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Zusammenfassung

Optische Technologien sind ein sich aktuell schnell entwickelnder Zweig in der Physik. Sie ermögli-
chen eine Vielzahl von Anwendungen des modernen Lebens. Effiziente Bauelemente bestehen aus op-
tischen Komponenten, deren Abmessungen nur wenige Nanometer betragen. Der Schwerpunkt dieser
rein theoretischen Arbeit liegt in der Untersuchung von Metallnanostrukturen hinsichtlich räumlicher
und zeitlicher Kontrolle der optischen Anregungen unter Lichteinfall sowie in Anwendungen dieser
Lokalisierung. Die Ergebnisse dieser Arbeit unterteilen sich in drei Themen.

Das erste Thema befasst sich mit den Eigenschaften von Metallnanostrukturen. Zuerst wird ein theore-
tisches Modellsystem für Metalle eingeführt und als Ergebnis werden die Bandstruktur und die Dipol-
übergangsmatrixelemente von Silber berechnet. Plasmonische Effekte von (Hybrid-)Nanokügelchen
werden zur Vorbereitung der Mechanismen für die Lokalisierung von Licht untersucht. Nanoplas-
monik beschreibt optische Effekte, die auf Oszillationen des Plasmas der Nanometallsysteme beru-
hen. Solche Systeme erlauben die Konzentration der optischen Energie in der Größenordnung von
Nanometern und Femtosekunden. Ermöglicht wird dies durch Moden, die man Oberflächenplasmo-
nen nennt. Zur raumzeitlichen Lokalisierung von elektromagnetischen Feldern müssen Materialeigen-
schaften und geometrische Konfigurationen beachtet werden. Beispielsweise werden in dieser Disser-
tation Resonanzen von unterschiedlichen Metallen für verschiedene Wellenlängen untersucht. Außer-
dem wird gezeigt, dass nichtresonante Metallschichten für die betrachteten Wellenlängen die Feldver-
stärkung auf der Oberfläche über eine lange Distanz übertragen und dass durch Abschirmung sinken-
de Verstärkungen durch die Kopplung von zwei Nanokügelchen kompensiert werden können.

Die zweite Thematik befasst sich mit dem gleichzeitigen Einschränken von optischen Anregungen auf
Nanometer-Längenskalen und auf Femtosekunden-Zeitskalen. Die Ortsauflösung von optischen Mes-
sungen wird jedoch für konventionelle Lichtquellen durch die Wellenlänge des einfallenden Lichts be-
grenzt. Dennoch ist eine Lokalisierung unterhalb der Beugungsgrenze wünschenswert, weil sie eine
Vielzahl von neuen Methoden zur Untersuchung von Nanosystemen eröffnet. Ermöglicht wird dies
durch die Kombination von Nanoplasmonik mit Pulsformungstechniken. Als Lokalisierungsmechanis-
mus dienen Interferenzen von Nah- und Fernfeldern und Polarisationseffekte. Um die Pulse zu finden,
welche die gewünschte Lokalisierung liefern, wird im zentralen Teil dieser Arbeit ein genetischer Algo-
rithmus entworfen, der die Form der eingestrahlten Lichtpulse optimiert. Unterschiedliche Geometri-
en weisen verschiedene Optimierungsqualitäten auf. Gute Lokalisierungen erhält man durch Metall-
spitzen oder antennenähnliche Anordnung, welche die Anregung in die Nanostruktur führen.

Das letzte Thema stellt eine Anwendung der erzielten raumzeitlichen Lokalisierung dar. Angewendet
wird diese auf komplexen Nanostrukturen wie beispielsweise Halbleiterquantenpunkte oder Farbstoff-
pigmente, die in Proteinen eingebettet sind, Lichtsammelkomplexe bilden und als optische Emitter
dienen. Wenn diese dicht beieinander angeordnet werden, koppeln sie über Coulombkräfte. Diese
Dipol-Dipol-Kopplung zwischen einzelnen Emittern auf einer Nanometerskala führt zur Bildung neu-
er kollektiver hybridisierter Quantenzustände, die über die gesamte Nanostruktur delokalisiert sind.

Das wichtigste Ergebnis dieser Arbeit stellt eine neue Art von Quantenzustandtomographie dar. Die-
se löst die individuellen Beiträge aus der kollektiven optischen Antwort der gekoppelten Emitter in
einer räumlich ausgedehnten Nanostruktur mithilfe lokalisierter Nahfeldspektroskopie auf. Eine ko-
härente, nichtlineare, mehrdimensionale Spektroskopiemethode (die Methode der doppelten Quan-
tenkohärenz) wird mit Techniken, die das Licht konzentrieren, kombiniert. Vielteilchenwellenfunktio-
nen von gekoppelten Quantenpunkten können durch die Ermittlung der Entwicklungskoeffizienten
der Basisdarstellung mithilfe einer Pulssequenz aus drei Lichtpulsen mit kontrollierter Einhüllenden
und Phase sowohl für Exzitonen- als auch für Biexzitonenzustände rekonstruiert werden (bis auf eine
beliebige Phase). Die Qualität der Rekonstruktion hängt unter anderem von der Qualität der raumzeit-
lichen Lokalisierung und dem Einfluss von Nachbarresonanzen ab. Filtermethoden können diese Ein-
flüsse reduzieren und verbessern folglich die Rekonstruktion. Insgesamt können mehr Informationen
gewonnen werden als nur mithilfe von zweidimensionaler Spektroskopie oder Lokalisation alleine.
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Abstract

Recently, optical technologies are a rapidly developing branch of physics with a lot of applications in
modern lifestyle. Efficient devices consist of optical components with spatial dimensions of only a
few nanometers. The focus of this purely theoretical thesis is to investigate and to control the optical
excitations in metal nanostructures simultaneously in space and time under the influence of light and
applications of this spatiotemporal control. The results of this thesis are composed of three topics.

The first topic deals with properties of metal nanostructures. A theoretical model system for met-
als is introduced and as first result, the band structure and dipole transition matrix elements of silver
are calculated. Plasmonic effects of metal (hybrid) nanospheres are examined in preparation for the
mechanisms of controlling light. Nanoplasmonics describes optical effects based on plasma oscilla-
tions of nanostructured metal systems. These systems can keep the optical energy concentrated on
nanometer scale and femtosecond scale, enabled by modes called surface plasmons. For spatiotem-
porally localized enhancement of the electromagnetic field, material properties and geometry settings
have to be considered: For example, resonances of different metals at different wavelengths are ex-
amined. It is also shown that nonresonant metal layers for the considered wavelengths can transfer
field enhancement on the surface over a long distance and that decreasing enhancements due to the
screening of thick coatings can be compensated by coupling of two nanospheres.

The second topic deals with confining optical excitations simultaneously on a nanometer length
scale and on a femtosecond time scale. For conventional light sources, however, the spatial resolution
of optical measurements is limited by the wavelength of the incident light. Still, achieving electronic
control below the diffraction limit is desirable because it opens a number of novel methods in inves-
tigating nanosystems. It becomes possible by combining nanoplasmonics with pulse shaping tech-
niques. Interferences of near and far fields and polarization effects serve as control mechanism. To
find the pulses that supply the desired localization, in the central part of the thesis a genetic algorithm
that optimizes the shape of the incoming pulses is generated. Different geometries show varying opti-
mization quality. Good localizations are achieved by using metal tips or antenna-like geometries that
guide excitations into the nanostructure.

The last topic is an application of the achieved spatiotemporal control. Control is applied to com-
plex (hybrid) nanostructures (e.g. semiconductor quantum dots or pigments embedded in proteins
such as in light harvesting complexes), that serve as optical emitters. If they are placed in vicinity, they
couple via Coulomb forces. This dipole-dipole coupling on nanometer scale between individual emit-
ters leads to the formation of new collective hybridized quantum states that are delocalized over the
entire nanostructure.

The main result of this work is a new kind of quantum state tomography that disentangles the indi-
vidual contributions of the coupled emitters in a spatially extended nanostructure from the collective
optical response via localized near field spectroscopy. A coherent nonlinear multidimensional spec-
troscopy method (the double quantum coherence) is combined with light concentrating techniques.
Many-particle wave functions of coupled quantum dots for exciton as well as for biexciton states can
be reconstructed (up to an arbitrary phase) by finding the expansion coefficients of the basis repre-
sentation by using a sequence of three polarization shaped light pulses with controlled envelopes and
phases. The quality of reconstruction depends among others on the quality of spatiotemporal control
and on influences of neighboring resonances. Filtering methods can reduce these influences and thus
improve the quality of reconstruction. In all, more information about the system can be revealed than
by using two-dimensional spectroscopy or localization alone.
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1 Introduction

In today’s world, optical technologies are ubiquitous. The prosperity in many areas of life is
owed to many high-tech devices that influence our lives significantly. Prominent examples of
high-tech optical appliances are lasers, solar cells, optical sensors, waveguides and fibers or
semiconductor chips. Such devices are used for modern entertainment systems, processors,
solar energy conversion [AP10], medical application, in the transport sector, or meteorology
systems, to name but a few examples.

Optical elements for modern devices become always smaller. They reach nanometer length
scales. Nanotechnology is one of the fastest growing research fields in the current century. It
is not only found in modern information technology (e.g. nanoantennas for light-emitting
diodes) or medicine research (e.g. biomedical diagnostics [LCH08, HNES09]) but also in ma-
terial research like the development of novel hybrid materials. Plasmonic effects are of special
interest regarding metal structures on nanometer scales. Plasmons are quantums of plasma
oscillation. These quasi particles are collective oscillations of the free electron gas density –
being especially important at optical frequencies. In this thesis the wavelength dependencies
of different hybrid nanospheres with a silver core and platinum and gold layers are investi-
gated. Also the coupling of two nanospheres is examined.

Nanoplasmonics is a part of optical condensed matter science which corresponds with op-
tical effects of nanostructured metal systems [Sto11a]. It is presently a rather developed sci-
ence comprising several phenomena and quite a lot applications [Sto11b]. For example, the
colors of materials can be controlled: The shape and size of the metal particles determine the
types of surface plasmons that can couple to the particles and propagate across it so that the
interaction of light with the surface can be controlled [BDE03].

In this work, plasmonic effects are used for controlling and concentrating light simulta-
neously in space on nanometer length scales and time on femtosecond time scales. Re-
cently, there are many experiments which demonstrate spatiotemporal control of optical
excitations. This can be achieved by combining pulse shaping techniques with nanoplas-
monics [BASP05, ABB+10]. Several other localization methods are known and are already
applied to a broad range of nanoemitting structures. For example, near field fiber tips
[GLE+02, FSW+98, BASP05, PRP+04, WBSC+11, FSW+98, GEI+99], metal tips [ZWBW+09,
KYF+09, HVT+09, MKZ+08, NH11, SBC+10, PRP+04, WBSC+11] or nanoantennas [SFB02,
ABB+07] were used.

An example for complex (hybrid) nanostructures are optical emitters that are coupled
via Coulomb forces so that they form collective optical resonances. These include metal
nanoparticles, semiconductor quantum dots [GLE+02, LRNB03], pigments embedded in pro-
teins such as in light harvesting complexes [ECR+07, Wit11, CMN+10, SRKR12] or composite
systems, such as plasmon lasers [BS03]. In such coupled nanosystems exciton dynamics plays
an important role. They are for example essential for natural and artificial photosynthesis
processes or in quantum computing and OLEDs. The dipole-dipole coupling on a nanome-
ter scale between the individual emitters leads to the formation of new collective hybridized
quantum states that are delocalized over the individual nanostructure.

Far field spectroscopy cannot resolve the internal structure of the delocalized states since
the electric field is nearly constant on the spatial dimension of the nanostructure, which is
much smaller than the excitation wavelength. Neither absorption, nor pump probe, nor four-
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wave mixing experiments are able to disentangle the individual contributions of the coupled
emitters from the collective optical response. Thus, only the collective delocalized exciton
states are accessible in optical far field experiments.

For disentangling the individual contributions of the emitters to delocalized states local
spectroscopy methods such as near field spectroscopy are needed. While nonlinear one-
dimensional spectroscopy methods give the energy and the time evolution of single-exciton
and two-exciton states of coupled quantum systems, coherent two-dimensional spectroscopy
also investigate the correlations between their states [MTH09, TKSW03]. In this thesis, in or-
der to disentangle the delocalized wave functions, spatiotemporal control in near field op-
tics is combined with coherent nonlinear multidimensional spectroscopy methods. A new
class of measurement technique is proposed that reveals more information about the sys-
tem than two-dimensional spectroscopy or localization alone. This technique allow recon-
structing the contributions of single emitters to the delocalized wave function in a spatially
extended nanostructure – a kind of quantum state tomography. In this work, the method
is demonstrated by means of double quantum coherence spectroscopy [APV+09, LZBC06].
The method works for exciton [YZAG11] as well as for biexciton states. The feasibility of
coherent nonlinear optical measurements on single molecules has been demonstrated re-
cently [BSK+10]. Interferometric techniques of soft-x-ray pulses help to image single orbitals
[KCCM07, CK07].

The first idea of a quantum state tomography is from FANO [Fan57]. The aim of the method
is a direct reconstruction of the time dependent wave function. The importance of the tomog-
raphy method is based on the fact that a wave function supplies much information about a
quantum system but it is seldom directly accessible by experiments [GWH+10]. Knowing the
wave function opens the possibility of calculating new observables not related to optics at all
as transport properties and magnetic moments. There are several applications of such quan-
tum state tomography, especially in quantum information and quantum optics [LKK+08]. The
method of this thesis uses a sequence of light pulses with controlled envelopes and phases to
generate highly localized fields in time and space for reconstructing the wave functions – a
technique that was recently applied in coherent spectroscopy for localized detection of pho-
toelectrons [ABF+11].

Structure of the thesis

This thesis consists of nine chapters that are divided into five parts. Part I (Ch. 1) serves as
introduction and part V (Ch. 9) consists of the conclusion and an outlook, which summarizes
and gives suggestions for further research. This leaves part II, part III, and part IV for the
remaining seven thematic chapters (Ch. 2 to Ch. 8).

Part IV (Ch. 8) contains the main results – the essence of this work: the localized spectros-
copy. This apparently needs two ingredients: “Localization” and “spectroscopy”. Thus, part II
and part III provide these prerequisites: Part II (Ch. 2 to Ch. 5) deals with the localization of
light simultaneously in space (on nanometer length scale) and time (on femtosecond time
scale) and part III (Ch. 6 and 7) contains coherent multidimensional nonlinear spectroscopy
methods.

Ch. 2 starts with an introduction to electromagnetism of metals. Subsequently, a simple
material model is given. At the end of this chapter, band structure and dipole transition ma-
trix element calculations are presented that lead to a linear absorption spectrum as first result
of this work.

The next chapter – Ch. 3 – describes selected optical properties of metal nanostructures
and provides first simulation results. Pure, hybrid and coupled nanospheres are investigated
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with focus on field enhancements near the surface. An application of induced surface en-
hancement is given.

Ch. 4 presents the theoretical background of a method which is used to solve Maxwell’s
equations: the finite element method. This chapter supplies the theoretical foundation for the
simulations that provide field distributions of nanostructures under incident shaped pulses as
explained in the next chapter.

In Ch. 5 control mechanisms are discussed for various geometries and results for different
setups are presented. Additionally, a genetic algorithm is conceptualized in detail. All to-
gether, this leads to localization that is sufficient for localized spectroscopy, the aim of part II.

Part III starts with Ch. 6 that gives a theoretical foundation of quantum systems and re-
minds the reader of the density and the time evolution operator. For perturbation expansion,
different quantum mechanical pictures are briefly presented. Ch. 6 also introduces the theo-
retical background of coupled quantum systems, including the model system that is used in
the next chapters.

Ch. 7 begins with an introduction to nonlinear optics. Subsequently, double-sided Feyn-
man diagrams are explained and different types of signal detection are illustrated. Finally,
some third-order techniques are recalled – finishing with a method that is used for demon-
strations in the following chapter: the double quantum coherence technique, the aim of
part III.

Up to here, both prerequisites for localized spectroscopy have been introduced. The last
thematic part, part IV (Ch. 8) combines the two previous parts and reveals the main results
of this work: the so called localized spectroscopy. This is a way of reconstructing exciton
as well as biexciton wave functions using a new kind of quantum state tomography. Ch. 8
starts with a presentation of localized spectra for different kinds of localization. Adjoining, the
reconstruction protocols are given and the quality of reconstruction is extensively discussed.
In the end, a filtering method is presented for improving the reconstruction quality.
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2 Metals

Condensed matter physics deals with the physical properties of solids. The behavior of the
material is investigated by using electromagnetism, quantum mechanics, and statistical me-
chanics. Especially metals are of high interest because of the metallic bond that is character-
ized by electrostatic attractive forces between positively charged metal ions and the delocal-
ized electrons, that are gathered in an electron cloud.

Metals serve as basis for this work: Through their properties they enable plasmonic effects
(Ch. 3) that in turn are used to localize light (Ch. 5) that is needed to reach the goal of localized
spectroscopy (Ch. 8).

Thus, the focus in the second chapter of this thesis is on metals. It starts with a short but
comprehensive introduction of electromagnetism of metals. Afterwards, a material model is
introduced that uses the Drude model to provide equations of motions for intraband and
interband transitions. Finally, the electronic band structure is discussed and dipole transition
matrix elements are calculated with the help of hydrogen wave functions so that in the end a
linear absorption spectrum can be given.

2.1 Electromagnetism of metals

This section presents electromagnetism in a macroscopic view. That means that all occurring
quantities such as currents or charges are derived by averaging over the corresponding micro-
scopic quantities [Jac98]. This classical framework is sufficient for understanding interaction
of metals with electromagnetic fields, even for metals in the range of a few nanometers since
the high number of free electrons form dense energy levels comparable to the continuous
bands of a bulk. The strong dependence of the optical properties on frequency is shown in
Sec. 2.1.5.

2.1.1 Maxwell’s equations

The macroscopic Maxwell equations describe the dynamics of electromagnetic fields. They
link the electric and the magnetic fields with the charge density ρext and the current density1

jext as external inhomogeneity: the dielectric displacement D , the electric field E , the magnetic
field H and the magnetic flux density B . In differential form they read [Max65, Jac98]2

∇∇∇·D = ρext (2.1a)

∇∇∇·B = 0 (2.1b)

∇∇∇×E =−Ḃ (2.1c)

∇∇∇×H = Ḋ + jext. (2.1d)

Those equations take the properties of matter into account in the form of material param-
eters. The empty space parameters are the permittivity ε0 and the permeability µ0. The pres-

1Vectorial quantities are shown in bold in this work.
2This work uses the International System of Units.

9



2 Metals

ence of matter requires that the electric and magnetic field is described respectively by the
two additional vector fields D and H , that is linked with the other fields via

D = ε0E +P (2.2)

H = B/µ0 −M

and it is assumed that the bound charge carriers lead to the macroscopic polarization P and
the macroscopic magnetization M through microscopic processes. The magnetic properties
of the media used in the simulations of this work are neglected, so that in the following the
description of materials can be limited to electric polarization effects.

The polarization P represents the material dipole response per volume to optical excitation
caused by alignment of microscopic dipoles. The relations to the external quantities [Mai07]
are further given by

∇∇∇·P =−ρint (2.3)

and (using the continuity equation ∇∇∇· j =−ρ̇)

jint =−Ṗ .

In this approach the macroscopic electric field includes all polarization effects, both external
and internal fields are considered:

ε0∇∇∇·E =
(2.2)

−∇∇∇·P +∇∇∇·D =
(2.1a)

ρint +∇∇∇·D =
(2.3)

ρext +ρint

with ε0 as the vacuum permittivity.

2.1.2 Linear relationships in materials

For a complete description of electromagnetic fields in matter, the material equations are
needed. They describe a material’s ability to be polarized by the electric or magnetic field.
Under the simplified assumptions of linear, isotropic and nonmagnetic media, Eq. (2.2) can
be written as3

D =
(2.2)

ε0E +P =
(2.5)

ε0E +ε0χE = ε0(1+χ)E = ε0εE (2.4a)

B =µ0µH (2.4b)

where the dielectric susceptibility tensor χ= ε−1 is introduced to describe the linear relation-
ship between P and E :

P = ε0χE (2.5)

and ε is the dielectric constant, that becomes a frequency dependent function for metals (cf.
Sec. 2.1.5). Analogously, the vacuum permeability µ0 and the relative permeability µ are in-
troduced. In an isotropic material, the susceptibility tensor reduces to a scalar function and
in a homogeneous environment, χ does not depend on spatial coordinates. In a nonlinear
optical regime, the susceptibility depends on the electric field strength. Then, the response is
not any longer proportional to the electric field. Nonlinear effects are discussed in detail in
Ch. 7.

3The dielectric function is described by ε in this work. Some textbooks describes it by εr and introduce ε= ε0εr .
This notation is omitted here.
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2.1 Electromagnetism of metals

2.1.3 Wave equations

Combining Maxwell’s Equations (2.1) in different ways and using vectorial calculation rules,
there exist a number of derived differential equations. Without external current ( jext = 0)
the curl equations (2.1c) and (2.1d) simplifies after a Fourier transform ( ∂∂t → −iω) and us-
ing Eq. (2.4) to

∇∇∇×E (x ,ω) = iωµ0µH(x ,ω)

∇∇∇×H(x ,ω) =−iωε0εE (x ,ω)
(2.6)

with x ∈R3 and ω as the angular frequency. Eq. (2.6) can be written in matrix notation(
0 1

iε0ε
∇∇∇×

− 1
iµ0µ

∇∇∇× 0

)
·
(

E
H

)
=ω

(
E
H

)
so that reapplying the matrix gives(

1
ε0ε

∇∇∇× 1
µ0µ

∇∇∇× 0

0 1
ε0ε

∇∇∇× 1
µ0µ

∇∇∇×

)
·
(

E
H

)
=ω2

(
E
H

)
and a wave equation for the electric field is obtained:

1

ε0ε
∇∇∇× 1

µ0µ
∇∇∇×E =ω2E . (2.7)

With some assumptions, Eq. (2.7) can be written just for two dimensions. Using4 ∂z E = 0
for example, vector calculation rules, and ∇∇∇x y ·Ez = 0, one finds[Sch91]

∇∇∇x y ·∇∇∇x y Ez +ω2ε0εµ0µEx = 0

and for one dimension
∂2

x E +k2E = 0 (2.8)

with the angular wavenumber k = ω
c and the velocity of light c = 1p

ε0µ0
and the assumption

of vacuum with εµ = 1. Eq. (2.8) is called Helmholtz equation [NV73] that becomes impor-
tant in Sec. 4.1. In the following, µ is neglected since for the materials used in this work no
magnetizability is assumed5.

2.1.4 Plane waves

A plane wave is a constant-frequency wave with infinite parallel planes as wavefronts. The
amplitude normal to the phase velocity vector is constant. The dot product of the wave vector
k and the position vector x is constant as seen in Fig. 7.2.

A mathematical versatile formulation for waves is a representation as a complex function,
using the ansatz

E (x , t ) = E0 ei(k ·x−ωt+φ) (2.9)

with e as the natural exponent, i as the imaginary number, k ∈R3 as the wave’s wave number
vector, t as time and x as the vector that gives the position in the three-dimensional space.
For plane wave, the vector can be reduced to one dimension since the other dimensions lead

4The expression ∂x is a short form for the derivative operator ∂
∂x with respect to the variable x.

5That additionally avoids confusions with the dipole matrix µ.
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2 Metals

Figure 2.1:
Plane wave fronts: A constant dis-
tance separates same amplitudes
of planar waves radiating in x di-
rection with the wave vector k .

to he same at every point on any given y-z plane. The phase shift φ of the wave has the units
of radians. The constant vector E0 ∈C3 represents the amplitude of the wave.

The real part of Eq. (2.9) provides a physically description of a plane wave:

Re(E ) = A cos(k · x −ωt +φ)

with A = Re(E0) ∈R3.

Assuming a constant relative permeability µ= 1, applying Eq. (2.7) for the ansatz (2.9) yields

1

ε0εµ0
ik × ik ×E0 ei(k ·x−ωt+φ) =ω2 ei(k ·x−ωt+φ) E0

⇔ k ×k ×E0 =−ε0εµω
2E0.

Using vectorial calculation rules for the double cross product and the fact that for plane waves
the vector of the amplitude of the electric field E0 is perpendicular to the vector in propaga-
tion direction k , that means that k ·E0 = 0, provide

|k |2 = ε0εµ0ω
2 =
ε=n2

ε0µ0ω
2n2 = k2

0n2

with k0 the vacuum value of k.

2.1.5 Dielectric function

The behavior of the metal interacting with light varies with the type of metal and with the fre-
quency of the light. For instance, alkali metals show other properties than noble metals. Each
metal has its own complex dielectric function ε(ω) that describes the dispersive properties.

Through generalizing the linear relationship (2.4a) to

D(r , t ) = ε0

Ï
dt ′ dr ′′′ε(r − r ′′′, t − t ′)E (r ′′′, t ′) (2.10)

the non-locality in time and space are taken into account. Fourier transform of Eq. (2.10) and
simplifying to a spatially local response (motivated by longer wavelengths than the mean free
path of the electrons) provide

D(ω) = ε0ε(ω)E (ω).

In general, the dielectric function is a complex function of the angular frequency ω and the
square of the complex refractive index nC(ω) =p

ε(ω) with the relations

nC = n1 + in2 = n + iκ,

ε= ε1 + iε2,

ε1 = n2 −κ2, and

ε2 = 2nκ
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2.2 Material model

where κ is the extinction coefficient that is proportional to the absorption coefficient (cf. Sec.
2.1.6).

2.1.6 Beer-Lambert law

The decreasing of the intensity I due to absorption can be described with the Beer-Lambert
law. It relates the absorption of light that travels through a material in z direction to the
properties of this material. It reads

I (z) = |E(z, t )|2 = I0 e−α(ω)z

with the absorption coefficient α. It is determined by [HK04]

α(ω) = 2
ω

c
κ(ω) = 2

ω

c

1

2n(ω)
Im

(
χ(ω)

)= ω

n(ω)c
Im

(
P (ω)

E(ω)

)
(2.11)

where κ is the extinction coefficient of Sec. 2.1.5 and c the velocity of light.

2.2 Material model

A simple approach of providing an estimation of all material parameters needed for the solu-
tion of Maxwell’s equations is given. This is done by derivating a description for the intraband
and interband transitions in a metal to provide space-time dynamics for the dipole density P .

After presenting equations of motion for the polarization, the occurring parameters and a
linear spectra for the absorption are supplied. For this, the section starts by introducing the
Drude model to describe the dielectric function of the free electron gas [ZC09]. The quantum
mechanical derivation of the equations can be found in the appendix.

2.2.1 Drude model

The dielectric function of the free electron gas can be described by a Drude model. This clas-
sical model permits an estimate of phenomena especially in metals whose detailed under-
standing requires a much more complex treatment.

The model is described by an electric conductor in which electrons can move freely and
form an electron gas. An external electric field E accelerates the electrons via the force
Fel = qE . Instead of a continuous acceleration, the electrons bounce with the lattice ions
and slow down. This ensures Ohm’s law: after a short time, the mean velocity of the electron
is proportional to the electric field strength. The collision process is described phenomeno-
logical by a relaxation time τ – the mean collision time between two collisions. An increasing
temperature decreases the mean collision time. That explains the decreasing conductivity of
the metals.

The equation of motion for the electrons reads

mv̇ + m

τ
vD =−eE , (2.12)

with the electron mass m and elementary charge e, the electron velocity v , the drift veloc-
ity vD (drift velocity minus the thermal velocity), and the collision time τ. The latter is often
also given by the characteristic collision frequency γ = 1/τ. At room temperature, a typical
value is γ= 100THz [Mai07].
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For the stationary state is v̇ = 0 and consequently vD = − eτ
m E . With this, the current den-

sity j is given by

j =−envD = e2τn

m
E

with the charge carrier density n.

As a further result, the Drude conductivity σ is

σ= j

E
= e2τn

m
.

In this plasma model, the details of the electron-electron interactions or lattice potential
are not taken into account.

For an harmonic time dependence of the driving electric field E (t ) = E0 e−iωt a particular
solution of Eq. (2.12) is v (t ) = v0 e−iωt with v0 given so that [Mai07]

v (t ) = e

m(ω2 + iγω)
E (t )

and thus for the macroscopic polarization P =−nev is

P =− ne2

m(ω2 + iγω)
E .

Inserting this result in Eq. (2.4a) leads to

D = ε0

(
1−

ω2
pl

ω2 + iγω

)
E

with the plasma frequency

ω2
pl =

n(r )e2

ε0meff
. (2.13)

Here, meff is the effective electron mass and n(r ) the electron density in the considered band.

With this, the dielectric function of the free electron gas is given by

ε(ω) = 1−
ω2

pl

ω2 + iγω
(2.14)

with the real part ε1(ω) = 1− ω2
plτ

2

1+ω2τ2 and the imaginary part ε2(ω) = ω2
plτ

ω(1+ω2τ2) .

While in a free electron model ε→ 1 at ωÀωpl, for noble metals, the model has to be ex-
tended for the region ω>ωpl. In this region, the response is dominated by free s electrons and
the filled d band causes a highly polarized environment close to the Fermi surface [Mai07].
This positive background of the ion cores is described by the high frequency limit ε∞ of the
dielectric function (that is one in a pure Drude model) so that

ε(ω) = ε∞−
ω2

pl

ω2 + iγω
. (2.15)
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s

p

d

Figure 2.2:
Three-level system for the derivation of a material model: The three levels d ,
p, and s involves two interband transitions (cf. Fig. 2.7).

2.2.2 Equations of motion for the polarization

It can be assumed that the total polarization P of a metal, depending on space and time,
consists of an intraband and an interband part [ERM07]:

P (r , t ) = M(r ) [Pintra(r , t )+Pinter(r , t )] where M(r ) =
{

1 for r ∈Vmetal

0 else

defines the spatial extension of the nanoparticle. While interband transitions stand for elec-
tron transitions between two different energy bands, intraband transitions describe electron
transitions within the same energy band. Band theory and calculation possibilities are intro-
duced in Sec. 2.3.1.

In a simple approach a Drude model for the intraband component (p band) is used and
for the interband transitions a ground state d and two excited quantum states p and s (see
figure 2.2) is taken into account. The two parts can be calculated by solving the equations of
motion for the intraband part[

∂2

∂t 2 −γpl
∂

∂t

]
Pintra(r , t ) = ε0ω

2
plE (r , t ), (2.16)

and the interband part[
iħ ∂

∂t
− (ħω1 + iγ1)

]
P (1)

inter(r , t ) =−ε0 A1ε1E (r , t ) and (2.17a)[
iħ ∂

∂t
− (ħω2 + iγ2)

]
P (2)

inter(r , t ) =−ε0 A2ε2E (r , t ) (2.17b)

where γpl is the plasmonic dephasing, ωpl the plasma frequency and ε0 the vacuum permittiv-
ity. The equations contains also the transition energies ε1 and ε2, dimensionless amplitudes
A1 and A2, damping parameters for the transition peaks γ1 and γ2 and the electric field E .
Index 1 represents the d-p transition, index 2 the p-s transition.

In App. A.1, a derivation for the corresponding equations using quantum theory can be
found. This quantum mechanical approach serves as a well controlled model system. There,
the creation operator a†

λk and the annihilation operator a
λk are used. They create or annihi-

late an electron with the momentum vector k in the band λ, respectively (more about energy
bands can be found in Sec. 2.3.1). These operators fulfill the Fermi commutation relation for
electrons:

[akα , akβ ]+ = 0 = [a†
kα

, a†
kβ

]+ and [akα
, a†

kβ
]+ = δαβ.

These anticommutator relations automatically obey the Pauli principle.
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2 Metals

Table 2.1:
Used parameters for fitting the di-
electric function (2.18) of gold and
silver: Gold parameters are taken
from [ERM07] and silver is fitted with
initial values taken from [Kaw01,
MJ77] to the dielectric function mea-
sured by [JC72].

Silver Gold
ε∞ 0.825 1.54
ħωpl/eV 9.143 8.23
γpl/eV 0.021 0.08
A1, A2 0.313, 1.329 1.27, 1.1
ħω1/eV, ħω2/eV 4.080, 5.227 2.5, 3.62
Φ1, Φ2 -1.372, -0.456 −π/4, −π/4
γ1/eV, γ2/eV 0.446, 2.812 0.62, 1.11

2.2.3 Parameters

The dielectric function of the Drude model (Eq. (2.14)) describes the optical response of met-
als for photon energies below the threshold of interband transitions. For transitions between
electronic bands (they occur for some noble metals for energies of one electron volt), the ma-
terial model has to be extended [HFH+93].

An analytic description of the dielectric function of metals is given in [ERM07] and reads in
frequency space

εtotal(r ,ω) = ε∞−
ω2

pl

ω(ω+ i
γpl

ħ )︸ ︷︷ ︸
Drude part (see Eq. (2.15))

+∑
i

Aiωi

(
e iΦi

ωi −ω− iγi

ħ
+ e−iΦi

ωi +ω+ iγi

ħ

)
︸ ︷︷ ︸

Interband transition part

(2.18)

where i ∈ {1,2} denotes the two interband transitions, − ω2
pl

ω(ω+iγpl)
= χ̂ and γpl is the damping

rate. The sum, typically ranging from one to two for metals, describes the interband transi-
tions [ERM06].

This model enables finding all parameters needed in the equations of motion for the po-
larization of Sec. 2.2.2 (equations (2.16) and (2.17)). It includes dimensionless amplitudes Ai ,
interband transition frequencies ωi , phases Φi and damping parameters γi for the transitions
peaks. The values for the material dependent parameters ε∞, ωpl and γpl can be found in ta-
ble 2.1.

This table provides the fitting values for the dielectric function of silver as well as for gold.
While gold parameters are taken from [ERM07], the parameters for silver are fitted with initial
values taken from [Kaw01, MJ77] in order to achieve a large resemblance to the dielectric
function measured by [JC72] (shown in figure 2.3)6. All these parameters will be mapped to
constant values in equations (2.16) and (2.17).

A linear spectrum, represented by the linear susceptibility χ(ω) = ε(ω)−1 can be extracted
from experimental data [JC72]. Fig. 2.3 shows the real (ε1) and imaginary (ε2) part of the
dielectric functions of silver and gold. These two noble metals are the most important metals
for plasmonic studies in the visible and near-infrared. Johnson and Christy [JC72] determined
the data experimentally. The two parts contribute to the complex refractive index nC = n + ik
with ε1 = n2 −k2 and ε2 = 2nk.

In the experimental data is visible that interband transitions influence the dielectric func-
tion beginning at four electron volts for silver and two electron volts for gold. For lower fre-

6Reprinted figure with permission from P. B. Johnson and R. W. Christy, Physical Review B, 6, 4370-4379 (1972).
Copyright (2013) by the American Physical Society. Readers may view, browse, and/or download material for
temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as
provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted,
performed, displayed, published, or sold in whole or part, without prior written permission from the American
Physical Society.
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2.2 Material model

(a) (b)

Figure 2.3:
The real (ε1) and imaginary (ε2) part of the dielectric functions of silver (a) and gold (b) as functions of
the photon energy extracted from experimental data by [JC72]: Interband transitions influence the di-
electric function beginning at 4eV for silver and 2eV for gold. For lower frequencies ε behaves Drude-
like. The figures are taken from [JC72].
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Figure 2.4:
Calculated linear spectrum with the experimentally obtained parameters: The real (ε1) and imaginary
(ε2) part of the dielectric functions of silver (on the left) and gold (on the right) are shown as functions
of the photon energy calculated by Eq. (2.18) with the parameters given in Tab. 2.1. The total spectrum
is the sum of the intraband and the interband transition part which is in a good resemblance to the
experimental data (see Fig. 2.3).

quencies ε behaves Drude-like. These results can be reproduced via Eq. (2.18) with the pa-
rameters given in table 2.1. The curves are plotted in Fig. 2.4. This results in a reasonable
resemblance to the experimental data using equations (2.16) and (2.17).

2.3 Electronic structure

The electron configuration as used mainly in atomic physics and quantum chemistry de-
scribes the distribution of electrons of a physical structure (mostly an atom or a molecule)
in atomic or molecular orbitals.

This section introduces band structure theory and atomic orbital theory using the exam-
ple of silver [FTB+90]. After discussing the band structure, the electronic wave function is
expanded in terms of hydrogen wave functions to calculate the dipole transition matrix el-
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2.3 Electronic structure

ements for interband transitions in silver. With these results in the end a linear absorption
spectrum of silver is obtained.

2.3.1 Band structure calculations

Band theory in solid-state physics describes the behavior of electrons in solids, especially the
connection between energy and momentum (dispersion). Allowed energy ranges for elec-
trons are given in momentum space by energy bands. The energy ranges that are covered
by the function that gives the energy in dependence of the momentum vector E(k) is deter-
mined by the molecular orbitals that are generated by splitting of the single atomic orbitals of
each atom caused by the coupling of the high number of atoms in bulk material (cf. Sec 6.5).
Discrete energy levels become continuous bands.

Band theory helps describing many physical properties of solids. In this work it is used,
among other things, to find the linear optical absorption for silver.

There exist several approaches to find the band structure of an bulk solid-state material.
They can be derived from the dynamical theory of diffraction of the quantum mechanical
electron waves by using that the waves live in a periodic crystal lattice structured by a Bravais
lattice7. Additionally, often symmetries are exploited.

One method for band structure calculations is the tight binding technique. As an opposite
to a nearly free electron approximation, the tight binding model holds on the atomic descrip-
tion of the energy level while assuming that the overlap of the atomic wave function is strong
enough to demand corrections of the picture of an arrangement of isolated atoms [AM07].
Since the tight binding method uses an approximate set of wave functions based upon super-
position of wave functions for isolated atoms located at each atomic site, it is closely related
to the LCAO method. The abbreviation stands for linear combination of atomic orbitals.

In the LCAO method the one-electron wave function is represented by linear combination
of Bloch sums (see Sec. 2.3.2). Inserting such an expansion of the wave function into the
Schrödinger equation (see Eq. (6.5)) with the Hamiltonian H̄ gives a set of simultaneous linear
equations with a nonzero solution if the determinant of the coefficients vanishes [Pap86]:
H −ES = 0 with the matrix elements

Hnm =∑
R j

eik ·(R j−Ri )
∫
ϕ∗

n(r −Ri )H̄ϕm(r −R j )dV (2.19a)

Snm =∑
R j

eik ·(R j−Ri )
∫
ϕ∗

n(r −Ri )ϕm(r −R j )dV (2.19b)

with Ri and R j as the positions of the atoms located on orbitals ϕn and ϕm , respectively.
The number of atoms per unit cell and the number of atomic orbitals determine the size of

the matrices H and S. Since silver has a face-centered cubic (fcc) structure with one atom per
unit cell in the ground state, H and S are 9×9 matrices (five d orbitals, three p orbitals and
one s orbital).

Using the Slater-Koster parameters an easy diagonalization of the matrix is possible to ob-
tain the energy bands and densities of states for a given material. The Slater-Koster method
serves as an interpolation scheme [SK54, PM03]. The integrals from Eq. (2.19), that are com-
monly calculated by first principles, are replaced by the Slater-Koster parameters taken from
[Pap86].

Fig. 2.5 shows the first Brillouin zone of a face-centered cubic lattice with its symmetry
labels. Along these lines, the band structure is plotted. The L point is in the center of the

7The Bravais lattices represent the set of all possible unit cells in a crystal.
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Figure 2.5:
First Brillouin zone of a face-
centered cubic lattice: The red
path along the symmetry labels
corresponds to the x axis of the
band structure plot.

x

z

y

hexagonal surface. The band structure of silver as given in Fig. 2.6 is determined with the
Slater-Koster parameters [PM03, MP96].

The band structure shows five bands that are completely filled since they are below the
Fermi level8. They are called d bands because they represent the d orbitals (see Sec. 2.3.2).
Three s bands are unfilled since their energy lie above the Fermi energy. Only one band – the
p band – is half filled and can consequently gain or lose electrons. The d bands are only able
to donate electrons while the s bands are electron absorbers. This reduces the possibilities of
electron transitions between two bands, the interband transitions.

Optical transitions are direct. That means that electrons are emitted at the same k value as
the electrons are absorbed. Thus, the k ranges for possible transitions are restricted. The low-
est energy gap for possible transitions – assuming no further k positions that are disregarded
because of the two-dimensional nature of the band structure plot – is found near the X and
the L symmetry point (this is for example confirmed by [SHW+01, ACRS74, FS75, EP62, BS64]).
This is the reason why the focus for reconstructing the dipole moments of Sec. 2.3.3 is around
that symmetry points.

The band structure of gold resembles the structure of silver [Chr76, Chr72, Ram70, PS69].
The most important transitions are at the same wave vector positions (see Fig. 2.7): At the X
symmetry point there is also a transition between the fifth and the sixth band and for the L
point, the transition is between band six and seven.

2.3.2 Electron configuration and hydrogen wave functions

The electron configuration gives the distribution of a physical structure in atomic or molecular
orbitals.

The electron configuration for silver is 1s22s22p63s23p63d104s24p64d105s where the num-
ber gives the shell, the letters the orbital and the exponent gives the number of electrons
assigned to each orbital in the ground state. An electron shell contains electrons which share

8The Fermi level gives the highest energy of a particle in a many-particle system in the ground state at zero
Kelvin.
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Figure 2.6:
Band structure of silver: On the left, the band structure of silver is plotted along the symmetry lines
of a face-centered cubic lattice (see Fig. 2.5). On the right, a zoom into two important interband tran-
sitions of silver with the calculated dipole transitions elements (DME) is illustrated [PM03, MP96] (cf.
Sec. 2.3.3).

the same principal quantum number n while a subshell is the set of states defined by an az-
imuthal quantum number l where l = 1,2,3,4 is labeled by s, p, d and f, respectively.

In the linear combination of atomic orbitals theory, the space depending wave func-
tions Ψkn for band n with the wave vector k are a linear combination of the Bloch functions
bkm with coefficients vnm , that are eigenvectors for band n of the Slater-Koster Hamiltonian
[Pap86, JS83]:

Ψkn(r ) =∑
m

vnm(k)bkm(r ). (2.20a)

The linear combination of atomic orbitals area

bkm(r ) = N−1/2
∑

j
e i kR jϕm(r −R j ). (2.20b)

This Bloch wave functions result of the nine atomic basis wave functions ϕm for m = 1, . . . ,9.
The sum is over all N atoms at position R j .

In general, the hydrogen wave function can be split in the hydrogen radial part R and in
spherical harmonics Y via Ψnlm = Rnl (r )Ylm(θ,φ) [Jen06]. The hydrogen wave functions that
are relevant for the calculation of the silver dipole transition elements are given in App. A.2.1.

Atomic orbitals are one-electron wave functions in atoms. The value of the angular mo-
mentum quantum number gives the name of the orbital: There are one s orbital (l = 0), three
p orbitals (l = 1) and five d orbitals (l = 2). The orbitals ϕm corresponds to the hydrogen wave
functions as given in App. A.2.2.
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2 Metals

Figure 2.7:
Band structure of gold: The blue arrows show two possible interband transitions (from d to p and from
p to the s band). The bands below the Fermi level are the d bands, the bands above are the s bands.
The sixth band is half filled (p band). The figure is taken from [CS71]9.

To maximize the overlap the p orbitals are rotated by π/4 around the 010-direction (see
Fig. 2.8) via the transformation:

x ′

y ′

z ′

−→
x cosω− z sinω

y
x sinω+ z cosω

=


xp
2
− zp

2
y

xp
2
+ zp

2

 .

But this rotation can only optimize the overlap of two of the three p orbitals (here pz and px ).
Also for d orbitals there is no plain orientation.

Effective atomic number

The atomic number of hydrogen is Z = 1. In order to use hydrogen wave functions for silver or
gold calculations, the atomic number of these materials (Zsilver = 47) has to be replaced by an
effective atomic number. Because of the screening of the inner electrons, the outer electrons
only interact with a core that is screened by the electrons between the electron of interest and

9Reprinted figure with permission from N. Egede Christensen and B. O. Seraphin, Physical Review B, 4,3321-
3344 (1971). Copyright (2013) by the American Physical Society. Readers may view, browse, and/or download
material for temporary copying purposes only, provided these uses are for noncommercial personal purposes.
Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified,
adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the
American Physical Society.
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2.3 Electronic structure

(a) (b) (c)

Figure 2.8:
Rotation of the orbitals: Part (a) shows a p orbital of the center atom and five of its twelve next neigh-
bors (for a clear representation). In part (b) and (c) origin and rotated alignment of the center orbital
and one of its next neighbor are plotted, respectively.

nucleus [Sla30, CRR67]. It cancels some of the positive nuclear charge given by the constant
S via

Zeff = Z −S.

In literature, there are different values for the effective atomic numbers – depending on the
way of calculation. For example, the value for Zeff for silver varies according to [Ems89] from
4.20 (SLATER) over 8.03 (CLEMENTI) up to 11.35 (FROESE-FISCHER).

With the help of the given Slater-Koster parameters for the overlap matrix elements in
[Pap86] , it is approximately possible to reconstruct the effective atomic numbers that are
used for calculating the band structure via Eq. (2.19b) that gives the overlap matrix elements
S for two orbitals ϕn and ϕm :

Snm =∑
R j

eik ·(R j−Ri )
∫
ϕ∗

n(r −Ri )ϕm(r −R j )dV.

The overlap is calculated between the twelve nearest neighbors of an atom in a face-centered
cubic structure (see Fig. 2.9). In App. A.3 a more detailed explanation of these calculations is
given. The results are shown in Tab. 2.2.

Figure 2.9:
Face-centered cubic lattice with the twelve nearest
neighbors: The orbital of the centered atom (red) in-
teracts with the orbitals of the twelve nearest neighbor
atoms (green). The side length is of cubic cell is a.
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Orbital Character of Overlap matrix
Orbital function angular momentum element S Zeff

5s ϕ1 =Ψ5s s 1.52560 1.63 or 9.07

4pz ϕ2 =Ψ4pz p 1.05290 ≈ 3.75
4px ϕ3 =Ψ4px p 1.05290 ≈ 3.75
4py ϕ4 =Ψ4py p 1.05290 ≈ 3.75

x2 − y2 ϕ5 =Ψ4dx2−y2 eg 0.93772 ≈ 4.75

3z2 − r 2 ϕ6 =Ψ4d3z2−r 2 eg 0.93772 ≈ 5.75
x y ϕ7 =Ψ4dx y t2g 1.02074 ≈ 2.3 or ≈ 5.5
zx ϕ8 =Ψ4dzx t2g 1.02074 ≈ 2.25 or ≈ 4.25
y z ϕ9 =Ψ4dy z t2g 1.02074 ≈ 2.3 or ≈ 4.25

Table 2.2:
Effective atomic number for the different orbitals: Overlap calculations supply Slater-Koster parame-
ters. The effective atomic number Zeff is then determined in a way that the overlap matrix elements S
fits the given parameters [Pap86]. The notation eg and t2g describes representations of d orbitals. The
g in the subscript denotes inversion symmetry.

2.3.3 Dipole transition matrix elements

The dipole transition matrix elements give information about the probability of a transition
between two bands. With the reconstructed basis wave functions of Sec. 2.3.2 it is now possi-
ble to calculate these matrix elements. They are determined by

d k
i j = e

∫ ∞

−∞
d3rΨ∗

i k (r )r Ψ j k (r )

for each wave vector k in a face-centered structure and for every transition from band i to
band j where e is the elementary charge. The wave functions Ψi k are given by Eq. (2.20):

Ψi k =
9∑

m=1
vi m

1p
N

∑
p

eikRp ϕm(r −Rp )︸ ︷︷ ︸
bkm

.

Since the reconstructed hydrogen wave functions are only an approximation, also the re-
sults of the dipole matrix moment are not exact. Not for every region and every transition
good results are obtained. In Fig. 2.6 for small k ranges around the most important symmetry
points for interband transitions X and L, dipole moments are plotted in the band structure
environment.

2.3.4 Linear absorption

The absorption spectrum of silver can be determined by calculating the temporal dynamics of
the microscopic response of the material pk (t ) = 〈a†

i k a j k〉 for two considered bands i and j .
It is connected to the macroscopic polarization via

P (t ) = 1

V

∑
k ,i , j>i

(
pk (t ) d i j +pk (t ) d i j∗

)
(2.21)
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Figure 2.10:
Linear absorption of silver:
The red curve shows the
complete absorption of all
interband transitions in sil-
ver. The green curve, that
gives only the spectrum of
transitions from the fifth to
the sixth band, contributes
the most of the complete
absorption. All other transi-
tions do not contribute no-
table for the plotted energy
range. The slope at about
3.5nm is in a good agree-
ment with the band struc-
ture (cf. 2.6).

with the volume V of the silver bulk [HK04] for all transitions between the bands i and j .
The interband transition spectrum then is calculated by the absorption that is given in

Sec. 2.1.6 by Eq. (2.11) and that says that

α(ω) ∝ω Im

(
P (ω)

E(ω)

)
=ω Im

(
χ(ω)

)
.

The susceptibility χ can be calculated analogously to Eq. (A.10) and is then

χ(ω) = ∑
k ,i , j>i

(
N j

k −N i
k

)
d i j∗

k

ε0

(
ħωi j

k −ħω− iγi j

) +
(
N j

k −N i
k

)
d i j∗

k

ε0

(
ħωi j

k +ħω+ iγi j

)
with the particle density N i

k = 1
V

∑
k ni

k and ni
k = 〈a†

i ,k ai ,k〉, ħω
i j
k = εi − εj and a phenomeno-

logical damping constant γi j .
As discussed in Sec. 2.3.1, the most important transition in silver is between the fifth and

the sixth band. These is verified by the linear absorption spectrum plotted in Fig. 2.10. Since
the calculated dipole transition elements (see Sec. 2.3.3) uses reconstructed hydrogen wave
function and are consequently not reliable, the linear absorption gives only a rough course of
the graph. For example, the transition from the sixth to the seventh band should appear for
smaller energies than it does in this spectrum.
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3 Nanoplasmonics

Optical properties of an increasing variety of metallic nanostructures are investigated – mostly
with the aim of concentrating light into nanoscale volumes. Nanoplasmonics is a recently
developed science with numerous effects and rich applications [Sto11b]. The characteristic
that makes nanoplasmonics so important for this work is the ability of such systems to keep
the optical energy concentrated on the nanoscale. This effect is enabled on modes called
surface plasmons [Sto11a].

The existence of surface plasmons is based on the fact that the dielectric function ε (see
Sec. 2.1.5) has a negative real part [Sto11a]. For small losses, that means for example Im(ε) ¿
−Re(ε), the surface plasmons are well pronounced as resonances. A metal that satisfies these
two properties is a good plasmonic metal. In silver most of the visible region fulfills this prop-
erties.

For a more detailed understanding of specific enhancement effects this section is focused
on two causes of plasmonic effects: material properties and geometry settings. In this section,
nanospheres serve as an already good investigated model system.

At specific optical frequencies, the resonantly driven oscillation produces a strong charge
displacement and leads to a field concentration. This is due time-varying electric light fields
that force the gas of negatively charged electrons inside a metal to a collective oscillation
[SBC+10].

For nanostructures sized much smaller than the free-space wavelength of the incident light,
the structure experiences a constant electric field over its entire size. This explains the field
distribution within such a nanoparticle: Solving the electrostatic potential for a structure of
given dielectric constant and geometry determines resonance effects. Hereby, the particle is
embedded within an uniform electric field. This assumption is called quasistatic approxima-
tion.

In this chapter, some plasmonic properties are presented and investigated and some re-
sults of this work are given. The focus is on metal nanospheres. More examples of plas-
monic effects are given in Ch. 5. In the first section, the behavior of pure metal nanospheres
without another metallic coating (but with a dielectric layer) in a linear polarized electric
field is examined, especially the plasmonic enhancement on the surface of the sphere. Af-
ter that, the effects of additional layers are investigated and then the plasmonic effects for
coupled nanospheres are considered. All these effects are chosen to end the chapter by pre-
senting an application that is based on these effects: long range transfer for plasmon exci-
tations. For this, nanostructured metal-insulator surfaces combined with immobilized bio-
logical molecules are investigated. They are of interest for improving processes in bioelec-
tronic catalysis. Due to localized surface plasmonic effects, these devices are suitable for
electron transfer effects and for the design of surface enhanced Raman spectroscopy phe-
nomena. Field distributions of some selected geometries are simulated with a Maxwell solver
to support the experimental findings.
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Figure 3.1:
Plasmon oscillation of a metal sphere: The
sketch shows the displacement of the conduc-
tion electron charge cloud in relation to the nu-
clei [KCZS03].
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field
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cloud
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3.1 Pure metal nanospheres

In the following, the focus is exemplarily chosen on metal nanospheres. The behavior of a
sphere in an electric field is well studied [SBC+10, DRK+10, GMK75].

Fig. 3.1 illustrates the coherent oscillation of conduction electrons caused by the electric
field in small spherical nanoparticles. The electronic cloud is displaced relatively to the nu-
clei, so that a restoring force caused by Coulomb attraction between electrons and nuclei
results in that oscillation. Beside shape and size of the particle, material properties like the
density of electrons and the effective electron mass influences the oscillation frequency, the
dipole plasmon resonance of the particle. Also higher modes of plasmon excitation can oc-
cur. For quadrupole mode, for example, the half of the electrons move parallel to the applied
electric field and the other half moves antiparallel. A theoretical description for dipole and
quadrupole modes can be found in [KCZS03].

Spherical nanoparticles exhibit a dipolar plasmonic resonance at wavelengths for which
the ratio of the permittivities of the metal εm and the dielectric εd is given by εm/εd =−2. As
a consequence, the resonance frequency shifts red for surroundings with increasing dielectric
permittivities. The resonant condition εm/εd is given in [SBC+10] as a function of aspect-
ration parameter for quasistatic spheroidal particles.

Electric field distributions of pure metallic nanoparticles can be found in [Dav09], for ex-
ample. For applications in surface enhanced Raman spectroscopy (cf. Sec. 3.4), often various
nanostructured multilayer devices are of interest. Thus, the simulated setup in this work con-
sists of silicon dioxide (SiO2) coated metal spheres.

Fig. 3.2a shows a field distribution for a metal sphere with a radius of 20 nanometer, coated
with a two nanometer dielectric layer for three different materials: silver (Ag), gold (Au), and
platinum (Pt). The silver sphere is surrounded by water and the values for the dielectric func-
tions are taken from [Pal85]. The field distribution is generated via “JCMsuite” [PBZS07]. This
Maxwell solver is used for the calculation of field distributions throughout this work. It uses
the finite element method that is introduced in detail in Ch. 4.

The plasmonic field enhancement is visible on the top and the bottom of the sphere for
incident light that is polarized in vertical direction (see Fig. 3.2a). That is in accordance to the
plasmon oscillations of Fig. 3.1.

Fig. 3.3 shows further field distributions for different incident directions and polarization
directions. The same silver sphere as in Fig. 3.2 is illuminated from the right with different
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Figure 3.2:
Field distribution of a sphere with a dielectric coating and plasmon resonances for different metals:
Part (a) shows the absolute value of the electric field of a resonant silver sphere with a radius of 20nm
that is radiated with a wavelength of 415nm from the front in a vertical polarization direction. The
sphere is coated with a 2nm dielectric. Part (b) shows a wavelength scan for three different metal
spheres. The measurement point is directly on top of the coating centered horizontally. The func-
tion g0 describes the local field enhancement, see Eq. (3.1). The silver sphere is again surrounded by
water and the values for the dielectric functions are taken from [Pal85].

polarization directions. The light has again a wavelength of 415 nanometers. In contrast to
Fig. 3.2a, here, only some components of the electric fields are plotted. Fig. 3.3a shows the
x component of the electric field, Fig. 3.3b the y component. For both figures the light in-
cides from the right side with a polarization in y direction. The x contributions are caused
by reflections of the incoming light. Since the slice is regarded in the center of the sphere,
the z component is zero. Together, they result in Fig. 3.2a. Hence, a sphere irradiated with z
polarized light only reveals contributions in z direction (Fig. 3.3c). Reflections of the incom-
ing light become visible: the field enhancements are more prominent on the right side – the
direction of the incoming light.

The plot in Fig. 3.2b shows the plasma resonance for three different metals. Here, the func-
tion g0 describes the local field enhancement, that is given by

g0 =
∣∣∣∣E (r ,ω)

E0

∣∣∣∣2

. (3.1)

More studies for metal spheres and especially nanoparticles with arbitrary shapes and the
dielectric environment are exemplarily found in [KCZS03, SNB03].

3.2 Hybrid nanospheres

To describe the transport and the optical scattering mechanisms within particular bioelec-
tronic devices, often dielectric nanolayers-layers are used [DRK+10]. Such devices can be op-
timized with respect to their distance controlled electron transfer between the molecule and
the electrode (cf. Sec. 3.4).
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Figure 3.3:
Different components of the field distribution of a silver sphere with a dielectric coating from different
illumination directions: The silver sphere with a radius of 20nm and a dielectric layer with a thickness
of 2nm is illuminated from the right with a vertical polarization in y direction (a, b) and a polarization
direction perpendicular to the illustration plane (z direction) (c). The light has a wavelength of 415nm.
Part (a) shows the x component of the electric field, part (b) shows the y value of the electric field.
The z component equals zero. Part (c) shows the z component for a z polarization. Here, all other
components vanishes within the center slice. The silver sphere is again surrounded by water and the
values for the dielectric functions are taken from [Pal85].

To investigate Raman scattering cross sections, two effects are important: On the one hand,
the protein can be described as an injector for charges, which are transported through the
complex hybrid device [GKW+10, LCF07]. The second important effect is the long range
transfer of plasmon excitation from the electrode to the respective molecule that is inves-
tigated also with the help of a self-consistent solution of Maxwell’s equations and material
equations for metals.

The comparison of the materials in Fig. 3.2b shows, that they have different responses to
certain wavelengths. To demonstrate long range plasmon excitation in a theoretical way, the
metal sphere with the dielectric layer is coated with an additional layer: gold or platinum.
These metals do not have any plasmon resonance for the relevant wavelength in surface en-
hanced Raman experiments of Sec. 3.4 as can be seen in Fig. 3.2b.

The effects of the long range plasmon excitation are investigated in Fig. 3.4 [FGHW10,
LKF+12]. Exemplarily, a platinum coating is chosen. Also gold would be an alternative since
both, gold and platinum, do not have a plasma resonance in the range of 415 nanometers.
In Fig. 3.4a a silver sphere with a radius of 20 nanometers and a silicon dioxide spacer of
two nanometers is coated by a ten nanometers platinum layer and a dielectric border of two
nanometer and the plasmonic effects are made visible. Fig. 3.4b shows the field enhance-
ment g0 for a centered vertical section through the sphere for different coating diameters. As
a benchmark, the red curve gives the field enhancement for a silver core without coating.

It can be clearly seen, that the field enhancement decreases through the coating and that
the reduction depends on the thickness of the platinum layer. The larger the diameter of
the coating, the smaller the enhancement, that means platinum has a screening effect. The
advantage of the coating is now, that although the platinum layer is screening the plasmonic
effects, the enhancement of the electric field strength can be transferred to higher radii. If the
coating’s diameter is high enough, the maximum field enhancement will decrease on the one
hand but on the other, it leads to comparably high fields in a great distance from the center
of the sphere, compared to the case without the coating, as can be seen in Fig. 3.4b. So it is
possible to transfer the plasmon excitation over a long distance.
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Figure 3.4:
Long range plasmon excitation: Part (a) shows the absolute value of the electric field of a multilayer
sphere: a 20nm Ag core, a 2nm SiO2 spacer, 10nm Pt coating and finally a 2nm dielectric. The sphere
is radiated with a wavelength of 415nm from the front in a vertical polarization direction. Part (b)
shows the field distribution along the centered vertical line through the sphere for different platinum
thicknesses. The field enhancement g0 is calculated via Eq. (3.1). The silver sphere is again surrounded
by water and the values for the dielectric functions are taken from [Pal85].

3.3 Coupled nanospheres

A further possibility to achieve strong field enhancements is bringing the sphere in close
vicinity to another metal sphere. Fig. 3.5 illustrates the coupling of two coated metal
nanospheres. The multilayer sphere consists of a silver core with a 30 nanometers radius, fol-
lowed by a two nanometers thick silicon dioxide spacer. Then, a platinum coating with vari-
able thickness (from one to eight nanometers) is laid on. The outer layer is a four nanometers
thick dielectric.

As a result, it can be seen that the closer the borders of the spheres, the higher is the re-
sulting coupling of them. It has to be noted that the centers of the spheres are at a fixed
position. That means, that in this example, the spheres move closer together only due to the
increasing coating. Changing the proximity of the spheres like that reveals an additional ef-
fect: The thicker the platinum coating, the smaller is the field enhancement at the surface of
the sphere. This has been the a result from Sec. 3.2. In Fig 3.5 it can also be seen that the sil-
ver core of the spheres is darker for a higher platinum coating. All three subfigures are scaled
identically.

The wavelength scan of Fig. 3.6 confirms these two effects. Increasing platinum coating
shifts the maximum to higher wavelengths. Additionally, the peak first decreases – for more
than four nanometer coating, the maximum is increasing. The shift to higher wavelengths
is plotted in Fig. 3.7 (red curve) as well as the illustration of the two counteracting effects of
screening and coupling (blue curve).
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Figure 3.5:
Two coupled silver spheres with platinum coating of different diameters: The center of the Ag spheres
with a radius of 30nm stay at fixed positions. The thicker the Pt coating (1, 4, and 8nm) the lower is the
electric field inside the sphere (the three figures are scaled identically). That applies to the outside of
the sphere but here the coupling due to the low distance between the borders of the spheres, enhances
the electric field between the spheres.

Figure 3.6:
Field enhancement spectra for
different platinum coating thick-
nesses: For the setup of Fig. 3.5,
the field enhancement is mea-
sured for different wavelength in
the center of the gap between
the two Ag spheres with Pt coat-
ing. The wavelength scan is
shown for different coating thick-
nesses of the Pt coating. Regard-
ing the maximum of each curve,
two counteracting effects can be
seen: the screening of the Pt layer
versus the field enhancement due
to the plasmonic coupling of the
spheres. A further result is the in-
creasing wavelength for the max-
imum resonance for thicker Pt
coatings.
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Figure 3.7:
Wavelength shift and two
counteracting effects of
platinum coating for dif-
ferent thicknesses for the
enhancement factor: The
blue curve demonstrates
the two counteracting ef-
fects. Lower Pt thickness
decreases the screening of
the layer, higher thickness
leads to more coupling of
the spheres. The red curve
shows the wavelength shift.
Both curves are extracted
from values of Fig. 3.6.

3.4 Induced surface enhancement

Nobel metals play an important role in heterogeneous catalysis in several surface reac-
tions with catalytic efficiency that sensitively depends on the support material as well as
on the surface morphology and temperature. A profound understanding of the underlay-
ing reaction mechanism at the surface is required for a rational design of catalytic supports
[FGS+09, FGHW10].

For this purpose, a highly sensitive in-situ technique that is able to monitor the interfacial
processes on a molecular level under ambient conditions is needed. Established techniques
in this field require ultrahigh vacuum or at least low pressure conditions as the methods rely
on ions and electrons as probes. An alternative is the vibrational spectroscopy, especially the
surface enhanced Raman spectroscopy (also known under the abbreviation SER). It provides
structural information under in-situ conditions.

Since the surface enhanced Raman spectroscopy is limited to metallic supports with strong
surface plasmon resonances upon light excitation, the models of the plasmonic investigations
of the previous sections can be used: Silver and gold provide sufficient intrinsic plasmonic
activity for surface enhanced Raman spectroscopy applications while other metals relevant in
catalysis like platinum show only very weak plasmon induced surface enhancement and are
consequently not suitable.

To overcome this restriction, novel Pt-Ag hybrid supports are examined [LKF+12]. They
combine the optical properties of silver with the surface properties of platinum. For fabricat-
ing a rough silver support is surrounded by a dielectric spacer. Then, the device is covered
with a thin electro-deposited platinum film. As a result, a quasi-closed platinum layer with
a continuous thin platinum coverage over the coral structure of the silver support decorated
with small platinum islands is obtained (see Fig. 3.8a) [LKF+12]. This setup corresponds with
the real structure of Ag-SiO2-Pt electrodes as shown in Fig. 3.8b.

To test the performance of the Pt-Ag devices, surface enhanced Raman spectra of differ-
ent Raman probes can be collected as a function of spacer material, spacer length and laser
excitation (see [LKF+12]). It is possible to record high quality Raman spectra of only slightly
lower intensities compared to the ones obtained on pure rough silver structures. The find-
ings of [LKF+12] imply that surface enhanced Raman activity is induced on the platinum
surface by a long range plasmon coupling between the outer metal and the silver support
[FGHW10, DRK+10].
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(a) (b)

Figure 3.8:
Electrodes of Ag-SiO2-Au for long range excitation: Part (a) gives a schematic presentation of the
Ag-SiO2-Pt electrode preparation. In comparison, part (b) shows a surfaced enhanced Raman picture
of such electrodes. Both pictures are taken from [LKF+12] (Copyright (2012) by the American Chemical
Society).

On the left in Fig. 3.9 a simplified model of Fig. 3.8a is simulated via the Maxwell solver
“JCMsuite”. The cross section is similar to the platinum island but the profile has a cylindrical
continuation with the y axis as rotation axis. This setup is sufficient to show the enhance-
ment effects due to plasmonic effects: Sharp edges increases the field enhancements. So it
is concluded that a nonperfect coating of the platinum island film promotes the efficiency of
the induced platinum surface enhanced Raman activity.

In the simulations (see Fig. 3.9, right side) it is carried out that an incomplete platinum
covering film by introducing hole-like defects (that gives a closer resemblance to the true ex-
perimental situation) results in strong fields which raises the average surface enhanced spec-
troscopy enhancement by about 80 percent. Furthermore, a comparison with similar mea-
surements on Ag-SiO2-Au electrodes suggests that the chemical nature of the metal island
films plays only a minor role for the surface enhanced Raman intensity.
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Figure 3.9:
Field enhancement calculations of Ag-SiO2-Pt geometries: On the left side, a defect-free Pt film is sim-
ulated while on the right side the Pt film contains defects. Strong field enhancement effects are visible
especially on sharp edges. This figure is taken from [LKF+12].
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The interaction between metals and other nanostructures with light is determined by
Maxwell’s equations. For calculating field distributions, partial differential equations have to
be solved. Since the analytical solution is hard to find, numerical solutions have to be chosen.
As explained in Sec. 5.3, for the intentions of this work, a Maxwell solver in frequency domain
is the most recommended.

In this work, the solver “JCMsuite” is used [PBZS07]. It is based on the finite element
method. This method differs from other numerical solving methods in time domain like the
finite-difference time-domain method and the Discontinuous Galerkin method.

The electric field is complex with vectorial character. In the following, only certain compo-
nents – absolute values or phases of the electric field vectors – may be regarded. Such field
distributions are needed to investigate spatiotemporal control that is done in Ch. 5.

The chapter starts with presenting the finite element method including an example, a con-
vergence discussion and a section that is focused on the triangulation. After that, three prob-
lem classes that occurs while working with light propagations are presented. Finally, two pos-
sibilities for transparent boundary conditions are introduced.

4.1 Finite element method

The finite element method is a numerical procedure for solving variational problems, differ-
ential and variational equations. The modern method of calculation is often used in engi-
neering applications. Furthermore, it is a standard tool for the simulation of solids.

The method decomposes the underlying domain into simple sub-regions. Then, it gener-
ates an equation system for approximated values of the unknown function in distinguished
points of the domain.

The method provides an approximation for the exact solution of the differential equation,
whose accuracy can be improved by increasing of the degrees of freedom and hence the com-
putational effort. After solving the system of equations, the values of the unknowns of the
distinguished points are approximately known.

An advantage of the finite element method is providing systematic control for the genera-
tion of stable numerical schemes. Furthermore, it is relatively easy to consider complicated
two- or three-dimensional geometries.

The basic idea of the finite element method (presented in detail in Sec. 4.1.2) is dividing the
computational domain in an arbitrarily large number of elements. The name of the method
derives from the fact that these elements are finite and not infinitely small. Within these ele-
ments, ansatz functions are defined. These functions are inserted into the differential equa-
tions that describes the problem that has to be solved. Combining them with start or bound-
ary conditions yields a system of equations, that is usually solved numerically and gives the
numerical solution of the differential equation. Its size depends significantly of the number
of finite elements.

In the first subsection, a possibility of generating a system of equations is presented via a
variational equation. Afterwards, the basis idea of finite elements is explained in more detail
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with an extensive example. In the end, some theoretical reflections about the convergence
behavior are given.

4.1.1 Variational equation

There are two access points to obtain a discrete problem: the variational principle and a
boundary value problem. On the one hand, there exist direct accesses: For the variational
principle the Ritz method [NV73] and for a boundary value problem the method of weighted
residuals lead to the discrete problem. The Ritz method in general is easier to apply but usu-
ally there is no variational principle available [GRT93].

On the other hand it is possible to use a variational equation in order to find the discrete
problem. Such an equation reads

Find u ∈V : a(u, v) = b(v) ∀v ∈V , (4.1)

with V as a set of all continuously differentiable functions in a domain Ω that vanish at the
boundaries, a as a bilinear form on V ×V , and b as a linear form on V .

To obtain a variational equation from a boundary value problem, usually integral theo-
rems (especially the Gaussian integral theorem) are used. Here, the example applies a partial
integration. Starting point is the one-dimensional Helmholtz equation (2.8) as presented in
Sec. 2.1.3

∂2
x u(x)+k2(x)u(x) = 0

with the boundary condition u(x) = u0 for x ∈ ∂Ω at the boundaries of the computational
domain Ω. If the function u satisfies only a general Dirichlet boundary condition u(x) = u0

for10 x ∈ ∂Ω, a conversion into a 0-Dirichlet boundary condition u(x) = 0 for x ∈ ∂Ω is possible
by introducing a function g that is twice differentiable and satisfies the Dirichlet boundary
condition g (∂Ω) = u0:

∂2
x (u − g + g )+k2(u − g + g ) = 0

⇔ ∂2
x (u − g )+k2(u − g ) =−∂2

x g −k2g︸ ︷︷ ︸
=: f

.

Then (u−g )(∂Ω) = 0 and u−g satisfies the 0-Dirichlet boundary condition and is only called u
in the following so that

∂2
x u(x)+k2u(x) = f (x) and u(∂Ω) = 0.

As domain the interval Ω = (0,1) is assumed. A main trick of the finite element method is
multiplying the equation with the test function v ∈V , that is once differentiable and satisfied
the 0-Dirichlet condition v(0) = v(1) = 0. Integration over the whole computational domain
yields ∫ 1

0
v(∂2

x u +k2u) =
∫ 1

0
v f dΩ.

Integration by parts and using the boundary conditions for the first summand on the left
hand side of this equation provides the variational equation:

Find u ∈V :
∫ 1

0
∂x v ∂x u dΩ−

∫ 1

0
k2v u dΩ=−

∫ 1

0
v f dΩ ∀v ∈V , (4.2)

10∂Ω stands for the boundaries of the domain Ω

38



4.1 Finite element method

with the bilinear form a(u, v) = ∫
Ω(∂x v ∂x u dΩ − k2vu) dΩ and the linear form b(v) =

−∫
Ω v f dΩ with the continuous function f =−∂2

x g −k2g .

Obtaining a variational equation is also possible via a variational calculation. The mini-
mization of the functional

J (u) := 1

2

∫ 1

0
∂x u∂x u − 1

2

∫
k2uu +

∫ 1

0
u f (4.3)

via the demand ∂J (u+t v)
∂t

!= 0 is another way to obtain the variational equation (see [Bra07]).

The variational equation is used for setting up the system of equations of the discrete prob-
lem, which is solved by the finite element method.

4.1.2 Basic concept

The essence of the finite element method is presented in this section. After outlining the
general concept, an example follows.

General concept of the finite element method

For obtaining the solution of the given problem, a function u of a given set of functions V has
to be found that satisfies the variational equation (4.1): a(u, v) = b(v) for all v ∈V .

The central idea of the finite element method is now to get the discrete problem

Find uh ∈Vh : a(uh , vh) = b(vh) ∀vh ∈Vh (4.4)

by projecting Eq. (4.1) from V to Vh .

For this purpose a subspace Vh ⊂V is introduced that is the set of all linear combinations

N∑
i=1

ui vi

where ui are constants and vi are N linearly independent basis functions.

Instead of searching for an exact solution function u, the finite element methods helps
finding an approximate solution uh ∈Vh with the ansatz

uh =
N∑

i=1
ui vi (4.5)

with the N unknown constants ui .

It is sufficient to claim that
a(uh , v j ) = b(v j ) (4.6)

for just one certain v j ∈ Vh\{0} because multiplication by the constants c j and summation
over j gives

N∑
j=1

c j a(uh , v j ) =
N∑

j=1
c j b(v j )

and with using the properties of bilinear and linear forms it is equivalent to Eq. (4.4).
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Figure 4.1:
Illustration of the finite el-
ement method in two di-
mensions: The dashed lines
represents the N basis func-
tions. In red, the approxi-
mation solution uh is illus-
trated. 0 1 i-1 i i+1 i+2 N N+1

u viui

ui

uh
viui 

vi-1ui-1 

vi+1ui+1 

Inserting the ansatz (4.5) of uh into Eq. (4.6) and use again the properties of bilinear forms
a system of equations with N equations for N unknowns ui is obtained:

N∑
i=1

a(vi , v j )︸ ︷︷ ︸
ai , j

ui = b(v j )︸ ︷︷ ︸
b j

, j = 1, . . . , N , (4.7)

with the coefficient matrix A, that consists of the elements ai , j .

Solving the discrete problem means solving the system of equations Au = b. The matrix
elements ai , j = a(vi , v j ) and the values bi = b(vi ) can be found by the basis functions vi .
Finally, the approximate solution function is given by Eq. (4.5).

In classical Ritz and Galerkin methods, the trial function is formulated as a combination
out of a set of basis functions that are defined over the entire domain, so that the combina-
tion must have the ability to represent the true solution at least approximately. Additionally,
it has to satisfy proper boundary conditions. Those methods differs from the finite element
method since in this case, the trial function is a combination out of a set of basis functions
that are defined only over subdomains. These subdomains cover the entire domain. Thus, the
subdomains are small and the basis functions that are defined over such a subdomain can be
quite simple [Jin02]. Especially for two- or three dimensional geometries small functions de-
fined on subdomains are more advantageous since it is often impossible to find the required
entire-domain trial functions.

Example

For illustrating the general concept a simple example is given. The one-dimensional compu-
tational domain Ω is defined on the interval [0, N +1]. The N ansatz functions serve as a set
of linear independent basis elements wi ∈Vh [BWS10]

wi (x) =


x−xi−1
xi−xi−1

, if x ∈ [xi−1, xi ],

− x−xi+1
xi+1−xi

, if x ∈ [xi , xi+1],

0, otherwise,

i = 1, . . . , N ,

that cover the computational domain (cf. Fig. 4.1).

The i th row of Eq. (4.7) yields

a(wi−1ui−1 +wi ui +wi+1ui+1, wi )

=a(wi−1, wi )ui−1 +a(wi , wi )ui +a(wi+1, wi )ui+1 = b(wi )

since just the neighbor functions are unequal zero.
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The bilinear form of the concrete variational equation (4.2) can be split in two parts:

a(u, v) =
∫ 1

0
∂x u∂x v dx −

∫ 1

0
k2uv dx = s(u, v)−m(u, v)

with s(u, v) = ∫ 1
0 ∂x u∂x v dx and m(u, v) = ∫ 1

0 k2uv dx. The elements s(wi , w j ) = si , j form the
stiffness matrix S and the elements of m(wi , w j ) = mi , j form the mass matrix M . In this one-
dimensional example, the diagonal element and the element that represents the interaction
with the successor is calculated by

s(wi , w j )
∣∣
i ,i+1 = s(i ,i+1)

i , j =
∫ xi+1

xi

∂x wi∂x w j dx,

m(wi , w j )
∣∣
i ,i+1 = m(i ,i+1)

i , j =
∫ xi+1

xi

k2wi w j dx,

so that

s(i ,i+1)
i ,i =

∫ xi+1

xi

(
− 1

xi+1 −xi

)2

dx = xi+1 −xi

(xi+1 −xi )2 = 1

h

(and analogous s(i ,i+1)
i ,i+1 = s(i ,i+1)

i+1,i =− 1
h ) and

m(i ,i+1)
i ,i =

∫ xi+1

xi

k2
(
− x −xi+1

xi+1 −xi

)2

dx = k2 1(xi+1 −xi )3

3(xi+1 −xi )2 = 1

3
k2h

(and analogous m(i ,i+1)
i ,i+1 = m(i ,i+1)

i+1,i = 1
6 k2h), with h = xi+1 − xi , forms the local stiffness matrix

and analogous the local mass matrix, respectively,

Sl,(i ,i+1) = 1

h

(
1 −1
−1 1

)
and M l,(i ,i+1) = k2h

(
1/3 1/6
1/6 1/3

)
.

For finding the global matrix Ag, the local matrix M l has to be subtracted from Sl and arrange
the submatrices along the diagonal while overlapping one element for regarding the correla-
tion with each neighbor:

Ag = Sg −M g

=



. . .
. . . 0 0 0 0

. . . al,(i -2,i -1)
i -1,i -1 +al,(i -1,i )

i -1,i -1 al,(i -1,i )
i -1,i 0

...
...

0 al,(i -1,i )
i ,i -1 al,(i -1,i )

i ,i + 1
h - k2h

3 - 1
h - k2h

6 0
...

... 0 - 1
h - k2h

6
1
h - k2h

3 +al,(i +1,i +2)
i +1,i +1 al,(i +1,i +2)

i +1,i +2 0
...

... 0 al,(i +1,i +2)
i +2,i +1 al,(i +1,i +2)

i +2,i +2 +al,(i +2,i +3)
i +2,i +2

. . .

0 0 0 0
. . .

. . .


with Al,(i−1,i ) = Sl,(i−1,i ) −M l,(i−1,i ), Al,(i ,i+1), and Al,(i+1,i+2) as three example submatrices and
a(r,s)

i , j = a(wi , w j )
∣∣
r,s . All other matrix elements equals zero. The gained matrix is square.

Since the ansatz functions are unequal to zero only for a few of the elements, a sparsely
occupied, often very large, linear system of equations results, whose factors of the linear com-
bination are unknown.

In conclusion, the finite element method, that is a numerical procedure for obtaining
solutions to boundary-value problems, replaces an entire continuous domain by a num-
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ber of subdomains in which the function is represented by simple interpolation functions
with unknown coefficients. The following basic steps describe a finite element analysis of a
boundary-value problem [Jin02]:

1. Discretization or subdivision of the domain

2. Selection of the interpolation functions

3. Formulation of the system of equations

4. Solution of the system of equations

4.1.3 Convergence

Instead of the exact solution u ∈ V of the variational equation, the finite element method
only supplies the solution uh ∈ Vh of the discrete problem. There are different factors that
influence the quality of the approximate solution, for example the way of partitioning the
computational domain or the choice of basis functions wi [KFR90]. The latter is crucial for
the feasibility of the method. There are certain requirements on the basis functions. They
must satisfy both continuity conditions and the required boundary conditions. Within this
latitude the basis functions are chosen so that the discrete problem is as simple as possible.
For a good approximate solution a large number of basis functions is recommended but this
also means a large matrix. This is why there are often basis functions chosen that are nonzero
only on small subdomains Ωi ⊂Ω, so that many matrix elements equal zero, as seen in the
example of Sec. 4.1.2.

Convergence of order p occurs, if for the maximum diameter h of the used elements for the
partition of Ω exists a constant C that is independent of h with

‖u −uh‖ ≤C hp .

Typically, the H 0 or L2 norm ‖u‖2
0 = ∫

Ωuu dx with u as the complex conjugate of u is used.
To consider the amount of the derivatives, in some cases the H 1 norm with ‖u‖2

1 =
∫
Ωuu dx+∫

Ω∂x u∂x u dx is applied.

In the following the idea of an error estimate for Poisson’s equation [CS80]

∂2
x u =−ρ

ε

with
∫
Ω∂x u∂x v dx =: a(u, v) and

∫
Ω
ρ
ε v dx =: f (v) is given. For this purpose the convergence

problem is transfered to an approximation problem (Céa’s lemma) that says that it exists a
constant C independent of Vh with

‖u −uh‖ ≤C inf
vh∈Vh

‖u − vh‖. (4.8)

The proof of this lemma is given in App. A.4, using the Galerkin orthogonality condition and
the Lax-Milgram theorem. For the Helmholtz equation the proof is more complicated since
for example condition (2) is not fulfilled. Up to here, one can say, that the method of finite
elements finds that function from the space spanned of basis functions for which the error in
the requested norm is minimal.

Finally, an equation is derived that provides a proposition about the order. Since in gen-
erally it is difficult to find the approximation error of Céa’s lemma (4.8), the approximation
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error is replaced by an interpolation error. The solution ui that is found by an approximation
holds

inf
vh∈Vh

‖u −uh‖ ≤ ‖u −ui‖.

One simple possibility to approximate a function is a Taylor expansion. The common remain-
der term is given in the integral form and reads for order n

Rn(x) =
∫ x

a

(x − t )n

n!
u(n+1)(t )dt

for the approximation at point a for the function u. With this term following estimations can
be found:

|Rn+1| ≤ c hn+1 max
xi≤ξ≤xi+1

∣∣u(n+1)(ξ)
∣∣ (4.9a)∣∣R ′

n+1

∣∣≤ c̃ hn max
xi≤ξ≤xi+1

∣∣u(n+1)(ξ)
∣∣ (4.9b)

with h = xi+1 −xi .

Let h = xi+1 − xi be the length of the interval for an approximation of a piecewise linear
function ui . Then

‖u −ui‖2
1

∣∣
xi ,xi+1 =

∫ xi+1

xi

|u −ui |2 dx︸ ︷︷ ︸
use (4.9a)

+
∫ xi+1

xi

|∂x (u −ui )|2 dx︸ ︷︷ ︸
use (4.9b)

≤
(∫ xi+1

xi

c h2h2 dx +
∫ xi+1

xi

c̃ hh dx

)(
max

xi≤ξ≤xi+1

∣∣u(2)(ξ)
∣∣)2

= c h5 + c̃ h3
(

max
xi≤ξ≤x2

∣∣u(2)(ξ)
∣∣)2

.

(4.10)

Through addition of all N = 1
h parts of the interval and neglecting the h5 term

‖u −uh‖1 ≤
(4.8)

C̃ inf
vh∈Vh

‖u − vh‖1 ≤ C̃ ‖u −ui‖1 ≤
(4.10)

C h max
0≤ξ≤L

u(2)(ξ) =C h‖u‖2 (4.11)

with L as the boundary of the one-dimensional computational domain, is obtained. If u is
sufficiently differentiable, the generalized form of (4.11) reads

‖u −uh‖1 ≤C hp‖u‖1+p (4.12)

with p as the polynomial degree. Using Nitsche’s trick [Bra07], a rewriting of (4.12) for the L2

norm is possible:
‖u −uh‖0 ≤C hp+1‖u‖1+p . (4.13)

That serves as final error estimation for the finite element method.

In the example of Sec. 4.1.2 piecewise linear basis functions are used. As presented here,
the solution of the differential equation becomes better by using piecewise polynomial basis
functions instead. Eq. (4.13) shows: The higher the polynomial degree p, the lower the error,
with a constant discretization width h.

For all simulations described in Sec. 5.5, a convergence analysis is done to find reliable
results with acceptable computation time.
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Figure 4.2:
Delaunay Triangulation: The both triangles
on the left hand side do not meet the De-
launay condition since the circumcircles con-
tain more than three points. After flipping the
common edge, on the right hand side a De-
launay triangulation for the four points is pro-
duced.

flip

4.1.4 Triangulation

The presented numerical method of this chapter uses an underlying grid. As described in
Sec. 4.1.2, the finite element method uses, as the name implies, finite elements. Latter are
generated by partition of the computational domain in triangles (2d) or tetrahedron (3d). For
an optimal calculation process this triangulation has to satisfy some requirements. Thus,
mesh generators form often a separate part of a finite element program. One exemplary
requirement for optimized calculations is avoiding too sharp or at least too blunt triangles
[GRT93].

A common technique to create a triangle mesh of a set of points is the Delaunay triangula-
tion. With that method, points inR2 are connected to triangles in a way that no mesh point is
inside the circumcircle of any triangle. It is possible to show that this method maximizes the
minimum angle of all angles of the triangles [PS85, Wat81]. Thus, the triangles exhibit large
internal angles that optimize the calculations. The Delaunay triangulation is not unique. It
can be generalized for more dimensions. In a three dimensional space, the condition says
that no mesh point is inside the circum-hypersphere of any polygon.

There exist a few algorithms to achieve a Delaunay triangulation. For two dimensions,
the flip algorithm enables producing a Delaunay triangulation of an arbitrarily created mesh
based on an evaluation of the local circumcircle condition. Each triangle that does not satisfy
this condition flips the common edge of both triangles, so that the two points that were not
previously connected form a new edge. An example is shown in Fig. 4.1.4. Thus, the neigh-
boring triangles have to be checked again if they are Delaunay, that makes the computational
effort of the order of n2 for n triangles. An advantage of the algorithm is its convergence.

After generating [FG00] and optimization of a mesh, it can be changed with the help of the
information provided by the assessment of quality as a last step. If these three steps are au-
tomatized, the finite element method and its implementation is called adaptive. There exist
different procedures for an adaptive mesh refinement [ZBK+05, BZPS08, ZBPS07]. Common
refinements are the decomposition of a triangle by halving all the sides into four congruent
triangles or the decomposition of a triangle in two triangles by bisecting one side. Other pro-
cedures are presented in [Bän91, SS05].

4.2 Problem classes

Problems occurring while working with light propagations described by the wave equa-
tion (2.7)

1

ε0
∇∇∇× 1

µ0
∇∇∇×E =ω2E (4.14a)

∇∇∇·ε0E =0 (4.14b)
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4.2 Problem classes

Figure 4.3:
Scattering problem: The incident light field Ein inter-
acts with the scatterer within the computational do-
main Ω (with normal vector n and excites an outgo-
ing field Eout). In case of three dimensions, the com-
putational domain is often a layer of glass or gallium
arsenide with mounted with metal nanostructures.

can be divided into two types of problems [Zsc09]: Eigenvalue problems and boundary value
problems. While the latter usually means scattering problems, the former can be divided
into two subproblems: Waveguide eigenvalue (propagating mode) problems and resonance
(resonance mode) problems. Here, a short introduction is presented using the example of the
Helmholtz equation.

4.2.1 Resonance mode problems

Resonance problems describe finding eigenmodes in resonators, as modes of laser cavities or
band structures of photonic crystals. They correspond to the mathematical problem: Find a
tuple

(
E ,ω2

)
, so that the Eq. (4.14) is satisfied.

4.2.2 Propagating mode problems

Propagating mode problems deal with guided light fields in wave guide structures. Typical
fibers are photonic crystals.

Since all these structures are characterized by the invariance in one spatial direction but
with arbitrarily structured cross section of the waveguide, the electric field is harmonic in the
waveguide direction z:

E = E⊥⊥⊥(x, y)eikz z (4.15)

with kz as the propagation constant.
A propagating mode solves the time harmonic Maxwell equation. In contrast to Sec. 4.2.1,

here, the mathematical problem is: Find a tuple
(
E⊥⊥⊥(x, y),kz

)
, so that Eq. (4.14) is satisfied.

4.2.3 Scattering problems

The problem class all simulations of this work are dealing with are scattering problems. In
Fig. 4.3 a scheme of a scattering problem is presented in two dimensions. An incoming light
field Ein enters the computational domain Ω with outward pointing normal vector n and in-
teracts with a scatterer (in this work nanoparticles). The scattered light field Eout leaves the
computational domain in different directions.

Three components characterize a scattering problem: an illumination problem, a scatter-
ing object and a detector [Zsc09]. In experiments, often complex arrangements are needed.
For numerical interests, there exist a number of idealizations [ZKSS06]. Here, only the electric
field distribution of the near field of nanostructures is of interest (see Ch. 5).
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For theoretical considerations, the following conditions have to be satisfied for a scattering
problem (cf. Eq. (2.7)) [Pom09]:

1. The electric fields in the exterior of the computational domain must fulfill

1

ε0ε
∇∇∇× 1

µ0µ
∇∇∇×Ein =ω2Ein and (4.16a)

1

ε0ε
∇∇∇× 1

µ0µ
∇∇∇×Eout =ω2Eout, (4.16b)

2. the field E in the interior domain must fulfill

1

ε0ε
∇∇∇× 1

µ0µ
∇∇∇×E =ω2E ,

3. inner and outer domain has to be continuous, that means that on the boundary of the
computational domain is

n ×E =n × (Ein +Eout) and

n × (∇∇∇×E ) =n × (∇∇∇× (Ein +Eout)) ,

4. and the radiating boundary condition must be fulfilled, that means that Eout is strictly
outward retarding:

lim
|x|→∞

|x| ((∇∇∇×Eout)×n − i |k |Eout) = 0, uniformly continuous.

It is possible to subdivide scattering problems according to their symmetry. Cylindrical
problems are calculated in a different way than planar problems or a three dimensional stack
of structured layers. The symmetries can be exploited to minimize computational time and
memory consumption. The discussed setups of Ch. 5 can be divided in such problem groups.

Since in this work plane waves serve as incoming light of scattered problems (see
Sec. 2.1.4), light scattering off the structures in the exterior domain has to be considered.
Sec. 4.3 will explain how to evaluate the outgoing wave outside the computational domain.

4.3 Transparent boundary conditions

Scattering problems as described in Sec. 4.2.3 require a special treatment regarding outgoing
waves outside the computational domain. Transparent boundary conditions are introduced
for the interface between the computational domain and its surroundings [Zsc09]. The trans-
parent boundary conditions have to guarantee that the calculated light field within the com-
putational domain is identical to the original solution of the scattering problem for the en-
tire space. They must guarantee that the radiation condition holds and the scattered field is
strictly outward radiating.

There exist different concepts for the numerical realization of transparent boundaries. Two
of them will be presented in the following.
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4.3 Transparent boundary conditions

4.3.1 Dirichlet-to-Neumann operator

The Dirichlet-to-Neumann operator maps the values of the solution u on the boundary of Ω
to the normal derivative on the boundary of Ω. To calculate this, the Helmholtz equation
(Eq. (2.8)) for the scattered field has to be solved:

∂2
x usc +k2usc = 0.

The time dependent possible solution of this equation is

usc(x, t ) = Re
(
c+ ei(kx−ωt )+c− ei(kx−ωt )

)
(4.17)

with constants c+ and c−. The interest is only on the part of the equation that results from
the scattering and is moving in direction of the exterior domain. That is valid for the first
term since for a fixed phase and a continuous time k has to increase. So, an additional con-
dition is formulated that lets the second term be zero. Constitute the normal derivative of
this condition is ∂x usc(x, t ) = c+ik ei(kx−ωt ) = ikusc(x, t ) that gives the Dirichlet-to-Neumann
operator

∂x usc = ikusc.

To calculate the derivative on the boundary of Ω, the total solution is splitted in the un-
known scattering solution and the known input field:

∂x u = ∂x (usc +uin) = ∂x uin + ikusc = ∂x uin + ik(u −uin)

⇔ ∂x u = iku +∂x uin − ikuin.

Therefore, the unknown Neumann equation is calculated for the boundary, that is needed for
the variational formulation.

The operator brings the boundary condition from infinity to the boundary of the compu-
tational domain. The Dirichlet-to-Neumann operator can be defined on the boundary of a
domain for the solution for the Helmholtz equation in the exterior of the domain [Pom09].

4.3.2 Perfectly matched layers

The concept that is used in the Maxwell solver of this work for transparent boundary
conditions is the perfectly matched layers method, also known by the abbreviation PML
[Ber94, Zsc09].

The idea of the PML method is damping the outgoing wave within a buffer zone so that
there are no reflections at the boundary of the computational domain, independent of the
incident angle.

For this purpose, a special coordinate system is introduced for the exterior domain R3\Ω.
The basic idea of the PML method is a complexification of the generalized distance variable ξ
to do a complex coordinate stretching in radial direction [Pom09]:

ξ 7→ (1+ iσ)ξ

with a positive constant σ.

Considering again the scattering solution usc as in Eq. (4.17), a complex expansion yield

eikξ 7→eikξ(1+iσ) (4.18a)

e−ikξ 7→e−ikξ(1+iσ) . (4.18b)
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Reaching the exterior domain, ξ is increasing and since σ is positive, Eq. (4.18a) is converting
to zero while the second term of Eq. (4.17), Eq. (4.18b), is divergent.
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5 Spatiotemporal Control

Spatial resolution of optical measurements with conventional light sources is limited by the
wavelength of the incident light. Achieving electronic control below the diffraction limit
opens a number of novel methods in investigating nanosystems. One of them, the “localized
spectroscopy“, is presented in Ch. 8. In this chapter, it is shown how confining optical excita-
tions simultaneously on a nanometer length scale and on a femtosecond time scale becomes
possible by combining nanoplasmonics with pulse shaping techniques [BG01].

Before presenting some underlying mechanisms of controlling optical excitations on length
scales smaller than the wavelength of light, the purpose of the procedure should be empha-
sized. Metal nanostructures are illuminated by short polarization-shaped optical pulses that
are formed with the help of a genetic algorithm. A theoretical description of the computa-
tional simulation methods and a presentation of the genetic algorithm in detail is given. This
chapter ends with discussing the advantages and disadvantages of several tested geometries
for confining fields.

The techniques and results described in this chapter are published in [SSH+12, SSB+11,
SSB+12].

5.1 Aim

The aim of this chapter is finding an arbitrarily setup that allows control simultaneously in
time and in space. More precisely, it should be possible to excite a region in a nanostructure,
that firstly is very confined (only a few nanometers) and secondly the excitation time is only
a few femtoseconds. A third aim is that the position for this localization spot is not arbitrary
but should be controllable. For this it is sufficient to be able to control at least three selected
points. These points have to be in close vicinity. Fig. 5.1 illustrates one possibility of a desired
result.

The application of this spatiotemporal control is ”localized spectroscopy“ that is shown in
Ch. 8. The results of the current chapter allow exciting only one of three coupled quantum
dots: For this purpose, the requirement of at least three controllable locations in close vicinity
is needed. And it becomes clear why the position of localization must be confined: Only
one of the three quantum dots should be excited. Such a coupled quantum dot system is
introduced in Sec. 6.5.

There exist a lot of publications that demonstrate the experimental possibility of spatiotem-
poral control [ABB+07, BAS+06, BASP05, BASP06, ABP07, RM09, ABB+10, MBS+11]. All these
works show a control in time and space but do not meet the requirements mentioned in the
last paragraphs: The hotspots have to be in close vicinity and it should be more than two.
Additionally, for localized spectroscopy, a quantum dot should be excited about more than a
factor 10 higher in terms of the electric field than the non-excited ones.

5.2 Control mechanisms

A confinement of optical excitations in a subwavelength precision is possible by combin-
ing nanoplasmonics with pulse shaping techniques [ABB+07, BASP05, ABB+10]. As seen in
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5 Spatiotemporal Control

Figure 5.1:
Spatiotemporal control: This fig-
ure illustrates the aim of control
excitations within a nanostruc-
ture simultaneously in time and
space. |E
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Ch. 3, nanoplasmonics exploit their frequency dependent properties and use different ar-
rangements of metals or hybrids like nanoantennas [HVT+09, MKZ+08, NH11] and sharp tri-
angles or metal tips [BASP05].

To achieve field confinements, in the following setups combinations of different plasmonic
materials with dielectrics are used. Ref. [Pal85] provides dielectric functions for resonant
materials like silver, gallium arsenide or indium arsenide (cf. Sec. 2.1.5). With these data the
presented arrangements are simulated. They produce an enhanced electric field dependence
on the frequency of the incoming light.

Not only the optical material resonances but also the size, the form and the orientation of
the nanostructures influences the spatial field distribution. All these effects interplay in the
geometries described in Sec. 5.5.2.

The setups used there are dominated by triangles with different sizes and different orienta-
tions. The sharp vertices of the tips are able to concentrate the field. With different sizes it is
possible to address different optical frequencies. Finally, the position of the triangles and their
alignment with each other play an important role for polarization effects because of the use
of polarization shaped pulses. Further discussions of such polarization effects can be found
in Sec. 5.5.2.

A principle effect of locating light works via constructive or destructive interference. A su-
perposition of many light sources can generate a high number of light patterns but no ar-
bitrary pattern within lengthscales much smaller than the wavelength of light! This changes
if there are interferences between near and far fields, for example through enhancement of
electromagnetic fields via local reflections and plasmon effects. The plasmonic effects that
occur are exemplarily discussed for a metal sphere in Ch. 3.

In the geometries presented in this work nanostructures generate near field effects: Since
the local fields are generated by the external polarization components of the incoming light,
they are not all perpendicular to each other. Thus, they can interfere dependent on the polar-
ization of the incoming field. Constructive and destructive interferences are used to optimize
the field distribution.

Although all the hinted effects contribute to control of excitations within subwavelength
precision, one incoming pulse is often not enough to achieve sufficient control. In some se-
tups, more than one light sources are used to combine the interference effects of the sources
and the near field enhancements. Just one incoming pulse does not supply enough degrees
of freedom: If the electric field in the center of three coupled quantum dots should be deter-
mined, nine electric field components have to be controlled (three for every spatial direction)
for a fixed frequency. Every incoming pulse allows the determination of two electric field
components, one for each polarization direction. Consequently, more incoming pulses raise
the possibility that a desired field distribution can be reached.

To achieve sufficient control of three coupled quantum dots, in the important setup of
Sec. 5.5.3, three incoming pulses with individual shapes from different directions are used.
Thus, the fields of the incoming pulses can additionally interfere constructively or destruc-
tively at the sample.
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5.3 Simulations

Figure 5.2:
Shaping pulses via a weighting function: The field distribution
is simulated with an incoming pulse with a field amplitude of 1.
the function g (illustrated in yellow) weights the electric field of
each frequency in time domain.

5.3 Simulations

For a theoretical simulation of the field localization the time harmonic results from the
Maxwell solver of ”JCMsuite“ [PBZS07, BZPS08] are used. Maxwell’s equations are solved in
frequency domain using the finite element method. A detailed introduction to this method is
given in Ch. 4.

The resulting electric fields Eγ
ν (ω,r ) are evaluated at the center of the quantum dots for

all incoming directions γ and the polarization directions ν = p,s. For controlling the field
distributions in time domain, a Fourier transform is applied (cf. Fig. 5.3):

E (t ,r ) = 1p
2π

∫ ∞

−∞
dωeiωt

∑
γ,ν

gγν (ω)Eγ
ν (ω,r )

where g is a weighting function, that enables us to shape the incoming pulses. In Fig. 5.2
the effect of the weighting function is illustrated: The field distributions for all frequencies
are simulated with incoming pulses with a field strength amplitude of 1. With the help of the
weighting function, the electric field of each frequency can be weighted stronger or weaker in
time domain. Mind, that all field simulations are linear.

The function g represents a Fourier transformed composition of n Gaussian shaped pulses
(similar to [RM09]):

gγν (ω) =∑
n

fν(ϑγn)
Aγ

np
2π

e
−(η

γ
n−ω)2σ

γ
n

2

2 eiωτγn eiϕγn ,

with fp = cos and fs = sin. Thus, it is possible to simulate the incoming electric field with a
fixed amplitude and to weight each frequency individually only by changing the parameters
of g : the polarization angle ϑ

γ
n , the amplitudes Aγ

n , the center times τγn , inner frequencies

+

=

FT

FT-1

Figure 5.3:
Pulse shaping via superposition
of Gaussian shaped pulses in fre-
quency domain: The Gaussian
shaped pulses are superposed in
frequency domain (red). After-
wards, the resulting shaped func-
tion gγν (ω) is transformed back
into time domain.
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Figure 5.4:
Superposition of two polarization directions of the electric
field: The two solutions Eγ

p (ω,r ) and Eγ
s (ω,r ) are superposed.

Trigonometric functions ensure that the pulse envelope still
keeps normalized.

p s

η
γ
n , widths σγn , and the phases ϕγn . For gaining a polarization shaped pulse, the two solutions

Eγ
p(ω,r ) and Eγ

s (ω,r ) are superposed in a ratio so that the pulse envelope still keeps normal-
ized (see Fig. 5.4).

The higher the number of pulses the complexer the pulse can be shaped. In the simulations
in this work it turned out that n = 20 pulses can form the pulses sufficiently for the desired
optimizations.

Composing the electric fields in this way reduces considerably the computational costs
since all fields have to be simulated only once (for each frequency). In contrast to a time
domain solver, in frequency domain there is no new simulation needed for altered incoming
pulses.

Three incoming directions and twenty composed Gaussian pulses results in 6 ·3 ·20 = 360
parameters to be optimized simultaneously. This task is performed by a genetic algorithm
that is introduced in the next section.

5.4 Genetic algorithm

For localized spectroscopy (see Ch. 8), the field distribution of the electric field has to satisfy
the requirements mentioned in Sec. 5.1. Shaped pulses can generate complex field distribu-
tions caused by effects introduced in Sec. 5.2. But there exists no analytic way to predict the
form of the shaped pulses to obtain the desired field distribution.

In order to obtain the shaped pulses that satisfy our requested field distribution, a genetic
algorithm [RM09, Rec73, ABB+07] is helpful. There are several other methods, for example a
gradient descent. Some advantages and disadvantages are discussed in Sec. 5.4.5.

In this work, an algorithm has been implemented for the intentions of localized spectros-
copy. Its task is optimizing the six parameters of the weighting function g for every pulse from
which g is composed: ϑ, A, τ, η, σ, and ϕ.

The results of optimization are shown in the subsections of the corresponding setup, sched-
uled in Sec. 5.5. The optimization results of geometry described in Sec. 5.5.3, the achieved
localization of the optical excitation is presented in two versions in Fig. 5.12.

5.4.1 Principles of the algorithm

The basic principle of the genetic algorithm used in this work consists of three steps for every
generation: Mutation, evaluation, and selection.

Mutation: A set of n optimization parameters can be expressed as a n-dimensional vec-
tor a. In every generation 300 mutated copies achild of the parent pulse aparent are created
by adding the parameter dependent mutation step size ∆a multiplied with a Gaussian dis-
tributed random number χi for every of the 360 (see Sec. 5.3) variation parameters a:

achild,i = aparent,i +χi ·∆ai
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5.4 Genetic algorithm

Evaluation: Next, each child is assigned a quality. This is done by evaluating a scalar cost
function for every child and selecting the one with the smallest cost value. The chosen cost
function compares the electric field distribution in the center of the excited quantum dot
caused by the pulse with a target distribution. Different kinds of cost or fitness functions are
presented in Sec. 5.4.2.

There is one condition for each quantum dot. While the electric field distribution at posi-
tion r1 should match with a Gaussian shaped excitation, the field distribution at positions r2

and r3 should be minimal.
The requested time dependence of the absolute value of this electric field distribution at

the excited dot at r1 is given by a target function

tar(t ) = B e−(t−T )2/ε2
(5.1)

that exhibits a Gaussian shaped excitation with an amplitude B that depends on the chosen
geometry, a time T at which the excitation is centered, and an excitation width ε. In our sim-
ulations, T = 0fs and ε = 8fs is chosen. Since the other quantum dots should not be excited
the target function for positions r2 and r3 is identically zero.

Selection: Now, the best child is selected. The child with the lowest value of the cost func-
tion (that are presented in Sec. 5.4.2) acts as parent pulse for the next generation. In depen-
dence of the step size ∆a, a new generation is created. Sec. 5.4.3 explains how this step size
is calculated.

There exist many different ways to implement a genetic algorithm. For example, different
kind of general parameters have to be chosen, such as children per generation or the start
values for the optimization parameters. Since for the genetic algorithm no clear convergence
can be seen (cf. Sec.5.4.4), and because the success depends on chance, it is not easy to find
the best parameters. For the results presented here, 300 children per generation are gener-
ated. Depending on the geometry, some simulations use the same incoming pulses for all
directions, some others use different start values for each directions. Another possibility for
altering the algorithm is to consider the former parent as a valid choice in the selection pro-
cess or to select two or more children and combine their properties – for example by mixing
parameters or taking the average. Such a process forms the forth step: Recombination.

A illustration of the principle operation of a genetic algorithm is given in Fig. 5.5.

5.4.2 Cost function

The fitness or the cost function assigns a value to each child. The higher the fitness value or
the lower the cost value the higher the quality of child, that means the better the agreement
of the target function with the real behavior of the electric field. In the following, only cost
functions are used.

There exist many possibilities for a mapping of the ”cost“. Here, only the first of three
pulses should be Gaussian distributed, the both other excitation curves in time domain
should be zero. These three conditions can be combined by fitting to one target function

cost(child) =
∫ ∞

−∞
|Echild(t ,r1)− tar(t )|2 +|Echild(t ,r2)|2 +|Echild(t ,r3)|2 dt

where Echild(t ,ri ) is the electric field in the center of quantum dot i and tar(t ) the target func-
tion (5.1). To weight larger deviations stronger than smaller ones the square of the absolute
value of the difference between the target and the actual distribution is calculated. Then, an
integration over all times is done. Consequently, a higher integration result represents a bad
matching. It is important to scale the target function (5.1) with the factor B , which is in the
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Generations

Children

Start pulse Best child =
new parent

highest

quality

highest

quality... ...

...

Figure 5.5:
Operation of a genetic algorithm: A parent gets children (Mutation), the best child is found (Evalua-
tion) and finally the best child becomes new parent (Selection).

range of the expected maximum field strength within the quantum dot, to weight deviations
from the target function as well as deviations of the other two quantum dots from the zero
function. The factor is constant in time and generation.

Some other cost functions have been tested, such as a cost function that is aimed on getting
a high difference between Echild(t ,r1) and the other two electric fields of the children instead
of fitting Echild(t ,r2) and Echild(t ,r3) to zero. Also different weightings for the three conditions
are tried. It turned out that all conditions are fulfilled most uniform if a cost function is min-
imized given by:

cost(child) =max

(∫ ∞

−∞

∣∣Echild(t ,r1)−Etarget(t )
∣∣2 dt ,

∫ ∞

−∞
|Echild(t ,r2)|2 dt ,

∫ ∞

−∞
|Echild(t ,r3)|2 dt

)
This cost function is used for the results of that work.

5.4.3 Adaptive mutation step size

A genetic algorithm can be improved by introducing an adaptive mutation step size. Instead of
a constant step size for each mutation ∆ai (multiplied with a random number), an adaptive
mutation step size ∆a is used. It varies depending on the average of the step sizes of the
previous parents [Rec73].

The influence of the chance plays an important role for the mutation. The Gaussian ran-
dom numbers allow that also another minimum can be found (by rare big step sizes). But
they also allow to find the lowest point (by frequent small step sizes).

Big step sizes make no sense if no improvement is achieved. Otherwise, small steps are not
useful for parameters that improves the fitness significantly. For this, the last best children
are saved. For each parameter, the variance of these last parents are calculated. Let bi the
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parameter of the last parents (i = 1, . . . ,100) and b̄ the average over all bi . Then, the new
mutation step size reads:

∆ai =
√√√√ n∑

j=1

(b j
i − b̄ j )2

n −1
.

Mind, that the randomness is not restricted but only the strength of the mutation.
In this work, the last n = 100 parents are saved in memory. Thus a quick approach to the

minimum of the cost function is possible. The lowest values are reached with finer steps.

5.4.4 Termination conditions

The algorithm used in this work resembles an evolutionary algorithm of the nature. But in
nature there is no end of evolution and no unambiguous maximum of quality, so here a ter-
mination condition has to be found and several local maxima are expected.

Four different termination conditions are used: Since the optimal pulse is not known and
needed, the algorithm can be terminated successfully if the quality of the parent has sufficient
quality. If there have been more than 60000 generations without a sufficient result or (only in
some simulations) 1000 generation without a new parent, the algorithm is terminated unsuc-
cessfully. If the mutation step size is very small, the algorithm also finishes since then it can
be assumed that a local maximum is found.

Repeating the experiment with other random numbers χ or with other start mutation step
sizes can influence the result but this does not happen very often. In most cases it has been
clear within 10000 generations if the algorithm will terminate successfully or without any suc-
cess.

5.4.5 Comparison with gradient bases methods

In general, a genetic algorithm is used for problems that behave like a black box with little
insight on the inner structure. The strong point of this kind of algorithm is that it can be used
for a number of problems, especially problems without gradient information such as discon-
tinuous ones. The influence of chance allows finding maxima that could not be found with
gradient methods. The advantage of gradient methods is that it often leads more directly to
the goal because for each generation the parameters that supply the strongest improvement
are changed. As a trade-off, there are two disadvantages: The most important one is, that
for each parameter a change in quality has to be calculated to find the gradient while for a
genetic algorithm only the number of children decide the number of time-consuming calcu-
lations. That means that the velocity of the gradient method decreases drastically for a huge
number of parameters to be optimized. The second disadvantage is that the probability of
finding the global maximum depends strongly on the start value. The algorithm often finds
the nearest local maximum in cases where the genetic algorithm perhaps finds an higher lo-
cal or even the global maximum with the help of the Gaussian distributed random numbers
that allow (a few) high step sizes. For a simulation that works successfully in less than 10000
generations it is possible to see if the chosen geometry provides a highly localized excitation.

There exist also algorithms that mix the genetic and the gradient method. For example,
the gradient method can be improved by adding a random choice. This could be choosing
only a part of parameters for finding the gradient on a hyperplane, Also the genetic algorithm
can become more gradient-like, by considering the recombination step of the algorithm, for
example by averaging the parameters of the best children.

Generally one can say that there exists no perfect algorithm. Every method has advantages
and disadvantages and their suitability depend on the knowledge of the present problem.
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Figure 5.6:
Randomly arranged geometry: In this illustration of plasmonic structure for spatiotemporal control
studies four InAs quantum dots are surrounded by randomly distributed silver particles on a GaAs
layer. The arrangement is situated in air. As described in Sec. 5.5.1, that setup turns out to be ineffi-
cient.

The genetic method mostly provides the desired results. Unfortunately, this means that in
many setups it is not clear if the geometry does not allow a good optimization or whether just
the genetic algorithm does not find it. Through repetitions with other random numbers and
variation of the start values of the parameters and the mutation step sizes, it becomes possible
to evaluate the quality of the current setup. In Tab. 5.1, the number of needed generations for
an optimization is given exemplarily.

5.5 Geometries

As stressed in Sec. 5.2, the geometrical form of a setup strongly influences the field distribu-
tion. Thus, not all geometries are well-suited for an optimization process. So in the following
subsections is discussed how to find the optimized geometry.

There already exists a number of well-known setups, for example in [ABB+07, BASP05,
ABB+10]. All setups used there provide spatiotemporal control. As mentioned in Sec. 5.1,
the works of the other authors does not fulfill the requirements needed here. Their setups
have to be adapted within the context of changing controlling properties in such a way that
localized spectroscopy (see Ch. 8) becomes possible.

To investigate a quantum system of three or more coupled quantum dots, a control of the
excitations at more than two spatial positions is needed. The examined spatial points also
have to be in close vicinity. In particular, the focus is on spatial points no farther than 50
nanometers. Within that range, also time control is required and the electric field of the ex-
cited quantum dot should at least be larger by a factor of 10, that means a factor of 100 for
the intensity.

5.5.1 Random geometries

In a naive approach a randomly arranged setup would be a reasonable starting point. In that
case, the intention of using as many of the discussed effects as possible is pursued. But this
idea overestimates the possibilities of field control by shaping pulses via the genetic algorithm
used in this work.

In Fig. 5.6 a tested randomly arranged geometry is presented. The indium arsenide quan-
tum dots have a diameter of 20 nanometer and are placed on a gallium arsenide layer, sur-
rounded by randomly distributed silver particles. That arrangement is situated in air. Note,
that in Ch. 3 the geometry is surrounded by water.
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(a)

(b)

Figure 5.7:
Triangle setup to demon-
strate polarization effects:
In part (a) the setup con-
sists of three silver triangles
and a silver cylinder on a
glass substrate. There are no
quantum dots in the sim-
ulation. Just the electric
field within the region allo-
cated for the quantum dots
is focused. The polariza-
tion direction of the incom-
ing plane wave can be regu-
lated (cf. Sec. 5.3). In part
(b) it can be seen that the
field distribution of the lay-
out depends on the incom-
ing polarization direction.
On the left s-polarized, on
the right p-polarized light is
used.

Fig. 5.6 shows that in randomly arranged setups always some quantum dots are placed
in a more preferential position than other dots. This advantageous position is caused, for
example, because the quantum dots are closer at metal structures than other quantum dots.
The metals have the possibility of high field amplifications that the quantum dot can absorb.
In that case, the electric excitation can be confined easily in such a dot. But if another dot
that is not close to a field amplifier should be the excited one, it is hard to bring the excitation
into the dot without inadvertently exciting the metal near another dot that is undesired to be
excited.

In other words, it turns out that localization of the electric field has a bad quality for quan-
tum dots at disadvantaged positions such as those not close enough to a metal structure.

To illustrate the principle of localized spectroscopy, in the rest of the current chapter the
focus is on symmetric arrangements.

5.5.2 Antenna-like geometries

This kind of geometry affords a good study of polarization shaping effects because of the
different orientations of the nanostructures, that serve as nanoantennas [NH11, MKZ+08].

The first simple setup is shown in Fig. 5.7a. Three silver triangles are on a glass layer with a
silver disk in the center. To demonstrate polarization effects, just one polarization shaped in-
coming pulse incidents perpendicular from above. In general, the largest field enhancements
occur always on those boundaries of metal structures, which lie in the direction of the polar-
ization vector. The effect that is seen for a sphere in Ch. 3, can be transferred to the triangles
given in Fig. 5.7b. The picture shows field distributions for two perpendicular polarization

57



5 Spatiotemporal Control

Table 5.1:
Optimization results of
antenna-like geometries:
For different scaling factors
of the metallic surrounding,
the localization factor is
given. It gives the electric
field of the not excited
quantum dot divided by the
electric field of the one that
is excited. Additionally, the
number of generations that
are needed to achieve the
localization are given.

Geometry Fig. 5.9a Fig. 5.9b Fig. 5.13

Scale Loc. Gen. Loc. Gen. Loc. Gen.
0.5 5.6 11000 13.5 8000 22.5 11000
0.6 17.6 13000 13.7 11000 35.5 7000
0.7 33.3 4000 13.1 11000 3.3 12000
0.8 17.1 10000 16.5 6000 11.3 9000
0.9 13.9 5000 > 50 11000 5.0 8000
1.0 20.5 9000 25.8 21000 13.7 10000
1.1 17.1 8000 ≈ 30 10000 12.5 110000
1.2 14.3 7000 14.32 10000 5.0 2000
1.3 14.3 14000 15.9 17000 12.6 12000
1.4 15.2 12000 13.4 11000 3.4 13000
1.5 12.1 19000 13.2 13000 3.3 12000

directions: On the left hand the s- and on the right hand the p-polarization effects are visible
in Fig. 5.7b.

The idea of this geometry is placing the quantum dots between the silver tips and the cen-
ter circle. It is assumed that the field strength is taking over into the dots and does not distort
the field distribution. Optimization with the genetic algorithm shows, that this geometry al-
lows an excitation of two of the three quantum dots simultaneously. But that is not the aim.
So the desired geometry has to look different. The calculations show, that the ratio between
the excitation strength of the two quantum dots and the excitation of the weak excited quan-
tum dot is not high enough for the purpose of this work.

A better localization ratio can be reached by implementing each triangle with a different
size to have different resonance frequencies. Deforming the triangles or replacing them by
rods to change the optical properties of nanoparticles [MKZ+08, KCZS03] helps achieving a
better ratio of localization.

Most ideas of antenna-like geometries provide some enhancements but ultimately, up to
now no structure achieves sufficient localization. Displacing them to an antisymmetric setup
like in Fig. 5.8 leads to the same problems as discussed in Sec. 5.5.1: only for spatially advan-
tageously positioned dots a localization is possible.

The fact that the layout of Fig. 5.7 only can optimize two quantum dots simultaneously
leads to the idea of bringing the dots between two triangles as shown in Fig. 5.9. These setups
supply sufficient localization. In Tab. 5.1 for both geometries the inverse amplification ratio
(field strength of the quantum dot that should not be excited divided by the field strength
of the excited quantum dot) are given. Additionally, the results are presented for different
sizes of triangles. Scale 1 corresponds to the triangle sizes as seen in Fig. 5.9. This size is
scaled by the given factors. One can see that the results depend on size but this does not
necessarily follow from the underlying physics! Mind, that the genetic algorithm uses random
numbers and each simulation can differ from another one. Local maxima could be found or
inappropriate initial parameters do not lead to convergence. Additionally, the table shows the
number of generations that has been needed to achieve the localization factor.

While Fig. 5.9a leads to better localization results, Fig. 5.9b is the preferred geometry since
the distance between the quantum dots and the metals is higher, so that influences of the
metals to the properties of the quantum dots can be neglected [VVKH12].
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5.5.3 Waveguide-like geometries

The first found layout that satisfied the desired requirements is shown in Fig. 5.10. This setup
serves as an example in the next sections. It shows a three-armed metal nanostructure, sim-
ilar to a waveguide, inspired by nanoantennas, that can guide electric field strength into the
nanostructures. The large metal area exists of silver and is applied on a gallium arsenide bulk
layer. The structure keeps a full 120° symmetry where each of the three paths is illuminated
by one independent shaped pulse. The indium arsenide quantum dots in the center have a
radius of ten nanometers and have a height of four nanometers (while silver has a height of
16 nanometers), so that the main part of the incoming pulses, that have wave vectors almost
parallel to the layer plane, can only reach the quantum dots through the wave guides.

The geometry is surrounded by air and the dimensions of the structure can be found in
Fig. 5.11. Parameters like dot distance and size, coupling constants and energy shifts are
known from experiment [UML+05] and theory [RAK+06]. The energies of the self organized
GaAs/InAs quantum dots are given in Sec. 6.5. The setup is particularly suitable since there
are no sharp vertices and the 120° symmetry helps to save computational time and avoids a
position dependent chirp of the phase.

The shape of the excitation in time domain for the absolute value of the electric field in
the center of the silver disks is given in Fig. 5.12a. It can be clearly seen that quantum dot 1
is much higher excited than the other ones. Since in Ch. 8 the electric field is considered
in frequency domain, the factor of field distribution is determined after a Fourier transform
of the values of Fig. 5.12a. As a result, in frequency domain, this setup yields a localized
amplification ratio of 1 : 0.1205 : 0.0761. That means, that for a frequency which is typical for
the chosen quantum dots (about 1.1eV) the electric field in the center of the second quantum
dot is only 12.05 percent of the field within the first quantum dot and the third one only 7.61
percent. Fig. 5.12b shows the field distribution at t = 0fs where the field amplification has a
maximum. The figure shows a section at the half of the quantum dot height.

A last geometry that is presented in this work is a further waveguide-like setup in Fig. 5.13.
Its layout achieves a very high field localization, due to the proximity of the metals. Plasmonic
coupling effects (cf. Sec. 3.3) can be selected by polarization shaped fields particularly well.
But in the following the first presented waveguide-like structure serves for demonstrations
since the near contact of the metals could influence the properties of the quantum dots (see
Sec. 5.5.2). The results of the optimization process is also given in Tab. 5.1.
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Figure 5.8:
Top view of a three dimensional asym-
metric ray-like layout: The geometry with
three InAs quantum dots (green) and sil-
ver rods and disks (red) shows different
optimization qualities depending on which
quantum dot is excited. The rounded cor-
ners cause softer field gradients and conse-
quently save computational costs and cor-
responds more a realistic structure.

Figure 5.9:
Symmetric geom-
etry with quantum
dots between silver
triangles: These
setups lead to good
optimization results
(given in Tab. 5.1).
In part (a) the tri-
angles are closer to
the dots than in part
(b) – the sizes of the
triangles and the
InAs disks are the
same.

(a)

(b)
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Figure 5.10:
Three-armed waveguide-like model setup for spatiotemporal control of three coupled quantum dots:
The three InAs quantum dots on a GaAs layer have a radius of 10nm and a distance of about 40nm
and they are surrounded by three silver polygons with 250nm for the longest edge (see Fig. 5.11). They
were illuminated by three individual polarization shaped pulses with incoming directions parallel to
the waveguide arms. The field strength is measured in the center of the quantum dots. This setup
satisfies the desired requirements.

Computational

Figure 5.11:
Dimensions of the three-armed waveguide-
like model setup: This figures shows the di-
mensions of Fig. 5.10.
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Figure 5.12:
Optimization results of waveguide-like geometry: In part (a) the excitation is given in time domain.
Quantum dot 1 is much higher excited than the other ones. A Fourier transform gives a localized
amplification ratio of 1 : 0.1205 : 0.0761 in frequency domain (see Sec. 5.5.3). Part (b) is a slice through
the geometry at the half of the quantum dot height. The upper quantum dot is significantly brighter
than the lower two. This figure is published in [RSS+12] (Copyright (2012) by the American Physical
Society).

Figure 5.13:
Waveguide-like geome-
try for plasmonic cou-
pling effects: This lay-
out allows a good local-
ization due to the plas-
monic effects that are
generated by the polar-
ization shaped pulses.
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6 Theoretical Foundation of Quantum Systems

The structures of the last chapters are chosen based on a possible application in the field
of coupled quantum dots. This and the next chapter serve as preparation for Ch. 8, which
supplies the main results of the work.

For this, the recent chapter starts with theoretical essentials for working with nanostruc-
tures in density matrix theory. After introducing the density and the time evolution operator,
the perturbation expansion is given in the interaction picture. Finally, the chapter ends by
presenting coupled quantum systems – especially three coupled quantum dots that serves as
model system for Ch. 8.

6.1 Density operator

The state of a treated system is often determined only incompletely because of its mesoscopic
size. To yield nevertheless comprehensive predictions, it is necessary to find a formalism for
the quantum mechanical description that can handle the incomplete information. The den-
sity operator allows a simple and elegant description of a statistical average.

First, it will be introduced for pure states, then for a statistical average and afterwards, its
time evolution is presented.

6.1.1 Pure state

The density operator of a pure quantum state |ϕ〉 is given by11

ρ = |ϕ〉〈ϕ| (6.1)

with the (many-particle) wave function |ϕ〉 that describes the state of the system. Its expan-
sion for the time t is [CTDL07]

|ϕ(t )〉 =∑
n

cn(t )|un〉

in the set of {|un〉} that forms an orthonormal basis and the expansion coefficients cn(t ). The
normalization condition is

∑
n |cn(t )|2 = 1. By implication, the expectation value for an ob-

servable O is given by

〈O〉(t ) = 〈ϕ(t )|O|ϕ(t )〉 = ∑
n,m

c∗n (t )cm(t )Onm (6.2)

with the matrix elements Onm = 〈un |O|um〉.
With the definition of the density operator (6.1) one obtains

ρ(t ) = ∑
n,m

cnc∗m |un〉〈um |

11The Dirac notation describes a wave function ϕ with help of the ket vector |ϕ〉. Each ket |ϕ〉 corresponds to a
bra vector 〈ϕ| that belongs to the corresponding dual space (see e.g. [CTDL07]).
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and thus for the matrix elements of the density operator, there is

ρnm(t ) = 〈un |ρ(t )|um〉 = cn(t )c∗m(t ). (6.3)

Finally, with (6.2) and (6.3) for the expectation value of the observable O

〈O〉(t ) = ∑
n,m

〈um |ρ(t )|un〉〈un |O|um〉 =∑
m
〈um |ρ(t )O|um〉 = tr

(
ρ(t )O

)
(6.4)

is obtained [CTDL07]. Here, tr(M) means the trace of matrix M defined by

tr(M) =
∑
n

Mnn .

The vectors |ϕ(t )〉 and eiθ|ϕ(t )〉 (for an arbitrary real number θ) characterize the same phys-
ical state. This becomes important in Sec. 8.2.2. The definition of the density operator (6.1)
shows that the two vectors consequently belong to the same density operator.

6.1.2 Statistical average

While for a pure state the system can be described by a state vector as well as by the density
operator (see also the time evolution in Sec. 6.1.3), for a statistical average there is no way to
write a wave function.

The density operator for a statistical average is defined as

ρ =∑
k

pkρk =∑
k

pk · |ϕk〉〈ϕk |

with pk as the probability for the system to be in state |ϕk〉. For the probabilities is 0 ≤ pk ≤ 1
and

∑
k pk = 1.

As can be seen in more detail in [CTDL07], all physical statements can be described with
the help of ρ, the average of the density operators ρk , because of the linearity of the relations
that uses the density operator.

While introducing the density matrix allows the implementation of environmental influ-
ences or an easy treatment of open systems such as electrons coupled to vibrations, a prob-
lem is that calculations become complexer since the N -dimensional Hilbert space12 of the
wave functions become N 2-dimensional. This can be seen in the representation of basis ele-
ments:

|ϕ〉 =∑
n
〈n|ϕ〉|n〉 =∑

n
cn |n〉︸︷︷︸

basis

ρ = ∑
nm

|n〉〈n|ρ|m〉〈m| = ∑
nm

〈n|ρ|m〉|n〉〈m| =∑
nm

ρnm |n〉〈m|︸ ︷︷ ︸
basis

.

6.1.3 Time evolution

In the Schrödinger picture (cf. 6.3), the time evolution of the wave function |ϕ〉 is described
by the Schrödinger equation

d

dt
|ϕ(t )〉 =− i

ħH(t )|ϕ(t )〉. (6.5)

12A Hilbert space is an abstract vector space possessing the structure of an inner product.
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6.2 Time evolution operator

The time variation for the density operator is given by the differential equation [CTDL07]

d

dt
ρ(t ) =− i

ħ [H ,ρ(t )]. (6.6)

This equation is called the Liouville-Von Neumann equation. For pure states, it is identical to
the the Schrödinger equation (6.5) as shown here:

d

dt
ρ(t ) =

(
d

dt
|ϕ(t )〉

)
〈ϕ(t )|+ |ϕ(t )〉

(
d

dt
)〈ϕ(t )|

)
=− i

ħH(t )|ϕ(t )〉〈ϕ(t )|+ i

ħ|ϕ(t )〉〈ϕ(t )|H(t )

=− i

ħH(t )ρ(t )+ i

ħρ(t )H(t ) =− i

ħ [H ,ρ(t )].

In Liouville space, the density matrix ρ is an operator in the Hilbert space. The operation
[H , . . . ] is written as a superoperator L, that acts on operators in Hilbert space [Muk03]. The
Liouville-Von Neumann equation (6.6) becomes

d

dt
ρ(t ) =− i

ħLρ(t ).

Mathematically, the Liouville space is a Hilbert space, These spaces, however, are distin-
guished for improving physical intuition.

6.2 Time evolution operator

With the help of the linear time evolution operator U (t , t0), a time evolution of a system can
be calculated. It is defined as

|ϕ(t )〉 =U (t , t0)|ϕ(t0)〉. (6.7)

Inserting this equation into the Schrödinger Equation (6.5) yields to a differential equation in
first order

iħ ∂

∂t
U (t , t0) = H(t )U (t , t0). (6.8)

With the initial conditions U (t0, t0) = 1 (that follows directly from the definition of the time
evolution operator (6.7)) one obtains [CTDL07]

U (t , t0) = 1− i

ħ
∫ t

t0

H(t ′)U (t ′, t0)dt ′. (6.9)

Fundamental transformations [CTDL07] show that

U (t2, t0) =U (t2, t1)U (t1, t0). (6.10)

Since H(t ) is Hermitian, U (t , t0) is unitary with

U †(t , t0) =U−1(t , t0) =U (t0, t ) (6.11)

where U † symbolizes the Hermitian adjoint of the operator U .
For a time-independent Hamiltonian, Eq. (6.8) is simple to integrate and it follows an ex-

plicit form of the time evolution operator

U (t , t0) = e−iH(t−t0)/ħ . (6.12)
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For a time-depending Hamiltonian the time evolution operator can be iteratively expressed
through the Dyson series

U (t , t0) = 1+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1H(τn)H(τn−1) . . . H(τ1)

with t0 < τ1 < τ2 < ·· · < τn−1 < τn < t by inserting Eq. (6.9) into itself [Ham05].

It is possible to replace the time ordered expression by an ordinary one. This is done by
introducing a time-ordering operator T . For a time-dependent operator H(t ) its definition is

T [H(t1)H(t2)] =Θ(t1 − t2)H(t1)H(t2)+Θ(t2 − t1)H(t2)H(t1)

with Θ as the Heaviside step function13. For n operators, the time-ordering is also maintained.
That allows interchanging the Operators H . Applying the operator enables integrating to t for
each integration. But this has to be compensated by the factor n!. Thus arises

U (t , t0) =1+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1H(τn)H(τn−1) . . . H(τ1)

=1+
∞∑

n=1

1

n!

(
− i

ħ
)n

T
(∫ t

t0

dτH(τ)

)n

= T e−
i
ħ

∫ t
t0

dτH(τ) .

These steps can also be carried out for the time evolution operator in Liouville space. That
results in (cf. [Muk95])

U (t , t0) = T e−
i
ħ

∫ t
t0

dτL(τ) .

6.3 Quantum mechanical pictures

If the operators of the assigned observable are time independent and all evolution of time is
contained in the state vector |ϕ(t )〉 (described by the Schrödinger equation (6.5)), then the
formalism is called Schrödinger picture. The state vector for any time t is given by the initial
state via14

|ϕS(t )〉 =U (t , t0)|ϕS(t0)〉
with U (t , t0) as the time evolution operator of Sec. 6.2.

In contrast, in the Heisenberg picture the operators are time-dependent, the wave func-
tions are not. To change into the Heisenberg picture, an unitary transformation is executed
[CTDL07]:

|ϕH〉 =U †(t , t0)|ϕS(t )〉 =U †(t , t0)U (t , t0)|ϕS(t0)〉 = |ϕS(t0)〉
For an operator in the Heisenberg picture

AH(t ) =U †(t , t0)ASU (t , t0)

is valid. For the time evolution of an operator in the Heisenberg picture, the Liouville-Von
Neumann equation

d

dt
AH(t ) =− i

ħ [H , AH(t )]

13The Heaviside step function is defined as the integral of the Dirac delta function: Θ(x) = ∫ x
−∞δ(t )dt . It is 0, if

x < 0 and 1 for n ≥ 0.
14The index S shows a quantity in Schrödinger picture, the letter H will represent the Heisenberg picture and D

the Interaction or also called Dirac picture.
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can be derived (see Eq. (6.1.3) in Sec. 6.1.3). Both pictures describe the same physics, they are
just different kinds of representation. This fact is illustrated by the equation 〈ϕS(t )|AS|ϕS(t )〉 =
〈ϕH|AH(t )|ϕH〉.

A third representation is the interaction picture, that is a combination of the Schrödinger
and the Heisenberg picture. For the perturbation theory the interaction picture, that is also
called Dirac picture, is the most suitable. As explained in the following section, the Hamilto-
nian is split in two parts, an undisturbed system H0, that is time-independent and treated in
the Heisenberg picture, and the small time-dependent perturbation H ′(t ), which is consid-
ered in the Schroedinger picture.

The time evolution operator with respect to the undisturbed Hamiltonian of the system H0

is
U0(t , t0) = e−

i
ħ H0(t−t0)

and the wave function in the interaction picture is defined as

|ϕ(t )〉 =U0(t , t0)|ϕD(t )〉 (6.13)

where |ϕ(t )〉 represents the wave function with respect to the full Hamiltonian H(t ) while
|ϕ(t )〉 is the wave function caused by the perturbation H ′. By plugging Eq. (6.13) into the
Schrödinger equation,

d

dt
|ϕD〉 =− i

ħH ′
D(t )|ϕD(t )〉 (6.14)

with H ′
D(t ) =U †

0 (t , t0)H ′(t )U0(t , t0) is obtained [Muk95].

The density operator in Interaction picture reads

|ϕ(t )〉〈ϕ(t )|︸ ︷︷ ︸
ρ(t )

=U0(t , t0) · |ϕD(t )〉〈ϕD(t )|︸ ︷︷ ︸
ρD(t )

·U †
0 (t , t0).

Its time evolution is given again through the Liouville-Von Neumann equation

d

dt
ρD(t ) =− i

ħ
[
H ′

D(t ),ρD(t )
]

.

6.4 Perturbation expansion

In a naive approach, solving the Schrödinger equation (6.5) can be done by integrating and
plugging the result

|ϕ(t )〉 = |ϕ(t0)〉− i

ħ
∫ t

t0

H(τ)|ϕ(τ)〉dτ

into itself to obtain [Ham05]

|ϕ(t )〉 = |ϕ(t0)〉+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1

·H(τn)H(τn−1) . . . H(τ1)|ϕ(t0)〉.
(6.15)
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Expansion for the density matrix introduced in Sec. 6.1 yields analogous to Eq. (6.15) for the
Liouville-Von Neumann equation (6.6)

ρ(t ) =ρ(t0)+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1

· [H(τn),
[
H(τn−1), . . .

[
H(τ1),ρ(t0)

]
. . .

]]
.

=ρ(t0)+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1

·L(τn)L(τn−1)L(τ1)ρ(t0).

(6.16)

But Eqs. (6.15) and (6.16) do not converge sufficiently. Using perturbation theory can im-
prove the results. The non-perturbatively approach can be lead into a perturbative one by
using that the interaction with the electric field H ′ is much weaker than internal fields of the
molecule with

H = H0 +H ′(t ) = H0 +µ ·E (t ). (6.17)

For this purpose, it must be assumed that the stationary states of the molecule itself are
known [Muk95]. The operator H0 is the unperturbed Hamiltonian that is typically already
solved, the time dependent electric field is given by E (t ), and µ describes the dipole matrix
element via

µ=∑
ab
µab |a〉〈b|

with µab as the transition dipole between states a and b [KAK02, APV+09].

In Liouville space, similar to Eq. (6.17) the perturbation can be described via

L=L0 +L′(t )

with L0(t )O = [H0(t ),O], and L′(t )O = [
H ′(t ),O

]
.

For a time-dependent perturbation, it is suitable to consider the interaction picture as in-
troduced in Sec. 6.3. There, also Eq. (6.14) is given, that can be transformed analogously to
Eq. (6.15) to obtain

|ϕD(t )〉 = |ϕD(t0)〉+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1

·H ′
D(τn)H ′

D(τn−1) . . . H ′
D(τ1)|ϕD(t0)〉.

(6.18)

or for the density matrix analogously to Eq. (6.16)

ρD(t ) =ρD(t0)+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1

·L′
D(τn)L′

D(τn−1)L′
D(τ1)ρD(t0).

(6.19)

The index D still symbolizes the interaction picture.

As a last step to become prepared for nonlinear spectroscopy of Ch. 7, the quantum me-
chanical picture is changed by inserting Eq. (6.13). With |ϕ(0)(t )〉 = U0(t , t0)|t0〉 as the zero-
order wave function, Eq. (6.18) becomes to

|ϕ(t )〉 = |ϕ(0)(t )〉+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1

·U0(t , t0)H ′
D(τn)H ′

D(τn−1) . . . H ′
D(τ1)|ϕ(t0)〉.
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6.5 Coupled quantum systems

With H ′
D(t ) =U †

0 (t , t0)H ′(t )U0(t , t0) and Eqs. (6.10) and (6.11) it is

|ϕ(t )〉 =|ϕ(0)(t )〉+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1

·U0(t , tn)H ′(τn)U0(τn ,τn−1)H ′(τn−1) . . .U0(τ2,τ1)H ′(τ1)U0(τ1, t0)|ϕ(t0)〉.
(6.20)

The interpretation of this equation is discussed in Sec. 7.3.
For the density matrix, Eq. (6.19) becomes analogously to

ρ(t ) = ρ(0)(t )+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1

·U0(t , t0)L′
D(τn)L′

D(τn−1)L′
D(τ1)ρ(t0)U†

0 (t , t0)

(6.21)

where U describes the time evolution operator in Liouville space with U (t , t0) =
U′(t , t0)UD (t , t0) [Ham05].

Perturbation theory higher than the first order is typically very complex: Often, graphical
illustrations help setting formulas and finding solutions. For this reason, Sec. 7.3 introduces
a possibility to visualize equations.

6.5 Coupled quantum systems

Low-dimensional systems have received much attention for a long time. They are well under-
stood both experimentally and theoretically [LRNB03, DAFK06, DMR+10]. Coupled quantum
systems occur in different areas. Not only in electric devices but also in nature, many systems
as molecular aggregates (that are clusters of small molecules) can be seen due their dimen-
sions as quantum systems [GCF09, BSV+05, SCIF11].

6.5.1 Quantum dots

The simplest model for such systems are coupled quantum dots as they appear in semicon-
ductor physics [RAK+06, GLE+02, Bor02]. Quantum dots consist of a nanoscopic material
structure that confines the mobility of their carrier (electrons or holes) simultaneously in
all three spatial dimensions. Commonly, they are produced artificially with semiconductor
structures using techniques such as etching or grid metal gates [Ali96, LKR+93]. Often they
are formed like disks or small pyramids with a diameter of ten to a few hundred nanometers
and only a few nanometers thick. Consequently, their energy is no longer continuous, it is
quantized in discrete energy levels with energy spacings of a few micro or millielectron volt.

6.5.2 Single-excitons and two-excitons

One type of elementary excitations in quantum dots are excitons [Que92]. These electrically
neutral quasiparticles can be created by photons near an absorption edge and they exist in in-
sulators, semiconductors and in some liquids. They describe a bound state of an electron and
hole which are attracted to each other by the electrostatic Coulomb force. They can transport
energy without transporting electric charge [Lia70]. Excitons in quantum dots are investigated
in experiments [BHLK88] and in theory [HLK90] very intensively.

For non-linear response, also the biexcitonic contributions have to be considered. Biexci-
tons are created by two free single-excitons [LWS+03, CSB+02]. That can be done for example
by pump-probe experiments, two-photon absorption of light from the ground state to the
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6 Theoretical Foundation of Quantum Systems

Figure 6.1:
Expansion of delocalized states in localized exci-
ton and biexciton basis of three coupled two-level
quantum dots: Three uncoupled quantum dots are
shown in their local basis. Bringing the dots closer
together, they can couple due to Coulomb effects
(Förster interaction). Thus, they form new delocal-
ized states: For the excitation energies in this work,
one ground state |g 〉, three singe-exciton states |e〉
and three biexcitonic states | f 〉 with a transition en-
ergy ωeg and ω f e , respectively, are obtained. The
many-particle exciton state can be written as a su-
perposition of single particle states weighted with
factors ce

i that gives information about the probabil-
ity of presence of the electrons within the coupled
quantum dot system. Also the biexcitonic states can
be written as an expansion of a biexcitonic basis

with expansion coefficients c f
i j .

Delocalized states

Local states

QD1 QD2 QD3

biexciton state or by luminescence experiments from a biexciton state made up from two free
excitons in a dense exciton system [Vek94].

6.5.3 Coupling

Bringing the dots to close vicinity, they are still spatially localized but they can couple electro-
magnetically. The resonant energy transfer between excitons of neighboring quantum dots is
described by Förster coupling [För65, NLB+05]. Such an exciton transfer can be treated sim-
ilar for coupled quantum dots as well as between molecular systems and biosystems – espe-
cially for photosynthesis. Note, that coupled excitations are possible even if no wave function
overlap is assumed.

6.5.4 Delocalized states in exciton and biexciton basis

Excitations of one state results in a perturbation of another state by reason of intra- or inter-
molecular interactions between the states. The coupling of the quantum dots leads to gen-
erating new states. These new states cannot be connected to a certain quantum dot, they
are delocalized [IF10]. That means that the probability of presence is spread over the whole
quantum system. Fig. 6.1 illustrates the delocalization of the states for three coupled quan-
tum dots.

If the distance between the N quantum dots is small enough, they couple due to Coulomb
effects (Förster interaction) and build new delocalized states: a ground state |g 〉, N single-
exciton states |e〉 and N (N −1)/2 two-exciton states | f 〉. The new states can be expressed as
an expansion in exciton or biexciton basis, respectively, as displayed in Fig. 6.1 for N = 3:

|e〉 =∑
i

ce
i |i 〉 (6.22a)

| f 〉 = ∑
i , j 6=i

c f
i j |i j 〉. (6.22b)

72



6.5 Coupled quantum systems

Single-exciton
basis

Two-exciton
basis

Figure 6.2:
Single and two-exciton basis elements for a quantum system of three coupled quantum dots: Two
excitons creates a biexcitonic state.

The exciton basis elements are described by the state |i 〉 which stands for a local, uncoupled
quantum dot system where only quantum dot i is excited.

On the top of Fig. 6.1, the level scheme of three coupled two-level quantum dots is de-
picted. The basis elements for a system of three quantum dots are shown in Fig. 6.2 and
consist of the vectors |1〉, |2〉, and |3〉. The biexcitonic basis is denoted by |i j 〉. Here, the basis
elements describe a system of two excited quantum dots i and j . These elements are also
depicted in Fig. 6.2 for three quantum dots. The basis elements in this case are |12〉, |23〉,
and |13〉. For excitation energies chosen in this work, one ground state g , three single-exciton
states e1, e2, and e3 and three two-exciton states f1, f2, and f3 are obtained. This system of
three quantum dots serve as model to explain and demonstrate the ideas of localized spec-
troscopy in Ch. 8.

6.5.5 Full Hamiltonian of our model system

Three coupled self-organized semiconductor quantum dots serve as a model system for the
rest of this work. In Ch. 5 already typical dot sizes and distances are used. Further, it is as-
sumed that the distances are sufficiently large to have no electronic wave function overlap.
Further assumptions are that the dots have no spin-orbit splitting, they have big enough biex-
citonic shifts, they are negatively charged or they have spin-orbit coupling bigger than the
inter quantum dot couplings [JHW98, BLS+01].

The dipole coupling is assumed as about several microelectron volts with a Lorentzian zero
phonon line width of γ = 1µeV for low temperatures (e.g. T = 4K) [SDW+11, BLS+01]. It is
possible to neglect the influence of the phonon side bands because their amplitude in the
spectra is one to two orders smaller than the amplitude of the zero phonon line resonance at
low temperatures [SDW+11, BLS+01].

This section begins with introducing the full Hamiltonian of the model system of this work
in a local basis. In the second part of this section, the Hamiltonian is transformed into the
delocalized basis.

Local basis

The full Hamiltonian H = H0 + He-l + HC of the system treated in this work consists of three
parts: The free part, that corresponds to the energy of a freely moved electron, the field-matter
part, that describes the coupling to a classical electric field via a dipole operator, and the
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6 Theoretical Foundation of Quantum Systems

〈i |H0| j 〉 1 2 3
1 −2.2 −0.4 −0.6
2 −0.4 0.2 −0.3
3 −0.6 −0.3 2.5

〈i j |H0|kl〉 1,2 1,3 2,3
1,2 〈1|H0|1〉+〈2|H0|2〉−0.4 〈3|H0|2〉 〈3|H0|1〉
1,3 〈2|H0|3〉 〈1|H0|1〉+〈3|H0|3〉+0.2 〈2|H0|1〉
2,3 〈1|H0|3〉 〈1|H0|2〉 〈2|H0|2〉+〈3|H0|3〉+0.8

Table 6.1:
Hamiltonian in matrix form: The upper table gives energies in microelectron volts for the exciton
block, the lower table for biexciton states.

Coulomb part, that represents the Coulomb interaction. It contains the Förster interaction,
the ground state, monoexcitonic and biexcitonic shift. The free part reads

H0 =
∑

i
εi |i 〉〈i |+ε0|g 〉〈g |+ ∑

i , j 6=i
(εi +ε j )|i j 〉〈i j |. (6.23a)

For the energies ε are chosen: ε0 = 0, ε1 =−2.2, ε2 = 0.2, and ε3 = 2.5 (cf. Tab. 6.1).

The electron-light part is:

He-l =
n∑
i
µg i ·E (t )|g 〉〈i | +

n∑
i , j 6=i

µi j ·E (t )|i 〉〈i j |

+
n∑
i
µ∗

g i ·E∗(t )|i 〉〈g |+
n∑

i , j 6=i
µ∗

i j ·E∗(t )|i j 〉〈i |
(6.23b)

with E (t ) as the electric field, that is given for example in Eq. (7.11).

Finally, the Coulomb interaction is given by

HC = ∑
i> j

Vi j |i j 〉〈 j i |+ ∑
i , j 6=i

V F
i j |i 〉〈 j |+ ∑

k,i 6=k, j 6=k
V F

i j |ki 〉〈k j | (6.23c)

with the coupling parameters V F
12 = −0.4, V F

13 = −0.6, V F
23 = −0.3, V12 = −0.4, V13 = 0.2, and

V23 = 0.8. These parameters and the energies are given additionally in matrix form in Tab. 6.1.

Delocalization basis

Coulomb coupling between the quantum dots leads to the formation of delocalized states
given in Eq. (6.22):

|e〉 =∑
i

ce
i |i 〉 and | f 〉 = ∑

i , j 6=i
c f

i j |i j 〉.

The full delocalized wave function is normalized:∑
i

∣∣ce
i

∣∣2 = 1. (6.24)
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6.5 Coupled quantum systems

The Hamiltonian of Eq. (6.23) can be written in the new delocalized basis. The matrix en-
tries of the pure electronic part (H0 +HC) including the coupling between the nanostructure
can be calculated by diagonalizing [CKR09]. As a result one obtains in delocalized basis

H0 +HC = εg |g 〉〈g |+∑
e
εe |e〉〈e|+

∑
f
ε f | f 〉〈 f |

with εg , εe , and ε f as the eigenenergy for the ground state, the single-exciton state and the
double-exciton state, respectively.

Here, the rewriting of He-l is exemplarily shown. As starting point the light-matter part of
the Hamiltonian, Eq. (6.23b), reads

He-l =
∑

i
µg i ·E (t )|g 〉〈i |+ ∑

i , j 6=i
µi j ·E (t )|i 〉〈i j |+h.c.

From Eq. (6.22a) follows by multiplying with ce∗
k , summing up over e, using15

∑
i

∑
e

ce∗
k ce

i =∑
i
δi k = 1 (6.25)

and finally rename k by i the equality∑
e

ce∗
i |e〉 = |i 〉⇔∑

e
ce

i 〈e| = 〈i |. (6.26a)

Analogous, Eq. (6.22b) provides∑
f

c f ∗
i j | f 〉 = |i j 〉⇔∑

f
c f

i j 〈 f | = 〈i j |. (6.26b)

With these two Eqs. (6.26a) and (6.26b) for the field-matter Hamiltonian of Eq. (6.23b) a
new expression is obtained:

He-l =
∑
i e

ce
i µg i ·E (t )|g 〉〈e|+ ∑

i , j 6=i ,e, f
ce∗

i c f
i jµg j ·E (t )|e〉〈 f |+h.c.

With the expansion of the dipole moments

µg e =
∑

i
ce

i µg i (6.27a)

µe f =
∑

i , j 6=i
ce∗

i µg j c f
i j (6.27b)

one obtains a reformulated version of Eq. (6.23b) in delocalized basis

He-l =
∑

e
µg e ·E (t )|g 〉〈e|+∑

e f
µe f ·E (t )|e〉〈 f |+h.c.

15The symbol δi k means the Kronecker delta, that equals 1 if i = k and 0 if i 6= k
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7 Multidimensional Coherent Nonlinear
Spectroscopy

Spectroscopy as an optical technique is an invaluable tool to provide a microscopic under-
standing of nature. If incoming light perturbs the optical properties of a medium in a way
such that the subsequent light fields can see changes in the molecular structure of the sam-
ple, the processes are nonlinear [Wri11]. That this can happen, the light fields have to interact
with the molecular states over time periods that are shorter than dephasing or relaxation pe-
riods of the population, so that the effects of the first interaction still persist [BLW+05].

The most common and simplest approach is pump-probe spectroscopy. In this technique,
two optical pulses with variable time delay between them are used to investigate the micro-
scopic processes that happen during the light interaction. In optics, typically the first pulse
pumps a system in an excited state and the second pulse probes the progress of the interac-
tion a certain period of time after initiation. The probe pulse changes its response according
to the reaction of the system. Varying the time delay between pump and probe pulses and
observing the response gives new insights into the microscopic processes within the system.
Such one-dimensional nonlinear experiments gives information about how quantum states
evolve in time and supplies understanding of the evolution of coherences16 and populations
of the investigated systems.

For the model system treated in this work (see Sec. 6.5), coherent spectroscopy is used to
find new information about single and two-exciton states [LW08]. But since not only the en-
ergies of these states but also the couplings between them are of interest, a further dimension
comes into consideration: two-dimensional spectroscopy.

Multidimensional spectroscopy is a new field [BZ83, HAFJ98, Muk00]. It uses multiple ex-
citation pulses to excite multiple vibrational or electronic quantum states [Cho08, Jon03b,
MTH09, Cho09]. Recent advances in practice and theory of multidimensional coherent spec-
troscopy enable researchers to gain deeper insights into the mechanism of excited state pro-
cesses and dynamics [KMS09, YF99a]. Measuring the frequency dependent electric field out-
put as a function of the input laser frequencies, a multidimensional spectrum is obtained.
While the diagonal peaks are the frequencies of individual states, the off-diagonal cross-peaks
define which states are coupled [Wri11].

Multidimensional spectroscopy have been developed extensively by nuclear magnetic res-
onance experiments (often abbreviated with NMR) [EBW87]. Such methods are commonly
used for structure determination in complex molecules [GCF09]. It can resolve their struc-
ture with atomic resolution but its millisecond time scale is not fast enough to follow ultrafast
dynamics, that works on time-scales in a range of ten femtoseconds to picoseconds. Fem-
tosecond optical two-dimensional spectroscopy can be seen as the direct optical analog of
two-dimensional nuclear magnetic resonance [SM02, Jon03a, TKSW03, KTW99]. Feynman et
al. have shown that the transitions between two quantum states are equivalent to the spin ex-
citations in nuclear magnetic resonance experiments. The interest in developing the optical
analogous of nuclear magnetic resonance origins from the power of this technique to probe

16Coherences are quantum mechanical superposition states between two quantum states. They are time depen-
dent and oscillate at their difference frequency.
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7 Multidimensional Coherent Nonlinear Spectroscopy

complex systems with great selectivity. So it can provide advantages over existing techniques
for extracting spectral information.

While the nuclear magnetic resonance is based on the interaction of the magnetic field
component with the magnetic dipole moment of nuclear spins, molecular spectroscopy of
electronic states is based on the interaction of molecules with the electric field component
of electromagnetic radiation fields by the induced molecular electric dipole moments. De-
spite some similarities, the molecular spectroscopies differs significantly from the nuclear
magnetic resonance method because the nuclei in this technique are well protected by the
thermal environment while in molecular spectroscopy, the electrical quantum states strongly
interact with the environment leading to much broader transitions between the states.

Coherent multidimensional optical spectroscopy has great potential for revealing molecu-
lar structural details and dynamics in complex systems – such as multichromophore or other
complex aggregates or nanostructures like semiconductors [KMS09, AK04, IF12, SCDF12].

This chapter starts with an introduction to nonlinearity and its formal treatment. After-
wards, the perturbation expansion of Ch. 6 is continued by presenting the nonlinear response
function that describes the response of the system to the interaction with the incoming light,
connected with the observable in optics: the polarization. A further important section of this
chapter is the introduction of the double-sided Feynman diagrams that illustrate the pro-
cesses that happen in coherent multidimensional optical spectroscopies. The rotating wave
approximation applied for this system is also introduced.

Optical spectroscopy can be classified by a variety of criteria. Sec. 7.4 presents an overview
of a few nonlinear spectroscopy methods that can be grouped by the order of the response
with respect to the applied fields. Afterwards, this chapter shows some experimental details
and explains on which way the response of the system can be detected, including two meth-
ods: the phase matching and the phase cycling technique. Differences between homodyne
and heterodyne detection are also discussed.

Furthermore, a classification for third-order techniques is introduced. Finally, after dis-
cussing two-dimensional spectra, two important third-order coherent nonlinear optical spec-
troscopy methods are presented: the photon echo and the double quantum coherence spec-
troscopy.

7.1 Nonlinearity

A possibility for classification of optical measurements is the power-law dependence on their
external electrical radiation field. The relevant material quantity that couples with this field
is the polarization P that can be approximately written by a Taylor series (cf. Eq. (2.4a) of
Sec. 2.1.2)

P = P (1) +P (2) +P (3) + . . .︸ ︷︷ ︸
PNL

= ε0χ
(1) ·E (1) +ε0χ

(2) ·E (2) +ε0χ
(3) ·E (3) + . . . (7.1)

where P (n) is the component of the polarization to the nth order in the field, E (n) the electric
field and χ the optical susceptibility17 of order n (cf. Sec. 2.1). Just P (1) as the linear polar-
ization controls the linear optical response. Neglecting higher orders than the linear term is
sufficient for optical processes such as absorption or propagation for weak incoming fields
only. Mind, that Eq. (7.1) is just an approximation for the frequency domain: In time domain,
the polarization is a convolution of the susceptibility and the electric field as can be seen in
Eq. (7.3).

17Mind, that in fact the electric field is a vector and the nonlinear susceptibilities are tensors.
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7.2 Nonlinear response function

For incoming fields with stronger intensities, the higher orders cannot be neglected. Non-
linearity occurs if the effects of a perturbation are large and thus, the response to the per-
turbation does not follow the perturbation’s magnitude any longer. Then, the electric field
strength of light is greater or equal than the electric fields in the sample, so that the polar-
ization induced in matter by the light is distorted. That acquires new frequencies which cor-
respond to combinations of the sum and differences of frequencies of the exciting light and
modifies the amplitudes of the previous frequencies.

Expanding Eq.(7.1) for higher orders, the occurring terms are responsible for different non-
linear processes. Each term can be associated with different processes, such as frequency
doubling, photon echo, the optical Kerr effect or degenerate four-wave mixing, depending on
the experimental conditions.

Higher orders of the polarization successively carry more information about the micro-
scopic system. Only the nonlinear terms allow to reveal relaxation times or to eliminate some
broadening mechanisms. Some of the nonlinear spectroscopy techniques are presented in
the remainder of this chapter.

7.2 Nonlinear response function

The perturbation expansion of the density operator is given in Eq. (6.21):

ρ(t ) = ρ(0)(t )+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1

·U0(t , t0)L′
D(τn)L′

D(τn−1)L′
D(τ1)ρ(t0)U†

0 (t , t0).

It provides an order-by-order expansion in the field. So it is possible to rewrite it in

ρ(t ) = ρ(0)(t )+
∞∑

n=1
ρ(n)(t )

with

ρ(n)(t ) =
(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1E (τn)E (τn−1) . . .E (τ1)

·U0(t , t0)
[
µD(τn),

[
µD(τn−1), . . .

[
µD(τ1),ρ(t0)

]
. . .

]]
U†

0 (t , t0).

(7.2)

Here, Eq. (6.17) is used for H ′(t ) = µ · E (t ) and the dipole operator in the Dirac picture is
µD(t ) =U†

0 (t , t0)µU0(t , t0).
In optical experiments, where the system is driven optical via H ′(t ) =µ·E (t ), the observable

that is influenced by the light enters into the polarization. The induced polarization of order n
is given by the expectation value of the dipole operator that can be calculated via the trace
(see Eq. (6.4)) of its product with the density operator

P (n) = 〈µ〉 = tr
(
µρ(n)(t )

)
(7.3)

with a time-independent µS =µ in the Schrödinger picture.
Inserting Eq. (7.2) in Eq. (7.3), a cyclic permutation within the trace and discarding the

subscript D so that µD(t ) =µ(t ) =U†
0 (t , t0)µU0(t , t0) gives

P n(t ) =
(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1E (τn)E (τn−1) . . .E (τ1)

· tr
(
µ(t )

[
µ(τn),

[
µ(τn−1), . . .

[
µ(τ1),ρ(t0)

]
. . .

]])
.
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Figure 7.1:
Timeline to illustrate the replacement
of the time variables: The interaction
between matter and the radiation field
takes place at time-ordered points τ1 ≤
τ2 . . .τn . The time intervals between
these interactions are given by t1 to tn

[Muk95].

This polarization – the source of a new optical field – can be rewritten by replacing the
times τ1 to τn by time intervals t1 to tn via

0 = τ1

t1 = τ2 −τ1

t2 = τ3 −τ2

...

tn = t −τn

and is therefore

P n(t ) =
(
− i

ħ
)n ∫ ∞

0
dtn

∫ ∞

0
dtn−1 . . .

∫ ∞

0
dt1E (t − tn)E (t −τn − tn−1) . . .E (t − tn − tn−1 −·· ·− t1)

· tr
(
µ(tn + tn−1 +·· ·+ t1)

[
µ(tn−1 +·· ·+ t1), . . .

[
µ(0),ρ(t0)

]
. . .

])
.

Fig. 7.1 illustrates the replacement of the time variables.

Each order in this expansion represents a different class of optical measurement techniques
(cf. Sec. 7.4). While P (1) represents linear optics, the second-order polarization terms are re-
sponsible for nonlinear processes like frequency sum generation. The third-order polarization
terms P (3) is correlated with several techniques as four-wave mixing or pump-probe spectros-
copy [MHM+06, MM96].

As seen in Sec. 2.1.2 and 7.1, the polarization is linked with the electric field by the sus-
ceptibility as a response function of the material (cf. Eqs. (2.4) and (7.1)). For this nonlinear
excitation, the polarization can be written as [SM08]

P (n)(t ) =
∫ ∞

0
dtn

∫ ∞

0
dtn−1 . . .

∫ ∞

0
dt1

·E (t − tn)E (t − tn − tn−1) · · ·E (t − tn − tn−1 −·· ·− t1)R(n)(tn , tn−1, . . . , t1).
(7.4)

with the nonlinear response function R(n) of order n:

R(n)(tn , tn−1, . . . , t1) =(
− i

ħ
)n

tr
(
µ(tn + tn−1 +·· ·+ t1)

[
µ(tn−1 +·· ·+ t1), . . .

[
µ(0),ρ(t0)

]
. . .

])
.

(7.5)

The response function contains the complete microscopic information that is necessary for
the calculation of optical measurements.
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7.3 Double-sided Feynman diagrams

The perturbation theoretical expression of Eqs. (6.20) and (6.21) of Sec. 6.4 for the quantum
mechanical wave function

|ϕ(t )〉 = |ϕ(0)(t )〉+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1

·U0(t , tn)H ′(τn)U0(τn ,τn−1)H ′(τn−1) . . .U0(τ2,τ1)H ′(τ1)U0(τ1, t0)|ϕ(t0)〉.

or the density operator

ρ(t ) = ρ(0)(t )+
∞∑

n=1

(
− i

ħ
)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .
∫ τ2

t0

dτ1

·U0(t , t0)L′
D(τn)L′

D(τn−1)L′
D(τ1)ρ(t0)U†

0 (t , t0)

describe the time evolution under a perturbation: The factor U (τ1, t0) of Eq. (6.20) repre-
sents a system that propagates as given by the Hamiltonian H0 until time τ1 (represented by
U0(τ1, t0)), then, the perturbation H ′(τ1) is interacting with it. Then, the system again prop-
agates until time τ2. There, it again interacts with the perturbation Hamiltonian for time τ2.
This physical interpretation of the time evolution can be described in this way until time t . It
can be illustrated by doubled-sided Feynman diagrams [HZ11] as shown in this section.

Calculating the nonlinear polarization (Eq. (7.4)), especially the response function
(Eq. (7.5)) with its commutator[

µ(tn−1 +·· ·+ t1), . . .
[
µ(0),ρ(t0)

]
. . .

]
has to be evaluated. It has 2n terms. For the most important spectroscopic methods pre-
sented in this chapter, the two terms of the linear and the eight terms of the third-order re-
sponse will be shown here explicitly. Using the invariance of the trace on cyclic permutation
and that all operators are hermitian since they are operators of observables, one obtains:

tr
(
µ(t1)ρ(t0)µ(0)

)= tr
(
ρ(t0)µ(0)µ(t1)

)= tr
(
ρ†(t0)µ†(0)µ†(t1)

)
= tr

((
ρ(t0)µ(0)µ(t1)

)†
)
= tr

(
ρ(t0)µ(0)µ(t1)

)∗ .
(7.6)

With this, the linear response function reads

R(1)(t1) =− i

ħ tr
(
µ(t1)

[
µ(0),ρ(t0)

]) = − i

ħ
(
tr

(
µ(t1)µ(0)ρ(t0)

)− tr
(
µ(t1)ρ(t0)µ(0)

))
=

(7.6)
− i

ħ
(
tr

(
µ(t1)µ(0)ρ(t0)

)− tr
(
ρ(t0)µ(0)µ(t1)

)∗)
and the third-order response is [Ham05]

R(3)(t1, t2, t3) =
(
− i

ħ
)n

tr
(
µ(t3 + t2 + t1)

[
µ(t2 + t1),

[
µ(t1),

[
µ(0),ρ(t0)

]]])= (
− i

ħ
)n

·
(

tr
(
µ(t3 + t2 + t1)µ(t2 + t1)µ(t1)µ(0)ρ(t0)

)− tr
(
µ(t3 + t2 + t1)µ(t2 + t1)µ(t1)ρ(t0)µ(0)

)
− tr

(
µ(t3 + t2 + t1)µ(t2 + t1)µ(0)ρ(t0)µ(t1)

)+ tr
(
µ(t3 + t2 + t1)µ(t2 + t1)ρ(t0)µ(0)µ(t1)

)
− tr

(
µ(t3 + t2 + t1)µ(t1)µ(0)ρ(t0)µ(t2 + t1)

)+ tr
(
µ(t3 + t2 + t1)µ(t1)ρ(t0)µ(0)µ(t2 + t1)

)
+ tr

(
µ(t3 + t2 + t1)µ(0)ρ(t0)µ(t1)µ(t2 + t1)

)− tr
(
µ(t3 + t2 + t1)ρ(t0)µ(0)µ(t1)µ(t2 + t1)

))
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(a) (b)

Figure 7.2:
Simplest double-sided Feynman diagrams: In part (a) only a pathway for U (t1, t2) is shown – with-
out any interaction. Part (b) shows the Feynman diagrams belonging to the linear response function.
The right diagram, that corresponds to the trace of µ(t1)µ(0)ρt0, is the conjugate complex of the left
(− tr

(
ρt0µ(0)µ(t1)

)
). This is why it is not shown explicitly in general.

=
(7.6)

(
− i

ħ
)n (

tr
(
µ(t3 + t2 + t1)µ(0)ρ(t0)µ(t1)µ(t2 + t1)

)+c.c. (7.7a)

+ tr
(
µ(t3 + t2 + t1)µ(t1)ρ(t0)µ(0)µ(t2 + t1)

)+c.c. (7.7b)

+ tr
(
µ(t3 + t2 + t1)µ(t2 + t1)ρ(t0)µ(0)µ(t1)

)+c.c. (7.7c)

+ tr
(
µ(t3 + t2 + t1)µ(t2 + t1)µ(t1)µ(0)ρ(t0)

)+c.c.
)
. (7.7d)

Four of the eight terms are the complex conjugate of the other four.

Depending on the kind of spectroscopic method, only a selection of these terms of the
commutators contribute to the signal. This section will show how to select these Liouville
pathways18. It is possible to translate a double-sided Feynman diagram into an equation that
describes the effect of a disturbance and vice versa. The translation is given in a short way
also in this section.

The double-sided Liouville diagrams facilitate the handling of the polarization of Eq. (7.4).
The interactions of the terms from the commutator acts on different sides of the density ma-
trix. For this purpose, each Feynman diagram consists of two vertical lines that represent the
time evolution (bottom-up): the left one for the ket and the right one for the bra of the den-
sity matrix. In Fig. 7.2a a simple pathway for U (t1, t2) is given. In all other diagrams shown in
this work additional interactions are depicted.

The interactions with the light field are indicated by arrows on the ket or the bra of the den-
sity matrix. While the interactions at times that are evaluated inside the commutator generate
a non-equilibrium density matrix ρ(n) and represent the perturbation of the density matrix,
the last interaction at time tn + tn−1 + ·· · + t1 emits a light field (it originates from Eq. (7.3):
P (n) = tr

(
µρ(n)(t )

)
).

From Eq. (7.6) follows that the complex conjugate of one diagram is just the vertically mir-
rored one. Fig. 7.2b shows the two Feynman diagrams for the linear response function. For
each interaction one arrow is depicted. There exist as much interactions as the order of the
polarization in one diagram. One additional arrow (the last one) represents emission of light
from the non-equilibrium density matrix by the dipole operator outside of the commutator.
It is a convention that this last arrow for the observable on the top of the diagram is on the
left side.

The negative term of each commutation describes an interaction from the right. This is the
reason why the overall sign of a diagram can be determined by the number of interactions
from the right to the density matrix. For n interactions, the sign is given by (−1)n .

18The name ”pathways“ is because they represent a path integral in Liouville space.
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1. 2. 3. 4.

Figure 7.3:
Double-sided Feynman diagrams for third-order experiments: The diagrams illustrate the time evo-
lution of the interaction for different pathways of Eq. (7.7) according to rules that are described in
Sec. 7.3. Each term can be connected to a certain diagram. The first pathway corresponds with
part (7.7a), the second with part (7.7b), pathway 3 with (7.7c), and the last term ((7.7d)) can be il-
lustrated with pathway four. The conjugate complex of each term is presented by a Feynman diagram
that is mirrored at the vertical without the top arrow.

The four corresponding double-sided Feynman diagrams of to Eq. (7.7) are illustrated in
Fig. 7.3. It can be seen that all factors on the left of Eq. (7.7) interact on the left vertical line
while all factors on the right interact on the right time line. The direction of the arrows in this
example necessarily results from the fact that arrows pointing to the time lines mean absorp-
tion, arrows pointing away from the time lines mean emission of light (as a consequence of
the rotating wave approximation, see Sec. 7.3.1) [Ham05]. Since the electric field can be sep-
arated into positive and negative frequencies E (t ) = E0(t )

(
e−i(ωt−k ·r )+ei(ωt−k ·r )

)
, this is also

illustrated in the diagrams by the rule that arrows to the right represents an electric field with
the factor e−i(ωt−k ·r ) and arrows to the left contains the factor ei(ωt−k ·r ). The last interaction
has always to end in a population state [Muk95] (cf. Figs. 7.8, 7.9, and 7.10).

Besides the double-sided Feynman diagram, there exist also other diagrams for illustrating
optical transitions in multi-level systems. The wave mixing energy level, that is also abbrevi-
ated WMEL, serves as an example [Lee85].

7.3.1 Rotating wave approximation

Calculating the third-order polarization, the four final pathways for a response function of
Eq. (7.7) have to be multiplied with six terms of the electric field:

P (3)(t ) =
∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1E (t − t3)E (t − t3 − t2)E (t − t3 − t2 − t1)R(n)(t3, t2, t1) (7.8)

with

E (t ) = E1(t )eiωt +E1
∗(t )e−iωt +E2(t )eiωt +E2

∗(t )e−iωt +E3(t )eiωt +E3
∗(t )e−iωt

or for real amplitudes in the simpler form

E (t ) = E1(t )
(
eiωt +e−iωt )+E2(t )

(
eiωt +e−iωt )+E3(t )

(
eiωt +e−iωt ) .

Since the three electric fields E1(t ), E2(t ), and E3(t ) of the three time ordered pulses are
shorter than the time separation between them, it is possible to connect each pulse with just
one interaction µ. Thus, each E (t ) in Eq. (7.8) has only two terms instead of six: e−iωt and
eiωt .
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Figure 7.4:
Rotating wave ap-
proximation: Due
to the neglection of
fast rotations the
number of diagrams
are reduced (energy
conservation). The
interaction becomes
directional and –
depending on the
side – represents
an absorption or an
emission.

Emission

Absorption Emission

Absorption

For resonant excitations, often the rotating wave approximation (also known by the
acronym RWA) is applied. This approximation reduces the number of term from two to one –
only e−iωt or eiωt contributes to the electric field.

In a first step, the field is separated in the slowly varying envelope Ê or Ê∗ and a fast oscil-
lating factor e±ωLt with the laser frequency ωL:

E (t ) = Ê (t )eiωLt +Ê∗(t )e−iωLt . (7.9)

With this, for example the exciton part of the field-matter Hamiltonian of Sec. 6.5.5, that de-
scribes the interaction, consists of four terms:

He-l(t ) = ∑
e
µg e · Ê (t )e(iωL−iωg e )t |g 〉〈e|+∑

e
µg e · Ê∗(t )e(−iωL−iωg e )t |g 〉〈e|

+∑
e
µeg · Ê∗(t )e(−iωL+iωg e )t |e〉〈g |+∑

e
µeg · Ê (t )e(iωL+iωg e )t |e〉〈g |

with ωi j = ωi −ω j . The last row is the complex conjugate of the first row. The variables g ,
e, and f still represent the ground state, the excitons and the two-exciton states, respectively,
of a three-model system introduced in Sec. 6.5. In each term, the first exponential function
comes from the rotating part of the electric field and the last one from the rotating part of the
states.

Since the excitation is resonant, it is ωL ≈ωg e . Applying the approximation means omitting
the terms where both frequencies have the same sign since these terms have an exponen-
tial function that is fast oscillating because of the high value of the imaginary exponent while
terms with opposite signs have exponential functions that vary slowly in time. When integrat-
ing these terms, the terms with a high oscillation can be neglected:

He-l(t ) −→
RWA

∑
e
µg e · Ê (t )e(iωL−iωg e )t |g 〉〈e|+∑

e
µeg · Ê∗(t )e(−iωL+iωg e )t |e〉〈g |.

Consequently, each interaction between the system and the electric field happens with eiωLt

or with e−iωLt . Thus it is possible to give the interactions a direction.

With the rotating wave approximation, the conservation of energy is ensured. One can
connect each interaction to an absorption or an emission. Fig. 7.3.1 shows all possibilities for
a two-level system.

Mind, that this approximation disregard strong off-resonant processes such as second-har-
monic generation or Raman spectroscopy or two photon absorption.
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(a) (b)

Figure 7.5:
Sketch of typical optical measure-
ments [Muk95]: In part (a) is shown
that in absorption spectroscopy an
incident light beam is damped by
the medium. Part (b) illustrates that
in a four-wave mixing experiment
three incident beams generate a co-
herent signal in a fourth direction.

7.4 Multiwave mixing

There exist several different spectroscopy experiments. In Fig. 7.5 a schematic representation
of some typical optical measurements is given. While absorption spectroscopy is a typical and
simple optical measurement method (Fig. 7.5a), the methods treated in this work are related
to multiwave mixing experiments (e.g. four-wave mixing in Fig. 7.5b) [SM08]. That means
that the interactions of n laser fields are involved with the material system.

Three wave mixing processes occur for n = 2. They are related to P (2), like second-harmonic
generation or sum/difference frequency generation. In media with inversion symmetry, such
as isotropic samples, only terms of odd order contribute to the polarization in Eq. (7.1) since
the polarization does not reverse for terms of even order [Wri11].

Thus, the third-order processes are the most interesting low order nonlinearities and play
an important role for nonlinear phenomena studies in materials with inversion symmetry
(isotropic material like gallium arsenide). The nonlinear processes that result from the χ(3)E (3)

term (that means n = 3) involves three exciting fields and one output field. They are called
four-wave mixing because three waves mix to create a fourth wave [BL07]. There are many
spectroscopic methods related to P (3), such as third-harmonic generation, pump-probe spec-
troscopy, photon echo or the double quantum coherence spectroscopy.

A typical current third-order nonlinear optical experiment uses a pulse sequence to excite
optical excitations in a well-controlled way [SM01, CSFM92, MPF06]: A sequence of three
time-ordered pulses created by pulse shaper travels along different directions with wave vec-
tors k1, k2 and k3, that have variable time delays t1, t2, and t3. A sketch of a setup is shown
in Fig. 7.5b and the pulse sequence is illustrated in Fig. 7.6 [KMS09].

The first pulse takes the system in a particular coherence, that oscillates during the pe-
riod t1 until the oscillation is interrupted by the second and the third pulse. A new coherence
is created [TKSW03]. After a delay of t3, the complete polarization P is detected, that can be
plotted after a Fourier transform with respect to two time delays as a two-dimensional spec-
trum (see Sec. 7.6.1).

There exist also higher order terms and higher wave mixing techniques, that are more im-
portant the higher the light intensity is.

7.5 Detection

Quantum pathways allow a detailed analysis of quantum dynamics in the material. In ex-
periments, the pathways superpose and interfere with each other, so not many information
can be gained. But there exist some techniques to separate contributions of the signal that
belongs just to a few paths.

Directional selectivity and phase selectivity will be presented in this section. Spatial se-
lectivity uses detectors in different directions of the experimental setup [ZCM99, TKSW03,
ML86]. In contrast, the phase cycling technique [ME00, KTW99, KT01] selects the polariza-
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1 2 3 Signal

Phase

Pulse

Time

Figure 7.6:
Pulse sequence of a third-order coherent nonlinear experiment: The pulse direction is collinear and
all pulses have well-defined phases.

tion signal by its phase dependence coadding experimental results that are obtained with
different interpulse phases. Afterwards, the desired nonlinear polarization is selected.

Finally, it will be discussed why the heterodyne detection is chosen for our intention.

7.5.1 Phase matching

Adding wave vectors ki (i = 1, . . . ,n) to the exponential function of the electric field, so that
the field is

E (t ) =
n∑
i

Ei (t )ei(ωi t−ki ·r )+
n∑
i

E∗
i (t )e−i(ωi t−ki ·r )

the product E (t − tn)E (t − tn − tn−1) · · ·E (t − tn − tn−1 − ·· · − t1) generates a signal S with the
wave vector [Muk95, ZCM99]

kS =±k1 ±k2 ±k3 . . .±kn . (7.10)

This signal is, for example, the emitted light that is illustrated by the last interaction in the
double-sided Feynman diagrams. It has a wave vector and a frequency which is the sum of
the input wave vectors and frequencies, respectively – considering the appropriate signs (cf.
Fig. 7.5b).

At each position r within the nonlinear medium, the oscillating n-th-order polarization ra-
diates with angular frequency ωn and has the corresponding wave vector kS. Due to the fact,
that constructive interference will occur only if Eq. (7.10) is fulfilled, only at these positions r
there is a high intensity in the ωn field. Eq. (7.10) is the phase matching condition. Since the
signal is proportional to the exponential function, its argument – the phase – is connected
to the contributions of the corresponding pathways. The simultaneous run in an experiment
with different phases leads to the emission of the signal in different directions depending on
the contributing quantum paths.

Which linear combination of ki is chosen, depends on the certain experiment: Exam-
ples for second-order processes are the second-harmonic generation with kS = 2k1 or the
sum/difference frequency generation with kd = k1 ±k2. The phase matching conditions for
three-order processes will be discussed in the next sections. The signal of the photon echo,
as an example, is found by measuring just one unique direction: ks =−k1 +k2 +k3.

7.5.2 Phase cycling

Phase matching offers the possibility of spatial separation of the desired signal from the un-
desired one. But this advantage must be paid with a complex experimental setup since many
absorbers with a spatial distribution much higher than 1/∆k are needed, with ∆k as the dif-
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ference between the wave vectors of the electric field and the corresponding polarization
[TKSW03].

This is why for the most of the presented simulations in this work, the signal cannot be
measured in one specific direction ks since only one single nanostructure and not an en-
semble of the same nanostructure is regarded. Here, a pulse shaper creates also a sequence
of three time-ordered pulses that have also variable time delays t1, t2, and t3 but they are
collinear. In Fig. 7.6 the sequence is illustrated.

In contrast to phase matching techniques, the phase cycling method measures different
phases to select pathways instead of detecting at different directions. This leads to the sepa-
ration of Liouville pathways.

The electric field envelopes are composed of the field envelopes E1, E2, E3 of the three
incoming pulses (with assumption of no overlap in time, see Sec. 7.3.1):

E (r , t ) = E1(r , t − t3 − t2 − t1)eiω1(t−t3−t2−t1)+iϕ1 + c.c.

+E2(r , t − t3 − t2)eiω2(t−t3−t2)+iϕ2 + c.c.

+E3(r , t − t3)eiω3(t−t3)+iϕ3 + c.c.

(7.11)

with ω1 =ω2 =ω3 =ωL the laser frequency.
A general adaption of Eq. (7.10) for a four-wave mixing experiment is written as

ϕS = lϕ1 +mϕ2 +nϕ3

with integers l , n, and m that are chosen according to the coherent third-order experiment.
The detected total polarization can be written as [ME00, KTW99]

P (t ,ϕ1,ϕ2,ϕ3) =P(t ,ϕ1,ϕ2,ϕ3)+P∗(t ,ϕ1,ϕ2,ϕ3) = 2Re
(
P(t ,ϕ1,ϕ2,ϕ3)

)
with

P(t ,ϕ1,ϕ2,ϕ3) = ∑
l ,m,n

Pl ,m,n(t )ei(lϕ1+mϕ2+nϕ3) .

The sum over the integers l , m, and n gives all possible phase combinations. For the double
quantum coherence, for example, the only relevant combination is l = 1, m = 1, n =−1.

In general, the sum is restricted to a finite number of terms. Ref. [ME00] gives an example
for reducing the terms within three steps. First, the symmetry properties of the given system
can reduce the number of possible combinations of l , m, and n. Second, when using weak
field strengths, only a small sum of the absolute values of the coefficients |l | + |m| + |n| are
sufficient. And third, since only resonant transitions between the electric states play a role,
the result of l +m +n can be restricted. Let q be the number of all relevant combinations in
the following.

For extracting just one certain polarization Pl ,m,n(t ) from the total polarization, the experi-
ment is repeated sufficiently often (q times [KT01, KTW99]) with varying phase combinations.
The equations for each phase combination φi = (ϕ1,ϕ2,ϕ3) and each combination of phase
prefactors ri = (l ,m,n) for i = 1, . . . , q can be arranged in matrix form [KT01, ME00]:

eiφ1·r1 eiφ1·r2 · · · eiφ1·rq

eiφ2·r1 eiφ2·r2 · · · eiφ2·rq

...
eiφq ·r1 eiφq ·r2 · · · eiφq ·rq




Pr1 (t )
Pr2 (t )

...
Prq (t )

=


P(t ,φ1)
P(t ,φ2)

...
P(t ,φq ).


The exponent carries the scalar product φi · ri = lϕ1 +mϕ2 +nϕ3.

87



7 Multidimensional Coherent Nonlinear Spectroscopy

Figure 7.7:
Heterodyne detection: This fig-
ure illustrates a typical coher-
ent third-order nonlinear experi-
ment. Three incoming pulses in
three different directions – sep-
arated by variable time delays –
hit a sample and create a signal
that is measured at the same time
and in the same direction as a
fourth signal, the local oscillator.
With its help a phase sensitive
detection becomes possible (see
Sec. 7.5.3).

Sample Detector

For the q unknown terms Pri (t ) = Pl ,m,n(t ) at least q different combinations of phases ri

are needed to make the matrix of the exponential functions invertible – that means that the
determinant is non-zero. Consequently, it is possible by inverting the matrix to extract a
specific polarization Pl ,m,n(t ) that belongs to the corresponding phase combination that de-
scribes the selected pathways of the nonlinear response function.

Typical examples for experiments using the phase cycling technique are the photon-echo
(ϕs =−ϕ1 +ϕ2 +ϕ3), the anti-photon-echo (ϕs =ϕ1 −ϕ2 +ϕ3), or the double quantum coher-
ence spectroscopy (ϕs =ϕ1 +ϕ2 −ϕ3) [APV+09].

7.5.3 Homodyne and heterodyne detection

There exist different detection schemes for the signal. Most commonly, homodyne and het-
erodyne detection are used.

The former measures the signal by placing the detector in phase matching direction. The
measured field intensity I (t ) is for homodyne detection

Ihom(t ) ∝|ES(t )|2 . (7.12)

For analyzing the measured signals in this work, the interest lies not only in the intensity but
also in the real and the imaginary part of the signal field. For detecting also the phase of the
signal field, the three incoming pulses are mixed with a fourth one, the local oscillator with a
strong field ELO [Eic86]. In Fig. 7.7 the experimental setup is illustrated.

In contrast to Eq. (7.12), the measured intensity for the hetorodyne detection is then
[Muk95, BLMH99]

Ihet(t ) ∝|ES(t )+ELO(t )|2 = |ES(t )|2 +2Re
(
ES(t )ELO

∗(t )
)+|ELO(t )|2 .

The first term is equivalent to the intensity of the signal that is very small compared to the
oscillator amplitude (ES ¿ ELO) and can consequently be neglected. The second term can
be measured because its order is linear and not quadratic. Since the last term is equivalent
to the known intensity of the local oscillator, it can be subtracted. Thus, the measurable in-
tensity is just proportional to the term 2Re(ES(t )ELO

∗(t )). Repeating the measurement with
varying phase of the local oscillator field reveals the electric field of the signal ES inclusive
the phase [APV+09]. Thus, this technique is called a phase-sensitive detection. The spec-
tral resolution depends on the precision of the control of the time delays and on the phase
stability.
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7.6 Third-order techniques

Ideal time-domain resonant four-wave mixing methods allow a classification by the wave vec-
tor of the signal [CSFM92]. ”Ideal“ means that all three pulses are well-separated.

As seen in Sec. 7.5.1, the possible four-wave mixing signals of the electric field given in
Eq. (7.11) show up in all of the eight directions kS =±k1±k2±k3 of Eq. (7.10) where just some
of them are dominant [Muk95]:

kI =−k1 +k2 +k3,

kII =+k1 −k2 +k3, and

kIII =+k1 +k2 −k3.

A negative k direction is obtained by a complex conjugation (P (3)(−k , t ) = (
P (3)(k , t )

)∗
)

[Muk95]. In all following chapters, the underlying structure is a three-band system as intro-
duced in Sec. 6.5.

The complete polarization for all directions of kS is given by [APV+09]

P (3)(t ,r ) =∑
kS

PkS (t )eikS·r

Combining the third-order polarization of Eq. (7.8) with the electric field of Eq. (7.11) yield for
kS = kI, kII, and kIII

PkI (t ) =
(

i

ħ
)3

e−i(−ω1+ω2+ω3)(t−τ3) e−i(ω2−ω1)(τ3−τ2) eiω1(τ2−τ1)

·
∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1R(3)

kI
ei(−ω1+ω2+ω3)t3 ei(ω2−ω1)t2 e−iω1t1

·E3(t − t3 −τ3)E2(t − t3 − t2 −τ2)E1
∗(t − t3 − t2 − t1 −τ1),

(7.13a)

PkII (t ) =
(

i

ħ
)3

e−i(ω1−ω2+ω3)(t−τ3) ei(ω2−ω1)(τ3−τ2) e−iω1(τ2−τ1)

·
∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1R(3)

kII
ei(ω1−ω2+ω3)t3 e−i(ω2−ω1)t2 eiω1t1

·E3(t − t3 −τ3)E2
∗(t − t3 − t2 −τ2)E1(t − t3 − t2 − t1 −τ1),

(7.13b)

and

PkIII (t ) =
(

i

ħ
)3

e−i(ω1+ω2−ω3)(t−τ3) e−i(ω2+ω1)(τ3−τ2) e−iω1(τ2−τ1)

·
∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1R(3)

kIII
ei(ω1+ω2−ω3)t3 ei(ω2+ω1)t2 eiω1t1

·E3
∗(t − t3 −τ3)E2(t − t3 − t2 −τ2)E1(t − t3 − t2 − t1 −τ1).

(7.13c)

In Fig. 7.3 the corresponding double-sided Feynman diagrams to kI (1.), −kI (2.), kII (3.), and
−kII (4.) are illustrated. Additionally, in Figs. 7.8, 7.9, and 7.10 the double-sided Feynman
diagrams for the kI, kII, and kIII signal are given, respectively.

In echo experiments, signals with a wave vector kI and kII are considered. This is discussed
in more detail in Sec. 7.6.2. The double quantum coherence technique, which is connected
to wave vectors in kIII direction is shown in Sec. 7.6.3. The kVI signal, which is responsible for
third-harmonic generation, is not considered in this work.
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7.6.1 Two-dimensional spectra

The way of calculating a two-dimensional signal for coherent optical spectroscopy method
depends on the detection mode. In Sec. 7.5 two detection modes are presented. As explained
in that section, here, the heterodyne detected signal is calculated.

The heterodyne third-order signal is calculated via

S(3)
kS

(t3, t2, t1) =
∫ ∞

−∞
dtPkS (t )E∗

LO(t −τS)eiωS(t−τS) (7.14)

where E∗
LO(t −τS) is the fourth field, the local oscillator, that is centered at time τS and that is

detected at the same time and in the same direction as the polarization PkS .
For calculating the polarization induced by a resonant excitation, the response functions

introduced in Sec. 7.2 is used. For this purpose, the response functions of the corresponding
process (Eqs. (7.17), (7.18), or (7.6.3)) have to be inserted into Eq. (7.13). Mind, that temporally
well-separated pulses are assumed [MOY07].

The signal S(3)(t1, t2, t3) is a three-dimensional oscillating function. Due to its complexity, it
is not easy to visualize. This is why multidimensional signals are commonly displayed in the
frequency domain. Therefore, three Fourier transforms can be executed [SM08]:

S(3)
kS

(Ω1,Ω2,Ω3) =
∫ ∞

0
dt1

∫ ∞

0
dt2

∫ ∞

0
dt3 eiΩ1t1+iΩ2t2+iΩ3t3 S(3)

kS
(t1, t2, t3). (7.15)

Commonly, just two of the three arguments of the signal are transformed. For the two-
dimensional plots in the following, the Fourier transform is with respect to time interval t1

and time interval t2 at a fixed time T3 to obtain a signal S(3)
kS

(Ω1,Ω2,T3) that can be plotted
in two dimensions: The first axis shows the frequency Ω1 and the other axis represents the
frequency Ω2. In Fig. 8.1 a typical 2d spectrum is shown.

Two-dimensional spectra provide significant insights into the dynamics and interactions
of complex molecular systems or semiconductors [LZBC06, GLE+02]. The spectra can re-
veal the homogeneous linewidth of a signal and its different dynamic contributions [GCF09,
SCCG+09]. Another example is that it is possible to characterize and identify coherent exci-
tation energy transfer dynamics in molecular aggregates such as photosynthetic systems and
conjugated polymers [ZMCM97].

Cross-peaks support different kinds of information. They illustrate – for example in pump-
probe experiments – that a system has a response at other frequencies than it is excited and
they reveal correlations of states and sometimes they help to identify states in congested spec-
tra. It is even possible to track excitation energy flow [GCF09]. Often, the sign and the ampli-
tude of the cross-peaks can give information about intermolecular electronic coupling.

In the next subsections, the spectra of different two-dimensional coherent experiments are
explained. The spectra for the double quantum coherence technique are discussed in detail
in the following chapter.

7.6.2 Photon echo and inverse photon echo

The first class of third-order experiments consists of photon echo techniques [ELG09, YF99b].
Photon echo was one of the first examples of an optical analogue of the nuclear magnetic res-
onance. Experiments that consider wave vectors in kI =−k1 +k2 +k3 direction [TKSW03] are
called two-dimensional photon echo spectroscopy [MCM97]. The contributing terms are (7.7b)
and (7.7c). The experiments which consider wave vectors in kII = k1 −k2 +k3 direction are
inverse photon echo spectroscopy [YM08a]. Here, the other two terms, (7.7a) and (7.7d) are
contributing.

90



7.6 Third-order techniques

ESAGSBESE

Figure 7.8:
Double-sided Feynman diagrams for photon echo spectroscopy generated in kI direction in the co-
herent limit: The three possible pathways are named ESE (excited state emission), GSB (ground state
bleaching), and ESA (excited state absorption). The pulses are denoted with phases ϕ instead of direc-
tions k since the phase cycling technique is used to extract selected pathways (see Sec. 7.5.2).

Fig. 7.8 shows the double-sided Feynman diagrams for the kI signal. Between the first inter-
actions at time interval t1, the aggregate density matrix is in an optical coherence with a char-
acteristic frequency ωg e . This frequency is given by the energy difference between states e
and g . Afterwards, the density matrix is in the ground state or in the single excited state man-
ifold with the frequency ωe ′e [APV+09]. Finally, at t3, it oscillates with ωe ′g or ω f e ′ .

The various contributions to the signal are denoted by ESE, GSB, and ESA. The nomencla-
ture is chosen according to the physical processes during the interactions. The left diagram in
Fig. 7.8 shows that the system is excited by the first and second pulse – the pump pulses – and
stimulated back by the third pulse (light emission) – the probe pulse. It represents stimulated
emission and is thus called excited-state stimulated emission (ESE). The pathway called GSB
describes a ground state bleaching: the density matrix returns to the ground-state at t2 so
that the following interaction reduces the population of this state. Instead of an emission, the
second interaction in the last diagram is followed from an absorption of the next interaction.
The process is called excited state absorption (ESA).

Often, k2 = k3 is chosen, so that kI =−k1 +2k2. This two-pulse photon echo spectroscopy
is a special case of the stimulated three-pulse version.

The name of this experiment – photon echo – is given because of the analogy to the spin
echo that appears in magnetic resonance. There, the spin vector flips by the first pulse. Each
individual spin oscillates with a slightly different frequency. Thus, the signal is inhomoge-
neously broadened in the frequency domain. All spin vectors will spread out after some time
and consequently, the macroscopic polarization disappears. The second pulse then flips all
vectors to the other side of the Bloch sphere. Therefore, all spin vectors recombine – they
rephase. So, after the same time as separation between both pulses, the vectors are perfectly
recombined and send an echo signal. In the photon echo process, the first pulse excites the
system in a coherence that is oscillating in eiωt direction. The third pulse flips this direction
into a rotation in e−iωt direction. Hence, analogously to the spin vectors, a photon echo signal
will occur.

Signal

For calculating the response function R(3)
kI

, the time evolution operator U (t , t0) of Ch. 6 has

to be considered. The operator of Eq. (6.12) U (t , t0) = e−iH(t−t0)/ħ is replaced by a Green’s
function that depends only on the time interval t and uses the Heaviside step function to
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ESAGSBESE

Figure 7.9:
Double-sided Feynman diagrams for the inverse photon echo spectroscopy generated in kII direction
in the coherent limit: The three possible pathways are named in the same way as Fig. 7.8. Also here,
the pulses are denoted with phases ϕ instead of directions k since the phase cycling technique is used
to extract selected pathways (see Sec. 7.5.2).

ensure causality – what means that the response can only depend on the fields at earlier times
[HM08, MHM08]:

Gi j (t ) = e−iωi j t−γi j t Θ(t )

where ωi j describes the interband frequency
(
εi −ε j

)
/ħ and γi j is a phenomenological de-

phasing rate for the i j coherence without relaxation. The Fourier transform of the Green’s
function reads

Gi j (Ω) =
∫ ∞

0
dt eiΩt e−iωi j t−γi j t . (7.16)

After the first interaction, the left diagram of Fig. 7.8 describes a density matrix in the state
ρg e so that its evolution gives the factor e−iωg e t1 while the second interaction gives an e−iωe′e t2

and the last one a factor e−iωe′g t3 . With the short form ξi j = ωi j − iγi j the three response
functions of Fig. 7.10 read

RESE
kI

(t3, t2, t1) =
(

i

ħ
)3

Θ(t1)Θ(t2)Θ(t3)
∑
e,e ′
µg e ′µegµe ′gµg e e−iξg e t1−iξe′e t2−iξe′g t3

RGSB
kI

(t3, t2, t1) =
(

i

ħ
)3

Θ(t1)Θ(t2)Θ(t3)
∑
e,e ′
µg e ′µe ′gµegµg e e−iξg e t1−ηt2−iξe′g t3

RESA
kI

(t3, t2, t1) =
(

i

ħ
)3

Θ(t1)Θ(t2)Θ(t3)
∑
e,e ′
µe f µ f e ′µg e ′µg e e−iξg e t1−iξe′e t2−iξ f e t3 .

(7.17)

The corresponding response functions to Fig. 7.9 read

RESE
kII

(t3, t2, t1) =
(

i

ħ
)3

Θ(t1)Θ(t2)Θ(t3)
∑
e,e ′
µg eµe ′gµg e ′µeg e−iξeg t1−iξee′ t2−iξeg t3

RGSB
kII

(t3, t2, t1) =
(

i

ħ
)3

Θ(t1)Θ(t2)Θ(t3)
∑
e,e ′
µg e ′µe ′gµg eµeg e−iξeg t1−ηt2−iξe′g t3

RESA
kII

(t3, t2, t1) =
(

i

ħ
)3

Θ(t1)Θ(t2)Θ(t3)
∑
e,e ′
µe ′ f µ f eµg e ′µeg e−iξeg t1−iξee′ t2−iξ f e′ t3 .

(7.18)

For the ground state energy the variable η is introduced that converges to zero from positive
direction.
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For heterodyne detection the signal can be calculated via Eq. (7.14). It uses the response
functions from Eqs. (7.17) and (7.18) and their Fourier transform via Eq. (7.15) where also
Eq. (7.16) for the Green function is used. After integrating and considering that the pulses are
all temporally well-separated, the resulting signal for kI is [APV+09, YM08b]

S(3)
kI

(Ω1,Ω2,Ω3) = SESE
kI

(Ω1,Ω2,Ω3)+SGSB
kI

(Ω1,Ω2,Ω3)+SESA
kI

(Ω1,Ω2,Ω3)

with

SESE
kI

(Ω1,Ω2,Ω3) =− 1

ħ3

∑
ee ′

1

(Ω3 −ξe ′g )(Ω2 −ξe ′e )(Ω1 −ξg e )

·µ∗
e ′g ·E4

∗(ωe ′g ) µeg ·E3(ωeg ) µe ′g ·E2(ωe ′g ) µ∗
eg ·E1

∗(ωeg )

SGSB
kI

(Ω1,Ω2,Ω3) =− 1

ħ3

∑
ee ′

1

(Ω3 −ξe ′g )(Ω2 − iη)(Ω1 −ξg e )

·µ∗
e ′g ·E4

∗(ωe ′g ) µe ′g ·E3(ωe ′g ) µeg ·E2(ωeg ) µ∗
eg ·E1

∗(ωeg )

SESA
kI

(Ω1,Ω2,Ω3) = 1

ħ3

∑
ee ′ f

1

(Ω3 −ξ f e )(Ω2 −ξe ′e )(Ω1 −ξg e )

·µ∗
f e ·E4

∗(ω f e ) µ f e ′ ·E3(ω f e ′) µe ′g ·E2(ωe ′g ) µ∗
eg ·E1

∗(ωeg )

and for kII

S(3)
kII

(Ω1,Ω2,Ω3) = SESE
kII

(Ω1,Ω2,Ω3)+SGSB
kII

(Ω1,Ω2,Ω3)+SESA
kII

(Ω1,Ω2,Ω3)

with

SESE
kII

(Ω1,Ω2,Ω3) =− 1

ħ3

∑
ee ′

1

(Ω3 −ξeg )(Ω2 −ξee ′)(Ω1 −ξeg )

·µ∗
eg ·E4

∗(ωeg ) µe ′g ·E3(ωe ′g ) µ∗
e ′g ·E2

∗(ωe ′g ) µeg ·E1(ωeg )

SGSB
kII

(Ω1,Ω2,Ω3) =− 1

ħ3

∑
ee ′

1

(Ω3 −ξe ′g )(Ω2 − iη)(Ω1 −ξeg )

·µ∗
e ′g ·E4

∗(ωe ′g ) µe ′g ·E3(ωe ′g ) µ∗
eg ·E2

∗(ωeg ) µeg ·E1(ωeg )

SESA
kII

(Ω1,Ω2,Ω3) = 1

ħ3

∑
ee ′ f

1

(Ω3 −ξ f e ′)(Ω2 −ξee ′)(Ω1 −ξeg )

·µ∗
f e ′ ·E4

∗(ω f e ′) µ f e ·E3(ω f e ) µ∗
e ′g ·E2

∗(ωe ′g ) µeg ·E1(ωeg )

where e and e ′ describe the single-exciton states and f the two-exciton states. The frequen-
cies are detuned around the single and double gap frequency, respectively. The resonances
will occur at both positive and negative frequency Ω. The field E4 is the electric field of the
local oscillator due to heterodyne detection. The fraction with the frequency differences in
the denominator comes from the Fourier transform and corresponds to the argument of the
exponential function.

Spectra

In 2d spectra assuming a Lorentzian dephasing model, the resonances appear as Lorentzians
with a homogeneous linewidth. The dephasing rate γi j for the coherences between the states
i and j determine the width of the Lorentzian [BLS+02, BLMZ06]. In experiments, several
processes reshape this theoretical form of a perfect Lorentzian.
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For a Fourier transform with respect to t1 and t3, there is just one peak at −Ω1 =Ω3 =ωeg

in a two-level system for the excited state emission pathway. For a number of two-level sys-
tems with the same states (but fluctuating transition energies), an inhomogeneous broaden-
ing along the diagonal (−Ω1 =Ω3) is found due to the slightly different transition frequencies
of each system. This oval peak can be seen as the superposition of the contributions of each
two-level system.

For systems with several states, the resonance peaks are found on the diagonal for −Ω1 =
Ω3. Only in case of relaxation or coupling, there are additional peaks in the off-diagonal part
of the spectrum. This shows that the states are not completely independent, for example,
they have the same ground state (as can seen in the Feynman diagrams). The form of the
off-diagonal peaks – more precisely the direction of inhomogeneous broadening – depends
on the statistical properties of the distribution.

Up to now, just one pathway is discussed. Consequently, no interference effects can appear
so far. For the ground state bleaching part of the signal, an analogous discussion is possible.

For the excited state absorption, the peaks are not found on the diagonal −Ω1 =Ω3, they
are displaced along the vertical for a distance that corresponds to the biexcitonic shift. With-
out that shift, the spectrum could be interpreted analogous to the excited state emission
spectrum. In that case, this path would extinguish one of the other pathway contributions.
Two-dimensional photon echo spectroscopy allows not only to read the ground to the single-
exciton transition energy but also the single to two-exciton transition energy.

In every case, all three pathways are interfering constructively and destructively and the
resulting spectrum is seen in two-dimensional photon echo spectroscopy experiments.

The spectrum for the inverse photon echo spectroscopy can be discussed in the same way
as for the photon echo. The only difference is, that the first coherence and the last coherence
are no longer the opposite since the first coherence is now ωeg instead of ωg e . Therefore,
some inhomogeneous broadening processes cannot be canceled out here.

By measuring the echo intensity as a function of delay time, it is possible to obtain the pop-
ulation changes of the ground and excited state population and thus the dephasing rate γ j i

of the i j coherence.

7.6.3 Double quantum coherence

The double quantum coherence spectroscopy is a two-dimensional coherent measuring tech-
nique that maps electronic states and enables thus insights into the electronic structure of
excited states [KMS09]. Deeper knowledge about how electron correlations change upon pho-
toexcitation can be gained.

The double quantum coherence spectroscopy [RM10b] considers the wave vectors in the
direction of kIII = k1+k2−k3. The response function is derived in the same way as Eqs. (7.17)
and (7.18) and reads

RESA 1
kIII

(t3, t2, t1) =
(

i

ħ
)3

Θ(t1)Θ(t2)Θ(t3)
∑
e,e ′
µe ′ f µg e ′µ f eµeg e−iξeg t1−iξ f g t2−iξ f e′ t3

RESA 2
kIII

(t3, t2, t1) =
(

i

ħ
)3

Θ(t1)Θ(t2)Θ(t3)
∑
e,e ′
µg e ′µe ′ f µ f eµeg e−iξeg t1−iξ f g t2−iξe′g t3 .

The double-sided Feynman diagrams [TKSW03, YM08c] in Fig. 7.10 shows the two possible
pathways of excitation. The first pulse of the sequence creates a single-exciton (single quan-
tum coherence), the second creates a double exciton state (double quantum coherence) and
the third one again a single-exciton state.
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ESA 2ESA 1

Figure 7.10:
Double-sided Feynman diagrams for double quantum coherence spectroscopy generated in kIII direc-
tion in the coherent limit: In contrast to photon echo experiments, here two possible excited state
absorption (ESA) pathways exist. Again, the pulses are denoted with phases ϕ instead of directions k
since the phase cycling technique is used to extract selected pathways (see Sec. 7.5.2).

The standard double quantum coherence spectroscopy signal then yields [APV+09]

S(3)
kIII

(Ω1,Ω2,Ω3) = SESA 1
kIII

(Ω1,Ω2,Ω3)+SESA 2
kIII

(Ω1,Ω2,Ω3) (7.19)

with

SESA 1
kIII

(Ω1,Ω2,Ω3) = 1

ħ3

∑
ee ′ f

1

(Ω3 −ξ f e ′)(Ω2 −ξ f g )(Ω1 −ξeg )

·µ∗
f e ′ ·E4

∗(ω f e ′) µ∗
e ′g ·E3

∗(ωe ′g ) µ f e ·E2(ω f e ) µeg ·E1(ωeg )

SESA 2
kIII

(Ω1,Ω2,Ω3) =− 1

ħ3

∑
ee ′ f

1

(Ω3 −ξe ′g )(Ω2 −ξ f g )(Ω1 −ξeg )

·µ∗
e ′g ·E4

∗(ωe ′g ) µ∗
f e ′ ·E3

∗(ω f e ′) µ f e ·E2(ω f e ) µeg ·E1(ωeg )

with the Fourier transform of the electric field envelopes Ei (ω) for the pulses i = 1,2,3,4 (the
fourth pulse comes from the heterodyne detection), the dipole matrix element µi j for the
transitions from exciton state j to i , the frequencies ωi j =ωi −ω j , the exciton frequency ωi ,
and ξi j = ωi j + iγi j with the dephasing γi j . Again, the frequencies are detuned around the
single and double gap frequency, respectively.

The double quantum coherence signal does not exist for two-level systems. The reason is,
that the second pulse in positive direction can only interact on the left since due to the RWA
on the right side there cannot be an emission. The third pulse is the first of the pulses that is
able to interact as emission (ESA 2) or as absorption on the right (ESA 1).

The pathways of the double quantum coherence spectroscopy are characterized by the fact
that there are no density states but only coherences. A further interesting point is, that for un-
coupled two-level systems, both pathways will interfere destructively because of the reverse
sign of the signal that comes from the different numbers of intersection on the right side of a
Feynman diagram.

A further special feature of the double quantum coherence is, that it is possible to create
a coherence | f 〉〈g |, although there exists no dipole moment! Two-dimensional spectroscopy
allows only create new coherences by controlling through suitable selection of pathways . It is
even possible to measure energies of dark states if it is possible to select the certain integrals.

The double quantum coherence spectra are interpreted and discussed in detail in the next
chapter.
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8 Localized Spectroscopy

Many different kinds of nanostructures are not completely understood. Especially coupled
clusters of small molecules like molecular aggregates are often very complex so that decoding
their structure is a challenge [GCF09, AVM08]. The complex molecular systems have interest-
ing properties. For example, they can channel excitation energy over remarkable distances,
that is the case in photosynthetic light harvesting processes.

As shown in the last chapter, coherent two-dimensional optical spectroscopy methods are
a nonlinear technique that provide significant insight into the dynamics and interactions of
such coupled systems like photosynthetic light-harvesting complexes and other aggregates. A
special attribute of these techniques is resolving excitation and emission energies over signif-
icant bandwidths spectrally, within a femtosecond resolution.

One of the main results of this work is presented in this chapter. Three key topics will be
combined to reveal new information of couplings of electronic states and their wave func-
tions: After introducing how optical excitations can be confined within a nanometer length
scale in Ch. 5 and presenting the double quantum coherence as a multidimensional coher-
ent spectroscopy in Ch. 7, these two different topics will be combined to do a recent kind
of spectroscopy, the localized spectroscopy. Three coupled two-level quantum dots that form
delocalized states serve as a sample for the double quantum coherence spectroscopy. Such a
coupling is presented in Ch. 6.

In the first section generating two-dimensional spectra with localized pulses is shown and
the newly gained insights are pointed out. Afterwards, applications of these methods are ex-
hibited, such as reconstruction of the wave function or filtering different resonances.

All presented formulas for localized spectra or for the derivation of a reconstructing proto-
col assume a perfect localization. The signals can be calculated for both, a perfect localization
and for a more realistic one that is found using the genetic algorithm in Ch. 5. In the end, the
gained protocol is also used for reconstructing wave functions with spectra that correspond
to a theoretical possible degree of localization.

The presented protocols for reconstructing many-particle wave functions will be applica-
ble for exciton states and biexciton states of coupled nanostructures. The protocols and the
results of this chapter are published in [RSS+12]19 and [SKMR12]20.

8.1 Localized spectra

In Ch. 7 two-dimensional spectroscopy is introduced. It is explained how a two-dimensional
spectrum is generated and interpreted. Here, the generation of those spectra will be modified
to reveal more information than is possible in common two-dimensional spectroscopy.

In this chapter, the double quantum coherence spectroscopy, that is presented in Sec. 7.6.3,
is chosen for demonstrating the localized spectroscopy. It is called ”localized spectroscopy“
since pulses that can localize optical excitations within one quantum dot are the key differ-
ence to the common techniques. So the possibilities of controlling light in subwavelength
precision described in Ch. 5 serves as an ingredient for localized spectroscopy.

19Copyright (2012) by the American Physical Society.
20Copyright (2012) by the Institute of Physics.
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Three coupled two-level quantum dots serve as a sample for presenting the method. The
Hamiltonian that describes their electronic states and their couplings is given in Sec. 6.5.5.
The parts of the full Hamiltonian H = H0 +HC +He-l reads in local basis

H0 =ε0|g 〉〈g |+∑
i
εi |i 〉〈i |+

∑
i , j 6=i

(εi +ε j )|i j 〉〈i j |

HC =∑
i> j

Vi j |i j 〉〈 j i |+ ∑
i , j 6=i

V F
i j |i 〉〈 j |+ ∑

k,i 6=k, j 6=k
V F

i j |ki 〉〈k j |

He-l =
n∑
i
µg i ·E (t )|g 〉〈i |+

n∑
i , j 6=i

µi j ·E (t )|i 〉〈i j |+h.c.

and becomes in delocalized basis to

H0 +HC = εg |g 〉〈g |+∑
e
εe |e〉〈e|+

∑
f
ε f | f 〉〈 f |

He-l =
∑

e
µg e ·E (t )|g 〉〈e|+∑

e f
µe f ·E (t )|e〉〈 f |+h.c.

A detailed derivation is given in Sec. 6.5.
The basic idea is modifying the pulse sequence of the double quantum coherence spec-

troscopy by replacing one or two pulses of the sequence with polarization shaped pulses that
excite just one single quantum dot [RM10a]. All other pulses still excite all dots equally. The
pulse sequence is illustrated in Fig. 7.6 and the Liouville pathways to show the kind of exci-
tation are presented in Fig. 7.10. The next sections differ in which pulses of the sequence are
localized.

8.1.1 Localization of pulse 1

Before presenting the calculated spectra, in each case a description of the signal in a theoret-
ical way is given.

Signal

The double quantum coherence spectroscopy signal (Eq. (7.19)), that can be interpreted as
the sum over the Liouville pathways, is deduced in Sec. 7.6.3. A Fourier transform only with
respect to time intervals t1 and t2 yields21

SkIII (Ω1,Ω2, t3) = 1

ħ3

∑
e,e ′, f

1

(Ω2 −ξ f g )(Ω1 −ξeg )

·
(
µe ′ f ·E4

∗(ω f e ′) µg e ′ ·E3
∗(ωe ′g ) µ∗

e f ·E2(ω f e ) µ∗
g e ·E1(ωeg ) e−iξ f e′ t3

−µg e ′ ·E4
∗(ωe ′g ) µe ′ f ·E3

∗(ω f e ′) µ∗
e f ·E2(ω f e ) µ∗

g e ·E1(ωeg ) e−iξe′g t3

)
,

(8.1)

with the same notations explained in Sec. 7.6.3: E1 to E3 are the Fourier transform of the elec-
tric field envelopes of the pulse sequence, E4 is the local oscillator, the dipole matrix elements
are µi j , the frequencies ωi j =ωi −ω j , ωi describe the exciton energy, and ξi j equals ωi j +iγi j

with the dephasing γi j . Mind that the frequencies are detuned around the single and double
gap frequency, respectively. In the following the dipole moments are replaced via µab =µ∗

ba .

21The layout of writing the signals in this chapter is a compromise of saving space and preserving clarity: the frac-
tions that come from the Fourier transform are factorized from both pathways but the sequence of interactions
remains in separate terms.
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Figure 8.1:
Full two-dimensional double quantum coherence spectrum of three coupled quantum dots: Part (a)
shows the absolute value, part (b) the imaginary one. The corresponding Hamiltonians are shown in
Sec. 6.5.5.

The first presented modification of the double quantum coherence spectroscopy signal as-
sumes a localization of the first incoming pulse of the sequence. For this purpose, Eq. (8.1) is
rewritten within two steps for a localized excitation. The term that represents the first pulse
is

µ∗
g e ·E1(ωeg )

for both pathways. This term becomes∑
k

ce∗
k µ∗

g k ·E loc
1,i (rk ,ωeg )

through inserting the delocalized dipole moment of the single-exciton µ∗
g e = ∑

k ce∗
k µ∗

g k
(Eq. (6.27a)) into Eq. (8.1) for the first pulse. The electric field E1(ωeg ) is now written as
E loc

1,i (rk ,ωeg ). The electric field is no longer constant over the entire nanostructure, it depends
on the position r . The index i gives the excited quantum dot. Here, rk marks the position of
one of the three quantum dots k, ce

k is the exciton wave function for quantum state e. The
signal now reads

Sloc
kIII,E1

(Ω1,Ω2, t3) = 1

ħ3

∑
e,e ′, f

∑
k

1

(Ω2 −ξ f g )(Ω1 −ξeg )

·
(
µe ′ f ·E4

∗(ω f e ′) µg e ′ ·E3
∗(ωe ′g ) µ∗

e f ·E2(ω f e ) ce∗
k µ∗

g k ·E loc
1,i (rk ,ωeg ) e−iξ f e′ t3

−µg e ′ ·E4
∗(ωe ′g ) µe ′ f ·E3

∗(ω f e ′) µ∗
e f ·E2(ω f e ) ce∗

k µ∗
g k ·E loc

1,i (rk ,ωeg ) e−iξe′g t3

)
.

Now, a perfect localized excitation is assumed. That means that just one quantum dot is
excited and the electric field in the other quantum dots equals zero. In this case of a local-
ization ratio of 1 : 0 : 0, a further step is possible. Then, the localized electric field of the first
pulse can be written as

E loc
1,i (rk ) = E loc

1,i δi k (8.2)
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Figure 8.2:
Localized spectra generated by a localized first pulse: The imaginary part of the signal is plotted for
a double quantum coherence signal with a localized first pulse of the sequence. The first pulse only
excites (a) quantum dot (QD) 1, (b) quantum dot 2 and (c) the third quantum dot. The three spectra
can be seen as a decomposition of the full imaginary spectrum of Fig. 8.1b. In part (a-c) a perfect
localization is assumed (cf. Eq. (8.3)), (excitation ratio 1 : 0 : 0) while part (d-f) a localization that may
be reached in real is plotted (excitation ratio 1 : 0.1205 : 0.0761).

if quantum dot i is the excited one. Thus, the sum over k vanishes and the signal simplifies
to

Sloc
kIII,E1

(i ,Ω1,Ω2, t3) = 1

ħ3

∑
e,e ′, f

1

(Ω2 −ξ f g )(Ω1 −ξeg )

·
(
µe ′ f ·E4

∗(ω f e ′) µg e ′ ·E3
∗(ωe ′g ) µ∗

e f ·E2(ω f e ) ce∗
i µ∗

g i ·E loc
1,i (ωeg ) e−iξ f e′ t3

−µg e ′ ·E4
∗(ωe ′g ) µe ′ f ·E3

∗(ω f e ′) µ∗
e f ·E2(ω f e ) ce∗

i µ∗
g i ·E loc

1,i (ωeg ) e−iξe′g t3

)
.

(8.3)

If it is additionally assumed that for all isolated excited quantum dots the same electric field
strength is reached, the index i for the localized electric field of pulse 1 is not necessary any
longer.

Spectra

In Fig. 8.1 the absolute value and the imaginary part of the spectrum generated by a quan-
tum system with the Hamiltonian shown in Sec. 6.5.5 are plotted. Calculating the localized
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8.1 Localized spectra

spectrum with help of the newfound equations provides new information: It is possible now
to connect the certain quantum dots to the resonances that occur in the spectrum.

The decomposition of the imaginary part of the signal is presented in Fig. 8.2. On the first
look, one can connect each single-exciton state with exact one quantum dot: While the peaks
at single exciton state e2 arises from a transition of quantum dot 1, almost all peaks at e3 are
connected to quantum dot 2 and all resonances for that the third quantum dot is responsible
are for e1. For a more detailed look, there exist also small correlations. For the first quan-
tum dot there are just correlations from e2 to the transitions f3 and f2. Similarly, the most
resonances for quantum dot 2 are at e3 – a strong one to transition f1 and the smaller one
to f2. But here, one can find also connections with the second exciton state: a small contri-
bution for the strong resonance at e2 with f3 and a shoulder in direction of e2 with f2. The
third quantum dot contributes mainly to the peaks of e1 at f1 and f3 and it also has a small
contribution at e2 with f3.

Fig. 8.2 furthermore compares two cases. The spectra of Fig. 8.2a-c are described by
Eq. (8.3). Assumption (8.2) is applied, that means one quantum dot is the only excited one,
the excitations of all others equals zero. Additionally, in Fig. 8.2, the spectra in case of a non-
perfect localization is illustrated. That means, that the localization has a quality that may be
reached in reality. Here, the signal can be calculated with Eq. (8.1.1).

As a result, it is found that the differences of Fig. 8.2a-c and 8.2d-f are small. It seems
that the reached localization of Sec. 5.5.3 is of a quality that is high enough for statements
regarding the connection of resonances to quantum dots. The consequences of the difference
becomes more visible in reconstructing the wave function coefficients in Sec. 8.2.

For each set of assumed parameters of the Hamiltonian localized spectroscopy enables a
decomposition of the corresponding spectrum. These gained localized spectra would not be
possible without spatiotemporal control.

For better comparability, all spectra in this chapter that shows the imaginary part are scaled
identically.

8.1.2 Localization of pulse 1 and pulse 2

Modifying the pulse sequence by an additional localization of the second pulse opens further
insights into the correlation between quantum states.

Signal

Analogously to Sec. 8.1.1, the two steps to derive a formula for the localized signal for a perfect
localization can be repeated. The expansion of the biexciton dipole moment (Eq. (6.27b)) is
inserted in additionally into the localized signal (Eq. (8.1.1)) so that the terms belonging to

the second pulse µ∗
e f ·E2(ω f e ) become

∑
k,l 6=k ce

k c f ∗
kl µ

∗
g l ·E loc

2, j (rl ,ω f e ) and the full signal reads

Sloc
kIII,E1,E2

(Ω1,Ω2, t3) = 1

ħ3

∑
e,e ′, f

∑
k,l 6=k

1

(Ω2 −ξ f g )(Ω1 −ξeg )

·
(
µe ′ f ·E4

∗(ω f e ′) µg e ′ ·E3
∗(ωe ′g ) ce

k c f ∗
kl µ

∗
g l ·E loc

2, j (rl ,ω f e ) ce∗
k µ∗

g k ·E loc
1 (ωeg ) e−iξ f e′ t3

−µg e ′ ·E4
∗(ωe ′g )µe ′ f · E3

∗(ω f e ′) ce
k c f ∗

kl µ
∗
g l ·E loc

2, j (rl ,ω f e ) ce∗
k µ∗

g k ·E loc
1 (ωeg ) e−iξe′g t3

)
.
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8 Localized Spectroscopy

For an additional second localized field at quantum dot j , a derivation analogous to
Eq. (8.3) with E loc

2, j (rl ) = E loc
2 δ j ,l is used. In case of a perfect localization

Sloc
kIII,E1,E2

(i , j ,Ω1,Ω2, t3) = 1

ħ3

∑
e,e ′, f

∑
k 6= j

1

(Ω2 −ξ f g )(Ω1 −ξeg )

·
(
µe ′ f ·E4

∗(ω f e ′) µg e ′ ·E3
∗(ωe ′g ) ce

k c f ∗
k j µ

∗
g j ·E loc

2, j (ω f e ) ce∗
k µ∗

g k ·E loc
1,i (ωeg ) e−iξ f e′ t3

−µg e ′ ·E4
∗(ωe ′g ) µe ′ f ·E3

∗(ω f e ′) ce
k c f ∗

k j µ
∗
g j ·E loc

2, j (ω f e ) ce∗
k µ∗

g k ·E loc
1,i (ωeg ) e−iξe′g t3

)
.

(8.4)

is obtained, still under the assumption of a localization of the first pulse at quantum dot i .
The index j for the electric field of the second pulse makes only sense in the case of a non-
symmetric geometry so that different field strengths are needed for exciting different quan-
tum dots.

Spectra

Measuring with such a localization, an additional decomposition for each of the three plots
of Fig. 8.2 becomes possible. The nine new subplots of Fig. 8.3 provide a more detailed look:
The influences of the quantum dots to the biexciton states become visible. While in Fig. 8.2
the quantum dots can be connected to the exciton states, now every peak of the exciton state
can be connected to a biexciton state.

Localization of the first pulse at quantum dot 1 shows two peaks at exciton state e2. Re-
solving in localizations of the second pulse gives connections between the biexciton states
and the quantum dots: The upper of the strong peaks at e2 with f2 originates from quantum
dot 2 while the lower resonance of e2 with f2 arises from the third dot.

Similarly, the biexciton states of the two strongest peaks of Fig. 8.2b and 8.2c can be asso-
ciated with certain quantum dots: The peak at e3 and f2 arises from quantum dot 1, with f1

quantum dot 3 is responsible. For e1 with f3 quantum dot 1, for e1 with the biexciton state f1

quantum dot 2 contributes most.

The diagonal plots of Fig. 8.3 shows almost no resonances. That is explainable by the biex-
citon basis (cf. Sec. 6.5.4). For a biexciton state, two different quantum dots have to be ex-
cited. The biexciton basis consists of the basis elements |12〉, |13〉 and |23〉. So if now the first
quantum dot is excited, the biexciton states dominate if the second pulse excites one of the
other two quantum dots. In each of the three decompositions this is the case. Since the biex-
citonic basis elements are |i j 〉 for i 6= j , the states |11〉, |22〉, or |33〉 are not allowed. So the
spectra of the diagonals of Figs. 8.3 and 8.4 should show no resonances. That there is still a
small resonance demonstrates the overlapping of the peaks for other quantum states due to
the delocalized states. Ignoring the dipole moments, the signal is proportional to the prod-

uct ce
i c f

i j , so even interferences of positive and negative values of the spectra are conceivable.
For the perfect localization in Fig. 8.3, there are less resonances seen than in the non-perfect
localization of Fig. 8.4.

8.1.3 Localization of pulse 2

For reconstructing the biexciton wave function (see Sec. 8.2.4) it is sufficient to localize the
second pulse only.
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Figure 8.3:
Localized spectra generated by a localized first and second pulse for a perfect localization: The imagi-
nary part of the signal is plotted for a double quantum coherence signal generated by a localized first
pulse for each quantum dot (columns) and a localized second pulse for each quantum dot (lines) of
the sequence. On the diagonal, no significant signal can be seen. The nine spectra are an additional
of Fig. 8.2. A perfect localization is assumed.
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Figure 8.4:
Localized spectra generated by a localized first and second pulse for a realistic localization: Again, the
imaginary part of the signal is plotted for a double quantum coherence signal generated by a localized
first pulse for each quantum dot (columns) and a localized second pulse for each quantum dot (lines)
of the sequence. On the diagonal, no significant signal can be seen. The nine spectra are an additional
of Fig. 8.2. A realistic localization is assumed. In comparison to Fig. 8.3, a bit stronger signals can be
seen as an error due to the non-perfect localization.
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Figure 8.5:
Localized spectra generated by a localized second pulse: The imaginary part of the signal is plotted
for a double quantum coherence signal with a localized second pulse of the sequence. The second
pulse only excites (a) quantum dot (QD) 1, (b) quantum dot 2 and (c) the third quantum dot. The
three spectra can be seen, analogous to Fig. 8.2, as a decomposition of the full imaginary spectrum
of Fig. 8.1b. In part (a-c) a perfect localization is assumed (excitation ratio 1 : 0 : 0) while part (d-f) a
localization that may be reached in real is plotted (excitation ratio 1 : 0.1205 : 0.0761).

Signal

The signal for an idealized localization and for just localizing pulse 2 reads

Sloc
kIII,E2

( j ,Ω1,Ω2, t3) = 1

ħ3

∑
e,e ′, f

∑
k 6= j

1

(Ω2 −ξ f g )(Ω1 −ξeg )

·
(
µe ′ f ·E4

∗(ω f e ′) µg e ′ ·E3
∗(ωe ′g ) ce

k c f ∗
k j µ

∗
g j ·E loc

2, j (ω f e ) µ∗
g e ·E1(ωeg ) e−iξ f e′ t3

−µg e ′ ·E4
∗(ωe ′g ) µe ′ f ·E3

∗(ω f e ′) ce
k c f ∗

k j µ
∗
g j ·E loc

2, j (ω f e ) µ∗
g e ·E1(ωeg ) e−iξe′g t3

)
.

(8.5)

The first pulse excites all quantum dots equally like the third and fourth pulse.

Spectra

In Fig. 8.5 spectra found by Eq. (8.5) with perfect localization are shown. They represent – in
contrast to Fig. 8.2 – another decomposition of the imaginary part of the full spectrum.

The biexciton states cannot be connected to a certain quantum dot in such a simple way as
in the exciton case of Sec. 8.1.1. Here, more correlations are found. The results are consistent
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8 Localized Spectroscopy

with the split spectra of the localization for both pulses in Fig. 8.3: The strongest peak in the
localization of quantum dot 1 is e1 with f3. By splitting the spectrum seen in Fig. 8.2c, f3

shows also the biggest resonance for quantum dot 1. The same is valid for the strongest peak
of Fig. 8.5: It is found for the third quantum dot at state e2 combined with f3. That could be
expected because of the results for two localizations. There, the main part of the resonance
at e2 with f3 comes from quantum dot 3.

8.2 Reconstruction of the wave functions

The presented techniques of localizing the double quantum coherence spectrum allows not
only connecting resonances to certain quantum dots. Localized spectroscopy enables several
new applications. The most important application presented in this work is found in this
section. Another application – filtering different resonances – is shown in Sec. 8.3. Afterwards,
the filtering technique is applied to improve the results of the current part in Sec. 8.4.

The newfound data of localized spectra can be used to obtain more information about cou-
pled quantum dots. In this section, a protocol is presented to reconstruct the wave functions
of single-exciton states as well as for biexciton states.

As presented in Sec. 6.5, the one and two-exciton state functions can be written as a super-
position of the single or double-exciton basis (Eq. (6.22)):

|e〉 =∑
i

ce
i |i 〉

| f 〉 = ∑
i , j 6=i

c f
i j |i j 〉.

Consequently, only the expansion coefficients ce
i and c f

i j of Eqs. (6.22) and (6.27) have to be
found to reconstruct the exciton and biexciton wave functions |e〉 and | f 〉, respectively, if
known single particle wave functions are assumed. The square of the absolute value of the
prefactors gives information about how the delocalized wave function is spread over the dif-
ferent quantum dots.

Before the protocol is explained in detail, a short sketch is given to anticipate the main idea
of reconstruction wave functions.

8.2.1 Idea

The main idea that enables reconstructing wave functions is that the measured signal is pro-
portional to the dipole moment for a transition between delocalized states. The dipole mo-
ment can be written as an expansion of the dipole moments for the local transitions according
to Eq. (6.27):

S(Ω1,Ω2,T3) ∝∑
e
µg e ·E1 =

∑
e

∑
i

ce
i µg i ·E1.

The signal S can be measured – thus, for extracting the coefficients ce
i only the sum must be

eliminated. Choosing one resonance that dominates, for example Ω1 = eα and Ω2 = fβ, helps
eliminating the sum over e:

S(eα, fβ,T3) ∝∑
i

ceα
i µg i ·E1.

The possibility of measuring localized spectra enables eliminating additionally the sum over i :

Sloc
E1

(i ,eα, fβ,T3) ∝ ceα
i µg i ·E1.
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8.2 Reconstruction of the wave functions

Assuming that all dipole moments are known or are at least identical, the coefficient ceα
i , that

are needed for finding the exciton wave function, can be extracted. This is possible only with-
out an arbitrarily global phase.

The protocol of extracting the coefficients can be applied in a similar way for the biexciton
states but with more complicated calculations.

In the following, a calculation and measurement instruction for reconstructing the wave
functions for a certain single-exciton state eα and a certain biexciton state fβ is presented in
more detail.

8.2.2 Error analysis

To evaluate the quality of the reconstructed single- and two-exciton wave function coeffi-
cients of the two following subsections, a method for calculating the error with a meaningful
output is needed. This is necessary since those results enable an extensive discussion about
the quality of the reconstruction script.

The error function has to compare the values of the complex coefficients corg
i for the origi-

nal wave function coefficient and crec
i for the reconstructed one.

It is useful to measure the quality via the Euclidean norm, that means in terms of the
squared error of the difference of the original wave function coefficient and the reconstructed
one. But there exist two fundamental different methods: Calculating the difference of the
complex coefficients directly or calculating the difference after determining the square of the
absolute value. For both possibilities their difference and the advantages and disadvantages
are presented in the following.

Error 1

The error that gives the reconstruction quality of the coefficient crec
i can be determined via

Error1(crec
i ,corg

i ) =
√

n∑
i=1

∣∣crec
i − corg

i

∣∣2
. (8.6)

Since for forming the difference, the phase of the complex coefficients is considered, the
result of Error1(crec

i ,corg
i ) depends also on the phase of crec

i . But as can be seen in the following
sections, this coefficient can be reconstructed only without an arbitrarily global phase. Thus,
for determining a meaningful error estimation, the smallest error for one certain global phase
has to be found. For this purpose, the derivative of Eq. (8.6) is set to zero to find the coefficient
crec

i ·eiφmin that supplies the smallest error value:

d

dφmin
Error1(crec

i ·eiφmin ,corg
i )

!= 0.

Multiplying the reconstructed wave function coefficient with the factor eiφmin can be seen
as a rotation in the complex plain around the origin. The three vector components are ro-
tated simultaneously until the norm of the differences between each component of the re-
constructed coefficient and its corresponding origin is the shortest one. This illustration is
sketched in Fig. 8.6.

The multiplication with eiφmin is reasonable for obtaining a meaningful error estimation.
But keep in mind, that for an experimentalist it is not possible to achieve this multiplication
because the origin wave function coefficients are unknown. This is why in Tabs. 8.1, 8.3, 8.4,
and 8.5 the results of arg(crec

i ) are given without the factor eiφmin for i = 1, . . . ,n. In case of
multiplying this factor, the results of reconstructing the phase would even look better.
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8 Localized Spectroscopy

Figure 8.6:
Illustration of adding a global phase to the re-
constructed coefficients to fit the original co-
efficients: The red crosses symbolize the three
components of the original wave function co-
efficient. They are on a fix position. Adding
a global phase φmin to the complex recon-
structed coefficient via crec

i ·eiφmin corresponds
to a rotation of the green circle-like recon-
structed wave function coefficient in the com-
plex plain. The phase is selected in a way that
the norm of the differences becomes minimal.

Error 2

The physical meaning of the coefficients is given by the probability of presence of the elec-
trons that are spread over the whole coupled nanostructure. The probability of presence is

proportional to the square of the absolute value of the coefficients
∣∣corg

i

∣∣2
for all quantum

dots i . This leads to another way of error calculation:

Error2(crec
i ,corg

i ) =
√

n∑
i=1

∣∣∣∣∣crec
i

∣∣2 − ∣∣corg
i

∣∣2
∣∣∣2

.

The main difference to Eq. (8.6) is that here the phase of the complex coefficients does
not contribute any more. Figuratively speaking this means that just the difference between
the reconstructed and the origin wave function coefficient is rated for each component and
no rotation is executed. Since for this error the global phase plays no role, the optimization
process as described in the first error section can be neglected.

This way of error determination does not consider the phase but it has the most physical
meaning since the square of the coefficient gives information about the probability of pres-
ence.

Tab. 8.2 compares the results of both error calculation ways. For both ways, the relations of
the results are almost the same. Since the physical interpretation of the second error is more
significant, in the rest of this chapter, especially in Tabs. 8.1, 8.3, 8.4, and 8.5, only Error 2 is
considered.

The error value of the reconstructed coefficients for the two-exciton states (see Sec. 8.2.4)
are determined in the same way as for the single-excitons and also only the second error is
given in Tabs. 8.3, 8.4, and 8.5.

8.2.3 Exciton states

For reconstructing the wave function ceα
i the signal of the certain state has to be determined.

That means, that the signal is around the frequencies Ω1 ≈ Ωα
1 = ωeαg and Ω2 ≈ Ω

β
2 = ω fβg

where fβ is chosen such that it shows a strong correlation to eα. Consequently, the denom-
inator of the perfect localized signal of the first pulse (Eq. (8.3)) becomes so small, that the
part of eα and fβ is the dominating part of the sum over e and f , respectively. Thus, the sum
over e and f can be eliminated with the approximation that only e = eα and f = fδ contribute
to the sum. For this purpose, it is necessary that contributions to other states are well sepa-
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8.2 Reconstruction of the wave functions

rated in the double quantum coherence spectroscopy from this resonance. So the measured
signal corresponds with

Sloc
kIII,E1

(i ,eα, fβ,T3) = 1

ħ3

∑
e ′

1

(Ωβ
2 −ξ fβg )(Ωα

1 −ξeαg )

·
(
µe ′ fβ ·E4

∗(ω fβe ′) µg e ′ ·E3
∗(ωe ′g ) µ∗

eα fβ
·E2(ω fβeα) ceα∗

i µ∗
g i ·E loc

1,i (ωeαg ) e
−iξ fβe′T3

−µg e ′ ·E4
∗(ωe ′g ) µe ′ fβ ·E3

∗(ω fβe ′) µ∗
eα fβ

·E2(ω fβeα) ceα∗
i µ∗

g i ·E loc
1,i (ωeαg ) e−iξe′g T3

) (8.7)

for a fixed time interval T3.
The only part of this signal that depends on the choice of quantum dot i is the factor

ceα∗
i µ∗

g i ·E loc
1,i (ωeαg ). Both Liouville diagrams share this part, all other parts do not depend

on i . The proportionality can be expressed with a factor A such that

ceα∗
i A = Sloc

E1
(i ,eα, fβ,T3)/

(
µ∗

g i ·E loc
1,i (ωeαg )

)
. (8.8)

Note that although a Lorentzian broadening in the equations is assumed, this proportion-
ality should not depend on this choice.

While the unknown quantities are on the left hand of Eq. (8.8), all the known parts are on
the right hand: E loc

1,i (ωeαg ) is the field strength of the first pulse for exciting the quantum dot
i . The dipole moments are also assumed to be known or are at least identical since they
can then be factored out in the normalization step. Eq. (8.8) can be interpreted as an un-
derdetermined system of equations with one equation for each quantum dot i and the n +1
unknowns ceα∗

i for i = 1, . . . ,n and A.

The normalization property of wave functions (Eq. (6.24)) provides
∑

i

∣∣ceα
i

∣∣2 = 1 and serves
as an additional condition for the system of equation, so that the system is no longer under-
determined. Thus, it can be solved and the coefficients ceα

i can be found. The exciton wave
function |eα〉 can then be reconstructed via

|eα〉 =
∑

i
ceα

i |i 〉

for a n-dimensional local basis. All single-exciton states can be reconstructed since eα repre-
sents an arbitrary state.

Demonstration

It will be demonstrated that a reconstruction of wave functions is possible and that informa-
tion about the quality of reconstruction can be found. As a model, the three coupled quantum
dots whose energies are described by the Hamiltonian of Sec. 6.5.5 are used. The localization
setup of Sec. 5.5.3 serves as realistic localization model, with an excitation ratio of

1 : 0.1205 : 0.0761

in frequency domain.
In Tab. 8.1 the absolute value and the phase of all three original single-exciton states e1, e2,

and e3, that belong to the chosen Hamiltonian, can be compared with the reconstructed val-

ues. In the simplest way to start, values for the frequency Ωα
1 and Ωβ

2 very close to the peak of
each resonance are chosen. For every single-exciton resonance the coefficients are calculated
with a combination of every biexcitonic resonance to find out which combination reaches
the best reconstruction. ”Best“ means minimizing the squared error. The found combina-
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8 Localized Spectroscopy

State Type Ω1 Ω2
∣∣ce

1

∣∣ ∣∣ce
2

∣∣ ∣∣ce
3

∣∣ arg(ce
1) arg(ce

2) arg(ce
3) Error

e1 O 0.115 0.104 0.988 0.500 0.500 0.000
e1, f1 Ra 2.60 3.60 0.154 0.385 0.910 0.287 0.605 0.729 0.20
e1, f2 R 2.60 −2.50 0.365 0.445 0.817 0.554 0.562 0.966 0.38
e1, f3 R 2.60 0.49 0.221 0.032 0.975 0.471 0.721 0.783 0.05
e1, f3 R 3.12 0.49 0.199 0.034 0.979 0.465 0.685 0.707 0.03
e1, f3 Pb 2.60 0.49 0.247 0.077 0.966 0.433 0.281 0.787 0.06
e1, f3 P 3.12 0.49 0.205 0.081 0.975 0.414 0.190 0.710 0.04

e2 O 0.977 0.169 0.131 0.500 0.500 0.500
e2, f1 R −2.35 3.60 0.895 0.387 0.221 0.554 0.954 0.869 0.20
e2, f2 R −2.35 −2.50 0.913 0.364 0.181 0.781 0.849 0.847 0.16
e2, f3 R −2.35 0.49 0.942 0.204 0.268 0.727 0.714 0.839 0.09
e2, f3 R −3.20 0.49 0.910 0.194 0.366 0.839 0.846 0.919 0.17
e2, f3 P −2.35 0.49 0.969 0.136 0.206 0.725 0.680 0.907 0.03
e2, f3 P −3.20 0.49 0.949 0.110 0.294 0.836 0.820 0.952 0.09

e3 O 0.180 0.980 0.083 0.000 0.500 0.500
e3, f1 R 0.25 3.60 0.244 0.890 0.386 0.357 0.796 0.893 0.22
e3, f2 R 0.25 −2.50 0.509 0.856 0.092 0.582 0.726 0.180 0.32
e3, f3 R 0.25 0.49 0.782 0.122 0.611 0.535 0.232 0.965 1.17
e3, f1 P 0.25 3.60 0.360 0.858 0.366 0.342 0.792 0.903 0.28

aReconstructed with realistic localization ratio of (1 : 0.1205 : 0.0761)
bReconstructed with perfect localization ratio (1:0:0)

Table 8.1:
Comparison of original (O) with reconstructed coefficients (R for realistic, P for perfect localization)
for reconstructing single-exciton wave functions: The phase is written in multiples of 2π and the en-
ergies are in microelectron volts. The first column shows – additionally to the single-exciton state –
the corresponding biexciton state to see immediately at which resonance the signal is measured. The
phase of the complex wave function coefficients given here is determined only without a global phase.
In the last column the error in relation to the original state is given, calculated as given in Sec. 8.2.2. As
an additional information, the values of all worse combination of single-exciton states with biexciton
states are shown in gray. Tab. 8.2 shows the combination of the states in order of the error.

tions are listed in Tab. 8.2 in order of recombination quality.The table contains – additionally
to the best combinations of exciton and biexciton states – all other combinations, they are
shown in gray. All chosen measurement points are also noted in Tab. 8.1.

The results of Tab. 8.2 are reflected in Fig. 8.1a: The resonance that has the least influence
of other resonances is at e2 with f3. It is the most separated peak, so just a few factors can
distort the reconstruction. The second strongest resonance for e1 is at f1 but on the one hand,
this resonance is weaker than e1 with f3 and on the other hand, there are clearly visible influ-
ences from the e3 with f1 peak. For the last possible peak at e1 with f2, there is no coupling
due to the given Hamiltonians of Sec. 6.5.5. So the elimination of the sum is no acceptable
assumption since this resonance does not dominate the other terms of the sum. Doing the
assumption anyway, the result is no longer trustworthy. With same arguments, e2 is linked
with f3 and e3 with f1 for reconstruction.

In conclusion, two points have to be considered to find a good evaluation point to measure
the spectrum for recombining the wave function coefficients: On the one side, the resonance
should have a high oscillator strength to justify eliminating the sum over the exciton states in
Eq. (8.7). On the other side one can say, the less neighboring influences interfere, the better
the reconstruction.
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8.2 Reconstruction of the wave functions

Pos.
Exc.
state

Biexc.
state

Error 1 Error 2

1. e1 f3 0.25 0.05
e1 f1 0.47 0.20
e1 f2 0.48 0.38

2. e2 f3 0.19 0.09
e2 f2 0.24 0.16
e2 f1 0.61 0.20

3. e3 f1 0.35 0.22
e3 f2 0.67 0.32
e3 f3 1.23 1.17

Table 8.2:
Comparison of the reconstruction qual-
ity of chosen combinations of exciton
and biexciton states and comparison
of the error calculation values: As an
additional information, the values of
all worse combination of single-exciton
wave functions with two-exciton wave
functions are shown in gray. The po-
sitions are with respect to error 2 for
the realistic localization. Also the two
ways of error calculation presented in
Sec. 8.2.2 can be compared in this table.

It is possible to improve the reconstructed quantities by moving the measurement points in
direction of lower influences of other resonances. Changing Ω1 for reconstructing e1 in higher
single-exciton energies reduces foreign influences. The quality of reconstruction reaches a
maximum choosing Ω1 = 3.12µeV instead of Ω1 = 2.60µeV, as shown in Tab. 8.1.

By the same reasoning, reconstructing quality of state e2 would improve if the measure-
ment point was moved in negative Ω1 direction. But this is not the case as can be seen also
in Tab. 8.1, in the last and third last line of state e2. To find an explanation for this, it is nec-
essary to have a more detailed look at the imaginary part of the spectrum (Fig. 8.1b). While
the influences of other resonances for higher single-exciton energies have different signs, for
lower exciton energies there is just one sign visible. That means that in that special case, al-
though there are more influences on the right hand, the quality of reconstructing decreases
for lower energies since the foreign contributions for higher energies interfere destructively.
But since the quality of reconstruction is not known by an experimentalist that do not know
the origin state and consequently cannot compare the newfound coefficients, however, the
point is moved in negative direction. It will show up that the quality of reconstruction then
will increase after filtering state e1 (see Sec. 8.4). Since the third exciton state e3 is influences
from both sides, no new measuring point is chosen.

Although the quality of reconstruction can be improved in Sec. 8.4, up to this point there is
an overall good matching for both the amplitude and the relative phase. The coefficients for
the reconstructed wave functions are illustrated in Fig. 8.7.

All discussed coefficients thus far are reconstructed with the localization ratio 1 : 0.1205 :
0.0761. The reconstruction is also executed with a perfect relation of excitations (1 : 0 : 0).
These recombined states are also listed in Tab. 8.1.

Summary

Input: Dipole moments µg i for all quantum dots i

Measurement: Full DQCS signal S(Ω1,Ω2,T3) to select Ωα1 and Ωβ2 with a main contribu-
tion by a selected single-exciton state, localized DQCS signal Sloc

E1
(i ,eα, fβ,T3) for desired

single-exciton coefficient ceα
i

Output: Expansion coefficient of the exciton wave function ceα
i via ceα

i = Sloc
E1

(i ,eα, fβ,T3)/(
µ∗

g i ·E loc
1,i (Aωeαg )

)
where A is found by the normalization of the wave function |eα〉
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Figure 8.7:
Illustration of reconstructed singe-exciton wave function coefficients: The original wave function coef-
ficients are compared with different versions of reconstructing. The measurement points can be found
in Tab. 8.1. An overall good agreement is visible.
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8.2 Reconstruction of the wave functions

8.2.4 Biexciton states

Similar to the procedure for excitons, the wave functions can be reconstructed for biexcitons.
As a prerequisite, the exciton reconstruction has to be completed and all ce

i must be known.

Since the Liouville pathway (Fig. 7.10) shows that the second pulse excites the double ex-
citon state, the focus is on signal (8.5). Choosing again eα as the desired single-exciton state
and fβ as the desired double exciton state for reconstructing the wave function coefficients
yields analogously to Sec. 8.1.3

Sloc
kIII,E2

( j ,eα, fβ,T3) = 1

ħ3

∑
e ′

∑
k 6= j

1

(Ωβ
2 −ξ fβg )(Ωα

1 −ξeαg )

·
(
µe ′ fβ ·E4

∗(ω fβe ′) µg e ′ ·E3
∗(ωe ′g ) ceα

k c
fβ∗
k j µ

∗
g j ·E loc

2, j (ω fβeα) µ∗
g eα ·E1(ωeαg ) e

−iξ fβe′T3

−µg e ′ ·E4
∗(ωe ′g ) µe ′ fβ ·E3

∗(ω fβe ′) ceα
k c

fβ∗
k j µ

∗
g j ·E loc

2, j (ω fβeα) µ∗
g eα ·E1(ωeαg ) e−iξe′g T3

) (8.9)

for a fixed time interval T3. The signal is measured again around the frequencies Ωα
1 = ωeαg

and Ω
β
2 = ω fβg . The corresponding fβ to each single-exciton state is listed in Tab. 8.2. Here,

again it is assumed that the part of eα and fβ dominates the sum over e and f , respectively.
The index j of the electric field of pulse 2 disappears in case of a perfect symmetric geometry
where the electric field strength does not depend on which quantum dot is excited.

Next, it is still possible to act analogously to Sec. 8.2.3 and introduce again a proportionality
factor: ∑

k 6= j
ceα

k c
fβ∗
k j B

fβ
eα = Sloc

E2
( j ,eα, fβ,T3)/

(
µ∗

g j ·E loc
2, j (ωeαg )

)
. (8.10)

Here, the factor B
fβ
eα combines all parts that do not depend on k or j . Both Liouville pathways

again share the same distribution. The form of Eq. (8.10) should again not depend on the
dephasing model.

Eq.(8.10) represents a system of n equations (n is the number of quantum dots) and is
again underdetermined: Although the signal is measured for every quantum dot j and dipole
moments and single-exciton wave functions are requested to be known, for n quantum dots
there still remain n2 −n +1 unknowns.

A next logical step for isolating the biexciton wave function c
fβ∗
k j would be bringing the

single-exciton wave function ceα
k to the left hand side of Eq. (8.10). But mind that B

fβ
eα depends

on the single and biexciton states. Thus, it is not possible to apply the orthogonality relation.

Dividing by B
fβ
eα before applying the orthogonality relation is no alternative since these factors

are unknown and should consequently not appear on the right hand of the equation.

The solution of this problem is computing the ratio of the factor of two arbitrary exciton

states instead of calculating B
fβ
eα for every eα.

For this purpose, Eq. (8.10) is multiplied with c
eγ
j and the sum over j is taken to obtain

∑
j ,k 6= j

ceα
k c

eγ
j c

fβ∗
k j B

fβ
eα =

∑
j

c
eγ
j Sloc

E2
( j ,eα, fβ,T3)/

(
µ∗

g j ·E loc
2, j (ωeαg )

)
.

Exchanging eα and eγ and the index k with j on the left hand and using that c f ∗
k j = c f ∗

j k
yields ∑

j ,k 6= j
c

eγ
j ceα

k c
fβ∗
k j B

fβ
eγ =

∑
j

ceα
j Sloc

E2
( j ,eγ, fβ,T3)/

(
µ∗

g j ·E loc
2, j (ωeαg )

)
,
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so that by dividing the two equations the ratio

B
fβ
eα

B
fβ
eγ

=∑
j

c
eγ
j

ceα
j

Sloc
E2

( j ,eα, fβ,T3)

Sloc
E2

( j ,eγ, fβ,T3)

is gained. It can be calculated by the measured or derived quantities for each combination of
two arbitrary exciton states eα and eγ.

As a next step, again another arbitrary exciton state is chosen – eζ. Multiplying Eq. (8.10)

by B
fβ
eζ and dividing by B

fβ
eγ yields

∑
k 6= j

ceα
k c

fβ∗
k j B

fβ
eζ = Sloc

E2
( j ,eα, fβ,T3)/

(
µ∗

g j ·E loc
2, j (ωeαg )

)
·B

fβ
eζ /B

fζ
eα . (8.11)

The special about this equation is that the ratio B
fβ
eζ /B

fζ
eγ is known and consequently the

complete right side of Eq.(8.11). The previous calculation of the ratio B
fβ
eζ /B

fζ
eγ can thus be

exploited to obtain that the sum of the left side of Eq. (8.11) does no longer depend on eα!
Consequently, the goal of isolating the biexciton wave function is getting closer.

It is just necessary to multiply Eq. (8.11) with ceα∗
i , to sum over eα, and to apply the orthog-

onality condition (Eq. (6.25)) to obtain

c
fβ∗
i j B

fβ
eζ =

∑
eα

ceα∗
i Sloc

E2
( j ,eα, fβ,T3)/

(
µ∗

g j ·E loc
2, j (ωeαg )

)
·B

fβ
eζ /B

fζ
eα .

For extracting the coefficients of the biexciton wave function it is possible to use Eq. (6.24)

analogously to finding the single-exciton coefficients. With
∑

i , j<i

∣∣∣c fβ
i j

∣∣∣2 = 1 the coefficients c
fβ
i j

are obtained. Finally, via

| fβ〉 =
∑

i , j<i
c

fβ
i j |i j 〉

the biexciton wave function of coupled quantum dots can be reconstructed. Since fβ is cho-
sen arbitrarily, every biexciton wave function can be reconstructed.

Demonstration

Here, the example of a three coupled quantum dot system (Hamiltonian showed in Sec. 6.5.5)
is continued. Localization is again discussed for the perfect ratio 1 : 0 : 0 and the reached
quality in the theoretical way of Ch. 5.

Tab. 8.3 presents the resulting coefficients for reconstructing the biexciton wave functions.

Again, absolute value and phases can be compared for the coefficients c f1

i j , c f2

i j , and c f3

i j for all
quantum dot combinations i and j with i < j . That means, that in this example for n = 3,

Eq. (8.10) has 32−3
2 +1 = 4 unknowns: three biexciton wave functions, c

fβ∗
12 , c

fβ∗
13 , and c

fβ∗
23 , and

the factor B
fβ
α .

A closer look to Tab. 8.3 shows: Again, original states and reconstructed values agree but not
as well as for the exciton state. The reason is that the biexciton wave functions are calculated
on basis of the single-exciton wave functions, which are already not exact. The propagation
of uncertainty deteriorates the reconstruction in the biexciton case.

116



8.2 Reconstruction of the wave functions

State Type Ω1 Ω2

∣∣∣c f
12

∣∣∣ ∣∣∣c f
13

∣∣∣ ∣∣∣c f
23

∣∣∣ arg(c f
12) arg(c f

13) arg(c f
23) Error

f1 O 0.093 0.118 0.989 0.500 0.500 0.000
Ra centeredb 0.095 0.409 0.907 0.559 0.691 0.440 0.22
R shiftedc 0.093 0.361 0.928 0.626 0.767 0.512 0.16

Pd centered 0.140 0.377 0.915 0.313 0.709 0.424 0.19
P shifted 0.089 0.322 0.939 0.349 0.789 0.503 0.14

f2 O 0.988 0.113 0.106 0.500 0.500 0.500
R centered 0.726 0.656 0.206 0.635 0.424 0.223 0.61
R shifted 0.738 0.647 0.193 0.689 0.484 0.281 0.59
P centered 0.778 0.601 0.184 0.705 0.424 0.257 0.51
P shifted 0.793 0.586 0.166 0.762 0.508 0.684 0.48

f3 O 0.124 0.987 0.106 0.000 0.500 0.500
R centered 0.049 0.963 0.264 0.315 0.498 0.276 0.08
R shifted 0.041 0.955 0.294 0.719 0.563 0.358 0.10
P centered 0.297 0.921 0.253 0.879 0.464 0.270 0.15
P shifted 0.273 0.935 0.225 0.981 0.544 0.358 0.12

aReconstructed with realistic localization ratio of (1 : 0.1205 : 0.0761)
bThe frequencies for the measurement points for exciton states are all centered at the resonance peak as given

in Tab. 8.1.
cThe frequencies for the measurement points for exciton states are shifted from the center of the resonance as

given in Tab. 8.1.
dReconstructed with perfect localization ratio (1:0:0)

Table 8.3:
Comparison of original (O) with reconstructed coefficients (R for realistic, P for perfect localization) for
reconstructing two-exciton wave functions: As for single-exciton states, the phase is written in multi-
ples of 2π and the energies are in microelectron volts. Here, instead of the measurement point fre-
quencies Ω1 and Ω2, it is just given, if the measurement points for calculating the coefficients for the
exciton states are centered at or shifted away from the resonance peak for all three coefficients. Oth-
erwise, the frequencies for all three coefficients would have been printed. The values of the centered
and the shifted points are the same as in Tab. 8.1. The phase values are reconstructed up to an arbi-
trary global phase. In the last column the error relative to the original state is given as explained in
Sec. 8.2.2.

Summary

Input: Dipole moments µg i for all quantum dots i and the single-exciton wave function
coefficients ce

i

Measurement: Full DQCS signal S(Ω1,Ω2,T3) to find Ωα1 and Ωβ2 and localized DQCS signal

Sloc
E2

( j ,eα, fβ,T3) for desired biexciton coefficient c
fβ
i j

Output: Expansion coefficient c
fβ
i j of the double-exciton wave function via c

fβ
i j = ∑

eα ceα∗
i ·

Sloc
E2

( j ,eα, fβ,T3)/
(
B

fβ
eζ µ

∗
g j ·E loc

2, j (ωeαg )
)
·B

fβ
eζ /B

fγ
eα , with the relation B

fβ
eα/B

fβ
eγ = ∑

j c
eγ
j /ceα

j ·
Sloc

E2
( j ,eα, fβ,T3)/Sloc

E2
( j ,eγ, fβ,T3) and B

fβ
eα is found by the normalization of the biexciton

wave function | fβ〉
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8 Localized Spectroscopy

8.3 Filtering different resonances

In two-dimensional spectra sometimes it is not immediately clear to which exciton state a
resonance peak belongs. The spectrum presented in this chapter can serve as an example.
The peak at e3 with f2 can perhaps be just a side peak of the peak at e2 with f2 or a peak by
its own that is covered by the resonance with the strong oscillator strength. To find this out,
it would be desirable to remove individual contributions for different exciton states.

Protocol

It turns out that it is possible to gain more detailed spectra by removing certain resonances
which might occlude important information. For this purpose, Eq. (8.1) is interpreted as sum
over individual contributions qe for different exciton states e:

SkIII (Ω1,Ω2,T3) = ∑
e

µ∗
g e ·E1(weg ) qe (Ω1,Ω2,T3)

=
(6.27a)

∑
e

∑
i

ce∗
i µ∗

g i ·E1(weg ) qe (Ω1,Ω2,T3).
(8.12)

For the localized signal (8.3) it is

Sloc
kIII,E1

(i ,Ω1,Ω2,T3) =∑
e

ce∗
i µ∗

g i ·E loc
1,i (weg ) qe (Ω1,Ω2,T3). (8.13)

Filtering a contribution of a selected resonance eα means subtracting the contribution of
eα from the sum over e:

SFilter
kIII

(Ω1,Ω2,T3) = ∑
e
µ∗

g e ·E1(weg ) qe (Ω1,Ω2,T3)

−µ∗
g eα ·E1(weαg ) qeα(Ω1,Ω2,T3)

=
(6.27a)
(8.12)

SkIII (Ω1,Ω2,T3)−∑
i

ceα∗
i µ∗

g i ·E1(weαg ) qeα(Ω1,Ω2,T3)

= ∑
e 6=eα

∑
i
µ∗

g e ·E1(weg ) qe (Ω1,Ω2,T3).

(8.14)

Since the wave function coefficients ce
i are gained in Sec. 8.2.3 for all i and e, there is only

the individual contribution qeα that has to be derived. It can be found by constructing a scalar
product by multiplying Eq. (8.13) with ceα∗

i and summing over i . Again, the orthogonality
relation (Eq. (6.25)) is used to obtain only the contributions from the exciton state eα:

qe (i ,Ω1,Ω2,T3) =∑
i

ceα∗
i SkIII (i ,Ω1,Ω2, t3)/

(
µ∗

g i ·E loc
1,i (ωeg )

)
.

Finally, the right hand side of Eq. (8.14) serves as filtered spectrum. These contributions can
be extracted from the measured data.

Demonstration

In Fig. 8.8b-j the filtered spectrum of the absolute values of the spectrum from Fig. 8.1a is
shown. As a reference, Fig 8.1a is plotted again in Fig. 8.8a next to the three filtered spectra
for each filtering resonance e1, e2, and e3 for a direct comparison. The filtered spectra are
presented both, for a perfect localization (Fig 8.8b-d) and for a realistic one in Fig. 8.8e-j. The
realistic ones differ additionally in the position of the measuring point.
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Figure 8.8:
Comparison of filtered spectra: Part (a) shows the absolute values of the original spectrum for the

three coupled quantum dot model. Part (b)-(d) presents the filtering method for a perfect localization.
While (b) filters the exciton state e1, (c) filters state e2 and (d) filters e3. Part (e)-(g) shows same for a
realistic localization and in part (h)-(j) the states are removed for the shifted measurement points like
discussed in Sec. 8.2.3. All subfigures are plotted in the same range.
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8 Localized Spectroscopy

All three rows seems very similar at first glance. The first column shows the original spec-
tra without resonances belonging to state e1, the center column is almost without peaks for
exciton state e2 and the right column lets the resonances belonging to e3 vanish. The figures
show that the filtering method works quite well.

Similar to Sec. 8.2, the difference between perfect and imperfect localization is not very
large. It is although quite visible that the perfect simulation filters the resonances belonging to
certain states completely while the second and third row shows larger influences of the other
exciton states. In Fig. 8.8f and 8.8i the peak at e2 with f2 is much smaller than in Fig. 8.8c. That
means that also contributions of e3 have been removed. Furthermore, not all contributions
of e2 are vanished. In Fig. 8.8i, there is still a clear peak at e2 with f3.

Since the last row shows spectra whose signal is measured at points shifted from the main
resonance, the last discussed result shows additionally that for using the filtering method it
seems better to use frequencies near the original resonance peak.

Fig. 8.8g does not differ from Fig. 8.8j because shifting the measurement point did not suc-
ceed and thus they are calculated with the same signal and consequently the figures are the
same.

The peak seen at state e3 combined with f3 in all figures on the left, most clearly seen in
Fig. 8.8h, shows that the peak at e3 with f2 is a peak by its own. That can also be proven by
the small resonance at e3 with f2 in Figs. 8.8c, f and i. After deducting the contributions of e2,
still a weak resonance is seen. So that peak is not only a shoulder of the strong resonance at
e2 with f2, and the filtering method supplies an answer to the question from the beginning of
Sec. 8.3.

8.4 Improvement of reconstructing wave functions with filtering
method

The filtering method presented in the previous section can help to improve the quality of the
reconstruction: To calculate the expansion coefficients of the wave functions the values of the
spectrum near various resonances are used. These values are more accurate the less foreign
influences from other resonances come into play. Consequently, it makes sense to subtract
states whose coefficients have already been reconstructed.

The results show that filtering can improve the quality of the reconstruction. Tab. 8.4 shows
the filtered single and two-exciton states for a perfect localization while Tab. 8.5 gives the
results for a realistic localization. Fig. 8.9 visualizes these results for the perfect and realistic
localization.

For the exciton state e3 filtering of two states is possible since the states e1 and e2 are now
known. The values are not better for every single quantum dot but there is still an overall
improvement visible.

Since all exciton states are known, filtering all these states is possible while reconstruct-
ing the biexciton states. Again, the filtering technique supplies results of higher quality than
without, as can be seen in Tab. 8.3.
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8.4 Improvement of reconstructing wave functions with filtering method

State Type Ω1 Ω2
∣∣ce

1

∣∣ ∣∣ce
2

∣∣ ∣∣ce
3

∣∣ arg(ce
1) arg(ce

2) arg(ce
3) Error

e1 O 0.115 0.104 0.988 0.500 0.500 0.000
e1, f3 P 3.12 0.49 0.205 0.081 0.975 0.414 0.190 0.710 0.04

e2 O 0.977 0.169 0.131 0.500 0.500 0.500
e2, f3 P −3.20 0.49 0.949 0.110 0.294 0.836 0.820 0.952 0.09
e2, f3 Fa −3.20 0.49 0.969 0.138 0.205 0.845 0.858 0.650 0.03

e3 O 0.180 0.980 0.083 0.000 0.500 0.500
e3, f1 P 0.25 3.60 0.360 0.858 0.366 0.342 0.792 0.903 0.28
e3, f1 F 0.25 3.60 0.381 0.920 0.093 0.316 0.794 0.968 0.16
e3, f1 FFb 0.25 3.60 0.138 0.987 0.081 0.302 0.796 0.873 0.02

State Type Ω1 Ω2

∣∣∣c f
12

∣∣∣ ∣∣∣c f
13

∣∣∣ ∣∣∣c f
23

∣∣∣ arg(c f
12) arg(c f

13) arg(c f
23) Error

f1 O 0.093 0.118 0.989 0.500 0.500 0.000
P shiftedc 0.089 0.332 0.939 0.349 0.789 0.503 0.14

Fd shifted 0.244 0.367 0.898 0.852 0.819 0.525 0.22
f2 O 0.988 0.113 0.106 0.500 0.500 0.500

P shifted 0.793 0.586 0.166 0.762 0.508 0.684 0.48
F shifted 0.845 0.507 0.171 0.628 0.400 0.347 0.36

f3 O 0.124 0.987 0.106 0.000 0.500 0.500
P shifted 0.273 0.935 0.225 0.981 0.544 0.358 0.12
F shifted 0.201 0.946 0.256 0.879 0.580 0.364 0.10

aReconstructed after filtering state e1
bReconstructed after filtering states e1 and e2
cThe frequencies for the measurement points for exciton states are shifted from the center of the resonance as

given in Tab. 8.1.
dReconstruction after filtering all single-exciton states e1, e2, and e3

Table 8.4:
Comparison of original (O) and reconstructed coefficients for a perfect localization (P) with coeffi-
cients that are calculated after filtering selected states (F for filtering one single-exciton state and FF for
filtering two single-excitonic states): The original and reconstructed results are repeated from Tabs. 8.1
and 8.3 for a better comparison. Here, only the results for measurement points shifted from the center
of the resonance peak are listed. Still, the phase is written in multiples of 2π (up to an arbitrary global
phase). and the energies are in microelectron volts. All columns have the same meaning as in Tabs. 8.1
and 8.3. In Tab. 8.5 the results for a realistic localization are found.
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8 Localized Spectroscopy

State Type Ω1 Ω2
∣∣ce

1

∣∣ ∣∣ce
2

∣∣ ∣∣ce
3

∣∣ arg(ce
1) arg(ce

2) arg(ce
3) Error

e1 O 0.115 0.104 0.988 0.500 0.500 0.000
e1, f3 R 3.12 0.49 0.199 0.034 0.979 0.465 0.685 0.707 0.03

e2 O 0.977 0.169 0.131 0.500 0.500 0.500
e2, f3 R −3.20 0.49 0.910 0.194 0.366 0.839 0.846 0.919 0.17
e2, f3 Fa −3.20 0.49 0.966 0.169 0.196 0.845 0.795 0.576 0.03

e3 O 0.180 0.980 0.083 0.000 0.500 0.500
e3, f1 R 0.25 3.60 0.244 0.890 0.386 0.357 0.796 0.893 0.22
e3, f1 F 0.25 3.60 0.333 0.940 0.078 0.315 0.792 0.137 0.11
e3, f1 FFb 0.25 3.60 0.202 0.978 0.047 0.345 0.790 0.161 0.01

State Type Ω1 Ω2

∣∣∣c f
12

∣∣∣ ∣∣∣c f
13

∣∣∣ ∣∣∣c f
23

∣∣∣ arg(c f
12) arg(c f

13) arg(c f
23) Error

f1 O 0.093 0.118 0.989 0.500 0.500 0.000
R shiftedc 0.093 0.361 0.928 0.627 0.768 0.513 0.16
Fd shifted 0.287 0.360 0.888 0.798 0.789 0.529 0.23

f2 O 0.988 0.113 0.106 0.500 0.500 0.500
R shifted 0.738 0.647 0.193 0.690 0.485 0.282 0.59
F shifted 0.845 0.498 0.194 0.574 0.383 0.362 0.35

f3 O 0.124 0.987 0.106 0.000 0.500 0.500
R shifted 0.041 0.955 0.295 0.719 0.564 0.358 0.10
F shifted 0.210 0.943 0.260 0.766 0.575 0.375 0.11

aReconstructed after filtering state e1
bReconstructed after filtering states e1 and e2
cThe frequencies for the measurement points for exciton states are shifted from the center of the resonance as

given in Tab. 8.1.
dReconstruction after filtering all single-exciton states e1, e2, and e3

Table 8.5:
Comparison of original (O) and reconstructed coefficients for a realistic localization (R) with coeffi-
cients that are calculated after filtering selected states (F for filtering one single-excitonic state and FF
for filtering two single-excitonic states): In comparison to Tab. 8.4, here the results for a realistic lo-
calization are found. Again, the original and reconstructed results are repeated from Tabs. 8.1 and 8.3
for a better comparison. Only the results for measurement points shifted from the center of the reso-
nance peak are listed. Still, the phase (that is determined up to an arbitrary global phase) is written in
multiples of 2π and the energies are in microelectron volts. All columns have the same meaning as in
Tabs. 8.1 and 8.3.
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Figure 8.9:
Illustration of reconstructed biexciton wave function coefficients: The original wave function coeffi-
cients are compared with different versions of reconstructing. The measurement points can also be
found in Tab. 8.1.
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9 Conclusion and Outlook

In essence, this thesis is about spatiotemporal control of optical excitations in nanostructures.
Foundations and the main results of this topic form part II, the first thematic part of the work.
Part III deals with coherent nonlinear spectroscopy methods so that in part IV an application
of the localization can be treated.

Part II starts with investigations of many different nanostructures targeted at localization of
light. For this purpose, focus lies on the plasmonic properties of metals. A material model is
generated based on the introduced theoretical foundations. Band structure calculations are
presented and the dipole transition matrix elements and a linear absorption spectrum of light
is calculated as first results.

In Ch. 3 the plasmonic effects of nanospheres are investigated. Wavelength dependent en-
hancements of the electric field near the surface of the sphere are found while the strongest
one is always in polarization direction of the incoming light. It has also been shown, that plat-
inum or gold coatings of silver nanospheres can transfer the plasmonic enhancement over
long distances. Other metals in vicinity magnify the electric field due to plasmonic interac-
tions.

The examined properties are used in induced surface enhancement technologies like sur-
face enhanced Raman spectroscopy (see Sec. 3.4) or as a main effect that helps controlling
light within nanostructures (Ch. 5). All presented structures in that Ch. 5 aim at concentrat-
ing light within nanometer length scales and femtosecond time scales. A genetic algorithm is
designed, that optimizes the shape of incoming light pulses, to achieve a selected excitation of
coupled quantum systems. For this purpose, field distributions for different incoming pulses
are calculated by a Maxwell solver based on the finite element method. These distributions
are then compared via a cost function.

In the entire work, three coupled self organized GaAs/InAs quantum dots serve as a model
to demonstrate the localization of light. It turns out that 120° symmetric structures are partic-
ularly suitable for exciting only one arbitrary quantum dot. There exist different waveguide-
like geometries or antenna-like geometries that fulfill the requirements of localization. Sev-
eral different geometries with variable arrangements of the nanostructures are tested but they
are not analyzed completely nor even fully understood yet. For example, Tab. 5.1 shows dif-
ferent qualities of optimization for different scales. It is not clear, if the different results are
consequences of the randomness of the genetic algorithm or if they are physical effects.

Thus, many more investigations are conceivable. Especially, a future detailed evaluation
of the complex electric field in each spatial point in frequency domain may be helpful. This
analysis is omitted in this thesis because an already sufficient localization that is necessary for
localized spectroscopy is found even without a complete understanding of all physics within
the nanostructure.

Most works that try to localize light also use optimization algorithms. The effects of shaped
pulses on nanostructures are very complex, so that often physical reasons why a pulse has a
certain final form are not fully understood. Some works examine the behavior of light con-
centration depending on the pulse shape (e.g [MBS+11]) – often less by means of physics but
more of trial and error. Future investigation may gain new insight.

There also exist many ideas on how the simulation and the genetic algorithm may be im-
proved: for example, chirped pulses could be introduced and more than one population of
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9 Conclusion and Outlook

pulses may be calculated parallelly, thus mixing the best children of both populations. It is
desirable to find an allocation matrix that maps the electric field components of the incoming
pulses to the electric field components of all spatial points of interest within the nanostruc-
ture (cf. Sec. 5.2).

Continuing this thesis’ research, the achieved localization allows an extension of a multi-
dimensional coherent nonlinear spectroscopy method, the double quantum coherence tech-
nique. For this purpose, in part III the theoretical foundations of coherent nonlinear spec-
troscopy methods are given. Combining these techniques with the results of Ch. 5 leads to
part IV, which introduces and discusses localized spectroscopy – a method that allows recon-
structing delocalized wave functions of coupled quantum dots: A quantum state tomogra-
phy protocol is given that instructs how complex hybrid wave functions can be disentangled
into wave functions of the individual emitters. Detailed information on the couplings of the
individual quantum dots is found that is not available in far-field spectroscopy. The local-
ized spectroscopy method can be applied to a broad range of coupled emitters, for example
in semiconductor nanostructures, artificial light harvesting, pigments in photosynthesis or
composite systems like plasmon lasers.

The coefficients for decomposition the delocalized wave functions in a local basis are found
in order to reconstruct these delocalized functions – up to an arbitrary phase. The localiza-
tion for the first pulse, that is responsible for the ground state to single-exciton transition,
leads to the wave function coefficients for single-excitons. An additional localization of the
second pulse of double quantum coherence spectroscopy, that excites the single-exciton to
the double-exciton state, helps to extract the two-exciton coefficients.

Furthermore it turns out that localized spectroscopy can use as a filtering method to re-
move unwanted strong resonances of two-dimensional spectra to uncover weak or hidden
exciton resonances. This filtering method reduces the influences of neighboring resonances
and thus they improve the quality of wave function coefficients reconstruction. Of course,
this quality also depends on the quality of light concentration.

This work shows that measuring the signal near a resonance can be improved by moving
the measurement point in a direction with lower influences of other resonances. Due to de-
structive interference this process does not work in every case as is shown by example in
Sec. 8.2.3 on page 113: A shifted measuring point worsens the reconstruction quality of exci-
ton state e2 but after filtering other resonances, the quality improves for e2.

Consequently, an idea for further investigation in increasing the quality of reconstruction
may be averaging the signal over a number of measurement points. For example, the average
of four signal values in each direction of the two-dimensional plot around the resonance peak
could improve the reconstruction. Even integrating over a small area around the main peak
is conceivable. Additional weighting of the results with a Gaussian centered at the main res-
onance peak could provide the best results. But generally, the influences of other resonances
are not as strong as they seem: A Lorentzian decay is assumed – a Lorentzian shape decreases
usually slower than is the case in reality.

As for the area of application of the methods presented in this thesis, they are not limited
to the example of coupled self organized GaAs/InAs dots. In principle, they are applicable
to any system of dipole coupled two-level system emitters describable by Hamiltonian from
Eq. (6.23). Such a system can consist of plasmons in coupled metal nanoparticles, coupled
chromospheres, or colloidal quantum dots, as long as a sufficient localization technique ex-
ists.

As additional requirement the dipole couplings between the emitters should be greater
than the linewidth of the resonances (dephasing time) in order to be able to separate the delo-
calized states. For achieving a delocalization the detuning of the individual emitter transition
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frequency should be smaller than or have the same order of magnitude as the dipole-dipole
coupling – but still high enough to separate exciton states. Generalization to emitters with
more than two levels is possible although the appearing influences might be difficult.

All features of localized spectroscopy originally found in this thesis are not accessible in
standard far-field spectroscopy. The proposed quantum state tomography protocol opens a
new path for the detection of many-body interactions on the nanoscale.
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A Appendix

A.1 Quantum mechanical approach for equations of motion for the
polarization

In Sec. 2.2.2, the equations of motion for the intraband and interband transitions in a metal –
described by the dipole density P – are given. Here, a quantum mechanical approach derives
the equation to obtain a well controlled model system.

A.1.1 Intraband transitions

To calculate the equation of motion for the dipole density for intraband transitions in a quan-
tum mechanical approach, a Hamiltonian which describes the free dynamic of an electron in
an electric field is used. That means that only the part of the equation that deals with a free
electron and the part that deals with the electron-field interaction is of interest:

H =∑
k
εk a†

k ak︸ ︷︷ ︸
H0

−i q
∑
k

E ·∇∇∇k a†
k

↓
ak︸ ︷︷ ︸

Hel-field

.

The arrow means that nabla only affects the second operator. To obtain the current j =
e

meff

∑
k pσk , the equation of motion for the electron occupation σk = 〈a†

k ak〉 are calculated
that results in:

−iħ
(
∂

∂t
+ q

ħE ·∇∇∇k

)
σk (t ) = 0.

To introduce the electron-phonon scattering, the electron occupation is split in a well-known
Fermi function and a perturbation term caused by the electric field: σk = σ0

k +σ1
k . The first

part of the equation of motion is the stationary solution and vanishes, to the second part a
relaxation rate approximation is applied:

∂

∂t
σk

∣∣∣∣
el-ph

= ∂

∂t
σ0

k

∣∣∣∣
el-ph

+ ∂

∂t
σ1

k

∣∣∣∣
el-ph

= 0−γkσ
1
k .

In summary for the electronic transport is obtained:(
∂

∂t
+ q

ħE ·∇∇∇k

)
(σ0

k +σ1
k ) =−γkσ

1
k .

Reordering and neglect of the part proportional to Eσ1 ∼ E 2 (just linear response) yield:

∂

∂t
σ1

k =− e

ħE ·∇∇∇kσ
1
k −γkσ

1
k . (A.1)
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The current is defined by j = ħe
meff

∑
k kσk . Multiplying equation (A.1) by ħe

meff

∑
k k gives

ħe

meff

∑
k

k
∂

∂t
σ1

k︸ ︷︷ ︸
∂
∂t j

=− e

meff

∑
k

keE ·∇∇∇kσ
1
k︸ ︷︷ ︸

e2

meff
En

−γpl
ħe

meff

∑
k

kσ1
k︸ ︷︷ ︸

γpl j

with γk ≈ γpl. (A.2)

The ∇∇∇ could be evaluated by a partial integration and n is the electron density that results
from the sum over the Fermi function.

Eliminating the electron density from equation (2.13) and inserting it into equation (A.2)
yield:

∂

∂t
j = ε0ω

2
plE −γpl j .

Using ∂
∂t Pintra = j gives the equation of motion for the polarization (2.16).

A.1.2 Interband transitions

To deduce an equation of motion for the polarization for interband transitions in a quantum
mechanical approach, a Hamiltonian is used consisting of the free electron part H0 and the
part Hω which describes the dipole coupling to a classical electric field in Coulomb gauge. In
this simple model the part which represents the Coulomb interaction is neglected. Applying
the second quantization for the ground state d and the excited state p yields (see figure 2.2):

H dp =∑
k ′′′

(εp
k ′′′a

†
p,k ′′′ap,k ′′′ +εd

k ′′′a
†
d,k ′′′ad,k ′′′)︸ ︷︷ ︸

H dp
0

−∑
k ′′′′′′

[ddpa†
d,k ′′′′′′ap,k ′′′′′′ +dpda†

p,k ′′′′′′ad,k ′′′′′′ ]E (r , t )︸ ︷︷ ︸
H dp
ω

where a† and a are the fermion creation and annihilation operators of the lower d and the
upper p state, respectively. The energy of the states is ε, ddp is the dipole transition matrix
element and E is the electric field. The sum is taken over the electronic modes.

The macroscopic polarization P (1)
inter is the sum taken over the microscopic polarizations

p (1)
k ′′′ weighted with the corresponding dipole matrix element and divided by the volume V (cf.

Eq. (2.21)):

P (1)
inter =

1

V

∑
k

(
p (1)

k ·dpd +p (1)*
k ·d∗

pd

)
with p (1)

k = 〈a†
d,k ap,k〉. (A.3)

The index ’1’ denotes the first transition (d-p).

The equation of motion for the microscopic polarization is obtained by Heisenberg’s equa-
tion of motion:

iħ ∂

∂t
p (1)

k = [p (1)
k , H dp]−.
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Therefore two commutators have to be calculated. With

[p (1)
k , H dp

0 ]− =∑
k ′′′

(εp
k ′′′ [a†

d,k ap,k , a†
p,k ′′′ap,k ′′′ ]−︸ ︷︷ ︸

a†
d,k ap,k′′′δk′′′ ,k

+εd
k ′′′ [a†

d,k ap,k , a†
d,k ′′′ad,k ′′′ ]−︸ ︷︷ ︸

−a†
d,k′′′ ap,kδk′′′ ,k

)

=(εp
k −εd

k ) a†
d,k ap,k︸ ︷︷ ︸

p (1)
k

and

[p (1)
k , H dp

ω ]− =−∑
k ′′′′′′

(ddp [a†
d,k ap,k , a†

d,k ′′′′′′ap,k ′′′′′′ ]−︸ ︷︷ ︸
0

+dpd [a†
d,k ap,k , a†

p,k ′′′′′′ad,k ′′′′′′ ]−︸ ︷︷ ︸
a†

d,k ad,k′′′′′′δk′′′′′′ ,k−a†
p,k′′′′′′ ap,kδk′′′′′′ ,k

)E (t )

=−dpd(a†
d,k ad,k︸ ︷︷ ︸

nd
k

−a†
p,k ap,k︸ ︷︷ ︸

np
k

)E (t )

result:

[p (1)
k , H dp]− = [p (1)

k , H dp
0 ]−+ [p (1)

k , H dp
ω ]− = (εp

k −εd
k )︸ ︷︷ ︸

ħω1

p (1)
k −dpd(nd

k −np
k )E (t ).

After repeating all these steps analog for the second transition (p-s instead of d-p), one ob-
tains:

[p (2)
k , H ps]− = [p (2)

k , H ps
0 ]−+ [p (2)

k , H ps
ω ]− = (εs

k −εp
k )︸ ︷︷ ︸

ħω2

p (2)
k −dsp(np

k −ns
k )E (t ).

The energy difference is given by εp
k − εd

k = ħω1 and εs
k − εp

k = ħω2. The occupation from the
lower bands is obtained from Fermi function calculations and for the upper bands the occu-
pation can be set to zero.

The equation of motion for the microscopic polarizations (see also [CK99, HK04]) reads[
iħ ∂

∂t
− (ħω1 + iγ1)

]
p (1)

k (t ) =− (nd
k −np

k )dpdE (t ) and[
iħ ∂

∂t
− (ħω2 + iγ2)

]
p (2)

k (t ) =− (np
k −ns

k )dspE (t )
(A.4)

where phenomenological damping parameters γ1 and γ2 are included, which suit the exper-
iments, to the energy of the band gap. If constant energy gaps ħω1 and ħω2 are assumed,
equation (A.3) and N = 1

V

∑
k nk can be used to get:[

iħ ∂

∂t
− (ħω1 + iγ2)

]
P (1)

inter(t ) =− (N d −N p)|dpd|2E (t ) and[
iħ ∂

∂t
− (ħω2 + iγ2)

]
P (2)

inter(t ) =− (N p −N s)|dsp|2E (t ).
(A.5)
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Comparison with the classical model

This subsection is aimed to write equation (A.5) only with known parameters from section
2.2.3. For this purpose, a transform of equation (A.5) is done to compare it with (A.6), pro-
vided by reference [DRK+10]:

χ̂(ω) =A1ε1

(
1

ħω1 −ħω− iγ1
+ 1

ħω1 +ħω+ iγ1

)
+ A2ε2

(
1

ħω2 −ħω− iγ2
+ 1

ħω2 +ħω+ iγ2

) (A.6)

where ε j = ħω j for j = {1,2} is used. The factor e iφ belongs to the more general approach of
the dielectric function and can be neglected in two level systems.

The following calculations are only shown for the first transition, the p-s transition
works analogously. For the first step an inverse Fourier transform is needed p̂ (1)

k (ω) =∫ ∞
−∞ p (1)

k (t )e−iωt d t to transfer equation (A.4) into the frequency domain (the hat symbolizes
the Fourier transform of the function):∫ ∞

−∞

([
iħ ∂

∂t︸ ︷︷ ︸
−ħω

−(ħω1 + iγ1)
]

p (1)
k (t )

)
e−iωt dt =− (nd

k −np
k )dpd

∫ ∞

−∞
E (t )e−iωt dt .

The replacement of the time derivation follows from
∫ ∞
−∞ f ′(t )e−iωt dt = iω f̂ (ω). This equa-

tion can be shown by partial integration. The microscopic polarization in frequency domain
reads:

p̂ (1)
k (ω) =

−(nd
k −np

k )dpdÊ (ω)

−ħω−ħω1 − iγ1
. (A.7)

To find the conjugated microscopic polarization, equation (A.4) is conjugated and trans-
formed again with p̂ (1)

k (ω) = ∫ ∞
−∞ p (1)

k (t )e−iωt dt :

[
−iħ ∂

∂t︸ ︷︷ ︸
ħω

−(ħω1 − iγ1)
]∫ ∞

−∞
p (1)∗

k (t )e−iωt dt︸ ︷︷ ︸�p (1)∗
k (ω)

=− (nd
k −np

k )d∗
pd

∫ ∞

−∞

E (t )∈R︷ ︸︸ ︷
E∗(t )e−iωt dt︸ ︷︷ ︸

Ê (ω)

.

That yields:

�p (1)∗
k =

−(nd
k −np

k )d∗
pdÊ (ω)

ħω−ħω1 + iγ1
. (A.8)

Now equation (A.7) and (A.8) is inserted into the macroscopic polarization

P̂ (ω) = 1

V

∑
k

[
p̂ (1)

k (ω)ddp + �p (1)∗
k (ω)d∗

dp + p̂ (2)
k (ω)dps + �p (2)∗

k (ω)d∗
ps

]
.

If a constant energy gap ħω1 and ħω2 is assumed, with N = 1
V

∑
k nk can be found:

P̂ (ω) =− (N d −N p)|dpd|2Ê (ω)

(
1

−ħω−ħω1 − iγ1
+ 1

ħω−ħω1 + iγ1

)
− (N p −N s)|dsp|2Ê (ω)

(
1

−ħω−ħω2 − iγ2
+ 1

ħω−ħω2 + iγ2

)
.

(A.9)
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A.1 Quantum mechanical approach for equations of motion for the polarization

Because of the identity

D̂(r ,ω) = ε0Ê (r ,ω)+ P̂ intra(r ,ω) = ε0Ê (r ,ω)+ε0χ̂(r ,ω)Ê (r ,ω)

= ε0(1+ χ̂(r ,ω))Ê (r ,ω) = ε0ε̂(r ,ω)Ê (r ,ω)

with ε̂(r ,ω) as Fourier transform of ε(r , t ) in the Drude model, equation (A.9) has to be di-
vided by Ê (ω) and ε0 to obtain the susceptibility:

χ̂(ω) = 1

ε0
(N d −N p)|dpd|2

(
1

ħω1 −ħω− iγ1
+ 1

ħω1 +ħω+ iγ1

)
+ 1

ε0
(N p −N s)|dsp|2

(
1

ħω2 −ħω− iγ2
+ 1

ħω2 +ħω+ iγ2

)
.

(A.10)

Now, this equation can be compared with equation (A.6) of the interband transition part of
the dielectric function and the relations between the parameters provide

A1ε1 = 1

ε0
(N d −N p)|dpd|2 and A2ε2 = 1

ε0
(N p −N s)|dsp|2

that yields to the equation of motion of the polarization with the known parameters (2.17).
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A.2 Atomic wave functions

In this section the hydrogen wave functions and the atomic orbitals are given explicitly as
needed in Sec. 2.3.2.

A.2.1 Hydrogenic wave functions

In general, the hydrogen wave function can be split in the hydrogen radial part R and in
spherical harmonics Y :

Ψnlm = Rnl (r )Ylm(θ,φ).

The explicit form of the hydrogen wave functions of the outer orbitals are (according to
[Dem05] and [Bei02]):

Ψ5,0,0(x, y, z, Zeff) = 1

46875 a4
0

p
5π

e−
p

x2+y2+z2 Zeff
5 a0

√√√√ Z 3
eff

a3
0

×(9375 a4
0 −7500 a3

0

√
x2 + y2 + z2 Zeff +1500 a2

0

√
x2 + y2 + z2

2
Z 2

eff

−100 a0

√
x2 + y2 + z2

3
Z 3

eff +2
√

x2 + y2 + z2
4

Z 4
eff)

Ψ4,1,0(x, y, z, Zeff) = 1

512 a3
0

p
5π

e−
p

x2+y2+z2 Zeff
4 a0 z Zeff

√√√√ Z 3
eff

a3
0

×(80 a2
0 −20 a0

√
x2 + y2 + z2 Zeff +

√
x2 + y2 + z2

2
Z 2

eff)

Ψ4,1,±1(x, y, z, Zeff) = ∓ 1

512 a3
0

p
10π

e−
p

x2+y2+z2 Zeff
4 a0

±i arctan(x,y)
√

x2 + y2 Zeff

√√√√ Z 3
eff

a3
0

×(80 a2
0 −20 a0

√
x2 + y2 + z2 Zeff +

√
x2 + y2 + z2

2
Z 2

eff)

Ψ4,2,0(x, y, z, Zeff) = 1

1536 a2
0

p
π

e−
p

x2+y2+z2 Zeff
4 a0 (−1+ 3z2√

x2 + y2 + z22 ) (
√

x2 + y2 + z2
2

) Z 2
eff

√√√√ Z 3
eff

a3
0

×(6−
√

x2 + y2 + z2 Zeff

2 a0
)

Ψ4,2,±1(x, y, z, Zeff) = ∓ 1

256 a2
0

p
6π

e−
p

x2+y2+z2 Zeff
4 a0

±i arctan(x,y) z
√

x2 + y2 Z 2
eff

√√√√ Z 3
eff

a3
0

×(6−
√

x2 + y2 + z2 Zeff

2 a0
)

Ψ4,2,±2(x, y, z, Zeff) = 1

512 a2
0

p
6π

e−
p

x2+y2+z2 Zeff
4 a0

±2 i arctan(x,y)
√

x2 + y2
2

Z 2
eff

√√√√ Z 3
eff

a3
0

×(6−
√

x2 + y2 + z2 Zeff

2 a0
)
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A.2 Atomic wave functions

The wave functions are transfered into Cartesian coordinates for an easier calculation of the
overlap with other orbitals with known lattice positions in Cartesian coordinates. Here, a0 is
the Bohr radius and Zeff the effective atomic number. Mind the case differentiation between
positive and negative values of the arccosine function [BSMM00].

A.2.2 Atomic orbitals

The orbitals ϕm corresponds to the hydrogen wave functions as shown here [AF96, Dem05]:

ϕ1(x, y, z) = s =Ψ5,0,0 = 1

46875 a4
0

p
5π

e−
p

x2+y2+z2 Zeff
5 a0

√√√√ Z 3
eff

a3
0

×(9375 a4
0 −7500 a3

0

√
x2 + y2 + z2 Zeff +1500 a2

0

√
x2 + y2 + z2

2
Z 2

eff

−100 a0

√
x2 + y2 + z2

3
Z 3

eff +2
√

x2 + y2 + z2
4

Z 4
eff)

ϕ2(x, y, z) = pz =Ψ4,1,0 = 1

512 a3
0

p
5π

e−
p

x2+y2+z2 Zeff
4 a0 z Zeff

√√√√ Z 3
eff

a3
0

×(80 a2
0 −20 a0

√
x2 + y2 + z2 Zeff +

√
x2 + y2 + z2

2
Z 2

eff)

ϕ3(x, y, z) = px = 1p
2

(p−−p+) = 1p
2

(Ψ4,1,−1 −Ψ4,1,1)

= 1

512 a3
0

p
5π

e−
p

x2+y2+z2 Zeff
4 a0 x Zeff

√√√√ Z 3
eff

a3
0

×(80 a2
0 −20 a0

√
x2 + y2 + z2 Zeff +

√
x2 + y2 + z2

2
Z 2

eff)

ϕ4(x, y, z) = py = ip
2

(p−+p+) = ip
2

(Ψ4,1,−1 +Ψ4,1,1)

= 1

512 a3
0

p
5π

e−
p

x2+y2+z2 Zeff
4 a0 y Zeff

√√√√ Z 3
eff

a3
0

×(80 a2
0 −20 a0

√
x2 + y2 + z2 Zeff +

√
x2 + y2 + z2

2
Z 2

eff).

Mind, that the orbitals px and py cannot be related directly to the hydrogen wave functions.
The real px and py orbitals are replaced by a linear combination of the imaginary p+ and p−
orbitals, with p± =Ψ4,1,±1.

Analogous for d±1 and d±2 one obtains:

ϕ5(x, y, z) = d3z2−r 2 =dz2 =Ψ4,2,0 =
(

5

16
p
π

) 1
2

R42(r )
(
3z2 − r 2)r−2

=
(

1

4
p
π

) 1
2

(
Zeff

4 a0

)3

e−
Zeff

p
x2+y2+z2

4 a0

(
1− Zeff

√
x2 + y2 + z2

12 a0

)(
2z2 −x2 − y2)

ϕ6(x, y, z) = dx2−y2 = 1p
2

(d+2 +d−2) = 1p
2

(Ψ4,2,2 +Ψ4,2,−2) =
(

15

16
p
π

) 1
2

R42(r )
(
x2 − y2)r−2
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=
(

3

4
p
π

) 1
2

(
Zeff

4 a0

)3

e−
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p
x2+y2+z2

4 a0

(
1− Zeff

√
x2 + y2 + z2

12 a0

)(
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i
p

2
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i
p

2
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(
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4
p
π

) 1
2
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=
(

3p
π

) 1
2

(
Zeff

4 a0

)3

e−
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4 a0

(
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√
x2 + y2 + z2
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)
x y

ϕ8(x, y, z) = dy z = 1

i
p

2
(d+1 +d−1) = 1

i
p

2
(Ψ4,2,1 +Ψ4,2,−1) =

(
15

4
p
π

) 1
2

R42(r ) y z r−2

=
(

3p
π

) 1
2

(
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4 a0

)3

e−
Zeff

p
x2+y2+z2

4 a0

(
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√
x2 + y2 + z2
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)
y z

ϕ9(x, y, z) = dzx = 1p
2

(d+1 −d−1) = 1p
2
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(

15

4
p
π

) 1
2
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=
(

3p
π

) 1
2

(
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)3

e−
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p
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(
1− Zeff

√
x2 + y2 + z2
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)
z x.

For the radial part R42 = 2
√

1
5

(
Zeff
4 a0

) 3
2

e−
Zeff r
4 a0

(
Zeff r
4 a0

)2 (
1− Zeff r

12 a0

)
is used [Dem05]. The nomen-

clature of the indices shows the dependence of the non-radial part of the orbital function
[AF96].
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A.3 Fitting the effective atomic number with overlap calculations

A.3 Fitting the effective atomic number with overlap calculations

Eq. (2.19b) gives the overlap matrix elements S for two orbitals ϕn and ϕm :

Snm =∑
R j

eik ·(R j−Ri )
∫
ϕ∗

n(r −Ri )ϕm(r −R j )dV. (A.11)

The results of these overlap elements S are given in [Pap86] by the Slater-Koster parameters.
This enables a reconstruction of the effective atomic number because the orbitals ϕ depends
on Zeff.

The overlap is calculated between the same orbitals at a fixed wave vector k = 0. The sum
of Eq. (A.11) is taken only over the twelve nearest neighbors. Their contribution is too small.
Instead, the overlap of the atom with itself contributes. Its value is 1 and so the main contri-
bution of the sum. Together, the 13 integrals read

Sm =
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x, y, z, Zeff)dV

+
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x − g , y − g , z, Zeff)dV +
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x − g , y + g , z, Zeff)dV

+
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x + g , y − g , z, Zeff)dV +
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x + g , y + g , z, Zeff)dV

+
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x − g , y, z − g , Zeff)dV +
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x + g , y, z − g , Zeff)dV

+
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x, y − g , z − g , Zeff)dV +
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x, y + g , z − g , Zeff)dV

+
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x − g , y, z + g , Zeff)dV +
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x + g , y, z + g , Zeff)dV

+
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x, y − g , z + g , Zeff)dV +
∫
ϕ∗

m(x, y, z, Zeff)ϕm(x, y + g , z + g , Zeff)dV.

The twelve nearest neighbors are located from the central atom at position Ri = 0 in two of
the three Cartesian directions with a distance of the lattice constant g (see Fig. 2.9). The
functions ϕm describe the nine different orbital basis function from Sec. A.2.2.

The atomic number Zeff is optimized for supplying values for Sm that give a good agree-
ment with the Slater-Koster parameters of [Pap86]. The results of these calculations are given
in Tab. 2.2.
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A.4 Céa’s lemma

Céa’s lemma says that it exists a constant C independent of Vh with

‖u −uh‖ ≤C inf
vh∈Vh

‖u − vh‖.

The next lines outline the proof of this lemma, using the Galerkin orthogonality condition
and the Lax-Milgram theorem.

Since vh ∈ Vh ⊂ V , the variational equation (4.1) supplies a(u, vh) = b(vh) for all vh ∈ V .
Subtracting the discrete problem (4.4) from this equation provides the Galerkin orthogonality
condition [BWS10]:

a(u −uh , vh) = 0 ∀vh ∈Vh ,

that can be used to get the equality

a(u −uh ,u −uh) = a(u −uh ,u − vh) (A.12)

since vh −uh ∈Vh .
For the following three conditions are assumed: for the bilinear form a and the linear

form f exists constants α> 0,β,γ with

(1) a(v, v) ≥α‖v‖2 ∀v ∈V (“a is positive”),

(2) |a(u, v)| ≤β‖u‖‖v‖ ∀u, v ∈V (“a is continuous”),

(3)
∣∣ f (v)

∣∣≤ γ‖v‖ ∀v ∈V (“ f is continuous”).

According to the Lax-Milgram theorem, with these conditions there is an unique solution
u ∈V with a(u, v) = b(v) for all v ∈V . So

α‖u −uh‖2 ≤
(1)

a(u −uh ,u −uh) =
(A.12)

a(u −uh ,u − vh) ≤
(2)
β‖u −uh‖‖u − vh‖

and consequently ‖u−uh‖ ≤ β
α‖u−vh‖ can be concluded. Since that inequality is valid for all

vh ∈Vh , Céa’s lemma (4.8) is satisfied. Poisson’s equation satisfies the conditions (1-3).
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