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Abstract

This research studies issues related to sequential analysis of time series arising
from stochastic simulation of dynamic systems. The focus of this research is on de-
sign, implementation and performance assessment of confidence interval procedures
based on batching methods, that should be run under an environment of multiple
replications in parallel.

Investigation of properties of steady-state estimators continues being one of the
most challenging enterprises. Necessity of design of efficient procedures for con-
structing confidence intervals of steady-state mean values is emphasized. When
carefully implemented, the classical method of Nonoverlapping Batch Means (NOBM)
works acceptably for simulation of queuing systems moderately loaded. However,
for high-loaded system (which is frequently found in practice), the simulation prac-
titioner needs more sophisticated methods to cop with strong serial correlation
of observations arising from steady-state stochastic simulation, but care must be
taken, so that the simulation run time should not be lengthen, and user attention
should not focused more on the method of analysis than in the simulation itself.

The main challenge of procedures based on batching is that of determining the
batch size. Analytical results are in general asymptotic, and oriented to a single-
processor environment.

Nevertheless, one can take advantage of the availability of more (independent)
processing power, and try to compensate an imprecise choice of batch size with
higher degree of parallelization, by applying the approach of multiple replications
in parallel, which gives us a chance of producing accurate results, especially when
simulation on a single machine would be unrealistically long (so it would need to
be stopped early, with inaccurate results).

This commitment is only possible when the procedure is robust and presents good
statistical properties. Some sequential procedures were proposed, and carefully
implemented aiming to fulfill both requirements. Empirical investigation showed
us that they can give an attractive speedup, and at the same time to guarantee the
accuracy of the final results. Statistical properties of the mean value estimators
in such distributed environment are presented. As a case study, we investigated
a wireless communication performance issue, in order to emphasize the feasibility
of applying the proposed procedures here investigated to such complex dynamic
system.
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1
Introduction

1.1 Motivation

Nowadays we witness a great challenge in the computing area. As the communi-
cation technologies advance and computer processing power increases, new kind of
applications arise, leading to an increasing demand for mobile services, providing
user with access to electronic data and services ”anytime and anywhere”. Success
in the development of complex wireless networks is partially related to the ability
of predicting their performance already in the design phase and subsequent phases
of the project as well. Terms like higher reliability, better coverage and services,
higher capacity and mobile management, to say a few, are important issues to be
included in the analysis.

Dynamic increasing of the complexity of such networks and the growth of the num-
ber of users require efficient tools for analyzing and improving their performance.
Analytical methods of analysis are neither general nor detailed enough, and in
order to get tractability, they need sometimes to make assumptions that require
experimental validation. On the other hand, simulation, formerly known as a last
resort method [83], is a flexible and powerful tool adequate for prototyping such
complex systems.

To factors that have additionally stimulated the use of simulation, one could in-
clude: faster processors, larger-memory machines and trends in hardware develop-
ments (e.g. massively parallel processors, and clusters of distributed workstations).

Straightforward simulation of complex systems, e.g. communication networks,
takes frequently a amount of computer time to obtain statistically valid estimates,
despite increasing processing speed of modern computers. Ayani et al. [10] refer to
a simulation experiment of a high speed local area network where the main objective
was to estimate the setup delay and blocking probability of the control subnetwork;
the execution time corresponding to one second of real time took around two hours.
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Fitzek et al. [43] investigated the influence of jitter on the quality of service offered
by a wireless link, and reported a simulation time as long as 180 hours using just
9 wireless terminals, though simulation has been executed in a fast workstation
dedicated to that purpose.

Such phenomenon results from the statistical nature of the simulation experiments.
Most simulation models contain stochastic input variables, and, thereby, stochastic
output variables, the last ones being used for estimating the characteristics of the
performance parameters of the simulated system. In order to obtain an accurate
estimate with known (small) statistical error, it is necessary to collect and analyze
sequentially a substantial number of simulation output data, and this can require
a long simulation run.

Efficient statistical tools can be used to impact the running time of an algorithm
by choosing an estimator with substantially lower computational demand. It would
be a mistake to think that more processing power can replace the necessity for such
tools, since the associated pitfalls can be magnified as well [56].

The need for effective statistical methods to analyze output data from discrete event
simulation has concerned simulation users as early as 1963 [23]. Development of
accurate methods of statistical analysis of simulation output data has attracted a
considerable scientific interest and effort.

Even though, credibility of stochastic simulation has been questioned when applied
to practical problems, mainly due to the application of not robust methodology for
simulation projects, which should comprise at least :

1. The correct definition of the problem.

2. An accurate design of the conceptual model.

3. The formulation of inputs, assumptions, and processes definition.

4. Build of a valid and verified model.

5. Design of experiments.

6. Proper analysis of the output data.

Pawlikowski et al. [100] make a deep analysis on pitfalls of simulation output
analysis, and suggest guidelines to overcome this fact.

Most of the statistical methods to analyze simulation output data were originally
conceived for a single processor environment, and little is known about their be-
havior under a parallel computing environment. This is precisely the main focus of
this thesis.
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1.2 Research problem and hypothesis issues

We are concerned with stochastic simulation of processes that can be modeled as
covariance stationary, that is, the first and second moments are finite over time
and the covariance does not vary with absolute point of time t, but only with the
distance between observations [74]. Some critical problems found in this scenario
are :

1. Minimization of bias of steady-state estimates caused by initial conditions

2. Estimation of the sample variance of a performance measure and its confidence
interval in the case of correlated observations in equilibrium state;

3. Stopping the simulation within a desired precision.

Except for regenerative simulations, data collected during transient phase are not
representative of the actual average values of the parameters being simulated, and
cannot be used to produce good estimates of steady-state parameters. The deter-
mination of its length is a challenging investigation, but it is out of the scope of this
thesis. We assume that extension of the transient phase is conveniently detected
by means of tests of stationarity such as those proposed in [118] [121], otherwise all
results would be biased. Results obtained using a single processor confirmed the
theory and, therefore, our assumption. Moreover, we assume that the stochastic
process being analyzed converges to an equilibrium state.

Theoretically, steady-state occurs in the limit when the run length increases to in-
finity, but for practical purposes there is some point beyond which one can neglect
the error that is made by considering the system to be in equilibrium. Underes-
timation of the length of the transient phase leads to bias in the final estimate.
Overestimation, on the other hand, throws away information on the steady state
and this increases the variance of the estimator [73].

Another difficulty is the nature of the output observations of a simulation model.
Observations collected during typical stochastic simulations are usually strongly
correlated, and the classical settings for assessing the sample variance can not be
applied directly. Neglecting the existence of statistical correlation can result in
excessively optimistic confidence intervals. For a thorough treatment of this and
related questions refer to [99].

Construction of confidence intervals for steady-state mean values of simulated
stochastic processes has been an attractive research area. Steady-state is by far
the most common approach found in the literature of simulation output analysis,
though it presents more methodological difficulties, and it requires proper statistical
analysis of its properties, especially in the scenario of distributed simulation.

Investigation of properties of steady-state estimators continues being the most chal-
lenging enterprise, especially in our days when we witness an increasingly interest in
using such complex dynamic systems as modern communication networks. Besides,
it is a ”common denominator” for comparing performance of various systems.

The ultimate objective of run length control is to terminate the simulation as soon
as the desired precision of relative width of confidence interval is achieved. There is
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a natural trade-off since one needs a reasonable amount of data to get the desired
accuracy, but on the other hand this can lengthen the completion time. Considering
that early stopping leads to inaccurate results, it is mandatory to decrease the
computational demand of simulating steady-state parameters.

In order to decrease computational demands of intensive stochastic simulation one
can (i) attempt to design a simulation that does not require the generation of a
large number of observations; it is usually achieved by means of variance reduction
techniques (VRTs), which try to increase the statistical efficiency of a simulation
experiment by using statistical methods to reduce variance of estimators of perfor-
mance measures or; (ii) dedicate more resources to the simulation experiment by
means of parallel computing.

VRTs are experimental design techniques that improve the efficiency of a simulation
experiment by reducing the cost of achieving an estimator with a specified level
of precision. Although VRTs have been applied successfully in many cases (e.g.
Izydorczyk [69], Frost [45], Devetsikiotis [28], Andreassen et al. [7], L’Ecuyer [84],
Shang et al. [20]), in general they are model dependent and require good statistical
background from the analyst. Moreover, a VRT applied inappropriately may even
increase variance. Automation of variance reduction in simulation languages is
supposed to be the only possibility for widespread applications of VRTs [8], but
this has not been achieved at the time of this writing.

Parallel simulation is an attempt to speedup execution of simulation models by
dedicating more computing resources for simulation and that constitutes a chal-
lenging problem which has attracted the attention of researchers as early as in [90].
Aiming to improve the performance of simulation experiments one can either:

1. divide a simulation model in submodels (or split the whole simulation task in
functional units) and execute each of them on different processors; or

2. run the same model on several processors and average the results at the end.

The former approach is generally known as SRIP – Single Replication In Parallel,
and the latter as MRIP –Multiple Replications In Parallel (Pawlikowski et al.
[106]). We lay emphasis on the latter strategy.

With the advent of massively parallel computers, where hundreds or even thousands
of processors are connected together in a single computer to provide up to teraflop
computing power, parallel simulation can potentially reduce simulation execution
time by several orders of magnitude. A major challenge in running simulations on
a massively parallel computer is to exploit sufficient parallelism for a large number
of processors [129]. Though it was not the kind of environment we used, the
results found in this research can be extended for statistical inference of stochastic
simulation under massively parallel computers.

The problem of interest is to parallelize the simulation so that a large number of
processors can be used to execute the simulation efficiently while producing an
accurate estimate for the parameter of interest.

We are going to show in chapter 5 an investigation on how methods of analysis
based on batching procedures are good in the sense of speedup when they are run
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under MRIP. Those implementations were tuned, and we assessed the maximum
number of processors (in the sense of the investigated scenario) that can be put to
work together under MRIP according to the truncated Amdahl’s law proposed by
Pawlikowski and McNickle [102].

We are going to present important statistical properties of these sequential batch-
ing procedures, at first using one processor and then to investigate improvements
offered by MRIP. Experimental analysis of coverage is required for assessing the
quality of practical implementations of methods used for determining confidence
intervals in steady-state simulation.

With many processors, one may do a distributed simulation of one long run or do
independent replications with one replication per processor. In [132], it has been
claimed that

”if the total simulation run length is long enough to obtain reasonably good
estimates, then several independent replications are usually just as efficient
as one longer run.”

We hypothesize (H1) that generating observations simultaneously by applying mul-
tiple independent replications in parallel, improves the efficiency of a long run-
length simulation experiment, provided some careful procedures concerning statis-
tical aspects have been taken into account. Therefore, as an attempt to partially
fulfill the gap in the literature concerning statistical simulation output analysis
under multiple independent replications in parallel, this research investigated a
class of sequential methods based on batching of observations, that can be applied
concurrently on workstations connected via a network.

We assume that the output process is weakly dependent (φ-mixing), meaning that
its distant future behavior is essentially independent of its present or past behavior.
A broad class of dependent stochastic processes possesses this φ-mixing property
[19].

Therefore, an important issue with regard to stochastic simulation output analysis
in distributed simulation, concerns the possibility of making use of more computing
power aiming to achieve more accuracy in a shorter time interval. The generaliza-
tion of methods of analysis found in the literature, to be run under multiple repli-
cations in parallel, yields new statistical properties that deserve deep investigation.

Batching is a classical methodology commonly used in simulation output analy-
sis. A fundamental problem f batching methods is to find (1) a batch size large
enough so that batch means may be considered independent, and (2) a number of
batches large enough such that adequate degrees of freedom are provided to esti-
mate the variance of the sample mean [70]. Research into automating this choice
are supposed to be either ”ad hoc in nature and lack a rigorous foundation” [21], or
”too complicated to be implemented for practical use” [19]. We hypothesize (H2)
that by running batching methods under MRIP, one can compensate an imprecise
batch selection by increasing the degree of parallelization, provided that candidate
methods are consistent and robust.
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In this research, we considered a method as being robust, when it demonstrated
an ability to recover gracefully from the deviations of its underlying assumptions,
and still produced results with high quality. A method of analysis is said to be
consistent when the half-width of the confidence interval it produced tends to zero
as the run length increases.

Classical Batch Means approach is based on fixed number of batches, but Glynn and
Whitt [58] demonstrated the necessity of increasing the number of batches. After
selecting the batch size, the procedure should test periodically the stopping condi-
tions. We hypothesize (H3) that after failing this test, the number of batches should
increase slightly, to keep close to the range suggested by Schmeiser (10 ≤ b ≤ 30)
[114].

When the process being investigated has high autocorrelation, it may be preferable
to subsample the sequence of observations at a regular spacing s, making a new
process with the same equilibrium distribution but less autocorrelation [50]. We
hypothesize (H4) that the autocovariances provide a useful guide to selecting the
spacing among batches and the more suitable spacing for each replication can be
found by calculating the correlation coefficient of lag 1 for the first batch.

Another family of output analysis methods we investigated is the standardized time
series method has asymptotic (STS), which has been proved to offer asymptotic
advantages over the batch-means based methods [62], but Sargent et al. [113]
detected that it can require very long runs. We hypothesize (H5) that by applying
this class of methods under MRIP we can get rid of this kind of difficulty by
generating observations more quickly, making STS is very attractive for sequential
analysis of stochastic simulation, especially when simulation output observations
are highly correlated.

1.3 Justification for the research

The last two decades can be cited as an example of increasing the importance
of simulation output area as one examines a plethora of different techniques de-
veloped and investigated by researchers for drawing conclusions from simulation
experiments. As pointed out in a panel discussion of the 1994 Winter Simulation
Conference [18], many of these techniques are hardly used in practice mainly be-
cause they ”require extensive academic background in esoteric subjects merely to
understand them” (Carson).

That claim emphasizes a practical problem, but at the same time gives orientation
for further research : Efficient tools for automatically analyzing simulation output
data should be based on secure and robust methods that can be broadly and safely
applied to a wide range of models without requiring from simulation practitioners
highly specialized knowledge.

The research problem presented here has received relative few interest by previous
researchers because the most research effort on parallel simulation has been directed
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toward experiments based on SRIP. Besides this focus point, the methodology for
assessing the applicability of new implementations should be somewhat revisited.
In section 1.5 we propose a combination of robust methodologies to obtain a more
general methodology suitable for that purpose.

Finally, results obtained in this research has been applied successfully to complex
computer communication networks problems, reducing the usually prohibitive very
long run time, and concomitantly assuring high level of accuracy.

1.4 Goals of this thesis

Several methods have been proposed in the literature to assess the credibility of
the estimation of the steady-state mean of a performance parameter, however, how
these methods should perform in a parallel environment, where observations are
generated in an asynchronous and distributed way, deserves rigorous investigation.

Primary goal of using parallel environment is to reduce the simulation execu-
tion time in order to simulate a great amount of events. How should that be
carried out ? Speedup (defined for each number P of processors as the ratio of the
elapsed time when executing a program on a single processor to the execution time
when P processors are cooperating to execute the program) and efficiency (defined
as the average utilization of the n allocated processors), though traditional perfor-
mance criteria, are not enough to describe the behavior of a parallel system [30].
We associated these metrics to the quality of the simulation results, since it would
be of little worth to obtain wrong results with a sound speedup .

Very little is known about quality of output analysis methods in sequential simu-
lations and in fast concurrent sequential simulations based on MRIP, when pro-
cessors cooperate in production of data. Practical results can be found in [86] [94]
[95] [104].

This work is concerned with a methodology of automated sequential simulation
output analysis with emphasis on parallel simulation scenario provided by mul-
tiple replications in parallel time streams approach, with particular attention to
sequential confidence interval procedures based on data batching techniques.

Through investigation of some batching-based simulation output analysis tech-
niques, originally conceived for a single processor scenario, we proposed, designed
and implemented sequential confidence interval procedures (CIPs) based on these
techniques, in such a way that they can be run under MRIP scenario. Analysis
and performance evaluation were carried out as well. We intend to identify the best
sequential procedure strategy, among those we have analyzed, as well as provide
additional insight into the trade-off between speedup and accuracy of the results.

Since sequential analysis of simulation output data is the only effective way of
controlling the statistical error of the final results, we propose sequential procedures
that are as efficient as possible, both in the sense of their speedup and accuracy in
the MRIP scenario.
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Our purpose is to contribute to the methodology for automated sequential stochas-
tic simulation with emphasis on parallel environment provided by Akaroa-2, a sim-
ulation controller designed at the Department of Computer Science of The Univer-
sity of Canterbury, Christchurch, New Zealand. There are many problems which
need to be solved before such methodology could be commonly used. To my best
knowledge nobody has done exhaustive analysis of coverage (as we did) for the
attractive methods investigated in this research, namely spaced batch means, over-
lapping batch means and standardized time series. Additionally, we also consider
as a contribution an up-to-day survey of the methods of simulation output data
analysis.

The novelty of this research is the validation of this class of steady-state simulation
output analysis concerning their feasibility under MRIP scenario, which gives rise
to very challenging problems due parallelization of computing processes.

1.5 Methodology

The cornerstone component of the methodology adopted in this research is based on
the conceptual framework proposed by Schriber and Andrews [116] for constructing
confidence interval.

The main measure of effectiveness of methods of analysis is the coverage of the
results, which traditionally has been assessed in a fixed-sample-size fashion. We
adopted the sequential coverage analysis proposed in [104], since it is more reli-
able and suitable for robustness issue we aim, and based on the survey in [85] we
constructed the coverage function proposed in [117].

Looking for a wide-range applicability, we combined the above approaches to find
a reliable methodology to investigate sequential batching procedures under MRIP.
By applying this methodology, we can additionally assess both the sample size
required by each designed, implemented and investigated sequential procedure, as
well as the accuracy of them, measured by the confidence interval half-width.

After obtaining promising confidence interval procedures that could be safely used
under MRIP, we investigated the influence of the degree of parallelization over the
overall performance. For sake of tuning, we checked the robustness of these CIPs.
It consisted of violating deliberately the assumptions these promising procedures
are based upon, and gradually increase the degree of parallelization to compensate
the negative effects for the not fulfillment of the assumptions. As a matter of fact,
we applied this investigation for every CIP, but only two of them presented very
attractive performance.

In the sequence, we investigated alternatives to assess the achievable speedup by
each CIP by tuning checkpoints granularity. For this purpose, we adopted the
methodology proposed by Ruth Lee et al. [87].
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1.6 General overview of the results

We initiated our investigation reproducing very-well known results concerning the
classical nonoverlapping batch means (NOBM) in the context of a single-processor
environment. These results were used as a reference to our investigations, but we
went a step further and collected informations frequently just cited in the litera-
ture, namely, performance of sequential analysis procedures under high level traffic
intensities.

Despite using the best choices for each issue of a stochastic simulation (e.g., reli-
able random numbers, sophisticated detection of run length, and non-parametric
method for the complex problem of estimating correlation coefficients of a de-
pendent time series), it was not possible to improve the coverage of the classical
nonoverlapping batch means under high level traffic intensities, even adding more
processors.

We suggested alternative procedures to overcome the above difficulties, and im-
plemented sequential versions to be run under Akaroa-2, an efficient environment
of multiple replications in parallel (MRIP) : Nonoverlapping batch means with
increasing number of batches (NOBM/GW), and spaced batch means (SBM). Em-
pirical investigation confirmed they are indeed improvement over NOBM, but they
do not achieved acceptable level of coverages for high traffic intensities. Moreover,
they offer a more important obstacle to be overcome : in the estimation phase,
checkpoints must occur only in distances multiple of batch size. This will certainly
lengthen the non-parallelizable part of a simulation, avoiding them to be used under
MRIP when speedup is an issue.

Overlapping batch means (OBM) was our next choice, and due its excellent sta-
tistical properties, together with the fact that each observation can initiate a new
(overlapped) batch, we have at our disposal a powerful procedure that can give
us coverage close to nominal level even under high traffic intensities. Addition-
ally, sequential version of OBM permits us to perform fine granularity tuning of
checkpoints, yielding sound results on speedup.

Two sequential procedures based on the classical-sum of standardized time series
proved to be very robust in the sense of all measures of efficiency. In one version
(CSUM.1), checkpoints occur after collecting a number of observations equal to the
selected batch size, the same way as in NOBM. In the second version (CSUM.2),
checkpoints occurs according to a fine granularity. At least under MRIP both are
not suitable for stochastic simulation of queuing systems with low/medium traffic
intensity. On the other hand, CSUM.2 performed very well in the sense of speeding
up simulation experiments.
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1.7 Thesis Outline

This document is organized as follows.

Chapter 2 reviews some concepts on simulation output analysis and parallel simu-
lation, necessary for the understanding the main problems of our research.

Chapter 3 describes the methodology used to conduct properly the research ex-
plained in this work.

Chapter 4 was dedicated to issues concerning design of sequential confidence inter-
val procedures based on batching techniques to be run under multiple replications in
parallel, their properties and assumptions, as well as the decisions made to answer
the main issues of each analytical method underlying the procedures.

Chapter 5 contains performance evaluation results obtained from exhaustive studies
of these sequential procedures over a range of reference queuing systems.

Chapter 6 presents a case study on a wireless communication performance issue,
in order to emphasize the feasibility of applying the proposed procedures under
MRIP.

Chapter 7 summarizes our results, as well as points out directions for future re-
search.



2
Literature review

2.1 Introduction

Chapter 1 situated this research inside a wider body of knowledge, namely the
sequential confidence interval procedures for assessing the quality of simulation
results. This chapter reviews the necessary background and literature with respect
to quantitative stochastic simulation, sequential methods of analysis, and parallel
simulation for estimating the steady state mean of a stochastic process.

2.2 Basic Concepts of Quantitative Stochastic Simu-

lation

Stochastic simulation is essentially a controlled statistical sampling technique com-
monly used by scientists and engineers to investigate complex probabilistic prob-
lems. It is comparable to analysis by experimentation, since one comes frequently
across the usual problems associated with running experiments in order to make in-
ferences about real systems, and must be concerned with such things as run length,
number of replications, and statistical significance [63].

Any quantitative stochastic simulation study should include proper statistical anal-
ysis of output data collected during the simulation, otherwise, despite careful efforts
on verification, validation, and selection of a good generator of pseudorandom num-
bers, there would be no guarantee of an acceptable level of quality of the results.
As stated by J. Kleijnen [72],
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”. . . computer runs yield a mass of data but this mass may turn into a mess
(. . . ) if the random nature of output data is ignored and instead of an ex-
pensive simulation model, a toss of the coin had better be used”.

Suppose we are investigating a steady-state measure of performance θ (e.g. the
mean waiting time in a queue) by means of a simulation experiment. For this
purpose :

1. Let {Xi} be realizations of simulation output stochastic process that converges
in distribution to a random variable X.

2. We should detect the amount of observations subject to initialization bias1, and
discard them.

3. We can estimate the sample mean by calculating the arithmetic average of the
sample

X̄(n) ≡ 1

n

n∑

1

Xi(2.1)

where n is the sample size (the run length minus the number of initial observations
discarded during the transient phase).

To assess how close the estimator of the mean is to θ, we construct a confidence
interval using the Central Limit Theorem, which states that if {Xi} are inde-
pendent and identically distributed with finite mean and variance2 and meet other
relatively weak conditions, then X̄(n) has approximately the normal distribution
when n is large, regardless the distribution of {Xi}. This convergence in distri-
bution is achieved as n → ∞, which means that this interval estimation is an
approximation.

Let approximate 100(1−α)% confidence interval estimator I for the mean θ of the
underlying process be :

I : µ ∈ X̄(n)±H(2.2)

where H is the half-width of this confidence interval, estimated as

H = tdf ,1−α/2

√
V ar{X̄(n)},(2.3)

1Except for the method of regenerative simulation, where the initial transient problem doesn’t
need to be identified.

2By assuming that σ2 < ∞ and that {Xi} are independent and identically distributed (IID),
the Central Limit Theorem cannot be used to estimate the accuracy of the means of some self-
similar processes, which have infinite variance and, therefore, out of the scope of this research.
Readers interested can look for limiting theorems for heavy tailed random variables first formu-
lated by Lévy (Feller [34], Samorodnitsky and Taqqu [111])



2.3. Confidence Interval Procedures 13.........................................................................................................................................................

tdf ,1−α/2 is the upper (1−α/2) critical point of the t-distribution with df degrees of
freedom, and V ar{X̄(n)} is an estimator for the variance of sample mean, defined
as

V ar{X̄(n)} ≡ σ2

n
(2.4)

Taken together, the point estimate X̄(n) and the confidence interval I say what is
the best guess for µ, and how far in error that guess might reasonable be. As σ2 is
usually unknown, one uses S2(n), the sample variance estimator of σ2, given by

S2(n) =
1

(n− 1)

n∑

i=1

{Xi − X̄(n)}2(2.5)

When {Xi} form a covariance stationary process, Fishman [37] demonstrated that

V ar{X̄(n)} ≡ σ2

n
[1 + 2

n−1∑

j=1

(1− j/n)ρj](2.6)

where ρj is the correlation coefficient at lag j.

Equation 2.6 points out at the main difficulty found in most stochastic simulation.
Namely, the fact that output observations never form independent and identically
distributed normal output [60], but usually highly correlated, causes that straight-
forward analysis of Var{X̄(n)} by classical statistical techniques is not possible,
and ignoring autocorrelations is unacceptable, since the reliability of the sample
mean and sample variance could be strongly overestimated [35].

2.3 Confidence Interval Procedures

To solve this tactical problem, several methodologies for estimation of confidence
intervals of the mean of a sequence of correlated observations have been proposed.
They include : independent replications [36], regenerative approach [26], batch
means [23], spectral analysis [67], standardized time series [119], to say a few. Each
of these ideas has its own strengths and weaknesses. The main difference among
them is the way they estimate V ar{X̄(n)}. Efficient implementations of confidence
interval procedures (CIP) and corresponding performance under MRIP should be
carefully quantified, as Bischak et al. [15] observed, ”there is no procedure that, by
general consensus, is preferred in all simulation experiments”. A thorough review
of these methods can be found in Pawlikowski’s survey [99].
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It raises the question of which of them should be used during a given simulation
experiment. How do these methods differ ? Systems presenting regeneration cycles,
though interesting, are not considered in this text. Readers interested on this
kind of simulation can find details on this approach in [24] [25] [38] [54] [53] [52]
[55]. A sequential version of the method Spectral Analysis under MRIP has been
exhaustively investigated in, e.g., [105] [108] [106].

Batch means continues being the most widely used method for statistically analyz-
ing simulation output, as it is simple to implement and understand. Moreover, an
estimator based on batch means possesses some other desired properties [61]:

• Except for estimating the optimal batch size, defined here as the minimum number
of observations per batch that can yield almost uncorrelated batch means, it is a
method of ease computation.

• It does not require large amount of storage.

• Tt can be easily incorporated into procedures of simulation output analysis.

Batch means approach attempts to work around the correlation structure by rear-
ranging the overall data into subsets which have uncorrelated batch means. Long
time ago, Student (1927) wrote : ”A number of determinations of the same thing
made on the same day are likely to lie mode closely together than if repetitions has
been made on different days”. Brillinger [17] formalized this intuitive reasoning,
namely, observations far apart from each other are less correlated than if they were
closer. That is precisely the idea behind batch means, that is, above certain length
m∗ of batch size, batch means are (almost) independent. Thus, determination of
batch size is the main issue of this method.

In the next section we are going to present some variants of the method of batch
means, and some variants of the method of standardized time series. They are the
basis for sequential versions we investigated under MRIP.

2.3.1 NOBM

In the classical setting, hereafter called nonoverlapping batch means (NOBM), a
series of steady-state observations {xi} of length n is divided into b contiguous
batches of size m, and the mean of the the jth batch can be found through

X̄j(m) =
1

m

mj∑

i=m(j−1)+1

xi, forj = 1, . . . , b;(2.7)

For large enough batch size m∗, the dependency and the nonnormality of the batch
means X̄j(m) are negligible, with error that diminishes as m and n approaches
infinity. Equivalently, the correlation among the batch means diminishes as m and
n approaches infinity [3].
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The overall point estimator is given by

X̄(n) =
1

b

b∑

j=1

X̄j(m)(2.8)

Thus, a confidence interval can be estimated by means of

X̄(n)± tdf ,1−α/2

√
S2(b)

b
(2.9)

where df = b− 1 and

S2(b) =
1

(b− 1)

b∑

j=1

(X̄j(m)− X̄(n))2(2.10)

A measure of the bias is given in [15] :

bias(b,m) ≡
b/[1 + 2

b−1∑

j=1

(1− j/b)ρx̄(j)]− 1

b− 1
(2.11)

where ρx̄(j) is the correlation of lag j of the batch means.

Positively correlated output streams occur more frequently than negatively corre-
lated output [112] [74] [130]. From (2.11), positive ρx̄’s result in b(k, m) < 1,
which denotes negative bias, and the final confidence interval half-width in Equa-
tion 2.9 can be underestimated, which leads frequently to a final coverage less than
the nominal confidence level. Coverage is defined as the relative frequency that the
final confidence intervals contain the true parameter θ.

The selection of the batch size will have direct influence on the variance estimator,
and, therefore, the quality of estimation, measured by the coverage of the results.
There is no foolproof recipe for deciding how big a batch should be. Considering a
sample size n, large batch size guarantees independence and normality among batch
means, besides assuring good coverage, but there is evidently loss of information,
since the expected half-width of the confidence interval is very large, and it can lead
to problems with the application of the central limit theorem, as there are fewer
batches available. On the other hand, short batch sizes put in check normality
among batch means, as the batch means can be highly correlated.

Schmeiser [114] conducted an extensive quantification study on effects of choosing
batch size. By using a fixed sample size, he investigated theoretically the behavior



16 Chapter 2. Literature review.........................................................................................................................................................

of the half-width of a confidence interval, considering its expected value, E{H}, its

variance, V {H}, and its coefficient of variation, CV {H} =
√

V {H}/E{H}, and

the probability that the interval covers all points θ1 6= θ (the lower this probability
the better the procedure, since it is equivalent to Type II error), for different batch
sizes at different confidence level.

Schmeiser’s studies pointed out that less than 10 batches yields in confidence inter-
vals highly variable, and additional batches beyond 30 yield no improvement in the
sense of accuracy of the expected half-width of confidence intervals, though they
result in a smaller variance of the half-width.

We emphasize our interest in sequential analysis of steady-state mean values from
simulation output data, but the important result of Schmeiser, though derived for a
fixed sample size, will be taken into account during design and performance analysis
of the sequential procedures developed to that purpose.

2.3.2 NOBM/GW

Schmeiser’s results [114] for fixed sample size are based on the fact that low degrees
of freedom result in small bias and large variance [115].

Keeping the number of batches fixed, though, imposes an asymptotic validity prob-
lem, as

”there does not exist a batch-means estimation procedure based on a
fixed number of batches that is consistent” [58].

Therefore, as the run length increases, the number of batches should increase as
well. In terms of sequential analysis it means that whenever the CIP needs to
collect more observations to acquire a specific relative precision for stopping the
simulation experiment, it should increase the size of batches in order to keep the
number of batches within Schmeiser’s proposed range. But how much should be
this increment ?

After failing the test against relative precision for the b batch means suggested
by Schmeiser (10 ≤ b ≤ 30), the number of batches should increase slightly, that
is, not far from this suggested range. This procedure will be called hereafter
NOBM/GW.

2.3.3 SBM

As the main analytical problem in terms of steady-state simulation is the usually
high correlation among observations, one should look for manners to mitigate this
negative effect, for instance, by creating spaces among the output sequence {Xi}
at regular distance, e.g. by discarding the last s observations of each batch. The
resulting process has the same equilibrium distribution but less autocorrelation
[50].
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Conway [23] suggested the use of a fixed spacing regardless the sample size. Billings-
ley (1986) showed that by breaking the observations into alternating long batches
of length bn3/4c and small spaces of length bn1/4c where b.c is the greatest integer
function, the spaced batch means are asymptotically IID [44].

Fox et. al [44] proposed discarding some observations between contiguous batches,
and called this approach Spaced Batch Means (SBM). This kind of subsampling
attenuates the serial correlations among the observations, by producing another
process with less observations per batch, s observations apart from each other.

Considering that the first m − s observations of each batch are incorporated into
the respective batch means, the jth spaced batch mean is defined by

X̄j(m− s) =
1

m− s

m−s∑

k=1

X(j−1)m+k, forj = 1, . . . , b;(2.12)

and the overall point and interval estimators are given by

X̄(n) =
1

b

b∑

j=1

X̄j(m− s)(2.13)

A confidence interval can be estimated by means of

X̄(n)± tdf ,1−α/2

√
S2(b)

b
(2.14)

where df = b− 1 and

S2(b) =
1

(b− 1)

b∑

j=1

(X̄j(m− s)− X̄(n))2(2.15)

When the number of discarded observations s=0, we have the classical NOBM.

We claim that for high values of traffic intensity, letting (conveniently chosen)
spaces between batches can give always better results, when compared to classical
nonoverlapping batch means. The problem could appear in a conversely situation,
that is, for low values of traffic intensity, spacing could be irrelevant, and even
wasteful.
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2.3.4 OBM

Meketon and Schmeiser [89] proposed a method known as Overlapping Batch Means
(OBM) that considers it is more important to have a larger number of batches than
to have these batches independent. Thus, for a given sample size, some observations
from previous batches can be reused for generating more batch means. The number
of degrees of freedom depends on the degree of batch overlapping, and is greater
than the degrees of freedom in NOBM.

OBM has been introduced to increase the degrees of freedom of the estimator of
the mean value used in NOBM. By grouping observations into overlapping batches,
if one reuses all observations (except the first one) from the previous batch, one
obtains the overlapping of batches (hereafter called complete OBM), which has
degrees of freedom 1.5 times greater than the degrees of freedom in NOBM. Hence,
one can use all n−m + 1 overlapped batches of size m to find X̄(n) and V̂ (X̄(n)).

Let

X̄i(m) ≡ 1

m

m−1∑

j=0

Xi+j,(2.16)

be the ith overlapping batch means, i = 1, . . . , n-m+1.

The overall point estimator is given by

X̄(n) =
1

n−m + 1

n−m+1∑

j=1

X̄j(m)(2.17)

A confidence interval can be estimated by means of

X̄(n)± tdf ,1−α/2

√
S2(n)

b
(2.18)

where df = 1.5(b− 1) and

S2(n) =
1

(n−m + 1)

n−m+1∑

j=1

(X̄j(m)− X̄(n))2(2.19)

Considering that the optimal batch size m∗ is the same as found in NOBM, the
variance of the sample mean by applying the complete OBM is less than 1/3 of
variance of the sample mean by applying NOBM, as long as n → ∞. Welch [131]
concluded that with modest degree of overlapping (e.g. by m - m/4 observations),
a satisfactory variance reduction can be achieved.
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2.3.5 STS

Standardized Time Series (STS) is an approach that takes other order of ideas to
generate confidence intervals for steady-state simulation, although it is still based
on batching. Instead of standardizing a single scalar, e.g. the sample mean of an
output time series Xi (i=1,2, . . . , n), Schruben [119] suggested the standardization
of each observation ot the time series, defined as

Ti(t) ≡ bmtc(X̄i,m − X̄i,bmtc)
σ
√

m
, 0 ≤ t ≤ 1,(2.20)

where

X̄i,j is the cumulative average of the first j observations in the ith batch
b.c denotes the greatest integer function.

The transformed series converges asymptotically to a standard Brownian bridge
process, which properties area used to construct a confidence interval.

After standardizing each observation one can find the random variables Ai, the
asymptotic scaled sum of Ti(t), for each batch by means of

Ai = σ
√

m
m∑

k=1

Ti(t)(2.21)

=
m∑

k=1

k∑

j=1

(X̄i − ¯̄X)

Schruben assumes that for large m the Ai are approximately normal IID, and
proposed an asymptotically valid area interval estimator IA = [X̄(n)±HA] for the
performance parameter θ, with half-width

HA = tdf ,1−α/2

√√√√12
b∑

i=1

A2
i

n2(m2 − 1)
.(2.22)

where df = b.

By computing the statistic

A =
b∑

i=1

12Ai
2

(m3 −m)
+ m(X̄(n)− X̄i)

2(2.23)
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Schruben also proposed an asymptotically valid combined classical-sum interval
estimator Icsum = [X̄(n)±Hcsum] for the performance parameter θ, considering
that

Hcsum = tdf ,1−α/2

√
A

n(2b− 1)
.(2.24)

where df = 2b− 1.

One can note that STS-based estimators do not try to estimate the variance of
the sample mean to construct the final confidence interval, but on the contrary its
underlying principle is to cancel it out. Theoretical foundations of the method can
be found in [57].

Though standardized time series method has asymptotic advantages over the batch
means method [62], Sargent et al. [113] detected that it can require very long runs.
We are going to see that by applying STS under MRIP we can get rid of that
difficulty by generating observations more quickly.

The motivation to dedicate part of our research on this method was based on
the following : (a) the simplicity of its implementation, though the underlying
sophisticated statistical techniques; (b) as batch-means based procedures require
some time to detect independence among batch means, STS requires some time to
detect normality among Ai, but this preprocessing is in general shorter, since it
requires

a smaller number of batches (e.g. 10 batches) to

test for normality. This characteristic signalizes that STS can be a promising
method to be investigated under MRIP and its performance should be quantified.
In this research we have investigated the classical-sum interval estimator.

2.4 Looking at the data sequentially

It is not possible to know in advance the sample size needed to meet the required
precision of a given problem. The only effective way to control the statistical error
of an estimation procedure is to analyze the data sequentially. An appropriate
sequential stopping rule can be used to control the width of the estimated confidence
interval.

The run length of a stochastic simulation experiment can be determined either by
assigning the amount of simulation time before initiating the experiment or by let-
ting the simulation run until a prescribed condition occurs. The first approach is
known as fixed-sample size procedure, and suffers from the possibility of inappropri-
ate precision of the results. The second approach is generally known as sequential
procedure and is the subject of this research.
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Sequential procedures gather output observations at pre-specified checkpoints to
investigate a certain parameter of interest, and a decision has to been taken to
make the required estimation and stop the sampling if a predefined condition is
achieved, or to continue the sampling and periodically repeat both steps above while
necessary. It is evident that the number of observations required to terminate the
experiment is a random variable. Thus, a sequential procedure can be economical
in the sense that a decision may be reached earlier when it is compared to fixed-
sample-sized experiments, but can be onerous if one wishes a tight precision.

The importance of sequential procedure is widely recognized as the only effective
method for controlling the precision of simulation results. Two fundamental issues
that motivate the design of more efficient sequential procedures are the possibility
of specifying the desired precision for the estimated parameter, and the termination
rule to conclude the experiment whether the precision has been reached. Ideally,
the rule should be computationally easy and not lengthen the completion time at
all.

The general problem of sequential estimation is to postulate a sampling rule that
will ensure that the unknown parameter is estimated with a given accuracy and
with minimum expected sample size. The accuracy is usually measured in the form
of the width of the confidence interval, which is a random variable itself and cannot
be bounded if the sample size is fixed in advance.

2.4.1 Sequential procedures

A number of sequential procedures have been proposed for constructing confidence
intervals for the mean of a sequence of independent observations of the random vari-
able of interest. Chow and Robbins [22] presented a sequential confidence interval
procedure for the unknown mean θ of a population with finite variance, by defin-
ing an ”absolute accuracy”. The final confidence interval should have a prescribed
width 2d with probability (1− α), that is :

In = (θ : |X̄(n)− θ| ≤ d)(2.25)

Simulation should stop for the smallest odd n ≥ 3 for which

S2(n) < n

(
d

tn−1,1−α/2

)2

(2.26)

where tn−1,1−α/2 is the critical value of the t distribution for 1− α/2 and n− 1
degrees of freedom.

They proved that as n increases, d → 0 and the coverage closes to γ = 1− α. This
is known as asymptotic consistency, i.e. this sequential estimation procedure covers
θ with probability 1− α. On the other hand, the magnitude of the parameter being
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estimated is not always known in advance, and choosing d inadequately can produce
unreliable results.

Nadas [96] extended Chow and Robbins’ method by proposing a procedure to esti-
mate θ to be within 100γ% of |θ| with probability 1−α, the so called ”proportional
accuracy”.

In = (θ : |X̄(n)− θ| ≤ γ|θ|)(2.27)

Let v2(n) = [1 + (n − 1)S2(n)]/n. Simulation should stop for the smallest n ≥ 2
for which

(tdf ,1−α/2)v(n)√
n |X̄(n)| ≤ γ(2.28)

where df = n−1. Law et al. [82] compared this procedure with a slightly modified
one, which states that the half-width should not be more than 100γ% of the mag-
nitude of the point estimate. Let d(n) = (tn−1,1−α/2)S(n)/

√
n. Simulation should

stop for the smallest n ≥ 2 for which

d(n)

|X̄(n)| ≤ γ(2.29)

Both procedures were applied to twelve stochastic models for which analytical re-
sults are available, and computed the proportion of coverage and the average final
sample size in each case. A 90% confidence interval was constructed, and 500 inde-
pendent experiments were carried out. They concluded that choice between both
procedures depends on the applied confidence level, but Nadas’ proposal gave bet-
ter coverage, but as they used a fixed number of experiments to assess the coverage,
the quality of these results can be questionable.

Lavenberg and Sauer [80] proposed sequential stopping rules, which control the
relative width of an estimated confidence interval to be used in conjunction with
regenerative simulation. At least for the queuing systems they investigated by
applying the procedures to construct a 90% confidence interval, a relative width of
0.05 was small enough to yield valid confidence intervals in almost all experiments.
We adopted this relative width as the stopping rule for our empirical investigation.

The advantage of the relative width criterion for stopping simulation is that it
allows the analyst to express the desired half length in terms of the mean point
estimator. We look for a sequential procedure that can both determine the sample
size during the course of the simulation run, and obtain confidence intervals with
”acceptable” coverage.

A given sequence of observations gathered at the output of a simulation model is
investigated at a certain time and a decision has to be taken to stop the sampling or



2.4. Looking at the data sequentially 23.........................................................................................................................................................

to continue the sampling. It means that the width of the confidence interval of an
estimated parameter is compared against the assumed requirements at consecutive
checkpoints of the simulation experiment, and a decision is made either to stop the
simulation if the required accuracy is reached, or to continue the simulation for
collecting the next portion of observations, unless the maximum allowed length of
simulation run has been reached, otherwise.

Concerning batch means, Gross and Harris [63] suggested fixing the number of
batches b and increasing the batch size m until the estimated correlation at lag 1
between X̄i(m) (i=1,. . . ,b), can be considered small enough. The difficulty is that
correlation estimators are generally biased and for small number of batches they
have a large variance.

Fishman [39] proposed a sequential batch means procedure based on von Neumann
statistic [97]. Let {X̄i(m) : i=1,2,. . . , b} be a sequence of batch means of size m
for a certain amount of sample size n. Setting initially the batch size to m = 1,
one should calculate the batch mean and the following statistic to test the level of
correlation between the b batch means of size m :

Cb = 1−

b−1∑

i=1

(X̄i(m)− X̄i+1(m))2

2
b∑

i=1

(X̄i(m)− X̄(n))2

(2.30)

If X̄i(m) are normal, then under null hypothesis Ho of independence, Cb has mean
zero and variance (b−2)/(b2−1). For a specified quantile (1−β) from the standard

normal distribution, if Cb > zβ

√
(b− 2)/(b2 − 1), then m=2m and after obtaining

the sample size n, the von Neuman test should be repeated. FCk
, the distribution

of Cb, should become already close to normal for small number of batches (say
b ≥ 8). Kleijnen et al. [76] emphasized that the power of this test statistic is small
if the number of batches is less than 100.

Law and Carson [81] proposed initially dividing the sample size n into lb batches
(e.g. l=10, b=40) of size m = 2. If correlation at lag 1 ρ1 > c, where c is a given
threshold, the sample size ie doubled, otherwise n is divided into lb/2 batches of
size 2m, the new threshold is c = ρ1. If the new ρ1 > c, the procedure computes a
confidence interval according to (2.2), otherwise, the sample size is doubled and so
on.

Adam [1] developed the blocking method, a modification of Fishman’s method
to make it suitable for determining the simulation run length needed to meet a
preassigned width of the confidence interval. For assessing the performance of his
proposal, Adam simulated queuing systems and obtained how often the resultant
90% confidence intervals covered the true value, as well as the respective sample
size and the relative half-width.

An interactive sequential confidence interval procedure based on standardized time
series to produce results that satisfy a relative precision, was proposed by Duersch
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and Schruben [29]. The user is asked to inform the largest period of time that can
be spent in the experiment, but the procedure proceeds for only 20% of the that
time limit. The user may accept or reject the intermediate time period. In the
last case, the additional simulation time is estimated, and simulation goes on until
acceptable results are obtained or the time limit is achieved.

Steiger and Wilson [125] proposed a batch-means procedure called ASAP (Auto-
mated Simulation Analysis Procedure). The procedure requires that the output
process be φ-mixing a mild condition found virtually in all practical settings.
Intuitively, a process {Xi} can be considered φ-mixing if Xi and Xi+j become
virtually independent as j becomes large. [14].

After collecting a fixed number of steady-state observations and forming 96 batches,
the batch means are computed. The first two batches are discarded, an the inde-
pendence of the remaining batch means is tested. If the test fails, the batch means
are tested for joint normality. If this second test fails, the batch size is increased
and the procedure is repeated until one of the tests succeeds. Upon acceptance of
the joint multivariate normality, certainly the batch size is not the optimal one,
so a correction to adjust the classical batch means confidence interval should be
applied. The authors used an inverted Cornish-Fisher expansion of the NOBM
t-statistic to accomplish this task.

Chen and Kelton [19] proposed a heuristic sequential procedure for controlling the
run length of stochastic simulation so that the mean estimate satisfies a pre-specified
precision requirement. The batching is based on systematic sampling and φ-mixing
conditions. The procedure makes use of the runs-up test proposed by Knuth [78]
for testing whether the means appear to be independent. The empirical results
of the authors showed reasonable coverage, though they recognized the variance of
the simulation run length is large, due the lag length is doubled at each interaction.
even a 90% confidence estimator.

Yeh and Schmeiser [133] developed a sequential procedure of nonoverlapping batch
means denoted as Dynamic Batch Means (DBM). Instead of keeping each output
observation, DBM stores the sum of each batch in a vector of size 2k cells, specified
by the user. Always when the vector is full, DBM collapses the batch sums into
k cells, and the batch size is updated. At any given time, by means of the actual
sample size n and k, DBM determines the full batch size m, the current batch c,
and the number p of observations in the current batch. Estimation of the variance
of the sample uses only the b full batches by applying the correction factor (bm)/n.

The replicated batch means (RBM) was presented by Andradóttis [6]. By collecting
n observations in r > 1 independent replications, RBM forms in b batches of size
m in each replication, that is, RBM produces rb batches that are used to yield a
point and an interval estimator. The author claimed that in case of simulating a
stochastic process with positive serial correlation, RBM offers a smaller variance
than the classical point estimator of NOBM. RBM also has a better coverage than
NOBM, at least for the EAR(1) process at a 90% confidence level.

Yeh and Schmeiser [134] compared NOBM, OBM (complete and partial), and STS-
area estimators based on batching, using a single processor environment, and con-
cluded that OBM outcomes the other ones in the sense it yields small MSE for the
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estimator of the variance of the sample mean, while in [95] the reader can find a
perspective of batching methods in environments of MRIP.

2.5 Parallel simulation

Parallel processing has been and will continue to be a dominant feature of modern
computer architectures. To achieve the intended goal of speeding up processing
tasks, one needs to alleviate issues related with communication and synchroniza-
tion. Concerning quantitative stochastic simulation, the problem of interest is to
determine the amount of parallelism that can be effectively exploited, that is, to
find a suitable combination of factors so that a large number of processors can be
used to execute the simulation efficiently while producing an accurate estimate of
a system performance parameter θ.

Haynes et al. [64] identified simulation as a promising area for parallel processing,
since the computation for generating each observation Xi (used to estimate µ), are
repeated over and over. Bhavsar and Isaac [13] pointed out that, in order to exploit
this intrinsic parallelism, one could assign the computations among computers in
parallel.

Heidelberger [66] investigated statistical issues that arise when discrete event simu-
lations are run on parallel processing computers. By running parallel independent
replications, he obtained some estimators by applying the following stopping rules
:

• Complete N replications.

As soon as a processor finishes producing an estimate, it starts a new replication.
The first N completed replications are used for the estimation. There is a possibility
of sampling bias, when the measures are not independent of the run time. Consider
estimating the average of the first m waiting times at, say queue 1, in a network
of queues with probabilistic routing and feedback. For example, in one run it may
take 100 arrivals to get m waiting times at queue 1, but in another run, it may
take only 50 arrivals - the run requiring only 50 arrivals would complete earlier, so
with the sampling rule we would tend to get more samples associated with runs
requiring fewer arrivals. This would lead to the bias, since for example, if there
are fewer arrivals, the queues might be shorter and thus the waiting times shorter
than are typical. On the other hand, if the output of the simulation is statistically
independent of the run time (e.g. the average of the first m waiting times of a
single FCFS queue), then there would be no sampling bias.

• Start N replications.

N replications are started and the procedure waits their completions without start-
ing new replications, i.e. only those N replications are used for the estimation.
Moreover, replications are ordered by their starting times rather by their comple-
tion times. Although this stopping rule has better statistical properties than the
previous one, the price to be paid for using it is an increased run length.
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• Fixed number of replications per processor

Also known as static completion assignment. Let P be the number of processors
and let Xij be the observation from the jth replication that runs on processor i.
Each processor is assigned a fixed number R of replications, therefore, the total
number of replications is n=RxP. Because X ′

i,js are IID, the mean estimator

X̄n(P ) =
1

n

P∑

i=1

R∑

j=1

Xij(2.31)

is both a strongly consistent estimator for E[Xi,j] and asymptotically distributed
with mean E[Xi,j] and standard deviation σ(X̄)/

√
n as either m →∞ or P →∞.

Generally speaking, assignment could be done in two different manners : (i) all
processors cooperating on a single replication of the simulation; (ii) each processor
carrying out an independent replication of the same simulation and the results
being averaged together. The policies discussed above are related with the second
manner of assignment.

The former is known as Single Replication in Parallel (SRIP) [105], and the rationale
is to break up the model itself across the processors. Synchronization between the
submodels seems to be the great challenge of this approach, and the structure of
some models inherently limits the attainable simulation speedup [128]. SRIP is out
of the scope of this work, but excellent introduction can be found in [92] [46] [47].

The later is known as Multiple Replications in Parallel (MRIP), and was proposed
by Pawlikowski et al. [106] for primarily studying performance of telecommunica-
tion networks.

MRIP is conceptually simple, relative straightforward to implement and statis-
tically efficient. A very important feature of the MRIP approach is its natural
solution regarding fault tolerance, since a loss of one or more processors does not
crash the whole simulation experiment, provided that at least one processor remains
able to continue submitting data to the global analyzer [106].

A possible drawback would be the necessity of sufficient memory to hold the entire
simulation [46], but that seems not to be so critical nowadays. In the next sub-
section we describe briefly a software package that implements an MRIP scenario
that will be used as a basis to our experimental investigation.

Heidelberger [65] developed a framework to compare the statistical efficiency of
these two approaches for estimating steady-state quantities. This analysis showed,
qualitatively, that parallel replications approach is statistically more efficient than
distributed simulation, provided that initialization bias are conveniently treated.

2.5.1 An MRIP Implementation

We are going to argue taking into account Akaroa-2, an MRIP implementation
designed at the Department of Computer Science of the University of Canterbury, in
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Christchurch, New Zealand, for full automatic parallelization of common sequential
simulation models, and full automated control of run length for accuracy of the final
results [33].

An instance of a sequential simulation model is launched on a number of work-
stations (operating as simulation engines) connected via a network, and a central
process takes care of collecting asynchronously intermediate estimates from each
processor and calculates conveniently an overall estimate.

The only things synchronized in Akaroa-2 are substreams of pseudorandom numbers
to avoid overlapping among them, and the load of the same simulation model into
the memory of different processors, but in general this time can be considered
negligible and imposes no obstacle.

Akaroa-2 enables the same simulation model be executed in different processors
in parallel, aiming to produce IID observations by initiating each replication with
strictly nonoverlapping streams of pseudorandom numbers provided by a multi-
plicative congruential generator with modulus of M = 231−1, exhaustive tested by
Fishman and Moore [41]. The latest version of Akaroa-2 uses longer than sequences
of pseudorandom numbers.

Essentially, a master process (Akmaster) is started on a processor, which acts as a
manager, while one or more slave processes (akslave) are started on each processor
that takes part in the simulation experiment, forming a pool of simulation engines
(see Figure 1). Akaroa-2 takes care of the fundamental tasks of launching the same
simulation model on the processors belonging to that pool, controlling the whole
experiment and offering an automated control of the accuracy of the simulation
output.

At the beginning, a stationary test (due to Schruben [121]) is applied locally within
each replication, to determine the onset of steady state conditions in each time-
stream separately and the sequential version of a CIP is used to estimate the
variance of local estimators at consecutive checkpoints, each simulation engine fol-
lowing its own sequence of checkpoints.

Each simulation engine keeps on generating output observations, and when the
amount of collected observations is sufficient to yield a reasonable estimate, we
say that a checkpoint is achieved, and it is time the local analyzer to submit an
estimate to the global analyzer, located in the processor running akmaster.

The global analyzer calculates a global estimate, based on local estimates delivered
by individual engines, and verifies if the required precision was reached, in which
case the overall simulation is finished. Otherwise, more local observations are
required, so simulation engines continue their activities.

Whenever a checkpoint is achieved, the current local estimate and its variance are
sent to the global analyzer that computes the current value of the global estimate
and its precision. A checkpoint is associated with an estimate of type

(Ni, Xi, Vi),
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Fig. 1: Schematic diagram of Akaroa

where Ni is the number of observations collected by processor i until that moment
(minus the observations discarded in the transient phase), Xi is the sample mean
and Vi is the variance of the sample mean, obtained by applying one of the meth-
ods of analysis mentioned above. Particularly, we are interested in methods based
on batching approach, as they are widely accepted, but feasibility of its applica-
tion on a parallel environment (as that implemented by Akaroa-2) requires deeper
investigation.

There is a global analyzer (for each performance parameter being estimated) that
averages the estimates coming from the simulation engines. A natural manner of
averaging adequately several estimates coming from several simulation engines is
to form a linear combination of the estimates. The choice of weights can pro-
duce unbiased estimator of the global mean and its variance. One of this choice,
implemented and commonly used in Akaroa-2 is

¯̄X =

∑
Ni.Xi∑

Ni

(2.32)

V ar{ ¯̄X} =

∑
N2

i .V i∑
N2

i

(2.33)
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2.5.2 Performance issues

It is useful to know which factors yield direct influence on the efficiency of a parallel
computing environment. Quality of hardware is a very subjective criterion, but
communication among processes, on the other hand, is of extreme relevance. As
this was one major issue underlying the design of Akaroa, we can take it for granted.

Our considerations are restricted to steady-state estimation problem. Specifically,
we consider sampling schemes that delete some initial part of each run in order to
reduce initialization bias since the model cannot typically be started in its steady-
state distribution.

Ewing et al. [32] showed some potential limitations of classical batch-means-based
CIP under MRIP. The challenge is to find a computationally not too intensive
method for selecting the batch size, based on a trade-off between accuracy of the
batch size and computational complexity of the procedure.

We shall see that OBM and CSUM can be tuned in such a way to compensate the
negative effects of not complete fulfillment of the underlying assumptions (perfect
independence among batch means in the former, and normality among the random
variables Ai, in the latter), characterizing them as robust methods of analysis. This
is feasible due two new factors that enter in scene :

1. the degree of parallelization;

2. the possibility of improving batching estimators by increasing the degree of over-
lapping (for OBM only).

The benefits and cost of this factors have to be carefully analyzed and quantified.

Intuitively, when using the method of parallel replications on a large number of
processors, one expects to get final estimates after only a relatively short amount
of time. However, there are still a number of statistical problems associated with
estimation of steady-state parameter of stochastic processes through stochastic sim-
ulation using MRIP. These problems are, fundamentally, the same found in a
single-processor simulation environment, but they are augmented due parallelism.
The problems basically arise because any bias effects can be magnified on highly
parallel machines. Refer to works of Heidelberger and Welch [66] for a theoretical
analysis of this issue.
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3
Output Analysis Methodology

3.1 Introduction

Chapter 2 reviewed the literature necessary to complete understanding of this the-
sis. Chapter 3 describes the combined approaches used in this research to give
orientation for proposing, designing and evaluating the performance and feasibility
of some sequential confidence interval procedures that can be run under MRIP.

A brief overview of the methodology was provided in section 1.5; this chapter aims
to build on that introduction and to provide details of each decision adopted in
the design and followed in the experimental phase of this research. The chapter
is organized around the combination of three major approaches : the framework
proposed by Schriber and Andrews [116], the sequential coverage analysis proposed
by Pawlikowski, McNickle and Ewing [104], and the coverage function proposed
by Schruben [117]. Together they formed the cornerstone methodology followed in
this research.

3.2 A conceptual framework

Reporting the effectiveness of methodologies for confidence interval procedures, as
well as testing their validity was frequently confusing and not always comprehen-
sive and comparable. To structure the methods of constructing confidence intervals,
Schriber and Andrews [116] proposed a conceptual framework, which will be used
throughout this thesis. Figure 2 shows a schematic representation of this method-
ology that we are going to summarize in the sequence. Dashed figures stands for
not yet implemented facility.
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CIP The first row of the framework lists the confidence interval procedures (CIPs)
being investigated. The implemented ones were explained in section (2.3).

MOE To evaluate the behavior of each CIP (and make it possible the comparison
of their performance under MRIP), we must choose a set of measures of
effectiveness (MOE). For the sake of clarity, figure (2) shows one of such set
of measures for a single CIP.

The main measure of effectiveness of a CIP is the coverage. Coverage rates
tend to be substantially lower than the desired confidence level, even in those
cases in which procedures have an asymptotically consistent large sample
theory [51]. Usually, empirical studies of the efficiency of a new CIP measure
the coverage of a known parameter at a particular confidence level, e.g. 90%.
Schruben [117] demonstrated that some undesirable effects may occur for
other values of confidence level and, then, suggested the construction of an
empirical coverage function for a wider range of confidence level.

The second MOE of our interest is the sample size required by a CIP to give
a point and interval estimate with a desired precision. The smaller sample
size, the more efficient is the procedure, provided the coverage is acceptable.

The third main MOE is the variability of the length of the final confidence
intervals. For all simulation experiments we have adopted a 5%-relative pre-
cision as a stopping rule, defined as H/X̄(n). Thus, expected value of the
confidence interval half-width, which measures the accuracy of the estimation,
is not an issue in our experiments.

One can assess empirically this MOE by means of the coefficient of variation,
defined as the sample standard deviation expressed as a percentage of the
sample mean as shown in

CoV {H} =

√
V ar{H}
E{H}(3.1)

As we shall see later, MRIP is a natural variance reductor, thus it seems nat-
ural to assess the speedup as a fourth important MOE. A set of experiments
that emphasize the effect of applying a different number of processors will be
investigated.
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TOP For analyzing coverage we need a stochastic process with known analytical
solution (TOP – theoretical output process). We have chosen queuing systems
with increasing coefficient of variation of the service times Cx (see Fig. 3). In
Appendix C, the reader finds some details of the queuing models we adopted.

Larger Cx results in a more correlated process generated, situation where
most CIPs find difficulties.
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Fig. 3: Queuing models with increasing coefficient of variation of service times

M/D/1 : the arrivals are Poisson and the service time is a fixed, determin-
istic quantity. This is actually a reasonable model for the processing of
fixed length packets in a communication network, such as ATM.

M/E4/1 : the arrivals are Poisson and the service facility consists of four
serial, identical, exponentially distributed service stages. In many com-
munication systems, packets do not arrive individually, rather they still
come in a Poisson mode but in fixed-size bulk arrivals. Only one packet
will be in the service at any time. We can model this kind of systems
by means of M/Ek/1, where k is the bulk size [77].

M/M/1 : probably the most commonly used queue. It is assumed that the
interarrival times and the service are exponentially distributed. Suppose
there are m independent Poisson data streams, each supplying packets at
rate λ/m, arriving at a common ”concentrator” where they are mixed
into a single data stream of combined rate λ. Suppose that packet
lengths are independent and exponentially distributed so that packet
transmission times are exponentially distributed with mean transmission
time, say, 1/µ. The concentrator then forms an M/M/1 system which
statistically multiplexes the independent data stream into a single data
stream.

M/H2/1 : the arrivals are Poisson and the service facility consists of two par-
allel service stages. This is a reasonable model for representing systems
that may service more than one packet at a time, such as wavelength
division multiplexing.

PPI In the last row we find the practitioner’s processes of interest, i.e., the real
world problems we are ultimately interested in applying the investigated
methods of analysis. In this research, the PPI is an adaptation of the ”Si-
multaneous MAC Packet Transmission (SMPT)” approach to a CDMA based
mobile communication system with a varying number of mobile users. This
problem was proposed by Fitzek and Wolisz [42].

CC In order to choose which TOP behaves more closely to a given PPI, we need
some criteria of classification. Schriber and Andrews suggest the construction
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of three functions : the autocorrelation funtion, the partial autocorrelation
function and the spectral density function. These functions should be ”com-
pared to the corresponding functions for different classes of TOP’s until a
similarity is subjectively discovered”. Then, the supposed similarity should
be objectively examined by using a chi-square test of goodness of fit.

We have adopted practical rules of thumb based on a vast amount of rep-
etitions of simulations of the selected queuing systems. We observed that
transient phase is usually not so long in our PPI. Moreover, it takes very
long time to get an accurate estimate (e.g. when the confidence level is 0.95,
and traffic intensity is high). This effect can be seen for example when simu-
lating M/H2/1 queueing system. This way, CIPs with best performance for
this scenario will be used in the case study of Chapter 6.

3.3 Coverage analysis

Coverage of confidence intervals is defined as the relative frequency with which the
final confidence interval contains the true value. Experimental analysis of coverage
is essential for assessing the quality of practical implementations of methods used for
determining confidence intervals in steady-state simulation. A confidence interval
for the coverage can be estimated by means of [85] [104] :


c− z1−α/2

√
c(1− c)

nc

, c + z1−α/2

√
c(1− c)

nc


(3.2)

where c is the coverage, z1−α/2 is the (1 − α/2) quantile of the standard normal
distribution and nc is the number of repetitions of the coverage experiments.

Traditionally, coverage has been done in a fixed-sample basis. It is evident that
many information can be lost and coverage should be analyzed in a sequential
manner. Pawlikowski et al. [104] proposed a sequential coverage analysis based
upon three rules :

R1 Analysis of coverage should be stopped when the relative precision of the
estimated coverage satisfies a predetermined level. The same arguments
used for the sequential analysis of the mean of the output process can
be used here : One can control the statistical error of the analysis.

R2 To be representative, the analysis should start only after collecting a
minimum number of ”bad” confidence intervals. It is a safe way the au-
thors found to guarantee that the sample used for the coverage analysis
is statistically acceptable. All experiments in this research adopted a
minimum number of ”bad” confidence intervals equal 200.
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R3 Results from too short runs should be discarded and not taken into ac-
count, since, by chance, the stopping rule can be achieved too early,
which can produce bias in the coverage estimate.

Refer to [93] [94] [95] [104] for some examples of successful applicability of this
approach.

3.4 Coverage function

Confining our discussion to the one-parameter case, intuitively we want an estima-
tor to yield estimates whose distribution is close in some sense to the real parameter.
This broad criterion is not sufficient to resolve ambiguities.

CIPs are based on some assumptions in order to generate valid confidence intervals,
and deviations from these assumptions might affect their validity. It is important
to investigate the correctness of the assumptions taken by a CIP being studied, by
means of a detailed coverage analysis. Since we are dealing with various approx-
imations, we are investigating how well a CIP behaves for a range of confidence
levels η, i.e. how robust it can be.

When the assumptions are satisfied, the coverage η has a uniform distribution.
Schruben [117] suggests the construction of an empirical distribution function
Gη∗(η) with the observed values of confidence level η∗ for a sample size n. This
empirical function carries more information than a single value of coverage, e.g. at
η = 0.9, a common practice to summarize empirical results in coverage analysis.
Ideally, Gη∗(η) = η, but usually two other situations can arise :

• Gη∗(η) < η, when positive serial correlation has been ignored, which means that
the final η was overestimated.

• Gη∗(η) > η, when negative serial correlation has been ignored. This can lead to
waste of time in sequential procedures, since it may be connected with collecting
more observations than necessary for achieving a desired precision.

Let D be the relative deviation of the observed confidence level from the theoretical
value, defined as D = D+ + D−

µ
, where

D+ = max(Gη∗(η)− η, 0) and

D− = max(η −Gη∗(η), 0)

Large values of D+ suggest that the procedure generates confidence intervals larger
than necessary and, therefore, the procedure is not efficient. Large values of D−

suggest that the coverage frequency is lower than intended and the intervals are
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not valid. Since D+ ≥ 0 and D− ≥ 0, if deviations above and below the
nominal coverage are quite small, D → 0 and the coverage estimate is accurate.
Any reasonable CIP should have perfect coverage if the confidence level is set
high enough. By perfect coverage we mean the observed coverage approaches the
nominal coverage.

3.5 Statistical techniques

Statistical techniques are extremely useful in system performance evaluation. Con-
fidence interval procedures make use of some kind of statistical technique to certify
their hypotheses. A simple substitution of an statistical technique to another one is
enough to consider the resulting CIP a different procedure, with probably different
statistical performance. Among the tasks that such a statistical technique can deal
with inside a CIP, we can refer to briefly :

1. the end of the transient phase;

2. the independence among simulation output data;

3. how long a simulation run should be.

The selected techniques to solve this issues in this research are discussed below.

3.5.1 Stationarity test

The challenge in the first part of each CIP is to determine the truncation point
beyond which the remaining sequence preserves much of the original one and is
consistent with the objective of minimizing bias.

Gafarian et al. [48] surveyed the practical rules (available at that time) for deter-
mining the end of the transient period, and found that none of them performed
well in the practice. Stacey et al. [124] share this conclusion when they claim that
”these techniques behave quite badly when applied in practical simulation experi-
ments, especially when simulating heavily loaded systems”.

Lee and Oh [88] investigated two methods based on the Chaos Theory. Simulating
the average waiting time of an M/M/1 queuing system, they concluded that the
truncation point cannot be found in some cases.

A number of formal initialization bias tests have been developed that try to deter-
mine if a process contains an initial transient [99] [98]. These initial transient bias
test are typically hypothesis tests with null hypothesis, Ho : no initialization bias
presents, and alternative hypothesis, H1 : initialization bias present.

One of the most successful formal methods for estimating the length of the initial
transient period, based on statistical tests developed for testing stationarity of time
series proposed by Schruben et al. [121] can be found implemented in Akaroa-2,
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and we applied it in our experimental investigation. This statistical procedure tests
for remaining bias in simulation output after discarding some initial observations.
The test for stationarity performs the following way.

Let no be the smallest truncation point we are looking for, for which a first
approximation can be found by using one of the heuristic rules presented in [99] So
stated, the test verifies whether the remaining nt observations (after no) can be
considered a sample from a covariance stationary process.

A tactical problem for this test arises because we should know the variance σ2[X̄(n)]
and the number df of degrees of freedom for its χ2 distribution. Pawlikowski [99]
suggested that a robust estimate of the variance can be obtained if the estimation
use only a subsequence of the last nv of the nt observations.

If the test fails, the collected observations are discarded, and another value of no

is chosen. The stationarity portion test is repeated. Practical values to these
quantities and the pseudocode implemented in Akaroa-2 is given in [99].

3.5.2 Jackknife method

Suppose that an estimator ν̂ can be computed from m observations xj (j=1,. . . ,m).
Jackknife method groups those m observations into N groups of equal size M (N
may be equal to m, so M=1). Then, it eliminates one group of observations and
calculates the same estimator, say ν̂i (i=1,. . . ,N), from the remaining (N - 1)M
observations.

The pseudovalue Ji is defined as the following linear combination :

Ji = Nν̂ − (N − 1)ν̂i(3.3)

The jackknife estimator is defined as the average pseudovalue :

J̄ =
1

N

N∑

i=1

Ji = Nν̂ − (N − 1)
N∑

i=1

ν̂i

N
(3.4)

It can be proved that if ν̂ is biased, the jackknife estimator J̄ is less biased [75].

3.5.3 Von Neumann’s test

Let {X̄i(m) : i = 1, 2, . . . , b} be a sequence of b batch means of size m for a certain
sample size n. To test the level of correlation among the batch means, we compute
the following statistic :



3.5. Statistical techniques 39.........................................................................................................................................................

Cb = 1 −

b−1∑

i=1

(X̄i(m)− X̄i+1(m))2

2
b∑

i=1

(X̄i(m)− X̄(n))2

If X̄i(m) are normal, then under null hypothesis Ho of independence, Cb has mean
zero and variance (b−2)/(b2−1). For a specified quantile (1−β) from the standard

normal distribution, if Cb > zβ

√
(b− 2)/(b2 − 1), then the null hypothesis Ho can

not be accepted. The batch size should be increased, more observations should be
collected until completing the new sample size, and the von Neumann’s test should
be repeated.

FCb
, the distribution of Cb, should become already close to normal for small number

of batches (say b ≥ 8). Kleijnen et al. [76] emphasized that the power of this test
statistic is small if the number of batches is less than 100.

Hypothesis concerning variance can give poor results if population distribution
deviates appreciably from the normal distribution [126]. Therefore, one can make
use of a t-test for the mean, which also uses an estimate of the variance.

Since rank procedures are less computational demanding, an interesting idea is to
apply von Neumann’s test to rank-transformed data, the so-called Bartels test [11].
If Ri is the rank of the observation Xi, then the rank version of von Neumann’s
test is given by

RV N =

n−1∑

i=1

(R1 −Ri+1)
2

n∑

i=1

(Ri − R̄)2

(3.5)

Appendix B gives the critical values for the Rank version of von Neumann’s test.
Bartels showed that the rank version of von Neumann’s test is more powerful com-
pared to the nonrank version when the distributional assumptions of normality are
not satisfied. Very little is lost when the distributional assumptions for normality
are fully satisfied.

3.5.4 Test for normality

Tests for normality are very sensitive to sample size so can easily be misleading
(e.g. rejecting normality for minor deviations in large samples or failing to reject
for major deviations in small samples). The best test, in the sense of being powerful
against a broad range of alternative distributions, is the Shapiro-Wilk test [122].
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Given a sequence Xi (i=1,. . . n) :

1. Sort the sequence in increasing order, yielding Y1 ≤ Y2 ≤ . . . ≤ Yn.

2. Compute

S2 =
n∑

i=1

(Yi − Ȳ )2(3.6)

3. If n is even, n = 2k (if n is odd, n = 2k +1) compute

b =
dn/2e∑

i=1

(Yn−i+1 − Yi)ain(3.7)

where the coefficients ain are given in Appendix A.

4. Compute

W =
b2

S2
(3.8)

5. Quantiles of the distribution of W is given in Appendix A.

Small values of W are significant, i.e., indicate non-normality and the hypothesis
that the respective distribution is normal should be rejected.

3.6 Applicability of these statistical techniques

All CIPs here investigated take advantage of the Schuruben’s stationarity test to
determine when the transient period finished and, consequently the steady tate
phase begins. For application of this test, we did not make any attempt to tune
it, that is, no parameter was changed in order to improve the results (if it could
at all). We assume that the configuration and implementation proposed in [99] is
suitable for the kind of queueing models we have investigated.

Jackknife methodology was applied in the sequential CIPs based on Batch Means
to estimate the correlation coefficients. Alternative to that nonparametric method
could be the bootstrap, but this last one is much more time-consuming. There is
only one case when jackknife fails [31], namely, when the statistic to be estimated
is not smooth1, but it is not the case of correlation coefficients.

Jackknife estimators, though time-consuming, yields less biased estimates, but it
requires at least 100 batches to perform suitably. A parametric alternative we

1small changes in the data set cause only small change in the statistic
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have selected was the test of independence based on the statistic of von Neumann.
We found it interesting because its rank version can work with small number of
batches as short as 8, for example. It means that while Type II error is greater
than zero, the procedure can leave quicker the phase of determining the batch size,
and enter the estimation phase where the simulation engines work effectively in
parallel. There is a possibility to compensate the imprecise batch size selection due
a small number of batches, by increasing the degree of parallelization. In fact, we
have proved in Section 5.9 that this idea is correct.

Methods based on STS also need to determine the batch in such a way that the
asymptotic random variables Ai’s associated with each batch can be considered
normally distributed. Studies such as the Monte Carlo study of Shapiro and others
[123] have consistently shown that for testing goodness-of-fit of normal distribu-
tions, the Shapiro-Wilk statistic has superior power to other statistics in detecting
that the data comes from a wide range of other distributions.
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4
Design of sequential batching procedures

4.1 Introduction

Chapter 3 listed well established techniques and statistical tests that support the
methodology we are going to apply for validating and assessing the performance
of the sequential procedures we propose in this research. In this chapter, we look
over the the implementation details, and the relevant design decisions as well. As
stated in [59], care must be taken in the design and implementation of sequential
procedures to avoid inappropriate early termination. Sequential procedures, on the
other hand, tend to become asymptotically valid when the run lengths are relatively
long, since the width of the confidence interval approaches zero.

In sequential procedures the run length of simulation is a random variable itself,
as it depends on the output observations, and one has no longer direct control of
the amount of simulation time. The procedures we are going to propose in this
chapter rely on the assumption that the output process is stationary in both mean
and variance, since the presence of an initial transient response leads to both biased
estimate of steady state mean and to decreased coverage of the estimated confidence
intervals.

Although the negative effects of initialization bias are mitigated as the simulation
run length increases, the convergence may be slow [23], therefore the procedures
apply a test for detecting the extension of the transient period. The procedures
investigated by this research can be divided into two parts :

1. Sequential determination of the length of transient period (also known as output
process truncation), by means of a stationarity test proposed by Schruben et al.
[121] which explores the application of Brownian bridge statistics to the initial
transient problem. Observations of the transient period are then discarded.
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2. Sequential determination of the length of the simulation run that depends on the
desired accuracy requested by the user. We assume here that a single parameter is
estimated, namely the mean average time spent by a customer in a queuing system.

As a first approximation to the truncation point no, we have applied the following
heuristic rule proposed by Fishman [37] :

The initial transient is over after after no observa-
tions if the time series x1, x2, . . . , xno crosses the mean
X̄(no) k times.

By simulating some queuing systems for assessing the quality of our procedures,
we followed the recommendation of Gafarian et al.1 [48], applied successfully by
Pawlikowski and Asgarkhani [9] [101], and set k := 25.

4.2 Sequential procedures based on NOBM

Periodically, a sequential procedure collects estimates to verify whether the stop-
ping rule has been achieved or, in terms of MRIP, whether sufficient observations
have been collected in order to yield a reasonable intermediate estimate. At this
moment, n observations are available, distributed in b contiguous, nonoverlapped
batches of size m (n = m.b).

An important parameter in batching-based techniques is the selection of batch size.
The choice of the batch size has a direct impact on the quality of variance estimator
and the confidence interval [114]. Waiting times from a queue with a higher traffic
intensity are more positively correlated; in general, a larger batch size is required
if data are more correlated [21].

In order to select the optimal batch size m∗ which yields almost uncorrelated batch
means at a specified significance level β ( 0 < β < 1 ), correlation coefficients ρ̂k

of all possible lags k (k = 1, 2, . . . , L) could be estimated and compared against
β. The null hypothesis of statistically negligible correlation among batch means is
accepted if [1] :

|ρ̂k| < z1−βk/2

√
ˆvar(ρ̂k)(4.1)

1for an M/M/1/∞ queuing system
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where

βk is the significance level of each of the individual tests (βk := β/L),

z1−βk/2 is the upper (1− βk/2) critical point of the standard normal distribution,

ρ̂k is the sample kth lag autocorrelation given by

ρ̂k :=
1

b

b−k∑

i=1

(Xi − X̄(n))(Xi+k − X̄(n))

S2(b)
(4.2)

where S2(b) is the sample variance of the batch means, given in Equation 2.10,
and

ˆvar(ρ̂k) is the variance of the sample kth lag autocorrelation, estimated by Bartlett’s
approximation

ˆvar(ρ̂k) :=
1

b

{
1 + 2

k−1∑

v=1

ρ2
v

}
(4.3)

Obviously, it would make such test not feasible, so one can estimate L autocorrela-
tion coefficients of lag k (k = 1, 2, . . . , L) by means of jackknife estimators, which
are usually less biased than the ordinary autocorrelation coefficient estimators [91].
L should not exceed 10% of the number of batches [49].

By applying jackknife estimators as a secure method of improving the quality of
correlation coefficients estimation, we come across the limitation imposed by the
number of batches it should touch with. If this number is very large, nonparametric
calculations can be prohibitive. On the other hand, keeping the same number of
lags can degrade the decision about independence.

To get acceptable estimators of the correlation coefficients, at least 50 batches
should be available [16]; thus in the case of jackknife estimators one should use at
least 100 batches [99].

4.2.1 Classical NOBM

Pseudocode 1 presents the sequential run length control procedure based on
NOBM, already implemented in Akaroa-2. Fig. 4 is the corresponding flowchart.
The variables are explained in Tab. 1 :

The procedure collects n steady-state observations, and divide them into b con-
tiguous nonoverlapping batches of size m. For the sake of simplicity in terms of
implementation, n = b.m.
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m initial batch size indicated by the user;
b number of batches indicated by the user; due the

jackknife estimators, this number must be at least 100;
ε the relative precision requested by the user;

L number of autocorrelation coefficients;
β overall significance level of L tests against correlation;
βk significance level of each of the individual tests against

correlation;
contM counts the observations inside each batch;
contB counts the number of batches;
n sample size;
t grouping factor; batch size will increase as

a multiple of the initial batch size;
Uncorrelated boolean variable indicating whether the batch means

can be considered uncorrelated;
threshold reference value for accepting that correlation

among batch means is negligible;
z1��k=2 upper (1− βk/2) critical point of the standard

normal distribution.
ρ̂k correlation coefficient of lag k;
Bmean accumulates observations inside a batch;
BM array containing the batch means;

Tab. 1: Variables of the pseudocode for NOBM.

To assure that batch means are approximately independent, the procedure tests
the correlation coefficients for lag k(k = 1, . . . , L) against correlation. If these
correlations can not be considered negligible at a significance level β, the procedure
increments m and collects more observations until the sample size is n = b.m. Once
again, it divides the observations into b batches and repeats the correlation test.
When this test is successful, the procedure accepts the current batch size as the
optimal batch size m∗.

Having determined m∗ that guarantees acceptably low correlations among the batch
means, the procedure can enhance itself by applying Schmeiser’s finding and reor-
ganizes the observations into 10 ≤ b ≤ 30 batches, and then it enters in the esti-
mation phase to find the point and interval estimator by applying Equation 2.8 to
Equation 2.10.

While H/X̄(n) < ε, where ε is a pre-specified relative precision given by the sim-
ulation practitioner, the experiment continues generating batches of size m∗, reor-
ganizing them into 10 ≤ b ≤ 30 batches and testing the stopping rule. Each repli-
cation executing NOBM uses a single-pass algorithm to compute the batch means,
the sample mean, and the the sample variance. The computational complexity
required is O(n) and O(1) storage.

Concerning the test of independence, as we have already said, we estimated the
correlation coefficients by applying the nonparametric method of jackknifing. It
is a robust approach, though it tends to be computationally intensive, but it has
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the side benefit of reducing statistical bias of not unbiased estimators. It is a
simple manner to improve the quality of correlation coefficients estimation. The
goal behind our implementations was to make them as accurate as possible, and
then to reduce the completion time by adding more processors to the simulation
experiments.

A plenty of tests of independence in time series can be found in the literature; see
[5] and [79] for a review. They have been shown tricky, could cost higher level of
demand than jackknife, and, more important, when one performs statistical tests,
there is a possibility of two types of errors :

Type I An event is not expected to occur but it does; or
Type II An event is expected to occur but it doesn’t.

Nevertheless, during the experimentation (see Section 5.9), having in mind our
hypothesis H2

2, we used the statistical test of von Neuman, proposed by Fishman
(see Equation 2.30), to collect evidence to validate H2.

It does not mean it is possible to make a test more powerful by using more proces-
sors. Kleijnen et al. [76] proved that the power of von Neuman’s test is small if the
number of subruns (batches in our case) is less than 100. Of course, using fewer
batches, one would speedup up the test, but Type II error would be higher, which
would yield a poor coverage. Chapter demonstrates that if one uses few batches
in the von Neuman test but increase the degree of parallelization under MRIP, the
coverage can be improved.

2imprecision can be compensated by putting more processors to work together
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Pseudocode 1 Sequential procedure based on classical NOBM

1: m := 100; b := 100
2: ε := 0.05; β := 0.1
3: L := 0.1 ∗ b
4: βk := β/L
5: Uncorrelated := false
6: n := 0; contM := 0; contB := 0; Bmean := 0; t := 1

Require: Observations are in the stationary phase
7: while (not Uncorrelated) do
8: repeat
9: while (contM < t ∗m) do

10: Collect an observation X
11: n := n + 1
12: contM := contM + 1
13: Bmean := Bmean + X

{This loop remains until collecting a complete batch}
14: end while
15: BM [contB] := Bmean/contM
16: contB := contB + 1; contM := 0

{This loop remains until collecting b batches}
17: until (n = b ∗ t ∗m)

{Test batch means for correlation at significance level β}
18: Compute correlation coefficients of lags from 1 to L

19: threshold := z1−βk/2

√
ˆvar(ρ̂k)

20: for k = 1 to L do
21: if ρ̂k > threshold then
22: t := t + 1
23: Join each t*m observations and find their means
24: contB := (t - 1) * contB / t;
25: Save batch means in the first contB positions of BM[ ]
26: contM := 0; Bmean := 0; Uncorrelated := false; break
27: else
28: Uncorrelated := true
29: end if
30: end for

{This loop remains until batch means can be considered uncorrelated}
31: end while

{For estimation phase, 10 ≤ b ≤ 30}
32: b := 25
33: Form b batches by joining every four batches
34: t := 4 ∗ t
35: Compute the sample mean X̄(n) and the half-width confidence interval H
36: while (H/X̄(n) > ε) do
37: Collect t*m observations
38: Form b batches
39: Compute the batch means
40: Compute the sample mean X̄(n) and the confidence interval half-width H
41: end while
42: StopSimulation = yes
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Fig. 4: Flowchart of a sequential procedure based on classical NOBM.
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4.2.2 Design of a sequential procedure based on NOBM/GW

Pseudocode 2 presents a proposal of a sequential run length control procedure
based on NOBM/GW, and Fig. 6 is the corresponding flowchart. The variables are
explained in Tab. 2 :

m initial batch size indicated by the user;
b number of batches indicated by the user; due the

jackknife estimators, this number must be at least 100;
ε the relative precision requested by the user;

L number of autocorrelation coefficients;
β overall significance level of L tests against correlation;
βk significance level of each of the individual tests against

correlation;
contM counts the observations inside each batch;
contB counts the number of batches;
n sample size;
t grouping factor; batch size will increase as

a multiple of the initial batch size;
Uncorrelated boolean variable indicating whether the batch means can

be considered uncorrelated;
Incr number of additional batches to be added at consecutive

checkpoints whenever the stopping rule is not achieved;
threshold reference value for accepting that correlation

among batch means is negligible;
z1��k=2 upper (1− βk/2) critical point of the standard

normal distribution.
ρ̂k correlation coefficient of lag k;
Bmean accumulates observations inside a batch;
BM array containing the batch means;

Tab. 2: Variables of the pseudocode for NOBM/GW.

Each replication executing NOBM/GW uses a single-pass algorithm to compute
the batch means, the sample mean, and the sample variance. Despite the number
of batches b →∞ as n →∞, the computational effort required is still O(n) and
O(1) storage.

4.2.3 Increment selection

Glynn and Whitt [58] advised about the lack of consistency of estimators based on
a fixed number of batches. It means that sequential CIPs based on batch means
should have the number of batches increased as the run length increases. To my
knowledge, no one has clearly stated how the number of batches should increase.

Our hypothesis H3 claims that after selecting the optimal batch size m∗, obser-
vations are reorganized into 10 ≤ b ≤ 30 batches and stopping rule is checked.
Whenever the stopping rule is not achieved, the number b of batches should be
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incremented slightly as long as the required precision is not yet achieved. Note
that NOBM is a specific case of NOBM/GW when Incr=0.

Let us investigate empirically our hypothesis. In this experiment, we want to
construct a confidence interval at 95% of confidence level, when simulating the
mean waiting time of clients of queuing systems heavy loaded, e.g. M/M/1 and
M/H2/1 when traffic intensity is 95%. After grouping the observations according
to Schmeiser’s findings (b=25), we increased b by incr batches (incr = 2, 4, and
8), each time the stopping rule failed. The stopping rule is a 5%-relative precision.

We applied the sequential coverage analysis described in section 3.3 : We repeated
this sequential simulation over and over, until the relative precision of the coverage
was less than or equal 5%. All simulations were executed using strictly nonoverlap-
ping sequences of pseudorandom numbers, generated by a multiplicative congruen-
tial generator with multiplier 75 = 16807 and modulus 231−1. Fig. 5 summarizes
the experiment for a single processor.

The horizontal dashed line at 0.95 indicates the nominal coverage, that is, the
desired confidence level of the final confidence interval. The horizontal dashed
line at 0.90 indicates the minimum value of coverage that we can accept (in this
research) as reasonable. We call hereafter that region between 0.90 and 0.95 the
acceptance region.

For low/medium values of traffic intensity of M/M/1, the coverage is close to the
confidence level for any value of increment, but as traffic intensity increases, adding
more increment seems to yield some coverage erosion. For low/medium values of
traffic intensity of M/H2/1, small increment is still better, but for very high traffic
intensity there is no difference in choosing small or large increment. Therefore,
if we want to be in the the safe side, small increment should be enough to yield
asymptotic valid confidence interval.

In terms of run length, there is no significative modification as the increment is
increased. The same can be said of the coefficient of variation of the final confidence
interval half-width as one can see in Table 3. CoV{H} stands for coefficient of
variation of the final confidence interval half-width, and R stands for how many
time the coverage experiment was repeated.
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Fig. 5: NOBM/GW : coverage analysis for different values of increment.

M/M/1 M/H2/1

incr ρ run length CoV{H} R run length CoV{H} R
0.50 42.871 0.0412 2554 79.333 0.0273 2708

2 0.90 466.885 0.0305 1552 706.628 0.0311 1416
0.95 1496.79 0.0329 1260 2254.59 0.0325 1077
0.50 42.847 0.0420 2690 80.596 0.0280 2655

4 0.90 467.206 0.0302 1581 701.725 0.0311 1289
0.95 1494.36 0.0344 1145 2220.90 0.0345 1016
0.50 43.424 0.0432 2614 81.424 0.0288 2700

8 0.90 466.827 0.0301 1672 701.785 0.0311 1289
0.95 1494.95 0.0344 1141 2258.70 0.0332 1048

Tab. 3: NOBM/GW : effect of increment over run length and CoV{H}
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Pseudocode 2 Sequential procedure based on NOBM/GW

1: m := 100;b := 100; incr := 2
2: ε := 0.05; β := 0.1
3: L := 0.1 ∗ b
4: βk := β/L
5: Uncorrelated = false
6: n := 0; contM := 0; contB := 0; Bmean := 0; t := 1

Require: Observations are in the stationary phase
7: while (not Uncorrelated) do
8: repeat
9: while (contM < t*m) do

10: Collect an observation X
11: n := n + 1
12: contM := contM + 1
13: Bmean := Bmean + X

{This loop remains until collecting a complete batch}
14: end while
15: BM [contB] := Bmean/contM
16: contB := contB + 1; contM := 0

{This loop remains until collecting b batches}
17: until (n = b ∗ t ∗m)

{Test batch means for correlation at significance level β}
18: Compute correlation coefficients of lags from 1 to L

19: threshold := z1−βk/2

√
ˆvar(ρ̂k)

20: for k = 1 to L do
21: if ρ̂k > threshold then
22: t := t + 1
23: Join each t*m observations and find their means
24: contB := (t - 1) * contB / t;
25: Save batch means in the first contB positions of BM[ ]
26: contM := 0; Bmean := 0; Uncorrelated := false; break
27: else
28: Uncorrelated := true
29: end if
30: end for

{This loop remains until batch means can be considered uncorrelated}
31: end while

{For estimation phase, 10 ≤ b ≤ 30}
32: b := 25
33: Form b batches by joining every four batches
34: t := 4 ∗ t
35: Compute the sample mean X̄(n) and the half-width confidence interval H
36: while (H/X̄(n) > ε) do
37: Collect incr*t*m observations
38: b := b + incr
39: Form b batches
40: Compute the batch means
41: Compute X̄(n) and H
42: end while
43: StopSimulation = yes
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4.3 Design of a sequential procedure based on SBM

Pseudocode 3 presents a proposal of a sequential run length control procedure
based on SBM, and Fig. 7 is the corresponding flowchart. The variables are ex-
plained in Tab. 4 :

m initial batch size indicated by the user;
b number of batches indicated by the user; due the

jackknife estimators, this number must be at least 100;
ε the relative precision requested by the user;

L number of autocorrelation coefficients;
β overall significance level of L tests against correlation;
βk significance level of each of the individual tests against

correlation;
contM counts the observations inside each batch;
contB counts the number of batches;
n sample size;
t grouping factor; batch size will increase as

a multiple of the initial batch size;
Uncorrelated boolean variable indicating whether the batch means can

be considered uncorrelated;
s amount of observations to be discarded. We adopted

20% of the initial batch size.
Incr number of additional batches to be added at consecutive

checkpoints whenever the stopping rule is not achieved;
threshold reference value for accepting that correlation

among batch means is negligible;
z1��k=2 upper (1− βk/2) critical point of the standard

normal distribution.
ρ̂k correlation coefficient of lag k;
Bmean accumulates observations inside a batch;
BM array containing the batch means;

Tab. 4: Variables of the pseudocode for SBM.

Each replication executing SBM, like the previous CIPs, uses an single-pass algo-
rithm. Though we have decided for increasing the number of batches while the
simulation run length increases, and discard some observations between consecu-
tive groups of m observations, the computational effort required is still O(n) and
O(1) storage.

Whenever the test for independence of the batch means fails, the procedure groups
contiguous batches but does not fill the gaps resulted from discarding. This is a
design decision based on the fact that either one should save that discarded obser-
vations and then restore them after unsuccessful tests, or one should fill the gaps
with new observations before collecting more observations. In our point of view,
both approaches should increase unnecessarily the complexity of the algorithm, and
collecting more observations instead should be computationally more efficient. Ad-
ditionally, by filling gaps with new observations (collected in future time intervals,



56 Chapter 4. Design of sequential batching procedures.........................................................................................................................................................

thus at different time than earlier removed observations) would lead to random
mixing of the order of analyzed time series. Potentially, it can introduce causality
errors in the analyzed samples of output data. The statistical properties arising
from this decision will be here investigated.

Therefore, initiating with a batch size m, the last s observations of each batch are
discarded, yielding a batch of size (m − s). If the test for independence among
the batch means fails, observations are grouped in such a way that the next batch
size is 2(m− s). Observations continue being collected as a multiple of m, always
discarding the last s ones. In case of a new unsuccessful test, the next batch size
would be 3(m− s), and so on.

This is a trial to weaken even more the correlation structure, and to reduce the
complexity of a sequential procedure. Otherwise, one should :

• save the discarded observations;

• joint them back to each batch whenever the test for independence fails;

• calculate batch means before continuing collecting more observations;

• joint each t batches;

• collect more observations;

• and so on.

What we expect to have with our proposed procedure are batches with smaller size
compared to NOBM, but also less correlated than the original series. It differs from
the original proposal in the sense that the authors suggest discarding observations
after collecting a batch of size m.

An analogy with our proposal shows that, if the first test for independence among
the batch means fails, the original SBM groups batches in such a way that the next
batch size is 2m − s. Observations continue being collected as a multiple of m,
always discarding the next s observations. In case of a new unsuccessful test the
next batch size would be 3m− 2s, and so on.

4.3.1 SBM with increasing number of batches

When applying SBM, should we increase the number of batches after each check-
point fails in the test of relative precision? We simulated an M/M/1 to construct
a confidence interval at 95% of confidence level, when estimating the mean waiting
time of its clients.

At first, we considered no increment of batches at all, and repeated each experi-
ment R times for different values of ρ. The number R of repetitions is obtained
sequentially accordingly to the sequential analysis described in section 3.3. In the
sequence, we assumed that Glynn and Whitt’s findings should be followed, and we
increased the number of batches as we did in NOBM/GW. We adopted a spacing
that had given the most promising results (in terms of coverage) during pilot runs.
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SBM ρ cov ±Hcov run length CoV{H} R
0.10 0.931± 0.010 62.085 0.0576 2479

no 0.50 0.933± 0.010 55.864 0.0540 2484
incr 0.90 0.906± 0.015 462.073 0.0399 1585

0.95 0.853± 0.022 1494.36 0.0344 1153
0.10 0.935± 0.009 53.121 0.0303 2697

with 0.50 0.939± 0.009 48.703 0.0343 2738
incr 0.90 0.913± 0.014 472.768 0.0297 1683

0.95 0.876± 0.019 1505.77 0.0335 1243

Tab. 5: SBM with and without increasing number of batches

Table 5 makes it clear that SBM with increment yields coverage a little bit better,
always requires less observations to yield a final result, and the confidence intervals
are more stable. That’s our choice.

A rule of thumb derived from the observation of the experiments of this research
showed us that when a CIP (or certain configuration of a CIP) performs better than
another one (or better than other configuration of the same CIP), the sequential
coverage analysis requires more repetitions to yield a coverage with the required
precision. Note that R for SBM with no increment is consistently lower than
the corresponding for SBM with increment. That means, SBM with increment of
batches is better than SBM with no increment. The direct comparison of the main
MOE’s (coverage, run length and CoV{H}) confirm that conclusion.

4.3.2 Spacing selection

If one could guess in advance how should be the magnitude of the spacing s suit-
able to the underlying process being simulated, it would save computation time to
stablish this quantity and, equivalently, shorten the batch size selection phase.

We investigated the effect on coverage when we select s as a percentage of the initial
batch size m given by the user. Table 6 illustrates the performance of this approach,
when the mean waiting time of a 95%-loaded M/M/1 and M/H2/1 queues were
simulated by using s=0.1m, 0.2m, 0.3m and 0.4m.

By simulating M/M/1, coverage was roughly equal for all selected values of spacing.
Spacings 0.2m and 0.4m required less observations than the other two, but the
former produced more stable confidence intervals.

By simulating M/H2/1, some differences in coverage did appear, and spacing 0.2m
seems to be more promising. Additionally, this spacing required less observations,
but stability of confidence intervals were practically identical. Therefore, 0.2m will
be used as the spacing in our empirical investigation of SBM performance.
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Pseudocode 3 Sequential procedure based on SBM

m := 100; b := 100; incr := 2
s := 0.2 ∗m
ε := 0.05; β := 0.1
L := 0.1 ∗ b
βk := β/L
Uncorrelated := false
n := 0; contM := 0; contB := 0; Bmean := 0; t := 1

Require: Observations are in the stationary phase
while (not Uncorrelated) do

repeat
while (contM < t*m) do

Collect an observation X
n := n + 1
contM := contM + 1
if contM ≤ (m− s) then

Bmean := Bmean + X
else

Discard this observation
end if
{This loop remains until collecting a complete batch}

end while
BM [contB] := Bmean/(m− s)
contB := contB + 1; contM := 0
{This loop remains until collecting b batches}

until (n = b ∗ t ∗m)
{Test batch means for correlation at significance level β}
Compute correlation coefficients of lags from 1 to L

threshold := z1−βk/2

√
ˆvar(ρ̂k)

for k = 1 to L do
if ρ̂k > threshold then

t := t + 1; contB := (t - 1) * contB / t;
Join each (t*m - s) observations and find their means
contM := 0; Bmean := 0
Uncorrelated := false; break

else
Uncorrelated := true

end if
end for
{This loop remains until batch means can be considered uncorrelated}

end while
{For estimation phase, 10 ≤ b ≤ 30}
b := 25; t := 4 ∗ t
Form b batches by joining every four batches
Compute X̄(n) and H
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Sequential procedure based on SBM
while (H/X̄(n) > ε) do

b := b + incr
repeat

Collect an observation X
n := n + 1; contM := contM + 1
if contM ≤ (m− s) then

Bmean := Bmean + X
else

Discard this observation
end if
BM [contB] := Bmean/(m− s)
contB := contB + 1; contM := 0

until (n = b ∗ t ∗m)
Form b batches
Compute X̄(n) and H

end while
StopSimulation = yes

queue spacing ρ η cov ±Hcov run length CoV{H} R
0.1m 0.95 0.95 0.880± 0.019 1519.01 0.0324 1256

M/M/1 0.2m 0.95 0.95 0.876± 0.019 1505.77 0.0335 1243
0.3m 0.95 0.95 0.869± 0.020 1520.51 0.0331 1236
0.4m 0.95 0.95 0.876± 0.019 1498.34 0.0378 1238
0.1m 0.95 0.95 0.848± 0.022 2244.35 0.0337 1089

M/H2/1 0.2m 0.95 0.95 0.862± 0.021 2206.10 0.0330 1143
0.3m 0.95 0.95 0.850± 0.023 2262.55 0.0328 1078
0.4m 0.95 0.95 0.852± 0.021 2262.28 0.0335 1152

Tab. 6: Spacing selection for SBM

4.4 Design of a sequential procedure based on OBM

Pseudocode 4 presents a proposal of a sequential run length control procedure
based on OBM, and Fig. 8 is the corresponding flowchart. The variables are ex-
plained in Tab. 7 :

Although overlapped batch means are indeed dependent, we use the same heuristic
to find the optimal batch size m∗ as in the classical estimator, and apply Schmeiser’s
suggestion and apply the overlapping algorithm, with each sub-batch initiating a
new overlapped batch.

After collecting n = b.m observations, the procedure computes so many batch
means as is the number of overlapped batches. To save storage, we maintain in
memory just the last batch. As a new observation arrives it is appended at the end
of the batch while the first observation of the batch is deleted. This mechanism
is generically known as +1-1. A counter advises when the degree of overlapping
is achieved, which means that a batch mean has to be calculated. The procedure
goes on until the stopping rule is met.
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m initial batch size indicated by the user;
b number of batches indicated by the user; due the

jackknife estimators, this number must be at least 100;
ε the relative precision requested by the user;

L number of autocorrelation coefficients;
β overall significance level of L tests against correlation;
βk significance level of each of the individual tests against

correlation;
contM counts the observations inside each batch;
contB counts the number of batches;
n sample size;
t grouping factor; batch size will increase as

a multiple of the initial batch size;
Uncorrelated boolean variable indicating whether the batch means

can be considered uncorrelated;
threshold reference value for accepting that correlation

among batch means is negligible;
z1��k=2 upper (1− βk/2) critical point of the standard

normal distribution.
ρ̂k correlation coefficient of lag k;
Bmean accumulates observations inside a batch;
BM array containing the batch means;
doo degree of overlapping;

Tab. 7: Variables of the pseudocode for OBM.

Higher degrees of overlapping implies in larger number of batch means to be com-
puted, which also means more values are used in the estimation. Statistically, it
implies in lower variance and, expected better coverage.

4.4.1 Degree of overlapping

If one divides each batch into two equal sized parts, each one with m∗/2 observa-
tions, in such a way that each part initiates a new (overlapped) batch of size m∗,
one can form 2(b− 1)+1 batches. By dividing each batch in four equal sized parts
one obtains 4(b− 1) + 1 batches, and so on (see Table 8).

The last case (m∗/m∗) is known as complete overlap, that is each observation begins
a new (overlapped) batch. Meketon and Schmeiser [89] suggested an asymptotic
number of freedom equal 1.5(b− 1). The other cases are generally known as partial
overlap, and the associated degree of freedom for different degrees of overlapping
can be found by applying the results of Welch [131], when he investigated the
relationship between overlapping batch means and the spectral estimator.

However, to get a 1/3 variance reduction when compared to the variance of the
classical NOBM, Meketon and Schmeiser let b →∞ [113], which means that prob-
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Pseudocode 4 Sequential procedure based on OBM

1: m := 100;b := 100; ε := 0.05; β := 0.1
2: L := 0.1 < ∗b
3: βk := β/L
4: Uncorrelated := false
5: n := 0; contM := 0; contB := 0; Bmean := 0; t := 1

Require: Observations are in the stationary phase
6: while (not Uncorrelated) do
7: repeat
8: while (contM < t ∗m) do
9: Collect an observation X

10: n := n + 1
11: contM := contM + 1
12: Bmean := Bmean + X

{This loop remains until collecting a complete batch}
13: end while
14: BM [contB] := Bmean/m; contB := contB + 1; contM := 0

{This loop remains until collecting b batches}
15: until (n = b ∗ t ∗m)

{Test batch means for correlation at significance level β}
16: Compute correlation coefficients for lags from 1 to L

{threshold := z1−βk/2
σ̂[ρ̂k]}

17: for k = 1 to L do
18: if ρ̂k > threshold then
19: t := t + 1; contB := (t - 1) * contB / t;
20: Join each t*m observations and find their means
21: Save batch means in the first contB positions of BM[ ]
22: contM := 0; Bmean := 0; Uncorrelated := false; break
23: else
24: Uncorrelated := true
25: end if
26: end for

{This loop remains until batch means can be considered uncorrelated}
27: end while

{For estimation phase, 10 ≤ b ≤ 30}
28: b := 25
29: Form b batches
30: t := 4 ∗ t
31: Compute batch means for all (n - t*m + 1) possible batches
32: Save the observations of the last batch
33: Compute X̄(n) and H
34: Compute H
35: while (H/X̄(n) > ε) do
36: Collect an observation X
37: Add X to the end of the saved batch
38: Delete the first observation of the saved batch
39: Compute X̄(n) and H
40: end while
41: StopSimulation = yes
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Fig. 8: Flowchart of a sequential procedure based on OBM.

ably those differences in degrees of freedom are practically irrelevant in terms of
sequential procedure, especially for very high levels of traffic intensity.

Results for simulation of M/M/1 with P=1, shown in Table 4.5, support this state-
ment. For just one reason we have chosen to use the complete overlapping : it offers
greater flexibility for achieving better speedup under MRIP, since we can control
the granularity of checkpoints.

Each replication executing OBM uses a single-pass algorithm, but to achieve com-
putational complexity O(n), OBM requires saving the previous m observations,
and each new batch mean is obtained by adding and subtracting one observation

Degree Number degrees
of overlap of batches of freedom

m∗/2 2(b− 1) + 1 1.33
m∗/4 4(b− 1) + 1 1.45
m∗/8 4(b− 1) + 1 1.48
. . . . . . . . .

m∗/m∗ m(b− 1) + 1 1.50

Tab. 8: Degrees of freedom for OBM, following Welch [131]
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from the previous batch size, so it needs O(m) storage [61].

Degree of run
overlap ρ η cov ±Hcov length CoV{H}
m∗/2 0.95 0.95 0.949± 0.011 2145.911 0.0257
m∗/4 0.95 0.95 0.928± 0.014 2129.494 0.0270
m∗/8 0.95 0.95 0.940± 0.012 2131.604 0.0268

m∗/m∗ 0.95 0.95 0.949± 0.010 2212.278 0.0255

Tab. 9: OBM performance for different degrees of overlapping

4.5 Design of a sequential procedure based on STS

Pseudocode 5 presents a proposal of a sequential run length control procedure
based on STS/CSUM, and Fig. 9 is the corresponding flowchart. The variables are
explained in Tab. 10 :

m initial batch size indicated by the user;
b number of batches indicated by the user; due the

jackknife estimators, this number must be at least 100;
ε the relative precision requested by the user;

L number of autocorrelation coefficients;
β overall significance level of L tests against correlation;
βk significance level of each of the individual tests against

correlation;
contM counts the observations inside each batch;
contB counts the number of batches;
n sample size;
t grouping factor; batch size will increase as

a multiple of the initial batch size;
Ai random variables associated with ith batch;
isNormal indicates whether (or not) the random variables Ai’s

can be considered as being normally distributed;
S2 temporary variables to be used in the

Shapiro-Wilk test;
v temporary variables to be used in the

Shapiro-Wilk test;
W the Shapiro-Wilk statistic;
Wα threshold of the Shapiro-Wilk test;

Tab. 10: Variables of the pseudocode for OBM.
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To estimate a confidence interval I for the steady-sate parameter µ = E[Xi], such
that µ ∈ I with probability η, one should :

• guarantee, as accurate as possible, the elimination of initialization bias

• group the observations into b adjacent, nonoverlapping equal-sized batches with m
observations in each batch (n = b.m).

• center the output series to have a mean equal zero :

Si(k) = X̄i,m − X̄i,k,(4.4)

where X̄i,k is the average of the first k observations of batch i (k = 1, . . . , m, Si(0) =
0).

• scale the magnitude of the sequence, dividing Si(k) by
√

Mσ/k. Here the constant
σ is given by :

σ2 = σ2
y + 2

∞∑

i=1

γy(i) = limn→∞nV ar(X̄(n))(4.5)

with

σ2
y = V ar(Xi)

and

γy(i) = Cov(X0, Xi)

• scale the series index to the unit interval t=k/M, yielding the standardized time
series :

Ti(t) =
[mt]Si([Mt])

σ
√

m
, 0 ≤ t ≤ 1,(4.6)

where [.] denotes the greatest integer function.

• apply a central limit theorem to obtain a probability model for the behavior of
the sequence Ti(t). This probability model converges asymptotically to a standard
Brownian bridge process.

• use the properties of the limiting Brownian bridge process to construct a confidence
interval for the original time series.
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Pseudocode 5 Sequential procedure based on STS
1: m := 100
2: b := 10
3: isNormal = no

Require: Observations are in the stationary phase
4: while (not isNormal) do
5: Collect n = b ∗m observations

{Compute Ai for each batch}
6: for i = 1 to b do
7: for j = 1 to m do
8: Ai =

∑m
j=1[(m + 1)/2− j]X(i−1)m+j

9: end for
10: end for

{Test Ai’s for normality by applying Shapiro-Wilk test}
{Ho : Ai’s are normally distributed}

11: Compute S2 =
∑b

i=1 Ai
2 − 1/b(

∑b
i=1 Ai)

2

12: Calculate v =
∑k

i=1 ab−i+1(Xb−i+1 −Xi), k = b/2
{ab−i+1 are the tabled S-W coefficients; see Appendix A}
{S-W statistic}

13: W = v2/S2

{α is the percentage point of the test; see Appendix A}
14: if W < Wα then
15: the null hypothesis Ho is rejected
16: end if
17: end while
18: Compute the point estimator : X̄n = 1/n

∑n
i=1 Xi

19: V̂T = 12
(m3−m)

∑b
i=1 Ai

2

20: Compute H = t2b−1,1−α
2

√
V̂T

n

{ε is the desired relative precision}
21: while ( H

X̄n
> ε) do

22: Increase m
23: Collect n = b ∗m observations
24: Compute Ai for each batch
25: Compute the point estimator : X̄n = 1/n

∑n
i=1 Xi

26: Compute H = t2b−1,1−α
2

√
V̂T

n

27: end while
28: StopSimulation = yes
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Fig. 9: Flowchart of a sequential procedure based on STS/CSUM.

Schruben [119] and Goldsman/Schruben [62] developed some estimators based on
different characteristics of the Brownian bridge process. After grouping the ob-
servations into b batches of size m, and computing the mean of the ith batch as

being X̄i(m) = m−1
m∑

i=1

Xi and the grand mean X̄(n) = b−1
b∑

i=1

X̄i(m), the classical

interval estimator at a confidence level (1−α) is given by Iclass = [X̄(n)±Hclass],

with

Hclass = tb−1,1−α
2

√√√√
b∑

i=1

(X̄i(m)− X̄(n))2

b(b− 1)

where tb−1,1−α
2

is the upper (1 − α
2
) critical point for the t distribution with b-1

degrees of freedom at 1− α confidence level.

After standardizing each observation one can find the random variables Ai, the
asymptotic scaled sum of Ti(t), for each batch by means of
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Ai = σ
√

m
m∑

k=1

Ti(t)(4.7)

=
m∑

k=1

k∑

j=1

(X̄j,m − X̄j,k)

A simplification can be found toward facilitating a sequential procedure. From
(2.21) and (2.20) one can find :

Ai = σ
√

m
m∑

k=1

[k(X̄i,k − X̄i,m)

σ
√

m

]

=
m∑

k=1

k
[1

k

k∑

j=1

X(i−1)m+j − 1

m

m∑

j=1

X(i−1)m+j

]

=
m∑

k=1

[ k∑

j=1

X(i−1)m+j − k

m

m∑

j=1

X(i−1)m+j

]

Ai =
m∑

k=1

[
j − m + 1

2

]
X(i−1)m+j(4.8)

Then, for sufficiently large m the random variables Ai become approximately IID
normal. By computing the statistic

A =
b∑

i=1

12Ai
2

(m3 −m)
+ m(X̄i − X̄)2

an asymptotically valid combined classical-sum interval estimator [X̄ ±H] can be
constructed for performance parameter µ, considering that

Vcsum =
A

2b− 1
(4.9)

and

H = t2b−1,1−α/2

√
A

2b− 1
(4.10)

The computational effort required in standardizing a time series is roughly equal
to summing the original time series twice [119], that is, STS/CSUM requires O(n)
computation and O(1) storage.
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4.5.1 Variants

The problem of testing normality is basic to much statistical theory and practice.
Many tests to check the adequacy of the assumption of normality have been pro-
posed. Good references are [27] and [109].

Studies such as the Monte Carlo study of Shapiro and others [123], using a range of
populations and sample sizes, have consistently shown that for testing goodness-of-
fit of normal distributions, the Shapiro-Wilk statistic has superior power to other
statistics for testing a complete sample for normality. Fishman [40] pointed out
some other interesting properties of this test.

As we intend to apply such test in sequential procedures, we should take into ac-
count that it can be repeated many times until the incoming data can be considered
normally distributed. Thus, each part of this test has to be as simple and efficient
as possible.

Concerning procedures based on STS, asymptotic arguments found in [120], show
that the batch size should grow as the sample size increases. The common method
is to fix the number of batches, but keeping it not so large. Schruben [120] suggests
using 10 or 20 batches, similar to the results of Schmeiser. Keeping in mind that
choosing a small number of batches means leads earlier to the test for normality,
we decided to work with 10 batches.

Remember from section 3.5.4 that the Shapiro-Wilk test for normality requires that
the sequence be sorted in increasing order. By choosing a small number of batches
we do not need a sophisticated sorting procedure, but a simple one such as bubble
sort, where each phase of the algorithm consists of ”passing through” the unsorted
portion of the sequence, by comparing adjacent values and changing their positions
that are out of order.

In fact, we implemented two versions of CSUM. Taking into account that after
selecting m∗, every time the relative precision fails the procedure must collect more
observations and recalculate the Ai’s, and this can be time-consuming. The first
version (that will used as reference for the empirical investigation in the next chap-
ter), hereafter called CSUM.1, collects a entire new batch of observations and in-
crease b. It has been demonstrated to accelerate the procedure.

The second version, hereafter called CSUM.2, was implemented towards the speedup
issues we discuss in the following chapter. It follows Schruben’s suggestion and fix
the number of batches. The difference is that the procedure does not need to collect
a new batch every time the stopping condition test fails. Instead, the procedure
can collect a number of observations that is multiple of b. This simple artefact
improves considerably the granularity of checkpoints.
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4.6 Summary

This chapter presented the design of sequential batch-means-based CIPs we inves-
tigated in this research. All of them apply a stationarity test for detecting the end
of the transient period, and then they discard the observations collected until then.

NOBM/GW, SBM and OBM select the (optimal) batch size m∗ by increasing the
batch size of 100 batches, and test batch means against correlation. Every m
observations collected, SBM discards systematically the last s observations. At
least for the queuing systems here investigated, we found reasonable to select s
equal to 20% of the initial batch size given by the user. When m∗ is selected,
observations are grouped into 25 batches. STS/CSUM finds m∗ by testing against
normality the random variables Ai’s of 10 batches.

In the estimation phase, NOBM/GW and SBM collect two new batches of size m∗

whenever the stopping rule is checked and fails. OBM checks the stopping rule
whenever a number of observations equal to the degree of overlapping is collected.
STS/CSUM checks the stopping rule whenever a multiple of 10 observations is
collected.



5
Experimental investigation

5.1 Introduction

Methodology of a good experimental design helps make the empirical results more
applicable to real situations. Each proposed CIP is based on assumptions about
the random characteristics of output data. Provided that the output stochastic
process is covariance stationary :

• Batch Means based procedures rely on the fact that the means of the batches
become approximately normally distributed and uncorrelated, and therefore inde-
pendent, as the batch size increases;

• Standardized time series based procedures additionally assumes that the output
stochastic process is φ − mixing, i.e., the correlations of the stochastic process
output sequence die off, and that for a sufficiently large batch size the random
variables Ai (see Equation2.21) associated with each batch, become approximately
IID normal.

The correctness of these assumptions depends on how the data is generated, col-
lected, and processed [117].

We used a set of reference queuing models explained in Appendix C for determin-
ing, experimentally, the behavior of the proposed sequential batching procedures to
be run under MRIP. They represent simplified versions of models (with analytically
tractable solutions) that often arise in simulations of computer communication sys-
tems. We fixed the mean service time µ to be 10.0 and varied the mean interarrival
time λ from 1.0 to 9.5.

The starting conditions of each simulation experiment are empty queue and idle
service. Generally, by simulating real-world problems it would be difficult to deter-
mine the starting conditions from pilot runs, such as suggested in [71], though it
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could reduce the problems associated with the transient period. We attacked the
initial transient problem by applying the Schruben’s test [121].

We ran an exhaustive set of simulation experiments to estimate the expected aver-
age waiting time for the customers of the selected queuing systems and, since ρ < 1,
there exists a steady-state random variable Wn such that Wn → W as n → ∞.
The estimators were obtained with the relative precision of 0.05, and all statistical
tests were performed at the significance level of 0.05. Unless stated otherwise, re-
sults presented in this chapter were obtained by means of the sequential coverage
analysis explained in section 3.3.

We are going to present important statistical properties of these sequential batch-
ing procedures, at first using one processor and then to investigate improvements
offered by MRIP. Experimental analysis of coverage is required for assessing the
quality of practical implementations of methods used for determining confidence
intervals in steady-state simulation. The reference set of queuing models used in
our empirical investigation is explained in Appendix C.

5.2 General overview

Concerning the behavior of the analyzed CIPs, when both the coefficient of variation
of service mechanism Cx traffic intensity are low, we observe that adding more
processors is of little help, since coverage is already acceptable and it is not possible
to reduce the run length to improve this result. Figure 10 shows the coverage
function for NOBM/GW, SBM, OBM and STS/CSUM, when we simulated the
M/D/1 queue with 1, 2, and 6 processors, and traffic intensity 0.10.

By increasing traffic intensity to ρ = 0.50, the classical NOBM produces an oscil-
lating coverage function, depicted in Figure 11, as more processors take part in the
simulation of M/D/1 : for small confidence levels the coverage function is high; for
large confidence levels the coverage function is low. This behavior can be undesir-
able, since under this scenario the procedure is not efficient at all (either wasteful
or insufficient). Under MRIP more sophisticated procedures, such as SBM, OBM,
and STS/CSUM, eliminate this behavior.

As long the traffic intensity increases, correlation among observations becomes
stronger. MRIP is of much help, as it contributes to improve the coverage and
reduce the average run length. Figure 12 emphasizes that this claim is true only
for robust methods. While by NOBM the coverage when simulating M/E4/1 is
closer to the confidence level, adding more processors does not change the average
run length necessary to yield results with the desired accuracy. By STS/CSUM,
on the contrary, when simulating M/E4/1, coverage improves as the number of
processors increases, and one can perceive a trend to collect fewer observations
processors. In Appendix H the reader can verify that this trend also occurs for
M/D/1 and M/M/1.

The benefits of MRIP can be better evaluated when traffic intensity is high, and
the method of analysis is robust, as we will show in next sections. Increasing
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Fig. 10: Coverage function for low coefficient of variation and ρ = 0.10
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Fig. 11: Coverage function for mediumficient of variation and ρ = 0.50.
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Fig. 12: Coverage function for medium coefficient of variation and ρ = 0.50.
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the coefficient of variation of the service mechanism, imposes greater difficulties
to methods of analysis to estimate the sample variance that is used to derive the
confidence interval. As as result, coverage degrade, and the necessity of a robust
methodology becomes stronger. Figure 13 illustrates this fact.

Note that by using OBM to analyze the output sequence of the M/D/1 simulation,
as more processors are added the coverage improves, but not so close to the nominal
confidence level. As Cx increases, we can perceive that coverage gets definitively
closer to the nominal confidence level. Therefore, OBM performs much better
under MRIP as the correlation structure becomes more complex. We are going to
see in the next sections that this claim is also true for very high loaded systems.
But this not occur for any CIP, just for the robust ones. For example, Figure 14
makes it clear that SBM does not always guarantee the quality of the results. As
Cx increases, SBM seems not to find a good solution for the strong correlation and
becomes wasteful (M/M/1) or insufficient (M/H2/1).

For all variants of batch means, the variability of confidence interval had identical
behavior, that is, CoV{H} is around 0.20 for low values of confidence level, and
decreased to 0.05 when the confidence level increased. We have simulated all CIPs
using traffic load in the range [0.10 ≤ ρ ≤ 0.95]. Our results makes it clear that all
proposed CIPs are asymptotic valid as they decrease in direction to zero as the run
length increases. Figure 15 presents a comparison of this MOE for the proposed
CIPs when simulating a 90%-loaded M/M/1 system.

Worthwhile to emphasize that by varying the degree of parallelism is especially
helpful when the the variability is high. For all CIPs here investigated this occur
when the confidence level is in the range [0.10 ≤ η ≤ 0.50]. Let us look at an
example of this behavior in Figure 15. It summarizes the simulation of an M/M/1
queue with traffic intensity 0.90.

For confidence level in the region [0.10 ≤ η ≤ 0.50], increasing the number of
processors taking part in the parallel simulation always reduced CoV{H}. This
behavior also occurred for higher traffic intensities (see the complete results of our
experiments from Appendixes D to H.

With the methods based on STS this behavior is also true, but there is a particular-
ity we would like to emphasize. Looking at Figure 16, we perceive that STS/CUM
presented very high variability of confidence interval (around 0.40) for a single pro-
cessor when the confidence level was in the range [0.10 ≤ η ≤ 0.50], but even so
this variability decreased as we added more processors.

It becomes clear that increasing the degree of parallelization reduces CoV{H} what-
ever the traffic intensity and confidence level. These results confirm our claim that
MRIP is (by itself) a natural variance reductor, no matter which method of anal-
ysis is being used. Section 5.8 will support this claim as it will also show that this
feature of MRIP can be useful even when the method of analysis, though robust,
is not properly configured.
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Fig. 13: Coverage function for OBM, ρ = 0.90 and increasing Cx.
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Fig. 14: Coverage function for SBM, ρ = 0.90 and increasing Cx.



5.2. General overview 79.........................................................................................................................................................

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

Desired Confidence Level

P=1
P=2
P=6

(a) NOBM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1
C

oV
H

Desired Confidence Level

P=1
P=2
P=6

(b) NOBM/GW

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

C
oV

H

Desired Confidence Level

P=1
P=2
P=6

(c) SBM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

C
oV

H

Desired Confidence Level

P=1
P=2
P=6

(d) OBM

Fig. 15: Cov{H} of CIPs based on batch-means-based : M/M/1, ρ = 0.90.



80 Chapter 5. Experimental investigation.........................................................................................................................................................

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

C
oV

H

Desired Confidence Level

P=1
P=2
P=6

(a) M/D/1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1
C

oV
H

Desired Confidence Level

P=1
P=2
P=6

(b) M/E4//1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

C
oV

H

Desired Confidence Level

P=1
P=2
P=6

(c) M/M/1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

C
oV

H

Desired Confidence Level

P=1
P=2
P=6

(d) M/H2/1

Fig. 16: CoV{H} of STS/CSUM for increasing Cx, and ρ = 0.90.
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Fig. 17: NOBM performance for different ranges of ρ.

5.3 CIPs based on NOBM

5.3.1 NOBM performance

Our experimental investigation showed us that NOBM behaves suitably for queuing
systems moderately loaded. Figure 17a depicts the coverage function of NOBM for
an M/M/1 under increasing traffic intensity ρ. The observed coverage gets close
to the expected one, though for higher values of traffic one can perceive a trend to
coverage erosion.

This trend has already been advised as we commented Bartlett’s equation Equation 2.6,
since as the simulated processes become more correlated, it turns out to be difficult
to estimate the sample mean variance.

For highly loaded system (we consider high load the traffic intensity greater than
0.9), sequential coverage analysis captured the NOBM performance degradation,
shown in Fig. 17b . By adopting a 5%-tolerance to the deviation of of the desired
coverage, we can say that NOBM departs unacceptably from the zone of acceptance
as the traffic intensity of the queuing system increases.

It does not seem reasonable to add more processors in order to improve the coverage
of a sequential CIP, if it does not behave properly with one processor. This way,
we investigated alternative CIPs to NOBM, trying to assess if they can perform
suitably for very highly loaded systems. NOBM performance analysis for moder-
ately loaded systems and different number of processors and confidence levels can
be found in Appendix D.
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Fig. 18: NOBM/GW performance for ρ ≤ 90%

5.3.2 NOBM/GW performance

As stated in the formulation of the proposal for this CIP, increase the number
of batches is necessary in order to guarantee asymptotic validity. By estimating
sequentially the average waiting time, the run length increases when (i) traffic in-
tensity increases, as it means that correlation structure is stronger; (ii) requirements
for stopping simulation are tighter, e.g. larger values of confidence level, or smaller
relative precision; and (iii) service mechanism is more intricate (higher Cx). In all
experiments we conducted, relative precision was not changed.

Figure 18 shows how the coverage of NOBM/GW behaves for increasing values
of confidence level and traffic intensity. As expected, NOBM/GW is not an im-
provement on NOBM when run length is low/medium, but it put the final coverage
inside the region of acceptance for ρ close to 90%. Thus, it deserves investigation
for higher values of ρ.

For sake of comparison, we plot its results together with NOBM. Figure 19 makes
it clear that NOBM/GW is an improvement on NOBM when run length is high,
but does not produces coverage inside the acceptance region we have chosen. What
is the price for this little improvement ? We must look at other MOE to assess this
information.

Table 11 shows us that the computational effort (given by the average runlength
over 1203 replications) to achieve this little improvement was not high, but there
was reduction in the variability of confidence interval half-width.
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Fig. 19: NOBM/GW performance for ρ > 90%

CIP ρ η run length CoV{H} R
NOBM 0.95 0.95 1474.85 0.0382 1203

NOBM/GW 0.95 0.95 1501.72 0.0339 1065

Tab. 11: NOBM/GW : average run length and CoV{H} for ρ = 0.95 and η = 0.95.

5.4 SBM performance

This CIP takes advantage of the previous result, and reinforces the attack against
correlation, which together could lead us to wait for better results. Figure 20 makes
it clear that SBM with fixed spacing can be wasteful, since in the coverage function
we perceive a trend to overestimate the confidence interval. On the other hand, it
is a clear improvement on NOBM/GW for high values of traffic intensity, though it
still doe not yield coverage inside the acceptance region. The price for that ? Let
us check the other MOE.

Table 12 let us to conclude that the little improvement on NOBM/GW is worth-
while, as it requires not so much more observations, and the final confidence inter-
vals are more stable.
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Fig. 20: SBM performance for ρ ≤ 90%
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Fig. 21: SBM performance for different ranges of ρ.

CIP ρ η run length CoV{H} R
NOBM 0.95 0.95 1474.85 0.0382 1203

NOBM/GW 0.95 0.95 1501.72 0.0339 1065
SBM 0.95 0.95 1505.77 0.0335 1243

Tab. 12: SBM : average run length and CoV{H} for ρ = 0.95 and η = 0.95.
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5.5 OBM performance

We avoided using the results from NOBM/GW, successfully applied in SBM, since
the increment of the number of batches is inherent to the method of OBM. Figure 22
shows that OBM can be a little wasteful when run length is low and we increase
the degree of parallelization, but is behaves even better for higher traffic intensities.
A look at Figure 23 makes it clear that OBM overcomes the previous CIPs in the
sense of coverage of the results.

Table 13 tell us that to achieve so impressive performance, OBM collects around
1/3 more observations than SBM, making the variability of the confidence inter-
vals much lower. This way, we have found the first candidate for validating our
hypothesis H5, namely, we can generate in parallel the amount of observations
OBM requires, making it not only accurate, but also fast.

.1

.5

.9

1.0

.1 .5 .9 1.0

O
bs

er
ve

d 
C

on
fid

en
ce

 L
ev

el
 G

η∗ (
η)

Desired Confidence Level η∗ = η

ρ=0.1
ρ=0.5
ρ=0.9

Fig. 22: OBM performance for ρ ≤ 90%

CIP ρ η run length CoV{H} R
NOBM 0.95 0.95 1474.85 0.0382 1203

NOBM/GW 0.95 0.95 1501.72 0.0339 1065
SBM 0.95 0.95 1505.77 0.0335 1243
OBM 0.95 0.95 2214.62 0.0258 2333

Tab. 13: OBM : average run length and CoV{H} for ρ = 0.95 and η = 0.95.
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Fig. 23: SBM performance for different ranges of ρ.

5.6 CSUM.1 performance

Figure 24 depicts that when the confidence level is above 0.70, CSUM.1 yields
always coverages very close to the nominal confidence level, specially when we add
more processors under MRIP. Compared to OBM for traffic intensity above 0.90
(see Figure 25b), CSUM.1 yields somewhat less accurate result, but always inside
the acceptance region we have defined earlier.

Table 14 shows two undesirable properties : CSUM.1 requires more observations
than other CIPs here analyzed, and even so can not reduce the variability of the
final confidence interval. These disadvantages can be compensated with higher
degree of parallelization, as we shall see in the next section.
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Fig. 24: CSUM.1 performance for ρ ≤ 90%
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Fig. 25: CSUM.1 performance for different ranges of ρ.

CIP ρ η run length CoV{H} R
NOBM 0.95 0.95 1474.85 0.0382 1203

NOBM/GW 0.95 0.95 1501.72 0.0339 1065
SBM 0.95 0.95 1505.77 0.0335 1243
OBM 0.95 0.95 2214.62 0.0258 2333

CSUM.1 0.95 0.95 2239.59 0.0492 2016

Tab. 14: CSUM.1 : average run length and CoV{H} for ρ = 0.95 and η = 0.95.
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5.7 Performance under very high traffic intensity

By adding more processors in an efficient environment such that provided by
Akaroa-2, we are certain that observations will be generated more quickly, be-
sides being of better quality, since they come from independent simulation engines,
carefully initiated with nonoverlapped pseudorandom numbers.

Table 15 shows that OBM collects almost the same amount of observations, as we
increased the degree of parallelization. Moreover, it remains no doubt that OBM
is the most accurate CIP for high traffic intensity.

CSUM.1, on the other hand, continues yielding acceptable coverage, though lower
than OBM (see Table 14), and besides producing more quickly the observations
under MRIP, CSUM.1 performed suitably for operating in this environment. Both
set of experiments validated our hypothesis H5.

OBM ρ η run length CoV{H} R
P=1 0.95 0.95 2214.62 0.0258 2333
P=2 0.95 0.95 2230.46 0.0260 1899
P=4 0.95 0.95 2220.21 0.0262 2306
P=6 0.95 0.95 2143.38 0.0297 2134

Tab. 15: OBM : average run length and CoV{H} for higher degree of parallelization

CSUM.1 ρ η run length CoV{H} R
P=1 0.95 0.95 2239.59 0.0492 2016
P=2 0.95 0.95 1915.31 0.0291 1644
P=4 0.95 0.95 1811.59 0.0305 1709
P=6 0.95 0.95 1695.03 0.0301 1490

Tab. 16: CSUM.1 : average run length and CoV{H} for higher degree of parallelization

5.8 Compensating imprecise batch size selection

5.8.1 OBM

We look for manners to degrade the performance OBM, in order to validate our
hypothesis H2, which states that imprecise batch size selection can be compensated
with higher degree of parallelization. Reasons for that hypothesis is twofold : (i)
OBM can generate a large amount of batches; and (ii) observations generated in
MRIP have better statistical quality than those arising from a single replication.

In this experiment, we configured OBM to use only 40 batches for generating corre-
lation coefficients by means of jackknife method. Jackknife estimators of correlation
coefficients are less unbiased, as long as 100 batches are used. As we simulated a
95%-loaded M/M/1 queue to construct a confidence interval at 95% of confidence
level, the coverage for P=1 was 0.879, outside the zone of acceptance (see Figure 26.
As long as we added more processors, coverage could be improved.



5.8. Compensating imprecise batch size selection 89.........................................................................................................................................................

.90

.95

1 2 5 10
O

bs
er

ve
d 

co
ve

ra
ge

No. processors

Fig. 26: OBM : compensating imprecision of batch size selection

5.8.2 CSUM.2
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Fig. 27: CSUM.2 : compensating imprecision of batch size selection

In this experiment, we have used the CSUM version with fixed number of batches
(CSUM.2). We forced imprecision of selection of batch size by using a lower level
of significance for the test of normality. For normal data the Shapiro-Wilk statistic
W should be near 1. Since we have adopted a number of batches equal 10, the level
of significance closer to 1 should be greater than 0.95 (see Appendix A). With a
level of significance 0.95, CSUM.2 yields good performance. The use of higher level
of significance denotes the necessity of larger sample size, and the corresponding
improvement is very little.

On the contrary, by choosing a lower level of significance, test for normality succeeds
quicker, and the selected batch size is not the optimal, reducing the computational
demand of this phase. In this experiment we used a level of significance 0.01.

By simulating a 95%-loaded M/M/1 queue to construct a confidence interval at 95%
level, coverage using a single processor was worst than for the previous scenario that
uses higher level of significance. To compensate this negative effect, we increased
the degree of parallelism, and the coverage could be improved, getting closer to the
nominal confidence level.
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Table 17 shows that for P=1 CSUM.2 does not collect sufficient data for that
combination of ρ and η. Look at Table 14 that CSUM and OBM must collect
over 2.2x106 observations in order to produce accurate coverage. As we add more
processors to work together, CSUM.2 yields good coverage with less observations
(around 2.1x106 observations).

Another desired effect is over the variability of confidence intervals that decreased as
we added more processors. The large number R of times we repeated the experiment
(exclusive too short executions), signalizes that we did not take it by chance.

CSUM.2 ρ η run length CoV{H} R
P=1 0.95 0.95 1870.73 0.0366 1544
P=5 0.95 0.95 2171.84 0.0285 1964
P=15 0.95 0.95 2111.96 0.0272 2027

Tab. 17: CSUM.2 : average run length and CoV{H} for higher degree of parallelization

5.9 Speedup issues

According to Amdahl’s law [4], if a fraction f of a computation is inherently
sequential, then the speedup S(P) is bounded above by

S(P ) =
1

f + 1−f
P

(5.1)

where P is the number of processors and f is defined to be the ratio of the service
demand of sequential parts of the computation to the service demand of the entire
computation.

In steady-state simulation, considering that results are analyzed sequentially, MRIP
imposes a limit to the average speedup that should be incorporated into above
expression.

Let Nmin be the number of collected observations, sufficient for achieving the re-
quired precision of the final results. One could think of a situation in which there
are so many processors employed that each one achieves just the first checkpoint,
and the stopping rule is reached. Let this number of processors be Pmin.

0 N

. . .
min

C C

oN 1
N

Fig. 28: Steady-state structure
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Let No be the length of the transient phase, N1 be the amount of steady-state ob-
servations from the end of the transient phase until the optimal batch size is found.
Our implementations consider that the first checkpoint occurs at this moment when
the optimal batch size is determined. Let C be the distance between consecutive
checkpoints (Figure 28).

A truncated version of Amdahl’s law for the MRIP scenario, formulated by Paw-
likowski and McNickle [102] states that the speedup achievable with P homogeneous
simulation processors is given by :

S(P ) =





1

f+ 1−f
P

for P ≤ Pmin = (1−f)Nmin

C

1

f+ 1−f
Pmin

for P > Pmin = (1−f)Nmin

C

(5.2)

The speedup obtained from the truncated Amdahl’s law of Equation 5.2, when
assuming Nmin = 10000 and C=1, is plotted in Figure 29. One can see that linear
speedup would only be possible if f=0. This occurs when the simulation engines
work cooperatively in parallel. As the value of parameter f increases, the speedup
falls away from the theoretical trajectory.
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Fig. 29: Speedup achievable theoretically under the MRIP scenario according to the truncated
Amdahl’s law (Nmin = 10000)

Observations collected during initial transient phase (No) are not processed in par-
allel, therefore observations collected during this period belong to f. Thus,

f =
No

Nmin

Note that if C means the number of observations collected between consecutive
checkpoints, then Pmin times C observations are needed to stop the simulation.
That is,
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Pmin =
(1− f)Nmin

C
(5.3)

When using Pmin, one achieves the maximum speedup given by

Smax =
Nmin

fNmin + C
(5.4)

To assess the average speedup obtained when the sequential batching techniques
considered are applied in Multiple Replications in Parallel scenario, we simulated
an M/M/1 queuing system, with traffic intensity 95%, and constructed a confi-
dence interval at 95% of confidence level. The stopping rule was, as in the every
experiment of this research, a relative precision of 5%.

A specific feature of sequential techniques is that randomness of data collected at
the output of the model being analyzed can fortuitously yield the stopping condition
much earlier than it could be expected, and that can lead to wrong results. In light
of that, we adopted the practical methodology proposed by Ruth Lee et al. [87].
Namely, while using P processors we:

1. run the simulation experiment 3 times;

2. accepted the results produced by the longest simulation run only;

3. recorded the average length of the transient phase, measured by the number of
transient observations N̄o discarded by each of P processors;

4. recorded the average number of observations N̄1 required to achieve the first check-
point;

5. recorded the average total number of observations N̄min when simulation was stopped.

Each time when these steps were followed, we obtained an n-uple (N̄o, N̄1, N̄min).
The average fraction f̄ of the simulation which cannot be parallelized is calculated
automatically, that is,

f̄ =
N̄o

N̄min

(5.5)

To improve the accuracy of the results we repeated the above sequence 100 times
and averaged the results at the end. We repeated the whole experiment for P=1,
5, 10, 15 and 20 processors. Pmin, the number of processors that could still give
a speedup, was calculated from the truncated Amdahl’s law, using the results
obtained from simulations on P=1 processor.
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Considering the classical NOBM, NOBM/GW, SBM, and CSUM.1, C is at least
equal to m∗, and the procedure has little flexibility for tuning C. OBM offers greater
flexibility as C can be smaller than m∗. Namely, in the case of complete overlapping,
the distance between checkpoints can be, theoretically, as short as 1. Thus, for f
remaining the same as in the previous methods, Pmin can be considerably greater
in OBM.

CSUM.2 offers relative intermediate size of C, since the procedure can collect a
number of observations as small as a multiple of b (instead of m∗), and, since
b = 10, we could achieve a reasonable checkpoint granularity.

Worthwhile to warn at this point, that the extreme cases for OBM and CSUM.2
(checkpoints at a distance of 1 and 10 observations, respectively), were tried but
each replication took extremely very long time (around 6 days), and we should
abort them. Probably, the reason for that can be the same given by Pawlikowski
and McNickle [103] : ”the global analyzers of Akaroa-2 have not been designed to
maximize speedup.”

In order to achieve sound speedup, we should decrease the extension of batch size
selection phase. As already stated, by estimating directly the correlation coefficients
by means of jackknife method is a trial to improve the quality of the result, but it
has two disadvantages :

1. It is time-consuming for long run length; and

2. It requires at least 100 batches to yield accurate estimates.

The test of independence based on the von Neuman statistic, according to Kleijnen
[76], also requires at least 100 batches to yield reliable results, though Fishman [39],
Alexopoulos [2], Steiger and Wilson [125] agree it can be as small as 8 batches.

We implemented the rank version of von Neuman’s test, since it is less time-
consuming, and plugged it in our sequential version of OBM. We simulated the
mean waiting time of clients of an M/M/1 queuing system, 95% loaded, to con-
struct a 95%-confidence interval. Checkpoints occur whenever a new batch is col-
lected, that is, C = m∗. By using b = 10 and b = 20, for increasing degree of
parallelization, we obtained the following results :

cov cov run length run length
P ρ η b = 10 b = 20 b = 10 b = 20
1 0.95 0.95 0.591 0.699 465.289 725.858
5 0.95 0.95 0.647 0.756 570.442 878.491
10 0.95 0.95 0.701 0.774 598.199 924.549
15 0.95 0.95 0.714 0.785 602.787 930.406
20 0.95 0.95 0.689 0.806 611.691 963.221

Tab. 18: OBM : von Neuman test of independence
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It is clear that small number of batches yields very poor coverage, though it can be
improved by increasing the degree of parallelization. Using more batches improves
a little the coverage, but once again more processors under MRIP increases the
accuracy of the coverage. Increase of run length can be accepted as a consequence.
But how much processors can we apply when adopting b = 10 ?

By applying Equation 5.3 for this experiment, we have found that the maximum
number of processors that can be work together is 1215. Let us see which additional
information the truncated Amdahl’s law gives to us.
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Fig. 30: OBM speedup : checkpoint at every m∗ observations

Figure 30 depicts the sound speedup OBM can give us in this scenario, when
compared to the OBM version using jackknife estimators of correlation coefficients
to assess the independence among batch means. By running both experiments with
increasing degree of parallelization (P=1,5,10,15,20), we found f = 0.0005 for OBM
with jackknife estimators, and f = 0.0011 for OBM with the test of independence
based on the von Neuman. Practically the same, but the former needs at least 100
batches to find the optimal batch size, while the latter used only 10 batches. As
expected, batch size selection phase was reduced.

By reducing the phase of choosing the batch size, we automatically reduced the
distance between consecutive checkpoints, since in this implementation C = m∗,
and at the same time the knee described by Amdahl’s law was shifted, meaning
that we could apply more processors.

On the basis of truncated Amdahl’s law 5.2, the above configuration of the se-
quential version of OBM using von Neuman test, reduced both f and C, which
corresponds to an increase of Pmin, according to Equation5.3. Since Pmin is the
minimum number of processors to yield the maximum speedup, it corresponds to
the knee on the graphic of the truncated Amdahl’s law.
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To complete our investigation on speedup of the two batching procedures that our
research found to yield the best performance under MRIP, let us use the same
example of Section 5.8.2, when we forced the imprecision of selection of batch size
by using a lower level of significance (β = 0.01) for the test of normality.

Being faster (though imprecise), the test for normality will decrease the batch size
selection phase. Figure 31 depicts what we hypothesized (H2) : Being consistent
and robust the method of analysis, MRIP can be of much further importance in
the sense of speeding up good results.

By simulating a 95%-loaded M/M/1 queuing system to construct a confidence
interval at 95% level, we found f = 0.0003 when using β = 0.95, and f = 0.0004
when using β = 0.01. Difference appeared in the reduction of batch size selection
for the latter case, allowing that up to 78 processors can cooperate together to
accelerate the experiment, agains 25 for the other case.
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Fig. 31: CSUM.2 : checkpoint at every m∗ observations
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6
Case study

6.1 Introduction

In the previous chapter we stressed the design issues of some sequential procedures
based on Batch Means and Standardized Time Series. In this chapter we are going
to choose one of those procedures in order to use it for automatically estimating
steady-state mean of a performance parameter of a wireless communication system.

Since any statistic from such experiments cannot be guaranteed to give a close
estimate for every sample, we must design statistics that will give acceptable results
on the average or in the long run. By using a well designed sequential analysis
procedure for analyzing data carefully, we can guarantee a better quality of the
conclusions drawn from the analysis.

6.2 Problem statement

The practical problem of interest (PPI, according to the adopted methodology
depicted in Fig. 32) was proposed by Fitzek and Wolisz [42]. It is an adaptation
of the ”Simultaneous MAC Packet Transmission (SMPT)” approach to a CDMA
based mobile communication system with a varying number of mobile users.

To support the increasing demand for highly heterogenous QoS requirements by the
mobile users, the authors proposed the statistical multiplexing of CDMA channels.
SMPT attempts to stabilize the Quality Of Service (QoS) of a wireless CDMA sys-
tem in terms of throughput, loss rate and delay even if the propagation conditions
on the wireless medium change dramatically.
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Using the simplest ARQ mechanism Send and Wait, like it is discussed in [12] and
suggested within the recent wireless LAN standards (IEEE 802.11 and HiperLAN1),
each erroneous packet is retransmitted while following stored packets have to wait
until the packet has been transmitted successfully.

The effective bit rate decreases from Bgood to Bbad and simultaneously the jitter
increases. We assume that a resulting bit rate Bbad is not acceptable for the required
throughput specified by the QoS parameters. Further the increased jitter is not
acceptable for the application.

We consider a CDMA based mobile communication system with a specific num-
ber of Wireless Terminals (WTs). All WTs communicate with one central Base
Station (BS), which coverage defines the cell boundaries (see figure 32).
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Fig. 32: Nine wireless terminals communicating with one base station

The mobile communication system supports a number of codes much higher than
the number of active WTs. All WTs are sending asynchronously as well on bit level
as on chip level. The wireless link is considered to be unreliable with a varying Bit
Error Probability (BEP). The value of the BEP depends on the number of active
channels k.

For the chosen scenario we assume an Additive White Gaussian Noise (AWGN)
channel with Bineary Phase Shift Keying (BPSK). Codes will be assigned before
the connection is established. The total number of codes per mobile is set by the
QoS requirements of the mobile.

We have performed a simulation study using the Ptolemy simulation tool [107]
and for full parallelization, statistical evaluation and run length control we have
used Akaroa with the Ptolemy interface akstars (see 33). It is worthwhile to say,
that no additional effort was required from the analyst, and we could say that the
framework can be still considered transparent from the user point of view.
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Fig. 33: Ptolemy structure

We formed a communication system with 9 WTs and one base station. Outer-Cell
interference was not taken under consideration. The channel between the WT and
the BS is modeled with a multilayered Markov chain, considering two channel states
(bad and good) and the impact of used channels on the BEP on bit level. The main
parts of the simulation model are the protocol implementation of the WT and BS.

Each WT generates a stream of transport units (like UDP segments and therefore
called segments) with a specific load and pass these segments to the DLC layer
via the network layer, where each of them is divided into a group of DLC packets.
To each packet a header with length ζ is added. This header ζ is used to identify
DLC packets in the right order and to assign the DLC packets to the appropriate
segment and means for error detection. The frame, which is composed by one DLC
packet and the header ζ is called a Data Link Control Packet Data Unit (DPDU).

The length of a DPDU is denoted as LDPDU . All DPDUs are stored in an queue
with a fixed length LQueue within the DLC layer and will be sent with different
ARQ based transmission methods over the wireless link. Packets that are prone to
errors only by one bit error will not be decoded successfully on the receiver side
and will be counted as loss.

The load generation module generates packets with constant bit rate allowing vari-
able as well as fixed segment sizes with a specific load. We neglect the fading
effects and assume an optimal power control within the WTs. Nevertheless using
the wireless channel each WT will influence other WTs by an increased background
noise.
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6.3 Choice of a sequential method of analysis

We investigated the influenced jitter with high accuracy. Because of the nature of
the wireless link, which is influenced by the user’s mobility and the active mobiles
using the wireless channel, is very difficult to predict how many observations values
are necessary. Moreover, the simulation of the wireless channel on bit level is very
time consuming. Therefore a fast simulation strategy is desirable.

Among those procedures investigated, we found that OBM and CSUM behave
better when the experiment demands very long time to yield reasonable accurate
results, OBM being the most accurate for high traffic intensity.

On the other hand, in [95], we showed that although (complete) OBM can be tuned
to reduce the distance between consecutive checkpoints, the convergence rate to
the desired relative precision becomes slower as the distance between consecutive
checkpoints decreases. It means that OBM can offer good speedup, but one should
always take into account an important MRIP property : The trade-off between fine
granularity and achievable speedup.

CSUM presents shorter preprocessing task, namely that one for achieving normal-
ity among Ai’s. This feature is very attractive, but that CIP needs some additional
tuning to mitigating the higher variability of the final confidence interval. There-
fore, we adopted the sequential version of complete OBM for this simulation study,
since it fulfill the following criteria of classification (CCI, according to the adopted
methodology depicted in Fig. 32) : it is more accurate, requires somewhat less
observations than CSUM, and the achievable speedup is acceptable.

6.4 Simulation results

Simulation experiments were executed aiming to construct a confidence interval at
95% of confidence level, and the stopping rule adopted was a 5%-relative statistical
error. To avoid using the results obtained by too short simulation runs we ran each
experiment three times, using different sequences of pseudorandom numbers, and
accept the results produced by the longest run.

Fig. 34 shows that for every scenario there is a reduction in time, as we divided
the execution time by using one processor T(1), by the execution time by using
10 processors T(10). Results were obtained for 3,6, and 9 WTs, and two values of
confidence level (95% and 99%). It shows a very important property of MRIP : it
works even better as the run length increases.

Although we have used an almost homogeneous set of processors, the above result
can be to some extent deceived, as it can vary with the system load. A better
source of information would be the number of observations required to stop the
simulation.
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Fig. 34: Reduction of the simulation time of the jitter of a wireless link

WT P = 1 P = 10
3 0.51 / 3645 / 243 0.51 / 2916 / 486

0.52 / 3705 / 247 0.51 / 3108 / 518
0.50 / 3885 / 259 0.52 / 2964 / 494

6 0.51 / 4464 / 248 0.54 / 2976 / 496
0.51 / 4035 / 269 0.51 / 1614 / 269
0.50 / 4608 / 256 0.51 / 3072 / 512

9 0.53 / 2988 / 249 0.53 / 4494 / 749
0.53 / 3585 / 239 0.54 / 5736 / 956
0.52 / 3660 / 244 0.52 / 4410 / 735

Tab. 19: Simulation results for 3,6 and 9 wireless terminals

Table 19 and Table 20 depict the performance results for the same number of
wireless terminals as we have used 1 and 10 processors, for 95% and 99% confidence
levels respectively.

For each wireless terminal of each scenario, the first value stands for the jitter
estimate, the second value stands for the sample size required to achieve 5% of
relative width, the adopted stopping rule, and the third value stands for the length
of the transient phase, i.e. the number of discarded observations before achieving
the steady state.

One can clear observe that when we use more processors to cooperate with indepen-
dent observations, the framework based on MRIP is much more efficient as it needs
less observations to achieve the required relative precision. The different (short)
length of the transient phase justifies the application of the stationary test, instead
of discarding an arbitrary number of observations, which would lead to statistical
imprecision.

The experimental analysis showed us that the SMPT method provides better results
in the sense of jitter. Before using Akaroa-2 together with OBM, the simulation
experiment took around 188 hours, and it was clear if the statistical error could
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WT P = 1 P = 10
3 0.51 / 5103 / 243 0.51 / 7290 / 972

0.52 / 5187 / 247 0.51 / 6072 / 765
0.50 / 4662 / 259 0.51 / 7554 / 1000

6 0.51 / 8928 / 248 0.54 / 4464 / 744
0.52 / 8877 / 269 0.51 / 3228 / 538
0.50 / 9216 / 256 0.53 / 4572 / 762

9 0.53 / 10458 / 249 0.55 / 9777 / 486
0.53 / 10038 / 239 0.53 / 13623 / 518
0.52 / 10248 / 244 0.53 / 12820 / 494

Tab. 20: Simulation results for 3,6 and 9 wireless terminals

still be reduced, because due the very long time to yield an estimate, we were not
stimulated to repeat the experiment with tighter requirements.



7
Summary, conclusions, and future research

7.1 Introduction

In the previous chapters, we stressed the necessity of designing confidence interval
procedures for estimating the mean value of a stationary process. Moreover, despite
the plethora of methodologies found in the literature, very few is known about the
performance of sequential procedures based on these methodologies that can be run
in an environment of multiple replications in parallel, a simple yet effective way of
exploring the computing power of PCs connected via a network infrastructure.

In the sequence, we designed some sequential procedures based on the batching
approach, and after adjusting them to get the best performance, we conducted
experimental to validate our hypothesis, and investigated some issues aiming to
get sound speedup with possibly less observations.

In this chapter, we summarize the results, draw some conclusions about the expe-
rience gained in this research, and point out directions for future research.

7.2 Summary

Application of computationally efficient CIPs in stochastic simulation of networks
with multiple queues and servers is difficult but this is an important research topic.
Another issue is the asymptotic behavior of these CIPs under MRIP, in order to
anticipate their behavior as the run length increases.

Sequential procedures here presented, based on NOBM/GW and SBM, represent
improvements over the classical NOBM, but they can not get rid of the problem
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of strong correlations found in high traffic intensities and when we pass from an
exponential to a hyperexponential service mechanism.

To cope with this scenario, sequential procedures based on OBM and STS/CSUM
that can be run under MRIP were proposed, implemented and investigated. Indeed,
they overcome the other two, in the sense that they yield accurate results, especially
when traffic intensity is very high (e.g. ρ > 0.90). These results were found using
just one processor.

Having detected the two more promising sequential procedures, we faced with the
problem of collecting observations faster while the coverage of the results at a
desired niveau. These characteristics suggest that a potential candidate is robust
under MRIP. MRIP enables the generation of data in parallel, each replication
running an instance of OBM or STS/CSUM.

Despite the expected improvement arising from this combination of approaches
(MRIP together with robust method of analysis), batch size determination contin-
ues being the great challenge, as it offers an additional burden for determining the
batch size to yield acceptable correlation among the batch means. In distributed
environment this additional burden can not be parallelized and the user should
look for ways of shortening it.

We investigated some alternatives to reduce the batch size determination phase
(BSDP). NOBM implements the method of jackknife to estimate correlation co-
efficient. Estimators based on Jackknife produce less biased estimates than the
original ones, but unfortunately it is a time-consuming methodology. Some re-
searchers have the opinion that it is preferable to collect more observations instead
of using such kind of unnatural estimators.

We used the rank version of von Neuman’s test, since it is less time-consuming,
and plugged it in our sequential version of OBM. By using 10 and 20 batches the
coverage was very poor, as theoretically exposed in [76], that suggested a minimum
of 100 batches. Adding more batches could improve the coverage, but the problem
of a long BSDP would not be answered. As we increased the degree of paralleliza-
tion, we obtained the more accurate coverage. In the method of STS/CSUM, we
relaxed the significance level of the test for normality, which permitted a reduction
of the BSDP and, once more, increasing the degree of parallelization we have got
very accurate results.

According to the truncated Amdahl’s law proposed by Pawlikowski and McNickle
[102], the maximum achievable speedup depends not only on the sequential part f
of every parallel processing, but also on the granularity of consecutive checkpoints.
In this particular, OBM is superior to the other CIPs, since granularity can be as
fine as the unity. In other words, after the BSDP, each new collected observation
can (theoretically) produce a checkpoint (see 5.9.

The methods based on STS, as we showed in chapter 5, must collect, at least, a
number of observations equal the number of batches. In our implementation, this
number is 10.

Actually, extreme cases of OBM and STS can not be achieved without overloading
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the global analyzer. Even so, the maximum achievable speedup is already attrac-
tive.

7.3 Conclusions

As focused by many pratictioners of parallel programming, deriving a sequential
program into a parallel one is not trivial. MRIP is an interesting and promising
approach for increasing the efficiency of simulation experiments of dynamic systems
such as communication networks. Akaroa-2, an MRIP implementation, is ease to
install, use and extend. Further research in order to implement new sequential pro-
cedures that are statistically efficient has received due attention at the University
of Canterbury, in Christchurch, New Zealand, at the Technical University of Berlin,
Germany, and now at the University of Amazonas, in Manaus, Brazil.

Experimental investigation showed us that for low traffic intensities, NOBM per-
forms satisfactorily, and CSUM should be avoided or never used, since the vari-
ability of the confidence interval is very high (see 5.2. For medium values of traffic
intensity, or when the run length is long due, for example, to a tight relative pre-
cision, NOBM/GW and SBM should be selected preferentially. Concerning the
settings for NOBM/GW and SBM that should be made by the user, we claim
that those explained in chapter 4 are acceptable for this range of traffic intensity.
Sophisticated methods of selecting the spacing of SBM gives no practical improve-
ment.

When simulating queuing systems with high traffic intensity OBM and CSUM
should be the best choices among the CIPs studied in this research. If accuracy is
an issue, we suggest OBM which requires less observations and is more intuitive.

On the other hand, by simulating a very time-consuming model, CSUM can be
selected, since it has been proven to be asymptotically more efficient, and require
less observations in presence of more processors. The sequential version of CSUM
implemented in this research is an estimator with substantially lower computational
cost, if it can be run in an environment of multiple replications in parallel.

7.4 Future research

Further experimental testing of this methodology against data sets with known
properties is required. We limited this research to a set of reference queuing models,
but it would be advisable to extend the analysis to queuing networks with more
complex correlation structure.

Akaroa-2 is still being developed and certainly the global analyzer should be im-
proved to in order to allow finer checkpoint granularity, which could yield higher
speedup.
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Batch-Means-based procedures deserve further investigation for their simplicity
of conception. New ideas as those proposed by Steiger and Wilson [125] can be
suitably integrated into a sequential procedure under MRIP. A very challenging
investigation should be the integration of a methodology proposed by Pieter Voss
[127], which states that is possible to estimate steady-state means from a short,
autocorrelated and transient time series.

It would be very welcome a proposal of a more efficient manner of averaging the
intermediates estimates coming form different and independent replications. Some
authors claim it does really exist, but a superficial investigation gave us poor or,
at most identical results.

Both OBM and CSUM can be tuned towards a shorter BSDP, but in this case we
should have many processors at our disposal. Moreover, the precise choice of the
number of processors that can compensate an imprecise batch selection is an open
issue that can be investigated in a future research.

The sequential methods here investigated could be certainly tuned in such a way
that they could give speedup close to the one resulted from Amdahl law. So far we
have focused on implementing methods with a good coverage.
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i\n 2 3 4 5 6 7 8 9 10
1 .7071 .7071 .6872 .6646 .6431 .6233 .6052 .5888 .5739
2 – .0000 .1677 .2413 .2806 .3031 .3164 .3244 .3291
3 – – – .0000 .0875 .1401 .1743 .1976 .2141
4 – – – – – .0000 .0561 .0947 .1224
5 – – – – – – – .0000 .0399

i\n 11 12 13 14 15 16 17 18 19 20
1 .5601 .5475 .5359 .5251 .5150 .5056 .4968 .4886 .4808 .4734
2 .3315 .3325 .3325 .3318 .3306 .3290 .3273 .3253 .3232 .3211

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tab. 21: Coefficients ain for the Shapiro-Wilk test

level
n 0.01 0.02 0.05 0.10 0.50 0.90 0.95 0.98 0.99
3 0.753 0.756 0.767 0.789 0.959 0.998 0.999 1.000 1.000
4 0.687 0.707 0.748 0.792 0.935 0.987 0.992 0.996 0.997
5 0.686 0.715 0.762 0.806 0.927 0.979 0.986 0.991 0.993

6 0.713 0.743 0.788 0.826 0.927 0.974 0.981 0.986 0.989
7 0.730 0.760 0.803 0.838 0.928 0.972 0.979 0.985 0.988
8 0.749 0.778 0.818 0.851 0.932 0.972 0.978 0.984 0.987
9 0.764 0.791 0.829 0.859 0.935 0.972 0.978 0.984 0.986

10 0.781 0.806 0.842 0.869 0.938 0.972 0.978 0.983 0.986
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tab. 22: Critical points for the Shapiro-Wilk test

Small values of Shapiro-Wilk statistic W are significant. By testing normality
among the random variables Ai, the asymptotic scaled sum of Ti(t) for each batch
by means of in the method of Standardized Time Series (see Sec. 2.3.5), we chose
the 0.95 level of significance. Since we chose a number of batches equal 10, the
hypothesis of normality will be rejected if W < 0.978.

When we wanted to force imprecision of selection of batch size, we chose a lower
level of significance (e.g. 0.01) for the test of normality. This way, test for normality
succeeds when the Shapiro-Wilk statistics W > 0.781.
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n\α .005 .010 .025 .050 .100
10 .62 .72 .89 1.04 1.23
11 .67 .77 .93 1.08 1.26
12 .71 .81 .96 1.11 1.29
13 .74 .84 1.00 1.14 1.32
14 .78 .87 1.03 1.17 1.34
15 .81 .90 1.05 1.19 1.36
16 .84 .93 1.08 1.21 1.38
17 .87 .96 1.10 1.24 1.40
18 .89 .98 1.13 1.26 1.41
19 .92 1.01 1.15 1.27 1.43
20 .94 1.03 1.17 1.29 1.44
21 .96 1.05 1.18 1.31 1.45
22 .98 1.07 1.20 1.32 1.46
23 1.00 1.09 1.22 1.33 1.48
24 1.02 1.10 1.23 1.35 1.49
25 1.04 1.12 1.25 1.36 1.50
26 1.05 1.13 1.26 1.37 1.51
27 1.07 1.15 1.27 1.38 1.51
28 1.08 1.16 1.28 1.39 1.52
29 1.10 1.18 1.30 1.40 1.53
30 1.11 1.19 1.31 1.41 1.54
32 1.13 1.21 1.33 1.43 1.55
34 1.16 1.23 1.35 1.45 1.57
36 1.18 1.25 1.36 1.46 1.58
38 1.20 1.27 1.38 1.48 1.59
40 1.22 1.29 1.39 1.49 1.60
42 1.22 1.29 1.41 1.50 1.61
44 1.25 1.32 1.42 1.51 1.62
46 1.27 1.33 1.43 1.52 1.63
48 1.28 1.35 1.45 1.53 1.63
50 1.29 1.36 1.46 1.54 1.64
55 1.33 1.39 1.48 1.56 1.66
60 1.35 1.41 1.50 1.58 1.67
65 1.38 1.43 1.52 1.60 1.68
70 1.40 1.45 1.54 1.61 1.70
75 1.42 1.47 1.55 1.62 1.71
80 1.44 1.49 1.57 1.64 1.71
85 1.45 1.50 1.58 1.65 1.72
90 1.47 1.52 1.59 1.66 1.73
95 1.48 1.53 1.60 1.66 1.74
100 1.49 1.55 1.61 1.67 1.74
. . . . . . . . . . . . . . . . . .

Tab. 23: Critical points for the Rank von Neumann test
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We ran experiments on the waiting time process in an M/M/1 queue. In many
practical situations, the exponential assumptions may be rather limiting, especially
concerning service times being distributed exponentially.

One possibility in communication traffic analysis is the modeling of systems with
batch arrival and departure processes [68]. Therefore, we also ran experiments on
the waiting time process in an M/Ek/1 queue, which provides a model for batch
arrivals [77]. The symbol Ek represents Erlangian services times with k stages.
Erlang-r distribution approximates nonexponential distributions with coefficient of
variation (Cx) less than one (mechanism of service in an M/M/1 queue has unity
coefficient of variation).

kµkµ kµ. . .

Fig. 35: Erlangian system with k stages

A customer can just begin being served by the first stage when the customer in
service left the last stage. We chose to work with 4 stages, so then the coefficient
of variation equals 1/

√
4. There was no special reason for this choice, except to

achieving a coefficient of variation between 0 and 1.

To get a queuing system with coefficient of variation greater than unity, we resorted
to hyperexponential distribution with 2 stages. A customer goes to stage j with
probability qj.
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Fig. 36: Hyperexponential system with k stages

The parameter qi and µ were adjusted to yield a coefficient of variation equal to√
2 The fourth queuing system we used was an M/D/1, where the service time is a

fixed, deterministic quantity. This is actually a reasonable model for the processing
of fixed length packets in a communication network [110].
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Let λ be the arrival rate of each of these queues, µ be the service rate, and ρ be
the traffic intensity. Let Xn be the waiting time of the nth customer. If ρ < 1,
there exists a steady-state random variable X such that Xn ⇒ X as n →∞. We
are particularly interested in the performance measure of mean waiting time given
by :

Model Cs E[X]
M/D/1 0 ρµ

2(1−ρ)

M/E4/1 1/
√

4 ρ(1+1/k)
2µ(1−ρ)

M/M/1 1 ρ
µ(1−ρ)

M/H2/1
√

2 ρ(1+Cx
2)

2µ(1−ρ)
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The following pages present the results of sequential coverage analysis by applying
NOBM, when simulating the average waiting time of the following queing systems :
M/D/1, M/E4/1, M/M/1 and M/H2/1 (see App. C for more details of their
settings). We varied traffic intensity (ρ = 0.1, 0.5, and 0.9), confidence level
(η = 0.1 to 0.95) and degree of parallelization (P = 1, 2 and 6).

We constructed a coverage function for each combination of these factors and,
additionally, we assed the average run length (in units of 1000 observations) and
CoV{H}, a measure of stability of confidence interval half-width. Graphics of
the same type of MOE were plotted using the same unit, in such a way one can
compare them visually. A few graphics corresponding to average run length of very
low confidence level and traffic intensity, do not appear, since they used much less
than 1000 observations.

The end of transient period was found by means of a stationarity test proposed by
Schruben et al. [121], already implemented in Akaroa-2. Observations of transient
period are discarded, and the stochastic process being simulated is considered to
be a sample from a covariance stationary process.

Initially, batch size was selected to be equal 100 observations. Independence among
batch means was pursued by using jackknife estimators of correlation coefficients.
There was, initially, 100 batches, but after finding the optimal batch size that
yielded almost uncorrelated batch means, observations were reorganized into 25
batches, according to [114], which resulted in a batch size four times larger.

At consecutive checkpoints, sample mean and sample variance were calculated and
sent to a global analyzer, together with the sample size. The number of batches
is kept fixed. The simulation experiment stopped when the relative precision (5%)
was achieved two times consecutively.
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The following pages present the results of sequential coverage analysis, by applying
NOBM/GW, when simulating the average waiting time of the following queing
systems : M/D/1, M/E4/1, M/M/1 and M/H2/1 (see App. C for more details
of their settings). We varied traffic intensity (ρ = 0.1, 0.5, and 0.9), confidence
level (η = 0.1 to 0.95) and degree of parallelization (P = 1, 2 and 6).

We constructed a coverage function for each combination of these factors and,
additionally, we assed the average run length (in units of 1000 observations) and
CoV{H}, a measure of stability of confidence interval half-width. Graphics of
the same type of MOE were plotted using the same unit, in such a way one can
compare them visually. A few graphics corresponding to average run length of very
low confidence level and traffic intensity, do not appear, since they used much less
than 1000 observations.

The end of transient period was found by means of a stationarity test proposed by
Schruben et al. [121], already implemented in Akaroa-2. Observations of transient
period are discarded, and the stochastic process being simulated is considered to
be a sample from a covariance stationary process.

Initially, batch size was selected to be equal 100 observations. Independence among
batch means was pursued by using jackknife estimators of correlation coefficients.
There was, initially, 100 batches, but after finding the optimal batch size that
yielded almost uncorrelated batch means, observations were reorganized into 25
batches, according to [114], which resulted in a batch size four times larger.

At consecutive checkpoints, sample mean and sample variance were calculated and
sent to a global analyzer, together with the sample size. The number of batches
is increased by 2 whenever the relative precision is not achieved. The simulation
experiment stopped when the relative precision (5%) was achieved two times con-
secutively.
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The following pages present the results of sequential coverage analysis, by applying
SBM, when simulating the average waiting time of the following queing systems
: M/D/1, M/E4/1, M/M/1 and M/H2/1 (see App. C for more details of their
settings). We varied traffic intensity (ρ = 0.1, 0.5, and 0.9), confidence level
(η = 0.1 to 0.95) and degree of parallelization (P = 1, 2 and 6).

We constructed a coverage function for each combination of these factors and,
additionally, we assed the average run length (in units of 1000 observations) and
CoV{H}, a measure of stability of confidence interval half-width. Graphics of
the same type of MOE were plotted using the same unit, in such a way one can
compare them visually. A few graphics corresponding to average run length of very
low confidence level and traffic intensity, do not appear, since they used much less
than 1000 observations.

The end of transient period was found by means of a stationarity test proposed by
Schruben et al. [121], already implemented in Akaroa-2. Observations of transient
period are discarded, and the stochastic process being simulated is considered to
be a sample from a covariance stationary process.

Given an initial bath size m=100, the last s of every m observations are discarded.
In these experiment, we selected s=0.2m. Independence among batch means was
pursued by using jackknife estimators of correlation coefficients. whenever test for
correlation fails, multiple of (m - s) observations were grouped, and more observa-
tions collected. There was, initially, 100 batches, but after finding the optimal batch
size that yielded almost uncorrelated batch means, observations were reorganized
into 25 batches, according to [114].

At consecutive checkpoints, sample mean and sample variance were calculated and
sent to a global analyzer, together with the sample size. The number of batches
is increased by 2 whenever the relative precision is not achieved. The simulation
experiment stopped when the relative precision (5%) was achieved two times con-
secutively.
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The following pages present the results of sequential coverage analysis by applying
OBM, when simulating the average waiting time of the following queing systems :
M/D/1, M/E4/1, M/M/1 and M/H2/1 (see App. C for more details of their
settings). We varied traffic intensity (ρ = 0.1, 0.5, and 0.9), confidence level
(η = 0.1 to 0.95) and degree of parallelization (P = 1, 2 and 6).

We constructed a coverage function for each combination of these factors and,
additionally, we assed the average run length (in units of 1000 observations) and
CoV{H}, a measure of stability of confidence interval half-width. Graphics of
the same type of MOE were plotted using the same unit, in such a way one can
compare them visually. A few graphics corresponding to average run length of very
low confidence level and traffic intensity, do not appear, since they used much less
than 1000 observations.

The end of transient period was found by means of a stationarity test proposed by
Schruben et al. [121], already implemented in Akaroa-2. Observations of transient
period are discarded, and the stochastic process being simulated is considered to
be a sample from a covariance stationary process.

Initially, batch size was selected to be equal 100 observations. Independence among
batch means was pursued by using jackknife estimators of correlation coefficients.
There was, initially, 100 batches, but after finding the optimal batch size that
yielded almost uncorrelated batch means, observations were reorganized into 25
batches, according to [114], which resulted in a batch size four times larger.

At this moment, each observation initiated an overlapped batch, yielding (n - m
+ 1) batches. At consecutive checkpoints, sample mean and sample variance were
calculated and sent to a global analyzer, together with the sample size.

The number of batches is increased by 2 whenever the relative precision is not
achieved. Whenever the test for stopping rule fails, each new observation collected,
together with the previous (m - 1) observations, completed a new overlapped batch.
It corresponds to an increase of the number of batches. The simulation experiment
stopped when the relative precision (5%) was achieved two times consecutively.
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The following pages present the results of sequential coverage analysis by applying
STS/CSUM, when simulating the average waiting time of the following queing
systems : M/D/1, M/E4/1, M/M/1 and M/H2/1 (see App. C for more details
of their settings). We varied traffic intensity (ρ = 0.1, 0.5, and 0.9), confidence
level (η = 0.1 to 0.95) and degree of parallelization (P = 1, 2 and 6).

We constructed a coverage function for each combination of these factors and,
additionally, we assed the average run length (in units of 1000 observations) and
CoV{H}, a measure of stability of confidence interval half-width. Graphics of
the same type of MOE were plotted using the same unit, in such a way one can
compare them visually. A few graphics corresponding to average run length of very
low confidence level and traffic intensity, do not appear, since they used much less
than 1000 observations.

The end of transient period was found by means of a stationarity test proposed by
Schruben et al. [121], already implemented in Akaroa-2. Observations of transient
period are discarded, and the stochastic process being simulated is considered to
be a sample from a covariance stationary process.

Initially, batch size was selected to be equal 100 observations. A random variable
Ai were computed to the ith batch, according to Eq. 2.21. Normality among Ai’s
was pursued by using the Shapiro-Wilk test (look at App. A for more details).
We decided to work with 10 batches in order to keep in touch with the degrees of
freedom suggested in [114].

Finding the normality among Ai’s, at consecutive checkpoints, sample mean and
sample variance were calculated and sent to a global analyzer, together with the
sample size. The number of batches is kept fixed. The simulation experiment
stopped when the relative precision (5%) was achieved two times consecutively.



173.........................................................................................................................................................

.1.5.91.
0

.1
.5

.9
1.

0

Observed Confidence Level Gη∗(η)

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

.1.5.91.
0

.1
.5

.9
1.

0

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

.1.5.91.
0

.1
.5

.9
1.

0

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

F
ig

.
85

:
C

SU
M

:
co

ve
ra

ge
fu

nc
ti

on
fo

r
M

/
D

/1
an

d
ρ

=
0.

1,
0.

5,
0.

9



174 Appendix H. CSUM PERFORMANCE.........................................................................................................................................................

20
0

40
0

60
0

80
0

10
00

1
2

6

Average Run Length

N
o.

 p
ro

ce
ss

or
s

20
0

40
0

60
0

80
0

10
00

1
2

6

N
o.

 p
ro

ce
ss

or
s

20
0

40
0

60
0

80
0

10
00

1
2

6

N
o.

 p
ro

ce
ss

or
s

F
ig

.
86

:
C

SU
M

:
av

er
ag

e
ru

n
le

ng
th

fo
r

M
/
D

/
1,

η
=

0.
95

an
d

ρ
=

0.
1,

0.
5,

0.
9



175.........................................................................................................................................................

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

CoVH

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

F
ig

.
87

:
C

SU
M

:
C

oV
{H
}f

or
M

/D
/1

an
d

ρ
=

0.
1,

0.
5,

0.
9



176 Appendix H. CSUM PERFORMANCE.........................................................................................................................................................

.1.5.91.
0

.1
.5

.9
1.

0

Observed Confidence Level Gη∗(η)

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

.1.5.91.
0

.1
.5

.9
1.

0

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

.1.5.91.
0

.1
.5

.9
1.

0

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

F
ig

.
88

:
C

SU
M

:
co

ve
ra

ge
fu

nc
ti

on
fo

r
M

/
E

4
/1

an
d

ρ
=

0.
1,

0.
5,

0.
9



177.........................................................................................................................................................

20
0

40
0

60
0

80
0

10
00

1
2

6

Average Run Length

N
o.

 p
ro

ce
ss

or
s

20
0

40
0

60
0

80
0

10
00

1
2

6

N
o.

 p
ro

ce
ss

or
s

20
0

40
0

60
0

80
0

10
00

1
2

6

N
o.

 p
ro

ce
ss

or
s

F
ig

.
89

:
C

SU
M

:
av

er
ag

e
ru

n
le

ng
th

fo
r

M
/
E

4
/
1,

η
=

0.
95

an
d

ρ
=

0.
1,

0.
5,

0.
9



178 Appendix H. CSUM PERFORMANCE.........................................................................................................................................................

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

CoVH

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

F
ig

.
90

:
C

SU
M

:
C

oV
{H
}f

or
M

/E
4
/
1

an
d

ρ
=

0.
1,

0.
5,

0.
9



179.........................................................................................................................................................

.1.5.91.
0

.1
.5

.9
1.

0

Observed Confidence Level Gη∗(η)

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

.1.5.91.
0

.1
.5

.9
1.

0

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

.1.5.91.
0

.1
.5

.9
1.

0

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

F
ig

.
91

:
C

SU
M

:
co

ve
ra

ge
fu

nc
ti

on
fo

r
M

/M
/1

an
d

ρ
=

0.
1,

0.
5,

0.
9



180 Appendix H. CSUM PERFORMANCE.........................................................................................................................................................

20
0

40
0

60
0

80
0

10
00

1
2

6

Average Run Length

N
o.

 p
ro

ce
ss

or
s

20
0

40
0

60
0

80
0

10
00

1
2

6

N
o.

 p
ro

ce
ss

or
s

20
0

40
0

60
0

80
0

10
00

1
2

6

N
o.

 p
ro

ce
ss

or
s

F
ig

.
92

:
C

SU
M

:
av

er
ag

e
ru

n
le

ng
th

fo
r

M
/M

/1
,
η

=
0.

95
an

d
ρ

=
0.

1,
0.

5,
0.

9



181.........................................................................................................................................................

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

CoVH

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

F
ig

.
93

:
C

SU
M

:
C

oV
{H
}f

or
M

/M
/1

an
d

ρ
=

0.
1,

0.
5,

0.
9



182 Appendix H. CSUM PERFORMANCE.........................................................................................................................................................

.1.5.91.
0

.1
.5

.9
1.

0

Observed Confidence Level Gη∗(η)

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

.1.5.91.
0

.1
.5

.9
1.

0

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

.1.5.91.
0

.1
.5

.9
1.

0

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

 η
∗  =

 η

P
=

1
P

=
2

P
=

6

F
ig

.
94

:
C

SU
M

:
co

ve
ra

ge
fu

nc
ti

on
fo

r
M

/
H

2
/1

an
d

ρ
=

0.
1,

0.
5,

0.
9



183.........................................................................................................................................................

20
0

40
0

60
0

80
0

10
00

1
2

6

Average Run Length

N
o.

 p
ro

ce
ss

or
s

20
0

40
0

60
0

80
0

10
00

1
2

6

N
o.

 p
ro

ce
ss

or
s

20
0

40
0

60
0

80
0

10
00

1
2

6

N
o.

 p
ro

ce
ss

or
s

F
ig

.
95

:
C

SU
M

:
av

er
ag

e
ru

n
le

ng
th

fo
r

M
/
H

2
/1

,
η

=
0.

95
an

d
ρ

=
0.

1,
0.

5,
0.

9



184 Appendix H. CSUM PERFORMANCE.........................................................................................................................................................

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

CoVH

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

0.
450.
5

0
0.

2
0.

4
0.

6
0.

8
1

:

D
es

ire
d 

C
on

fid
en

ce
 L

ev
el

P
=

1
P

=
2

P
=

6

F
ig

.
96

:
C

SU
M

:
C

oV
{H
}f

or
M

/H
2
/1

an
d

ρ
=

0.
1,

0.
5,

0.
9



References

[1] Adam, N. Achieving a confidence interval for parameters estimated by sim-
ulation. Management Science, Nr. 7, July 29 (1983), 856–866.

[2] Alexopoulos, C., Fishman, C., and Seila, A. Computational experi-
ence with the batch means method. In Winter Simulation Conference (New
York, Dec. 1997), ACM Association for Computing Machinery, pp. 194–201.

[3] Alexopoulos, C., and Seila, A. Implementing the batch means method
in simulation experiments. In Winter Simulation Conference (New York,
Dec. 1996), ACM Association for Computing Machinery, pp. 214–221.

[4] Amdahl, G. Validity of the single procesor approach to achieving large scale
computing capabilities. In AFIPS Conference Proceedings (1976), pp. 483–
485.

[5] Anderson, O. The Statistical Analysis of Time Series. John Willey, 1971.
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