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Zusammenfassung

In dieser Arbeit werden verschiedene doppelresonante Raman-Moden in Graphen, mehrlagigem
Graphen und Kohlenstoff-Nanoröhren analysiert, wobei hier Phonon-Phonon als auch Phonon-
Defekt Streuprozesse untersucht werden sollen. Als Graphen bezeichnet man eine atomare
Schicht aus sp2-hybridisiertem Kohlenstoff, welcher in einem hexagonalen Gitter angeordnet
ist. Dieses Material ist einer der Forschungsschwerpunkte moderner Festkörperphysik und hat
seit seiner erstmaligen Präparation im Jahr 2004 enormes wissenschaftliches Interesse auf sich
gezogen. Kohlenstoff-Nanoröhren hingegen sind schon länger bekannt und können, bildlich ge-
sprochen, durch das "Aufrollen" von Graphen erzeugt werden. Bei der Untersuchung dieser Mate-
rialsysteme hat sich vor allem die Raman-Spektroskopie als eine sehr umfassende und vielseitige
Methode zur Charakterisierung der elektronischen und vibronischen Eigenschaften etabliert.
Konsequenterweise wird deshalb auch in der vorliegenden Arbeit Raman-Spektroskopie und vor
allem doppelresonante Raman-Spektroskopie als experimentelle Methode zur Untersuchung der
Materialeigenschaften angewendet. Obwohl die theoretischen Grundlagen der doppelresonanten
Raman-Streuung schon vor mehr als einem Jahrzehnt etabliert wurden, stellen sich bis heute
Fragen bezüglich der exakten Streuprozesse, welche bestimmten Raman-Moden zu Grunde lie-
gen. Im Folgenden sollen diese Fragestellungen nun beantwortet werden.
Im ersten Teil der vorliegenden Arbeit werden wir die doppelresonante 2D-Mode in zweilagigem
Graphen untersuchen. Im Gegensatz zu einer Lage Graphen, besitzt die 2D-Mode in zweilagi-
gem Graphen eine komplexe Linienform mit mehreren Beiträgen, welche Anlass für zahlreiche
theoretische und experimentelle Arbeiten waren. Jedoch konnte bis heute keine eindeutige und
schlüssige Zuordnung der verschiedenen Beiträge zu den einzelnen Streuprozessen präsentiert
werden. Im Rahmen dieser Arbeit werden wir zeigen, dass die 2D-Mode aus drei Hauptbeiträ-
gen besteht, was im Gegensatz zu allen früheren Arbeiten auf diesem Gebiet steht. Des Weiteren
werden wir nachweisen, dass die dominanten Beiträge im Raman-Streuquerschnitt von Phono-
nen aus der K − Γ Richtung der Brillouin-Zone stammen. Im Folgenden werden wir auf den
quantenmechanischen Charakter von doppelresonanter Raman-Streuung eingehen, welcher sich
vor allem in den verschiedenen Intensitäten der einzelnen Beiträge manifestiert. Wir werden
demonstrieren, dass die destruktive und konstruktive Interferenz der einzelnen Beiträge mittels
externer Parameter gezielt manipuliert werden kann, was sich direkt in einer Veränderung der
Linienform widerspiegelt. Für eine exakte Analyse der Linienform der 2D-Mode ist weiterhin die
Berücksichtigung der Aufspaltung zwischen den beiden transversal optischen Phononenzweigen
entlang der K − Γ Richtung von großer Bedeutung. Wir werden eine Methode vorstellen, mit
deren Hilfe diese Aufspaltung direkt aus den experimentellen Raman-Spektren ermittelt werden
kann. Ebenso erlaubt unsere Methode die Berechnung der energetischen Aufspaltung zwischen
den elektronischen Bändern. Abschließend diskutieren wir noch die Polarisationsabhängigkeit
der 2D-Mode und zeigen, dass sogenannte innere und äussere Prozesse teilweise gezielt unter-
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drückt werden können. Die Ergebnisse dieser Arbeit führen schließlich zu einem umfassenden
Verständnis der komplexen 2D-Moden Linienform in zweilagigem Graphen.
Der zweite Teil dieser Arbeit befasst sich mit der doppelresonanten Raman-Streuung an Pho-
nonen und Defekten. Nach einer einführenden allgemeinen Diskussion zu Defekten in Gra-
phen werden wir speziell die D-Mode in Kohlenstoff-Nanoröhren untersuchen. Wir werden
zunächst ein allgemeingültiges Modell zur Beschreibung von doppelresonanten Streuprozessen
in Kohlenstoff-Nanoröhren präsentieren und anschließend auf die Durchmesserabhängigkeit der
D-Moden Frequenz eingehen. Betrachtet man diese Frequenz am resonanten optischen Über-
gang der Kohlenstoff-Nanoröhre, so lassen sich zwei verschiedene Abhängigkeiten beobachten:
Kleinere Kohlenstoff-Nanoröhren haben generell eine höhere D-Moden Frequenz; ebenso steigt
diese Frequenz für höhere optische Übergänge. Die zuvor experimentell beobachteten Diskon-
tinuitäten zwischen D-Moden Frequenzen von verschiedenen optischen Übergängen können als
eine Konsequenz von Durchmessereffekten auf die Dispersion der Phononen mit A1g Symmetrie
am K-Punkt erklärt werden. Die vorgestellten Ergebnisse dieses Kapitels bringen schließlich
alle vorherigen experimentellen Arbeiten in Einklang und liefern ein konsistentes Model zur
Beschreibung von doppelresonanten Streuprozessen in Kohlenstoff-Nanoröhren.
Im Gegensatz zu den intensiven defektinduzierten D- und D′-Moden, existieren in Graphen und
Kohlenstoff-Nanoröhren weitere Defektmoden mit niedriger Intensität. Ein Beispiel hierfür ist
die D′′-Mode, welche wir in Abhängigkeit der Lagenanzahl, der Laserenergie und des Nano-
röhrendurchmessers untersuchen. Wir weisen nach, dass diese Raman-Mode aus der Streuung
von longitudinal akustischen Phononen mit Defekten resultiert und in einlagigem Graphen eine
Dispersion von −80 cm−1/eV hat. Die charakteristische Linienform, welche eine asymmetrische
Flanke zu höheren Frequenzen aufweißt, kann durch die Beiträge verschiedener Phononen er-
klärt werden. Wir werden zeigen, dass der Hauptbeitrag von Phononen aus der K − Γ Richtung
stammt, wohingegen die zusätzlichen Beiträge von Phononen nahe dieser Hochsymmetrierich-
tung resultieren. Die Linienform der D′′-Mode für mehrlagiges Graphen spiegelt die Entwick-
lung der elektronischen Bänder am K-Punkt wider. Bei unseren Messungen an Kohlenstoff-
Nanoröhren kann die charakteristische asymmetrische Linienform nicht beobachtet werden, viel
mehr stellt sich die D′′-Mode stark verbreitert dar, was aus den diversen Beiträgen von Nanoröh-
ren in oder nahe der Resonanz mit der Laserenergie resultiert. Unser zuvor entwickeltes Model
zur Beschreibung von doppelresonanten Streuprozessen in Kohlenstoff-Nanoröhren kann eben-
falls erfolgreich auf die D′′-Mode angewendet werden und liefert eine sehr gute Übereinstimmung
mit unseren experimentellen Daten.
Im letzten Teil der vorliegenden Arbeit werden wir eine in-situ Untersuchung des laserinduzierten
Oxidierungsprozesses in Graphen präsentieren. Die Oxidierung kann hierbei gezielt und selektiv
durch das Bestrahlen von Graphen mit einem leistungsstarken Laser hervorgerufen werden. Die
zeitliche Entwicklung der D-, G- und 2D-Moden liefert dabei entscheidende Hinweise auf die
verschiedenen physikalischen Prozesse während der Oxidierung. Im Wesentlichen können wir
die Oxidierung in zwei aufeinanderfolgende Prozesse reduzieren: Erstens, tensile Verspannung
der Graphen-Schicht durch laserinduziertes Heizen und, zweitens, p-Dotierung durch Bindung
von Sauerstoff an die Graphen-Schicht. Weiterhin beobachten wir das unerwartete Absinken
des D/G-Verhältnisses mit zunehmender Bestrahlungszeit, was vor allem durch die Dotierungs-
abhängigkeit des D/G-Verhältnisses erklärt werden kann. Abschließend diskutieren wir AFM-
Aufnahmen der oxidierten Graphen-Schichten. Unsere vorgestellte Methode stellt einen Ansatz
zur gezielten Manipulation der Eigenschaften von Graphen auf der sub-µm Skala dar.
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Abstract

In this work, we present an analysis of double-resonant two-phonon and phonon-defect Raman
modes in graphene, few-layer graphene and carbon nanotubes. Graphene is a single-layer of
sp2-hybridized carbon atoms that arrange in a hexagonal lattice and has attracted tremendous
scientific interest since its first experimental preparation in 2004. Carbon nanotubes can be
considered as a rolled-up piece of graphene with periodic boundary conditions along its circum-
ference. The study of both systems is largely based on optical spectroscopy, namely Raman
spectroscopy, since this approach enables a thorough characterization of their electronic and
vibrational properties. Raman scattering and especially double-resonant Raman scattering are
also the experimental methods of choice for the analyses presented here. Although the concept
of double-resonant Raman scattering has been introduced more than a decade ago, the precise
scattering processes of certain Raman modes are still controversially discussed and thus need
clarification.
The present work can be separated into two main parts. The first part will, both theoretically
and experimentally, investigate the double-resonant 2D mode in Bernal-stacked bilayer graphene.
The 2D mode is a two-phonon process, in which two transverse optical (TO) phonons with op-
posite momentum from the edges of the Brillouin zone (K points) are scattered. In contrast to
single-layer graphene, this Raman mode presents a complex lineshape in bilayer graphene and
was subject of many theoretical and experimental works. However, a consistent explanation of
the different contributions to the characteristic peak shape is still lacking. By calculating the
two-dimensional double-resonant scattering cross-section of this Raman mode completely from
first principles, we will unravel the dominant contributions and provide a precise analysis of
the different scattering processes. In fact, by proving that the 2D mode in bilayer graphene
is composed of three dominant contributions, we contradict all previous works on this topic.
Moreover, we show that the dominant contribution to the Raman scattering cross-section stems
from so-called inner scattering processes with phonons from the K − Γ high-symmetry direc-
tion. A very important, but often neglected, key feature of double-resonant Raman scattering is
quantum interference between different scattering paths. We will demonstrate that the charac-
teristic lineshape of the 2D mode in bilayer graphene is dictated by interference effects. In fact,
the observed 2D-mode lineshape strongly depends on the electronic broadening, i.e., the inverse
lifetime of the electronic states, and can be manipulated by external parameters, such as doping,
defects, strain, or the laser excitation energy. We furthermore demonstrate that the splitting
between both TO phonon branches in bilayer graphene along K − Γ is of great importance for a
correct analysis of the 2D-mode lineshape. Using our correct assignment of the different peaks
in the 2D-mode spectrum, we present an approach to directly extract the TO phonon splitting
from experimentally measured Raman spectra. Furthermore, we show that the splitting of the
electronic bands can be also obtained using the presented analysis. Finally, we discuss the po-
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larization dependence of the 2D mode and demonstrate that inner and outer processes can be
partially selectively suppressed. Our results finally clarify the origin of the complex 2D-mode
lineshape in bilayer graphene.
The second part of this thesis is devoted to the analysis of double-resonant phonon-defect Ra-
man modes. First, we will start with a general discussion of defects in graphene. Afterwards, we
will present an analysis of the D mode in carbon nanotubes. In this context, different models
were proposed concerning the dependence of the D-mode frequency on the tube diameter. In
the present work, we attempt a harmonization all previous experimental results. As a start-
ing point, we will introduce a universal geometrical model to describe the diameter and energy
dependence of the resonant phonon wave-vector in the double-resonance process in carbon nan-
otubes. In the following, this model is applied to investigate the defect-induced D mode in
chiral carbon nanotubes in order to calculate the D-mode frequency of CNTs at their resonant
optical transitions. We will show that small-diameter tubes exhibit a higher D-mode frequency
in general and that higher resonant optical transitions exhibit a systematically higher D-mode
frequency. The experimentally observed discontinuities between different transition branches
of the D-mode frequency is shown to be a consequence of curvature effects that alter the TO
phonon dispersion around the K point. Furthermore, we show that the D-mode frequencies
arrange in branches and families, in analogy to other Raman modes in carbon nanotubes, such
as the RBM or the G mode. Our results finally harmonize the different previous experimental
observations regarding the diameter dependence of the D mode in carbon nanotubes.
Subsequently, we present an analysis of the defect-induced D′′ mode in graphene, few-layer
graphene, and carbon nanotubes. We demonstrate that this mode results from a double-resonant
intervalley scattering process of longitudinal acoustic (LA) phonons and defects. The experi-
mentally observed peak dispersion with laser excitation energy has a value of −80 cm−1/eV in
single-layer graphene. We explain the characteristic asymmetric lineshape with a high-frequency
tail by the dominant contribution of inner scattering processes with additional contributions from
phonons next to the high-symmetry direction. Furthermore, the lineshape is shown to depend
on the number of graphene layers and reflects the evolution of the electronic bands around the
K point. In carbon nanotubes, the lineshape of the D′′ mode is significantly broadened due to
contributions from different tubes in or close to resonance with the excitation laser. Using our
previously developed model, we observe very good agreement between our experimental data
and the theoretically predicted frequencies.
In the last section of this chapter, we will present an in-situ analysis of the laser-induced oxidation
process in single-layer graphene. As we will demonstrate, the oxidation process can be selectively
initiated by high-power laser irradiation of graphene. We will investigate the laser-induced
oxidation as a function of the irradiation time and discuss the different temporal evolution of
the D, G, and 2D modes. This analysis demonstrates that basal-plane oxidation in graphene
can be divided into two different stages, namely, tensile strain due to laser-induced heating
and subsequent p-type doping due to oxidation. During the oxidation process, we observe an
unexpected decrease of the D/G-mode ratio with increasing irradiation time and progressing
oxidation, which we explain with laser-induced annealing, as well as by the doping dependence
of the double-resonant D-mode scattering process. Finally, we present AFM measurements of
the laser-irradiated single-layer graphene samples and demonstrate the possibility of tailoring
graphene’s properties selectively at the sub-µm scale using a fully optical method.
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1. Introduction

Introduction
1

The first successful isolation of two-dimensional layered materials, such as graphene, a single
layer of sp2-hybridized carbon atoms, or transition-metal dichalcogenides (TMDs), is today
not much longer than ten years ago [1]. Despite their young history, both fundamental and
application-oriented research on these materials is the fastest evolving field in solid-state physics
[2–6]. This enormous scientific interest is usually motivated by quoting the extraordinary proper-
ties of these materials, such as high charge-carrier mobilities in graphene of up to 350000 cm2/Vs
[7, 8], high mechanical robustness with breaking strengths of 42 N/m [9], and superior thermal
conductivity of more than 5000 W/mK [10]. Consequently, Geim and Novoselov were awarded
with the Nobel Prize in physics in 2010 for their 'groundbreaking experiments regarding the
two-dimensional material graphene' [11]. The relative young history of two-dimensional mate-
rials can be understood from the fact that their existence was questioned for many decades.
Due to fundamental theorems from Landau [12], Mermin, and Wagner [13, 14], a long-range
order cannot exist in perfectly two-dimensional systems. Therefore, graphene was thought to
be destroyed at finite temperatures by thermal fluctuations. However, the existence of graphene
is explained with out-of-plane deformations of the graphene sheet [15], considering it as quasi
two-dimensional.

Graphene can be regarded as the building block for all other carbon allotropes with reduced
or higher dimensionality. Owing to the flexibility of the bonds between the carbon atoms, this
element appears in a variety of different structures [2]. It can be folded into zero-dimensional
fullerenes [16], reeled into one-dimensional carbon nanotubes (CNTs) [17] or layered into three-
dimensional graphite [18]. Thus, graphene bridges the gap between the low-dimensional fullerenes
and nanotubes and the bulk graphite. Ergo, graphene plays an important role in understanding
the electronic and vibrational properties of all other carbon allotropes.

Among all two-dimensional materials, graphene has experienced the most scientific interest
during the last decade. On the one hand, this might be explained with the easy availability of
high-quality samples by the simple 'Scotch tape' method. On the other hand, this has certainly
to do with the unique electronic bandstructure of graphene, which exhibits a linear dispersion
of the π bands around the six edges of the hexagonal Brillouin zone. Directly connected to this
linear dispersion are several interesting physical phenomena, such as the half-integer Quantum
Hall effect at room temperature [19]. Furthermore, the outstanding electronic and mechanical
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1. Introduction

properties favor graphene for future applications in microelectronic devices, such as sensors
[20, 21], high-frequency transistors [22, 23], or highly-efficient batteries [24]. However, the lack
of an intrinsic bandgap prevents graphene from integration in digital logic devices in order to
replace silicon technologies. In fact, one should not try to mimic "old" applications with new
materials, but should rather find new applications for these materials. Nevertheless, there is
still a broad range of possible applications of two-dimensional materials in future industries [25],
e.g., highly-sensitive, all-surface sensors [26, 27] or artificially engineered heterostructures for
light harvesting and photocurrent generation [28].
Besides their high potential in future applications, graphene and related two-dimensional mate-
rials are very interesting from a fundamental point of view. For instance, molybdenum disulfide
(MoS2) observes a transition from an indirect to a direct semiconductor for less than two layers
of MoS2 [29]. Graphene in turn is a zero-gap semimetal with a linear electronic dispersion and
allows the observation of fundamental physics such as the Hofstadter butterfly [30]. Fundamen-
tal research on graphene and TMDs often involves optical spectroscopy in order to probe various
material characteristics. In this context, especially Raman spectroscopy has presented itself as
a versatile experimental technique that allows the investigation of graphene’s properties [31]. In
fact, Raman scattering can give insights to the influences of defects [32, 33], doping [34, 35],
strain [36–38] or the interaction with the substrate [39]. Furthermore, fundamental physical
properties like the electron-phonon coupling or the mechanical strength can be probed [40–44].
In contrast to Raman scattering in conventional semiconductors, the Raman spectrum of graphene
is dominated by so-called double-resonant Raman modes [45]. Double-resonant Raman scatter-
ing is a second-order process that combines two phonons with opposite momenta in order to
satisfy momentum conservation. The concept of double-resonant Raman scattering has enabled
a detailed analysis of the interplay between the electronic and vibrational structure in graphene.
In fact, the measured peak shifts as a function of the laser energy are a convolution of the
electronic and phonon dispersion. Thus, by tuning the laser excitation energy, we can probe the
phonon dispersion if the electronic bandstructure is known or vice versa. In this context, the
double-resonant 2D mode has been the most discussed and investigated peaks in the Raman
spectrum of single- and few-layer graphene and is routinely used for graphene characterization
[46]. For instance, a single-Lorentzian and symmetric lineshape of the 2D mode is usually con-
sidered as a benchmark for single-layer graphene [46], although this assumption oversimplifies
the physics behind this scattering process [47–49]. Since the electronic bandstructure is uniquely
captured in the lineshape of a double-resonant Raman mode, the situation gets even more com-
plex when the 2D mode is analyzed in bi- and few-layer graphene. Here, the 2D mode is
composed of multiple peaks with changing intensity as a function of the laser energy. The origin
of these different contributions and the corresponding scattering processes in bilayer graphene
were controversially discussed for many years [50–54]. However, the absence of a profound un-
derstanding of the double-resonant Raman scattering processes in bilayer graphene inhibits a
more detailed analysis of experimental data.
Besides two-phonon scattering, momentum conservation in a double-resonant second-order Ra-
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man process can be also satisfied by scattering of a phonon and a defect. This results in the
so-called defect-induced D, D′, and D′′ modes. These Raman modes are frequently used to
quantize defect densities in defective graphene and derive geometrical parameters of the defects
[32]. Especially the D mode in carbon nanotubes was controversially discussed regarding the
diameter dependence of its frequency [55–58]. In fact, different dependences of the D-mode
frequency on the chiral index were suggested by various authors.
In this work, we will analyze various aspects of double-resonant Raman scattering in graphene,
few-layer graphene and carbon nanotubes. Special attention will be paid to the analysis of the
different double-resonant scattering processes in bilayer graphene and their assignment to the
different spectral features that are observed experimentally. We present a consistent interpreta-
tion of the 2D-mode spectrum in bilayer graphene and demonstrate that the lineshape can be
externally manipulated, e.g., by tuning the laser excitation energy or the defect density in the
sample. Double-resonant Raman scattering processes are also observed in carbon nanotubes,
however, due to multiple possibilities of phonon scattering in the electronic bandstructure, their
detailed analysis remains often futile. Here, we develop a geometrical model to analyze these
scattering processes in arbitrary carbon nanotubes and subsequently employ this new approach
to investigate the dependence of the D-mode frequency on the CNT diameter and the laser
excitation energy. In the following, we analyze a defect-induced double-resonant Raman mode
that results from scattering of LA phonons with defects. The origin of this Raman mode can
be traced to processes along the Γ − K direction with additonal contributions away from this
high-symmetry line, explaining the experimentally observed asymmetric lineshape. Our analysis
of double-resonant Raman processes in sp2-hybridized carbons is finalized by a discussion of the
laser-induced oxidation process in graphene. By carefully analyzing the temporal evolution of
the frequency, intensity, and width of the main Raman features in the spectrum of graphene,
we demonstrate that the oxidation process is composed of two subsequent steps, namely, tensile
strain and p-type doping.
The work is organized as follows: First, we will introduce the basic structural and electronic
properties of graphene and carbon nanotubes in Chapter 2. The fundamental concepts of first-
order and double-resonant Raman scattering will be explained in Chapter 3 together with a
brief introduction to the vibrational properties of the investigated systems. In the following, we
present a thorough analysis of the 2D mode in Bernal-stacked bilayer graphene in Chapter 4.
We will clarify the dominant scattering processes for this Raman mode and disprove all previous
works on this topic. Using our findings, we will present a simple approach to derive quantities
such as the splitting between the two transverse optical phonon branches or the splitting between
the electronic bands from experimental Raman spectra. Considering the quantum-mechanical
character of double-resonant Raman scattering, we demonstrate a consistent interpretation of
the 2D-mode lineshape and discuss its dependence on the electronic broadening. This chapter
is finalized by a discussion of the polarization dependence of the 2D mode in bilayer graphene.
Chapter 5 is devoted to the analysis of defect-induced double-resonant Raman modes in graphene
and carbon nanotubes. In Section 5.3, the double-resonant D-mode process in carbon nanotubes
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is analyzed. We will present a harmonization of all previous experimental results on this topic
and establish a simple geometric approach in order to model the double-resonance process in an
arbitrary carbon nanotube. We will emphasize the importance of curvature-dependent correc-
tions of the D-mode frequency and will show that the D-modes arrange in families and branches.
In the following, we will analyze the D′′ mode in graphene and carbon nanotubes in Section 5.4.
We discuss the origin of the asymmetric lineshape of this Raman mode and analyze its layer-
number dependence in graphene. The D′′ mode in carbon nanotubes is analyzed within the
framework of the previously developed model and we obtain good agreement between the cal-
culated frequencies and our experimental data. The last Section 5.5 of this Chapter will present
an in-situ analysis of the laser-induced graphene oxidation. We demonstrate that the oxidation
process in graphene can be selectively initiated. The temporal evolution of the G and 2D mode
is analyzed and reveals two different subsequent processes upon laser irradiation, i.e., tensile
strain due to laser-induced heating and subsequent p-type doping due to oxidation. Our results
demonstrate the possibility of sub-µm patterning of graphene by an all-optical method.
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Basic electronic properties of graphene and car-
bon nanotubes

2

In this chapter, we will briefly recapitulate the basic electronic and vibrational properties of
graphene and carbon nanotubes. Since the electronic band structure and phonon dispersion of
carbon nanotubes can be, to a certain extent, derived from graphene’s properties within the
zone-folding approach, we will start with the description of graphene.

2.1 Tight-binding approach for graphene

Graphene is a single layer of sp2-hybridized carbon atoms arranged in a hexagonal lattice. The
unit cell contains two atoms A and B, which each belong to a different sublattice [compare
Fig. 2.1 (a)]. The in-plane bonds between atom A and the three neighboring B atoms are
formed by σ bonds. The formation of strong σ bonds is responsible for the robustness of all
sp2-hybridized carbon allotropes [2]. Perpendicular to these in-plane bonds, the fourth valence
electrons form 2pz orbitals which can bind covalently to neighboring atoms, leading to the
formation of π-bands [2]. Electrons from this electronic band are usually referred to as π-
electrons. In contrast to the filled σ states, the π orbitals are half-filled and thus give rise to
electronic states in the visible energy range [2]. The distance between neighboring carbon atoms
is [59]

aCC ≈ 1.422 Å,

resulting in a lattice constant of

a0 =
√

3 aCC ≈ 2.463 Å.

The lattice vectors in Fig. 2.1 in real and reciprocal space are given by

a1 = aCC
2 (3,

√
3) a2 = aCC

2 (3, −
√

3) and (2.1)

k1 = 2 π√
3 a0

(−
√

3, 1) k2 = 2 π√
3 a0

(
√

3, 1), (2.2)
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Figure 2.1: (a) Lattice structure of graphene in real space. The atoms belonging to the two
interpenetrating sublattices are shown in gray and lightgray. a1 and a2 represent the lattice
unit vectors, the unit cell is indicated with dashed lines. (b) Brillouin zone of graphene in
reciprocal space with the high-symmetry points Γ, K, K′, and M. Important distances between
high-symmetry points are indicated.

respectively. The Fourier transformation of graphene’s real-space lattice is again a hexagonal
lattice, which is shown in Fig. 2.1(b). With respect to real space, the unit cell in reciprocal
space is rotated by 90◦ inside the graphene plane. The edges of the Brillouin zone are labeled
as K and K′, the center between them is named M, and the zone center is referred to as Γ.
Graphene can be easily prepared by the so-called 'Scotch tape' method. This technique relies
on the weak van-der-Waals forces between adjacent graphene layers compared to the strong in-
plane σ bonds between neighboring carbon atoms. In brief, natural graphite crystals are placed
on the sticky side of an adhesive tape and subsequently peeled apart several times. Finally,
the adhesive tape is gently pressed on a target substrate and slowly removed at an angle of
90◦ to the substrate surface. Using this method, large-area and single-crystal graphene samples
can be prepared with sizes of up to 200 × 50 µm2. All graphene samples in this work were
prepared by mechanical exfolilation on SiO2/Si substrates. The silicon dioxide thickness was
carefully chosen to be 100 nm, in order to increase the optical contrast of the graphene samples
on the substrates [60]. Freestanding graphene samples were prepared by exfoliation on SiO2/Si
substrates with 8 µm deep holes. These structured substrates were produced in the Fraunhofer
IZM by reactive ion etching (RIE), also known as Bosch process, using sulfur hexafluoride (SF6)
and octafluorocyclobutane (C4F8). We used natural graphite crystals from NGS Naturgraphit
GmbH, Germany.
The electronic bandstructure of graphene can be calculated within the tight-binding approxima-
tion, which was first demonstrated by Wallace in 1947 [61]. This method involves the interaction
with a certain number of nearest neighbors to an atom and uses Bloch functions as linear combi-
nations of the atomic wave functions. In the original work by Wallace [61], the overlap between
pz orbitals centered at different atoms was neglected. This assumption can reproduce the low-
energy region close to the K point. However, for a better agreement between calculation and
experiment on a larger energy range, the overlap between different pz orbitals and the interaction
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Figure 2.2: Electronic bandstructure of graphene from a third-nearest neighbor tight-binding
approach. The inset shows a magnified view of the electronic bands around a K point. The
linear dispersion of the electronic bands can be clearly seen.

with a larger number of neighboring atoms has to be considered.

By including third-nearest-neighbors, the band structure for the π valence and the π∗ conduction
band is given by

E±(k) = −(−2 E0 + E1) ∓


(−2 E0 + E1)2 − 4 E2 E3
2 E3

, (2.3)

where the Ei refer to different combinations of the overlaps and matrix elements of wave functions
from atoms A and B and are explicitly given in Ref. [62]. We therefore refer the reader to
this work or the more detailed derivation by Reich et al. in Ref. [63]. The expression in
Eq. (2.3) contains various parameters, which are usually chosen to reproduce ab-initio calculated
bandstructures for optical transitions below 4 eV. This set of parameters is usually referred to
as the 'Optical' fit and yields a deviation of less than 5 meV with ab-initio results [63]. The
resulting electronic bandstructure is shown in Figure 2.2. The crossing of the bands at the six
edges of the first Brillouin zone and the linearity of the electronic dispersion around these points
can be clearly seen. Since the valence and conduction bands touch at the K points, graphene is
said to be a semimetal.

In physics, a linear energy dispersion is otherwise only known from Dirac physics for mass-
less particles like photons. Therefore, electrons in graphene are referred to as 'massless Dirac
particles' [19]. This analogy only holds for the region next to the edges of the first Brillouin
zone, where the electronic bands can be considered linear. However, recent works showed that
the absence of screening effects in suspended graphene reshapes the linear dispersion due to
increased electron-electron interaction [64–66]. In fact, the electronic dispersion close to the K
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points can be described by a logarithmic divergence, as predicted by perturbation theory [66].
Nevertheless, charge carriers are commonly still considered as massless Dirac fermions.
Due to the linear dispersion of the electron and hole states around the K points, interesting
physical phenomena such as the anomalous half-integer Quantum Hall effect at room tempera-
ture arise [19, 67]. Furthermore, charge carriers, both electrons and holes, exhibit mobilities in
excess of 15 000 cm2/(Vs) at room temperature [18]. Moreover, even higher electron mobilities
of 200 000 cm2/(Vs) has been observed in suspended ultra-clean graphene at low temperatures
of 5 K [7]. Only recently, mobilities of up to 350 000 cm2/(Vs) have been realized in CVD-grown
graphene on hexagonal boron-nitride at T = 1.6 K [8]. For comparison, charge carrier mobilities
for electrons and holes in silicon are 1 400 and 450 cm2/(Vs) at 300 K temperature [68], re-
spectively. Despite these high mobilities compared to conventional semiconductors, graphene’s
potential for applications in transitors and logic devices is rather limited. This can be understood
from the lack of a bandgap in single-layer graphene that inhibit a controllable switching between
On and Off states. There are several approaches to overcome this problem, e.g., by functional-
ization of graphene with hydrogen for instance [69, 70] or by spatial confinement to graphene
quantum dots [71]. Another route to obtain a bandgap in graphene structures is the usage of
bilayer graphene. In these systems, a bandgap as large as 250 meV can be tuned by breaking
the inversion symmetry between the both layers [72], e.g., by applying an external electric field
in out-of-plane direction. However, bilayer graphene does not present the same electronic struc-
ture as single-layer graphene. In fact, the linear electronic bands from single-layer graphene
are replaced by two set of parabolic valence and conduction bands, as in usual semiconductors.
Therefore, electrons in bilayer graphene cannot be considered as massless, relativistic particles
but are said to be massive Dirac fermions. In principle, the electronic band structure of N -layer
graphene can be understood from zone-folding of the bulk graphite electronic dispersion along
the K − H high-symmetry direction (out-of-plane direction) [73]. Therefore, for layer numbers
N > 2, the electronic band structure is a superposition of contributions from massless and mas-
sive Dirac particles, depending whether n is even or odd. A more detailed introduction to the
electronic properties of bilayer graphene will be given in Chapter 4.1.

2.2 The electronic bandstructure of carbon nanotubes from a

zone-folding approach

Single-walled carbon nanotubes (CNTs) can be regarded as rolled-up, seamless graphene sheets
with typical diameters in the range of 7 to 15 Å [17]. Due to the periodic boundary conditions and
the reduced dimensionality of these structures, quantization effects occur, which can drastically
alter the electronic and vibrational properties as compared to graphene. In fact, depending on
the roll-up angle of the graphene sheet, semiconducting or metallic behavior of the CNTs can
be observed [74].
The crystallographic structure of a carbon nanotube is uniquely defined by the two integer
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indices (n1, n2), which define the so-called chiral vector c. The chiral vector represents the
circumference of the rolled-up structure and is given by [63]

c = n1 a1 + n2 a2. (2.4)

Since the geometry of CNTs is derived from graphene’s structure, the vectors a1 and a2 refer to
the unit-cell vectors of graphene. Figure 2.3 illustrates the chiral vector for the simple case of a
(5,2) carbon nanotube. The structure of CNTs is further described by the translational vector,
which is given by the shortest vector perpendicular to c that connects two equivalent points in
the lattice. Both, the chiral vector and the translational vector define the unit cell of a carbon
nanotube in real space. Closely related to the chiral vector is the chiral angle θ, which is the
angle enclosed by c and a1. For θ = 0◦ or θ = 30◦ the CNT is called a zig-zag or an armchair
tube, respectively. For all other angles in between, the tubes are referred to as chiral CNTs.
Since the chiral vector reflects the circumference of a CNT, the length of c is directly related to
the tube diameter d by [63]

d = |c|
π

= a0
π


n2

1 + n1 n2 + n2
2. (2.5)

The experimentally observed diameter distribution of a CNT ensemble depends on the different
synthesis methods and is usually in the range between 7 and 15 Å [63, 75]. For instance, CNTs
produced by high-pressure CO conversion (HiPco process) usually exhibit a Gaussian diameter
distribution with a mean diameter of 9.5 Å and spanning a range of approximately ±3 Å [76,
77]. The chiral angles in CNT ensembles are usually evenly distributed [63]. In contrast to
their diameter, the length of a CNT is typically orders of magnitude larger. Therefore, carbon
nanotubes are considered as being quasi one-dimensional.

The confinement of the graphene layer into a one-dimensional structure imposes periodic bound-
ary conditions along the circumferential vector c of the CNT, leading to a quantization of the
Brillouin zone. The reciprocal space of carbon nanotubes is spanned by the two vectors kz and
k⊥, which can be found by linear combination of graphene’s reciprocal vectors k1 and k2. The
Brillouin zone of CNTs is continuous along the vector kz, which can be identified with the axial
direction of the nanotube. In contrast, the Brillouin zone is quantized in k⊥ direction (along the
circumference). Thus, the Brillouin zone of CNTs contains of multiple subbands, which depend
in their number, length, spacing, and direction on (n1, n2). Using the tight-binding zone-folding
approach, these subbands can be described in a simplified model that assumes that all electronic
bands originate from the bandstructure of graphene. We will point out the limitations of this
model later in this chapter. For a more detailed introduction to the various CNT parameters
and variables that depend on the chiral indices, as well as an introduction to zone folding in
general, we refer the reader to the extensive works by Reich et al. and Maultzsch et al. [63, 78].
Here, we just want to introduce the parameter q, which is given by the number of graphene
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Figure 2.3: Lattice vectors for a (5,2) carbon nanotubes showing the chiral vector c and the
translational vector perpendicular to c. Armchair and zig-zag directions are indicated by the
blue, dashed lines.

hexagons per unit cell and also defines the number of electronic subbands. q can be written as

q (n1, n2) = 2

n2

1 + n2
2 + n1 n2



n(n1, n2) R(n1, n2) ,

where n is the greatest common divisor of n1 and n2; R has the value 3 if (n1 −n2)/3n is integer
and has the value 1 otherwise. The Brillouin zone of carbon nanotubes can be now understood as
parallel cuts through the Brillouin zone of graphene, where each subband is labeled by an integer
quantum number q. This representation of the Brillouin zone of a CNT is usually referred to as
the linear representation. Depending on (n1, n2), there might be a subband that contains the K
point of graphene’s Brillouin zone. In such case, the bandgap vanishes and the carbon nanotube
is said to be metallic [63]. If the subbands of a CNT do not contain the K point, but cut the
Brillouin zone close by, the bandgap has a finite value and the tubes exhibit semiconducting
behavior. Hence, according to their chiral indices, all CNTs can be classified into three different
families ν, which are given by

ν = (n1 − n2) mod 3. (2.6)

If ν = 0, the subbands cross the K point and the CNT is metallic; for ν = ±1 the nanotubes
exhibit semiconducting properties. As can be easily seen from Eq. (2.6), one-third of all carbon
nanotubes are metallic. However, in reality, most metallic, non-armchair carbon nanotubes
exhibit a small bandgap [79, 80]. The semiconducting CNTs are further separated into ν = −1
and ν = +1 tubes, depending if their closest subbands to K is on the K − M or on the K − Γ
high-symmetry direction, respectively. This situation is shown in Fig. 2.4. Here, we plot the
subbands of three different zig-zag carbon nanotubes inside the Brillouin zone of graphene, each
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Figure 2.4: Brillouin zones (top row) and electronic band structures (bottom row) of zig-zag
carbon nanotubes from different families ν. The contour plots in the top row represent the two-
dimensional electron bands from single-layer graphene around the K point. The dashed, white
lines denote the K − M high-symmetry directions. Solid lines represent the different subbands
of the CNT’s reciprocal space; the red line refers to the subband that is closest to K. The
electronic bandstructure was calculated from a third-nearest neighbor tight-binding approach.
Electronic bands that refer to the red subbands from the top row are shown in red colour in the
bottom row as well.
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Figure 2.5: Linear and helical Brillouin zone of a (4,1)-tube. The Brillouin zone in linear
representation consists of q = 14 bands (red lines), whereas in helical representation the Brillouin
zone can be reduced to one single band (blue line). The helical band can be easily visualized by
“counting” the hexagons along the reciprocal unit-cell vectors according to the chiral indices of
the carbon nanotube (compare the dashed arrows).

representing a different family ν. The red-colored line in each plot represents the subband
that runs closest to the K point. As expected, this band crosses the K point for the (9,0)
tube, whereas it runs close by for the (8,0) and (10,0) tubes. Below these contour plots, we also
show the electronic bandstructure of the corresponding carbon nanotubes along their continuous
reciprocal lattice vector kz. Again, the red-colored electronic bands correspond to the subbands
which are closest to K. We can clearly see the linear dispersion and the absence of a bandgap
for the metallic (9,0) tube. For both semiconducting CNTs we observe a finite bandgap, as well
as a parabolic dispersion of the electronic bands.
In the following, we want to introduce an alternative representation of the Brillouin zone of
carbon nanotubes, which is the so-called helical representation [63, 81]. As described above,
the number of subbands in linear quantum numbers corresponds to q. However, the value of
q increases quadratically with the tube diameter and therefore approaches large values rapidly.
For instance, the number of subbands for a (7,5) tube is q = 218, whereas a (9,7) has already
q = 386 subbands. Ergo, the visualization of bandstructures or phonon dispersions in linear
quantum numbers gets confusing quickly. By introducing helical quantum numbers, the q bands
in linear representation are transformed to an equivalent representation of n bands in helical
quantum numbers [81], typically enumerated by m. In general, n is much smaller than q, e.g.,
q = 386 but n = 1 for a (9,7) carbon nanotube.
In analogy to the linear representation, the electronic bandstructure in helical quantum numbers
is given by the cut of the helical wave-vector kz with graphene’s π and π∗ bands along its path in
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Figure 2.6: Linear and helical electronic bandstructure of a (4,1)-tube from a third-nearest-
neighbor tight-binding approach.

reciprocal space. By rearranging the q linear bands to n helical bands, the domain is extended by
the factor q/n and is defined in the interval (−q π/n a, q π/n a], where a is the lattice constant
of the CNT. Here, ( and ] indicate open and closed interval limits, respectively. The helical
wave-vector kz is given by

kz = 1
n

(−n2 k1 + n1 k2) + ∆k1(n1, n2) + ∆k2(n1, n2).

The ∆ki describe the shift of the different subbands and are given by

∆k1(n1, n2) = 2 n1 + n2 · (1 + r(n1, n2) · R(n1, n2))
R(n1, n2) · q(n1, n2)

and

∆k2(n1, n2) = 2 n2 + n1 · (1 + r(n1, n2) · R(n1, n2))
R(n1, n2) · q(n1, n2) .

The quantity r reflects the pitch of the screw axis in chiral tubes and is given by a cumbersome
expression depending on n1 and n2, which can be looked up in Ref. [63].

In contrast to the linear representation, the prefactors of k1 and k2 in helical quantum numbers
are by defintion always integers. This means that the m = 0 band always connects two Γ points,
which are given by Γ = (0, 0) and Γ1 = (−n2/n, n1/n) in units of the reciprocal lattice vectors.
All other m ̸= 0 bands can be found by a parallel translation of the zeroth band. In Figure 2.5,
we show the relation between the linear and helical representation of the Brillouin zone for a (4,1)
carbon nanotube. The red lines denote the q = 14 subbands in linear representation, whereas the
blue line indicates the n = 1 band in helical representation. The helical wave-vector can be easily
obtained by “counting” the Γ points (hexagons) along the reciprocal unit-cell vectors according
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to the chiral indices of the carbon nanotube (compare the dashed arrows). In Figure 2.6, we
also plot the corresponding electronic bands for the (4,1) tube in both representations. The
advantage of using the helical representation for visualization of the electronic bandstructure or
the phonon dispersion can be easily seen and does not need any further motivation. Moreover,
also Umklapp processes can be visualized easily.
Although not explicitly shown here, the zone-folding approach can of course also be used to
derive the phonon dispersion of carbon nanotubes from the phonon dispersion of single-layer
graphene.

2.3 Curvature effects on the electronic bandstructure and phonon

dispersion of carbon nanotubes

In the last section of this chapter, we want to comment on the limitations of the tight-binding
zone-folding approach for the calculation of the electronic bandstructure and phonon dispersion
of carbon nanotubes from the corresponding quantities in graphene.
The widely used zone-folding approach is based on the fundamental assumption that all angles
and bond lengths in the rolled-up carbon nanotube are equivalent to the initial lattice parameters
of graphene [82]. However, this approximation is certainly incorrect if the diameter of the CNT
becomes too small. The exact value of 'too small' cannot be ultimately given, however, below
we will discuss and compare different theoretical models that incorporate curvature effects.
As mentioned before, by deriving the electronic bands or the phonon dispersion by zone folding
from graphene’s properties, one will never observe curvature-related effects on these quantities.
A very prominent example of curvature effects is the radial-breathing mode (RBM) in carbon
nanotubes. This mode exhibits a strong diameter dependence on its frequency and is therefore
commonly used for characterization and (n1, n2) assignment [83, 84]. However, this Raman
mode is absent in single-layer graphene. In fact, the RBM-related phonon branch in carbon
nanotubes originates from the acoustic ZA phonon branch in single-layer graphene, which has
a frequency of ωZA = 0 cm−1 at Γ. Zone folding will never increase this Γ point frequency and,
therefore, will result in incorrect results when phonon dispersions are calculated. Nevertheless,
there are different approaches beyond the tight-binding zone-folding method in order to account
for curvature effects in carbon nanotubes.
The most basic approach to calculate the electronic and vibrational properties of carbon nan-
otubes is based on ab-initio density functional theory (DFT). However, as the number of carbon
atoms in the CNT unit cell correspond to 2q, these calculations will get time- and resource-
intensive very quickly for larger tubes. Moreover, most DFT codes rely on periodic boundary
conditions, thus, in order to avoid interaction between periodic images of the CNT unit cells,
a lot of vacuum is needed between them, which further increases the calculational costs. How-
ever, small carbon nanotubes with diameters around 4 Å were successfully calculated using the
SIESTA code [85]. Ab-initio calculations of electronic and vibrational properties of carbon nan-
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Figure 2.7: Comparison of the optical transition energies for the E11 and E22 transition as a
function of CNT radius for different calculational models. The different calculational approaches
are: (π − TB) Simple zone-folding approach of the π/π∗ bands of graphene, (o-TB) orthogo-
nal tight-binding that considers all four valence electrons of graphene, and (n-TB) symmetry-
adapted non-orthogonal tight-binding model that accounts for the overlap between the π and σ

orbitals. Figure was taken from Ref. [80].

otubes were also demonstrated for CNTs with diameters of up to 8 Å diameter [86]. However, if
the size of the unit-cell of a carbon nanotube contains more than 200 atoms, ab-initio approaches
exceed reasonable computing times on commonly used servers 1. Nevertheless, there are vari-
ous tight-binding based approaches that allow calculations of CNT structures within reasonable
computing times. These models commonly employ DFT-derived input parameters for the inter-
action of the π and σ orbitals and also consider the helical symmetry of carbon nanotubes, thus,
reducing the eigenvalue problem for the electrons to diagonalization of 8×8 matrices [80, 87–94].
For instance, Barros et al. demonstrated the analysis of torsional strain and curvature-induced
lattice relaxations in CNTs [93, 94]. Furthermore, Popov et al. presented the successful investi-
gation of various electronic and vibrational parameters on the carbon nanotube diameter using
a non-orthogonal tight-binding scheme [80, 87, 88]. Figure 2.7 compares the calculated optical
transition energies of a carbon nanotube for different tight-binding models. Damnjanović and
Milošević developed a symmetry-adapted modified group projector technique to calculate the
properties of CNTs [89–91]. This approach is implemented in the POLSym code [95], which will
be used in Chapter 5.3 for the calculation of phonon dispersions and electronic bandstructures
of carbon nanotubes.
As shown by various authors, the differences in bond length and angle can be ignored for
tube diameters above 10 Å [82, 87]. Moreover, Popov et al. demonstrated that differences of
the geometric parameters between the graphene lattice and an energetically optimized carbon
nanotube structure are less than 5 % for tube diameters above 6 Å [80, 87].

1Private communication with R. Gillen (TU Berlin)
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3. Inelastic light scattering

Inelastic light scattering
3

This chapter will introduce the basic concepts of inelastic light-scattering by phonons, i.e., Ra-
man scattering and double-resonant Raman scattering. First, we will briefly introduce phonons
as quasi-particles of the crystal vibrations and explain Raman scattering with phonons having
wave vectors q ≈ 0, i.e., the first-order Raman spectrum. However, besides the fundamental
Raman modes, in graphitic systems also q ̸= 0 phonons can be observed. This is due to a process
called double-resonant Raman scattering. The characteristics of this inelastic scattering process
will be explained afterwards. Finally, we will introduce the Raman spectrum of graphene, bilayer
graphene, and carbon nanotubes and discuss the characteristic Raman modes briefly.

3.1 Phonons

The quantized vibrations of atoms around their equilibrium positions in the lattice can be con-
sidered as quasi-particles and are usually referred to as phonons. These atomic vibrations are a
coupled motion of the entire lattice within the potential of the atomic nuclei. The interaction
between atoms in a crystal is given by an effective potential Veff that depends on the differ-
ent chemical or physical bonds between them, e.g., covalent bonds or van-der-Waals bonds.
For elongations u that are small compared to the interatomic distances, the potential can be
expanded in a Taylor series around the atoms’ equilibrium positions R0 [96, 97]

Veff = V0 +


i


∂V

∂ui



0
· ui +



i,j


∂2V

∂ui ∂uj



0
· ui uj + . . . (3.1)

The subscript '0' indicates that these expressions are calculated at the equilibrium position of
the nuclei. The first term does not vary as a function of u and thus can be identified with the
zero-point energy of the potential. The second (linear) term reflects the forces on the atoms
and is, by definition, zero, as the forces on the atoms at their equilibrium position must vanish.
The harmonic approximation relies on the assumption that all terms higher than the third
(quadratic) term in the Taylor series are negligible. The quadratic term

fij =


∂2V

∂ui ∂uj



0
(3.2)
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is a symmetric (fij = fji), positive-definite matrix, where the fij are referred to as the (mass-
weighted) interatomic force constants. Renormalization of this matrix by the atomic masses in
the lattice and Fourier transformation leads to the so-called dynamical matrix D. In a three-
dimensional crystal with α atoms, this matrix has the dimension 3α × 3α. Thus, in realistic
crystals with a large number of atoms, this leads to a tremendous amount of coupled differential
equations. The coefficients of the dynamical matrix D can be described by an eigenvalue problem
of the following form [96]

ω2ν =


D(R0 − R′
0) · ν ′. (3.3)

For the sake of clarity, indices in the summation were omitted. Here, ν is the time and space-
dependent amplitude of an atomic vibration with frequency ω and (R0 − R′

0) is the relative
distance of two unit cells in the crystal. By making benefit of the translational invariance of the
crystal (and other mathematical operations) the eigenvalue problem can be reduced to a 3β ×3β

matrix, where β refers to the number of unit cell atoms. Thus, the eigenvalue equation can be
written as [96]

ω2υ =


D(q) · υ′, (3.4)

where υ is the lattice-side independent amplitude of the vibration. In general, there are 3β

eigenvalues for every wave vector q. These eigenvalues reflect the phonon frequencies at the Γ
point (q = 0) or at any wave vector inside the Brillouin zone (q ̸= 0). In fact, the eigenvalues
are grouped into different branches, so-called phonon branches, that continuously evolve inside
the Brillouin zone. The dependence between the phonon frequency ω and the phonon wave-
vector q is referred to as the phonon dispersion ω(q). For a crystal in d dimensions, there are
always d phonon branches that satisfy ω(q → 0) → 0. These phonon branches are usually
referred to as acoustic phonons, as the slope of these branches close to Γ is approximately linear
and reflects the speed of sound in the crystal. Thus, in a crystal with β = 1 there are only
acoustic phonons. For β ≥ 2, also phonon branches with finite frequencies at the Γ point can
be observed. These vibrations are referred to as optical phonons. In general, when the unit cell
of a three-dimensional crystal contains β atoms, the phonon spectra consist of 3 acoustic and
3 (β −1) optical branches. The optical and acoustic phonons are further split into two transverse
and one longitudinal mode, which may be degenerate depending on the crystal symmetry.

3.2 First-order Raman scattering

The particle-like properties of phonons become manifested by the interaction with other quasi-
particles, like photons or electrons. One possibility of this interaction is Raman scattering, which
is an inelastic light-scattering process of photons by phonons which is mediated by electrons
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Figure 3.1: Schematic diagrams of Stokes, anti-Stokes and Rayleigh scattering. ℏωi represents
the energy of the incoming photon and ℏω0 the energy of the phonon. E0 denotes the ground
state of the system and Ei (i=1,2,3) excited states, which can be either real or virtual.

and holes. This effect was theoretically predicted in 1923 by Smekal [98] and experimentally
demonstrated in 1928 by Raman [99], yielding Sir Raman the Nobel prize in physics in 1930.
The Raman effect is today widely used to study the electronic and vibrational properties of all
kinds of solids and gases. Due to its contactless and non-destructive nature, Raman spectroscopy
has proven itself as a very versatile tool to investigate carbon systems like graphene or carbon
nanotubes [31, 63]. Although Raman scattering is described as scattering of photons with
phonons, the scattering process is mediated by electrons and holes. Thus, within perturbation
theory, Raman scattering is a third-order process including an electron-hole pair and a phonon.
The Raman process can be described from a macroscopic point of view. We assume an incoming
electro-magnetic wave E(r, t) with wave vector k and frequency ωi which propagates through
the material [100]

E(r, t) = Ei(ki, ωi) cos(ki r − ωi t). (3.5)

While traveling through the material, the radiation field causes a polarization P(r, t) of the
electron cloud around the atoms

P(r, t) = Pi(ki, ωi) cos(ki r − ωi t). (3.6)

The electric field and the polarization are connected via the materials susceptibility χ

Pi(ki, ωi) = χ(ki, ωi) Ei(ki, ωi). (3.7)

The susceptibility describes the polarizability of a material and can be altered periodically by
fundamental excitations of the lattice, i.e., phonons. The atomic displacements Q in these
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vibrations can be described by

Q(r, t) = Q(q, ω0) cos (q r − ω0 t) , (3.8)

where ω0 is the frequency of the lattice vibration. Expanding χ in a Taylor series with respect
to the normal modes of the lattice vibrations yields

χ(ki, ωi, Q) = χ0(ki, ωi) +


∂χ

∂Q



0
Q(r, t) + . . . (3.9)

Here, the first term describes the susceptibility when no lattice vibrations are present. The
following expressions represent vibrations of the first and higher orders. Combining Eq. (3.9)
and Eq. (3.7) results in

P(r, t, Q) = P0(r, t) + Pind(r, t, Q), (3.10)

where the induced polarization is given by

Pind(r, t, Q) =


∂χ

∂Q



0
Q(r, t) Ei(ki, ωi) cos (ki r − ωi t) (3.11)

=


∂χ

∂Q



0
Q(q, ω0) cos (q r − ω0 t) Ei(ki, ωi) cos (ki r − ωi t) . (3.12)

Using addition theorems for the two cosine functions yields

Pind(r, t, Q) = 1
2


∂χ

∂Q



0
Q(q, ω0) Ei(ki, ωi)

· [cos ((ki + q) r − (ωi + ω0) t) + cos ((ki − q) r − (ωi − ω0) t)] . (3.13)

As can be seen, the emitted light consists of three contributions. First, the Rayleigh-scattered
light with frequency ωi. In this process, no phonons were involved, thus the scattering is elastic
and no energetic shift between the absorbed and scattered photons is observed. Usually, its
intensity is normally orders of magnitude stronger than the Raman scattered light. Furthermore,
we can identify two inelastically scattered contributions where the scattered photon exhibits
energies of ωi±ω0. These contributions are the Stokes (phonon creation) and anti-Stokes (phonon
annihilation) scattered photons, which contribute to the Raman signal. Ergo, a vibration is
called Raman-active if the polarizability of the crystal is changed under the respective vibration
of the atoms.

Equivalently, Raman scattering can be described from a microscopic viewpoint, which is schemat-
ically shown in Figure 3.1. Here, the incoming light excites an electron from the ground state
E0 to an energetically higher state. In the Stokes process, the electron inelastically scatters and
excites a phonon, thus, reducing the energy of the electron. In contrast, during the anti-Stokes
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process the electron annihilates phonons, leading to an increase in energy of the electron. Sub-
sequently, the electron recombines and a photon is emitted. The outgoing photon is shifted in
its energy by the energy of the created or annihilated phonon. This energy shift between the
incoming and outgoing photon is called the Raman shift and is typically measured in reciprocal
centimeters (cm−1).
During the Raman scattering process there must be energy and momentum conservation

ℏωi = ℏωs + ℏωph ℏki = ℏks + ℏ q

between the initial and the final state. Here, q is the momentum of the involved phonon, ℏ the
reduced Planck constant, and ki and ks are the momenta of the incoming and scattered photon,
respectively. When the momentum of the incoming light in the visible range is compared to the
dimension of the Brillouin zone, it becomes obvious that in a first-order scattering process only
Γ-point phonons can contribute to the Raman scattering process. The momentum of a photon
with λ = 500 nm is

ki = 2 π n

λ
= 0.034 1

nm = 0.0034 1
Å

where the refractive index of graphene with n = 2.7 at λ = 500 nm was chosen [101]. In contrast,
the border of the first Brillouin zone in graphene is at 4 π/(3 a0) (K point) and 2 π/(

√
3 a0) (M

point). In graphene, where a0 = 2.46 Å [59], this yields K ≈ 1.70 Å−1 and M ≈ 1.47 Å−1. Thus,
the photon wave-vector is more than two orders of magnitude smaller than the extension of the
first Brillouin zone. Hence, only phonons from the Γ point with q ≈ 0 can be probed in a first
order process. In a second order process the momentum conservation can also be fulfilled by
two phonons with opposite wave vector or by the scattering with a defect

q = q1 + q2

≈ 0

We will discuss a very prominent second-order Raman process in graphene, i.e., the so-called
double-resonant Raman scattering, in the following section.

3.3 Double-resonant Raman scattering

The anomalous peak shift of certain peaks in the Raman spectrum of graphite, e.g., the D

and 2D modes, as a function of laser excitation energy has been a longstanding question in
the research on graphitic carbons [102]. Although, the defect-related character of the D mode
and the corresponding phonons were identified early [103], the concrete scattering mechanism
remained unclear for the next 30 years. First phenomenological explanations of the observed
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Figure 3.2: (a) Schematic illustration of a two-phonon intervalley double-resonance process in
the bandstructure of single-layer graphene along the Γ−K−M−K′−Γ high-symmetry direction.
The electron-hole pair scatters with two phonons from the ν and µ phonon branches with wave
vectors q and −q. (b) Goldstone diagram for a double-resonant electron-hole scattering process
as depicted in (a).

effects were based on the resonant excitation of k = q phonons close to the K point of graphite
[104]. However, the correct explanation of the scattering process was given by Thomsen and
Reich in 2000 [45]. In this seminal work, the concept of double-resonant Raman scattering was
introduced and successfully applied to explain the different laser-energy dependent peak shifts
in the Raman spectrum of graphite.
Double-resonant Raman scattering is a second-order process that involves scattering with two-
phonons or a phonon and a defect [45, 47]. In contrast to the first-order Raman process as
described before, double-resonant Raman scattering involves phonons with q ̸= 0. Here, mo-
mentum conservation is guaranteed by a second phonon with opposite q vector (two-phonon
process) or by the elastic scattering with a defect (phonon-defect process). Furthermore, at
least two of the intermediate electronic states have to be eigenstates, i.e. real states, of the in-
vestigated system. In this case, the Raman signal is resonantly enhanced and magnitudes larger
than the non-resonant scattered light. Figure 3.2 shows a schematic illustration of the interval-
ley double-resonance process in single-layer graphene. In general, the scattering process can be
divided into four steps: (i) First, the incoming photon ℏωi is absorbed and resonantly excites an
electron-hole pair. In graphene, this initial resonant excitation is always possible at moderate
doping levels [105, 106]. (ii) The excited electron is scattered by a phonon from phonon branch
ν and with wave vector q. (iii) Likewise, the hole is scattered by a phonon from phonon branch
µ and with wave vector −q. (iv) Finally, the electron-hole pair recombines and emits a photon
with energy ℏωs. In principle, both Stokes and anti-Stokes scattering, as well as a combination of
these processes is possible in double-resonant Raman scattering [107]. Double-resonant Raman
modes can be separated into either inter- or intravalley double-resonant scattering. Intervalley
scattering refers to a scattering process between two inequivalent K points, whereas intravalley
scattering describes a scattering process between electronic states at the same K point.
From the above explained process, the laser-energy dependent peak shifts can be directly ex-
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3. Inelastic light scattering

plained. By tuning the laser excitation energy, the resonance condition for the incoming photon
is satisfied by different sets of k vectors around the K point. Subsequently, the resonant scat-
tering of the electron-hole pair is mediated by phonons with different phonon wave-vectors q,
leading to different resonantly enhanced phonon frequencies in the Raman spectrum. Depending
on the electronic bandstructure and phonon dispersion, the double-resonant Raman modes may
upshift or downshift with increasing laser energy. In general, double-resonant Raman scattering
enables the possibility to simultaneously probe the electronic structure and phonon dispersion
by tuning the laser excitation energy.

Following the notation of Venezuela et al. [47], the double-resonant Raman scattering cross-
section for a two-phonon process can be written as

Iµν
q (εL, γ) ∝



k,e,h,...

⟨k + q, h′ |Dout| k + q, e′⟩

k, h

 ∂H
∂u−qµ

k + q, h′


k + q, e′
 ∂H

∂uqν

k, e


⟨k, e |Din| k, h⟩
(εL − εe + εh − iℏγ)(εL − εe′ + εh − ℏωqν − iℏγ)(εL − εe′ + εh′ − ℏωqν − ℏω−qµ − iℏγ)

+
⟨k + q, h′ |Dout| k + q, e′⟩


k + q, e′

 ∂H
∂uqµ

k, e


k, h
 ∂H

∂u−qν

k + q, h′


⟨k, e |Din| k, h⟩
(εL − εe + εh − iℏγ)(εL − εe + εh′ − ℏω−qν − iℏγ)(εL − εe′ + εh′ − ℏω−qν − ℏωqµ − iℏγ)

+ . . .



2

. (3.14)

Here, µ and ν refer to the branch indices of the two contributing phonons. For every phonon
wave-vector q, the summation has to be carried out over all electron e and hole h states in
k space. Furthermore, the summation has to consider all possibilities for electron and hole
scattering, i.e., an electron is scattered by two phonons (ee scattering), a hole is scattered
by two phonons (hh process), or both the electron and the hole are scattered (eh scattering).
In total, there are eight different possibilities of electron and hole scattering in a two-phonon
process. In a phonon-defect process, either the hole or the electron are elastically scattered by a
defect to fulfill momentum conservation. However, the number of possible processes is still eight.
The εe and εh denote the energies of the electron and holes states, respectively, and depend on
the wave vector k; εL is the laser excitation energy. The electronic broadening γ reflects the
inverse lifetime of the different electronic states and is usually assumed to be equivalent for all
denominators [47]. The influence of the electronic broadening on the double-resonance process
will be analyzed in Chapter 4.7. The enumerators reflect the dipole matrix elements Me-r and
the electron-phonon matrix elements Me-p for the different electronic states e, e′, ... and h, h′, ...

and phonon modes µ and ν. Using the notation of Ref. [47], the matrix elements are given by

Me-r = ⟨k, h |D| k, e⟩

= 1
iεL

E ·


k, h


∂H
∂k

k, e


(3.15)
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and

Me-p =


k + q, e′


∂H
∂uqν

k, e


. (3.16)

Equation (3.15) models the interaction of the system’s Hamiltonian H with an electromagnetic
wave E and describes the transition of an electron between two different states at the same k
vector by photon absorption. As the E field is directly connected to the polarization P of the
electromagnetic wave, the polarization dependence of the double-resonance process is imposed
by these matrix elements. In fact, the dipole matrix elements predominantly influence the
angular dependence of the Raman scattering cross-section around the K point, as the oscillator
strength, i.e., the square of the transition dipole moment, is highest along the K − M direction
and lowest along the K − Γ high-symmetry line [47, 108, 109].

The electron-phonon matrix elements from Eq. (3.16) describe the response of the electronic
system to a phonon displacement. In the Born-Oppenheimer approximation, the motion of the
atomic nuclei and the electrons is assumed to be separable and thus can be solved individually.
However, to account for interactions between both systems, usually one introduces an additional
Hamiltonian that describes the electron-phonon coupling. This quantity is key for the under-
standing of different effects such as superconductivity [110, 111] or dynamics of photo-excited
charge carriers in graphene [112]. Furthermore, the electron-phonon coupling plays an import
role in Raman spectroscopy on graphitic carbons. Usually, the atomic motion is screened by the
motion of the electron cloud, i.e., the internal electric field that results from a displacement of
the ions from their equilibrium positions is screened (reduced) by the highly mobile electrons
[96]. Thus, two electrons in the system at k1 and k2 do not interact via the bare Coulomb po-
tential but 'feel' the screened potential. However, in metallic or semi-metallic systems, such as
graphene, the screening can drastically change at certain high-symmetry points in the Brillouin
zone and therefore can lead to an abrupt variation of phonon frequencies at certain q [113]. Kohn
et al. demonstrated that electrons can lose their ability to screen the vibration of the nuclei, if
the atomic displacement perturbs electrons at the Fermi surface, i.e., if q = 2 kF , where kF is
the Fermi wave-vector [113]. Since graphene has to inequivalent Fermi points, i.e., K and K′,
this reduced electronic screening may occur at q = 0 and q = K [40]. Ergo, the electron-phonon
coupling is drastically enhanced at these points in the Brillouin zone, leading to a softening of
the phonon frequency for certain phonon branches. The resulting discontinuity in the derivate
of the phonon branch is usually referred to as a Kohn anomaly. The effect of the Kohn anomaly
in graphene becomes manifested by the dependence of the G- and 2D-mode positions on the
doping level [34]. We will discuss the Kohn anomalies in graphene and bilayer graphene more
detailed in Chapter 4 and will point out the importance of many-body corrections to the phonon
dispersion and electronic bandstructure to account for this anomaly in our calculations.

A very prominent example of a double-resonant Raman mode is the 2D mode in graphene and
graphite. This Raman mode results from an intervalley scattering process with two transverse
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Figure 3.3: (a) Phonon dispersion of single-layer graphene along the Γ − K − M − Γ high-
symmetry line from an LDA calculation. The labels at each branch indicate acoustic (A) and
optical (O) phonons, as well as transverse (T) and longitudinal (L) vibrations. (b) GW -corrected
phonon dispersion of the high-energy branches in bilayer graphene along Γ − K − M direction.
The labels refer to the phonon branch indices at the corresponding phonon wave-vector.

optical (TO) phonons close to the K point of the Brillouin zone. We will introduce the typical
characteristic modes in the Raman spectrum of graphene in the following section.

3.4 Basic vibrational properties of graphene, bilayer graphene, and

carbon nanotubes

As introduced in Chapter 2, the unit cell of graphene consists of two inequivalent atoms A and
B. Thus, the phonon dispersion splits up into six branches, i.e., three acoustic and three optical
branches. We show the phonon dispersion of single-layer graphene along the high-symmetry di-
rections in the first Brillouin zone in Figure 3.3 (a). The labels at each branch indicate acoustic
(A) and optical (O) phonons, as well as transverse (T) and longitudinal (L) vibrations. Both
high-energy optical phonon branches (LO and TO) are degenerate at Γ and exhibit E2g sym-
metry. Away from Γ, the LO phonon branch presents an overbending with frequencies up to
≈ 1620 cm−1. The third optical branch has A2u symmetry and is infrared active only [114]. As
briefly discussed above, the phonon dispersion of graphene presents Kohn anomalies at certain
high-symmetry points in the Brillouin zone. For instance, the LO phonon branch exhibits a
Kohn anomaly at the Γ point, the TO branch is affected by a Kohn anomaly at K [40]. Re-
cently, different works also reported a Kohn anomaly for the ZO phonon branch at the K point
[115, 116].
The phonon dispersion of the high-energy phonon branches in bilayer graphene is shown in
Figure 3.3 (b). The labels at each branch indicate the phonon-branch index (from lowest to
highest) at the corresponding q vector and correspond to the indices µ and ν in Eq. (3.14).
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Figure 3.4: Raman spectra of graphene, bilayer graphene, and HiPco-produced carbon nan-
otubes. The characteristic Raman modes are indicated by gray boxes; labels are given next to
the boxes. Spectra are normalized to the same G-mode intensity and offset for clarity. A laser
excitation energy of 2.33 eV was used.

These labels will become important later in Chapter 4. Since bilayer graphene has twice as
many atoms in the unit cell compared to single-layer graphene, the phonon spectrum of bilayer
graphene consists of twelve branches. Most of these branches are degenerate throughout the
Brillouin zone. However, as can be seen, the TO phonon branch exhibits a splitting along the
Γ − K direction. At the Γ point, the LO and TO phonon branches split up into a symmetric,
Raman-active (Eg symmetry) and an anti-symmetric, infrared-active vibration (Eu symmetry).
In contrast to single-layer graphene, the phonon dispersion of bilayer graphene also exhibits
rigid-layer shear and out-of-plane breathing modes [107, 114, 117, 118]. These modes originate
from acoustic phonons in single-layer graphene and exhibit interesting frequency dependencies
in N -layer graphene.

The Raman spectra of graphene, bilayer graphene, and carbon nanotubes are composed of several
characteristic peaks, which we will briefly discuss below. The spectra are shown in Figure 3.4 for
an excitation energy of 2.33 eV. In all spectra, we observe Raman modes around ∼ 1580 cm−1,
which can be identified with the aforementioned degenerate LO/TO Γ-point vibration. Since this
peak is characteristic for all kinds of graphitic (sp2 hybridized) carbons, it is referred to as the G

mode. In carbon nanotubes, the degeneracy between the LO and TO vibration is lifted, leading
to distinct peaks in the G-mode region [119, 120]. Another prominent feature of all Raman
spectra is the 2D mode at ∼ 2650 cm−1, which originates from a double-resonant intervalley
scattering process with two TO phonons from the border of the Brillouin zone around the K
points [45]. In single-layer graphene, this peak has a nearly single-Lorentzian lineshape with a
slight asymmetry towards higher frequencies [49]. However, the lineshape changes drastically
for an increasing layer number, i.e., a broad peak with multiple peaks is observed for N ≥ 2-
layer graphene, reflecting the evolution of the electronic bands around the K points [46]. A
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detailed discussion of the 2D-mode lineshape in bilayer graphene will be given in Chapter 4.
Furthermore, we also observe the 2D′ mode in Raman spectrum of single and bilayer graphene
around ∼ 3240 cm−1. This mode results from an intravalley scattering process with two LO
phonons from the LO-overbending region near the Γ point. Besides the two-phonon double-
resonant Raman modes, there are also Raman peaks that result from a double-resonant phonon-
defect scattering process. In these processes, momentum conservation is guaranteed by the
elastic scattering with a defect. Prominent examples of these defect-induced Raman modes
are the D, the D′, and the D′′ modes at ∼ 1350 cm−1, at ∼ 1620 cm−1, and at ∼ 1100 cm−1,
respectively. A very characteristic Raman mode for carbon nanotubes can observed in the
spectral range between 100 and 350 cm−1 (compare Fig. 3.4). These modes can be identified
with radial vibrations of the carbon nanotube and are referred to as radial breathing modes
(RBMs). Comparable to the rigid-layer shear and compression modes in N -layer graphene, the
RBMs exhibit frequencies that sensitively depend on the tube diameter [121]. Thus, this Raman
mode is commonly used for CNT characterization and chiral index determination.
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Analysis of the double-resonant 2D Raman mode
in bilayer graphene

4

Parts of this chapter were published in Ref. [122].

In this chapter, we will analyze the double-resonant 2D-mode scattering process in bilayer
graphene. Albeit intense research on this topic, the 2D mode in bilayer graphene has been
discussed controversially by several authors in recent years. In this context, different models
were proposed to explain the origin of the complex lineshape observed in experiments. However,
there is still an ongoing controversy about the different contributions to the 2D-mode scattering
process and their assignment to different spectral features in the 2D-mode spectrum.
This chapter is organized as follows: First, we will introduce the electronic and vibrational
properties of bilayer graphene. Afterwards, we will describe the double-resonance process in
bilayer graphene, followed by a brief introduction to the ongoing discussion about the 2D mode in
bilayer graphene and the theories discussed so far. Finally, we analyze the different contributions
and clarify the origin of the observed spectral features. We demonstrate the importance of inner
processes, discuss the effect of the TO phonon splitting on the 2D-mode Raman spectrum, and
show the influence of quantum interference between different scattering processes.

4.1 Bilayer graphene: Electronic properties and phonon dispersion

Bilayer graphene consists of two vertically stacked graphene sheets in so-called Bernal-stacking.
In this stacking configuration, the two graphene sublattices are horizontally shifted by the
carbon-carbon bond length in the direction of the C-C bond. In other words, the A and B atoms
of adjacent layers are directly on top of each other and the two remaining atoms are centered
above and below the hexagons of the next layer (compare Fig. 4.1). Therefore, Bernal-stacking
is often referred to as AB-stacking. Bilayer graphene has twice as many atoms in the unit cell
compared to single-layer graphene, consequently, the number of π/π∗ orbitals is doubled as well
and give now rise to four electronic bands in the visible energy range [2]. The valence bands are
referred to as π2 and π1, the conduction bands are denoted as π∗

1, π∗
2. The electronic bands of

bilayer graphene are displayed in Fig. 4.2 (a) along the one-dimensional Γ − K − M − K′ − Γ
high-symmetry direction; Fig. 4.2 (b) shows an enlarged view of the bandstructure around the
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Figure 4.1: Visualization of
the bilayer graphene structure
in AB-stacking. The unit-cell
atoms are highlighted in blue.

K point. In contrast to single-layer graphene, the electronic bandstructure of bilayer graphene
is not linear around the K points but exhibits a parabolic energy dependence [2]. Thus, charge
carriers around K cannot be regarded as massless Dirac fermions as in single-layer graphene.
Similar to graphene, unpertubated bilayer graphene does not exhibit a bandgap. However, by
breaking the inversion symmetry between both layers one can easily tune an electronic gap at K
as large as 250 meV [72, 123–125]. The possibility of creating a band gap favors bilayer graphene
for applications in field-effect transitors, which are hardly realizable using single-layer graphene.

As already mentioned, bilayer graphene consists of twice as many atoms in the unit cell compared
to single-layer graphene. Thus, there are twelve phonon branches throughout the Brillouin zone,
which are partially degenerated [compare Chapter 3.4]. Especially the low-frequency Γ-point
phonons exhibit interesting layer-number dependent properties that can be used to identify the
layer-number and interlayer interactions [107, 118, 126, 127]. However, in this chapter we will
concentrate on the TO (transversal optical) phonon branch.

It has been shown that certain phonon branches in graphene exhibit Kohn anomalies at Γ and
K [40, 59, 128], i.e., the first derivate of the phonon dispersion exhibits a discontinuity at these
points. The Kohn anomaly at Γ affects the LO phonon branch, whereas the Kohn anomaly at
K perturbs the TO phonon branch. Kohn anomalies can occur when a phonon with wave vector
q connects two electronic states that are both on the Fermi surface [113]. In undoped graphene,
the Fermi surface consists of the two equivalent points K and K′. Consequently, Kohn anomalies
may only occur for phonons with wave vectors q = 0 = Γ and q = K [40]. At these points, the
screening of atomic vibrations by electrons is strongly reduced and leads to a drastically increased
electron-phonon coupling. Lazzeri et al. demonstrated that standard Density Functional Theory
(DFT) calculations that employ the Local Density Approximation (LDA) or the Generalized
Gradient Approximation (GGA) do not account for this strong coupling in single and few-layer
graphene [129]. In general, DFT is a ground-state theory that does not account for many-
body correlations in excited systems [130]. Furthermore, local approximations such as LDA
and GGA usually do not reproduce the correct longe-range Coulomb potential [131]. However,
its is precisely this long-range electron-electron interaction that enhances the electron-phonon
coupling to the A1-symmetry mode at the K point [129, 131]. Hence, standard LDA- and GGA-
based DFT calculations must fail in the calculation of the electron-phonon coupling and the
phonon dispersion in graphene. In order to account for the strong influence of correlation effects
on the electronic and vibrational properties of graphene [2], a Green’s function approach within
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Figure 4.2: (a) Electronic bandstructure of the π/π∗ orbitals in bilayer graphene along the
Γ − K − M − K′ − Γ high-symmetry direction obtained from first-principles calculations. An
enlarged view of the electronic bands inside the dashed rectangle is given in (b). The electronic
bands are labeled as defined in the text.

many-body theory is usually chosen. The influence of many-body effects becomes manifested
in the electronic self-energy correction Σ, which can be understood as the potential on an
electron due to the interaction with other quasi-particles in the system [132]. In principle,
Σ can be identified with the exchange potential in Hartree-Fock calculations. A very famous
and prominent method to approximate Σ is the so-called GW approximation [133]. Here, the
self-energy correction [132]

ΣGW


x, x′, ω


= i

2π


exp


iδω′G


x, x′, ω′ W


r, r′, ω − ω′dω′

is expanded in a Taylor series of the one-particle Green’s function G and the screened Coulomb
potential W and just considers the leading term [133]. In other words

Σ = i G0W0.

In the equation above, x reflects the different space coordinates r plus a spin coordinate and ω is
proportional to the energy of the particle. In principle, the GW approach can be regarded as a
screened version of a Hartree-Fock calculation that more accurately includes many-body effects
to the self-energy corrections. Compared to LDA- and GGA-based DFT calculations, the GW -
derived phonon dispersion exhibits a nearly two times larger slope of the TO branch at K [129],
in agreement with experimental data [59, 128]. Moreover, the square of the electron-phonon
coupling is renormalized by almost 80 % in GW approximation [129]. Therefore, it is of great
importance to include these corrections for a correct treatment of the double-resonance process
in graphene. Although not explicitly calculated in literature, we expect qualitatively the same
renormalization in bilayer graphene. Unless differently stated, all calculations presented in this
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Figure 4.3: Simplified and schematized illustration of the double-resonant 2D-mode Raman
scattering processes along the Γ − K − M − K′ − Γ high-symmetry direction for (a) symmetric
scattering processes and (b) anti-symmetric scattering processes. Inner and outer processes are
marked with red and blue traces, respectively. (c) Phonon dispersion of bilayer graphene close
to the K point with and without GW correction. Calculations in LDA and GW approximation
are given by green- and orange-coloured lines, respectively. (d) Splitting between the two TO
phonon branches along Γ − K − M with and without GW correction. The splitting increases
by a factor of almost two when GW corrections are considered.

chapter include electron-electron interaction at the GW level.

4.2 The double-resonance process in bilayer graphene

A group-theoretical analysis of the electronic bands and phonons in bilayer graphene predicts
four allowed scattering processes for the double-resonant 2D mode [134]. Figures 4.3 (a) and
(b) show a sketch of the electronic band structure of bilayer graphene along the Γ − K −
M − K′ − Γ high-symmetry line, as well as a schematized illustration of the double-resonant
2D-mode scattering process. These scattering processes can be divided into symmetric and
anti-symmetric, as well as into inner and outer processes. Symmetric processes are scattering
events between equivalent electronic bands at K and K′, whereas for an anti-symmetric process
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(compare Fig. 4.5 and the peak assignments therein). However, already in 2004 Maultzsch et al.
had pointed out that also inner processes have to be considered for a thorough analysis of the
double-resonant scattering process [135]. This was further confirmed by Mohr et al. who showed
that the observed changes in the 2D-mode lineshape of strained single-layer graphene can be
only explained when considering both inner and outer processes [38]. Related experiments on
strained single-layer graphene came to the very same conclusion [136, 137]. Narula et al. wanted
to revoke the separation of inner and outer scattering processes [138]. However, this work is
based on a different interpretation of inner and outer processes and does not reflect the generally
accepted definition of these terms. Furthermore, another publication by Narula et al. came to
the conclusion that the main contribution to the double-resonant Raman scattering cross-section
originates from the low-symmetry parts of graphene’s Brillouin zone [139]. However, both be-
forementioned publications are in stark contrast to works from other groups. In fact, Venezuela
et al. demonstrated by a complete two-dimensional calculation of the double-resonant 2D-mode
scattering cross-section in single-layer graphene that the dominant contributions indeed stem
from the high-symmetry directions [47]. Furthermore, this work could show that inner processes
dominate over outer ones. This result was further confirmed by experiments on freestanding
single-layer graphene by Berciaud et al. [49]. Recently, Tyborksi et al. demonstrated that, by
suppression of inner scattering processes using ultraviolet laser excitation energies, the Raman
spectrum of graphene, graphite, and carbon nanotubes is dominated by the two-phonon density
of states [140]. This work directly proves the comparatively weak contribution of outer contri-
butions and further emphasizes the importance of inner processes in double-resonant Raman
scattering. Future studies on inner and outer processes in single and bilayer graphene might in-
vestigate the 2D-mode lineshape for laser excitation energies between 3.5 eV and 4.5 eV, i.e., for
energies below the M -point transition. By precisely tuning the laser energy in the ultraviolett
spectral range, one can follow the different dispersions of inner and outer processes, allowing an
accurate assignment of the different experimentally observed 2D-mode subfeatures to inner and
outer scattering processes.
In contrast to single-layer graphene, the 2D mode in bilayer graphene exhibits a complex line-
shape, i.e., depending on the laser excitation energy, one can usually observe three to four peaks
with different relative intensities. Based on the analysis by Ferrari et al. [46], these peaks
are usually attributed to the four allowed scattering processes, accounting for the evolution of
the electronic band structure around the K point (compare Fig. 4.5). However, Ref. [46] did
not consider the doubling of the TO branches in bilayer graphene and, as already mentioned,
restricted the scattering paths to exclusively outer processes. Moreover, the four scattering pro-
cesses were attributed to substantially different phonon frequencies [compare Fig. 4.5 (e)]. This
interpretation of the 2D mode in bilayer graphene has been adapted by several other authors
and was used in subsequent studies [50–54]. Although some authors discussed the possibility
of inner processes in the double-resonance scattering [53, 54], all works on this topic neglected
the splitting between the two TO branches. Furthermore, Mafra et al. investigated the rela-
tive intensities of the 2D-mode contributions as a function of laser power by considering inner
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Figure 4.5: Explanation of the double-resonance Raman process in single- and bilayer graphene
after Ferrari et al. (a) and (b) Visualization of the resonant phonon wave-vectors in the double-
resonance process in the band structure of single- and bilayer graphene. (e) 2D-mode spectrum
of bilayer graphene at different laser wavelengths. The spectra are fitted with four Lorentzian
profiles; each component is attributed to a different scattering process from (b), as labeled above
the spectra. Figure taken from Ref. [46].

processes in their explanation [54]. However, their assignment of the scattering processes to the
observed spectral features is incorrect. Finally, none of the previous works on bilayer graphene
considered the effect of quantum interference in the double-resonance process. In this chapter,
we will demonstrate the importance of inner processes, the TO phonon splitting, as well as
quantum interference in the double-resonance process in Bernal-stacked bilayer graphene.

4.3 Calculational details

The calculations of the real and imaginary part of the single scattering processes in the double-
resonant scattering cross-section were performed by Dr. Matteo Calandra, Université Pierre et
Marie Curie (UPMC), Paris. In the following, these data were postprocessed by a python script
to calculate the cross-sections for the different processes P lj

mi, for inner and outer processes, for
the different possibilities of electron and hole scattering, and for the analysis of the contribution
from different phonon branches.

In order to calculate the dominant contributions to the 2D-mode scattering processes, we de-
rived the Raman scattering cross-section completely from first-principles. All calculations were
performed with the DFT-code Quantum ESPRESSO [141], which relies on plane-wave basis sets
and pseudopotentials. In this work, we used 'Von Barth-Car' norm-conserving pseudopotentials.
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The distance between both graphene layers in the calculation was fixed to the experimental value
of c/2 = 3.35 Å [59].
Due to interference effects in the double-resonance process [135, 142], the resonantly enhanced
phonon wave-vectors stem from a narrow region around the K point. In order to ensure for
convergence in our calculations, a fine sampling of the electron and phonon bands, as well as
the matrix elements throughout the Brillouin zone is necessary. However, a standard DFT
approach only allows the calculation of matrix elements on relatively coarse grids, e.g., a 12×12
momentum grid. Therefore, previous works on the theoretical calculation of double-resonant
Raman spectra in graphene used tight-binding derived matrix elements. In contrast, here all
quantities are directly derived from first principles and we overcome the difficulties of coarse DFT
sampling by using Wannier interpolation [143] of the electronic and phonon dispersions, as well
as the electron-phonon and electron-photon matrix elements. This technique has been developed
by Calandra et al. in Ref. [144]. Wannier interpolation relies on the representation of a lattice-
periodic quantity, such as the electronic band structure, by Wannier orbitals. In a standard
DFT calculation, each electronic band can be regarded as a superposition of contributions from
different Bloch orbitals. However, in the basis of Bloch functions, these bands are not smooth and
a simple linear interpolation would be insufficient, especially in the case of band crossings [145].
For this reason, one has to find an alternative way to interpolate the electron and phonon bands
or the matrix elements throughout the Brillouin zone. It can be shown that the optimally smooth
subspace for interpolation of these quantities can be obtained via Wannier representation2. Using
this representation, each electronic band is described by a single Wannier orbital. Therefore, if
the Wannier basis of a lattice-periodic quantity is known, one can calculate and interpolate any
arbitrary point in the Brillouin zone.
We first calculate the electronic bandstructure in Local Density Approximation on a (64×64)
momentum grid. Afterwards, the Fermi velocity is renormalized by 17 % in order to fit the
experimentally observed slope of the electronic π/π∗ bands from ARPES and magnetotransport
studies of approximately vF = 1.1×106 m s−1 [146–148]. Phonon dispersions are calculated on a
12×12 momentum grid in LDA approximation using the linear-response scheme. Afterwards, the
calculated phonon frequencies are GW -corrected, similar to what was done in Refs. [47, 129, 149]
for single-layer graphene. In more detail, we define the following scheme to correct the TO
phonon frequencies near the K point.


ωGW

qν

2
= 0.5 × erfc

 |q − Kα|a0/2π − 0.2
0.05


×

(αK − 1)(ωLDA

qν )2 + ∆


(4.1)

Here, erfc( ) is the error function, ν = 1, 2 is a label for the two TO branches, a0 is the
graphene lattice constant, and Kα is the closest vector to q among those equivalent to K. The
constants αK and ∆ are defined as αK = 1.61 and ∆ = 42.195 Ryd2. Both TO phonon branches
are degenerate at K and thus exhibit the same electron-phonon coupling. Therefore, they are

2Private communication with M. Calandra (UPMC Paris)
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affected by the same renormalization, i.e., the GW correction for both TO phonon branches is
equivalent.
In contrast to previous GW -based calculations of the phonon dispersion in bilayer graphene, we
observe a clear splitting between the two TO phonon branches along the K − Γ high-symmetry
direction [compare Fig. 4.3 (c) and (d)]. Ref. [150] found that the TO splitting along K − Γ is
negligible and similar to that along the K − M high-symmetry line. This discrepancy to our
results is explained by the coarse 6×6 phonon-momentum mesh used in Ref. [150] and the use of
Fourier interpolation. In our case, this error is not present due to the use (i) of a larger phonon
momentum grid and (ii) of a Wannier-interpolation scheme to obtain phonon frequencies at any
electron and phonon momentum in the Brillouin zone with high accuracy [144].
The electric dipole and the electron-phonon matrix elements were first calculated on a 64 × 64
electron-momentum grid and a 6 × 6 phonon-momentum grid in LDA approximation. We then
interpolate them to denser 480 × 480 electron-momentum grid randomly shifted from the origin
and a 12288-points phonon-momentum grid, covering a sufficiently large region around the K
point. Both quantities were GW -corrected afterwards, following the approach given in Ref. [47].
The electronic broadening γ in our calculations was calculated according to [47]

γ = 0.081832 ×
ℏωL

2 − 0.1645 eV


. (4.2)

This value was chosen to be twice as large as that in Ref. [47], as this choice gives better agree-
ment with our experimental spectra. In fact, Ref. [47] only considered the intrinsic contribution
from electron-phonon scattering to the electronic broadening and neglected the contribution
from electron-electron interaction. However, the analysis of Ref. [151] indicates that this contri-
bution is not negligible and can, in fact, double the electronic broadening for high doping levels.
We will discuss the effect of the electronic broadening on the 2D-mode lineshape in Section 4.7
in more detail. Finally, the phonon broadening in our calculations is set to 8 cm−1 [152].

4.4 Experimental details

Freestanding bilayer graphene samples were obtained as described in Chapter 2. In brief,
graphene samples were prepared by mechanical exfoliation of natural graphite crystals on SiO2/Si
substrates with 100 nm thick oxide layer. The silicon substrates are patterned with 8 µm deep
holes with a diameter of 3 µm. These holes were etched by reactive ion etching at the Fraunhofer
IZM. Bilayer graphene samples were identified by their optical contrast and cross-checked by
Raman measurements of the N and 2D mode.
For the measurements on electrochemically-gated bilayer graphene samples, we had to produce
electrical contacts to the graphene layer. Here, we followed the approach described in Ref. [153].
This method makes benefit of the low melting point and high surface tension of indium. The
setup is schematically shown in Fig. 4.6 (a) and consists of a microscope, a heating plate and
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All spectra were measured with a Horiba HR800 spectrometer in backscattering geometry under
ambient conditions. During all measurements, the laser power was kept below 0.5 mW in order
to avoid damaging or heating of our samples. Spectra were calibrated using standard atomic
emission lines of neon (Ne).

4.5 Analysis of the 2D mode in bilayer graphene

Figure 4.7 shows calculated scattering cross-sections Iq for the 2D mode in bilayer graphene for
different laser excitation energies. Here, Iq was calculated as

Iq =
12

µ=9

12

ν=9
Iµ,ν

q (4.3)

with Iµ,ν
q from Eq. (3.14) and for ωµ,ν

q in the frequency range between 2500 cm−1 and 3000 cm−1.
As can be seen, the calculated cross-sections exhibit a triangular-shaped contour around the K
point. This shape is opposite to the electronic trigonal warping, but follows the form of the
TO phonon warping around K [149]. In contrast to previous works [46, 50–54, 155], we find
three resonances around the K point that contribute to the double-resonant 2D-mode scattering
cross-section. These resonances can be identified (from inside to outside) with the symmetric P 44

11

process, the anti-symmetric P 43
12 and P 34

21 processes, and the symmetric P 33
22 process. As the reso-

nant phonon wave-vectors of the anti-symmetric processes are nearly degenerated, the resulting
phonon frequencies are very similar, disproving all previous works that assigned substantially
different phonon frequencies to both anti-symmetric processes [46, 50–54, 155]. Comparing our
results to the assignment of Ferrari et al. in Fig. 4.5 from Ref. [46], we find the following corre-
spondence:

2D1B → P 44
11 2D1A → P 43

12 /P 34
21 2D2A → inner P 33

22 2D2B → outer P 33
22

From Figure 4.7 we can further clearly observe that the maximum contribution to the 2D-mode
cross-section stems from regions along the K − Γ direction. These regions can be assigned to
'inner' processes (compare Fig. 4.4) and we therefore revoke all previous explanations of the 2D

mode that were based on 'outer' double-resonance processes.
Next, we will turn our discussion to the calculated Raman spectra of the 2D mode in bilayer
graphene. Figure 4.8 compares our calculated 2D-mode spectra with experimental Raman spec-
tra from mechanically exfoliated, freestanding bilayer graphene at different laser excitation ener-
gies. As can be clearly seen, the overall agreement between the calculation and our experimental
data is very good. However, we observe a slight mismatch in frequency between calculation and
experiment, i.e., the calculated frequencies are approximately 10 cm−1 too high. Furthermore,
the calculated overall 2D-mode linewidth is too broad. We will discuss the possible reason for
both effects later in this chapter. Nevertheless, our calculations do not only reproduce the ex-
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Figure 4.7: Contour plots of the normalized 2D-mode scattering cross-section Iq around the
K point as a function of the phonon wave-vector q for different laser excitation energies. The
solid and dashed white lines denote the K − M and K − Γ high-symmetry lines, respectively.

perimentally observed 2D-mode phonon frequencies correctly, but also the lineshape of the 2D

mode, i.e., the relative intensities of the different contributions.
In the following, we will decompose the calculated 2D-mode spectra into its different contribu-
tions. First, we start with the separation of the spectrum into the different scattering processes,
i.e., we separate between those processes where an electron and a hole are scattered (eh scatter-
ing) and those processes where two electrons or two holes are scattered (ee and hh scattering).
Fig. 4.9 (a) shows the calculated spectrum at 1.96 eV laser excitation energy considering all
scattering processes (gray curve), as well as the contribution from eh scattering (black curve).
The latter contribution is further divided into inner and outer scattering processes following the
scheme explained in Sec. 4.2 and illustrated in Fig. 4.4. We can directly see that eh scattering
is, by far, the dominant contribution among all possible scattering paths. eh scattering is often
referred to as a "fully resonant" or "triple resonant" process [47, 48, 156], as all three denomina-
tors in Eq. (3.14) converge to zero. However, the dominance of eh scattering is not due to the
fact that more denominators in the double-resonant Raman scattering cross-section are close to
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Figure 4.8: Comparison of calculated 2D-mode spectra with Raman spectra from freestanding
bilayer graphene at different laser excitation energies. Calculations and experimental data are
shown as red and black curves, respectively. Spectra are normalized and vertically offset for
clarity.

resonance. In fact, the large weight of eh processes in the scattering cross-section is due to a
non-trivial interference effect in the summation of the scattering amplitudes [47]. Fig. 4.10 was
adapted from Ref. [47] and shows the real and imaginary part of the scattering amplitude Kα

for a double-resonant scattering process in single-layer graphene. As can be seen, the real and
imaginary part of Kα for an eh process do not change their sign as a function of the phonon
wave-vector. In contrast, Im(Kα) and Re(Kα) undergo change of sign for ee and hh scattering.
Following Ref. [47], the double-resonant Raman intensity can written as

Iα =

 ∞

0

k dk

2π
Kα (k)


2

. (4.4)

Although Kα is on the same order of magnitude for the different scattering processes, the change
of sign of Kα for ee and hh processes results in a destructive interference inside the integral [47].
In contrast, the Keh add coherently [47]. Thus, Ieh is clearly larger than Iee/hh .
The spectrum in Figure 4.9 (a) can be further decomposed into the contributions from inner and
outer scattering processes; the corresponding curves are shown in red and blue color, respectively.
As it was already inferred in Figure 4.7 (a)-(d), the dominant contribution to the total Raman
intensity in a double-resonant scattering process stems from inner scattering processes. This
result has been already verified for single-layer graphene both experimentally and theoretically
[47, 49]. There are several reasons for the dominance of inner processes in double-resonant
Raman scattering. First, the oscillator strength for optical excitations along the K − M high-
symmetry line is roughly three times larger compared to the oscillator strength along the K − Γ
direction [109]. Second, it was noted by different authors that, due to anisotropy, the electron-
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Figure 4.9: Calculated 2D-mode Raman spectra at 1.96 eV excitation energy. In (a), the
total spectrum is decomposed into eh scattering processes, as well as into inner and outer
contributions. (b) Separation of the contributions from the four different scattering processes
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mi without interference between the different processes. (c) Decomposition of the calculated
spectrum into symmetric and anti-symmetric processes including interference. The dashed line
in (c) represents the sum of the contributions from the single anti-symmetric processes P 43

12 and
P 34

21 in (b). (d) Decomposition of the calculated spectrum into the contributions from scattering
with symmetric and anti-symmetric TO phonons.

phonon coupling is highest for electronic states near the K − M high-symmetry line [47, 138].
As a last point, it has been shown by Basko et al. [157] that excited electrons and holes
around the K − Γ high-symmetry direction are likely to decay into interband electron-hole pairs
(carrier multiplication). Therefore, these states are suppressed in intensity in a double-resonant
scattering process and, thus, electronic states along the K−M direction are favored to contribute
in the double-resonance [158]. Here, we confirm the observation of dominant inner scattering
processes in single-layer graphene also for bilayer graphene. Interestingly, the contributions from
outer scattering processes are equidistantly spaced in frequency, whereas the inner processes are
not. As will be shown below, this is due to the splitting of both TO branches along the K − Γ
direction and we will present an approach to access this quantity experimentally.
In Figure 4.9 (b), we present the decomposition of the calculated 2D-mode spectrum into the
different P lj

mi scattering processes. As could be already deduced from Figure 4.7, we find that
the symmetric P 44

11 and P 33
22 processes are on the low- and high-frequency side of the 2D mode,

respectively. The calculated frequencies of both anti-symmetric processes P 43
12 and P 34

21 are in
between the symmetric contributions and are degenerate in frequency. Again, this disagrees
with all previous publications on the 2D mode in bilayer graphene, where substantially different
phonon frequencies were assigned to both anti-symmetric scattering processes [46, 50–54, 155].
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However, an interesting question arises from the presented decomposition into the different P lj
mi:

As can be seen, the decomposition into the four processes is not additive, i.e., the sum of the P lj
mi

does not yield the total spectrum. We can directly attribute this effect to quantum interference
between both anti-symmetric processes. In order to clarify this point closer, we have to recall the
procedure how the single P lj

mi in Figure 4.9 (b) are calculated. For every P lj
mi, the summation in

Eq. (3.14) is restricted to the given indices m, l, j, and i. In the following, the absolute square
value is evaluated for each P lj

mi separately. Therefore, interference between the four different
processes is prohibited and the result can be regarded as "the sum of the absolute squares". In
order to allow interference between the different scattering processes, we have to perform the
summation of the single processes before the absolute square value is calculated ("the absolute
square of the sum"). By decomposing the spectrum into the contributions from symmetric and
anti-symmetric scattering processes, we allow interference between P 44

11 and P 33
22 and between P 43

12

and P 34
21 . The result of this calculation is shown in Figure 4.9 (c). Compared to the sum of both

single anti-symmetric processes [gray, dashed curve in Figure 4.9 (c)], we can observe a drastic
increase in intensity for the contribution from anti-symmetric processes by nearly a factor of two.
As both P 43

12 and P 34
21 processes exhibit a large overlap in reciprocal space (compare Figure 4.7),

they observe constructive interference. In contrast, the symmetric processes are well separated
in q-space and therefore do not show an altered intensity compared to the calculation of the
single processes. As can be seen, the interference has remarkable influence on the 2D-mode
lineshape, as it enhances the intensity the anti-symmetric scattering processes drastically. The
influence of interference effects on the double-resonance Raman process has been discussed by
Maultzsch et al. in 2004 in Ref. [135]. This work could demonstrate that scattering processes
with q = K cancel out by destructive interference. However, none of the previous works on
the double-resonance in graphene or graphite considered the effect of constructive interference
between two different scattering processes.
As discussed above, the resonant phonon wave-vectors and thus the phonon frequencies for both
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anti-symmetric processes are degenerate. Hence, one now might think of possibilities to lift
the degeneracy of these scattering processes. First, we should note that the degeneracy of the
anti-symmetric processes is due to the equivalence of the K and K′ points in the Brillouin zone
of bilayer graphene. Thus, a possible route to lift the degeneracy of P 43

12 and P 34
21 would aim

at the breaking of the equivalence between the two carbon sublattices A and B. Sublattice-
degeneracy breaking was demonstrated in single-layer graphene by preferentially doping one of
the two sublattice sites, e.g., by replacement of carbon atoms with nitrogen directly during the
growth process [159]. However, using this approach rather small regions with spatial extents
of approximately 1 nm can be produced. Moreover, this approach would not only break the
sublattice degeneracy, but would also alter the electronic band structure and phonon dispersion
drastically. A more promising approach might be based on a sublattice-periodic potential mod-
ulation by the substrate. This approach has been successfully demonstrated in van-der-Waals
heterostructures of hexagonal boron nitride (hBN) and graphene and lead to the formation of
two isolated superlattices [160]. However, laser spot diameters are usually in the range between
600 and 1000 nm, depending on the laser wavelength and the numerical aperture NA of the
microscope objective. In contrast, the Moiré periodicity of the hBN/graphene structure is at
most 14 nm [161]. Thus, experimentally one would average over many different Moiré patterns
and the sublattice-degeneracy breaking would become indistinct. Therefore, it seems question-
able that a splitting of the anti-symmetric processes in the double-resonant 2D-mode scattering
process is observable.

As a last point, we decompose the theoretically calculated 2D-mode spectrum into the contribu-
tions from scattering with symmetric and anti-symmetric TO phonons. As discussed before, the
TO branch in bilayer graphene splits up into a symmetric and an anti-symmetric vibration at
the Γ point with Eg and Eu symmetry, respectively. The separation is performed by calculating
the overlap αq,q′

µ,ν between the eigenvectors e of a phonon mode µ at a wave vector q with a
phonon mode ν at an arbitrary point q′ in the Brillouin zone

αq,q′
µ,ν =


4

i=1
eq

i,µ · eq′
i,ν



2

. (4.5)

Here, the index i labels the four atoms in the unit cell of bilayer graphene. However, only
along the high-symmetry lines the vibrational character of the phonon branches is well defined.
Outside these directions, the symmetric and anti-symmetric TO branches cannot be separated
univocally by their vibration pattern. Therefore, we only considered the TO branches along
the Γ − K − M high-symmetry direction in this analysis first. The reference point q for this
calculation was chosen to be close to K on the K−Γ direction, because the symmetric and anti-
symmetric TO branches are well separated in frequency here. This analysis yields the indices
µ and ν of both TO phonon branches as a function of q along Γ − K − M. Afterwards, we
can use these indices as a starting point and follow the TO phonon outside the high-symmetry
directions. The result of this analysis is shown in Figure 4.11; the white circle directly at K
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Figure 4.11: Index of the symmet-
ric TO phonon branch around the
K point as a function of the phonon
wave-vector q.

was not covered in our calculations. By restricting the summation of the scattering amplitudes
in Eq. (3.14) to the TO phonon indices obtained from Figure 4.11, we obtain the decomposed
spectrum in Fig. 4.9 (d). As can be seen, the main contribution to the symmetric scattering
processes stems from scattering with symmetric TO phonons (Eg symmetry at Γ), whereas the
dominant contribution to anti-symmetric processes results from scattering with anti-symmetric
TO phonons (Eu symmetry at Γ). This result is not surprising since scattering occurs between
states of different symmetry in an anti-symmetric double-resonance process, thus, requiring an
anti-symmetric phonon to preserve symmetry. The possibility of scattering with different TO
phonons in the double-resonance process has been discussed by other authors before [134, 139].
However, as the splitting between both TO branches was not considered before, scattering with
phonons of different symmetry did not led to different phonon frequencies. As will be shown later
in Section 4.6, we demonstrate that the coupling of symmetric and anti-symmetric scattering
processes to different phonon branches indeed affects the 2D-mode frequencies.
Up to now, we described the 2D-mode scattering process in terms of three dominant contribu-
tions, i.e., the P 44

11 process, the two degenerate processes P 43
12 and P 34

21 , and the P 33
22 process.

These three contributions should additionally split up into inner and outer processes. Thus,
one would expect to observe six separate peaks in the 2D-mode spectrum. However, this is
in contrast to the experimentally observed lineshape, where usually three to four peaks can
be distinguished, depending on the laser excitation energy. This discrepancy can be resolved,
when we compare inner and outer contributions of the four different scattering processes in the
decomposed spectrum of Fig. 4.9 (a). The inner and outer contributions for most processes are
nearly degenerate in frequency, only the P 33

22 process exhibits a splitting that is large enough to
be detected in experiments. Thus, the number of observable peaks reduces to four. Ergo, the
2D mode should be fitted with four peaks, where the assignment of the peaks, from lowest to
highest frequency, is P 44

11 , P 43
12 /P 34

21 , inner P 33
22 and outer P 33

22 . In all previous works, the inner
P 33

22 contribution was erroneously assigned to an anti-symmetric scattering process, whereas the
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outer contribution, i.e., the small high-frequency shoulder of the 2D mode, was attributed to a
symmetric process [46, 50–54, 155]. Here, we showed that these two peaks result from the same
scattering process. Our assignment of the third and fourth 2D-mode peaks to inner and outer
P 33

22 contributions is supported by an experimental work by Frank et al. on strained bilayer
graphene [162]. Frank et al. argued that peak shifts and intensity variations of the third and
fourth peak in strained bilayer graphene resemble the observations of inner and outer processes
of the 2D mode in strained single-layer graphene [137]. Since inner and outer processes exhibit
different dispersions with laser excitation energy [47, 49], both contributions of the P 33

22 process
merge with increasing laser energy. Therefore, at higher laser energies the fourth peak vanishes.
Experimentally, this effect can be nicely seen in the spectrum of freestanding bilayer graphene
at 2.54 eV excitation energy in Fig. 4.8. Here, the small high-frequency shoulder cannot be
identified any more. At excitation energies above 2.54 eV, this effect becomes even more obvious
(compare Fig. 4.19). This gives further evidence to our assignment of the different 2D-mode
contributions.

4.6 Derivation of the TO phonon and electronic splitting from

2D-mode spectra

As explained above, the dominant contribution to symmetric and anti-symmetric processes stems
from scattering with TO phonons from different phonon branches, i.e., the main contribution
to symmetric processes results from scattering with symmetric TO phonons and vice versa.
This fact has remarkable impact on the 2D-mode lineshape. First, we should recall that the
resonant phonon wave-vectors are nearly equidistant in reciprocal space (compare Fig. 4.7).
Thus, if all scattering processes would couple to the same phonon branch, we would expect
that all contributions in the 2D-mode spectrum should be equidistantly spaced in frequency.
However, this is only true for outer processes, as can be seen from Fig. 4.9 (a), and is explained
with the negligible TO phonon splitting along K − M for these processes [compare Fig. 4.3 (c)
and (d)]. By considering inner processes, a different situation emerges. Here, the contributions
are not equidistant in frequency. This is a direct consequence of the splitting between both
TO phonon branches along the K − Γ direction and the coupling of the scattering processes
to different phonon branches. Since the inner anti-symmetric scattering processes couple to
the energetically higher phonon branch along K − Γ, their frequency is upshifted with respect
to the center between both symmetric processes (ω44

11 and ω33
22). This situation is shown in

Fig. 4.12 (a) and (b). As the double-resonant 2D mode is a two-phonon process, the upshift of
the anti-symmetric processes is twice the TO phonon splitting.
In the following, we want to present a method to derive the TO phonon splitting in bilayer
graphene directly from experimental Raman spectra. As discussed above, the P 33

22 peak splits
up into an inner and outer contribution, which is clearly observable for smaller laser excitation
energies. For the calculation of the TO phonon splitting we used the inner component, i.e., the
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Figure 4.12: (a) GW -corrected TO phonon branches along the Γ−K−M direction for bilayer
graphene. The red arrows denote the one-dimensional resonant phonon wave-vectors for the
different scattering processes P lj

mi. The dashed arrow indicates the phonon frequency of the
anti-symmetric processes, if all processes would couple to the same (energetically lower) phonon
branch. The frequency difference that results from the coupling of the anti-symmetric processes
to the energetically higher TO branch can be clearly seen. (b) Exemplary fit of an experimental
2D-mode spectrum from freestanding bilayer graphene at 2.33 eV laser excitation energy. The
solid, red curve represents the fit to the experimental spectrum based on the model from Basko
[48]. The relevant peak positions of the single peaks are marked with dashed lines, the center
between the symmetric scattering processes is shown by the dotted line. The upshift of the anti-
symmetric processes with respect to the center between the symmetric contributions (dotted
line) is indicated.

third 2D-mode peak [ω33
22 in Fig. 4.12 (b)], as we want to investigate the TO splitting along the

K − Γ direction. Figure 4.12 (b) shows an exemplary fit of a measured 2D-mode spectrum at
2.33 eV laser energy using a fit of the form

f(ω) =


i=1,4
ai · fi (ω, ωi, Γi) , (4.6)

where

fi (ω, ωi, Γi) =


Γ2
i

4 (−1 + 22/3) (ω − ωi)2 + Γ2
i

3/2

(4.7)

is a normalized function following the model of Basko [48]. Here, ai reflects the peak amplitude,
ωi represents the central peak frequency and Γi is the full width at half maximum (FWHM).
During all fitting routines, no fitting parameters were shared among the different ’Baskonian’
profiles, e.g., the same full-width-at-half-maximum. In Figure 4.12 (b), the peak positions of the
P 44

11 , P 43
12 , and inner P 33

22 processes are marked by vertical dashed lines. Furthermore, the center
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Figure 4.13: Experimentally obtained values for (a) the electronic and (b) TO phonon splitting.
The solid (red) and dashed (blue) lines denote the DFT+GW calculated splittings in Γ − K
(inner) and K−M (outer) direction, respectively. Open, green circles are data points taken from
Ref. [52]. Filled, black circles represent data points obtained from measurements on freestanding
bilayer graphene in this work.

between both symmetric processes is indicated by a dotted line. The upshift ∆ω due to the TO
phonon splitting is given by

∆ω = 1
2


ω43

12 − ω44
11 + ω33

22
2


, (4.8)

where ωlj
mi refers to the peak positions of processes P lj

mi. Furthermore, we can also derive the
splitting between both electronic bands from the experimental 2D-mode spectra. The electronic
splitting ∆ε is given by the frequency difference between both symmetric processes divided by
the dispersion of the 2D-mode peaks with laser excitation energy. In other words,

∆ε = ω33
22 − ω44

11
dω/dℏωL

. (4.9)

Here, dω/dℏωL is the laser-energy dependent shift rate of the 2D mode. It is important to notice
that the 2D-mode dispersion is non-linear, as can be seen from Ref. [52]. We used a quadratic
fit to the data points from Ref. [52] to obtain the dispersion, which has the form

dω

dℏωL
= 181 cm−1

eV − 30.5 × ℏωL
cm−1

eV2

By tuning the laser excitation energy in our experiment, we can change the resonant phonon
wave-vector enhanced by the double-resonance condition and thus map the TO phonon and
electronic splitting along the high-symmetry directions. Combining our own measurements with
experimental data from Mafra et al. [52], we can plot both quantities ∆ε and ∆ω as a function
of q. The plots are shown in Figure 4.13 (a) and (b); for simplicity and better comparison,
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we plotted our data as a function of the difference between q and the K point. As can be
seen, our experimental data follow the calculated curves along the inner direction. However, we
observe disagreement between calculation and experiment for the TO phonon splitting. Since
also phonons away from the high-symmetry direction contribute to the double resonance [142],
the experimentally measured TO splitting is expected to be smaller than theoretically predicted
along the Γ − K direction. Thus, the theoretical curves along the inner and outer directions
should represent an upper and a lower limit for the experimental values, respectively. As can be
seen, for small q we observe a disagreement between calculation and experiment of up to 40 %.
The fact that the experimental data points are significantly higher than the theoretical limit
indicates that the commonly assumed GW correction might still underestimate the TO splitting,
which is probably larger than 15 cm−1 close to K. The assumption of an underestimated GW

correction is further supported by the fact that the calculated overall peak width of the 2D

mode is larger than experimentally observed (compare Fig. 4.8). An increase of the GW -related
correction to the TO phonons would not only increase the TO phonon splitting, but also leads
to a larger slope of the TO branch. The larger slope would reduce the frequency differences
between the different contributions, ergo, the overall peak width decreases. Hence, this would
further increase the agreement between the calculations and our experimental Raman spectra.
Yang et al. derived from first-principles calculations that the GW correction on the electronic
system is qualitatively similar for single and bilayer graphene, however, the correction is not
quantitatively equivalent [163]. More recently, Rösner et al. derived Coulomb interactions in
single-layer graphene, bilayer graphene, and graphite using a Wannier function approach [164].
The differences between the Coulomb interactions in these systems can be directly understood
from different dielectric environments and different screenings of the Coulomb potential. The
importance of the electronic screening on electron-electron interactions in graphene was recently
pointed out by Faugeras et al. [65]. Refs. [163] and [164] indicate that the GW correction on
the electrons for single and bilayer graphene is slightly different in both systems. However, there
are no calculations of the GW correction on the electron-phonon coupling in bilayer graphene.
A recent work by Narula et al. found indications that the slope of the TO phonon branch might
be 40 % larger than theoretically expected [165]. In our work, the GW correction for the TO
phonons around the K point is assumed to be the same as in single-layer graphene. However,
the comparison of the calculated 2D-mode spectra with our experimental data suggest that the
GW corrections in bilayer graphene are underestimated as compared to single-layer graphene.

4.7 Dependence of the double-resonant Raman spectra on the

electronic broadening

In the following section, we want to investigate the dependence of the double-resonant 2D-mode
spectra on the electronic broadening γ. The electronic broadening, i.e., the inverse lifetime of

49



4. Analysis of the double-resonant 2D Raman mode in bilayer graphene

εL = 1.96 eV
calc: 0.5 × γ

calc: 1.0 × γ

experiment

2550 2600 2650 2700 2750 2800
Raman shift

(
cm−1)

In
te

ns
ity

(a
rb
.

un
its

)

Figure 4.14: Comparison of experi-
mental and calculated Raman spec-
tra at 1.96 eV laser energy with dif-
ferent electronic broadenings. The γ

was calculated according to Eq. (4.2).
Spectra were normalized to the contri-
bution from anti-symmetric scattering
processes.

the electronic states, can be divided into three different contributions

γ = γe-ph + γD + γe-e. (4.10)

Here, γe-ph reflects the contribution from electron-phonon scattering, which can be further sep-
arated into the contribution from Γ- and K-point phonons. γD refers to the electron-defect
scattering rate and γe-e represents the contribution to γ from scattering between charge carri-
ers. In principle, all three contributions can be manipulated experimentally. For instance, γe-ph

depends on the laser excitation energy [47], as well as on temperature [166, 167]. Naturally,
γD depends on the amount and type of defects and is also influenced by the laser energy [47].
Finally, γe-e can be tuned by shifting the Fermi level. In fact, Basko et al. calculated that
γe-e scales linearly with |EF| in single-layer graphene [168]. Previous studies already extensively
investigated the effect of defects and doping on the double-resonant scattering process by ana-
lyzing the D/G- and 2D/G-mode intensity ratio in single-layer graphene [32, 33, 154, 169–171].
For bilayer graphene, different studies that investigate the doping dependence of the Eg and Eu

Γ-point vibrations were reported [35, 172–174]. However, none of the previous works analyzed
the influence of the electronic broadening on the double-resonant 2D-mode scattering process
and its effect on the 2D-mode lineshape in bilayer graphene.
Our analysis is motivated by the observation that the 2D-mode lineshape in our calculations
significantly depends on the electronic broadening, i.e., we observe a strong variation between
the ratio of symmetric and anti-symmetric contributions by a change in γ. Usually, in theoretical
calculations of the double-resonant Raman scattering cross-section the broadening is chosen as
given by Ref. [47]. However, this work only considered the contributions from electron-phonon
scattering γe-ph to the overall scattering rate γ. Figure 4.14 compares calculated 2D-mode
spectra for two different values of the electronic broadening. The blue curve (0.5 × γ) reflects a
calculation using the electronic broadenings from Ref. [47]; the red curve (1.0 × γ) represents a
calculation, where an electronic broadening twice as large as before was used. As can be seen
from the comparison with the experimental data, the red curve fits our experimental 2D-mode
spectrum. The blue curve overestimates the contribution from symmetric scattering processes, or
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vice versa, underestimates the contribution from anti-symmetric processes. Moreover, Ref. [175]
reported a Raman study of chemically-functionalized bilayer graphene and observed a lineshape
variation as a function of the doping level. However, the observed lineshape changes upon
doping were not discussed. Apparently, the influence of the electronic broadening on the double-
resonance process in bilayer graphene is not yet understood and needs further investigation.
In order to analyze the effect of the electronic broadening γ on the double-resonant scattering
processes in bilayer graphene, we performed calculations of the Raman scattering cross-section
using Eq. (3.14). For simplicity, we assumed the matrix elements M to be constant and restricted
the integration to the Γ − K − M high-symmetry direction. This approach seems justified as
the main contributions in the double-resonance process stem from the high-symmetry lines
[47, 142, 176]. In the following, we only present the resonant phonon wave-vectors for inner
processes, however, outer processes behave likewise. The results of our calculations are shown
in Fig. 4.15. Figure 4.15 (a) shows the evolution of the resonant phonon wave-vectors at a
constant laser excitation energy using different electronic broadenings. The correspondence
between the scattering processes P lj

mi and the different contributions is given above this plot.
As can be seen, an increase of the electronic broadening γ leads to an enhancement of the
anti-symmetric processes compared to the symmetric contributions. Figures 4.15 (b) and (c)
show the calculated resonant phonon wave-vectors of the 2D mode in bilayer graphene for
different laser excitation energies without and with a variation of the electronic broadening,
respectively. The broadenings in Figure 4.15 (c) were calculated according to Eq. (4.2). In
contrast to Figure 4.15 (a), we observe the opposite intensity variation between symmetric and
anti-symmetric processes for increasing values of γ. We also want to point out the significant
lineshape variations of the symmetric contributions in all calculations for an increasing value of
γ, i.e., we observe a strong asymmetry of P 33

22 and P 44
11 towards the high- and low-momentum

side, respectively. Such asymmetric lineshapes are, for instance, observed in Fano resonances and
are usually identified with quantum interference between different contributions. As we already
discussed in Sec. 4.5, quantum interference remarkably influences the 2D-mode lineshape, i.e.,
we demonstrated an enhancement of the anti-symmetric contribution by a factor of two due
to constructive interference between the P 43

12 and P 34
21 processes. Of course, this constructive

interference is also present in these calculations [compare Fig. 4.15 (d)].
In order to further exploit the interference effects between symmetric and anti-symmetric scat-
tering processes, we decompose the calculated resonant phonon wave-vectors into their real and
imaginary part. This decomposition is shown in Figure 4.16 (a) and (b) for a calculation with
a constant laser excitation energy and a variation of the electronic broadening. The calculated
curves for the single contributions resemble the expected lineshape of the resonance of a Lorentz
oscillator with finite lifetime and three denominators which are close-by in resonance energy.
By comparing the real and imaginary parts in Fig. 4.16 (a) and (b), we observe changing over-
laps between the different contributions as a function of γ. To emphasize this observation, we
highlight the overlap in the real part of the complex scattering amplitude between the sym-
metric Re(sym.) and anti-symmetric Re(asym.) processes by the gray area. As can be seen,
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Figure 4.15: Calculated resonant phonon wave-vectors in the 2D-mode double-resonance pro-
cess of bilayer graphene using different calculational scenarios. The calculations assumed (a) a
fixed laser energy εL and a variation of the electronic broadening γ, (b) a fixed γ and a vari-
ation of εL, and (c) a variation of both εL and γ according to Eq. (4.2). (d) Comparison of
the resonant phonon wave-vectors for a full calculation considering interference between all P lj

mi

(solid line) versus the sum of the single P lj
mi without interference (dashed line). All spectra are

normalized to the P 33
22 contribution and vertically offset for clarity.
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Figure 4.16: Separation into the real and imaginary part of the resonant phonon wave-vectors
for a fixed laser energy and a variation of the electronic broadening. The calculational parameters
are (a) εL = 2.3 eV, γ = 60 meV and (b) εL = 2.3 eV, γ = 110 meV. The solid black lines refer
to the single processes P lj

mi, whereas the red curve is the sum of the different contributions. The
overlap of the symmetric and anti-symmetric processes in the real part of the complex scattering
amplitude is indicated by the gray area. The vertical dashed lines indicate the resonant phonon
wave-vectors of both symmetric processes and are a guide to the eye.
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Figure 4.17: Calculation of the resonant
phonon wave-vector with different signs of the
matrix elements M for symmetric and anti-
symmetric processes.

the overlap between both anti-symmetric processes depends only marginally on γ, as these pro-
cesses are always degenerate. Ergo, the constructive interference between P 43

12 and P 34
21 cannot

explain the observed variation of the ratio between symmetric and anti-symmetric processes as
a function of the electronic broadening. In contrast, we identify further quantum-interference
effects in our spectra, i.e., both destructive and constructive interference between symmetric
and anti-symmetric processes. These effects can be seen best, when we compare the sum of the
real and imaginary parts [red curves in the middle and bottom panels of Fig. 4.16 (a) and (b)]
with the single contributions from the scattering processes P lj

mi. As can be seen, the resonance
broadens with increasing γ and leads to a larger overlap of Re(sym.) and Re(asym.) with op-
posite algebraic sign. Thus, these contributions add up incoherently, leading to a destructive
interference. This effect explains the asymmetric lineshape of P 33

22 and P 44
11 towards the high-

and low-momentum side, respectively. Moreover, we observe an increasing overlap of Re(sym.)
and Re(asym.) with the same algebraic sign on the low- and high-momentum side of P 33

22 and
P 44

11 , respectively, further increasing the asymmetry of the resonant phonon wave-vectors for the
symmetric contributions. By looking at the imaginary parts for symmetric and anti-symmetric
processes, we can observe similar dependencies. With increasing γ, the overlap between Im(sym.)
and Im(asym.) with opposite algebraic sign increases, leading to a decrease in intensity of the
symmetric processes. In total, the destructive interference leads to a reduction of the intensity
from symmetric processes and is also responsible for the asymmetric lineshape of the resonant
phonon wave-vectors for P 33

22 and P 44
11 .

To support our argumentation, we performed calculations of the resonant phonon wave-vectors,
where we individually adjusted the sign of the matrix elements for symmetric and anti-symmetric
processes. If the above calculated 2D-mode lineshape and the reduction in intensity of the
symmetric processes is due to destructive interference, we may enable constructive interference
between symmetric and anti-symmetric scattering processes by changing their relative sign. The
result of this calculation is shown in Figure 4.17. As can be seen, the 2D-mode lineshape changes
drastically in our calculations when the matrix elements for symmetric and anti-symmetric pro-
cesses exhibit different signs. In fact, we observe an increase in intensity for the symmetric
processes, which can be identified with constructive interference. Since the sign change does
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Figure 4.18: Separation into the real and imaginary part of the resonant phonon wave-vectors
for a variation of both the laser energy and the electronic broadening The calculational param-
eters are (a) εL = 1.8 eV, γ = 60 meV and (b) εL = 2.8 eV, γ = 101 meV. The solid black lines
refer to the single processes P lj

mi, whereas the red curve is the sum of the different contributions.
The overlap of the symmetric and anti-symmetric processes in the real part of the complex scat-
tering amplitude is indicated by the gray area. The vertical dashed lines indicate the resonant
phonon wave-vectors of both symmetric processes and are a guide to the eye.

55



4. Analysis of the double-resonant 2D Raman mode in bilayer graphene

not affect the constructive interference between both anti-symmetric processes, we also observe
a strong increase in intensity for these contributions. Ergo, this calculation supports our as-
sumption of destructive interference between symmetric and anti-symmetric processes and nicely
demonstrates the drastic effects that interference can have on the double-resonant phonon wave-
vectors.
As mentioned before, we observe a different dependence of the ratio between symmetric and anti-
symmetric scattering processes by increasing both the laser excitation energy and the electronic
broadening, as compared to the above discussed situation. Also for this case, we present a
decomposition into the real and imaginary parts of the scattering amplitude [see Figure 4.18 (a)
and (b)]. Compared to the calculation in Fig. 4.16 (a) and (b), we do not only observe a
broadening of the resonant phonon wave-vectors in this calculation, but we also notice a relative
shift of the different contributions. In fact, this shift is responsible for the lineshape variations as
a function of laser excitation energy. Due to the relative shift of symmetric and anti-symmetric
wave-vectors, the overlap between contributions of the same algebraic sign increases, leading
to an increase in intensity of symmetric processes and a decrease in intensity for the anti-
symmetric processes. This effect can be observed both for the real and the imaginary part of
the complex scattering amplitude. The above described intensity variations for the different
resonant phonon wave-vectors as a function of the electronic broadening and the laser excitation
energy, can be only understood in terms of quantum interference. Thus, by manipulating the
electronic broadening by external perturbations, such as doping or defects, we can selectively
tune the quantum interference in double-resonance process of bilayer graphene.
Next, we want to give an experimental verification of our calculational results from above.
However, we will only discuss general dependencies of the 2D-mode lineshape as a function of γ

and will not attempt a precise quantification of the different scattering rates. Since the absolute
values of the ratio between symmetric and anti-symmetric processes depend on the choice of the
fitting model and the initial start parameters in the fit routine, the calculated ratios P 33

22 /Pasym.

from the experimental spectra shall only represent a guide to the eye. The qualitative dependence
of P 33

22 /Pasym. in our data is not affected by the different fitting models. We will start with an
analysis of the lineshape variations as a function of the laser excitation energy. In Figure 4.19,
we present the 2D mode of bilayer graphene measured at different laser energies in the range
from 1.96 eV to 2.81 eV. Following Eq. (4.2), the value of γe-ph changes from 67 meV at 1.96 eV
laser excitation energy to 101 meV at 2.81 eV laser energy. The presented spectra are normalized
and shifted in frequency to the contribution from the anti-symmetric processes. As can be seen,
we observe a strong variation of the ratio between symmetric and anti-symmetric processes, i.e.,
the intensity of the symmetric contributions drastically increases with respect to the intensity
of the anti-symmetric processes. Since our measurements are performed on freestanding bilayer
graphene, which is to a good approximation free of doping, defects, and strain, tuning the laser
excitation energy should only change the contribution from electron-phonon scattering to the
electronic broadening γ. Following Ref. [47], increasing the laser excitation energy will increase
the contribution from γe-ph to γ. Hence, a larger γ will lead to an increased contribution from
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Figure 4.19: Dependence of the 2D-
mode lineshape on laser excitation energy.
All spectra were normalized and shifted in
frequency to the contribution of the anti-
symmetric scattering process.

symmetric processes as compared to anti-symmetric scattering processes [compare Fig. 4.15 (c)].
This is in nice agreement with our experimental data presented in Fig. 4.19. Furthermore, we
also observe that the P 44

11 contribution shifts towards the peak from anti-symmetric scattering
processes with increasing laser energy in the experimental spectra. This peak shift can be
directly understood as an effect of the reduced splitting between both TO branches at larger
distances from the K point, as demonstrated in the previous Section.
As theoretically and experimentally discussed in Refs. [47], [171] and [154], the electronic broad-
ening does also depend on the defect concentration in the graphene sample. In general, a larger
defect concentration leads to a higher electron-defect scattering rate and thus to an increased
value for γD. In fact, γD should be directly proportional to nD [47]. However, γD is usually
significantly smaller than γe-ph, e.g., γe-ph = 50 meV and γD = 7 meV in defective single-layer
graphene at a defect concentration of nD = 0.9 × 1012 cm−2 [154]. In the present study, we use
ion-irradiated graphene samples that were exfoliated on standard silicon substrates with 100 nm
SiO2.4 Ion-irradiated graphene samples allow a precise quantification of the average defect dis-
tance from the ion fluence, which is independent from geometrical parameters of the defect and
more reliable than a determination from the measured D/G-mode ratio [see Chapter 5.2]. In
Figure 4.20 (a), we present Raman spectra of the 2D mode in defective bilayer graphene with
three different average defect distances LD. We observe a dependence of the ratio between
symmetric and anti-symmetric contributions on the defect concentration, i.e., with increasing
defect concentration (decreasing average defect distance) we observe an increase of the ratio
between symmetric and anti-symmetric processes [compare Fig. 4.20 (b)]. Again, this is in nice
agreement with our theoretical predictions from Fig. 4.15 (a). An increasing defect concentra-
tion leads to a larger value for the electronic broadening, which in turn results in an increase of
the contribution from anti-symmetric scattering processes compared to symmetric processes.
Another approach to manipulate the electronic broadening γ experimentally is by charge-carrier
doping of the graphene sample. Basko et al. pointed out the linear dependence between γe-e

and the Fermi-level shift |EF| in single-layer graphene [168], which should roughly follow the

4Samples were provided by O. Ochedowski and M. Schleberger (AG Schleberger, Universität Duisburg-Essen).
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Figure 4.20: (a) Raman spectra of the 2D mode in ion-irradiated bilayer graphene. The
average defect distances LD for each sample are given next to the spectra. (b) Evolution of
the intensity ratio between the symmetric and anti-symmetric contributions as a function of the
average defect distance.

dependence

γe-e = 0.06 × |EF| . (4.11)

For typical Fermi-level shifts of 300 meV, this would result in γe-e = 18 meV. However, due to
different curvatures of the electronic bands in bi- and single-layer graphene, the dependence of
γe-e on the Fermi-level shift is assumed to be negligible in bilayer graphene. Following Ref. [168],
this can be understood from the parabolic (convex) electronic dispersion near the K point, which
allows electron-electron scattering even at zero doping. Thus, γe-e is expected to observe a weaker
dependence on |EF| as compared to single-layer graphene. As a consequence, the normalized
intensity of the 2D mode in bilayer graphene should depend only weakly on the Fermi-level shift,
as experimentally demonstrated in Ref. [35].

Experimentally, charge-carrier concentrations in single-layer graphene are commonly manip-
ulated by two different approaches, namely, back-gated graphene on Si/SiO2 substrates and
electrochemically top-gated graphene. Combinations of both approaches are also possible of
course. These methods have been successfully employed to investigate the electron-phonon cou-
pling in graphene at different points in the Brillouin zone or to demonstrate the breakdown of the
Born-Oppenheimer approximation in doped graphene [34, 154]. However, charge-carrier doping
in bilayer graphene is more facile as compared to single-layer graphene. In fact, either top or
back gating of bilayer graphene will not only change the charge-carrier concentration, but will
also result in the formation of a finite bandgap [124, 177, 178], which can be understood from
a breakdown of inversion symmetry in gated bilayer graphene. As a consequence, Eu-symmetry
phonons at the Γ point in bilayer graphene become observable in Raman spectroscopy [179].
However, most experimental works on gated bilayer graphene do not consider this finite poten-
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Figure 4.21: G-mode peak
position (red) and FWHM
(blue) as a function of
the electrode voltage in
electrochemically-gated bilayer
graphene.

tial difference δV between the top and bottom layer [35, 172]. Following Ref. [35], the Fermi
level in bilayer graphene as a function of the applied electrode voltage VE can be calculated as

e VE = α E2
F + (1 + αγ1) EF if EF < γ1

e VE = 2 α E2
F + EF if EF > γ1 (4.12)

Here, e is the elementary charge and γ1 reflects the energy separation between the π2 and π∗
2

bands at the K point [compare Fig. 4.2 (b)]. The quantity α is defined as

α = e2

π CTG (ℏvF)2 ,

where CTG is the top-gate capacitance and usually assumed as CTG = 2.2 × 10−6 F cm−2; the
splitting γ1 is taken as 0.39 eV [35]. In general, the Fermi-level shift that is induced by a voltage
VE in bilayer graphene is less compared to single-layer graphene, which is due to the different
dispersion of the electronic bands around K and hence different density of states. For instance,
the difference between EF for single- and bilayer graphene at an electrode voltage of VE = 1 V
is more than 60 % [35].

Figure 4.21 presents measured G-mode positions and FWHMs in electrochemically-gated bilayer
graphene during subsequent forward and backward sweeps of the electrode voltage. The observed
hysteresis is negligible. As can be seen, we observe an upshift in the G-mode frequency with
increasing voltage, in agreement with an increasing doping level [35, 172, 179, 180]. The G-mode
FWHM shows a more complex behavior, i.e., we observe an initial decrease of the FWHM from
13 cm−1 to 5 cm−1, followed by an increase to 8 cm−1 with increasing voltage. This observation
is in contrast to the dependence of the G-mode FWHM in single-layer graphene. However, the
increasing FWHM of the G mode in bilayer graphene can be understood from the breakdown of
inversion symmetry and mixing of the Raman- and infrared-active optical phonons at Γ [174].
From Figure 4.21 we can also infer that our bilayer graphene sample exhibits a strong initial p-
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Figure 4.22: (a) Raman spectra of the 2D mode in electrochemically-gated bilayer graphene
as a function of the electrode voltage VE at 2.41 eV laser energy. With increasing voltage,
we observe a decrease in intensity accompanied by a change in the 2D-mode lineshape. (b)
Evolution of the amplitude ratio between P 33

22 and Pasym. processes as a function of VE . The
dashed line is a linear fit and represents a guide to the eye.

type doping. This behavior is consistently observed in all of our samples and can be attributed to
unintentional doping by the substrate, as well as by the electrolyte [154, 181]. In fact, the absence
of the charge-neutrality point in our experimental data complicates a precise quantification of
the Fermi-level shift, since EF depends non-linear on VE and knowledge about the zero-position
is crucial. Future experiments with top- and back-gated bilayer graphene samples may overcome
this drawback. The reader may notice that the applied electrode voltages extend further into
the negative regime as compared to previous studies. In fact, electrode voltages below −1 V
are expected to create defects in electrochemically-gated single-layer graphene [154]. However,
even after multiple cycles with minimum electrode voltages of VE = −1.5 V, we do not observe
the evolution of a D mode in our Raman spectra. This might be understood from a reduced
chemical reactivity of bilayer graphene compared to single-layer graphene [182].
Figure 4.22 (a) presents Raman spectra of the 2D mode in electrochemically-gated bilayer
graphene at different electrode voltages. The evolution of the ratio between the P 33

22 and
the Pasym. process as a function of the voltage is shown in Figure 4.22 (b). Assuming that
the electronic broadening γ increases with increasing doping due to additional contributions
from electron-electron scattering, we would expect a decreasing ratio between symmetric and
anti-symmetric scattering processes (compare Fig. 4.15). However, our experimental data in
Fig. 4.22 (b) suggests the opposite dependence, i.e., the intensity of the anti-symmetric pro-
cesses reduces as compared to the symmetric contributions. This observation would indicate a
decreasing electronic broadening with increasing electrode voltage. In fact, not only γe-e should
depend on the charge-carrier density but also γe-ph. As discussed above, γe-e is expected to
exhibit a weak dependence on EF in bilayer graphene. In contrast, it has been demonstrated
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for single-layer graphene that the electron-phonon coupling decreases with increasing doping
level [183] and it seems reasonable that bilayer graphene exhibits the same dependence. Since
the electron-phonon scattering rate is proportional to the electron-phonon coupling [47], γe-ph

is expected to decrease with increasing doping level. Our experimental data in Fig. 4.22 (b)
indicate that the decrease of γe-ph exceeds the increase of γe-e, leading to an overall reduction
of γ.
Besides the changing ratio between symmetric and anti-symmetric processes, we observe a slight
decrease in intensity of the 2D mode, as well as a broadening of the single contributions with
increasing electrode voltage. The observed peak shifts are less than ±1 cm−1 from the average
value of each contribution, confirming the previously measured doping dependence of the 2D-
mode shifts in bilayer graphene for n-type doping [35]. Also the broadening of the different
contributions with increasing doping level is in agreement with previous results [175]. This
broadening might be understood from a renormalization of the Fermi velocity in doped graphene
[184], i.e., vF reduces with increasing either n- or p-type doping. Due to the reduced slope of the
electronic bands, the resonant transitions in the double-resonance process can be satisfied by
a broader range of phonon wave-vectors. Ergo, the different contributions would broaden with
increasing electrode voltage. The observed intensity decrease of the 2D mode is counterintuitive,
if we keep in mind that the electronic broadening γ decreases with increasing electrode voltage.
In general, a smaller electronic broadening will lead to double-resonant Raman modes with higher
intensity and reduced linewidth [47]. However, the overall decrease in intensity of the 2D mode
in gated bilayer graphene might be understood from a reduced electron-phonon coupling [183].
Since symmetric and anti-symmetric TO phonons exhibit the same electron-phonon coupling, a
decrease of the electron-phonon coupling would affect symmetric and anti-symmetric scattering
processes equally, explaining the overall decrease in intensity of the 2D mode. To sum up,
our experimental data indicate that the electronic broadening in the double-resonance process
decreases with increasing electrode voltage. Furthermore, we expect a renormalization of the
Fermi velocity and the electron-phonon coupling. These two effects may result in a broadening
of the different 2D-mode contributions, as well as in a decrease of the overall intensity.
As a last point, we want to present an experimental situation where the lineshape variations
of the 2D mode in bilayer graphene can be nicely observed in a simple and straight-forward
measurement. In Figure 4.23 (a), we show Raman spectra of the 2D mode in bilayer graphene
that were recorded while performing a linescan across the edge of a bilayer flake. As can be seen,
we observe a strong variation of the 2D-mode lineshape as a function of the linescan position,
i.e., at the edge we observe an increased ratio between symmetric and anti-symmetric scattering
processes as compared to the inside of the bilayer graphene flake [compare Fig. 4.23 (b)]. Keep-
ing in mind our above demonstrated dependence of the 2D-mode lineshape on the electronic
broadening, this lineshape variation would correspond to a larger broadening γ directly at the
edge. In fact, a larger electronic broadening directly at the edge seems reasonable. For instance,
the edge is an extended defect and, as demonstrated above, defects increase the broadening and
result in an increased ratio between symmetric and anti-symmetric scattering processes. Further-
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Figure 4.23: (a) Raman spectra of a linescan across a bilayer graphene edge. The lowest
spectrum refers to the bilayer edge, whereas the topmost spectrum was measured inside the
bilayer graphene flake. The solid red line denotes a fit with four Baskonian profiles, the dashed
lines represent the single contributions. Spectra are normalized to the same Pasym. intensity and
vertically offset for clarity. (b) Evolution of the ratio between P 33

22 and the contribution from
anti-symmetric processes along the linescan across the bilayer graphene edge. (c) Comparison
of the Raman spectrum at the bilayer graphene edge measured at 2.33 eV laser energy and a
spectrum of freestanding bilayer graphene measured 1.96 eV laser excitation energy.

more, we also expect strain at the bilayer graphene edge. Figure. 4.24 presents Raman spectra
of tensile-strained bilayer graphene. In fact, we observe an increasing ratio between symmet-
ric and anti-symmetric processes with increasing tensile strain. This effect can be understood
from different strain-induced intensity variations for the inner and outer contributions of the
P 33

22 process [162]. However, graphene edges are most likely compressively strained [185, 186],
which is expected to lead to the opposite effect, in agreement with our experimental data in
Figure 4.23 (a). Thus, the lineshape variations at the bilayer graphene edge might be understood
from an increased electronic broadening, as well as compressive strain.

The lineshape of the 2D mode in bilayer graphene is often considered as unique for a certain
laser excitation energy [46]. However, here we showed that the 2D-mode lineshape is affected
by various external perturbations, such as defects, strain, and doping. In fact, in extreme cases
the lineshape can exhibit drastic changes. In Fig. 4.23 (c), we compare the measured 2D-mode
spectrum at the bilayer graphene edge at a laser energy of 2.33 eV with a Raman spectrum of

62



4. Analysis of the double-resonant 2D Raman mode in bilayer graphene

0.00 %
0.03 %
0.07 %
0.10 %
0.14 %

ε= 0.17 %

2600 2650 2700 2750 2800
Raman shift

(
cm−1)

In
te

ns
ity

(a
rb
.

un
its

)
Figure 4.24: Raman spectra of tensile-
strained bilayer graphene. The strain level
is given next to the spectra. Spectra are nor-
malized to the same Pasym. intensity and ver-
tically offset for clarity.

freestanding bilayer graphene at εL = 1.96 eV. As can be seen, the spectrum from the bilayer
edge nearly resembles the lineshape of the spectrum from freestanding bilayer graphene although
the laser excitation energies are different. We want to remark that by the term lineshape, we
just refer to the intensities of the different contributions. The peak positions of the 2D mode
are, in general, more dominantly influenced by the laser energy as compared to the influence by
γ. Thus, peak positions in both spectra of course do not match. Nevertheless, we demonstrated
that the 2D-mode lineshape can change drastically as a function of external parameters. In fact,
knowledge about the lineshape dependence on doping, defects, and strain may add an additional
tool for graphene characterization using Raman spectroscopy.

4.8 Polarization dependence of the 2D mode in bilayer graphene

All spectra that were shown so far, were calculated for the unpolarized case. However, one might
be also interested in the polarization dependence of the 2D mode in bilayer graphene. It has been
shown that polarized Raman measurements, in combination with uniaxial strain application,
enable an accurate determination of the sample orientation in single-layer graphene [36, 187].
Furthermore, those experiments gave the first experimental indications on the dominance of
inner processes in double-resonant Raman scattering [38, 137]. Also Narula et al. demonstrated
a theoretical calculation of the 2D-mode splitting under uniaxial strain in single-layer graphene
and showed that the dominant phonon wave-vectors in the double-resonance process sensitively
depend on polarizer and analyzer orientation [138].
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Using the notation of Venezuela et al. [47], the calculation of different polarizations is given by

Iunpol = |Ixx|2 + |Ixy|2 + |Iyx|2 + |Iyy|2 (4.13)

I∥ = |Ixx|2 + |Iyy|2 (4.14)

I⊥ = |Ixy|2 + |Iyx|2 , (4.15)

where Iunpol, I∥, and I⊥ describe the Raman intensities for an unpolarized measurement and
measurements with parallel and perpendicular polarization, respectively. The different Iij refer
to the contributions from excitation in i and emission in j direction with respect to the crystal
lattice of bilayer graphene in real space.

The polarization dependence of the 2D mode has been extensively discussed, both experimen-
tally and theoretically, for single-layer graphene [38, 47, 138, 188]. The observed dependence
was explained by an inhomogeneous absorption and emission in the double-resonance process
[189]. In principle, equivalent observations are expected for the 2D mode in bilayer graphene.

We will now turn our analysis to the calculated Raman spectra and contour plots of the Raman
scattering cross-section. Figure 4.25 (a) presents the calculated 2D-mode spectra for parallel
polarization, crossed polarization, and for an unpolarized measurement. The different polariza-
tions were calculated according to Eqs. (4.13)-(4.15). As can be seen, the three spectra exhibit
only minor differences in their lineshape. The largest difference can be observed for the P 33

22

contribution, which we magnify in Fig. 4.25 (b). Here, we see a variation of the ratio between
inner and outer contributions for this scattering process. As can be seen from the calculated
contour plots of the 2D-mode scattering cross-section in Fig. 4.26, this variation is due to a
partially selective suppression of inner and outer processes for the different polarizations due
to inhomogeneous photon absorption around the K point [189]. However, due to the three-fold
symmetry at the K point, the 2D-mode lineshape does not change fundamentally. The partial
suppression of scattering processes around the K point is compensated by the contribution of
equivalent scattering processes. Since equivalent processes are separated by an angle of 120 ◦

around K, it is not possible to simultaneously suppress all three equivalent regions around the
K point with parallel nor with crossed polarization. Therefore, the calculated spectra exhibit
only a weak dependence on the different polarizations.

Figure 4.27 presents experimental 2D-mode Raman spectra of freestanding bilayer graphene
under parallel and perpendicular polarization for 1.96 eV and 2.33 eV laser excitation energy.
In order to exclude intensity variations due to the polarization dependence of the spectrometer
grating, only the incoming polarization was rotated between both measurements. As can be seen,
the 2D-mode lineshape in bilayer graphene depends only weakly on the polarization. However,
we observe a non-negligible variation of the P 33

22 contribution under parallel and perpendicular
polarization, confirming our calculational results from Fig. 4.25. We explicitly verified that
the observed effect does not depend on the crystallographic orientation of the bilayer graphene
flake with respect to the laser polarization. As explained above, the intensity variation of
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Figure 4.25: (a) Calculated 2D-mode spectra for parallel and crossed polarization, as well as
for an unpolarized measurement at 1.96 eV laser excitation energy. Spectra were normalized
to the anti-symmetric contribution. (b) Magnification of the spectral range highlighted by the
dashed rectangle in (a). Only minor changes due to different polarizations can be observed.
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Figure 4.26: Contour plots of the normalized 2D-mode scattering cross-section Iq around the
K point as a function of the phonon wave-vector q for (a) parallel and (b) crossed polarization.
The upper row represents the different combinations of excitation and emission in x and y

direction. The solid and dashed white lines denote the K − M and K − Γ high-symmetry lines,
respectively.
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Figure 4.27: Experimental 2D-mode spectra of freestanding bilayer graphene for different
polarizations and laser excitation energies. Spectra were normalized to the contribution of the
anti-symmetric scattering process.

the P 33
22 contribution is due to a partially selective suppression of inner and outer processes

under parallel and perpendicular polarization. The effect can be seen most clearest for the P 33
22

contribution, since only this contribution exhibits a frequency difference between inner and outer
processes [compare Fig. 4.9 (a)]. As the frequency difference between the inner and outer P 33

22

contributions decrease with increasing laser excitation energy, we expect that the polarization-
dependent lineshape variation also reduces for higher εL. This effect can be seen in the calculated
spectra in Figure 4.28. Figure 4.27 compares the measured spectra for parallel and crossed
polarization for two different laser excitation energies, i.e., εL = 1.96 eV and εL = 2.33 eV. As
can be seen, for both laser energies we observe an intensity variation of the P 33

22 contribution
under parallel and perpendicular polarization compared to the contribution from anti-symmetric
scattering processes. By fitting the different spectra with Baskonian profiles and comparing
the intensity of the P 33

22 contribution between the different polarizations, we find an intensity
difference of I∥/I⊥ = 0.91 at 1.96 eV laser energy and I∥/I⊥ = 0.96 at 2.33 eV. Thus, we
can confirm the decreasing differences between parallel and crossed polarization decreases with
increasing laser energy.

Previous polarization-dependent Raman measurements of the 2D mode in bilayer graphene
showed the same systematics as described here [190–192]. However, the lineshape variations
were obviously to small to be recognized by the different authors. Thus, the authors only
discussed the angular dependence of the overall intensity variation. Variations of the lineshape
were neglected. In contrast, here, we demonstrated both theoretically and experimentally that
the 2D-mode lineshape does depend on the laser polarization.
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Figure 4.28: Calculated 2D-mode spectra for parallel and perpendicular polarization for differ-
ent laser excitation energies. Spectra were normalized to the contribution of the anti-symmetric
scattering process.

4.9 Summary

In summary, we presented a detailed and conclusive analysis of the double-resonant 2D-mode
Raman scattering process in Bernal-stacked bilayer graphene. We proved that the 2D mode in
bilayer graphene is composed of three dominant contributions, contradicting all previous works
on this topic. In detail, we attribute the dominant contributions to symmetric P 44

11 /P 33
22 and

degenerate anti-symmetric P 43
12 /P 34

21 processes. We showed that the dominant contribution to the
Raman scattering cross-section stems from so-called inner processes, as in single-layer graphene.
We furthermore demonstrated that quantum interference between both anti-symmetric processes
strongly affects the 2D-mode lineshape in bilayer graphene. In fact, it drastically increases these
contributions to the 2D mode spectrum. Moreover, we also showed that the splitting between
both TO phonon branches in bilayer graphene along K − Γ is of great importance for a correct
analysis of the 2D-mode lineshape. Relying on the fact that the dominant contribution to
symmetric and anti-symmetric processes stems from scattering with different TO phonons, we
presented an approach to directly extract the TO phonon splitting from experimental Raman
spectra. Furthermore, we also showed that the splitting of the electronic bands can be also
measured using the presented analysis.
Our experimental data indicate that the GW correction in bilayer graphene might be larger
as commonly assumed. We proved that the 2D-mode lineshape in bilayer graphene sensitively
depends on the electronic broadening γ, which can be manipulated experimentally in various
ways. Our calculated dependencies could be verified experimentally. We also discussed the po-
larization dependence of the 2D-mode lineshape and showed that inner and outer contributions
for the P 33

22 process depend on polarization. Finally, we should note that all of our results for
the 2D mode in bilayer graphene are also valid for the D mode. Our results highlight the key
role of inner processes and finally clarify the origin of the complex 2D-mode lineshape in bilayer
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graphene.
The presented results may lead to a more profound understanding of the different phonon scatter-
ing mechanisms in bilayer graphene and might enable a more detailed analysis of the 2D-mode
lineshape in the future. For instance, the ratio between symmetric and anti-symmetric pro-
cesses can be used to investigate electron-phonon and electron-defect scattering rates, adding
an additional parameter for the analysis of experimental data.
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Defect-induced double-resonant Raman modes
in graphene and carbon nanotubes

5

Parts of this chapter were published in Refs. [176, 193, 194].

This chapter is devoted to the analysis of defect-induced double-resonant Raman scattering in
graphene and carbon nanotubes. First, we will introduce the different possible defects in the
crystallographic structure of graphene. Afterwards, we will review the current literature on Ra-
man spectroscopy of defect-related Raman modes. In the following, we will introduce a simple
geometric approach to model the D-mode scattering process in arbitrary carbon nanotubes. We
derive the systematic dependence of the D-mode frequency on the chiral index of the carbon
nanotube and discuss the family behavior and diameter dependence of this Raman mode. Sub-
sequently, we will present an analysis of the D′′ mode in single and few-layer graphene, as well
as in carbon nanotubes. We investigate the layer-number and excitation-energy dependence
of this mode in graphene and further analyze its diameter-dependence in carbon nanotubes.
Our discussion on defect-related Raman modes in graphene is finalized by an in-situ study of
laser-induced oxidation in graphene.

5.1 Defects in graphene

In general, a defect is a local or extended variation of the crystallographic lattice that breaks
the translational invariance of the system. According to the Noether theorem, momentum
conservation is not given in defective, inhomogeneous systems [96]. The presence of defects and
disorder in real crystalline systems can be understood not only from shortcomings in crystal-
growth processes, but also from fundamental physical concepts [195]. Referring to the second
law of thermodynamics, the entropy S of isolated, adiabatic systems will never decrease; in other
words

∂tS ≥ 0.

Thus, a certain amount of disorder in crystals is favored by thermodynamics. Although defects
and imperfections in crystals are commonly thought to decrease material properties, intentionally
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(a) (b) (c)

Figure 5.1: Schematic visualization of different defects in the crystal lattice of graphene. (a)
Stone-Wales defect, (b) single-vacancy defect, and (c) reconstructed double-vacancy defect. Fig-
ure is taken from Ref. [195].

created defects can also manipulate electrical and optical material characteristics as preferred.
For instance, dopant atoms in semiconductors are usually weakly-bound charge carrier close to
the band edges and thus provide free charge carriers and increased electrical conductivity at
moderate thermal energies [96].

Defects in graphene can be generally divided into intrinsic and extrinsic defects. Intrinsic defects
refer to structural defects that locally alter the carbon-carbon bond lengths and angles in the
system, but not introduce new atom species to the crystal. A prominent example for these
defects is the so-called Stone-Wales defect that consists of two seven-membered and two five-
membered carbon rings [196]. In this case, no atoms are removed or introduced to the lattice,
Furthermore, single- and double-vacancy defects can be present in graphene [195]. A schematic
visualization of these defects is shown in Figure 5.1. In contrast to these point-like defects, the
lattice of graphene can be of course also distorted on larger scales. This may include line defects
and grain boundaries, which can extend to length larger than several tenth of µm [195]. The
reconstruction of the crystal lattice due to a defect is usually not limited to in-plane variations
of C-C bond length and angles, as shown in Fig. 5.1. In fact, out-of-plane deformations are
also possible and very likely in the case of extrinsic defects, as will be discussed in the next
paragraph.

The term extrinsic defects is usually identified with foreign adatoms or foreign substitutional
atoms in the lattice of graphene. In general, these additional atoms can be summarized as
dopants or 'chemical' defects. The effect of foreign adatoms on graphene’s properties strongly
depends on the chemical bonds that form between the adsorbate and graphene. Weak interaction
leads to van-der-Waals dipol-dipol bonds and physisorbtion of the adsorbate. However, if the
interaction between the adatom and graphene is strong, covalent bonds may form which lead
to chemisorbtion. These bonds usually account for out-of-plane deformations of the graphene
lattice. In general, adatoms on graphene are mobile and their migration along the graphene
surface can be even monitored by high-resolution transmission electron microscopy [195]. A
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more stable chemical defect in graphene is introduced by direct substitution of a carbon atom
with a foreign atom. Here, boron or nitrogen is commonly used [195], as the number of electrons
compared to the carbon atom differs by one. In principle, the substitution of carbon by boron
or nitrogen allows the manipulation of the Fermi level, as well as engineering the electronic
bandstructure of graphene.
In a realistic graphene sheet, it most likely not possible to strictly differentiate between intrinsic
and extrinsic defects. For instance, vacancies in graphene, i.e., intrinsic defects, are preferred
reaction sides for adsorbates and molecules from the air, i.e., extrinsic defects. Thus, both
defects may coexist at the same time. Finally, we want to recall that the most likely defect
in a system is always the surface/edge of a crystal, as these defects are always present in real
systems.

5.2 Raman spectroscopy of defects in graphene

As already shown and discussed in previous chapters of this work, Raman spectroscopy has
been proven to be a versatile technique to study fundamental properties of graphene. Among
the various other parameters that can be accessed by Raman scattering, we can analyze the
average defect concentration nD in a graphene sample by the occurrence and intensity of defect-
induced Raman modes. The analysis of the defect-induced D mode goes back to the early works
by Tuinstra and Koenig [103], who pointed out the dependence between the D/G-mode ratio
and the inverse crystallite size in graphite samples. In the following years, many different works
reported on the defect-related origin of the D and D′ modes in the Raman spectrum of graphite
and attempted a quantitative analysis of the average crystallite sizes, the sp2/sp3 content, and
different defect species [197–201]. It has been also noted that the experimentally determined
D/G-mode ratio in defective graphite not only depends on the crystallite size, but also on the
laser excitation energy [202–204]. In fact, Cançado et al. demonstrated a strong ε−4

L dependence
of the D/G-mode ratio in nanocrystalline graphite [203, 204], which can be understood from the
different scattering mechanisms for both Raman modes. However, problems in the quantitative
analysis of the D/G-mode ratio in graphite samples arise when defects extend over several layers
in z direction. The influence of the defect geometry was not understood and different authors
pointed out the inaccuracy of Raman measurements for defect characterization in graphite with
errors of up to 100 % [200]. Thus, the successful isolation of single-layer graphene in 2004 has
enabled a more precise and more quantitative analysis of defects in this material.
In graphene, bombardment with heavy ions is commonly used to artificially introduce defects
into the crystallographic lattice. Here, most works rely on the bombardment with low energy
argon ions (Ar+) with kinetic energies of 90 eV and at angles of 45◦ with respect to the graphene
plane. The first quantitative analysis of the D/G-mode ratio in graphene is based on a work by
Lucchese et al. [32], introducing the so-called 'local activation model'. Following this model, a
defect creates a structurally-disordered region with radius rS . Around this region, the lattice
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is not distorted, however, the close proximity to the defect locally breaks the translational
invariance of the lattice and enables defect scattering. This second region is characterized by a
radius rA around the defect, thus, the annulus between rS and rA contributes to the D mode
intensity. Consequently, the D/G-mode intensity ratio as a function of the average distance
between defects LD can be modeled as [32]

ID

IG
(LD) = CA fA (LD) + CS fS (LD)

= CA
r2
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S
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. (5.1)

Here, fA and fS represent the fractions of the corresponding A and S areas in the graphene
lattice; the prefactors CA and CS characterize the relative contribution of the respective areas
to the overall D-mode intensity. Since the lattice is strongly distorted for radii smaller than rS ,
a complete breakdown of the lattice structure in this region is expected and, consequently, this
region will contribute less to the D-mode intensity. In fact, the ratio between CA and CS was
estimated to be larger than five [32]. As a consequence, the second term in Eq. (5.1) is usually
omitted. In the following, Cançado et al. pointed out that the prefactor CA should depend on
the laser excitation energy εL and reflects the scattering efficiency of optical phonons at K and
Γ [33]. Using Ar+-created defects as described above, typical defect dimensions are rS = 1.0 nm
and rA = 3.1 nm [32]. By using these values and setting CA = (160 ± 48) ε−4

L eV4, Eq. (5.1) is
commonly simplified to [33]

ID

IG
(LD) = (4.3 ± 1.3) × 103 nm2 eV4

L2
D ε4

L

. (5.2)

In fact, this formula has been used widely throughout literature for defect analysis in graphene
[31]. However, defect-density characterization by this formula can be misleading or incorrect
in certain cases. The influence of the defect dimensions is commonly neglected, however, these
parameters can significantly influence the measured D/G ratio. For instance, the irradiation
with 91 MeV Xe ions creates significantly smaller defects compared to low-energy argon-created
defects, i.e., rS = 0.35 nm and rA = 2.11 nm 1. Thus, one would observe a reduced D/G-mode
ratio at the same LD compared to Ref. [33]. The influence of the defect size on the measured
D/G-mode ratio is demonstrated in Figure 5.2. As can be seen, for defect distances larger
than 3 nm the calculated D/G-mode ratio for Xe-irradiated graphene (red curve) is significantly
smaller than for Ar-induced defects in graphene (blue curve); for LD smaller than 3 nm this
relation is inversed. Hence, it is crucial to verify if the experimental conditions from Refs. [32]
and [33] apply before researchers may use Eq. (5.2) for defect characterization in graphene. Only

1Private communication with O. Ochedowski (Universität Duisburg-Essen)
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Figure 5.2: Calculated D/G-mode am-
plitude ratio in single-layer graphene for
different defect sizes at 2.33 eV laser
excitation energy following Eq. (5.1)
and Ref. [33]. The blue curve repre-
sents Argon-induced defects in graphene,
whereas the red curve is calculated for
smaller defect sizes that result from irra-
diation with high-energy Xe ions.

very recently, Pollard et al. published a systematic study on the dependence of the D/G ratio
on the defect size in ion-irradiated graphene [205]. The influence of rS and rA on the D/G ratio
could be nicely demonstrated.
The D/G-mode ratio does not only depend on the defect dimensions, but also on the number
of graphene layers, as demonstrated in Ref. [206]. In general, the D/G ratio decreases with
increasing layer number at the same defect concentration. On the one hand, this can be un-
derstood from an approximately doubled G-mode intensity in bilayer graphene as compared to
single-layer graphene [207]. On the other hand, the intensity of double-resonant Raman modes
in few-layer graphene is reduced compared to single-layer graphene, as can be easily seen for
the 2D mode (compare Fig. 3.4). The reduced intensity of double-resonant Raman modes in
few-layer graphene may be understood from a larger electronic screening, which would lead to
less coupling of electrons and phonons.
A major disadvantage of Raman spectroscopy for defect analysis is the fact that different defect
species cannot be separated univocally. Venezuela et al. demonstrated theoretically that the
intensity ratio of the D and D′ modes should depend on the defect type [47]. In this work, defects
were categorized into on-site defects, hopping defects, and Coulomb defects. For instance, on-
site defects may represent chemisorbed atoms on the graphene sheet, whereas Coulomb defects
refer to physisorbed charges over the graphene layer that interact with graphene via a Coulomb
potential. Hopping defects can be identified with lattice distortions that alter the carbon-carbon
bonds in graphene. In principle, these defects are described by different matrix elements that
each depend differently on q, k, and εL [47]. Thus, inter- and intravalley defect modes should
be affected differently by the different defect types. Ergo, the D/D′-mode ratio should show
a dependence on the defect species. For instance, hopping defects should exhibit the highest
D/D′ ratio, whereas on-site defects are expected to exhibit a D/D′ ratio of approximately one
[47]. In contrast, the simulation of Coulomb defects lead to a negligible small contribution to
the D mode and a small contribution to the D′ mode. Besides these theoretical considerations
of the influence of the defect type on the intensity of defect-induced Raman modes, there are
also experimental works that attempted to characterize defects species in defective graphene by
Raman spectroscopy [169, 170]. However, the observed dependence of the D/D′-mode ratio on
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the defect type could not be verified by other researchers 2. In fact, the D/D′-mode ratio does
not only depend on the defect species, but also on the defect concentration nD [206], making
defect characterization by this approach unfeasible.
As a last point, we want to comment on the doping dependence of the D- and G-mode in-
tensity. It has been experimentally demonstrated by Bruna et al. [171] and Froehlicher et al.
[154] that the D/G-mode ratio depends strongly on the doping level in single-layer graphene.
This observation results from two different effects. First, doping leads to an increase of the
electron-electron scattering rate and thus γe-e increases. An increased electronic broadening γ

in the D-mode double-resonance process results in a decreased intensity of the double-resonant
Raman modes [47, 168]. Second, for high doping levels, the G-mode intensity increases with
either n- or p-type doping [105, 106], which can be understood from a partial cancellation of
destructive interference contributions in the G-mode scattering process. Hence, both effects lead
to a reduction of the measured D/G-mode ratio in doped graphene.
From the above reviewed results, we can conclude that a precise and quantitative characterization
of defects in graphene is still challenging. Although Raman spectroscopy is routinely used to
characterize CVD- or MBE-grown graphene samples [31], the validity of a single measurement
of the D/G-mode ratio to analyze the quality of graphene samples should be questioned. In
contrast, a more elaborate characterization of the D/G mode ratio as a function of the doping
level, as presented in Refs. [171] and [154], should be envisaged.

2Private communication with F. Kampmann (TU Berlin) and M. Bruna (University of Cambridge)
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5.3 The D mode in carbon nanotubes

In this part of the chapter, we will analyze the D mode in carbon nanotubes. The dependence
of the D-mode frequency on the chiral indices (n1, n2), the tube diameter d, and the energy of
the optical transition Eii was discussed widely in literature in the last decade [55–58, 208, 209].
Different dependencies were suggested and controversially discussed. However, the fundamental
mechanism that determines the D-mode frequency in carbon nanotubes as a function of the
mentioned parameters remained unclear. Moreover, Maultzsch et al. argued that only certain
metallic carbon nanotubes should exhibit a D mode in their Raman spectrum due to symmetry-
based arguments [210].
Here, we will show that double-resonant Raman scattering in carbon nanotubes can be reduced
to a simple geometrical model. Our approach is based on the symmetry of the hexagonal lattice
and inherently does not include any restrictions on the tube chiral index. We will apply this
model for the analysis of the D mode in carbon nanotubes and demonstrate that, in principle,
the D-mode scattering process should be possible in any carbon nanotube. We will discuss the
dependencies of the D-mode frequency as a function of (n1, n2) and compare our results with
recent experimental data.

5.3.1 Introduction

Besides the fact that the D and 2D Raman modes in graphene and graphite have been explained
already in 2000 by Thomsen and Reich [45], there is an ongoing controversy about the D-mode
scattering process in carbon nanotubes [55–57]. In fact, it has been questioned if all carbon
nanotubes could exhibit a D mode in their Raman spectrum [210]. Due to symmetry-based
arguments, Maultzsch et al. suggested that only tubes where (n1 − n2)/(3n) is integer should
contribute to the D-mode spectrum, i.e., carbon nanotubes with R = 3 [63, 211]. This relation
is particularly true for armchair carbon nanotubes and some other metallic CNTs. In contrast,
semiconducting carbon nanotubes should never exhibit a D mode with the same systematic
energy dependence of its frequency [210]. The argumentation of Maultzsch et al. is based on
the idea that the D-mode scattering process in carbon nanotubes should be only possible if the
conduction (valence) band exhibits a minimum (maximum) at 2 π/(3 a) of the Brillouin zone
[210]. However, recent experiments on carbon nanotube samples enriched with single chiral
indices demonstrated the existence of a D mode in semiconducting CNTs that do not satisfy
the aforementioned restriction [212].
Furthermore, there is an ongoing discussion about the dependence of the D-mode frequency in
CNTs on the tube diameter and the transition energy. During the past decade many different
explanations were postulated and discussed. For instance, in 2001 Souza Filho et al. proposed
that the D-mode frequency is proportional to the inverse diameter of the CNT [55]. Interest-
ingly, the same authors claimed the opposite dependence, i.e., the D-mode frequency should be
proportional to the CNT diameter, in a work published later in the same year [56]. Subsequent
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Figure 5.4: Illustration of the enhanced
double-resonant scattering process between
two energetically equivalent minima in the
helical bandstructure of a (5,3) tube. The
transition energy is labeled as Eii, the posi-
tion of the electronic minimum as kmin, and
the resonant phonon wave-vector as qres.

to this work, Souza Filho et al. published another article, presenting experimental data to sup-
port their results of a D-mode frequency proportional to the tube diameter [57]. In contrast,
Laudenbach et al. demonstrated that in principle two different dependencies of the D-mode
frequency on the tube diameter can be obtained in a Raman measurement, depending on the
experimental conditions [58, 208, 209]. However, the underlying theoretical systematic of the
D-mode scattering process is not yet fully understood and thus needs clarification.

5.3.2 Simplification of the double-resonance process in carbon nanotubes

The Raman spectrum of carbon nanotubes has been intensively studied by various groups [213–
215]. Many authors demonstrated that certain first-order Raman modes, e.g., the RBM or
the G mode, are resonantly enhanced when the laser excitation energy is close to an excitonic
transition of the carbon nanotube [83, 84, 119, 216–220]. This fact has been used extensively
to determine transition energies and chiral indices in carbon nanotube samples experimentally.
Recently, Laudenbach et al. showed that this is also valid for the D mode [212]. In contrast
to graphene, where electron-hole excitations are always resonant, the D mode in carbon nan-
otubes is resonantly enhanced when the laser excitation energy is close to an optical transition
[221]. Thus, the D mode in carbon nanotubes can be regarded as distinctive contributions from
different CNTs coming in resonance by tuning the laser energy. Consequently, we restrict our
calculations to only those processes, where the laser excitation energy is in resonance with an
optical transition of the carbon nanotube. Furthermore, Laudenbach et al. demonstrated that
the main contribution to the D-mode process stems from scattering between equivalent minima
in the electronic bandstructure [58], i.e., scattering between two Eij transitions with i = j. This
situation is schematically shown in Figure 5.4 for a double-resonance process in the electronic
bandstructure of the (5,3) carbon nanotube. The laser excitation energy (black, vertical arrow)
is in resonance with the Eii transition, which can be found at kmin in the electronic bandstruc-
ture. Following the resonant excitation, the electron and hole are scattered by a TO phonon
and a defect with wave vectors qres = 2 kmin to the equivalent minimum Eii across the Γ point.
This approach directly implies the q ≈ 2 k approximation. Furthermore, we only consider the
incoming resonance in our simulations, as it was shown that the incoming resonance is usually
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Figure 5.5: Illustration of the dependence between the electronic transition and the resonant
phonon wave-vector for a coprime tube. The black solid line denotes the helical vector of a
(3, 2) tube, the full orange circles mark a minimum in the electronic band structure (kmin) and
the corresponding resonant phonon wave-vector length (qres), which is twice kmin. The open
red circles denote the closest K points to kmin and qres, respectively. As can be seen easily, the
distance K1-kmin is always half the distance K2-qres.

more dominant compared to the outgoing resonance [58, 220, 221]. This directly means that
phonon energies are neglected in our approach.
Using the abovementioned assumptions, we will now derive a systematic dependence between
the resonant phonon wave-vector in the double-resonance process and the energy Eii of the
optical transition. Before, we want to briefly recall that the D mode results from scattering
with a TO phonon and a defect [222]. In general, the dispersion of the TO phonon branch has
the same systematic behavior as the electronic bandstructure, i.e., the highest frequencies are
observed at the zone center Γ and the lowest can be found at the K points. In contrast to the
electronic bands, the TO dispersion is nearly isotropic around the K point with only a slight
trigonal warping, which is opposite in direction to the electronic trigonal warping [149]. The
distance of a phonon vector from a K point can be therefore directly related to a TO phonon
frequency.
In Figure 5.5, we show the D-mode scattering process in helical representation for a (3,2)-tube,
however, this concept is of course valid for all other tubes. Without loss of generality, we assume
that the minimum in the bandstructure of a CNT occurs at the position where the helical vector
crosses a K−M−K′ high-symmetry line. The minimum shall have the k-vector kmin (measured
from the Γ point) and is indicated by a filled orange circle. Hence, the resonant phonon wave-
vector in the D-mode scattering process has the length qres = 2 kmin, given by the second orange
circle. We label the closest K point to the electronic minimum as K1 and refer to their distance
as h. In general, the distance h is a measure for the transition energy, i.e., a smaller value for
h directly translates into a lower transition energy. The three points Γ, kmin, and K1 form a
triangle, which is indicated by the dark-gray area in Figure 5.5. In the next step all sides of
this triangle are doubled, which results in the light-gray triangle formed by the points Γ, qres,
and K2. This mathematical operation is known as a similarity transformation. It is an intrinsic
property of the hexagonal lattice that twice the distance between Γ and a K point, is again a
K point (K2). If K1 is the closest K point to kmin, it directly follows that K2 is the closest
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K point to qres. Since all sides of the larger triangle were doubled, the distance K2 − qres is
now twice the distance h. Ergo, an electronic transition with a distance h from K1 results in
a resonant phonon vector with a distance 2h from K2. It is important to notice that kmin and
qres form the same angle with the closest K point.
From the above presented model, we can directly extract that a resonant electronic transition
between a minimum and a maximum in the electronic bandstructure always leads to a resonantly
enhanced phonon wave-vector that originates close from a K point in the Brillouin zone of
graphene. As can be seen, there are no restrictions on the tube chiral index, thus, this scattering
process is possible in all carbon nanotubes, in contrast to previous results [210]. Since h and
2h are indicative for the energy of the transition and the D-mode frequency, respectively, we
can deduce two important results: First, tubes with large diameters and thus lower transition
energies exhibit a systematically lower D-mode frequency for the resonantly enhanced transition
compared to small-diameter tubes. Second, different transitions in a CNT also exhibit different
D-mode frequencies. Although these results seem trivial at a first glance, they enable a deeper
understanding of the D mode in CNTs.
If we now also consider trigonal warping effects on the electronic band structure, the elec-
tronic minimum may not be exactly on the K − M − K′ high-symmetry direction, but slightly
shifted away. This would lead to a slightly different distance h and angle between kmin and
K1. Nevertheless, the distance between the resonant phonon wave-vector qres and K2 is again
2h. Furthermore, as pointed out above, the angle is also conserved. Hence, this relation is
independent from the exact position of the electronic minimum, which may differ depending on
the band structure model that is used.
We now want to extend our geometrical model to non-coprime tubes, i.e., carbon nanotubes
where n > 1. These tubes have more than only one subband and thus scattering between
different subbands needs to be considered. The situation is shown in Fig. 5.6 for a (15, 3)
tube, which has n = 3 subbands ( m = −1, 0, +1). Due to the scattering between energetically
equivalent minima and the point symmetry at the Γ point, the scattering process can always
be represented by a scattering across the Γ point at (0, 0). The process can be also represented
as symmetric scattering across the M point, however, for convenience we use the representation
across the Γ point. Let us now assume that an electron is scattered between a minimum on
the m = +1 band to a minimum on the m = −1 band, i.e., the electron is scattered between
−kmin and kmin. Again, the resonant phonon wave-vector is given by qres = 2 kmin. We can now
introduce the same triangles with the same edge points to our plot as in Figure 5.5 for coprime
tubes. Hence, exactly the same systematics as before apply (see above). Furthermore, our
geometrical approach instrinsically assigns the phonons from the correct subband, i.e., with the
correct quantum number m. In our example, the electrons are scattered between the m = +1
and m = −1 band, which results in a change of the helical quantum number by ∆ m = −2.
Therefore, the phonons must stem from the m = −2 band, which is equivalent to the m = +1
band (compare Fig. 5.6). Since the m bands are equidistantly spaced in the reciprocal lattice,
this result is naturally produced in our model and can be seen very nicely.
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Figure 5.6: Illustration of the geometrical model for non-coprime tubes, i.e., for carbon nan-
toubes with n > 1. In this example, we used the helical bands of a (15,3) tube. The numbers
−1, 0, and +1 refer to the helical quantum number m of each subband. Due to the scattering
between two equivalent minima and the point symmetry at the Γ point, the resonant phonon
wave-vector is always twice the distance Γ − kmin.

Up to now, we did not made any assumptions concerning the concrete model that is used to
describe the dispersion for the electrons or the phonons. Thus, these results are universally
valid as long as zone-folding is an appropriate model to describe the properties of CNTs. In the
following, we want to derive a quantitative dependence of the D-mode frequency on the tube
diameter and the transition energy using the presented geometrical approach.

5.3.3 Calculational details

As motivated above, our calculations only consider resonant scattering processes between ener-
getically equivalent van-Hove singularities in the electronic bandstructure of carbon nanotubes.
Furthermore, only the incoming resonance was considered.
The calculation of electronic bandstructures and phonon dispersions was performed using the
POLSym code in sixth-nearest neighbor approximation [95]. As briefly described in Chapter 2.3,
this package uses the modified group projectors technique and includes curvature effects on the
band energies and phonon frequencies. Electronic bands and phonon dispersions are calculated
for all 274 chiral tubes with diameters between 5 and 25 Å. A major shortcoming of the POL-
Sym code is the incorrect treatment of the Kohn anomaly of the A1-symmetry phonons at the
K point. In fact, the Kohn anomaly is absent in all calculated carbon nanotube phonon dis-
persions. Therefore, we additionally used an experimental graphite TO phonon dispersion from
Ref. [149] for an alternative calculation of the D-mode frequencies and for comparison with
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the POLSym-derived frequencies. Diameter- or chiral-index-dependent excitonic effects on the
optical transition energies are not considered in the POLSym code.

5.3.4 Dependence of the D-mode frequency in carbon nanotubes on tube
diameter and transition energy

Using the model described above, we can derive the diameter and transition-energy dependent D-
mode frequencies in carbon nanotubes. As already pointed out by Kataura et al. [74], the energy
of an optical transition Eii is inversely proportional to the CNT diameter d. This can be easily
understood, as the number of subbands, their spacing, and their length depend on d. In general,
this means that the subbands of the carbon nanotube are closer to the K points in the Brillouin
zone of graphene with increasing tube diameter d, leading to a reduction of the transition energy.
Keeping in mind the systematics of the presented geometrical model, an optical transition that
is closer to a K point results in a lower, resonantly enhanced D-mode frequency. This result is
summarized in Figure 5.7 (a) for all chiral carbon nanotubes with diameters between 5 Å and
25 Å. Here, we show the evolution of the distance between the resonant phonon wave-vector
and the closest K point, previously introduced as 2h, as a function of the tube diameter d.
As can be seen, the distance 2h decreases with a 1/d-dependence. Furthermore, energetically
higher transitions have a larger distance 2h for the same tube diameter. Since the distance 2h

directly depends on the energy of the optical transition of a carbon nanotube, we observe a close
correspondence between the dependence shown in Figure 5.7 (a) and the so-called Kataura Plot
[74].
We now translate the distance 2h into a TO phonon frequency using our calculated phonon
dispersions and replot the result from Figure 5.7 (a). The dependence between the D-mode
frequency and the tube diameter is shown in Figure 5.7 (b). Since the distance 2h is an approx-
imate measure for the TO phonon frequency, i.e., a larger value for 2h reflects a larger D-mode
frequency and vice versa, the systematic of this plot again resembles the Kataura plot. We ob-
serve a decreasing D-mode frequency with increasing tube diameter. Furthermore, energetically
higher optical transitions exhibit a higher D-mode position. Interestingly, we also observe that
each transition Eii splits up into different branches that evolve below and above the average
1/d dependence [not seen in Figure 5.7 (a) for the same optical transitions]. This splitting can
be directly attributed to the different tube families ν. Although the distance of subbands to
the K point in graphene’s Brillouin zone might be the same for tubes with similar diameter
[compare Figure 5.7 (a)], there are differences in the corresponding D-mode frequencies due to a
non-isotropic TO dispersion around K [compare Figure 5.7 (b)]. We will discuss this observation
later in more detail.
By plotting the calculated D-mode frequencies as a function of the optical transition energy
(see Fig. 5.8), we observe another interesting feature in the D-mode dispersion. The dispersion
of the branches is not continuous, in contrast, we observe a small jump in frequency between
different optical transitions. This frequency jump has been reported recently in enriched carbon
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Figure 5.7: (a) Distance between the resonant phonon wave-vector and the closest K point as
a function of the tube diameter d for the resonantly enhanced scattering process obtained from a
sixth-nearest neighbor tight-binding model. (b) Calculated D-mode frequency ωD as a function
of the tube diameter. ωD decreases with increasing tube diameter following a 1/d dependence.

nanotube samples and in HiPco-produced carbon nanotubes ensembles [58, 208, 209]. The
observed discontinuity is a direct consequence of curvature effects on the phonon frequencies
and thus cannot be explained in a simple zone-folding approach, as will be shown below.
Considering a zone-folding tight-binding model without any curvature effects, only the helical
vector would depend on n1 and n2, but not the electronic bands nor the phonon dispersion.
Let us now assume that two different carbon nanotubes with different diameters exhibit, by
chance, the same energy for different optical transitions, e.g., the E11 transition of the (6, 5)
and the E22 transition of the (12, 10) tube. Thus, the distance h of the optical transition to
the closest K point would be the same for both CNTs, leading to same distance 2h for the
resonantly enhanced phonon wave-vector3. Hence, two different tubes with different diameters
but the same transition energy would exhibit the same D-mode frequency. Ergo, by neglecting
curvature effects, the experimentally observed frequency jump between different optical transi-
tions cannot be explained. However, it is well-known that phonons in carbon nanotubes show a
strong dependence on the tube diameter due to curvature effects and rehybridization of σ and π

orbitals. For instance, in semiconducting carbon nanotubes the Γ-point TO phonon (G− mode)
decreases with decreasing tube diameter [120]. Assuming an analogous diameter dependence for
the TO phonons around the K point, the same distance 2h would result in different D-mode
frequencies, i.e., the smaller CNT would exhibit a lower D-mode peak position. This directly
opens a gap in the otherwise continuous D-mode dispersion between different optical transi-
tions. In our calculations this jump is smaller than the experimentally observed discontinuity.
For instance, we calculate a frequency jump of 2 cm−1 between the second semiconducting and

3This example considers the E11 and E22 transitions of two semiconducting tubes from different families ν,
resulting in optical transitions on the same side of the K point. However, for optical transitions on opposite
sides of K, the argumentation is analogous and leads to the same conclusion.
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Figure 5.8: Calculated D-mode frequencies as a function of the optical transition energy. The
experimentally observed jumps between the different transitions are indicated.

the first metallic transition. In contrast, the experimentally observed discontinuity is as large
as 15 cm−1 [208, 209]. Furthermore, D modes from the ES

11 transition show nearly no disper-
sion with transition energy in our calculations. We attribute these discrepancies to the fact
that the Kohn anomaly and the region around the K point in the TO phonon dispersion is not
well approximated by the POLSym code. This can be also inferred from the too high D-mode
frequencies in our calculations compared to experimental data [208]. In fact, our calculated val-
ues are approximately 20 cm−1 too high. Since the resonantly enhanced phonons from the ES

11

transition stem from a region close to the K point, small deviations in the phonon dispersion
directly influence our result and in our case lead to an overestimated D-mode frequency with
nearly no dispersion. We expect a larger jump and a better correspondence to experimental data
for calculations using a non-orthogonal tight-binding model or an ab-initio approach. Neverthe-
less, the jump can be reproduced in our simulations, as seen between ES

11 and ES
22. We want

to emphasize that the systematics of the resonant phonon wave-vector in the double-resonance
process do not depend on the choice of the calculational model and are therefore universally
valid.

Next, we want to investigate the diameter distribution along a given transition Eii. It is well
known that the energy of an optical transition in CNTs is inversely proportional to the tube
diameter [74]. Thus, the same transition, e.g., the E22 transition in semiconducting tubes, has
a smaller energy in tubes with a larger diameter. Ergo, along the D-mode branches in Fig. 5.8
the diameter decreases with increasing energy. Therefore, tubes with a small diameter can be
always found on the higher-energy side of such branches, exhibiting a higher D-mode frequency
(see Figure 5.8).

The above presented results finally harmonize the different conclusions from various previous
works where a decreasing D-mode frequency for a decreasing tube diameter was claimed [56, 57]
or vice versa [55]. It is very important to point out that, depending on the experimental
conditions, one can generally observe two different D-mode dispersions with laser excitation
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energy. By measuring the same optical transition for all tubes in an ensemble, e.g., the E22

transition, a ∝ 1/d-dependence will be observed due to the mentioned diameter distribution
along the different Eii branches [55]. This would correspond to an experimental setup, where
the laser energy is tuned to measure every tube always at its resonance energy. In Figure 5.8,
we would follow a single Eii branch in this experimental situation. By using only a single
or just very few laser energies, a different behavior is observed [56, 57]. This experimental
condition corresponds to a vertical cut through the dispersion relation shown in Figure 5.8.
Along such a cut, a higher D-mode frequency corresponds to a higher tube diameter and a
dependence proportional to d is observed. Both cases are distinctly different and must be
separated carefully. Recently, Laudenbach et al. presented a careful analysis of the different
dispersions in HiPco-produced carbon nanotubes samples and experimentally observed the same
dependence as theoretically derived here [208, 209].

5.3.5 D-mode families

The family behavior of Raman modes in carbon nanotubes is already known for the radial-
breathing modes [84, 121] or the G− mode in semiconducting carbon nanotubes [120], where
each branch is given by the relation

ν = (n1 − n2) mod 3 = ±1 and µ = 2 n1 + n2 = const.

Here, we will show that the D mode follows a similar behavior and that the D-mode frequencies
arrange in a 'Kataura Plot'-like pattern. Figure 5.9 shows the calculated D-mode frequencies
for the E22 transition of semiconducting tubes (same data as in Figure 5.8). As can be seen
easily, we observe a fan-like structure around the average dispersion. D-mode frequencies that
are found above the mean value can be identified with double-resonance processes in carbon
nanotubes from the ν = −1 family, whereas D modes below the average dispersion result from
CNTs of the ν = +1 family. The labels at the calculated D-mode frequencies refer to the chiral
indices of the outmost carbon nanotubes of each branch µ. These tubes exhibit a chiral angle
close to 0◦ (zig-zag like carbon nanotubes), whereas the helical vector of the innermost tubes
is close to the armchair direction (chiral angle of 30◦). Compared to the RBM families, the
positions of the D-mode branches are flipped, i.e., the ν = −1 families are on the upper side of
the ES

22 branch and the ν = +1 families on the lower side. This behavior can be understood by
reducing our geometrical model to just a single K point.
If the optical transition occurs at a distance h and an angle φ near a K point, the resonantly
enhanced phonons stem from the distance 2h and an angle φ from a K′ point (see Figure 5.5).
Since K and K′ are equivalent but rotated by 180◦ with respect to each other, a phonon with
distance 2h and angle φ at K′ can be represented by a phonon with the same distance but angle
(φ + π) at K. Thus, we can project the electronic transition and the corresponding resonant
phonons onto a single K point, where the electronic transition and the resonantly enhanced
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Figure 5.9: Family behavior of the D-mode frequencies for the ES
22 transition. The labels refer

to the chiral indices of the outmost tube of each branch.

phonon stem from opposite sides. Figure 5.10(a) shows the schematics of the reduced model.

As discussed above, the optical transitions in carbon nanotubes split up into different branches
with ν = ±1 families. Thus, also the resonant phonon wave-vectors in the D-mode scattering
process split up accordingly. This can be seen in Figure 5.10(b), where we plot the resonant
phonon wave-vectors for the ES

22 transition of all carbon nanotubes in our calculation. As can be
seen, the phonons are arranged in branches forming a spiral that evolves into the K point with
increasing tube diameter. Thus, tubes with small diameters can be found at larger distances
to K, directly translating into a higher D-mode frequency. If we now want to understand the
family behavior of the D mode, we have to keep in mind that we plot the resonantly enhanced
phonons, which are on the K-point side opposite to the electronic transition. Thus, the D-mode
phonon frequencies behave contrary to the families of the electronic transitions or the RBMs.
Since the TO phonon branch exhibits a weaker diameter-dependent frequency shift compared
to the RBMs (ZA phonon branch in graphene) [208], the splitting between the D-mode peak
positions is not as pronounced as for the RBM families.

Finally, we want to comment on expected Raman-intensity variations between D modes from
different branches. For the RBM families, it is well-known that the ν = −1 family of the E22

transition gives a much larger Raman signal compared to the ν = +1 family [223]. This behavior
is due to a higher oscillator strength of the optical transition and a higher electron-phonon
coupling for these tubes [224]. Although the electron-phonon coupling might be different for the
TO phonon, the oscillator strength should be the same for the RBM and the D-mode scattering
process, as the optical transitions are nearly equivalent. Moreover, the oscillator strength usually
dominates the double-resonant scattering cross-section, as it enters to the power of four in the
calculation in Eq. (3.14). Thus, a similar behavior regarding the intensities of the RBM and
D-mode families can be expected. If we keep in mind that the RBM and D-mode families are on
different sides of the Eii transitions, this would mean that the upper family of a D-mode branch
is predominantly observed in experiments and the lower family is weaker in signal. Although
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Figure 5.11: (a) Schematized experimental dispersion of the D mode in carbon nanotubes
(after Ref. [208]). The solids lines denote fits to the experimental data for each transition; the
numbers at each line correspond to the diameter of the tubes. The dashed line indicates the
D-mode dispersion in graphite [31], where no diameter dependence is expected. (b) D-mode
frequency correction as a function of the tube diameter. The red, dashed line reflects a square-
root fit to the data points. Solid symbols were obtained from (a), open symbols are single-tube
measurements from Ref. [208].

dependence of the TO phonon can be modeled as [208]:

∆ωD(d) = A




1 −


2.13 Å
d

2

− 1


 . (5.3)

Here, d is the tube diameter and A is a fit parameter. From a least-squares fit of the data points,
we find A = 593 cm−1. The resulting curve is indicated by the dashed line in Figure 5.11 (b).

Using the above result, we can now analyze the influence of diameter effects on the D-mode
dispersion. In detail, we want to investigate if the experimentally observed jump of the D mode
dispersion can be reproduced by artificially introducing curvature effects. Therefore, we use the
calculated resonant phonon wave-vectors from our sixth-nearest-neighbor tight-binding model
[95] and obtain the resonant phonon frequencies from an experimentally measured TO phonon
dispersion of graphite by Grüneis et al. from Ref. [149]. Subsequently, we apply the curvature
correction using the above formula Eq. (5.3). The diameters of the carbon nanotubes in this
calculation were chosen to fit the experimentally measured nanotubes from Ref. [208], i.e., tubes
with diameters between 6 Å and 14 Å were considered. The result of this calculation is shown in
Figure 5.12. Without curvature corrections, the D mode shows a continuous dispersion as for
graphene or graphite (gray data points). However, by artificially introducing curvature effects,
we observe the emergence of a frequency jump between the different optical transitions. This can
be easily understood from the D-mode dispersion in Figure 5.8 or Figure 5.11: There are always
carbon nanotubes with different diameters from different optical transitions Eii that exhibit very
similar transition energies. If no curvature effects are present, this would result in an overlap of
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Figure 5.12: Artificially curvature-corrected D-mode dispersion of carbon nanotubes. The cur-
vature correction was performed using the relation given in Eq. (5.3) and phonon frequencies ob-
tained from Ref. [149]. Electronic band structures were obtained from a sixth-nearest-neighbor
tight-binding model. The experimentally observed discontinuities could be reproduced. Gray
data points reflect calculated D-mode frequencies without curvature corrections.

these sets of transitions and thus in very similar D-mode frequencies (compare gray data points
in Figure 5.12). However, by introducing a diameter-dependent frequency correction according
to Eq. (5.3), CNTs with smaller diameter observe a larger frequency downshift compared to
nanotubes with large diameters. Keeping in mind the diameter distribution along the different
transition branches Eii, D modes from the high-energy side of the different Eii transitions are
more affected by the frequency downshift compared to the low-energy side. Ergo, the slope of the
D-mode branches is reduced compared to the D mode dispersion in graphite, in agreement with
experimental data [208, 209]. As a result, a discontinuity opens between different transitions. In
our curvature-corrected D-mode frequencies in Figure 5.12 this discontinuity can be seen again
most clearest between ES

11 and ES
22 (approx. 15 cm−1). For energetically higher transition the

frequency jump decreases, e.g., the difference between ES
22 and EM

11 is approx. 9 cm−1. Both
theoretically calculated frequency jumps are in reasonable agreement with experimental data
and are shown to be a consequence of the diameter dependence of phonon frequencies in carbon
nanotubes.

5.3.7 Summary

In summary, we derived a geometrical model to describe the diameter dependence of the reso-
nant phonon wave-vector in the double-resonance process in carbon nanotubes. The presented
approach is independent of the specific model used for the electronic bandstructure or phonon
dispersion and is therefore universally valid. We applied our model to investigate the defect-
induced D mode in chiral carbon nanotubes at their resonant optical transitions. First, we
demonstrated that, in principle, there is no restriction of the D-mode scattering process to spe-
cific carbon nanotubes. Moreover, we could show that small-diameter tubes exhibit a higher
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D-mode frequency in general and that higher resonant optical transitions exhibit a system-
atically higher D-mode frequency. Furthermore, we proved that the experimentally observed
discontinuity between different transition branches is due to curvature effects that alter the TO
phonon dispersion around the K point. In analogy to other Raman modes in carbon nanotubes,
e.g., the RBM or the G mode, we showed that the D-mode frequencies are arranged in branches
and families.
The presented results finally harmonize the different experimental observations regarding the
diameter dependence of the D mode in carbon nanotubes and are equally valid for the behavior
of the 2D mode. The observed diameter dependence can be seen as a superposition of D modes
from different CNTs coming in resonance after each other. Finally, we want to point out that
our geometrical model can be easily expanded to other intervalley Raman modes in carbon
nanotubes, as will be shown in the next section.
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5.4 The D′′ mode in graphene and carbon nanotubes

In this part of the chapter, we will investigate the double-resonant D′′ Raman mode in graphene
and carbon nanotubes and its dependence on laser excitation energy, on the number of graphene
layers, and on the carbon nanotube diameter.

5.4.1 Introduction

The Raman spectrum of graphene and carbon nanotubes is dominated by Raman modes that
are related to optical phonons, such as the well-known D, D′, and 2D modes, or the first-
order G band in graphene and the RBM in carbon nanotubes [32, 34, 36, 38, 84, 120, 121,
201, 207]. Their observation can be easily understood from fundamental selection rules of
the Raman process and the strong electron-phonon coupling of optical phonons compared to
acoustic phonons [40, 167]. However, beside these aforementioned modes, there are various other
Raman-active vibrations that result from double-resonant two-phonon scattering processes or
from phonon-defect scattering [47]. In this part of the chapter, we focus on the defect-induced
D′′ mode in graphene and carbon nanotubes that results from double-resonant scattering of
longitudinal acoustic (LA) phonons with defects. Acoustic phonons strongly affect charge carrier
mobilities and thermal transport properties and are thus very important for the performance
of electronic devices [10, 225]. However, first-order Raman scattering does not allow to probe
these phonons due to momentum conservation in the Raman process. Therefore, the LA phonon
was often observed in combination with other phonons in double-resonant Raman scattering
processes [142, 226]. Especially in bi- and few-layer graphene, combination modes containing
the LA phonon can be observed in the frequency range between the G and the 2D mode [227–
229]. For instance, at ≈1950 cm−1 and ≈2050 cm−1 double-resonant intravalley LA+TO and
LA+LO combination modes can be observed. Furthermore, the double-resonant intervalley
scattering of TO and LA phonons can be observed at ≈2450 cm−1 in the Raman spectrum of
single-layer graphene. However, none of the previous works analyzed the LA phonon itself. Here,
we demonstrate that acoustic phonons can indeed be directly studied by optical spectroscopy,
namely double-resonant Raman scattering.

5.4.2 Experimental details

Measurements presented in this chapter were carried out on mechanically exfoliated graphene
samples that were prepared on silicon substrates with an 100 nm thick silicon dioxide layer.
The samples were then transferred into a vacuum chamber and irradiated with swift heavy ions
(Xe26+, 91 MeV) using a fluence of approximately 65.000 ions/µm2 at normal incidence. The
irradiated graphene samples were provided by Oliver Ochedowski from the Universität Duisburg-
Essen. Under grazing-incidence, irradiation swift heavy ions would cause extended modifications
in the crystal lattice of graphene, such as splits and folds with lengths up to 100 nm [230, 231].
On the contrary, at normal incidence, point-like defects are created [232]. Due to their high
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energy, the interaction of swift heavy ions with matter is exclusively by inelastic scattering.
As the penetration depth of 91 MeV Xe ions is about 10 µm [233], defects are not introduced
exclusively in single-layer but in bi- and tri-layer graphene as well. This enables us to investigate
the layer-number dependence of the D′′ mode in few-layer graphene.

As already discussed in the second section of this chapter, Raman spectroscopy is frequently
used for defect characterization in graphene. However, several problems arise, when the common
formula

ID

IG
= (4.3 ± 1.3) × 103 nm2 eV4

L2
D ε4

L

is used to determine the average defect distance LD from the experimentally measured D/G-
mode ratio. Especially in the present case, where defects were created by irradiation with swift
heavy ions, defect sizes differ significantly from the original work in Ref. [33]. To overcome this
problem, we rely on the calculation of LD from the Xe fluence per area. Assuming that defects
are homogenously created in the graphene layer, we deduce an average distance between defects
of approximately 4 nm.

For the measurements on carbon nanotubes, we used buckypaper CNTs produced by the HiPco
process [234]. The investigated CNT ensemble had a diameter distribution of (10±2) Å [76, 235],
which was verified by resonance profiles of the RBM. Measurements on carbon nanotubes were
carried out by Christoph Tyborski (TU Berlin) and are shown here only for completeness.

Raman measurements were performed with a Horiba HR800 and a Dilor XY spectrometer,
equipped with solid-state lasers, as well as dye and gas lasers. Raman spectra were recorded
in back-scattering geometry under ambient conditions using a 1800 lines/mm grating and an
100× objective, yielding a spectral resolution of approximately 1 cm−1. Since the D′′ mode and
the second-order Raman modes of silicon are close in frequency, it was necessary to perform a
background subtraction for graphene measured on silicon substrates. For this purpose, we used
the same experimental conditions as for the Raman measurements on graphene, i.e., the same
laser power and integration time, and recorded the silicon background at a spot adjacent to the
investigated graphene flake. During all measurements the laser power was kept below 1 mW
in order to avoid sample heating, laser-induced doping or the creation of additional unwanted
defects.

The calculation of phonon dispersions and bandstructures of single-layer graphene in this chapter
were carried out with the SIESTA code in Local Density Approximation (LDA) [236]. The lattice
parameters were fixed to the experimentally observed values [59]. The phonon dispersion was
calculated using a 3×3 supercell approach. For the determination of the resonant phonon wave-
vectors in the double-resonance process, we used a GW -corrected bandstructure of graphene,
i.e., the Fermi velocity of the LDA-calculated bandstructure was renormalized by 17 % [146].
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Figure 5.13: (a) Raman spectrum of defective single-layer graphene at 532 nm laser excitation
wavelength. The spectral range, where the D′′ mode can be observed, is enlarged in the inset.
The solid red line denotes a fit composed of two Lorentzian contributions. (b) DFT-calculated
phonon dispersion of single-layer graphene. The LA phonon branch is highlighted in orange, the
k-space region where the resonant phonons stem from is marked with the hatched ellipse.

5.4.3 Analysis of the D′′ mode in graphene

Figure 5.13 (a) presents a Raman spectrum of defective single-layer graphene, the prominent
Raman modes are labeled next to the peaks. The inset shows an enlarged view of the spectral
range between the second-order Raman signal of the silicon substrate and the D mode, as indi-
cated by the dashed rectangle. In this region, an asymmetric Raman mode can be observed that
is absent in defectless graphene. Despite the large D/G-mode intensity ratio of approximately
2.0, this new Raman mode can be barely observed and is approximately 50 to 100 times weaker
in intensity than the D mode. We explicitly verified that this Raman mode cannot be observed
at arbitrary edges of exfoliated graphene, indicating that a larger number of defects is needed
to result in a measurable Raman signal. Following the notation of Venezuela et al. in Ref. [47],
we will refer to this new Raman mode as the D′′ mode.
Figure 5.14 (a) presents Raman spectra of the D′′ mode in single-layer graphene at four different
laser excitation energies. Each spectrum was fitted with two Lorentzian profiles, accounting for
the observed asymmetric lineshape. We will discuss the asymmetry of the D′′ mode later. We
can observe a simultaneous downshift of both contributions to this Raman mode by increasing
the laser excitation energy [see Figure 5.14 (c)]. The laser-energy dependent peak shift indicates
that this Raman mode results from a double-resonance process. However, the observed downshift
of approximately −80 cm−1/eV is opposite to the well-known behavior of the D and 2D mode
in graphene. This can be understood from the dispersion of the phonon branch that is involved
in the scattering process. The D′′ mode is assigned to a double-resonant intervalley scattering
process that involves an LA phonon and a defect, as theoretically predicted in Ref. [47]. The
DFT-calculated phonon dispersion of single-layer graphene is shown in Figure 5.13 (b), the LA
branch is highlighted in orange. Since this Raman mode results from an intervalley scattering
process, the dominant contributions stem from phonons along the Γ − K − M high-symmetry
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direction. However, only between Γ and K the measured D′′-mode frequencies match the cal-
culated LA dispersion. Therefore, the D′′ mode must be an inner process. The dispersion of
the LA phonon branch is monotonously increasing along Γ − K and since an increasing laser
excitation energy leads to shorter phonon wave vectors in intervalley double-resonant scatter-
ing, the D′′ mode downshifts with larger laser energies [compare Fig. 5.14 (c)]. Venezuela et al.
demonstrated that also double-resonant intravalley processes of LA phonons and defects shall
be observable in the Raman spectrum of graphene [47]. The calculated frequency of this pro-
cess is approximately 450 cm−1 at 2.4 eV laser excitation energy. However, the intensity of this
mode is roughly five to ten times smaller than the intensity of the D′′ mode and could not be
observed in our study. The intensity of a double-resonant Raman mode mainly depends on the
electron-phonon coupling of the specific phonon that is involved in the scattering process. As
shown by Piscanec et al. [40], both optical phonon branches present a Kohn anomaly at specific
points in the Brillouin zone of graphene. Namely, the TO and LO phonon branches exhibit Kohn
anomalies at K and Γ, respectively. Due to these Kohn anomalies, the electronic screening of
lattice vibrations is drastically reduced, leading to an increased electron-phonon coupling for
the TO and LO-derived phonon branches at the mentioned k-space points. In contrast, the
electron-phonon coupling for all other phonon modes is much smaller throughout the Brillouin
zone [40, 47], explaining the small intensity of the D′′-mode and other double-resonant Raman
modes, such as the LO±ZO′ combination mode [107, 126].

Since double-resonant Raman spectroscopy enables to probe the phonon dispersion as well as the
electronic bandstructure, we can now map the LA phonon branch along the Γ−K high-symmetry
direction by tuning the laser excitation energy. Figure 5.14 (b) compares the experimentally
obtained D′′-mode frequencies with the calculated LA phonon branch dispersion along Γ−K−M.
The resonant phonon wave vectors for each laser excitation energy were obtained from the
resonance condition on the incoming and scattered photon in the double-resonance process.
Here, only inner processes are considered. The experimental values match the theoretical curve
along Γ−K within an error of less than 10 cm−1. By tuning the laser excitation energy, one can
now follow the LA phonon branch along the high-symmetry line. However, the q-space range
that is accessible by this scattering process is limited to 0.5 − 0.9 × Γ − K for laser excitation
energies between 4.0 and 1.2 eV [47]. In order to obtain the LA dispersion outside these limits,
e.g., close to Γ where acoustic phonons dominate heat transfer, we fitted the experimentally
obtained values by a sine function of the following form

ω(q) = A · sin


π ∗ q

w


. (5.4)

Here, A is the amplitude and w refers to the period. A fit with A = 1170.7 cm−1 and w = 3.3 Å−1

yielded the best approximation to our data. The resulting fit, the ab-initio calculated LA branch,
and the experimental data points are shown together in Fig. 5.15. Although fit and calculation
differ for q vectors close to K, the overall agreement is very good with a deviation of less than
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Figure 5.14: (a) Raman spectra of the D′′ mode in single-layer graphene for different laser
excitation energies. The thick solid lines denote fits to the measured spectra. For the spectra
recorded at 633 nm laser wavelength, we additionally show both Lorentzian contributions of the
D′′ mode. (b) Comparison of the measured D′′-mode frequencies and the LA phonon dispersion
along Γ−K−M. (c) Dispersion of the two D′′-mode contributions with laser excitation energy.
The solid line denotes a linear fit to the data points with a slope of approximately −80 cm−1/eV.

5 % along Γ − K. Especially close to Γ, the slope of the LA phonon branch is reproduced very
accurately. Since phonons around Γ influence heat dissipation and electron transfer most, a
reliable extrapolation in this region is of high interest.

We will now turn our discussion to the lineshape of the D′′ mode in Fig. 5.14 (a). Here, we
can notice two things. First, the D′′ mode shows a pronounced asymmetry towards higher
frequencies and second, the FWHM of the D′′ mode increases by increasing the laser excitation
energy. The asymmetric tail can be seen in all spectra very clearly. This asymmetry of the D′′

mode is explained with the two-dimensional phonon dispersion of the LA branch around the
K point. As can be seen in Fig. 5.16, the LA phonon branch shows a non-constant angular
frequency dependence around the K point, i.e., the lowest frequencies can be found along K−Γ
and the highest along K − M [142]. The triangular-shaped contour in Fig. 5.16 marks the
region of the resonant phonon wave vectors in the double-resonance process at approximately
2.3 eV laser excitation energy. We can now directly see that the main contributions to the D′′

mode must stem from phonons along the Γ − K line. The asymmetric tail can be assigned to
phonons next to this high-symmetry direction in the Brillouin zone, following the analysis of
May et al. [142]. Phonons next to the high-symmetry direction contribute significantly less to
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Figure 5.17: D′′-mode spectra at 532 nm
laser wavelenghts for single-, bi-, and tri-
layer graphene. The broadening of the D′′

mode in bi- and trilayer graphene can be
clearly seen.

prediction of an asymmetric high-frequency tail was confirmed by our measurements. Also the
absolute frequencies match with the experimentally observed.
Figure 5.17 shows D′′-mode spectra at 2.33 eV laser excitation energy for different numbers of
graphene layers. As can be seen very clearly, the lineshape significantly broadens when going
from single- to bilayer graphene. This broadening can be directly attributed to the evolution of
the electronic bandstructure around the K point. Since bilayer graphene has two valence and
conduction bands, the number of resonant scattering processes is quadrupled compared to single-
layer graphene (compare Chapter 4 of this thesis). The increased number of resonant phonon
wave vectors leads to an increased number of resonantly enhanced phonons, thus, resulting in
a broadening of the Raman mode. This effect can be also observed for the D + D′′ mode in
bilayer graphene [142], as well as for the 2D mode [46, 122]. By further increasing the layer
number, the lineshape does not show any noticeable changes in linewidth or by the appearance
of additional peaks. This can be again identified with the shape of the electronic bands around
K. The bandstructure of trilayer graphene can be regarded as a superposition of the electronic
bands of single and bilayer graphene [73]. Thus, also the resonant phonon wave-vectors in
the double-resonance process are very similar to the ones from single and bilayer graphene.
Therefore, the D′′-mode lineshape in trilayer graphene does not differ from the peak observed in
bilayer graphene. One could also argue that the evolution of the phonon dispersion in fewlayer
graphene accounts for the broadening of the D′′ mode. However, the LA phonon branches in
bi- and trilayer graphene are still degenerate [150] and thus, would not result in a broadened
D′′-mode lineshape.

5.4.4 Analysis of the D′′ mode in carbon nanotubes

Similar to graphene, only a few publications have reported double-resonant Raman modes in
carbon nanotubes that involve LA phonons [237–240]. Besides intravalley scattering with LO
and LA derived phonons, also intervalley combinational modes of TO and LA derived phonons
were reported [238–241]. However, double-resonance processes containing both a defect and an
LA phonon have not been reported so far in carbon nanotubes.
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Figure 5.18: (a) Overview Raman spectrum of HiPco carbon nanotubes at 514 nm laser wave-
length. The inset shows an enlarged view of the D′′-mode region; the D′′ mode is marked with
the red rectangle. (b) Raman spectra of the D′′ mode in carbon nanotubes for different laser
excitation energies. Spectra are vertically offset for clarity. (c) Calculated D′′-mode frequencies
for carbon nanotubes in the diameter range between 7 Å and 14 Å. The red data points cor-
respond to experimentally obtained D′′-mode frequencies from (a); the error bars indicate the
approximate peak width. (d) Calculated frequencies as a function of the tube diameter for the
semiconducting E22 transition. The solid, red lines in (c) and (d) represent linear fits to the
calculated data points. Raman spectra were measured by Christoph Tyborski (TU Berlin).

Figure 5.18 (b) presents Raman spectra of the D′′ mode in carbon nanotubes at six different
laser excitation energies. As discussed in Chapter 5.3, the D mode in carbon nanotubes exhibits
a broader lineshape compared to graphene [58]. Therefore, the D′′ mode can only be observed
as a low-frequency shoulder to the D mode [compare Fig. 5.18 (a)]. From the experimental
spectra we estimate a downshift of the D′′ mode of approximately −75 cm−1/eV with higher
laser excitation energies. In contrast to graphene, we do not observe an asymmetric lineshape
but rather a complex peak structure with many different contributions. This can be understood
by keeping in mind that the Raman spectrum of carbon nanotubes results from many tubes
in or close to resonance with the excitation laser. The analyzed HiPco sample contains a large
variety of carbon nanotubes with diameters around 10 Å. Therefore, the D′′-mode lineshape is
broadened by the different contributions of carbon nanotubes in or close to resonance. However,
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an assignment of the different features in the D′′ band to distinct carbon nanotubes is not
possible because of two reasons: the large number of different carbon nanotubes analyzed and
the very low intensity of the D′′ band.
In order to derive a systematic analysis, we present calculated D′′-mode frequencies for all
carbon nanotubes in the diameter range between 7 Å and 14 Å, comparable to the diameter
distribution in our sample. The calculation is based on a sixth-nearest neighbor tight-binding
model with symmetry-imposed modifications for carbon nanotubes using the POLSym code [95].
The calculated LA phonon branch is scaled in frequency by 5.1 %, such that the LA phonon
frequency in CNTs with large diameters (d ≈ 25 Å) fit the experimentally observed value at
the K point for graphite [149]. The resonant phonon wave vectors in the double-resonance
process were obtained by the approach presented in Chapter 5.3. Similar to graphene, the
oscillator strength for optical transitions in carbon nanotubes is highest along the wavevectors
derived from the K − M direction in the graphene Brillouin zone [223, 242]. Therefore, the
Raman spectrum is dominated by carbon nanotubes, where these transitions are probed, e.g., the
ν = −1 family for the semiconducting E22 transition. Thus, we restrict our calculations to those
transitions. The calculated D′′-mode frequencies in Fig. 5.18 (c) reproduce the experimentally
observed peak positions and peak shift very well. The calculated shift rate of −70 cm−1/eV is in
reasonable agreement with the experiments. As can be seen in Fig. 5.18 (c), the calculated D′′-
mode frequencies at each laser energy cover a large frequency range of approximately 40 cm−1,
in accordance with the experimentally observed broad lineshape of the D′′ mode in carbon
nanotubes [compare with experimental data in Fig. 5.18 (c)]. As explained before, this broad
lineshape is due to different carbon nanotubes in or close to resonance with the laser excitation
energy. Fig. 5.18 (d) shows the calculated D′′-mode frequencies as a function of the tube diameter
for the semiconducting E22 transition (all other transitions show the same behavior). We observe
an upshift of approximately 7 cm−1/Å with increasing tube diameter. Since the LA phonon
branch itself shows nearly no dependence on the tube diameter [95, 222], the observed diameter
dependence basically reflects the diameter dependence of the optical transition energies.

5.4.5 Summary

In summary, we presented experimental Raman spectra of the D′′ mode in graphene and carbon
nanotubes at different laser excitation energies. We showed that this mode results from double-
resonant intervalley scattering of LA phonons with defects and has a dispersion of −80 cm−1/eV
in single-layer graphene. We demonstrated that the D′′ must stem from inner scattering pro-
cesses with additional contributions from phonons next to the Γ − K direction, explaining the
observed high-frequency tail of this Raman mode. We further showed that the lineshape in
graphene depends on the layer number, reflecting the evolution of the electronic bands around
K. In carbon nanotubes, the lineshape of the D′′ mode is significantly broadened due to contri-
butions from different tubes in or close to resonance with the excitation laser. Our theoretical
calculations of this Raman mode in carbon nanotubes showed very good agreement with the ex-
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perimental data. Our analysis shows that acoustic phonons can indeed be studied by an optical
method, namely double-resonant Raman spectroscopy.
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5.5 In-situ Raman study of laser-induced graphene oxidation

This last part of the chapter will report on an in-situ study of high-power laser irradiation on
exfoliated single-layer graphene and the subsequent observation of graphene oxidation.

5.5.1 Introduction

As already pointed out many times in this thesis, graphene and related two-dimensional ma-
terials, such as transition metal dichalcogenides, have experienced increasing scientific interest
during the last decade [2–4]. However, despite graphene’s extraordinary high charge-carrier mo-
bility [1], the lack of an intrinsic bandgap prevents this material from integration in transistors
and logic devices. A possible route to overcome this limitation is the precise and controllable
modification of graphene’s electronic properties using, for instance, oxidation or hydrogenation
[243–252]. Selective functionalization may also offer the possibility to design artificial graphene
structures with tailored properties. In fact, it has been demonstrated that oxidation of graphene
may open a bandgap [253]. Furthermore, methods that are based on optical manipulation of
graphene’s properties have presented themselves as a versatile technique [245, 246, 253, 254].
However, the precise temporal evolution of graphene photo-oxidation has not been reported so
far and thus prevents a deeper understanding of this process.
In this last part of the chapter, we present an in-situ Raman study of the oxidation process in
mechanically exfoliated single-layer graphene. We demonstrate that the oxidation process can
be selectively initiated by high-power laser irradiation. Subsequently, we observe the temporal
dependence of the G- and 2D-mode peak position and identify two different processes during
laser irradiation, namely, tensile strain due to laser-induced heating and subsequent p-type
doping due to oxidation. During oxidation, we observe a strong variation of the D/G-mode
ratio and the background intensity. Both observations can be consistently explained within the
presented model. Finally, we discuss AFM measurements of the irradiated single-layer graphene
and demonstrate the possibility of sub-µm patterning in graphene.

5.5.2 Experimental details

Single-layer graphene samples were prepared by mechanical exfoliation of natural graphite crys-
tals onto silicon substrates with an 100 nm thick oxide layer. Raman measurements were carried
out using a Horiba HR800 spectrometer equipped with a Nd:YAG laser with 532 nm emission
wavelength. The in-situ measurements were performed in ambient conditions with a time reso-
lution of approximately 1 s over a period of more than 2000 s. We used a 600 lines/mm grating
in order to record all important Raman modes within the same spectral window at each time
frame. The laser power was chosen to be 40 mW on the sample. Raman maps with low laser
power after irradiation were obtained by a motorized xyz stage with a minimum step size of
250 nm and using a laser power of less than 1 mW in order to avoid sample heating or additional
structure modifications of the graphene layer.

101



5. Defect-induced double-resonant Raman modes in graphene and carbon nanotubes

(a) (b)

0 5 10 15 20 25
Scan position (µm)

Si
lic

on
pe

ak
in

te
ns

ity
(a

rb
.

un
its

)

Figure 5.19: (a) Illustration of the experimental approach to estimate the laser spot size by a
linescan across a thick graphite flake. (b) Intensity of the silicon peak at 520 cm−1 as function
of the linescan position. The red, solid line reflects a least-square fit according to Eq. (5.5).

The laser-spot diameter (full width at half maximum - FWHM) in our studies was estimated
from a simple, straight-forward measurement. We performed a linescan across the edge of
a thick graphite flake on a SiO2/Si substrate and recorded the intensity of the silicon Raman
signal [compare Fig. 5.19 (a)]. The decrease of the silicon signal at the graphite edge gives a good
estimate of the laser spot size. The spatially varying silicon signal was fitted by a cumulative
distribution function, i.e., the convolution of a Gaussian curve and a Theta function:

f(x, µ, σ, I) = y0 + I

2 ×

1 − erf


x − µ√

2 σ2


. (5.5)

Here, y0 is a constant offset, I is the maximum intensity, µ reflects the graphite edge position,
and σ2 is usually referred to as the variance of the distribution function. The laser-spot size d

and σ are connected via

d = 2
√

2 ln 2 σ.

At 532 nm laser wavelength with a power of 40 mW and using a 100x objective (NA = 0.90), we
determine a FWHM of the laser spot size of approximately 750 nm.
Atomic force microscopy (AFM) images were recorded in true non-contact mode using a Park
Systems XE 100 AFM. All measurements were performed in ambient conditions and at room
temperature. AFM images were processed using the WSxM software [255].

5.5.3 Results and discussion

Figure 5.20 presents two Raman spectra measured at different times during laser irradiation
with 40 mW laser power. We want to explicitly point out that the spectra are not scaled nor
vertically offset in intensity. As can be seen, the spectrum at t = 65 s only exhibits the well-
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Figure 5.20: Raman spectra of exfoliated
single-layer graphene under high-power laser
irradiation at different times as given next
to the spectra. The main characteristic Ra-
man modes are labeled next to their posi-
tions. Spectra are not scaled nor vertically
offset.

known Raman modes in exfoliated single-layer graphene, i.e., the first-order G mode, as well as
the double-resonant D +D′′ (iTOLA) and 2D modes. Spectra that were recorded for irradiation
times t < 65 s did not showed significant differences compared to the spectrum at t = 65 s.
However, for measurement times larger than 65 s we observe a strong increase of the background
intensity, as can be seen for the spectrum at 125 s. Furthermore, we observe the occurrence of
the defect-induced double-resonant D and D′ Raman modes at ∼ 1345 cm−1 and ∼ 1615 cm−1,
respectively. In contrast to most previous works, we will not limit our measurements on single
or very few Raman measurements to assess and analyze spectral changes during the oxidation
process. In fact, single measurements may only enable a snap shot of the different effects and
thus prevent a thorough analysis of the oxidation process. The careful analysis of spectral
changes as a function of irradiation time allows to extract even more information about the
oxidation process from the measured Raman spectra, as will be shown below.
In Figure 5.21 (a), we present the evolution of the D/G-mode amplitude ratio in single-layer
graphene with increasing time under high-power laser irradiation of 40 mW. As can be seen,
until t1 = 65 s this ratio does not change. Afterwards, we observe an abrupt increase to a
maximum value of approximately 0.27 at t2 = 300 s, followed by a nearly linear decrease with
increasing irradiation time. An enlarged view of the inital sharp increase is given in Fig. 5.21 (b).
For irradiation times larger than t4 ≈ 1000 s, the Raman spectrum of the graphene layer inside
the laser spot nearly resembles the initial Raman spectrum at t0 = 0 s, i.e., the D/G-mode ratio
drops to values of less than 0.01. The main difference between the spectra at t0 and t4 is a
significantly reduced 2D/G-mode ratio of approximately 1.5 at t4 and a downshifted 2D-mode
position, which will be discussed later in this section. The broadening and downshift of the
D + D′′ mode follows the evolution of the 2D mode. The corresponding spectra for each time
ti from Fig. 5.21 (a) are given in Figs. 5.21 (c) and (d) for the G- and 2D-mode spectral range,
respectively. Again, we want to explicitly point out that the spectra are not scaled in intensity
nor vertically offset.
As already pointed out before, we also observe a strong variation of the background intensity
during the oxidation process. The differences can be seen best by comparing the black spectrum
at t1 and the blue spectrum at t2 in Fig. 5.21 (c). In Figure 5.21 (a), we also plot the background
intensity as a function of the irradiation time. Qualitatively, the same behavior as for the D/G-
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Figure 5.21: (a) Evolution of the D/G-mode amplitude ratio (blue circles) and the background
intensity (red circles) in single-layer graphene with increasing irradiation time using high-power
laser irradiation of 40 mW. (b) Enlarged view of the initial sharp increase in background intensity
and D/G-mode ratio; same y-axis scales as in (a). (c),(d) Raman spectra in the G- and 2D-
mode spectral range for different irradiation times ti as defined in (a). Spectra are not scaled in
intensity nor vertically offset.

mode ratio is observed, i.e., a first sharp increase in intensity followed by a continuous decrease
back to the initial level. However, the background intensity rises and drops more abruptly than
the D/G-mode ratio. Furthermore, we observe the increase in background intensity slightly
before the D/G ratio starts rising. In fact, the inflection point of the background-intensity
curve, i.e., the point where the slope has reached the maximum value and starts decreasing,
coincides with the point where we observe the initial increase of the D/G-mode ratio [compare
Fig. 5.21 (b)]. This may indicate that the origin of these effects are two competing processes. We
attribute the strong and spectrally broad background in our spectra to luminescence from re-
combination of thermalized electron-hole pairs [256, 257]. By starting the laser irradiation of our
single-layer graphene sample, we effectively start heating the graphene layer. Furthermore, we
also start heating the silicon substrate underneath. However, the graphene layer and the silicon
substrate are separated by 100 nm of silicon dioxide. Since SiO2 is an amorphous, wide-bandgap
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Figure 5.22: Time evolution of the 2D-mode position as a function of the G-mode position.
Characteristic times from Fig. 5.21 (a) are marked with gray, filled circles and labeled with ti.

insulator with a low thermal conductivity of approximately 1 W/(m·K) [258], the graphene layer
is shielded from the heat of the silicon substrate at short irradiation times. However, at a cer-
tain time t the heat from the Si substrate will reach the SiO2 surface and additionally heat the
graphene layer. The exact value of t differed in our measurements and ranged from less than
10 s to more than 60 s. Obviously, the value of t does not only depend on the SiO2 thickness,
but might be also influenced by a precise laser focus on the graphene layer and/or the initial
conformation of the graphene layer on the SiO2/Si substrate. Nevertheless, as the heat from
the silicon substrate reaches the SiO2 surface, this will introduce short-range distortions and
buckling in the graphene layer [247]. Thus, the local curvature of the graphene layer will in-
crease, which drastically enhances the hot-carrier emission efficiency [257]. For instance, Chen
et al. demonstrated that graphene nanospheres with diameters of approximately 300 nm show
an increase in hot-carrier luminescence by more than one order of magnitude compared to flat
graphene [257]. Therefore, the first sharp increase in background intensity is given by the time,
when the heat from the silicon substrate reaches the SiO2 surface and graphene straining and
buckling begins. In the following, the background intensity drops, while the D/G-mode ratio
increases, i.e., defects are created. The decreasing background can be understood from the fact
that the contribution from carrier-defect scattering increases and thus reduces the number of
excited charge carriers. Furthermore, the creation of defects leads to a reduction of the local
curvature of the graphene layer and therefore lowers the hot-luminescence emission efficiency.
For t > 700 s, the background intensity has dropped below 5 % of its maximum value.

We will now turn to a discussion of the G- and 2D-mode positions. Figure 5.22 plots the peak
positions of both Raman modes for all data points with t ≤ 2365 s; the time order of the data
is indicated by the different colors of the points. For times larger than t4, we observe only
minor peak shifts that can be attributed to further increasing tensile strain. As can be seen, for
irradiation times between t1 and t3 both the G- and 2D-mode frequencies decrease linearly with
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a slope of approximately ∆ω(2D)/∆ω(G) = 2.2. A slope with this value is commonly identified
with uniaxial or biaxial tensile strain [36, 37, 259, 260]. However, keeping in mind that strain
in our experiment is introduced by the laser beam itself, biaxial or radial strain is most likely
to occur. Using a strain-induced G-mode shift rate of −50 cm−1/% [260, 261], we calculate
a strain difference of ∆ϵ ≈ 0.1 % between t1 and t3. The linear decrease of the Raman modes
between t1 and t3 due to tensile strain can be attributed to laser-induced heating of the graphene
flake and the silicon substrate underneath [262–264]. Assuming that the observed G-mode shift
is due to temperature and using the thermal-expansion coefficient of graphene on SiO2/Si of
−0.016 cm−1/◦C [262], we estimate a temperature increase of approximately 250 K inside the
laser spot during irradiation at t3. For irradiation times larger than t3, the G mode upshifts
again, whereas the 2D mode shows a nearly constant peak position with only slight increase. The
slope of these data points exhibits a value of approximately ∆ω(2D)/∆ω(G) = 0.1. Since this
slope does not fit to either purely n-type or purely p-type doping [154, 259, 265], we suggest that
the measured slope is a superposition of doping and strain effects. In fact, it is very reasonable
that the tensile strain further increases from t3 to t4. This assumption is supported by the
evolution of the 2D- and G-mode positions for times larger than t4, which indicate additional
tensile strain. Thus, the observed evolution of the G- and 2D-mode positions between t3 and t4 is
most likely a superposition of tensile strain and doping effects. Ergo, without additional tensile
strain, the slope of the data points between t3 and t4 would be larger. Since the experiments
were performed in ambient conditions, functionalization by oxygen is very likely to occur. This
would lead to p-type doping [247]. Similar observations were reported in previous works on
laser-induced doping effects [266]. Graphene doping due to oxidation is further confirmed by
the temporal evolution of the FWHM of the G mode. As can be seen in Fig. 5.23, the FWHM
initially rises to a maximum value of approximately 19 cm−1. We expect that this first initial
increase in FWHM is caused by the creation of defects. The time at which the maximum value
occurs roughly coincides with t3, i.e., the time when the onset of doping can be observed. For
increasing irradiation times between t3 and t4, we observe a decrease of the FWHM of the G

mode, in accordance with doping [34]. For t > t4, no significant changes in the FWHM of the
G mode can be observed, indicating that the doping level has saturated to a maximum level.
From the G-mode shift, we estimate a difference in carrier concentration between t3 and t4 of
∆n = 6 × 1012 cm−2 [259].
As discussed in Ref. [247], thermal annealing of graphene supported on SiO2/Si substrates in-
troduces short-range distortions to the graphene lattice and therefore facilitates oxygen binding.
Oxygen functionalization is further catalyzed by the likely presence of a partial water layer be-
tween graphene and the substrate, as well as a water adlayer on top of graphene [248]. Following
Refs. [247] and [248], the initially observed tensile strain results from a conformation of graphene
to the SiO2/Si substrate, leading to the creation of ripples. These surface ripples reduce the
activation energy for oxygen binding [248]. Therefore, oxidation does not occur directly, but ap-
parently needs a certain amount of strain to weaken the bonds and increase chemical reactivity
[247]. Both effects can be clearly seen in Figure 5.22.
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Figure 5.24: (a) Raman mapping of the D-mode intensity on a single-layer graphene flake
that was treated by high-power laser irradiation. The irradiated regions can be identified as
small circular spots. (b) Atomic-force microscopy image of the same flake as in (a). Again, the
irradiated regions can be clearly identified as circular spots. (c) Enlarged view of the region
that is marked in (a) and (b) by the white rectangle. The height profile has been recorded
along the white, horizontal line. The height difference between graphene and the adsorbates is
approximately 1.2 nm, which corresponds to the height of single-layer graphene oxide.

Finally, we want to comment on the unexpected decrease of the D/G-mode ratio with increasing
irradiation time [see Fig. 5.21 (a)]. In principle, one would expect increasing defect-related
Raman modes due to adsorption of molecules from the air and the progressing oxygen binding to
the basal plane of graphene. However, we identify two processes that antagonize this expectation.
First, laser-induced annealing inside the laser spot and, second, the doping dependence of the
D/G-mode ratio. It has been reported by many different works that annealing of graphene
and/or carbon nanotubes leads to a reduction of physisorbed adsorbates and thus a decrease
of the D-mode intensity [248, 267, 268]. Since average temperatures inside our laser spot reach
values of approximately 550 K, annealing and self-healing seems likely to occur [269]. Moreover,
it has been experimentally demonstrated by Bruna et al. [171] and Froehlicher et al. [154] that
the D/G-mode ratio depends strongly on the doping level in single-layer graphene, as already
discussed in the introduction of this chapter. This effect can be understood from an increased
electronic broadening in the D-mode double-resonance Raman process, resulting in a decrease in
intensity [47, 168]. Moreover, for high doping levels, the G-mode intensity increases with either
n- or p-type doping [105, 106]. Both effects lead to a reduction of the measured D/G-mode
ratio in doped graphene. As we have undoubtedly demonstrated in Figure 5.22, we observe an
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increasing doping level in our graphene layer with increasing irradiation time due to chemisorbed
oxygen. Thus, a doping-related decrease of the D/G-mode ratio is reasonable. In total, these
two effects, i.e., annealing of physisorbed adsorbates and doping by chemisorbed oxygen, lead to
a reduction of the D/G-mode ratio with increasing irradiation time although oxidation continues
and probably creates further defects.
In Figure 5.24 (a), (b), and (c), we present a Raman map (1 mW laser power) of the D-mode
intensity and AFM images of the same graphene flake that has been irradiated at different spatial
positions. The AFM measurements were performed by E. Poliani and R. Mirzayev. The Raman
map is composed of 1898 individual Raman spectra with a point-to-point distance of 250 nm.
Inside the graphene flake, we can identify several regions that exhibit a significantly increased
D-mode intensity compared to the surrounding regions. These regions correlate with the spatial
positions, where we oxidized the graphene layer by high-power laser irradiation. The increased
D-mode intensities at the left edge and at the top right corner correspond to regions of folded
graphene [compare Fig. 5.24 (b)] and are not related to laser irradiation. Interestingly, we also
observe a variation of the D-mode intensity at the different edges of the graphene flake, which can
be understood from selective D-mode scattering at zig-zag and armchair edges [270]. However,
we wont discuss this effect in more detail. In Figure 5.24 (b) we present an AFM image of the
same graphene flake. We observe a close correspondence between the regions with high D-mode
intensity and the structurally modified regions in the AFM image, i.e., the laser-modified regions
can be again identified as circular regions. The diameter of these regions is approximately 970 nm
and in reasonable agreement with the experimentally determined laser spot size of 750 nm. Inside
these regions, we observe small spots of laser-deposited material that show a drastically increased
height compared to the surrounding area [see Figure 5.24 (c)]. The height of the laser-deposited
material inside the laser spot is approximately 1.2 nm, which nicely coincides with the height of
graphene oxide reported in literature [271]. This gives further evidence to laser-induced oxidation
of our graphene samples on the sub-µm scale. Thus, by scanning the laser spot across the
graphene flake, spatially controlled functionalization of graphene can be achieved. In principle,
arbitrary structures can be realized, as demonstrated in similar experiments [246, 249, 250, 253].
We performed the same experiments on exfoliated bilayer graphene on SiO2/Si substrates. How-
ever, only in a very limited number of measurements, i.e., in less than 33 % of our experiments,
we observed the same temporal evolution of the Raman modes as described above for single-
layer graphene. Apparently, the bilayer graphene flake is more stable under high-power laser
irradiation and less reactive to oxidation compared to the single-layer graphene flake. Similar
observations were made in plasma-treated single and bilayer graphene [272, 273]. The reduced
chemical reactivity of bilayer graphene can be understood from an increased van-der-Waals in-
teraction in these systems [182]. In fact, a second graphene layer stabilizes the bilayer graphene
and hinders an out-of-plane deformation and in-plane strains of the top graphene layer when ox-
idation occurs. Thus, bilayer graphene is stabilized by the internal van-der-Waals forces between
the layers and is therefore chemically less reactive than single-layer graphene, in nice agreement
with our experimental observations.
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As a very last point, we want to give an outlook on future experiments regarding the laser-
induced oxidation of graphene. To undoubtedly prove the oxidation of graphene, the presented
experiments should be repeated in a controlled atmosphere of nitrogen or argon gas. Those
experiments were already started, however, due to drawbacks of the experimental setup, laser
powers were too low on the graphene sample to observe laser-induced oxidation even in nor-
mal air. Furthermore, measurements should be repeated with different substrates underneath
the graphene, e.g., silicon substrates with a thicker oxide layer or graphene on hexagonal boron
nitride. Laser irradiation of graphene on silicon substrates with different oxide thicknesses is cur-
rently performed by R. Mirzayev at the University of Vienna. Preliminary results indicate that
graphene on 300 nm SiO2 requires a higher laser power on the sample to initiate the oxidation
process compared to graphene on 90 nm SiO2.

5.5.4 Summary

In summary, we demonstrated an in-situ analysis of the oxidation process in single-layer graphene.
We showed that high-power laser irradiation in ambient conditions can be separated into two
different stages; tensile strain due to laser-induced heating and subsequent p-type doping due to
oxidation. The observed temporal decrease of the D/G-mode ratio with increasing irradiation
time can be explained with laser-induced annealing and the doping dependence of the double-
resonant D-mode scattering process. Our results provide a deeper understanding of basal-plane
oxidation in graphene and demonstrate the possibility of tailoring graphene’s properties selec-
tively at the sub-µm scale using a fully optical method.
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Conclusion
6

In this work, we analyzed both experimentally and theoretically double-resonant two-phonon
and phonon-defect Raman modes in graphene, few-layer graphene and carbon nanotubes. Al-
though the concept of double-resonant Raman scattering has been introduced more than a
decade ago, the precise scattering processes of certain Raman modes were still controversially
discussed. Here, we demonstrated a detailed analysis of various aspects of double-resonant Ra-
man scattering in graphitic carbons and finally resolved fundamental questions concerning the
different scattering processes.

The first part of this thesis was devoted to the analysis of the 2D mode in Bernal-stacked bilayer
graphene. The characteristic and complex lineshape of the 2D mode in bilayer graphene was
subject of different works that attempted an explanation of the different scattering processes.
However, none of the presented models could reproduce or explain the correct lineshape of the
2D mode. Starting from a complete first-principles based calculation of the double-resonant Ra-
man scattering cross-section, we provided a consistent explanation of the different processes and
unraveled the dominant contributions to the peak structure. We proved that the 2D mode in
bilayer graphene is composed of three dominant contributions, contradicting all previous works
on this topic. We showed that the dominant contribution to the Raman scattering cross-section
stems from so-called inner processes, as in single-layer graphene. We furthermore demonstrated
that quantum interference between both anti-symmetric processes strongly affects the 2D-mode
lineshape in bilayer graphene, i.e., the intensity of these contributions is drastically enhanced
due to constructive interference. In fact, quantum interference is also key for the understanding
of the lineshape variations as a function of the electronic broadening. We theoretically cal-
culated and experimentally demonstrated that the characteristic lineshape of the 2D mode in
bilayer graphene strongly depends on the electronic broadening. By tuning the laser excitation
energy, the doping level, or the defect concentration, we showed that the 2D-mode lineshape can
be easily manipulated, reflecting the quantum mechanical character of double-resonant Raman
scattering. Moreover, we also showed that the splitting between both TO phonon branches
in bilayer graphene along K − Γ is of great importance for a correct analysis of the 2D-mode
lineshape. We presented an approach to directly extract the TO phonon splitting from experi-
mental Raman spectra. Furthermore, we showed that the splitting of the electronic bands can be
also measured using the presented analysis. Finally, we discussed the polarization dependence
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of the 2D mode and demonstrated that inner and outer processes can be partially selectively
suppressed. Our results finally clarified the origin of the complex 2D-mode lineshape in bilayer
graphene and its dependencies on external perturbations.
The second part of this thesis was devoted to the analysis of double-resonant phonon-defect
Raman modes. We started with an analysis of the D mode in carbon nanotubes. The diameter
dependence of this Raman mode was discussed by various authors and different dependencies
were experimentally demonstrated. Here, we attempted a harmonization all previous experi-
mental results. First, we presented a geometrical model to describe the diameter and energy
dependence of the resonant phonon wave-vector in the double-resonance process in carbon nan-
otubes. The presented approach is independent of the specific model used for the electronic
bandstructure or phonon dispersion and is therefore universally valid. In the following, we
applied our model to investigate the defect-induced D mode in chiral carbon nanotubes and
calculate the D-mode frequency at their resonant optical transitions. We could show that small-
diameter tubes exhibit a higher D-mode frequency in general and that higher resonant optical
transitions exhibit a systematically higher D-mode frequency. Furthermore, we proved that the
experimentally observed discontinuity between different transition branches is due to curvature
effects that alter the dispersion of A1-symmetry phonon branch around the K point. In analogy
to other Raman modes in carbon nanotubes, e.g., the RBM or the G mode, we showed that
the D-mode frequencies are arranged in branches and families. The experimentally observed
dispersion of the D mode can be understood as a superposition of D modes from different car-
bon nanotubes that come into resonance after each other. Our results finally harmonized the
different previous experimental observations regarding the diameter dependence of the D mode
in carbon nanotubes.
In the following, we analyzed the defect-induced D′′ mode in graphene, few-layer graphene, and
carbon nanotubes. We showed that this mode results from a double-resonant intervalley scatter-
ing process of longitudinal acoustic phonons with defects and has a dispersion of −80 cm−1/eV
in single-layer graphene. The characteristic asymmetric lineshape with a high-frequency tail is
explained by the dominant contributions from inner scattering processes from the Γ − K di-
rection with additional contributions from phonons next to this high-symmetry direction. We
further showed that the lineshape in graphene depends on the layer number, reflecting the evo-
lution of the electronic bands around K. In carbon nanotubes, the lineshape of the D′′ mode
is significantly broadened due to contributions from different tubes in or close to resonance
with the laser excitation energy. Using our previously developed model for the analysis of the
double-resonance process in carbon nanotubes, we observed very good agreement between our
experimental data and the theoretically predicted D′′-mode frequencies.
The last part of this thesis presented an in-situ analysis of the laser-induced oxidation process in
single-layer graphene. We demonstrated that the oxidation process can be selectively initiated
by high-power laser irradiation of graphene. By a careful analysis of the temporal evolution
of the D, G and 2D modes, we showed that the laser-induced oxidation of graphene can be
separated into two different stages, namely, tensile strain due to laser-induced heating and
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subsequent p-type doping due to oxygen binding. The unexpected observation of a decreasing
D/G-mode ratio with increasing irradiation time and progressing oxidation could be explained
with laser-induced annealing, as well as by the doping dependence of the double-resonant D-
mode scattering process. Our results provided a deeper understanding of basal-plane oxidation
in graphene and demonstrated the possibility of tailoring graphene’s properties selectively at
the sub-µm scale using a fully optical method.
To finalize, we presented various aspects of double-resonant Raman scattering in graphene, few-
layer graphene and carbon nanotubes. Our results emphasize the significance of inner processes
and, even more important, demonstrate the quantum mechanical character of this second-order
process, which becomes manifested by the interference between different scattering processes.
The presented results have led to a fundamental understanding of the double-resonance process in
graphene and carbon nanotubes and thus enable a precise analysis of other double-resonant Ra-
man modes in these materials. Besides the various fundamental results that were demonstrated
here, we also want to point out the pratical benefits that result from this work. We established
a method to derive basic material parameters such as the TO phonon splitting or the electronic
splitting in bilayer graphene from experimental data. Furthermore, also the dependence of the
2D-mode lineshape on γ can be used in practical terms and adds another parameter for the
interpretation of experimental Raman spectra. Finally, we presented an approach to selectively
pattern graphene, which can be helpful for the engineering of artificial graphene structures in
future industrial applications.
Future works on the double-resonance process in graphene may use the results presented in this
work as a starting point for ongoing studies. For instance, it would be tempting to perform
a detailed analysis of the double-resonance process in bulk graphite. Bilayer graphene and
bulk graphite belong to the same symmetry group, however, the 2D-mode lineshape of both
materials looks completely different. In fact, bulk graphite exhibits an out-of-plane dispersion
along the Γ − H high-symmetry direction, which has to be considered for a careful analysis
of double-resonant scattering processes in this material. Moreover, it would be interesting to
further exploit the double-resonance process directly at the edge of graphene. In this context,
bilayer graphene might be favored over single-layer graphene, since the Raman modes of bilayer
graphene contain more information about fundamental material parameters, as demonstrated
in our analysis of the 2D mode at the bilayer graphene edge. Related to these experiments,
one might also investigate Raman processes at edges of freestanding graphene. Preliminary
measurements have been already performed and reveal as significant difference in the D/G-
mode ratio at the edges between suspended and supported graphene. Finally, one might be
interested in further analyzing the influence of laser irradiation on graphene. Here, it would
be reasonable to design an experimental setup with two laser paths, in order to separate both
actions of manipulating and probing graphene’s properties. Furthermore, this setup would also
allow to investigate the spatial extents of the laser-induced changes around the laser focus.
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