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ABSTRACT 

Modelbasierte optimale Versuchsplanung hat in den letzten beiden Jahrzehnten immer 

mehr an Bedeutung gewonnen, vor allem bei verfahrenstechnischen, bio-chemischen 

sowie chemischen Anwendungen. Durch geplante Kontrolltrajektorien können 

Experimente so optimiert werden, dass maximaler Informationsgehalt bei minimalem 

Experimentaufwand gewonnen werden kann. Das Potential, Zeit und Ressourcen 

dadurch zu sparen, ist in den meisten Anwendungsfällen enorm. Mit dem simultanen 

Optimierungsansatz wird eine effiziente Methode vorgestellt, die erfolgreich auf die 

Problemstellung der optimalen Versuchsplanung angewendet wurde. Der Hauptbeitrag 

dieser Arbeit ist die mathematische Herleitung der optimalen Versuchsplanung als 

simultanes Optimierungsproblem, dessen Kernpunkt in der totalen Diskretisierung des 

Systemmodels und der Sensitivitätsgleichungen liegt. Damit wird das ursprüngliche 

Optimalsteuerungsproblem in ein NLP Problem umgewandelt, das effizienter und 

robuster mit globalen Optimierungsalgorithmen gelöst wird. Mit dem vorgestellten 

Ansatz können alle Anforderungen an ein fortgeschrittenes optimales Versuchs-

planungsproblem adressiert werden. Dieses beinhaltet die flexible Verwendung von 

Kontrolltrajektorien unterschiedlicher Ordnungen, die Optimierung von Anfangs-

bedingungen, striktes Einhalten der Steuerungs- und Prozessbeschränkungen, die 

Einschränkung an Probenentnahmen und Experimentdauer und vor allem eine optimale 

adaptive Sampling-Strategie. Die Besonderheit hierbei ist, dass durch die simultane 

Formulierung das gesamte System an Sensitivitäten höherer Ordnung weggelassen 

werden kann, da es in einer NLP-Formulierung möglich ist, nach allen 

Optimierungsvariablen direkt abzuleiten. Weiterhin wurde analytisch hergeleitet, dass 

die Struktur der Jacobi-Matrizen von den Nebenbedingungen besonders dünnbesetzt ist 

und dass die meisten Terme in den Ableitungen erster Ordnung für die Berechnung der 

Ableitungen höherer Ordnungen wiederverwendet werden können. Zusammengefasst 

wurde ein allgemeingültiger Ansatz formuliert, mit dem im Gegensatz zum 

konventionellen sequentiellen Ansatz höhere optimale Versuchsplanungsanwendungen 

gelöst werden können mit flexibleren Problemformulierungen und robusteren 

Lösungen.  

Die Anwendung auf einen theoretischen instabilen CSTR Prozess mit Kopplung der 

Energiebilanz hat gezeigt, dass mit dem vorgestellten Ansatz ein optimales Ergebnis, 
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während mit kommerziellen Software-Tools, die den Stand der Technik verkörpern, 

keine zulässige Lösung gefunden werden konnte. Mit einer weiteren Anwendung auf 

ein Schätzproblem von komplexen Reaktionskinetikparametern einer Rhodium-

katalysierten Hydroformylierung wird veranschaulicht, dass im Gegensatz zu 

konventionellen Versuchsplanungsmethoden der experimentelle Aufwand drastisch 

reduziert werden konnte bei besseren Parameterwerten und Konfidenzintervallen.     
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ABSTRACT 

Model-based optimal experimental design gains more and more impact through the last 

two decades, especially regarding applications in chemical, bio-chemical and process 

engineering. Experiments are optimized by planned control trajectories so that 

maximum information can be provided with minimum experimental effort. Hence, there 

is an enormous potential for saving time and resources in most application cases. The 

simultaneous optimization approach is presented which describes an efficient strategy 

for solving the increasing complex problem formulation to optimal experimental design. 

The main contribution of this thesis is the mathematical derivation of optimal 

experimental task formulated as a simultaneous optimization problem, whose crucial 

point lies in the total discretization of the dynamic system model as well as the 

sensitivities equations. Thus the original optimal control problem is converted to a NLP 

problem which can be solved more efficient and more robust via global optimization 

algorithms. Furthermore the proposed approach covers all requirements of an advanced 

optimal experimental design problem. These are in particular flexible application of 

control trajectories of different orders, optimization of the initial conditions, strict 

compliance to process constraints with respect to the controls and especially the state 

variables, limitation on the sampling number and experiment duration and especially an 

adaptive optimal sampling strategy. The crucial advantage of the simultaneous approach 

is that the entire system of higher order sensitivities can be left out, since all equation 

constraints can be directly differentiated with respect to the optimization variables. 

Furthermore it has been analytically derived, that the structure of the Jacobian of the 

constraints are extremely sparse and most parts of the first-order constraint derivatives 

can be reused for the calculation of derivatives of higher orders. Altogether, a universal 

approach has been created so as to solve more complex optimal experimental design 

tasks providing full flexibility of the problem formulation and robustness of the results.   

The application on an instable CSTR process including the energy balance has shown 

that an optimal result is obtained with the simultaneous approach whereas state-of-the-

arts commercial software tools cannot find any feasible solution. Moreover, the 

application on a parameter estimation problem of complexed reaction kinetic 

parameters of a Rhodium-catalyzed hydroformylation reaction process shows that in 

contrast to the conventional approach of design of experiments the experimental effort 
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could be drastically reduced at better estimated parameter values and confidence 

intervals.  
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1 Introduction 

1.1  Problem and objectives 

In the field of experimental design, the name Fisher has more impact than anyone else 

since the 1920s. Terminologies like Fisher distribution, maximum likelihood and 

especially Fisher information matrix (FIM) are still characterizing the work of the 

experimental design community. It is Fisher’s insight that is the driving force of this 

work that instead of accepting the fate that experiments which were carried out has no 

impact for a posteriori data analysis, one should a priori include the methods of design 

of experiments so as to avoid meaning less experiment results. This leads to considering 

parameter uncertainties and information content of experiments at the very early stage 

of a process investigation or more generally at every process development step.    

Since the last two decades concepts of design of experiments have been carried from 

linear dependencies to dynamic nonlinear models especially in the field of chemical 

engineering. Classical methodologies of statistical design of experiments such as 

factorial design, response surface method or more generally linear regression methods 

reach their limits when it comes to complex reaction kinetics, thermodynamic and mass 

transfer phenomena. Here engineers mostly are faced with complex processes which 

have nonlinear and time-dependent characters. In contrast to the parameters of linear 

regression models which are in general unbounded scalars, their model parameters have 

physical meanings and therefore obey physical limitations. On the other hand, there are 

more degrees of freedom because of their time-dependent character. The control or 

perturbation decisions are not only at the beginning of the process and/or constant but 

can rather be dynamically changed throughout the entire process. This leads to a 

formulation of dynamic design of experiments as an optimal control problem which is 

often referred in literature as optimal experimental design (OED). The degrees of 

freedom are time-dependent control trajectories and the objective functions are function 

of the dynamic FIM in case of improving posteriori parameter estimations, or function 

of the divergence of competing models in case of model discrimination. This work 

focusses on improving parameter estimations but the methodology can be extended to 

the latter case in a straightforward way. 
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The step to time-dependent processes brings not only more degrees of freedom but also 

new challenges. First, the choice of the optimal initial conditions is crucial for the 

design of batch and semi-batch experiments, in particular regarding the estimation of 

reaction kinetic parameters. Secondly, the order of the dynamic control trajectories 

should be flexible. In chemical engineering control types of zero-order (step-control) 

and first-order (ramp-control) have been found as most relevant since they cover most 

of the control structures of chemical processes, for example flow rate, temperature, 

pressure, stirrer speed, inlet concentration etc... Control types of higher orders are 

generally unwanted since tracking of their trajectories is hardly to realize in practice. 

Another important issue is related to constraints on control and state variables. The first 

issue mostly reflects technical limitations of the control structure of the process. 

Whereas the second point is crucial for product specifications and especially for the 

process safety which basically is the most important issue regarding process operation. 

Therefore a strict compliance to the constraints on the state variables is indispensable. 

Furthermore, a proper sampling strategy has a big impact on the subsequent parameter 

estimation results since parameter estimation are carried out based on measurements 

which has to be taken during the experiments. Therefore, the OASE has been introduced 

which properly gives the answer to the questions of “where” and “when” to measure. 

Finally, limitations on the sampling numbers of each measured variable and the total 

experiment time are also essential.   
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Based on the discussed requirements above an advanced OED formulation has been 

defined for this work which is illustrated in Figure 1.1: 

 

Figure 1.1 Advanced OED - formulation 

The summarized requirements are: 

 Optimization of the initial conditions 

 Dynamic control trajectories of different types (steps, ramps, ...) 

 Strict compliance to process constraints (states and controls) 

 Optimal adaptive sampling strategy (OASE) 

 Limitation on sampling number and experiment duration 

The simultaneous optimization approach to OED represents the key contribution in this 

thesis, which has the advantage over the conventional approaches that it covers all 

requirements of an advanced OED formulation (Figure 1.1). A more detailed 

introduction to the differences between conventional and the new approach is given in 

the next subsection following by an engineering application, which aims to motivate 
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and lead the reader to the field of OED and the related optimization strategies. After the 

introduction in chapter one, chapter two presents the fundamental theories on which 

OED is built on while giving a short introduction to the theory of statistical analysis 

regarding the parameter estimation problem. Furthermore, the solution of the given 

OED problem is formulated via the simultaneous optimization approach and the 

derivation of the derivatives of the objective function as well as the constraints. Chapter 

three gives a detailed insight to the solution and implementation strategies of the 

presented optimization approach. Strength and advantages of the applied solution 

strategy is described step by step. Two application examples are given in chapter four. 

The first application example is related to an unstable CSTR-process whereas the 

second application example is related to a complex estimation problem of reaction 

kinetic parameters. The last chapter summarizes the thesis and gives outlooks and 

suggestions for future investigations. 

1.2 Relevance of the work 

There are only few developed program packages which solve with different strategies 

the presented OED task. State-of-the-art programs are dynamic optimization methods 

with embedded DAE solvers which are referred here as sequential approaches. 

Backbone of these methods are efficient DAE integration algorithms, which solve the 

system with the associated sensitivities-state equation system as initial value problems 

(Barz et al. 2011; Li & Petzold 1999; Albersmeyer & Bock 2009). The subsequent 

connection of the calculated state variables and gradient information to NLP-optimizers 

can be carried out in a straightforward way. A distinction is made here between the 

single shooting and the multiple shooting approaches.  
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Figure 1.2 Single shooting optimization approach 

It is well known that single shooting methods (Figure 1.2) generally has troubles with 

unstable systems, since computed control outputs during the optimization procedure 

may lead the connected DAE-solver into unstable regions, where convergence is not 

achieved because of unbounded trajectories. Out of this reason, multiple shooting 

methods were introduced in the past (Bock & Pitt 1984; Bauer et al. 2000). Basically, 

the functions of the state variables are divided into small time periods, in which the 

models are then also solved by DAE-solvers (Figure 1.3). In contrast to the single 

shooting approach, instability and poor conditioning of the problem can then be 

overcome since additional inequality constraints can be formulated so as to set bounds 

on state variables. However, this feature only yields for the endpoints of each element. 

All sequential approaches are based on DAE solvers, and thus, the solution of the 

extended sensitivities-state equation system has to be integrated in each optimization 

step. This can require an extensive computational load since the integration of state 

variables and target sensitivities constitute the main costs of the optimization process, in 

particular if the system model includes many states, parameters, and especially control 

variables. Another common disadvantage of both methods relates to constraints on state 

variables, which therein can only be considered indirectly by approximations. Further 

disadvantages are shown in (Cervantes & Biegler 2000; Shivakumar & Biegler 2006) in 
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more detail while discussing path constraints and dense block structure with respect to 

constraint gradients.  

 

Figure 1.3 Multiple shooting optimization approach 

On the other hand there are “direct transcription” methods which lead to a simultaneous 

approach (Figure 1.4) (Biegler 2010). The crucial point of the simultaneous formulation 

is the total discretization of the sensitivities-state equation system into equality 

constraints resulting in a NLP-optimization problem. Hereby it is possible to calculate 

the derivatives of the experimental design criteria directly as functions of the discretized 

sensitivity variables and to exploit the sparse-structure of the constraint derivatives to a 

full capacity. Inequality conditions for state and control variables can then directly be 

embedded into the formulation over the whole domain and therefore can overcome 

convergence difficulties of sequential optimization approaches. A further advantage is 

the implementation of control functions of flexible order, which can be treated 

straightforwardly due to the same discretization scheme as the state variables. 
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Figure 1.4 Simultaneous optimization approach 

It is worthwhile to point out that there are two state-of-the-art software tools, which 

solve OED tasks. The first one is the experimental design package of the commercial 

software gPROMS, which uses the sequential optimization approach (Galvanin et al. 

2007; Franceschini & Macchietto 2007; Galvanin et al. 2009). As pointed out, the main 

drawback of this approach is that it cannot handle unstable systems properly (see 

section 4.1). Furthermore it is possible to choose in gPROMS controls of different types 

(zero- and first-order), but it is not possible to include the continuity condition for first-

order controls. Hence the problems coming with the implementation of discontinuous 

control trajectories cannot be overcome with this package. The second one is VPLAN, 

which is developed by the “BASF Junior Research Group Optimum Experimental 

Design” of the University Heidelberg using the multiple shooting optimization approach 

(Schöneberger et al. 2009; Körkel et al. 2004; Arellano-Garcia et al. 2007). Up to now, 

it only supports optimization results with zero-order controls.   

1.3 An introduction application example 

Goal of process modeling tasks is to have a trustful mathematical description which 

means a feasible model with a high confident parameter set (Englezos & Kalogerakis 

2000). In the optimal case, the model should describe the process within the entire 

operating space rather than only individual operating points. In other words, assuming 

that an a priori known model structure is the best description of the process 

mechanisms, its parameters must be valid and trustful for every possible operating 

condition. This aim can be accomplished by the methods of experimental design so as to 
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maximize the parameter accuracy or in other words minimizing their uncertainties 

(Fisher 1971; Steinberg & Hunter 1984; Montgomery 2001). Without loss of generality 

a comparison between the factorial design, the sequential and the simultaneous 

optimization approach to OED is discussed based on the next illustrating example so as 

to introduce the advantages of the developed simultaneous optimization approach. 

For this purpose, the reactor of a biomass reaction process is shown in Figure1.5. The 

considered model consists of two differential equations and a reaction rate, which 

together describe a biomass population and its consumption of substrate (Espie & 

Macchietto 1989) (as seen in equations ( 1.1 ) to ( 1.3 )). The system state variables are 

the biomass concentration cB and the substrate concentration cS. The reactor is fed by a 

substrate stream which provides two control possibilities. The first one is addressed as 

the dilution factor u1, which can be regarded as the feed stream and the second one is 

the inlet substrate concentrationu2. It is assumed that there are two unknown model 

parameters θ1 andθ2. Both have an initial guess of 0.5. The parameters θ3 and θ4 are 

fixed in this case study to their reference values 0.05 and 0.55 respectively. 

 

Figure 1.5 Semibatch biomass reactor 

 dcB
dt

= ṙ − (u1 + θ4)cB ( 1.1 ) 

 dcS
dt
= −

ṙ

θ3
+ (u2 − cS)u1 ( 1.2 ) 

 ṙ = θ1
cBcS
θ2 + cS

 ( 1.3 ) 
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Technical limitations of the system have to be adhered to the following constraints on 

state and control variables: 

 1 g/l ≤  cB ≤ 25 g/l, 0.01 g/l ≤  cS ≤ 25 g/l ( 1.4) 

 0.05 h−1 ≤ u1  ≤ 5 h
−1, 0.2 g/l ≤  u2  ≤ 35 g/l ( 1.5 ) 

 1 g/l ≤  cB,0 ≤ 25 g/l, 0.1 g/l ≤  cS,0 ≤ 25 g/l ( 1.6 ) 

The lower bounds on the state variables guarantee a minimum population of the 

biomass and a minimum substrate amount so as to feed the biomass. The bounds on the 

control variables are taken from (Asprey & Macchietto 2002). The aim of the 

experimental design task is to minimize the parameter uncertainties (see section 2.2) by 

running appropriate experiments, such that a best possible identification of the 

parameters θ1,2 can be achieved afterwards. 

1.3.1 Factorial design 

A well-known method is the factorial design approach which has its roots from the 

statistical experimental design analysis (Montgomery 2001).The crucial point of the 

methodology is to divide the space of the manipulating variables into constant levels 

independently of whether they are continuous or discrete. The most common strategies 

are the 2k-design, in which the manipulating variable space is mapped to a LOW and a 

HIGH level and the 3k-design, where an additional MEDIUM level is included. For 

example, applying a 2k-design to the continuous controlu1, one obtains u1
L  = 0.05 h-1 

andu1
H = 5 h-1. A 2k-design is applied to the process controls u1 and u2 leading to 22 

combinations and the 3k-design is applied to the initial conditions cB,0  and cS,0 , and 

thus, leading to 32 combinations as seen in Table 1. This results in an experiment design 

with 36 experiments. 
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Table 1 Design conditions – biomass reactor 

 
LOW MEDIUM HIGH 

u1 0.05 h−1 − 5 h−1 

u2 0.2 g/l − 35 g/l 

cB,0 1 g/l 12 g/l 25 g/l 

cS,0 0.1 g/l 12 g/l 25 g/l 

Since the factorial design method only takes into account the manipulating variable 

space but neither the model structure nor the process constraints, 27 (75%) of the 

planned experiments violate the constraints on the states variables as listed in Table 31 

(appendix). The 9 remaining admissible experiments are carried out for the subsequent 

parameter estimation task in the “real reactor” which is represented by the process 

model with the true parameter set [θ1 = 0.31; θ2 = 0.18]. The admissible experiment 

“L-L-L-H” with the according conditions is presented as an example in Table 2. Since 

the sampling policy is not taken into account in the factorial design approach the 

samplings are chosen to be equidistant. 

Table 2 Factorial design – admissible experiment “L-L-L-H” 

process controls 
 

process variables 
 

u1(t) = const. 0.05 h−1 cB(t = 0) 1 g/l 

u2(t) = const. 0.2 g/l cS(t = 0) 25 g/l 

experiment duration 10 h 

sampling vector [h] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

The subsequent parameter estimation results were obtained from the gPROMS’s 

parameter estimation toolbox as shown in Table 3. 

. 
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Table 3 Parameter estimation results – Factorial design 

 
Initial guess Final value Standard deviation 

θ1 0.5 0.31001 0.0003114 

θ2 0.5 0.18024 0.006377 

The standard deviations reveal properly estimated parameters which are very close to 

the real ones θ1
∗ = 0.31 and θ2

∗ = 0.18. Nevertheless, the price to achieve that was too 

high since 75% of the experiments were useless and 9 experiments with each 10 hours 

experiment time is still far from optimal experimental conditions. Therefore, one single 

optimized experiment is used in the next section so as to emphasize the difference 

between factorial design and OED.   

1.3.2 Optimal experimental design 

The crucial advantage of the OED approach is that the processes are dynamically 

addressed, and thus, exploiting their time-dependent character. Therefore, optimal 

control trajectories are used instead of constant control levels. Furthermore, the 

formulation of the OASE, which gives the answer to “where” and “when” to measure, 

can be applied in a straightforward way. Applying this concept to the factorial design 

approach would give thousands experimental setups, which is simply impossible to 

carry out in an economically meaningful way, thus, the problem is rather formulated as 

an OED problem. 

Sequential optimization approach 

First, the OED task was solved by the commercial software gPROMS as the reference 

case, which uses the sequential optimization approach (see 2.4.2). The dilution factor u1 

is chosen to be a linear function (first order), whereas the inlet concentration u2  is 

chosen to be a step function (zero-order). Furthermore, there are 10 time varying 

decision intervals in which the control profiles are optimized. The process constraints    

( 1.4) - ( 1.6 ) are included in the optimization task.   
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Figure 1.6 Control trajectory of the dilution factor, sequential approach 

 

Figure 1.7 Control trajectory of the inlet concentration, sequential approach 

The optimized control trajectories for u1 and u2 can be seen in Figure 1.6 and Figure 

1.7. The discontinuities in the control profile of u1 are especially noticeable. Although 

the commercial tool gPROMS allows choosing between zero and first-order controls, 

there is no way to adjust the continuity condition for the control trajectories, and thus, 

the result for u1  can hardly be implemented in practice. Furthermore, the resulting 

profile for u2is not optimal. Sinceu2 linearly enters the system formulation, it has to hit 

its bounds (bang-bang solution) for optimality (see 3.5). The corresponding state 
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variables profiles are presented in Figure 1.8 and Figure 1.9 including the measurements 

resulting from the OASE. 

 

Figure 1.8 Concentration profile of the biomass, sequential approach 

 

Figure 1.9 Concentration profile of the substrate, sequential approach 

The profile for the substrate concentration overshoots its upper bound and thus clearly 

violating the process constraints. This is another drawback resulting from the sequential 

optimization approach since constraints on the state variables can only be considered by 

approximations. Moreover the optimized results for the initial conditions of cB and cS 

are also not optimal since they also linearly enters the system formulation but do not hit 
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their bounds (see 3.5). The subsequent parameter estimation for this case is shown in 

Table 4.  

Table 4 Parameter estimation results – Sequential approach 

 
Initial guess Final value Standard deviation 

θ1 0.5 0.30993 0.005405 

θ2 0.5 0.17963 0.05735 

The estimated parameter values and their standard deviations are slightly worse than the 

results obtained from the factorial design. However, it has to be considered that only 

one experiment was needed for matching the real parameter values with acceptable 

deviations. 

Simultaneous optimization approach 

Although state-of-the-art commercial tools with design of experiments packages 

basically address the OED problems, they still lack in terms of crucial optimization 

aspects, for example parameterization of the controls, process constraints and “global” 

optimality since they are formulated based on sequential optimization approaches. The 

results for the optimal control trajectories via the simultaneous optimization approach as 

shown in Figure 1.10 and Figure 1.11 have been obtained from the implementation with 

the global optimizer BARON in GAMS (see section 3.3 and 3.4 in more detail) 

(Neumaier et al. 2005). The implementation of different control order can be carried out 

in a straightforward way including continuity conditions due to the simultaneous 

formulation, see OP2 in equation  ( 2.58 ).  
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Figure 1.10 Control trajectories of the dilution factor, simultaneous approach 

 

Figure 1.11 Control trajectories of the inlet concentration, simultaneous approach 

Moreover, the optimal trajectory regarding u2 is optimal since it results in a bang-bang 

solution. Even if the u2 is set in this case to a linear type, the outcome still hits the upper 

constraint bound as shown in Figure 1.11. 
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Figure 1.12 Concentration profile of the biomass, simultaneous approach 

 

Figure 1.13 Concentration profile of the substrate, simultaneous approach 

The corresponding profiles of the state variables are shown in Figure 1.12 and Figure 

1.13 including the measurements resulting from the optimal sampling strategy. The 

concentration profiles fulfill the process constraints in both cases. In contrast to the 

sequential approach, the optimized results for the initial conditions of cB and cS hit their 

upper bounds with  cB(t = 0) = 25 g/l  and cS(t = 0) = 25 g/l , and thus, fulfilling 

optimality. The subsequent parameter estimation for this case is shown in Table 5.      
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Table 5 Parameter estimation results – Simultaneous approach 

 
Initial Guess Final value Standard deviation 

θ1 0.5 0.31000 0.0004851 

θ2 0.5 0.18060 0.01578 

The comparison between the three investigated methods is given in Table 6. 

Table 6 Parameter estimation results – comparison between all approaches 

 
Factorial design 

Sequential 

approach 

Simultaneous 

approach 
Reference value 

θ1 Final value 0.31001 0.30993 0.31000 0.31 

θ1 Standard 

deviation 
0.00031 0.00541 0.00049 - 

θ2 Final value 0.18024 0.17963 0.18060 0.18 

θ2 Standard 

deviation 
0.00638 0.05735 0.01578 - 

From this small scale introductory example it becomes clear that if it comes down to 

processes, which has a dynamic character and where process constraints has to be 

strictly obeyed, the OED formulation is superior to the classical factorial design 

approach because of two main reasons. The first point is that OED approaches address 

the problem dynamically, and thus, gaining more information from the dynamic process 

behavior (Galvanin et al. 2011; Telen et al. 2012). The second point is the lack of the 

factorial design to include process constraints into the problem formulation. 

Furthermore, this example also reveals that the simultaneous optimization formulation 

reaches better results compared to the sequential approach. One of the important aspects 

is that global optimizers can handle the simultaneous optimization formulation much 

better than a sequential formulation, as seen by the presented results above. Another 

important point is that strict constraints on state variables of the process can be handled 

more properly as demonstrated by the application study in section 4.1.   
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2 Experimental design – state-of-the-art and theoretical background 

The fundamental problem of the investigated OED approach is a parameter estimation 

problem. Let ŷ be the vector of measurement values from the process state variables of 

interest, y  its corresponding model description and δ ≔ ŷ − y  the difference or the 

distance between ŷ  and  y . Then, the most common formulation for the parameter 

estimation problem represents the minimization of the scalar product δTδ, which is also 

known as the method of least squares1 (LSE) (Geer 2008; Raol et al. 2004).   

 δTδ = (ŷ − y)
T

(ŷ − y) → min ( 2.1 ) 

In chemical engineering, y(t, θ, u, z) generally is modeled as a function of time t, the 

parameters  θ , the manipulated variables  u , and sometimes a linear combination or 

nonlinear function of other state variables  z . Thus, it is plausible that, how the 

experiments are controlled, will fundamentally affect the outcome of the subsequent 

parameter estimation procedure. Furthermore, statistical analysis with respect to 

confidence regions of the estimated parameters is crucial for every proper estimation 

results. Since the topic is very complex, this chapter aims at giving a short overview 

over the theory of the whole domain forging a bridge between basic terms of statistical 

analysis regarding parameter estimation and the formulation of the advanced OED 

problem. The theory of linear regression analysis constitutes the first part including 

basic concepts of statistical analysis. The second part draws a line to the field of 

nonlinear regression analysis and finally the third part presents the derivation of the 

OED formulation.    

2.1 Linear regression 

In the linear regression analysis the model functions are linear regarding the parameters 

θ and also called the response surface (Box & Draper 1987; Myers et al. 2009; Khuri & 

Mukhopadhyay 2010). 

                                                 
1 Other objective functions of the minimization task are for example the Euclidean norm ‖ŷ − y‖ → 𝑚𝑖𝑛 

or the maximum norm ‖ŷ − y‖
∞
→ 𝑚𝑖𝑛 
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y(x1,…,Nx , θ1,…,Nθ) = θ1 + θ2f1(x1,…,Nx) + ⋯+ θNθfNθ−1(x1,…,Nx)

= θTf 
( 2.2 ) 

with θ = (

θ1
θ2
⋮
θNθ

) , f =

(

 

1
f1(x1,…,Nx)

⋮
fNθ−1(x1,…,Nx))

   

They can be nonlinear regarding the measurement terms fi(x1,…,Nx) for example:   

 y(x1, x2, θ1,…,5) = θ1 + θ2x1 + θ3x2 + θ4x1x2 + θ5x1
2 ( 2.3 ) 

Assume that the model structure is exactly matched and θ∗ is the true parameter set then 

the measurement data can be represented as:  

 
ŷi = y

∗(x1,i, … , xNx,i, θ1,…,Nθ
∗ ) + ϵi 

= θ1
∗ + f1,iθ2

∗ +⋯+ fNθ−1,iθNθ
∗ + ϵi, i = 1,… , Nm 

( 2.4 ) 

Or more compact with a matrix notation:  

 ŷ = y∗ + ϵ = Fθ∗ + ϵ ( 2.5 ) 

where 

F ≔ [

1 f1,1 ⋯ fNθ−1,1
⋮ ⋮ ⋱ ⋮
1 f1,Ny ⋯ fNθ−1,Nm

] 

( 2.6 ) 

Here ϵi represents the measurement errors which are non-correlated zero-mean-value 

and normal distributed. The objective function is defined as 

 ΦLSE = δ
Tδ = (ŷ − (Fθ + ϵ))

T

(ŷ − (Fθ + ϵ)) → min ( 2.7 ) 

The necessary condition for the minimization task is 

 

∂Φ

𝜕θ
=⏞
!

0 

−2FTŷ + 2FTFθ = 0 

( 2.8 ) 

Therefore the estimated parameter vector results in 

 θ̂ = (FTF)−1FTŷ ( 2.9 ) 
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Important statistical properties of the estimated parameters are discussed in the 

following.   

2.1.1 Expected value of the estimation 

The expectation operator is applied on the estimation results in ( 2.9 ) to yield the 

expected value of the estimation. 

 

E(θ̂)  = E ((FTF)−1FTŷ) = (FTF)−1FTE (ŷ) 

= (FTF)−1FTE(y∗ + ϵ) = (FTF)−1FT (y∗ + E(ϵ)⏟
0

) 

( 2.10 ) 

Since the measurement errors have a zero mean value, the expected value of the 

estimation is the true parameter set. As a result one gets for the linear case an unbiased 

estimator. 

 E(θ̂)  = (FTF)−1FTy∗ = θ∗ ( 2.11 ) 

2.1.2 Covariance of the estimated parameters 

The covariance of the estimated parameters is one important variable regarding the 

evaluation of the parameter estimation. It is defined as 

 Cov(θ̂) = E [(θ̂ − E(θ̂)) (θ̂ − E(θ̂))
T

] ( 2.12 ) 

And results with ( 2.11 ) and ( 2.9 ) in 

 

Cov(θ̂) = E [(θ̂ − θ∗)(θ̂ − θ∗)
T
] 

= E [((FTF)−1FTŷ

− (FTF)−1FTy∗) ((FTF)−1FTŷ − (FTF)−1FTy∗)
T

] 

= E [((FTF)−1FT (ŷ − y∗)) ((FTF)−1FT (ŷ − y∗))
T

] 

= (FTF)−1FTE [(ŷ − y∗) (ŷ − y∗)
T

] F(FTF)−1 

( 2.13 ) 
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Assume for simplicity that the variances σ of all measurements errors are the same, then 

with Σ  as the measurement covariance matrix and σ  as the simplified constant 

measurement variance, one obtains 

 
E(δδT) = E [(ŷ − y∗) (ŷ − y∗)

T

] 

= E(ϵϵT) = Σ = σ2I 

( 2.14 ) 

By substituting in ( 2.13 ), one gets the simplified form of the estimation covariance 

matrix Cθ 

 
Cov(θ̂) = (FTF)−1FTF(FTF)−1σ2 

= (FTF)−1σ2 =: Cθ 
( 2.15 ) 

Consequently, one gets for each estimated parameter θi the variance 

 D2(θi) = Cov(θi, θi) = κi ( 2.16 ) 

with κi as the diagonal elements of the estimation covariance matrix Cθ or alternatively 

 D2(θi) = σ
2ci ( 2.17 ) 

with κi = σ
2ci, and ci as the diagonal elements of the matrix (FTF)−1. In general the 

variance of the measurements σ is unknown and approximated with the sample 

variances. It is 

 σ2~s2 ≔
1

Nm
∑(ŷi − yi)

2

Nm

i=1

 ( 2.18 ) 

Thus, it follows that 

 κi~s
2ci ( 2.19 ) 

2.1.3 Distribution function of the estimated parameters 

A proper parameter estimation result does not only provide the estimated parameters but 

also the information about their confidence. In other words, how much can one trust the 

estimated parameter values. For this purpose it is necessary to have a closer look to the 

estimated parameter from the statistical point of view.  
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It was Gosset who stated that an estimator based on normal distributed data is not also 

normal but t-distributed if the necessary variance of the data σ2 is unknown and the 

samplings number is small (Gosset 1908). Generally this applies to parameter 

estimation tasks in chemical engineering. Therefore the t-distribution allows the 

calculation of the distribution of the difference between the parameters and their 

estimators (Senn & Richardson 1994; Sheynin 1995). It becomes the normal 

distribution if the number of samplings reaches infinity Nm → ∞ (Hogg et al. 2012). For 

the probability density function of a parameter θi as a function of its estimator θ̂i and 

variance κi is given in ( 2.20 ) and is illustrated in Figure 2.1. 

 p(θi|θ̂i, κi) =
1

√2πκi
exp (−

1

2κi
(θi − θ̂i)

2
) ( 2.20 ) 

 

Figure 2.1 Parameter probability density function – normal distribution 

It provides an intuitive knowledge about the confidence of the estimator based on the 

variance κi. The narrower the curve and the smaller the variance the more we intuitively 

trust the estimated parameter. However, the characterizing variance κi or rather σ2 is 

generally unknown so that the sample variance s2 ( 2.18 ) is used instead. Furthermore, 

one likes to have a statistical statement like: “The true parameter value lies with a 99% 
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confidence between the interval [a, b]”. These constraints match the application of the 

t-test, which is based on the t-distribution theory as mention above. In this context, the 

t-values are function of the significance level α  and the sampling amount Nm  and 

determine the confidence interval of the estimated parameter values adding significance 

to the estimated parameters (Venables & Ripley 2003). Based on the test value 

 
|θ̂i − θi

∗|

s√ci
~tNm−Nθ ( 2.21 ) 

a 95% confidence interval (α = 5) is given as 

 θ̂i − s√citα,Nm−Nθ ≤ θi
∗ ≤ θ̂i + s√citα,Nm−Nθ ( 2.22 ) 

The correct statistical statement based on this is: “If one continues with 100 other 

experiments and calculated for each the corresponding 95% confidence interval, then 

the true parameter value will be included in 95 of these 100 confidence intervals.” 

Alternatively one can write for ( 2.22 ) 

 
|θ̂i − θi

∗|

√ci
≤ stα,Nm−Nθ ( 2.23 ) 

Furthermore, it is more convenience to define the square of ( 2.23 ) with respect to the 

analysis of confidence intervals 

 
(θ̂i − θi

∗)
2

ci
≤ s2Fα,Nm−Nθ ( 2.24 ) 

Here, Fα,Nm−Nθ ≔ tα,Nm−Nθ
2  is known as the Fisher-Snedecor- or short F-distribution 

(Phillips 1982; Johnson et al. 1995). 

2.1.4 Confidence region 

The term of confidence interval in the previous section can be generalized for the 

multidimensional case to a confidence region. It is  

 (θi
∗ − θ̂i)

T
Cθ
−1(θi

∗ − θ̂i) ≤ Nθs
2Fα,Nm−Nθ ( 2.25 ) 
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The left term in ( 2.25 ) forms a confidence ellipsoid which is illustrated below for Nθ =

3.  

 

Figure 2.2 Confidence ellipsoid 

As seen in Figure 2.2, there are three corresponding confidence intervals for each 

estimated parameter θ̂i and also three confidence region for each parameter pair. The 

vector of estimated parameters θ̂  is a stochastic variable whose corresponding 

confidence region provides a concept of uncertainties. The wider the confidence region 

the more uncertain are the estimated parameters  θ̂ . Therefore, the volume of the 

confidence ellipsoid V(θ̂) is a quantitative measurement for the uncertainties of the 

estimation results and is denoted as follows (Bard 1973) 

 V(θ̂)~√det Cθ ( 2.26 ) 

Therefore a meaningful experimental design task is minimizing det Cθ which is also 

known as the D-optimal criterion. The next section presents an overview of 

optimization criteria based on the concept of confidence region.  
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2.2 Experimental design criteria 

Based on the estimation covariance matrix Cθ, the common experimental design criteria 

are presented in Table 7 (Steinberg & Hunter 1984; Wong 1994; Franceschini & 

Macchietto 2008).  

Table 7 Experimental design criteria – Covariance matrix 

A-criterion trace Cθ → min 
minimizing the average variance 

(average axis radius length) 

D-criterion det Cθ → min minimizing the ellipsoid volume 

E-criterion λmax(Cθ) → min 
minimizing the largest variance 

(largest axis radius length) 

M-criterion √ci,max → min 
minimizing the largest side length of 

the enclosing box 

A graphical interpretation of the presented criteria is illustrated by Figure 2.3. 

 

Figure 2.3 Confidence ellipsoid and common experimental design criteria for Nθ = 2 
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The experimental design criteria can also be formulated as functions of the FIM as 

shown in the next sections in more detail (see equation ( 2.34 ) and subsection 2.4.3). 

Since the aim of this work is the introduction of the formulation of the simultaneous 

optimization approach to OED, the application of the methodology is focused on the 

most often used criteria in practice, which are the A-, D- and E-criterion (Steinberg & 

Hunter 1984).  

2.3 Nonlinear time dependent regression 

In contrast to linear regression, the process models in chemical engineering are 

nonlinear in the model parameters. They are generally not formulated explicitly like in  

( 2.3 ) but rather represented by a DAE-system: 

 
0 = g(ż(t), z(t), u(t), θ) 

z(t = 0) = z0 

( 2.27 ) 

Here z ∈ RNz represents the state variables, u ∈ RNu the control variables and θ ∈ RNθ 

the parameters respectively. The Maximum-Likelihood-Estimation (MLE) is generally 

used regarding the theory of nonlinear regression (Bard 1973; Pratt 1976; Aldrich 

1997). According to the MLE, the probability that a measurement ẑ of data region δẐ is 

represented by a certain corresponding parameter vector θ̂  is given as  p(ẑ|θ̂)δẐ ≔

L(ẑ|θ̂)δẐ  (Le 1990). A heuristic statement of the MLE is then: “The Likelihood 

function has its maximum at the optimal parameter  θ∗ , thus, among all possible 

parameters θ, the optimal parameter θ∗ is the most probable one which reproduces a 

measurement within the data region  δẐ” (Ghosh & Basu 1988). Assuming that a 

measurement ẑ is normal distributed, the related Likelihood function is then defined as 

 L(ẑ|θ̂) = (2π)−0.5(det Σi)
−0.5 exp (−

1

2
δTΣ−1δ) ( 2.28 ) 

According to equation ( 2.14 ), Σ representes the variances of the measurement errors   

 E(δδT) = E ((ẑ − z)(ẑ − z)
T
) ≔ Σ ( 2.29 ) 

The Likelihood function of an experiment with Nm measurements can be given as the 

product of each individual measurement i.  
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 L(ẑ|θ̂) = (2π)−
Nm
2 ∏(det Σi)

−0.5

Nm

i=1

exp(−
1

2
∑δi

T

Nm

i=1 

Σi
−1δi) ( 2.30 ) 

The goal of the MLE is to maximize the L(ẑ|θ̂) so as to raise the probability that a 

measurement ẑ is reproduced by a certain estimated parameter vector θ̂. However it is 

mathematically more convenient to maximize the logarithm of L(ẑ|θ̂) instead. 

 log (L(ẑ|θ̂)) = K −
1

2
∑log(det Σi)

Nm

i=1

−
1

2
∑δi

T

Nm

i=1 

Σi
−1δi ( 2.31 ) 

Regarding the maximization task, the constant terms in ( 2.31 ) can be left out and thus 

resulting in  

 Φ(θ̂) = −
1

2
∑δi

T

Nm

i=1 

Σi
−1δi → max ( 2.32 ) 

In general the optimization task is formulated as a minimization problem 

 Φ(θ̂) ≔ −2 log (L(ẑ|θ̂)) =∑(ẑi − zi)
T

Nm

i=1 

Σi
−1(ẑi − zi) → min ( 2.33 ) 

As a result, the objective function Φof the MLE has the structure of a LSE with Σ−1 as 

the weighting matrix. Therefore, the theory of confidence region and optimality criteria 

can also be applied to the nonlinear case with a crucial difference. Since the process 

model is nonlinear and time dependent, the estimation covariance matrix Cθ cannot be 

directly calculated anymore as derived in ( 2.15 ) for the linear case. Nevertheless, the 

lower bound of the estimation covariance matrix Cθ can be approximated by the FIM 

according to the asymptotic theory of MLE and the Cramer-Rao inequality (Cramér 

1946; Rao 1945). It is   

 Cθ ≥ MF
−1 = (

∂z

∂θ

T

Σ−1
∂z

∂θ
)

−1

 ( 2.34 ) 

In case of unknown measurement covariance matrix Σ, its approximation can be used 

instead, according to equation ( 2.18 ) 
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 Σ ≈
1

Nm
∑(ẑi − zi)(ẑi − zi)

T

Nm

i=1 

 ( 2.35 ) 

The remaining unknowns are the partial derivatives terms in ( 2.34 ). They are 

sensitivities of the state variables z with respect to the model parameters θ and defined 

as: 

 

Sθ = (s1, ⋯ , sNθ) ≔
∂z̅̅

∂θ̅
∈ RNz×Nθ 

sj ≔
∂z

∂θj
=

(

  
 

∂z1
∂θj
⋮

∂zNz
∂θj )

  
 
∈ RNz×1, j = 1,… , Nθ 

( 2.36 ) 

Furthermore the linear-implicit form of ( 2.27 ) is assumed for the rest of the work since 

it generally applies to chemical engineering process models.  

 
B(z(t), u(t), θ)ż(t) = f(̅z(t), u(t), θ, t), z̅(t = 0) = z̅0 

( 2.37 ) 

The partial derivative with respect to the differential variable ż̅ is usually called the 

mass matrix  B (z(t), u(t), θ) ∈ RNz×Nz . It is independent from ż  for linear-implicit 

systems and might be singular in the presence of algebraic equations. To derive the 

parameter sensitivities Sθ, ( 2.37 ) is reformulated to 

 g(ż(t), z(t), u(t), θ, t) = B(∙)ż(t) − f(z(t), u(t), θ, t) = 0Nz×1 ( 2.38 ) 

and the total differential of ( 2.38 ) is then formed with respect to θ̅: 

 dg

dθ
=
∂g

∂ż

∂z

∂θ
+
∂g

∂z

∂z

∂θ
+
∂g

∂θ
= 0Nz×Nθ 

( 2.39 ) 

resulting in the following  matrix differential equation system: 

 
0Nz×Nθ = B

∂ż

∂θ
+
∂(Bż − f)

∂z

∂z

∂θ
+
∂(Bż − f)

∂θ
 

( 2.40 ) 

The partial derivative with respect to the state variables is defined as Jz: 
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Jz(ż(t), z(t), u(t), θ, t) ≔ (

∂(Bż)

∂z
−
∂f

∂z
) ∈ RNz×Nz 

( 2.41 ) 

The partial derivative with respect to the parameters is defined as Jθ: 

 
Jθ(ż(t), z(t), u(t), θ, t) ≔ (

∂(Bż)

∂θ
−
∂f

∂θ
) ∈ RNz×Nθ 

( 2.42 ) 

By using the definitions of Sθ, Jz and Jθ one can rewrite ( 2.40 ) to: 

 0Nz×Nθ = BṠ(t) + JzS(t) + Jθ 
( 2.43 ) 

By combining ( 2.27 ) and ( 2.43 ) one yields the extended states-sensitivities equation 

system DAE1, which is fundamental for solving OED tasks:    

DAE1 0 = g(ż(t), z(t), u(t), θ, t) 

0 = BṠ(t) + JzS(t) + Jθ 

z(t = 0) = z0, Sθ(t = 0) =
∂z0
∂θ

= 0Nz×Nθ 

( 2.44 ) 

2.4 OED–formulation as an optimal control problem 

The idea to formulate the experimental design task as an optimal control problem has its 

roots in the pioneering work of Mehra in the 70s. The referring term to the problem was 

“Optimal input signals for parameter estimations” (Mehra 1974). Although the treated 

system is linear in the parameters the time-dependency was fully addressed which is the 

crucial aspect of this approach. One decade later, the treatment of the experimental 

design task for nonlinear dynamic models was introduced by Espie, which is formulated 

as DAE-systems and firstly referred to as OED (Espie & Macchietto 1989). Then, not 

all demands of an advanced OED task as presented in Figure 1.1 could be addressed to 

because of the limited possibilities of the DAE-solvers and sequential optimization 

algorithms from that time. State-of-the-art approaches to OED in the past decade have 

been successfully applied using improved sequential approaches with the single-

shooting method (Barz et al. 2013; Franceschini & Macchietto 2007) and using 

improved sequential approaches with the multiple-shooting method (Körkel et al. 2004; 

Bauer et al. 2000).  Recently, the paradigm of the simultaneous optimization strategy 
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has also reached the solution approach to OED, which is referred here as the 

simultaneous approach. The first application of experimental design in the sense of 

large scale optimization was carried out regarding precise parameter estimation and 

model discrimination for temperature programmed reduction experiments (Heidebrecht 

et al. 2011). In particular, the D-optimal criterion was used with an equidistant sampling 

strategy and fixed optimization end time. Nevertheless, this application example neither 

shows the whole strength of the simultaneous optimization approach nor gives the 

derivation of the related theory. The introduction to the generalized formulation and the 

advantages of this new approach has been recently published (Hoang et al. 2013).  

2.4.1 OED – objective function 

In OED, a vector of predicted response variables y̅(t) ∈ RNy  is considered, whose 

elements usually are a subset of the state variables  z̅(t). More generally, predicted 

response variables y̅(t) are formulated as nonlinear measurement functions of the state 

variables.  

 y̅(t) = m̅(z̅(t), u̅(t), θ̅, t) ( 2.45 ) 

Their parameter sensitivities S̅y,θ ∈ R
Ny×Nθ  can be calculated via the chain rule and 

written down directly as nonlinear function of the existing state variables  z̅(t)  and 

sensitivities Sθ with respect to z̅(t). 

 S̅y,θ(t) =

[
 
 
 
 
 
∂m1
∂z1

⋯
∂m1
∂zNz

⋮ ⋱ ⋮
∂mNy
∂z1

⋯
∂mNy
∂zNz ]

 
 
 
 
 

× [s̅1(t) ⋯ s̅Nθ(t)] = Jm,z ⋅ Sθ ( 2.46 ) 

Both ( 2.45 ) and ( 2.46 ) can be straightforwardly included into the existing differential-

algebraic formulation DAE1 in ( 2.44 ). For the sake of simplicity and without loss of 

generality, it is assumed in this work that y̅(t) is a subset of z̅(t) and in particular Ny =

Nz . Therefore, z̅(t) is used when referring to the predicted response variables. 

Moreover, the predicted responses are generally collected at discrete points in time 

tsp ∈ R
Nsp according to the specific sampling points of each measured variable in the 

experiments.  
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 z̅i,sp
T = [zi(tz1,1) zi(tz1,2) ⋯ zi (tz1,Nsp,i)] , i = 1, … , Nz ( 2.47 ) 

It is assumed that the samplings of the measured variables are independent from each 

other. In particular the sampling time tzi,1…Nsp,i and the sampling number Nsp,i of each 

measured variable may be different from each other. The information content of an 

experiment is represented by the FIM MF ∈ R
Nθ×Nθ as introduced in ( 2.34 ). For time 

dependent systems with discrete measurements, the definition is given in this work as 

follows: 

 MF(Ssp) = (Ssp)
T
⋅ Σz ⋅ Ssp ( 2.48 ) 

Where Σz ∈ R
((Ne⋅K)⋅Nz)×((Ne⋅K)⋅Nz)  denotes the measurement covariance matrix and 

Ssp ∈ R
((Ne⋅K)⋅Nz)×Nθ  represents the dynamic sensitivity sampling matrix, which is 

defined in this work as 

 Ssp =

[
 
 
 
 
ω̅11 ∗ s̅1,11 ω̅11 ∗ s̅2,11 ⋯ ω̅11 ∗ s̅Nθ,11

⋮ ⋮ ⋮ ⋮
ω̅1K ∗ s̅1,1K ω̅1K ∗ s̅2,1K ⋱ ω̅1K ∗ s̅Nθ,1K

⋮ ⋮ ⋱ ⋮
ω̅NeK ∗ s̅1,1K ω̅NeK ∗ s̅2,1K ⋯ ω̅NeK ∗ s̅Nθ,1K]

 
 
 
 

 ( 2.49 ) 

with s̅j,lk  as the discrete sensitivity vector and  ω̅lk  as the discrete sampling decision 

vector and ∗ the pointwise multiplication operator.    

 
s̅j,lk ≔

(

 
 
 

∂z1
∂θj
|
lk

⋮
∂zNz
∂θj

|
lk)

 
 
 
, ω̅lk ≔ (

ω1,lk
⋮

ωNz,lk
) 

 l = 1…Ne, k = 1…K 

( 2.50 ) 

A proper sampling strategy is crucial in OED. For this purpose, the OASE is applied to 

the presented simultaneous optimization approach. Each discrete sensitivity  s̅j,lk is 

weighted with its corresponding sampling decision vector ω̅lk  which consists of 

continuous and bounded sampling decision ω ∈ R, 0 ≤ ω ≤ 1.  
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A series of optimal criteria exists in the literature for OED, which aims at maximizing 

system information content or minimizing the parameter correlations. The optimization 

task is mostly equivalent to the maximization of an appropriate measure of the FIM MF 

or minimization of an appropriate measure of the covariance matrix Cθ (Franceschini & 

Macchietto 2008). It has been shown in (Sager 2013) based on the variational principle 

that if the sampling decisions ω linearly enters the Hamilton function, then, the OASE 

always results in a physically meaningful solution, namely 0 or 1. Regarding the 

formulation in ( 2.49 ), ω  quadratically enters the Lagrangian, thus, it is slightly 

different. However, it also results in 0 or 1 because of the strict monotonicity of ω, what 

is discussed in section 3.5 in more detail. It is worth to mention at this point that this 

strict monotonicity can be guaranteed for the formulation with the FIM but not with the 

covariance matrix  Cθ . Thus, the formulation with the FIM is strongly suggested 

regarding the simultaneous optimization approach. Moreover, limited sampling 

numbers Nsp,i is introduced for each state so as to consider the fact that in practice the 

sampling numbers are much smaller than the theoretically maximum one Nsp = Ne ⋅ K. 

Therefore, due to thetheory behind the OASE, exact ∑ Nsp,i
Nz
i=1  of the total Nsp sampling 

decisions become 1 and all the others 0. The resulting optimized sampling vectors ω̅lk 

determine the optimal sampling points in ( 2.47 ). This fact has an enormous impact on 

the optimization algorithm since a much more complicated MINLP formulation can be 

avoided. The application of the OASE is discussed in chapter 0 in more detail.    

2.4.2 Formulation with sequential optimization approaches 

Although the differences between the sequential and the simultaneous optimization 

strategies are crucial, all of them have the extended state sensitivity system DAE1 in 

common. However, the sequential approach additionally needs sensitivities with respect 

to the controls Su and higher order sensitivities Sθu and Sθuuwhich are given by DAE2.  

DAE2 Ṡu = JzSu + Ju ∈ R
Nz×Nu 

Ṡθu = fθu(Sθu, Sθ, z(t), u(t), θ, t) ∈ R
(Nz⋅Nθ)×Nu 

Ṡθuu = fθuu(Sθuu, Sθu, Sθ, z(t), u(t), θ, t) ∈ R
(Nz⋅Nθ)×Nu×Nu 

Su(t = 0) = 0Nz×Nu , Sθu(t = 0) = 0(Nz⋅Nθ)×Nu ,

Sθuu(t = 0) = 0(Nz⋅Nθ)×Nu×Nu 

( 2.51 ) 
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Moreover, if the initial conditions of the state variables are also optimized then the 

differential equation system with respect to the initial conditions DAE20 has also to be 

included into the optimization formulation. 

DAE20 dS0
dt

= JzSz0 ∈ R
Nz×Nu 

S0(t = 0) = 1Nz×Nz , S0 ≔
∂z

∂z0
 

( 2.52 ) 

As a result three DAE-systems have to be integrated during each optimization step. The 

resulting sequential optimization problem is formulated as  

OP1 min
ud,ω

Φ(Vθ(Sθ, ω))  or max
ud,ω

Φ(MF(Sθ, ω)) 
( 2.53 ) 

Subject 

to: 

DAE1   ∪    DAE2   ∪    DAE20 

uL ≤ ud ≤ uU, e = 1…Nd 

( 2.54 ) 

2.4.3 Formulation with simultaneous optimization approaches 

By stacking the columns of Sθ as defined in ( 2.36 ), ( 2.43 ) is reformulated to a form, 

which is more suitable for the simultaneous optimization approach 

 0Nz⋅Nθ×1 = g̅θ = (

g̅θ1
⋮

g̅θNθ

) ≔ (
B ⋅ ṡ̅1
⋮

B ⋅ ṡ̅Nθ

) + (

Jz ⋅ s̅1
⋮

Jz ⋅ s̅Nθ

) + (

Jθ1
⋮
JθNθ

) ( 2.55 ) 

with 

 (

fθ̅1
⋮
fθ̅Nθ

) ≔ (

Jz ⋅ s̅1
⋮

Jz ⋅ s̅Nθ

) + (

Jθ1
⋮
JθNθ

) ( 2.56 ) 

Now ( 2.44 ) can be rewritten to: 

DAE3 
0Nz(1+Nθ)×1 = [

g̅(ż̅(t), z̅(t), u̅(t), θ̅, t)

g̅θ(ṡ̅1, … , ṡ̅Nθ , s̅1, … , s̅Nθ , ż̅(t), z̅(t), u̅(t), θ̅, t)
] 

≔ c̅(ż̅(t), z̅(t), ṡ̅1, … , ṡ̅Nθ , s̅1, … , s̅Nθ , u̅(t), θ̅, t) 

z̅(t = 0) = z̅0 , s̅j(t = 0) =
∂z̅0
∂θj

, j = 1,… , Nθ 

( 2.57 ) 



34 

 

By converting all time-dependent functions of DAE3 into discrete variables the standard 

OED task can be formulated as a NLP optimization problem as follows: 

OP2 min
z̅lk,Sθ,lk,uq,lkq′

,hl,ω̅lk
Φ(Cθ(Ssp)) 

 or   max
z̅lk,Sθ,lk,uq,lkq ,hl,ω̅lk

Φ(MF(Ssp)) 

 

 

Subject 

to: 

0 = c̅ (z̅lk, Slk, uq,lkq , θ̅, τk, hl) 

l = 1…Ne, k = 1…K + 1, kq = 1…Ku,q,

q = 1…Nu 

z̅11 = z̅0, Sθ11 =
∂z̅0

∂θ̅
 

z̅l+1,k=1 = z̅l,k=K+1, Sθl+1,k=1 = Sθl+1,k=K+1 

  l = 1,… , Ne − 1 

∑∑ωi,lk

K

k=1

Ne

l=1

= Nsp,i, 0 ≤ ωk ≤ 1, i = 1,… , Nz 

∑hl

Ne

l=1

= tf, tf ≤ tmax, hL ≤ hl ≤ hU 

z̅0,L ≤ z̅11 ≤ z̅0,U, z̅L ≤ z̅lk ≤ z̅U, u̅L ≤ u̅lk ≤ u̅U 

( 2.58 ) 

The crucial advantage of the simultaneous formulation in OP2 in comparison with the 

sequential formulation of OP1 is that the entire sensitivity systems DAE2 and DAE20 

can be taken out since the equality constraints can be directly differentiate with respect 

to all variables. If the problem contains many parameters, state and control variables, 

one can easily see that an enormous amount of computational effort can be saved. 

Furthermore the simultaneous formulation allows a flexible and convenient way to use 

high order and continuous control trajectories. Since the control functions are also 

discretized with the OCFEM, one is free to choose different orders Kc for each control 

variable uc . Furthermore, the handling of the optimization of the initial states is 

straightforward since they appear explicitly in OP2. Therefore, they are treated in the 

same manner as the discretized dynamic controls. Inequality conditions for state and 

control variables can be directly embedded into the formulation over the whole domain, 

which is superior in comparison to the sequential approach. 
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Scaling 

The FIM strongly depends on a scaling of the parameter sensitivities. Since its 

formulation is based on the absolute parameter values, the influence of parameters with 

small values is much bigger than those with high values. Therefore, parameter 

sensitivities have to be scaled so as to take into account the dimension gap of their 

different nature. A common way to scale sensitivities regarding a parameter θi is to 

multiply with the parameter itself (Franceschini & Macchietto 2008): 

 s̃j ≔ θjs̅j, j = 1,… , Nθ ( 2.59 ) 

Thus, the scaled FIM is formulated as:  

 MF (Ssp(s̃)) = (Ssp(s̃))
T

⋅ Σz ⋅ Ssp(s̃) ( 2.60 ) 

For the sake of simplicity, the scaled FIM is also referred as MF. The reader is asked to 

keep in mind that all the following equations and calculations are based on scaled 

sensitivities. According to Table 7, the used objective functions (A, D, E) are 

formulated here with respect to the Fischer Information matrix 

Table 8 Experimental design criteria – FIM 

A-criterion trace MF → max 

D-criterion detMF → max 

E-criterion λmin → max 

It is worth to emphasize that the formulation of the objective function with respect to 

the covariance matrix Cθ as shown in Table 7 does not guarantee a physical meaningful 

sampling strategy when including the OASE (see 3.5 in more detail). Therefore OP2 is 

only used with respect to the FIM. The optimization variables of OP2 are summarized 

in the vector x̅ for the following derivation. 

 
x̅T ≔ [z̅11

T ⋯ z̅NeK+1
T s̅1,11

T ⋯ s̅Nθ,NeK+1
T u1,11 ⋯ 

uNu,NeKNu z̅0
T h1 ⋯ hNe ω̅11

T ⋯ ω̅NeK
T ] 

( 2.61 ) 
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The derivatives of the optimal criteria are developed via the chain rule 

 
∂Φ(MF(Ssp))

∂x̅
=
∂Φ(MF)

∂MF
⋅
∂MF(Ssp)

∂x̅
 ( 2.62 ) 

The derivatives of the A, D, and E-criteria only differ from each other in the first term 

of the product in ( 2.62 ) which is ∈ R1×(Nθ⋅Nθ): 

 
∂ΦA(MF)

∂MF
=
∂(tr(MF))

∂MF
= (vec(INθ))

T

 ( 2.63 ) 

 
∂ΦD(MF)

∂MF
=
∂(det(MF))

∂MF
= det(MF) ⋅ (vec(MF

−T))
T

 ( 2.64 ) 

 

∂ΦE(MF)

∂MF
=
∂(λmin(MF))

∂MF

= (vλmin
T ⋅ vλmin)

−1
⋅ vλmin

T ⋅ (INθ⨂vλmin
T) 

( 2.65 ) 

Here vλmin denotes the eigenvector corresponding to the smallest eigenvalue of MF. For 

( 2.64 ), the following matrix calculus rule is used. The derivative of the determinant of 

the matrix A ∈ Rn×n with respect to its elements is given as 

 

d|A|

dA
=

d|A|

d(vec(A))
= |A|(vec(A−T))

T

∈ R1×n⋅n 

A−T = (A−1)T 

( 2.66 ) 

The second term of ( 2.62 ) represents the Jacobian of MF with respect to the elements 

of X, which is the same for all criteria. 

 

∂MF
∂x̅

=
∂(vec(MF))

∂x̅
∈ RNθ⋅Nθ×(Nz⋅NK+Nz⋅Nθ⋅NK+NKu+Ne+Nω) 

NK = Ne ⋅ (K + 1), NKu =∑Ne ⋅ (Ku,q + 1)

Nu

q=1

, Nω =∑Ne ⋅ K

Nz

i=1

 

( 2.67 ) 

In order to obtain the second-order derivatives analytically, it is required to use the 

Kronecker and box matrix products (Olsen et al. 2012).  To avoid the more complicated 

derivation, symbolic differentiation can be used to directly calculate the second 
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derivatives. For this purpose, the results from equation ( 2.62 ) have to be differentiated 

one more time with respect to x̅.  

2.5 Exploiting the structure of the constraint derivatives 

For the sake of clarity, the derivation of the constraints derivatives is applied on 

Equation ( 2.57 ) with respect to the continuous optimization variables 

[z̅(t), s̅1(t),… , s̅Nθ(t), u̅(t)]. Since only the objective function depends on ω̅ but not the 

constraints, all constraint derivatives with respect to ω̅ become zero and will not be 

additionally included in the following derivation.  

In order to obtain the derivatives with respect to the fully discretized optimization 

variables [z̅lk, s̅1,lk, … , s̅Nθ,lk, z̅0, u̅lc, hl], one more derivation step over the discretization 

equations ( 3.3) to ( 3.5) is needed which is straightforward and not be further 

discussed. The important idea here is the information about the extremely sparse 

structure of the derivatives and the fact that most parts of them can be reused from 

previous calculations, which is illustrated in the following derivation. The optimization 

variables for the derivatives are represented by 

 x̅ ≔

(

 
 

z̅
s̅1
⋮
s̅Nθ
u̅ )

 
 
∈ R(Nz+Nz⋅Nθ+Nu)×1 ( 2.68 ) 

2.5.1 First-order constraint derivatives 

The first-order derivative of the constraints with respect to the optimization variables x̅ 

is then 

 

∂c̅

∂x̅
=
∂

∂x̅
(
g̅
g̅θ
) =

[
 
 
 
 
 
 
Jz

Jz
θ1

Jz
θ2

⋮

Jz
θNθ
⏟
w.r.t.  z̅

0 0 ⋯ 0

Js
θ1 0 ⋮ 0

0 Js
θN2 ⋱ 0

⋮ ⋯ ⋱ ⋮

0 ⋯ ⋯ Js
θNθ

⏟            
w.r.t.  s̅

Ju

Ju
θ1

Ju
θ2

⋮

Ju
θNθ
⏟
w.r.t.  u̅]

 
 
 
 
 
 

 

∂c̅

∂x̅
∈ R(Nz+Nz⋅Nθ)×(Nz+Nz⋅Nθ+Nu) 

( 2.69 ) 
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The first-order derivative of the system equations g̅ with respect to the state variables z̅ 

is the Jacobian Jz defined in ( 2.41 ), which has already been calculated to formulate the 

sensitivity equationsg̅θ, and thus, it can be fully reused. The derivatives of g̅ regarding 

the control variables u̅ are represented by 

 
Ju(ż̅(t), z̅(t), u̅(t), θ̅, t) ≔

∂g̅

∂u̅
= (

∂(Bż̅(t))

∂u̅
−
∂f̅

∂u̅
) 

Ju ∈ R
Nz×Nu  

( 2.70 ) 

Furthermore, the derivative of the j-th part of fθ̅  in ( 2.56 ) with respect to the 

sensitivities s̅j is also Jz since s̅j is linear in fθ̅j leading to: 

 
Js
θj(ż̅(t), z̅(t), u̅(t), θ̅, t) ≔

∂g̅θj
∂s̅j

= (
∂(Bṡ̅j)

∂s̅j
+ Jz) 

Js
θj ∈ RNz×Nz 

( 2.71 ) 

The derivatives of g̅θj with respect to z̅ are defined as 

 

Jz
θj ≔

∂g̅θj
∂z̅

=
∂

∂z̅
[B ⋅ ṡ̅j + Jz ⋅ s̅j +

∂B

∂θj
ż̅(t) −

∂f̅

∂θj
] 

= [
∂(Bṡ̅j)

∂z̅
+ [
∂Jz
∂z1

s̅j ⋯
∂Jz
∂zNz

s̅j] +
∂

∂z̅
(
∂B

∂θj
ż̅(t)) −

∂

∂z̅
(
∂f̅

∂θj
)] 

Jz
θj ∈ RNz×Nz , j = 1…Nθ 

( 2.72 ) 

And in the same way with respect to u̅ 

 

Ju
θj ≔

∂g̅θj
∂u̅

=
∂

∂u̅
[B ⋅ ṡ̅j + Jz ⋅ s̅j  +

∂B

∂θj
ż̅(t) −

∂f̅

∂θj
] 

= [
∂(Bṡ̅j)

∂u̅
+ [

∂Jz
∂u1

s̅j ⋯
∂Jz
∂uNu

s̅j]  +
∂

∂u̅
(
∂B

∂θj
ż̅(t)) −

∂

∂u̅
(
∂f̅

∂θj
)] 

Ju
θj ∈ RNz×Nu , j = 1…Nθ 

( 2.73 ) 



39 

 

2.5.2 Second order constraint derivatives 

Based on the derivation of the second order constraint derivatives, one can conclude 

that most of the derived partial Jacobian can be reused. Therefore, many of the 

derivative calculation steps can be reduced. The first part of the second order constraints 

derivatives can be achieved by differentiating the system equations g̅ as part of  c̅ in       

( 2.57 ). For the i-th part gi, the following Hessian can be formulated: 

 

Hgi ≔ [

Jzz
i 0Nz×Nz⋅Nθ Jzu

i

0Nz⋅Nθ×Nz 0Nz⋅Nθ×Nz⋅Nθ 0Nz⋅Nθ×Nu
Juz
i 0Nu×Nz⋅Nθ Juu

i

] 

Hgi ∈ R
(Nz+Nz⋅Nθ+Nu)×(Nz+Nz⋅Nθ+Nu) 

i = 1…Nz 

( 2.74 ) 

With 

 Jzz
i ≔ (

∂2(Bż̅(t))
i

∂z̅2
−
∂2f i

∂z̅2
) ∈ RNz×Nz ( 2.75 ) 

and  

 
Jzu
i = (

∂2(Bż̅(t))
i

∂z̅ ∂u̅
−
∂2f i

∂z̅ ∂u̅
) ∈ RNz×Nu 

Juz
i = Jzu

i  

( 2.76 ) 

where the i-th row of a matrix or the i-th entry of a column is written shortly as (∙)i. The 

partial Hessian Jzz,i can be assembled from the i-th rows of the terms ∂Jz/ ∂z1 …∂Jz/

∂zNz in ( 2.72 ). The same applies for the partial Hessian Jzu,i regarding the terms ∂Jz/

∂u1…∂Jz/ ∂uNu in ( 2.73 ). Only Juu,i has to be calculated additionally. Furthermore, 

the structure of Hgi is extremely sparse regarding its dimension, which can in fact be 

favorably integrated to advanced optimization routines which can take advantages of 

sparsity of the system. In analogy to obtaining the partial Hessians Hgi for the i-th row 
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of g̅, one also obtains the partial Hessians H
gθj
i  for the i-th part of each partial sensitivity 

equationsg̅θi: 

H
gθj
i ≔

[
 
 
 
 
 
 
 J

zz,i

θj 0Nz×(j−1)⋅Nz J
zsj,k

θj 0Nz×(Nθ−j+1)⋅Nz J
zu,i

θj

0(j−1)⋅Nz×Nz ⋮ ⋯ ⋮ 0(j−1)⋅Nz×Nu

J
sjz,k

θj ⋮ 0Nz×Nθ ⋮ J
sju,i

θj

0(Nθ−j+1)⋅Nz×Nz ⋮ ⋯ ⋮ 0(Nθ−j+1)⋅Nz×Nu

J
uz,i

θj 0Nu×(j−1)⋅Nz J
usj,i

θj 0Nu×(Nθ−j+1)⋅Nz J
uu,i

θj

]
 
 
 
 
 
 
 

 

H
gθj
i ∈ R(Nz+Nz⋅Nθ+Nu)×(Nz+Nz⋅Nθ+Nu) 

i = 1…Nz, j = 1…Nθ 

( 2.77 ) 

Equation ( 2.77 ) reveals that the structure of H
gθj
i  is also extremely sparse.The partial 

Hessians regarding the states are: 

 
J
zz,i

θj ≔
∂(Jz

θj)
i

∂z̅
=
∂2(Jz ⋅ s̅j)

i

∂z̅2
+
∂2

∂z̅2
(
∂B

∂θj
ż̅(t))

i

−
∂2

∂z̅2
(
∂f i

∂θj
) 

J
zz,j

θj ∈ RNz×Nz 

( 2.78 ) 

and the partial Hessians regarding states and sensitivities: 

 
J
sz,i

θj ≔
∂(Js

θj)
i

∂z̅
=
∂

∂z̅
(
∂(Bṡ̅j)

∂s̅j
)

i

+ Jzz
i  

J
sz,i

θj ∈ RNz×Nz⋅Nθ , J
zs,i

θj = J
sz,i

θj  

( 2.79 ) 

The terms Jzz,i in ( 2.79 ) can be directly carried over from ( 2.75 ). It is analogous to the 

partial hessian regarding controls and sensitivities: 

 
J
su,i

θj ≔
∂(Js

θj)
i

∂u̅
=
∂

∂u̅
(
∂(Bṡ̅j)

∂s̅j
)

i

+ Jzu
i  

J
su,i

θj ∈ RNz×Nu , J
us,i

θj = J
su,i

θj  

( 2.80 ) 
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where the terms Jzu
i  in ( 2.80 ) can be directly carried over from ( 2.76 ). Furthermore, 

the partial Hessians regarding the controls are: 

 

J
uu,i

θj ≔
∂(Js

θj)
i

∂u̅

=
∂2(B ⋅ ṡ̅j)

i

∂u̅2
+
∂2(Jz ⋅ s̅j)

i

∂u̅2
+
∂2

∂u̅2
(
∂B

∂θj
ż̅(t))

i

−
∂2

∂u̅2
(
∂f i

∂θj
) 

J
uu,i

θj ∈ RNu×Nu  

( 2.81 ) 

and with respect to the controls and states: 

 

J
uz,i

θj ≔
∂(Ju

θj)
i

∂z̅

=
∂2(B ⋅ ṡ̅j)

i

∂u̅ ∂z̅
+
∂2(Jz ⋅ s̅j)

i

∂u̅ ∂z̅
+

∂2

∂u̅ ∂z̅
(
∂B

∂θj
ż̅(t))

i

−
∂2

∂u̅ ∂z̅
(
∂f i

∂θj
) 

J
uz,i

θj ∈ RNu×Nz , J
zu,i

θj = J
uz,i

θj  

( 2.82 ) 
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3 Simultaneous optimization approach to OED 

The fundamental idea of the simultaneous optimization approach to OED is the total 

discretization of the dynamic process model. Therefore the applied discretization 

method fundamentally influences the outcome of the optimization steps. A very detailed 

comparison between well-known discretization methods like finite difference method 

(FDM), Galerkin finite element method (GFEM), orthogonal collocation method 

(OCM) and orthogonal collocation on finite element method (OCFEM) is given in the 

standard book about numerical methods in chemical engineering by Finlayson 

(Finlayson 1980). The comparison reveals that the OCM has the best characteristic 

among all approaches; in particular it gives best accuracy with the fewest total 

discretization points. However, it fails in cases of process variables with steep profiles. 

Therefore, the OCFEM is recommended so as to cover a broader application field 

(Carey & Finlayson 1975). Basically, the OCFEM can also be applied to the 

discretization in space covering PDE systems. However, if the process contains steep 

profiles along the spatial coordinates a mixed discretization is highly recommended 

including OCFEM for the time and upwind type GFEM for the spatial discretization 

(Brooks & Hughes 1982). Without loss of generality only DAE systems are discussed in 

this thesis. 

3.1 Concept of the OCFEM 

Considering following linear implicit DAE-system as introduced in ( 2.37 ): 

 B(z̅(t), u̅(t), θ̅, t) ⋅ ż̅(t) = f(̅z̅(t), u̅(t), θ̅, t), z̅(t = 0) = z̅0 ( 3.1) 

The pure algebraic equations of the DAE-system are taken into account with a singular 

mass matrix B, and thus, they are not written explicitly. All time dependencies of the 

state and control variables are discretized via the OCFEM. Let the number of finite 

elements be Ne, the index of each element l and the index of the collocation points in 

each element k, then the discretization scheme of a state variable in one element can be 

illustrated in Figure 3.1. 
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Figure 3.1 Discretization scheme of state variables 

The functional section in each element is approximated by polynomials of order K. 

Within each element the overall discrete time tlk is projected to the local normalized 

collocation time τk. 

 
tlk = tl−1K + τkhl, τk ∈ [0, 1] 

l = 1,… , Ne    , k = 0,… , K    ,    h0 = t0 

( 3.2) 

Lagrange-polynomials are chosen as base functions. The advantage of the Lagrange 

polynomials is that the coefficients directly represent the desired state values, what 

simplifies the evaluation of the results. The function of the state variables in element l is 

represented by the Lagrange polynomials φlk(t):  

 

zl
K(t) =∑zlkφlk(t)

K

k=0

 

φlk(t) =∏
(t − tli)

(tlk − tli)

K

i=0
i≠k

 

( 3.3) 

The time dependent control variables are discretized analogously but using polynomial 

approximations of possibly different control orders Ku,q. 
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u
q,l

Ku,q(t) = ∑uq,lkψlk(t)

Ku,q

k=0

, q = 1…Nu 

ψlk(t) =∏
(t − tli)

(tlk − tli)

Ku,q

i=0
i≠k

,   

( 3.4) 

One main advantage of this approach is that the control orders can be chosen totally 

independent from each other. It is also independent from the discretization of the state 

variables leading to highly flexible formulation possibilities. The discretization schemes 

for control variables of first and zero-orders are exemplary shown in Figure 3.2 and 

Figure 3.3. 

 

 

Figure 3.2 Discretization scheme of first-order control variables 
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Figure 3.3 Discretization scheme of zero-order control variables 

Since the discretized functions of the state variables are only time dependent in the base 

functions, the time derivatives of state variables can be written as: 

 żl(t) =∑zlkφ̇lk(t)

K

k=0

 ( 3.5) 

By applying the chain rule on ( 3.2) for every φ̇lk(t), the following simplification can 

be obtained: 

 
φ̇lk(t) =

dφlk(t)

dt
=
∂φlk(τ)

∂τ

∂τ

∂t
=
∂φlk(τ)

∂τ

1

hl
 

l = 1,… , Ne   ;     k = 0,… , K 

( 3.6) 

Since the same collocation method and the same polynomial order are applied to all 

elements of the state variables, one gets 

 φlk(t) = φk(τ) =∏
(τ − τi)

(τk − τi)

K

i=0
i≠k

 ( 3.7) 

 
∂φlk(τ)

∂τ
=
∂φk(τ)

∂τ
 ( 3.8) 

Thus, equation ( 3.5) can be rewritten as: 
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 żl(tlk) =∑zlk
1

hl

∂φk(τ)

∂τ

K

k=0

 ( 3.9) 

Furthermore, continuity conditions ensure that no discontinuities arise between the 

elements of the discretized functions. They are generally formulated for the OCFEM as 

Legendre-type: 

 z̃l+1,k=0 =∑z̃lkφk(τ = 1)

K

k=0

   , l = 1, … , Ne − 1 ( 3.10) 

where z̃ represents the system state variables, which only belong to the differential 

equations in ( 3.1). The meaning of ( 3.10) is that the polynomial function z̃l(t) of the l-

th element is extrapolated to its end point and specifies thereby the initial value for the 

subsequent (l + 1)-th element. For the Radau-type OCFEM, the continuity conditions 

are: 

 

z̃l+1,j=0 = z̃l,j=K 

l = 1,… , Ne − 1 

( 3.11) 

This collocation strategy was applied in (Kameswaran & Biegler 2008) and it was 

pointed out as superior with respect to solving NLP problems since it directly provides 

the values of the element’s end point and is the OCFEM with the second highest 

precision after the Legendre-type. Applying the Radau-OCFEM on ( 3.1), one gets: 

 

∑B(zlk, ulku , θ̅)zlkφ̇k(τ)

K

k=0

= hlf (zlk, ulku,q , θ, τ) 

l = 1…Ne, k = 1…K   

ku,q = 1…Ku,1, q = 1…Nu 

z̃11 = z̃0 

z̃l+1k=0 = z̃lk=K, l = 1…Ne − 1 

ul+1ku,q=0 = ulku,q=Ku,q , l = 1…Ne − 1, Ku,q ≥ 1 

( 3.12) 

In order to solve ( 3.12), φ̇k(τ) is previously calculated once offline because it only 

depends on the known selected collocation pointsτk. 
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3.2 Formulation as a NLP problem 

The OED problem has been formulated as a NLP problem in OP2 through total 

discretization. In this section, a generalized form of NLP is presented and the methods 

which solve this problem. The interested reader can find a detailed analysis of this topic 

in (Floudas & Panos 2009) of which the following short introduction is based on. The 

formulated NLP problem OP2 can be represented by the following generalized 

formulation with equality and inequality constraints. 

 minΦ(x̅)  

Subject 

to: 

0 = c̅E(x̅) 

0 ≤ c̅I(x̅) 

( 3.13 ) 

It is useful to introduce the Lagrangian ℒ so as to formulate the first and second order 

conditions of ( 3.13 ).  

 ℒ(x̅, λ̅E, λ̅I) = Φ(x̅) +∑λE,icE,i(x̅)

NE

i=1

+∑λI,icI,i(x̅)

NI

i=1

 ( 3.14 ) 

Where NE denotes the number of equality and NI the number of inequality constraints. 

With the defined Lagrangian the first-order conditions for ( 3.13 ) also known as the 

KKT conditions are given with the following elements (Luenberger 1984; Nocedal & 

Wright 2006). 

Stationarity condition or also known as balance of forces: 

 ∇xℒ(x̅
∗, λ̅E

∗ , λ̅I
∗) = ∇Φ(x̅∗) + ∇c̅E(x

∗)Tλ̅E
∗ + ∇c̅I(x

∗)Tλ̅I
∗ = 0 ( 3.15 ) 

Feasibility condition: 

 
∇λ̅Eℒ(x̅

∗, λ̅E
∗ , λ̅I

∗) = c̅E(x̅
∗) = 0 

∇λ̅Iℒ(x̅
∗, λ̅E

∗ , λ̅I
∗) = c̅I(x̅

∗) ≤ 0 
( 3.16 ) 

Complimentary condition: 

 λ̅I
∗ ≥ 0 

cI,i(x
∗)Tλ̅I

∗ = 0 

( 3.17 ) 
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The meaning of ( 3.17 ) is that either a inequality constraint cI,i(x) is inactive, then the 

corresponding λI,i  must be zero, or active, then by convention, the sign of the 

corresponding multipliers must be positive. The  λs are addressed here as the KKT 

multipliers. If there are no inequality constraints they are also called as Lagrange-

multipliers. Supposed that x̅∗ is a local minimum of Φ(x̅) and the LICQ2 holds. Then, 

the second order necessary conditions are: 

 
w̅T∇x̅x̅ℒ(x̅

∗, λ̅E
∗ , λ̅I

∗)w̅ ≥ 0 

∀w̅, w̅ ≠ 0 ∧ ∇cE,i(x̅
∗)𝑇w̅ = 0 

( 3.18 ) 

 
∇cI,i(x̅

∗)Tw = 0, i ∈ {i|cI,i(x̅
∗) = 0, λI,i

∗ > 0} 

∇cI,j(x̅
∗)Tw ≤ 0, j ∈ {j|cI,j(x̅

∗) = 0, λI,i
∗ = 0} 

( 3.19 ) 

where w̅ is a nonzero direction. The same as the second order necessary conditions is 

required for the sufficient conditions except that ( 3.18 ) has to strictly positive definite.  

3.3 Solutions to NLP problems 

Solutions strategies for NLP problems have been described and explained in detail in 

(Floudas & Gounaris 2008; Floudas & Panos 2009). There are basically three well 

studied fundamental approaches to solve the constrained NLP problem represented by 

OP2, which are the Successive Quadratic Programming, the Interior Point and the 

Nested strategies (Nocedal & Wright 2006). The following short listing of these 

strategies are mainly quoted from (Biegler 2010).  

1) Successive Quadratic Programming methods (SQP) – are the most well-known 

and popular algorithm for solving NLP-problems (Bonnans et al. 2009). They 

basically apply Newton’s method to the presented first-order KKT conditions. 

The assumption is that the active set is known in advance which specifies the 

“active” constrains with λI,i
∗ > 0 in ( 3.19 ). Since the SQP methods are based 

on Newton’s method, they also inherit Newton’s method’s fast convergence 

properties. On the other hand, a big disadvantage arises when dealing with large 

problems since the full Jacobian has to be calculated in each Newton step. If 

there are few degrees of freedom, then the reduced space SQP (rSQP) method 

                                                 
2 LICQ: Linear independence constraint qualification – the gradients of the active inequality constraints 

and the gradients of the equality constraints are linearly independent at x̅∗. 

http://en.wikipedia.org/w/index.php?title=Linear_independence_constraint_qualification&action=edit&redlink=1
http://en.wikipedia.org/wiki/Linear_independence


49 

 

can be used to overcome this problem since this it takes advantages of sparsity 

of the gradient. Another main disadvantage is related to poor starting points as 

known general problem from Newton’s method. Some strategies have been 

introduced so as to ensure stepping towards the optimum based on detecting a 

feasible step size by using exact penalty functions and on trusted region 

adaptations. Some of the well-known solvers are presented below:  

 SNOPT [] 

 MUSCOD [] 

 fmincon [] 

 … 

2) Interior Point methods (IP) – are also known as barrier methods since they are 

generally using logarithmic penalty/barrier functions (Wright 1987). The 

advantages are faster convergence for large system with sparse structure and 

better theoretical properties (global and super-linear convergence). On the other 

hand new challenges arise with the introduction of logarithmic barrier functions. 

In particular if the variable becomes very small then its logarithm becomes very 

large, so that additional strategies have to be involved so as to keep the 

optimization steps within the “interior” coordinates. Another critical point is the 

LICQ, which has to be hold during the optimization steps. Some of the well-

known algorithms are:      

 IPOPT [] 

 KNITRO [] 

 LOQO [] 

 … 

3) Nested methods – are especially developed for dealing with NLP problems 

where the solver has to remain feasible during the optimization steps. So far, the 

presented methods basically consider solving the KKT conditions in a 

simultaneous way but linearization from these conditions at infeasible points 

can lead to bad search directions and constraint multipliers, and thus, causing 

the solver to fail. The nested approaches aim at decomposing the main NLP to 

nested sub-problems and solving them separately, in particular the optimization 

variables are divided to non-basic, basic and super basic ones. Well investigated 

algorithms following this philosophy are the Generalized Reduced Gradient and 
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the Gradient Projection method. Some of the well-known solver using Nested 

methods are:    

 CONOPT [] 

 MINOS [] 

 LANCELOT [] 

 … 

3.4 Applied solution strategies 

In this work, two kinds of program codes have been implemented so as to solve the 

OED task as formulated in OP2. The first implementation has been carried out in 

Matlab using Tomlab’s optimizer SNOPT which basically uses an active set strategy 

while performing the line search with an augmented Lagrangian formulation (Gill et al. 

2002). The program structure has been developed as follows: 

 

Figure 3.4 Program structure - implementation via SNOPT 

The problem formulation OP2is specified in the “Main.m”-file. The initialization vector 

for the optimizer is given by a previous simulation via the “SimMain.m”-file which 

solves DAE3 and produces the initial profiles of the states and sensitivities based on the 
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specified initial conditions with respect to the initial set of dynamic and discrete 

controls. The main file also specifies the objective criterion which can be chosen as the 

A-, D- or E- criterion. The optimization structure for Tomlab requires beside the 

objective function also its first derivative which is calculated via the chain rule as 

presented in ( 2.62 ). The second term of this equation as specified in ( 2.67 ) has to be 

pre-calculated only once and is then stored in the “GetdMFdX.m”-file where it is 

evaluated during each optimization step. Furthermore, the process constraints and its 

first and second derivatives as derived in section 2.5 are calculated via the files “fc.m”, 

“dfc.m” and “d2fc.m” respectively. 

The second implementation has been carried out in GAMS using the global optimizer 

BARON with IPOPT as the specified inner NLP solver (Sahinidis 1996). The 

formulation in GAMS is much closed to OP2 so that it can be treated as a direct 

transcription (Bruce 2013). The only part which has to be additionally provided is with 

respect to the discretization orders of the states and the dynamic controls. The only 

drawback here is that only the A-optimal criterion has been implemented up to now 

because of the limited possibilities of GAMS to express a matrix, its determinant and 

eigenvalue respectively.    

3.5 Effect of the decision variables to the optimal solution 

This section gives a short analysis without prove how the decision variables effects the 

optimal solution of the OED formulation.  In particular, it provides a reference for a 

qualitative comparison between the sequential and the simultaneous optimization 

approaches. It is well known from the optimal control theory that for optimality the 

control profile must result in a bang-bang solution if it linearly enters the Hamilton 

function (Hermes & LaSalle 1969). 

 H(t, z(t), u(t), λ(t)) = ϕ(t, z(t), u(t)) + λ(t)f(t, z(t), u(t)) ( 3.20 ) 

With ϕ as the argument of the integral, which has to be maximized, f the right hand 

sight of the corresponding constraint differential equation and the admissible space of 

the control as Uad = [0, umax]. If H is linear in u then ( 3.20 ) can be rewritten as 

 H(t, z(t), u(t), λ(t)) = g(t, z(t), λ(t))u(t) + r(t, z(t), λ(t)) ( 3.21 ) 
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From ( 3.21 ) one can easily see that H is a line regarding its argument u with g as the 

slope. Now, it depends on whether the slope is negative or positive that the optimum is 

reached at u = 0  or  u = umax , and thus, resulting in a bang-bang solution. A very 

common case in chemical engineering is that Uad = [umin , umax] and umax > umin > 0 

due to physical limitations. Then it depends on whether the slope is negative or positive 

that the optimum is reached at u = umin  or u = umax . It is analogous regarding the 

Lagrangian formalism when solving OP2. 

The decision variables of OP2 are the sampling decisions ωi,lk for each state and at each 

collocation point, the initial condition zi,0 of each state, the decision intervals length hl 

and the control decisions uc,lkc for each control at each corresponding collocation point. 

It is easy to show that zi,0 linearly enters the Lagrangian ( 3.14 ) since the constraints for 

the initial conditions are very simple linear equality constraints as seen in ( 3.22 ).  

 czi,0 = zi,0 − zi,11 = 0 ( 3.22 ) 

It is similar for the decision intervals length hl as presented in ( 3.12). 

 

chl = f (zlk, ulku,q , θ, τ) hl −∑B(zlk, ulku , θ̅)zlkφ̇k(τ)

K

k=0

 

l = 1…Ne, k = 1…K   

( 3.23 ) 

It is more complex to show that the optimal solution for the sampling decisions also 

results in the bang-bang type since they quadratically enter the objective 

function Φ(MF). Without loss of generality it is only illustrated here for the A- and D-

optimal criterion since the objective function can be calculated explicitly for these two 

criteria. Assume that the process includes two states, two parameters and the collocation 

scheme uses one discretization element with the polynomial order K = 2. Furthermore 

for the sake of simplicity the measurement covariance matrix is set to the identity 

matrix so that the FIM can be calculated as 

MF = (Ssp)
T
Ssp = [

mF11 mF12
mF21 mF22

] ( 3.24 ) 
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Ssp = [

ω1,11s11,11 ω1,11s12,11
ω2,12s21,11 ω2,12s22,11
ω1,11s11,12 ω1,11s12,12
ω2,12s21,12 ω2,12s22,12

] 

mF11 = s11,11
2 ω1,11

2  + s11,12
2 ω1,12

2 + 𝑠21,11
2 ω2,11

2  +  𝑠21,12
2 ω2,12

2  

mF12 = mF21 = s11,11s12,11ω1,11
2  +  s11,12s12,12ω1,12

2

+ 𝑠21,11𝑠22,11𝑤ω2,12
2  +  𝑠21,12𝑠22,12ω2,12

2  

mF22 = s12,11
2 ω1,11

2  + s12,12
2 ω1,12

2 + 𝑠22,11
2 ω2,11

2  +  𝑠22,12
2 ω2,12

2  

Thus, the A-optimal criterion results with respect to ω1,11 in 

ΦA(MF) = tr(MF) 

= (s11,11
2 + s12,11

2 )ω1,11
2  

+ ((s11,12
2  +  s12,12

2 )ω1,12
2 + (s21,11

2 + s22,11
2 )ω2,11

2  

+ (s21,12
2 + s22,12

2 )ω2,12
2 ) 

( 3.25 ) 
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and it is for the D-optimal criterion  

ΦD(MF) = det(MF) 

= (s11,11
2 s12,12

2 ω1,12
2 + s11,11

2 s22,11
2 ω2,11

2 + s11,11
2 s22,12

2 ω2,12
2

+ s11,11
2 s22,12

2 ω2,12
2 + s11,11

2 s22,12
2 ω2,12

2 + s11,12
2 s12,11

2 ω1,12
2

+ 𝑠12,11
2 𝑠21,11

2 ω2,11
2  +  𝑠12,11

2 𝑠21,12
2 ω2,12

2

−  2s11,11s11,12s12,11s12,12ω1,12
2

−  2s11,11s12,11s21,11s22,11ω2,11
2  

−  2s11,11s12,11s21,12s22,12ω2,12
2 )ω1,11

2  

+ (s11,12
2 s22,11

2 ω1,12
2 ω2,11

2  +  s11,12
2 s22,12

2 ω1,12
2 ω2,12

2  

+  𝑠12,12
2 𝑠21,11

2 ω1,12
2 ω2,11

2 + 𝑠12,12
2 𝑠21,12

2 ω1,12
2 ω2,12

2  

+  𝑠21,11
2 𝑠22,12

2 ω1,12
2 ω2,12

2 + 𝑠21,12
2 𝑠22,11

2 ω2,11
2 ω2,12

2

− 2s11,12s12,12s21,11s22,11ω1,12
2 ω2,11

2  

−  2s11,12s12,12s21,12s22,12ω1,12
2 ω2,12

2

−  2𝑠21,11𝑠21,12𝑠22,11𝑠22,12ω2,11
2 ω2,12

2 ) 

( 3.26 ) 

From this explicit calculation it can be found that ω1,11 quadratically enter the objective 

function hence the Lagrangian is also quadratic in ω1,11. Analogously, it can be shown 

for all other ωi,lk. Secondly, ωi,lk ∈ [0,1] making them as a quadratic function strict 

monotonous. For a better understanding, one can substitute ωi,lk
2  by ωi,lk

∗ . Since the 

Lagrangian is linear in ωi,lk
∗  and because the strict monotonicity of ωi,lk

2  in [0,1]  the 

optimal solution results in a bang-bang solution with ωi,lk
∗ = 0 or ωi,lk

∗ = 1, and hence, 

also providing ωi,lk = 0 or ωi,lk = 1.  

It is not trivial if the objective function is formulated as a function of the covariance 

matrix Cθ. The A-optimal criterion with respect to Cθ is obtained as 

 

ΦA(Cθ) = tr(MF
−1) 

=
(m1ω1,11

2 + n1)

(m2ω1,11
2 + n2)

 
( 3.27 ) 

with 
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𝑚1 = (s11,11
2 + s12,11

2 ) 

n1 = (s11,12
2 + s12,12

2 )ω1,12
2 + (s21,11

2 + s22,11
2 )ω2,11

2

+ (s21,12
2 + s2212

2 )ω2,12
2  

( 3.28 ) 

and 

m2 = (s11,11
2 s12,12

2 ω1,12
2 −  2s11,11s11,12s12,11s12,12ω1,12

2 + s11,11
2 s22,11

2 ω2,11
2

+ s11,11
2 s2212

2 ω2,12
2 + s11,12

2 s12,11
2 ω1,12

2 + s12,11
2 s21,11

2 ω2,11
2  

+ s12,11
2 s21,12

2 ω2,12
2 −  2s11,11s11,12s21,11s22,11ω2,11

2  

−  2s11,11s11,12s21,12s22,12ω2,12
2 ) 

n2 = (s11,12
2 s22,11

2 ω1,12
2 ω2,11

2  + s11,12
2 s2212

2 ω1,12
2 ω2,12

2

+ s12,12
2 s21,11

2 ω1,12
2 ω2,11

2 + s12,12
2 s21,12

2 ω1,12
2 ω2,12

2  

+  s21,11
2 s22,12

2 ω2,11
2 ω2,12

2 + s21,12
2 s22,11

2 ω2,11
2 ω2,12

2

−  2s11,12s12,12s21,11s22,11ω1,12
2 ω2,11

2  

−  2s11,12s12,12s21,12s22,12ω1,12
2 ω2,12

2   

−  2s21,11s21,12s22,11s22,12ω2,11
2 ω2,12

2 ) 

( 3.29 ) 

The D-optimal criterion with respect to Cθ is  

 

ΦD(Cθ) = tr(MF
−1) 

=
1

(m2ω1,11
2 + n2)

 
( 3.30 ) 

Now, it depends on the signs and the magnitudes of m2 and n2 whether ΦA(Cθ) and 

ΦD(Cθ) have a pole in [0,1] or not. Hence strict monotonicity cannot be guaranteed as 

it has been shown for the formulation with the FIM, in particular with ΦA(MF) 

and ΦD(MF).    

If the control decisions uq,lkq linearly enter the constraints in ( 2.58 ) which is a priori 

determined by the process model, then they also has to results in a bang-bang solution 

for optimality if no other constraints on the state variables are violated.  
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3.6 Possibilities of the applied solution approaches 

In this chapter, a more detailed investigation than the introduction section is presented 

regarding the possibilities and advantages of the proposed simultaneous optimization 

approach to OED. The results are based on the application of the engineering example 

of a biomass reactor in section 1.3 with the difference that now all four parameters θ1…4 

are unknown. Thus the objective function is formulated with respect to all four 

parameters. The first two subsections take into account the gain from the variation of 

initial states as well as variation of dynamic control types. Subsection 0 gives a detailed 

insight to the outcomes regarding the OASE where the implementation with the global 

optimizer BARON clearly is superior over the implementation with SNOPT. The last 

part additionally presents optimization results with respect to the D- and E criterion 

obtained via SNOPT. 

3.6.1 Optimization of the initial conditions 

The semi-batch biomass reactor is optimized with zero-order control functions. The 

focus here is on the optimized initial conditions, thus, the total experiment time and the 

sampling decisions are fixed. The reference criterion is chosen as A-optimal. The initial 

settings are summarized in Table 9.     

Table 9 Initial settings – Variation of control orders 

process controls 
 

process variables 
 

u1(t) = const. 0.05 h−1 cB(t = 0) 1 g/l 

u2(t) = const. 0.2 g/l cS(t = 0) 25 g/l 

measurement variance σB = 1 g/l, σS = 1 g/l  

experiment duration 10 h 

sampling vector [h] [2, 4, 6, 8, 10] 

The OED formulation OP2 for this problem is implemented via Tomlab’s optimizer 

SNOPT as presented in 3.4. The resulting control trajectories are shown in Figure 3.5 

and Figure 3.6 respectively.  
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Figure 3.5 Control trajectory of the dilution factor, optimized initial conditions 

 

Figure 3.6 Control trajectory of the feed substrate, optimized initial conditions 

The resulting profiles of the state variables are shown in Figure 3.7 and Figure 3.8. As 

discussed in 3.5, the optimized initial conditions are optimal since they both hit their 

bounds.   
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Figure 3.7 Concentration profiles, initial vs. optimized settings 

The information content represented by the A-criterion from the initial settings has a 

nominal value of 1.116 ⋅ 103. After applying the OED approach with optimized initial 

conditions and dynamic control trajectories the A-criterion could be clearly increased as 

seen in in Table 10.     

Table 10 Optimization results – optimized initial conditions 

 
initial settings optimized initial conditions 

A-criterion 1.116 ⋅ 103 2.593 ⋅ 104 

3.6.2 Variation of the dynamic control variables 

In practice zero and first-order control types are most relevant since the implementation 

of control types of higher order are hardly to implement. The previous problem is 

solved with first-order control for the dilution factor and zero-order control for the feed 

substrate in the first case and in the second case with first-order for both controls 

respectively.  

In both cases the optimized control trajectories for the dilution factor result in the same 

profile as seen in Figure 3.8. More important is that even with a first-order control type 

in the second case, the optimized control trajectory for the feed substrate also hit the 

upper constraint, thus, is considered as optimal.     
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Figure 3.8 Control trajectory of the dilution factor, variation of control orders 

 

Figure 3.9 Control trajectory of the feed substrate, variation of control orders 

The corresponding profiles of the state variables are shown in Figure 3.10. A 

comparison regarding optimized criterion between both results and the previous case, 

where only zero-order controls were used, is summarized in Table 11. 
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Figure 3.10 Concentration profiles, variation of control orders 

Table 11 Optimization results – comparison of different control order 

 
zero-order first order mix-order 

A-criterion 2.593 ⋅ 104 2.563 ⋅ 104 2.563 ⋅ 104 

This subsection has given a short investigation of the effect of different control orders. 

In theory, the optimal case is generally obtained with a step-switching structure which 

results in a bang-bang solution, if the controls linearly enter the process model and there 

is no resulting violation on the constraints of the state variables. Indeed one can 

recognize from Figure 3.5 and Figure 3.8 that the optimized control trajectories of the 

dilution factor with mix- and only first-order controls attempt to reach the solution of 

the only zero-order case, which gives the best nominal value for the objective criterion. 

However, step functions cannot be implemented in practice, for example regarding 

temperature, flow rates and stirrer speed. In these cases, first-order controls are essential 

and the compromise between optimality and practical implementation has to be taken in 

to account.   
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3.6.3 Optimal adaptive sampling Strategy – OASE 

The optimization problem of the previous subsections is now extended with more 

degrees of freedom from the OASE. In particular, the sampling decisions ω and the 

duration of each decision interval hl are also optimized. First, the OED formulation of 

OP2 is solved with the implementation in Tomlab via SNOPT, then with the 

implementation in GAMS via BARON. The initial conditions, the initial control 

settings, as well as additional constraints are summarized in Table 12. 

Table 12 Initial conditions and initial control settings 

process controls 
 

process variables 
 

u1(t) = const. 0.05 h−1 cB(t = 0) 1 g/l 

u2(t) = const. 0.2 g/l cS(t = 0) 25 g/l 

u1 control type first-order– ramp 

u2 control type zero-order - step 

experiment time limit tend ≤ 20 h 

constraints on decision interval 1h ≤ hl ≤ 2h 

sampling number 5 for each state 

measurement variance σB = 1 g/l, σS = 1 g/l 

initialization of the sampling 

vector [h] 
[ 2, 4, 6, 8, 10 ] 

Objective criterion A-optimal 
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Results via SNOPT 

The optimized control trajectories are shown in Figure 3.11 and Figure 3.12. They are 

very close to the ones of the previous section with mix-order controls.  

 

Figure 3.11 Control trajectory of the dilution factor, OASE - SNOPT 

 

Figure 3.12 Control trajectory of the feed substrate, OASE–SNOPT 

The corresponding state variable profiles are shown in Figure 3.13. It can be clearly 

seen from the comparison with the initial settings that the experiment duration has been 

increased to 15.6 hours but not reaches the allowed maximum time of 20 hours. Figure 

3.14 shows the decision intervals duration, which is clearly not a bang-bang solution as 

expected from the discussion in Figure 3.5, thus, the obtained solution is not “global” 

optimal with respect to the decision intervals duration. 
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Figure 3.13 Concentration profiles, OASE–SNOPT 

 

Figure 3.14 Decision intervals, OASE – SNOPT 

The OASE for the measured variables is illustrated in Figure 6.1 and Figure 6.2. The 

optimized criterion via SNOPT is compared with the mix-order approach of the 

previous subsection. The results show that the nominal value of the A-criterion could be 

improved with the OASE by a factor of two.   

Table 13 Optimization results – OASE via SNOPT 

 
initial settings mix-order SNOPT 

A-criterion 1.116 ⋅ 103 2.563 ⋅ 104 5.013 ⋅ 104 



64 

 

Results via BARON 

The optimized control trajectories show the same behavior compared to the 

optimization results via SNOPT as seen in Figure 3.15 and Figure 3.16.     

 

Figure 3.15 Control trajectory of the dilution factor, OASE - BARON 

 

Figure 3.16 Control trajectory of the feed substrate, OASE – BARON 

The corresponding profiles of the state variables in Figure 3.17 show more clearly that 

the trends of the results of both optimization approaches are quite similar. The 

difference lies in the optimal decision intervals which hit the bounds as seen in Figure 

3.18.    
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Figure 3.17 Concentration profiles, OASE – BARON 

 

Figure 3.18 Decision intervals, OASE – BARON 

The OASE for the measured variables obtained from the optimization with BARON are 

shown in Figure 6.3 and Figure 6.4. Compared to the results via SNOPT, these results 

are more reasonable since the measurements are more taken at the end and in the middle 

of the experiments. Since these are dynamic processes, the largest difference of  the 

model output with  two different parameter set is expected at the end of the process or in 

the middle of the process, where its dynamic has the largest change but not at the 

beginning of the process as observed in Figure 6.1.       
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The plausible qualitative improvement by a better solution regarding decision intervals 

and OASE leads to a further increase of the nominal value of the objective criterion as 

seen in Table 14.   

Table 14 Optimization results – comparison SNOPT vs. BARON 

 
initial settings SNOPT BARON 

A-criterion 1.116 ⋅ 103 5.013 ⋅ 104 1.001 ⋅ 105 

3.6.4 Different criteria 

This section takes the D- and E-optimal criteria into account. Since these two criteria 

could not be implemented in GAMS, the optimization results are obtained by the 

implementation in Tomlab via SNOPT. 

D-optimal criterion 

First, the optimization has been carried out with respect to the D-optimal criterion.  

Figure 3.19 and Figure 3.20 show the optimized control trajectories of first-order type 

for the dilution factor and zero-order type for the feed substrate. The optimality of the 

control trajectory of the feed substrate is not given anymore.  

 

Figure 3.19 Control trajectory of the dilution factor, D-optimal – SNOPT 
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Figure 3.20 Control trajectory of the feed substrate, D-optimal – SNOPT 

Both control profiles show a more dynamic behavior, what is typical for OED problems 

if the D-criterion is used. The optimality with respect to the initial conditions could be 

only kept for the substrate concentration. The resulting profiles of both states are given 

in Figure 3.21. 

 

Figure 3.21 Concentration profiles, D-optimal – SNOPT 

The optimized decision intervals hit the lower bounds as seen in Figure 6.5. The OASE 

results are presented in Figure 6.6 and Figure 6.7. Both profiles reasonably put the 

measurements at dynamic parts as well as at the end part of the experiments. Although 

optimality could not be obtained for every decision variables the nominal value of the 

objective criterion has remarkably been increased as seen in Table 15.  
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Table 15 Optimization results – D-criterion 

 
initial settings SNOPT 

D-criterion 1.434 ⋅ 10−8 1.392 ⋅ 106 

Since the D-criterion is the determinant of the FIM and is obtained basically via a 

product of the sensitivities a small number of near zero sensitivity values can push the 

total nominal criterion value to a very small number. Hence an optimized result 

typically gains large improvements. 

E-optimal criterion 

In the second part the OED problem is solved with respect to the E-optimal criterion 

which is preferred if single main principle component of the FIM is distorted (Steinberg 

& Hunter 1984). However, from a perspective of benchmarking the E-criterion is also 

useful to evaluate the robustness of the optimizer with respect to handling the system 

dynamic. Since the minimum eigenvalue of the FIM is maximized and as very well-

known from the linear algebra an eigenvalue of a matrix can have a large change by 

small changes of the matrix an optimizer as SNOPT without global optimum strategy 

usually gets stuck in local optima and sometime fails to move towards to the global 

optimum at all.       

 

Figure 3.22 Control trajectory of the dilution factor, E-optimal - SNOPT 
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Figure 3.23 Control trajectory of the feed substrate, E-optimal – SNOPT 

From the results one can see that all optimality as seen from the results via BARON 

were lost except for the initial condition of the substrate concentration. The control 

trajectories are hardly perturbed as presented in Figure 3.22 and Figure 3.23. Hence the 

system dynamic and the sensitivities cannot fully be addressed leading to an almost 

stationary process behavior as seen from the concentration profiles in Figure 3.24.   

 

Figure 3.24 Concentration profiles, E-optimal – SNOPT 

Furthermore the results with respect to the decision intervals (Figure 6.8) and the OASE 

(Figure 6.9 and Figure 6.10) also reveals that the optimizer could not proceed many 

optimization steps since the corresponding decision variables already stuck at the 
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initialization values. As a result there is almost no information gain as reflected by the 

nominal criterion value in Table 16. 

Table 16 Optimization results – E-criterion 

 
initial settings SNOPT 

E-criterion 3.728 ⋅ 10−11 1.667 ⋅ 10−8 

3.7 Summary of the simultaneous optimization approach to OED 

This chapter presented the theoretical derivation and the application of the simultaneous 

optimization approach to OED. It has been shown that the basic concept of total 

discretization which converts the related optimal control problem into a NLP problem 

opens many new possibilities in terms of a well formulated optimal experimental design 

task. The advantages over the conventional sequential approach are the saving of the 

entire parameter sensitivity differential equation system of higher orders and the 

sensitivity differential equation system with respect to the initial states. Since the 

corresponding decision variables explicitly appear in the optimization formulation OP2 

their derivatives can be directly obtained through differentiation. Furthermore the 

handling of flexible order of the control variables is superior to the sequential approach 

by applying the same discretization scheme as the state variables. Hence additional 

differential equations and parameterization schemes as known from the implementation 

with the sequential approach can be avoided.    

The effect of the decision variables has been theoretically derived and successively 

discussed by the application examples. The most important result of this investigation is 

that the sampling decision variables ω quadratically enter the Lagrangian but are strict 

monotonous within their bounds. Hence a feasible solution which strictly put the 

sampling decisions to zero or one can be guaranteed for the formulation of OP2 with 

respect to the FIM. In contrast, it has been shown that the sampling decisions enter the 

Lagrangian highly nonlinear if OP2 is formulated with respect to the covariance 

matrix  Cθ . In particular, a strict monotonicity cannot be guaranteed for the whole 

domain of the sensitivities since poles can arise. Hence the formulation with the FIM is 

superior and clearly recommended.   
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The NLP problem in OP2 has been solved with Tomlab’s SNOPT which uses the 

reduced successive quadratic programming method (rSQP) via an implementation in 

Matlab and with BARON’s IPOPT which uses the interior point method via an 

implementation in GAMS. The best results could be obtained with the implementation 

in GAMS with BARON, however only the A-criterion could be formulated in this 

programming language yet. Since BARON is a global optimizer it clearly has the 

advantage in finding solutions which fulfill the optimal condition always resulting in 

bang-bang solutions for decision variables which linearly enter the system equations. 

On the other hand it is possible to solve OP2 with the A-, D- and E-criterion via Tomlab 

but although optimal solutions cannot be guaranteed for the more dynamic D- and E-

criterion.    

The advantages of the simultaneous approach to OED over the state of the art sequential 

approaches are summarized in Table 17.  As derived in  OP1 and OP2, the implemen- 

tation of dynamic controls of higher orders and of optimized initial conditions is straight 

forward in the simultaneous formulation whereas additional equation systems and 

integration effort are necessary*1 for the sequential approaches.  

Table 17 Advantages of the simultaneous optimization approach to OED 

 

Single Shooting 

optimization 

Multiple Shooting 

optimization 

Simultaneous 

optimization 

 dynamic controls 
*1 

*1  

 optimized initial 

conditions 


*1 
*1  

 constraints w.r.t 

controls and states 
()*2 ()*2  

 handling unstable 

systems 
/ ()*2  

 optimal adaptive 

sampling strategy - 

OASE 

()*3 ()*3  
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As also shown in OP2 and discussed by the results of section 4.1, the advantages of the 

simultaneous approach are clearly superior in case of constraints with respect to the 

state variables. Since it is possible to direct put the crucial process limitation directly as 

path constraints the simultaneous approach can overcome problems with unstable 

systems reaching optimal results whereas the sequential approaches generally fail in 

even moving further than the initialization region *2. A reformulation of the 

optimization problem is also necessary for an implementation of the OASE with 

sequential approaches. Analogously to the first point, additional equation systems and 

integration effort are also necessary in this case, whereas it can be directly differentiated 

with respect to all corresponding optimization variables with the simultaneous 

approach, hence additional integration effort can be avoided*3.   

  



73 

 

4 Application examples 

4.1 A theoretical instable CSTR application 

The first case study is a continuous stirred-tank reactor, which was firstly treated in 

(Klatt & Engell 1993) and later reviewed by other authors (Kirches et al. 2012) 

concerning nonlinear model predictive control. The settings by (Kirches et al. 2012) are 

modified for the purpose of OED and illustrated in Figure 4.1. The aim of this study is 

to show the effect of system instabilities on the outcome of the OED under the presence 

of process constraints. 

 

Figure 4.1 CSTR - model 

The model equations are formulated as follows: 

 
dc(t)

dt
=
Finu1(t) − Foutc(t)

ARL
− kr,0e

−
Ea
RT(t)c(t) ( 4.1 ) 

 

dT(t)

dt
=
FinTin − FoutT(t)

ARL
−
∆Hr
ρCp

kr,0e
−

Ea
RT(t)c(t)

+
2U

rρCp
(u2(t) − T(t)) 

( 4.2 ) 

The reactor concentration c and the reactor temperature T are the system state variables. 

For the target of experimental design the parameter sensitivities of the reaction 

frequency factor kr,0  and the heat transfer coefficient  U  should be improved for a 

subsequent parameter estimation task. The control variables of the systems are the inlet 
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concentration cin and the temperature ofthe cooling water Tcool. All the other variables 

are process constants (see Table 32). 

 u1(t) = cin(t) 

u2(t) = Tcool(t) 
( 4.3 ) 

For the sake of simplicity, it is assumed that the level is perfectly controlled thus 

Fin(t) = Fout(t). The process constraints on state and control variables are: 

 

0.8 mol/l ≤ c(t) ≤ 1 mol/l 

298 K ≤ T(t) ≤ 333 K 

0.8 mol/l ≤ u1(t) ≤ 1 mol/l 

288 K ≤ u2(t) ≤ 353 K 

( 4.4 ) 

The process has a highly nonlinear and unstable characteristic as seen in the simulation 

results of the real process (see section 6.2). The setting of the discrete control levels and 

constant initial conditions for an exemplary factorial design approach is given in Table 

18. 

Table 18 Simulation settings 

process controls 

 

process variables 

 u1 [mol/l] [0.80, 0.85, 0.90, 

0.95, 1.00] 

c [mol/l] 0.877 

u2 [K] [288, 293, 298,303, 308, 

313, 318, 323,328, 333, 

338, 343, 348,353] 

T [K] 323 

experiment duration [min] 20 

Although the initial conditions have been set constant, the instability of the process is 

highly significant and present in the whole design variable space. A factorial design 

approach based on the settings of Table 18 would lead to 59 inadmissible experiments 

of totally 70, equally to only 16% yield just because the lack of the conventional 

approach to take process constraints into account. Consequently, the OED approach is 

used to address this problem. Here, the focus is the comparison between the sequential 
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and the simultaneous optimization approach. The initialization of the OED task for both 

cases is summarized in Table 19.  

Table 19 Initial conditions and initial control settings 

process controls 

 

process variables 

 u1 [mol/l ] 0.9 c[mol/l ] 0.877 

u2 [K ] 300 T[K ] 323 

experiment time limit 20 min 

sampling number 5 for each state 

measurement variance σc = 1 mol/l, σT = 1 K 

initialization of the sampling 

vector [min] 
[ 4, 8, 12, 16, 20 ] 

Objective criterion A-optimal 

The simulation results of the state variables with the initialization settings are shown in 

Figure 4.2 providing an admissible starting operating point. 

 

Figure 4.2 CSTR Simulation result - process model with initial settings 
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Sequential optimization approach 

The experimental design package from gPROMS was used as reference. Since the 

sequential optimization approach is generally not suitable for unstable processes, the 

integrated optimizer totally fails after exceeding the iteration steps limit and could not 

find an admissible solution. 

 

Figure 4.3 Control trajectory of the inlet concentration, sequential approach 

 

Figure 4.4 Control trajectory of the cooling temperature, sequential approach 

The initial settings for both controls have not been varied much as seen in Figure 4.3 

and Figure 4.4 since the process constraints on the state variables were aggressively 

violated for the entire experiment time as also seen in Figure 4.5 and Figure 4.6.  
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Figure 4.5 Reactor concentration profile, sequential approach 

 

Figure 4.6 Reactor temperature profile, sequential approach 

Furthermore the optimizer cannot lead the process back to stability after entering an 

unstable region. The corresponding decision interval lengths and the OASE are shown 

in Figure 6.11 and Figure 6.12, which has just a marginal meaning since the 

optimization result violates the constraints.  

Simultaneous optimization approach 

The optimized control trajectory for the inlet concentration u1 is kept all the time at its 

upper bound representing a bang-bang solution as seen in Figure 4.7. Since u1 linearly 

enters the model equation ( 4.1 ) this result is optimal as discussed in section 3.5.  
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Figure 4.7 Control trajectory of the inlet concentration, simultaneous approach 

  

Figure 4.8 Control trajectory of the cooling temperature, simultaneous approach 

In contrast to the sequential approach the simultaneous approach results in a reasonable 

solution where the state variables are kept within the process constraints through the 

entire experiment as seen in Figure 4.9 and Figure 4.10. 
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Figure 4.9 Reactor concentration profile, simultaneous approach 

 

Figure 4.10 Reactor temperature profile, simultaneous approach 

The corresponding decision interval lengths and the OASE are shown in Figure 6.13 

and Figure 6.14 respectively. The sampling decisions show a proper strategy for a 

dynamic process where information is generally taken during and at the end part of the 

experiments.   
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4.2 Hydroformylation application 

The second case study corresponds to a hydroformylation process of 1-dodecene, a 

homogeneous catalyzed reaction via transition metals (Haumann et al. 2002; Leeuwen 

& Claver 2008; Koeken et al. 2011). The goal of this engineering example is to show an 

entire parameter estimation procedure of a complex reaction kinetic supported by OED. 

The main goals of this process focus on an economical catalyst recycling and a high 

selectivity regarding the linear aldehyde product n-tridecanal (Kraume 2013). For this 

purpose, the hydroformylation process was successfully investigated3 in a DMF-decane 

thermomorphic solvent (TMS) system with a Biphephos-modified rhodium catalyst 

(Brunsch & Behr 2013) and in a Marlophen surfactant system with a Sulfoxantphos-

modified rhodium catalyst (Rost et al. 2013).  

It is well known that side reactions like isomerization and hydrogenation of 1-dodecene 

and its isomers occur during the process. Furthermore, side- or subsequent reactions 

leading to aldols, alcohols, and acids may occur. However, since the latter side reactions 

have not been observed during the preliminary experiments, they are not considered 

(Hamerla et al. 2013). The postulated reaction network presented in Figure 4.11 was 

proposed by (Kiedorf et al. 2013) and successfully applied in (Müller et al. 2013). 

 

Figure 4.11 Reaction network of hydroformylation process 

The reaction network includes an equilibrium reaction ṙIsoA/IsoB between the reactant 1-

dodecene and its isomers. Both 1-dodecene and iso-dodecenes react to dodecane 

ṙHydA/HydB in the presence of hydrogen. The main product n-tridecanal is formed by the 

                                                 
3http://www.inprompt.tu-berlin.de/ 
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hydroformylation ṙHyfoAof 1-dodecene with CO and H2. Although the catalyst complex 

is formed with a bidentate ligand so as to raise the selectivity regarding the wanted 

linear product n-tridecanal and its branched isomers, small amounts of iso-aldehydes are 

formed represented by the hydroformylationṙHyfoB. Preliminary experiments have not 

shown the creation of iso-aldehydes via 1-dodecene. Therefore, it is assumed that the 

iso-aldehydes are solely created from the iso-dodecenes. The component balances with 

respect to the amount of substance are given as follows 

 dnDoce
dt

= VL ∙ (−ṙIsoA + ṙIsoB − ṙHydA − ṙHyfoA) ( 4.5 ) 

 dnIsoDoce
dt

= VL ∙ (ṙIsoA − ṙIsoB − ṙHydB − ṙHyfoB) ( 4.6 ) 

 dnDoca
dt

= VL ∙ (ṙHydA + ṙHydB) ( 4.7 ) 

 dnTDC
dt

= VL ∙ ṙHyfoA ( 4.8 ) 

 dnIsoAld
dt

= VL ∙ ṙHyfoB ( 4.9 ) 

The reduced mechanistic reaction kinetic model was derived based on the Wilkinson-

catalyst cycle. Details of the derivation can be found in (Kiedorf et al. 2013). 

 
ṙIsoA =

kref,IsoA ∙ exp (−
Ea,Iso

R
(
1

T
−

1

Tref
)) cCat ∙ cDoce

(1 + Kα,iso ∙ cDoce) ∙ (1 + Kα,Kat ∙ cCO)
 

( 4.10 ) 

 
ṙIsoB =

kref,IsoB ∙ exp (−
Ea,Iso

R
(
1

T
−

1

Tref
)) ∙ cCat ∙ cIsoDoce

(1 + Kα,iso ∙ cDoce) ∙ (1 + Kα,Kat ∙ cCO)
 

( 4.11 ) 

 
ṙHydA =

kref,HydA ∙ exp (−
Ea,Hyd

R
(
1

T
−

1

Tref
)) ∙ cCat ∙ cDoce ∙ cH2

(1 + Kα,hyd ∙ cDoce) ∙ (1 + Kα,Kat ∙ cCO)
 

( 4.12 ) 

 
ṙHydB =

kref,HydB ∙ exp (−
Ea,Hyd

R
(
1

T
−

1

Tref
)) cCat ∙ cIsoDoce ∙ cH2

(1 + Kα,hyd ∙ cDoce) ∙ (1 + Kα,Kat ∙ cCO)
 

( 4.13 ) 

 
ṙHyfoA =

cCatcDoce ∙ cH2 ∙ cCO ∙ kref,HyfoA ∙ exp (−
Ea,Hyf

R
(
1

T
−

1

Tref
))

(1 + Kα,hyfo ∙ cDoce + Kβ,hyfo ∙ cDoce ∙ cCO) ∙ (1 + Kα,Kat ∙ cCO)
 

( 4.14 ) 
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ṙHyfoB =

cCat ∙ cIsoDoce ∙ cH2 ∙ cCO ∙ kref,HyfoB ∙ exp (−
Ea,Hyf

R
(
1

T
−

1

Tref
))

(1 + Kα,hyfo ∙ cDoce + Kβ,hyfo ∙ cDoce ∙ cCO) ∙ (1 + Kα,Kat ∙ cCO)
 

( 4.15 ) 

State variables of the process are the mole amount of 1-dodecene  nDoce , iso-

dodecenes nIsoDoce, dodecane nDoca, n-tridecanal nTDC and iso-aldehydes nIsoAld. The 

temperature dependency of the reaction rates are of the centralized-temperature-form as 

proposed by (Buzzi-Ferraris & Manenti 2009) and (Bernas et al. 2010), which is 

crucially more capable for parameter estimation task than the classical Arrhenius 

approach. 

 ci =
ni
VL
, i: Doce, IsoDoce, Doca, TDC, IsoAld ( 4.16 ) 

 cj =
pj

H0,j exp (
Hads,j

RT
)
, j: H2, CO ( 4.17 ) 

The concentrations of CO and H2 in the liquid phase are given as function of the partial 

pressures ( 4.17 ) via the Van’t Hoff equation with respect to the adsorption 

enthalpy Hads,j (Smith & Harvey 2007) while assuming that the pressure dependency is 

negligible for the operating range from 5  to 15 bar and that the mass transfer from the 

gas phase into the liquid phase is much faster than the reaction rates. The process 

parameters to be examined are the frequency factors krefIsoA, krefHydA, krefHyfoA, the 

activation energies Ea,Iso , Ea,Hyd , Ea,Hyfo  and the mechanistic parameters Kα,Hyfo , 

Kα,Kat. Furthermore, the process can be influenced by three control variables: the partial 

pressures pCO/H2 and the reactor temperature T. The remaining degrees of freedom are 

grouped together as fixed model constants and listed in Table 33. The aim of this 

example is to show the full capability of the OED without any technical limitation 

regarding the implementation of the optimized control trajectories. Therefore the real 

reactor is simulated by the model equations ( 4.5 ) to ( 4.17 ) with the reference 

parameter set (Table 34) which was obtained by more than 200 single experiments 

without design. According to the experimental setup, the mole amount of 1-

dodecene nDoce, iso-dodecenes nIsoDoce, dodecane nDoca and n-tridecanal nTDC can be 

measured through the running experiment with a measurement variance of 0.0001 

mole. Furthermore the process constraints on the initial conditions and the control 

variables are: 
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0.01 mole ≤ n0,Doce  ≤ 0.05 mole 

5 bar ≤ pCO/H2(t)  ≤ 15 bar 

368 K ≤ T(t) ≤ 388 K 

( 4.18 ) 

4.2.1 Factorial Design 

First, the method of factorial design is applied to the experimental design task so as to 

emphasize the high experimental effort related with the conventional approach. Then 

the OED approach is applied to the same task so as to show how much work can be 

reduced at even more precisely estimated parameters. For the conventional approach, a 

2k-design is applied to the partial pressures pCO/H2 leading to 22 combinations and the 

3k-design is applied to the initial mole amount of the substrate 1-dodecene n0,Doce and 

the reactor temperatureT leading to 32 combinations as seen in Table 20. This results in 

an experiment design with 36 experiments. 

Table 20 Design conditions - hydroformylation 

 
LOW MEDIUM HIGH 

pCO/H2 5 bar − 15 bar 

n0,Doce 0.01 mole 0.03 mole 0.05 mole 

T 368 K 378 K 388 K 

The parameter estimation of the reaction kinetics with mechanistic parameters was 

carried out by three subsequent steps.  

1) Pre-estimation of the mechanistic parameters and the frequency factors with the 

experiments at the reference temperature Tref 

2) Pre-estimation of the activation energy with experiments at different temperature 

levels except the reference temperature Trefand fixed pre-estimated mechanistic 

parameters and frequency factors 

3) Estimation of all parameters with all experiment data 

The idea behind step one is quite simple but very effective. The exponential term of all 

reaction rates becomes one at the reference temperature and thus the influence of the 

activation energies is canceled out. Since parameter estimation problems with the 
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conventional Arrhenius term are extremely stiff, where the condition number of the 

Jacobian is in general of 1012  magnitude or even more, this reformulation generally 

reduces the magnitude of the condition number down to 106  or even less (Buzzi-

Ferraris & Manenti 2009). The corresponding experiments of the factorial design for 

step one are listed in Table 35 from number 13  to 24 .For all experiments, the 

experiment duration is fixed to 90 minutes, the sampling number is limited to 8 

samplings and the sampling policy is designed as a typical one of chemists for an 

estimation of kinetic parameters, where more samplings are taken at the beginning and 

less at the end of the experiment as given in Table 21 and illustrated in Figure 4.12. 

Table 21   Hydroformylation - factorial design sampling policy 

experiment duration 90 min 

sampling vector [min] [1, 3, 8, 15, 30, 45, 60, 90] 

 

Figure 4.12 Sampling policy of chemists for kinetic parameter estimation 

The parameter estimation results of the factorial design for step one are listed in Table 

22. The frequency factors and the kinetic parameters could be estimated relatively near 

to the true parameters due to the “deactivated” effect of the activation energies.  
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Table 22 Parameter estimation results – Factorial design step one 

 
Initial guess Final value 

confidence 

interval - 99% 
Reference value 

krefIsoA 100 7.7978 2.549 9.3912 

krefHydA 100 657.77 267.5 798.34 

krefHyfoA 100 22629 14300 27495 

Kα,Hyfo 1 21.944 11.91 22.376 

Kα,Kat 1 74.392 30.33 90.917 

For step two, the pre-estimated parameters of step one are fixed. The corresponding 

experiments for the estimation of the high nonlinear activation energies are listed in 

Table 35 from number 1  to 12  and 25  to 36 .The initial values for the activation 

energies are partially guessed values and partially based on published pre-works 

regarding the hydroformylation of 1-dodecene (Bhanage et al. 1997) and (Koeken et al. 

2011). The estimation results of this step are listed in Table 23. 

Table 23 Parameter estimation results – Factorial design step two 

 
Initial guess Final value 

confidence 

interval - 99% 
Reference value 

Ea,Iso 30000 91897 6917 93245 

Ea,Hyd 45000 24773 2186 30820 

Ea,Hyfo 60000 67048 3354 71871 

The estimation results are also reasonable in this case because of the well pre-estimated 

parameters from step one. Finally, for step three, all pre-estimated parameters are 

opened again with their pre-estimated values as initial guess for the final estimation step 

based on the data of all 36 experiments. The estimation results of the last step are listed 

in Table 24. 

. 
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Table 24 Parameter estimation results – Factorial design step three 

 
Initial guess Final value 

confidence 

interval - 99% 
Reference value 

krefIsoA 7.7978 13.009 2.692 9.3912 

krefHydA 657.77 1110.4 268.4 798.34 

krefHyfoA 22629 36777 11740 27495 

Kα,Hyfo 21.944 20.218 4.473 22.376 

Kα,Kat 74.392 131.75 31.82 90.917 

Ea,Iso 91897 87380 3297 93245 

Ea,Hyd 24773 32963 7462 30820 

Ea,Hyfo 67048 69259 2244 71871 

Although the estimated parameter values are near the true parameter values and the 

corresponding confidence intervals are relatively small, the experiment effort was very 

high. Additionally to the totally 54 hours of the 36 experiments, one must also consider 

the subsequent treatment of the corresponding 288 GC-samplings, which is even more 

time consuming and costs lots of resources. Therefore, the goal of the optimal 

experimental design approach primarily aims at reducing the experimental effort as 

presented in the following section.   

4.2.2 Optimal experimental design 

In contrast to the factorial design, the process is addressed not only by discrete decisions 

but also dynamic control strategies as shown in Table 25.  

Table 25 Control strategies - OED 

pCO/H2(t) dynamic zero-order control 

T(t) dynamic first-order control 

nDoce(t = 0) discrete decision 

Additionally, the following constraints are included in the optimization formulation:  
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Table 26 Additional limitations - OED 

Time limitation tend = 60 min 

Number of samplings 8 

The parameter estimation strategy with three steps as presented in the previous section 

is also used for the optimal experimental design leading to three experiments as 

summarized in Figure 4.13. The OED problem is implemented via the global optimizer 

BARON and solved with respect to the A-optimal criterion.   

 

Figure 4.13 Parameter estimation strategy 

In the first experiment the rector temperature is kept constant at T = Tref = 378𝐾. The 

optimized initial condition for the 1-dodecene concentration hits the upper bound with 

nDoce,0 = 0.05 mole.  The optimized trajectories for the CO- and H2- partial pressure 

are given in Figure 4.14 and Figure 4.15 respectively.   

 

Figure 4.14 Experiment 1, optimized CO-partial pressure 
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Figure 4.15 Experiment 1, optimized H2-partial pressure 

Since the H2 partial pressure enters the model linearly ( 4.17 ), its optimal solution has 

to result in a bang-bang solution. This future does not apply for the temperature and the 

CO- partial pressure since they are nonlinear in the model equations. The OASE for 1-

dodecene and TDC are shown in Figure 4.16 and Figure 4.17 and for iso-dodecenes and 

dodecane in Figure 6.15 and Figure 6.16 respectively. 

 

Figure 4.16 Experiment 1, OASE for 1-dodecene 
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Figure 4.17 Experiment 1, OASE for TDC 

The estimated parameters based on the data of experiment 1 are listed in Table 27. After 

the first experiment, the estimated parameter values are already relatively near to the 

true parameters. However their confidence intervals are still very large because of the 

small number of sampling data.  

Table 27 Parameter estimation results – OED step one 

 
Initial guess Final value 

confidence 

interval - 99% 
Reference value 

krefIsoA 100 18.242 57.47 9.3912 

krefHydA 100 1632.3 6005 798.34 

krefHyfoA 100 31134 1.58 ∗ 105 27495 

Kα,Hyfo 1 9.9153 35.04 22.376 

Kα,Kat 
1 188.23 651.1 90.917 
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In the second experiment the temperature is dynamically controlled so as to capture the 

temperature dependency of the process.  

 

Figure 4.18 Experiment 2, reactor temperature 

The optimized temperature trajectory as seen in Figure 4.18 shows the optimized 

dynamical perturbations of the process temperature. Since the activation energies are 

directly coupled, changes in the temperature directly affect the corresponding reaction 

rates and sensitivities. The corresponding optimized trajectories for the CO- and H2- 

partial pressure are given in Figure 4.19 and Figure 4.20 respectively. From the 

chemical point of view, three main dynamic behaviors can be observed. The first 

dynamic trend starts from the beginning of the experiment and continues for 25 

minutes. During this period all control variables, which are the temperature and the 

partial pressures of CO and H2 are at their upper bounds. This can be explained with an 

optimal condition for the main hydroformylation reaction. The second dynamic trend 

can be observed from the 25th to the 54th minute. The partial pressure of H2 is reduced to 

its lower bound whereas the perturbations of the temperature and the partial pressure of 

CO take action decisively. With the reduced hydrogen concentration in the gas phase 

the isomerization reaction is preferred, hence its activation energy and the 

corresponding sensitivities can be addressed more precisely.  
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Figure 4.19 Experiment 2, optimized CO-partial pressure 

 

Figure 4.20 Experiment 2, optimized H2-partial pressure 

The last dynamic trend starts from the 54th minute and reaches the end of the 

experiment. With the increase of H2 to its upper bound and the parallel reduction of CO 

to its lower bound the hydrogenation reaction is now preferred, hence the corresponding 

activation energy and sensitivities can be fully addressed. The OASE for the 1-dodecene 

and the TDC mole amounts are shown in Figure 4.21, Figure 4.22 and Figure 6.17, 

Figure 6.18 for iso-dodecenes and dodecane respectively. 
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Figure 4.21 Experiment 2, OASE for 1-dodecene 

 

Figure 4.22 Experiment 2, OASE for TDC 

The parameter estimation results for the activation energies based on the sampling data 

of experiment 2 are listed in Table 28.  
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Table 28 Parameter estimation results – OED step two 

 
Initial guess Final value 

confidence 

interval - 99% 
Reference value 

Ea,Iso 30000 88451 14410 93245 

Ea,Hyd 45000 39079 30630 30820 

Ea,Hyfo 60000 71578 3700 71871 

Finally all pre-estimated parameter are opened again for the estimation in experiment 3. 

Since all parameter are already moved near the reference parameter values, the 

optimized temperature control trajectory is not as aggressive as in experiment 2 as seen 

in Figure 4.23. 

 

Figure 4.23Experiment 3, reactor temperature 

This also applies for the optimized trajectories of the CO- and H2- partial pressures as 

shown in Figure 4.25 and Figure 4.24.  Analogously to experiment 2, it can be also 

observed that the hydroformylation reaction is preferred in the first part of the 

experiment. One short perturbation around the 22nd and the 25th minute addresses one 

more time the isomerization reaction. With the total reduction of CO, the third and last 

part of the experiment clearly addresses the hydrogenation reaction.      
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Figure 4.24 Experiment 3, optimized H2-partial pressure 

 

Figure 4.25 Experiment 3, optimized CO-partial pressure 

The OASE of experiment 3 for the 1-dodecene and the TDC mole amounts are shown in 

Figure 4.26, Figure 4.27 and Figure 6.19, Figure 6.20 for iso-dodecenes and dodecane 

respectively. 
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Figure 4.26 Experiment 3, OASE for 1-dodecene 

 

Figure 4.27 Experiment 3, OASE for TDC 

Taking the sampling information of all three experiments together, the final parameter 

estimation step leads to the results which are listed in Table 29. 
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Table 29 Parameter estimation results – OED step three 

 
Initial guess Final value 

confidence 

interval - 99% 
Reference value 

krefIsoA 18.242 9.0776 0.5708 9.3912 

krefHydA 1632.3 769.22 58.45 798.34 

krefHyfoA 31134 24979 3721 27495 

Kα,Hyfo 9.9153 20.538 3.384 22.376 

Kα,Kat 188.23 87.753 6.271 90.917 

Ea,Iso 88451 94098 2043 93245 

Ea,Hyd 39079 27238 4081 30820 

Ea,Hyfo 71578 72955 2485 71871 

The estimated parameters after three optimized dynamic experiments are satisfied. 

Furthermore, their confidence intervals are relatively small meaning that the estimations 

are accurate and trustable. A comparison between the estimation results between 

factorial design and OED is shown in Table 30. 

Table 30 Comparison estimation results – Factorial design vs. OED 

 

Final value 

Factorial 

99% - conf. 

interval  

Final value 

OED 

99% - conf. 

interval 

Reference 

value 

krefIsoA 13.009 2.692 𝟗. 𝟎𝟕𝟕𝟔 𝟎. 𝟓𝟕𝟎𝟖 𝟗. 𝟑𝟗𝟏𝟐 

krefHydA 1110.4 268.4 𝟕𝟔𝟗. 𝟐𝟐 𝟓𝟖. 𝟒𝟓 𝟕𝟗𝟖. 𝟑𝟒 

krefHyfoA 36777 11740 𝟐𝟒𝟗𝟕𝟗 𝟑𝟕𝟐𝟏 𝟐𝟕𝟒𝟗𝟓 

Kα,Hyfo 20.218 4.473 𝟐𝟎. 𝟓𝟑𝟖 𝟑. 𝟑𝟖𝟒 𝟐𝟐. 𝟑𝟕𝟔 

Kα,Kat 131.75 31.82 𝟖𝟕. 𝟕𝟓𝟑 𝟔. 𝟐𝟕𝟏 𝟗𝟎. 𝟗𝟏𝟕 

Ea,Iso 87380 3297 𝟗𝟒𝟎𝟗𝟖 𝟐𝟎𝟒𝟑 𝟗𝟑𝟐𝟒𝟓 

Ea,Hyd 𝟑𝟐𝟗𝟔𝟑 7462 27238 𝟒𝟎𝟖𝟏 𝟑𝟎𝟖𝟐𝟎 

Ea,Hyfo 69259 𝟐𝟐𝟒𝟒 𝟕𝟐𝟗𝟓𝟓 2485 𝟕𝟏𝟖𝟕𝟏 
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More interesting is the question of how much experimental effort could be saved if 

preferring the OED approach. A comparison between both methods is illustrated in 

Figure 4.28.  

 

Figure 4.28 Comparison - factorial design vs. OED 

In the case of the factorial design, 36 “simple” experiments were carried out, each with 

duration of 90 minutes, and 288 GC analyses were needed for the post treatment of the 

samplings. On the other hand, only three experiments à 60 minutes are needed with 

totally 24 GC samplings when applying the OED approach. The price in return for this 

is difficult dynamic experiments which have to be realized in practice. The gain is that 

the total time could be saved with a factor of 20 and the total samplings number could 

be saved with a factor of 10. More important are the estimation results. Here the OED 

approach clearly is superior to the factorial design approach not only with respect to the 

nominal estimated parameter values but also to the corresponding confidence intervals.   
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5 Summary and outlook 

The proposed simultaneous optimization approach to OED combines two powerful 

methodologies together and represents the state-of-the-art method when it comes down 

to solve design of experiments tasks regarding precise parameter estimation. First, it 

inherits the formulation of an optimal control problem from the OED methodology, 

thus, model structure, parameters and the time dependent character of dynamic 

processes can be fully exploited. Secondly, the transcription of the optimal control 

formulation to a NLP problem covers all demands of an advanced OED formulation and 

it is appropriate to be solved efficiently by global optimization algorithms. The obtained 

results outmatch the results from sequential optimization approaches which in general 

only reach local optimality. Furthermore, old burdens from sequential optimization 

approaches like problems with instable systems, overloaded computational effort in case 

of many parameters and controls, inefficient Jacobian handling, high-index path 

constraints as well as singular control problems can be totally overcome, or at least be 

treated in a proper way with respect to the latter4. The application example of an 

instable CSTR process has shown that the proposed approach properly handled the 

instabilities and obtained optimal results, whereas state-of-the-art commercial tool for 

OED totally fails even in finding a feasible solution. The results of the second 

application example regarding the estimation of kinetic parameters of a complex 

hydroformylation process has shown that the proposed approach is clearly the superior 

method in comparison with the conventional factorial design strategy. Not only the 

experimental effort could remarkably be reduced but also better estimated parameter 

values and even more important better confidence intervals could be obtained.      

It has been derived that the structure of the constraint derivatives of the formulated NLP 

problem are extremely sparse and most part of the first-order constraint derivatives can 

be found again in higher order derivatives. Therefore, all those terms can be reused 

during the calculations. It has also been shown that the initial conditions of the state 

variables as well as the decision interval lengths linearly enter the Lagrangian. Thus, if 

no additional constraints are violated, for example a limited experiment duration or 

more strict constraints on the state variables themselves, then optimality can only be 

obtained if their outputs result in a bang-bang solution. The most crucial decision 

                                                 
4Detailed analyzes and proofs are reserved for the interested reader in (Biegler 2010) 
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variable regarding OED is the sampling decisions which represent the core part of the 

OASE. The objective functions with respect to the FIM are quadratic in the sampling 

decisions. However, strict monotonicity is always given over the related special 

optimization space of [0, 1] , thus, the optimum is always reached at reasonable 

solutions, namely 0 or 1. On the other hand the strict monotonicity cannot be guaranteed 

if the objective function is formulated with respect to the covariance matrix Cθ, hence, 

the presented approach is only used in connection with the FIM.   

The proposed advanced OED approach, which includes variable control orders, 

optimization of the initial conditions and the decision interval length, strict compliance 

to process constraints, limitation on the experiment duration and the OASE has been 

implemented in MOSAIC5, a freeware web based modeling environment for process 

systems engineering (Zerry et al. 2004; Kuntsche et al. 2011). The designed interface in 

MOSAIC allows the users to enter all specifications of the advanced OED task resulting 

in runnable program codes which then can be directly solved in GAMS via the global 

optimizer BARON (see Figure 6.21 and Figure 6.22).  

There are some issues which are worth to discuss in the following for future 

investigations. A proper handling of the discretization error should be included to the 

optimization formulation. It is obvious that the upper bound of the decision interval 

length hl cannot be as large as possible. Accordingly, it also cannot be answer just by 

heuristics, whether the lower bounds should be at least as small as the minimum 

possible sampling interval or smaller. This issue has to be rather investigated in 

connection with the approximation of the global discretization errore(t) = z(t) − zK(t) 

which holds for the OCFEM with Legendre roots 

max
t∈[0,tf]

‖e(t)‖ ≤ C max
l∈[1,…,Ne]

(hl
K‖Tl(t)‖) + O(hl

K+1) 

Here, C denotes a constant which is of mathematical interest, and Tl(t) depends only on 

the solution z(t) and is independent of the choice of collocation interval length hl. A 

formulation which allows variable decision interval lengths in the context of tracking 

and adapting to steep profiles has been proposed by (Vasantharajan & Biegler 1990). A 

theory to extend OP2 could be derived based from this idea.  

                                                 
5http://www.mosaic-modeling.de/  
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∑hl = tf, hl ≥ 0, l = 1, … , Ne 

C̃‖Tl(τ)‖ ≤ ε 

Another problem is related to local optimality of the obtained solutions. The non-

optimality of the solutions obtained by the implementation in Tomlab via SNOPT 

reveals a strong tendency to local minima so that gradient-based optimization 

algorithms generally cannot guarantee a global solution. On the other hand, the 

simultaneous approach is more favorable compare to sequential approaches regarding 

algorithms for global optimality because of its fully discretized formulation and the fact 

that the model nonlinearities are not increasing through the discretization scheme. The 

implementation in GAMS via BARON has clearly shown its superiority but is only 

capable for the A-optimal criterion since there is no direct way to represent the 

determinant or the eigenvalue of a matrix in GAMS. Therefore one important issue for 

future investigations is to apply the proposed approach with respect to D- and E-optimal 

criteria in connection with more flexible global optimization algorithms. 
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6 Appendix 

6.1 Appendix for the biomass reactor process 

Table 31 List of admissible experiments 

 

cB,0 cS,0 u1 u2 Admissible 

1. L L L L No 

2. L L L H Yes 

3. L L H L No 

4. L L H H No 

5. L M L L No 

6. L M L H Yes 

7. L M H L No 

8. L M H H No 

9. L H L L Yes 

10. L H L H Yes 

11. L H H L No 

12. L H H H No 

13. M L L L No 

14. M L L H Yes 

15. M L H L No 

16. M L H H No 

17. M M L L No 

18. M M L H Yes 

19. M M H L No 

20. M M H H No 

21. M H L L No 
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22. M H L H Yes 

23. M H H L No 

24. M H H H No 

25. H L L L No 

26. H L L H Yes 

27. H L H L No 

28. H L H H No 

29. H M L L No 

30. H M L H Yes 

31. H M H L No 

32. H M H H No 

33. H H L L No 

34. H H L H No 

35. H H H L No 

36. H H H H No 

6.2 Appendix for the Optimal Adaptive Sampling Strategy – OASE 

 

Figure 6.1 Sampling strategy - biomass concentration, OASE - SNOPT 
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Figure 6.2 Sampling strategy - substrate concentration, OASE–SNOPT 

 

Figure 6.3 Sampling strategy - biomass concentration, OASE – BARON 

 

Figure 6.4 Sampling strategy – substrate concentration, OASE – BARON 
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Figure 6.5 Decision intervals, D-optimal – SNOPT 

 

Figure 6.6 Sampling strategy - biomass concentration, D-optimal - SNOPT 

 

Figure 6.7 Sampling strategy – substrate concentration, D-optimal – SNOPT 
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Figure 6.8 Decision intervals, E-optimal - SNOPT 

 

Figure 6.9 Sampling strategy - biomass concentration, E-optimal - SNOPT 

 

Figure 6.10 Sampling strategy – substrate concentration, E-optimal - SNOPT 
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6.3 Appendix for the CSTR process 

Table 32 Process parameters of the CSTR-model 

Parameter Value [Unit] Parameter Value [Unit] 

L 6.6 [dm] ρ 1 [
kg

l
] 

Fin 
100 [

l

min
] Cp 

239 [
J

kgK
] 

Tin 350 [K] ∆Hr 
−5 ⋅ 104 [

J

mol
] 

Fout 
100 [

l

min
] U 

549.36 [
J

min ⋅ dm2K
] 

r 2.19 dm kr,0 
7.2 ⋅ 1010 [

1

min
] 

E 
72740 [

J

mol
] 

  

 

 

Figure 6.11 Decision intervals, sequential approach 
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Figure 6.12 OASE, sequential approach 

 

Figure 6.13 Decision intervals, simultaneous approach 

 

Figure 6.14 OASE, simultaneous approach 
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6.4 Appendix for the hydroformylation process 

Table 33 Process parameters of the hydroformylation model 

Constant Value [Unit] Constant Value [Unit] 

krefIsoB 0.55099 [
l

g
] ccat 0.0242 [

g

l
] 

krefHydB 16.851 [
l2

g ⋅ mol
] VL 0.045[ l ] 

krefHyfoB 85.822 [
l3

g ⋅ mol2
] H0,H2 13.4 [

bar ⋅ l

mol
] 

Kα,Iso 1.3597 [
l

mol
] H0,CO 254.65 [

bar ⋅ l

mol
] 

Kα,Hyd 55.719 [
l

mol
] Hads,H2 8122.46 [

J

mol
] 

Kβ,Hyfo 65.833 [
l

mol
] Hads,CO −2877.42 [

J

mol
] 

R 8.314 [
J

(mol K)
] Tref 378 [K] 

 

 

Table 34 Reference parameter set for the hydroformylation process 

Parameter Value [Unit] Parameter Value [Unit] 

krefIsoA 9.3912 [
l

g
] Kα,Hyfo 22.376 [

l

mol
] 

krefHydA 798.34 [
l2

g ⋅ mol
] Kα,Kat 90.917 [

l

mol
] 

krefHyfoA 27495 [
l3

g ⋅ mol2
] EaIso 93245 [

J

mol
] 

Kα,Iso 1.3597 [
l

mol
] EaHyd 30820 [

J

mol
] 

Kα,Hyd 55.719 [
l

mol
] EaHyfo 71871 [

J

mol
] 

 

  



111 

 

Table 35 Factorial design – hydroformylation process 

 

T n0,Doce pCO pH2 

1. L L L L 

2. L L L H 

3. L L H L 

4. L L H H 

5. L M L L 

6. L M L H 

7. L M H L 

8. L M H H 

9. L H L L 

10. L H L H 

11. L H H L 

12. L H H H 

13. M L L L 

14. M L L H 

15. M L H L 

16. M L H H 

17. M M L L 

18. M M L H 

19. M M H L 

20. M M H H 

21. M H L L 

22. M H L H 

23. M H H L 

24. M H H H 
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25. H L L L 

26. H L L H 

27. H L H L 

28. H L H H 

29. H M L L 

30. H M L H 

31. H M H L 

32. H M H H 

33. H H L L 

34. H H L H 

35. H H H L 

36. H H H H 
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Figure 6.15 Experiment 1, OASE for iso-dodecenes 

 

Figure 6.16 Experiment 1, OASE for dodecane 
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Figure 6.17 Experiment 2, OASE for iso-dodecenes 

 

Figure 6.18 Experiment 2, OASE for dodecane 
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Figure 6.19 Experiment 3, OASE for iso-dodecenes 

 

Figure 6.20 Experiment 3, OASE for dodecane 
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6.5 Appendix – advanced OED in MOSAIC 

 

Figure 6.21 MOSAIC – modeling environment for process systems engineering 
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Figure 6.22 MOSAIC – OED interface 
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