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It should not be believed that all beings exist for the sake of the existence
of man. On the contrary, all the other beings too have been intended for
their own sakes and not for the sake of anything else.

Maimonides (1138–1204)

The time will come when men such as I will look upon the murder of
animals as they now look on the murder of men.

Leonardo da Vinci (1452–1519)

It is the fate of every truth to be an object of ridicule when it is first
acclaimed. It was once considered foolish to suppose that black men were
really human beings and ought to be treated as such. What was once foolish
has now become a recognized truth. Today it is considered as exaggeration to
proclaim constant respect for every form of life as being the serious demand
of a rational ethic. But the time is coming when people will be amazed that
the human race existed so long before it recognized that thoughtless injury to
life is incompatible with real ethics. Ethics is in its unqualified form extended
responsibility to everything that has life.

Albert Schweitzer (1875–1965)

As custodians of the planet it is our responsibility to deal with all species
with kindness, love, and compassion. That these animals suffer through hu-
man cruelty is beyond understanding. Please help to stop this madness.

Richard Gere
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1 Introduction

The Setting

Let A be a closed densely defined nonnegative operator in a Hilbert space
H. Then A has equal deficiency indices n±(A) = dim

(
ker(A∗ ∓ I)

)
, which

implies that A has nonnegative selfadjoint (operator) extensions. This result
is due to J. von Neumann, cf. [49]. Moreover, for a positive definite operator
A he constructed the so-called Krĕın-von Neumann extension AN of A via
domAN = domA u kerA∗,

AN (f0 + f∗) = Af0, f0 ∈ domA, f∗ ∈ kerA∗,

and proved that AN is nonnegative and selfadjoint. Another important non-
negative selfadjoint extension of A is the Friedrichs extension AF which for
the first time was constructed by K. Friedrichs, cf. [27]. It is the selfadjoint
operator which is associated to the closure of the nonnegative sesquilinear
form

t[f, g] = (Af, g), f, g ∈ dom t = dom A.

This implies that the lower bound µ(AF ) of AF equals the lower bound µ(A)
of A, which is defined as the largest number µ ≥ 0 such that

(Af, f) ≥ µ(f, f)

is satisfied for all f ∈ domA. Whereas the lower bound of the Krĕın-von
Neumann extension AN of A is always equal to zero, cf. [11, page 14].

These two nonnegative selfadjoint extensions are extreme in the following
sense: The nonnegative selfadjoint operator Ã is an extension of A if and
only if it satisfies the inequalities

AN ≤ Ã ≤ AF , (1.1)

where for two nonnegative selfadjoint operators A1 and A2 the partial or-
der relation A1 ≤ A2 is defined by domA

1/2
1 ⊇ dom A

1/2
2 and ∥A1/2

1 f∥ ≤
∥A1/2

2 f∥, f ∈ domA
1/2
2 . This result was obtained by M. G. Krĕın in [40] and

generalized by E. A. Coddington and H. V. S. de Snoo in [18] to the case
where A is a nonnegative relation.

The set of all nonnegative selfadjoint extensions of A may also be char-
acterized by means of a basic boundary triplet for A∗. This is a special
boundary triplet in the sense of Definition 4.2.3. Boundary triplets for oper-
ators (and their generalization for relations) have extensively been studied
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in [22], [25]; see also [28]. We recall in the following the characterization
mentioned above. Let H be a Hilbert space with dim H = n±(A) and let
{H, Γ0, Γ1} be a basic boundary triplet for A∗. Then the mapping Γ :=

(
Γ0

Γ1

)
establishes a one-to-one correspondence between the set of all nonnegative
selfadjoint extensions ÃΘ of A and the set of all nonnegative selfadjoint
relations Θ ⊆ H × H via

dom ÃΘ = Γ−1Θ = {f ∈ dom A∗ | Γf ∈ Θ}, ÃΘ := A∗|dom ÃΘ
. (1.2)

The Friedrichs and the Krĕın-von Neumann extension of A are elements
of the class E(A), the class of extremal extensions of A. By definition, a
nonnegative selfadjoint extension Ã of A is called an extremal extension of
A if

inf
{(

Ã(h − f), h − f
) ∣∣∣ f ∈ dom A

}
= 0, for all h ∈ dom Ã. (1.3)

Extremal extensions first occured in articles of Yu. Arlinskĭı and E. Tseka-
novskĭı, cf. [5], [12]. Given the nondensely defined contractive operator
S := (I − A)(I + A)−1, its extremal extensions are defined as the image of
the extreme points of the operator interval

ExtS(−1, 1) :=
{
S̃ ∈ L(H)

∣∣ S ⊆ S̃ = S̃∗, ∥S̃∥ ≤ 1
}

(1.4)

under the transformation X : S 7→ A = (I − S)(I + S)−1, cf. [30].

In [11] it is shown that the extremal extensions in the representation
(1.2) correspond to the relations

Θ =
{
{Ph, (I − P )h}

∣∣ h ∈ H
}
, where P = P ∗ = P 2 ∈ L(H).

Another possibility of characterizing the extremal extensions was estab-
lished in [11]: Define the Hilbert space HA as the completion of ran A with
respect to the inner product ⟨f, g⟩ = (Af, g), f, g ∈ domA. Then the
operators Q and J given by

Q : H ⊇ dom A → HA, f 7→ Ãf , (1.5)

J : HA ⊇ r̃anA → H, Ãf 7→ Af, (1.6)

are densely defined and closable. Here, the elements Af of HA are denoted
by Ãf , and similarly, r̃anA ⊆ HA. Then (1.5) and (1.6) yield the factoriza-
tion

A = JQ.
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It was shown that the Friedrichs and the Krĕın-von Neumann extension of
A have the representations

AF = Q∗Q∗∗ and AN = J∗∗J∗.

These factorizations first occured in articles of Z. Sebestyén, J. Stochel and
co-workers, see [52], [53], [62], [63]. Furthermore, it has been proven that
the set of extremal extensions consists exactly of those operators ÃL which
allow the factorization

ÃL = J∗|∗LJ∗|∗∗L , (1.7)

where L is a subspace of H satisfying dom A ⊆ L ⊆ domA
1/2
N , cf. [11]. More-

over, the following characterization was obtained: A nonnegative selfadjoint
extension Ã of A is extremal if and only if

Ã[f, g] = AN [f, g], f, g ∈ dom Ã
1/2, (1.8)

holds true. For the case that A is a nonnegative relation corresponding
results can be found in [34].

Outline

The main objective of this thesis is to characterize the extremal extensions of
a closed densely defined nonnegative operator A that is acting in a Hilbert
space H. In the case where A allows a special factorization it is possible
to express these extensions in terms of the factors in the factorization, see
Chapter 5. In Section 5.3 we drop the condition that A is closed and densely
defined. For the tensor product A⊗̂B of two closed densely defined nonneg-
ative operators A and B we give the relation between the Friedrichs, the
Krĕın-von Neumann and the extremal extensions of the factors A and B
and the Friedrichs, the Krĕın-von Neumann and the extremal extensions of
A⊗̂B.

This thesis is organized as follows. In Section 2.1 we provide some basic
definitions and facts on nonnegative operators and nonnegative sesquilin-
ear forms (forms, for short), in particular Kato’s Representation Theorems
which give a one-to-one correspondence between all closed densely defined
semibounded forms and all semibounded selfadjoint operators, will play an
important role cf. [37]. Moreover, we recall some properties of the operator

T ∗T ∗∗,
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where T : H ⊇ dom T → K is a densely defined closable operator acting
between the Hilbert spaces H and K. They will be used in Chapter 5
when we factorize the Friedrichs, the Krĕın-von Neumann and the extremal
extensions of a (closed densely defined) nonnegative operator.

In Section 2.2 we introduce the Friedrichs and the Krĕın-von Neumann ex-
tension of a closed densely defined nonnegative operator and review some
well-known facts including the inequality (1.1) and descriptions of the do-
main, kernel and range of these extensions and their square roots. These
results and generalizations to the case where A is a nonnegative relation can
be found in [1], [3], [6], [7], [11], [17], [18], [25], [27], [28], [29], [40], [49], [52],
[53], [59], [62], [64].

We will show in Section 2.3 that another possibility to characterize the
set of all nonnegative selfadjoint extensions of a closed densely defined non-
negative operator is given via contractive embeddings. More precisely, an
operator Ã is a nonnegative selfadjoint extension of A if and only if it has
the representation

Ã = (i−1
L )∗i−1

L − I, (1.9)

where iL denotes the embedding operator from a Hilbert space {L, (·, ·)L}
into the Hilbert space {H, (·, ·)} and both of the following embeddings are
contractive:

{dom A
1/2
F , (·, ·)

A
1/2
F

}
⊆

{
L, (·, ·)L

}
⊆

{
dom A

1/2
N , (·, ·)

A
1/2
N

}
, (1.10)

see Theorem 2.3.1. Here the inner product generated by the graph norm of
A

1/2
F is denoted by (·, ·)

A
1/2
F

. Moreover, it turns out that{
L, (·, ·)L

}
=

{
dom Ã

1/2, (·, ·)Ã1/2

}
.

In the proof we essentially make use of the inequalities (1.1) and the Rep-
resentation Theorems mentioned above. As a corollary we obtain an ab-
stract variation on Rellich’s Criterion, namely that the resolvent of Ã in
(1.9) is compact if and only if the same is true for the embedding mapping
iL : L → H.

In Chapter 3 we introduce the notion of extremal extensions of a closed
densely defined nonnegative operator A. Furthermore, the Hilbert spaces
HA and HA are discussed, where HA is defined as the completion of dom A
with respect to the inner product

⟨f, g⟩ = (Af, g) + (f, g), f, g ∈ domA.
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We show in Section 3.2 that for every nonnegative selfadjoint extension Ã
of A the space HA is a closed subspace of HÃ, where HÃ is constructed
analogously to HA. In addition, Ã is an extremal extension of A if and only
if

HA = HÃ

(Proposition 3.2.3). From that we conclude that in the case where A is
additionally positive definite H can be continuously embedded in HA.

In Chapter 4 we give a brief introduction to the theory of boundary
triplets and we recall some well-known results that can be found in [5], [24],
[25]. We give a direct proof of the characterization of the extremal extensions
of a closed densely defined nonnegative operator via (1.2) and (1.4) which
only uses the identity (1.8). This parametrization will be useful in Chapter
7 for the description of the extremal extensions of a class of Sturm-Liouville
operators and factorized block operator matrices.

In Section 5.1 we introduce the operators J and Q mentioned above.
We show that for every nonnegative selfadjoint extension Ã of the closed
densely defined nonnegative operator A the identity

Ã ⊆ Q∗J∗

is satisfied (Lemma 5.1.1).
Our first factorization result concerns an analogous parametrization to

(1.7) of the extremal extensions Ã ∈ E(A). More precisely, a nonnegative
selfadjoint extension Ã of A is extremal if and only if it has the representation

Ã = Q∗|∗∗
L̃

Q∗|∗
L̃
,

where L̃ is a subspace of HA satisfying domJ ⊆ L̃ ⊆ domQ∗ (Proposition
5.1.7).

In Section 5.2 we give a slight generalization of [11, Theorem 9.1] which
we will use in Chapter 7.1 when discussing a class of regular Sturm-Liouville
operators.

In Section 5.3 we drop the condition that the nonnegative operator A is
closed and densely defined. A general asumption will be that A is given in
the form

A = KC,

where K and C are operators satisfying some assumptions that are partic-
ularly fulfilled if K is a densely defined operator with C ⊆ K∗. Then the
Friedrichs extension of A is given by

AF = C∗
AC∗∗

A ,
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where CA is the restriction of C to dom A. The Krĕın-von Neumann extension
of A has the representation

AN = K∗∗
A K∗

A,

where KA is the restriction of K to ranCA, see Theorem 5.3.4. Furthermore,
the extremal extensions of A are parametrized via a subspace L of H that
is lying between dom A and domJ∗. Since A may be not densely defined
its nonnegative selfadjoint extensions may be relations, but if domA is a
dense subset of H then all extremal extensions are operators. Essentially,
our proofs are generalizations of the methods that have been used for the
factorization of the sum of nonnegative selfadjoint operators in [32]. We
refer to [33] for a detailed study of factorizations of the extremal extensions
of the sum of nonnegative selfadjoint relations.

Chapter 6 is the completion of Section 2.3. We show that a nonnegative
selfadjoint extension Ã of A that, as we already mentioned, has the repre-
sentation (1.9), belongs to the class of extremal extensions of A if and only if
the right embedding in (1.10) is isometric. This is essentially a consequence
of (1.8).

In Chapter 7 the results of Chapter 5 are applied to a class of regular
Sturm-Liouville operators in L2(I) as well as to a class of block operator
matrices in L2(I) × L2(I), where I = (a, b) is a finite interval.

In Section 7.1 we discuss the following Sturm-Liouville operator: Let p be
a real-valued measurable function with p > 0 almost everywhere. Moreover,
assume that p−1 := 1

p belongs to L1(I). Then the operator A generated by
the differential expression

ℓ = − d

dx
p

d

dx
(1.11)

defined on the domain

dom A = {f ∈ L2(I) | f, pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I),
f(a) = f(b) = (pf ′)(a) = (pf ′)(b) = 0}

is closed densely defined and nonnegative with deficiency indices n±(A) = 2,
cf. [69]. Following the lines of [11], where the special case p = 1 was
discussed, we show that A allows the factorization A = LJLQ, where the
operators LJ , LQ are some first order differential operators with zero bound-
ary conditions, see Proposition 7.1.2. In the Theorems 7.1.7 and 7.1.8 we
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give a factorization of the Friedrichs extension and the Krĕın-von Neu-
mann extension of A. Moreover, we determine the boundary conditions
of these extensions and of their square roots. The proofs are based on a
slightly modified version of Theorem 5.2.2. Furthermore, we show that the
triplet {C2, Γ0, Γ1}, where

Γ0f =
(

f(a)
f(b)

)
, f ∈ dom A∗,

Γ1f =

 (pf ′)(a) − f(b)−f(a)
Fp−1 (b)−Fp−1 (a)

−(pf ′)(b) + f(b)−f(a)
Fp−1 (b)−Fp−1 (a)

 , f ∈ dom A∗,

is a basic boundary triplet for A∗, where Fp−1 denotes a primitive of p−1. In
Theorem 7.1.12 we prove that the extremal extensions Ãα,β of A (apart from
AF and AN ) are restrictions of A∗ corresponding to the boundary conditions

βf(a) = αf(b),

α

(
(pf ′)(a) − f(b) − f(a)

Fp−1(b) − Fp−1(a)

)
= β

(
(pf ′)(b) − f(b) − f(a)

Fp−1(b) − Fp−1(a)

)
,

where α ∈ R, β ∈ C and α2 + |β|2 = 1.
The corresponding form domains are given by

dom Ã
1/2
α,β = dom A

1/2
F u span

{
(β − α)Fp−1(·) + αFp−1(b) − βFp−1(a)

}
.

Problems of the type (1.11) (and more general ones) with bounded coef-
ficients were considered in [8], [9]. In these articles similar factorizations as
described above were used for the description of the Friedrichs, the Krĕın-
von Neumann and all m-sectorial extensions of some sectorial operators.

In Section 7.2 we we apply the results of Theorem 5.3.4 to a factorized
block operator matrix A in the Hilbert space H×H: Let A1, A2, B1 and B2

be densely defined operators such that

A1, B1 : H ½ H, A2 : H ½ K, B2 : K ½ H,

and let M be a subset of(
dom (A1B1) ∩ dom (A2B1)

)
×

(
dom (A1B2) ∩ dom (A2B2)

)
⊆ H×K.

For the block operators[
A1

A2

]
: H ⊇ dom A1 ∩ dom A2 → H×K, f 7→

(
A1f

A2f

)
,
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[
B1 B2

]
: H×K ⊇ domB1 × dom B2 → H,

(
f

g

)
7→ B1f + B2g,

assume that
[

A1

A2

]
⊆

[
B∗

1

B∗
2

]
, where the latter is equal to

[
B1 B2

]∗
, and

that dom A1 ∩ domA2 is a dense subspace of H. Then the block operator
matrix

A :=
[

A1B1 A1B2

A2B1 A2B2

]
=

[
A1

A2

] [
B1 B2

]∣∣∣
M

is nonnegative for which the operator[
A1

A2

] [
A1

A2

]∗
is a nonnegative selfadjoint extension. Note that, in general, this is no
block operator matrix anymore. Applying Theorem 5.3.4 we obtain that
the Friedrichs and the Krĕın-von Neumann extension of A are given by

AF =
[
B1 B2

]∣∣∣∗
M

[
B1 B2

]∣∣∣∗∗
M

and

AN =
[

A1

A2

]∣∣∣∣∗∗
ran

“

[B1 B2]
∣∣
M

”

[
A1

A2

]∣∣∣∣∗
ran

“

[B1 B2]
∣∣
M

”

,

respectively. Moreover, we can describe the extremal extensions of A as
follows: Denote by KE the block operator

KE =
[

A1

A2

]∣∣∣∣
ran

“[
B1 B2

]∣∣
M

”

: ran
([

B1 B2

]∣∣∣
M

)
½ H×K.

Then ÃL is an extremal extension of A if and only if there exists a subspace
L of H×K with domA ⊆ L ⊆ domK∗

E = dom J∗ such that

ÃL = (K∗
E |L)∗(K∗

E |L)∗∗.

Later we consider a concrete example in L2(I)×L2(I), where I = (a, b)
is a finite interval. Further, let p be a function satisfying certain conditions
including p ∈ L∞(I). We define the block operator matrix

A =

 − d2

dt2
i

d

dt
p

ip
d

dt
|p|2

 (1.12)
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on

domA =
{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f ∈ W̊ 2
2 (I), pg ∈ W̊ 1

2 (I)
}

.

A factorization is obtained by means of the following block operators:

C =
[
L M

]
, domC = dom L × L2(I),

K =
[

L
M∗

]
, domK = dom L,

where

Lf = if ′, dom L = W̊ 1
2 (I) ⊆ L2(I),

Mf = pf, dom M = L2(I).

Hence, the factorization A = KC|dom A holds true.1

We show that A is densely defined and that domA is a core of the operator
C. Moreover, the Friedrichs extension AF of A is given by

AF =
[

L∗

M∗

] [
L M

]
,

dom AF =
{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f ∈ W̊ 1
2 (I), if ′ + pg ∈ W 1

2 (I)
}

.

The associated form has the representation

AF

[(
f

g

)]
= ∥if ′ + pg∥2,

(
f

g

)
∈ dom

([
L M

])
= W̊ 1

2 (I) × L2(I)

= domA
1/2
F ,

see Proposition 7.2.6. The Krĕın-von Neumann extension of A is given by

AN =
[

L
M∗

] [
L∗ M

]
,

dom AN =
{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f ∈ W 1
2 (I), if ′ + pg ∈ W̊ 1

2 (I)
}

.

1This fact may also be obtained under weeker assumptions on the function p, e.g. if p
is measurable.
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The associated form has the representation

AN

[(
f

g

)]
= ∥if ′ + pg∥2,

(
f

g

)
∈ dom

([
L∗ M

])
= W 1

2 (I) × L2(I)

= dom A
1/2
N ,

see Proposition 7.2.5. It turns out that the Friedrichs extension (Krĕın-
von Neumann extension) of the block operator matrix A coincides with the
the Friedrichs extension (Krĕın-von Neumann extension, respectively) of the
block operator matrix

A1 =
[

L
M∗

] [
L M

]
,

dom A1 =
{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f, if ′ + pg ∈ W̊ 1
2 (I)

}
the adjoint of which is

A2 =
[

L∗

M∗

] [
L∗ M

]
,

domA2 =
{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f, if ′ + pg ∈ W 1
2 (I)

}
.

In addition, the same is true for the extremal extensions. With the help
of Theorem 4.1.5 which can be found in [14] we show that the triplet
{C2,Γ0, Γ1}, where

Γ0

(
f

g

)
=

(
f(a)
f(b)

)
, Γ1

(
f

g

)
=

(
−i(if ′ + pg)(a)
i(if ′ + pg)(b)

)
,

(
f

g

)
∈ domA2,

is a basic boundary triplet for A∗
1. The extremal extensions of A1 (apart

from A1,F and A1,N ) are restrictions of A2 corresponding to the boundary
conditions

βf(a) = αf(b),

α(if ′ + pg)(a) = β(if ′ + pg)(b),

where α ∈ C, β ∈ R, α2 + |β|2 = 1. The corresponding form domains are
given by

dom
(
Ã

1/2
1,α,β

)
=

(
W̊ 1

2 (I) u
{

span {1}, α = β

span {x+βa−αb
α−β 1},α ̸= β

})
× L2(I),
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where α ∈ R, β ∈ C, α2 + |β|2 = 1 (Proposition 7.2.10).
In [10] sectorial block operator matrices in H1 ×H2 of the form

A =
[

A B
C D

]
(1.13)

were discussed, where the operators A,B,C and D were assumed to fulfill
certain conditions including that A is a closed m-sectorial coercive operator
in H1. The Friedrichs, the Krĕın-von Neumann and all m-sectorial exten-
sions of A were given. For the case that the block operator matrix (1.13)
is nonnegative and A and D are essentially selfadjoint (among others), a
factorization of the Friedrichs extension AF of A has been given in [39].

Chapter 8 is devoted to tensor products of operators. Our main objec-
tive is to investigate the relation between the extremal extensions (and in
particular, the Friedrichs and the Krĕın-von Neumann extension) of the ten-
sor product of two operators and the extremal extensions of the operators
itself.

Let A and B be closed densely defined nonnegative operators in H1 and
H2, respectively. Then A ⊗ B is a densely defined nonnegative operator in
the Hilbert space H1⊗̂H2. Its closure will be denoted by A⊗̂B.

In Theorem 8.1.2 we prove that the Friedrichs and the Krĕın-von Neu-
mann extension of A⊗̂B are given by

(A⊗̂B)F = AF ⊗̂BF and (A⊗̂B)N = AN ⊗̂BN .

Moreover, we give a characterization of the extremal extensions of A⊗̂B
in Theorem 8.1.6. In particular, if Ã is an extremal extension of A and B̃ is
an extremal extension of B, then Ã⊗̂B̃ is an extremal extension of A⊗̂B.

Notation

All operators considered in this thesis are linear and all Hilbert spaces are
separable. The inner products are linear in the second vector and conjugate-
linear in the first. For Hilbert spaces H and K, the Banach space of bounded
operators T : H → K is denoted by L(H,K). If H = K we agree to
write L(H). The range, kernel and domain of an operator T is denoted by
ranA, kerA and domA, respectively. If dom T ̸= H then we will sometimes
write T : H ½ K. If a Hilbert space H is continuously embedded in a Hilbert
space K then we will write H ⊆ K. The identity H = K expresses that H
and K are the same vector-spaces with equivalent norms. By {X , ∥ · ∥}̂ we
denote the completion of the normed space {X , ∥ · ∥} with respect to the
norm ∥ · ∥.
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2 Nonnegative Extensions

In this chapter we give a survey of some characterizations of all nonnegative
selfadjoint extensions of a closed densely defined nonnegative operator A
that is acting in the Hilbert space H. In Theorem 2.3.1 we present a char-
acterization via a Hilbert space L that lies between dom A

1/2
F and domA

1/2
N ,

the form domain of the Friedrichs and the Krĕın-von Neumann extension,
respectively. We show that every nonnegative selfadjoint extension Ã of
A has the representation Ã = (i−1

L )∗i−1
L − I, where iL is the embedding

operator from L to H.
The characterization of all nonnegative selfadjoint extensions via positive

boundary triplets is well known. We give a summary of this theory in
Chapter 4.

2.1 The Representation Theorems

Let A be a densely defined operator in a Hilbert space H with inner product
(·, ·). A is called semibounded (from below) if there exists a real number µ,
such that the inequality

(Af, f) ≥ µ (f, f), f ∈ dom A

is satisfied. The largest number µ with this property is called the lower
bound of A and is denoted by µ(A). We have

µ(A) = inf
f∈dom A

(Af, f)
(f, f)

.

The operator A is called nonnegative (positive definite) if µ(A) = 0 (µ(A) >
0, respectively). In case (Af, f) > 0 for all f ∈ dom A, f ̸= 0, the operator A
is called positive. For a nonnegative (positive, positive definite) selfadjoint
operator A the square root A1/2 of A is also nonnegative (positive, positive
definite, respectively). In particular, we have

µ(A1/2) =
(
µ(A)

)1/2
,

see [43] or e.g. [37, page 281]. Observe that an operator is nonnegative and
injective if and only if it is positive. For a nonnegative selfadjoint operator A,
the injectivity (and hence the positivity) of A is equivalent to the injectivity
(and hence the positivity) of A1/2. A closed densely defined positive definite
operator A has closed range due to the inequality

∥Af∥∥f∥ ≥ (Af, f) ≥ µ(A)∥f∥2, f ∈ domA.
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Hence, if A is additionally selfadjoint, then ranA = ranA1/2 = H. The
following lemma extends these properties to the square root of a nonnegative
selfadjoint operator.

Lemma 2.1.1. Let A be a nonnegative selfadjoint operator in H. Then
kerA = kerA1/2 and ranA = ranA1/2.

Proof. Since (Af, f) = (A1/2f,A1/2f), f ∈ domA, it follows that kerA ⊆
kerA1/2. Conversely, if f ∈ kerA1/2, we obtain Af = A1/2A1/2f = 0. Thus,
kerA = kerA1/2. Eventually, observe that ranA = (kerA)⊥ = (kerA1/2)⊥ =
ranA1/2.

In the following the Representation Theorems of Kato, see [37], will play
an important role, especially in the characterization of the Friedrichs and the
Krĕın-von Neumann extension in Section 2.3 and Chapters 5, 6 and 7. For
this purpose we briefly recall some basic properties concerning sesquilinear
forms, or forms for short. As usual, we denote a form by t or t[·, ·]. If
f ∈ dom t, then we agree to write t[f ] instead of t[f, f ]. A form t is called
semibounded (from below) if there exists a real number µ such that

t[f ] ≥ µ∥f∥2, f ∈ dom t. (2.1)

As in the operator case, the largest number satisfying inequality (2.1) is
called the lower bound of the form t and is denoted by µ(t). In case µ(t) = 0,
the form t is called nonnegative. We say t is positive definite if its lower
bound is greater than zero. The form t is called closed if

fn ∈ dom t, fn → f and t[fn − fm] → 0, n,m → ∞,

imply that
f ∈ dom t and t[fn − f ] → 0, n → ∞.

If there exists a closed form t̃ that extends t, then we call the form t closable.
A necessary and sufficient condition for a form t to be closable is that

fn ∈ dom t, fn → 0 and t[fn − fm] → 0, n,m → ∞,

imply that
t[fn] → 0, n → ∞,

cf. [37, page 315]. For a closable form t the closure t of t is defined by

dom t = {f ∈ H | ∃ fn ∈ dom t : fn → f, t[fn − fm] → 0, n,m → ∞},
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t[f, g] := lim
n→∞

t[fn, gn],

for arbitrary sequences (fn), (gn) ⊆ dom t satisfying

fn → f, t[fn − fm] → 0, gn → g, t[gn − gm] → 0, m, n → ∞.

A subspace D ⊆ dom t is a core of a closable form t if the closure of the
restriction of the form t to D coincides with the closure of t, i.e. t|D = t.
A core of a closable operator T is defined analogously. Thus, a subspace
D ⊆ dom T is a core of T if and only if

D
∥·∥T = domT

∥·∥T ,

where ∥ · ∥T denotes the graph norm of the operator T , i.e.

∥f∥T :=
(
∥f∥2 + ∥Tf∥2

)1/2
, f ∈ dom T.

This norm generates an inner product on dom T which we will denote by
(·, ·)T .

The following lemma will be useful in Corollary 8.1.4 and Lemma 8.1.5
when describing the core of tensor products of operators. Obviously, it is
true even in the Banach space case.

Lemma 2.1.2. Let H and K be Hilbert spaces and let T be a closable oper-
ator from H into K. Further, let D be a subspace of dom T and let T have
the following property: for f ∈ domT there exists a sequence fn ∈ D such
that fn → f, Tfn → Tf, n → ∞. Then T |D = T , so that D is a core of T
and T .

Proof. Since T ⊇ T |D ⊇ T , it follows that T |D = T .

The following statement implies a one-to-one correspondence between
the set of all closed densely defined semibounded sesquilinear forms t and
the set of all semibounded selfadjoint operators A via property (i), cf. [37,
pages 322, 331]. In [32], [60] this representation has been extended to the
case of nondensely defined semibounded forms by replacing semibounded
selfadjoint operators by semibounded selfadjoint relations.

Theorem 2.1.3 (First Representation Theorem). Let t be a closed densely
defined semibounded sesquilinear form in H. Then there exists a unique
semibounded selfadjoint operator A with the following properties:

(i) dom A ⊆ dom t and t[f, g] = (Af, g), f ∈ dom A, g ∈ dom t;
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(ii) dom A is a core of t;

(iii) If for f ∈ dom t, h ∈ H the equality t[f, g] = (h, g) is fulfilled for all g
in a core of t, then f ∈ dom A and Af = h.

A is called the associated operator to the form t and sometimes we will
write A[·, ·] instead of t[·, ·]. Conversely, each semibounded selfadjoint oper-
ator A gives rise to a densely defined closed semibounded form t with the
above properties. Particularly, it is the closure of the form t defined by

t[f, g] = (Af, g), f, g ∈ dom A = dom t.

Analogously, we call the form t to be the associated form to the operator A.
If the form t is nonnegative, the Second Representation Theorem gives

a description of the form domain, the domain of the form t, and of the form
t itself with the help of the square root of the associated operator.

Theorem 2.1.4 (Second Representation Theorem). Let t be a closed densely
defined nonnegative form in H and let A be the associated operator according
to the First Representation Theorem. Then dom t = dom A1/2 and

t[f, g] = (A1/2f,A
1/2g), f, g ∈ dom t.

For the relation version of the Second Representation Theorem, see [32],
[60]. There the analogue of Proposition 2.1.5 (i), (iii), (iv) and Corollary
2.1.6 can be found as well.

Statements (i)−(iv) of the following proposition are direct consequences
of the Representation Theorems, see e.g. [37, page 326]. In [68, page 168] a di-
rect proof of Proposition 2.1.5 (i),(ii) and Corollary 2.1.6 (ii) is given. State-
ment (i) from Proposition 2.1.5 was proven earlier in [57, pages 291, 296].
The characterizations of the kernel and the range of the operator (T ∗T ∗∗)1/2

in Proposition 2.1.5 (v), (vi) have been mentioned in [37, page 335].

Proposition 2.1.5. Let H and K be Hilbert spaces and let T be a densely
defined closable operator from H into K. Then:

(i) T ∗T ∗∗ is nonnegative and selfadjoint;

(ii) dom (T ∗T ∗∗) is a core of T ∗∗;

(iii) T ∗T ∗∗ is the associated operator to the closure of the nonnegative form

t[f, g] = (Tf, Tg), f, g ∈ domT ;
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(iv) The closure of t is given by

t[f, g] = (Tf, Tg) =
(
(T ∗T ∗∗)1/2f, (T ∗T ∗∗)1/2g

)
,

f, g ∈ domT = domT ∗∗ = dom
(
(T ∗T ∗∗)1/2

)
;

(v) ker
(
(T ∗T ∗∗)1/2

)
= kerT ∗∗;

(vi) ran
(
(T ∗T ∗∗)1/2

)
= ranT ∗.

Proof. We only prove the statements (v) and (vi). For (v) it is sufficient
to show that ran

(
(T ∗∗T ∗)1/2

)
= ranT ∗∗. Replacing T ∗∗ by T ∗ yields the

identity ran
(
(T ∗T ∗∗)1/2

)
= ranT ∗. In [37, page 335] it has been shown there

exists a partially isometric mapping U from ran (T ∗T ∗∗)1/2 onto ranT ∗∗ such
that (T ∗∗T ∗)1/2 = T ∗∗U∗. Further, it was proved that

Uf = 0, f ∈ ran
(
(T ∗T ∗∗)1/2

)⊥ = ker
(
(T ∗T ∗∗)1/2

)
.

This implies ran
(
(T ∗∗T ∗)1/2

)
⊆ ranT ∗∗. Now the other inclusion is shown.

Without loss of generality, let T ∗∗x = y, where x ∈ dom T ∗∗ ∩ (kerT ∗∗)⊥.
Since T ∗∗ = U(T ∗T ∗∗)1/2, cf. [37, page 335], we have

kerT ∗∗ = ker
(
(T ∗T ∗∗)1/2

)
.

This shows (v). Furthermore, this implies that x ∈
(
ker(T ∗T ∗∗)1/2

)⊥ =
ran

(
(T ∗T ∗∗)1/2

)
. Next observe that U∗U is the orthogonal projector from

H onto ran
(
(T ∗T ∗∗)1/2

)
, cf. [37, page 258]. Put z = Ux. It follows that

U∗z = U∗Ux = x. Since (T ∗∗T ∗)1/2 = T ∗∗U∗, cf. [37, page 335], we obtain

y = T ∗∗x = T ∗∗U∗z = (T ∗∗T ∗)1/2z.

Thus, y ∈ ran
(
(T ∗∗T ∗)1/2

)
, so that ranT ∗∗ ⊆ ran

(
(T ∗∗T ∗)1/2

)
. This com-

pletes the proof.

Let A1 and A2 be semibounded selfadjoint operators. Then A1 is said to
be smaller than A2, i.e. A1 ≤ A2, if dom A1[·, ·] ⊇ domA2[·, ·] and A1[f ] ≤
A2[f ], f ∈ dom A2[·, ·]. Due to the Second Representation Theorem, for
nonnegative selfadjoint operators A1, A2 this definition is equivalent to

domA
1/2
2 ⊆ domA

1/2
1 , ∥A1/2

1 f∥ ≤ ∥A1/2
2 f∥, f ∈ domA

1/2
2 . (2.2)
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Since dom A2 is a core of A
1/2
2 , a necessary and sufficient criterion is

domA2 ⊆ dom A
1/2
1 , ∥A1/2

1 f∥2 ≤ (A2f, f), f ∈ dom A2. (2.3)

In case of bounded operators A1, A2 ∈ L(H) this definition is equivalent to
(A1f, f) ≤ (A2f, f), f ∈ H.

From Proposition 2.1.5 we obtain the following statement, see also [68].

Corollary 2.1.6. Let H, K1 and K2 be Hilbert spaces and let T1 and T2

be densely defined closable operators acting from H into K1 and K2, respec-
tively. Then:

(i) T ∗
1 T ∗∗

1 ≤ T ∗
2 T ∗∗

2 if and only if domT ∗∗
1 ⊇ domT ∗∗

2 and ∥T ∗∗
1 f∥K1 ≤

∥T ∗∗
2 f∥K2 , f ∈ domT ∗∗

1 ;

(ii) T ∗
1 T ∗∗

1 = T ∗
2 T ∗∗

2 if and only if domT ∗∗
1 = dom T ∗∗

2 and ∥T ∗∗
1 f∥K1 =

∥T ∗∗
2 f∥K2 , f ∈ domT ∗∗

1 .

In [68] closed operators T1 and T2 that satisfy T ∗
1 T1 = T ∗

2 T2 are called
”metrisch gleich” (metrically equal).

2.2 Friedrichs- and Krĕın-von Neumann Extension

In this section we give a survey of some characteristic properties of the
Friedrichs and the Krĕın-von Neumann extension of a closed densely defined
nonnegative operator A, including descriptions of the range and domain of
these extensions as well as of their square roots. Moreover, the construc-
tion of the Friedrichs extension AF of A which goes back to K. Friedrichs,
cf. [27], and the characterization of all nonnegative selfadjoint extensions of
A via the (partial) order relation ≤ that is due to M. G. Krĕın, cf. [40], is
presented. Finally, the Friedrichs and the Krĕın-von Neumann extension of
the sum A + B, where B is a bounded operator, are briefly discussed.

Let A be a densely defined nonnegative operator in the Hilbert space
H. Then A has equal deficiency indices n±(A) = dim

(
ker(A∗ ∓ I)

)
which

implies that A has selfadjoint extensions. Its Friedrichs extension AF can
be constructed in the following way: It is the selfadjoint operator associated
to the closure of the form

t[f, g] = (Af, g), f, g ∈ dom t = dom A. (2.4)
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This implies that the Friedrichs extension of A has the same lower bound
as A. Moreover, the domain of A is a core of the square root of AF , cf. [37].
Hence, due to the identity

(Af, g) = (A
1/2
F f,A

1/2
F g), f, g ∈ domA,

a subspace D that is a core of A also is a core of A
1/2
F . Since the Friedrichs

extension of a selfadjoint operator is the operator itself, see [37, page 326],
domA1 is a core of A1

1/2 for every nonnegative essentially selfadjoint oper-
ator A1.

In [40] M. G. Krĕın reduced the problem of constructing nonnegative
selfadjoint extensions Ã of a closed densely defined nonnegative operator
A to the problem of finding selfadjoint norm-preserving extensions S̃ of a
nondensely defined contractive symmetric operator S. He used the trans-
formation

X : S 7→ A = (I − S)(I + S)−1 (2.5)

which gives is a one-to-one correspondence between all nondensely defined
contractive symmetric operators S, such that −1 is no eigenvalue, and all
closed nonnegative operators A, see also [1]. Moreover, S̃ is a selfadjoint
norm-preserving extension of S if and only if Ã := X(S̃) is a nonnegative
selfadjoint extension of A. Furthermore, M. G. Krĕın proved the existence of
two nonnegative selfadjoint extensions AF and AN such that the following
theorem holds, cf. [40]. Since the set of all nonnegative selfadjoint exten-
sions of a densely defined nonnegative operator A coincides with the set of
all nonnegative selfadjoint extensions of the closure A of A, we can drop in
Theorem 2.2.1 the assumption that A is closed. See [18] for the case of non-
negative relations; cf. also [25], [29], [64]. For further results concerning the
characterization of all nonnegative selfadjoint extensions of a nonnegative
operator via the partial order relation A ≤ B we refer to [64]; see [59] for
the case of nonnegative relations.

For the convenience of the reader we give a proof of the statement that
a nonnegative selfadjoint operator Ã that is satisfying (2.6) is an extension
of A.

Theorem 2.2.1. Let A be a closed densely defined nonnegative operator
and let Ã be a nonnegative selfadjoint operator in H.Then Ã is an extension
of A if and only if

AN ≤ Ã ≤ AF . (2.6)
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Proof. Let Ã be a nonnegative selfadjoint operator satisfying (2.6). First,
note that (2.6) is equivalent to

(I + AF )−1 ≤ (I + Ã)−1 ≤ (I + AN )−1,

cf. [37, page 330]. Next, observe that for every operator B such that I + B
is invertible, we have the identity

(I − B)(I + B)−1 = 2(I + B)−1 − I.

Therefore, (2.6) is equivalent to

(I − AF )(I + AF )−1 ≤ (I − Ã)(I + Ã)−1 ≤ (I − AN )(I + AN )−1.

It follows that for y = (I + A)x ∈ ran (I + A), we have

(I − AF )(I + AF )−1y = (I − A)x = (I − Ã)(I + Ã)−1y

= (I − AN )(I + AN )−1y.

This implies for x ∈ dom A,

x = Ax + (I − Ã)(I + Ã)−1(I + A)x

= Ax +
(
2I − (I + Ã)

)
(I + Ã)−1(I + A)x

= Ax + 2(I + Ã)−1(I + A)x − (I + A)x

= −x + 2(I + Ã)−1(I + A)x

= (I + Ã)−1(I + A)x.

We conclude that x ∈ dom Ã and that Ã is an extension of A. The converse
direction can be found in [40].

Furthermore, if A1 is a nonnegative selfadjoint extension of A satisfying
the inequality Ã ≤ A1 (Ã ≥ A1) for all nonnegative selfadjoint extensions
Ã of A, then A1 = AF (A1 = AN , respectively). Hence, the extensions
AF , AN in (2.6) are unique. The operator AF coincides with the Friedrichs
extension. AN is called the Krĕın-von Neumann extension of the operator
A.

AF is the unique nonnegative selfadjoint extension Ã of A for which
dom Ã ⊆ domA

1/2
F . From Theorem 2.2.1 and (2.2) it follows that each

nonnegative selfadjoint extension Ã of A satisfies

dom A
1/2
F ⊆ dom Ã

1/2 ⊆ domA
1/2
N . (2.7)
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The construction of the Friedrichs extension via (2.4) together with the
Second Representation Theorem yield the following characterization of the
domain of the square root of AF :

dom A
1/2
F =

{
f ∈ H

∣∣∣ ∃ (fn) ⊆ dom A : fn → f,(
A(fn − fm), fn − fm

)
→ 0, m, n → ∞

}
,

Since dom A is a core of A
1/2
F , together with the fact that for every nonneg-

ative selfadjoint extension Ã of A, we have (A
1/2
F f,A

1/2
F g) = (Ã1/2f, Ã1/2g),

f, g ∈ dom A, it follows that

Ã[f, g] = AF [f, g], f, g ∈ domA
1/2
F , (2.8)

which is strengthening the inequality Ã ≤ AF , cf. Theorem 2.2.1. Hence,
a nonnegative selfadjoint extension Ã of A coincides with the Friedrichs
extension AF if and only if dom Ã1/2 = dom A

1/2
F . In Theorem 5.1.5 it turns

out that we have

Ã[f, g] = AN [f, g], f, g ∈ dom Ã
1/2, (2.9)

for every extremal extension Ã of A accordingly. Thus, an extremal exten-
sion Ã of A coincides with the Krĕın-von Neumann extension AN if and only
if dom Ã1/2 = dom A

1/2
N . This fact was obtained earlier in [6],[7].

AN is the unique nonnegative selfadjoint extension Ã of A for which
ran Ã ⊆ ranA

1/2
N . Each nonnegative selfadjoint extension Ã of A satisfies

ranA
1/2
N ⊆ ran Ã

1/2 ⊆ ranA
1/2
F , (2.10)

cf. [40], where

ranA
1/2
N =

{
g ∈ H

∣∣∣ ∃ (fn) ⊆ dom A : Afn → g,(
A(fn − fm), fn − fm

)
→ 0, m, n → ∞

}
,

cf. [3], [52], [62]. From the construction of the Friedrichs extension via (2.4)
it follows with the language of relations that the Friedrichs extension of a
densely defined nonnegative operator A is given by

AF =
{
{f, g} ∈ A∗

∣∣∣ ∃ (fn) ⊆ domA : fn → f, (2.11)(
A(fn − fm), fn − fm

)
→ 0, m, n → ∞

}
=

{
{f, g} ∈ A∗

∣∣∣ f ∈ domA
1/2
F

}
, (2.12)
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see also [28]. Analogously, in [3], [18] it has been shown that for its Krĕın-von
Neumann extension, we have

AN =
{
{f, g} ∈ A∗

∣∣∣ ∃ (fn) ⊆ domA : Afn → g, (2.13)(
A(fn − fm), fn − fm

)
→ 0, m, n → ∞

}
=

{
{f, g} ∈ A∗

∣∣∣ g ∈ ranA
1/2
N

}
, (2.14)

which is equivalent to AN =
(
(A−1)F

)−1
, cf. [3]; see [17], [18] for the case

that A is a nonnegative relation. We will use these characterizations in
Chapter 8 where we will describe the Friedrichs and the Krĕın-von Neu-
mann extension of tensor products of nonnegative operators.

The next lemma summarizes some properties of the Friedrichs and the
Krĕın-von Neumann extension of a positive definite operator.

Lemma 2.2.2. Let A be a closed densely defined positive definite operator
in H. Then the following statements are valid:

(i) kerAN = kerA∗;

(ii) ranA
1/2
N = ranAN = ranA and this space is closed;

(iii) dom AN = dom A u kerA∗;

(iv) dom A
1/2
N = domA

1/2
F u kerA∗;

(v) dom A∗ = dom Ã u kerA∗, for each positive definite selfadjoint exten-
sion Ã of A;

(vi) ranA∗ = ran Ã, for each positive definite selfadjoint extension Ã of A;

(vii) The Krĕın-von Neumann extension AN of A has lower bound zero.

Proof. Statements (i), (iii) and (iv) are due to M. G. Krĕın, cf. [40, pages
466, 469]. Statement (v) has been proven e.g. in [28, page 159]. Furthermore,
(vi) is a direct consequence of (v). Property (vii) concerning the lower bound
of AN has been shown in [11, page 14]. It remains to prove (ii). Observe
that for f = f0 + f∗ ∈ dom A + kerAN = dom AN we have ANf = Af0.
This implies ran AN ⊆ ranA. The converse inclusion is clear since AN is an
extension of A. Now from Lemma 2.1.1 and the fact that a closed positive
definite operator has closed range it follows that ranA

1/2
N = ranAN .
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Next it is shown that ran A
1/2
N is closed. To see this, define on ran A the

sesquilinear form

t[Af,Ag] = (Af, g), f, g ∈ domA.

We show that t is a bounded form with domain ranA
1/2
N . Since

∥Af∥∥f∥ ≥ (Af, f) ≥ µ(A)∥f∥2, f ∈ domA, (2.15)

implies

|t[Af ]| = |(Af, f)| ≤ ∥Af∥∥f∥ ≤ 1
µ(A)

∥Af∥2, f ∈ domA,

we conclude that t is bounded. Further, t is closable. In fact, let f ∈ domA
and Afn → 0, n → ∞. According to (2.15), it follows that fn → 0, n → ∞.
This implies t[Afn] → 0, n → ∞. By definition, the domain of the closure
t of t is given by

dom t = {g ∈ H | ∃ gn ∈ dom t : gn → g, t[gn − gm] → 0, n,m → ∞}
= {g ∈ H | ∃ Afn ∈ ranA : Afn → g,(

A(fn − fm), fn − fm

)
→ 0, n,m → ∞}

= ranA
1/2
N ,

cf. [3], [52]. Therefore,

t[h, k] = lim
n→∞

t[Afn, Agn] = lim
n→∞

(Afn, gn),

where (Afn), (Agn) are arbitrary sequences in ranA satisfying

Afn → h, t[Afn − Afm] → 0, Agn → k, t[Agn − Agm] → 0, m, n → ∞.

Thus, t is bounded. Since a bounded form is closed if and only its domain
is a closed subset of H, cf. [37], we conclude that ran A

1/2
N is closed. This

completes the proof.

In [11] it is shown that actually for every extremal extension Ã ̸= AF of
A the lower bound is equal to zero. Moreover, statement (vii) implies that
in case of a positive definite operator A the Friedrichs and the Krĕın-von
Neumann extension are different, since the lower bound of the Friedrichs
extension is always equal to µ(A). Similarly to statement (ii) in Lemma
2.2.2, for a closed densely defined nonnegative operator A, we have the
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identity ranAN = ranA, cf. [40]. Further, we have a similar formular to
that in Lemma 2.2.2 (iv):

dom A
1/2
N = domA

1/2
F u

(
ker(A∗ + 1) ∩ domA

1/2
N

)
,

see e.g. [11]. Obviously, we can replace in this formula AN by every nonneg-
ative selfadjoint extension Ã of A. The analogue formula to (iii) has been
proven by Yu. Arlinskĭı for closed densely defined sectorial relations A that
have closed range, see [6]. If there exists µ > 0 such that Re(f ′, f) ≥ µ(f, f),
for {f, f ′} ∈ A, then it was shown that the sum is direct and that an ana-
logue formula to (iv) is valid.

2.3 Nonnegative Extensions via Contractive Embeddings

In this section we give a characterization of all nonnegative selfadjoint ex-
tensions of a closed densely defined nonnegative operator by means of some
Hilbert space L that lies between dom A

1/2
F and domA

1/2
N . In Chapter 6 we

will characterize all extremal extensions, accordingly.
In the case of semibounded relations a representation of the Friedrichs

extension analogous to (E2) in Theorem 2.3.1 was given in [36, Theorem
3.5]. Under the additional assumption that the original relation is closed
and has finite defect indices a statement similar to (E1) was shown, cf. [36,
Theorem 3.9, Corollary 3.15]. Under these conditions also an analogon of
the ’if-direction’ in the Theorem below was proven, cf. [36, Proposition 3.14].

We say that the normed space X is embedded in the normed space Y ,
and write X ⊆ Y , if X is a vector subspace of Y and the identity operator
I : X → Y, x 7→ x, is continuous.

Recall that (·, ·)A denotes the inner product generated by the graph norm
of the operator A.

Theorem 2.3.1. Let A be a closed densely defined nonnegative operator
in {H, (·, ·)}. Then Ã is a nonnegative selfadjoint extension of A if and
only if there exists a Hilbert space {L, (·, ·)L} that is embedded in {H, (·, ·)}
satisfying the following conditions:

(E1)
{
dom A

1/2
F , (·, ·)

A
1/2
F

}
⊆

{
L, (·, ·)L

}
⊆

{
domA

1/2
N , (·, ·)

A
1/2
N

}
and both

embeddings are contractive;

(E2) Ã has the representation Ã = (i−1
L )∗i−1

L − I, where iL denotes the
embedding operator from the Hilbert space L into the Hilbert space H.
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If both conditions are satisfied then iL is contractive and {L, (·, ·)L} =
{dom Ã1/2, (·, ·)Ã1/2}.

Proof. In the following we identify ran iL and L. Let Ã be a nonnegative
selfadjoint extension of A. We define the Hilbert space

{L, (·, ·)L} = {dom Ã
1/2, (·, ·)Ã1/2}.

According to AN ≤ Ã ≤ AF , we conclude that L satisfies the first condition.
Since

∥f∥2
Ã1/2 = ∥f∥2 + ∥Ã1/2f∥2 ≥ ∥f∥2, f ∈ dom Ã

1/2,

the embedding operator

iL : L → H, f 7→ f,

is contractive. Furthermore, iL is closed and has dense range which coincides
with dom Ã1/2. This implies that i−1

L is a closed densely defined operator.
Next, observe that the operator

S := (i−1
L )∗i−1

L

is densely defined nonnegative and selfadjoint and has form domain

dom S
1/2 = dom (i−1

L ) = ran iL = L = dom Ã
1/2,

see Proposition 2.1.5. Its domain is given by

domS =
{
f ∈ dom (i−1

L )
∣∣ i−1

L f ∈ dom
(
(i−1

L )∗
)}

=
{
f ∈ dom Ã

1/2
∣∣ f ∈ dom

(
(i−1

L )∗
)}

.

We show that dom Ã ⊆ domS. Recall that iLg = g ∈ H, g ∈ L. Hence, for
all g ∈ dom Ã1/2 = L, f ∈ dom Ã, we have

|(i−1
L g, f)L| = |(g, f)L| = |(g, f) + (Ã1/2g, Ã

1/2f)| = |(g, f + Ãf)|
≤ ∥g∥ ∥f + Ãf∥.

This implies f ∈ dom
(
(i−1

L )∗
)

and, therefore, f ∈ dom S. Now let f, g ∈
dom Ã. Then we have

(Sf, g) =
(
(i−1

L )∗i−1
L f, g

)
= (i−1

L f, i−1
L g)L = (f, g)L

= (f, g) + (Ã1/2f, Ã
1/2g) = (f, g) + (Ãf, g)

=
(
(Ã + I)f, g

)
.
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This implies Sf = (Ã + I)f for all f ∈ dom Ã. It follows that

Ã + I ⊆ S = S∗ ⊆ (Ã + I)∗ = Ã + I.

We conclude that Ã + I = S. Thus, {L, (·, ·)L} = {dom Ã1/2, (·, ·)Ã1/2} and
Ã satisfy both conditions.

Next the converse implication is shown. Observe that the embedding

iN : {domA
1/2
N , (·, ·)

A
1/2
N

} → H, f 7→ f,

is contractive with dense range. Hence the embedding

iL : {L, (·, ·)L} → H, iL = iN ◦ iL,N ,

has the same properties, where iL,N denotes the embedding from {L, (·, ·)L}
into {dom A

1/2
N , (·, ·)

A
1/2
N

}. This implies that

S := (i−1
L )∗i−1

L

is a nonnegative selfadjoint operator that has form domain

domS
1/2 = dom (i−1

L ) = L ⊆ dom A
1/2
N .

Since iL is contractive, it follows that for f ∈ domS ⊆ domS1/2, we have

(Sf, f) =
(
(i−1

L )∗i−1
L f, f

)
= (i−1

L f, i−1
L f)L = (f, f)L ≥ (f, f). (2.16)

Hence, S − I is nonnegative. Next it is shown that

AN ≤ S − I ≤ AF , (2.17)

which implies that the operator S−I is an extension of A, cf. Theorem 2.2.1.
Let f ∈ domA

1/2
F ⊆ L ⊆ domA

1/2
N . According to (2.16), for f ∈ dom S1/2 =

L, we have
∥S1/2f∥ = ∥f∥L.

Thus, for f ∈ domAF , we have

(AF + I)[f ] =
(
(AF + I)f, f

)
= ∥f∥2 + ∥A1/2

F f∥2 = ∥f∥2

A
1/2
F

≥ ∥f∥2
L = ∥S1/2f∥2 = S[f ].
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Since dom AF is a core of (AF + I)[ · ] and dom A
1/2
F = dom

(
(AF + I)1/2

)
,

cf. [37, page 332], we conclude the following inequality:

S[f ] ≤ (AF + I)[f ], f ∈ domA
1/2
F .

Together with the fact that dom A
1/2
F ⊆ domS1/2 this implies S ≤ AF + I.

Since S − I and AF are nonnegative selfadjoint operators, the inequality
S ≤ AF + I is equivalent to

S − I ≤ AF ,

cf. [40, page 332]. Now we will show the left inequality in (2.17). Let
f ∈ domS ⊆ dom A

1/2
N . According to (2.16), we have

(Sf, f) = ∥f∥2
L ≥ ∥f∥2

A
1/2
N

= ∥A1/2
N f∥2 + (f, f). (2.18)

Thus, (S − I)[f ] ≥ AN [f ], f ∈ domS. Since dom S is a core of (S − I)[ · ],
this implies

AN ≤ S − I.

From Theorem 2.2.1 it follows that Ã := S − I is a nonnegative selfadjoint
extension of A.

Now the last assertion is shown. Observe that the sesquilinear form associ-
ated to Ã is given by

Ã[f, g] = (i−1
L f, i−1

L g)L − (f, g), f, g ∈ dom Ã
1/2.

Since the operator i−1
L is closed, it follows that

dom Ã
1/2 = dom i−1

L = ran iL = L

and ∥f∥Ã1/2 = ∥f∥L, f ∈ dom Ã1/2, since (i−1
L f, i−1

L g)L = (f, g)L. This
completes the proof.

Note that according to (2.8) the left embedding in condition (E1) from
Theorem 2.3.1 is actually isometric.

This approach is motivated by [44, page 11], where the operator S is
defined via

domS = {v ∈ L ⊆ H | v 7→ (u, v)L is continuous on L ⊆ H},

(u, v)L =: (Su, v), u ∈ dom S, v ∈ L.
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In the following let us denote the nonnegative selfadjoint extension of A
constructed in Theorem 2.3.1 by

Ã(L) = (i−1
L )∗i−1

L − I, (2.19)

where {L, (·, ·)L} is a Hilbert space that is embedded in H and that satisfies
condition (E1) from Theorem 2.3.1. In Chapter 6 we will give a necessary
and sufficient condition for the Hilbert space {L, (·, ·)L} such that Ã(L) is
an extremal extension of A.

Lemma 2.3.2. Let A be a closed densely defined nonnegative operator in
{H, (·, ·)}. Then:

(i) {L, (·, ·)L} = {domA
1/2
F , (·, ·)

A
1/2
F

} if and only if Ã(L) = AF ;

(ii) {L, (·, ·)L} = {domA
1/2
N , (·, ·)

A
1/2
N

} if and only if Ã(L) = AN .

Proof. Since L = dom Ã(L)1/2 and (·, ·)L coincides with the inner product
generated by the graph norm of Ã(L)1/2 the statements follow from Corollary
2.1.6.

From the proof of Theorem 2.3.1 we obtain the next statement.

Lemma 2.3.3. Let A be a closed densely defined nonnegative operator in
{H, (·, ·)} and let {L1, (·, ·)L1} and {L2, (·, ·)L2} be Hilbert spaces which are
embedded in {H, (·, ·)} satisfying condition (E1) from Theorem 2.3.1. Then:

(i) Ã(L1) ≤ Ã(L2) if and only if {L2, (·, ·)L2} ⊆ {L1, (·, ·)L1} such that
the embedding is contractive;

(ii) The operators Ã(L1) and Ã(L2) coincide if and only if L1 = L2 and
(·, ·)L1 = (·, ·)L2 .

The next statment gives a property of the resolvent of the operator Ã(L).

Lemma 2.3.4. Let A be a closed densely defined nonnegative operator
in {H, (·, ·)} and let {L, (·, ·)L} be a Hilbert space which is embedded in
{H, (·, ·)} satisfying condition (E1) from Theorem 2.3.1. Then we have
the identity

(
Ã(L) + I

)−1 = iLiL
∗, where iL denotes the embedding from

{L, (·, ·)L} = {dom Ã(L)1/2, (·, ·)Ã(L)1/2} to H.
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Proof. Let f ∈ H. Observe that we have

Ã(L) + I = (i−1
L )∗i−1

L = (iL∗)−1i−1
L = (iLiL

∗)−1

where the second equality is valid according to [68, page 104]. The third
equality is clear since the injectivity of the operators iL and iL

∗ yields the
same for the product iLiL

∗. Hence,
(
Ã(L) + I

)−1 = iLiL
∗, as required.

This yields an abstract variation of Rellich’s Criterion, see [56, pages 245–
247].

Corollary 2.3.5 (Rellich’s Criterion). Let A be a nonnegative selfadjoint
operator in the Hilbert space H. Then (A + I)−1 is compact if and only if
the set

{f ∈ domA
1/2 | ∥f∥2 + ∥A1/2f∥2 ≤ 1}

is precompact, i.e. if and only if the embedding mapping

i : {dom A
1/2, ∥ · ∥A1/2} → {H, ∥ · ∥}

is compact.

For more results concerning the relation of compact resolvents and self-
adjoint extensions of nonnegative operators (or relations), see [30].

Lemma 2.3.4 yields the following characterization of the nonnegative
selfadjoint extensions of a closed densely defined nonnegative operator.

Corollary 2.3.6. Let A be a closed densely defined nonnegative operator
and let Ã be a nonnegative selfadjoint operator in {H, (·, ·)}. Then Ã is an
extension of A if and only if

∥iF ∗f∥
A

1/2
F

≤ ∥iL∗f∥L ≤ ∥iN ∗f∥
A

1/2
N

, f ∈ H,

where iF , iL and iN denote the embeddings from {domA
1/2
F , (·, ·)

A
1/2
F

},

{L, (·, ·)L} = {dom Ã1/2, (·, ·)Ã1/2} and {domA
1/2
N , (·, ·)

A
1/2
N

}, respectively, into

the Hilbert space {H, (·, ·)}.

Proof. Since for every nonnegative selfadjoint operator Ã the inequalities
AN ≤ Ã ≤ AF are equivalent to

(I + AF )−1 ≤ (I + Ã)−1 ≤ (I + AN )−1,

it follows from Lemma 2.3.4 that iF iF
∗ ≤ iLiL

∗ ≤ iN iN
∗. Now from Theorem

2.2.1 we obtain the required characterization.
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Let for example H = L2(I), where I = (a, b) is a finite interval. Further,
let p be a real-valued function with p > 0 almost everywhere. Moreover,
assume that the function p−1 := 1

p belongs to L1(I). Then the operator

Af = −(pf ′)′,

defined on the domain

dom A = {f ∈ L2(I) | f, pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I),
f(a) = f(b) = (pf ′)(a) = (pf ′)(b) = 0}

is closed densely defined and nonnegative, cf. [69, page 32] or Section 7.1.
Under the additional assumption that p ∈ L1

loc(I) we show in Theorem 7.1.7
and Theorem 7.1.8 that

domA
1/2
F =

{
f ∈ L2(I)

∣∣∣ f ∈ AC(I), p
1/2f ′ ∈ L2(I), f(a) = f(b) = 0

}
,

∥A1/2
F f∥2 =

∫ b

a
p(x)|f ′(x)|2dx, f ∈ dom A

1/2
F ,

and

domA
1/2
N =

{
f ∈ L2(I)

∣∣∣ f ∈ AC(I), p
1/2f ′ ∈ L2(I)

}
,

∥A1/2
N f∥2 =

∫ b

a
p(x) |f ′(x)|2dx − |f(b) − f(a)|2

Fp−1(b) − Fp−1(a)
, f ∈ dom A

1/2
N .

Moreover, we have

dom A
1/2
N = dom A

1/2
F u span {1, Fp−1},

where 1 : I → I, x 7→ 1 and Fp−1 is a primitive of the function p−1, cf. Corol-
lary 7.1.9. These considerations together with (2.3) and (2.8) imply that L is
the form domain of a nonnegative selfadjoint extension Ã(L)α,β of A, where
α, β ∈ C, if and only if

L = dom A
1/2
F u span {α + βFp−1}

and for f ∈ L ∩ dom A∗, we have∫ b

a
p(x) |f ′(x)|2dx − |f(b) − f(a)|2

Fp−1(b) − Fp−1(a)
= ∥A1/2

N f∥2 ≤ ∥Ã(L)
1/2
α,βf∥2

= (A∗f, f),
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and for f ∈ domA, we have

(Af, f) = ∥Ã(L)
1/2
α,βf∥2, (2.20)

cf. (1.1), (2.3), (2.8). This implies that L is the form domain of a nonnegative
selfadjoint extension Ã(L)α,β of A if and only if (2.20) is valid and for f ∈
L ∩ dom A∗, we have

|f(b) − f(a)|2

Fp−1(b) − Fp−1(a)
≥ (pf ′)(b)f(b) − (pf ′)(a)f(a). (2.21)

For example

• f(a) = f(b) = 0 imply 0 ≥ 0 (Dirichlet boundary conditions);

• (pf)′(a) = (pf)′(b) = f(b)−f(a)
Fp−1(b)−Fp−1 (a) imply 1 ≥ 1, cf. Theorem 7.1.8

(”Krĕın-von Neumann boundary conditions”);

• (pf)′(a) = (pf)′(a) = 0 imply |f(b) − f(a)| ≥ 0 (Neumann boundary
conditions);

• f(a) = f(b), (pf)′(a) = (pf)′(b) imply 0 ≥ 0 (periodic boundary
conditions);

• f(a) = −f(b), (pf)′(a) = −(pf)′(b) imply |f(b)| ≥ 0 (semi-periodic
boundary conditions).

Hence, these are boundary conditions which correspond to nonnegative self-
adjoint extensions of A. We will see in Chapter 6 that an extension Ã(L)
is extremal if and only if we have identity in (2.21) which is essentially a
consequence of (2.9).
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3 Extremal Extensions via the Hilbert space HA

In this chapter the set of extremal extensions of a closed densely defined
operator A is characterized via the Hilbert space HA which was introduced
by V. Prokaj, Z. Sebestyén and J. Stochel in [52], [53], [63] in connection
with factorizations of the Friedrichs and the Krĕın-von Neumann extension,
see also Section 5.1. We will show in Proposition 3.2.3 that a nonnegative
selfadjoint extension Ã of A belongs to the class E(A), the class of extremal
extensions of the operator A, if and only if the Hilbert spaces HA and HÃ
coincide, i.e. the vector spaces HA and HÃ are equal and the norms on HA

and HÃ are equivalent.

By definition, a nonnegative selfadjoint extension Ã of a closed densely
defined nonnegative operator A is called extremal if it satisfies

inf
{(

Ã(h − f), h − f
)
, f ∈ dom A

}
= 0, for all h ∈ dom Ã,

cf. [5], [12]. See [34], [60] for the case of nonnegative relations and [60] for
the case of m-accretive extremal extensions of a sectorial relation.

It turns out that the Friedrichs extension AF and the Krĕın-von Neu-
mann extension AN are two elements of the class E(A), cf. e.g. [11], see also
Proposition 5.1.4. For the Friedrichs extension AF this follows from (2.4).

In the following we briefly recall in which sense an element Ã ∈ E(A)
is extremal, cf. [30]. It was proven by M. G. Krĕın that the transforma-
tion (2.5) establishes a one-to-one correspondence between the set of all
closed nonnegative symmetric (selfadjoint, respectively) operators Ã ⊇ A
and the set of all closed symmetric (selfadjoint, respectively) contractions
S̃ := X−1(Ã). In [40] it was shown that the set

ExtS(−1, 1) :=
{
S̃ ∈ L(H)

∣∣ S ⊆ S̃ = S̃∗, ∥S̃∥ ≤ 1
}

of all selfadjoint contractive extensions of S is a nonempty closed convex set.
Moreover, it is compact in the weak operator topology, cf. [20, page 275]. Ac-
cording to the Krĕın-Milman Theorem, cf. [41], it has extreme points. We
denote the set of these extreme points by ExtE

S (−1, 1) and call its elements
extremal extensions of S. Now the extremal extensions of a closed nonneg-
ative operator A can be defined by the set

ExtE
A(0,∞) := X

(
ExtE

S (−1, 1)
)
,

and this definition is equivalent to (1.3), cf. [30]. Hence, we have

ExtE
A(0,∞) = E(A).
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3.1 The Hilbert spaces HA and HA

In this section we recall some properties of the Hilbert spaces HA and
HA. With their help we derive other well-known characterizations of the
Friedrichs extension AF and the Krĕın-von Neumann extension AN of a
closed densely defined nonnegative operator A acting in the Hilbert space
H. In Section 5.1 the Hibert space HA will play an important role when
describing the Friedrichs, the Krĕın-von Neumann and the extremal exten-
sions of A; see also [11], [52], [53], [63].

Let A be a closed densely defined nonnegative operator in the Hilbert
space H. Following the lines of [52], [63], we introduce on ranA the inner
products

⟨Af,Ag⟩ = (Af, g) and ⟨⟨Af,Ag⟩⟩ = (Af, g) + (Af,Ag),

f, g ∈ dom A. According to

0 ≤ |(Af, g)| ≤ (Af, f)1/2(Ag, g)1/2, f, g ∈ domA, (3.1)

and the fact that A is densely defined, ⟨·, ·⟩ is positive definite. The Hilbert
space HA is defined as the completion of ran A with respect to ⟨·, ·⟩. We
write

HA = {ranA, ⟨·, ·⟩}̂ . (3.2)

In the following we will denote the elements Af of HA by Ãf , and similarly,
r̃anA ⊆ HA. Further, let R[A] be the set of all g ∈ H for which there exists
a sequence (fn) ⊆ domA such that

(A(fn − fm), fn − fm) → 0, Afn → g, m, n → ∞.

According to

(Af, f) + µ(Af,Af) ≤ (Af, f) + λ(Af,Af)

≤ λ

µ

(
(Af, f) + µ(Af,Af)

) (3.3)

for 0 < µ ≤ λ, it is possible to use in the definition of R[A] the inner product
⟨⟨Af,Ag⟩⟩ = (Af, g)+λ(Af,Ag), where λ > 0. It was shown in [3], [52], [62]
that

R[A] = ranA
1/2
N , ranAN = ranA∗ ∩ R[A]. (3.4)
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Moreover, ranAN = ranA, cf. [40]. It follows from the equations (2.13) and
(3.4) the following characterization of the Krĕın-von Neumann extension:

AN =
{
{f, g} ∈ A∗

∣∣∣ g ∈ R[A]
}

.

The next lemma was noted in [11, page 2].

Lemma 3.1.1. Let A be a closed densely defined nonnegative operator in
the Hilbert space H. Then the embedding {ranA, ⟨⟨·, ·⟩⟩}̂ ⊆ H is contractive.
Moreover, the set-theoretical equality R[A] = {ranA, ⟨⟨·, ·⟩⟩}̂ holds true.

Proof. Note that the mapping

i : {ranA, ⟨⟨·, ·⟩⟩}̂ ⊇ r̂anA → H, Âf 7→ Af,

is injective and contractive. Here we denote the elements Af in the Hilbert
space {ranA, ⟨⟨·, ·⟩⟩}̂ by Âf and similarly, r̂anA ⊆ {ranA, ⟨⟨·, ·⟩⟩}̂. Let
(Âfn) be a Cauchy sequence in {ranA, ⟨⟨·, ·⟩⟩} such that (Afn) is converging
to zero in H. According to the definition of the inner product ⟨⟨·, ·⟩⟩ this
implies that (

A(fn − fm), fn − fm

)
→ 0, n,m → ∞.

Consequently, A
1/2
F fn → g, n → ∞ for some g ∈ H. Since A

1/2
F (A

1/2
F fn) →

0, n → ∞, it follows that g ∈ kerA
1/2
F . Due to the fact that A

1/2
F fn ∈

ranA
1/2
F ⊆ (kerA

1/2
F )⊥, we conclude that g = 0. Therefore, the mapping i

can be extended to an injective contractive mapping

j : {ranA, ⟨⟨·, ·⟩⟩}̂ → H .

This implies that the embedding {ranA, ⟨⟨·, ·⟩⟩}̂⊆ H is continuous and that
the vector spaces R[A] and {ranA, ⟨⟨·, ·⟩⟩}̂ coincide.

Lemma 3.1.2. Let A be a closed densely defined nonnegative operator in the
Hilbert space H. Then the embedding {ranA, ⟨⟨·, ·⟩⟩}̂ ⊆ HA is contractive.
Moreover, we have the set-theoretical inclusion R[A] ⊆ HA.

Proof. Note that the mapping

i : {ranA, ⟨⟨·, ·⟩⟩}̂ ⊇ r̂anA → HA, Âf 7→ Ãf ,

is injective and contractive. Let (Âfn) be a Cauchy sequence in {ranA, ⟨⟨·, ·⟩⟩}
such that (Ãfn) is converging to zero in HA. Then

Afn → g, A
1/2
F fn → 0, n → ∞,
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for some g ∈ H. Since A
1/2
F is closed it follows that g = 0. Hence, (Âfn) is

converging to zero in {ranA, ⟨⟨·, ·⟩⟩}̂ as well. Therefore, i can be extended
to an injective contractive mapping from {ranA, ⟨⟨·, ·⟩⟩}̂ to HA. According
to Lemma 3.1.1 this implies that R[A] ⊆ HA.

Analogously, we define on domA the inner products

⟨f, g⟩ = (Af, g) and ⟨⟨f, g⟩⟩ = (Af, g) + (f, g),

f, g ∈ domA, where the first may be degenerated in case of a not positive
definite operator A. D[A] denotes the set of all f ∈ H, for which there exists
a sequence (fn) ⊆ domA such that

(A(fn − fm), fn − fm) → 0, fn → f, m, n → ∞.

Moreover, let the Hilbert space HA be defined as the completion of dom A
with respect to the inner product ⟨⟨·, ·⟩⟩, so that

HA = {domA, ⟨⟨·, ·⟩⟩}̂ .

The Hilbert space HA is called the energy space of the operator A, cf. [66,
page 212]. Analogous to (3.4), we have

D[A] = dom A
1/2
F , domAF = dom A∗ ∩ D[A], (3.5)

cf. [40]. According to (3.5) the Friedrichs extension has the following char-
acterization:

AF =
{
{f, g} ∈ A∗

∣∣∣ f ∈ D[A]
}

.

In case of a positive definite operator A, it is possible to replace the in-
ner product ⟨⟨·, ·⟩⟩ by ⟨·, ·⟩. Indeed, analogous to (3.3), both inner products
generate equivalent norms and, therefore, the same vector spaces, cf. [66,
page 212]. Hence, in this case the Hilbert spaces {dom A, ⟨⟨·, ·⟩⟩}̂ and
{dom A, ⟨·, ·⟩}̂ are isomorphic.

The next statement is well known, see e.g. [28, page 158].

Lemma 3.1.3. Let A be a closed densely defined nonnegative operator in
the Hilbert space H. Then the embedding HA ⊆ H is contractive. Moreover,
the set-theoretical equality D[A] = HA holds true.
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Proof. Note that the mapping

i : HA = {dom A, ⟨⟨·, ·⟩⟩}̂ ⊇ d̂om A → H, f̂ 7→ f,

is injective and contractive. Let (f̂n) be a Cauchy sequence in {dom A, ⟨⟨·, ·⟩⟩}
such that (fn) is converging to zero in H. Then

fn → 0, A
1/2
F fn → g, n → ∞,

for some g ∈ H. Since A
1/2
F is closed it follows that g = 0. Hence, (f̂n) is

converging to zero in HA as well. Therefore, i can be extended to an injective
contractive mapping from HA to H. This implies that the embedding HA ⊆
H is contractive. In particular, the set-theoretical equality HA = D[A] holds
true.

3.2 Characterization of the Extremal Extensions

In this section we show that a nonnegative selfadjoint extension Ã of a closed
densely defined nonnegative operator A is extremal if and only if the Hilbert
spaces HA and HÃ coincide, cf. Proposition 3.2.3.

The following lemma shows that in case of a positive definite operator
A the Hilbert spaces HA and HA are isomorphic.

Lemma 3.2.1. Let A be a closed densely defined positive definite operator
in H. Then the continuous extension ȷ̃ of the mapping

j : {domA, ⟨⟨·, ·⟩⟩} → {domA, ⟨·, ·⟩}, f̂ 7→ f̃ ,

is isomorphic and the unitary extension ı̃ of the mapping

i : {dom A, ⟨·, ·⟩} → {ranA, ⟨·, ·⟩}, f̃ 7→ Ãf ,

is isometrically isomorphic. So (̃ı ◦ ȷ̃)(HA) = HA and HA and HA are
isomorphic.

Proof. According to [66, page 212], the inner products ⟨⟨·, ·⟩⟩ and ⟨·, ·⟩ are
equivalent and, hence, generate the same vector spaces. This implies
{dom A, ⟨⟨·, ·⟩⟩}̂ = {dom A, ⟨·, ·⟩}̂. Next observe that the mapping

i : {dom A, ⟨·, ·⟩} → {ranA, ⟨·, ·⟩}

is unitary, so we can extend it to the isometrical isomorphism ı̃.
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The following lemma gives a description of the Hilbert space HÃ, where Ã
is a nonnegative selfadjoint extension of A and HÃ is constructed analogously
to HA. We will denote the inner product on HA and HÃ by the same symbol
⟨·, ·⟩.

Lemma 3.2.2. Let A be a closed densely defined nonnegative operator and
let Ã be a nonnegative selfadjoint operator in H. Then:

(i) The Hilbert space HÃ is isometrically isomorphic to ran Ã1/2 via the

unitary extension of the mapping ˜̃Af 7→ Ã1/2f, f ∈ dom Ã;

(ii) If Ã is an extension of A then HA is a closed subspace of HÃ.

Proof. (i) In order to see that HÃ and ran Ã1/2 are isometrically isomorphic
observe that the linear mapping given by

i : {ran Ã, ⟨·, ·⟩} → ran Ã
1/2, ˜̃Af 7→ Ã

1/2f, f ∈ dom Ã

is isometric. Due to the fact that dom Ã is a core of Ã1/2 the subspace
ran (Ã1/2

∣∣
dom Ã

) is dense in ran Ã1/2. Hence, we can extend i isometrically to
a surjective mapping ı̃ : HÃ → ran Ã1/2.

(ii) By definition HA and HÃ are the completions

HA = {ranA, ⟨·, ·⟩}̂ and HÃ = {ran Ã, ⟨·, ·⟩}̂,

where
⟨Ãf, Ãg⟩ = (Ãf, g), f, g ∈ dom Ã.

Clearly, HA ⊆ HÃ and HA is a closed subspace.

The next proposition gives a characterization of the class E(A) by means
of the Hilbert space HA.

Proposition 3.2.3. Let A be a closed densely defined nonnegative operator
in H. Then for each nonnegative selfadjoint extension Ã of A, the following
statements are equivalent:

(i) Ã is an extremal extension of A;

(ii) HA = HÃ;

(iii) HA is isometrically isomorphic to ran Ã1/2 via the unitary extension of
the mapping

Ãf 7→ Ã
1/2f, f ∈ domA.
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Proof. To prove that (i) implies (ii), assume that Ã is an extremal exten-
sion of A. By definition of the space HA, for every h ∈ dom Ã there exists
a sequence (fn) ⊆ domA such that lim

n→∞
(Ã(h − fn), h − fn) = 0. Conse-

quently, Ãfn converges to ˜̃Ah in HÃ. Therefore, {ranA, ⟨·, ·⟩} is dense in
{ran Ã, ⟨·, ·⟩} and the latter is a dense subset of HÃ. This implies

HA = {ranA, ⟨·, ·⟩}̂= {ran Ã, ⟨·, ·⟩}̂= HÃ.

Next it is shown that (ii) implies (iii). The statement that the spaces HA

and ran Ã1/2 are isometrically isomorphic follows directly from Lemma 3.2.2.
We show that the extension of the mapping

i : r̃anA ⊆ HA → ran Ã
1/2, Ãf 7→ Ã

1/2f, f ∈ dom A,

to the whole space HA = HÃ is unitary. First observe that i maps r̃anA

unitary onto ran (Ã1/2|dom A). Since HÃ = HA for ˜̃Af ∈ HÃ, there exists a

sequence (fn) ⊆ dom A such that Ãfn converges to ˜̃Af in HÃ, as n → ∞.
Consequently,

∥Ã1/2(f − fn)∥2 =
(
Ã(f − fn), f − fn

)
=

〈 ˜̃Af − ˜̃Afn, ˜̃Af − ˜̃Afn

〉
→ 0,

as n → ∞. This implies that ran (Ã1/2|dom A) is dense in ran (Ã1/2|dom Ã).
Since dom Ã is a core of Ã1/2, the subspace ran (Ã1/2|dom Ã) is dense in ran Ã1/2

and, hence, in ran Ã1/2. Thus, we can extend i isometrically to a surjective
mapping ı̃ : HA = HÃ → ran Ã1/2.

Finally, it is shown that (iii) implies (i). Assume that HA is isometrically
isomorphic to ran Ã1/2 via the unitary extension of the mapping

Ãf 7→ Ã
1/2f, f ∈ dom A.

Note that this implies that ran (Ã1/2|dom A) is dense in ran Ã1/2. In particu-
lar, for every f ∈ dom Ã, there exists a sequence (fn) ⊆ domA such that
Ã1/2fn → Ã1/2f, n → ∞. This implies(

Ã(fn − f), fn − f
)
→ 0, n → ∞.

Thus, Ã ∈ E(A).

Clearly, for two extremal extensions Ã1, Ã2 of a nonnegative operator A

the spaces HÃ1
and HÃ2

coincide and the spaces ran Ã
1/2
1 and ran Ã

1/2
2 are

isometrically isomorphic.
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Since for a closed positive definite operator A the closed subspaces ran A

and ranA
1/2
N coincide, cf. Lemma 2.2.2, we obtain the following result.

Corollary 3.2.4. Let A be a closed densely defined positive definite operator
in H. Then HA is isometrically isomorphic to ranA.

The following result is a consequence of Proposition 3.2.3.

Proposition 3.2.5. Let A be a closed densely defined positive definite op-
erator in H. Then the embedding H ⊆ HA is continuous via the mapping

i : H → HA, AF f 7→ ÃF f.

Proof. Since the Friedrichs extension AF of A is an extremal extension of
A, we have

HA = HAF
= {ranAF , ⟨·, ·⟩}̂,

where
⟨ÃF f, ÃF g⟩ = (AF f, g), f, g ∈ domAF .

Due to the fact that AF has the same lower bound as A, i.e. µ(AF ) > 0, it
follows that ranAF = H and A−1

F ∈ L(H). Moreover, A−1
F is nonnegative

since (A−1
F f, f) = (h,AF h) ≥ 0, f = AF h, h ∈ domAF , and therefore has

a nonnegative square root A
−1/2
F ∈ L(H). This implies for f, g ∈ domAF ,

∥ÃF f∥2
HA

= (AF f, f) = (AF f,A−1
F AF f)

= (A
−1/2
F AF f,A

−1/2
F AF f) ≤ ∥A−1/2

F ∥2∥AF f∥2.

Hence, the mapping i : H → HAF
= HA, AF f 7→ ÃF f, is injective and

continuous. This yields the embedding H ⊆ HA.

According to the notations in [28], in the case of a positive definite
operator A, the Hilbert spaces HA and HA coincide with the positive space
H+ and the negative space H−, respectively, and we have the embeddings

HA ⊆ H ⊆ HA,

cf. Lemma 3.1.3 and Proposition 3.2.5. These spaces appear in the construc-
tion of chains of Hilbert spaces with respect to the operator A

1/2
F . Other

notations can be found in [22]. Namely, for α ∈ Q and a positive definite
selfadjoint operator A, the Hilbert spaces

Hα(A) = {dom Aα, ∥Aα · ∥}̂
are defined. Hence, HA and HA correspond to H1/2(AF ) and H−1/2(AF ),
respectively. In [28, page 56] it is shown that H− is the dual space of H+.
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Corollary 3.2.6. If A is a closed densely defined positive definite operator
in H, then HA is the dual space of HA.

We obtain another characterization of the space HA by means of the
Hilbert space KA which is constructed as follows, see e.g. [19], [63]. Let A
be a closed densely defined nonnegative operator in the Hilbert space H.
Define on the quotient space domA/ kerA the inner product

⟨[x], [y]⟩ = (Ax, y), x, y ∈ domA,

and the Hilbert space KA as the completion of dom A/ kerA with respect to
this inner product. Then the mapping

j : {dom A/ kerA, ⟨·, ·⟩} → {ranA, ⟨·, ·⟩} , [x] 7→ Ax,

is isometrically isomorphic. Therefore, we can extend j to a unitary map-
ping from KA onto HA. Thus, KA and HA are isometrically isomorphic.

In Section 5.1 we resume the characterization of the set E(A), the set
of extremal extensions of a closed densely defined nonnegative operator A,
via factorizations which go back to Z. Sebestyén, J. Stochel and co-workers,
cf. [11], [52], [53], [62], [63]. Moreover, we give analogous factorizations of
these extensions, see Proposition 5.1.7. There the Hilbert space HA will
play an important role, too.

3.3 An Example

Let I = (0, 1), H = L2(I) and consider in H the closed densely defined
positive definite operator

Af = −f ′′, f ∈ dom A = W̊ 2
2 (I).

It is well known that HA = W̊ 1
2 (I), cf. [11], and that the embedding HA ⊆ H

is even compact, cf. [2]. According to Proposition 3.2.3, we have the identity

HA = HAF
= {ranAF , ⟨·, ·⟩} ,̂

where for ÃF h, ÃF k ∈ r̃anAF , we have

⟨ÃF h, ÃF k⟩ = (AF h, k) = (AF h,A−1
F AF k) = (A

−1/2
F AF h,A

−1/2
F AF k).

Observe that for g ∈ dom (A−1
F ) = L2(I), the following identity is valid:

(A−1
F g)(x) = −Fg,2(x) + Fg,2(0) + x

(
Fg,2(1) − Fg,2(0)

)
,
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where Fg and Fg,2 denote an absolutely continuous primitive of g and Fg,
respectively. Hence, for f, g ∈ L2(I), we have

(A
−1/2
F f,A

−1/2
F g) =

∫ 1

0
f(x)

(
−Fg,2(x) + Fg,2(0) + x

(
Fg,2(1) − Fg,2(0)

))
dx.

Since ∥A1/2
F f∥2 =

∫ 1
0 |f ′(t)|2dt, f ∈ W̊ 1

2 (I) = dom A
1/2
F , cf. [11] or Proposition

7.1.7, it follows that

HA =
{
L2(I), ∥A−1/2

F · ∥
}̂= H−1/2(AF ) = (H1/2(AF ))′

=
({

domAF , ∥A1/2
F · ∥

}̂)′
=

({
dom AF , ∥ d

dt · ∥
}̂)′

,

cf. [28]. Recall that

∥f ′∥2 ≤ ∥f∥2 + ∥f ′∥2 = ∥f∥2
W 1

2 (I) ≤ 2∥f ′∥, f ∈ W̊ 1
2 (I).

In fact, for f ∈ W̊ 1
2 (I), we have

|f(t)| =
∣∣∣∣f(0) +

∫ t

0
f ′(x) dx

∣∣∣∣ ≤ ∫ t

0
|f ′(x)| dx ≤

(∫ 1

0
|f ′(x)|2dx

)1/2

= ∥f ′∥.

Thus,

∥f∥2 =
∫ 1

0
|f(x)|2dx ≤ ∥f∥2

∞ ≤ ∥f ′∥2.

It follows that{
domAF , ∥ d

dt · ∥
}̂=

{
dom AF , ∥ · ∥W 1

2 (I)

}̂=
{
domAF , ∥ · ∥

A
1/2
F

}̂
=

{
dom A

1/2
F , ∥ · ∥

A
1/2
F

}
=

{
W̊ 1

2 (I), ∥ · ∥W 1
2 (I)

}
.

This implies
HA =

(
W̊ 1

2 (I)
)′

,

which we already know since HA = (HA)′. The Sobolev space of negative
order W−1(I) = (W̊ 1

2 (I))′ consists of all distributions w, i.e. linear continu-
ous functionals w : D(I) → C, that are derivatives in the sense of the theory
of distributions, namely, for which there exists a distribution v such that

w(φ) = −v(φ′), φ ∈ D(I),

cf. [28, page 98], [2, page 51], where D(I) denotes the space of test functions
in the sense of L. Schwartz, cf. [2], [61], [71].

In Section 7.1 we will discuss a generalization of the operator A. The
Friedrichs, the Krĕın-von Neumann and all extremal extensions of A will be
given.
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4 Extremal Extensions via Basic Boundary Trip-
lets

In this chapter we collect the basic definitions and statements concerning
boundary triplets, cf. [5], [28]. We will use them in Chapter 7. In partic-
ular, the well-known one-to-one correspondence between the (nonnegative)
selfadjoint extensions ÃΘ of a closed densely defined (nonnegative) opera-
tor A in a Hilbert space H and the (nonnegative) selfadjoint relations Θ in
an auxillary Hilbert space H via (basic, respectively) boundary triplets is
recalled. The characterization of the extremal extensions of A in Chapter
4.3 was discussed in detail in [11]. The concept of boundary triplets and
the characterization of selfadjoint and, in particular, extremal extensions of
a closed densely defined nonnegative operator A that was mentioned above
has been extended to the case where A is a nonnegative relation in [22], [25],
[60].

4.1 Boundary Triplets and Transversality

We begin with the definition of disjoint and tranversal extensions of a densely
defined symmetric operator A in the Hilbert space H.

Definition 4.1.1. Two selfadjoint extensions A0, A1 of a densely defined
symmetric operator A are called disjoint if domA0 ∩ dom A1 = dom A and
transversal if dom A0 + dom A1 = dom A∗.

It is well known that two transversal extensions of A are automatically
disjoint and in case that A has finite and equal defect indices disjointness
also implies transversality, cf. [24]. In [45] it was shown that the Friedrichs
and the Krĕın-von Neumann extension of a closed densely defined nonnega-
tive operator A are transversal if and only if domA∗ ⊆ dom A

1/2
N . Obviously,

this is fulfilled, too, if A is not closed; see [60, page 80] for the case that A
is a nonnegative relation.

If A is a closed densely defined positive definite operator, then from

dom A∗ = dom AF u kerA∗ (4.1)

and domAN = domAukerA∗, cf. Lemma 2.2.2, it follows that the Friedrichs
and the Krĕın-von Neumann extension of A are transversal.

The following statement was proved by Yu. Arlinskĭı in [4].
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Proposition 4.1.2. Let A be a closed densely defined nonnegative opera-
tor in H. Then the existence of two nonnegative transversal extensions is
equivalent to the fact that the Friedrichs extension AF and the Krĕın-von
Neumann extension AN are transversal.

This implies that if AN and AF are not transversal, then there exists no
pair of nonnegative selfadjoint transversal extensions of the operator A.

Boundary triplets are a useful tool for characterizing selfadjoint exten-
sions of a symmetric operator. The notion goes back to V. M. Bruk, A. N.
Kochubĕı and M. O. Talyush, cf. [16], [38], [65].

Definition 4.1.3. Let A be a closed densely defined symmetric operator in
a Hilbert space H. Further, let Γ0, Γ1 be linear mappings from domA∗ into
another Hilbert space H. The triplet {H, Γ0, Γ1} is called a boundary triplet
for A∗ (or boundary value space of A) if the following conditions are fullfiled:

(1) The mapping Γ :=
(
Γ0

Γ1

)
: dom A∗ → H × H is surjective;

(2) The abstract Green’s identity

(A∗f, g) − (f,A∗g) = (Γ1f, Γ0g)H − (Γ0f,Γ1g)H (4.2)

holds for all f, g ∈ dom A∗.

For a closed densely defined symmetric operator A with equal deficiency
indices n±(A) := dim

(
ker(A∗ ∓ iI)

)
= n ≤ ∞ there always exists a bound-

ary triplet {H, Γ0, Γ1} for A∗ with the property that dim H = n, cf. [16],
[38]; see also [28, page 155]. Further, if A0 and A1 are transversal extensions
of A then there exists a boundary triplet {H,Γ0, Γ1} for A∗ such that we
have A0 = A∗∣∣

ker Γ0
and A1 = A∗∣∣

ker Γ1
, cf. [23]. Conversely, if {H, Γ0, Γ1} is

a boundary triplet for A∗ then the operators defined by

A0 := A∗∣∣
ker Γ0

and A1 := A∗∣∣
ker Γ1

(4.3)

are transversal extensions of A, cf. [23]. Furthermore, the identities dom A =
ker Γ0 ∩ ker Γ1 and Γ0(dom A1) = H = Γ1(domA0) are valid, cf. [16]. Con-
sequently, the mapping

Γ|dom A∗/dom A : dom A∗/domA → H × H

is bijective and, hence, n±(A) = dim H.
If A is a nonnegative operator the extensions A0 and A1 may be not

nonnegative, though. But it turns out that in case of a positive definite

49



operator A there exists a so-called positive boundary triplet for A∗. In this
case, actually, the transversal extensions A0, A1 are nonnegative, see next
section. There even exists a so-called basic boundary triplet for A∗ such
that A0 coincides with the Friedrichs extension and A1 coincides with the
Krĕın-von Neumann extension. They are positiv definite and nonnegative,
respectively.

The next well-known statement gives a parametrization of all selfadjoint
extensions of a symmetric operator A by means of boundary triplets, cf. [28,
page 157], [47]. For similar results in the case where A is a nonnegative
(nondensely defined) operator or a nonnegative relation the reader is referred
to [22], [25].

Theorem 4.1.4. Let A be a closed densely defined symmetric operator in
a Hilbert space H with equal deficiency indices n±(A) = n ≤ ∞ and let
{H, Γ0, Γ1} be a boundary triplet for A∗. Then the mapping Γ :=

(
Γ0

Γ1

)
estab-

lishes a one-to-one correspondence between the set of all closed extensions
ÃΘ of A and the set of all closed relations Θ ⊆ H × H via

dom ÃΘ = Γ−1Θ = {f ∈ dom A∗ | Γf ∈ Θ}, ÃΘ := A∗|dom ÃΘ
. (4.4)

The extension ÃΘ is selfadjoint if and only if the relation Θ is selfadjoint.

The following statement was proved by J. Behrndt and M. Langer (in a
more general setting), see [14, Theorem2.3]. It will be useful in Section 7.2
for the description of the extremal extensions of a factorized block operator
matrix.

Theorem 4.1.5. Let T be a closed densely defined operator in a Hilbert
space H. Further, let Γ0, Γ1 be linear mappings from domT into another
Hilbert space H such that the following three conditions are satisfied:

(1) T |ker Γ0 contains a selfadjoint operator;

(2) Γ :=
(
Γ0

Γ1

)
: dom T → H × H is surjective;

(3) The abstract Green’s identity

(Tf, g) − (f, Tg) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H

holds for all f, g ∈ dom T .

Then the following assertions hold:

(i) A := T |ker Γ is a closed symmetric operator in H;

(ii) A∗ = T ;

(iii) The triplet {H, Γ0, Γ1} is a boundary triplet for A∗.
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4.2 Positive and Basic Boundary Triplets

Now we discuss positive boundary triplets. The definition can be found in
[5, page 5].

Definition 4.2.1. Let A be a closed densely defined nonnegative operator
in a Hilbert space H and let {H, Γ0, Γ1} be a boundary triplet for A∗. Then
{H, Γ0, Γ1} is called positive if the symmetric form defined by

ω(f, g) = (A∗f, g) − (Γ1f,Γ0g), f, g ∈ domω = dom A∗, (4.5)

is nonnegative.

In [28, page 160] a positive boundary triplet for A∗ is defined as follows:
Let A be a positive definite operator. According to (4.1), denote by PF

and P0 the projectors from dom A∗ onto dom AF and kerA∗, respectively,
and by P the orthogonal projector from H onto kerA∗. Then the boundary
triplet {H, Γ0, Γ1} is called positive if

(A∗f, g) = (AF PF f, PF g) + (Γ0f,Γ1f)H, f, g ∈ dom A∗.

Hence, it is also a positive boundary triplet according to our definition.
Note that we can replace the Friedrichs extension by any positive definite
extension of A. In addition, it is shown that a positive boundary triplet can
be constructed via

H = kerA∗, Γ0 = PAF PF , Γ1 = P0.

Let A be a closed densely defined nonnegative operator in a Hilbert space
H and let {H,Γ0, Γ1} be a positive boundary triplet for A∗. Further, let A0

and A1 be the associated transversal extensions according to (4.3). Then
for f = f0 + f1 ∈ domA∗ = dom A0 + dom A1, we have

ω(f, f) = (A0f0, f0) + (A1f1, f1) + 2Re(A1f1, f0). (4.6)

Thus, the operators A0 and A1 are nonnegative as well. Due to Proposition
4.1.2, the Friedrichs extension AF and the Krĕın-von Neumann extension
AN are transversal.

The following proposition gives a criterion whether a boundary triplet is
positive or not, cf. [5].

Proposition 4.2.2. Let A be a closed densely defined nonnegative operator
in a Hilbert space H and let {H, Γ0, Γ1} be a boundary triplet for A∗. Fur-
ther, let A0 and A1 be the transversal extensions according to (4.3). Then
the triplet {H, Γ0, Γ1} is positive if and only if 0 ≤ A1 ≤ A0.
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Since AN ≤ Ã ≤ AF for all nonnegative selfadjoint extensions Ã of
A, cf. (2.6), the above proposition implies that in case of a closed densely
defined nonnegative operator A all boundary triplets for A∗ having the form
{H, ΓF , Γ1} or {H, Γ0, ΓN} are positive, where ker ΓF,N = dom AF,N .

Now we give the definition of basic boundary triplets which are an im-
portant tool in describing extremal extensions of nonnegative operators.

Definition 4.2.3. Let A be a closed densely defined nonnegative operator
in a Hilbert space H and let {H, Γ0, Γ1} be a boundary triplet for A∗. Then
{H, Γ0, Γ1} is called basic (or fundamental) if ker Γ0 = dom AF and ker Γ1 =
domAN . We agree to write {H,ΓF ,ΓN}.

According to the conclusions of Proposition 4.2.2, each basic boundary
triplet is a positive boundary triplet as well. We summarize these consider-
ations in the following proposition.

Proposition 4.2.4. Let A be a closed densely defined nonnegative operator
in H. Then the following statements are equivalent:

(i) There exists a positive boundary triplet for A∗;

(ii) There exists a basic boundary triplet for A∗;

(iii) The Friedrichs extension AF and the Krĕın-von Neumann extension
AN are transversal.

4.3 Characterization of the Extremal Extensions

The following parametrization of all nonnegative selfadjoint extensions of a
closed densely defined nonnegative operator is a consequence of Theorem
4.1.4 and (4.6), cf. [5].

Proposition 4.3.1. Let A be a closed densely defined nonnegative operator
in a Hilbert space H and let {H,Γ0,Γ1} be a basic boundary triplet for A∗.
Then the mapping Γ :=

(
Γ0

Γ1

)
establishes a one-to-one correspondence between

the set of all nonnegative selfadjoint extensions ÃΘ of A and the set of all
nonnegative selfadjoint relations Θ ⊆ H × H via

dom ÃΘ = Γ−1Θ = {f ∈ dom A∗ | Γf ∈ Θ}, ÃΘ := A∗|dom ÃΘ
. (4.7)

With the help of basic boundary triplets it is possible to characterize
the extremal extensions of a closed densely defined nonnegative operator
accordingly see the next proposition which can be found in [11]. We give
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an alternative and more direct proof, cf. [48]. In [60] a similar result has
been shown in the case where A is a nonnegative relation. There the basic
boundary triplet has to be replaced by a so-called symmetric generalized
boundary triplet.

Proposition 4.3.2. Let A be a closed densely defined nonnegative operator
in a Hilbert space H and let {H,Γ0,Γ1} be a basic boundary triplet for A∗.
Then (4.7) defines a one-to-one correspondence between the set of extremal
extensions of A and the set of all selfadjoint relations Θ ⊆ H × H having
the form

Θ =
{
{Ph, (I − P )h}

∣∣ h ∈ H
}

, where P = P ∗ = P 2 ∈ L(H). (4.8)

Proof. Let ÃΘ ∈ E(A). We define the relation Θ̃ by

Θ̃ =
{
{Ph, (I − P )h}

∣∣ h ∈ H
}

,

where P̃ is the orthogonal projector from H onto H̃ = Γ0dom ÃΘ. Then Θ̃
is selfadjoint. In fact, we have

Θ̃∗ =
{
{x, x′} ∈ H × H

∣∣∣ (x, y′) = (x′, y) for all {y, y′} ∈ Θ̃
}

=
{
{x, x′} ∈ H × H

∣∣∣ (
x, (I − P̃ )h

)
= (x′, P̃ h) for all h ∈ H

}
.

Put x = P̃ h and x′ = (I − P̃ )h, where h ∈ H. This yields(
P̃ h, (I − P̃ )h

)
=

(
(I − P̃ )h, P̃h

)
= 0,

which implies Θ̃ ⊆ Θ̃∗.

Now let {x, x′} ∈ Θ̃∗, i.e.
(
x, (I − P̃ )h

)
= (x′, P̃ h) for all h ∈ H. Then we

have (
(I − P̃ )x, h

)
= (P̃ x′, h), h ∈ H.

Consequently, (I − P̃ )x = P̃ x′. We show that there exists an element g ∈ H

such that
{x, x′} = {P̃ g, (I − P̃ )g}.

Put g = x+x′. This implies P̃ g−P̃ x = P̃ (g−x) = P̃ x′ = (I−P̃ )x = x−P̃ x,
and hence, P̃ g = x. According to

P̃ x′ = (I − P̃ )x = (I − P̃ )(g − x′) = (I − P̃ )g − x′ + P̃ x′
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we obtain x′ = (I − P̃ )g. Thus, Θ̃∗ ⊆ Θ̃. Consequently, Θ̃ is selfadjoint.
From

(A∗f, g) = AN [f, g] + (Γ1f,Γ0g), f, g ∈ domA∗, (4.9)

cf. e.g. [11], we obtain Γ0f⊥Γ1f if f ∈ dom ÃΘ. Hence, the identity

Θ = Γdom ÃΘ =
{
{Γ0f, Γ1f}

∣∣∣ f ∈ dom ÃΘ

}
implies Θ ⊆ Θ̃ = Θ̃∗ ⊆ Θ∗ = Θ. Thus, Θ = Θ̃.

Now let Θ be defined as in (4.8). According to (4.9) it follows that

(ÃΘf, f) = AN [f ], f ∈ dom ÃΘ.

Since dom ÃΘ is a core of Ã
1/2
Θ this implies that ÃΘ is an extremal extension

of A, cf. Theorem 5.1.5.

54



5 Extremal Extensions via Factorizations

In this chapter we give factorizations of the extremal extensions and, in par-
ticular, of the Friedrichs and the Krĕın-von Neumann extension of a closed
densely defined nonnegative operator A. In Section 5.3 we drop the condi-
tion that A is densely defined and closed.

5.1 The Factorization A = JQ

First we resume some well-known results concerning the factorization of
the Friedrichs and the Krĕın-von Neumann extension of a closed densely
defined nonnegative operator A involving the operators J and Q defined
below. These go back to Z. Sebestyén, J. Stochel and co-workers, see [52],
[53], [62], [63]. With the help of the operators J and Q a factorization of the
extremal extensions of A was established in [11] and extended to the case of
nonnegative or sectorial relations in [34], [60].

In Proposition 5.1.7 we present a factorization of the extremal extensions
of a closed densely defined nonnegative operator A analogous to that in [11,
Theorem 4.4] where restrictions of Q∗∗ are used instead of restrictions of J∗.

The following factorization can be found in [11], [52], [53], [62], [63]. Let
A be a closed densely defined nonnegative operator in H and define the
operators Q and J by

Q : H ⊇ domA → HA, f 7→ Ãf ,

J : HA ⊇ r̃anA → H, Ãf 7→ Af,
(5.1)

where HA = {ranA, ⟨·, ·⟩}̂ is the Hilbert space defined in Section 3.1 and
⟨f, g⟩ = (Af, g), f, g ∈ domA. Then Q and J are closable and densely
defined satisfying Q∗∗ ⊆ J∗ and J∗∗ ⊆ Q∗. Moreover, the factorization

A = JQ

holds true and A ⊆ Q∗J∗ ⊆ A∗. We can strengthen this fact as follows:

Lemma 5.1.1. Let A be a closed densely defined nonnegative operator in
H. Then every nonnegative selfadjoint extension Ã of A satisfies

A ⊆ Ã ⊆ Q∗J∗ ⊆ A∗. (5.2)

55



Proof. Let Ã be a nonnegative selfadjoint extension of A. Since A∗ =
(JQ)∗ ⊇ Q∗J∗ it remains to show the second inclusion. Due to dom Ã ⊆
domJ∗ 2 , we have

⟨Qf, J∗g⟩ = (JQf, g) = (Af, g) = (f, Ãg), g ∈ dom Ã, f ∈ dom Q.

Hence, J∗g ∈ dom Q∗ and Q∗J∗g = Ãg, g ∈ dom Ã. This shows Ã ⊆ Q∗J∗.

The next lemma presented in [34, page 118] gives a useful equivalence
statement.

Lemma 5.1.2. Let A be a closed densely defined nonnegative operator in
H. Then the Friedrichs and the Krĕın-von Neumann extension are dis-
joint if and only if A = J∗∗Q∗∗. The Friedrichs and the Krĕın-von Neu-
mann extension are transversal if and only if A∗ = Q∗J∗.

The next theorem gives a factorization of the Friedrichs and the Krĕın-
von Neumann extension with the help of the operators J and Q, cf. [11], [52],
[53], [62], [63]; see [34], [60] for the case that A is a nonnegative relation.
We give an alternative proof which only uses the Representation Theorems
and relation (2.6), see [48].

Proposition 5.1.3. Let A be a closed densely defined nonnegative operator
in H. Then the Friedrichs and the Krĕın-von Neumann extension of A are
given by

(i) AN = J∗∗J∗ and AN [f, g] = ⟨J∗f, J∗g⟩, f, g ∈ dom J∗ = dom A
1/2
N ;

(ii) AF = Q∗Q∗∗ and AF [f, g] = ⟨Q∗∗f,Q∗∗g⟩, f, g ∈ domQ∗∗ = dom A
1/2
F .

Proof. If the Friedrichs and the Krĕın-von Neumann extension have the re-
quired representation then the representation of the associated forms follows
directly from the Representation Theorems. We show that for every non-
negative selfadjoint extension Ã of A the relation

J∗∗J∗ ≤ Ã ≤ Q∗Q∗∗ (5.3)

is satisfied. Since the Friedrichs and the Krĕın-von Neumann extension are
unique extensions with the property that AN ≤ Ã ≤ AF for every nonneg-
ative selfadjoint extension Ã of A, statement (5.3) is sufficient in order to

2This follows from Proposition 5.1.3 or directly: Let h ∈ dom Ã, fAf ∈ dom J . Then
|(J fAf, h)| = |(Af, h)| = |⟨fAf, fAh⟩| ≤ ∥fAf∥HA∥fAh∥HA . Thus, h ∈ dom J∗.
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prove Proposition 5.1.3. According to Proposition 2.1.5 the operators J∗∗J∗

and Q∗Q∗∗ are nonnegative and selfadjoint. Furthermore, dom (J∗∗J∗) is
a core of J∗ and dom (Q∗Q∗∗) is a core of Q∗∗. Let Ã be a nonnegative
selfadjoint extension of A. For f ∈ domA = dom Q ⊆ dom Ã ⊆ dom Ã1/2,
we have

∥Qf∥2
HA

= (Af, f) = (Ãf, f) = ∥Ã1/2f∥2.

This implies dom Q∗∗ ⊆ dom Ã1/2 and

∥Q∗∗f∥HA
= ∥Ã1/2f∥, f ∈ domQ∗∗,

which can be rewritten as

dom (Q∗Q∗∗)1/2 ⊆ dom Ã
1/2

and

∥(Q∗Q∗∗)1/2f∥ = ∥Ã1/2f∥, f ∈ dom (Q∗Q∗∗)1/2. (5.4)

Due to (2.2) it follows that Ã ≤ Q∗Q∗∗.

In the next step we show that J∗∗J∗ ≤ Ã. Let h ∈ dom Ã, f ∈ dom A. Then
we have

|(JÃf, h)|2 = |(Af, h)|2 = |(f, Ãh)|2 = |(Ã1/2f, Ã
1/2h)|2

≤ ∥Ã1/2f∥2∥Ã1/2h∥2 = (Af, f)∥Ã1/2h∥2

= ⟨Ãf , Ãf⟩∥Ã1/2h∥2 = ∥Ãf∥2
HA

∥Ã1/2h∥2.

This implies h ∈ domJ∗. Hence,

|⟨Ãf , J∗h⟩| = |(JÃf, h)| ≤ ∥Ãf∥HA
∥Ã1/2h∥, h ∈ dom Ã, f ∈ domA.

Since r̃anA is dense in HA it follows that

∥J∗h∥HA
= sup

{
|⟨Ãf , J∗h⟩|
∥Ãf∥HA

, f ∈ domA

}
≤ ∥Ã1/2h∥, h ∈ dom Ã.

Thus, we have shown that dom Ã ⊆ domJ∗ and ∥J∗f∥HA
≤ ∥Ã1/2f∥, f ∈

dom Ã. This is a sufficient criterion for J∗∗J∗ ≤ Ã, cf. (2.3). Alltogether,
we have J∗∗J∗ ≤ Ã ≤ Q∗Q∗∗. This completes the proof.

In view of the characterization of the extremal extensions of the operator
A we recall some consequences of the above factorizations which can largely
be found in [11].
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Proposition 5.1.4. Let A be a closed densely defined nonnegative operator
in H and let L be a subspace of H satisfying dom A ⊆ L ⊆ domJ∗. Then:

(i) The operator J∗|L is closable and J∗|L = J∗|∗∗L = J∗|
L

∥·∥J∗ ;

(ii) The operator J∗|L is closed if and only if L is closed with respect to
the graph norm of J∗ which is equivalent to the fact that L is closed
with respect to the graph norm of A

1/2
N ;

(iii) The operator ÃL := J∗|∗LJ∗|∗∗L is an extremal extension of A and the
associated form is given by

ÃL[f, g] = ⟨J∗|∗∗L f, J∗|∗∗L g⟩, f, g ∈ dom Ã
1/2
L = dom J∗|∗∗L = L

∥·∥J∗
;

(iv) Let M be another subspace of H satisfying domA ⊆ M ⊆ dom J∗.
Then:

1. M
∥·∥J∗ ⊆ L

∥·∥J∗
if and only if ÃM ≥ ÃL;

2. M
∥·∥J∗

= L
∥·∥J∗

if and only if ÃM = ÃL;

(v) 1. For every subspace L satisfying domA ⊆ L ⊆ domA
1/2
F , we have

ÃL = AF ;

2. For every subspace L satisfying dom AN ⊆ L ⊆ dom A
1/2
N , we

have ÃL = AN .

Proof. We only show statement (iv) since the other proofs can be found in
[11, pages 6, 7]. Let M

∥·∥J∗ ⊆ L
∥·∥J∗

. For f ∈ M
∥·∥J∗

, we have

ÃM[f ] =
〈
J∗|

M
∥·∥J∗ f, J∗|

M
∥·∥J∗ g

〉
=

〈
J∗|

L
∥·∥J∗ f, J∗|

L
∥·∥J∗ g

〉
= ÃL[f ].

This implies ÃL ≤ ÃM. Conversely, if ÃL ≤ ÃM then obviously it follows
that M

∥·∥J∗
= dom Ã

1/2
M ⊆ dom Ã

1/2
L = L

∥·∥J∗
. The statement concerning the

equalities is clear now.

The next theorem gives a characterization of the extremal extensions. It
can be found in [11, Theorem4.4].

Theorem 5.1.5. Let A be a closed densely defined nonnegative operator in
H. Then for each nonnegative selfadjoint extension Ã of A the following
statements are equivalent:

(i) Ã = J∗|∗LJ∗|∗∗L for some L with domA ⊆ L ⊆ domA
1/2
N ;
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(ii) Ã is an extremal extension of A;

(iii) The form associated to Ã satisfies Ã[f, g] = AN [f, g], f, g ∈ dom Ã1/2.

In particular, there is a one-to-one correspondence between the closed re-
strictions t of AN [·, ·] and the extremal extensions Ã ∈ E(A) given by

t[f, g] = ⟨J∗|Lf, J∗|Lg⟩, f, g ∈ dom t = L = dom Ã
1/2,

domA
1/2
F ⊆ L ⊆ domA

1/2
N .

This implies that two extremal extensions Ã1, Ã2 of A coincide if and only
if their form domains coincide. In particular, in [11] the following fact was
proved: If Ã is a nonnegative selfadjoint extension of A then J∗|∗LJ∗|∗∗L ≤ Ã,
where L = dom Ã. The equality J∗|∗LJ∗|∗∗L = Ã holds if and only if Ã is
extremal.

In [34], [60] the above factorization approach has been extended to the
case where A is a nonnegative relation. It is not assumed that A is closed
or densely defined (see also [29] for further results). In this case the Hilbert
space HA is defined by

HA = {ranA/R0, ⟨·, ·⟩}̂, (5.5)

where R0 =
{
f ′ ∈ H | ∃ {f, f ′} ∈ A : (f, f ′) = 0

}
and

⟨[f ′], [g′]⟩ := (f ′, g) = (f, g′), for {f, f ′}, {g, g′} ∈ A.

The symbol [h] denotes the equivalence class of h in HA. Q and J are now
defined by

Q =
{
{f, [f ′]}

∣∣∣ {f, f ′} ∈ A
}
⊆ H×HA (5.6)

and

J =
{
{[f ′], f ′}

∣∣∣ {f, f ′} ∈ A
}
⊆ HA ×H . (5.7)

It turns out that Q,Q∗∗ and J∗ are operators whereas J, J∗∗ and Q∗ are
relations in general. Further, mulJ = R0. As in the operator case the
Friedrichs and the Krĕın-von Neumann extension have the representation

AF = Q∗Q∗∗ and AN = J∗∗J∗. (5.8)
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Similarly, a nonnegative selfadjoint extension Ã of A is extremal if and only
if

Ã = J∗|∗LJ∗|∗∗L (5.9)

holds for some L with dom A ⊆ L ⊆ domA
1/2
N = dom J∗ or, equivalently, if

Ã[f, g] = AN [f, g] = ⟨J∗f, J∗g⟩, f, g ∈ dom Ã
1/2. (5.10)

In order to characterize the extremal extensions of the tensor product
of two nonnegative operators in Chapter 8 we need the following statement
which weakens the assumption (1.3) in the definition of an extremal exten-
sion. We emphasize that it is not assumed that the operator A in Lemma
5.1.6 is closed. The idea of the proof is motivated by [34, Theorem6.1].

Lemma 5.1.6. Let A be a densely defined nonnegative operator in H and
let A1 be a nonnegative essentially selfadjoint extension of A. Further, let

inf
{(

A1(f − h), f − h
) ∣∣∣ h ∈ dom A

}
= 0, f ∈ domA1,

then A1 is an extremal extension of A.

Proof. Let A1 be a nonnegative essentially selfadjoint extension of A and let
A1[ · ] be the associated form to A1 according to the First Representation
Theorem. Let f ∈ domA1, h ∈ dom A. Since

dom (A1) ⊆ dom (A1
1/2) = dom A1[ · ] ⊆ domAN [ · ] = dom J∗,

we conclude that f ∈ dom J∗. The following identity is easily varified:(
A1(f − h), f − h

)
− ∥J∗f − Ãh∥2

HA
= (A1f, f) − ⟨J∗f, J∗f⟩. (5.11)

Let ϵ > 0 be arbitary and h ∈ domA such that (A1(f − h), f − h) < ϵ. Since

∥J∗f − Ãh∥2
HA

= ∥J∗(f − h)∥2
HA

= AN [f − h]
≤ A1[f − h] =

(
A1(f − h), f − h

)
,

we have
0 ≤

(
A1(f − h), f − h

)
− ∥J∗f − Ãh∥2

HA
< ϵ.

According to (5.11) we conclude (A1f, f) = ⟨J∗f, J∗f⟩ for f ∈ dom A1. In
other words

A1[f ] = AN [f ], f ∈ dom A1. (5.12)

60



Since dom A1 is a core of A1
1/2, formula (5.12) can be extended to f ∈

domA1
1/2. From [34, Theorem6.1] it follows that A1 is an extremal extension

of A.

Our first factorization result is a representation of the extremal exten-
sions of a closed densely defined nonnegative operator alogous to that in
Theorem 5.1.5. Let L̃ be a subspace of HA such that

dom J ⊆ L̃ ⊆ domQ∗.

Then Q∗|L̃ is a densely defined closable operator from HA into H satisfying
J ⊆ Q∗|L̃ ⊆ Q∗. In the following we will show that the class E(A) consists
exactly of those operators that have the representation

ÃL̃ := Q∗|∗∗
L̃

Q∗|∗
L̃
. (5.13)

In Corollary 5.1.10 we give the connection between the operators ÃL and
ÃL̃. The next proposition is an analogon of Proposition 5.1.4.

Proposition 5.1.7. Let A be a closed densely defined nonnegative operator
in H and let L̃ be a subspace of HA satisfying dom J ⊆ L̃ ⊆ dom Q∗. Then:

(i) The operator Q∗|L̃ is closable and Q∗|L̃ = Q∗|∗∗
L̃

= Q∗|
L̃

∥·∥Q∗ ;

(ii) The operator Q∗|L̃ is closed if and only if L̃ is closed with respect to
the graph norm of Q∗;

(iii) The operator ÃL̃ := Q∗|∗∗
L̃

Q∗|∗
L̃

is an extremal extension of A and the
associated form is given by

ÃL̃[f, g] = ⟨Q∗|∗
L̃
f,Q∗|∗

L̃
g⟩, f, g ∈ dom (ÃL̃)1/2 = domQ∗|∗

L̃
;

(iv) Let M̃ be another subspace of HA satisfying domJ ⊆ M̃ ⊆ domQ∗.
Then:

1. M̃
∥·∥Q∗

⊇ L̃
∥·∥Q∗

if and only if ÃM̃ ≥ ÃL̃;

2. M̃
∥·∥Q∗

= L̃
∥·∥Q∗

if and only if ÃM̃ = ÃL̃;

(v) 1. For every subspace satisfying dom (Q∗∗Q∗) ⊆ L̃ ⊆ domQ∗, we
have ÃL̃ = AF ;
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2. For every subspace satisfying domJ ⊆ L̃ ⊆ dom J∗∗, we have
ÃL̃ = AN .

Proof. Statements (i) and (ii) are clear from the definition of the closure of
a closable operator.
(iii) We show that ÃL̃ = Q∗|∗∗

L̃
Q∗|∗

L̃
is an extremal extension of A. Since

Q∗∗ ⊆ Q∗|∗
L̃
⊆ J∗ we have for f ∈ dom A,

Af = JQf = JQ∗|∗
L̃
f = Q∗|∗∗

L̃
Q∗|∗

L̃
f = ÃL̃f.

Hence, ÃL̃ is an extension of A. In addition, ÃL̃ is nonnegative and self-
adjoint, cf. Proposition 2.1.5. Next it is shown that ÃL̃ is extremal. Let
h ∈ dom ÃL̃. Then we have

inf
{(

ÃL̃(h − f), h − f
) ∣∣∣ f ∈ dom A

}
= inf

{〈
Q∗|∗

L̃
(h − f), Q∗|∗

L̃
(h − f)

〉 ∣∣∣ f ∈ domA
}

= inf
{〈

J∗(h − f), J∗(h − f)
〉 ∣∣∣ f ∈ domA

}
= inf

{〈
J∗h − Qf, J∗h − Qf

〉 ∣∣∣ f ∈ dom A
}

= inf
{
∥J∗h − Ãf∥2

HA
f ∈ dom A

}
= 0,

where the last equality is given due to the fact that r̃anA is dense in HA.
This implies that ÃL̃ is an extremal extension of A.

(iv) Let M̃
∥·∥Q∗

⊇ L̃
∥·∥Q∗

. From this it follows that Q∗|∗∗
L̃

⊆ Q∗|∗∗
M̃

. Conse-

quently, dom (Q∗|∗
L̃
) ⊇ dom (Q∗|∗

M̃
). For f ∈ M̃

∥·∥Q∗
, we have

ÃM̃[f ] =
〈
Q∗|∗

M̃
∥·∥Q∗ f,Q∗|∗

M̃
∥·∥Q∗ g

〉
=

〈
Q∗|∗

L̃
∥·∥Q∗ f,Q∗|∗

L̃
∥·∥Q∗ g

〉
= ÃL̃[f ].

This implies ÃL̃ ≤ ÃM̃. Conversely, if ÃL̃ ≤ ÃM̃ then Q∗|∗
M̃

⊆ Q∗|∗
L̃
. This

yields

L̃
∥·∥Q∗

= dom (Q∗|∗∗
L̃

) ⊆ dom (Q∗|∗∗
M̃

) = M̃
∥·∥Q∗

.

The statement concerning the equalities is clear now.
(v) Since dom (Q∗∗Q∗) is a core of Q∗, every subspace L̃ that fulfills

dom (Q∗∗Q∗) ⊆ L̃ ⊆ dom Q∗
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has the same property. This implies statement 1. Next observe that J ⊆
Q∗|L̃ ⊆ J∗∗ implies Q∗|∗

L̃
⊆ J∗. Thus,

Q∗|∗∗
L̃

Q∗|∗
L̃
⊆ J∗∗J∗ = AN .

Actually, we have equality since both operators are selfadjoint.

Note that in general we do not have the inclusion domJ ⊆ dom Q∗∗Q∗

but statement (v) in Proposition 5.1.7 remains valid if one drops the condi-
tion domJ ⊆ L̃ in the first part of statement (v).

The next statement gives a connection between the form domain of the
nonnegative selfadjoint extension Ã of A and the form domain of the ex-
tremal extension ÃL̃, where L̃ = J∗dom Ã.

Proposition 5.1.8. Let A be a closed densely defined nonnegative opera-
tor in H and let Ã be a nonnegative selfadjoint extension of A. Then the
subspace L̃ = J∗dom Ã satisfies domJ ⊆ L̃ ⊆ domQ∗. Moreover:

(i) We have dom (ÃL̃)1/2 ⊆ dom Ã1/2;

(ii) If Ã is extremal then dom (ÃL̃)1/2 = dom Ã1/2.

Proof. Put L̃ = J∗dom Ã. Then it follows that L̃ is a subspace of HA satisfy-
ing dom J ⊆ L̃ ⊆ domQ∗. In fact, observe that the identity J∗f = Qf, f ∈
domA = domQ, implies

domJ = ranQ = J∗dom A ⊆ J∗dom Ã.

Since dom Ã ⊆ dom J∗ we have

⟨Qf, J∗g⟩ = (Af, g) = (f, Ãg), g ∈ dom Ã, f ∈ domQ.

Thus, J∗g ∈ dom Q∗. This proves the inclusion L̃ ⊆ dom Q∗.

(i) Next it is shown that

dom Ã
1/2 ⊇ domQ∗|∗

L̃
= dom

(
Q∗|∗

J∗dom Ã

)
.

In the following we denote by J̃ and Q̃ the operators associated to Ã accord-
ing to definition (5.1). Since Ã ⊆ Q∗J∗, cf. Lemma 5.1.1, and for h ∈ dom Ã
we have

∥J∗h∥HA
≤ ∥Ã1/2h∥ = (Ãh, h)1/2 = ∥ ˜̃Ah∥HÃ

= ∥Q̃h∥HÃ
, (5.14)
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cf. (1.1) and Proposition 5.1.3, it follows that

dom
(
Q∗|∗

L̃

)
=

{
f ∈ H | g 7→ (Q∗|J∗dom Ãg, f) is continuous on L̃

}
=

{
f ∈ H | J∗h 7→ (Ãh, f) is continuous on L̃

}
(5.15)

⊆
{

f ∈ H | Q̃h 7→ (J̃Q̃h, f) is continuous on L̃ ⊆ HÃ

}
= dom J̃

∗
.

Since dom J̃
∗

= dom Ã
1/2
N = dom Ã1/2, it follows that dom Ã1/2 ⊇ dom (ÃL̃)1/2.

(ii) If Ã ∈ E(A) then we have equality in (5.14). This implies dom Ã1/2 =
dom (ÃL̃)1/2.

We want to emphasize that if L is an arbitrary subspace of H satisfying
domQ ⊆ L ⊆ domJ∗, then we do not have the inclusion dom J ⊆ J∗L ⊆
domQ∗, in general. For example, let A be a closed densely defined positive
definite operator, let L = dom J∗ and assume that ran J∗ ⊆ domQ∗, so that
domA∗ = dom Q∗J∗ = dom J∗ = dom A

1/2
N , cf. Lemma 5.1.2. According to

Lemma 2.2.2 it follows that dom A
1/2
F u kerA∗ = domA

1/2
N = dom A∗ =

domAF u kerA∗. But in general this is not true.

The next theorem gives a characterization of the extremal extensions of
a closed densely defined nonnegative operator A via (5.13).

Theorem 5.1.9. Let A be a closed densely defined nonnegative operator in
H. Then Ã belongs to the class of extremal extensions of A if and only if
Ã = Q∗|∗∗

L̃
Q∗|∗

L̃
for some subspace L̃ of HA satisfying domJ ⊆ L̃ ⊆ domQ∗.

Proof. Since we have already proven in Proposition 5.1.7 that ÃL̃ is an
extremal extension of A it remains to show that each Ã ∈ E(A) has the
representation Ã = Q∗|∗∗

L̃
Q∗|∗

L̃
.

Let Ã ∈ E(A) and put L̃ = J∗dom Ã. From Proposition 5.1.8 it follows
that domJ ⊆ L̃ ⊆ dom Q∗ and dom Ã1/2 = dom (ÃL̃)1/2. Due to the fact
that both extensions are extremal we conclude that they coincide, cf. the
remark subsequent to Theorem 5.1.5.

The next statement gives a connection between the extremal extensions
ÃL and ÃL̃ of a closed densely defined nonnegative operator A.
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Corollary 5.1.10. Let A be a closed densely defined nonnegative operator
in H and let Ã be an extremal extension of A. Define L = dom Ã and
L̃ = J∗L. Then we have Ã = ÃL = ÃL̃.

Proof. Since dom (ÃL̃)1/2 = dom Ã1/2 = dom Ã
1/2
L , cf. Proposition 5.1.8 and

the remark subsequent to Theorem 5.1.5, all extensions coincide.

5.2 The Factorization A = LJLQ

The main result of this section is a slight generalization of [11, Theorem 9.1],
see Theorem 5.2.2. We show that it remains largely true with the somewhat
weaker assumptions we used in Theorem 5.2.2. The proof is quite similar.

Such factorizations go back to Yu. Arlinskĭı, cf. [8], [9]: Assume that LF

and LN are two closed densely defined operators from H into K with LF ⊆
LN . Further, assume that dim(dom LN/domLF ) < ∞, ranLF = ranLN

and that P ∈ L(K) is an accretive3 coercive4 operator. It was shown in [8]
that A = L∗

NPLF is a closed densely defined sectorial5 operator in H. More-
over, the maximal sectorial6 operators AF = L∗

FPLF and AN = L∗
NPLN

are its respective Friedrichs and Krĕın-von Neumann extensions, and A∗ =
L∗

FPLN is its adjoint. The more general result [9, Proposition 1.3] is the
analogon of [11, Theorem 9.1] for sectorial operators. These results are ap-
plied to Sturm-Liouville and second order differential operators; we give a
brief overview in Section 7.1.

We begin with a useful lemma that was noted in [11, page 23] under the
assumption that the operators L1 and L2 are closed. There we will need
the definition of the intersection A ∩ B of two operators A and B which is
defined by

dom (A ∩ B) = {f ∈ domA ∩ domB |Af = Bf} (5.16)

and (A ∩ B)f = Af = Bf, f ∈ dom (A ∩ B).
3P is called accretive if Re(Pf, f) ≥ 0, f ∈ domP.
4P is called coercive if there exists µ > 0 such that Re(Pf, f) ≥ µ(f, f), f ∈ domP.
5P is called sectorial if there exists α ∈ [0, π/2) such that

(Pf, f) ∈ {z ∈ C | |arg z| ≤ α}, f ∈ domP.

6P is called maximal sectorial if P is sectorial and there exists no proper sectorial
extension of P.
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Lemma 5.2.1. Let H,K be Hilbert spaces and L1, L2 be densely defined
operators from H into K satisfying L1 ⊆ L2. Then we have the identity
L∗

1L1 ∩ L∗
2L2 = L∗

2L1.

Proof. According to (5.16) we have

dom (L∗
1L1 ∩ L∗

2L2) =
{
f ∈ dom (L∗

1L1) ∩ dom (L∗
2L2)

∣∣ L∗
1L1f = L∗

2L2f
}

=
{
f ∈ dom L1 ∩ dom L2

∣∣ L1f ∈ domL∗
1,

L2f ∈ dom L∗
2, L∗

1L1f = L∗
2L2f

}
=

{
f ∈ dom L1

∣∣ L2f (= L1f) ∈ domL∗
2(⊆ domL∗

1),
L∗

1L1f = L∗
2L2f

}
=

{
f ∈ dom L∗

2L1

∣∣ L∗
1L1f = L∗

2L2f
}

= domL∗
2L1,

since for all f ∈ dom L∗
2L1, we have L∗

1L1f = L∗
2L1f = L∗

2L2f . This implies
L∗

2L1 = L∗
1L1 ∩ L∗

2L2.

Theorem 5.2.2. Let LJ , LQ be densely defined closable operators from K
into H and from H into K, respectively, satisfying LQ ⊆ L∗

J . Let A ⊆
LJLQ be densely defined. Denote by P the orthogonal projector from K
onto ranLQ,A, where LQ,A := LQ|dom A. Then A is a nonnegative operator
in H and, moreover:

(i) The Friedrichs extension of A is given by AF = L∗
Q,ALQ,A. The asso-

ciated form has domain dom A
1/2
F = dom Q∗∗ = dom LQ,A and

AF [f ] = ⟨Q∗∗f,Q∗∗f⟩ = ∥LQ,Af∥2, f ∈ dom A
1/2
F ;

(ii) The operator Ã = L∗∗
J PL∗

J is an extremal extension of A. The associ-
ated form has domain dom Ã1/2 = domPL∗

J ⊆ dom J∗ and

Ã[f ] = ⟨J∗f, J∗f⟩ = ∥PL∗
Jf∥2, f ∈ dom Ã

1/2;

(iii) If L∗
J/LQ,A is finite-dimensional, then PL∗

J is closed;

(iv) We have Ã ∩ AF = L∗∗
J LQ,A;

(v) If Ã and AF are disjoint, then the following statements are equivalent:

(a) Ã and AF are transversal;
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(b) AF and AN are transversal;

(c) dom A∗ ⊆ dom PL∗
J .

If one of these conditions is satisfied then Ã coincides with the Krĕın-
von Neumann extension AN of A;

(vi) AN = L∗∗
J PL∗

J if and only if domAN ⊆ domPL∗
J .

Proof. Since A ⊆ LJLQ ⊆ L∗
QL∗∗

Q , it follows that A is nonnegative.

(i) Let Ã be a nonnegative selfadjoint extension of A. For f ∈ dom A ⊆
domLQ ⊆ dom L∗

J we have

∥LQf∥2 = (LQf, L∗
Jf) = (LJLQf, f) = (Af, f) = ∥Ã1/2f∥2.

This implies

∥LQ,Af∥ = ∥Ã1/2f∥2, f ∈ domLQ,A ⊆ dom Ã
1/2.

From the Second Representation Theorem it follows that

dom (L∗
Q,ALQ,A)1/2 = dom LQ,A ⊆ dom Ã

1/2

and
∥(L∗

Q,ALQ,A)1/2f∥ = ∥LQ,Af∥ = ∥Ã1/2f∥, f ∈ dom LQ,A.

Thus, Ã ≤ L∗
Q,ALQ,A for all nonnegative selfadjoint extensions Ã of A. Since

the Friedrichs extension is the only extension of A with this property, this
implies AF = L∗

Q,ALQ,A.

(ii) Next it is shown that

domL∗
J ⊆ domJ∗ and ∥PL∗

Jf∥ = ∥J∗f∥HA
, f ∈ dom L∗

J .

Let Â be the nonnegative selfadjoint extension of A given by Â = L∗∗
J L∗

J .
Observe that

dom L∗
J = dom Â

1/2 ⊆ domA
1/2
N = dom J∗.

Then for f ∈ domPL∗
J = dom L∗

J ⊆ domJ∗ we have

∥PL∗
Jf∥ = sup

h∈dom LQ,A

|(PL∗
Jf, LQ,Ah)|
∥LQ,Ah∥

= sup
h∈dom A

|(PL∗
Jf, LQ,Ah)|
∥LQ,Ah∥

= sup
h∈dom A

|(f,Ah)|
∥LQh∥

= sup
h∈dom A

|⟨J∗f, Ãh⟩|
∥Ãh∥HA

= ∥J∗f∥.
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This implies that PL∗
J is closable and

∥PL∗
Jf∥ = ∥J∗f∥, f ∈ dom PL∗

J ⊆ domJ∗. (5.17)

Moreover, Ã := (PL∗
J)∗PL∗

J = L∗∗
J PL∗

J is the nonnegative selfadjoint oper-
ator associated to the form

Ã[f ] = ∥PL∗
Jf∥2, f ∈ dom Ã[ · ] = dom Ã

1/2 = domPL∗
J .

Since
Ã[f ] = ∥J∗f∥2 = ∥A1/2

N f∥2 = AN [f ], f ∈ dom Ã
1/2,

the extension Ã belongs to the class E(A), cf. Proposition 5.1.3 and Theorem
5.1.5.

(iii) First observe that the operator

L = L∗
J ∩ (K × ranP )

is closed. Moreover, we have LQ,A ⊆ L ⊆ L∗
J . Denote by n the dimension

of L∗
J/L. Then there exist n linearly independent elements(

x1

u1 + v1

)
, . . . ,

(
xn

un + vn

)
∈ L∗

J ,

where xi ∈ dom L∗
J , ui ∈ ranP, vi ∈ ran (I − P ), such that

L∗
J = L +̂ span

{(
x1

u1 + v1

)
, . . . ,

(
xn

un + vn

)}
.

Thus, the operator

PL∗
J = L +̂ span

{(
x1

u1

)
, . . . ,

(
xn

un

)}
is closed.

(iv) This follows from Lemma 5.2.1 with L1 = LQ,A and L2 = PL∗
J .

(v) If the extensions Ã and AF are transversal then this applies to the
Friedrichs and the Krĕın-von Neumann extension, too, cf. Proposition 4.1.2.
Thus, (a) implies (b). To show that (b) implies (a), note that Ã coincides
with the Krĕın-von Neumann extension of some closed symmetric operator
satisfying A ⊆ B ⊆ AF , cf. [11, Theorem6.4]. Further, we have

Ã ∩ AF = A = BN ∩ AF ⊇ B.
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Consequently, A = B and, hence, Ã = AN . In addition, we have

domA∗ ⊆ dom A
1/2
N = dom PL∗

J ,

so that (b) implies (c) as well, and the last assertion of (v) is also proved.
Finally it is shown that (c) implies (b). Since dom A∗ ⊆ dom PL∗

J it follows
from (ii) that domA∗ ⊆ domA

1/2
N . According to [23], this is equivalent to

the transversality of the Friedrichs and the Krĕın-von Neumann extension.

(vi) Put L = dom PL∗
J . If dom AN ⊆ L ⊆ domJ∗ = domA

1/2
N then L is a

core of A
1/2
N and of J∗. This implies AN = J∗|∗LJ∗|∗∗L , cf. Proposition 5.1.4.

Since
∥PL∗

Jf∥ = ∥J∗|Lf∥HA
, f ∈ domPL∗

J = dom J∗|L,

cf. (5.17), the operators PL∗
J and J∗|L are metrically equal, cf. Corollary

2.1.6. Thus,
AN = J∗|∗LJ∗|∗∗L = PL∗

J
∗
PL∗

J = L∗∗
J PL∗

J .

Conversely, if AN = L∗∗
J PL∗

J then obviously domAN ⊆ dom PL∗
J . This

completes the proof.

Contrary to Theorem 9.1. in [11], Ã and AF are not disjoint in general.
Indeed, according to Lemma 5.2.1 we have

Ã ∩ AF = L∗∗
J LQ,A ⊇ A.

Let for example A = JQ, where A is closed and LJ = J, LQ = Q. If AF and
AN are not disjoint, then we have

Ã ∩ AF = J∗∗Q∗∗ = AF ∩ AN % A.

In Section 7.1 we will use the following version of Theorem 5.2.2 where
we do not have to calculate the adjoints of the operators LQ,A and LJ .

Corollary 5.2.3. Let the assumptions be as in Theorem 5.2.2. Then:

(i) Let L̃J be a densely defined operator such that L̃J ⊆ L∗
Q,A and let

L̃JLQ,A be selfadjoint. Then AF = L̃JLQ,A;

(ii) Let L̃Q be a densely defined operator such that L̃Q ⊆ L∗
J and let LJPL̃Q

be selfadjoint. Then Ã = LJPL̃Q.
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Proof. (i) According to Theorem 5.2.2 we have

AF = L∗
Q,ALQ,A ⊆ L∗

Q,AL̃J
∗
⊆ (L̃JLQ,A)∗ = L̃JLQ,A.

Since AF and L̃JLQ,A are selfadjoint this implies AF = L̃JLQ,A.
(ii) According to Theorem 5.2.2, we have

Ã = L∗∗
J PL∗

J ⊆ L̃Q
∗
PL∗

J ⊆
(
(PL∗

J)∗L̃Q

)∗

= (L∗∗
J PL̃Q)∗ ⊆ (LJPL̃Q)∗ = LJPL̃Q.

Since Ã and LJPL̃Q are selfadjoint this implies Ã = LJPL̃Q.

It is easy to check that the operator Â = L∗∗
J L∗

J is a nonnegative selfad-
joint extension of A as well. But in general Â is not extremal. Consider for
example I = (0, 1) and let the closed operator LJ in L2(I) be defined by

LJf = if ′, f ∈ domLJ = W̊ 1
2 (I).

Then L∗
J is the extension of LJ to dom L∗

J = W 1
2 (I). Observe that for the

Sturm-Liouville operator

Af = −f ′′, f ∈ dom A = W̊ 2
2 (I), (5.18)

we have A = (LJ)2. Further, Â = LJL∗
J is the nonnegative selfadjoint

extension of A given by

Âf = −f ′′, f ∈ dom Â = {f ∈ W 1
2 (I) | f ′ ∈ W̊ 1

2 (I)}.

Therefore, f ∈ dom Â satisfies the Neumann boundary conditions. But Â /∈
E(A), since the extremal extensions Ãa,b of A (apart from the Friedrichs and
the Krĕın-von Neumann extension) are restrictions of A∗ to the subspaces

dom Ãa,b =
{

f ∈ W 2
2 (0, 1)

∣∣ a
(
f ′(0) − f(1) + f(0)

)
= b

(
f ′(1) − f(1) + f(0)

)
,

bf(0) = af(1)
}

,

where a ∈ R, b ∈ C and a2 + |b|2 = 1, cf. [11] or Theorem 7.1.12.
The next lemma gives a necessary and sufficient condition so that the

nonnegative selfadjoint extension Â = L∗∗
J L∗

J belongs to the class E(A).

Lemma 5.2.4. Let the assumptions be as in Theorem 5.2.2. Then the
nonnegative selfadjoint extension Â = L∗∗

J L∗
J is extremal if and only if

ranLQ,A = ranL∗
J .
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Proof. According to Theorem 5.1.5 and the Second Representation Theo-
rem, a necessary and sufficient condition such that Â is extremal is that
domL∗

J ⊆ dom J∗ and

∥L∗
Jf∥ = ∥J∗f∥HA

, f ∈ domL∗
J . (5.19)

As has already been shown in the proof of Theorem 5.2.2 (ii), we have
domL∗

J ⊆ dom J∗ and

∥PL∗
Jf∥ = ∥J∗f∥HA

, f ∈ domL∗
J , (5.20)

where P is the orthogonal projector from K onto ranLQ,A. According to

∥L∗
Jf∥2 = ∥(I − P )L∗

Jf∥2 + ∥PL∗
Jf∥2, f ∈ domL∗

J ,

and (5.20), the identity (5.19) is valid if and only if (I − P )L∗
Jf = 0, f ∈

domL∗
J . Since LQ,A ⊆ LQ ⊆ L∗

J this is equivalent to ranLQ,A = ranL∗
J .

In the example on the previous page we have ranLQ,A = ranLJ  
ranL∗

J , so that Â is not an extremal extension of A.

5.3 The Factorization A = KC

In [32] the sum A+B of two nonnegative selfadjoint operators A,B was fac-
torized and the Friedrichs and the Krĕın-von Neumann extension of A + B
were characterized via factorizations as well. Moreover, their relation to the
so-called form sum extension of A + B was investigated. In [33], [60] this
problem has been extended to the case where A and B are nonnegative self-
adjoint relations and, in addition, all extremal extensions of A+B were de-
scribed. Our next factorization result is a generalization of the above meth-
ods in operator case to the following situation: We describe the Friedrichs,
the Krĕın-von Neumann and all extremal extensions of a factorized operator
A = KC, where e.g. K∗ is an operator satisfying C ⊆ K∗. This problem
seems similar to that in Section 5.2. We show in Section 5.4 that the ob-
tained factorizations are in general not equal.

Let H and K be Hilbert spaces and let A = KC be a nonnegative
operator in H, where K and C are acting from K into H and from H into K,
respectively. We do not assume that the operators A,C or K are closable
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or densely defined. Further, we define the operators

CA : H ⊇ dom A → K, KA : K ⊇ ranCA → H,

f 7→ Cf, CAf 7→ Af,

CE : H ⊇ dom A → E , KE : E ⊇ ranCE → H,

f 7→ iE,K
−1Cf, CEf 7→ Af,

where
E0 := ranCA ⊆ K, E := E0

and iE,K is the embedding from E into K. This implies

A = KC = KACA = KECE .

Note that in this setting Q,Q∗∗ and J∗ from (5.6),(5.7), are operators, cf. [60,
page 76]. Moreover, assume that the mapping

Z0 : E ⊇ E0 → HA,

CEh 7→ Qh, h ∈ domA,

is isometric, where HA is the Hilbert space defined in (5.5). Then it has a
unitary extension which we denote by

Z : E → HA.

Hence, E and HA are isometrically isomorphic. It turns out that in this case
J is an operator as well and HA is the same as in the case where A is a
closed densely defined nonnegative operator, see the next lemma.

Lemma 5.3.1. Let A = KC be a nonnegative operator in H, where K and
C are defined as above. Further, let Z0 be isometric. Then J is an operator
and HA = {ranA, ⟨·, ·⟩} ̂ , where ⟨Af,Ag⟩ = (Af, g), for f, g ∈ domA,
cf. (3.2).

Proof. According to (5.6), (5.7), we have

J =
{
{[f ′], f ′}

∣∣∣ {f, f ′} ∈ A
}

=
{
{[Af ], Af}

∣∣∣ f ∈ domA
}

,

Q =
{
{f, [f ′]}

∣∣∣ {f, f ′} ∈ A
}

=
{
{f, [Af ]}

∣∣∣∣ f ∈ dom A
}
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and Qf = [Af ], f ∈ dom A, since Q is an operator. Next, it is shown that
each equivalence class of HA consists of exactly one element. Let f, f̃ ∈
domA and Af̃ ∈ [Af ]. Then we have

Z0CE f̃ = Qf̃ = [Af̃ ] = [Af ] = Qf = Z0CEf.

Since Z0 is an isometric operator, it follows that CE f̃ = CEf . This implies

Af̃ = KECE f̃ = KECEf = Af.

Thus, ranA/R0 = ran A in the definition of HA in (5.5) which implies that
J is actually an operator. Moreover, we have HA = {ranA, ⟨·, ·⟩} ̂ , as
required.

The following diagramm illustrates the action of the operators defined
above.

H ⊇ domA
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Since E0 is dense in E , K∗

E is an operator as well. But if A is not densely
defined then Q∗, C∗

A and C∗
E are relations. Moreover, K∗

A and J∗∗ may be
relations, in general.

The next lemma gives a sufficient condition for the mapping Z0 to be
isometric.
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Lemma 5.3.2. Let A = KC be a nonnegative operator in H, where K and
C are defined as above. If K is densely defined and K∗ is satisfying C ⊆ K∗,
then Z0 is isometric.

Proof. Since A = KC ⊆ KK∗, we have for f ∈ domCE = dom A = dom Q,

∥Qf∥2
HA

=
∥∥[Ãf ]

∥∥2

HA
= (Af, f) = (KK∗f, f) = ∥K∗f∥2 = ∥Cf∥2 = ∥CEf∥2,

cf. (5.5).

The next lemma gives a connection between the operators J,Q and the
operators K,C.

Lemma 5.3.3. Let A = KC be a nonnegative operator in H, where K and
C are defined as above. Further, let Z0 be isometric. Then the following
statements are valid:

(i) Z−1
0 ⊆ Z−1 = Z∗ = Z∗

0 ;

(ii) CE = Z∗Q = Z∗
0Q;

(iii) KE = JZ = JZ0;

(iv) Q = ZCE = Z0CE , Q∗ = C∗
EZ∗, Q∗∗ = ZC∗∗

E ;

(v) J = KEZ∗ = KEZ∗
0 , J∗ = ZK∗

E , J∗∗ = K∗∗
E Z∗;

(vi) CE ⊆ K∗
E .

Proof. Observe that Z is a unitary operator and Z0 = Z. This gives (i).
Next it is shown that (ii) is valid. Observe that the equality

ZCEh = Qh, h ∈ domA,

holds true. Since domZCE = dom Q, it follows that ZCE = Q. The fact
that Z is a unitary mapping together with the identity Z∗

0 = Z∗ implies (ii).
Since

(ZCE)∗ = C∗
EZ∗ and (C∗

EZ∗)∗ = Z∗∗C∗∗
E = ZC∗∗

E ,

cf. Corollary B.1.2, (iv) is a consequence of (ii). To prove (v), observe that

JQh = KECEh = KEZ∗Qh, h ∈ dom A.

Since Q{domA} = dom J it follows that J ⊆ KEZ∗. Next it is shown that
domKEZ∗ ⊆ domJ . Assume that g ∈ domKEZ∗. Obviously,

g ∈ domZ∗ = HA and Z∗g ∈ domKE = ranCE .
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Hence, there exists an element h ∈ domA satisfying

Z∗g = CEh = Z∗Qh.

This implies g = Qh ∈ domJ, and hence, J = KEZ∗. Similar considerations
as in the proof of (iv) yield the statements concerning J∗ and J∗∗. According
to (v), we have the identity J = KEZ∗. Since

Z∗ = Z−1 and domKE = dom Z0,

we conclude (iii). It remains to prove (vi). Due to the fact that Q ⊆ J∗,
(iv) and (v) imply CE ⊆ K∗

E . This completes the proof.

The following result is a consequence of the factorizations (5.8).

Theorem 5.3.4. Let A = KC be a nonnegative operator in H, where K and
C are defined as above. Further, let Z0 be isometric. Then the Friedrichs
and the Krĕın-von Neumann extension of A are given by

AN = K∗∗
A K∗

A = K∗∗
E K∗

E and AF = C∗
AC∗∗

A = C∗
EC∗∗

E .

For the respective forms we have

AN [f ] = ∥K∗
Af∥2

K = ∥K∗
Ef∥2

E , f ∈ dom K∗
A = dom K∗

E = dom A
1/2
N ,

AF [f ] = ∥C∗∗
A f∥2

K = ∥C∗∗
E f∥2

E , f ∈ dom C∗∗
A = dom C∗∗

E = domA
1/2
F .

Proof. According to (5.8) and Lemma 5.3.3, we have the identities AN =
K∗∗

E K∗
E and AF = C∗

EC∗∗
E . Applying Lemma B.1.3 completes the proof of the

first part. The statements concerning the respective forms follow directly
from the Representation Theorems in Section 2.1.

Note that the Friedrichs extension AF and the Krĕın-von Neumann exten-
sion AN of a nonnegative operator A may be relations. According to (5.8)
and (B.3) the Friedrichs extension is an operator if and only if A is densely
defined. Otherwise it is a non-densely defined relation. The Krĕın-von
Neumann extension is an operator if and only if J∗∗ is an operator. Since
mulJ∗∗ = (dom J∗)⊥ it follows that domJ∗ = dom A

1/2
N is dense in H if

and only if J∗∗ is an operator. Hence, the fact that A has nonnegative self-
adjoint operator extensions Ã is equivalent to the fact that the Krĕın-von
Neumann extension is an operator, since dom A

1/2
F ⊆ dom Ã1/2 ⊆ domA

1/2
N ;

these considerations can be found in [34].
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In order to describe the extremal extensions of A = KC, we will need
the operators

K∗
E |L : H ⊇ L → E ,

iE,KK∗
E |L : H ⊇ L → K,

where L is a subspace of H satisfying dom CE ⊆ L ⊆ domK∗
E . The connec-

tion to the operator J∗|L from Section 5.1 is given in the following lemma.

Lemma 5.3.5. Let A = KC be a nonnegative operator in H, where K and
C are defined as above. Further, let Z0 be isometric and let L be a subspace
of H satisfying domCE ⊆ L ⊆ dom K∗

E . Then the following statements are
valid:

(i) J∗|L = ZK∗
E |L;

(ii) J∗|∗L = K∗
E |∗LZ∗;

(iii) J∗|∗LJ∗|∗∗L = K∗
E |∗LK∗

E |∗∗L = (iE,KK∗
E |L)∗(iE,KK∗

E |L)∗∗.

Proof. To prove (i), observe that dom CE = dom A and domK∗
E = dom J∗.

Now, assume that f ∈ L. Then

J∗|Lf = J∗f = ZK∗
Ef

and dom J∗|L = L = dom (ZK∗
E |L). According to Corollary B.1.2 and

Lemma B.1.3 we obtain (ii) and (iii).

The next statement gives a characterization of the extremal extensions
of the operator A = KC. It is a direct consequence of (5.9) and Lemma
5.3.5.

Theorem 5.3.6. Let A = KC be a nonnegative operator in H, where K and
C are defined as above. Further, let Z0 be isometric. Then Ã is an extremal
extension of A if and only if Ã = (iE,KK∗

E |L)∗(iE,KK∗
E |L)∗∗ or, equivalently,

Ã = K∗
E |∗LK∗

E |∗∗L for some L such that domA ⊆ L ⊆ dom A
1/2
N . For the

respective forms we have

Ã[f ] = ∥K∗
A|∗∗L f∥2

K = ∥K∗
E |∗∗L f∥2

E , f ∈ domK∗
A|∗∗L = dom K∗

E |∗∗L = dom Ã
1/2.

As well as the Friedrichs and the Krĕın-von Neumann extension the ex-
tremal extensions of A may be relations. According to (B.3) an extremal
extension ÃL is an operator if and only if K∗

E |∗L is an operator which is

76



equivalent to the fact that L is a dense subset of H. Thus, if A is densely
defined then all extremal extensions of A are operators.

Observe that Â = K∗∗K∗, which in general is a relation, is a nonnegative
selfadjoint extension of A, see the relation version of Proposition 2.1.5 in
[32], [60]. We will assume for the moment that K∗ is an operator satisfying
C ⊆ K∗ which implies that Z0 is isometric, cf. Lemma 5.3.2. Then the next
lemma gives a necessary and sufficient condition such that the extension Â
is extremal.

Lemma 5.3.7. Let A = KC be a nonnegative operator in H, where K and
C are defined as above. Further, assume that K is densely defined and K∗

is satisfying C ⊆ K∗. Then Â = K∗∗K∗ is an extremal extension of A if
and only if ranCA = ranK∗.

Proof. Since Â = K∗∗K∗ is a nonnegative selfadjoint extension of A it fol-
lows from [34, page 12], which is the relation analogon of Corollary 2.1.6,
that domK∗ ⊆ dom J∗. According to (5.10) it is necessary and sufficient to
show that ∥K∗f∥ = ∥J∗f∥HA

, f ∈ dom K∗, if and only if ranCA = ranK∗.
Denote by P the orthogonal projector from K onto ranCA. Thus, for f ∈
domPK∗ = dom K∗ ⊆ dom J∗, we have

∥PK∗f∥ = sup
h∈dom CA

|(PK∗f, CAh)|
∥CAh∥

= sup
h∈dom A

|(K∗f, CAh)|
∥CAh∥

= sup
h∈dom A

|(f,Ah)|
∥CAh∥

= sup
h∈dom A

|⟨J∗f, Ãh⟩|
∥Ãh∥HA

= ∥J∗f∥HA
.

According to

∥K∗f∥2 = ∥(I − P )K∗f∥2 + ∥PK∗f∥2, f ∈ domK∗,

the identity ∥K∗f∥ = ∥J∗f∥HA
, f ∈ dom K∗, is valid if and only if we have

(I − P )K∗f = 0, f ∈ domK∗. Since CA ⊆ C ⊆ K∗ this is equivalent to
ranCA = ranK∗.

Let A and B be nonnegative selfadjoint operators. Applying these results
to the sum A + B = KC, where the operators K and C are defined by

K =
[
A

1/2 B
1/2

]
: dom A

1/2 × domB
1/2 → H,

(
f

g

)
7→ A

1/2f + B
1/2g,

C =
[

A1/2

B1/2

]
: dom A

1/2 ∩ dom B
1/2 → H×H, h 7→

(
A1/2h

B1/2h

)
,
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we obtain the factorizations of the Friedrichs, the Krĕın-von Neumann and
the extremal extension of A+B achieved in [32], [33], [60]. (In these sources
the factorizations are given in the more general case where A and B are
nonnegative selfadjoint relations.) Observe that from C ⊆ K∗, cf. [31], it
follows that Z0 is isometric, cf. Lemma 5.3.2, so that we can apply the
above results. More precisely, the Friedrichs and the Krĕın-von Neumann
extension of A + B are given by

(A + B)F = C∗
A+BC∗∗

A+B =

[
A1/2

∣∣
dom A∩dom B

B1/2
∣∣
dom A∩dom B

]∗ [
A1/2

∣∣
dom A∩dom B

B1/2
∣∣
dom A∩dom B

]
,

(A + B)N = K∗∗
A+BK∗

A+B =
[
A

1/2 B
1/2

]∣∣∣∗∗
R

[
A

1/2 B
1/2

]∣∣∣∗
R

,

where R = ran
([A

1/2

B1/2

]∣∣
dom A∩dom B

)
.

The nonnegative selfadjoint extension K∗∗K∗ is called form sum exten-
sion of A + B, cf. for example [32]. As it has been shown in Lemma 5.3.7
this extension belongs to the class E(A + B) if and only if R = ranC. For
example this is fulfilled if domA ∩ domB is a core of A1/2 and of B1/2.

Clearly, putting K = J and C = Q, for A = KC we obtain the well-
known factorizations AF = Q∗∗Q∗, AN = J∗J∗∗ and the factorization of the
extremal extensions of A agrees with (5.9).

5.4 Comparision of the Factorizations A = LJLQ and A = KC

In this section we compare the factorizations A = LJLQ and A = KC.
We show that for K = LJ , C = LQ the factors in the factorization of the
Friedrichs extensions coincide but this is, in general, not true for the factors
in the factorization of the Krĕın-von Neumann extension. Moreover, we give
an example when they do coincide.

Let A = LJLQ satisfy the assumptions in Theorem 5.2.2 and put C =
LQ, K = LJ . Hence, we have A = KC and C ⊆ K∗, so that all assumptions
in Theorem 5.3.4 are fulfilled, too. Consequently,

AF = L∗
Q,ALQ,A = C∗

AC∗∗
A

and LQ,A = C∗∗
A . Further,

AN = L∗∗
J PL∗

J = (PL∗
J)∗PL∗

J = K∗∗
A K∗

A,
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where P is the orthogonal projector from K onto ranLQ,A = ran (CA) =
ranCA. The last equality holds since ran (T ) = ranT, for every closable op-
erator T . We will show that PL∗

J ̸= K∗
A, or, equivalently, (PL∗

J)∗ = LJP =
KP ̸= KA, is possible.

To see this, assume at first that ranCA ̸= K. Next, observe that

dom (KP ) =
{
f ∈ K | Pf ∈ domK

}
=

{
f = f0 u f1 ∈ ranCA ⊕

(
ranCA

)⊥ | Pf = f0 ∈ domK
}

=
(
ranCA ∩ dom K

)
⊕

(
ranCA

)⊥
.

Let 0 ̸= f ∈ dom (KP ) ⊆ K such that

f ∈
(
ranCA

)⊥ = (dom KA)⊥.

Since dom (KA) ⊆ dom KA it follows that f /∈ dom (KA). This implies
dom (KP ) ⊆/ domKA. Finally, we conclude KP ⊆/ KA. Though, we have
the inclusion KA ⊆ KP . In fact, for

f = CAh ∈ ranCA = domKA,

we have
Pf = f ∈ domKA ⊆ domK ⊆ domK

and
KAf = KAPf = KPf.

This implies KA ⊆ KP . Since KP is closed, we have KA ⊆ KP as well.
Thus, if ranCA ̸= K then the factors in the factorization of the Krĕın-von
Neumann extension do not coincide.

Now assume ranCA = K. Then P = I. Hence, KP = KA is satisfied if
and only if ranCA is a core of K. In this case the factors do coincide.

Now we give an example where both factorizations coincide. Let the
Friedrichs and the Krĕın-von Neumann extension of the closed densely de-
fined nonnegative operator A = JQ be disjoint and put

K = LJ = J∗∗, C = LQ = Q∗∗.

According to Lemma 5.2.1 the identity

A = AF ∩ AN = Q∗∗Q∗ ∩ J∗J∗∗ = J∗∗Q∗∗ = LJLQ = KC

holds true. By definition ranQ is a dense subset of HA. Hence, P = I,
KA = J and, therefore, KP = KA. In this case both factorizations coincide.
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6 Extremal Extensions via Contractive Embed-
dings

In this chapter we give a sufficient and necessary condition for the Hilbert
spaces {L, (·, ·)L} such that the nonnegative selfadjoint extensions Ã(L) of
A which we constructed in Section 2.3 are extremal. Further, we give the re-
lation between Ã(L) and the extremal extension ÃL from Proposition 5.1.4.

Let A be a closed densely defined operator in {H, (·, ·)}. Recall that
every nonnegative selfadjoint extension of A has the representation

Ã(L) = (i−1
L )∗i−1

L − I, (6.1)

where {L, (·, ·)L} is a Hilbert space that is embedded in H such that both
of the following embeddings are contractive:{

domA
1/2
F , (·, ·)

A
1/2
F

}
⊆

{
L, (·, ·)L

}
⊆

{
dom A

1/2
N , (·, ·)

A
1/2
N

}
, (6.2)

where iL denotes the embedding operator from L into H. Actually,
{
L, (·, ·)L

}
=

{
dom Ã(L)1/2, (·, ·)Ã(L)1/2

}
. Further, call to mind the definition of ÃL:

ÃL = J∗|∗LJ∗|∗∗L ,

where L is a subspace of H with domA ⊆ L ⊆ domA
1/2
N .

Lemma 6.1.1. Let A be a closed densely defined nonnegative operator in
{H, (·, ·)} and let {L, (·, ·)L} be a Hilbert space that is embedded in {H, (·, ·)}
satisfying condition (E1) from Theorem 2.3.1. Then:

(i) The inequality ÃL ≤ Ã(L) holds true;

(ii) Let Â be a nonnegative selfadjoint extension of A satisfying ÃL ≤ Â ≤
Ã(L). Then Â = ÃL if and only if Â is extremal;

(iii) If L is closed with respect to the graph norm of A
1/2
N then we have

dom Ã(L)1/2 = dom Ã
1/2
L .

Proof. (i) Since ÃL = J∗|∗LJ∗|∗∗L , it follows that

dom Ã
1/2
L = L

∥·∥J∗ ⊇ L = dom Ã(L)1/2. (6.3)
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In addition, we have

Ã(L)[f ] ≥ AN [f ] = ÃL[f ], f ∈ dom Ã(L)1/2,

cf. (2.6) and Theorem 5.1.5. This implies ÃL ≤ Ã(L).
(ii) Cleary, if Â = ÃL then from Theorem 2.1.5 it follows that Â ∈ E(A).
Conversely, let Â be an extremal extension of A such that ÃL ≤ Â ≤ Ã(L).
Then

L = dom Ã(L)1/2 ⊆ dom Â
1/2 ⊆ dom Ã

1/2
L = L

∥·∥J∗
. (6.4)

From Theorem 5.1.5 it follows that dom Â1/2 is closed with respect to the
graph norm of J∗. Hence, (6.4) implies dom Â1/2 = dom Ã

1/2
L . Together with

the fact that ∥Ã1/2
L f∥ = ∥Â1/2f∥, f ∈ dom Ã

1/2
L , which is valid since ÃL and

Â are extremal extensions of A, we obtain ÃL = Â.

(iii) Let L be closed with respect to the graph norm of A
1/2
N . Then (6.3)

yields dom Ã(L)1/2 = dom Ã
1/2
L .

The next proposition characterizes all extremal extensions of A via (6.1)
and (6.2) for special Hilbert spaces {L, (·, ·)L}.

Proposition 6.1.2. Let A be a closed densely defined nonnegative operator
in {H, (·, ·)}. Then Ã is an extremal extension of A if and only if there exists
a Hilbert space {L, (·, ·)L} that is embedded in {H, (·, ·)} and that is satisfying
conditions (E1) and (E2) from Theorem 2.3.1 and the right embedding in
(E1) is isometric. In this case we have Ã = Ã(L) = ÃL.

Proof. Let Ã belong to the class E(A). As in the proof of Theorem 2.3.1 we
define

{L, (·, ·)L} := {dom Ã
1/2, (·, ·)Ã1/2}.

According to Theorem 5.1.5 we have ∥f∥
A

1/2
N

= ∥f∥Ã1/2 , f ∈ dom Ã1/2. This

implies that the embedding operator

iL,N : {dom Ã
1/2, (·, ·)Ã1/2} → {dom A

1/2
N , (·, ·)

A
1/2
N

}

is isometric. Conversely, let {L, (·, ·)L} be a Hilbert space that is embedded
in H satisfying conditions (E1) and (E2) from Theorem 2.3.1. In addition,
let

∥f∥L = ∥f∥
A

1/2
N

, f ∈ L.
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Then Ã = (i−1
L )∗i−1

L − I is a nonnegative selfadjoint extension of A with
dom Ã1/2 = L and we have equality in (2.18), which leads to Ã[f ] = AN [f ],
f ∈ dom Ã1/2. Thus, Ã ∈ E(A). Since L is closed with respect to the
graph norm of A

1/2
N it follows from Lemma 6.1.1 that dom Ã1/2 and dom Ã

1/2
L

coincide. Together with the fact that both extension, Ã and ÃL, belong to
the class E(A), it follows that they coincide.

According to (2.8), actually both embeddings in condition (E1) from
Theorem 2.3.1 are isometric if Ã ∈ E(A).

We return to the example in Section 2.3. Let H = L2(I), where I = (a, b)
is a finite interval. Further, let p be a real-valued function with p > 0 almost
everywhere. Moreover, assume that p−1 := 1

p belongs to L1(I). Then the
operator

Af = −(pf ′)′,

where f belongs to the subspace

dom A = {f ∈ L2(I) | f, pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I),
f(a) = f(b) = (pf ′)(a) = (pf ′)(b) = 0}

is closed densely defined and nonnegative, see [69] or Section 7.1. As it
was already shown in Section 2.3 the subspace L is the form domain of a
nonnegative selfadjoint extension Ã(L)α,β of A, where α, β ∈ C, if and only
if

L = dom A
1/2
F u span {α + βFp−1}

and for f ∈ L ∩ dom A∗, we have

|f(b) − f(a)|2 ≥
(
Fp−1(b) − Fp−1(a)

)(
(pf ′)(b)f(b) − (pf ′)(a)f(a)

)
, (6.5)

and for f ∈ dom A, we have (Af, f) = ∥Ã(L)
1/2

α,βf∥2. It follows from Propo-
sition 6.1.2 that for L being the form domain of an extremal extension
Ã(L)α,β of A equality in (6.5) is necessary and sufficient. This implies that
the nonnegative selfadjoint extensions according to the following boundary
conditions are extremal:

• f(a) = f(b) = 0 (Dirichlet boundary conditions);

• (pf)′(a) = (pf)′(b) = f(b)−f(a)
Fp−1 (b)−Fp−1 (a) , cf. Theorem 7.1.8 (”Krĕın-von

Neumann boundary conditions”);

• f(a) = f(b), (pf)′(a) = (pf)′(b) (periodic boundary conditions).
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Whereas the nonnegative selfadjoint extensions according to the following
boundary conditions are not extremal:

• (pf)′(a) = (pf)′(a) = 0 (Neumann boundary conditions);

• f(a) = −f(b), (pf)′(a) = −(pf)′(b) (semi-periodic boundary condi-
tions).
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7 Application of the Factorization Results

In this chapter we apply our factorization results from Section 5.2 and Sec-
tion 5.3 to a class of regular Sturm-Liouville operators and a class of block
operator matrices, respectively. We give the Friedrichs and the Krĕın-von
Neumann extension. By means of basic boundary triplets we parametrize
all extremal extensions, accordingly.

7.1 Friedrichs, Krĕın-von Neumann and Extremal Extensions
of a Class of Regular Sturm-Liouville Operators

In this section we apply Theorem 5.2.2 to a class of regular Sturm-Liouville
operators. Following the lines of [11, Example 10.1], where the operator (7.1)
with p = 1 was discussed, we describe the Friedrichs and the Krĕın-von Neu-
mann extension in the more general case described below. Furthermore, we
construct a basic boundary triplet for the adjoint of this Sturm-Liouville
operator and give a parametrization of all its extremal extensions.

Friedrichs himself adressed the question of which boundary condition
determines the Friedrichs extension of a regular Sturm-Liouville operator.
This problem has been discussed for example in [13], [35], [58]. There it was
shown that the answer is: Dirichlet boundary conditions. For the case of
singular Sturm-Liouville operators see [51].

In [9] Yu. Arlinskĭı considered a class of sectorial second order differ-
ential operators on the semiaxis with bounded coefficients. He described
the Friedrichs, the Krĕın-von Neumann and all m-sectorial extensions with
the help of a factorization similar to that in Section 5.2. In [8] he applied
the factorization result which was briefly recalled in Section 5.2 to a Sturm-
Liouville operator A = − d

dxp d
dx in L2(R) with deficiency indices n±(A) = 1,

where p ∈ L∞(I) with Re(p(x)) ≥ m > 0. The Friedrichs, the Krĕın-von
Neumann and all m-accretive and m-sectorial extensions of A were given.
We will consider in L2(I) such a differential expression as well but with
weaker assumptions on the function p (except for the requirement that p is
real-valued).

Let H = L2(I), where I = (a, b) is a finite interval. Further, let p be a
real-valued measurable function with p > 0 almost everywhere. Moreover,
assume that the function p−1 := 1

p belongs to L1(I). Then the operator

Af = −(pf ′)′, f ∈ dom A, (7.1)
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defined on the domain

dom A = {f ∈ L2(I) | f, pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I),
f(a) = f(b) = (pf ′)(a) = (pf ′)(b) = 0}

is closed densely defined and nonnegative with deficiency indices n±(A) = 2.
The adjoint of A is given by

A∗f = −(pf ′)′, domA∗ = {f ∈ L2(I) | f, pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I)},

cf. [69]. Moreover, kerA∗ = span {1, Fp−1}, where 1 : I → I, t 7→ 1 and
Fp−1 denotes a primitive of p−1. Note that A and A∗ have closed range since
ranA = (kerA∗)⊥ and ranA∗ = (kerA)⊥, cf. [69, page 41].

The following statement holds also true for the case when A is a general
regular definite Sturm-Liouville operator, but we need it only in this special
case.

Lemma 7.1.1. The Friedrichs and the Krĕın-von Neumann extension of A
are transversal.

Proof. It is easy to see, that the nonnegative selfadjoint extensions of A with
the boundary conditions f(a) = f(b) = 0 and (pf ′)(a) = (pf ′)(b) = 0, re-
spectively, are disjoint (see [69, page 50] for the proof of the selfadjointness).
Together with the fact that A has finite deficiency indices this implies their
transversality, cf. [25]. According to Theorem 4.1.2 the Friedrichs and the
Krĕın-von Neumann extension are also transversal.

In order to apply Theorem 5.2.2 to the Sturm-Liouville operator A we
define the operators

LQf = i p
1/2f ′, f ∈ domLQ =

{
f ∈ L2(I)

∣∣∣ f ∈ AC(I), p
1/2f ′ ∈ L2(I),

f(a) = f(b) = 0
}

,

LJf = i ( p
1/2f)′, f ∈ dom LJ =

{
f ∈ L2(I)

∣∣∣ p
1/2f ∈ AC(I),

( p
1/2f)′ ∈ L2(I),

( p
1/2f)(a) = ( p

1/2f)(b) = 0
}

,

L̃Jf = i ( p
1/2f)′, f ∈ dom L̃J =

{
f ∈ L2(I)

∣∣∣ p
1/2f ∈ AC(I),

( p
1/2f)′ ∈ L2(I)

}
,
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L̃Qf = i p
1/2f ′, f ∈ dom L̃Q =

{
f ∈ L2(I)

∣∣∣ f ∈ AC(I), p
1/2f ′ ∈ L2(I)

}
.

The operator LQ is well defined. In fact, observe that for f ∈ L2(I) with
p1/2f ′ ∈ L2(I), we have

f ′ = p
−1/2 p

1/2f ′ ∈ L1(I),

since p−1/2 ∈ L2(I). Thus, we can extend f continuously to the endpoints
a and b. This implies that LQ is well defined. With a similar argument it
follows that LJ is also well defined.

The next proposition gives a factorization of the Sturm-Liouville opera-
tor A.

Proposition 7.1.2. Let p−1 ∈ L1(I), p > 0 almost everywhere. Then the
operator A allows the factorization A = LJLQ.

Proof.

domLJLQ =
{
f ∈ domLQ | LQf ∈ domLJ

}
=

{
f ∈ L2(I) | f ∈ AC(I), p

1/2f ′ ∈ L2(I), f(a) = f(b) = 0,

p
1/2f ′ ∈ dom LJ

}
=

{
f ∈ L2(I) | f ∈ AC(I), p

1/2f ′ ∈ L2(I), f(a) = f(b) = 0,

pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I), (pf ′)(a) = (pf ′)(b) = 0
}
.

Since p−1 ∈ L1(I) and pf ′ ∈ AC(I), in any case we have p1/2f ′ = p−1/2 pf ′ ∈
L2(I). This implies dom LQLJ = dom A. Clearly, for f ∈ domA, we have
Af = LJLQf , so that A and LJLQ coincide.

For further factorization results concerning differential operators, cf. for
example [54], [72], [73].

The next lemma collects some properties of the operators LJ and LQ.

Lemma 7.1.3. Let p−1 ∈ L1(I), p ∈ L1
loc(I) and p > 0 almost everywhere.

Then the operators LJ and LQ are densely defined and we have LJ ⊆ L̃J ⊆
L∗

Q and LQ ⊆ L̃Q ⊆ L∗
J . In particular, C∞

0 (I) ⊆ dom LQ.

Proof. The operator LQ is densely defined since p ∈ L1
loc(I) implies C∞

0 (I) ⊆
domLQ. Next it is shown that the operator LJ is densely defined as well. Let
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φ ∈ C∞
0 (I) and define f = φ

p1/2
. Note that f ∈ domLJ . Let g ∈ (dom LJ)⊥.

This implies that g ⊥ φ

p1/2
for all φ ∈ C∞

0 (I). Hence,

0 =
∫ b

a
g

φ

p1/2
dt.

Since g

p1/2
∈ L1(I) and φ is an arbitrary function in C∞

0 (I) it follows that
g

p1/2
= 0, cf. (A.3). This implies g = 0. Thus, dom LJ is dense in L2(I). The

statements concerning the inclusions are due to integration by parts.

The closedness of the operator LQ will be necessary for the proof of
Proposition 7.1.6.

Proposition 7.1.4. Let p−1 ∈ L1(I), p > 0 almost everywhere. Then the
operators LQ and L̃Q are closed.

Proof. Let f, g ∈ L2(I) and fn ∈ dom LQ with

fn → f, LQfn = i p
1/2f ′

n → g, n → ∞.

This implies∥∥f ′
n − f ′

m

∥∥
L1(I)

=
∫ b

a

∣∣f ′
n(t) − f ′

m(t)
∣∣ dt =

∫ b

a
p
−1/2(t)p1/2(t)

∣∣f ′
n(t) − f ′

m(t)
∣∣ dt

≤
(∫ b

a
p−1dt

)1/2 (∫ b

a

(
p

1/2(t)
∣∣f ′

n(t) − f ′
m(t)

∣∣)2
dt

)1/2

=
(∫ b

a
p−1dt

)1/2 ∥∥∥p
1/2f ′

n − p
1/2f ′

m

∥∥∥
L2(I)

=
(∫ b

a
p−1dt

)1/2

∥LQfn − LQfm∥L2(I) → 0,

as n,m → ∞. Thus, (fn) is a Cauchy sequence in W̊ 1
1 (I). Since W̊ 1

1 (I) is a
closed subspace of W 1

1 (I), it follows that

f ∈ W̊ 1
1 (I) and f ′

n → f ′ in L1(I), n → ∞.

Due to the fact that the multiplication operator in L1(I) is closed,

i p
1/2f ′

n → g in L2(I) ⊆ L1(I), n → ∞,

implies g = i p1/2f ′ ∈ L2(I), so that f ∈ dom LQ. We conclude that LQ is
closed. With the same argument we obtain that L̃Q is closed.
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The next statment gives a decomposition of the domain of the operator
L̃Q.

Lemma 7.1.5. Let p−1 ∈ L1(I), p > 0 almost everywhere. Then we have
dom L̃Q = dom LQ u kerA∗.

Proof. Obviously, domLQ ∩ kerA∗ = {0} and domLQ ⊆ dom L̃Q. For

g = αFp−1 + β ∈ kerA∗, (7.2)

we have g ∈ L2(I) and g ∈ AC(I) since Fp−1 ∈ AC(I). Finally, observe that
p1/2g′ ∈ L2(I) since p−1 ∈ L1(I). This yields dom L̃Q ⊇ domLQ u kerA∗. It
remains to show the converse inclusion. Let f ∈ dom L̃Q and let g be as in
(7.2), where

α =
f(b) − f(a)

Fp−1(b) − Fp−1(a)
and β =

f(b)Fp−1(a) − f(a)Fp−1(b)
Fp−1(b) − Fp−1(a)

.

Consequently, f−g ∈ domLQ since (f−g)(a) = (f−g)(b) = 0. The required
decomposition of f is given by f = (f − g) + g.

The next proposition will be useful in Theorem 7.1.7 when describing
the Friedrichs extension of the Sturm-Liouville operator A.

Proposition 7.1.6. Let p−1 ∈ L1(I), p ∈ L1
loc(I) and p > 0 almost every-

where. Then dom A is a core for LQ, i.e. LQ,A = LQ|dom A = LQ.

Proof. Consider the set

D = {f ∈ L2(I) | f, pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I), f(a) = f(b) = 0}.

Firstly, we will show that the graph of LQ|D is dense in the graph of LQ.
After that we will approximate with respect to the graph norm of LQ an
arbitrary function u ∈ D by a sequence wn ∈ domA, so that the graph of
LQ|dom A is dense in the graph of LQ.
Step 1. Let v ∈ domLQ such that

(v, LQv) ⊥ {(u, LQu) |u ∈ D}.

Define the linear continuous functional ϕ by

ϕ : {dom LQ, ∥ · ∥LQ
} → C, ϕ(w) := (v, w).
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According to the Riesz Theorem there exists a unique element u ∈ domLQ

such that
ϕ(w) = (u,w)LQ

, w ∈ domLQ.

This can be rewritten as

(v, w) = (u,w) + (LQu, LQw), w ∈ domLQ. (7.3)

And this is equivalent to∫ b

a
v(t)w(t) dt =

∫ b

a
u(t)w(t) dt +

∫ b

a
p(t)u′(t)w′(t) dt, w ∈ dom LQ.

Since p ∈ L1
loc(I) we have C∞

0 (I) ⊆ dom LQ. This implies∫ b

a

(
v(t) − u(t)

)
w(t) dt =

∫ b

a
p(t)u′(t)w′(t) dt, w ∈ C∞

0 (I).

Therefore, pu′ ∈ AC(I) and (pu′)′ = u− v ∈ L2(I), cf. Appendix A. Conse-
quently, u ∈ D. Put w = v in (7.3), so that

∥v∥2 = (u, v) + (LQu, LQv) =
(
(u, LQu), (v, LQv)

)
LQ

= 0.

This implies v = 0. Since LQ is closed D is dense in dom LQ with respect
to the graph norm of LQ.
Step 2. Now let u ∈ D and denote α := (pu′)(a), β := (pu′)(b). For n ∈ N,
choose hn ∈ C1(I) with the following properties:

• hn(t) = α in a neighbourhood of a,

• hn(t) = β in a neighbourhood of b,

• hn(t) = γn, in a neighbourhood of [a + 1
n , b − 1

n ], where the constant
γn is such that the absolute continuous function

vn(t) :=
∫ t

a

hn(s)
p(s)

ds, t ∈ [a, b],

is zero at t = b.

This is possible since

vn(b) =
∫ a+ 1

n

a

hn(s)
p(s)

ds +
∫ b− 1

n

a+ 1
n

γn

p(s)
ds +

∫ b

b− 1
n

hn(s)
p(s)

ds,
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and the first and the third summand converge to zero as n → ∞. Observe
that pv′n = hn ∈ C1(I) ⊆ AC(I) and (pv′n)′ ∈ C(I) ⊆ L2(I). Further, we
have

vn(a) = 0, (pv′n)(a) = hn(a) = α, (pv′n)(b) = hn(b) = β,

so that vn ∈ D for all n ∈ N. Put wn := u − vn. Since u, vn ∈ D it follows
that w ∈ D as well. In addition, we have

(pw′
n)(a) = 0, (pw′

n)(b) = 0,

so that wn ∈ dom A. It remains to show that wn converges to u in ∥ · ∥LQ
.

Since hn(t) → 0, n → ∞, t ∈ I, it follows that

vn(t) =
∫ t

a

hn(s)
p(s)

ds → 0, n → ∞, t ∈ [a, b].

This implies

∥wn − u∥2
LQ

= ∥vn∥2 + ∥ p
1/2v′n∥2 =

∫ b

a
|vn(t)|2dt +

∫ b

a

|hn(t)|2

p(t)
dt → 0,

as n → ∞. This completes the proof.

It is well known that the Friedrichs extension AF of A is a restriction
of A∗ to Dirichlet boundary conditions, cf. [50]. Nevertheless, we will prove
this fact using the factorization result of Theorem 5.2.2. All selfadjoint
extensions of A are given in [69, pages 47–50].

Theorem 7.1.7. Let p−1 ∈ L1(I), p ∈ L1
loc(I) and p > 0 almost everywhere.

Then the Friedrichs extension AF of A is given by

AF = L̃JLQ,

dom AF =
{

f ∈ L2(I)
∣∣∣ f, pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I), f(a) = f(b) = 0

}
.

The associated form is given by

dom A
1/2
F =

{
f ∈ L2(I)

∣∣∣ f ∈ AC(I), p
1/2f ′ ∈ L2(I), f(a) = f(b) = 0

}
= domLQ,

AF [f ] = ∥LQf∥2 =
∫ b

a
p(x)|f ′(x)|2dx, f ∈ dom A

1/2
F .
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Proof. All assumptions of Corollary 5.2.3 are fulfilled. In fact, LJ and LQ

are densely defined operators satisfying LQ ⊆ L∗
J . Further, A = LJLQ,

cf. Proposition 7.1.2. Since
LQ = LQ,A,

cf. Proposition 7.1.6, we have L̃J ⊆ L∗
Q,A. With the same argument as in the

proof of Proposition 7.1.2 we obtain that the operator L̃JLQ is a restriction
of A∗ corresponding to the boundary conditions

f(a) = f(b) = 0.

But this is a selfadjoint operator, cf. [69, page 50]. From Corollary 5.2.3 it
follows that L̃JLQ coincides with the Friedrichs extension AF of A. Accord-
ing to Theorem 5.2.2 and the Representation Theorems we obtain that the
associated form to the operator

AF = L∗
Q,ALQ,A = L∗

QLQ

is given by AF [f ] = ∥LQf∥2, f ∈ domLQ.

The next result gives a description of the Krĕın-von Neumann extension
of the Sturm-Liouville operator A, accordingly.

Theorem 7.1.8. Let p−1 ∈ L1(I), p ∈ L1
loc(I) and p > 0 almost everywhere.

Then the Krĕın-von Neumann extension AN of A is given by

ANf = LJPL̃Q,

domAN =
{

f ∈ L2(I)
∣∣∣ f, pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I),

(pf ′)(a) = (pf ′)(b) =
f(b) − f(a)

Fp−1(b) − Fp−1(a)

}
,

where Fp−1 is a primitive of p−1 and P is the orthogonal projector onto(
span {p−1/2}

)⊥. The associated form is given by

dom A
1/2
N =

{
f ∈ L2(I)

∣∣∣ f ∈ AC(I), p
1/2f ′ ∈ L2(I)

}
= dom L̃Q,

AN [f ] = ∥PL̃Qf∥2 =
∫ b

a
p(x) |f ′(x)|2dx − |f(b) − f(a)|2

Fp−1(b) − Fp−1(a)
,

for f ∈ dom A
1/2
N .
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Proof. In order to apply Corollary 5.2.3, observe that dom L̃Q is dense in
L2(I) and L̃Q ⊆ L∗

J is satisfied.

Step 1. It will be shown that

ranLQ,A = ranLQ = ranLQ =
(
span {p−1/2}

)⊥
,

where we only have to prove the last equality. Let w ∈ ranLQ. Hence, there
exists f ∈ L2(I) with the following properties:

f ∈ AC(I), p
1/2f ′ ∈ L2(I), w = i p

1/2f ′, f(a) = f(b) = 0.

This implies w ∈ L2(I) and
∫ b
a w(t)p−1/2(t) dt = 0, so that w ∈

(
span {p−1/2}

)⊥
.

Conversely, let w ∈ L2(I) satisfying
∫ b
a w(t)p−1/2(t) dt = 0. Put

f(t) :=
∫ t

a
w(x)p−1/2(x) dx, t ∈ (a, b).

Since w ∈ L2(I) and p−1 ∈ L1(I) it follows that wp−1/2 ∈ L1(I). Con-
sequently, f ∈ AC(I) and f ′ = wp−1/2 almost everywhere. Moreover,
w = p1/2f ′ ∈ L2(I) and f(a) = f(b) = 0. This implies f ∈ ranLQ.

Step 2. Next it is shown that the operator LJPL̃Q is selfadjoint. Note that
the orthogonal projector P from L2(I) onto

(
span {p−1/2}

)⊥ is given by

Pf = f −
Fp−1/2f (b) − Fp−1/2f (a)

Fp−1(b) − Fp−1(a)
p
−1/2, f ∈ L2(I). (7.4)

In fact, for f, g ∈ L2(I), the orthogonal projection P̃ f of f onto span {g} is
given by

P̃ f =
(f, g)
∥g∥2

g =

∫ b
a fg dt∫ b
a |g|2 dt

g =
Ffg(b) − Ffg(a)

F|g|2(b) − F|g|2(a)
g = (I − P )f.

Next observe that

PL̃Qf = i

(
p

1/2f ′ −
Ff ′(b) − Ff ′(a)

Fp−1(b) − Fp−1(a)
p
−1/2

)
= i

(
p

1/2f ′ − f(b) − f(a)
Fp−1(b) − Fp−1(a)

p
−1/2

)
. (7.5)
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Thus,

dom (LJPL̃Q) =
{

f ∈ dom L̃Q

∣∣∣ PL̃Qf ∈ domLJ

}
=

{
f ∈ L2(I)

∣∣∣ f ∈ AC(I), p
1/2f ′ ∈ L2(I),

p
1/2f ′ − f(b) − f(a)

Fp−1(b) − Fp−1(a)
p
−1/2 ∈ L2(I),

pf ′ − f(b) − f(a)
Fp−1(b) − Fp−1(a)

∈ AC(I),(
pf ′ − f(b) − f(a)

Fp−1(b) − Fp−1(a)

)′
∈ L2(I),

0 = (pf ′)(a) − f(b) − f(a)
Fp−1(b) − Fp−1(a)

= (pf ′)(b) − f(b) − f(a)
Fp−1(b) − Fp−1(a)

}
=

{
f ∈ L2(I)

∣∣∣ f, pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I),

(pf ′)(a) = (pf ′)(b) =
f(b) − f(a)

Fp−1(b) − Fp−1(a)

}
.

It follows that the operator LJPL̃Q is a restriction of A∗ corresponding to
the above boundary conditions. Hence, it is selfadjoint, cf. [69, page 50].

Step 3. We show AN = LJPL̃Q = (PL̃Q)∗PL̃Q. From Theorem 5.2.2 and
Corollary 5.2.3 we obtain

LJPL̃Q = L∗∗
J PL∗

J .

It is easy to check that LJPL̃Q and AF are disjoint. Since AF and AN are
transversal, cf. Lemma 7.1.1, it follows from Theorem 5.2.2 that

LJPL̃Q = AN .

Since LQ is closed and dom L̃Q = domLQ uspan {1, Fp−1}, cf. Lemma 7.1.5,
the same argument as in the proof of Theorem 5.2.2 (iii) yields that PL̃Q

is closed. Due to LJ ⊆ L∗∗
J ⊆ L̃Q

∗
, this implies

AN = LJPL̃Q ⊆ L̃Q
∗
PL̃Q = (PL̃Q)∗PL̃Q.

Since both AN and (PL̃Q)∗PL̃Q are selfadjoint, they coincide.
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According to Proposition 2.1.5 we obtain that the associated form to AN

is given by AN [f ] = ∥PL̃Q∥2, f ∈ dom L̃Q. A straightforward calculation
involving (7.5) leads to the required representation of AN [ · ].

The decomposition of dom A
1/2
N in the next corollary is a direct conse-

quence of the factorization of the Friedrichs and the Krĕın-von Neumann
extension, see Lemma 7.1.5.

Corollary 7.1.9. Let p−1 ∈ L1(I), p ∈ L1
loc(I) and p > 0 almost every-

where. Then we have

dom A
1/2
N = domA

1/2
F u kerA∗.

Since A is closed and nonnegative with closed range we also have a
formula for the domain of the Krĕın-von Neumann extension, cf. [6]:

domAN = dom A u kerA∗. (7.6)

The formulas above are well known for the case where A is a positive
definite operator, cf. [40], see [6] for a more general setting. Hence, the Krĕın-
von Neumann extension looks the same if A is a positive definite operator.
In this case we can drop the assumption that p ∈ L1

loc(I).

Lemma 7.1.10. Let p−1 ∈ L1(I), p > 0 almost everywhere and let the
operator A be positive definite. Then the Krĕın-von Neumann extension AN

of A is the restriction of A∗ to

domAN =
{

f ∈ L2(I)
∣∣∣ f, pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I),

(pf ′)(a) = (pf ′)(b) =
f(b) − f(a)

Fp−1(b) − Fp−1(a)

}
,

where Fp−1 is a primitive of p−1.

Proof. Let Fp−1 be a primitive of p−1. At first, we will show

dom AN ⊆
{

f ∈ L2(I)
∣∣∣ f, pf ′ ∈ AC(I), (pf ′)′ ∈ L2(I),

(pf ′)(a) = (pf ′)(b) =
f(b) − f(a)

Fp−1(b) − Fp−1(a)

}
.
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Let f ∈ domAN . According to (7.6) there exist λ, β ∈ C such that f =
f0 + f∗ = f0 + λFp−1 + β ∈ domA u kerA∗. Then we have

f(a) = f0(a) + f∗(a) = λFp−1(a) + β,

f(b) = f0(b) + f∗(b) = λFp−1(b) + β,

(pf ′)(a) = (pf ′
0)(a) + (pf ′

∗)(a) = λ,

(pf ′)(b) = (pf ′
0)(b) + (pf ′

∗)(b) = λ.

This implies

(pf ′)(a) = (pf ′)(b) =
f(b) − f(a)

Fp−1(b) − Fp−1(a)
.

The other properties are obvious.
To see the converse inclusion, let f ∈ dom AN and g = αFp−1 + β ∈ kerA∗,
where

α =
f(b) − f(a)

Fp−1(b) − Fp−1(a)
, β =

f(a)Fp−1(b) − f(b)Fp−1(a)
Fp−1(b) − Fp−1(a)

.

Then we have f − g = f −αFp−1 −β ∈ L2(I), f − g, p(f − g)′ ∈ AC(I) and
(p(f − g)′)′ ∈ L2(I). A straightforward calculation yields that f − g satisfies
the boundary conditions of functions in domA. Thus, f − g ∈ domA and
f = (f − g) + g ∈ domAN .

In order to characterize the extremal extensions of A we define the map-
pings Γi : dom A∗ → C2, i = 0, 1, where

Γ0f =
(

f(a)
f(b)

)
, f ∈ dom A∗, (7.7)

Γ1f =

 (pf ′)(a) − f(b)−f(a)
Fp−1 (b)−Fp−1 (a)

−(pf ′)(b) + f(b)−f(a)
Fp−1 (b)−Fp−1 (a)

 , f ∈ dom A∗. (7.8)

Proposition 7.1.11. Let p−1 ∈ L1(I), p ∈ L1
loc(I) and p > 0 almost every-

where. Then the triplet {C2, Γ0,Γ1} is a basic boundary triplet for A∗.

Proof. According to Theorem 7.1.7 and Theorem 7.1.8, we have the identi-
ties

AF = A∗∣∣
ker Γ0

and AN = A∗∣∣
ker Γ1

.
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The mapping
(
Γ0

Γ1

)
: dom A∗ → C2 ×C2 is surjective. In fact, let(

h1

h2

)
=

(
{h11, h12}
{h21, h22}

)
∈ C2 ×C2.

According to [69, Theorem13.5], there exists an element f ∈ domA∗ satis-
fying

f(a) = h11,

f(b) = h12,

(pf ′)(a) = h21 +
h12 − h11

Fp−1(b) − Fp−1(a)
,

(pf ′)(b) = −h22 +
h12 − h11

Fp−1(b) − Fp−1(a)
.

Hence,
(
Γ0

Γ1

)
is surjective. Next it is shown that for f, g ∈ domA∗, we have

the identity

(A∗f, g) − (f,A∗g) = (Γ1f,Γ0g) − (Γ0f,Γ1g). (7.9)

Put c−1 = Fp−1(b) − Fp−1(a). Obviously, (7.9) is equivalent to

(
− (pf ′)′, g

)
+

(
f, (pg′)′

)
=

((
(pf ′)(a) − c

(
f(b) − f(a)

)
−(pf ′)(b) + c

(
f(b) − f(a)

)),

(
g(a)
g(b)

))

−

((
f(a)
f(b)

)
,

(
(pg′)(a) − c

(
g(b) − g(a)

)
−(pg′)(b) + c

(
g(b) − g(a)

)))
.

On the left side we have

(−(pf ′)′, g) + (f, (pg′)′) = −
∫ b

a
(pf ′)′(x)g(x) dx +

∫ b

a
f(x)(pg′)′(x) dx

= −(pf ′)(b)g(b) + (pf ′)(a)g(a) + f(b)(pg′)(b)

− f(a)(pg′)(a).

On the other side we have(
(pf ′)(a) − c

(
f(b) − f(a)

)
, g(a)

)
+

(
− (pf ′)(b) + c

(
f(b) − f(a)

)
, g(b)

)
−

(
f(a), (pg′)(a) − c

(
g(b) − g(a)

))
−

(
f(b),−(pg′)(b) + c

(
g(b) − g(a)

))
= −(pf ′)(b)g(b) + (pf ′)(a)g(a) + f(b)(pg′)(b) − f(a)(pg′)(a).

Consequently, the triplet {C2, Γ0, Γ1} is a basic boundary triplet for A∗.
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According to Proposition 4.2.2 the triplet {C2,Γ0,Γ1} is also a positive
boundary triplet.

The next theorem characterizes the extremal extensions of the operator
A via boundary conditions.

Theorem 7.1.12. Let p−1 ∈ L1(I), p ∈ L1
loc(I) and p > 0 almost every-

where. The extremal extensions Ãα,β of A (apart from AF and AN ) are
restrictions of A∗ corresponding to the boundary conditions

βf(a) = αf(b),

α

(
(pf ′)(a) − f(b) − f(a)

Fp−1(b) − Fp−1(a)

)
= β

(
(pf ′)(b) − f(b) − f(a)

Fp−1(b) − Fp−1(a)

)
,

where α ∈ R, β ∈ C and α2 + |β|2 = 1.
The corresponding form domains are given by

dom Ã
1/2
α,β = dom A

1/2
F u span

{
(β − α)Fp−1(·) + αFp−1(b) − βFp−1(a)

}
.

Proof. According to Proposition 4.3.2 the extremal extensions of A can be
parametrized via

dom ÃΘ = Γ−1Θ = {f ∈ domA∗ |Γf ∈ Θ}, ÃΘ := A∗|dom ÃΘ
,

where Θ = {{Ph, (I − P )h} |h ∈ C2} and P = P ∗ = P 2 ∈ C2,2. The
relations Θ = C2×{0} and Θ = {0}×C2 correspond to the Krĕın-von Neu-
mann and to the Friedrichs extension, respectively. The remaining extremal
extensions are in one-to-one correspondence with the relations

Θx =
{{

(h, x)x, (h, x⊥)x⊥} ∣∣∣ h ∈ C2
}

,

where α ∈ R, β ∈ C, x = (α, β)T , x⊥ = (−β, α)T and ∥x∥ = 1. Now an
straightforward calculation leads to the required boundary conditions. It
remains to show the description of the form domains of the extremal exten-
sions. Recall that dom A

1/2
F ⊆ dom Ã

1/2
α,β ⊆ dom A

1/2
N . According to Corollary

7.1.9 for every (extremal) extension the following identity is satisfied:

dom Ã
1/2
α,β = dom A

1/2
F u Mα,β ,

where Mα,β is a one-dimensional subspace of span {1, Fp−1}. Since the func-
tion fα,β = (β − α)Fp−1 + αFp−1(b) − βFp−1(a) belongs to the domain
of Ãα,β , it belongs to the form domain as well. Consequently, Mα,β =
span {fα,β}.
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7.2 Friedrichs, Krĕın-von Neumann and Extremal Extensions
of a Block Operator Matrix

In this section we apply the results of Theorem 5.3.4 to a factorized block
operator matrix A in the Hilbert space H×H. We describe the Friedrichs,
the Krĕın-von Neumann and the extremal extensions of A. Later we consider
a concrete example in L2(I) × L2(I), where I = (a, b). We study the block
operator matrix

A =

 − d2

dt2
i

d

dt
p

ip
d

dt
|p|2


which is defined on{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f ∈ W̊ 2
2 (I), pg ∈ W̊ 1

2 (I), pf ′, |p|2g ∈ L2(I)
}

,

where p is satisfying certain conditions including p ∈ L∞(I). We determine
the Friedrichs and the Krĕın-von Neumann extension which are in general no
block operator matrices anymore. Furthermore, by means of basic boundary
triplets we parametrize all extremal extensions of A, see Proposition 7.2.6,
Proposition 7.2.5 and Proposition 7.2.10.

In [10] Yu. Arlinskĭı gave a parametrization of all m-sectorial exten-
sions Ã of a closed densely defined sectorial operator A that has a closed
nondensely defined coercive sectorial restriction S which is m-sectorial in
the Hilbert space dom S. Moreover, the Friedrichs and the Krĕın-von Neu-
mann extension of A were characterized. This theory was applied to sectorial
block operator matrices in H1 ×H2 of the form

A =
[

A B
C D

]
, (7.10)

where C,D are linear operators, A is a closed m-sectorial coercive operator
and C is a closed operator with dom C ⊇ domA. Further, it was assumed
that domB ∩ dom D is dense in H2.

In [39] semibounded block operator matrices of the form (7.10) were
studied. There the coefficients A and D were essentially selfadjoint and
bounded from below. The operators B and C were assumed to be densely
defined and closable with domD ⊆ dom B, dom A ⊆ dom C and B ⊆ C∗.
It was shown that A ≥ µ0 implies the semiboundedness of A and D as well,
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and that for µ < µ0 < minσ(D),

γ′
µ[f ] :=

(
(A − µ)f, f

)
−

(
(D − µ)−1Cf,Cf

)
, dom γ′

µ = dom A,

is a positive quadratic form. In case that γ′
µ is closable the Friedrichs exten-

sion was described by means of the nonnegative selfadjoint operator T (µ)
which is associated to γ′

µ according to the First Representation Theorem:
AF − µ = K∗(µ)K(µ)∗∗, where

K(µ) =
(

T 1/2(µ) 0
(D − µ)−1/2C (D − µ)1/2

)
, domK(µ) = dom A × domD.

Let A1, A2, B1 and B2 be densely defined operators such that

A1, B1 : H ½ H, A2 : H ½ K, B2 : K ½ H.

For the block operators[
A1

A2

]
: H ⊇ domA1 ∩ domA2 → H×K, f 7→

(
A1f

A2f

)
and [

B1 B2

]
: H×K ⊇ domB1 × dom B2 → H,

(
f

g

)
7→ B1f + B1g,

the conditions

A1|dom A1∩dom A2 ⊆ B∗
1 |dom B∗

1∩dom B∗
2
,

(7.11)
A2|dom A1∩dom A2 ⊆ B∗

2 |dom B∗
1∩dom B∗

2
,

are equivalent to [
A1

A2

]
⊆

[
B∗

1

B∗
2

]
.

According to [33, Proposition 2.1], for densely defined operators B1 and B2,
we have [

B1 B2

]∗
=

[
B∗

1

B∗
2

]
and

[
B1

B2

]∗
=

[
B∗

1 B∗
2

]∗∗
. (7.12)

99



Observe that if B1 and B2 are closable so is
[

B1

B2

]
and we have

[
B1

B2

]
=[

B1

B2

]
. The operator

[
B1 B2

]
is closable if and only if dom B∗

1 ∩ domB∗
2

is dense in H. In this case
[
B1 B2

]
=

[
B1 B2

]∗∗
=

[
B∗

1

B∗
2

]∗
holds. Let in

the following (7.11) be satisfied. Hence, it follows that[
A1

A2

]
⊆

[
B1 B2

]∗
and

[
B1 B2

]
⊆

[
A1

A2

]∗
.

Let M be a subset of(
dom (A1B1) ∩ dom (A2B1)

)
×

(
dom (A1B2) ∩ dom (A2B2)

)
⊆ H×K

and consider in H×K the block operator matrix

A :=
[

A1B1 A1B2

A2B1 A2B2

]
=

[
A1

A2

] [
B1 B2

]∣∣∣
M

(7.13)

with domain M. Assume that dom A1 ∩ dom A2 is dense. Then, according
to

A ⊆
[

A1

A2

] [
B1 B2

]
⊆

[
A1

A2

] [
A1

A2

]∗
,

A is a nonnegative block operator matrix. Since[
B1 B2

]∣∣∣
M

⊆
[

A1

A2

]∗
we can apply Theorem 5.3.4. Hence, the Friedrichs and the Krĕın-von Neu-
mann extension of A are given by

AF =
[
B1 B2

]∣∣∣∗
M

[
B1 B2

]∣∣∣∗∗
M

and

AN =
[

A1

A2

]∣∣∣∣∗∗
ran

“

[B1 B2]
∣∣
M

”

[
A1

A2

]∣∣∣∣∗
ran

“

[B1 B2]
∣∣
M

”

,

respectively. Denote by KE the block operator

KE =
[

A1

A2

]∣∣∣∣
ran

“[
B1 B2

]∣∣
M

”

: ran
([

B1 B2

]∣∣∣
M

)
½ H×K.
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Then we conclude from Theorem 5.3.4 that ÃL is an extremal extension of
A if and only if there exists a subspace L of H × K with dom A ⊆ L ⊆
domK∗

E = domJ∗ such that

ÃL = (K∗
E |L)∗(K∗

E |L)∗∗.

Now we will consider applications to systems of differential operators.
Let H = K = L2(I), where I = (a, b) is a finite interval. Further, let
p ∈ L2

loc(I). We want to study the block operator matrix

A =

 − d2

dt2
i

d

dt
p

ip
d

dt
|p|2


defined on{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f ∈ W̊ 2
2 (I), pg ∈ W̊ 1

2 (I), pf ′, |p|2g ∈ L2(I)
}

,

where (
f
g

)
7→ A

(
f
g

)
=

(
−f ′′ + i(pg)′

ipf ′ + |p|2g

)
,

(
f
g

)
∈ dom A.

In Proposition 7.2.6 we give a sufficient criterion for p which implies that A

is densely defined. In order to factorize the block operator matrix A as in
(7.13), we define the closed densely defined operators

Lf = if ′, domL = W̊ 1
2 (I) ⊆ L2(I),

Mf = pf, domM = {f ∈ L2(I) | pf ∈ L2(I)}.

Their adjoints are given by

L∗f = if ′, domL∗ = W 1
2 (I) ⊆ L2(I),

M∗f = pf, domM∗ = {f ∈ L2(I) | pf ∈ L2(I)}.

Further, consider the densely defined block operators

C =
[
L M

]
, domC = dom L × domM,

C̃ =
[
L∗ M

]
, dom C̃ = dom L∗ × domM.
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According to (7.12) their adjoints are given by

C∗ =
[

L∗

M∗

]
, dom C∗ = domL∗ ∩ dom M∗,

C̃∗ =
[

L
M∗

]
=: K, domK = dom L ∩ dom M∗.

Hence, the following factorization holds true:

A =

[
L2 LM

M∗L M∗M

]
=

[
L

M∗

] [
L M

]∣∣∣
dom A

= KC|dom A,

dom A =
(
dom L2 ∩ dom (M∗L)

)
×

(
dom (LM) ∩ dom M∗M

)
.

Observe that K and C∗ are densely defined operators. In fact, since p ∈
L2

loc(I), we have

C∞
0 (I) ⊆ dom L ∩ domM ⊆ dom L∗ ∩ dom M.

Thus, C is closable. Since K ⊆ C∗ it follows that

A ⊆ KC ⊆ C∗C ⊆ C∗C∗∗.

Due to the fact that C∗C∗∗ is a nonnegative selfadjoint operator this implies
that A is a nonnegative block operator matrix. It turns out that under cer-
tain assumptions the operator C∗C∗∗ is the Friedrichs extension of A, see
Proposition 7.2.6. Moreover, in general, AF and AN are no block operator
matrices anymore.

The next lemma will be useful for the factrorization of the Friedrichs
and the Krĕın-von Neumann extension of A.

Lemma 7.2.1. Let p ∈ L2
loc(I). Then C∞

0 (I) is a core of the operators L
and M .

Proof. Since
W̊ 1

2 (I) = C∞
0 (I)

∥·∥
W1

2 (I) ,

the statement concerning the operator L is well known. Anyhow, we will
give a direct proof for it, too. Since L and M are closed, we will show that
the graphs of the restrictions of the operators to C∞

0 (I) are dense in the
graphs of the original operators, respectively. For the sake of simplicity, we
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will identify the operators with their graphs.

1. We show that
U :=

{
{u, Lu} | u ∈ C∞

0 (I)
}

is dense in
L =

{
{v, Lv} | v ∈ dom L

}
.

Let v ∈ domL such that {v, Lv} ⊥ U. For u ∈ C∞
0 (I) we have

0 = (u, v) + (Lu,Lv) =
∫

I
u(t)v(t) dt +

∫
I
u′(t)v′(t) dt.

This implies ∫ b

a
u(t)v(t) dt = −

∫ b

a
u′(t)v′(t) dt.

Since v, v′ ∈ L1
loc(I), it follows that v = v′′ in the sense of the theory of

distributions, cf. (A.2). Further, we have∫ b

a
|v(t)|2dt =

∫ b

a
v(t)v′′(t) dt = v(t)v′(t)

∣∣∣b
a
−

∫ b

a
|v′(t)|2dt ≤ 0.

This implies v = 0 and, hence, U⊥ = {0}.

2. Next it is shown that C∞
0 (I) is a core of the operator M . Define the

subspace
U :=

{
{φ,Mφ} | φ ∈ C∞

0 (I)
}
.

Let z = {f,Mf} ∈ M , where z ⊥ U with respect to the graph norm of M .
Then for every φ ∈ C∞

0 (I), we have

0 =
(
{φ,Mφ}, z

)
= (φ, f) + (Mφ,Mf) =

∫ b

a
φ(t)f(t) + p(t)φ(t)p(t)f(t) dt

=
∫ b

a
f(t)

(
1 + |p|2(t)

)
φ(t) dt.

Since p ∈ L2
loc(I) and pf ∈ L2(I) it follows that f (1 + |p|2) ∈ L1

loc(I). This
implies f (1 + |p|2) = 0 almost everywhere, cf. (A.3). Hence, f = 0 almost
everywhere and consequently, U is dense in the graph of M . We conclude
that C∞

0 (I) is a core of M .

Making additional assumptions on p the next proposition gives a char-
acterization of the Krĕın-von Neumann extension via factorizations.
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Proposition 7.2.2. Let p ∈ L2
loc(I), p ̸= 0 a.e. and p−1 ∈ L2

loc(I). Then
the Krĕın-von Neumann extension AN of A is given by

AN =
[

L
M∗

] [
L∗ M

]∗∗
.

Proof. According to Theorem 5.3.4 the Krĕın-von Neumann extension is
given by

AN = K∗∗
A K∗

A =
[

L
M∗

]∣∣∣∣
ran ([L M ]|dom A)

[
L

M∗

]∣∣∣∣∗
ran ([L M ]|dom A)

.

Denote by E0 the following subspace of L2(I):

E0 = ran
([

L M
]∣∣∣

dom A

)
=

{
if ′ + pg ∈ L2(I) | g, pf ′, |p|2g ∈ L2(I),

f ∈ W̊ 2
2 (I), pg ∈ W̊ 1

2 (I)
}
.

Obviously, we have E0 ⊆ domL∩domM. Next it is shown that C∞
0 (I) ⊆ E0.

Choose (c, d) ( (a, b) and let h ∈ C∞
0 (I). Without loss of generality, we may

assume that p(t) ̸= 0, t ∈ (c, d). Moreover, there exists n ∈ N such that
(c, d) ⊆ (a + 1

n , b − 1
n) and

h(t) = 0, t ∈ [a, a + 1
n) ∪ (b − 1

n , b].

Choose m ∈ N such that (c + 1
m , d − 1

m) ⊂ (c, d) and define the function f
as follows:

f(t) =


−iFh(t), t ∈ [a, c + 1

m),

f̃(t), t ∈ [c + 1
m , d − 1

m ],

−iF̃h(t), t ∈ (d − 1
m , b],

where Fh and F̃h are primitives of h with Fh(a) = 0 = F̃h(b) and f̃ is a
C∞(I)-extension, so that f ∈ C∞

0 (I). Further define

g(t) =

{
0, t ∈ [a, c] ∪ [d, b],

h(t)−if ′(t)
p(t) , t ∈ (c, d).

It follows that f ∈ W̊ 2
2 (I) and pf ′ ∈ L2(I). Since h − if ′ ∈ C∞

0 (I) and
p−1 ∈ L2

loc(I), it follows that g belongs to L2(I). Note that the function

(pg)(t) =

{
0, t ∈ [a, c] ∪ [d, b],

h(t) − if ′(t), t ∈ (c, d),

= h(t) − if ′(t), t ∈ [a, b],
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belongs to C∞
0 (I) ⊆ W̊ 1

2 (I). Moreover, this implies |p|2g ∈ L2(I). Finally,
we have h = if ′ + pg, as required. We conclude C∞

0 (I) ⊆ E0 ⊆ W̊ 1
2 (I).

Since C∞
0 (I) is a core of L and a core of M (and hence of M∗), cf. Lemma

7.2.1, we have

K∗∗
A =

[
L|E0

M∗|E0

]
=

[
L

M∗

]
.

Thus,

AN =
[

L
M∗

] [
L∗ M

]∗∗
.

This completes the proof.

Remark 7.2.3. If there exists an interval (c, d) ⊆ (a, b) such that (c, d) ⊆
supp(p) then we can drop the condition that p ̸= 0 almost everywhere (see
(A.4) for the definition of the support of a locally integrable function). But
this does not always exist: Let (xn) ⊆ I ∩Q be dense and choose αn > 0
such that

(xn − αn, xn + αn) ⊆ I and
∑

n

2αn < b − a.

Put M =
⋃

n(xn − αn, xn + αn) and f = 1 − χM. Then∫
I
f(t) dt = b − a −

∫
M

1 dt > 0.

But for every open interval J ⊆ I there exists n ∈ N such that xn ∈ J and

f(t) = 1 − χM(t) = 0, t ∈ (xn − αn, xn + αn),

since t ∈ M.

With stronger assumptions on p it is possible to express the Friedrichs
and the Krĕın-von Neumann extension of the block operator matrix A by
means of boundary conditions. The next lemma gives some information
about the block operators C and C̃.

Lemma 7.2.4. Let p ∈ L∞(I). Then:

(i)
[
L M

]
and

[
L∗ M

]
are closed;

(ii) C∞
0 (I) × C∞

0 (I) is a core of
[
L M

]
;
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(iii) W 1
2 (I) × C∞

0 (I) is a core of
[
L∗ M

]
.

Proof. In order to prove (ii), we will show(
C∞

0 (I) × C∞
0 (I)

)∥·∥C
= domL × L2(I), (7.14)

where ∥ · ∥C denotes the graph norm of C =
[
L M

]
. This is equivalent to

[
L M

]∣∣∣
C∞

0 (I)×C∞
0 (I)

=
[
L M

]
which implies that C is closed. At first we will show the inclusion ”⊆” in
(7.14). Let (fn), (gn) be sequences in C∞

0 (I) and let f, g, h ∈ L2(I) with

fn → f, gn → g, if ′
n + pgn → h, n → ∞.

Hence,

∥pgn − pg∥2 =
∫ b

a
|p|2|gn − g|2dt ≤ ∥p∥2

∞∥gn − g∥2 → 0, n → ∞.

Consequently,
if ′

n → h − pg ∈ L2(I), n → ∞.

This implies

fn → f in W 1
2 (I), n → ∞, f ∈ W̊ 1

2 (I) and h − pg = if ′,

as required. Since C∞
0 (I) is a core of L and a core of M , cf. Lemma 7.2.1,

the converse inclusion is also fulfilled. A similar observation holds for (iii).
Statement (i) is obtained from (ii) and (iii).

Note that if p ∈ L∞(I) then the domain of A is given by

domA =
{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f ∈ W̊ 2
2 (I), pg ∈ W̊ 1

2 (I)
}

.

Directly from Proposition 7.2.2 and Lemma 7.2.4 we obtain a character-
ization of the Krĕın-von Neumann extension of A via boundary conditions
which in general is no block operator matrices anymore.
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Proposition 7.2.5. Let p ∈ L∞(I), p ̸= 0 a.e. and p−1 ∈ L2
loc(I). Then

the Krĕın-von Neumann extension AN of A is given by

AN =
[

L
M∗

] [
L∗ M

]
,

dom AN =
{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f ∈ W 1
2 (I), if ′ + pg ∈ W̊ 1

2 (I)
}

.

The associated form is given by

AN

[(
f

g

)]
= ∥if ′ + pg∥2,

(
f

g

)
∈ dom

([
L∗ M

])
= W 1

2 (I) × L2(I)

= dom A
1/2
N .

Proof. This is a direct consequence of Proposition 7.2.2, Lemma 7.2.4 and
Proposition 2.1.5.

The next proposition gives the Friedrichs extension of A. In addition, it
contains conditions for A to be densely defined.

Proposition 7.2.6. Let one of the following conditions be satisfied:

(F1) p ∈ AC(I) ∩ L∞(I), p′ ∈ L2
loc(I);

(F2) p ̸= 0 a.e., p, p−1 ∈ L∞(I).

Then A is densely defined and domA is a core of the operator
[
L M

]
.

Moreover, the Friedrichs extension AF of A is given by

AF =
[

L∗

M∗

] [
L M

]
,

dom AF =
{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f ∈ W̊ 1
2 (I), if ′ + pg ∈ W 1

2 (I)
}

.

The associated form is given by

AF

[(
f

g

)]
= ∥if ′ + pg∥2,

(
f

g

)
∈ dom

([
L M

])
= W̊ 1

2 (I) × L2(I)

= domA
1/2
F .
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Proof. Let (F1) be satisfied. Then it is easy to check that C∞
0 (I)×C∞

0 (I) ⊆
domA and hence, A is densely defined. Since p ∈ L∞(I) the operator[
L M

]
is closed and C∞

0 (I) × C∞
0 (I) is a core of

[
L M

]
, cf. Lemma 7.2.4.

This implies that dom A is a core of
[
L M

]
as well. According to Lemma

5.3.2
[
L M

]
⊆

[
L∗ M

]
implies that all assumptions of Theorem 5.3.4 are

fulfilled. This yields the above factorization of AF . Due to the fact that[
L M

]
is closed it follows from Proposition 2.1.5 that the sesquilinear form

AF [·, ·] associated to the Friedrichs extension AF of A has the required
representation.
Let (F2) be satisfied and let

(
f
g

)
∈ dom

([
L M

])
. Since C∞

0 (I) is dense in

W̊ 1
2 (I) there exists a sequence (fn) ⊆ C∞

0 (I) such that

fn → f, f ′
n → f ′, n → ∞.

In order to show that dom A is a core of
[
L M

]
it is sufficient to prove the

following: For pg ∈ L2(I), where g ∈ L2(I), there exists gn ∈ L2(I) such
that pgn ∈ W̊ 1

2 (I) and

gn → g, pgn → pg, n → ∞.

Let pg ∈ L2(I), where g ∈ L2(I). The conditions p ̸= 0 a.e., p−1 ∈ L∞(I)
imply that

C∞
0 (I) ⊆ { pg | g ∈ L2(I)}.

In fact, let h ∈ C∞
0 (I) and put g = h

p . Then h = pg, where g ∈ L∞(I) ⊆
L2(I). Since C∞

0 (I) is dense in L2(I) there exists a sequence (hn) ∈ C∞
0 (I)

such that hn → pg, n → ∞. Hence, there exists a sequence (gn) ⊆ L2(I)
such that (pgn) ⊆ W̊ 1

2 (I) and pgn → pg, n → ∞. This implies that dom A is
a core of

[
L M

]
. With the same argument as above we obtain the required

representations of AF and its associated form. Since AF is an operator it
follows that A is densely defined, cf. the remark subsequent to Theorem
5.3.4.

Remark 7.2.7.

(i) Let condition (F1) be fulfilled. Then it follows from the proof of Propo-
sition 7.2.6 that C∞

0 (I) × C∞
0 (I) is a subspace of domA;

(ii) Let (F1) or (F2) be satisfied. Then for
(
f
g

)
∈ dom AF , we have if ′ ∈

L2(I) and pg ∈ L2(I);

(iii) For example, if p ∈ C1(I) ∩ L∞(I) then condition (F1) is fulfilled.
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Let the assumptions be as in Proposition 7.2.6 and Proposition 7.2.5, i.e.
let p ̸= 0 a.e. and

(P1) p ∈ AC(I) ∩ L∞(I), p′, p−1 ∈ L2
loc(I) or

(P2) p, p−1 ∈ L∞(I).

In order to characterize all extremal extensions of A we define the operators

A1 =
[

L
M∗

] [
L M

]
,

domA1 =
{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f ∈ W̊ 1
2 (I), if ′ + pg ∈ W̊ 1

2 (I)
}

and

A2 =
[

L∗

M∗

] [
L∗ M

]
,

domA2 =
{(

f

g

)
∈ L2(I) × L2(I)

∣∣∣ f, if ′ + pg ∈ W 1
2 (I)

}
.

According to Lemma 5.2.1, we have

AF ∩ AN =
[

L
M∗

] [
L M

]
= A1 (7.15)

and
A ⊆ A ⊆ A1 ⊆ A2 ⊆ A∗

1 ⊆ A∗.

The next proposition implies that the problem of finding the Friedrichs, the
Krĕın-von Neumann and the extremal extensions of A can be reduced to the
problem of finding those extensions for the operator A1.

Proposition 7.2.8. Let p ̸= 0 a.e. and let (P1) or (P2) be satisfied. Then:

(i) The Friedrichs extension AF of A coincides with the Friedrichs exten-
sion A1,F of A1;

(ii) The Krĕın-von Neumann extension AN of A coincides with the Krĕın-
von Neumann extension A1,N of A1;

(iii) The set of all nonnegative selfadjoint extensions of A coincides with
the set of all nonnegative selfadjoint extensions of A1;
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(iv) The set of all extremal extensions of A coincides with the set of all
extremal extensions of A1.

Proof. (i) Since C∞
0 (I)×C∞

0 (I) ⊆ domA1 and C∞
0 (I)×C∞

0 (I) is a core of[
L M

]
, we have

A1,F =
[
L M

]∣∣∣∗
dom A1

[
L M

]∣∣∣
dom A1

=
[
L M

]∗[
L M

]
= AF ,

cf. Theorem 5.3.4.

(ii) As we have already shown in the proof of Proposition 7.2.2, we have

C∞
0 (I) ⊆ ran

([
L M

]∣∣∣
dom A

)
⊆ ran

([
L M

]∣∣∣
dom A1

)
⊆ W̊ 1

2 (I).

Since C∞
0 (I) is a core of L and a core of M∗, it follows that

A1,N =
[

L
M∗

]∣∣∣∣
ran ([L M ]|dom A1)

[
L

M∗

]∣∣∣∣∗
ran ([L M ]|dom A1)

=
[

L
M∗

] [
L∗ M

]
= AN .

(iii) Obviously, the set of all nonnegative selfadjoint extensions of A1 is con-
tained in the set of all nonnegative selfadjoint extensions of A. Conversely,
let Ã be a nonnegative selfadjoint extension of A. According to Theorem
2.2.1 we have

A1,N = AN ≤ Ã ≤ AF = A1,F .

Again by Theorem 2.2.1 it follows that Ã is a nonnegative selfadjoint exten-
sion of A1.

(iv) Let Ã ∈ E(A). By definition, for every h ∈ dom Ã, there exists a
sequence (fn) ∈ domA such that(

Ã(h − fn), h − fn

)
→ 0, n → ∞.

Therefore, dom A ⊆ dom A1 and Ã ⊇ A1 imply Ã ∈ E(A1). Conversely, let
Ã ∈ E(A1). According to Theorem 5.1.5 we have

Ã[f ] = A1,N [f ] = AN [f ], f ∈ dom Ã
1/2.

Since Ã is a nonnegative selfadjoint extension of A this implies Ã ∈ E(A).
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Corollary 7.2.9. Let p ̸= 0 a.e. and let (P1) or (P2) be satisfied. Then
A1,F and A1,N are disjoint extensions of A1.

In the following proposition we show with the help of Theorem 4.1.5,
cf. [14], that A2 is the adjoint of A1. Furthermore, we determine via bound-
ary conditions all extremal extensions of A1 and, hence, all Ã ∈ E(A).

Denote 1 : I → I, x 7→ 1 and x : I → I, x 7→ x.

Proposition 7.2.10. Let p ̸= 0 a.e. and let (P1) or (P2) be satisfied. Then:

(i) A1 has deficiency indices (2,2);

(ii) A2 is the adjoint of A1;

(iii) The triplet {C2, Γ0, Γ1}, where

Γ0

(
f

g

)
=

(
f(a)
f(b)

)
, Γ1

(
f

g

)
=

(
−i(if ′ + pg)(a)
i(if ′ + pg)(b)

)
,

(
f

g

)
∈ domA2,

is a basic boundary triplet for A∗
1;

(iv) The extremal extensions of A1 (apart from A1,F and A1,N ) are restric-
tions of A2 corresponding to the boundary conditions

βf(a) = αf(b),

α(if ′ + pg)(a) = β(if ′ + pg)(b),

where α ∈ R, β ∈ C, α2 + |β|2 = 1;

(v) The corresponding form domains are given by

dom
(
Ã

1/2
1,α,β

)
=

(
W̊ 1

2 (I) u
{

span {1}, α = β

span {x+βa−αb
α−β 1},α ̸= β

})
× L2(I),

where α ∈ R, β ∈ C, α2 + |β|2 = 1.

Proof. We will show statements (i) − (iii) with the help of Theorem 4.1.5.
Hence, we have to show that

(1) the mapping Γ =
(
Γ0

Γ1

)
: dom A2 → C2 ×C2 is linear and surjective;

(2) ker Γ0 contains the domain of a selfadjoint extension of A1;
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(3) the abstract Green’s identity

(A2f, g) − (f,A2g) = (Γ1f,Γ0g)C2×C2 − (Γ0f,Γ1g)C2×C2

holds for f, g ∈ domA2.

Statement (2) is clear since ker Γ0 = domA1,F . The abstract Green’s iden-
tity is obtained by integration by parts. Since the linearity of Γ is clear, it
remains to prove the surjectivity. To see this, assume that h1, h2, h3, h4 ∈ C.
Let f ∈ C∞(I) with f(a) = h1, f(b) = h2, f ′(a) = h3, f ′(b) = −h4 and
g = 0. Then f ∈ W 1

2 (I), if ′ + pg ∈ W 1
2 (I), g ∈ L2(I), p(if ′ + pg) ∈ L2(I)

and

h1 = f(a), h2 = f(b), h3 = −i(if ′ + pg)(a), h4 = i(if ′ + pg)(b)

are satisfied. We have shown (1)–(3).

Now Theorem 4.1.5 implies that A2 is the adjoint of A1 and that A1 has de-
ficiency indices (2,2). Hence, the disjoint extensions A1,F and A1,N are even
transversal, cf. Section 4.1. Since ker Γ1 = dom A1,N , ker Γ0 = dom A1,F

and A1,F and A1,N are transversal the triplet {C2, Γ0, Γ1} is actually a ba-
sic boundary triplet for A∗

1 = A2.

(iv) According to Proposition 4.3.2 the extremal extensions of A1 can be
parametrized via

dom Ã1,Θ = Γ−1Θ = {f ∈ domA2 | Γf ∈ Θ}, Ã1,Θ := A2|dom Ã1,Θ
,

where Θ = {{Ph, (I − P )h} |h ∈ C2} and P = P ∗ = P 2 ∈ C2,2. The
relations

Θ = C2 ×
{(

0
0

)}
and Θ =

{(
0
0

)}
×C2

correspond to the Krĕın-von Neumann and Friedrichs extension, respec-
tively. The remaining extremal extensions are in one-to-one correspondence
with the relations

Θx =
{{

(h, x)x, (h, x⊥)x⊥} ∣∣∣ h ∈ C2
}

,

where α ∈ R, β ∈ C, x = (α, β)T ∈ C2, x⊥ = (−β, α)T ∈ C2 and ∥x∥ = 1.
Now an straightforward calculation leads to the required boundary condi-
tions.

(v) It remains to show the required description of the form domains of the
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extremal extensions. Recall that for every nonnegative selfadjoint extension
Ã1 of A1, we have

dom (A
1/2
1,F ) ⊆ dom (Ã1

1/2
) ⊆ dom (A

1/2
1,N ).

Corollary 7.1.5 implies that

W 1
2 (I) = W̊ 1

2 (I) u span {1,x}.

Consequently,

dom A
1/2
1,N =

(
W̊ 1

2 (I) u span {1,x}
)
× L2(I)

=
(
W̊ 1

2 (I) × L2(I)
)

u
(
span {1,x} × {0}

)
= dom A

1/2
1,F u

(
span {1,x} × {0}

)
.

This implies that for every nonnegative selfadjoint extension Ã1,α,β of A1

the following identity is satisfied:

dom Ã
1/2
1,α,β = dom A

1/2
1,F u

(
Mα,β × {0}

)
=

(
W̊ 1

2 (I) u Mα,β

)
× L2(I),

where Mα,β = {c(γ x+δ 1) | c ∈ C} is a one-dimensional subspace of
span {1,x}. Let

(
f
g

)
∈ dom Ã1,α,β ⊆ dom Ã

1/2
1,α,β . From (iv) it follows that f

satisfies the boundary conditions βf(a) = αf(b). The above decomposition
of dom Ã

1/2
1,α,β implies that there exist c, γ, δ ∈ C, h ∈ W̊ 1

2 (I) such that

f = h + c(γ x+δ 1).

Hence, βc(γa + δ) = βf(a) = αf(b) = αc(γb + δ) is fulfilled. It follows that

γc(βa − αb) = cδ(α − β).

Now an straightforward calculation leads to the required characterization of
dom Ã

1/2
1,α,β .

According to Proposition 4.2.2 the triplet {C2,Γ0,Γ1} is also a positive
boundary triplet for A∗

1.
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8 Friedrichs, Krĕın-von Neumann and Extremal
Extensions of Tensor Products of Nonnegative
Operators

In this chapter we characterize the Friedrichs and the Krĕın-von Neumann
extension of the tensor product of two closed densely defined nonnegative
operators A and B in terms of the Friedrichs and the Krĕın-von Neu-
mann extension of the operators A and B itself. Furthermore, in Theorem
8.1.6 we give a characterization of the extremal extensions of the tensor
product of A and B.

Let H1, H2 be Hilbert spaces. For f ∈ H1, g ∈ H2 we define the conju-
gate bilinear form f ⊗ g on H1 ×H2 by

(f ⊗ g)
(

h

k

)
= (h, f)H1(k, g)H2 ,

(
h

k

)
∈ H1 ×H2, (8.1)

cf. [55]. The set of finite linear combinations of such forms will be denoted
by H1 ⊗H2. By extending the mapping

(f ⊗ g, h ⊗ k)H1⊗H2 = (f, h)H1(g, k)H2 , f, h ∈ H1, g, k ∈ H2,

sesqui-linearly to H1⊗H2, we obtain an inner product which turns H1⊗H2

into a pre-Hilbert space. Its completion will be denoted by H1⊗̂H2 and
called the tensor product of H1 and H2. If {fi}, {gj} are orthonormal bases
for H1 and H2, respectively, then {fi ⊗ gj} is an orthonormal basis for
H1⊗̂H2. Observe that for fn, f ∈ H1, gn, g ∈ H2,

fn → f, gn → g implies fn ⊗ gn → f ⊗ g, n → ∞. (8.2)

Indeed, for n → ∞, we have∥∥fn ⊗ gn − f ⊗ g
∥∥2

H1⊗̂H2
= (fn, fn)(gn, gn) − (f, fn)(g, gn)

− (fn, f)(gn, g) + (f, f)(g, g) → 0.

For operators A and B in H1 and H2, respectively, we define dom (A ⊗ B)
as the set of finite linear combinations of the conjugate bilinear forms (8.1),
where f ∈ domA, g ∈ dom B. We will sometimes write dom A ⊗ domB
instead of dom (A ⊗ B). The operator A ⊗ B is defined by

A ⊗ B : H1⊗̂H2 ⊇ dom (A ⊗ B) → H1⊗̂H2, (8.3)

(A ⊗ B)(f ⊗ g) := Af ⊗ Bg, f ∈ dom A, g ∈ domB
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and this definition is extended linearly to dom (A ⊗ B) = dom A ⊗ domB.
For densely defined operators A and B in H1 and H2, respectively, A ⊗ B
is densely defined in H1⊗̂H2 and we have

(A ⊗ B)∗ ⊇ A∗ ⊗ B∗. (8.4)

If, additionally, A and B closable, so is A ⊗ B. The closure A⊗̂B of A ⊗ B
is called the tensor product of A and B. If both operators A and B are
symmetric, so is A ⊗ B. In case that A and B are essentially selfadjoint
operators the same is true for A⊗B which implies that A⊗̂B is a selfadjoint
operator in H1⊗̂H2, cf. [67, page 264]. The spectrum of the tensor product
of selfadjoint operators A and B is the closure of the set

{λ · µ |λ ∈ σ(A), µ ∈ σ(B)},

cf. [55, page 300]. As a consequence we obtain the following statement.

Lemma 8.1.1. Let A and B be closed densely defined nonnegative oper-
ators in H1 and H2, respectively. Then A⊗̂B is a closed densely defined
nonnegative operator in the Hilbert space H1⊗̂H2.

Proof. Let Ã be a nonnegative selfadjoint extension of A and let B̃ be a
nonnegative selfadjoint extension of B. In consequence of the above men-
tioned spectral property, Ã⊗̂B̃ is a nonnegative selfadjoint extension of
A⊗̂B. Hence, A⊗̂B is nonnegative as well.

The next statement gives a connection between the Friedrichs exten-
sion (Krĕın-von Neumann extension) of nonnegative operators A,B and
the Friedrichs extension (Krĕın-von Neumann extension, respectively) of the
tensor product A⊗̂B, see [48].

Theorem 8.1.2. Let A and B be closed densely defined nonnegative oper-
ators in H1 and H2, respectively. Then the following statements are valid:

(i) AF ⊗̂BF = (A⊗̂B)F ;

(ii) AN ⊗̂BN = (A⊗̂B)N .

Proof. According to Lemma 8.1.1, A⊗̂B is a closed densely defined non-
negative operator in the Hilbert space H1⊗̂H2. We use the characteriza-
tions (2.11) and (2.13) to describe the Friedrichs and the Krĕın-von Neu-
mann extension of A⊗̂B.
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(i) In order to show

dom (AF ⊗ BF ) ⊆ dom
(
(A⊗̂B)F

)
, (8.5)

one has to prove that for all f ∈ dom AF , g ∈ dom BF , the element f ⊗ g
belongs to dom

(
(A⊗̂B)F

)
. Let f ∈ domAF , g ∈ domBF . Due to (2.11)

there exist sequences (fn) ⊆ domA, (gn) ⊆ dom B, such that for n,m → ∞,
we have

fn → f,
(
A(fn − fm), fn − fm

)
→ 0, gn → g,

(
B(gn − gm), gn − gm

)
→ 0.

Then the sequence (fn ⊗ gn) satisfies fn ⊗ gn → f ⊗ g, cf. (8.2), and(
(A⊗̂B)(fn ⊗ gn − fm ⊗ gm), fn ⊗ gn − fm ⊗ gm

)
H1⊗̂H2

→ 0, n,m → ∞.

Indeed, for n,m → ∞, we have(
(A⊗̂B)(fn ⊗ gn − fm ⊗ gm), fn ⊗ gn − fm ⊗ gm

)
H1⊗̂H2

(8.6)

= (Afn, fn)(Bgn, gn) − (Afm, fn)(Bgm, gn)

− (Afn, fm)(Bgn, gm) + (Afm, fm)(Bgm, gm).

Since the operators A
1/2
F and B

1/2
F are closed each summand in (8.6) konverges

to ±(AF f, f)(BF g, g). This proves (8.5). Furthermore, we have

(A⊗̂B)F = (A⊗̂B)∗
∣∣
dom (A⊗̂B)F

⊇ (A⊗̂B)∗
∣∣
dom (AF⊗BF )

⊇ A∗ ⊗ B∗∣∣
dom (AF⊗BF )

= AF ⊗ BF ,

cf. (8.4). Since the operator AF ⊗ BF is essentially selfadjoint this implies
AF ⊗̂BF = (A⊗̂B)F .

(ii) According to (2.13) for all f ∈ domAN , g ∈ domBN there exist se-
quences (fn) ⊆ domA, (gn) ⊆ dom B, such that for n,m → ∞, we have

Afn → ANf,
(
A(fn − fm), fn − fm

)
→ 0,

Bgn → BNg,
(
B(gn − gm), gn − gm

)
→ 0.

This implies Afn ⊗ Bgn → ANf ⊗ BNg, n → ∞. Next it is shown that the
sequence (fn ⊗ gn) satisfies(
(A ⊗ B)(fn ⊗ gn − fm ⊗ gm), fn ⊗ gn − fm ⊗ gm

)
H1⊗̂H2

→ 0, n,m → ∞.
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Observe that

lim
m,n→∞

(
A(fn − fm), fn − fm

)
= lim

m,n→∞

{
(Afn, fn) + (Afm, fm) − (Afn, fm) − (Afm, fn)

}
= 0

and

(ANf, f) = lim
n→∞

(Afn, f) = lim
n→∞

(fn, ANf) = lim
n→∞

lim
m→∞

(fn, Afm)

= lim
n→∞

lim
m→∞

(Afn, fm) = lim
n→∞

lim
m→∞

(Afm, fn).

Since (
(A ⊗ B)(fn ⊗ gn − fm ⊗ gm), fn ⊗ gn − fm ⊗ gm

)
H1⊗̂H2

= (Afn, fn)(Bgn, gn) − (Afm, fn)(Bgm, gn) (8.7)

− (Afn, fm)(Bgn, gm) + (Afm, fm)(Bgm, gm)

it follows that each summand in (8.7) konverges to ±(ANf, f)(BNg, g).
Analogously, we conclude AN ⊗̂BN = (A⊗̂B)N .

The next statement describes the tensor product of the square root of
two nonnegative selfadjoint operators by means of the square root of their
tensor product.

Lemma 8.1.3. Let A and B be nonnegative selfadjoint operators in H1 and
H2, respectively. Then (A⊗̂B)1/2 = A1/2⊗̂B1/2.

Proof. First observe that (A1/2 ⊗ B1/2)2 = A ⊗ B. Since (A1/2⊗̂B1/2)2 is
nonnegative and selfadjoint, we have

A⊗̂B ⊆ (A1/2⊗̂B
1/2)2.

Due to the fact that both operators are selfadjoint, they coincide.

The next statement is a direct consequence of Lemma 2.1.2 and Lemma
8.1.3.

Corollary 8.1.4. Let A and B be nonnegative selfadjoint operators in H1

and H2, respectively. Then every subspace N of H1⊗̂H2 with the property
domA ⊗ domB ⊆ N ⊆ domA1/2 ⊗ dom B1/2 is a core of (A⊗̂B)1/2.

More generally, we have the following statement.
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Lemma 8.1.5. Let T and S be closed operators in H1 and H2, respectively.
Further, let L be a core of T and let M be a core of S. Then L ⊗ M is a
core of T ⊗̂S.

Proof. Let βj ∈ C, fj ∈ domT, gj ∈ domB, j = 1, ..., k, k ∈ N, so that∑k
j=1 βjfj ⊗ gj ∈ dom (T ⊗ S). Since L is a core of T and M is a core of S

there exist sequences (f (n)
j ) ⊆ L, (g(n)

j ) ⊆ M such that

f
(n)
j → fj , Tf

(n)
j → Tfj , g

(n)
j → gj , Sg

(n)
j → Sgj , n → ∞, j = 1, . . . k.

According to (8.2), for n → ∞, it follows that

k∑
j=1

βjf
(n)
j ⊗ g

(n)
j →

k∑
j=1

βjfj ⊗ gj ,

k∑
j=1

βj(T ⊗ S)(f (n)
j ⊗ g

(n)
j ) =

k∑
j=1

βjTf
(n)
j ⊗ Sg

(n)
j →(T ⊗ S)

 k∑
j=1

βjfj ⊗ gj

 .

Together with Lemma 2.1.2 this implies that L ⊗ M is a core of T ⊗̂S.

Analogously to Lemma 2.1.2, the assumptions on T and S in the previ-
ous lemma may be slightly weakend.

From Lemma 8.1.5 we obtain an alternative proof of Theorem 8.1.2 (i):
Note that dom A⊗dom B is a core of A

1/2
F ⊗̂B

1/2
F . Due to the construction of

the Friedrichs extension it is a core of (A⊗̂B)
1/2
F , as well, cf. (2.4). Next, ob-

serve that both operators, AF ⊗̂BF and (A⊗̂B)F , are selfadjoint extensions
of A⊗B. Since dom A⊗domB is a core of their associated forms it follows
that AF ⊗̂BF and (A⊗̂B)F coincide.

The following theorem shows that the tensor product of two extremal
extensions is an extremal extension as well. Moreover, it gives a character-
ization of the extremal extensions of A⊗̂B in terms of factorizations con-
structed in Section 5.1.

Theorem 8.1.6. Let A and B be closed densely defined nonnegative opera-
tors in H1 and H2, respectively, and denote by J the operator associated to
A ⊗ B via (5.1). Then the following statements are valid:

118



(i) Let Ã be an extremal extension of A and let B̃ be an extremal extension
of B. Then Ã⊗̂B̃ is an extremal extension of A ⊗ B. In particular,
for every subspace N of H1⊗̂H2 satisfying

dom Ã ⊗ dom B̃ ⊆ N ⊆ dom Ã
1/2 ⊗ dom B̃

1/2,

we have
Ã⊗̂B̃ = (J∗|N)∗ (J∗|N)∗∗ ;

(ii) Let C̃ be an extremal extension of A⊗B. Then there exists a subspace
N of H1⊗̂H2 with dom A

1/2
F ⊗ dom B

1/2
F ⊆ N ⊆ dom A

1/2
N ⊗ domB

1/2
N

such that
C̃ = (J∗|N)∗ (J∗|N)∗∗ ;

(iii) Let L and M be subspaces of H1 and H2, respectively, where domA
1/2
F ⊆

L ⊆ dom A
1/2
N and dom B

1/2
F ⊆ M ⊆ dom B

1/2
N . Then we have

ÃL⊗̂B̃M = (J∗|L⊗M)∗ (J∗|L⊗M)∗∗ .

Proof. (i) Let Ã ∈ E(A) and B̃ ∈ E(B). Further, let βj ∈ C, hj ∈
dom Ã, kj ∈ dom B̃, j = 1, ...,m, m ∈ N, and set

f =
m∑

j=1

βjhj ⊗ kj ∈ dom Ã ⊗ dom B̃.

Since Ã and B̃ are extremal extensions of A and B, respectively, for all
j = 1, . . . ,m, there exist sequences (h(n)

j ) ⊆ dom A and (k(n)
j ) ⊆ domB

such that

∥Ã1/2(hj − h
(n)
j )∥ → 0, ∥B̃1/2(kj − k

(n)
j )∥ → 0, n → ∞, (8.8)

cf. (1.3). Put fn =
∑m

j=1 βjh
(n)
j ⊗ k

(n)
j ∈ dom A ⊗ domB. According to

Lemma 5.1.6, it is sufficient to show(
(Ã ⊗ B̃)(f − fn), f − fn

)
→ 0, n → ∞. (8.9)
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We have(
(Ã ⊗ B̃)(f − fn), f − fn

)
=

m∑
j=1

m∑
i=1

βjβi

(
Ã

1/2hj , Ã
1/2hi

) (
B̃

1/2kj , B̃
1/2ki

)

− 2Re


m∑

j=1

m∑
i=1

βjβi

(
Ã

1/2
L h

(n)
j , Ã

1/2
L hi

)(
B̃

1/2k
(n)
j , B̃

1/2ki

)
+

m∑
j=1

m∑
i=1

βjβi

(
Ã

1/2h
(n)
j , Ã

1/2h
(n)
i

)(
B̃

1/2k
(n)
j , B̃

1/2k
(n)
i

)
.

Together with (8.8) we conclude (8.9). Consequently, Ã⊗̂B̃ is an extremal
extension of A ⊗ B.

Next, observe that the operator (J∗|N)∗ (J∗|N)∗∗ is well defined, since ac-
cording to Lemma 8.1.3 we have

domA ⊗ domB ⊆ N ⊆ dom Ã
1/2 ⊗ dom B̃

1/2 ⊆ dom
(
(Ã⊗̂B̃)1/2

)
⊆ dom

(
(A⊗̂B̃)

1/2
N

)
= dom J∗.

Thus, (J∗|N)∗ (J∗|N)∗∗ is an extremal extension of A ⊗ B, cf. (5.9). Since
Ã⊗̂B̃ and (J∗|L⊗M)∗ (J∗|L⊗M)∗∗ are both extremal extensions of A ⊗ B, it
is sufficient to prove that the domains of the associated forms are equal,
cf. (5.10). According to Corollary 8.1.4 N is a core of (Ã⊗̂B̃

)1/2. Thus, it
follows that

dom
((

Ã⊗̂B̃
)1/2

)
=

{
f ∈ H1⊗̂H2

∣∣∣ ∃ (fn) ⊆ N : fn → f,∥∥(
Ã⊗̂B̃

)1/2(fn − fm)
∥∥ → 0, n → ∞

}
.

Due to the Second Representation Theorem we have

dom
((

(J∗|N)∗ (J∗|N)∗∗
)1/2

)
= dom

(
(J∗|N)∗∗

)
= N

∥·∥J∗

=
{

f ∈ H1⊗̂H2

∣∣ ∃ (fn) ⊆ N : fn → f,〈
J∗(fn − fm), J∗(fn − fm)

〉
→ 0, n → ∞

}
,

where ∥ · ∥J∗ denotes the graph norm of J∗. Since Ã⊗̂B̃ is an extremal
extension of A ⊗ B, both sets coincide. Hence, the required factorization
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follows.

(ii) Due to the fact that every extremal extension of A⊗B allows a factor-
ization having the form (J∗|N)∗ (J∗|N)∗∗ , where

dom A ⊗ dom B ⊆ N ⊆ dom
(
(A⊗̂B)

1/2
N

)
,

it remains to prove that N can be chosen such that dom A
1/2
F ⊗ dom B

1/2
F ⊆

N ⊆ domA
1/2
N ⊗domB

1/2
N . According to Theorem 8.1.2 and Lemma 8.1.3 we

have
dom A ⊗ domB ⊆ N ⊆ dom (A

1/2
N ⊗̂B

1/2
N ) = dom J∗.

Recall that dom A
1/2
N ⊗ dom B

1/2
N is a core of A

1/2
N ⊗̂B

1/2
N and, hence, of J∗. In

addition, domA
1/2
F ⊗ domB

1/2
F is a core of A

1/2
F ⊗̂B

1/2
F =

(
(A⊗̂B)

1/2
F

)
. There-

fore, without loss of generality, we can choose N such that

domA
1/2
F ⊗ domB

1/2
F ⊆ N ⊆ dom A

1/2
N ⊗ domB

1/2
N .

(iii) According to the Second Representation Theorem L ⊗ M is a core of
((J∗|L⊗M)∗ (J∗|L⊗M)∗∗)

1/2
. Since L is a core of Ã

1/2
L and M is a core of B

1/2
M

(cf. the definition of ÃL and B̃M) L ⊗ M is a core of

Ã
1/2
L ⊗̂B̃

1/2
M =

(
ÃL⊗̂B̃M

)1/2

as well, cf. Lemma 8.1.3 and Lemma 8.1.5. Since both operators, ÃL⊗̂B̃M

and (J∗|L⊗M)∗ (J∗|L⊗M)∗∗ are extremal extensions of A⊗B, with the same
argument as in the proof of statement (i), it follows that these operators
coincide.
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A Sobolev Spaces

Let I ⊆ R be an open interval and let p be a positive integer. By Lp(I)
we denote the set of all (equivalence classes of) (Lebesgue-) measurable
functions f : I → C, for which the (Lebesgue-) integral

∫
I |f(t)|p dt exists.

We identify in Lp(I) those functions which are equal almost everywhere
(a.e.). They form a Banach space with respect to the norm

∥f∥Lp(I) =
(∫

I
|f(t)|p dt

)1/p

.

Equipped with the inner product

(f, g)L2(I) =
∫

I
f(t)g(t) dt, f, g ∈ L2(I),

L2(I) is a Hilbert space. Similarly, if f ∈ Lp
(
(c, d)

)
for every c, d ∈ I

with c < d, then we write f ∈ Lp
loc(I), and in case p = 1 we call f locally

integrable.
For n ∈ N the vector-space Cn(I) consists of all functions that are n

times continuously-differentiable on the interval I. Further, let C∞(I) :=⋂∞
n=0 Cn(I). Its subspace C∞

0 (I) is the set of infinitely-differentiable func-
tions with compact support in I. We call a function f : I → C absolutely
continuous on I if there exists on I a locally integrable function g such that

f(x) = f(c) +
∫ x

c
g(t) dt, c, x ∈ I.

Then f is differentiable a.e. on I and f ′ = g a.e.. We call g the derivative of
f and we write g = f ′. Note, that if g ∈ L1(I), we can extend f continously
to the endpoints of I. In this case we call f absolutely continuous on I.
Consequently, such a function f belongs to L2(I). We denote by AC(I) and
AC(I) the set of absolutely continuous functions on I and I, respectively.
Conversely, if g ∈ L1

loc(I) and c ∈ I, then the function f(x) :=
∫ x
c g(t) dt

is absolutely continuous on I, f ′ exists a.e. and f ′ = g a.e.. For func-
tions F,G ∈ AC(I) and f, g ∈ L1

loc(I) satisfying F ′ = f, G′ = g a.e., the
integration by parts formula∫ x

c
F (t)g(t) dt = F (x)G(x) − F (c)G(c) −

∫ x

c
f(t)G(t) dt, c, x ∈ I, (A.1)

the product rule (FG)′ = fG + Fg and the chain rule(
F

(
G(t)

))′
= F ′(G(t)

)
G′(t), t ∈ I,

122



are valid. In particular, the product FG, the sum F + G, the square root√
F (for F > 0) and the reciprocal 1

F (for F ̸= 0) are absolutely continuous
functions on I. 7

Let f, g ∈ L1
loc(I), k ∈ N and for all φ ∈ C∞

0 (I), let∫
I
f(x)φ(k)(x) dx =

∫
I
g(x)φ(x) dx. (A.2)

Then (−1)kg is called the k-th weak (or distributional) derivative of f and
it is unique up to sets of measure zero. Indeed, if h ∈ L1

loc(I) satisfies∫
I
h(x)φ(x) dx = 0 for all φ ∈ C∞

0 (I), (A.3)

then h = 0 almost everywhere, cf. [2, page 59]. Thus, (−1)kg = f (k) in the
sense of the theory of distributions. If the k-th derivative f (k) of a function
f exists in the classical sense, then f (k) is also a distributional derivative of
f . The support of f ∈ L1

loc(I) is defined as the complement (in I) of the set{
x ∈ I

∣∣∣ ∃ U(x) :
∫

U(x)
f(t)φ(t) dt = 0 ∀ φ ∈ C∞

0 (I)
}

, (A.4)

cf. [70, page 24].
Now we recall the definition of the Sobolev spaces. Let k,m ≥ 0 be

integer. The completion of the set {u ∈ Cm(I) : ∥u∥W m
k (I) < ∞} with

respect to the norm

∥f∥W m
k (I) :=

 m∑
j=0

∥f (j)∥k
Lk(I)

1/k

(A.5)

is the Sobolev space Wm
k (I), cf. [2]. The closure of C∞

0 (I) in the space
Wm

k (I) is denoted by W̊m
k (I). Hence, C∞

0 (I) is dense in both spaces, Lk(I)
and W̊m

k (I). Due to Meyers and Serrin, see [46] or [2, page 52], a function
f belongs to the Hilbert space Wm

k (I) if and only if it belongs to Lk(I)
together with its (distributional) derivatives f (j), where 0 ≤ j ≤ m. 8 In
[26, page 236] it is shown that

Wm
k (I) = {f ∈ Lk(I) | f (j) ∈ AC(I), 0 ≤ j < m, f (m) ∈ Lk(I)}. (A.6)

7Indeed, we have (
√

F )′ = F ′

2
√

F
∈ L1

loc(I), ( 1
F

)′ = − F ′

F2 ∈ L1
loc(I) since 1√

F
, 1

F2 are
continuous functions on I and, hence, locally bounded.

8This description may serve as the definition of the Sobolev space W m
k (I), too, even if

the interval or a set I ⊆ Rn, is unbounded. Equivalently, W m
k (I) may be defined as the

completion of the set {f ∈ Cm(I) : ∥f∥W m
k

(I) < ∞} with respect to the norm (A.5).
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The so-called Embedding Theorems state, among others, that for 0 ≤ j < m,
the embeddings

Wm
2 (I) ⊆ Cj(I) and W 1

1 (I) ⊆ C(I) (A.7)

are compact, where the spaces Cj(I) are equipped with the norm

∥f∥Cj(I) = max
n=0,...j

{
max
t∈I

∣∣f (n)(t)
∣∣}.

Further, it is well known that W̊m
k (I) consists of all functions f ∈ Wm

k (I),
that vanish at the endpoints of I together with their (distributional) deriva-
tives f (j), where 0 ≤ j < m, cf. [2, page 45].

According to the notations in [28], we define for k = 2 and m > 0
the Sobolev spaces of negative order W−m

2 (I), W−m(I) as the completion of
L2(I) with respect to the norm

∥f∥W−m
2 (I) = sup

{
|(f, g)L2(I) | g ∈ Wm

2 (I), ∥g∥W 2
2 (I) ≤ 1

}
,

∥f∥W−m(I) = sup
{
|(f, g)L2(I) | g ∈ W̊m

2 (I), ∥g∥W 2
2 (I) ≤ 1

}
,

respectively, cf. [28], see [2, pages 47-51] for the general case. Moreover,
W−m

2 (I) and W−m(I) are the dual spaces of Wm
2 (I) and W̊m

2 (I), respec-
tively. Denote by D(I) the space of test functions in the sense of L. Schwartz,
cf. [61]. The dual space (D(I))′ of D(I) is called the space of (Schwartz)
distributions or generalized functions. In [28] it is shown that W−m(I) con-
sists of those distributions that are m − th (distributional) derivatives of
L2(I)-functions.

B Linear Relations

Linear relations play an important role in the description of selfadjoint ex-
tensions of symmetric operators, see Theorem 4.1.4 and Proposition 4.3.2.
We will use them in Section 5.3.

In this section we collect some basic facts concerning linear relations in
Hilbert spaces, cf. [21]. Furthermore, we give some criteria for the identity
T ∗

1 T ∗
2 = (T2T1)∗, extending those in [31].

Let H and K be Hilbert spaces. A linear subspace T of H × K, the
Cartesian product of H and K, is called a linear relation, or relation for
short. For example, the graph of an operator T : H ⊇ dom T → K is a
relation in H×K. Sometimes we will identify the operator T with its graph
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if it is more comfortable to work with relations. If T is not densely defined,
then T ∗ is not an operator anymore but a relation, see below. The domain,
range and kernel of a relation T are defined as follows:

dom T =
{

f ∈ H
∣∣ {f, g} ∈ T for some g ∈ K

}
,

ranT =
{

g ∈ K
∣∣ {f, g} ∈ T for some f ∈ H

}
,

kerT =
{

f ∈ H
∣∣ {f, 0} ∈ T

}
.

The ”image of zero” is called the multivalued part of the relation T and is
given by

mulT =
{

g ∈ K
∣∣ {0, g} ∈ T

}
.

Hence, a relation T is the graph of an operator if and only if mulT = {0}.
The inverse and the adjoint of a relation T are defined by

T−1 =
{
{g, f}

∣∣ {f, g} ∈ T
}

(B.1)

and by
T ∗ =

{
{k, h}

∣∣ (k, g)K = (h, f)H for all {f, g} ∈ T
}

,

respectively. If T is actually a densely defined operator then T ∗ coincides
with the usual (operator-) adjoint of T . From (B.1) it follows that T−1

is always defined and domT−1 = ranT . Furthermore, the adjoint relation
T ∗ is always closed, i.e. T ∗ is a closed subspace of K × H. The inverse
relation T−1 is closed if and only if T is closed. Moreover, the identity
(T−1)

∗
= (T ∗)−1 is fulfilled. The double-adjoint T ∗∗ of T coincides with the

closure of T in H×K. For a relation T we have the identity

mulT ∗∗ = (dom T ∗)⊥, (B.2)

which implies that T ∗ is densely defined if and only if T is a closable operator.
The componentwise sum of two relations T1, T2 is defined by

T1+̂T2 =
{
{f1 + f2, g1 + g2}

∣∣ {f1, g1} ∈ T1, {f2, g2} ∈ T2

}
.

The operator-like sum is defined by

T1 + T2 =
{
{f, g1 + g2}

∣∣ {f, g1} ∈ T1, {f, g2} ∈ T2

}
.
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For Hilbert spaces X,Y, Z and relations T1 ⊆ Y × Z, T2 ⊆ X × Y , the
product of T1 and T2 is defined by

T1T2 =
{
{f, h} ∈ X × Z

∣∣∃ g ∈ Y : {f, g} ∈ T2, {g, h} ∈ T1

}
. (B.3)

Its is easy to see that if T2 is an operator then T1 is an operator as well if
and only if the same is true for the product T1T2.

We call a relation T symmetric if T ⊆ T ∗ and selfadjoint if T = T ∗. T
is called nonnegative if it satisfies (f, g) ≥ 0 for {f, g} ∈ T .

The first part of the following statement was proved in operator case in
[68] and in relation case for X = Y = Z in [31]. In these sources you can
find proofs of the second part of the statement, too, but with the stronger
conditions from Corollary B.1.2.

Proposition B.1.1. Let H, K and E be Hilbert spaces and let T1 ⊆ K × E
and T2 ⊆ H×K be linear relations. Then we have T ∗

2 T ∗
1 ⊆ (T1T2)∗. If one

of the following conditions is satisfied, then the identity (T1T2)∗ = T ∗
2 T ∗

1 is
valid.

(i) dom T1 ⊇ ranT2 and dom T ∗
1 ⊇ dom (T1T2)∗, or

(ii) T2 is a densely defined injective operator with dense range, ranT2 ⊇
dom T1 and ranT ∗

2 ⊇ ran (T1T2)∗.

Proof. In order to show T ∗
2 T ∗

1 ⊆ (T1T2)∗ let {h, k} ∈ T ∗
2 T ∗

1 . By definition,
there exists l ∈ K such that {h, l} ∈ T ∗

1 and {l, k} ∈ T ∗
2 . Consequently, we

have

(h, g) = (l, f) for all {f, g} ∈ T1 and (l, g̃) = (k, f̃) for all {f̃ , g̃} ∈ T2.

Let {m,n} ∈ T1T2. Thus, there exists f̂ ∈ dom T1 such that {m, f̂} ∈ T2

and {f̂ , n} ∈ T1. Further, the identities (h, n) = (l, f̂) and (l, f̂) = (k,m)
are satisfied. This implies (h, n) = (k,m). We conclude {h, k} ∈ (T1T2)∗

and, hence, T ∗
2 T ∗

1 ⊆ (T1T2)∗.

Now let (i) be satisfied, i.e. dom T1 ⊇ ranT2 and domT ∗
1 ⊇ dom (T1T2)∗.

We show the other inclusion T ∗
2 T ∗

1 ⊇ (T1T2)∗. For {h, k} ∈ (T1T2)∗, we have

(h, g) = (k, f) for all {f, g} ∈ T1T2.

In order to prove that {h, k} ∈ T ∗
2 T ∗

1 , we have to find an element l ∈ K
such that {h, l} ∈ T ∗

1 and {l, k} ∈ T ∗
2 . To see this, let {f̃ , g̃} ∈ T2. Since
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domT1 ⊇ ranT2, there exists an element g ∈ E such that {g̃, g} ∈ T1.
Consequently, {f̃ , g} ∈ T1T2. This implies (h, g) = (k, f̃). Next, observe
that there exists an element l ∈ K such that

{h, l} ∈ T ∗
1 and (h, g) = (l, g̃).

Thus, (k, f̃) = (l, g̃) for all {f̃ , g̃} ∈ T2. This implies {l, k} ∈ T ∗
2 . Conse-

quently, T ∗
2 T ∗

1 = (T1T2)∗.

Now let (ii) be satisfied. We show that T ∗
2 T ∗

1 ⊇ (T1T2)∗. In fact, let
{h, k} ∈ (T1T2)∗ and {f̂ , ĝ} ∈ T1. Then there exists an element f̃ ∈ dom T2

such that T2f̃ = f̂ Consequently, {f̃ , ĝ} ∈ T1T2. Since T−1
2 is an operator,

we have f̃ = T−1
2 f̂ and

(h, ĝ) = (k, f̃) = (k, T−1
2 f̂) = ((T−1

2 )∗k, f̂) for all {f̂ , ĝ} ∈ T1.

This implies {h, (T−1
2 )∗k} ∈ T ∗

1 . Next observe that we have {(T−1
2 )∗k, k} =

{(T ∗
2 )−1k, k} ∈ T ∗

2 , cf. [68, page 104]. It follows that

((T−1
2 )∗k, g̃) = (k, f̃) for all {f̃ , g̃} ∈ T2.

We conclude {h, k} ∈ T ∗
2 T ∗

1 . This completes the proof.

Corollary B.1.2. Let H,K and E be Hilbert spaces and let T1 ⊆ K×E and
T2 ⊆ H×K be linear relations. If dom T1 = K and domT ∗

1 = E are satisfied
or T−1

2 ∈ L(K,H), then we have (T1T2)∗ = T ∗
2 T ∗

1 .

The following statement will be useful for a factorization result in Section
5.3. For the proof see [33, page 4] or [60, page 19].

Lemma B.1.3. Let E ,H be Hilbert spaces and let R ⊆ E × H be a linear
relation. Assume that E is a closed subspace of the Hilbert space K and
that H is a closed subspace of the Hilbert space F . Then for the relations
Rl ⊆ K ×H and Rr ⊆ E × F defined by

Rl =
{{(

f

0

)
, f ′

} ∣∣∣ {f, f ′} ∈ R

}
and Rr =

{{
f,

(
f ′

0

)} ∣∣∣ {f, f ′} ∈ R

}
,

with respect to the orthogonal decompositions K = E uE⊥ and F = HuH⊥,
respectively, we have the identities

R∗∗R∗ = R∗∗
l R∗

l and R∗R∗∗ = R∗
rR

∗∗
r .
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[12] Yu. M. Arlinskĭı, E. Tsekanovskĭı, Quasi selfadjoint contractive exten-
sions of hermitian contractions, Teor. Funkts., Funkts. Anal. Prilozhen
50, 9–16 (1988).

[13] J. V. Baxley, Eigenvalues of singular differential operators by finite
difference methods I, J. Math. Anal. Appl. 37, 244–254 (1972).

128



[14] J. Behrndt, M. Langer, Boundary value problems for elliptic partial dif-
ferential operators on bounded domains, Journal of Functional Analysis
243, 536–565 (2007).

[15] S. Bochner, Integration von Funktionen, deren Werte die Elemente
eines Vekorraums sind, Fund. Math. 20, 262–276 (1933).

[16] V. M. Bruk, On a certain class of problem with a spectral parameter in
the boundary conditions, Mat. Sb. 100 (1976), 210–216, Engl. transl.
in Math. USSR Sb. 29 (1976).

[17] E. A. Coddington, Extension theory of formally normal and symmetric
subspaces, Mem. Am. Math. Soc. 134, 1–80 (1973).

[18] E. A. Coddington, H. S. V. de Snoo, Positive selfadjoint extensions of
positive symmetric subspaces, Math. Z. 159, 203–214 (1978).

[19] P. A. Cojuhari, A. Gheondea, Krein spaces induced by symmetric op-
erators, accepted for publication in J. Operator Theory

[20] J. B. Conway, A course in functional analysis, Springer-Verlag, New
York, 1990.

[21] R. Cross, Multivalued linear operators, Marcel Dekker, Inc., 1998.

[22] V. A. Derkach, S. Hassi, M. M. Malamud, H. S. V. de Snoo, Boundary
relations and their Weyl families, Trans. Am. Math. Soc. 358, No. 12,
5351–5400 (2006).

[23] V. A. Derkach, M. M. Malamud, The Weyl function of a hermitian op-
erator and its relation to the characteristic function, Preprint DonFTI-
85-9 (104) Academy of Sciences of the Ukrainian SSR, Donetsk (1985)

[24] V. A. Derkach, M. M. Malamud, Generalized resolvents and the bound-
ary value problems for hermitian operators with gaps, J. Funct. Anal.
95, No. 1, 1–95 (1991).

[25] V. A. Derkach, M. M. Malamud, The extension theory of hermitian
operators and the moment problem, J. Math. Sci. 73, No. 2, 141–242
(1995).

[26] D. E. Edmunds, W. D. Evans, Spectral theory and differential opera-
tors, Clarendon Press Oxford, 1987.

129



[27] K. Friedrichs, Spektraltheorie halbbeschränkter Operatoren und An-
wendungen auf die Spektralzerlegung von Differentialoperatoren, Math.
Ann. 109, 465–487 (1934).

[28] V. I. Gorbachuk, M. L. Gorbachuk, Boundary value problems for op-
erator differential equations, Kluwer Academic Publishers, 1991.

[29] S. Hassi, On the Friedrichs and the Krĕın-von Neumann extension of
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1, 81
x, 107

AC(I), AC(I), 118
Ã(L), 30, 76
ÃL, 54
ÃL, 57
Ã1/2, see square root
Ãf , 35
AF , see Friedrichs extension
AN , see Krĕın-von Neumann extension

Cm(I), Cm(I), C∞
0 (I), 118, 119

D(I), 120
D[A], 37
(D(I))′, 120
domA, 13, 121

E(A), see extremal extensions

H+,H−, 41
H1/2(AF ),H−1/2(AF ), 41
HA, 35, 38, 39, 41, 42, 51, 55, 68
HA, see energy space
Hα(A), 41

KA, 42
kerA, 13, 121

L(H,K), 13
Lp(I), Lp

loc(I), 118

µ(A), see lower bound
mulA, 121

n±(A), see deficiency indices

R[A], 35
ranA, 13, 121
r̃anA, 35

σ(T ), see spectrum

t[·, ·], t[·], see sesquilinear form

Wm
k (I), W̊m

k (I), 119

(·, ·)T , 17

D
(·,·)

, {D, (·, ·)}, see closure
{D, (·, ·)}̂ , see completion

H×K, see Cartesian product
H/D, see quotient space
H ⊆ K, see embedding
H = K, see equality of Hilbert spaces

A ∩ B, 61
A ≤ B, 3

T : H ½ K, 13
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absolutely continuous, 118
accretive, 61
associated form, 18
associated operator, 18

boundary conditions, 32, 66, 81, 86,
87, 90, 93, 97, 103, 105, 107

boundary triplet, 45
basic, 48, 91, 107
positive, 47
symmetric generalized, 49

boundary value space, see boundary
triplet

Cartesian product, 120
chains of Hilbert spaces, 41
characterization

of closed extensions, 46
of extremal extensions, 39, 49,

54, 60, 72, 77, 114
of nonnegative selfadjoint exten-

sions, 21, 26, 48
of selfadjoint extensions, 46

coercive, 61
completion, 35, 37–43, 55, 68
core, 17, 18, 21, 84, 98, 101, 113, 114

deficiency indices, 45
disjoint, 44
distributional derivative, 119
distributions, 120

embedding, 13, 26, 36–38, 41, 42, 76,
120

energy space, 37, 42
equality of Hilbert spaces, 34
example, 32, 42, 66, 78, 80, 97
extremal extensions, 34, 93, 107

factorization, 30, 51, 52, 54, 60, 62,
65, 68, 71–73, 82, 96, 98, 103,
114

form domain, 18
Friedrichs extension, 20–24, 30, 52,

54, 57, 62, 71, 74, 86, 103,
105, 111

fundamental, see boundary triplet, ba-
sic

generalized functions, 120
graph norm, 17

inner product, 13
on L2(I), 118

integration by parts, 118
intersection, 61
isometrically isomorphic, 39, 41, 42,

68, 69
isomorphic, 37, 38

Krĕın-von Neumann extension, 21–
24, 30, 52, 54, 57, 62, 71, 74,
87, 100, 103, 105, 111

linear relation, 120
locally integrable, 118
lower bound, 15, 16

maximal sectorial, 61

norm
on Cm(I), 120
on Lp(I), 118
on Wm

k (I), 119
on W−m

2 (I), W−m(I), 120

operator
nonnegative, 15
positive, 15
positive definite, 15
semibounded, 15

order relation (partial) ≤, 19
orthogonal decomposition, 24, 26, 75,

84, 90, 93, 107, 109, 123
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orthogonal projector, 19, 47, 62, 75,
88

quotient space, 42, 55

Representation Theorem, 17

sectorial, 61
sesquilinear form, 16

closable, 16
closed, 16
closure of a, 16
nonnegative, 16
positive definite, 16
semibounded, 16

Sobolev space, 119
of negative order, 120

spectrum, 94, 111
square root, 15
Sturm-Liouville operator, 32, 42, 66,

78, 80

tensor product
of Hilbert spaces, 110
of operators, 110

test functions, 43, 120
transformation, 21
transversal, 44

weak derivative
see distributional derivative, 119
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