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Abstract: The Craig-Bampton model order reduction (CB-
MOR) method based on the Rayleigh-Ritz approach was
applied in a previous work to simulate dynamic behavior
of a composite structure (CFRP) using the modal assur-
ance criteria (MAC) and cross orthogonality (XOR) to vali-
date the correlation. Different coordinatemodal assurance
criteria are applied to complement and verify the eigen-
frequencies and eigenvectors obtained of the full and re-
duced models using substructures (super-elements). An
improvement is observed per pairedmode-sensor with the
MAC per coordinates criterion (MACco) in a CFRP once the
stiffness parameters are updated in the full model apply-
ing a mix-numerical experimental technique (MNET) us-
ing a design of experiments (DOE). The coordinate modal
assurance criteria (COMAC) and the scale COMAC (COMAC-
S) results of the full models display the best results re-
spect to the reduced model. Furthermore, slight improve-
ment of the enhanced COMAC (eCOMAC) results are ob-
served in the reduced model despite having lower MAC
performance. This approach complements the results of
the previous work using several COMAC techniques, and
demostrates the feasibility to achieve low COMACs results
in the reduced finite element model once the stiffness pa-
rameters of the full elementmodel are updated. The exam-
ple was prepared and solved with MSC/NASTRAN SOL103
and SDTools-MATLAB for comparative purposes.
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1 Introduction
Many techniques have been proposed to obtain reduced
order finite element models (known as model order reduc-
tion (MOR) methods) by reducing the order of mass and
stiffness matrices of structures made of conventional [1–
15] or carbon fiber reinforced polymer (CFRP). The Craig-
Bampton model order reduction (CBMOR) method based
on the Rayleigh-Ritz approach implemented in [3] was
performed in [17] to simulate the dynamic behavior of a
CFRP. The simulation of the dynamics of the CFRP was di-
vided into two steps: a mix-numerical experimental tech-
nique [18, 19] (MNET) and the reduced model using the
CBMOR method. In the first part several techniques were
combined using a design of experiments [22, 33] (DOE): ex-
perimental results [20], parametric curve-fitting [10], com-
puted FEM results, and the modal assurance criteria [21]
(MAC) to obtain the stiffness parameters in a composite as-
sembly (CFRP). The obtaining of the stiffness parameters
of a CFRP is oneof themost challengingproblems in exper-
imental analysis. The second part was setting the reduced
model using the CBMOR, superelements, the automated
multi-level substructuring [14] (AMLS) and the residual it-
eration [13] methods implemented in SDTools [3] once the
stiffness parameters were obtained. It is documented in
the literature that the combination of CBMOR, AMLS, and
residualmode effects can improve the accuracy of the orig-
inal transformation matrix [3, 7, 15]. This study is based
on the stiffness parameters obtained in [17] with theMNET
and it is an extension to validate the MAC and XOR results
of the full and reduced models using different coordinate
modal assurance criterias. The application of these crite-
rias to a CFRP is not documented in the literature. The dif-
ferent modal assurance criterias used in this study are in-
troduced in sections 2-6, and are implemented in SDTools.
In section 7 the results are discussed.
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2 Modal Correlation Criterion
There are two general categories for correlation criteria:
the eigenfrequencies and eigenvectors [21]. The modal as-
surace criteria [23] (MAC) is one of themost useful compar-
ison methods that relies on the eigenvector information,
see Eq. (1):

MAC(i) =
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(cjϕid)H(cjϕk)
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(1)

where cjϕid is the jth mode shape at sensors and cjϕk is
the jth analytical mode shape. The MAC value of 1 corre-
sponds to an absolute correlation. The less this value be-
comes, the worst the eigenvector correlation will be. In the
modal community a MAC coefficient of a magnitude larger
or equal than 0.90 in the diagonal and less or equal than
0.05 in the off-diagonal implies a satisfactory correlation.

3 Coordinate modal assurance
criterion

The coordinatemodal assurance criteria (COMAC) is an ex-
tension of the MAC developed by Lieven and Ewins [24].
The implementation of the COMAC criterion requieres two
stages of calculation. In the first stage, themodes from the
two sets arematchedusing theMAC.After constructing the
set of NM mode pairs to be correlated, the second stage
of the COMAC is the calculation of the correlation values
at each coordinate, over all the correlated pairs [25], see
Eq. (2):

COMAC(l) = 1 −
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⃒
2 (2)

where clϕjA is the jth mode shape at sensors and clϕjB is
the jth analytical mode shape selected. It is important to
note that the modes have to be normalized as this gives
equal weighting to all modes. Unfortunatly, the standard
COMAC cannot identify differences that occur due to fairly
common ploblems during modal testing. These problems
include orientation of the accelerometers and transducers
scale factor errors [26]. Additionally, the COMAC is equally
sensitive to large and small motion of DOF, which can

make COMAC results more difficult to interpret. COMAC
values closer to zero per DOF represent a higher agree-
ment.

4 Scale coordinate modal
assurance criterion

The scale coordinate modal assurance criterion (COMAC-
S) is computedwith shapes in set B scaled using themodal
scale factor (MSF) [3, 23] (see Eq. (3)). The MSF provides a
qualitative way of comparing two modal vector sets. This
criterion has been used by Ewins [21], Allemang [23], Cat-
bas [25], and Balmés [3] for a variety of different analy-
ses including structural modifications and frequency re-
sponse function (FRF) synthesis for comparison with ex-
perimental data [32].

COMAC − S(l) = 1 −
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(clϕjB)
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(3)

This COMAC-S criterion sets the scaling of vectors in
set B to minimize the quadratic norm of the difference be-
tween (clϕjA) and (clϕ̂jB) [3]. Scaling assumes that each
experimentalmode shape is already correlatedwith an an-
alytical shape. When two modal vectors are scaled simi-
larly, elements of each vector can be averaged, differenti-
ated or sorted to provide an indication of the type of error
vector superimposed on the modal vector [27]. The lower
values of the COMAC-S represent also a higher agreement
per DOF.

5 Enhanced coordinate modal
assurance criterion

The formulation of the enhanced COMAC (eCOMAC), intro-
duced by Hunt [26], overcome some of the limitations of
the standard COMAC, expressed as:

eCOMAC(l) =

NM∑︀
j=1

⃦⃦⃦
(clϕ̃jA) − (clϕ̂jB)

⃦⃦⃦
2NM (4)

The comparation is done using mode shapes that are
vector normalized to 1 and theremust be phase correlation

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 11.04.18 10:56



Application of the Craig-Bampton method to a composite structure | 187

between pair modes, see Eq. (5)

(clϕ̃jA) =
(clϕjA)⃦⃦
clϕjA

⃦⃦ (5)

This can be accomplished by examining the high coef-
ficient DOF in the mode pairs or by using the MSF to deter-
mine if the normalization mode should be multiplied by −1.
The use of eCOMAC requires this extra step in mode shape
normalization, namely a check for phase consistency be-
tween each mode pair using the MSF [26]. The unit nor-
malization and correct phasing are interpreted in the same
way as the COMAC. The eCOMAC values are obtained from
zero to one, similar to COMAC, where a value closer to zero
per DOFwill have a higher correlation agreement. Further-
more, Hunt reported in [26] that the eCOMAC can success-
fully identify measurement errors such as scaling and po-
larity. This is because the eCOMAC is less sensitive to errors
at small motion of DOF and it is considered more robust
than the standard COMAC.

6 Modal assurance criteria per
pair-sensor (MACco)

The MAC per pair-sensor (MACco) criterion consists in
the sequential order of sensors that contribute most to
the poor correlation. The MACco is known with different
names in the literature: the MAC coordinate criterion [3]
or the MAC variation technique [28]. It is an iterative algo-
rithm that takes themodes in cjϕid and cjϕk and computes
the pairMACwith one sensor “removed” that contribute to
low MAC values. The MACco algorithms leads to the best
mean MAC for the paired modes, and is a direct indication
of where the poorest correlation is located. In this work is
suggested the possibility of applying the MACco criterion
implemented in [3] to identify the improvement per pair-
sensor using the updated stiffness parameters of the FE
model obtained in [17].

7 Results
A summary of the results in [17] is introduced to present
the initial COMAC results from this study. All the measure-
ments were performed with the Scanning Laser Doppler
Vibrometer (SLDV) PSV840 by suspending the CFRP com-
ponent from very soft cords (free condition), (see Fig. 1),
provided by the DLR Braunschweig. The shaker LDS V406
and the stinger with length of 65mm at node 17 are used to

(a)

(b)

(c)

Figure 1: Experiment: a) Experimental set-up; b) 153 Y-direction
sensors; c) 153 sensors in the FEM model [17].
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Figure 2: FRF (blue) and fitting curve (green) of composite model at node 183y [17].

excite the structure that produce a sinusoidal vibration ve-
locity signal on the line of sight of the SLDV (out-of-plane).
The reason to use a stinger is to ensure that the shaker
will only impart force to the structure along the axis of the
stinger. The excitation signal selected is a periodic chirp
(with frequency span 30–400Hz, 6400 lines of resolution,
with complex average type and number of average per Fre-
quency Response Function (FRF) equal to 10), and reflec-
tive foil is used to acquire the responsemeasurement loca-
tion. The input force is measured using a force transducer
Dytran 1051V3 and power amplifier LDS PA 100 in order to
record the excitation in the transverse direction.

The interpolation between the experimental measure-
ments uses FRFs [10]. The FRF, (see Fig. 2), allowed us to
compare the experimental modal parameters (frequency,
damping, and mode shape) with the FE model. The Fast
Fourier Transform (FFT) is a fundamental procedure that
isolates the inherent dynamic properties of a mechanical
structure and in our case with respect to the full and re-
duce FE model performed in [17].

To approximate themeasurements (blue line) through
a polynomial function (green line), we used the frequency
domain identification of structural dynamics applying the
pole/residue parameterization [10], (see Fig. 2). The corre-
lation results vs the experimental model was performed at
low frequency (up to 400 Hz), based on the curve-fitting
generated from the experimental measurements [10]. A
bandwith of 2% is used to localize the eigenfrequencies.

The MAC analysis of the full and reduced FE mod-
els obtained in [17] can be observed in Fig. 3 (MATLAB,

NASTRAN, and CBMOR model respectively) versus the
experimental measurements. Two different elements and
solvers were used for reference purposes: CTRIA3 shell
(from MSC/NASTRAN) and pshell (from SDTools) [29, 30].
The same number of modes were calculated for both the
full and reduced FE models, using super-elements. Cross
orthogonality MAC (XOR) was performed to verify the ap-
proximation of the MOR in low frequency range (12 mode
pairs) versus the full model, see [17].

A good MAC correlation was obtained between the
three models and the MAC results displayed an agree-
ment with the literature (the MAC results in the reduced
FE model are slightly lower). These MAC results of the
full FE models were calculated with the stiffness param-
eters obtained in [17] performing a DOE full factorial in
MINITAB [33]. The nearly double correlation in the ex-
perimetal results identified in Fig. 3 and Table 1 for the full
and reduced models suggest the presence of the veering
phenomena [16, 31] (bending and torsional mode at the
same frequency) in our composite component assembly.
Thus, lower MAC results in 4, 9, 10 and 11 paired modes
(see Fig. 3b) and 5, 9, 10 and 11 paired modes (see Fig. 3c)
were archieved and identified using the experimental re-
sults.

Furthermore, the reduced model was performed us-
ing CMS in terms of substructure /super-element tech-
nique, AMLS and residual iterationmethods implemented
in [3]. The reducedmodel was built up defining two super-
elements.
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(a)

(b) (c)

Figure 3: Comparative MAC: a) SDtools-Exp, b) MSC/NASTRAN-Exp, c) CBMOR-Exp [17].

Super-element 1 has 4,753 nodes and 9,219 elements,
while super-element 2, has 1,615 nodes and 3,026 ele-
ments. The defined super-elements shared 579 DOF dis-
tributed in 123 nodes along the commonborderwith differ-
ent DOF per node, according to the CMS that has defined
an appropriate [T] matrix [3]. Somemode shapes of the re-
duced and full models can be observed (see Fig. 4) as well
as experimental measurements (see Fig. 5).

After constructing the set of NM mode pairs, the next
step is the calculation of the COMACvalues over all the cor-
related mode pairs, as given in the Eq. (2). Different CO-

MAC results (in blue) can be visualized in Fig. 6 (MATLAB
(non-updated), MATLAB (updated), NASTRAN (updated),
and CBMOR model, respectively) with respect to the num-
ber of sensors (x-axis). Fig. 6a is included as a reference
to visualze the improvement between the FEmodels using
the different COMACs. The COMAC values are calculated
and displayed an improvement after updating the mate-
rial properties with similar pattern and values between FE
models, (see Figs. 6b, 6c, 6d). The best COMAC result of the
full FEmodels are obtained on sensor 107y=0.036 ,and the
worst result on sensor 201y=0.397 (see Fig. 6b). Further-
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Figure 4: Full model in MATLAB (in blue) vs CBMOR (in green) [17],
for values see Table 1.

Figure 5: Experimental mode shapes [17].

more, in the reduced FE model the best and worst COMAC
results are found on sensors 84y=0.052 and 201y=0.423 re-
spectively.

A pattern in the results can be visualized using the CO-
MAC criterion (see Fig. 6)with slight differences (except for
the non-updated FE model). The COMAC-S results, for all
the FE models, display an improvement respect to the CO-
MAC values (green line). The best COMAC-S value is dis-
played in the full FEmodel in Fig. 6b on sensor 209y=0.019,
and the worst value on sensor 201y=0.366. In the reduced
FE model the best and the worst COMAC-S values are ob-
tained on sensors 114y=0.026 and 201y=0.388 respectively.

The eCOMAC results (in brown) of the full and reduced
FE models show a much lower values respect to the CO-
MAC and COMAC-S results. The eCOMAC criterion displays
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(a)

(b)

(c)

(d)

Y-SENSORS

Figure 6: Comparison of COMACs: a) SDtools-Exp (non-updated), b) SDtools-Exp(updated) c) MSC/NASTRAN-Exp (updated), d) CBMOR-Exp.
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Table 1: Full and reduced model results versus experimental results [17].

# Experimental # Full DF/FA MAC CBMOR DF/FA MAC
1 49.243 7 57.218 16.2 100 57.218 16.2 100
2 92.265 8 106.02 14.9 97 106.21 15.1 97
3 93.756 8 106.02 13.1 90 106.21 13.3 90
4 145.29 10 168.20 15.8 83 168.29 15.8 84
5 160.05 10 168.20 5.1 86 168.29 5.1 71
6 164.18 9 167.50 2.0 98 167.79 2.2 92
7 226.36 12 236.83 4.6 86 236.93 4.7 85
8 243.40 11 234.99 −3.5 96 235.12 −3.4 97
9 307.33 14 323.93 5.4 81 326.82 5.4 80
10 314.18 14 323.93 3.1 66 326.82 4.0 65
11 324.83 13 315.26 −2.9 74 315.33 −2.9 74
12 329.67 13 315.26 −4.4 90 315.33 −4.3 89

the best results with the exception of few sensors (16y-19y
and 21y-24y) for all the FE models. The updated full FE
model shown in Fig. 6b, displays the best eCOMACvalue at
sensor 83y (0.009), with the worst eCOMAC value found at
sensors 24y (0.176). Furthermore, in the reduced FE model
the worst and the best eCOMAC values are found in the
same sensors (24y=0.15 and 83y=0.006 respectively). It can
be appreciated that the eCOMAC in the reduced FE model
displays slightly enhanced results versus the full FE mod-
els (see Fig. 7). The lower eCOMAC values suggest a good
normalization and phase correlation between pair coordi-
nates of the full and reducedFEmodelwith the experimen-
tal results.

The lower COMACs values obtained with different cri-
terias suggest a good agreement of the full and reduced FE
models versus the experimentalmeasurements. It is neces-
sary tomention the good agreement between different CO-
MAC, COMAC-S and eCOMAC using two types of elements
and solvers.

Applying the MACco criterion it is possible to analyze
the paired mode per sensors ordered in ascending order
leading to the best “mean MAC” for the paired modes, see
Fig. 8. The MACco criterion and COMAC criteria also dis-
play a significant improvement per mode paired-sensor,
which contribute tohighMACvaluesusing the stiffnesspa-
rameters obtained in [17]. The “mean MAC” (represented
as a solid line in blue in Fig. 8) is obtained by calculating
the mean of the MAC per mode paired-sensor selected of
each FE model. The x-axis of each graph in Fig. 8 repre-
sents the total number of sensors (153 sensors) used with
the MACco algorithm. Only the worst ten MAC results per
paired mode-sensor of each FE model are displayed in Ta-
bles 2 and 3.

Table 2 is divided into three sections, displaying the
MACco results of the non-updated and updated full FE
models respectively. The values of the “mean MAC” can
be observed in Table 2 of each FE model. In Table 3 the
MACco results of the reducedmodel are displayed. In both
tables an improvement using the updated stiffness param-
eters is observed. Before updating the material properties,
the sensors 16y displays the worst “mean MAC” = 77. After
updating the stiffness parameters, the sensors 16y shows a
considerable improvement when applying the MACco cri-
terion in the full and reduced models (“mean MAC” of 88,
85 and 87 respectively). The worst paired mode per sen-
sor is identified in the pair number 16 of each updated FE
model (MACper paired-sensor of 67, 60, 67 respectively) on
sensor 16y. The worst paired mode per sensor of the non-
updated FE model is identified in the pair number 10 on
the sensor 16y with “mean MAC” value of 58. With the ex-
ception of the sensors 104y and 133y in Tables 2 and 3, the
worst MACco results in the updated FE models are identi-
fied in the same sensors, (see Fig. 9), per paired mode on
the edge of the CFRP.

8 Conclusions
The results have shown a good correlation in dynamic be-
havior of the composite component assemblymodel using
the pshell and CTRIA3 elements applying different solvers
for comparative purposes in the FE models. The MAC val-
ues obtained (eigenfrequencies and eigenvectors) for the
full and reduced FE models versus the experimental mea-
surements in the previous work are consistent applying
different coordinate criteria (COMACs andMACco). The im-
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Table 2:MACco results - Full models versus experimental results.

Pair number 7 8 9 10 11 12 13 14 15 16 17 18
Experimental 1 2 3 4 5 6 7 8 9 10 11 12

SDTools FEM (non-updated) 7 8 8 9 9 10 12 11 14 14 13 13
Sensor Mean MAC
All 77 99 97 90 58 87 73 65 63 73 61 72 86
16y 77 99 97 91 57 87 73 65 63 73 62 75 87
23y 78 99 97 92 62 88 71 69 59 72 63 74 86
21y 78 99 97 93 66 89 70 71 57 72 63 74 87
129y 78 99 97 93 65 89 70 70 58 72 65 75 88
96y 79 99 97 93 64 89 70 70 60 73 66 76 88
95y 79 99 97 94 64 89 71 70 60 73 66 77 88
17y 79 99 97 94 62 90 72 68 63 73 66 78 90
128y 80 99 97 94 61 89 73 68 63 73 68 79 90
133y 80 99 97 94 64 90 71 70 60 73 69 79 90
104y 80 99 97 95 66 90 71 70 61 74 69 79 90

Experimental 1 2 3 4 5 6 7 8 9 10 11 12
SDTools FEM (updated) 7 8 8 10 10 9 12 11 14 14 13 13

Sensor Mean MAC
All 87 100 97 90 83 86 98 86 96 81 66 74 90
16y 88 100 97 91 83 86 98 86 96 82 67 76 90
96y 88 99 97 91 82 87 98 87 97 83 69 77 90
95y 88 100 97 91 82 87 98 88 97 84 70 78 90
23y 89 99 97 92 84 87 97 88 96 84 73 77 90
131y 89 100 97 93 85 88 97 89 96 85 73 77 90
17y 89 100 97 93 84 89 97 89 97 85 74 78 91
21y 90 100 97 94 85 89 97 89 97 85 76 78 91
129y 90 100 97 94 85 89 97 89 97 86 77 79 92
128y 90 100 97 94 84 89 97 89 97 86 79 80 92
97y 91 100 97 94 84 89 97 90 97 87 79 81 92

Experimental 1 2 3 4 5 6 7 8 9 10 11 12
MSC/NASTRAN FEM (updated) 7 8 8 9 9 10 11 12 14 14 13 13

Sensor Mean MAC
All 83 100 97 90 74 90 93 81 84 76 59 71 84
16y 84 99 97 91 74 91 93 81 85 77 60 74 84
23y 84 99 97 92 77 91 92 82 83 76 63 73 84
96y 85 99 97 92 76 92 93 82 84 77 64 74 85
21y 85 99 97 93 79 92 92 83 83 77 65 74 85
95y 85 100 97 93 79 92 92 84 83 78 66 74 85
17y 86 100 97 93 77 93 93 83 85 78 67 76 87
129y 86 100 97 93 77 93 93 82 85 78 68 78 88
131y 86 100 97 94 77 93 93 83 86 79 69 78 88
128y 87 100 97 94 76 93 93 83 86 80 71 79 88
133y 87 100 97 95 79 93 93 84 85 80 72 78 88
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(a)

(b)

(c)

Y-SENSORS

Figure 7: Comparison of eCOMACs: a) SDtools-Exp(updated) b) MSC/NASTRAN-Exp (updated), c) CBMOR-Exp.

provement of the COMACs results is observed in all the FE
models once the stiffness parameters were updated. The
full FE model with pshell elements displays the best CO-
MAC, COMAC-S and MACco results between full FE mod-
els. The reduced model obtained by means of the Craig-
Bampton MOR method (the reduced model has 123 nodes
with 2 substructures and 579 DOF) has demonstrated a
good agreement with the experimental results using dif-
ferent COMACs. The eCOMAC values of the reduced model
present a slight enhancement in the results and are the
best values versus the eCOMAC results obtained in the

full models. The MACco results of the reduced FE model
also show a good agreement with the experimental mea-
surements with respect to the full FE model. The experi-
mental results performed with an SLDV and the identifi-
cation of pole/residues used are suitable to validate the
dynamic analysis of CFRP using coordinate assurance cri-
teria applying modal order reduction. In order to achieve
high quality COMACs results in the FEmodels that can ad-
equately capture the dynamic behavior, thematerial prop-
erties were updated by applying a DOE and are crucial
in the MOR correlation with the experimental results. The
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(a)

(b)

(c)

(d)

Figure 8: Comparison of MACcos: a) SDtools-Exp (non-updated), b) SDtools-Exp (updated), c) MSC/NASTRAN-Exp (updated), d) CBMOR-Exp.
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Table 3:MACco results - Reduced model versus experimental results.

Pair number 7 8 9 10 11 12 13 14 15 16 17 18
Experimental 1 2 3 4 5 6 7 8 9 10 11 12

Reduced FE model CBMOR 7 8 8 10 10 9 12 11 14 14 13 13
Sensor Mean MAC
All 85 100 97 90 84 71 92 85 97 80 65 74 89
16y 86 100 97 91 85 71 92 86 97 81 67 76 89
95y 86 100 97 91 85 71 92 87 97 82 68 77 89
96y 87 100 97 91 85 71 92 88 97 83 69 77 89
131y 87 100 97 92 86 72 92 89 98 83 70 77 89
129y 87 100 97 92 86 71 92 88 98 84 71 79 89
23y 87 100 97 93 86 72 91 88 97 84 73 78 90
17y 88 100 97 93 85 73 91 88 97 84 74 79 91
128y 88 100 97 93 84 72 92 89 97 85 76 80 91
21y 88 100 97 94 84 73 91 89 97 85 77 80 91
97y 88 100 97 94 84 73 91 90 97 85 78 80 92

Figure 9: Identification of the “worst Y-sensors” (green) using
MACco.

COMACs and MACco results obtained in full and reduced
FE models based on the Rayleigh-Ritz approach to simu-
late dynamic behavior of a CFRP assembly suggest the fol-
lowing conclusions. A high accuracy in the updated stiff-
ness parameters obtained that might be used to verify the
mechanical properties, such as the Poisson ratio, along
the measured CFRP. The updated mass and stiffness ma-
trices in the full model played an important roll in the
MNET procedure to perform the CBMORmethod. The iden-
tification of the veering phenomena in the CFRP compo-
nent assembly looked at the full and reduced FE models
using the MAC. The application of the MACco to identify
the improvement per pair-sensor once it was updated the
FE model. The validation of the correlation proved apply-
ing different COMACs based on the type of finite elements
used. Finally, the slightly improvement of the transforma-
tion matrix of the reduced model observed in the eCO-

MAC using superlements, the AMLS and residual iteration
methods implemented in SDTools that show a good nor-
malization and phase correlation with the experimental
results.

It is needed to perform an assesment with other el-
ements of similar characteristics for accuracy and sensi-
tivity purposes applied to different CFRP. Different mode
shape expansion methods of coupled predictions consist-
ing of local FE model, enhanced AMLS, classical theory of
structural modification by coupling, and CMS with inter-
face model order reduction should be assessed for future
work to validate the MNET results.
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