 3 x̃ζ 5

)
hζ 20 = lζ 2

(1

2
x̃ζ 2 − 3

2
x̃ζ 3 +

3

2
x̃ζ 4 − 1

2
x̃ζ 5
)

hζ 21 = lζ 2
(1

2
x̃ζ 3 − x̃ζ 4 +

1

2
x̃ζ 5
)
, (2.260)

where hζ 00, hζ 01, hζ 10, hζ 11, hζ 20, hζ 21 are known as quinticHermite basis functions, see for exampleNeuser
(1992, p. 57). The rewritten non-linear basis functions are applied to approximate the displacement as follows

u ≈
N∑
ζ=1

uζν1 hζ 00 + uζν2 hζ 01 + u′
ζ
ν1

hζ 10 + u′
ζ
ν2

hζ 11 + u′′
ζ
ν1

hζ 20 + u′′
ζ
ν2

hζ 21 . (2.261)

Likewise, the Hermite basis functions are used for the representation of the associated test function

δu ≈
N∑
ζ=1

δuζν1 hζ 00 + δuζν2 hζ 01 + δu′
ζ
ν1

hζ 10 + δu′
ζ
ν2

hζ 11 + δu′′
ζ
ν1

hζ 20 + δu′′
ζ
ν2

hζ 21 . (2.262)

The above two approximation functions are inserted in Eq. (2.250). In a similar fashion to the one spelled out in
Sec. 2.6.4 and Sec. 2.6.6, we �nd a system of linear equations of each straight element as follows

hζ 00,00 hζ 00,01 hζ 00,10 hζ 00,11 hζ 00,20 hζ 00,21

hζ 01,00 hζ 01,01 hζ 01,10 hζ 01,11 hζ 01,20 hζ 01,21

hζ 10,00 hζ 10,01 hζ 10,10 hζ 10,11 hζ 10,20 hζ 10,21

hζ 11,00 hζ 11,01 hζ 11,10 hζ 11,11 hζ 11,20 hζ 11,21

hζ 20,00 hζ 20,01 hζ 20,10 hζ 20,11 hζ 20,20 hζ 20,21

hζ 21,00 hζ 21,01 hζ 21,10 hζ 21,11 hζ 21,20 hζ 21,21


︸ ︷︷ ︸

= Kζ



uζν1
uζν2
u′ζ

ν1

u′ζ
ν2

u′′ζ
ν1

u′′ζ
ν2


︸ ︷︷ ︸

= uζ

=



fζ 00

fζ 01

fζ 10

fζ 11

fζ 20

fζ 21


︸ ︷︷ ︸

= fζ

, (2.263)

where

hζ ij,kl =

νζ 2ˆ

νζ 1

∂ hζ ij

∂x1

∂ hζ kl

∂x1

dx1 (2.264)

and

fζ ij =

νζ 2ˆ

νζ 1

M

EI22

hζ ij dx1 (2.265)

is used to compute the entry values in the element sti�ness matrix Kζ and element load vector fζ . The entries in
the element sti�ness matrix Kζ can be explicitly calculated as

Kζ =



10
7 lζ

− 10
7 lζ

3
14

3
14

lζ

84 − lζ

84

− 10
7 lζ

10
7 lζ

− 3
14 − 3

14 − lζ

84
lζ

84

3
14 − 3

14
8 lζ

35 − lζ

70
lζ 2

60
lζ 2

210
3
14 − 3

14 − lζ

70
8 lζ

35 − lζ 2

210 − lζ 2

60
lζ

84 − lζ

84
lζ 2

60 − lζ 2

210
lζ 3

630
lζ 3

1260

− lζ

84
lζ

84
lζ 2

210 − lζ 2

60
lζ 3

1260
lζ 3

630


(2.266)
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Kζ =

K = f =

fζ =

Figure 2.5: (Left) Assembly of the total sti�ness matrix K from the element matrices Kζ .
(Right) Assembly of the total load vector f from the element load vectors fζ+1 .

and the load vector entries can be computed by means of Gauss-Legendre quadrature.
In order to assemble the whole beam, every element needs to be connected to its respective neighbours. The assem-
bly of the total sti�ness matrix K and the total load vector f is shown in Fig. 2.5. Depending on the total number
of elements N , the size of matrix K is 3(N + 1) × 3(N + 1) and the size of vector f is 3(N + 1). To connect
two neighbouring straight elements ζ and ζ + 1, the assembly of the total sti�ness matrix K results by adding the
upper left corner of every sub-matrices in Kζ+1 to the lower right corner of every sub-matrices in Kζ , see Fig. 2.5
left. For the assembly of the total load vector f , the upper entry in fζ+1 is being added to the lower entry in fζ ,
see Fig. 2.5 right. The vector u that contains the nodal values appears in this order: the de�ection, its �rst and the
second derivatives; in other words,

u? =
[

u u′ u′′
]T (2.267)

consists of the discrete beam de�ection values

u =
[
u1 u2 · · · un

]T
,

the discrete beam inclination values
u′ =

[
u′1 u′2 · · · u′n

]T
,

the discrete beam longitudinal strain values

u′′ =
[
u′′1 u′′2 · · · u′′n

]T
,

where n denotes the total number of nodes and n = N + 1. For the sake of clarity, the vector u can be rewritten
as

u? =
[
u1 u2 · · · un u′1 u′2 · · · u′n u′′1 u′′2 · · · u′′n

]T
. (2.268)

It is opportune to introduce a set of running indices for the vector u as follows

u? =
[
u?1 u?2 · · · u?n u?n+1 u?n+2 · · · u?2n u?2n+1 u?2n+2 · · · u?3n

]T
. (2.269)

This enables one to rewrite Eq. (2.250) in compact form as

Ku? = f (2.270)
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respectively

3n∑
o=1

kmou
?
o = fm (2.271)

form = 1, . . . , 3n.
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3 Basics of Adjustment Calculation

If my calculations are correct, when this baby hits 88
miles per hour, you’re gonna see some serious shit.

– Emmett Lathrop “Doc” Brown, Ph.D.,
Back to the Future (1985)

Adjustment calculation has to be carried out whenever unknown parameters and their precision have to be deter-
mined from conducted experimental and redundant measurements. Furthermore, adjustment calculation deals
with statistical hypothesis testing for verifying the signi�cance of the computed results. Profound standard text
books on adjustment calculation are, e. g., (Mikhail and Ackermann 1976), (Mikhail and Gracie 1981) and
(Teunissen 2000), (Niemeier 2008), (Ghilani 2010).

3.1 Mathematical Model

The mathematical model of the adjustment calculation consists of functional model and stochastic model. On the
one hand, the functional model is based on a given set of algebraic equations. A functional model is de�ned by
specifying all variables within the algebraic equations either as observations, fixed values or unknowns. All measured
quantities are considered to be observations. Variables that can be regarded as error-free are �xed values. Parame-
ters to be computed are called unknowns. Thus, a functional model describes the relationship between the mea-
surements and the wanted parameters. In addition, di�erent functional models can be de�ned by the same set of
equations, depending on how the variables are de�ned in the algebraic equations as observations, �xed values or
unknowns. A functional model Ψ can be formulated as an implicit representation as

Ψ
(
L,X

)
= 0 , (3.1)

where the vector of observations L contains measurements and quantities to be computed are kept in the vector of

unknowns X. To the extent possible, an explicit functional model Φ can be presented as a special case of the implicit
functional model as

Ψ
(
L,X

)
= Φ

(
X
)
− L = 0 respectively Φ

(
X
)

= L . (3.2)

On the other hand, the stochastic model describes the probabilistic properties of measurements. Precision and
correlations of measurements are taken into consideration as they have direct in�uence to the calculation results
of unknowns. In case it can be ensured that the measurements are free of systematic deviations and blunders,
the measurements are nevertheless subjected to random errors. Suppose that the tendency of observations have a
normal or Gaussian distribution, then it is possible to apply least squares adjustment to compute the most prob-
able solution for the unknowns. The stochastic model for normal distributed measurements can be expressed as
variance-covariance matrix of the observations

ΣLL =


σl1
σl1

ρ12σl1
σl2

· · · ρ1Nσl1
σlN

ρ21σl2
σl1

σl2
σl2

· · · ρ2Nσl2
σlN...

... . . . ...
ρN1σlN

σl1
ρN2σlN

σl2
· · · σlN

σlN

 , (3.3)

where the main diagonal contains variances and the secondary diagonals contain covariances of the observations.
The standard deviations are denoted as σi and the correlation between two observations li and lj is represented as
ρij .
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3.2 Least Squares Adjustment Models

The functional model Ψ is usually inconsistent due to the random error in the measurements. Consequently, the
functional model in Eq. (3.1) can never be satis�ed. In order to �nd the most probable solution for the unknowns X,
the discrepancy in the functional model can be eased by introducing a vector of residuals v that provides as additive
corrections to the vector of observations L. With the introduction of the vector of residuals v, the functional
model reads

Ψ = Ψ
(
L + v, X̂

)
= Ψ

(
v, X̂

)
= 0 . (3.4)

But by doing this, instead of computing the unknowns X as in Eq. (3.1), the adjusted unknowns X̂ is now being
calculated. Moreover, the possible values that the vector of residuals v and the adjusted unknowns X̂ can take are
in�nite, therefore an additional demand has to be stated for the vector of residuals v. We seek values in v that yield
the maximum of the normal density function

p = p
(
k,v, X̂

)
=

1√(
2π
)N

det
(
ΣLL

) exp

Å
−1

2
vTΣ−1

LLv

ã
− 2kTΨ → maximum , (3.5)

where we impose the functional model Ψ as an adjustment condition respectively as a constraint by means of the
vector of Lagrange multipliers k. In case that this request is satis�ed, the adjusted unknowns X̂ form the most
probable the solution. By observing the argument of the exponential function, the above equation can be rewritten
equivalently as a minimizing problem

Ω = Ω
(
k,v, X̂

)
= vTPv − 2kTΨ → minimum , (3.6)

where the weight matrix of the observation

P = Q−1
LL (3.7)

is introduced. It is assumed that the cofactor matrix of the observation

QLL =
1

σ2
0

ΣLL (3.8)

is regular. σ0 is known as the theoretical reference standard deviation.

3.2.1 The rigorous solution from iteratively linearised Gauss-Helmert Model

In order to obtain the solution of the quadratic form in Eq. (3.6) that is known as the rigorous solution from the iter-

atively linearized Gauss-Helmert Model, the approach presented in L. Lenzmann and E. Lenzmann (2004)
is followed. It is also known as the most general case of least squares adjustment. The corresponding standard is refer-
enced in the fourth part in DIN 18709 (1995). The solution can be determined after linearisation of the adjustment
condition Ψ. We use the total di�erential to compute the in�nitesimal change of the adjustment condition

dΨ = d
(
Ψ
(
v, X̂

))
=

∂

∂v

(
Ψ
(
v, X̂

))
dv +

∂

∂X̂

(
Ψ
(
v, X̂

))
dX̂ =

∂Ψ

∂v
dv +

∂Ψ

∂X̂
dX̂ . (3.9)

Fixing at starting values for v = v0 and X̂ = X̂0, we obtain from the above equation

∆Ψ =
∂Ψ

∂v

∣∣∣∣ v=v0

X̂=X̂0

∆v +
∂Ψ

∂X̂

∣∣∣∣ v=v0

X̂=X̂0

∆X̂

Ψ
(
v, X̂

)
−Ψ

(
v0, X̂0

)
=
∂Ψ

∂v

∣∣∣∣ v=v0

X̂=X̂0︸ ︷︷ ︸
=B

(
v − v0

)
+
∂Ψ

∂X̂

∣∣∣∣ v=v0

X̂=X̂0︸ ︷︷ ︸
=A

(
X̂− X̂0

)

Ψ
(
v, X̂

)
= Ψ

(
v0, X̂0

)
+ B

(
v − v0

)
+ A

(
X̂− X̂0

)
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Ψ
(
v, X̂

)
= Bv + A

(
X̂− X̂0

)︸ ︷︷ ︸
=∆X̂

−Bv0 + Ψ
(
v0, X̂0

)︸ ︷︷ ︸
=w

Ψ = Bv + A∆X̂ + w , (3.10)

where the design matrices

B =
∂Ψ

∂v

∣∣∣∣ v=v0

X̂=X̂0

and A =
∂Ψ

∂X̂

∣∣∣∣ v=v0

X̂=X̂0

, (3.11)

the vector of misclosures

w = −Bv0 + Ψ
(
v0, X̂0

)
(3.12)

and the vector of adjusted reduced unknowns

∆X̂ = X̂− X̂0 . (3.13)

By inserting the above equation into Eq. (3.6), we obtain the linearised quadratic form

Ω = vTPv − 2kT
(
Bv + A∆X̂ + w

)
→ minimum . (3.14)

In order to determine the minimum ofΩ, its partial derivatives with respect to ∆X̂, v and k have to be set to zero

∂Ω

∂∆X̂
= −2kTA = 0T , (3.15)

∂Ω

∂v
= 2vTP− 2kTB = 0T , (3.16)

∂Ω

∂kT
= −2

(
Bv + A∆X̂ + w

)
= 0 . (3.17)

The above equations can be rewritten by dividing them by −2 and transposing the �rst and second equations,
Eq. (3.15) and Eq. (3.16), as

ATk = 0 , (3.18)

Pv −BTk = 0 , (3.19)

Bv + A∆X̂ = −w . (3.20)

Likewise, we can obtain a compact representation of the above equations by means of matrix notation0 0 AT

0 P −BT

A B 0

∆X̂
v
k

 =

 0
0
−w

 . (3.21)

The solution for k, v and ∆X̂ of theGauss-Helmertmodel is achieved by iterating the above equation. If we are
interested only in k and ∆X̂ or just in ∆X̂, other possible equivalent representation of the solution can be found.
We can rewrite Eq. (3.19) in term of vector of residuals v by multiplying the inverse weight matrix (or cofactor
matrix) of the observation P−1 = QLL as

P−1Pv −P−1BTk = 0

v = QLLBTk . (3.22)

Inserting the above equation into Eq. (3.20), we obtain

BQLLBTk + A∆X̂ = −w . (3.23)

The above equation and Eq. (3.18) yields, in matrix notation,ï
BQLLBT A

AT 0

ò ñ
k

∆X̂

ô
=

ï
−w

0

ò
. (3.24)
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If we are looking for the vector of reduced unknowns ∆X̂, we can reformulate Eq. (3.23) as

k = −
(
BQLLBT

)−1(
A∆X̂ + w

)
(3.25)

and inserting in Eq. (3.18) leads to

−AT
(
BQLLBT

)−1
A∆X̂ = AT

(
BQLLBT

)−1
w (3.26)

or, in matrix notation, toî
−AT

(
BQLLBT

)−1
A
ó î

∆X̂
ó

=
î
AT
(
BQLLBT

)−1
w
ó
. (3.27)

The above equation can be rewritten as
N∆X̂ = n , (3.28)

where
N = −AT

(
BQLLBT

)−1
A = −ATM−1A (3.29)

is the normal matrix and
n = AT

(
BQLLBT

)−1
w = ATM−1w (3.30)

is the vector of absolute values for the Gauss-Helmert model. The auxiliary matrix M is de�ned as

M = BQLLBT . (3.31)

3.2.2 The solution from iteratively linearised Gauss-Markov Model

The Gauss-Markov model is a special case of the Gauss-Helmert model. A non-linear functional model is
given as an overdetermined system of equations

L = Φ , (3.32)

where Φ = Φ
(
X
)

are vector of non-linear functions of the unknowns X. The overdetermined system of equa-
tions can not be solved without contradiction due to the measurements subjected to random errors in L. For the
sake of avoiding this discrepancy, we ease the restriction by introducing a vector of residuals v

L + v = Φ
(
X̂
)
. (3.33)

The above observation equations can be written as an adjustment condition by using Eq. (3.4) as

Ψ = Ψ
(
L + v, X̂

)
= Φ

(
X̂
)
− L− v = 0 . (3.34)

According to Eq. (3.26), the design matrices B and A can be determined from Eq. (3.11) as follows

B =
∂Ψ

∂v

∣∣∣∣ v=v0

X̂=X̂0

= −∂v

∂v

∣∣∣∣ v=v0

X̂=X̂0

= −I and A =
∂Ψ

∂X̂

∣∣∣∣ v=v0

X̂=X̂0

=
∂Φ

∂X̂

∣∣∣∣
X̂=X̂0

. (3.35)

Within the Gauss-Markov model, the design matrix B is identity matrix I. Due to this fact, the vector of mis-
closures in Eq. (3.12) reads

w = −Bv0 + Ψ
(
v0, X̂0

)
= v0 + Φ

(
X̂0
)
− L− v0 = Φ

(
X̂0
)
− L = −l , (3.36)

where l = L − Φ
(
X̂0
)

is also known as the vector of reduced observations. In addition, the expression(
BQLLBT

)−1 on both sides in Eq. (3.26) becomes the weight matrix of the observation(
BQLLBT

)−1
=
(
−IQLL − IT

)−1
= Q−1

LL = P . (3.37)

Inserting Eq. (3.36) and Eq. (3.37) into Eq. (3.26), the normal equations reads

−ATPA∆X̂ = −ATPl
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ATPA∆X̂ = ATPl (3.38)

or, in matrix notation, [
ATPA

] î
∆X̂
ó

=
[
ATPl

]
(3.39)

for the solution of the non-linear Gauss-Markov model. For linear function model, we have

Φ = Φ
(
X
)

= AX . (3.40)

The computation of the solution for linear Gauss-Markov model is obtained by inserting the above equation
into Eq. (3.38). This leads to

ATPA
(
X̂− X̂0

)
= ATP

(
L−Φ

(
X̂0
))

ATPAX̂ = ATPL + ATPAX̂0 −ATP Φ
(
X̂0
)︸ ︷︷ ︸

=AX̂0

ATPAX̂ = ATPL , (3.41)

or, in matrix notation, [
ATPA

] î
X̂
ó

=
[
ATPL

]
. (3.42)

The above equation can be rewritten as
NX̂ = n , (3.43)

where N = ATPA is the normal matrix and n = ATPL is the vector of absolute values for theGauss-Markov
model. This normal equations is solved in one iteration.

3.3 Statistical Hypothesis Inference Testing

The statistical assessments of adjusted results are being discussed. The propagation of observation errors is studied
by means of how triggering of in�nitesimal random changes in the observations in�uences the unknowns and their
expectation. This leads to the development of the quality assessment of adjusted results. Especially, the statistical
hypothesis testing is used to analyse signi�cant changes in an object. The following derivation can also be done
di�erently, e.g., by means of block matrix inversion in Niemeier (2008, pp. 176–180). In this dissertation, a direct
respectively straightforward approach is preferred.

3.3.1 The propagation of observation errors

After the adjustment, the vector of adjusted unknown X̂ as well as the vector of residuals v are determined. Now,
the observation errors that propagates to the adjusted unknowns as well as to the residuals can be estimated. We ap-
proximate that the observation errors in the vector of misclosures w predominantly a�ect the adjusted unknowns.
We know that Eq. (3.27) can be solved with respect to adjusted unknowns as follows

∆X̂ =
î
−AT

(
BQLLBT

)−1
A
ó−1

AT
(
BQLLBT

)−1
w

X̂ =
î
−AT

(
BQLLBT

)−1
A
ó−1

AT
(
BQLLBT

)−1
w + X̂0 . (3.44)

The total di�erential of the above equation with respect to the vector of misclosures w leads to

dX̂ =
∂X̂

∂w
dw . (3.45)

The division by dL yields

dX̂

dL
=
∂X̂

∂w

dw

dL
=
î
−AT

(
BQLLBT

)−1
A
ó−1

AT
(
BQLLBT

)−1 dw

dL
. (3.46)
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The total di�erential of w with respect to L can be found by means of Eq. (3.12)

dw =
∂w

∂L
dL ⇒ dw

dL
=
∂w

∂L
=

∂

∂L

(
−Bv0 + Ψ

(
L + v0, X̂0

))
=
∂Ψ

∂L
= B . (3.47)

Inserting the above equation into Eq. (3.46), we have

dX̂ =
î
−AT

(
BQLLBT

)−1
A
ó−1

AT
(
BQLLBT

)−1
B dL = N−1ATM−1B dL , (3.48)

where the normal matrix N in Eq. (3.29) and the auxiliary matrix M in Eq. (3.31) are used. In Eq. (3.48), we
observe how an in�nitesimal change of the vector of observations dL a�ects the adjusted unknowns express as an
in�nitesimal change of the vector of adjusted unknowns dX̂. The vector dL can either contain vectors of random

deviations in case the expectation of each observationµLi
is known or the vectors of residuals in case the expectation

of each observation is unknown and instead the mean value of each observation L̄i is used,

dL =


εT1
εT2

...
εTN

 or dL =


vT

1

vT
2
...

vT
N

 . (3.49)

The vector of random deviations and vector of residuals are determined as follows

εi = Li − µLi
e or vi = L̄ie− Li , (3.50)

where e is the all-ones vector. The variance and covariance of the observations express as a matrix ΣLL can be
approximated by the empirical variance-covariance matrix SLL. Taking the outer product of dL and dLT followed
by the division of the realisation numberN from the observations yields

ΣLL ≈ SLL =
1

N
dLdLT =

1

N


εT1
εT2

...
εTN

 [ε1 ε2 · · · εN
]

=

=
1

N


εT1 ε1 εT1 ε2 · · · εT1 εN
εT2 ε1 εT2 ε2 · · · εT2 εN

...
... . . . ...

εTNε1 εT1 εN · · · εTNεN

 . (3.51)

Apart from this, ΣLL can be also estimated by means of the residuals

ΣLL ≈ SLL =
1

N − 1
dLdLT =

1

N − 1


vT

1

vT
2
...

vT
N

 [v1 v2 · · · vN
]

=

=
1

N − 1


vT

1 v1 vT
1 v2 · · · vT

1 vN
vT

2 v1 vT
2 v2 · · · vT

2 vN
...

... . . . ...
vT
Nv1 vT

1 vN · · · vT
NvN

 . (3.52)

ForN →∞, the empirical variance-covariance matrix SLL converges to the theoretical variance-covariance matrix

lim
N→∞

SLL =

®
E
(
εTi εj

)
E
(
vT
i vj

) for i, j = 1, . . . , N

´
≡ ΣLL , (3.53)

where E is the expectation operator. To examine the variance-covariance propagation of observation errors induced
by dL, we write the outer product of dX̂ and dX̂T as follows

dX̂dX̂T = N−1ATM−1B dL dLTBT
(
M−1

)T
A
(
N−1

)T
. (3.54)
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By applying the expectation operator on both sides yields

E
(
dX̂dX̂T

)︸ ︷︷ ︸
=Σ

X̂X̂

= N−1ATM−1B E
(

dL dLT
)︸ ︷︷ ︸

=ΣLL

BT
(
M−1

)T
A
(
N−1

)T
Σ

X̂X̂
= N−1ATM−1B ΣLL︸︷︷︸

=σ2
0QLL

BT
(
M−1

)T
A
(
N−1

)T
= N−1ATM−1Bσ2

0QLLBT
(
M−1

)T
A
(
N−1

)T
= σ2

0N−1ATM−1 BQLLBT︸ ︷︷ ︸
=M

(
M−1

)T
A
(
N−1

)T
= σ2

0N−1AT M−1M︸ ︷︷ ︸
=I

(
M−1

)T
A
(
N−1

)T
= σ2

0N−1 AT
(
M−1

)T
A︸ ︷︷ ︸

=ATM−1A=−N

(
N−1

)T
= −σ2

0 N−1N︸ ︷︷ ︸
=I

(
N−1

)T
= −σ2

0N−1 , (3.55)

where we used the fact that the inverse of a symmetric matrix is still symmetric, i. e.
(
N−1

)T
= N−1 and(

M−1
)T

= M−1.
In order to examine the variance-covariance propagation of the observation ΣLL that a�ects the residuals, we write
the total di�erential of Eq. (3.22) as

dv =
∂v

∂k
dk (3.56)

and the division by dL yields
dv

dL
=
∂v

∂k

dk

dL
= QLLBT dk

dL
. (3.57)

The di�erential k with respect to the vector of observations L in the above equation can be obtained by means of
Eq. (3.25), where we write its total di�erential as follows

dk =
∂k

∂∆X̂
d∆X̂ +

∂k

∂w
dw . (3.58)

By dividing with dL, we have

dk

dL
=

∂k

∂∆X̂

d∆X̂

dL
+
∂k

∂w

dw

dL
= −M−1A

dX̂

dL
−M−1B =

= −M−1AN−1ATM−1B−M−1B = −M−1
(
AN−1ATM−1 + I

)
B . (3.59)

Inserting the above equation into Eq. (3.57), we �nd

dv = −QLLBTM−1
(
AN−1ATM−1 + I

)
B dL (3.60)

The equation above shows how an in�nitesimal change of the vector of observations dL a�ects the vector of resid-
uals in form of an in�nitesimal change dv. In a similar fashion, we can obtain the variance-covariance matrix of the
residuals Σvv by writing the outer product of dv and dvT follow by applying the expectation operator on both
sides

E
(
dvdvT

)︸ ︷︷ ︸
=Σvv

= QLLBTM−1
(
AN−1ATM−1 + I

)
B E

(
dL dLT

)︸ ︷︷ ︸
=ΣLL

BT
(
M−1

(
AN−1ATM−1 + I

))T
BQT

LL
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Σvv = QLLBTM−1
(
AN−1ATM−1 + I

)
B ΣLL︸︷︷︸
=σ2

0QLL

BT
(
M−1

(
AN−1ATM−1 + I

))T
BQLL

= QLLBTM−1
(
AN−1ATM−1 + I

)
Bσ2

0QLLBT
(
M−1

(
AN−1ATM−1 + I

))T
BQLL

= σ2
0QLLBTM−1

(
AN−1ATM−1 + I

)
BQLLBT︸ ︷︷ ︸

=M

(
M−1

(
AN−1ATM−1 + I

))T
BQLL

= σ2
0QLLBTM−1

(
AN−1ATM−1 + I

)
M
(
AN−1ATM−1 + I

)T(
M−1

)T
BQLL

= σ2
0QLLBT

(
M−1AN−1AT M−1M︸ ︷︷ ︸

=I

+ M−1M︸ ︷︷ ︸
=I

)(
M−1AN−1AT + I

)
M−1BQLL

= σ2
0QLLBT

(
M−1AN−1AT + I

)(
M−1AN−1ATM−1 + M−1

)
BQLL

= σ2
0QLLBT

(
M−1AN−1 ATM−1A︸ ︷︷ ︸

=−N

N−1ATM−1 + M−1AN−1ATM−1+

+ M−1AN−1ATM−1 + M−1
)
BQLL

= σ2
0QLLBT

(
−M−1A N−1N︸ ︷︷ ︸

=I

N−1ATM−1 + M−1AN−1ATM−1+

+ M−1
(
AN−1ATM−1 + I

))
BQLL

= σ2
0QLLBT

(
−M−1AN−1ATM−1 + M−1AN−1ATM−1︸ ︷︷ ︸

=0

+

+ M−1
(
AN−1ATM−1 + I

))
BQLL

= σ2
0QLLBTM−1

(
AN−1ATM−1 + I

)
BQLL . (3.61)

The variance-covariance matrix of the unknowns and of the residuals, Σ
X̂X̂

and Σvv, are utilized as measures for
the quality assessment of the adjusted results.

3.3.2 Quality Assessment of Adjustment Results

The quality assessment of the adjustment calculation deals with the adjusted results, i. e., the measurements and the
determined unknown parameters. We can categorize the quality into two distinct parts: Precision and Reliability.
The precision expresses how precise the unknowns have been determined, provided that an appropriate functional
and stochastic model are chosen as well as that blunders have little or no in�uences on the resulting unknowns.
All common precision measures are calculated from the variance-covariance matrix of the unknowns Σ

X̂X̂
. The

reliability refers the possibility of control of the observations to detect blunders. Apart from this, the reliability
measures can be used to describe the in�uences of blunders to the unknown parameters. The variance-covariance
matrix of the residuals Σvv is the primary source to obtain reliability measures.

Redundancy Number

The reliability measures can be retrieved from the variance-covariance matrix of the residuals Σvv. We multiply
the Eq. (3.61) with Q−1

LL = P from the left and obtain by division with σ 2
0

QvvQ−1
LL = QLLBTM−1

(
AN−1ATM−1 + I

)
B QLLQ−1

LL︸ ︷︷ ︸
=I

QvvP = QLLBTM−1
(
AN−1ATM−1 + I

)
B . (3.62)

Inserting the above equation into Eq. (3.60) yields

dv = −QvvP dL = −R dL , (3.63)
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where the transfer matrix R = QvvP is introduced. Observe if any one component dLi in dL contains an error,
and, in that case how this error will in�uence all residuals by dv due to the transfer matrix R. The diagonal element
Rii in R is a transfer factor that shows the (partly) impact of the erroneous component dLi on the corresponding
residual vi in v. This transfer factor is knowns as redundancy number of the observationLi

ri = Rii . (3.64)

Each redundancy number ri has a value between 0 and 1. In the extreme case of ri = 1, an error in the observation
li can be completely detected in the residuals vi , while in the other extreme case of ri = 0, an error in the observa-
tion li is undetectable. Therefore, it is required that the sum of all redundancy numbers, the total redundancy r, is
large enough to detect blunders in the observations. The trace of the matrix R leads to the total redundancy r as
follows

trace
(
R
)

=
N∑
i=1

ri = r . (3.65)

The redundancy number can be represented as a percentageEV that is known as influence on the residuals (German:
Einfluss auf die Verbesserung)

EV = ri 100 % . (3.66)

The following rating scale to evaluate the redundancy numbers has gained ground in the practise:

0 % ≤ EV < 1 % observation is not controlled,
1 % ≤ EV < 10 % observation is poorly controlled,

10 % ≤ EV < 30 % observation is su�ciently controlled,
30 % ≤ EV < 70 % observation well controlled,
70 % ≤ EV < 100 % observation can be removed

without loss of reliability.

Blunders Detection and Localisation

In order to prevent incorrect adjustment results due to outliers, blunders have to be detected and removed from the
observations. A global test is performed as follows to �nd out if the observations contains blunders. According to
Nuzzo (2014), the original purpose of a hypothesis test by Fischer is to study if the adjusted results are predomi-
nately occur due to randomness of the observations (null hypothesis). If it is not the case, the mathematical model
might be incorrect or the observations might contain blunders (alternative hypothesis). Before we question the
mathematical model, we have to be sure that the observations contain no blunders by examining if the empirical

reference standard deviation after the adjustment

s0 =

 
vTPv

r
. (3.67)

coincides with the theoretical reference standard deviation σ0 before the adjustment. We can state the null hypoth-
esisH0 as

H0 : E
(
s2

0

)
= σ2

0 . (3.68)

The alternative hypothesisHA can take one of the following forms

HA : E
(
s2

0

)
6= σ2

0 , (3.69)
HA : E

(
s2

0

)
> σ2

0 , (3.70)
HA : E

(
s2

0

)
< σ2

0 . (3.71)

Now, we have to consider the statistical distribution of s2
0. We rearrange Eq. (3.67) as follows

s2
0 =

vTPv

r
=
σ2

0

σ2
0

vTQ−1
LLv

r
= σ2

0

vTΣ−1
LLv

r
⇒ r

s2
0

σ2
0

= vTΣ−1
LLv . (3.72)
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The residuals v are assumed to be normal distributed random variables. Then, the squared residuals are weighted
by the inverse of the variance-covariance matrix Σ−1

LL. This in turn yields residuals that are divided by their cor-
responding variances. Consequently, they are variables that follow a standard normal distribution. According to
Pearson, the sum of their squares is conforming to χ2-distribution with r degrees of freedom. In other words,
the variable

χ2
r = r

s2
0

σ2
0

(3.73)

is χ2-distributed. Therefore, we choose the above variable as test statistic. To determine the threshold value χ2
r,α,

an arbitrary chosen error probability α respectively con�dence level S = 1 − α has to be considered. Then, we
compare the test statistic with the threshold value for the following four statements

χ2
r < χ2

r,1−α
2

and χ2
r > χ2

r,α
2
⇒ RejectH0 in favor ofHA : E

(
s2

0

)
6= σ2

0 , (3.74)

χ2
r > χ2

r,1−α ⇒ RejectH0 in favor ofHA : E
(
s2

0

)
> σ2

0 , (3.75)

χ2
r < χ2

r,α ⇒ RejectH0 in favor ofHA : E
(
s2

0

)
< σ2

0 , (3.76)

otherwise we fail to reject the null hypothesis H0 . But, in case we reject the null hypothesis, we have to look for
individual blunders in the observations. To introduce a measure for removing a single observation that likely con-
tains gross error, we assume that the error in an observation mainly a�ects its corresponding residual. The measure
standardised residual (German: Normierte Verbesserung) is de�ned as

NVi =

∣∣vi∣∣
σvi

. (3.77)

The computational purpose, we can �nd an alternative way for computing NVi . We rewrite Eq. (3.61) by means
of Eq. (3.62) and the transfer matrix as

Σvv = σ2
0QvvPQLL = RΣLL . (3.78)

It is often the case that the variance-covariance matrix ΣLL is a diagonal matrix. In this case, we can determine the
standard deviation of the residual vi as follows

σvi =
√
riσli . (3.79)

Inserting the above into Eq. (3.77) yields

NVi =

∣∣vi∣∣√
riσli

. (3.80)

The standardised residualNVi follows a standard normal distribution due to the division of the normal distributed
residual vi by its corresponding standard deviation σvi . A standardised normal test or a local test has to be per-
formed to evaluate if an observation contains gross error. But in practise, we can use the following rating scale to
assess the standardised residual:

2.5 < NV ≤ 4 gross error possible,
NV > 4 gross error most likely.

After we identi�ed an observation as blunder, we can introduce a measure to quantify the magnitude of the gross
error εi, potential blunder (German: Grober Fehler)

GFi =
εi
ri

=
−vi
ri

. (3.81)

This ratio describes how the diagonal component ri of the transfer matrix R a�ects its corresponding gross error
εi respectively−vi . Another question that arises is how large a blunder GFi must be that we are able to detect it.
A measure of detectability of blunder, the boundary value (German: Grenzwert) is introduced as follows

GRZWi =
σli
δ0
√
ri

, (3.82)
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where δ0 = 4.13 is the non-centrality parameter; for the derivation see Baarda (1968). Consequently, errors that
are smaller than theGRZW has to be regarded as random and therefore they are undetectable.
The work�ow of the blunders detection by means of a global test as well as the localisation and removal of blunders
as known as data snooping can summarise as follows. First, after the adjustment, a global test respectively a χ2-
test is performed. If we fail to reject the null hypothesis H0 in favour of the alternative hypothesis HA , it means
that the �nal result is obtained. Otherwise, we have to pinpoint the blunders in the observations by means of the
standardised residuals. Second, the observation li with largest standardised residual NVi has to be removed from
the observation vector L. Third, an adjustment calculation has to be performed and start this work�ow from the
beginning until we fail to reject the null hypothesis.

The influence of observation error on the parameters

Detectable and removable blunders and their in�uences are examined in the internal reliability. The a�ection of
non-detectable blunders on the unknowns analysed in the external reliability. A measure that describes the impact
of the boundary value on the coordinates of the corresponding point (German: Einfluss des Grenzwertes auf die

Koordinaten der berührenden Punkte) is introduced as

EGKi =
(
1− ri

)
GRZWi . (3.83)

The other measure that describes the impact of a potential blunder on a point corresponding to the measurement
(German: Einfluss eines eventuellen groben Fehlers auf den die Messung berührenden Punkt) is introduced as follows

EPi =
(
1− ri

)
GFi . (3.84)

For the derivation refer to Baarda (1968).

3.3.3 Deformation Analysis

The deformation analysis deals with assessment of the signi�cant temporal changes of an object. The basis of sig-
ni�cance evaluation are the observations from di�erent time samples (epochs). Even though this analysis was mainly
developed for determination of signi�cant geometrical changes that occur over the time, we can apply the defor-
mation analysis beyond geodetic problems. We follow Niemeier (1979) and focus on his method that is known
as congruence test (German: Kongruenztest). According to Welsch and Heunecke (2001), this method is one of
many ways to perform deformation analysis.
Consider an object where measurements from two epochs L1 and L2 were performed. We assume that the obser-
vations of the two time samples are not correlated, therefore we have the following stochastic model

ΣLL = σ2
0

ñ
QL1L1

0

0 QL2L2

ô
, (3.85)

where the one and only variance factor σ2
0 has to be computed by means of variance-covariance components estima-

tion, see Grafarend (1984). At a �rst step, we want to �gure out whether the unknowns, X̂1 and X̂2, that are
adjusted from the observation from two time samples, L1 and L2, are signi�cantly di�erent. If it is true that the
unknowns has altered from X̂1 to X̂2, then at a second step we have to apply a localisation strategy to seek out the
cause. A global congruent test can be expressed as null and alternative hypothesis as follows

H0 : E
(
X̂1

)
= E

(
X̂2

)
andHA : E

(
X̂1

)
6= E

(
X̂2

)
. (3.86)

This in turn leads to a F -Test, refer to Niemeier (2008, p. 440). It is also possible to equivalently reformulate the
above hypothesis in its implicit form, where the unknowns of the two epochs are the same

X̂ = X̂1 = X̂2 . (3.87)

If we fail to rejectH0 in favour ofHA , we can start to look for the cause by means of a localisation strategy as follows.
In an iterative process, we start to remove only one unknown, say the dth, that corresponds to the two epochs in
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X̂1 as well as in X̂2. Then, a least squares adjustment is performed where only the dth unknown is excluded. After
each adjustment, a test statistic can be computed for each case. This process is repeated one by one for all unknowns.
In the last step, we look for the smallest test statistic and its associated removed unknown. The reason why we seek
for the smallest value is that it is often the case a large test statistic rejects the null hypothesis. In case theF -Test still
rejects the H0 in favour of HA , we have to repeat the process over again with the cut down vector of unknowns.
Using this strategy we can the signi�cant temporal changes in an object.
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4 Variational Calculus

I am pleased to see that we have di�erences. May we to-
gether become greater than the sum of both of us.

– Surak, Star Trek episode “The Savage Curtain” (1969)

Di�erent types of di�erential equations can be solved approximately by means of the �nite element method is
presented in Sec. 2.6. The �nite element method methodology as a mere recipe without asking why this method
works in the �rst place is followed. The “test functions” and “variational formulation” are expressions that are
simply accepted, although they appear obscure. The �nite element method might be developed and motivated
from mechanics but at some point it grows away from the physics and becomes a mathematical tool for pragmatic
reason. Similarly, over time the least squares adjustment becomes limited in its application due to practical reason.
The similarity between the method of least squares and �nite element method is mentioned by many geodesists, e.g.
(Jäger 1988), (Bahndorf 1991), (Singer 1995), (Milev 2001) or (Lienhart 2007). Analogies were drawn by
components comparison between both methods, for example, the system of linear equations of the �nite element
method in Eq. (2.248) and of the least squares adjustment in Eq. (3.43) shares the same algebraic structure. But,
this kind of comparison still lacks of in-depth examination. Joachim Boljen has made a more detailed comparison
of the two methods and, for unfortunate reasons, has published it as a well-hidden chapter in (Boljen 1993). A
very unusual statement in his work indicates that his research on this topic might contradicted the doctrine of his
former superior. In order to avoid controversy, he might be forced to release his publications on this subject under
meaningless titles. For that reason, other researchers are having hard time to �nd his works and his groundwork
on this matter of the relationship between least squares adjustment and �nite element method vanishes from the
geodetic community. Due to the recent rediscovery of the well-hidden collection of his studies, one realises that
scienti�c e�ort is more than doubly wasted: Boljen’s groundwork and the researchers after him who have to redo
this all again. The aim of this chapter is to catch up and continue this topic, which Boljen did not pursue further,
in order to deepen the understanding of adjustment theory.
The notions of both methods are inherently di�erent. While the �nite element method solves certain classes of
problems described by a system of elliptic partial di�erential equations, the method of least squares solves another
class of problems formulated as an overdetermined system of equations. The contribution of this chapter is to show
that both methods follow the same methodological steps developed by Lagrange and Euler already in 1755, see
the correspondences between them in (Lagrange 1892). Therefore, a brief introduction to the variational cal-
culus is given. It is particularly important to pay attention to the ability of the variational calculus to reformulate
a given problem. There are three representations to describe a single problem, namely strong, variational and ex-

tremal formulation. This will explain why many methods have very similar traits. This is examined in more detail
in the following using examples. The well-known Gauss-Markov model is derived by using variational calculus
in its discrete and continuous version. Then, both the �nite element method and the so-called “least squares” �-
nite element method are derived with the aid of variational calculus with familiar notations in geodesy respectively
adjustment calculation. The given examples should clarify that both methods, the method of least squares and the
�nite element method, are not di�erent in terms of their methodical approach. In the end of this chapter a detailed
summary is given. The relationship of both methods and the signi�cance of variational calculus in adjustment
theory are discussed. Also, possible cross-connections to other methods are also brie�y outlined.

VARIATIONAL CALCULUS 67



4.1 A Brief History of Variational Calculus

The origin of variational calculus can be traced back to the Brachistochrone problem. According to the Webster’s

Revised Unabridged Dictionary (1913), Brachystochrone is “a curve, in which a body, starting from a given point, and
descending solely by the force of gravity, will reach another given point in a shorter time than it could by any other
path.” As reported by Funk (1962, p. 614), this mathematical challenge has already been studied by Galileo in 1638.
He thought that an arc of a circle would be the fastest path, but it turns out that this is not the case, see Galilei
(1891, Theorem 22, Propos. 36). In 1696 Johann Bernoulli called upon the mathematical community to solve
this problem. His brother Jacob Bernoulli, Newton, Leibniz and many more participated this challenge.
Euler (1744) presented a systematic approach that allows him to advance from solving certain special cases such
as the Brachistochrone problem to discussing more general classes of maximisation / minimisation problems, also
known as variational problems. But Euler was dissatis�ed, because his solution relies heavily on geometric consid-
erations, which later became the method of finite di�erences. In 1755 a young prodigy with the name Lagrange
sent a letter to Euler to present his idea of “variation”. By this method, Lagrange reaches the same solution
as Euler without requiring geometric considerations. Even though, the expression calculus of variation is coined
by Lagrange’s concept of disturbance “variation”, this term is widely popularized by Euler. The variational
calculus has great in�uences on di�erent scienti�c �elds. An in-depth overview about the history of variational
calculus can be found in Gander and Wanner (2012). The basic idea of the variation calculus is discussed in the
next section in the form of a small exercise.

4.2 Extremal, Variational and Strong Formulation of a Problem

Based on the following “standard” exercise in calculus of variation, the three di�erent formulations of one and the
same problem can be understood. Suppose a task demands to �nd the two times di�erentiable function y = y

(
x
)

of the variablex, where the scalar valued quantity J is maximal or minimal respectively extremal. It is assumed that
by means of the Lagrangian density functional Z that the following formulation of the quantity J can be used to
describe appropriately the task

J =

bˆ

a

Z dx =

bˆ

a

Z
(
x, y, y′

)
dx → extremal , (4.1)

where the boundary conditions, y
(
x = a

)
= ya and y

(
x = b

)
= yb , are given and y′ = dy

dx . In calculus
of variations, the above formulation is considered to be a principle, a variational principle to be precise, which is
believed that a certain class of processes follows. For example, the Fermat’s principle also known as the principle

of least time postulates that a ray of light traversed between two points in the least amount of time. In this case, J
is the total traverse time that has to be minimal. The path between this two points is described by the function y.
The density functionalZ represents the obstacles such as di�erent media that lie between the two points. The path
y has to be determined. Another example is the aforementioned Brachistochrone problem. A curve y of fastest
descent of a particle has to be determined. Therefore, the total descending time J has to be minimal. The gravity
that the particle is subjected to as well as the consideration of kinetic energy are expressed by the density functional
Z . The variational principle in Eq. (4.1) is a formulation that is valid and applicable for a speci�c class of problems.
In dependence of a given problem the formulation in Eq. (4.1) might be insu�cient. In this case, the variational
principle has to be extended. Nevertheless, in general a variational principle formulates mathematically a given
problem in form as a extremal postulation. Therefore, we can refer variational principles as extremal formulations

of problems.
The objective is to �nd the curve y where the extremal formulation of a speci�c problem in Eq. (4.1) is maximal
or minimal. As mentioned in the brief history of calculus of variations, it was Lagrange who found a non-
geometrical approach to determine the curve y. The main di�culty is, simply put, to �nd the derivative of J
with respect to y so that it can be set to zero to �nd the optimal curve y. To overcome this issue, Lagrange varied
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around the optimal solution y with a disturbance η in Eq. (4.1) to obtain a non-optimal J . It reads

J =

bˆ

a

Z
(
x, y + η, y′ + η′

)
dx . (4.2)

Furthermore, he decomposed η into two parts

η = εδy , (4.3)

where δy = δy
(
x
)

is any function of variable x and the small parameter ε is a scalar value quantity independent of
variable x. Inserting Eq. (4.3) into Eq. (4.2), it reads

J =

bˆ

a

Z
(
x, y + εδy, y′ + εδy′

)
dx . (4.4)

The function δy is arbitrary in the sense that this function is freely selectable. As a result of this, the arbitrary
function δy operates as a given quantity. However, the following constraint applies to this function δy. Since the
starting and end points of the curve y are �xed, all possible disturbed curves y + η must also pass through these
two points. Thus, the disturbance η has to vanish at x = a and at x = b. To achieve this, it must hold for

δy
∣∣∣
x=a

= δy
∣∣∣
x=b

= 0 . (4.5)

The small parameter ε is used to regulate the perturbation η. In case that ε = 0, J is optimal, since η vanishes and
y is the optimal solution. Any other values for ε, J becomes non-optimal. Since the optimal solution y and the
arbitrary function are both treated as given, the extremal form J = J

(
ε
)

becomes a function which depends only
on the one single small parameter ε. For ε = 0, J has the optimal value, therefore its �rst (directional) derivative
has to vanish respectively it must hold for

dJ

dε

∣∣∣∣
ε=0

!
= 0 . (4.6)

Inserting Eq. (4.4) into the above equation leads to

dJ

dε

∣∣∣∣
ε=0

=

bˆ

a

dZ

dε

∣∣∣∣
ε=0

dx . (4.7)

The total di�erential dZ in the above equation reads

dZ =
∂Z

∂x
dx+

∂Z

∂
(
y + εδy

) d
(
y + εδy

)
+

∂Z

∂
(
y′ + εδy′

) d
(
y′ + εδy′

)
. (4.8)

This in turn yields

dZ

dε
=
∂Z

∂x

dx

dε︸︷︷︸
=0

+
∂Z

∂
(
y + εδy

) d
(
y + εδy

)
dε︸ ︷︷ ︸
=δy

+
∂Z

∂
(
y′ + εδy′

) d
(
y′ + εδy′

)
dε︸ ︷︷ ︸

=δy′

=
∂Z

∂
(
y + εδy

)δy +
∂Z

∂
(
y′ + εδy′

)δy′ . (4.9)

When the disturbance is set to zero, i. e. ε = 0, it reads

dZ

dε

∣∣∣∣
ε=0

=
∂Z

∂y
δy +

∂Z

∂y′
δy′ . (4.10)

The second expression on the right-hand side in the preceding equation can be rewritten by means of the product
rule as

d

dx

Å
∂Z

∂y′
δy

ã
=

d

dx

Å
∂Z

∂y′

ã
δy +

∂Z

∂y′
δy′ . (4.11)
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Therefore, Eq. (4.10) can be rewritten as

dZ

dε

∣∣∣∣
ε=0

=
∂Z

∂y
δy − d

dx

Å
∂Z

∂y′

ã
δy +

d

dx

Å
∂Z

∂y′
δy

ã
. (4.12)

Inserting the equation above into Eq. (4.7) yields

dJ

dε

∣∣∣∣
ε=0

=

bˆ

a

(
∂Z

∂y
δy − d

dx

Å
∂Z

∂y′

ã
δy

)
dx+

bˆ

a

d

dx

Å
∂Z

∂y′
δy

ã
dx . (4.13)

Due to Eq. (4.5), in the preceding equation the second term on the right-hand side vanished

bˆ

a

d

dx

Å
∂Z

∂y′
δy

ã
dx =

∂Z

∂y′

∣∣∣∣
x=b

δy
∣∣∣
x=b︸ ︷︷ ︸

=0

−∂Z
∂y′

∣∣∣∣
x=a

δy
∣∣∣
x=a︸ ︷︷ ︸

=0

= 0 . (4.14)

Finally, the following expression

dJ

dε

∣∣∣∣
ε=0

=

bˆ

a

(
∂Z

∂y
− d

dx

Å
∂Z

∂y′

ã)
δy dx = 0 . (4.15)

is obtained. Since the above expression

bˆ

a

(
∂Z

∂y
− d

dx

Å
∂Z

∂y′

ã)
δy dx = 0 (4.16)

is derived from the idea of Lagrange’s variation, it is referred to as the variational formulation. This form plays
an important role in the numerical computation for the �nite element method as well as for the least squares ad-
justment as it shall be seen later. Since this formulation is often used to determine various approximate solutions,
equation Eq. (4.16) is also known as the weak formulation.
In a nonchalant way, Lagrange concluded that from Eq. (4.16)

∂Z

∂y
− d

dx

Å
∂Z

∂y′

ã
= 0 (4.17)

must hold. This conclusion can be made due to the so-called fundamental lemma of calculation of variations that
was not known to him at that time. According to this lemma, the arbitrary function δy can be anything due to its
arbitrariness and the only way to ensure that the variational formulation in Eq. (4.16) is ful�lled for any arbitrary
function δy is to force the expression in the parenthesis in Eq. (4.16) to be always zero. This leads to the equation in
Eq. (4.17) that is known as the Euler-Lagrange equation. It can be solved analytically to determine the optimal curve
y. Since an approximate solution is unable to satisfy Eq. (4.17) respectively only the exact one can ful�l, equation
Eq. (4.17) is also referred to as the strong formulation.
What insights can be learnt from this exercise in calculus of variation? A given problem can be formulated in three
di�erent ways: extremal, variational and strong form. Moreover, these three formulations can be converted among
each other. In this particular exercise a speci�ed problem is restated from the extremal form in Eq. (4.1) to the
variational form in Eq. (4.16) to the strong form in Eq. (4.17). It is also possible start at any form and converting
to another one. Then, each formulation can be served as an entry point to various methods in order to solve the
problem. Some main aspects of the three di�erent formulations are presented as follows.
extremal form A problem is stated as a certain value J that has to be minimal or maximal. This value J may be
scaled and shifted by a constant factor and a �xed o�set without changing the problem statement. Therefore, the
extremal formulation is not unique in that sense thatJ may take di�erent extremal forms, but they may all describe
the same problem. Some examples of extremal formulated problems are: The aforementioned Brachistochrone
problem where the total descending time has to be minimal, maximising pro�ts or minimising losses in economics,
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in optics the principle of least time states that a ray of light prefers a path to travel from one point to another at least
amount of time, in least squares adjustment the sum of weighted squared residuals has to be minimised and many
more.
variational form This formulation is seemingly an intermediate state in the exercise of calculus of variation. But by
far, this form serves as the most interesting entry point for many di�erent numerical methods. If one looks closely, a
simpli�ed depiction of the variational form in Eq. (4.16) has this outline

´
fg = 0. In a vector interpretation, this

expression can be seen as a dot product betweenf andg. Therefore, it demands thatf is orthogonal tog respectively
it requests the perpendicular distance of f to g to be minimal. If f can be seen as some sort of measure on how
well some solutions can ful�l f (also known as residual), the variational formulation can be used to minimize f in
order to determine some optimal solution. Since f can be non-zero in the variational formulation, this implies that
f can accept an approximate solution. Due to this reason, the variational formulation is considered less restrictive
and this non-strictness property is often described as “weak”. Therefore, the variational formulation is also known
as the weak formulation. In this particular exercise, this form is derived from the extremal formulation, but it is also
possible to reach the variational form from the strong formulation in Eq. (4.17) by multiplying it by an arbitrary
function δy and integrating it over the domain of interest. This approach is for example often used in �nite element
method. And one may notice that the function δy is none other than the so-called test function in �nite element
method. It is important to note that for numerical analysis the function δy has to be speci�ed and at the same time
this function has to ful�l certain compatibility aspects in order to obtain computable results. Furthermore, one
needs to state a certain trial function respectively ansatz function for y.
strong form In the exercise this formulation is extracted from variational form. If the simpli�ed depiction of the
variation formulation

´
fg = 0 is re-examined, one notices that the strong form is f = 0. This implies that in

the strong formulation the solution has to satisfy f completely. Only the exact solution can ful�l this requirement.
This strictness is described as “strong”. One may realize that in the exercise in calculus of variation the strong formu-
lation is a di�erential equation. By thinking ahead, the strong formulation can be any kind of equation. As long as
it can be assumed that a system of (di�erential) equations is being able to describe a given problem properly enough,
an exact solution of the problem can be obtained by solving the equations. In case an exact solution is unobtain-
able, one can still try to approximate the solution by reformulating the strong formulation into its variational form.
Furthermore, in comparison to other formulations, the strong formulation of a given problem has an exclusive
characteristic when this formulation is represented independently of a particular system of coordinates. Aforemen-
tioned, an extremal formulation can be scaled and shifted without changing the problem statement. Therefore, it is
possible to have di�erent in fact in�nite amount of extremal formulations that are describing the same problem. In
contrast, a modi�cation of the strong formulation leads to a di�erent problem description and vice versa. In other
words, a given problem is clearly assigned to one single representation in the strong form. This implies that there
is only one theory of anything. Some examples of strong formulated problems are: equations of elastodynamics in
mechanics in Eq. (2.161), the Lamé-Navier equations in Eq. (2.162), the Euler-Bernoulli beam equation in
Eq. (2.182), heat equation in Eq. (2.206) in thermodynamics, Maxwell’s equations in electrodynamics and even
overdetermined system of equations in least squares adjustment.
The questions “Where to begin?” or “Which order one must follows to obtain a solution?” is unnecessary. All
three formulations exist side-by-side. An expedient procedure results rather from an abstract comprehension of a
given problem and one’s intention.
In conclusion, a problem can be formulated in three di�erent ways: As an extremal formulation where one has
to look for an extremal value J to determine an optimal solution, as a variational, respectively, weak formulation

where a numerical method is applied to compute an approximate solution and as a strong formulation where one
has to �nd an analytical solution.

4.3 Calculus of Variations and Least Squares Adjustment

In least squares adjustment, the sum of weighted squared residuals is postulated to be minimal. Using variational
calculus, the very same normal equations from adjustment calculation can be obtained from this postulation. For
the continuous function, the minimization of the integrated squared residual is postulated. A normal equation
system can also be determined by means of variational calculus.
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The method of least squares in context of variational calculus

The least squares adjustment can be seen as a variational principle. For the sake of clarity, the solution of the linear
Gauss-Markov model is derived. Consider the following overdetermined system of equations

L = Φ , (4.18)

where Φ = Φ
(
X
)

is a vector of functions of unknown parameters X and L containing the observations. Deal-
ing with such an overdetermined equation system in which the observations in L are subjected to random errors,
Eq. (4.18) is generally impossible to solve. For a speci�c case where Eq. (4.18) can be ful�lled, it is when the true
observation vector is given L = L̃ and Φ = Φ

(
X̃
)

is a function of the true parameters X̃. For any other X, the
di�erence between L and Φ can be expressed by introducing the vector of residuals

v = Φ− L . (4.19)

The aim is to �nd the adjusted parameters X = X̂ where the sum of the weighted squared residuals is minimized

Ω = vTPv → minimal , (4.20)

where P is the weight matrix of the observations. The above expression is an extremal formulation, cf. Eq. (4.1).
Substituting v in Eq. (4.20) with Eq. (4.19) leads to

Ω = vTPv =
(
Φ− L

)T
P
(
Φ− L

)
=
(
ΦT − LT

)(
PΦ−PL

)
=

= ΦTPΦ−ΦTPL− LTPΦ︸ ︷︷ ︸
=
(
ΦTPL

)T
=ΦTPL

+LTPL = ΦTPΦ− 2ΦTPL + LTPL . (4.21)

Then, the idea of Lagrange is applied: Φ = Φ
(
X̂
)

is varied by adding the disturbance vector

η = εδΦ , (4.22)

where ε is the small parameter and δΦ = δΦ
(
Y
)

is the vector of test functions of an arbitrary set of parameters Y.
It reads

Ω =
(
Φ + εδΦ

)T
P
(
Φ + εδΦ

)
− 2
(
Φ + εδΦ

)T
PL + LTPL

=
(
ΦT + εδΦT

)(
PΦ + εPδΦ

)
− 2
(
ΦT + εδΦT

)
PL + LTPL

= ΦTPΦ + εΦTPδΦ + εδΦTPΦ + ε2δΦTPδΦ− 2ΦTPL− 2εδΦTPL + LTPL , (4.23)

cf. Eq. (4.4). In case that ε = 0,Ω is minimal, sinceη vanishes and Φ = Φ
(
X̂
)

is the adjusted solution. Any other
values for ε, Ω becomes non-minimal. The essence of the Lagrange’s method is that all unknown parameters
X can be varied simultaneously by a single small parameter ε to �nd the adjusted parameters. This in turn yields
Ω = Ω

(
ε
)

that solely depends on ε. Therefore,Ω is minimal when its directional derivative vanishes at ε = 0

dΩ

dε

∣∣∣∣
ε=0

!
= 0 . (4.24)

The left-hand side of above equation reads

dΩ

dε

∣∣∣∣
ε=0

=
(
ΦTPδΦ + δΦTPΦ + εδΦTPδΦ− 2δΦTPL

)∣∣∣∣
ε=0

= ΦTPδΦ + δΦTPΦ︸ ︷︷ ︸
=
(
ΦTPδΦ

)T
=ΦTPδΦ

−2δΦTPL

= 2ΦTPδΦ− 2 δΦTPL︸ ︷︷ ︸
=
(
LTPδΦ

)T
=LTPδΦ
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= 2ΦTPδΦ− 2LTPδΦ . (4.25)

The variational formulation is obtained by setting the above equation to zero(
ΦTP− LTP

)
δΦ = 0 , (4.26)

cf. Eq. (4.16). The fundamental lemma of calculation of variations is applied above as in Eq. (4.16) to Eq. (4.17) in
order to obtain

ΦTP− LTP = 0 . (4.27)

The strong formulation results by equating the coe�cients with respect to P and transposing the equation

ΦTP = LTP → ΦT = LT → Φ = L . (4.28)

The strong formulation is the overdetermined system of equations before the vector of residuals v is introduced.
One notices again that the strong formulation can be ful�lled only by the true solution Φ = Φ

(
X̃
)

whereΩ = 0
and there is usually no guarantee for the existence of this analytical solution.
Aforesaid, the variational formulation serves for many numerical methods as an entry point, therefore Eq. (4.26) is
used to obtain the solution of the Gauss-Markov model. For the simplicity, a linear functional model

Φ = AX (4.29)

with design matrix A containing its coe�cients is assumed. To obtain numerical results, the vector of test functions
is chosen to share the same algebraic structure as the functional model Φ. This choice is a characteristic that least
squares adjustment and �nite element method have in common. Thus, both contain the design matrix A and the
test functions reads

δΦ = AY . (4.30)

The arbitrariness of δΦ ensures that the parameters in the vector Y can take any values. The variational formulation
Eq. (4.26) can be written as (

X̂TATP− LTP
)
AY = 0

X̂TATPAY = LTPAY . (4.31)

Equating coe�cients with respect to Y yields

X̂TATPA = LTPA . (4.32)

Finally, the last step is to transpose the above equation, we obtain the normal equations as in Eq. (3.41)

ATPAX̂ = ATPL .

Four conclusions can be drawn from this:

1. It is possible to derive the solution of the linear Gauss-Markov model by using variational calculus.

2. In adjustment calculation, the optimal parameters are obtained by di�erentiating the objective functionΩ with
respect to the unknown parameters X. In variational calculus, the same optimal parameters result by di�erenti-
ating the objective functionΩ with respect to the small parameter ε. This implies that

dΩ

dε

∣∣∣∣
ε=0

≡ dΩ

dX
(4.33)

must hold. In this regard, one can conclude that it is more elegant to di�erentiate the objective functionΩ with
respect to the one small parameter ε than to numerous unknown parameters X.
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3. The starting point of the least squares adjustment is the overdetermined system of linear equations in Eq. (4.18).
Or, equivalently, Eq. (4.28) can be considered as the starting point. One can multiply Eq. (4.28) with the vector
of test functions δΦ in order to reach the variational formulation in Eq. (4.26). From here the normal equations
can be obtained, see Eq. (4.31). By doing this way, one can reach the normal equations “faster”, as the way to get
there is shorter, i. e. from Eq. (4.28) to Eq. (4.26), than from Eq. (4.18) to Eq. (4.26). In conclusion, multiplying
the strong formulation (as in Eq. (4.18) or Eq. (4.28)) with the vector of test functions δΦ has the same e�ect as
to introducing the residuals v as in Eq. (4.19). This “inverse” usage of variational calculus is mainly carried out
in the �nite element method.

4. Assume that the starting point is the strong formulation in Eq. (4.28). And the aim is to determine the target
functionΩ. Therefore, the trace of backwards application of the variational calculus is being followed, i. e. from
Eq. (4.28) to Eq. (4.21). One can observe that the term LTPL of the objective function in Eq. (4.21) is a scalar
constant. A modi�cation of this term into

Ω = ΦTPΦ− 2ΦTPL + c , (4.34)

where c is of any constant, the resulting parameters X remain una�ected, since the constant c vanishes by the
derivation in Eq. (4.24). This example shows that the extremal formulation is not unique. By changing the
constant c, the objective functionΩ can take di�erent forms, but they all describe the same problem. And that
c = LTPL respectivelyΩ = vTPv is a special case. In adjustment calculation, this fact is overlooked due to
the introduction of residuals v instead of using the test functions δΦ .

Continuous Least Squares Adjustment

The adjustment calculation usually deals with problems involving discrete observations L. By means of the varia-
tional calculation, the handling of continuous observation functionL can also be taken into account (cf. Burden
and Faires 2011, Sec. 8.2). Consider the following equation

L = Φ , (4.35)

whereL = L
(
x
)

is the “given” observation function andΦ = Φ
(
x
)

is the “wanted” trial function. Both functions
depend on the variable x. In general, the above equation is impossible to satisfy as it attempts to describe a contin-
uous observation signal L by an idealized function Φ with adjustable unknown parameters. The trial function Φ
approximates the observation functionL. The di�erence between the two functions creates a residual function

v = Φ− L , (4.36)

where v = v
(
x
)

depends also on the variable x. The aim is to minimize the integrated squared residuals

Ω =

bˆ

a

v2 dx =

bˆ

a

(
Φ− L

)2
dx → minimal , (4.37)

where the integration limits area and b. A weight functionP = P
(
x
)

can be introduced for the objective function
Ω by dividing Eq. (4.35) by a variance function σ = σ

(
x
)

, where P = 1
σ2 . For the sake of clarity, this is omitted

by σ = 1. The above expression is an extremal formulation, cf. Eq. (4.1). Using the Lagrange’s method, Φ is
perturbed with the disturbance function η = η

(
x
)

which is decomposed into two parts

η = εδΦ , (4.38)

where δΦ = δΦ
(
x
)

is the test function and ε is the small parameter. The non-optimalΩ reads

Ω =

bˆ

a

(
Φ+ η − L

)2
dx =

bˆ

a

(
Φ+ εδΦ− L

)2
dx , (4.39)
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cf. Eq. (4.4). The target function Ω becomes minimal when its directional derivative vanishes and where the dis-
turbance is eliminated by setting ε = 0

dΩ

dε

∣∣∣∣
ε=0

!
= 0

=

bˆ

a

d

dε

(
Φ+ εδΦ− L

)2
dx

∣∣∣∣
ε=0

=

bˆ

a

2
(
Φ+ εδΦ− L

)
δΦ dx

∣∣∣∣
ε=0

=

bˆ

a

2
(
Φ− L

)
δΦ dx . (4.40)

The variational formulation is therefore

bˆ

a

(
Φ− L

)
δΦ dx = 0 , (4.41)

cf. Eq. (4.16). The fundamental lemma of calculation of variations is applied above as in Eq. (4.16) to Eq. (4.17) in
order to obtain the strong formulation

Φ− L = 0 , (4.42)

which is to be expected.
The variational formulation in Eq. (4.41) is used to compute the solution of the continuous Gauss-Markov
model. Also, for the simplicity, a trial function

Φ =
N−1∑
i=0

ciXi (4.43)

is used, which is a linear combination of a �xed numberN of given basis functionsXi = Xi

(
x
)

with unknown
scalar valued parameters ci. To obtain computable results, the test function δΦ is chosen to share the same structure
as the trial functionΦ. Thus, the test function reads

δΦ =

N−1∑
j=0

bjXj . (4.44)

The parameters bj can take any values, therefore the arbitrariness of δΦ is ensured. Inserting Eqs. (4.43) and (4.44)
into Eq. (4.41), the variational formulation in Eq. (4.41) can be rewritten as

bˆ

a

ΦδΦ dx =

bˆ

a

LδΦ dx

bˆ

a

(
N−1∑
i=0

ciXi

)(
N−1∑
j=0

bjXj

)
dx =

bˆ

a

L

(
N−1∑
j=0

bjXj

)
dx

N−1∑
j=0

N−1∑
i=0

ci

bˆ

a

XiXj dx bj =
N−1∑
j=0

bˆ

a

LXj dx bj . (4.45)

From here it is advisable to switch to matrix notation, as the unknowns ci are to be determined. It reads

XTNb = nTb , (4.46)

where

XT =
[
c0 c1 . . . ci . . . cN−1

]
,
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N =



b́

a
X0X0 dx · · ·

b́

a
X0Xj dx · · ·

b́

a
X1XN−1 dx

... . . . ... . . . ...
b́

a
XiX0 dx · · ·

b́

a
XiXj dx · · ·

b́

a
XiXN−1 dx

... . . . ... . . . ...
b́

a
XN−1X0 dx · · ·

b́

a
XN−1Xj dx · · ·

b́

a
XN−1XN−1 dx


,

nT =

ñ
b́

a
LX0 dx

b́

a
LX1 dx · · ·

b́

a
LXj dx · · ·

b́

a
LXN−1 dx

ô
,

b =
[
b0 b1 . . . bj . . . bN−1

]T
.

By equating the coe�cients with respect to b followed by a transposition, the above equation can be rewritten as

XTN = nT respectively NX = n . (4.47)

The normal equations for the continuousGauss-Markovmodel is obtained. The normal matrix N is square and
symmetrical due to the choice of the compatible test function δΦ in regard to the test functionΦ. Non-compatible
test function would lead to non-squared that leads to unsolvable normal equations.

Example: FOURIER series

The continuous Gauss-Markov model is applied, for example, in Fourier series, where an (observation) signal
L of length T is represented approximately as the sum of a �nite but �xed numberN of complex exponentials, or
respectively of sine / cosine functions. In this case, the integral interval is from a = 0 to b = T , where the length
T of the signalL is given. The following trial and test function are used

Φ =
N∑

k=−N
ck exp

(
kωx

)
and δΦ =

N∑
l=−N

bl exp
(
lωx

)
, (4.48)

where ω = 2π
T is the fundamental frequency,  is the imaginary unit (lateral unit), ck are unknown scalar complex

valued parameters and bl are the coe�cients of the test function. Using the results from Eq. (4.47) and the following
orthogonal relationship

T̂

0

exp
(
kωx

)
exp
(
lωx

)
dx =

{[
1

(k+l)ω exp
(
(k + l)ωx

)]T
0

= 0 if k + l 6= 0 ,[
x
]T
0

= T if k + l = 0 ,
(4.49)

the normal equation system reads as
T

. ..

T

. ..

T




c−N

...
c0
...
cN

 =



´ T
0 L exp(−Nωx) dx

...´ T
0 L exp(0ωx) dx

...´ T
0 L exp(Nωx) dx

 . (4.50)

Respectively, the above equation can be rewritten as

ck =
1

T

T̂

0

L exp(−kωx) dx . (4.51)

From here, it leads inevitably to Fourier Analysis.
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4.4 Calculus of Variations and Finite Element Method

In contrary to least squares adjustment, the �nite element method is used to approximate the solution of di�erential
equations. That is, instead of dealing with (algebraic) equations as in Eq. (4.18) and in Eq. (4.35), di�erential
equations, for example, such as

∇2Φ = L (4.52)

are solved where∇2 is the vector Laplacian operator. This equation is known as Poisson equation. Elastostatic
equations such as the in Lamé-Navier equations in Eq. (2.162) and the Euler-Bernoulli beam equation in
Eq. (2.182) are considered as Poisson-type equations. For the sake of better understanding, a one-dimensional
case as follows is considered

d2Φ

dx2
= L , (4.53)

whereΦ = Φ
(
x
)

andL = L
(
x
)

are functions of the variablex and the boundary conditions forΦa = Φ
(
x = a

)
and Φb = Φ

(
x = b

)
are given. From perspective of variational calculus, the Poisson equation represents the

Euler-Lagrange equation respectively strong formulation. A numerical solution can be obtained by progressing
backwards in the calculus of variations by starting from the strong formulation.

Ritz-Galerkin Method

To obtain the variational form of the Poisson equation, Eq. (4.53) is multiplied by the test function δΦ and is
integrated over the whole interval. It reads

bˆ

a

d2Φ

dx2
δΦ dx =

bˆ

a

LδΦ dx . (4.54)

By means of the product rule, the expression on the left-hand side can be rewritten as

d

dx

Å
dΦ

dx
δΦ

ã
=

d2Φ

dx2
δΦ+

dΦ

dx

dδΦ

dx
. (4.55)

Substituting the above equation in Eq. (4.54) yields

bˆ

a

d

dx

Å
dΦ

dx
δΦ

ã
dx−

bˆ

a

dΦ

dx

dδΦ

dx
dx =

bˆ

a

LδΦ dx . (4.56)

The �rst expression on the left-hand side vanishes due to the disappearing of the test function on the boundaries
x = a and x = b, see Eq. (4.5),

bˆ

a

d

dx

Å
dΦ

dx
δΦ

ã
dx =

dΦ

dx

∣∣∣∣
x=b

δΦ
∣∣
x=b︸ ︷︷ ︸

=0

−dΦ

dx

∣∣∣∣
x=a

δΦ
∣∣
x=a︸ ︷︷ ︸

=0

= 0 . (4.57)

Thus, the variational form of the one-dimensional Poisson equation reads

bˆ

a

Φ′δΦ′ dx = −
bˆ

a

LδΦ dx , (4.58)

where Φ′ = dΦ
dx and δΦ′ = dδΦ

dx . Next, Φ is represented approximately as the sum of a set of basis functions

Φ =
N∑
i=1

uiXi , (4.59)
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where ui are scalar valued coe�cients of the basis functionsXi = Xi

(
x
)

. The derivative order of the variational
formulation in Eq. (4.58) speci�es that the basis functionsXi must be at least once di�erentiable. The correspond-
ing test function has to be arbitrary, but for numerical computation it has to be compatible. Hence, the test func-
tion consists of the same set of basis functions as the trial function

δΦ =
N∑
j=1

wjXj , (4.60)

wherewj are arbitrary scalar valued coe�cients. Substituting the functions Φ and δΦ in Eq. (4.58), it reads

bˆ

a

(
N∑
i=1

uiX
′
i

)(
N∑
j=1

wjX
′
j

)
dx = −

bˆ

a

L

(
N∑
j=1

wjXj

)
dx

N∑
j=1

N∑
i=1

ui

bˆ

a

X ′iX
′
j dx wj = −

N∑
j=1

bˆ

a

LXj dx wj , (4.61)

whereX ′i =
dXi
dx . It is advisable to switch to matrix notation, as the unknown ui are to be determined. It yields

uTKw = fTw , (4.62)

where

uT =
[
u1 u2 . . . ui . . . uN

]
,

K =



b́

a
X ′1X

′
1 dx · · ·

b́

a
X ′1X

′
j dx · · ·

b́

a
X ′1X

′
N dx

... . . . ... . . . ...
b́

a
X ′iX

′
1 dx · · ·

b́

a
X ′iX

′
j dx · · ·

b́

a
X ′iX

′
N dx

... . . . ... . . . ...
b́

a
X ′NX

′
1 dx · · ·

b́

a
X ′NX

′
j dx · · ·

b́

a
X ′NX

′
N dx


,

fT =

ñ
−

b́

a
LX1 dx −

b́

a
LX2 dx · · · −

b́

a
LXj dx · · · −

b́

a
LXN dx

ô
,

wT =
[
w1 w2 . . . wj . . . wN

]
.

Equating the coe�cients of the above equation with respect to w followed by a transposition yields the “classical”
�nite element method equation

uTK = fT respectively Ku = f . (4.63)

K is the coefficient matrix, the vector u is referred to as unknown solution vector and f is the right-hand side vector.
The coe�cient matrix K is square and symmetric due to the compatibility of the chosen test function δΦ with
respect to the approximate solutionΦ. Non-compatible test function would lead to non-squared matrix that makes
the �nite element method equation unsolvable.
The question arises: What is the extremal formulation of the Poisson equation in conjunction with �nite ele-
ment method? In variational calculus, the Poisson equation in Eq. (4.53) is considered as the strong formulation.
Therefore, it is seen as a Euler-Lagrange equation as stated in Eq. (4.17). Furthermore, the variational formu-
lation of the Poisson equation in Eq. (4.58) contains Φ′ and δΦ′. Thus, it can be concluded that the Lagrangian
density functional has the following dependency

Z = Z
(
x, Φ, Φ′

)
. (4.64)
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One notices that the above functional is exactly the same as discussed in Sec. 4.2 with the di�erence thaty in Eq. (4.1)
is replaced by Φ. Consequently, the Poisson equation in Eq. (4.53) has be to be equal to the strong formulation
in Eq. (4.17)

∂Z

∂Φ
− d

dx

Å
∂Z

∂Φ′

ã
= Φ′′ − L , (4.65)

where Φ′′ = d2Φ
dx2

. The Lagrangian density functional Z has to be determined in order to reach the extremal
formulation. By means of a well-educated guess, it is possible to write the following Lagrangian density functional
that satis�es the above equation

Z = −1

2
Φ′Φ′ − LΦ+ C , (4.66)

whereC = C
(
x
)

is an arbitrary function. As a result, the approximate �nite element solution occurs when

J =

bˆ

a

Å
−1

2
Φ′Φ′ − LΦ+ C

ã
dx → extremal . (4.67)

The above objective function is the extremal formulation of the Poisson equation in conjunction with the �nite
element method. The determination of the objective function is unnecessary for the approximation of the solution
of the Poisson equation. Therefore, the extremal formulation is usually ignored in the �nite element method. An
example as follows shows that the objective function can appear quite di�erent for the same problem.

Least Squares Finite Element Method

In Eq. (4.67), we have the extremal formulation of the �nite element method for the Poisson equation. However,
there are other extremal formulations that can be obtained by using other trial and test functions. For the so-called
least squares finite element method (Bochev andGunzburger 2009), we use the following trial and test function

Φ =

N∑
i=1

uiXi and δΦ′′ =
N∑
j=1

wjX
′′
j , (4.68)

where X ′′ = d2X
dx2

. While the same trial function as in �nite element method is used, this time a di�erent test
function is applied. It is to be noted that, in comparison with the Ritz-Galerkin method, the least squares
�nite element method requires higher-order polynomial for the solution Φ as well as for the corresponding test
function δΦ, therefore the basis function Xi has to be at least two times di�erentiable. By multiplying the above
test function with the Poisson equation in Eq. (4.53) followed by the integration over the whole interval yields
another variational form for the Poisson equation

bˆ

a

Φ′′δΦ′′ dx =

bˆ

a

LδΦ′′ dx . (4.69)

We notice from the above equation that the test function δΦ′′ appears in the variational form. Therefore, the La-
grangian density functionalZ has the following dependency

Z = Z
(
x, Φ′′

)
. (4.70)

In order to determine the Euler-Lagrange equation as in Eq. (4.17) for the above density functional Z , the
extremal value J as in Eq. (4.6) has to be found as follows

dJ

dε

∣∣∣∣
ε=0

!
= 0

=

bˆ

a

dZ

dε
dx

∣∣∣∣
ε=0

=

bˆ

a

∂Z

∂x

dx

dε︸︷︷︸
=0

+
∂Z

∂
(
Φ′′ + εδΦ′′

) d
(
Φ′′ + εδΦ′′

)
dε︸ ︷︷ ︸

=δΦ′′

dx

∣∣∣∣
ε=0

=
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=

bˆ

a

∂Z

∂
(
Φ′′ + εδΦ′′

)δΦ′′ dx∣∣∣∣
ε=0

=

bˆ

a

∂Z

∂Φ′′
δΦ′′ dx

!
= 0 . (4.71)

By applying the fundamental lemma of calculation of variations to the above equation, the Euler-Lagrange
equation for this case is obtained

∂Z

∂Φ′′
= 0 . (4.72)

Equating both strong formulations, the above Euler-Lagrange equation and the Poisson equation in
Eq. (4.53), it reads

∂Z

∂Φ′′
= Φ′′ − L . (4.73)

Hence, the Lagrangian density functional is

Z =
1

2
Φ′′Φ′′ − LΦ′′ + C , (4.74)

where C = C
(
x
)

is an arbitrary function. In a special case where C = 1
2LL, the Lagrangian density functional

becomes
Z =

1

2
Φ′′Φ′′ − LΦ′′ + 1

2
LL =

1

2

(
Φ′′ − L

)2
. (4.75)

The extremal formulation of the Poisson equation for the “least squares” �nite element method is

J =

bˆ

a

1

2

(
Φ′′ − L

)2
dx → minimal . (4.76)

The same objective function as above can be determined if the residual function v is introduced to Poisson equa-
tion in Eq. (4.53) as

d2Φ

dx2
= L+ v . (4.77)

The same result as in Eq. (4.76) is obtained for minimizing the integrated squared residual function

J =

bˆ

a

1

2
v2 dx =

bˆ

a

1

2

Å
d2Φ

dx2
− L
ã2

dx =

bˆ

a

1

2

(
Φ′′ − L

)2
dx → minimal . (4.78)

Due to this similarity with the method of least squares, this approach to solve the Poisson’s di�erential equation
is called the least squares �nite element method. One notices that both objective functions, in Eq. (4.67) and in
Eq. (4.76), are fundamentally di�erent. Although both extremal formulations are used to approximate solution
for same strong formulation, the Poisson equation.
In conclusion, there is a unique strong formulation for a speci�c problem. But, di�erent extremal formulations
of the same strong formulation can be found. Consequently, there exists many variational formulations. This in
turn leads to di�erent approximate solutions with various qualities for a speci�c problem. For a unique numerical
solution, however, an unambiguous extremal formulation (apart from scaling and shifting) must be established.
This is accomplished by specifying the trial and test function,Φ and δΦ.

4.5 Calculus of Variations in Adjustment Theory

A speci�c problem can take the form of one of many possible objective functions or as a unique system of (di�eren-
tial) equations. The variational calculus introduces how to classify the many possible representations of a speci�c
problem into one of the three forms. And it introduces a procedural way to rewrite di�erent formulations of a
particular problem. In the long term, it should be shown that all methods can be classi�ed in one way or another in
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the scheme of variational calculation. In this dissertation, the least squares and �nite element method are analysed
in the context of the variational calculus.
The �nite element method is used to approximate a solution of di�erential equations. While the least squares
adjustment is applied for solving overdetermined system of algebraic equations. Both methods share the same chal-
lenge of not knowing the “true” solution. Even though a system of di�erential equations for a speci�c engineering
problems can be formulated by means of, for example, continuum physics. But afterwards, there are generally two
obstacles: Does a solution exist at all for the given di�erential equations? And, if it is the case, how do we get it?
In fact, one may not even know if there is a solution at all. For example, the existence of an exact solution of the
Navier-Stokes equation in �uid mechanics is still unknown, see (Fefferman 2000). Only for a limited case
such as the one-dimensional Poisson equation respectively Euler-Bernoulli beam equation, it is possible to
obtain close-form solution. But, these types of di�erential equations result from simpli�cation of an engineering
problem with debatable assumptions. In order to obtain quantitative results without any questionable simpli�-
cations, a numerical approximation technique such as the �nite element method must be used. The di�erential
equations are multiplied by the test function and integrated over the region of interest. This transforms the dif-
ferential equations into their corresponding variational form. It is then possible to obtain numerical results. In
practice, it usually remains unnoticed that the procedure of variational calculus is applied in reverse. In the con-
text of variational calculus, the di�erential equations represent the strong formulation of the problem. Since their
variational formulation ultimately leads to the approximate solution, it is understandable that their extremal formu-
lation becomes irrelevant in the �nite element method. There are other numerical methods for solving di�erential
equations such as the least squares �nite element method. By using di�erent trial and test functions, Φ and δΦ,
various numerical methods result. This approach is the so-called method of weighted residuals, see (B. Finlayson
and Scriven 1966). The residuals refer to the discrepancy arising from the fact that any trial functions fails to
satisfy the strong formulation. The weight referred to the possibility of using di�erent test functions. And, the
integrated weighted residuals lead to various variational formulations. These in turn lead to di�erent approximate
methods. Also, in a similar situation concerning the solutions of di�erential equations, overdetermined system of
algebraic equations has no solution at all due to their discrepancies. In adjustment calculation, this de�ciency can
be eased by introducing residuals into the algebraic equations as an additive quantity to the observations. At the
same time, the sum of weighted squared residuals must be minimal in order to obtain an adjusted solution. In the
adjustment calculation, the variational calculus procedure is followed in a special way. The strong formulation is
the overdetermined system of algebraic equations. Instead of following the variational calculus in reverse as in the
�nite element method, i. e. by multiplying the test functions with the strong formulation in order to obtain the
variation formulation respectively the normal equations. A “detour” is made by introduction of residuals to the
algebraic equations. And a “special” extremal formulation that the sum of weighted squared residuals has to be
minimal is then postulated. The directional derivative respectively the derivation with respect to the unknowns
of this objective function also leads to the normal equations. This target function is in so far “special” as other
objective functions are also possible that result in exactly the same numerical solution. Other kinds of objective
functions can be formulated by scaling and shifting. Ultimately, this special objective function is required for statis-
tical evaluations. By using di�erent trial and test functions,Φ and δΦ, various analysis methods result. In particular,
the Fourier series belongs to the problem domain, which can be expressed by an algebraic equation as strong for-
mulation. The trial and test functions, Φ and δΦ, are represented as the sum of a set of complex exponentials. In
summary, it can be concluded that both the �nite element method and the least squares adjustment follow the same
variational calculus procedure. The normal equations of the least squares adjustment and the system of linear equa-
tions of the �nite element method are similar insofar as both methods use their corresponding variational forms
to calculate their respective numerical solutions. The di�erences are that both solve di�erent types of equations in
conjunction with di�erent representations for the trial and test function. Hence, the relationship between �nite
element method and least squares adjustment can be associated by variational calculus.
A few �nal remarks are in order: First, variational calculus is to be considered as a universal procedure of the adjust-
ment theory. Many methods can be explained by answering the following questions:

• What is the formulation of the problem and, if necessary, the conditions?

• Is it a continuous or discrete problem?

• Which trial function is used for the solution?
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Therefore, variational calculus should be considered as a unifying method in the adjustment theory. An overview
of the discussed methods is shown in Tab. 4.1 . Second, methods have been developed from di�erent scienti�c �elds
to solve problems of their discipline. Accordingly, the methods are strongly motivated by the speci�c perspectives
of the respective discipline. From an abstract perspective, i. e. the methods are presented without mechanical or
geodetic accents, it becomes clear that the methods are actually identical. Therefore, the �nite element method
should be regarded as part of the adjustment theory rather than part of physics, because this method requires no
physical justi�cation. In addition, the adjustment theory should be understood as a method theory. Third, B.
Finlayson and Scriven (1966) as well as B. A.Finlayson (1972) describe in their paper the method of weighted
residuals. Their focus is on the di�erent methods of solving di�erential equations numerically. The fact that the
methods are also suitable for data analysis, i. e. algebraic equations can also be solved numerically with them, is
ignored. As far as Boljen (1993) is concerned, in his work he presents a short treatment of the variational calculus.
A comparison between the continuous and discrete version of least squares method are also shown. He realizes
that what he considered as “�nite element method” is a continuous problem. But if one takes a closer look at his
extremal formulation, it turns out that this is least squares �nite element method rather than Ritz-Galerkin
�nite element method. Also, Milev (2001) recognizes the analogies between the principle of virtual work from
mechanics and the method of least squares in geodesy. But in his work he introduces the variational calculus by
means of Lagrangian mechanics for non-expert in mechanics. Through this representation, the methodological
similarities between the two methods are di�cult to comprehend. A more detailed presentation of the variational
calculus and the abstraction of important elements of it were absent in the work of the above-mentioned authors.
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Figure 4.1: The representation of the trial function Φ =
∑
i
ciXi as a neuron network.

4.6 A first step towards a unified method

The studies in this chapter show that although many methods originate from di�erent disciplines, they can still be
considered identical in terms of variational calculus. Observe an extremal formulation similar to Eq. (4.1), say, a
scalar valued quantity J is a functional of the function y. The quantity J becomes stationary when the optimal
solution ŷ is used, and to �nd this function ŷ is the target. There are many algorithms that can be used to �nd the
solution. Provided that the gradient of J with respect to the unknowns is available, then it is possible, for example,
to use the gradient descent to �nd the optimal solution. In this context, it is worth mentioning that according to
Rojas (1996) the trial function in Eq. (4.43) can be represented as a neuron network as depicted in Fig. 4.1. Deter-
mining the coe�cients of this trial function using gradient descent is the simplest form of machine learning. There
are other iterative algorithms that require no gradient of J , for example, the evolution strategy, see (Rechenberg
1994). As has already been discussed in detail, the variational formulation is the starting point for many methods.
As shown in Eq. (4.51), the entire Fourier analysis can be justi�ed from this equation. And based on this, the
Laplace Transformation can be established. From here, it leads inevitably to signal processing. The finite element

method also has related methods such as spectral �nite element method, �nite volume method, boundary element
method. There are also methods to solve a limited number of strongly formulated problems directly, such as sepa-

ration of variables. As shown, many methods can be assigned in the schema of the variational calculus. However,
there are certain problem classes, such as inverse problems, where a single use of a particular method fails to produce
the desired result. This requires a consecutive use of di�erent methods to solve these kinds of problems. And that
leads to the so-called “integrated analysis”. One such procedure is the so-called Measurement- and Model-based

Structural analysis (MeMoS), in which the �nite element method and the method of least squares are combined
directly and consecutively in order to detect and to locate damage in structures, see (Neitzel et al. 2014).
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5 Measurement- and Model-based Structural Analysis

I haven’t faced death. I’ve cheated death. I’ve tricked my
way out of death and patted myself on the back for my
ingenuity; I know nothing.

– Admiral James Tiberius “Jim” Kirk,
Star Trek II: The Wrath of Khan (1982)

One major ambition in Structural Health Monitoring (SHM) is to develop the ability to detect, localize and identify
damage as well as to predict the lifespan of civil structures. This would allow well-informed decision on whether to
repair or to demolish these structures. The monitoring of civil engineering structures is based on the evaluation of
spatially and temporally distributed hybrid measurements. These can be acquired using, for example, total stations,
levelling instruments, inclinometers, �bre optic sensors, strain gauges, terrestrial laser scanning or global navigation
satellite system. However, to allow for an integrated evaluation of the examined structure, a new concept that
include physical models needs to be developed.
Engineering problems are often solved using the �nite element method (FEM). The result is suggestively validated
by an overlay comparison with interpolation with the discrete measurements, see for exampleKottner et al. (2014)
andYang et al. (2014). The results based solely on this comparison can be misinterpreted. In contrast, an integrated
evaluation takes into account both the physical modelling and the measurements. This combined evaluation has
not been implemented yet due to the common subdivision of engineering sciences into two groups: the modelling
or experimental factions. This separation is clearly seen in commercial �nite element method software packages:
they do not provide any interoperability with measurement and model data. In recent years, some e�ort has been
undertaken to overcome this obstacle, see for example Bucher et al. (1995). Since the commercial �nite element
method software packages do not allow any access to the model data, they have to be treated as a black-box.
The determination of material parameters from measurements is not only important in materials science, its appli-
cation in monitoring of civil infrastructures is also utmost signi�cant. In materials science, test apparatuses such as
tensile testing machine are used to determine material properties of particular specimens. By taking this thought
one step further, a civil engineering structure can be considered as a large and complex sample and its characteristics
can be monitored. Structural changes due to ageing, degradation or damaging processes are expressed by altering
material parameters. An additional challenge is that in contrary to materials science, an engineering structure “spec-
imen” is produced in such a way that a complex physical model is required in conjunction with the measurements
in order to examine the specimen’s material characteristics.
Many algorithms for computing material parameters from measurements are available in the literature, see for ex-
ampleKauer (2001),Balaraman et al. (2006),Zhang et al. (2011), andHassaballah et al. (2013). Essentially,
however, they are the same, since this approach uses an optimiser to iteratively tune the parameters until the com-
puted results of the �nite element method are in accordance with the measurements, see Fig. 5.1. For example,
adaptive Kalman �ltering is an optimiser in Eichhorn (2005) and Schmalz et al. (2010). Lienhart (2007)
calibrates his physical model by means of condition equations in conjunction with the least squares adjustment.
And Sterthaus (2008, p. 89) has recognized that the optimizer can be replaced by any optimization methods.
The main issue is that this algorithm contains inaccessible program parts with respect to the �nite element method.
Due to these restrictions, we are hindered to comprehend the inner process of the programs. Consequently, the
question arises as to how we can be sure that the result from this algorithm is reliable. In addition, the optimizers
often require numerical values from the partial derivatives such as the Jacobian matrix. Without direct access to the
�nite element data, the optimization calculation can be unnecessarily prolonged. Furthermore, such an evaluation
allows only limited statistical analysis of the results. But for monitoring purposes a rigorous statistical analysis is in
fact essential and therefore it is highly desired.
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Figure 5.1: Basic principle of the approaches for material parameter determination of com-
plex samples as proposed by Eichhorn (2005) and Lienhart (2007)

In contrast to this debatable approach, we follow a rigorous and direct method. The main idea of this integrated
analysis, �rst proposed in Neitzel et al. (2014), is that it uses the sophistication of the continuum mechanics as
well as of the adjustment calculation from geodesy – “best of both worlds”. Hereby, it is necessary to understand
every aspect of the process: From modelling part by means of continuum mechanics, numerical approximation
by �nite element method, computation of material parameters from measurements by least squares adjustment as
well as applying statistical test to check the results. Every step is performed in a transparent approach without using
“black-boxed” software. This leads us to an interesting aspect: It allows us to associate the �nite element nodes in
Eq. (2.248) with the vector of observations in Eq. (3.1) for hybrid measurements

L ≡ u . (5.1)

As a consequence, we can invert the �nite element method procedure by integrating a �nite element model into the
least squares adjustment and thus allows us to evaluate a physical model and measurements in a combined analysis.
This enables us to calculate the material parameters directly from measured �eld. And provide us the possibility to
perform a detailed analysis of the results using statistical tests.
The application of this method is called the Measurement- and Model-based Structural Analysis (MeMoS). We
utilize it to examine the following aspects concerning structural health monitoring:

• What are the optimal measurement set-ups for structural health monitoring?

• How can damages of a structure be detected and localised?

• How can material parameters of a structure be determined from measured �eld quantities?

• How can a geometrical complex structure be represented with a simpli�ed but equivalent object?

• How can the Measurement- and Model-based Structure Analysis be circumstantiated by an experimental
validation?

5.1 On Optimal Measurement Set-Ups for Material Parameter Determination

The word monitoring in structural health monitoring brings up several frequently ignored questions: What mea-
surands and sensor precision are needed to monitor a given structure? Where are the optimal sensor placements?
How many sensors are necessary? How to analyse spatially distributed hybrid measurements? Or, in short: What is
the sensor con�guration best suited for structural health monitoring? If these questions are not explicitly addressed,
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the usefulness of the measurement data for an evaluation is left to coincidence. Therefore, a measuring strategy re-
spectively a sensitivity analysis is strongly desired. To develop a monitoring strategy, an integrated evaluation via
a �nite element approach which combines spatially distributed hybrid measurements with mechanical structural
modelling is proposed. Together with the method of least squares adjustment and Monte Carlo algorithm, this
will open up the possibility to simulate di�erent kinds of measuring strategies and to choose the most appropriate
one.
The introduced approach is illustrated on the example of a statically bended Euler-Bernoulli beam as shown
in Sec. 2.5.2. We demonstrate on this numerical example how an integrated analysis can be applied to determine
the optimal measurement set-up for material parameter determination. For this, we create a �nite element model
of a four-point bending test apparatus. Based on this model, we generate synthetic measurements of displacement,
inclination and strain observations for prede�ned measuring points. Then, a Monte Carlo simulation (MCS) is
performed to analyse the dependence of estimated parameters at the location of the measuring point as well as on
the stochastic properties of the measurements.
This section is partly published in Weisbrich et al. (2014) and in Becker et al. (2015)

5.1.1 Four-Point Bending Test Apparatus

The Euler-Bernoulli beam equation in Eq. (2.182) can be rewritten as

d2u

dx2
= −M

EI
, (5.2)

where I22 and x1 are rede�ned as I and x. Due to the semi-inverse method shown in Eq. (2.167), we know that the
displacement u only depends on x. Hence, we can write d2u

dx2
= ∂2u

∂x2
. For our numerical example, the specimen has

a total length of l and has a rectangular cross section of widthB and heightH . Moreover, the specimen is clamped
at the position x = 0 with a �xed bearing and at x = l with a moveable bearing. For a four-point bending test,
forces of equal strengthF/2 are applied to the beam specimen at the positions x = a and x = l− a. Under these
requirements and according to Eq. (2.181), the course of the internal bending momentM reads as

M =


F
2 x for 0 ≤ x ≤ a ,
F
2 a for a ≤ x ≤ l − a ,
F
2

(
l − x

)
for l − a ≤ x ≤ l

(5.3)

and is shown in Fig. 5.2. Since the beam specimen has a rectangular cross section over its entire length, the area
moment of inertia is a given constant scalar value of

I =
BH3

12
. (5.4)

Furthermore the specimen is clamped on its both ends with bearings. This leads to the following Dirichlet
boundary conditions

u
(
x = 0

)
= u

(
x = l

)
= 0 . (5.5)
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For given bending moment M , area moment of inertia I and Dirichlet boundary conditions, the Euler-
Bernoulli beam equation describes the “indirect” relationship between the �eld quantity displacement u and
the material parameter elastic modulus E. In contrast, the solution of the beam di�erential equation expresses
“directly” the displacement u as a function of elastic modulusE in form of an algebraic equation.

5.1.2 Measurands Identification

A physical model can be used to identify what measurands are appropriate for the material parameter determina-
tion. In our case the Euler-Bernoulli beam model is utilized to �nd suitable measurands to evaluate the elastic
modulusE of a beam specimen.
According to Gere and Goodno (2013, pp. 418–431) as well as to W. H. Müller and Ferber (2005, p. 139 �),
the second spatial derivative of the displacementu, i. e. the beam equation itself, is closely related to the longitudinal
strain

ε11 = ε = −eu

d2u

dx2
= eu

M

EI
, (5.6)

where eu = H
2 is the orthogonal distance between the neutral surface and the bottom surface of the beam. The

slope of the de�ection tan
(
α
)

is described by the �rst spatial derivative of the de�ection u, i. e. the in�nitesimal
change of the de�ection du in relation to in�nitesimal step in position dx. And the slope is obtained by integrating
the beam equation, we have

tan
(
α
)

=
du

dx
= −

lˆ

0

M

EI
dx+ C , (5.7)

whereC is the constant of integration and is determined by the boundary and transition conditions. The inclina-
tion α is computed by taking the arctangent of the above equation. The de�ection u is computed by integrating
the beam equation two times. This in turn yields

u = −
lˆ

0

lˆ

0

M

EI
dx+ Cx+D , (5.8)

whereC andD are the constants of integration that is determined by the boundary and transition conditions.
In conclusion, within theEuler-Bernoulli beam model the displacement and tilt sensors as well as strain gauges
are best suited to determine the elastic modulusE of a beam specimen. Sensors for the forceF , the force application
position a, the Dirichlet boundary conditions as well as the specimen initial geometry can also be considered.

5.1.3 The Exact Solution of the Beam Differential Equation

The functional model of least squares adjustment can be based on the exact as well as on the approximate solution
of di�erential equations. For the four-point bending test set-up, the course of the longitudinal strain ε, of the
tangent of the inclination tan

(
α
)

and of the displacement u can be determined analytically from the Eqs. (5.6)
to (5.8) under the requirements of the bending moment, the area moment of inertia and the boundary conditions
in Eqs. (5.3) to (5.5). The exact solution of the beam di�erential equation reads

ε =


eukx for 0 ≤ x ≤ a ,
euka for a ≤ x ≤ l − a ,
euk
(
l − x

)
for l − a ≤ x ≤ l ,

(5.9)

tan
(
α
)

=


−1

2kx
2 + C1 for 0 ≤ x ≤ a ,

−kax+ C2 for a ≤ x ≤ l − a ,
1
2kx

2 − klx+ C3 for l − a ≤ x ≤ l ,
(5.10)

u =


−1

6kx
3 + C1x for 0 ≤ x ≤ a ,

−1
2kax

2 + C2x+D2 for a ≤ x ≤ l − a ,
1
6kx

3 − 1
2klx

2 + C3x+D3 for l − a ≤ x ≤ l ,
(5.11)
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Figure 5.3: The exact solution of the beam di�erential equation, from top to bottom: strain
ε, tangent of the inclination tan

(
α
)

, displacement u

where k =
F/2
EI , C1 = 1

2ka(l − a), C2 = 1
2kal, C3 = 1

2k(l − a)2 + 1
2kal, D2 = −1

6ka
3 and D3 =

−1
2kal

2 − 1
2kl(l − a)2 + 1

3kl
3 and is shown in Fig. 5.3. The above equations form the basis to analyse spatially

distributed hybrid measurements. If measurements of the �eld quantities strain ε, tilt tan
(
α
)

and de�ection u
are available as observations, it is possible to determine the unknown elastic material parameterE by means of the
mechanical model described in Eqs. (5.9) to (5.11) and least squares adjustment. This common evaluation of hybrid
measurements and physical model is referred as the integrated analysis. It is to be noted that our interest lies in the
relationship between �eld quantities and material parameters, hence we consider the forceF , the force application
position a, the Dirichlet boundary conditions and the area moment of inertia I as error-free.
It is not always possible that an exact solution can be determined for given di�erential equations and given boundary
conditions. In this case, numerical methods such as �nite element method are introduced. In Sec. 2.6.9, the solution
of the beam equation is approximated with aid of �nite element method. Non-linear elements are usually used in
consideration of improving the numerical approximation results. But, in regard of integrated analysis of hybrid
measurements, for each element a polynomial of order 5 is required. As mentioned in Sec. 2.6.9, each node contains
the numerical value of the displacement, of its �rst and second derivatives. From Eqs. (5.6) to (5.8), we know
that these values represent the de�ection, inclination and strain. From Eqs. (2.270) and (2.271), the approximate
solution of the beam di�erential equations via �nite element method reads as follows

u? = K−1f . (5.12)

Moreover, the load vector f , assembled from Eq. (2.265), contains the unknown elastic material parameterE and
it can be recast as

f = b
1

E
. (5.13)

As a result, Eq. (5.12) can be reformulate as

u? = K−1b
1

E
, (5.14)
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Table 5.1: Speci�cation of the four-point bending set-up and beam specimen for the �nite
element modelling.

beam length l 7.25 m beam elastic modulusE 70 GPa
beam widthB 0.20 m load F 7460 N
beam heightH 0.37 m loading position a 2.42 m
number of equidistantly discretised �nite elements n 725

For the evaluation in least squares adjustment, it is helpful to use the component notation for the above equation

u?o =

3n∑
m=1

κombm
1

E
, (5.15)

where κom is the entry of the inverted sti�ness matrix K−1. The above equation is the approximate solution of the
beam di�erential equation and it can be utilized to formulate the functional model. In a same manner as analytical
solution, if measurements of the �eld quantities strain u′′ν = − εν

eu
, tilt u′ν = tan

(
αν
)

and de�ection uν are
available as observations at the node position ν, we are able to determine the unknown elastic material parameter
E by means of least squares adjustment. As before, the force F , the force application position a, and the area
moment of inertia I is considered to be error-free, hence the vector bm is a �xed value. Likewise, the Dirichlet
boundary conditions as well as the �nite element discretisation are also regarded as �xed, thus κom is error-free.
Then, Eq. (5.15) can be expressed as

u?o =
3n∑
j=1

κombm︸ ︷︷ ︸
=Ao

1

E︸︷︷︸
=X

= AoX . (5.16)

The above relation is used to formulate the function model.

5.1.4 Sensor Precision Modelling and Synthetic Measurements

The stochastic property of sensor precision can be modelled as a normal distributed noise. In our analysis, we
assume that the noises are normal distributed and be therefore characterised by standard deviations. Within a
deterministic model, computed values are considered to be true. In regard of the association of the numerical com-
puted values and observations in Eq. (5.1), by adding noises to the computed values allows us to generate synthetic

measurements.
The �nite element solution u?o of the beam di�erential equation in Eq. (5.16) can be computed deterministically
for a �xed speci�cation listed in Tab. 5.1. The conversion of the numerical solution into tilt and strain is performed
by means of Eqs. (5.6) and (5.7), we obtain

u?o for o = 1, . . . , n → uν → uν

u?o for o = n+ 1, . . . , 2n → u′ν → αν

u?o for o = 2n+ 1, . . . , 3n → u′′ν → εν

,

for ν = 1, . . . , n. Based on this solution, a random normal distributed noise is added in accordance to the assumed
sensor precision. This in turn yields the synthetic measurement for the displacement, inclination and strain as
follows

lo,u = uν + uν,noise , lo,α = αν + αν,noise , lo,ε = εν + εν,noise , (5.17)

where uν,noise ∼ N
(
0, σ2

u

)
, αν,noise ∼ N

(
0, σ2

α

)
, εν,noise ∼ N

(
0, σ2

ε

)
respectively lo,u ∼ N

(
uν , σ

2
u

)
, lo,α ∼

N
(
αν , σ

2
α

)
, lo,ε ∼ N

(
εν , σ

2
ε

)
and σ2

u, σ2
α, σ2

ε are the variances of the displacement, tilt and strain sensors. The
vector of synthetic observations L is assembled based on Eq. (5.17).
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5.1.5 Sensitivity Analysis

The sensitivity analysis examines the in�uence of sensor precision and sensor position on the unknown parameters.
The sensitivity of the elastic modulus with respect to the following sets of prede�ned sensor precision as well as the
sensor position is evaluated. The standard deviations for the displacement are

σu = 10−1 mm, 10−2 mm, 10−3 mm , (5.18)

for the inclination are
σα = 1 mgon, 10−1 mgon, 10−2 mgon (5.19)

and for the strain are
σε = 10 µstrain, 1 µstrain, 10−1 µstrain . (5.20)

The vector of synthetic observation L is assembled from Eq. (5.17). The corresponding functional model is based
on the relationship in Eq. (5.16). The sets of prede�ned sensor precision in Eqs. (5.18) to (5.20) are used to formu-
late the stochastic model for the observations.
The index o is uniquely assigned to a measurand and a measuring position. For each index o, 1000 Monte Carlo
Simulations were carried out. In each Monte Carlo simulation, a synthetic measurement lo is generated. Upon this
observation, the adjusted elastic parameter Ê and its standard deviation σ

Ê
are obtained by means of least squares

adjustment.
The results of the sensitivity examination are shown in Figs. 5.4 to 5.7. They show pretty much the expected
conclusion. Nevertheless, Fig. 5.4 is chosen to use as an example to clarify the meaning of the results. The red line
represents a displacement sensor with an precision ofσu = 10−1 mm. At the node position ν = 350 the standard
deviation of the estimated elastic modulus is around σ

Ê
= 10 GPa. The adjusted elastic modulus Ê estimated

from a displacement measurement at this node position is around Ê = 70 GPa with a standard deviation of
σ
Ê

= 10 GPa. The estimated parameter may be inexact due to the low precision of the sensor. The “spikes” near
both ends of the specimen show very high standard deviations. Evaluations of the measurements in this particular
area result in unusable estimation of the elastic modulus. This is due to the small displacements near at both ends
that are smaller than the precision of the sensor. The tilt and strain sensor examinations in Figs. 5.5 and 5.6 are
repeated with same results.
Fig. 5.7 shows the impact of the precision of the estimated elastic modulusσ

Ê
depending on the number of sensors.

The precision can be raised by increasing the number of sensors. But at certain amount, the gain of sensor precision
declines. Then, economical aspects has to be considered to evaluate the bene�t of precision improvement.
From this examination, we come to the conclusion that a sensor has to be placed at a certain spot where the impact
is greater than its standard deviation. Without this numerical examination and just by applying common sense and
experience to this, we will come to this wisdom, too. But, how does one �gure out where the structural impact is the
greatest in advance? Beside engineering hunch, a model-based approach can provide prior knowledge. It is therefore
highly desirable to incorporate methods of modelling in measuring tasks. Even we should not underestimate the
engineering intuition, but from a rational standpoint a well-developed model is more comprehensible.
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5.2 Damage Detection and Localisation within a slender beam

The issues of detection and localisation of damage within a slender beam is being studied. In order to simulate
the beam damage caused by material degradation, in the �nite element model we decrease systematically the elas-
tic modulus of a group of �nite elements. Since Young’s modulus and the area moment of inertia are coupled
multiplicatively as EI in Eq. (2.265). Therefore, it is indistinguishable, whether one or other has caused the ma-
terial degradation within the beam theory. Thus, the area moment of inertia has to be assumed to be a constant
throughout the whole beam, see Fig. 5.8.
This section is partly published in Wu et al. (2014) and in Becker et al. (2015).
The speci�cation that is listed in Tab. 5.1 is used. The displacement, the inclination and the strain are calculated
accordingly to Eq. (5.12) and in case each �nite element has di�erent elastic modulus the right-hand side load vector
has to be reformulated as follows

u?o =
3n∑
m=1

κomfm =
3n∑
m=1

κom

(
N∑
ζ=1

1

Eζ I
bζ m

)
. (5.21)

For the numerical simulation and examination, the amount of simulated damage can be induced by decreasing the
elastic modulus values Xζ = 1

Eζ
for a speci�c element or prede�ned group of elements. As before, synthetic

measurements were generated by adding normal distributed noise in accordance to the assumed sensor precision
to the computed values u?o. The functional model is

l?o =
3n∑
m=1

κomfm =
N∑
ζ=1

3n∑
m=1

κom
1

I
bζ m︸ ︷︷ ︸

= Aζ o

Xζ =
N∑
ζ=1

Aζ o X
ζ (5.22)

or respectively in matrix notation

L = K−1f = K−1

(
N∑
ζ=1

1

Eζ I
bζ

)
=

N∑
ζ=1

Å
K−1 1

I
bζ︸ ︷︷ ︸

= Aζ

Xζ
ã

=

N∑
ζ=1

Aζ Xζ = AX , (5.23)

where the length of the vector Aζ is 3n, the shape of the design matrix A is 3n×N and the size of the vector of un-
knowns X isN . The issue about this functional model is that it requires all nodes have to be observed. Otherwise,
an under-determined system of equations appears. To overcome this problem, the concept of observed unknowns

(Kraus 1996, pp. 38–42) is used that one may facilitate additional a priori informations to the system. Manufac-
turer information can be considered as a priori knowledge as an example. Here, the Tab. 5.1 is used as an a priori
information to describe the undamaged state of the beam specimen. This approach has two positive characteris-
tics: Firstly, using this method results in an overdetermined system that can be treated with least squares adjustment.

E1I1 E1I2 E1I1

E1I1 E2I1 E1I1

E1I1 E2I1 E1I1

Figure 5.8: Beam defects due to geometric changes or material changes (left) are simulated
by material degradation (right)
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Table 5.2: Synthetic measurements on beam specimen

measure sensor precision positions

displacement σu = 10−3 mm 2.43 m, 3.64 m, 4.85 m
inclination σα = 10−2 mgon 0.02 m, 7.24 m
strain σε = 10−1 µstrain 2.41 m, 3.62 m, 4.83 m

Secondly, the observed quantities and a priori information are fused into one system, we can stochastically test this
arrangement how well they agree. The statistical signi�cance test of the agreement and, in case of disagreement, a
following localisation of the cause are known as deformation analysis.
Aforementioned, we facilitate the “elastic” moduli X0 = 1

E0
and its standard deviation σX0

= 1
E2

0
σE0

of the
undamaged beam state as a priori information. From the sensitivity examination of Sec. 5.1.5, Fig. 5.7 shows that
a determination of the elastic modulus from the undamaged state of the beam yields an elasticity value of E0 =
70 GPa with an average standard deviation of σE0

= 400 MPa for up to ten sensors of di�erent types. Therefore,
for this examination, it can be speci�ed that every element of an undamaged beam have the same elastic modulus
lζ apriori = X0 with standard deviation σX0

. The a priori functional model reads

lζ apriori = Xζ respectively Lapriori = IX , (5.24)

where I is the identity matrix. The total system consists of the a priori functional model in Eq. (5.24) and the “a
posteriori” functional model in Eq. (5.23) readsñ

L

Lapriori

ô
︸ ︷︷ ︸

=L̄

=

ï
A
I

ò
︸︷︷︸
=Ā

X respectively L̄ = ĀX . (5.25)

A deformation analysis of the total system is performed in two steps: Firstly, a global test is conducted in order
to determine the signi�cance of change between the two beam states. The null hypothesis H0 assumes that both
states of the beam is equal, see Eq. (3.68). And the corresponding alternative HypothesisHA states that both beam
conditions are signi�cant di�erent. Eq. (3.70) is used as HA . Secondly, in case the beam states has been signi�-
cantly changed, i. e., rejection ofH0 with favour toHA , the one observed unknown elastic modulus in Lapriori that
caused the signi�cant di�erence has to be localised. This is carried out as follows: We start by removing one ob-
served unknown ld apriori in Lapriori from the total system in Eq. (5.25). Then, least squares adjustment is performed
afterwards. It yields a target function in which the dth observed unknown is removed (“\d”) from the total system
in Eq. (5.25)

Ω\d =
(
vTPv

)∣∣∣
\d
. (5.26)

This process has to be repeated one by one for all observed unknowns listed in Lapriori. The smallest target value
from all Ω\d yields the location of the damaged elements. By removing the in�uence of certain damaged element
from the a priori information, the signi�cance change between the two beam state can be weakened. This also
implies that damage occur at this speci�c location. Therefore, the deformation analysis can be used to detect and
localise damage.
Various damage scenarios are introduced in order to examine this approach. Since there are many possibilities to
damage the beam, we restrict ourself to only induce degradation between the beam position 2.77 m and 3.07 m.
Furthermore, we limited ourself to two possible variations: The number of e�ected �nite elements can be increased
from 3 to 30 with step size of 3. The elastic modulus values of the e�ected �nite elements can be decreased from
70 GPa to 15 GPa with step size of 2.5 GPa. Thus, in total we tested 230 possible scenarios, see Fig. 5.9. For each
combination, 1000 Monte Carlo Simulations were performed.
The results of the examination is shown in Figs. 5.10 and 5.11. For a better understanding of the illustrations,
an example is carried out in the following. Eight synthetic measurements at prede�ned positions were generated
based on Tabs. 5.1 and 5.2. Furthermore, we decreased the elastic modulus of twelve elements to 60 GPa, i. e.,
beam damage is induced between 2.77 m and 2.89 m. According to the result in Fig. 5.10, the damage detection
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Figure 5.9: Examination of prede�ned damage scenarios
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Figure 5.10: Damage detection depending on material degradation (change of elastic mod-
ulus) and number of damaged elements
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Figure 5.11: Damage localisation depending on material degradation (change of elastic mod-
ulus) and number of damaged elements

probability is 100 %. However, even we expanded the range to 17 cm, i. e., between 2.50 m and 3.06 m, the result
in Fig. 5.11 shows that out of 1000 MCS, only approximately 500 Monte Carlo Simulations could localise the
damage correctly.
In this examination it was shown that this approach is promising in regard of the damage detection and localisation.
As depicted in Figs. 5.10 and 5.11, the rate of detection is more successful than the localisation rate. Even though, the
success rate of damage localisation can be further improved by enhancing numerically the sensor precision in this
analysis. But for achieving more realistic results, the assumed precision sensors are based on the current available
sensor market.

5.3 A Four-Point Bending Test Apparatus for Measurement- and Model-based
Structural Analysis

To examine the capability to detect and localise damage using the presented Measurement- and Model-based Struc-
tural Analysis, a four-point bending test apparatus for an aluminium beam specimen is built for this purpose. In
contrary to the numerical preliminary examinations, the inclination and strain measurements were omitted for cost
reasons. This is regrettable because, as the results in Figs. 5.4 to 5.6 show, the sensor types o�er di�erent precision
in determining the elastic parameter in dependence of the applied position. While the tilt sensors are suitable for
determining the elastic modulus of the beam near the bearings, the displacement and strain sensors are appropriate
for evaluating the centric region of the beam. Since only the displacement measurements are available, damage in
the region at both ends of the beam may not be detected.

Specimen and experimental set-up

The specimen is a 1.5 m long slender aluminium beam with a square cross-section of 35 mm by 35 mm, see
Fig. 5.12. The beam was designed with small indentations. They ensure that the applied and reactive forces always
act in the same place on the beam specimen. On both ends of the lower side of the beam, there are indentations
for the bearings. The notches are located 1 cm from the outer edge of the beam. The bearings consist of a metal
chamfer strip glued to a wooden structure. An aluminium pro�le was used to connect the bearing to the tripod.

A FOUR-POINT BENDING TEST APPARATUS FOR MEMOS | MEMOS 97



Figure 5.12: A six-point bending test apparatus for an aluminium beam specimen. This test
device was partly enhanced by scrap such as lead battery, dumbbell, plastic box.

The tripod was placed on top of a metal star. To prevent the tripod from slipping, the tripod spider was glued to
the �oor with double-sided adhesive tape. In addition, weights were placed on the stand spider. On the upper side
of the beam there are four indentations for attaching weights. Damage is caused by drilling and sawing the beam.

Measurement system

Photogrammetry is used to measure the deformation of the beam. In order to track the local displacements, in
total 34 round target stickers are applied on the surface of the beam (31 markers) as well as on the tripod (three
markers). The evaluation software has been developed by the Institute of Geodesy and Geoinformation Science at
the Technische Universität Berlin to determine the position of the markers. Accordingly, the camera calibration
and distortion corrections was carried out by them.

Calibration of the reference state

In order to adjust the elastic modulus of an undamaged slender beam, twelve experiments were conducted. The
properties of target position measurements are listed in Tab. 5.3. In each experiment, the deformation behaviour
of the beam is examined in either unloaded or loaded state. For each beam state, nphoto images are taken at short
intervals. The exposure time was also taken into account when determining the intervals. A total of 12 by 300
observations are obtained for each of the 31 markers. In order to reduce the computational e�ort, the median ps of
nphoto coordinate measurements inx- and y-direction is used in each state s as an observation for each marker. The
reason for using the median instead of the mean value is that the distribution of the coordinates has no concentric
form. In addition, the median is comparatively more robust against outliers than the mean value. The displacement
vector computed from the corresponding unloaded and loaded states in y-direction serves as observations for the
calibration and it reads

L =
[
py1 − py0 py3 − py2 py5 − py4 py7 − py6 py9 − py8 py11 − py10

]T
=
[
u0 u1 u2 u3 u4 u5

]T
. (5.27)

The �nite element model for a slender beam was discussed in Sec. 2.6.9 and Secs. 5.1 and 5.2. However, in this case,
some small adaptations have to be made. Firstly, the beam consists of 36 non-equidistant elements respectively
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Table 5.3: For each state s, weights (m1, m2, m3) were attached to the undamaged beam
specimen and nphoto images were taken.

s nphoto m1 [kg] m2 [kg] m3 [kg] designation

0 300 0.0 0.0 0.0 exp_0_0
1 300 0.0 3.565 0.0 exp_1_1
2 300 0.0 0.0 0.0 exp_2_0
3 300 0.0 7.12 0.0 exp_3_1
4 300 0.0 0.0 0.0 exp_4_0
5 300 0.0 10.668 0.0 exp_5_1
6 300 0.0 0.0 0.0 exp_6_0
7 300 0.0 17.825 0.0 exp_7_1
8 300 0.0 0.0 0.0 exp_8_0
9 300 0.649 3.563 1.279 exp_9_1

10 300 0.0 0.0 0.0 exp_10_0
11 300 1.269 7.139 0.660 exp_11_1

37 nodes. The total number of nodes comprises the 31 markers and six force application points. Secondly, it was
observed that the bearings were subsiding. Therefore, a slight extension based on Eq. (5.23) has to be made in
order to take the Dirichlet boundary conditions as additional unknowns into account. The extended version of
Eq. (5.23) reads ï

K CT

C 0

ò
u =

ï
b 0
0 I

ò ï
X
u0

ò
, (5.28)

where K is the singular sti�ness matrix, C is the constraint matrix, b is the load matrix, X is the vector of unknowns
and u0 contains the Dirichlet boundary conditions as unknown parameters. This in turn yields

u =

ï
K CT

C 0

ò−1 ï
b 0
0 I

ò ï
X
u0

ò
=
[
A U

] ïX
u0

ò
, (5.29)

where upon closer examination the design matrix A is the same as in Eq. (5.23) and the matrix U acts as a kind of
linear correction resulting from the non-trivial boundary conditions. The functional model is based on the above
equation.
The variance-covariance matrix of the marker position observations Σpp is determined by the measurements of the
entire experiment. In total, 12 measurement series were carried out on the undamaged beam (see Tab. 5.3) and 43
series of measurements on various damaged beam (see Tab. 5.4). The vectors xMs and yMs of length nphoto contain
the x- respectively y-coordinates of a markerM in state s. The residual vectors vx

M
s and vy

M
s

are computed as

vx
M
s = xMs − x̄Ms and vy

M
s

= yMs − ȳMs , (5.30)

where x̄Ms and ȳMs are the median of xMs respectively yMs . The residual matrix of the marker position for all marker
in all states is assembled as

vp =
[
vx

M
s vy

M
s

]
. (5.31)

The variance-covariance matrix of the marker position observations reads

Σpp =
vT

pvp

412080− 1870
. (5.32)

Since the precision of targets position measurements is considered to be equal for all states and is uncorrelated
between states, the variance-covariance matrix for the displacements reads

ΣLL =
[
I −I

] ïΣpp 0

0 Σpp

ò ï
I
−I

ò
= Σpp + Σpp = 2Σpp . (5.33)
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Therefore, the variance-covariance matrix of the displacement in 2D reads

ΣLL = 2Σpp =

ï
5.047 · 10−5 8.204 · 10−6

8.204 · 10−6 7.233 · 10−5

ò
mm2 . (5.34)

Accordingly, the standard deviation of the displacement in y-direction is

σly = σu = 0.009 mm . (5.35)

Since the functional and stochastic models are available, the elastic modulus of the undamaged beam can be ad-
justed from all twelve experiments respectively six displacement observations. It was speci�ed that all �nite elements
have the sameYoung’s modulus. Therefore, in a �rst step, one elastic parameter and six by two unknownDirich-
let boundary conditions were determined. In a second step, the adjusted Dirichlet boundary conditions are
�xed and at the same time the modulus of elasticity is re-adjusted. The adjusted elastic modulus is

Ê = 67.397 GPa with σ
Ê

= 0.062 GPa (5.36)

and corresponds to that of aluminium. Moreover, the adjusted results are also shown in Fig. 5.13. The bending
lines are shown in top left corner (u1 blue, u2 red, u3 yellow, u4 green, u5 brown, u6 light blue). The measured
displacements are marked as a black star. Correspondingly, the residuals are shown in top right corner. In some
cases, it is advantageous to have all residuals in one representation which is shown in the middle of the �gure. Both
red vertical bars represent the removed outliers. They were detected using standardised residuals which is shown in
bottom of the �gure.

Damage detection and localisation

In the same way as in Sec. 5.2, the presented approach is followed in order to detect and localise damage. However,
to avoid long computation time, in case where the global test failed to reject the null hypothesis, the standardised
residualsNVζ of the observed unknown elastic parameters are evaluated. Aforementioned, the �nite element dis-
cretization of the beam specimen is determined in dependence on the attached markers as well as the application
points of the forces and bearings. Thus, the �nite element model of the beam consists of 36 non-equidistant ele-
ments. Considering the two boundary conditions and a linear interpolation of the elastic parameter of each element,
a total of 39 unknowns result. An incorrect adjustment of the boundary conditions as unknowns can occur as the
elastic parameters of the elements attempt to compensate for the e�ects of yielding bearings. To counter this e�ect,
the following approach is proposed. In a �rst step, all elements share the same elastic modulus. In other words,
one Young’s modulus and two boundary conditions have to be determined from the displacement observations.
Then, in the second step, the adjusted boundary conditions are used as �xed values, while the 36 elastic parameters
are determined from the displacement observations.
The beam was gradually damaged at a �xed position, see Fig. 5.14. The edge-to-edge length of the beam is 1500 mm.
As shown, the damage was caused at approximately 383 mm, measured from the right edge. The beam length in
the �nite element model is 1480 mm which corresponds to the distance between the bearings. Thus, the damage
position is at approximate 1107 mm. The damage has been successively increased, see Tab. 5.4. First, the beam
was drilled through with a radius of 4 mm. Six di�erent load experiments were then carried out (exp4mm). The
damage was not detected in �ve out of six cases. And the localization of the fault failed where an alleged damage
was detected. The borehole is then extended to a radius of 8 mm. Four stress tests were carried out here (exp8mm).
Again, three out of four cases the damage undetectable. The beam was then further damaged. The borehole was
extended to 10 mm radius (exp10mm), then two more holes were drilled with 10 mm radius each (exp3L), and
damage was further increased (exp3L2). Again, no damage was noticeably detected. Then, the beam was sawed
(exp_Y, exp_K). Here, it was observed that if the attached weights were large enough, the damage was detected but
the localisation of the damage failed. Ultimately, the damage was large enough (exp_Z), so that the damage could
be detected and localized repeatedly. The complete process is shown in the Tab. 5.5.
Some examples of the results from the evaluation are discussed. Attention should be paid to the residuals. Fig. 5.15
shows the evaluation of displacement measurements u4. In this case, no damage is detected and the beam was
actually undamaged. In Fig. 5.16, however, the displacement measurements u3 evaluation lead to false damage
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Figure 5.13: De�ection lines of the undamaged beam subjected to various external forces and
the measured displacement from photogrammetry (top left), the corresponding
residuals (top right), the complete residuals in one representation (middle) and
the corresponding standardised residuals (bottom)
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Table 5.4: For each state s, weights (m1,m2,m3) were attached to the damaged beam spec-
imen and nphoto images were taken.

s nphoto m1 [kg] m2 [kg] m3 [kg] designation

12 300 0.0 0.0 0.0 exp4mm_0_0
13 300 0.0 17.819 0.0 exp4mm_1_1
14 294 0.0 0.0 0.0 exp4mm_2_0
15 300 0.0 3.563 0.0 exp4mm_3_1
16 300 0.0 0.0 0.0 exp4mm_4_0
17 300 0.0 7.134 0.0 exp4mm_5_1
18 298 0.0 0.0 0.0 exp4mm_6_0
19 300 0.0 3.564 0.0 exp4mm_7_1
20 300 0.0 0.0 0.0 exp4mm_8_0
21 300 0.0 7.135 0.0 exp4mm_9_1
22 300 0.0 0.0 0.0 exp4mm_10_0
23 289 0.0 17.817 0.0 exp4mm_11_1
24 300 0.0 0.0 0.0 exp8mm_0_0
25 300 0.0 17.82 0.0 exp8mm_1_1
26 150 0.0 0.0 0.0 exp8mm_2_0
27 150 0.0 10.709 0.0 exp8mm_3_1
28 150 0.0 0.0 0.0 exp8mm_4_0
29 150 0.0 3.593 0.0 exp8mm_5_1
30 150 0.0 0.0 0.0 exp8mm_4_0
31 150 0.0 3.593 0.0 exp8mm_6_1
32 150 0.0 0.0 0.0 exp10mm_0_0
33 150 0.0 3.569 0.0 exp10mm_1_1
34 150 0.0 0.0 0.0 exp3L_0_0
35 150 0.0 3.578 0.0 exp3L_1_1
36 150 0.0 0.0 0.0 exp3L2_0_0
37 150 0.0 3.545 0.0 exp3L2_1_1
38 150 0.0 7.121 0.0 exp3L2_2_1
39 150 0.0 10.698 0.0 exp3L2_3_1
40 150 0.0 0.0 0.0 exp_Y_0_0
41 150 0.0 3.546 0.0 exp_Y_1_1
42 150 0.0 7.125 0.0 exp_Y_2_1
43 150 0.0 10.703 0.0 exp_Y_3_1
44 150 0.0 14.248 0.0 exp_Y_4_1
45 150 0.0 0.0 0.0 exp_K_0_0
46 150 0.0 7.114 0.0 exp_K_1_1
47 139 0.0 0.0 0.0 exp_Z_0_0
48 150 0.0 10.695 0.0 exp_Z_1_1
49 150 0.0 0.0 0.0 exp_Z_2_0
50 150 0.0 3.561 0.0 exp_Z_3_1
51 150 0.0 7.128 0.0 exp_Z_4_1
52 150 0.0 10.69 0.0 exp_Z_5_1
53 150 0.0 14.241 0.0 exp_Z_6_1
54 150 0.0 17.808 0.0 exp_Z_7_1
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Table 5.5: The measurement data designation indicates whether the beam is actually dam-
aged or undamaged, the displacement measurements set ui from state s0 to s, the
theoretical reference standard deviationσ0 , the empirical reference standard devi-
ation s0, the test statisticχ2

r , the threshold value for all casesχ2
r,1−α = 44.985 for

redundancy r = 31 and error probability α = 5 %, if it holds p : χ2
r > χ2

r,1−α
then reject H0 in favour of HA , the allegedly damaged �nite element ζ respec-
tively Êζ , the ratio rel = Ê22

Ê
between the damaged and undamaged �nite ele-

ment, Ê22 and Ê, the total attached weightsm

designation ui s s0 σ0 s0 χ2
r p ζ Ê22 rel m

[10−3] [10−3] [GPa] [%] [kg]

exp

0 1 0 5.742 3.416 10.973 false 3.565
1 3 2 5.742 3.775 13.395 false 7.120
2 5 4 5.742 6.585 40.768 false 10.668
3 7 6 5.742 7.465 52.399 true 7 17.825
4 9 8 5.742 4.535 19.337 false 5.491
5 11 10 5.742 3.828 13.778 false 9.068

exp4mm

6 13 12 5.742 5.586 29.331 false 17.819
7 15 14 5.742 3.878 14.136 false 3.563
8 17 16 5.742 4.872 22.316 false 7.134
9 19 18 5.742 3.904 14.328 false 3.564

10 21 20 5.742 5.015 23.645 false 7.135
11 23 22 5.742 7.344 50.713 true 8 17.818

exp8mm

12 25 24 5.742 10.003 94.065 true 10 17.820
13 27 26 5.742 6.883 44.542 false 10.709
14 29 28 5.742 3.778 13.421 false 3.593
15 31 30 5.742 3.345 10.517 false 3.593

exp10mm 16 33 32 5.742 2.732 7.017 false 3.569

exp3L 17 35 34 5.742 6.695 42.145 false 3.578

exp3L2
18 37 36 5.742 3.304 10.261 false 3.545
19 38 36 5.742 5.991 33.744 false 7.121
20 39 36 5.742 8.281 64.466 true 11 10.698

exp_Y

21 41 40 5.742 4.295 17.347 false 3.546
22 42 40 5.742 6.412 38.652 false 7.125
23 43 40 5.742 8.187 63.009 true 11 10.703
24 44 40 5.742 16.087 243.297 true 12 14.248

exp_K 25 46 45 5.742 12.526 147.514 true 15 7.114

exp_Z

26 48 47 5.742 53.867 2727.981 true 22 67.348 99.93 10.695
27 50 49 5.742 17.065 273.799 true 22 67.392 99.99 3.561
28 51 49 5.742 34.300 1106.085 true 22 67.376 99.97 7.128
29 52 49 5.742 53.330 2673.953 true 22 67.348 99.93 10.690
30 53 49 5.742 68.296 4385.298 true 22 67.313 99.88 14.241
31 54 49 5.742 86.981 7112.952 true 22 67.264 99.80 17.808
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Figure 5.14: The position where damage is induced.

detection. In Fig. 5.17, the beam was actually damaged, but no damage was detected for the displacement measure-
ments u21. In Fig. 5.18, the evaluation of the displacement measurements u25 leads to positive damage detection,
but the damage is located incorrectly as seen in Fig. 5.19. Finally, consistent results can be obtained for the analysis
of measurement series u26 to u31. In these cases, the damage to the beam was large enough so that, regardless of the
applied forces, the global test was always positive and the location of the damage was always con�ned in the same
place. For the measurements u27 in Fig. 5.20 approximately three and a half kilograms of weight were attached to
the beam. The localization of the damage pointed to the element node ζ = 22, see Fig. 5.21. For the measurement
series u31 in Fig. 5.22, approximately 18 kilograms were placed on the beam. As seen in Fig. 5.23, the element node
ζ = 22 is also the location of damage.
Aforementioned, the damage position is at approximate 1107 mm. Thus, it a�ects the element node ζ = 24 which
is at 1112 mm. However, according to the performed analysis, the damage is located at the element node ζ = 22
which is at 990 mm. This results in an error estimate of 117 mm (= 1107 mm − 990 mm). In relation to the
total length of 1480 mm, the mislocalization is less than 8 percent, ( 117 mm

1480 mm ≈ 0.079).

Conclusion

By means of a beam bending experiment, the evaluation has shown that the Measurement- and Model-based Struc-
tural Analysis is capable of detecting and locating damage. However, the likelihood of localizing damage is ham-
pered by systematic in�uences. Here, in this particular case, it was observed that ambient light a�ected the pho-
togrammetric system. Ambient light changes, for example, due to the in�uence of clouds. As a result, the pixels
on the images change their contrasts and thus in�uencing the adjusting circular position of the marker. It is also
inevitable that the markers will become soiled over time. This also impacts an apparent change in the marker posi-
tion. Subsiding tripods and bearings was also unhelpful in reducing systematic in�uences during evaluation. The
maximum de�ection was approximately 1.4 mm and due to the subsiding of roughly 0.1 mm, the elastic param-
eter was missing 3 GPa at the end of the adjustment. In order to counteract the subsidence, on the one hand the
�nite element model had to be extended, on the other hand the attached weight should not become too large. Since
the beam was very sti� and it was not possible to attach too much weight, the de�ection became too small. But it
was necessary that the de�ection had to be large enough to overcome the noise and systematic in�uences of pho-
togrammetry. In the end, there was no other choice but to increase the damage to the beam. This made it possible
to achieve consistent damage detection and localisation.
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Figure 5.15: Undamaged beam subjected to external weight of 5.491 kg, adjusted de�ection
line and measured displacement u4 (top left), the corresponding residuals as
line representation (top right), the corresponding residuals as bar representa-
tion (middle), and the standardised residuals of the displacement observations
(bottom); no damage detected

A FOUR-POINT BENDING TEST APPARATUS FOR MEMOS | MEMOS 105



0 500 1000
Position x [mm]

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

D
isp

lac
em

en
tu

[m
m

]

0 500 1000
Position x [mm]

-0.02

-0.01

0.00

0.01

0.02

R
es

id
ua

lv
[m

m
]

0 5 10 15 20 25 30

-0.02

0.00

0.02

R
es

id
ua

lv
[m

m
]

0 5 10 15 20 25 30
0

1

2

3

N
V

[1
]

Figure 5.16: Undamaged beam subjected to external weight of 17.825 kg, adjusted de�ec-
tion line and measured displacement u3 (top left), the corresponding residuals
as line representation (top right), the corresponding residuals as bar representa-
tion (middle), and the standardised residuals of the displacement observations
(bottom); damage detected, false alarm
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Figure 5.17: Damaged beam subjected to external weight of 3.546 kg, adjusted de�ection
line and measured displacement u21 (top left), the corresponding residuals as
line representation (top right), the corresponding residuals as bar representa-
tion (middle), and the standardised residuals of the displacement observations
(bottom); no damage detected
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Figure 5.18: Damaged beam subjected to external weight of 7.114 kg, adjusted de�ection
line and measured displacement u25 (top left), the corresponding residuals as
line representation (top right), the corresponding residuals as bar representa-
tion (middle), and the standardised residuals of the displacement observations
(bottom); damage detected
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Figure 5.19: Damaged beam subjected to external weight of 7.114 kg, displacement mea-
surements u25; elastic moduli of the beam (top), the residuals of the observed
unknowns (middle), the standardised residuals of the observed unknowns (bot-
tom); damage localisation at element node ζ = 15
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Figure 5.20: Damaged beam subjected to external weight of 3.561 kg, adjusted de�ection
line and measured displacement u27 (top left), the corresponding residuals as
line representation (top right), the corresponding residuals as bar representa-
tion (middle), and the standardised residuals of the displacement observations
(bottom); damage detected
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Figure 5.21: Damaged beam subjected to external weight of 3.561 kg, displacement mea-
surements u27; elastic moduli of the beam (top), the residuals of the observed
unknowns (middle), the standardised residuals of the observed unknowns (bot-
tom); damage localisation at element node ζ = 22
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Figure 5.22: Damaged beam subjected to external weight of 17.808 kg, adjusted de�ection
line and measured displacement u31 (top left), the corresponding residuals as
line representation (top right), the corresponding residuals as bar representa-
tion (middle), and the standardised residuals of the displacement observations
(bottom); damage detected
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Figure 5.23: Damaged beam subjected to external weight of 17.808 kg, displacement mea-
surements u31; elastic moduli of the beam (top), the residuals of the observed
unknowns (middle), the standardised residuals of the observed unknowns (bot-
tom); damage localisation at element node ζ = 22
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5.4 Adjustment of Material Parameters from Displacement Field Measurement

The determination of material parameters from displacement �eld measurement is being examined for linear elas-
tic solid. A frequently used approach to compute material constants can be found in many studies. Even though
they presented the approach in many variations, but in the end they are essentially based on the same algorithm:
Parameters are iteratively tuned until the computed results are in accordance with the measurements. The main
drawback of this approach is that mainly commercial software is used that hinders us to investigate its inner eval-
uation process. This leads to the question, how the results from this commercial software can be trusted. On the
contrary to these debatable approaches, a method is presented that inverts the procedure of �nite element method
by using the most general model for a least squares adjustment – the Gauss-Helmert Model.
This section is partly published in Wu et al. (2016).
The integration of �nite element method into the least squares adjustment is further extended for a joint evaluation
of an elastostatic model and displacement �eld measurement. For linear solids which obey the Hooke’s law, the
material parameters determination from measurements is being examined. Aforementioned, many algorithms for
computing material parameters from measurements are given in the literature. But essentially they are the same.
This approach tunes iteratively the parameters until the computed �nite element method results are in accordance
with the measurements, see Fig. 5.1. The main issue is that this algorithm contains inaccessible program parts.
Due to these restrictions, we are hindered to comprehend the inner process of the programs. Consequently, the
question arises as to how we can be sure that the result from this algorithm is reliable. In contrast to this debatable
approach, we follow a rigorous and direct method. Hereby, it is necessary to understand every aspect of the process:
From modelling part by means of continuum mechanics, numerical approximation by �nite element method and
computation of material parameters from measurements by least squares adjustment. The “classical” �nite element
method procedure starts with known material constants and ends up with computed �elds such as displacement or
temperature �eld. We present a method to invert the �nite element method procedure using the most general model
for a least squares adjustment – the Gauss-Helmert Model. From measured displacement �eld, the material
parameters are directly calculated.
The focus is to show the basic concept of this integrated analysis, therefore we conveniently limit the example to a
simpli�ed case. Firstly, we examine a linear elastic isotropic solid. In Voigt’s notation (Zienkiewicz et al. 2013,
p. 23), the sti�ness tensor in matrix notion in Eq. (2.142) reads

C =


λ+ 2µ λ λ

λ+ 2µ λ
λ+ 2µ

µ
µ

symmetrical µ



=


C11 C12 C12

C11 C12

C11

C44

C44

symmetrical C44

 ,

where the Lamé constants are re-expressed as C11 = λ + 2µ, C12 = λ and C44 = µ. Secondly, we consider an
elastostatic case and where the body forces such as gravity force are neglected. Applying the �nite element method
leads to ˆ

Cijkl
∂δui
∂xj

∂uk
∂xl

dV =

ˆ
δuiti dA ⇒

(
C11K11 + C12K12 + C44K44

)
u = f , (5.37)

where K11, K12, K44 are the sti�ness matrices given by the initial geometry of the solid, the load vector f given
by the known applied surface forces ti and u is the measured displacement �eld vector. Lastly, we assume that the
displacement �eld vector u can be completely measured with the same precision for all values. Thus, the associated
weight matrix P is the identity matrix. The sti�ness matrices K11, K12, K44 and the load vector f are considered
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as error-free. The aim is to determine the material constants C11 , C12 and C44 from the observed displacement
�eld u.
In adjustment theory, this is a non-linear adjustment problem and it is known as adjustment with condition equa-

tions. It can be solved with Gauss-Helmert Model after linearisation. The functional relationship based on
Eq. (5.37) reads (

C11K11 + C12K12 + C44K44
)(

u + v
)

= f , (5.38)

where the vector of residuals v is introduced for the observed displacement �eld u. For the condition equations,
we write

Ψ =
(
C11K11 + C12K12 + C44K44

)(
u + v

)
− f = 0 . (5.39)

The design matrices A and B are obtained as follows

B =
∂Ψ

∂v

∣∣∣∣ v=v0

X̂=X̂0

= C0
11K

11 + C0
12K

12 + C0
44K

44 (5.40)

and
A =

∂Ψ

∂X̂

∣∣∣∣ v=v0

X̂=X̂0

=
[
K11

(
u + v0

)
K12

(
u + v0

)
K44

(
u + v0

)]
, (5.41)

where the starting values for the vector of residuals is v0 and for the vector of unknowns is

X̂0 =
[
C0

11 C0
12 C0

44

]
. (5.42)

For the vector of misclosures w, we have

w = −Bv0 + Ψ0 = C11K11u + C12K12u + C44K44u− f . (5.43)

Solving Eq. (3.24) iteratively by means of the above design matrices, A and B, and vector of misclosures w until a
break-o� condition is met, we obtain the wanted unknown material parameters.
An application example may provide some insight to this presented method. Without loss of generality, we dis-
cretised a aluminium solid cube with the side length of 40 mm into 20250 tetrahedrons with 4096 nodes. The
simulated displacement �eld usim is generated by means of Eq. (5.37)

usim =
(
C11K11 + C12K12 + C44K44

)−1
f , (5.44)

where the sti�ness matrices K11, K12 and K44 are determined by the geometrical and discretisation speci�cation
of the cube as well as �xed boundary conditions. The applied force vector f is prede�ned. The elastic parameters
for aluminium are

C11 = 1.025 · 105 MPa , C12 = 5.281 · 104 MPa andC44 = 2.584 · 104 MPa . (5.45)

Then, the simulated displacement �eld usim is used as observed quantities

u = usim , (5.46)

without adding measurement noise for the sake of simplicity. Poor starting values were used for test purposes. The
initial elastic parameters are chosen one order of magnitude smaller than the true values

C0
11 = 1.0 · 104 MPa , C0

12 = 5.0 · 103 MPa , C0
44 = 2.0 · 103 MPa

and the vector of residuals also contains poor initial values

v0 =
[
1 1 · · · 1

]T
,

nevertheless the solution converges stably to the true values as in Eq. (5.45) after 18 iterations.
In this numerical analysis, the determination of material parameters is conducted rigorously with least squares
adjustment in combination with the deterministic elastostatic model. This opens the possibility of assessments for
material constants and their stochastic properties with statistic tests. The characteristic of measurements is that
only a small sample information of the complete body is captured. An important aspect to follow is how to recover
material parameters with “incomplete” information which is often the case with measurements. This examination
is performed with an illustrative example in the next section.
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≈

Figure 5.24: Aluminium pro�le with a geometrical complex inner structure can be substi-
tuted by an approximate model

5.5 Approximate Model for Geometrical Complex Structures

Many engineering structures are nowadays made of composite materials or metal foam. These modern engineering
materials contain very complex inner geometry. To simulate the deformational behaviour of these structures often
requires a high number of discretisation elements. This in turn yields a very large system of linear equations that
are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to �nd an
approach to overcome this obstacle. A numerical method is proposed to �nd an approximate substitute model for
geometrical complex structures.
This section is partly published in Wu et al. (2017).
Aluminium pro�les such as shown in Fig. 5.24 (left) are often used to construct frames for carrying loads. Predic-
tion of the deformational behaviour of a construction built from aluminium pro�les is often computed in �nite
element method. Due to the aluminium pro�les’ complex formed cross section and its size in proportion to the
structure, an extremely high number of discretisation points is required. This leads to various computational prob-
lems and ridiculous requirements such as a very long calculation time as well as an extreme computer memory
demand. Therefore, it is highly desired to �nd a substitute model as shown in Fig. 5.24 (right) that can be easily
discretised and thus needs less memory and computational time.
A cubic segment of the aluminium pro�le is substituted by a solid cubic body. The complex inner geometry as well
as the material properties (Aluminium: E = 66.6 GPa, µ = 0.34) are given. As shown in Fig. 5.24, the aim is to
�nd an approximate model, which indicates very similar deformational behaviour as the aluminium pro�le. The
approximate model is a solid cube and has the dimension as external dimension of the complex pro�le. While the
complex structured aluminium pro�le is made of linear elastic isotropic material (two parameters), the approximate
model has to be made of an anisotropic linear elastic material in order to pay for its geometrical simplicity. In other
words, the challenge is to �nd the material constants of an anisotropic solid cube that deforms approximately in
the same way as the geometrical complex pro�le made of isotropic material. Both bodies are subjected to the same
external loads.
The aim is to �nd the set of elastic parameters for the substitute model that mimics approximately the deforma-
tional behaviour of the original �nite element model. The unknown elastic parameters of the anisotropic linear
elastic material can be estimated by means of least squares adjustment. Via �nite element method the complete
deformation �eld of the original body can be computed, and we are using this �eld to determine the substitute
model’s elastic parameters. But we limit ourselves that we can only observe, respectively only use, the displacement
�eld on the surface. However, a comparison between both models in Figs. 5.25 (a) and 5.25 (b) shows that the sur-
face nodes of them are fundamentally di�erent: Firstly, generally the surface nodes of the substitute model and the
original model do not coincide. But, it is possible to interpolate the vector value within the original �nite element
model for the substitute model. Secondly, some surface nodes that exist on the substitute model do not exist on the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.25: (a) Undeformed substitute model; (b) Undeformed original model; (c) De-
formed original model; (d) Overlay comparison between the undeformed (grey)
and deformed (red transparent) body of the original model; (e) Displacement
�eld; (f) Overlay comparison between the undeformed (grey) and deformed
(red transparent) body of the substitute model

APPROXIMATE MODEL | MEMOS 117



original model (“gaps”). In this case, vector values of these surface nodes are treated as additional unknowns. Same
goes for the nodes within the body of the substitute model. Thus, the yellow dots in Figs. 5.25 (a) and 5.25 (b)
show the surface nodes that exist in the substitute model as well as exist in or are interpolated from the original
�nite element model. When a prede�ned force is applied to the original �nite element model in Fig. 5.25 (b), the
model will be deformed as shown in Fig. 5.25 (c). Accordantly, as shown in Fig. 5.25 (d), the yellow dots in the
undeformed state will move to their new destination in the deformed state that are marked as blue dots. The dis-
placement of the nodes from the undeformed to the deformed state (respectively yellow dots to blue dots) yields
the displacement �eld in Fig. 5.25 (e). The aim is to determine the anisotropic linear elastic parameters of the sub-
stitute model subjected to the same prede�ned force, where the substitute model will yield approximately the same
displacement �eld as the original body; see Fig. 5.25 (f).
Under prede�ned loading set-up, the displacement �eld u of a cubic segment of the aluminium pro�le can be
computed by means of the �nite element method according to Eq. (5.37) as follows

u =
(
C11K11 + C12K12 + C44K44

)−1
f (5.47)

where K is the sti�ness matrix that is determined by the complex inner geometry of the aluminium pro�le segment,
the elastic constantsC11 , C12 andC44 are computed from the Young’s modulus and Poisson’s ratio, E and µ,
for aluminium and f is the load vector which is computed from the given external loads.
Anisotropic linear elastic materials can have up to 21 parameters. Therefore, we obtain a system of linear equations
from the �nite element method for the anisotropic substitute cube as follows(

21∑
k=1

CkKk

)
u? = f , (5.48)

where Ck are the elastic parameters and Kk are the sti�ness matrices of the substitute body. The determination
of the 21 material constants from displacement �eld is a non-linear adjustment problem that can be solved with
Gauss-Helmert Model after linearisation. Aforementioned, non-existing and non-observable nodes have to be
treated as additional unknowns. Therefore, some adaptation has to be made in regard to the vector of misclosures
w and the design matrices A and B in the adjustment.
Eq. (5.47) is used to compute the “observable” displacement �eld of the original aluminium segment. Unfor-
tunately, due to the “empty gaps” in the aluminium pro�le, some displacements are non-existent or are non-
observable in point of view of the approximate model. The required but absent part of displacement �eld becomes
additional “virtual” displacement �eld in the approximate model. In other words, in Eq. (5.48) the “unobservable”
displacement �eld turns into additional unknowns. As a consequence, the vector of unknowns contains the 21 elas-
tic parameters as well as the virtual displacement �eld. Furthermore, we required that the observable displacement
�eld nodes can be obtained only on the surface of the aluminium beam. The virtual displacement nodes as well as
nodes within the aluminium body are considered as unobservable nodes, and they will be estimated based on the
observable displacement nodes.
In order to determine the design matrices A and B, it is necessary to assemble the observed and unobserved sti�ness
matrices, Kk

obs and Kk
virtual, based on corresponding columns in the sti�ness matrices Kk in Eq. (5.48). The design

matrix A consists of two parts
A =

[
AC Au

]
, (5.49)

where
AC =

[
K1u

? K2u
? . . . K21u

?
]

(5.50)

and

Au =

21∑
k=1

CkKk
virtual . (5.51)

The vector u? contains the virtual displacement uvirtual as well as observable displacement plus their corresponding
residuals, uobs + v. The matrix B is computed as

B =

21∑
k=1

CkKk
obs . (5.52)
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The vector of misclosures reads

w = −Bv +

(
21∑
k=1

CkKk

)
u? − f . (5.53)

Anisotropic linear elastic materials can have up to 21 parameters. Due to symmetric considerations of the cubic
segment of the aluminium pro�le, it is possible to reduce the number of elastic parameters to six parameters and
therefore the Hooke’s law in Voigt’s matrix notation becomes

σ11

σ22

σ33

σ23

σ13

σ12

 =


1 5 6

1 6
2

3
3

symmetrical 4




ε11

ε22

ε33

2ε23

2ε13

2ε12

 (5.54)

The above six parameters are determined by the simultaneous evaluation of seven di�erent displacement �elds.
Figs. 5.26 to 5.32 show that these seven displacement �elds were obtained by seven independent experiments. In
Figs. 5.26 to 5.28, three (inverted) compression testings were performed in order to determine how a sample changes
in response to an external load. A compression test is depicted in Flügge (1975, p. 171). A cubic segment of the
original aluminium pro�le is inserted in a rigid die. One surface of the sample is loaded by external force while the
other �ve sample sides are �xed due to the undeformable virtual die. This test set-up causes the induced normal
stress to change solely its associated normal strain. The other strain components vanish. For example, when normal
stress σ11 is induced in Fig. 5.26, only the normal strain ε11 results. Therefore, the elastic modulus 1 in Eq. (5.54)
can be computed as the ratio of normal stress and normal strain 1 =

σ11
ε11

. The same goes for the cases of σ22 and
ε22 for modulus 1 , and σ33 and ε33 for modulus 2 . In this approximation, “inverted” compression tests were
performed. The specimen is pulled instead of compressed. Other than that, the boundary conditions remains the
same. In Figs. 5.29 to 5.31, three simple shear testings were conducted. One expects that, when a sample is sheared,
the surface subjected to the shear force subsides perpendicular to the shear force direction. However, this is not the
case for this test, since this results in a shear strain as well as an unwanted normal strain. A simple shear test prevent
during the shear test the formation of normal strain in a sample through an appropriate set-up, see for example
Fig. 5.31. The simple shear simulation set-up is implemented through suitable boundary conditions. This in turn
enables us to determine the elastic parameters 3 or 4 . Finally, in Fig. 5.32, an uniaxial tensile testing is carried
out. This allows us to compute the elastic modulus 1 , 2 , 5 and 6 . The adjusted elastic parameter yields

C =


12.951 10.575 7.012
10.575 12.951 7.012
7.012 7.012 47.107

10.210
10.210

6.129

 GPa . (5.55)

In order to verify the computed six parameters in Eq. (5.55) for the substitute model, in Fig. 5.33 a comparison
were made between an original aluminium pro�le beam (grey) and a beam made out of the anisotropic material
(red, transparent) with the adjusted parameters. Both beams have the same length, either l = 1520 mm (Fig. 5.34)
or l = 700 mm (Fig. 5.35). Three di�erent forces are applied: F = 50 N (blue), F = 500 N (yellow) and F =
5000 N (red). Three di�erent test set-ups are used: Three-point bending test, one and double-sided cantilever test.
Thus, in total 18 tests were performed. In each test, the maximum de�ection values of the substitute max |usubs|
and the original beam max |uorig| are evaluated by means of the relative error that is de�ned as follows

erel =
max |usubs| −max |uorig|

max |uorig|
100 % . (5.56)

The relative error erel are shown in Figs. 5.34 and 5.35. More detailed results are listed in Tab. 5.6. One can observe
that for all cases, except for one case, the relative errors erel are less than one percent. The relative error for that
one case is around 2.7 %. Since a linear elastostatic model was implemented, the di�erent amount of the forces
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σ11
 =


1

1

symmetrical




ε11


Figure 5.26: An “inverted” compression test in x1-axis direction on the surface normal in
x1-axis direction; top left A normal stress σ11 is applied to the original sample;
top right A normal stress σ11 is applied to the substitute sample; bottom left An
overlay comparison between the original and substitute samples in a deformed
state; bottom right Parameter 1 and also due to symmetry considerations pa-
rameter 1 can be determined in this test
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σ22
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1

symmetrical




ε22



Figure 5.27: An “inverted” compression test in x2-axis direction on the surface normal in
x2-axis direction; top left A normal stress σ22 is applied to the original sample;
top right A normal stress σ22 is applied to the substitute sample; bottom left An
overlay comparison between the original and substitute samples in a deformed
state; bottom right Parameter 1 and also due to symmetry considerations pa-
rameter 1 can be determined in this test
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σ33
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2

symmetrical




ε33



Figure 5.28: An “inverted” compression test in x3-axis direction on the surface normal in
x3-axis direction; top left A normal stress σ33 is applied to the original sample;
top right A normal stress σ33 is applied to the substitute sample; bottom left An
overlay comparison between the original and substitute samples in a deformed
state; bottom right Parameter 2 can be determined in this test
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σ23

 =

 3
3

symmetrical



2ε23



Figure 5.29: A simple shear test in x2-axis direction on the surface normal in x3-axis direc-
tion; top left A shear stress σ23 is applied to the original sample; top right A
shear stress σ23 is applied to the substitute sample; bottom left An overlay com-
parison between the original and substitute samples in a deformed state; bottom

right Parameter 3 and also due to symmetry considerations parameter 3 can
be determined in this test
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Figure 5.30: A simple shear test in x1-axis direction on the surface normal in x3-axis direc-
tion; top left A shear stress σ13 is applied to the original sample; top right A
shear stress σ13 is applied to the substitute sample; bottom left An overlay com-
parison between the original and substitute samples in a deformed state; bottom

right Parameter 3 and also due to symmetry considerations parameter 3 can
be determined in this test
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Figure 5.31: A simple shear test in x1-axis direction on the surface normal in x2-axis direc-
tion; top left A shear stress σ12 is applied to the original sample; top right A
shear stress σ12 is applied to the substitute sample; bottom left An overlay com-
parison between the original and substitute samples in a deformed state; bottom

right Parameter 4 can be determined in this test
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Figure 5.32: An uniaxial tensile test in x1-axis direction on the surface normal in x1-axis
direction; top left A normal stressσ11 is applied to the original sample; top right

A normal stress σ11 is applied to the substitute sample; bottom left An overlay
comparison between the original and substitute samples in a deformed state;
bottom right Parameters 1 , 2 , 5 and 6 can be determined in this test
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Figure 5.33: For the veri�cation of the adjusted elastic parameters, a comparison between a
original aluminium beam with a substitute beam is being made

erel = 0.33 %

erel = 0.25 %

erel = 0.57 %

Figure 5.34: Overlay comparison between original aluminium (grey) beam and substitute
beam (red, transparent); length of the beams: 1520 mm; Three test set-ups: top

Three-point bending test, middle one sided cantilever test and bottom double
sided cantilever test; Three di�erent forces: 50 N (blue), 500 N (yellow) and
5000 N (red)
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erel = 0.04 %

erel = 2.63 %

erel = 0.81 %

Figure 5.35: Overlay comparison between original aluminium (grey) beam and substitute
beam (red, transparent); length of the beams: 700 mm; Three test set-ups: top

Three-point bending test, middle one sided cantilever test and bottom double
sided cantilever test; Three di�erent forces: 50 N (blue), 500 N (yellow) and
5000 N (red)
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Table 5.6: Results of original and substitute beams that are subjected to three-point bending
tests (TP), double sided cantilever tests (DC) and single sided cantilever tests (SC)
and the total computational time (TCT)

beam length l = 1520 mm
Forces

[
N
]

max |usubs|
[
mm

]
max |uorig|

[
mm

]
erel
[
%
]

50 0.3894 0.3881 0.3319
TP 500 3.894 3.881 0.3319

5000 38.94 38.81 0.3319

50 0.098 26 0.098 51 0.2524
DC 500 0.9826 0.9851 0.2524

5000 9.826 9.851 0.2524

50 6.181 6.146 0.5667
SC 500 61.81 61.46 0.5667

5000 618.1 614.6 0.5667

TCT
[
s
]

75 11246

beam length l = 700 mm

50 0.039 09 0.039 07 0.0438
TP 500 0.3909 0.3907 0.0438

5000 3.909 3.907 0.0438

50 0.010 29 0.010 57 2.6324
DC 500 0.1029 0.1057 2.6324

5000 1.029 1.057 2.6324

50 0.606 41 0.6015 0.8137
SC 500 6.0641 6.015 0.8137

5000 60.641 60.15 0.8137

TCT
[
s
]

67 3878
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that are applied to the beams are irrelevant for relative error. The linearity elasticity assured that the ratio of the ap-
plied force and the displacement is always constant, e. g., double amount of applied forces yields double amount of
displacement. This homogenisation process accelerates the computational time and cuts down the memory usage
immensely. In the presented case, �nite element simulations for the original beam took roughly in total 4 hours and
12 minutes (11 246 s + 3878 s), while for substitute beam it was just in total two-and-a-half minutes (75 s + 67 s).
Nevertheless, “all that glitters is not gold”, there are some disadvantages accompanying this approach. Firstly, a lot of
considerations has to be made in order to �gure out the “right” experiments. In our case, it was seven independent
experiments: three compression testings, three shear testings and one uniaxial tensile testing. When other think-
able testing set-ups are added to the evaluation, they distorted the set of parameters and led to wrong veri�cation
results. For example, in a simple shear test, applying a shear stress σ32 on to the original aluminium beam segment
leads to a deformation that is di�erent from when applying a shear stress σ23 . In point of view of the substitute
model the original body in general behaves non-linear. It is therefore impossible to mimic non-linear behaviour in
linear elastostatic model even all 21 constants are used in order to �t this task. In order to induce approximately
linear behaviour, one has to apply as little as possible amount of forces during the experiments. Furthermore, test
set-ups that induce non-linear behaviour has to be discarded. Secondly, the �nite element mesh composition of the
substitute body is able to in�uence the adjustment of the parameters, especially the elastic parameter 5 and 6 .
When the mesh formation is changed, we obtained another set of parameter. Thus, the adjusted set of elastic pa-
rameters are only valid for a speci�c pre-de�ned mesh arrangement. Lastly, the Gauss-Helmert Model is more
general than the Gauss-Markov Model. But, from a numerical point of view the Gauss-Markov Model is
more numerically stable than Gauss-Helmert Model when it comes to dealing with inverting large matrices. It
is therefore desirable to reformulate this class of problem that is suitable for an Gauss-Markov Model approach.

5.6 A Small Scale Test Bridge for Measurement- and Model-based Structural
Analysis

In order to further examine the capability of Measurement- and Model-based Structural Analysis to detect and
locate damage on complex structures, a small-scale truss bridge model (1520 mm× 720 mm× 720 mm) made of
aluminium pro�les is built as a test specimen for this purpose. This test bridge is named Variationsbrücke. As the
two numerical preliminary examinations in Secs. 5.4 and 5.5 show, the determination of the material parameters
of linear-elastic bodies is naturally related to the displacement �eld measurement by the elastostatic equation in
Eq. (2.162). To what extent the inclination and strain �eld measurements can be considered in the elastostatic
equation is tricky to answer. First, it would be necessary to determine how inclination and strain variables are
expressed in the elastostatic equation as in Sec. 5.1.2. Then, a special non-linear �nite element has to be developed
based on this identi�cation similar to Sec. 2.6.9. Afterwards, it can be answered to what extent which advantages can
be achieved with hybrid measurements. However, this would go beyond the scope of this dissertation. Therefore,
only the displacement �eld measurement with linear �nite element is considered, since the emphasis lies in the
complex geometric modelling.

Specimen structure and experimental set-up

The truss frame of the test bridge is made of aluminium pro�les with a sophisticated design of the cross-sectional
area. In comparison, with solid pro�les, only a fraction of the material is needed to produce the pro�les, while
their bending resistance decreases slightly. The truss frame of the test bridge is made of aluminium pro�les with a
sophisticated design of the cross-sectional area. In comparison, with solid pro�les, only a fraction of the material is
needed to produce the pro�les, while their bending resistance decreases slightly. The pro�les are built into a truss
frame by connecting them by means of fastening sets made of steel. The bridge model is mounted on four steel
bearings which each of them consist of a cylinder arranged between two plates. Fixed bearings are made by holding
onto one end of the bridge. The bridge is subjected by an external load by placing a heavy object beneath it. At
the same time, measurements can be conducted below the bridge. Therefore, the bridge specimen is elevated by
attaching it on a pedestal with four columns. Damages can be induced by loosening the fastening pieces. The set-up
is shown in Fig. 5.36.
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Figure 5.36: The bridge specimen on the pedestal, approximately 2147.6 N was applied
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Available measurement equipments

Terrestrial laser scanning records the distances and measurement orientations of any points of an area or of an object
of interest from a �xed observation point. The observable space is a truncated sphere. The recorded data contains
the coordinates of the measured points which form a so-called point cloud. Point clouds of di�erent observation
points can be assembled using a certain algorithm to reconstruct the discrete surface information of an object of
interest. Then, this data can be processed further for a solid modelling. From here, a �nite element discretisation
can be carried out for the reference state of an object of interest.
Photogrammetry is applied to take measurements from photographs. The absolute positions of surface markers on
an object of interest in each photo are determined. The evaluation of photos taken from two di�erent states results
the displacement of markers, i.e. the position change of a speci�c marker between the reference and current states.
Load cell is used to measure force. When a force is applied on a load cell, certain structures within the cell deform.
And this deformation is captured by strain gauges. The force can in turn be determined by the calibrated strain
gauges.

Capturing the reference state geometry

A real object and its computer aided design model can di�er in size. Therefore, it is desired to measure the object
rather than to trust the technical drawings. One possibility to capture the dimension of an object of interest is
using terrestrial laser scanning to scan it. The main problem is how to convert the data points from laser scanner in
such a way that it can be used in a �nite element simulation. Although success is not always guaranteed, a practical
procedure is presented as follows. After the scans are performed and the point clouds of the object are registered, a
discrete surface representation of the object in form as a point cloud is obtained. From this data points, a computer
aided design model is generated. And this solid model can be further processed in a �nite element mesh generator.
The aluminium bridge specimen had to be pre-treated with an anti-re�ective spray in order to be scanned by the
terrestrial laser scanner. In addition, the grooves of the aluminium pro�les had to be covered with a thin �lm
because the laser beam is obstructed when it reaches the areas around the grooves. At ten di�erent positions, the
laser scans were performed. The post-processing of the point clouds was done by commercial software. It converts
the complete scan of the object into a �le format which could be further processed by an automatic tetrahedral
mesh generator for the �nite element evaluation.
Because the scan quality was unfortunately unsatisfactory for further processing, (see Fig. 5.37), it was decided to
use the computer aided design model instead. They are several reasons why the terrestrial laser scanning lost its
scan quality. Terrestrial laser scanning is usually applied for objects that are much larger than the bridge model
specimen. In addition, it was scanned in a con�ned space in close proximity to the specimen object, since large
room was not available at that time. Another aspect was that due to the cramped room not all areas of the bridge
could be recorded. The missing areas was arti�cially �xed in a post-processing.

Measurement of displacements

Round target stickers applied on surface of the bridge specimen were used to track local displacements. By means
of a commercial photogrammetry system (GOM Correlate), many photos of the bridge specimen can be taken
from di�erent viewing points and angles. And in a post-processing procedure, the coordinates of the markers were
determined. The positions of the marker points were determined for di�erent load and damage states of the bridge
model.
The experiment was conducted for �ve di�erent states: (1) Undamaged and unloaded, (2) undamaged and loaded,
(3) damage level 1 and loaded, (4) damage level 2 and loaded, (5) damage level 3 and loaded. The di�erent stages are
shown in Fig. 5.37. In the �rst damage level three screws are loosened as indicated by the red spheres. In the second
stage, three additional screws are released in addition to the �rst one (red and yellow spheres). In damage level 3, in
total ten screws are removed. (red, yellow and blue spheres). In Fig. 5.38 shows the �rst damage stage as an example.
The displacements of the bridge specimen are determined with respect to the undamaged and unloaded state (1).
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Figure 5.37: Terrestrial laser scanning of the bridge model, the coloured spheres indicate
where screws are loosened to cause damage, damage level 1: red spheres, damage
level 2: red and yellow spheres, damage level 3: red, yellow and blue spheres

VARIATIONSBRÜCKE | MEMOS 133



Figure 5.38: Screws are released to induce arti�cial damages to the bridge model

In addition, marker stickers were also applied to the pedestal. Since the targets are �xed on the pedestal during the
entire experiment, the standard deviation of the displacement observations can be determined from this.

Calibration of the reference state

The approximate substitute model from Sec. 5.5 is used to describe the aluminium pro�les of the bridge specimen
since a �nite element discretisation of the complete body would be infeasible. These aluminium pro�les are longi-
tudinal objects with a very detailed cross section. This requires a �nite element discretisation with impracticable
element quantity. This in turn requires large amounts of computer memory that is not available. The connection
parts are not further examined and are therefore ignored. Consequently, the bridge specimen is fully characterised
by six material constants. The aluminium pro�les are designed in such a way that the main load is distributed best
along the x1-axis direction. This is also noticeable that material constant 2 has the largest value in comparison
with other material parameters. For that reason, it is assumed that changes or damages in the bridge specimen has
the great impact on parameter 2 . As mentioned above, truss-like or bridge-like structures is designed in such a
way that they are subjected to speci�c loads. Other loading modes never occur in practice or are di�cult realise,
thus it is impossible to determine the remaining material constants 1 , 3 , 4 , 5 , 6 . These parameters are con-
sidered to be �xed and are given in Eq. (5.55). For the reference state of the bridge model, the six unknown material
parameters and their stochastic properties are determined from the displacements from state (1) to (2).

Direction dependence of the stiffness tensor

As shown in Fig. 5.39, the bridge specimen consists of aluminium pro�les with �ve di�erent types of spatial orien-
tation. The various kinds of pro�les are marked accordingly with 1000, 2000, 3000, 4000, 5000. The steel plates
are marked with 0. Thus, the sti�ness tensor has to be rotated accordantly for each type of the aluminium pro�les.
Rotation matrices for the x1-, x2- and x3-axis reads

R1 =

1 0 0
0 cos

(
θ1

)
sin
(
θ1

)
0 − sin

(
θ1

)
cos
(
θ1

)
 , (5.57)
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Figure 5.39: The sti�ness tensor has to be rotated in accordance to the di�erent spatial ori-
entations of the pro�les

R2 =

cos
(
θ2

)
0 − sin

(
θ2

)
0 1 0

sin
(
θ2

)
0 cos

(
θ2

)
 , (5.58)

R3 =

 cos
(
θ3

)
sin
(
θ3

)
0

− sin
(
θ3

)
cos
(
θ3

)
0

0 0 1

 . (5.59)

It should be noted that the above rotation matrices are used to rotate the observer coordinate system inherent in
the sti�ness tensor. Accordingly, attention must be paid to the signs before sinus functions. Consequently, the
rotation matrix is

R = R3R2R1 . (5.60)

The sti�ness tensor in Eq. (2.136) can be rotated by the above rotational matrix in index notation as follows

C?mnop = RmiRnjRokRplCijkl , (5.61)

whereC?mnop is the rotated sti�ness in accordance with the rotational matrix R respectivelyRxy in index notation.
The di�erent spatial orientations for aluminium pro�les are listed in Tab. 5.7.

The opportunity to use the GAUSS-MARKOV model instead of the GAUSS-HELMERT model

Under prede�ned experiment conditions described above, the system of normal equations from the �nite element
model reads (

K0 + 2 K
)
u = f , (5.62)

where the sti�ness matrix K0 contains the �xed parameters 1 , 3 to 6 and their related geometrical considera-
tions as well as the aspects of the steel plates of the bridge specimen, the sti�ness matrix K comprises geometrical
information related to the unknown parameter 2 , the displacement vector u, Neumann boundary conditions
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Table 5.7: Di�erent spatial orientations of the aluminium pro�le

pro�le type θ1 θ2 θ3

1000 0° 90° 0°
2000 0° 0° 0°
3000 0° 90° 66.37°
4000 0° 90° −66.37°
5000 0° 90° 90°

leads to the load vector f and the Dirichlet boundary conditions are incorporated by removing the correspond-
ing rows and column of above equation. From here on it is possible to follow the approach presented in Sec. 5.5,
where the Gauss-Helmert model of the adjustment calculation is used to determine the unknown parameters.
However, for this particular case, using this approach the computational e�ort becomes too high, therefore the
Gauss-Markov model is more desired. The functional model based on above equation reads

L + v =
(
K0 + 2 K

)−1
f , (5.63)

where L contains the displacement observations. The equation above corresponds to Eq. (3.33). The design matrix
base on Eq. (3.35) for this case is

A =
∂

∂ 2
(
K0 + 2 K

)−1
∣∣∣∣

2 = 2 0
f = −

(
K0 + 2 0

K
)−1

K
(
K0 + 2 0

K
)−1

f , (5.64)

where 2 0 is the starting value for the parameter 2 and the derivative of inverse matrix with respect to 2 is
applied.

Determination of the variance-covariance matrix of the displacements

Since it can be assumed that the 125 target makers on the pedestal columns are �xed during the entire experiment,
the variance-covariance matrix of the displacements is determined by them. Their spatial positions were determined
by a commercial photogrammetric system and can be stored for example as a matrix for further processing. A matrix
ps with the dimension of 125 by 3 contains the spatial positions of all target stickers in all three axis for each state
s, e. g.,

p1 =



356.688 32.306 779.825
356.993 7.190 779.857
370.367 32.055 779.856

...
...

...
1520.121 7.184 377.294
1520.270 6.914 631.517
1520.272 6.496 598.470


mm . (5.65)

The matrix p̄ containing the mean values of ps for �ve states reads

p̄ =

5∑
s=1

ps

5
. (5.66)

The matrix of residuals can be computed as

vp =


p1 − p̄
p2 − p̄
p3 − p̄
p4 − p̄
p5 − p̄

 . (5.67)
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The variance-covariance matrix of the position measurements of the targets is

Σpp =
vT

pvp

500
. (5.68)

Some remarks are in order: Five states and 125 target points yield in total 625 observations per axis. And in Eq. (5.66)
125 mean values were calculated for each axis. Therefore, we have “625−125 = 500” in the denominator of above
equation. The displacements of two di�erent states, here in particular from (1) to (2), serve as observations and their
vector is computed as

L = p2 − p1 . (5.69)

Since the precision of targets position measurements is considered to be the same for all states and is uncorrelated
between states, as in Eq. (5.33) the variance-covariance matrix for the displacements is ΣLL = 2Σpp. The con-
sideration of all target markers on the pedestal that are �xed for all states yields the following covariance-covariance
matrix for the displacement measurements

ΣLL =

 2.827 · 10−4 −8.700 · 10−6 −3.825 · 10−5

−8.700 · 10−6 8.491 · 10−5 3.003 · 10−6

−3.825 · 10−5 3.002 · 10−6 1.630 · 10−4

mm2 . (5.70)

The square root of the diagonal components of above matrix leads to the standard deviation of the displacement
measurement in x1-, x2- and x3-axis direction

σlx1
= 0.017 mm , σlx2

= 0.01 mm , σlx3
= 0.013 mm . (5.71)

The precision of this photogrammetric system applied for this particular case is roughly estimated to be one hun-
dredth of a millimetre.

The standardised observation for removing observations with a low signal-to-noise ratio

The bridge-like design of the specimen is constructed in such a way that it hardly deforms at maximal available load.
Consequently, if displacement measurements are carried out at certain areas where no deformation actually occurs,
only measuring noise is obtained. Observations with a low signal-to-noise ratio must be removed because they can
distort the adjustment result and destabilize the numerical calculation. Normally the t-test can be used to eliminate
the observations with a low signal-to-noise ratio. It is examined how the observations di�er signi�cantly from the
expected value 0. In this case, the null and alternative hypothesis read

H0 : E
(
li
)

= 0 andHA : E
(
li
)
6= 0 (5.72)

The corresponding test statics is

Tt =

∣∣li∣∣
σli

. (5.73)

The threshold for a one sample t-test for degrees of freedom r = 1 and error probability of α = 5 % is

tr,1−α = 6.313 . (5.74)

On the bridge model 531 markers were applied. Thus, in total there were 1593 displacement measurements. By
using the t-test, approximately 72 % of all measurements are eliminated. The numerical preliminary examinations
have shown that the removal of the observations by the t-test might be too stringent. Some measurements with a low
signal-to-noise ratio can still have su�cient information substance. Therefore, a lower threshold value is desired and
an alternative way is suggested. To distinguish from the t-test, a measure that is similar to the standardised residual
in Eq. (3.77) is introduced: The standardised observation is de�ned as

NLi =

∣∣li∣∣
σli

. (5.75)

Any measurement li in the vector of observations L are kept if its standardised observation NLi > 4. In other
words, only measurements that are clearly larger than their standard deviation are considered to adjust the un-
knowns. This eliminates approximately 57 % of the measurements.
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Compensation for the imperfections of the functional model

Now that both the functional model and the stochastic model are available, the unknown parameter 2 can be cali-
brated from the relevant displacement measurements for the undamaged case respectively from state (1) to (2). The
starting value 2 0

= 47.107 GPa as in Eq. (5.55). In the �rst run to adjust the parameter, it turned out that the
stochastic model was chosen too optimistically. The empirical reference standard deviation is much larger than the
theoretical reference standard deviation. This does not imply that the measurement precision of the photogram-
metry is poorer than expected. Instead, this indicates that signi�cant physical e�ects were unconsidered by the
functional model. This imperfection leads to systematic errors and thus to a seemingly incorrect stochastic model.
Since there are no more resources available, it is impossible to produce an alternative test bridge or to improve the
current experiment design. An extension of the physical model to take account of the systematic e�ects such as
residual stress is also unsuitable, since this leads to additional material parameters that are di�cult to determine
with the available measurement equipments. A rather questionable approach is needed to overcome this obstacle:
The stochastic model is forced to compensate for the imperfections of the functional model. To achieve this, the
variance component estimation (Niemeier 2008, pp. 318–325) is applied. However, the ability to interpret the re-
sults might be lost. The practical approach of the variance component estimation is to adapt the precision of each
observation group in such a way that the ratio of the empirical reference standard deviation s0 and the theoretical
reference standard deviation σ0 becomes 1. This a�ects two aspects: Firstly, here, the stochastic model was chosen
too optimistic. After applying the variance component estimation, the stochastic model will become pessimistic.
Therefore, the sensitivity of the global test is in�uenced by this and thus the ability to detect damage is reduced.
Secondly, the variances of the residuals σ2

vi
might be also a�ected and there might be a possibility that the standard-

ised residuals yield incorrect results for localising damage. However, it can be shown that for this special case, the
standardised residuals are scaled by a constant factor. This aspect will be discussed later.

The variance component estimation

The variance component estimation for one observation group is performed as follows. In the �rst step, the theo-
retical reference variance is decomposed by two factors

σ2
0 = ᾰ2

0σ̆
2
0 , (5.76)

where both ᾰ2
0 and σ̆2

0 are usually set to one. But, in this special case, σ̆2
0 = 4 is assumed. As shown in the small

auxiliary calculation above, a multiplying factor does not a�ect the adjusted results. From a numerical point of
view, the value 4 for σ̆2

0 is the smallest number that leads to computational stability. Then the adjustment is carried
out as usual. The empirical reference variance s2

0 obtained is then used for ᾰ2
0 for the second iteration. It means that

ᾰ2
0 = s2

0 and σ̆2
0 = 1, then adjustment is carried out iteratively until the empirical reference variance s2

0 becomes
one. In this case, the variance component estimation was done in one iteration and ᾰ2

0 converges roughly to 106.9.
The covariance-covariance matrix for the displacement measurements in Eq. (5.70) is multiplied by ᾰ2

0. This yields
the compensated variance-covariance matrix of the observations

ΣLL =

 3.022 · 10−2 −9.301 · 10−4 −4.089 · 10−3

−9.301 · 10−4 9.077 · 10−3 3.210 · 10−4

−4.089 · 10−3 3.210 · 10−4 1.742 · 10−2

mm2 . (5.77)

The square root of the diagonal components of above matrix leads to the standard deviation of the displacement
measurement in x1-, x2- and x3-axis direction

σlx1
= 0.174 mm , σlx2

= 0.095 mm , σlx3
= 0.132 mm . (5.78)

The calibration results

The �nal calibration process can be followed in Tab. 5.8. The adjusted parameter reads

2̂ = 29.4 GPa with σ ˆ2
= 0.848 GPa . (5.79)
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Table 5.8: Calibration process of the reference state

Iteration Ω [1] ∆X̂ [MPa] 2 [MPa]

0 47 107.0
1 3.257 038 942 56 −27 020.097 972 1 20 086.902 027 9
2 3.265 676 997 55 6285.492 226 57 26 372.394 254 5
3 3.248 321 912 14 2694.703 956 08 29 067.098 210 6
4 3.247 204 759 65 337.128 837 339 29 404.227 047 9
5 3.247 193 446 82 8.920 068 169 87 29 413.147 116 1
6 3.247 193 456 55 0.136 655 264 999 29 413.283 771 4
7 3.247 193 456 82 0.002 053 851 658 2 29 413.285 825 2
8 3.247 193 456 77 3.061 910 297 83 · 10−5 29 413.285 855 8
9 3.247 193 456 84 8.387 416 078 · 10−7 29 413.285 856 7

The resulting parameter is smaller than expected and the reasons for this can only be assumed. Aluminium pro�les
of the specimen are impossible to be produced perfectly. During the assembly we noticed that some parts were too
short. Consequently, it was unavoidable to cause residual stresses in the specimen during assembling. Furthermore,
the fastening sets were ignored in the modelling and also holes has to be drilled for them. This could also weaken
the structure. The substitute model is just an approximation of the original specimen structure. That also caused
errors in the evaluation. Especially, material parameters that are indeterminable from the current experimental
set-up have to be �xed. How precise the measuring systems worked can also be questioned here. In addition, the
condition number of the sti�ness matrix K0 + 2 K in Eq. (5.64) is about 108 to 109. This indicates that the
problem is inherently poorly conditioned. Consequently, a deviating Jacobian matrix results in the design matrix
A in Eq. (5.64). This would explain why the target function value Ω in Tab. 5.8 increased in the iteration step
from 1 to 2 and from 6 to 7. However, the deviation of the Jacobian matrix can be regarded as marginal since ∆X̂
still converges stably towards numerical zero. In addition, this in�uence is negligible in so far as it in�uences the
adjustment result from the eighth digit onwards. Nevertheless, this calibrated result in Eq. (5.79) is used as observed
unknowns and their standard deviations for damage detection and localization in the following section.

Damage detection and localisation

To detect and localise damage, the approach presented in Sec. 5.2 is followed. But, some modi�cations must be
made due to practical considerations. The bridge specimen’s approximate �nite element model consists of 545495
elements. To reduce the computational time, an alternative �nite element model is grouped into 598 chunks. For
each of these chunks ζ , a separate set of unknown material parameters 2ζ is introduced into the adjustment as
observed unknowns. The individual parameters can grouped as a vector of unknowns

X =
î

21 22 · · · 2ζ · · · 2598
óT

. (5.80)

We obtain a system of linear equations from the �nite element method as followsÅ
K0 +

598∑
ζ=1

2ζ
Kζ
ã

u = f . (5.81)

For the same reason as before, the Gauss-Markov model of the adjustment calculation is applied to determine
the unknowns. The functional model based on above equation reads

L + v =

Å
K0 +

598∑
ζ=1

2ζ
Kζ
ã−1

f . (5.82)

The Eq. (5.25) in Sec. 5.2 applied for this non-linear case readsñ
Li
Lapriori

ô
−
ï
u0

X0

ò
=

ï
A
I

ò
︸︷︷︸
=Ā

∆X̂ . (5.83)
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Li is the vector of displacement observations for the set i. The di�erent sets of displacement measurements are: L1

from state (1) to (2), L2 from state (1) to (3), L3 from state (1) to (4) and L4 from state (1) to (5). The computed
displacements u0 can be obtained by using Eq. (5.81)

u0 =

Å
K0 +

598∑
ζ=1

2ζ 0
Kζ
ã−1

f , (5.84)

where 2ζ 0 is the starting value for the parameter 2ζ and the associating sti�ness matrices Kζ . As previously, the
derivative of inverse matrix with respect to the unknowns 2ζ is applied to determine the design matrix

A =
[

A1 A2 · · · Aζ · · · A598
]
, (5.85)

where

Aζ =
∂

∂ 2ζ

Å
K0 +

598∑
ζ=1

2ζ
Kζ
ã−1∣∣∣∣

2ζ
= 2ζ 0

f

= −
Å

K0 +

598∑
ζ=1

2ζ 0
Kζ
ã−1

Kζ
Å

K0 +

598∑
ζ=1

2ζ 0
Kζ
ã−1

f . (5.86)

The vector of observed unknowns is based on Eq. (5.79) and reads

Lapriori = 29.4 GPa 1 , (5.87)

where 1 =
[
1 1 · · · 1

]T is the vector of ones. The stochastic model is premised on the results of Eq. (5.71) as
well as Eq. (5.79) and it becomes possible to state the variance-covariance matrix of the observations as

ΣLL =

ï
ΣLL 0

0 ΣXX

ò
= σ2

0

ñ
Q

LL
0

0 Q
XX

ô
= σ2

0QLL , (5.88)

where the variance-covariance matrix ΣLL is assembled from Eq. (5.77) and

ΣXX =
(
0.848 GPa

)2
I . (5.89)

is based on Eq. (5.79). Aforementioned, σ̆2
0 = 4 was assumed and ᾰ2

0 = 106.9 is obtained by variance component
estimation for single observation group. For this special case, the standardised residuals are scaled by a constant
factor ᾰ2

0. This can be shown by means of the propagation of ΣLL in Eq. (5.88) to variance-covariance matrix of
the residuals Σvv in Eq. (3.61). For Gauss-Markov model, Eq. (3.61) can be rewritten as

Qvv = A
(
−ATQ−1

LLA
)−1

AT + QLL = QLL −A
(
ATQ−1

LLA
)−1

AT . (5.90)

Inserting ĀT =
[
A I

]
from Eq. (5.83) and QLL from Eq. (5.88) into above equation, the following expression

is obtained

Qvv =

ñ
−A(Q−1

XX
+ ATQ−1

LL
A)−1AT + Q

LL
−A(Q−1

XX
+ ATQ−1

LL
A)−1

−(Q−1
XX

+ ATQ−1
LL

A)−1AT −(Q−1
XX

+ ATQ−1
LL

A)−1 + Q
XX

ô
. (5.91)

The focus is on the lower right corner of the above matrix, from which the standardized residuals of the parameter
NVζ are calculated. It reads

Qζζ
vv = Q

XX
− (Q−1

XX
+ ATQ−1

LL
A)−1 . (5.92)

The second addend of the above expression can be rewritten by means of the inverse of a sum of matrices (Hender-
son and Searle 1981) as

(Q−1
XX

+ ATQ−1
LL

A)−1 = Q
XX
−Q

XX
AT
(
Q

LL
+ AQ

XX
AT
)−1

AQ
XX

. (5.93)
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Table 5.9: Global test for di�erent displacement measurements sets Li, the theoretical refer-
ence standard deviation σ0 , the empirical reference standard deviation s0, the to-
tal redundancy r, test statisticχ2

r , threshold valueχ2
r,1−α, if it holdsχ2

r > χ2
r,1−α

then rejectH0 in favour ofHA

Li σ0 s0 r χ2
r χ2

r,1−α χ2
r > χ2

r,1−α

1 442.8 220.9 688 171.2 750.1 False
2 442.8 557.9 1007 1598.4 1081.9 True
3 442.8 1049.6 1095 6151.7 1173.1 True
4 442.8 3116.6 1233 61 073.0 1315.8 True

The lower right corner of Qvv yields

Qζζ
vv = Q

XX
AT
(
Q

LL
+ AQ

XX
AT
)−1

AQ
XX

. (5.94)

From numerical examination of this case, it holds Q
LL
� AQ

XX
AT, therefore

Qζζ
vv ≈ Q

XX
ATQ−1

LL
AQ

XX
. (5.95)

It can be seen that if Q
LL

is multiplied by a factor ᾰ2
0, Q

LL
→ ᾰ2

0QLL
, the lower right corner of Qvv becomes

Qζζ
vv ≈ Q

XX
AT
(
ᾰ2

0QLL

)−1
AQ

XX
=

1

ᾰ2
0

Q
XX

ATQ−1
LL

AQ
XX

. (5.96)

In conclusion, the standardised residuals of the observed unknowns NVζ are scaled by the factor ᾰ2
0. Although

the compensated variance-covariance matrix of the observations in Eq. (5.77) is enlarged by more than 100 times
in comparison to Eq. (5.70), it can be expected that qualitatively the same standardised residuals of the observed
unknownsNVζ are obtained. Please note that this is a special case.
Now that all necessary quantities are available for computing Eq. (5.83), after the adjustment it is possible to per-
form a global test respectively χ2-test as in Sec. 3.3.2 to detect damage. In all displacements sets, the error proba-
bility α of 5 % is chosen as proposed by many. This choice has no explanation, see (Neitzel 2004, pp. 92–93)
for further details. An overview of all χ2-tests is listed in Tab. 5.9. The displacement measurements L1 is used to
calibrate the reference state �nite element model in Eq. (5.79) and as expected if L1 is reused to adjust the elastic
parameters in Eq. (5.25) and subsequently performing the global test, we fail to reject the null hypothesis that no
damage has occurred. Furthermore, when the other displacement measurements L2, L3 and L4 are evaluated, we
reject the null hypothesis in favour of the alternative hypothesis. This indicates that damages are detected for the
corresponding cases. The theoretical reference standard deviation σ0 = 442.8 in Tab. 5.9 is determined by taking
the mean value of the trace of the variance-covariance matrix ΣLL in Eq. (5.88).
To localise the damage, it was proposed in Sec. 5.2 to evaluate the target function Ω\ζ as in Eq. (5.26) by releas-
ing consecutively the unknown parameters ζ from their associating observed unknowns. The smallest value of all
Ω\ζ reveals the position of damage. Since this method is an iterative approach, it requires an unfeasible computa-
tional time. Therefore, instead following the proposed approach, the standardised residuals NVζ of the observed
unknowns are evaluated for the cases where the null hypothesis is rejected in the global test (L2, L3 and L4). The
observed unknowns Lapriori in Eq. (5.87) contain elastic parameters of the bridge in the reference state. After the
adjustment, the corresponding vector of residuals is obtained that in a way corrects the parameters of the reference
state with respect to the current observations. And the largest standardised residual will lead to the location of
the damage. Even though this approach is an approximation in comparison to the rigorous proposed method in
Sec. 5.2, experience has shown that this simpli�ed procedure corresponds well with the rigorous counterpart.
The standardised residuals of the observed unknowns NVζ for the displacement measurements L2 are shown in
Fig. 5.40. For this case, the three screws were loosened to induce arti�cial damage to the bridge specimen, see
Fig. 5.37 (red spheres) and Fig. 5.38. One would expect that a concentrated accumulation of high standardised
residuals values would gather around the damaged area. Unfortunately, that is not the case. But, it can be ob-
served in Fig. 5.40 (top) that high standardised residuals are distributed on the side, where the screws are released,
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Figure 5.40: The standardised residuals of the observed unknownsNVζ for 598 chunks of
the bridge specimen’s �nite element model by evaluation of the displacement
measurements L2, two di�erent perspectives of the bridge specimen (top and
bottom)
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Figure 5.41: The standardised residuals of the observed unknownsNVζ by evaluation of the
displacement measurements L2 including the observed displacement vectors
magni�ed 500 times, a pro�le is highlighted in green that indicates an additional
displacement �eld induced by residual stress
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compared to the opposite side in Fig. 5.40 (bottom). To further examine the results, it is helpful to include the dis-
placement measurements L2. In Fig. 5.41, the displacement vectors are also plotted with 500 times magni�cation.
In addition, a vertical pro�le is highlighted in green. One can observe that the displacements of this pro�le is facing
towards the positive y-direction. If the bridge specimen is under external load, it is expected that the displacements
are more likely to point in the opposite direction. This behaviour could be explained that the residual stress is in-
volved. It was actually the case that during the experiment three screws had to be loosened and a slight upward
movement of the specimen was observed at that moment. The released residual stress causes an additional displace-
ment �eld that overlaps with the load induced displacements. However, the total displacement �elds are evaluated
to adjust the unknown parameters. Therefore, the adjusted parameters can be distorted by the residual stress �eld.
The damage becomes di�cult to locate due to systematic in�uences that has not been taken into account by the
physical model.
In Fig. 5.42, the standardised residuals based on the evaluation of the displacement measurements L3 is shown.
This time three screws on each side are removed (in total six), see Fig. 5.37 (red and yellow spheres). One notices
that the residual stress on one side of the frame is much larger than the other. It might be explained that some pro�les
were actually shorter than ordered on that side. The connection parts have to be modi�ed and these pro�les were
put in place with a lot of strength. Comparing this evaluation of the displacement measurements L3 with L2, the
standardised residuals indicate how the residual stress redistributes an additional displacement �eld that is induced
by releasing the screws.
The displacements measurements L4 capture the bridge specimen, where all ten screws are removed, see Fig. 5.37
(red, yellow and blue spheres). Since on one side more screws are loosened (red and blue spheres) than on the
other side (yellow spheres), it is to be expected that one side with the most of the removed screws has the largest
displacement �eld. This in turn yields large standardises residuals. Fig. 5.43 shows the results of the evaluation of
the displacement measurements L4 and it can be observed on this particular side in Fig. 5.43 (top) of the specimen
that a distribution of large standardised residuals can be found.

Conclusion – Variationsbrücke

The ability of the presented Measurement- and Model-based Structural Analysis to detect and localise damage of
a real complex structured bridge specimen is examined. The experiments were carried out under non-laboratory
conditions. In particular, due to time pressure, the bridge model was produced with undesirable properties such
as residual stress. To make this more di�cult, the bridge model consists of pro�les with complex geometric inner
structures. This geometrical property leads to di�culties in �nite element meshing. Even if the meshing worked,
it would lead to numerical instability. To overcome this di�culty, a substitute model was applied. Even this al-
ternative model works to some extent, this was not derived rigorously from continuum mechanics. Furthermore,
the intrinsic reason why a bridge is designed as it is, is because the bridge shape provides the greatest resistance to
deformation. But, at the same time, the deformation must be large enough to be measured by the sensors. Getting
these two requirements together was one of the di�culties. The maximum displacement for L1 is 0.145 mm, for
L2 0.495 mm, for L3 0.957 mm and for L4 4.478 mm, while the precision of photogrammetry is one hundredth
of a millimetre. Since the available laboratory space was small, it was impossible to design the length of the bridge
much longer. Nevertheless, this experiment shows that the presented anlysis is at some extent in accordance with
the results of the preliminary numerical examinations in Sec. 5.2. The preliminary examinations show that the
probability of detecting damage is higher than localising damage with �xed measuring precision, see Fig. 5.10 and
Fig. 5.11. This also applies for this experiment. The global test is very well suited to determine whether there is any
damage at all. The localization of individual damages with the help of the local test is in general possible, but in
practice it is made di�cult by the in�uence of systematic errors (e.g. non-modelled properties of the mechanical
model). However, MeMoS can indicate the area of damage, even if it is not able to pinpoint the exact location of
the damage in the examinations carried out. Therefore, it is desirable to conduct another experiment while keeping
the systematic in�uences as small as possible.
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Figure 5.42: The standardised residuals of the observed unknownsNVζ by evaluation of the
displacement measurements L3 including the observed displacement vectors
magni�ed 500 times
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Figure 5.43: The standardised residuals of the observed unknownsNVζ by evaluation of the
displacement measurements L4 including the observed displacement vectors
magni�ed 500 times
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6 Epilogue

If I’m not back in �ve minutes. . . just wait longer.

– Ace Ventura, Ace Ventura: Pet Detective (1994)

Concluding Review

The idea that led to Measurement- and Model-based Structural Analysis was the collaboration of two di�erent
engineering sciences, geodesy and continuum physics. It was recognized that there are knowledge gaps on both
sides and that the gap could be partially closed by the knowledge of the other �eld of expertise. This led to a lively
cooperation with the realisation that although both disciplines dealt with di�erent tasks with di�erent topics, they
solve problems using essentially identical methods. It is the Variational Calculus that connects both disciplines.
The calculus of variations, founded almost 300 years ago by Lagrange and Euler, in�uenced both disciplines
in many ways. In mechanics, it led to the development of the principle of virtual displacements, of the Lagrangian

mechanics, of the finite element method and many more. As can be read in Dunnington et al. (2004, p. 11 �),
Gauss was in�uenced by the work of Lagrange and Euler. It should not be proven that he has taken up the
calculus of variations for the development of the least squares method. Nevertheless, based on the generalization
of the adjustment calculation by Helmert (1872, p. 173 �), it can be seen that his correlates are nothing more
than the Lagrange multiplier. Because of this compatibility, it can be seen how inherently di�erent methods are
related. There are many other methods that have been developed for di�erent reasons, motivations and out of
di�erent perspectives independent of the calculus of variations. Nevertheless, the calculus of variations can help to
understand both old and newly developed methods. And it is precisely this understanding that leads to appreciation
and ultimately to new possibilities and to maturity.
By means of two experiments, the Measurement- and Model-based Structural Analysis shows its promising capabil-
ity for damage detection and localization. This capability was achieved thanks to the cooperation of two di�erent
�elds of expertise. A physical model of the samples is expressed in the form of di�erential equations and boundary
conditions using continuum mechanics. In this way, the material parameters could be considered as a possible pa-
rameter for the assessment of damage. Furthermore, displacements and their derivatives, inclinations and strains
were identi�ed as possible measurands. And it could also be decided which quantity could be seen as �xed values.
Using the �nite element method, the di�erential equations and boundary conditions could be transformed into a
system of linear equations on which the functional model of the least squares method can be based. The adjust-
ment calculation o�ers the possibility to determine unknown parameters from the observations and to evaluate
the results stochastically, whereby statistical global and local tests could be used to detect and localize damage.

Scientific and Technological Contribution

By examining the variational calculus in the work, it became clear that the �nite element method and the least
squares method is one single method. The only di�erence is that both methods solve di�erent problems. The �-
nite element method solves special types of partial di�erential equations with corresponding boundary conditions,
while the least squares method solves overdetermined systems of equations. In Boljen (1993), this insight was
already given, but the presentation was incomplete. In the interest of completion, it was shown in this work that
the same problem can be formulated in three variants (strong, weak and extremal formulation) and that they can
be reformulated among one another. It was also shown that both methods lead to a weak solution of their corre-
sponding problem. The term “weak” refers to the approximate respectively most probable property of the solution.

EPILOGUE 147



Weak solutions are unable to solve the strongly formulated problem. The exact or analytical solution of the partial
di�erential is generally unknown, but applying �nite element method, an approximate solution can be obtained.
Similarly, there is in general no solution for an overdetermined system of equations, but the most probable solution
is obtained by using the least squares method. It should also be noted that the viewpoint of variational calculus is
by no means limited to the two methods. The di�erent solution methods emerge when the following questions are
determined:

• Is it a continuous or discrete problem?

• What is the formulation of the problem and, if necessary, the conditions?

• Which trial function is used for the solution?

• Which test function is used for the solution?

The study of the variational calculus led to the realisation that many methods are principally the same. Old, new
and unknown methods from other disciplines may be more accessible if the variational calculus is used as some sort
of “template”. In this work, we have shown how the �nite element method and the least squares method �t into
the scheme of the variational calculus. This insight is intended to expand the adjustment theory and is thus the
scienti�c contribution to the geodetic community.
For the development of this Measurement- and Model-based Structural Analysis, the �nite element method and the
method of least squares is combined. Equations of system of linear equations from the �nite element method were
selected depending on the observations, and they are inserted directly into the least squares method. As a result, the
�nite element method calculation procedure is inverted. For arbitrarily shaped bodies, the elastic parameters can
be determined directly from the measured displacement �elds. This also o�ers the ability to compute directly the
stochastic properties of the material constants. In addition, this has the advantage that the linear elasticity can be
exploited to calculate the gradient of the target function or the Jacobian directly. While the other approach with the
outer loop around the �nite element method, the individual columns of the Jacobian must be costly calculated from
the objective function. The following aspects could be examined with Measurement- and Model-based Structural
Analysis:

• Determination of an optimal measurement set-ups. The test structures “Variationsbrücke” and an aluminium
beam are characterised using elastostatic equations or the Euler-Bernoulli beam theory. From this, the
elastic parameters are considered suitable for damage evaluation. Also, the displacement �elds respectively
the displacement, inclination and strain have been found to be possible measurands. The capability to di-
rectly calculate the stochastic properties of the material constants allows a numerical preliminary examina-
tion of displacement, inclination and strain sensors. It was shown how the precision of the sensors, the
placement of the sensors and the number of sensors impacted the parameters. The optimal measurement
set-ups can then be determined from these results.

• Finding a geometrically simple substitute model for a geometric complex body. If the complexity of the body
exceeds a certain limit, a �nite element meshing of the body is no longer possible due to the memory limit.
By using Measurement- and Model-based Structural Analysis, a substitute model can be determined. The
geometric simpler substitute model deforms like the geometrically more complex original under the same
conditions. A representative part of the geometrically complex body made of isotropic linear elastic material
is cut out. Then, the deformation behaviour of this part is calculated by the �nite element method. The
resulting displacement �eld is then evaluated. Using the Measurement- and Model-based Structural Analysis,
the elastic parameters of the substitute part made of anisotropic linear elastic material are determined. This
allows a substitute model to be derived.

• Detect and localise damage. The undamaged state of the test structure is de�ned as reference state. In this
state, the test structure consists of �nite elements that share the same elastic parameter. This is then used
as observed unknowns to allow a comparison between the reference and a current state of the test structure.
The χ2-test respectively the global test jointly evaluates all residuals of the observations to detect signi�cant
changes between the states of the test structure. If this is the case, damage is detected. Only then the indi-
vidual �nite elements are then checked iteratively by releasing them individually and evaluating the target
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function. The minimum value of all possible target function values indicates the position of the damaged
elements. In order to circumvent the iterative calculation, the standardised residuals can be used to estimate
the location of the damaged elements.

Two experiments were carried out to validate the ability of Measurement- and Model-based Structural Analysis to
detect and locate damage. In both experiments, photogrammetry was used to determine the displacement �eld.
The following test structures were built:

• “Variationsbrücke”. A truss consisting of special construction pro�les made of aluminium. Arti�cial dam-
ages were caused by loosening screws. Damage could be detected, but the localization was unsuccessful. It
is suspected that due to production errors, the pro�les did not meet the required length. Residual stress
was inadvertently generated during assembly. The standardized residuals in the results probably indicate the
released residual stresses.

• Aluminium beam. Because the results of the previous experiment were unsatisfactory, a bending test exper-
iment was carried out. In spite of subsiding bearings, damage could be detected and localized to a certain
extent. Still, it was unable to pinpoint the absolute correct location, but it indicates approximately the dam-
aged area in consistent manner. It should be noted that the residuals of the displacement observations shows
more precise position of the damage than the standardised residuals.

As noticed, due to the time constraints some big leaps had to be made in the development of Measurement- and
Model-based Structural Analysis. Although at that time, the theoretical works were un�nished, it was already in-
sisted on planning the experiment. Due to the great pressure from the boss and from a very eager colleague, it was
decided to build the aluminium truss as a test structure. The result was anything but exhilarating. Nonetheless,
this has led to some new techniques and insights such as the substitute model, the introduction of standardised
observations to circumvent the determination of the optimal measurement set-up for photogrammetry, the lin-
ear relationship between the standardized residuals and the cofactor matrix of observations, and consequently this
has led to the second experiment and to the extension of sti�ness matrix to determine the boundary condition
as unknowns. The Measurement- and Model-based Structural Analysis is by de�nition a diagnostic method suit-
able for monitoring tasks. But, the experiments show that Measurement- and Model-based Structural Analysis is
still premature. Nevertheless, the establishment of the fundamentals of Measurement and Model-based Structural
Analysis is the technological contribution for structural health monitoring.

Improvement Suggestions and Further Research

The weak link of Measurement- and Model-based Structural Analysis is the physical modelling of the specimen
and its external in�uences. Either the condition can be adapted so that a simpli�ed physical model is su�cient
to describe the specimen, or the physical model must be enhanced. For the latter, the following points might of
interest for a geodetic re-evaluation:

• Kinematics. A reassessment of the motion description from a geodesist’s point of view could bring new
insights, see Sec. 2.2.

• Material laws. The more complex the physical processes, the more complex the material equations are. To-
gether with geodesists, the material equations can be examined for their numerical and stochastic properties.
It is then possible to formulate new equations, whereby their parameters can be determined with numeric
stability.

• Vibrations. The vibration behaviour of a test bridge is to be examined. It is helpful to use the elastodynamic
equations derived in Sec. 2.5.1 as well as their numerical treatment with �nite element method in Sec. 2.6.

• Hybrid measurements. Although di�erent types of observation were also treated theoretically, see Sec. 5.1,
only the displacement in the experimental examinations could be measured in this dissertation. In further
work, hybrid measurements should be studied.

EPILOGUE 149



As already mentioned at the beginning, the procedure of the variational calculus could be a universal entry point
for many methods. It could be lucrative for adjustment theory to examine the following points:

• Examination of known methods. Fourier-Analysis and Laplace transform, for example, are well-known.
It can be shown that with a small amount of preliminary information, such as problem description and
solution approach, it is possible to reach the known methods from the variational calculus procedure.

• Examination of di�erent solution representations. The solution function is often expressed as an in�nite
series. The most popular representation is the power series. By omitting some summands, other types of
in�nite series are formed. The relationship between di�erent series should be examined, for example, the
Laurent series and Chebyshev polynomials. The development of new series should also be studied, for
example, Wavelets or neuronal networks.

• Examination of popular methods. From completely unfamiliar procedures of popular applications, it should
be shown that they follow the same scheme. By means of simple examples, it should show how to encrypt
and decrypt a number, how to adjust the parameters of a neuronal networks by Gauss-Markov model,
etc.
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A Source Codes

The source codes for Sec. 2.6 are given in this appendix.

Listing A.1: Generating the sti�ness matrix Kζ

from numpy import array, zeros
from numpy.linalg import det, inv

def K_sub(C, nu_1, nu_2, nu_3, nu_4):
""" C is the stiffness tensor and

nu_1, nu_2, nu_3, nu_4 are the vertex coordinates of the tetrahedron
"""

""" For details see Eq. (2.223) """
M = array([
[ 1., 1., 1., 1.],
[nu_1[0], nu_2[0], nu_3[0], nu_4[0]],
[nu_1[1], nu_2[1], nu_3[1], nu_4[1]],
[nu_1[2], nu_2[2], nu_3[2], nu_4[2]]
])

""" The volume of a tetrahedron """
V_sub = 1./6. * abs(det(M))

""" The matrix on the right-hand side in Eq. (2.223) contains the derivatives """
Partial_Xi = inv(M)[:,1:]

""" Initiation of the stiffness matrix """
k_sub = zeros((4,4,3,3))

""" Computation of the stiffness matrix, for details see Eq. (2.226) """
for m in xrange(4):

for n in xrange(4):
for i in xrange(3):

for j in xrange(3):
for k in xrange(3):

for l in xrange(3):
k_sub[m,n,i,k] += C[i,j,k,l] * Partial_Xi[m,j] *

Partial_Xi[n,l]

return k_sub * V_sub

Listing A.2: Computing the mass matrix Mζ

from numpy import array, zeros, concatenate
from numpy.linalg import det
from scipy.special import p_roots

def M_sub(function, nu_1, nu_2, nu_3, nu_4, Gauss_Points):
""" function is a user defined function,

nu_1, nu_2, nu_3, nu_4 are the vertex coordinates of the tetrahedron and
Gauss_Points are the number of sample points

"""

""" The volume of a tetrahedron """
V_sub = abs((1./6.) * det(array([nu_1-nu_4, nu_2-nu_4, nu_3-nu_4]).T))
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""" SciPy generates the sample points and weights for Gauss-Legendre quadrature
"""

n, w = p_roots(Gauss_Points)

""" Initiation of the dummy matrix """
m = zeros((4,4))

""" Computation of the mass matrix, for details see Eq. (2.233) """
for p in xrange(Gauss_Points):

for q in xrange(Gauss_Points):
for r in xrange(Gauss_Points):

a_3 = 1.
xi_nu_3 = (1./2.)*(n[p]+1.)

a_2 = 1. - xi_nu_3
xi_nu_2 = (1./2.)*(a_2*n[q]+a_2)

a_1 = 1. - xi_nu_3 - xi_nu_2
xi_nu_1 = (1./2.)*(a_1*n[r]+a_1)

xi_nu_4 = 1. - xi_nu_3 - xi_nu_2 - xi_nu_1

x = xi_nu_1 * nu_1 + xi_nu_2 * nu_2 + xi_nu_3 * nu_3 + xi_nu_4 * nu_4

f = function(x)

m[0,0] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_1 * xi_nu_1 * f
m[0,1] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_1 * xi_nu_2 * f
m[0,2] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_1 * xi_nu_3 * f
m[0,3] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_1 * xi_nu_4 * f

m[1,0] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_2 * xi_nu_1 * f
m[1,1] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_2 * xi_nu_2 * f
m[1,2] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_2 * xi_nu_3 * f
m[1,3] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_2 * xi_nu_4 * f

m[2,0] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_3 * xi_nu_1 * f
m[2,1] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_3 * xi_nu_2 * f
m[2,2] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_3 * xi_nu_3 * f
m[2,3] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_3 * xi_nu_4 * f

m[3,0] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_4 * xi_nu_1 * f
m[3,1] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_4 * xi_nu_2 * f
m[3,2] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_4 * xi_nu_3 * f
m[3,3] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_4 * xi_nu_4 * f

line1 = array([m[0,0], 0., 0., m[0,1], 0., 0., m[0,2], 0., 0., m[0,3]])
line2 = array([m[1,0], 0., 0., m[1,1], 0., 0., m[1,2], 0., 0., m[1,3]])
line3 = array([m[2,0], 0., 0., m[2,1], 0., 0., m[2,2], 0., 0., m[2,3]])
line4 = array([m[3,0], 0., 0., m[3,1], 0., 0., m[3,2], 0., 0., m[3,3]])

tri_z = array([0., 0., 0.])

m_sub = concatenate((
line1, tri_z, line1, tri_z, line1, \
line2, tri_z, line2, tri_z, line2, \
line3, tri_z, line3, tri_z, line3, \
line4, tri_z, line4, tri_z, line4, \
)).reshape((12,12))

return m_sub * (3./4.) * V_sub

Listing A.3: Computing the load vector for volume force integral fζ T
fi

from numpy import array, zeros
from numpy.linalg import det
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from scipy.special import p_roots

def f_v_sub(function, nu_1, nu_2, nu_3, nu_4, Gauss_Points):
""" function is a user defined function,

nu_1, nu_2, nu_3, nu_4 are the vertex coordinates of the tetrahedron and
Gauss_Points are the number of sample points

"""

""" The volume of a tetrahedron """
V_sub = abs((1./6.) * det(array([nu_1-nu_4, nu_2-nu_4, nu_3-nu_4]).T))

""" SciPy generates the sample points and weights for Gauss-Legendre quadrature
"""

n, w = p_roots(Gauss_Points)

""" Initiation of the volume load vector """
f_sub = zeros(12)

""" Computation of the volume load vector, for details see Eq. (2.239) """
for p in xrange(Gauss_Points):

for q in xrange(Gauss_Points):
for r in xrange(Gauss_Points):

a_3 = 1.
xi_nu_3 = (1./2.)*(n[p]+1.)

a_2 = 1. - xi_nu_3
xi_nu_2 = (1./2.)*(a_2*n[q]+a_2)

a_1 = 1. - xi_nu_3 - xi_nu_2
xi_nu_1 = (1./2.)*(a_1*n[r]+a_1)

xi_nu_4 = 1. - xi_nu_3 - xi_nu_2 - xi_nu_1

x = xi_nu_1 * nu_1 + xi_nu_2 * nu_2 + xi_nu_3 * nu_3 + xi_nu_4 * nu_4

f = function(x)

f_sub[0:3] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_1 * f
f_sub[3:6] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_2 * f
f_sub[6:9] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_3 * f
f_sub[9:12] += a_3*w[p] * a_2*w[q] * a_1*w[r] * xi_nu_4 * f

return f_sub * (3./4.) * V_sub

Listing A.4: Computing the load vector for surface force integral fζ T
ti

from numpy import cross, zeros
from numpy.linalg import norm
from scipy.special import p_roots

def f_s_sub(function, nu_1, nu_2, nu_3, Gauss_Points):
""" function is a user defined function,

nu_1, nu_2, nu_3 are the vertex coordinates of the triangle and
Gauss_Points are the number of sample points

"""

""" The area of a triangle """
A_sub = (1./2.) * norm(cross(nu_1-nu_3, nu_2-nu_3))

""" SciPy generates the sample points and weights for Gauss-Legendre quadrature
"""

n, w = p_roots(Gauss_Points)

""" Initiation of the surface load vector """
f_sub = zeros(9)
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""" Computation of the volume load vector, for details see Eq. (2.246) """
for p in xrange(Gauss_Points):

for q in xrange(Gauss_Points):
a_2 = 1.
xi_nu_2 = (1./2.) * (n[p]+1.)

a_1 = 1. - xi_nu_2
xi_nu_1 = (1./2.) * (a_1*n[q]+a_1)

xi_nu_3 = 1. - xi_nu_2 - xi_nu_1

x = xi_nu_1 * nu_1 + xi_nu_2 * nu_2 + xi_nu_3 * nu_3

f = function(x)

f_sub[0:3] += a_2*w[p] * a_1*w[q] * xi_nu_1 * f
f_sub[3:6] += a_2*w[p] * a_1*w[q] * xi_nu_2 * f
f_sub[6:9] += a_2*w[p] * a_1*w[q] * xi_nu_3 * f

return f_sub * (1./2.) * A_sub
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