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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Untersuchung der optischen Eigenschaften von
selbstorganisierten InAs/GaAs und InP/GaP Quantenpunkten unter externem, hydrostatischem
Druck. Zu diesem Zweck wurden druckabhängige Photolumineszenzexperimente mittels einer
Diamantstempel-Zelle durchgeführt.

Die Emission der hier untersuchten InAs/GaAs Probe weist eine multimodale spektrale
Verteilung auf. Dies ist auf die Existenz von Quantenpunktsubensembles zurückzuführen, deren
mittlere Größe sich um vollständige Monolagen InAs unterscheidet. Neun einzelne Emission-
speaks können, basierend auf strukturellen Untersuchungen, der Emission von Quantenpunk-
tensembles mit ein bis neun Monolagen Höhe zugeordnet werden. Die Druckkoeffizienten der
Emissionspeaks liegen im Bereich von 65 für die kleinsten, bis 110 meV/GPa für die größten
Quantenpunkte. Berechnungen der Druckabhängigkeit des Verzerrungsfeldes von Quanten-
punkten mittels einer atomistischen Methode ergeben, dass der Druckkoeffizient der InAs Band-
kante stark reduziert wird, wenn InAs in GaAs eingebettet ist. Unter Berücksichtigung von
confinement Effekten im Rahmen der envelope function approximation ergeben sich theoretis-
che Druckkoeffizienten in guter qualitativer Übereinstimmung mit dem Experiment. Weitere
Details der Bandstruktur werden gewonnen aus der Analyse der Energien, bei denen die gebun-
denen Elektronenzustände die X-Punkt Zustände in der Barriere kreuzen, was von einer starken
Abnahme der Emissionsintensität begleitet wird. Auf diese Weise kann die Energie der Löcher
der verschieden großen Quantenpunkte bestimmt und durch Anpassung an gerechnete confine-
ment-Energien ein Valenzbandoffset von 290±10 meV ermittelt werden.

Im InP/GaP Materialsystem konnte erst kürzlich selbstorganisiertes Quantenpunktwachs-
tum realisiert werden. Bedingt durch die große Gitterfehlanpassung der beiden Materialien
verschiebt die hohe, interne Verzerrung die Γ -Punkt Bandlücke in die Nähe der indirekten
Bandlücke von GaP. Ungeklärt blieb bislang die Frage, ob die Emission bei 1.92 eV direkt im
reziproken und realen Raum erfolgt. Mittels der Druckexperimente konnte in dieser Arbeit aber
der direkte Charakter der Rekombination nachgewiesen werden. Bei Umgebungsdruck liegt die
Γ -Punkt Leitungsbandzustandsenergie in den Quantenpunkten nur 10 meV unterhalb der des
X-Punkt Zustandes von InP. Begleitet von einer Blauverschiebung der Emission erfolgt daher
schon bei einem geringen Druck von etwa 0.2 GPa ein Γ –X crossover, welches sich in einer
abrupten Abnahme der Lumineszenzintensität niederschlägt. Bei weiterer Erhöhung des Drucks
sinkt die Emissionsenergie leicht ab, wie es typischerweise für eine indirekte X–Γ Rekombina-
tion zu erwarten ist, und bei einem Druck von 1.2 GPa kreuzt der X-Zustand in den Quanten-
punkten den des wetting layer, wodurch die Lumineszenz zum Erliegen kommt. Die Emission
aus den gebundenen Quantenpunktzuständen weist maximale Intensität bei einer Temperatur
von 70 K auf. Das Maximum verschiebt sich zu tieferen Temperaturen mit steigendem Druck.
Dieses Verhalten kann mit Hilfe eines Systems von Ratengleichungen erklärt werden unter der
Annahme, dass die photogenerierten Ladungsträger aufgrund der geringen Quantenpunktdichte
über den wetting layer in die Quantenpunkte gelangen. Bei tiefen Temperaturen lokalisieren die
Ladungsträger an Fluktuationen im wetting layer und erlangen erst durch steigende Temperatur
wieder ausreichende Mobilität. Zeitaufgelöste Messungen belegen, dass die Emission aus dem
wetting layer von nicht-radiativen Prozessen dominiert ist, welche bei steigendem Druck durch
den Wegfall des Rekombinationskanals durch die Quantenpunkte an Gewicht verlieren.



Abstract

In this work the optical properties of self-assembled InAs/GaAs and InP/GaP quantum dots un-
der high hydrostatic pressure have been invesigated by means of pholuminescence experiments
in a diamond anvil pressure cell.

The particular growth conditions used for the fabrication of the InAs/GaAs sample lead to a
multimodal distribution of the quantum dot sizes, which in turn, gives rise to a characteristic
emission profile, displaying up to nine clearly separable peaks attributed to the ground-state
emission from each quantum dot subensemble of different size. Structural analysis revealed
that their size differs in entire monolayer steps. The measured pressure coefficients for each
subensemble show a linear dependence on their zero pressure emission energy ranging from
65 meV/GPa for the largest dots to 110 meV/GPa for the smallest ones. Pressure dependent
strain simulations based on an atomistic valence force field yield that the pressure coefficient of
the InAs band-gap is strongly reduced when InAs is embedded in a GaAs matrix. Taking into
account confinement effects within the envelope function approximation, the caclulated pressure
coefficients are in good agreement with the experimental findings. Further information about the
electronic structure of the quantum dots is found by analyzing the energy at which the confined
electron states cross the X-conduction band states of the barrier, which is identified by a sudden
quenching of the emission intensity. In this way, it is possible to determine the valence band
offsets for the heavy holes corresponding to different dot sizes. By fitting these energies using
the calculated confinement energies of the heavy holes, a valence band offset of 290± 10 meV
for the strained InAs/GaAs quantum dot heterointerface was be obtained.

In the InP/GaP material system self assembled growth of quantum dots has been demonstrated
only recently bringing up the question whether the observed emission has direct character in
both real and reciprocal space. The large lattice mismatch of about 7.7 % is responsible for
the shift of the Γ -point conduction band energy of InP close to the indirect band gap of GaP,
which could possibly lead to a type-II confinement resulting in a poor luminescence intensity.
The measured pressure dependence of the emission energies and intensities yield, that the main
emission peaked at 1.92 eV at ambient pressure is indeed due to a direct optical recombination
processes in real and reciprocal space. At low pressures of about 0.2 GPa, the crossover in the
quantum dot with the Xxy state of InP occurs, leading to a sudden decrease of the luminescence
intensity. This is confirmed by the long decay times of the QD emission obtained from time-
resolved PL measurements. The QD emission quenches when the Xxy state in the dots crosses
the X-level confined to the wetting layer at a pressure of about 1.2 GPa and the transition is
becoming indirect in both reciprocal and real space. The emission from the quantum dot bound
states displays maximal intensity at a temperature of 70 K. This maximum, however, shifts to
lower temperatures with increasing pressure. This behavior could be explained by setting up a
system of rate equations representing the most important carrier transfer processes. The model
implies that due to the low quantum dot density in the InP/GaP system, most of the photoex-
cited carriers reach the quantum dots through the wetting layer. At low temperatures the carriers
localize due to monolayer-size fluctuations in the wetting layer, regaining mobility as the tem-
perature rises. This carrier transfer model is further confirmed by the results of time-resolved
photoluminescence, which demonstrate that the decay of the wetting layer emission is governed
by non-radiative processes at ambient pressure, which are continuously decreasing in weight as
a consequence of the loss of the escape channel through the quantum dots induced by the rising
pressure.
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1. Introduction

Systematic studies of changes in the physical properties of semiconductors under high hydro-

static pressure have contributed significantly to the understanding of these materials at atmo-

spheric pressure. The early pressure devices used in the 1950s were limited to considerably low

pressures (< 3 GPa), but due to their design, every experiment formerly carried out at atmo-

spheric pressure could be repeated at high pressures. The separation of the pressure chamber

from the pressure generating stage, connected by a strong tube system, allowed for the place-

ment of the sample chamber in a cryostat or between the poles of a magnet and electric con-

tacting could easily be realized. The main interests of the earliest experiments was to determine

the change of the fundamental band gap with pressure. By means of electric conductivity mea-

surements under high pressure it was first observed, for example, that silicon and germanium

had a different band structure. The intrinsic carrier density is directly related to the band gap

and the observation was that in Ge the band gap was increasing with pressure, whereas in Si

it was decreasing [1]. Experiments under uniaxial stress have been also very useful in estab-

lishing the details of the band structure because state degeneracy is lifted due to the symmetry

reduction occurring in the semiconductor crystals stressed under non-hydrostatic conditions. For

instance, the two-fold degeneracy of the topmost valence band at the Γ -point can be lifted and

the properties of the light- and heavy holes may be studied separately.

From these early measurements of the pressure dependence of the three principal conduc-

tion band minima, first on Ge and Si and later on many III-V compounds, an empirical rule

emerged [2]: The pressure coefficient of the direct gap at the Γ -point is in the range of 100-

150 meV/GPa, that of the L−−Γ indirect gap is nearly 50 meV/GPa and that of the X −−Γ

indirect gap is between -10 and -20 meV/GPa. This rule is still useful nowadays but the amount

and quality of experimental data [3] and ab-initio calculations [4] allow for a refinement of

the empirical rule concerning the impact of lattice constant, atomic number and ionicity on the

pressure dependence of the gaps.

The development of the the diamond anvil cell was a major breakthrough in the area of high

pressure physics, expanding the available pressure range to some 100 GPa, though its application

is mostly limited to optical experiments. The extension of the available pressure range made the

observation of certain effects possible, which are not sufficiently nonlinear to be observable at
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CHAPTER 1. INTRODUCTION

low pressures, like the coupling to higher band extrema in the zinc-blende system.

Applied to semiconductor heterostructures, high pressure photoluminescence experiments can

be used to obtain the band offset across the heterointerface, which is an important parameter for

device applications, and which is not or only indirect accessible with other methods. However,

this technique is limited to some special systems, where the X-band of the barrier drops below

the confined state when applying pressure, resulting in a transfer of the photogenerated electrons

to the barrier and, thus, producing a significant drop in the luminescence intensity. The photon

energy at which the intensity decreases is just the indirect gap of the barrier at that pressure minus

the valence band offset (VBO), corrected by the quantum confinement of the holes. In this way,

the VBO may be determined directly with meV precision from the experiment without the need

of a fit to some model. Another application is the study of Γ -X band mixing effects which

are expected to be larger in nanostructures because of the sharp potential discontinuities and

confinement effects. The coupling depends on the interaction potential and the energy separation

between the states. The latter can be tuned knowing the effect of pressure on the bands, thus,

allowing for a convenient test of the theory. In a similar way, pressure can be a significant

parameter for resonant tunnelling experiments of electrons in superlattices.

Quantum dots have become a field of intense study in semiconductor physics in the last decade

due to their peculiar optical and electrical properties which are very promising for potential

applications in optoelectronics. Among the different fabrication methods, the self-assembled

growth which is based on the driving force of the built-in strain induced by a lattice mismatch

of the constituent materials, is the most commonly used. As a general strain pattern can be

decomposed into hydrostatic and uniaxial components, the effects of the internal strain on the

confined states in a quantum dot can be analyzed, if previous knowledge of the effects of hy-

drostatic and uniaxial pressure on the bands is available from pressure experiments. Due to its

three-dimensional nature, the strain field of a quantum dot is a complex matter compared to that

of strained quantum wells. The determination of the strain distribution by means of atomistic

valence-force field models or continuum mechanics is therefore crucial in order to calculate the

energy levels and wave functions.

In this work, high pressure photoluminescence experiments on self-assembled quantum dots

have been carried out. In addition, strain simulations as a function of external pressure have

been performed in order to interpret the experimental results. The work is structured as follows:

• In chapter 2 I will describe the pressure techniques utilizing the diamond anvil cell for

experiments at liquid He temperatures and I will sketch the experimental setups used.

• Chapter 3 will describe the formation and properties of self-assembled quantum dots and

9



CHAPTER 1. INTRODUCTION

address the necessary theoretical background to describe the band structure of semicon-

ductors and understand the effects of quantum confinement and strain.

• In chapter 4 I will present the results from photoluminescence experiments on InAs/GaAs

and InP/GaP quantum dots under high pressure. For the former system the experimental

findings will be discussed in comparison with pressure-dependent strain-field modelling.

For the InP/GaP system I will demonstrate the power of high pressure experiments to

unravel the band lineups and for the discussion of the carrier dynamics exploiting the

temperature dependence of the emission and the results from time-resolved photolumi-

nescence under high hydrostatic pressure.

10



2. Experimental

In this chapter I will describe the techniques to create high hydrostatic pressure up to 10 GPa

and how to measure the applied pressure in-situ and I will sketch the setups used for photolumi-

nescence (PL) and time resolved photoluminescence (TRPL) measurements.

2.1. Pressure techniques

One of the pioneers in high pressure technique was P.W.Bridgman who was awarded the nobel

prize in 1946. He introduced the concept of the anvil cell which is widely used nowadays.

Hydrostatic pressure is created through the deformation of some sealing material with a hole in

it serving as pressure chamber which is placed between two pistons. Bridgman used tungsten

carbid which is very hard but opaque and thus does not allow optical measurements. Important

milestones on the way to the diamond anvil cell were the introduction of diamonds as anvil

material[5], the use of a sealing material between the diamonds[6] and the application of the

ruby fluoresence method for pressure determination[7].

2.1.1. The diamond anvil cell

a)

moving piston

levers

diamonds

thread
36o

b)

gasket

sample
ruby chip

diamonds

Figure 2.1: Sketch of the diamond anvil cell. On the left side the lever mechanism which moves

the upper piston is shown. The end points of the levers are driven by two threads. When using

the cell in a cryostat two long rods connect the threads with a gear outside the cryostat. The right

hand side shows an illustration of the two diamonds and the gasket.
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2.1. PRESSURE TECHNIQUES CHAPTER 2. EXPERIMENTAL

The diamond anvil cell (DAC) is a device particularly suited to perform optical measurement

under high hydrostatic pressure. The basic principle of a DAC is quite simple. The sample

volume is defined inside a 200-300 µm hole drilled into a metal gasket which will closed on

top and bottom by the flat parallel faces of two diamond anvils (2.1b). The sample is subjected

to pressure when the two diamonds are pushed together decreasing the chamber volume while

slightly deforming the gasket. Depending on the needed pressure range and sample volume

different cells have been built and most of them comprise a movable piston which holds one of

the diamonds and some kind of lever mechanism to apply the pressing force. The cell used in the

experiments (see fig.2.1a) presented here was designed by Syassen and Holzapfel[8] and allows

for measurements up to 16 GPa. Due to the large aperture angle of 36 o it is suitable even for

Raman experiments.

The gasket is made out of a nickel-chromium alloy referred to as Inconel X-7501 which is

chosen for its mechanical strength and hardness. The fabrication process of the raw gaskets -

small discs of 8 mm in diameter and 250 µm in thickness - induces strain in the material which

has to be released to regain its natural hardness. Therefore they have to run through a tempering

procedure which is described in (ANHANG). The discs are then pressed with the diamonds

creating a faceted indention of about 100 µm thickness and 400 µm diameter. This cold forming

step represents an additional hardening. Finally, a hole of 200-300 µm in diameter is drilled

into its center. This hole is the actual sample chamber which will be loaded with the sample

whose dimensions must not exceed 100x100x50 µm3 and a small ruby chip for the pressure

determination.

Various organic liquids and condensed gases have been used as pressure medium to assure

hydrostatic conditions in the sample chamber. 4He is often chosen for low temperature mea-

surements due to its nearly hydrostatic behaviour up to 60 GPa[9] and its suprafluid state below

2.2 K which simplifies the filling of the cell. For room temperature applications a 16:3:1 mixture

of methanol, ethanol and water is used.

A review of common high pressure techniques can be found in [10].

2.1.2. in-situ pressure determination

The pressure in the anvil cell is determined in situ via the pressure dependent shift of the ruby

fluorescence. For that purpose a small chip of ruby is placed besides the sample inside the

pressure chamber. Ruby is Cr3+-doped Al2O3 (Sapphire) and shows a well known strong red

fluorescence. The crystal symmetry of Ruby is rhombohedral, the Cr3+ ions and their six first

neighbours form a distorted oactahedron whose symmetry is C3[11]. The resulting crystal field

1http://www.magellanmetals.com/inconel X750.htm
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2.1. PRESSURE TECHNIQUES CHAPTER 2. EXPERIMENTAL

leads to a splitting of the degenerated energy levels of the 3d electrons of Cr3+ giving rise to

the two strong fluorescent transitions denoted R1 and R2 with energies ER1 = 14418 cm−1 and

ER2 = 14447 cm−1. Applying external pressure decreases the interatomic length and therefor

rises the crystal field. The level splitting increases resulting in in net reduction of the R1 and

R2 transitions. The dependence of the ruby fluorescence on hydrostatic pressure has been deter-

mined up to 80 GPa[9] and follows

p =
A
B

[[
1+

(
λ −λ0

λ0

)]B

−1

]
, (2.1)

where A = 1904 GPa and B = 7.665 GPa, λ0 and λ are the wavelength of the R1 at ambient and

applied pressure respectively. As small chips of ruby might be strained internally the values for

λ0 may differ for each chip representing an error source for the pressure determination.

For a precise determination the dependence on temperature has to been taken into

account. The pressure coefficients A and B are independent of temperature in good

approximation[12][13] whereas the energy of the R1 and R2 lines shift with temperature. At

low temperatures only the low energy R1 line is visible. The temperature dependence of the R1

line is best described by a two-phonon Raman-process model[14], which yields:

νR(T )−νR(0) = α

(
T
Θ

)4 ∫
Θ/T

0
dx

x3

ex −1
, (2.2)

where ν(T ) is the energy of the R1 band at temperature T and ambient pressure and ν(0) that at

0 K. The parameters Θ and α have been determined by fitting equation (2.2) to a comprehensive

set of experimental data as Θ = 760K and α = 419cm−1[15].

All pressure readings in this work have been calculated using equations (2.1) and (2.2). The

energies of the ruby lines were determined by fitting the calibrated spectra with two voigt profiles

which accounts for the convolution of the lorentian line shape with the spectrometer response.

The 692.47 nm neon line has been used for calibration.

2.1.3. Low temperature pressure techniques

When using the DAC at low temperatures with 4He as pressure medium it cannot be sealed

outside the cryostat, fact that complicates the loading of the cell. Thus, the DAC has to be loaded

with the sample and a ruby chip, the diamonds however must not close the sample chamber

comletely. The cell is placed into the cryostat and is immersed in fluid 4He which is being

pumped to keep it in the superfluid state below 2.19 K. Under this condition 4He easily enters into

the cell, filling it comletely and the DAC can be sealed by carefully aproaching the diamonds.

As 4He instantly crytallises when subjected to pressure at 2 K the cell has to be heated well

13



2.2. SPECTROSCOPIC TECHNIQUES CHAPTER 2. EXPERIMENTAL

above the melting point to relax non-hydrostatic strain. When cooling down again into the solid

phase it is assumed that the pressure on the sample is mostly hydrostatic. The same applies if

the pressure is about to be changed. It is crucial to reach a point in phase space well above the

melting line such that He is liquid during the pressure change (see section C for the 4He melting

curve). Allowing the cell to relax for some minutes usually alters the pressure until it reaches its

final value.

2.2. Spectroscopic techniques

2.2.1. Photoluminescence spectroscopy

All photoluminescence spectra in this work have been recorded using a single 0.85 m Czerny-

Turner spectrometer with a grating of 600 lines/mm. The grating is blazed for a wavelength of

1.6 µm so that, depending on the sample, measurements were performed in first to third order.

Detection of the dispersed signal occurred with a liquid-nitrogen cooled germanium diode for the

near infrared region and a gallium arsenide photomultiplier for the visible range. For excitation

the 514 nm line of an argon laser and the 441 nm line of an helium-cadmium laser were used.

The ruby spectra for the pressure determination were taken in 2nd order with a slit width of

70 µm at both slits which gives a spectral resolution of about 0.3 Å.

2.2.2. Time-resolved photoluminescence (TRPL)

To study the temporal evolution of photoluminescence processes both excitation and detection

has to occur faster than the typical decay times involved, i.e. with a temporal resolution in the

sub-nanosecond range.

Excitation system The creation of ps laser pulses is achieved using a Nd:YAG pumped dye

laser. The Nd:YAG laser creates 100 ps long pulses through active mode locking at λ=1064 nm

with a repetition rate of 76 MHz. The light passes a frequency doubling crystal and is mixed

again with the 0th harmonic to obtain the triple frequency at 355 nm which is used to pump

the dye (Coumarin102, 462-497 nm). The resonator length of both lasers are equal so that the

excitation in the dye occurs synchronous with the total resonator circulation time of one dye

laser pulse. Without further action taken the minimal length of the dye laser pulse is about 5 ps.

A so called pulse picker allows for throttling the pulse repetition rate. It consists of a acoustical-

optical modulator which dumps a selectable number of pulses before letting one pulse to pass

through the output mirror. This is necessary to allow the photoluminescence to decay completely

before the next excitation pulse reaches the sample.

14



2.2. SPECTROSCOPIC TECHNIQUES CHAPTER 2. EXPERIMENTAL

Cryostat with sample

Photodiode

Coherent Antares 76−s
Nd:YAG Laser

Modelocking SHG

Coherent Dye Laser 701

7950 THG

Detector
MCP M

M
M

M

G G

DAQ

0th order

Figure 2.2: Setup for time resolved photoluminescence measurements. G: grating, M: mirror,

MCP: multichannel plate, SHG: second harmonic generation, THG: third harmonic generation

Detection system In addition to an ordinary photoluminescence setup, a fast detector, in this

case, a multichannel plate (MCP) has to be used. It permits single photon counting in conjunc-

tion with a suitable data acquisition stage. As shown in figure 2.2, a second monochromator

has been installed in reverse sense to account for the different optical paths depending on wave-

length. This configuration corresponds to a double monochromator in subtractive mode but with

the intermediate slit used as output slit and the output slit open. A beam splitter directs part of

the excitation pulses to a photodiode which is needed to trigger the measurement, i.e. for tempo-

ral resolution. The excitation intensity is set such that per pulse only one single photon emitted

from the sample reaches the detector and a single event is registered. The time difference to the

trigger event is the actual measurement. A time-to-amplitude converter (TAC) prepares the time

difference information to be processed by a multichannel analyser (MCA) which sorts all events

into different channels according to their amplitudes. Thus, to be able to record a single decay

process a large number of excitations have to occur. The measured decay corresponds to the

overall response of the setup convoluted with the actual signal of the sample:

s(t) =
∫ +∞

−∞

e(t − τ)r(τ)dτ, (2.3)

being s(t) the measured signal, r(t) the system response function and e(t) the emission dynam-

ics. To be able to extract the information about the decay, the system response has to be measured

first by recording directly the laser diffusely reflected at some object near the sample. The time

constants of the decay processes are determined by fitting a model with a variable number of

decaying and rising components to the data. Instead of deconvoluting the measured signal by

the system response, the model itself is convoluted with the system response before fitting it to

the data.
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3.1. Formation and properties of self-assembled quantum dots

A semiconductor structure is thought to be low-dimensional, if the motion of the carriers is

confined in at least one direction within a spatial extent comparable to the carrier de-Broglie

wavelength. In that direction the carrier momentum is quantized with an energy spectrum de-

termined by the discrete solutions of the Schrödinger equation, the eigenenergies. This can be

achieved, e.g. by growing a sequence of different materials which differ in the band-gap energy.

These so called semiconductor heterostructures are classified according to the dimensionality of

the confinement into quantum wells (QW, 2D), quantum wires (QWR, 1D) and quantum dots

(QD, 0D). As a consequence of the reduced dimensionality the density of states of the confined

carriers changes accordingly, being quasi-continuous for bulk semiconductors and δ -function

like for quantum dots. Thus, thermal broadening of the carrier distribution can be avoided in

QDs, if the level splitting is larger than the thermal energy kBT . In fact, cathodoluminescence

measurements on single quantum dots reveal linewidths in the µeV range independent of tem-

perature [16].

The fabrication of nanometer-sized quantum dots using electron beam lithography and wet

chemical etching of quantum wells has been demonstrated down to a size of 20 nm [17]. A

completely different growth method is the so called self-organized growth which can be ob-

served upon epitaxial deposition of highly strained semiconductors one on top of the other. The

first reports on the strain-driven formation of islands dealt with InAs/GaAs superlattices Gold-

stein et al. [18]. After this discovery, this growth technique has been applied to many different

systems of elemental semiconductors and III-V and II-VI compounds using both metalorganic

chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) [19–26]. Depending

on the growth conditions and materials several growth modes have been observed. The samples

studied in this work are grown in the Stranski-Krastanov mode [27], which starts with the two-

dimensional growth of a compressively strained epitaxial layer, the wetting layer, up to a critical

thickness. It then proceeds three dimensional by forming isolated islands on the thin wetting

layer, since in that way the system lowers its energy by relaxing strain. According to Shchukin

et al. [28] a stable configuration of an ensemble of strained islands for a given total volume with
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an optimum equilibrium size does exists. The energy of such an array is given by

E = ∆Evol +∆E f acets +∆Eedges +Eedges +Einter, (3.1)

where the first three terms correspond to elastic relaxation energy related to the volume (E < 0),

the facets (E <> 0,∼ L−1) and the edges (E < 0,∼ −L−2 lnL) of the islands and the latter

two terms are a short-range edge energy (E > 0,∼ L−2) and an island-island interaction energy

(E > 0,∼ L−
2
3 ). Negative energies represent the energy gain due to island formation, whereas

positive ones correspond to the energy cost of surface and edge formation and repulsive island-

island interactions. All terms but the volume elastic relaxation energy depend on a normalized

island size L and the interplay of the concurrent terms finally leads to a size for which the total

energy is minimized. The energetically favored shape of an island was found to be that of

pyramid with {110} facets.

In real quantum dots, the shape, size and composition depend on many parameters of the

growth process, like temperature, growth rates, growth interruption times before capping, etc. In

fact, structural analysis methods reveal that the shape of the quantum dots in the samples studied

in this work is that of a truncated pyramid [29, 30], being much larger in the {001} plane than

in the [001] direction. Besides, usually a broad distribution of the structural parameters exists.

This results in an inhomogeneous broadening of the fundamental emission line, which depends

heavily on size, composition and shape of the quantum dots. So the intrinsic very small linewidth

of a single quantum dot cannot be observed in standard photoluminescence experiments, which

usually probe a huge number of quantum dots at the same time. Typically, the PL spectrum of

quantum dot samples exhibits a width (FWHM) of 20 to 100 meV. If the average size is rather

large, monolayer size fluctuations have a smaller impact on the confinement energy resulting in

a considerably narrower energy spectrum [31]. Thus we can expect that for one material system

the lowest spectral widths can be found in those samples, which have in average large dots thus

emitting at lower energies.

3.2. Band structure of semiconductors

In order to calculate the band structure or dispersion curve for electrons in a crystal, i.e. the

function E(k), where k is the electron wave vector, several simplifications are necessary. The

first approximation is to separate the electrons into core and valence electrons. The former

are those in the completely filled shells, whereas the latter form the orbitals of the outmost

incompletely filled shells, e.g. the 3s2 and 3p2 electrons for silicon. They are responsible for the

chemical bond. The four valence electrons are arranged in four equally hybridized sp3 orbitals
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directed towards the corners of a regular tetrahedron. As the core electrons are strongly bound

and localized around the nuclei they can be treated as one unit together with the nuclei forming

an ion core. The next approximation is the Born-Oppenheimer or adiabatic approximation which

takes into account the fact that the ions are much heavier than the electrons and therefore they

move much slower. Electrons can respond to ionic motion almost instantaneously so that the ions

are stationary from the electron point of view. The remaining Hamiltonian for crystal electrons

is

He = ∑
i

p2
i

2mi
+

1
2 ∑

i,i′

e2

|ri−ri′|
−∑

i, j

Z je2

|ri−Rj |
. (3.2)

The three terms are the kinetic energy of the electrons, the electron-electron and electron-ion

interaction between electrons at ri and ions at their frozen lattice positions Rj with indices

i and j, respectively. The letters Z, e and m denote the atomic number, electron charge and

mass, respectively, and p is the electron momentum operator. This Hamiltonian is still far from

being solvable for a crystal which typically contains about 1023 valence electrons/cm3. The next

step is to use the Hartree or mean-field approximation which assumes that each electron moves

in the average field created by all other electrons and ions. Thus the one electron Schrödinger

equations are identical for each electron and given by

Heψ(r) =
(

p

2m
+V (r)

)
ψ(r) = Eψ j(r), (3.3)

where V (r) is a periodic potential for a crystal, which incorporates all electronic interactions.

The solutions of this one-electron Hamiltonian are plane waves times an envelope function, a so

called Bloch function, which has the periodicity of the lattice:

ψnk(r) = eik·runk(r) E = Enk (3.4)

The index n is the band index which distinguishes among the many independent eigenfunctions

existing for a given k. The allowed k vectors are determined by the boundary conditions of

macroscopic periodicity. It can be shown that the volume that each state occupies in reciprocal

space is inversely proportional to the total crystal volume considered and, thus, the number of

possible k-points grows with the size of the crystal. In a macroscopic size crystal the allowed

values of k form a quasi continuum. The corresponding eigenvalues En(k) represent the actual

band structure. Only at high symmetry points of the Brillouin zone, particularly the Γ -point, the

Bloch functions are known explicitly because their symmetry can be easily analyzed by applying

the symmetry operations of the crystal point group. Four Γ -point Bloch functions are of special

interest since their linear combinations form the wavefunctions of the topmost valence band and

lowest conduction band. The functions are labelled |S〉, |X〉, |Y 〉 and |Z〉, and they transform in
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the same way as the atomic s, px, py, pz functions under the symmetry operations of the crystal

point group.

The projection of En(k) onto the first Brillouin zone, i.e. subtracting integer multiples of

the reciprocal lattice vector K such that k is within the first zone, is called the reduced zone

scheme. It is commonly used to display band structures along high symmetry directions. This

kind of illustration is not only chosen due to its compactness, it also accounts for the fact that k is

conserved for transitions between two states k and k−nK, where n is an integer, is represented

by a vertical transition in the reduced zone scheme. The Brillouin zone for the cubic face-

centered diamond or zinc-blende lattice is shown in Fig. 3.1. The center of the Brillouin zone

X

L

Γ

X

X

[001]

[100]

[010]

[111]

K
[110]

Figure 3.1: The Brillouin

zone of the fcc diamond

lattice

is denoted by Γ . The high-symmetry directions [100],[110] and [111] of the fcc lattice and the

group of points on the line between them and the zone center Γ are denoted by X, K and L

and ∆ , Σ and Λ , respectively. We see from Fig. 3.1 that there are six equivalent X and eight

equivalent L and K points, respectively, thus, degeneracy is to be expected.

The main problem when calculating the band structure is to find a suitable potential V (r)

for which the solution of the Schrödinger equation (3.3) is feasible. The wavefunction strongly

depends on its position and will have an atomiclike oscillatory character near the atom core and

a plane-wave like between two atoms. Hence, one idea is to divide the wavefunction spatially

into a smooth part (the pseudo-wave function) and an oscillatory part, as it is hopeless to ap-

proximate the wave function by a few plane waves everywhere in space. These oscillations are a

manifestation of the high electronic kinetic energy within the core, which provides an effective

repulsion for the electrons. Accordingly, the strong ionic potential is replaced by a weaker ef-

fective potential, the pseudopotential. There are several methods to compute the wavefunctions

using pseudopotentials. Among them self-consistent ab-initio methods are the most elaborated

and nowadays widely used. In contrast to empirical methods, the ab-initio calculations do not

depend on experimental input, i.e the pseudopotential is constructed by calculating the complete

atom shell including the core levels.

Many features of the band structure depend upon the symmetry of the electron orbitals which,

in turn, depend themselves on the crystal symmetry. Symmetry is usually discussed using the
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Figure 3.2: The band structure of a) GaP and b) GaAs calculated by using nonlocal pseudopo-

tentials [32]. The spin-orbit interaction is considered to be very small in GaP and was therefore

neglected.

methods of group theory. The point group of the diamond and zinc-blende lattice are denoted

Oh and Td, respectively. Figure 3.2a) shows the band structure of GaP calculated with nonlocal

empirical pseudopotentials. The irreducible representations of the band structure are indicated

at the extrema. The orbital character of Γ1 and Γ15 are pure |s〉 and |p〉, respectively. Thus at the

top of the valence band there are three degenerate |p〉 bands and the lowest conduction band is

a pure |s〉 state. Away from the Γ points the bands have mixed character. The wavefunctions

are denoted p-like (|ψ|2 ∼ sin2 r) and s-like (|ψ|2 ∼ cos2 r) according to their position in relation

to the lattice points. An s-like type wavefunction does not vanish at the ion whereas the prob-

ability density of the p-like type is zero at the lattice points. That will be of importance for the

consideration of the effects of pressure on the band structure.

The degeneracy of the valence band is partly lifted by the spin-orbit (SO) interaction. The

Hamiltonian for the spin-orbit interaction is given by

HSO =
h̄

4c2m2 (∇V ×p) ·σσσ (3.5)

where the components of σσσ are the Pauli spin matrices. If one considers for simplicity a spherical

potential V the Hamiltonian can be written as

HSO =
h̄

4c2m2
1
r

dV
dr

(r×p) ·σσσ = λL ·S, (3.6)

where L is the orbital angular momentum operator, S is the spin angular momentum operator

and λ = (dV/dr)/2m2c2r. Expressed in terms of the total angular moment J , the expectation
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value of L ·S is

〈L ·S〉 =
1
2
〈J2−L2−S2〉

=
h̄2

2
( j( j +1)− l(l +1)− s(s+1)), (3.7)

using J2 = L2 +S2 +2L ·S. The |p〉 bands at the top of the valence bands have l = 1 and thus

j = 3
2 or 1

2 , resulting in L ·S =−h̄2 or L ·S = + h̄2

2 , respectively. This means that the states are

split by an amount ∆0 proportional to 3
2 h̄2, the double degenerate j = 3

2 state moving up by ∆0/3

and the single j = 1
2 state moving down by 2∆0/3. The j = 3

2 state remains degenerated at k = 0

but splits when leaving the Γ -point except when going along the cube axis. The magnitude of

the splitting is comparable to that of the constituent atoms. The effect scales with the atomic

number and therefore cannot be ignored for heavy elements. In binary compounds the anion

contribution to the split-off energy is weighted more, reflecting its larger influence on the |p〉
valence bands. In GaAs ∆0 ≈ 0.34eV and thus the spin-orbit interaction has to be included in

the unperturbed Hamiltonian, whereas e.g. in GaP (∆0 ≈ 0.08eV) and it is commonly ignored.

The inclusion of the spin in the Hamiltonian requires that the symmetry group of the crystal

is expanded by symmetry operations of spin wavefunctions. These expanded groups are known

as double groups. Figure 3.2b) shows the calculated band structure of GaAs where, in contrast

to GaP, the spin-orbit coupling has been considered and the band extrema are denoted by the

irreducible representation of the double group. Their relation to the point group is given in

table 3.1.

Td Γ1 Γ15 X5 X1 +X3 L1 L3

Td×D Γ6 Γ7 +Γ8 X6 +X7 X6 +X7 L6 +L4 +L5 L6

Table 3.1: Decomposition of the irreducible representations of the Td point group into their

double group representations.

3.2.1. The k ·p theory and the effective mass

The methods for the global description of the band dispersion, like e.g. the pseudopotential

method, rarely provide explicit expressions for common quantities such as effective masses and

wavefunctions. Often is also sufficient to have knowledge about the band structure over a small

range of k around the band extrema. The k ·p method [33] is a local description of the band

structure which provides simple analytical expressions for high symmetry points of the Brillouin

zone. However, the band structure over the entire Brillouin zone can be extrapolated from the

21



3.2. BAND STRUCTURE OF SEMICONDUCTORS CHAPTER 3. THEORY

zone center energies and optical matrix elements. These inputs can be obtained from the tran-

sition energies and oscillator strengths measured by optical experiments. The k ·p method is

derived from the one-electron Schrödinger equation (3.3) by assuming that the solutions are the

Bloch waves of Eq. (3.4). The resulting Schrödinger equation reads(
p2

2m
+

h̄k ·p
m

+
h̄2k2

2m
+V

)
unk = Enkunk, (3.8)

neglecting for the moment the spin-orbit coupling. Obviously at k = 0 (3.8) reduces to(
p2

2m
+V

)
un0 = En0un0. (3.9)

The solutions of (3.9) form a complete and orthonormal set of basis functions. If once En0

and un0 are known then the terms including k in (3.8) can be treated as perturbations using

degenerate or nondegenerate perturbation theory. This of course works best for small values of

k. To extrapolate over the complete Brillouin zone more energy gaps and matrix elements will

be needed. The simplest application of the k ·p theory is the calculation of band structure of

the lowest non-degenerate conduction band, when the spin-orbit interaction is neglected. The

eigenvalues Enk can be expanded to second order in k in terms of the unperturbed energies En0

by treating the terms involving k as perturbations. Assuming that the band structure has an

extremum at k = 0 the linear terms in k vanishes.

Enk = En +
h̄2 + k2

2m0
+

h̄2

m2
0

∑
m6=n

|〈un0|k ·p|um0〉|2

En−Em0
. (3.10)

It is conventional to express the energy for small k in terms of the so called effective mass m? of

the band:

Enk = En +
h̄2k2

2m?
, (3.11)

where
1

m?
=

1
m0

+
2

m2
0k2 ∑

m6=n

|〈un0|k ·p|um0〉|2

En−Em0
. (3.12)

This shows that the effective mass is governed by two factors: The squared strength of the

matrix element between the Bloch functions of the band of interest and those at all other k = 0

gaps and the sign and the magnitude of the Γ -point band gaps. It can be shown by symmetry

considerations that the conduction band wavefunction of a zinc-blende semiconductor, which

has Γ1 (Γ6 with spin-orbit coupling) symmetry can couple only to wavefunctions with Γ15 (Γ8)

symmetry via the k ·p term. That means that the effective mass of the conduction band will

mostly be determined by the coupling to the next nearest band with Γ15 (Γ8) symmetry, which is

the top valence band. Thus for the conduction band Eq. (3.12) simplifies to

1
mc

=
1

m0
+
|〈Γ1C |k ·p|Γ15V 〉|2

E0m2
0k2 ≈ 1

m0
+

2P2

m2
0E0

. (3.13)

22



3.2. BAND STRUCTURE OF SEMICONDUCTORS CHAPTER 3. THEORY

electrons |J,m j〉 Ψ E(k = 0)

|1
2 ,±1

2〉 i|S ↑↓〉 0

light holes |3
2 ,±1

2〉 −
√

2
3 |Z ↑〉± 1√

6
|(X±iY ) ↓↑〉 −E0

heavy holes |3
2 ,±3

2〉
1√
2
|(X±iY ) ↑↓〉 −E0

split-off holes |1
2 ,±1

2〉
√

1√
3
|Z ↑〉± 1√

3
|(X±iY ) ↓↑〉 −E0−∆0

Table 3.2: The eight wavefunctions used in the Kane model.

The matrix element P is constant for most group-IV, III-V and II-VI semiconductors, with

2P2/m0 ≈ 20eV and the results obtained from Eq. (3.13) are in very good agreement with ex-

perimental data.

This simple solution has several shortcomings which are not negligible when calculating the

valence band structure. And improved method to solve the k ·p Schrödinger equation including

spin-orbit coupling was proposed by Kane [34]. Within the Kane model, the terms involving k

are treated exactly for a limited set of bands which are energetically close (Γ6,Γ7,Γ8), while the

coupling to the other bands is treated within second order perturbation theory. It is desirable to

have a basis in which the spin-orbit coupling term is already diagonal which means that J and

its projection Jz are good quantum numbers. In that basis, the eight band edge wavefunctions

are linear combinations of the elementary Bloch functions |S ↑↓〉, |X ↑↓〉, |Y ↑↓〉, |Z ↑↓〉 (see

table 3.2). The solution are the eigenvalues of an 8× 8 matrix [35]. The eigenenergies depend

on three parameters: The bandgap E0, the spin-orbit coupling energy ∆0 and the interband matrix

element P. If λ (k) denotes the energy deviation from the parabolic dispersion

λ (k) = E(k)− h̄2k2

2m0
, (3.14)

the eigenvalues read as

λ (k) = −E0 (3.15)

λ (k)(λ (k)+E0)(λ (k)+E0 +∆0) = h̄2k2P2
(

λ (k)+E0 +
2∆0

3

)
. (3.16)

If we take k ‖ J ‖ z the solutions can be classified according to m j: Eqs. (3.15) and (3.16)

correspond to m j =±3/2,m j =±1/2 states, respectively. We notice that the dispersion relations

are isotropic as λ (k) depends only on k2. The effective mass of the m j = ±3
2 state coincides

with the free electron mass therefore denoted heavy. This is due to the lack of kz pz coupling

between Γ
±3/2

8 and Γ6 〈S|pz|X + iY 〉 = 0 in the unperturbed Hamiltonian. The m j = ±1
2 states,

however, are associated with light particles (Γ6 electrons, Γ8 light holes, Γ7 holes) since their

mass is considerably lighter than m0. It is common to treat a filled valence band with one
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electron missing as an empty band containing one hole. Like this, the curvature of the valence

bands and thus their effective masses are positive too. The Γ7 band is commonly called split-off

band due to its energetic separation from light and heavy holes.

At the band edges (k = 0) the resulting effective masses are

m0

mΓ6

= 1+
2P2

3m0

(
2

E0
+

1
E0 +∆0

)
(3.17)

m0

m
Γ
±3/2

8

= 1 (3.18)

m0

m
Γ
±1/2

8

= 1− 4P2

3m0E0
(3.19)

m0

mΓ7

= 1− 2P2

3m0 (E0 +∆0)
. (3.20)

This model yields for the light particles effective masses which agree very well with experiments

and it reflects the band nonparabolicity of these bands, i.e. the effective mass becomes larger

when the energy increases. The nonparabolicity is pronounced for semiconductors where the

band gap and the spin-orbit coupling is small. Instead of using Eq. (3.16) we can write the

dispersion relation in the more explanatory form as a function of the energy-dependent effective

mass:

λ =
h̄2k2

2m(λ )
, (3.21)

where m(λ ) has to be obtained from Eqs. (3.15-3.17) like demonstrated in Ref. [35]. Figure 3.3

Figure 3.3: The light particle energy λ (k) as

a function of x = h̄2k2

2mk=0
Γ6

E0
for GaAs. A nega-

tive x corresponds to an evanescent state.

shows the dispersion of the light particles calculated for GaAs from eq. (3.16). Due to the ap-

proximations made the dispersion relations for all states considered are isotropic. Actually a

noticeably band warping does exist in the valence band of typical semiconductors. This results

from k ·p interactions with remote bands. When considering the next higher conduction band

within second order perturbation theory one obtains an exact expression for the two Γ8 degener-

ate valence band states which have the form of warped spheres[36] and which reveal a reduced
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mass even at the band edge:

EΓ8(k) = Ak2± [B2k4 +C2(k2
xk2

y + k2
yk2

z + k2
z k2

x)]
1
2 (3.22)

The parameters A, B and C are related to the momentum matrix element P and the energy gaps

and are given in [36].

3.2.2. Envelope function description for heterostructures

Up to now we have only discussed the band-structure properties of bulk crystals. However

to describe semiconductor heterostructures which are matter of this work, it is necessary to

consider the effects of a varying potential which occurs when the crystal is made of a sequence

of dissimilar materials but which crystallize in the same structure. Despite the fact that due to

the power of modern computers band structure calculations using microscopic methods like the

pseudopotential one are feasible even for unit cells containing up to millions of atoms, the so

called envelope function approximation (EFA) still has some advantages due to its simplicity

and versatility. Like the k ·p theory for bulk semiconductors the envelope function description

is a way to obtain analytical results for the electronic states in a heterostructure and provides an

insight to the physical origin of the numerical results. Its validity is restricted to the vicinity of

the high-symmetry points in the host Brillouin zone.

Heterostructures are classified according to the sign of the band offsets at the interfaces. A

type-I heterostructure is given if the potential is confining in the same material for both electrons

and holes, whereas in type-II only one type of carrier is spatially constricted (see Fig. 3.4). In

Figure 3.4: Conduction and valence

band profiles motivating the classifica-

tion of heterostructures made of two

materials A and B with dissimilar band

gaps.

the EFA the interfaces are considered to be ideally abrupt. This assumption is not unrealistic

since modern technology allows for the fabrication of atomically flat interfaces which represent

the physical limit. However, in some material systems an inevitable and uncontrolled interdif-

fusion between both materials might occur, which smoothes the interfaces. These effects are

not covered by the standard EFA. In fact the EFA results resemble the solutions of the finite

square quantum well, where the different effective masses in both materials and their energy
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dependence is taken into account. The resulting heterostructure wavefunction Ψ(r) is a sum of

the products of rapidly varying functions u(r) which are periodic with the crystal periodicity of

each material and a slowly varying envelope function χ(r). At the interface the envelope func-

tion is required to change continuously differentiable. As the relevant electronic states involved

in the construction of the heterostructure one are close to the band extrema of the respective ma-

terial, it is sufficient to take into consideration only the Γ6, Γ7, Γ8 edge states. In the following,

we consider the case of heterointerfaces perpendicular to the crystal z direction which typically

corresponds to the [001] growth direction of the semiconductor quantum well or superlattice. In

addition to the empirical parameters in the bulk band structure calculation (EA,B
0 , PA,B, ∆

A,B
0 ),

we need to know the band lineups of the A and B materials at the interfaces. Since the band

gaps are known, a single band offset remains undetermined, say the valence band offset Vp. It is

possible using microscopic ab-initio theories to predict Vp or to directly measure Vp with suit-

able experiments, like high pressure absorption or deep level transient spectroscopy. However,

the uncertainty of both methods is large and this issue has been subject of many publications in

the last two decades. I will not go into details of the solution procedure of the heterostructure

Hamiltonian but briefly describe solutions for the heterostructure states parallel to the confine-

ment direction. The heavy hole levels are the solutions of a Daniel-Duke Hamiltonian, whereas

the light particles are obtained by solving a Kane-type Hamiltonian. The latter reduces to the

former in the limit of large band gaps and spin-orbit coupling energies, i.e. when the band

nonparabolicity vanishes.

Heavy hole states The Daniel-Duke model of a heterostructure is the simplest one and works

well for the heavy hole levels at k⊥ = 0. It assumes that the heterostructure envelope function

is built from host quantum states which belong to a single parabolic band. This is true if the

coupling to remote bands is neglected which also implies that the effective mass does not depend

on energy. The eigenenergies εn result from the numerical solution of two implicit equations:

tan
kAL
2

= ξ
−1, cotan

kAL
2

=−ξ
−1 (3.23)

where

ξ =
kB

κA

m?
B

m?
A
, k2

A =
2m?

Aεn

h̄2 , κ
2
B =

2m?
B(−V − εn)

h̄2 , (3.24)

Here L is the width of the quantum well, V the valence band offset, kA and κB are the wave

vectors in material A and B, respectively, and κB = ikB reflects the evanescent part of the enve-

lope function. Eqs. (3.23-3.24) are identical to the solution of a one dimensional finite square

well except that the masses are taken to be different in both materials. The symmetric and an-

tisymmetric envelope functions f±(z) are defined piecewise and differentiable continuously at
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the interfaces
B A B

f +(z) exp(κBz) exp(−κAL/2)
coskAL/2 coskAz exp(−κBz)

f−(z) exp(κBz) −exp(−κAL/2)
sinkAL/2 sinkAz −exp(−κBz)

(3.25)

Light particle states The heterostructure eigenstates of the light particles are obtained like

those of the heavy holes (3.23) but taking the nonparabolicity of the effective mass into ac-

count [37]:

m0

mΓ6

= 1+
2P2

3m0

[
2

εn +EA
+

1
εn +EA +∆ A

0

]
(3.26)

m0

m
Γ l

8

= 1+
4P2

3m0

1
εn +EA

[
1− εn

2(∆ A
0 − εn)

]
. (3.27)

Since the masses depend on energy as expected, numerical results for the eigenstates have to be

calculated by iteration. We see from the denominator of the second term in Eq. (3.27) that the

light hole mass will increase considerably if confinement pushes the states close to the spin-orbit

coupling energy of the well material.

3.2.3. Effects of strain on the band structure

The displacement of atoms from their initial position induced by internal or external forces is

described in terms of a displacement vector u(r) = r′−r, where the primed vector denotes the

shifted position. The linking vector between two atoms is

d = ra−rb (3.28)

thus, it transforms under deformation as

d′ = r′a−r′b = (ra +u(ra))− (rb +u(rb)) = d+(u(ra +d)−u(ra)). (3.29)

If the deformations are considered to be infinitesimal u(ra +r) can be replaced by its first order

Taylor expansion:

ui(ra +r)≈ u(r)+d j
∂ui

r j
(3.30)

using the sum rule for repeated indices. Now Eq. (3.29) can be rewritten as

d′i = di +d j
∂ui

r j
. (3.31)

The second-rank tensor

di j =
∂ui

r j
(3.32)
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is called the deformation tensor and can be decomposed into the sum of a symmetric tensor εi j

and an antisymmetric one ωi j.

εi j =
1
2

(
∂ui

r j
+

∂u j

ri

)
(3.33)

ωi j =
1
2

(
∂ui

r j
−

∂u j

ri

)
(3.34)

The latter describes a pure rotation of the crystal and therefore does not change the electronic

properties, whereas the symmetric tensor εi j describes a strain induced in the crystal by the

atomic displacements and is known as the strain tensor. It can be shown using group theory that

in zinc-blende crystals εi j can be further decomposed into the sum of three linearly independent

matrices M which represent the basis for every possible deformation

Mhyd. =
1
3


ε11 + ε22 + ε33 0 0

0 ε11 + ε22 + ε33 0

0 0 ε11 + ε22 + ε33

 , (3.35a)

M[001] =
1
3


2ε11− (ε22 + ε33) 0 0

0 2ε22− (ε33 + ε11) 0

0 0 2ε33− (ε11 + ε22)

 , (3.35b)

M[111] =


0 ε12 ε13

ε12 0 ε23

ε13 ε23 0

 . (3.35c)

The matrix Mhyd. has a nonzero trace and from the definition of the strain tensor components in

Eq. (3.33) follows that its trace is equal to the fractional volume change ∆V/V associated with

a certain strain pattern. The traceless strain matrices M[001] and M[111] describe a shear of the

crystal produced by uniaxial stress in [001] and [111] direction respectively. As a consequence,

three deformation potentials are required to describe the effect of a general strain on a band

extremum.

For the description of the effect of strain on the electronic properties of semiconductors

Bardeen and Shockley introduced the concept of the deformation potential [38]. These de-

formation potentials were introduced in the context of the electron-phonon coupling between

long-wavelength (k = 0) acoustic phonons and the valence electrons but their definition has gen-

eral validity. A pure hydrostatic strain which is created e.g. in high pressure experiments with

the DAC, which are subject of this work, shifts the electronic states but does not split them. The

linear components of these shifts are represented by the volume deformation potential ai in (eV)

defined as

ai =
dEi

dlnV
=

∆Ei

trε
, (3.36)
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where Ei denotes the energy of state i and V the volume of the crystal. Instead of the hydrostatic

deformation potential one often finds in the literature the corresponding pressure coefficient

dEi/dP which is related to the deformation potential through the bulk modulus B

dEi

dp
B = ai . (3.37)

Absolute values for ai are difficult to obtain experimentally as usually only the pressure de-

Figure 3.5: Schematic valence and

conduction bands of a III-V semicon-

ductor for unstrained (left) and strained

(right) crystals.

pendence of gaps are measured, which yields only the relative deformation potential between

the bands involved. The pressure coefficient of the direct band gap at the Γ point of III-V

compounds is in the order of +100 meV/GPa. For the indirect band gap X −Γ it is about an

order of magnitude smaller and negative and about +50 meV/GPa for the indirect L−Γ gap.

Thus, at some pressure the X valley will become the lowest conduction band. This is called the

direct-to-indirect crossover. For e.g. bulk GaAs it occurs at 4 GPa.

A strain that has a uniaxial component will split those states whose symmetry is reduced by

the deformation. This is not the case for the lowest conduction band which has Γ1 symmetry

but holds for the valence bands and the X and L conduction band minima. For the J = 3/2

valence states Pikus and Bir have derived a hole-strain interaction Hamiltonian within the k ·p
framework [39] for a general strain

Hε = a trε +3b
[
(L2

x −L2/3)εxx + c.p.
]

(3.38)

+
6d√

3

[
1
2
(LxLy +LyLx)εxy + c.p.

]
, (3.39)

where L is the angular momentum operator and c.p. stands for cyclic permutations. The defor-

mation potentials b and d determine the splitting of the four-fold degenerate valence bands at Γ

under [100] and [111] uniaxial stress, respectively. Figure 3.5 shows schematically how the Γ8

and Γ7 valence bands evolve into three bands denoted ν1, ν2 and ν3 under uniaxial stress in e.g.

[001] direction. Solving the strain Hamiltonian yields the following shifts of the νi valence band
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with respect to the weighted average for stress or strain in [001] direction [40]

∆Eν2 = −1
3

∆0 +δEH +
1
2

δEX (3.40a)

∆Eν1 =
1
6

∆0 +δEH − 1
4

EX −
1
2

√
∆ 2

0 +∆0δEX +
9
4
(δEX)2 (3.40b)

∆Eν3 =
1
6

∆0 +δEH − 1
4

EX +
1
2

√
∆ 2

0 +∆0δEX +
9
4
(δEX)2 (3.40c)

(3.40d)

The indices H and X denote the hydrostatic and shear (either [001] or [111]) component of the

strain, respectively. The band ν2 corresponds to |3/2,±3/2〉 (heavy holes), whereas ν1 and

ν3 are strain-induced linear combinations of |3/2,±1/2〉 and |1/2,±1/2〉 [41]. However, they

are commonly still called by theirs unstrained denotations as light and split-off bands. For a

two-dimensional strain in the {001} plane the energies are given by

δEH = a trε = 2a
C11−C12

C11
εxx (3.41a)

δEX = bε[001] =−2b
C11 +2C12

C11
εxx. (3.41b)

The components of the strain tensor ε are related through the elastic constants and the boundary

conditions. This will be discussed further in section 3.3.1.

Figure 3.6: The energies of the E1
0 , E2

0

and E3
0 transitions in bulk GaAs at 77 K

for uniaxial stress along the [001] di-

rection (from ref[42]).

For most III-V semiconductors the shear deformation potentials b and d are negative. The

valence band volume deformation potential av is small compared to that of the band gap, which

30



3.2. BAND STRUCTURE OF SEMICONDUCTORS CHAPTER 3. THEORY

means that most of the pressure dependence of the band gap is due to the change in the con-

duction band. A theoretical study of the band gap pressure coefficients carried out for many

different semiconductors yields that both av and ac are mostly negative [4], however, there is

no experimental data about the absolute deformation potentials available. Instead of consid-

ering the bands separately it is safer to use the band gap deformation potential a = ac + av in

Eqs. (3.41a-3.41b) thus obtaining the shifts of the band gaps from Eqs. (3.40a-3.40c).

When evaluating Eqs. (3.40a-3.40c) we note that in the case of a biaxial tensile strain in the

x-y–plane (εxx), which corresponds to uniaxial compressive stress in the [001] direction, the

Eν1 band will be the top valence band. This is nicely confirmed by the experimental results of

absorption experiments under [001] stress of bulk GaAs shown in Fig. 3.6. The solid lines are

fits of the experimental data with Eqs. (3.40a-3.40c). The heterostructures studied in this work,

however, contain embedded material which is mostly compressively strained in the x-y–plane,

as this is the prerequisite for the self organized growth of quantum dots. We therefore expect

that Eν2 band will become the highest valence band at the Γ point.

Similar expressions as those of Eqs.(3.35a-3.35c) for the pressure dependence of the valence

bands can be obtained for the X-valley of the conduction band. A shear strain in [001] direction

lifts the six-fold degeneracy and splits the X-states into a [001] doublet (XZ) and a [100] and

[010] quartet (XXY ). The hydrostatic component further shifts the weighted average [43, 44]

∆EZ
X = δEH +

2
3

δEX (3.42a)

∆EXY
X = δEH − 1

3
δEX . (3.42b)

The energy shifts are calculated from the strain using the deformation potentials for the conduc-

tion band X-valley Ξu and Ξd

δEH = (Ξd +
1
3

Ξu)trε (3.43a)

δEX =
1
2

Ξuε[001]. (3.43b)

3.2.4. Summary

From the previous sections we can summarize the different effects on the energy of a confined

state induced by strain or external pressure. The largest contribution is that of the strain depen-

dence of the band edges. Second order effects are the energy dependence of the effective mass,

which can be described within the effective mass approximation and the pressure dependence of

the conduction and valence band offsets, which is considered in the framework of the envelope

function approximation. The reduction of the potential width as the interatomic distance de-

creases upon external pressure is only about 0.6 % at a pressure of 1 GPa, and can be neglected.
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In undoped semiconductors the emission from transitions between confined states is strongly

influenced by the effect of exciton formation, i.e. of a photoexcited electron-hole pair coupled

by Coulomb interaction. The energy spectrum of an exciton resembles that of a hydrogen atom

obtained by using a reduced mass µ which incorporates the effective electron and hole masses,

and the static dielectric constant of the host material. The Rydberg energy has shown to vary in

proportion to the reduced effective mass µ in III-V semiconductors, that is, to the band gap[45],

but only by some meV in the pressure range up to 10 GPa. For phonon-assisted processes like the

indirect Γ -X transition, the phonons’ pressure dependence is modifiying the measured pressure

coefficients of the electronic states. These corrections, however, are less than 1 meV/GPa[46].

3.3. Strain modelling in heterostructures

Heterostructures consisting of different materials exhibit strain if the lattice constants do not

match. A thin film grown epitaxially on a thick substrate has to adjust its lattice constant parallel

to the interface to that of the substrate. In the perpendicular direction the lattice is allowed to

expand or shrink in order to minimize the strain energy. The situation is getting more compli-

cated when looking at the three dimensional structure of a quantum dot and spatially resolved

calculations have to be carried out to get information about the local strain fields.

3.3.1. Continuum model

The linear elastic theory is based on the assumption that the strain in a solid is proportional to

the applied load. This is described by the generalized Hooke law of the proportionality of the

stress and strain

σkl = Cklmnεnm, (3.44)

where σ and ε are third rank tensors called stress and strain tensors. Due to its symmetry only

21 of the 81 components of the compliance matrix Cklmn, which link external stress to internal

strain are non zero. In a cubic face-centered crystal structure like the zinc-blende one, this

number further reduces to three nonzero components usually denoted (in matrix notation) as

C11, C12 and C44. Like this, eq. (3.44) can be written in a contracted notation in which the strain
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and stress tensors are represented by a six-component array:

σ1

σ2

σ3

σ4

σ5

σ6





C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





ε1

ε2

ε3

ε4

ε5

ε6


, (3.45)

where the stress and strain vectors are related to their tensorial form like:

ε =


ε1 ε6/2 ε5/2

ε6/2 ε2 ε4/2

ε5/2 ε4/2 ε3

 . (3.46)

The diagonal elements of the strain tensor are the strain components along the principal di-

rections, whereas shear strain is determined by the off-diagonal elements. Its trace corresponds

to the hydrostatic strain, i.e. the volume deformation:

∆V
V

= tr(ε). (3.47)

From Eq. (3.44) we can calculate the strain components in a material which is induced either by

external forces, which is the case in high pressure experiments, or by the lattice constant mis-

match when growing a heterostructure consisting of two different materials. A thin film which is

grown epitaxially on a thick substrate will be stretched or compressed along the interface, while

it is free to extend or contract along the perpendicular dimension. In that case, the stress is given

by

σxx = σyy = σ , σzz = 0 (3.48)

σi j = 0, i 6= j,

implying the following relations for the strain components

εxx = εyy, εzz =−λεxx (3.49)

εi j = 0, i 6= j,

where

λ =− εzz

εxx
(3.50)

depends on the crystallographic orientation of the strained layer. The in-plane strain is given by

the lattice mismatch between film and substrate

εxx =
as−a f ilm

a f ilm
, (3.51)
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where a f ilm and as are the lattice constants of the substrate and the thin film, respectively. A

negative value of (3.51) represents compressive strain, a positive value tensile strain. The coeffi-

cient λ can be calculated by applying the boundary conditions (3.48) on Hooke law (3.44). For

the biaxial strain along [001] direction considered here it yields

λ001 =
2C12

C11
. (3.52)

Like this we obtain the following expressions for the biaxial [001] and hydrostatic strain com-

ponents existent in the strained layer

ε[001] = 2εzz− (εxx + εyy) = 2(−λεxx − εxx) =−(1+λ )εxx

= −2
C11 +2C12

C11
εxx (3.53a)

εhyd = εxx + εyy + εzz = 2εxx −λεxx = (2−λ )εxx

= 2
C11−C12

C11
εxx (3.53b)

We notice that the strain in a biaxially strained layer always includes a hydrostatic component.

As demonstrated in section 3.2.3 a general strain pattern can be decomposed into a purely axial

and a purely volume component. Using the results from Eqs. (3.53a) and (3.53b) we get

3ε = εhyd − ε[001]. (3.54)

In order to calculate the equilibrium positions of the atoms of a more complicated structure

like the typical pyramidal quantum dot using continuum elasticity theory, one has to employ a

discretization method based on finite elements or finite differences to minimize the total elastic

energy

Etot =
1
2 ∑

i jkl
Ci jklεi jεkl (3.55)

3.3.2. Atomistic description

There has been much work describing the elastic properties by means of an atomistic model,

among them, the first was proposed by Born [47]. A widely used description for diamond-type

crystals is the valence force field (VFF) in the Keating [48] form, within which the atomic bonds

are represented by bond-stretching and bond-bending interactions between next neighbor atoms

(see Fig. 3.7). Martin [49] extended the model for the application to zinc-blende crystals by

including a coulomb interaction term which accounts for the ionicity of the crystal. However,

these corrections are small for III-V compounds and are usually neglected, though they might

be important for II-VI semiconductors. The total elastic energy in the VFF model is calculated
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Figure 3.7: The two types of interac-

tions used in the VFF. Left: bond bend-

ing, Right: bond stretching.

according to

Etot = ∑
i

n

∑
j

3
8

αi j∆d2
i j (3.56)

+∑
i

nm

∑
j,k< j

3βi jk

8d0
i jd

0
ik

[
(Ri−R j)× (Rk −Ri)− cosθ0d0

i jd
0
ik
]2

,

where ∆di j =
[
(Ri−R j)2− (d0

i j)
2
]
/d0

i j, Ri are the coordinates of the atoms, di j the unrelaxed

bond length, θ = arcos(−1/3) the ideal tetrahedral angle, αi j and βi jk the force constants for

bond-stretching and bond-bending interaction, respectively. The first term sums over all atoms

i and its four first neighbors; the second term sums also over all atoms i and their distinct pairs

of next neighbors j and k forming the bond angle. We note that only two force constants are

necessary. Across a heterointerface the bond bending interaction parameter β is taken as the

algebraic average of both materials. The force constants correspond to the elastic constants in a

pure zinc-blende structure calculated in the following way

C11 =
α +3β

a
(3.57)

C12 =
α −β

a

C44 =
4αβ

a(α +β )
,

where a = 4r0/
√

3 is the lattice constant and r0 is the interatomic bond length. It is not possible,

though, to match the three elastic constants with only two free parameters and usually C44 is

neglected. Thus, equations (3.57) imply a relation between the force constants

2C44(C11 +C12)
(C11−C12)(C11 +3C12)

= 1, (3.58)

which holds quite well for nonpolar crystals like silicon and germanium but deviates from unity

for any ionic III-V or II-VI compound. Martin [49] has introduced a Coulomb term to account

for the different atoms on either sublattice. However, using Matrin’s own values, the contribution

of this extension to C44 is only about 2 %, which is the same order as the experimental errors on

C44[50].

The equilibrium atomic positions are found by minimizing the total strain energy (3.56) using

for example a conjugate gradient method. The local strain is determined by looking at the
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Figure 3.8: The local strain is de-

termined from the distortion of an

elementary tetrahedron.

distortion of an elementary atomic tetrahedron (see Fig. 3.8). The application of the strain tensor

ε on the unrelaxed coordinates R0 yields the distorted coordinates R

R =


1+ εxx εyx εzx

εxy 1+ εyy εzy

εxz εyz 1+ εzz

R0, (3.59)

with

R =


R12,x R23,x R13,x

R12,y R23,y R13,y

R12,z R23,z R13,z


The application of this simple model for the calculation of the strain in lattice mismatched het-

erostructures has been demonstrated by many authors[51–53]. However, considering the large

strain existent in e.g. InAs/GaAs superlattices (εxx ≈ 6.9%) we are almost certainly leaving the

validity of linear elastic theory. For any stress which is not infinitesimal in the sense of elasticity

theory the compressibility of a material depends on the pressure, i.e. a material gets stiffer the

larger the compression. This can be taken into account by introducing pressure dependent elastic

constants. Murnaghan proposed a linear dependence on pressure of the bulk modulus [54]

B(P) = B0 +B′P. (3.60)

For III-V semiconducors B′ is about 5–10 % of B0 and therefore cannot be neglected when con-

sidering the effects of high hydrostatic pressure nor internal pressures in strained heterostruc-

tures. In the VFF this dependence can be incorporated by modifying the bond stretching po-

tential such that it fits the bulk modulus at any pressure. In Ref. [55] the harmonic stretching

potential was extended by a cubic term which only makes sense for compression, of course.

Thus, in Eq. (3.56) the first term is replaced by

∑
i

nm

∑
j

3
8

[
α

(1)
i j ∆d2

i j +α
(2)
i j ∆d3

i j

]
. (3.61)

In that work the problem of the undetermined relationship between the atomic force constants

and the elastic modulus has been addressed too. By adding a third term which is a combined
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stretching-bending interaction to the elastic energy the authors claim to be able to correctly map

both models onto each other. However, the correction is small compared to the large strain

generated in pressure experiments and it will be ignored here.

37



4. Results and Discussion

In this chapter I will present the results from high-pressure experiments on InAs/GaAs and

InP/GaP self-organized quantum dots. The former material system has attracted the most in-

terest, being the first for which the formation of quantum dots was reported in [18]. After that

discovery, the self-organized growth method has been applied to many other strained material

systems, including element semiconductors and binary and ternary systems of the III-V and II-

VI group. The InP/GaP system is one of the most recent and is especially interesting for opto

electronical devices in the visible red range, whereas the InAs/GaAs system is aimed to oper-

ate in the wavelength range which is interesting for optical fiber-based communication around

1.3 µm.

In addition I will present the results from strain simulations using an atomistic valence force

field, taken out to show, that the special character of the strain field plays an essential role in the

pressure dependence of the quantum dot emission.
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4.1. InAs/GaAs quantum dots

In this section I will present the results of PL experiments on self-organized InAs/GaAs quantum

dots under high hydrostatic pressure. Low temperatures spectra exhibit a multimodal distribution

of the ground-state transition energy. Calculations based on an eight band k ·p model and a

structural analysis demonstrate that this distribution originates from a discrete, stepwise variation

of the size of the QDs [29]. The InAs QDs have the shape of a truncated pyramid, differing

in height and base length in multiples of a monolayer. The observation of clearly separated

peaks implies that the upper and lower interfaces of the QDs are well-defined and that indium

segregation is small. Eight different sub-ensembles can be identified at low temperatures and

ambient pressure each with a full width at half maximum of about 30 meV. Details of the growth

procedure are described in Ref. [29]. This sample is especially interesting for high pressure

experiments since it allows for a direct comparison of the pressure dependence of electronic

states in quantum dots of different sizes but in exactly the same environment.

4.1.1. Low temperature photoluminescence

Figure 4.1 shows a low temperature photoluminescence spectrum recorded with a low excitation

power of 10 W/cm2 to ensure that emission from excited states is not activated. The emission

band associated with ground state recombination in the QDs spans from 1.05 to 1.35 eV at am-

bient pressure. According to Ref. [29], the eight peaks relate to quantum dots of 2–8 monolayers

height. They can be fitted well with Gaussians, yielding a FWHM of about 30 meV for each

peak and an increasing peak separation with decreasing QD height. Centered at 1.49 eV a sharp

feature is observed, which originates from the recombination of carriers confined in the wet-

ting layer. In addition, there are two small peaks on each side of the WL one, the lower one

separated by approximately one InAs LO-phonon energy (?? meV), therefore attributed to the

LO-phonon replica. The weak peak on the high energy side at 1.512 eV is due to the free exciton

recombination of bulk GaAs.

With rising pressure (see Fig. 4.2) all observed peaks shift to higher energies, which is a clear

indication that the observed transitions are direct in k-space. The sharp line at about 1.79 meV,

appearing in all spectra corresponds to the ruby luminescence. At 3.1 GPa a ninth peak appears

on the high energy side of the QD emission band. Its energy and shape suggest that it is due to

recombination within the next smaller ensemble of dots, i.e a dot of only one monlayer height.

As I will show in the next chapter, the conduction band offset (CBO) significantly increases with

rising pressure. A confined state which is energetically very close to the top potential edge, will

lower its energy with respect to the potential edge as the CBO increases. Thus, a state with a very
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Figure 4.1: Photolumines-

cence spectrum of the InAs

multimodal QD sample taken

at 4 K. The numbers indi-

cate the height of the QDs in

monolayers.

small localization energy at ambient pressure would become confined, as the pressure increases.

Therefore, with increasing pressure such electrons would be finally able to recombine with the

holes. At 6.2 GPa the width of the whole QD emission band has reduced considerably. The

Figure 4.2: Photolumines-

cence spectra of the InAs

multimodal QD sample taken

at 4 K for four different

pressures.

sharp wetting layer peak and the upper four of nine peaks related to the QDs have disappeared.

A shoulder on the high energy tail of peak five corresponds to the onset of the sixth line. A new

feature appears at about the WL energy, denoted as R, which is very weak and broader than the

WL peak. These observations indicate, that a crossing of the Γ states with an X-valley related

state (either in the QDs or in the GaAs matrix) occurs above 1.7 eV. I will discuss this in detail

below. At 7.4 GPa the overall QD luminescence is almost completely quenched, the intensity

dropped by a factor of 30 and a set of peaks, labelled D emerges, which is attributed to defects

created by pressure induced dislocations. The remaining signal from the QDs is centered at

about 1.55 eV and slowly shifts to lower energies with increasing pressure.

Figure 4.3 displays spectra recorded while releasing the pressure after having reached a final
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Figure 4.3: Photolumines-

cence spectra of the InAs mul-

timodal QD sample taken at

4 K while releasing the pres-

sure after having reached a

maximum pressure of about

8 GPa.

pressure at 4 K of about 8 GPa. Obviously the sample does not completely recover from the

applied pressure. The multimodal distribution of the QD ground state emission energy with its

characteristic distinguishable subensembles has been smeared out. The overall intensity dropped

by a factor of ten and the peaks, that were attributed to defect induced emission, are strong and

remain visible even at ambient pressure.

The pressure dependence of all observed peaks is summarized in Fig. 4.4. The solid black

lines depict the pressure dependence of the direct Γ −Γ and indirect X −Γ band gap of bulk

GaAs taken from literature. All QD ground state transitions shift to higher energies with increas-

ing pressure, slightly diverging, i.e. the peak separation increases with pressure. At 1.1 GPa the

PL from the ninth subensemble of dots appears. The WL peak closely follows the band gap of

GaAs, separated by 20 meV. At about 4 GPa the line from bulk GaAs is quenched abruptly, the

fingerprint of the Γ −X crossover. This is followed by the successive quenching of the higher

energy QD lines, when the pressure is further increased. At some pressure steps it is possible

to observe that while loosing its intensity due to the occurrence of crossover, the highest energy

peak departs from the rising trend of the direct transition to follow that of a X −Γ indirect one.

Nevertheless, the weak signal is masked by that of its next lower-energy neighbor, so that it is

not possible to further trace its pressure dependence. The peaks denoted R are attributed to the

indirect transition in k-space between the X conduction band and the valence band of GaAs in

the nearest vicinity of the QD. Both bands are split due to the increasing tensile biaxial strain

near the quantum dot, so that the effective band-gap is locally lowered with respect to that of

bulk GaAs. This is further confirmed by the strain calculations, as will be shown in the next

chapter. The existence of a bound XZ state at the interface between the quantum dot and the

barrier material has also been demonstrated for very small InP QDs embedded in GaP, GaP

being an indirect semiconductor at ambient pressure [56]. The quenching of the quantum dot

41



4.1. INAS/GAAS QUANTUM DOTS CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.4: Pressure dependence of the energy position of the observed PL features. The red

symbols correspond to recombination within the QDs, the blue symbols correspond to processes

involving WL states. The line denoted R is due to recombination between the GaAs X-valley

and the Γ valence band edge.

confined states occurs, when they cross the nearby XZ conduction band state of GaAs, shown in

figure 4.5. The situaation shown is that just after the crossover, when the emission from direct

transition denoted 1 is quenched and the transition 2 if favoured, although it is very weak, as

it occurs indirect in both real and reciprocal space. Additionally, in this sample, the transition

is hardly seen, because it is masked by the emission from the next larger subensemble of dots.

This crossover behavior has also been reported in Ref. [57] for InAs/GaAs quantum dots which

Figure 4.5: Schematic diagram of

the conduction and valence band

profile of the QD structure indi-

cating the transitions which are

relevant at the Γ =X crossover.

(1) and (2) mark the QD related

transitions before and after the

crossover.

emit at 1.25 eV at ambient pressure. In that work, transitions above the crossover could be ob-

served up to 7 GPa. A line shape and excitation power dependence analysis revealed that the
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transitions beyond the crossover involve confined hole states of the dots and X-valley conduc-

tion band states. A crossing with the X-band of InAs is not expected at these energies since the

Γ -X gap energy (2.28 eV) is much larger than that of GaAs (1.98 eV). Thus, from figure 4.5,

we can see that the difference between the R energy and the QD energy at the crossover readily

yields the valence state offset (EV S), which is equal to the valence band offset reduced by the

hole confinement energy.

Figure 4.6: Energy of the

InAs QD heavy hole states as

a function of the dot height

measured from the GaAs va-

lence band edge.

Figure 4.6 shows the hole energies obtained by subtracting the crossover energies for each

QD subensemble (indicated by the dashed line in Fig. 4.4) from the R-energies, as a function

of the quantum dot height expressed in monolayers. The top valence band is a heavy hole

state, therefore the effective mass is considered to be constant to first order and the confinement

energy can be fitted using the Daniel-Duke model (Eq. (3.23)) with two free parameters: The

valence band offset and an effective potential width. The latter accounts for the fact that we

are treating the quantum potential as one-dimensional with a potential width equal to the height

of the quantum dot in entire monolayers. Thus we are neglecting the confinement in the xy-

plane and we are of course not able to include deviations from the square well shape of the

potential. The fit yields a valence band offset of 290 meV and an effective width of 3.3 Å, being

significantly smaller than that of bulk InAs (6.05 Å), which is very reasonable considering the

above said. The agreement with the experimental data is very good. It shows nicely how the

confinement energy for the holes saturates with increasing potential width, reaching the pure

value of the valence band offset as limit.

Pressure coefficients The pressure coefficients of the direct QD transitions are obtained by

fitting the data points using a quadratic function

EΓ (p) = E0 +aP+bP2, (4.1)
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where a and b are the linear and quadratic pressure coefficients, respectively. The pressure co-

efficients of all QD related transitions are summarized in Fig. 4.7. The variation of the pressure

coefficients with the emission energy is strikingly large. The values for the linear (quadratic)

coefficient range from about 65 meV/GPa (-1 meV/GPa2) for the largest dots to 110 meV/GPa (-

5 meV/GPa2) for the smallest ones. This spans the complete range of measured pressure coeffi-

cients for self-assembled InAs/GaAs quantum dots compiled and reported in Ref. [58]. Further-

more, the linear pressure coefficients measured here are mostly much smaller than those of bulk

GaAs (117 meV/GPa) and InAs (≈100 meV/GPa) [3], whereas the sublinearity of the pressure

dependence of all QDs emission given by the b coefficient is comparable to that of the bulk

semiconductors. It has been shown that the sublinearity vanishes, if the energy of the Γ −Γ

transition is expressed in terms of the density and not the pressure [59]. Unfortunatelly, I have

no access to the density of the embedded material, so this cannot be confirmed. For this purpose,

a simultaneous measurement of the transition energy and the equation of state by X-ray diffrac-

tion would be necessary. Nevertheless, by using the results from the strain calculations in the

next section together with band structure calculations within the EFA I will be able to explain

this large spread of pressure coefficients observed for this special system of self-assembled dots,

which differ from each other in size by single monolayers.

Figure 4.7: Linear (top) and

quadratic (bottom) pressure

coefficients a and b of the

observed QD emissions as

a function of the emission

energy.

4.1.2. Strain simulations

The VFF presented in section 3.3.2 has been frequently used for the calculation of strained

heterostructures and specially for quantum dots [51, 52, 55, 60, 61] as input for electronic or

vibrational band structure calculations. As pointed out before, the extension of the VFF (in

the following called XVFF) made to account for the pressure dependence of the bulk modulus

44



4.1. INAS/GAAS QUANTUM DOTS CHAPTER 4. RESULTS AND DISCUSSION

is already important when dealing with strongly strained heterostructures to correctly describe

the internal strain as well as the one induced by the external pressure. It has often been sug-

gested [58, 62, 63] that the application of the XVFF model in band structure calculations will

eventually reproduce the variation of the pressure coefficients of InAs quantum dots observed

experimentally. And in fact, Luo et al. [60] recently reported results from empirical pseudopo-

tential calculations for many different dot geometries and found an almost linear dependence

between the emission energy, which is a function of the dot size, and the pressure coefficients.

Those are, however, extremely heavy numerical calculations, where the physical origin of the

observed effects is very difficult to trace back. I will show in the following that it is possible to

explain qualitatively the variation of the pressure coefficients simply by using VFF-strain calcu-

lations together with bulk deformation potentials and considering quantum confinement within

the EFA. In particular, I will show that the XVFF is necessary to reproduce the low values of the

pressure coefficients observed experimentally (about 60 meV/GPa).

Strain field under hydrostatic pressure

The super cell used for the VFF calculations is a cube with an edge 55 lattice constants of GaAs

in size, i.e. about 310 Å, thus containing more than 1.3 million atoms. The shape of the modelled

quantum dots is that of a truncated pyramid to comply with the shape determined by structural

analysis in Ref. [29]. Four different dot sizes have been considered, the smallest(largest) of them

having a base length of about 12(17) nm and a height of 2(8) monolayers on top of the wetting

layer. Since the geometry of the dots is almost cubic we have neglected the effects of [111]

biaxial (shear) strain and only consider hydrostatic and [001] biaxial strain. Figure 4.8 shows

the strain in a xz-plane, crossing the center of a 8 monolayer high quantum dot. The upper and

lower pictures show the hydrostatic and [001] biaxial strain. The input data for the graphs is the

same on the left and right side but the former has been chosen to display the magnitude of the

strain in more detail, whereas in the latter the dot geometry is visible at first glance. Negative

values of the hydrostatic strain correspond to hydrostatic compression, positive values of the

[001] biaxial strain correspond to a compression in the xy-plane accompanied by an expansion

in the z-direction and viceversa.

In order to study the strain distribution of a quantum dot and its surroundings I constructed the

strain histograms of all elementary tetrahedrons in the supercell. The histograms are obtained by

slicing the whole range of strain magnitudes into small units and then summing over the number

of tetrahedrons of equal strain (within the width of one slice). This is shown in Fig. 4.9 for

hydrostatic (top) and biaxial (bottom) strain calculated using the VFF (left) and XVFF (right)

model. Only the tetrahedral elements corresponding to InAs were considered for this plot. This
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Figure 4.8: Cross sectional view of the hydrostatic (top) and biaxial (bottom) strain through the

supercell positioned at the center of the quantum dot. Left and right figures show the same data,

the former with a blown up strain scale, the latter as pseudo color plot seen in y-direction. The

base length for a 8 monolayers large dot is about 17 nm.

is because for the barrier material (GaAs) surrounding the dot the average value of both hydro-

static and biaxial strain is found to be near zero. For InAs all histograms exhibit two maxima,

which are associated with the strain in the QD and the WL. For example, for the eight MLs dot

the average magnitude of the strain is about -0.08 and 0.023 for the hydrostatic and biaxial com-

ponent, respectively, whereas the wetting layer (away from the dot) is strained by about -0.06

hydrostatically and 0.28 the biaxially. The reason for that kind of analysis is that what matters

for a simplified strain model of the dots are the averaged strain values inside and outside the dot.

Later on I will use these values for a one-dimensional strain-modified calculation of the electron

and hole levels.

By comparing the hydrostatic strain histograms of quantum dots of different height we obtain

an important information: The position of the maximum in the strain distribution corresponding

to the dot is strongly dependent on dot height, whereas the average strain value in the wetting

layer is almost independent of dot geometry. The shape of the latter is asymmetric showing a

sharp cut-off on the high strain side. This can be understood by looking again at the strain cross
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Figure 4.9: Distribution of the hydrostatic and biaxial strain components in all InAs within the

supercell. The upper(lower) panels show the hydrostatic(biaxial) component of the strain. The

left and right panels correspond to results obtained using the standard VFF and extended XVFF

force field, respectively.
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sections in Fig. 4.8. The strain in the wetting layer is smallest at the interface and approaches

the value of a purely two-dimensionally strained layer given by the lattice mismatch between

InAs and GaAs, as the distance from the dot increases. The other histogram maximum, which

corresponds to the strain in the dot, is more symmetric and shifts to higher strain with increas-

ing dot height.The dependence on height is a result of the three-dimensional character of the

quantum dots. Since an infinitely extended xy-film, like the wetting layer is disconnecting the

material below from that above, the strain in the film is equal to that of a free standing film,

which is compressed in the xy-plane, and the strain in the surrounding material is zero. For a

quantum dot the compressive stress of the surrounding GaAs acts as well in the z-direction, thus

incresing the hydrostatic strain inside the dot. On the other hand, the biaxial strain can relax to

some extent, at the cost of tensile biaxial strain in GaAs.

A comparison of the hydrostatic strain distribution calculated with the standard VFF and the

extended XVFF model yields what was expected: the strain is smaller in average when treated

within the XVFF model reflecting the increasing stiffness of the material when subjected to

pressure. The strain in the largest dot is about 8 % smaller using the XVFF model. In the case

of the biaxial strain (bottom panels), we also find a dependence of the strain on dot geometry.

In contrast to the hydrostatic case, the biaxial strain is highest in the wetting layer and the same

reason for the low strain cut-off as in the hydrostatic case applies.

Figure 4.10: Comparison of the average strain in a InAs quantum dot and the wetting layer

embedded in GaAs for four different dot sizes calculated with the standard and extended VFF.

The left and right panels show the hydrostatic and biaxial strain, respectively.

The histogram peaks of hydrostatic strain have a relative FWHM of 5 %, whereas the distribu-

tion of biaxial strain is fairly broad and the description of the strain by an average value for the

whole quantum dot is questionable. We should keep that shortcoming in mind, when discussing
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the effects on the band structure. Figure 4.10 shows the average strain values taken from the po-

sition of the histogram maxima as a function of the quantum dot height. For both components of

strain the VFF calculated strains are larger than those obtained from the XVFF model. The fact,

that the wetting layer strain is not equal for all dot geometries considered, is due to a limitation

of the calculations. The strain is not completely relaxed at the edges of the simulated supercell

and the structure remains under some kind of small artificial strain. Therefore, the best value

for the wetting layer should be that of the smallest dot but the deviation is small and will not be

considered further. As expected, the strain in the QD increases less rapidly with the number of

monolayer in the XVFF model.

We now turn to the simulation of the effects of an external pressure. A hydrostatic pressure

applied on the facets of the supercell is achieved by decreasing the length of the periodic bound-

ary. The corresponding pressure is calculated from the reduced volume using the definition of

the bulk modulus, taking into account Murnaghan’s equation for the pressure dependence of the

bulk modulus.

VFF : P = −B0 ln(
∆V
V0

+1) (4.2a)

XVFF : P =
B0

B′

[(
∆V
V0

+1
)−B′

−1

]
, (4.2b)

where ∆V
V0

= trε, B0 and B′ are the bulk modulus and its first derivative, respectively. Figure 4.11

shows the pressure dependence of the hydrostatic strain in the quantum dots of 2-8 MLs height

and the wetting layer calculated with the VFF model. On the left scale the equivalent pressure

to the strain is indicated, obtained from eq. (4.2a). As a reference, the pressure dependence

of the strain in bulk InAs is indicated with a dashed line. We notice that at ambient pressure

one starts with a magnitude of hydrostatic strain within the embedded InAs, which is equivalent

to an external pressure of about 4 GPa. The evolution of the strain in the QDs follows that of

Figure 4.11: Hydrostatic

strain in quantum dots of

different heights (2-8 mono-

layers) and the wetting layer

(wl) as function of external

pressure calculated with the

standard VFF.
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the WL, as the pressure increases. The first remarkable result from the strain simulations is

that the slope of the pressure dependence of the embedded InAs is much smaller than that of a

bulk InAs crystal. If we assume a bulk hydrostatic band-gap deformation potential of -6.0 eV

for InAs [3], we obtain a pressure coefficient of about 76 meV/GPa. Again, we compare these

results to those obtained by the XVFF model, which is shown in Fig. 4.12. The strain in the

Figure 4.12: Strain in the wet-

ting layer and a 6 monolayer

high quantum dot as a func-

tion of external pressure, cal-

culated using both the stan-

dard and the extended XVFF.

XVFF model yields a smaller pressure dependence, corresponding to a pressure coefficient of

62 meV/GPa. Furthermore, a significant sublinearity is observed, which amounts 0.8 meV/GPa2.

We can conclude that the emission from self-organized quantum dots is expected to exhibit a

very low pressure coefficient, much lower than that of their constituent bulk material. I will

demonstrate later that quantum confinement also has an influence on these values.

On the other hand, the biaxial strain slightly diminishes with increasing pressure. This reflects

the difference in compressibility of both materials, which results in a reduction of the lattice mis-

match with increasing pressure. In the pressure range of the simulation (0-10 GPa), though, the

biaxial component decreases only by about 2 % and will assumed to be constant in the follow-

ing. In this way we circumvent the problem of how to treat the broad biaxial strain distribution

in a simple one-dimensional model, as mentioned above, since we are mainly interested in the

pressure dependence of the band-edge energies rather than in their absolute values.

A large spread of the PC values has been observed experimentally. To address this issue we

determine the difference in strain between the wetting layer and dot for each height of quantum

dot, as shown in Fig. 4.13 as a function of external pressure. In fact, a small systematic varia-

tion is detected. The strain in the larger dots rises slower than that in the smaller ones and the

wetting layer strain has the steepest slope. Unfortunately, the numerical results from the XVFF

model under pressure, shown on the right side, do not behave so nicely as those obtained with

the VFF model. It seems that the global minimum was not found in the relaxation process of the
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Figure 4.13: Difference in hy-

drostatic strain between wet-

ting layer and dot for different

dot heights obtained by apply-

ing the standard (left) and ex-

tended (right) VFF.

calculations. Compared to the zero-pressure results, a cross-sectional view of the structure looks

slightly distorted. The origin of this numerical problem is not clear but it might be connected to

the special shape of the bond-stretching potential. This will be discussed further in section B. If

we forget the numerical problems for the moment, at least the trend is the same as that observed

with the VFF model: The larger the dot, the lower the slope of the pressure dependence. How-

ever, even if we assume that this variation is larger within the XVFF model, it is not sufficient to

explain the significant size dependence of the measured pressure coefficients.

Strain modified band edges

Once we know the strain field of a quantum dot, it is possible to estimate the band edges

along a line across the supercell by calculating the energy shifts produced by strain using equa-

tions (3.40a-3.40c) and (3.42a,3.42b) together with the hydrostatic and shear strain deformation

potentials and the spin-orbit energy listed in table 4.1. This is illustrated in Fig. 4.14 based on

a av b Ξd + 1
3 Ξu Ξu ∆0

InAs -6.0 -1.0 -1.8 1.5 3.2 0.38

GaAs -8.4 -1.2 -2.0 1.5 6.5 0.341

Table 4.1: The hydrostatic and shear

deformation potentials used in the

simulation, taken from reference[3].

strain calculations for an eight monolayers high quantum dot using the XVFF model along the

[001] direction through the center of the dot, as indicated in the inset. The valence band offset

for the strained interface is adjusted to 290 meV, which is the value obtained from the experi-

ments in section 4.1.1. The shown profiles correspond to the Γ and the strain-split X conduction

bands as well as the three valence bands at Γ . We notice that the Eν2 band, which corresponds

to a heavy hole band, becomes the highest valence band in InAs. The profile of the lowest

band edges has the shape of a one-dimensional square well potential in good approximation,
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which is a prerequisite for the application of the envelope function approximation discussed in

section 3.2.2. Furthermore, the band-gap of the embedded InAs has increased from 0.42 eV to

about 0.61 eV for the largest dot and to 0.54 eV for the smallest one. The X conduction band

energy in InAs is higher than in GaAs and split by about 200 meV. In the vicinity of the dot, all

bands are slightly bent, resulting in a modification of the band gap in GaAs too. Specially the

indirect X −Γ band-gap in GaAs is lowered with respect to the bulk GaAs energy.

In order not to stress this simple band-structure estimation too much, I will make some simpli-

fications to study the pressure dependence. The [001] biaxial strain is taken to be constant in the

simulated pressure range, as pointed out in the last section. As the absolute valence band offsets

of InAs and GaAs are comparable, I will further assume a constant valence band offset. The

variation of the hydrostatic strain between different dot sizes is small and the related variation

in the InAs band gap is small compared to the expected confinement energies. With the results

from the previous section we are now able to estimate the variation of the conduction band offset

with pressure, as shown in Fig. 4.15. These findings enable us to confirm the assumptions made

in the experimental section. There we proposed that the appearance of a ninth peak in the PL

spectrum at about 1 GPa, which corresponds to the transition of quantum dots of one monolayer

height, is due to the confinement of an additional discrete electronic state, caused by the increas-

ing conduction band offset. Indeed, the increase is fairly pronounced from both VFF models. It

amounts 28 meV/GPa and 46 meV/GPa in the VFF and XVFF model, respectively. The other

assumption made concerns the existence of a transition which is about 60 meV lower in energy

than that of the indirect X −Γ gap of GaAs and whose electronic state seems to be responsible

for the Γ −X crossover in the quantum dots. Looking again at Fig. 4.14 we can expect that this

state corresponds to the XZ one of GaAs near the heterointerface. The crossing of this state with

the rising Γ -point states of InAs leads to the quenching of the emission from the quantum dots.

Figure 4.14: Band profiles

along [001] direction through

the center of a truncated pyra-

mid shaped QD with a height

of 8 MLs at ambient pressure.
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Figure 4.15: The calculated

conduction band offsets as a

function of pressure.

Inclusion of quantum effects

Taking into account the results obtained in the previous sections, we will now address the effects

of quantum confinement on the pressure dependence of the quantum dot states. We further

assumed a pressure independent valence band offset and a strongly rising conduction band offset.

Thus, any variation of the pressure dependence on dot geometry should come from the pressure

dependence of the electronic states. Figure 4.16 displays the electronic ground state energies

for four different dot heights as a function of external pressure, calculated within the EFA and

considering the non-parabolicity of the electron mass (3.26). Also indicated are the GaAs and

Figure 4.16: The calculated pressure dependence of the electronic ground-state energies for four

different QD heights as a function of external pressure. The results in the left(right) panels are

based on the VFF(XVFF) model.
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InAs conduction band energies. An interesting point is that the ground-state energy in the largest

dot has a significantly lower pressure coefficient than the InAs band edge. This is simply due

to the energy dependence of the effective mass. As a result, the confinement energy decreases

with increasing band edge energy. Thus, the slope of the band edge is not necessarily setting the

lower limit of possible PCs. The smaller dots have a remarkably higher PC and follow the GaAs

band gap, the higher their confinement energy is. From another point of view, the wavefunctions

of the electrons in the larger dots are mostly confined to InAs and adopt its properties, whereas

a large part of the electronic wavefunctions of the smaller dots penetrates into the GaAs barrier

and is strongly influenced by the properties of bulk GaAs, namely its pressure coefficient. The

differences in pressure coefficients are better seen when fitting the data with the usual quadratic

expression (4.1) and plotting the coefficients a and b as a function of the electron energy. This

has been done in Fig. 4.17. The linear coefficient ranges from 69 meV/GPa to 84 meV/GPa

Figure 4.17: The pressure

coefficients of the electronic

ground states as a function of

their energy, calculated within

the EFA for four different QD

heights.

when using the VFF and from 52 meV/GPa to 78 meV/GPa when the calculations are based on

the XVFF model. The quadratic coefficients are at most -0.6 meV/GPa2 and -1.1 meV/GPa2 for

the VFF and XVFF model, respectively. Thus, both models yield a variation of the PC depending

on the dot height. The qualitative agreement with the experimental data (see Fig. 4.7), e.i. the

linear dependence on emission energies is better reproduced, if the calculations are based on

the XVVF, although the absolute values are lower than the experimental ones. Considering

the simplicity of the model, specially its one-dimensionality, the results are very good and the

origins of the different effects, which play a role to produce the PC variation with pressure can

be well separated.
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4.1.3. Conclusion

In this chapter results from photoluminescence experiments on self-organized InAs/GaAs quan-

tum dots under high hydrostatic pressure were presented. Due to the multi-modal distribution of

the dot size, it was possible to determine the pressure coefficients (PC) of quantum dots of dif-

ferent sizes under exactly the same environmental conditions. In this way, I was able to address

the problem, why all measurements on InAs/GaAs quantum dots reported so far, yield differ-

ent pressure coefficients ranging from 60 meV/GPa to 110 meV/GPa, which is in average much

smaller than the bulk InAs value. For that purpose I have performed pressure-dependent strain

simulations based on an atomistic valence force field (VFF). Four dot heights of 2–8 monolayers

have been calculated, embedded in a GaAs supercell containing up to 1.3 million atoms. Two

force field models have been applied, a standard Keating VFF and an extended version (XVFF),

which accounts for the pressure dependence of the bulk modulus. The first result is, that the pres-

sure coefficient of an InAs monolayer embedded in GaAs is at least 62 meV/GPa. Furthermore,

a variation of the pressure coefficients depending on the dot size is obtained when considering

the effects of quantum confinement within a one-dimensional envelope function approximation

picture. The variation of PCs is not as pronounced as found experimentally, which is not sur-

prising considering the simplicity of the model, however, it gives insight into the physical origin

of the effects leading to this interesting behavior.

A second interesting point is, that the quenching of the quantum dot emission occurs when the

confined states cross the XZ state of the barrier material. Measuring the XZ −Γ transition energy

of GaAs, it is possible to infer the valence band offsets of the heavy hole states. As expected, the

offset increases with the size of the dot. Fitting this size dependence to the Daniel-Duke model

of a square well potential we can extrapolate a value of 290±10 eV for the valence band offset

for the heterointerface of strained InAs/GaAs quantum dots.

55



4.2. INP/GAP QUANTUM DOTS CHAPTER 4. RESULTS AND DISCUSSION

4.2. InP/GaP quantum dots

Heterostructures of the InP/GaP material system present an even larger built-in strain (7.7 %)

than for the InAs/GaAs system, due to the larger lattice mismatch. Because of the fact that the

elastic constants in bulk InP are larger than in InAs [64], a higher strain energy is expected,

which should lead to earlier strain relaxation and larger dot sizes [65]. The sample investigated

in this work has a density of QDs of about 9× 107 cm−2. The base length is 25-40 nm and

the height is between 4 and 5 nm. In comparison with the InAs/GaAs sample, the density is

lower, whereas the size of the QDs is larger. Details on the growth sequence can be found in

Ref. [65]. For structures using In0.48Ga52P as barrier material, which is lattice matched to a

GaAs substrate, intense luminescence from the InP islands has been reported at photon energies

between 1.6 and 1.85 eV [66–68]. In the case of GaP as matrix, the larger built-in strain is

expected to shift the energy of the fundamental optical transition close to that of the indirect

Γ -X band gap. This would probably result in a less efficient radiative recombination if the

optical transition is indirect in reciprocal space and/or it would even lead to a type-II carrier

confinement with electrons and holes spatially separated, which seems to be the case for ultrathin

InP/GaP quantum wells [69]. This is the trade off for having GaP as substrate material, which

is of great advantage for optoelectronic applications due to its transparency at the wavelengths

of the dot emission. In the following sections I will determine the actual band lineup across

the heterostructure using results from photoluminescence experiments under high hydrostatic

pressure and I will show and explain important results about the peculiar carrier dynamics in

this system.

4.2.1. Band structure from high pressure experiments

Figure 4.18 displays low-temperature PL spectra of the InP/GaP sample for different pressures

up to 1.2 GPa taken with 5 kW/cm2 laser power density. The prominent peak corresponds to

the emission from the quantum dot (QD), whereas the much weaker feature at around 2.2 eV

is assigned to optical transitions between confined states in the wetting layer (WL). At ambi-

ent pressure the main emission of the sample peaks at 1.92 eV and its width is about 70 meV,

exhibiting an asymmetric double peak structure. As I will show in the following, the strong

emission at 1.92 eV at ambient pressure is due to direct optical transitions between Brillouin-

zone-center states of the dots. This implies type-I band alignment, i.e. the energetically lowest

point of the conduction band structure resides at the location of the InP islands. The width of

the dot emission band reflects the size and probably composition distribution of the dots. At the

laser powers of the experiment and for the low dot density of this sample, we expect saturation
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Figure 4.18:

Photoluminescence spectra

of a self-organized InP/GaP

sample taken at at different

pressures.

of the dot emission to be achieved; thus, the double peak apparent in the 0 GPa spectrum (see

Fig. 4.19a) is attributed to recombination processes between the electron and hole ground states

(e0-hh0) and the first exited ones (e1-hh1), respectively. In fact, the peak corresponding to the

first-excited state recombination becomes more pronounced with increasing laser power density

due to the saturation of the population of photoexcited carriers in the ground state.

Figure 4.19: Ambient pres-

sure (a) and 0.3 GPa (b)

spectrum in the energy region

of the QD emission. Dashed

curves represent Gaussian

line shapes fitted to the

measured spectra. Their

assignment is indicated.

At finite pressure a sudden blue shift of the PL maximum of about 20 meV occurs together

with a reduction of the intensity by a factor 16 and the narrowing of the band width. With

increasing pressure the peak energy of the QD is decreasing slowly, as it is the case for X-Γ

indirect transitions [45]. Further evidence for the indirectness of the optical transition at finite

pressure is obtained from a line shape analysis of the QD emission band. A representative PL

spectrum recorded at 0.3 GPa and at 4 K is shown in Fig. 4.19b). The emission peak exhibits a

slight asymmetry towards lower energies due to a weaker line shifted down in energy by about

40 meV, which is the energy of the zone-edge phonons in InP [3]. The main peak thus corre-

sponds to the zero-phonon line activated in quantum dots due to the breakdown of the transla-

tional invariance and the weaker feature at lower energies is attributed to the one-phonon replica
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Figure 4.20: Pressure depen-

dence of the WL emission

for different pressures. The

dashed lines are Gaussian line

shapes fitted to the data.

of the indirect emission. The reason for the narrowing of the indirect PL peak as compared with

the direct one at ambient pressure is that the energy of the conduction band X-point levels is less

dependent on confinement, because of the larger effective mass.

The wetting layer luminescence also shifts to lower energies as demonstrated in Fig. 4.20 what

speaks for these transitions being of Γ−X indirect character. The emission line shape is very

similar to that of a 1.5 monolayer InP/GaP sample [69], whose peak like features were inter-

preted as different phonon replica associated with the indirect optical transition. The line shape

has been fitted with two peaks, although an exact assignment to different phonon-assisted pro-

cesses is problematic. The peak separation of about 38 meV at 0 GPa increases with increasing

pressure at a rate of 0.5 meV/GPa, which is about the zone-edge LO phonon energy of a III-V

compound and its pressure dependence. The wetting layer represents a kind of δ -like potential

well for carriers in the GaP matrix. This situation also holds for the conduction band X minima

since those of the InP WL are split by the built-in strain and pushed down in energy with respect

to the X valleys in the GaP barrier. High-pressure experiments on an InAs monolayer in GaAs

combined with tight-binding calculations have shown the existence of a bound state for electrons

lying a few meV below the X conduction-band edge of the barrier material [70]. Hence, the WL

feature is attributed to optical transitions between states bound to the highly strained InP wetting

layer, which are direct in space (type I) but indirect in reciprocal space. In fact, the WL emission

is 120 meV lower in energy than the band gap of GaP and the luminescence of the barrier is

completely absent in the spectra.

The energies of the PL peak maxima obtained from low-temperature spectra are shown in

Fig. 4.21 as a function of pressure. Whereas the emission from the wetting layer shifts to lower

energies at a rate of -13.9±5 meV/GPa, typical for the Γ −X indirect gap of GaP [71], the QD

line displays a much smaller pressure coefficient of -4.4±5 meV/GPa. The pressure dependence
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Figure 4.21: Pressure depen-

dence of the PL peak energies

of the InP/GaP sample at 2 K.

Figure 4.22: Pressure depen-

dence of the peak intensities

of the InP/GaP sample at 2 K.

The dashed lines are a guide

to the eye. Both axes are in

logarithmic scale.

of the PL peak intensities is shown in Fig. 4.22. The initial reduction in intensity of more than

one order of magnitude is also a clear indication of the occurrence of the Γ −X conduction-band

crossover in the InP dots. Moreover, the quenching of the dot luminescence above 1.2 GPa is

due to a type-I/II transition, at which the conduction band X valleys in the WL or the barrier

become lower in energy than that ones in the InP dots. In contrast, the WL emission increases

monotonically with increasing pressure.

The small measured negative pressure coefficient of the QD emission compared to that of bulk

InP of -17±3 meV/GPa [72] is at least partly due to a reduction of the biaxial strain induced

X-valley splitting. As demonstrated in section 3.2.3, a biaxial [001] strain splits the sixfold

degenerate X-bands into a Xz doublet and a Xxy quadruplet. The centroid energy is decreasing

with increasing pressure and the splitting is proportional to the [001] biaxial strain. Thus, if the

biaxial strain is decreasing with rising pressure, the effective pressure coefficient of the Xxy state

will be lowered in absolute value with respect to that of the centroid energy. The reduction of

the biaxial strain is the result of a difference in bulk modulus between InP (71.1 GPa) and GaP
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(88.2 GPa) [3]. Since InP is more compressible than GaP, under pressure the lattice mismatch

between both materials continuously reduces and so does the biaxial strain in InP. The pressure

dependent lattice mismatch can be calculated by:

εxx =
as

a f
e

p
3

(
1

Bs
− 1

B f

)
−1, (4.3)

where p is the pressure and a and B with indices s and f are the lattice constant and bulk

modulus of the substrate and the film, respectively. The average biaxial strain of an InP quan-

tum dot at atmospheric pressure obtained from VFF calculations is about 0.24. Assuming a

InP X-conduction band shear deformation potential Ξu of 3.3 eV as obtained by tight-binding

calculations in Ref.[73], the inital X-splitting, calculated by eq. (3.43b) is about 0.4 eV. Using

eq. (4.3) we can estimate, that the splitting is reducing at a rate of about 4 meV/GPa, divided

into one third/two thirds contribution to the Xxy/Xz states respectively. As the region, where the

k-indirect QD phase exists is as narrow as 0.8 GPa, the bands involved in the type-I/II transition

are initially very close to each other. Considering the typical pressure coefficient of a X-Γ in-

direct band gap (≈ −10meV/GPa), this corresponds to an energy range of about 10 meV. As a

consequence, it is also plausible, that band-mixing effects contribute to the small pressure coef-

ficients of the indirect QD emission and the consecutive type-I/II quenching. This has shown to

be important even for the mixing between Γ and X-bands near the crossover pressure [74, 75].

As for pressures above 1.2 GPa the WL emission is the only observed signal, we infer that

the type type-I/II transition in the QDs is due to the crossing with the X-bound states in the

WL. This will be further confirmed in time-resolved PL experiments by the observation that the

carriers reach the quantum dot via the wetting layer. From the difference of oserved pressure

coefficients we infer, that the separation between the X-states in the dot and the WL decreases

at a rate of about -10 meV/GPa. Because the degeneracy of conduction band minima is achieved

at about 1.2 GPa, as indicated by the quenching of the dot luminescence, we can estimate the

energy position of the Xxy states in the QDs at ambient pressure being about 10 meV below the

X level bound to the wetting layer. From these observations we can finally sketch the conduction

band lineup as a function of pressure, shown in Fig. 4.23.

4.2.2. Temperature dependence

The temperature dependence of the quantum dot ground-state emission and that of the wetting

layer is very different at pressures below the type-I/II crossover. Figure 4.24 shows an example

for a pressure of 0.7 GPa. Whereas the quantum dot emission exhibits a clear maximum at a

temperature of about 50 K, the wetting layer intensity drops continuously and vanishes at about

50 K. The quenching of the WL luminescence with rising temperature is due to the thermal es-
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1.5 GPa0.5 GPa0 GPA

Figure 4.23: Band lineup at

ambient pressure, at a pres-

sure above the Γ -X crossover

and at one above the type-I/II

transition.

cape of the confined carriers into the barrier and to the activation of non-radiative recombination

channels. The initial increase of the quantum dot luminescence at low temperatures speaks for

an improvement of the carrier transfer from the barrier into the quantum dots with increasing

temperature. Considering the low dot density in this sample (only about 10 % of the wetting

Figure 4.24: Temperature de-

pendence of the quantum dot

and wetting layer emission at

0.7 GPa.

layer area is covered with islands), we assume that most of the carriers will reach the dots via

the wetting layer and only some of them take the direct path from the barrier. Width fluctuations

of the wetting layer will create potential sinks where the carriers can localize at sufficient low

temperatures and therefore will not reach the quantum dots. However, temperature reactivates

carrier mobility and the overall capture rate of carriers in the quantum dots will increase. To

confirm this, a system of rate equations considering the most important processes, as illustrated

in Fig. 4.25, has been setup inspired by those of reference [76]. The carriers enter the quantum

dot either directly from the barrier or through the wetting layer. Once in the WL, they have to

overcome a small potential barrier, which corresponds to monolayer fluctuations in the WL, to

reach the quantum dot. They could also leave the WL by radiative recombination with the holes.

61



4.2. INP/GAP QUANTUM DOTS CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.25: Schematic view of the

conduction band edge. With increas-

ing temperature the carriers localized in

the wetting layer are activated and con-

tribute to the quantum dot emission.

The QD has two input channels and two output channels, a radiative one and an escape channel

to the barrier. This model does not account for the size distribution of the quantum dots and the

resulting energy spectrum of the quantum dot ground states. Furthermore, it disregards the exis-

tence of non-radiative recombination channels but it is, as shown below, sufficient to understand

the unusual temperature dependence of the QD emission. The rate equations corresponding to

the above processes read

dnw(t)
dt

= −nw(t)
τw

− nw(t)
τc

+a∗g (4.4)

dnd(t)
dt

=
nw(t)

τc
− nd(t)

τd
− nd(t)

τe
+(1−a)∗g,

where nw/d(t) denotes the number of carriers in the localization potentials of the wetting layer

or the dots, τw/d are the time constants for the radiative decay, τc/e are those for the capture and

emission process into and from the QD and g is the generation rate of carriers in the barrier.

Solving the stationary state of the coupled equations, i.e. setting dn
dt = 0, the integrated PL

intensities from the QDs and the WL is given by

Iw =
nw

τw
=

aτcg
τw + τc

(4.5)

Id =
nd

τd
=

τdτegτw +(1−a)τcτdτeg
τd ((τe + τd)τw + τcτe + τcτd)

.

These expressions are now used to model the temperature dependence of the luminescence of

both the WL and the QD, as shown in Fig. 4.26 for a pressure of 0.7 GPa. The symbols cor-

respond to the measured integrated peak intensities. The temperature of maximal PL intensity

is determined by the interplay of the activation energy of the carriers in the wetting layer and

that, which is needed by the carriers to leave the quantum dots. The radiative lifetime τd of

the quantum dots is considered to be independent of temperature as the carriers are confined in

all three dimensions. That is not true for the radiative lifetime of the wetting layer τd which
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has been shown to rise linear with temperature [77], fact which is ignored in this consideration.

Temperature dependence is introduced via the capture and emission rates of carriers to and from

the quantum dot ground state
1

τc,e
∼ e−Ec,e/kT , (4.6)

where E is the activation energy which has to be gained in order to escape from the WL localiza-

tion potentials or the QD, k is the Boltzmann constant and T is the temperature. Modifying the

capture and escape time constants of Eq. (4.5) according to Eq. (4.6) we obtain the temperature

dependence of the dot and wetting layer emission shown in Fig. 4.26 together with experimental

data obtained at a pressure of 0.3 GPa. The solid lines are calculated by using equations (4.5)

with an euristic choice for the set of parameters. That was necessary due to a lack of experimen-

tal data. Nevertheless, the aspects that are specially interesting at this point, i.e. the observation

of a finite temperature for maximum dot emission as well as the monotonic decay of the wetting

layer PL, are well reproduced by the solutions of the rate equations. Both aspects are mainly de-

termined by the interplay between the activation energies Ec and Ee. If we perform this analysis

Figure 4.26: Temperature de-

pendence of the integrated

peak intensity of the PL from

the dots and wetting layer at

0.3 GPa. The solid lines rep-

resent a solution of the rate

equations.

at every pressure below the type-I/II crossover we obtain a linear relation between the tempera-

ture of maximum QD emission, i.e. the activation energy of the quantum dots, and the applied

pressure, which is shown in Fig. 4.27. Since the dependence of the band edges on pressure is

linear in good approximation, the same should hold for the activation energies. In contrast, the

activation energy for the carrier capture is constant with pressure, which is an indication that

localization effects in the wetting layer are independent of pressure.

4.2.3. Carrier dynamics

For the discussion of the time evolution of the PL in the InP/GaP quantum dot system it is

important to compare the emission spectra obtained under continuous wave (cw) and pulsed
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Figure 4.27: Pressure de-

pendence of temperature of

the maximum in dot lumi-

nescence and of the activa-

tion energy of the quantum dot

ground state.

excitation. Figure 4.28 shows on logarithmic scale two spectra measured at low temperatures

with cw excitation at ambient pressure and at 0.3 GPa, i.e. for the case where the QD emission

is direct and indirect in reciprocal space, respectively. For comparison I also show a typical

spectrum obtained at 0 GPa using the pulsed light source. Due to the very high power of the

short pulses and to the fact that the areal dot density of the sample is rather small, the ground

state recombination from the QDs is easily saturated. As a consequence, radiative recombination

from excited states of the dots as well as the wetting layer (WL) luminescence become apparent

in the PL spectra. Moreover, according to the electronic level structure obtained from high-

pressure experiments presented in section 4.2.1, the PL spectra under pulsed excitation always

contain a contribution from indirect recombination processes in the dots even at zero pressure.

This explains the much larger width of the QD emission for pulsed excitation and that its line-

shape does not change appreciably under pressure besides for variations in intensity.

Figure 4.28: Comparison of

Pl spectra of the InP/GaP QDs

taken with continuous wave

(cw) and pulsed excitation.

Figure 4.29 shows the spectral distribution of the luminescence decay of the InP/GaP QD

structure obtained at ambient pressure and 2 K. The transients measured at three different photon
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energies, as indicated by the three dashed lines in Fig. 4.29 are depicted in Fig. 4.30a) and

b). The PL decay from the QDs (at 1.95 eV) is best modelled using three mono-exponential

decay components, shown in Fig. 4.31. The fastest of them with about 1 ns decay time is

considered a spurious component since it is found throughout the whole spectral range. The

transient measured at 2.1 eV gives an example of such fast decay which possibly originates

from recombination processes in the GaP substrate and will thus be no longer discussed. The

remaining two components of the dot emission exhibit decay times of about 5 ns and 30 ns, which

we attribute to the in reciprocal space direct and indirect radiative recombination processes,

respectively, between electrons and holes confined in the InP quantum dots. At ambient pressure

the main PL component as far as the intensity is concerned corresponds to the direct Γ −Γ one

with the decay time of 5 ns at the peak maximum. The decay time attributed to the direct optical

transition is long compared to that of InAs/GaAs QDs [78–80]. Considering that the X-states of

both the QDs and the WL are within an energy range of 30 meV above the Γ state in the dots,

the wave function at the Γ point will probably contain an admixture of X-states, thus reducing

the matrix element which couples the electrons and holes, which results in a longer decay time.

As indicated by the asymmetric shape of the dot peak in the contour plots of Fig. 4.29, the decay

time decreases to about 2 ns on the high-energy tail reflecting the faster relaxation of the excited

states of the dots. Since at high excitation levels the ground and lowest excited states of the dots

are filled with carriers, a decrease of the decay time with increasing energy at low temperatures

can only be explained by invoking carrier promotion to higher excited states or even the wetting

layer via electron-electron interaction (many-body effects) in the dots [81].

Figure 4.29: Spectral distri-

bution of decay times of the

emission from the dots and

wetting layer at ambient pres-

sure and 2 K.

The wetting layer emission, in contrast, displays a multi-exponential decay. The solid curve in

Fig. 4.30b) represents the result of a fit to the transient data with a stretched exponential function

I(t) = I(0)e−(t/τ)β

, (4.7)
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Figure 4.30: Transients measured at the energies indicated in the figure legend. Solid curves are

fits to the measured transients.

Figure 4.31: Example of the

fitting procedure for the PL

decay of the QD at low tem-

peratures and ambient pres-

sure. The dashed lines in-

dicate the three monoexpo-

nential components used to

account for the QD related

decays.
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where β = 0.43 and τ = 490 ps are the exponent and time constant, respectively. This temporal

behavior is usually found for the dynamics of heavily disordered systems [82]. A small value

of the β parameter (less than 1) is indicative of a broad distribution of decay times, which in

our case results from noticeable fluctuations in the WL thickness. Optical recombination in the

wetting layer is known to be indirect in k-space taking place between the X-point conduction

band minimum and the top of the valence band at the Γ -point. The experimentally observed

decay time is a sum of the radiative and non-radiative decay times

1
τexp.

=
1

τrad.
+

1
τnon−rad.

. (4.8)

Hence, the very short decay time of the WL emission is determined by non-radiative decay

channels of carriers into the InP dots.

Figure 4.32: Pressure depen-

dence of the PL decay of the

QDs taken at low tempera-

tures. Transients have been

shifted by a constant offset for

clarity.

Figure 4.33: Pressure depen-

dence of the PL decay of the

WL taken at low tempera-

tures. Transients have been

shifted by a constant offset for

clarity.

The dependence on hydrostatic pressure of the emission from the InP dots and the wetting

layer is illustrated by the transients taken at 2 K for different pressures plotted in Figs. 4.32 and
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4.33, respectively. For the QD luminescence the decay rates both of the direct Γ −Γ and the

indirect X-Γ optical transitions are within experimental uncertainty independent of pressure.

By increasing the pressure beyond 0.5 GPa, however, the indirect-recombination component

with the longer time constant of 30 ns dominates the PL decay, whereas the component of the

direct recombination has disappeared. This is in nice agreement with the observation of the Γ -X

crossover in cw experiments, presented in section 4.2.1, which occurs at around 0.2 GPa. The

decay of the WL luminescence, on the contrary, exhibits a gradual slow down with increasing

pressure, as clearly seen in the transients of Fig. 4.33. The application of a slight pressure of

about 0.1 GPa causes the WL decay time at least to double and it increases further at higher

pressures. This is an interesting effect which is taken as evidence of a less effective filling of the

dots with increasing pressure and a confirmation of the fact that the filling of the quantum dots

occurs from states in the WL.

Important information on the carrier dynamics in the InP/GaP QD system is obtained by

comparing the dependence on pressure of the ratio of the PL peak intensities of the dots and

wetting layer with that of the ratio between the weights of the indirect and direct components

of the radiative recombination within the InP QDs, as shown in Fig. 4.34. One notices that

along with the pronounced increase of the WL decay time, the intensity of the QD emission

drops abruptly at extremely low pressure close to that of the Γ -X crossover in the dots. In

contrast, for the QD emission the weight of the strength of the decay component from indirect

transitions relative to that of the direct radiative decay channel increases monotonically with

pressure. The latter suggests that the sharp drop in QD emission intensity, which might be related

to the pressure-induced changes in the conduction band minima, seems to be connected to the

extinction of a carrier relaxation channel for filling up the InP dots rather than with variation in

oscillator strength for direct/indirect radiative recombination.

Figure 4.34: Pressure dependence of the in-

tensity ratio between dot and wetting-layer

emission (left) and of the ratio between the

intensities of the indirect and direct decay

components of the QD luminescence (right).
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Further insight into the recombination dynamics is gained by studying the rise times of the

QD luminescence signal as a function of pressure and temperature. Figure 4.35a) shows four rise

transients of the dots PL measured at ambient pressure for different temperatures. As indicated

in the figure, the rise times which are about two orders of magnitude shorter than the faster decay

component, increase with temperature. This behavior which has been observed before [65], is

Figure 4.35: Rise times of the QD luminescence a) for different temperatures and b) at two

different pressures. Solid lines are fits to the data with a single rising exponential function. Time

constants are indicated.

a consequence of carrier-localization effects in the wetting layer. With increasing temperature a

gradually increasing number of carriers localized by monolayer-width fluctuations in the InP WL

will be able to escape and struggle to reach a quantum dot. Though, these thermally activated

processes are slower, thus leading to longer effective rise times. Pressure has a similar effect on

the rise time but for other reasons. In Fig. 4.35b) we compare two transients obtained at 2 K for

0 and 0.2 GPa. In this small pressure range, the rise time doubles (increases from less than 10

ps to 24 ps). Such slowing down of the carrier relaxation into the dots simply results from the

variation of the relative energy position of the conduction band X minima in the wetting layer

and the dots; difference which diminishes with pressure and vanishes at the type-I to type-II

transition.

The pressure effects on the rise times are pronounced but not abrupt like the sudden drop in

PL intensity of the QDs observed at very small pressures, as mentioned above. This points to

a different origin for both effects. We give here a tentative explanation. For samples with such

low QD densities as ours the carriers photoexcited in the GaP matrix can relax into the dots

in two ways: either via a direct capture process or by falling first in the wetting layer before
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being trapped in the QDs. The former mechanism seems to be very effective as long as the

electron ground state of the InP dots corresponds to the Γ point. Electrons in the GaP barrier

material reside in the X minima and due to the breakdown of translational invariance along the z

direction - the growth direction of the InP/GaP heterostructure - there is a good coupling between

the GaP Xz states and the Γ -point confined states of the InP dots. Above the Γ -X crossover the

lowest conduction band state of the dots has Xxy character. The mixing of these states and the

back-folded Xz ones from the GaP is negligible, leading to the switch off of one carrier capture

channel into the dots and, hence, to the observed quenching of the QD emission at the crossover

pressure.

4.2.4. Conclusion

The photoluminescence experiments under high pressure revealed that at ambient pressure the

band alignment in the InP/GaP QD structure is of type-I and the QD emission is very intense

arising from Γ −Γ direct optical transitions between confined states of the dots. With increasing

pressure this transition shifts up in energy at a typical rate of about 100 meV/GPa, such that at

0.2 GPa the absolute conduction-band minimum is at the X-point and the QD recombination has

become indirect in reciprocal space. The Xxy levels of the InP dots are initially approximately

10 meV below the X-bound state of the wetting layer. With increasing pressure, however, the

energy separation between them diminishes until at around 1.2 GPa they become degenerate and

the quenching of the indirect QD emission is observed.

These finding are further confirmed by the results of time-resolved photoluminescence. At

ambient pressure the transients corresponding to the main emission peak of the InP dots exhibit

two monoexponential decay components with a time constant of 5 ns and 30 ns, which are asso-

ciated with in k-space direct (Γ -Γ ) and indirect (X-Γ ) interband optical transitions, respectively.

These decay times are within experimental uncertainty independent of pressure. What varies un-

der pressure and pulsed excitation is the relative weight of the indirect recombination component

against that of the direct one, as the Γ conduction band minimum of the dots shifts up in energy

with increasing pressure with respect to their Xxy valleys. In contrast, the average decay time

of the wetting layer luminescence increases from about 500 ps to nearly 1 ns in the pressure

range up to 1 GPa. This fact and the observed pressure induced increase of the rise times of

the QD emission are clear indication that the carrier transfer from the wetting layer into the dots

becomes less effective as pressure increases. This is due to the combined effects of localization

by monolayer-width fluctuations in the WL and the changes induced by the hydrostatic pressure

in the relative position of the conduction band states of the dots and wetting layer.
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5. Summary

In this work photoluminescence experiments under high hydrostatic pressure on self-assembled

InAs/GaAs and InP/GaP quantum dots have been carried out. The particular growth condi-

tions used for the fabrication of the InAs/GaAs sample lead to a multimodal distribution of the

quantum dot sizes. This, in turn, gives rise to a characteristic emission profile, displaying up

to nine clearly separable peaks attributed to the ground-state emission from each quantum dot

subensemble of different size. In fact, structural analysis has shown that the quantum dots differ

in size by entire monolayers. With increasing pressure all emission peaks shift to higher ener-

gies, which is typical for a direct Γ -Γ transition. The measured pressure coefficients for each

subensemble, however, show a linear dependence on their zero pressure emission energy, which

is directly related to the quantum dot size ranging from 65 meV/GPa for the largest dots to 110

meV/GPa for the smallest ones. This large variation has caused much confusion in the last years,

as every experiment on similar samples yielded a different pressure coefficient. The particular

sample studied here allows for the direct comparison of the pressure dependence of quantum

dots of different size under exactly the same environmental conditions. In order to be able to

assign the variation of pressure coefficients to a particular physical origin, pressure dependent

strain field calculations using an atomistic valence-force field have been carried out. Using de-

formation potential theory it was found that the conduction band offset is also increasing at a

rate of 46 meV/GPa. This implies that the pressure coefficient of the band gap of the embedded

InAs is much smaller than that of bulk InAs. Considering the effects of quantum confinement

within the envelope function approximation, such a behavior can be explained by the fact that

states which are close to the bottom of the confining potential adopt the pressure dependence of

the InAs band edge, whereas states which are close to the top of the potential follow the band

gap of the barrier material. The calculated pressure coefficients as a function of the dot size are

qualitatively in good agreement with the experimental findings considering the simplicity of the

model, though the calculated variation of pressure coefficients is not as large as measured.

Further information about the electronic structure of the quantum dots is found by analyzing

the energy at which the confined electron states cross the X-conduction band states of the barrier,

which is identified by a sudden quenching of the emission intensity. In this way, it is possible

to determine the valence band offsets for the heavy holes corresponding to different dot sizes.
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By fitting these energies using the calculated confinement energies of the heavy holes, a valence

band offset of 290± 10 meV for the strained InAs/GaAs quantum dot heterointerface was be

obtained.

An open question concerning the electronic structure of InP quantum dots grown on GaP

substrate was whether the observed emission has direct character in both real and reciprocal

space. The large lattice mismatch of about 7.7 % is responsible for the shift of the Γ -point

conduction band energy of InP close to the indirect band gap of GaP, which could possibly

lead to a type-II confinement resulting in a poor luminescence intensity. I was able to show

that the main emission peaked at 1.92 eV at ambient pressure is indeed due to a direct optical

recombination processes in real and reciprocal space, unambiguously identified by an initial blue

shift of the main emission with pressure. Besides for the QD emission, a weak luminescence

band is observed which can be attributed to transitions involving bound states in the wetting

layer, which exhibits a negative pressure coefficient typical for the indirect X-Γ gap. At low

pressures of about 0.2 GPa, the crossover in the quantum dot with the Xxy state of InP occurs,

leading to a sudden decrease of the luminescence intensity. This is confirmed by the long decay

times of the QD emission obtained from time-resolved PL measurements. At ambient pressure

the dominant decay component of 5 ns indicates a direct transition in reciprocal space, whereas

above the Γ -X crossover the decay lengthens to about 30 ns, typical for an indirect transition.

Further increase of pressure causes the emission peak to shift slowly to the red, as expected for

an indirect X-Γ transition. finally, the QD emission quenches when the Xxy state in the dots

crosses the X-level confined to the wetting layer at a pressure of about 1.2 GPa and the transition

is becoming indirect in both reciprocal and real space. From the difference of the pressure

coefficients of the quantum dots and wetting layer emission we can infer that at ambient pressure

the Xxy states of InP are about 10 meV higher in energy than the Γ -point conduction band state.

The emission from the quantum dot bound states displays maximal intensity at a tempera-

ture of 70 K. This maximum, however, shifts to lower temperatures with increasing pressure.

This behavior could be explained by setting up a system of rate equations representing the most

important carrier transfer processes. Because of the low quantum dot density in the InP/GaP

system, most of the photoexcited carriers reach the quantum dots through the wetting layer. At

low temperatures the carriers localize due to monolayer-size fluctuations in the wetting layer, re-

gaining mobility as the temperature rises. On the other hand, the rising temperature is promoting

the thermal escape of the carriers from the quantum dots, leading to a decrease of the lumines-

cence. With increasing pressure the confining potential of the quantum dots is decreasing and

the temperature of maximal intensity is thus reducing. This carrier transfer model is further con-

firmed by the results of time-resolved photoluminescence, which demonstrate that the decay of
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the wetting layer emission is governed by non-radiative processes at ambient pressure, which are

continuously decreasing in weight as a consequence of the loss of the escape channel through

the quantum dots induced by the rising pressure.

In summary, the surprising variation of the pressure coefficients observed in high pressure

experiments on InAs/GaAs quantum dots samples, depending on the size of the quantum dots

could be explained based on the results from pressure dependent strain-field calculations and by

considering quantum confinement effects within a simple envelope function picture. Further-

more and in contrast to much more expensive full pseudopotential calculations, this approach

unambiguously revealed the origin of this phenomenon being related to the interplay between

strain and quantum confinement. On the other hand, it could be shown for the first time that

quantum dots grown in the InP/GaP material system show luminescence which is due to direct

transitions in real and reciprocal state, thus proving their relevance for applications as strong

emitters for the visible red spectral range. From the present high-pressure experiments a clear

picture for the electronic band structure of the InP/GaP system was obtained and explicitly used

for the understanding of the peculiar carrier dynamics in such low-dimensional structures.
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A. VFF calculations

The program which does the VFF calculations, written by the author, is using the Python

language[83]. As Python is an interpreted language, it seems not to be suitable for doing large

scale numerics. However, a package of subroutines for linear algebra, minimization, etc., called

SciPy[84], which operate at C-level speed turns it into a versatile and simple, nevertheless pow-

erful language for numerical calculations, like e.g. Matlab®. In addition, the possibility to write

inline C-code for time critical parts, makes the speed of the resulting binaries comparable to that

of pure C-programs.

The lattice structure is set up in a sparsely populated three-dimensional array, reflecting the

positions of the atoms of a fcc-lattice, when represented in a cubic grid. The minimal cube

that holds a unit cell of the zinc-blende therefor has a dimension of 8× 8× 8, with group III

atoms at indices [0,0,0], [0,2,2], [2,0,2], [2,2,0] and group IV atoms at [1,1,1], [1,3,3], [3,1,3],

[3,3,1]. Like this, the next neighbour atoms are easily determined. A list of all first and second

next neighbours for each atom is constructed once and stored, as we do not have to deal with

changing bonds. The total strain energy is then calculated by looping over all atoms, evaluat-

ing eq. (3.56), which is implemented in inline C. Additionally, the first derivative of the total

energy is calculated, which is needed by the minimizer. The minimizer (fmin tnc, part of the

SciPy package) uses a truncated Newton algorithm, which is a conjugate gradient method. After

convergence the strain is calculated locally at the cation position from the distorted tetrahedron.

The relaxation of a cubic supercell with a base length of 55 lattice constants, containig more

Figure A.1: Triangulation and interpolation of a crossectional layer of strain.
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than 1.3 million atoms takes about 6 hours on an ordinary desktop PC at the time of this writ-

ing. The consecutive relaxation steps at each new pressure take only about 1 hour. The memory

consumption for a supercell of that size is about 1.5 GB, fact which limits the maximal size of

the structure more than the calculation time.

Due to the structure of the fcc-lattice, the atoms in a crosssectional {001} (and equivalents)

plane are located on a rectangular grid, which is rotated with respect to the coordinate system

by 45°, rendering a matrix based visualization difficult. For that purpose the strain needs to be

interpolated on a rectangular grid which is parallel to the coordinate axes. For that purpose the

grid is divided into triangles by a method called Delaunay triangulation. Interpolated values can

then easily be obtained in the surface of a triangle connecting three grid points (see figure A.1).

This task is done by the MayaVi[85] software, which is a python wrapper around the Visualiza-

tion Tool Kit[86]. The interpolation step is not only helpful for visualization purposes, it also

allows for the extraction of smooth strain scans along a crystal direction, used in section 4.1.2 to

calculate the strain modified bandstructure across the center of the quantum dot.
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B. Expansion of the cubic bond-stretching

potential

As pointed out earlier, the harmonic stretching potential of the standard VFF model was ex-

panded by a cubic term. Its force constant was obtained by fitting the potential to the pressure

dependence of the bulk modulus. Like this, the region of the potential, which corresponds to

compression is well described. The tensile region however, cannot be chosen independently and

thus lacks any physical meaning. As shown in figure B.1, the extrapolation of the potential for

Figure B.1: Bond stretching

potentials used in the VFF

calculations. The cubic po-

tential yields unphysical re-

sults for large tensile strains

and has to be expanded by a

fourth-order term.

the tensile region (> 0) is very bad, since it is very weak and, inivitably for a cubic polynomial,

tends to −∞. A fully strained, unrelaxed InAs/GaAs interface yields a deviation from the natural

bond length of up to ±0.3 in units of the normalized bond length, so that any minimzation will

fail with this kind of potential. To circumvent that problem, I have expanded the potential by a

fourth-order term while leaving the shape of the compressive half unaltered. To determine the

fourth order coefficient, I have first fitted the compressive part up to the equilibirum position of

the third order polynomial with a Morse potential

E(x) = a(1− e−bx)2, (B.1)

which is an empirical intra moelcular potential often used in molecular dynamics, but which

is, due to the exponential term, expensive to evaluate in terms of calculation time. Like this,
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the tensile part of the potential is still not based on any physical property, but it is, incontrast

to the third order polynomial, monotonically rising, approaching an upper limit at +∞. This

Morse potential is finally fitted by a fourth order polynominal, which is used in the minimization

process. As mentioned in section 4.1.2, the minimizer ends up at a local minimum of the total

strain energy more frequently, using the fourth order polynominal, than in the case of using a

harmonic potential. The reason might be, that the minimizer is having problems to determine the

step-length and direction in parameter space in the minimization process, when the derivative of

the potential, i.e. the force, has a rather complex dependence on elongation. It turned out, that the

minimization result is improved, if the energy is minimized a second time with an intermediate

shaking of the structure, so that the atoms are randomly displaced from their relaxed position.
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C. Useful information for pressure

experiments
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Figure C.1: Melting curve of 4He after [87].
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[19] K. Häusler, K. Eberl, F. Noll and A. Trampert. “Strong alignment of self-assembling InP

quantum dots.” Phys. Rev. B 54, 4913 (1996).
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