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Abstract
We demonstrate that it is possible to mechanically exfoliate graphene under ultrahigh vacuum
conditions on the atomically well defined surface of single crystalline silicon. The flakes are
several hundred nanometers in lateral size and their optical contrast is very faint, in agreement
with calculated data. Single-layer graphene is investigated by Raman mapping. The graphene
and 2D peaks are shifted and narrowed compared to undoped graphene. With spatially
resolved Kelvin probe measurements we show that this is due to p-type doping with hole
densities of nh ' 6× 1012 cm−2. The in vacuo preparation technique presented here should
open up new possibilities to influence the properties of graphene by introducing adsorbates in
a controlled way.

(Some figures may appear in colour only in the online journal)

1. Introduction

Graphene with its unique electronic properties is often
envisaged as the material for future field effect transistors
and other electronic devices [1]. Up to now graphene
of the best quality with respect to important parameters
such as e.g. charge carrier mobility has been obtained by
mechanical exfoliation [2–4]. This method makes use of
adhesive tape and is applied under ambient conditions. It
is therefore not surprising that usually graphene flakes as
well as devices are heavily contaminated by residual glue,
adsorbates such as water, carbohydrates and photoresist
residues [5–7]. This is a major drawback in comparison with
the ultraclean epitaxial graphene flakes grown on SiC for
example [8, 9]. Ishigami et al have proposed a method for
in situ cleaning of photolithographically processed devices
which involves annealing in H2 at 400 ◦C [10], but the
devices are frequently operated under ambient conditions,
again introducing contaminants. It has been shown already
that these contaminants significantly influence the properties
of graphene, as they may act as electron acceptors or
donors [11–13]. Charged impurities shift the Fermi level, may
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cause scattering by Coulomb interaction and may also be
the origin of electron–hole puddles [14]. It is therefore very
important to be able to investigate the specific influence of
the respective adsorbates on graphene to better understand
variations in transport properties of gated devices and to
develop appropriate methods for their improvement. But due
to the rather arbitrary nature of the contaminants this has
remained impossible until now.

In this paper we show that graphene flakes can be
exfoliated directly on a crystalline Si surface (without
an oxide layer) under the cleanest conditions possible,
allowing access to unprecedented information. In addition,
it has just recently been demonstrated that graphene/silicon
hybrid structures are a very promising candidate for future
transistors, due to the adjustable Schottky barrier between
the two materials [15]. The preparation procedure used in
this work is based on the adhesion or cohesion of two
solids by attractive forces without any glue. This technique is
widely used in microelectronics [16], called fusion bonding
or wafer direct bonding. The idea goes back to Rayleigh,
who investigated the adhesion of polished fused quartz
samples [17]. The phenomenon occurs only with nearly
perfectly flat and clean surfaces. The exact nature of the
bonding depends crucially on the surface cleanliness. Under
ambient conditions, water adlayers, carbohydrates or other
surface species are present and the attractive forces are mainly
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Figure 1. Schematic of the stamping procedure. The graphite flake
is attached to a metal stamp which can be brought into contact with
the Si(111)7×7 surface by means of a wobble stick. Inset: typical
LEED image of the 7×7 reconstruction acquired after thermal
processing; electron energy E = 50 eV.

van der Waals or hydrogen bonds. The bonding type can be
changed to covalent bonds and thus strengthened by thermal
processing. In the extreme case of ultraclean surfaces in
ultrahigh vacuum (UHV), however, covalent bonds can form
directly even at room temperature [18].

2. Experimental details

As a substrate we use a silicon wafer (n-doped, 10–20 � cm,
Crystec) with the surface oriented perpendicular to the
[111]-direction. The Si sample is introduced into an UHV
chamber at a base pressure of pb ≤ 1 × 10−10 mbar and
degassed at T = 650 ◦C for 24 h. The Si is then repeatedly
flash-heated up to T = 1250 ◦C for a few seconds by direct
current heating. During flashing the pressure remains below
p = 5 × 10−9 mbar. This procedure completely removes
the native oxide layer from the Si surface and results
in the equilibrium structure of Si(111), the well known
7×7-reconstruction [19], upon cooling down through the
transition temperature of 850◦. The successful preparation is
controlled by low-energy electron diffraction (LEED, OCI
BDL800IR microchannel plate version). This method allows
for a quick and direct determination of the surface periodicity.
Sharp spots and a low background intensity indicate that
the surface is well ordered. The typical pattern shown in
the inset of figure 1 only appears if the silicon oxide layer
has been successfully removed and the clean Si(111) surface
has reconstructed into its minimum energy state. After the
Si(111)7×7 surface has been prepared and cooled down again
to RT, a freshly cleaved crystal of highly oriented pyrolytic
graphite (HOPG), which has previously been degassed at
T = 120 ◦C for 24 h, is gently pressed onto the Si surface by
means of a wobblestick, as schematically shown in figure 1.
The Si sample with exfoliated graphene is then removed
from the vacuum chamber for further inspection. Ex situ
optical inspection and atomic force microscopy (AFM, Veeco
Dimension 3100) reveal that the stamping leads to randomly

Figure 2. (a) Atomic force microscopy (tapping mode, nanosensors
NCHR with f = 290 kHz; scan frequency 0.8 Hz) images of
graphene exfoliated under UHV conditions. The dashed rectangle
marks the region shown in more detail in figure 5. The graphite
regions can be used to calibrate Kelvin probe data (see text).
(b) Optical microscopy image of the same region as in (a). The
optical contrast is very feeble and prevents easy identification of
single-layer graphene.

distributed flakes of graphite on the surface, among which
also graphene can be found, see figure 2. Note that the
extraction of the sample was done here only to simplify
the measurements, because UHV setups can be equipped to
perform AFM and Kelvin probe measurements [20], but are
usually not compatible with optical inspection and µ-Raman
mapping. Nevertheless, as we have proved the feasibility of
the deposition technique, future experiments can be easily
performed totally in situ.

3. Results and discussion

With respect to graphene it was discussed earlier already
that in situ stamping of graphene should in principle be
feasible on crystalline SiO2 [21]. The authors calculated the
energy of adhesion and cohesion, respectively, using a density
functional approach. It was found that the cleavage of graphite
in contact with a completely oxygen-terminated SiO2 surface
is very likely, as it is energetically favorable. However, the
experiment was performed under ambient conditions and they
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Figure 3. AFM images and corresponding line scans of a substrate region covered with single-layer graphene, i.e. inside the marked region
of figure 2. (a) Image taken shortly after extraction from the UHV and before Raman mapping. The original terrace morphology of the Si
substrate shows signs of a beginning oxidization, the steps are preserved underneath graphene. SLG height appears to be ≈1 nm. (b) Image
taken after Raman mapping which has induced water adlayers. The uncovered Si(111) substrate is fully oxidized and the original terrace
structure has completely disappeared. Underneath graphene terraces can still be recognized. SLG height is now 0.4–0.6 nm (see text).

did not obtain single-layer (SLG) but only few-layer graphene
(FLG). The cohesion energy of Si is typically large (γ >
2 J m−2) [18] and comparable to SiO2, thus one could argue
along this line that the chance for SLG production should
be reasonable in our case. With our approach contamination
by ambient conditions is avoided and both surfaces are very
flat, thus approaching ideal conditions for fusion bonding. In
addition, the Si(111)7×7 surface is known to be extremely
reactive due to its specific reconstruction with unterminated
bonds at the adatom positions, i.e. with a density of one
dangling bond per 5 Å

2
. This effect could increase the

probability of covalent bond formation and may thus play an
even bigger role here.

Chen et al used a cleaned and passivated Si surface
and exfoliation in air to create a silicon/graphene device
with a Schottky barrier [22]. The ideality factor of their
devices was, however, much lower than the one achieved with
the method presented in [15], indicating that the interface
quality is much worse despite the clean Si surface. Ritter
et al have applied the so-called dry contact transfer method,
where a braided fiberglass applicator is loaded with powder of
exfoliated graphite [23]. The applicator can be heated in UHV
so that physisorbed contamination is removed. Subsequently,
the applicator is brought into contact with the substrate. This
procedure yields a high percentage of single-layer graphene.
However, the lateral dimensions of the resulting flakes is
around 20 nm. Therefore, this approach produces flakes which
are much too small to be investigated by means of Raman
spectroscopy, and they are not suitable for device fabrication.

This is different from the technique presented here.
Typical images from stamped graphene on Si(111)7×7

taken with an optical microscope are shown in figure 2(b).
The flake distribution and size resembles the one typically
found with exfoliation under ambient conditions on various
substrates [24]. The lateral size is in principle limited by the
quality of the HOPG crystal, but additional preparation steps
may also be needed to obtain larger flakes. Graphene flakes
appear brighter than the substrate, but the contrast is very
faint, i.e. C ≈ −10 ± 7% for 7 layers, C ≈ −6 ± 6% for
4 layers, and C ≤ −1% for SLG. To correlate the contrast
values from the optical image with the number of graphene
layers, Raman and AFM measurements were analyzed in
the corresponding areas. These values have the correct sign,
i.e. flakes appear brighter than the substrate, and are somewhat
higher than the calculated data using a Fresnel law based
model [25].

From our AFM data (see figures 3 and 5) we find a
minimum average height of graphene of ≤1 nm, which would
be in good agreement with either single-layer or bilayer
graphene, assuming an interlayer spacing of graphite of 3.5 Å.
We also find layers with 2 and 3 nm height with respect to the
substrate. It is very well known that height measurements of
graphene with tapping mode AFM are not unambiguous [26].
Here, the post-oxidization of the Si(111) surface causes an
additional uncertainty.

Due to the exposure to ambient conditions at least the
parts of the substrate without graphene are covered by a
native oxide layer of dSiO2 ≈ 1.5 nm thickness after several
hours. It has recently been shown that graphene protects
the underlying surface quite well even to the extreme of
preserving the very sensitive surface state of Ir(111) under
ambient conditions [27]. Therefore, the clean non-oxidized
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Si surface and even the 7×7-reconstruction might still be
present underneath the graphene layer. Samples with SLG
freshly taken out from the UHV show no signs of water or
adsorbates for some hours, see figures 3(a) and 5. We took
great care to measure Kelvin probe and Raman point spectra
with the sample in this condition. This is important, because
a significant contamination with water is introduced by the
prolonged laser irradiation from the Raman mapping, as can
be seen from the direct comparison before/after in figures 3(a)
and (b), see also [28]. Note, that despite the presence of
the Raman-induced water adlayer the original terrace steps
under the graphene sheet are still visible, indicating that in
contrast to the exposed Si(111) surface, no oxidation has
taken place in areas protected by graphene. An additional
indication for the protection properties comes from a more
detailed analysis of the AFM images. The line profile of the
pristine SLG shows a height of about 1 nm with respect to the
SiO2 surface, see figure 3. After the Raman mapping, water
is present on the sample but it is not completely covered,
as can be clearly seen in figure 3(b). The SLG with the
water adlayer exhibits a different height profile: 0.6 nm in
areas where water is present and 0.4 nm in areas where there
is no water, see line scans in figure 3. The difference in
height of 0.4 nm (exposed to ambient conditions, figure 3(a))
instead of≈1.0 nm (pristine, figure 3(b)) is consistent with the
assumption that the oxide layers has grown while the Si(111)
underneath the graphene has been protected from oxidation.
This again is consistent with the recently published findings
that even graphene deposited by chemical vapor deposition is
able to protect metallic substrates such as Cu and Cu/Ni alloy
from oxidation [29].

To check whether optical data can support this
observation we have calculated the optical contrast C =
R0−R

R0
, with R the reflected intensity with and R0 the reflected

intensity without graphene. We assumed full oxidation
underneath the graphene layer (model 1) and complete
protection by graphene (model 2), respectively. From figure 4
one can see that the absolute contrast values are in general
higher for model 2. However, even under the most favorable
conditions, e.g. blue light and at least 14 layers of graphene,
the maximum contrast difference for the two models would
be 1C = Cmodel 1 − Cmodel 2 = 1.3%, which is clearly
beyond our experimental resolution. This means that the
contrast differences we observe in figure 4 are not sufficient
to differentiate between an oxidized and non-oxidized Si
surface.

We used µ-Raman spectroscopy (LabRAM HR, Horiba
Jobin Yvon) with an excitation wavelength of λ = 532 nm
to verify and investigate the SLG. The incident power was
kept below 5 mW to prevent heating. As already discussed, we
still observed the formation of water adlayers after the Raman
mapping, while short point spectra did not show any effect.
The spectra were calibrated with neon lines. We performed a
Raman mapping with a step size of 250 nm and a laser spot
of <0.5 µm diameter. To extract the Raman shift, intensity
and a full width at half maximum (FWHM) from the data,
the G mode and the 2D mode were fitted separately with a
single Lorentzian. From the resulting FWHM map of the 2D

Figure 4. Calculated contrast values C in per cent for varying
numbers of graphene layers and different color channels using the
Fresnel law [25]. Model 1, solid lines: complete oxidation of Si
underneath graphene. Model 2, dashed lines: complete protection
from oxidation of Si by graphene.

mode (see figure 6(a)) we identify an SLG region (indicated
by the rectangle) as well as surrounding few-layer graphene
and graphite. Figure 6(c) shows Raman spectra from the SLG
as well as from the FLG region. The 2D mode for the SLG
is found at 2673 cm−1, with a FWHM of 27 cm−1, and
exhibits the narrow symmetric line shape characteristic for
SLG [30]. The absence of the disorder-induced D peak at
1350 cm−1 indicates high structural integrity of the flakes,
which is typical for exfoliated graphene.

In the SLG region the G mode is upshifted up
to 1593 cm−1 and strongly narrowed (FWHM 7 cm−1)
compared to undoped graphene, which shows a Raman shift
of 1583 cm−1 with a FWHM of 15 cm−1 [31]. This is clear
evidence of doping, with an estimated carrier concentration
of n ≥ 4 × 1012 cm−2 [31–33]. In the few-layer graphene
regions (see figure 6(b)) the G mode shows lower frequencies,
indicating less effective doping in thicker layers. However,
for an accurate quantification of type and value of the charge
carrier concentration one would have to perform experiments
with a defined gate structure.

To study the doping of graphene we measured the locally
resolved contact potential difference (LCPD) between the tip
and the sample with a Kelvin probe setup [34]. Kelvin probe
measurements were performed before the Raman mapping
to avoid water contamination. Images were recorded in a
two-pass mode. During the first pass the topography is
measured in tapping mode and during the second pass the tip
is lifted by 3–10 nm. While lifted, an ac bias of about UBias =

0.5–1.0 V is applied to the tip at its resonance frequency.
The resulting electric force on the tip is minimized with a
dc voltage that corresponds to the LCPD between the tip and
the measured area [35]. From figures 5(b) and (c), one can
clearly see that the LCPD is decreasing with decreasing layer
thickness. We attribute this to a p-type doping of graphene [36,
37, 20].

Attributing the known work function of 8HOPG =

4.65 eV (see [38] and references therein) to the CPD value
of the graphite regions enables us to assign work function
values to our graphene layers:8Gi = 8HOPG+1CPD(FLG−
Gi), i being the number of graphene layers. To exclude any
ambiguities the number of layers was determined by the
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Figure 5. (a) AFM image of region marked in figure 2 where
typical heights of SLG and FLG with respect to the substrate can be
seen. (b) LCPD image of SLG and substrate as well as FLG (region
marked in figure 2) obtained by Kelvin probe microscopy. A bias
voltage was applied to the tip. Single-layer graphene was verified by
Raman spectroscopy. (c) CPD histogram from (b).

shape of the 2D Raman peak for SLG and TLG, and only
thicker layers were determined by AFM line scans, assuming
a height of 0.35 nm for each layer. We can thus determine
the absolute value of the work function of SLG to be 8 =
4.93 ± 0.1 eV (see figure 7). For SLG, the work function
variation due to doping corresponds to a shift of the Fermi
energy 1EF with respect to the Dirac point [37]. The upshift

Figure 6. (a) Raman 2D FWHM map of the sample region shown
in figure 2. (b) Raman G mode map of the sample region shown in
figure 2. (c) Shape and width of the Raman 2D mode at 2675 cm−1

are characteristic for single-layer graphene. Shift and narrowing of
the G mode indicate doping.

of the Fermi level with respect to the value for undoped
free-standing graphene, 8 = 4.57–4.7 eV [39–41], is 1EF ≈

290 meV. This corresponds to a charge carrier density of
nh =

1
π
(1EF

h̄vF
)2 ' 6 × 1012 cm−2 if we assume vF = 1 × 106

m s−1 for the Fermi velocity [42]. These numbers have to be
treated with great care, as the exposure to ambient conditions
might influence the work function of HOPG and the calculated
doping level [43]. Note, however, that the number agrees
rather well with the number obtained from the shift of the
Raman G mode (see figure 6). Whether the accumulation of
holes observed here is indeed due to the direct interaction
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Figure 7. Work functions of single-, tri- and few-layer graphene on
Si substrate determined from Kelvin probe measurements. The
dashed line corresponds to the workfunction of HOPG, the hatched
region corresponds to values given in the literature for free-standing
(undoped) single-layer graphene.

of graphene with the clean silicon surface thus needs to be
investigated in future experiments avoiding the exposure to
ambient conditions altogether.

4. Conclusions

In summary, we have presented a method for the deposition
of single-layer graphene flakes on Si(111)7×7 under UHV
conditions. As the flakes reach lateral sizes of several
hundred nanometers, this technique opens up a wide range
of possible experiments, reaching from detailed studies of
adsorbate doping and cleaning protocols to the development
of more refined stamping procedures. The latter could
include e.g. sputtered substrates, thermal processing steps
or intercalated HOPG crystals to facilitate single-layer
exfoliation. Our approach could also help to understand the
origin of the strong differences in ideality factors in current
graphene/silicon devices.
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