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Abstract

In this paper formulas are derived for the analytic center of the solution set of lin-
ear matrix inequalities (LMIs) defining passive transfer functions. The algebraic Riccati
equations that are usually associated with such systems are related to boundary points
of the convex set defined by the solution set of the LMI. It is shown that the analytic
center is described by closely related matrix equations, and their properties are analyzed
for continuous- and discrete-time systems. Numerical methods are derived to solve these
equations via steepest ascent and Newton-like methods. It is also shown that the analytic
center has nice robustness properties when it is used to represent passive systems. The
results are illustrated by numerical examples.
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1 Introduction

We consider realizations of linear dynamical systems that are denoted as positive real or
passive and their associated transfer functions. In particular, we study positive transfer
functions which play a fundamental role in systems and control theory: they represent e. g.,
spectral density functions of stochastic processes, show up in spectral factorizations, are the

1Institut für Mathematik MA 4-5, TU Berlin, Str. des 17. Juni 136, D-10623 Berlin, FRG. bankmann@

math.tu-berlin.de. Supported by the German Research Foundation DFG as part of the project ‘Distributed
Dynamic Security Control in Next-Generation Electrical Power Systems’ with the project identification number
361092219 of the priority program ‘DFG SPP 1984 - Hybrid and multimodal energy systems: System theory
methods for the transformation and operation of complex networks’.

2Institut für Mathematik MA 4-5, TU Berlin, Str. des 17. Juni 136, D-10623 Berlin, FRG. mehrmann@math.
tu-berlin.de. Supported by the German Federal Ministry of Education and Research BMBF within the project
EiFer and by Deutsche Forschungsgemeinschaft, through TRR 154 ’Mathematical Modelling, Simulation and
Optimization using the Example of Gas Networks’.

3Department of Mathematical Engineering, Université catholique de Louvain, Louvain-La-Neuve, Belgium.
yurii.nesterov@uclouvain.be. Supported by ERC Advanced Grant 788368.

4Department of Mathematical Engineering, Université catholique de Louvain, Louvain-La-Neuve, Belgium.
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Hermitian part of a positive real transfer function, characterize port-Hamiltonian systems,
and are also related to algebraic Riccati equations.

Positive transfer functions form a convex set, and this property has lead to the exten-
sive use of convex optimization techniques in this area (especially for so-called linear matrix
inequalities [5]). In order to optimize a certain scalar function f(X) over a convex set, one
often defines a barrier function b(X) that becomes infinite near the boundary of the set, and
then finds the minimum of c · f(X) + b(X), c � 0, as c → +∞. These minima (which are
functions of the parameter c) are called the points of the central path. The starting point of
this path (c = 0) is called the analytic center of the set.

In this paper we present an explicit set of equations that define the analytic center of the
solution set of the linear matrix inequality defining a passive transfer function. We also show
how these equations relate to the algebraic Riccati equations that typically arise in the spectral
factorization of transfer functions. We discuss transfer functions both on the imaginary axis
(i. e. the continuous-time case), as well as on the unit circle (i. e. the discrete-time case). In
the continuous-time setting the transfer function arises from the Laplace transform of the
system

ẋ = Ax+Bu, x(0) = 0,
y = Cx+Du,

(1)

where u : R → Cm, x : R → Cn, and y : R → Cm are vector-valued functions denoting,
respectively, the input, state, and output of the system. Denoting real and complex n-vectors
(n × m matrices) by Rn, Cn (Rn×m, Cn×m), respectively, the coefficient matrices satisfy
A ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n, and D ∈ Cm×m.

In the discrete-time setting the transfer function arises from the z-transform applied to
the system

xk+1 = Axk +Buk, x0 = 0,
yk = Cxk +Duk,

with state, input, and output sequences {xk}, {uk}, {yk}. In both cases, we usually denote
these systems by four-tuples of matrices M := {A,B,C,D} and the associated transfer
functions by

Tc(s) := D + C(sIn −A)−1B, Td(z) := D + C(zIn −A)−1B, (2)

respectively.
We restrict ourselves to systems which are minimal, i. e. the pair (A,B) is controllable

(for all λ ∈ C, rank [λI −A B ] = n), and the pair (A,C) is reconstructable (i. e. (AH, CH) is
controllable). Here, the conjugate transpose (transpose) of a vector or matrix V is denoted
by V H (V T) and the identity matrix is denoted by In or I if the dimension is clear. We
furthermore require that input and output port dimensions are equal to m and assume that
rankB = rankC = m.

Passive systems and their relationships with positive-real transfer functions are well stud-
ied, starting with the works [13, 17, 20, 21, 22, 23] and the topic has recently received a revival
in the work on port-Hamiltonian (pH) systems, [18, 19]. For a summary of the relationships
see [2, 20], where also the characterization of passivity via the solution set of an associated
linear matrix inequality (LMI) is highlighted.

The paper is organized as follows. After some preliminaries in Section 2, in Section 3 we
study the analytic centers of the solution sets of LMIs associated with the continuous- and
discrete-time case. In Section 4 we discuss numerical methods to compute the analytic centers
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using steepest ascent as well as Newton-like methods and show that the analytic centers can be
computed efficiently. In Section 5 lower bounds for the distance to non-passivity (the passivity
radius) are derived using smallest eigenvalues of the Hermitian matrices associated with the
linear matrix inequalities evaluated at the analytic center. The results are illustrated with
some simple examples where the analytic center can be calculated analytically. In Appendix A
we derive formulas for the computation of the gradients and the Hessian of the functions that
we optimize and in Appendix B we clarify some of the differences that arise between the
continuous- and the discrete-time case.

2 Preliminaries

Throughout this article we will use the following notation. We denote the set of Hermitian
matrices in Cn×n by Hn. Positive definiteness (semidefiniteness) of A ∈ Hn is denoted by
A � 0 (A � 0). The real and imaginary parts of a complex matrix Z are written as <(Z)
and =(Z), respectively, and ı is the imaginary unit. We consider functions over Hn, which is
a vector space if considered as a real subspace of Rn×n + ıRn×n. We will identify Cm×n with
Rm×n+ıRm×n, but we note that this has implications when one is carrying out differentiations,
see Appendix A. The Frobenius scalar product for matrices X,Y ∈ Rn×n + ıRn×n is given by

〈X, Y 〉R := <(tr(AHB)) = tr(Y T
r Xr + Y T

i Xi),

where we have partitioned X,Y as X = Xr + ıXi, Y = Yr + ıYi with real and imaginary parts
in Rn×n. As we are mainly concerned with this scalar product, we will drop the subscript R.
We will make frequent use of the following properties of this inner product given by

〈X, Y 〉 = 〈Y, X〉 , ‖X‖F = 〈X, X〉
1
2 , 〈X, Y Z〉 =

〈
Y HX, Z

〉
=
〈
XZH, Y

〉
.

The concepts of positive-realness and passivity are well studied. In the following subsec-
tions we briefly recall some important properties following [10, 20], where we repeat a few
observations from [2]. See also [20] for a more detailed survey.

2.1 Positive-realness and passivity, continuous-time

Consider a continuous-time system M as in (1) and the transfer function Tc as in (2). The
transfer function Tc(s) is called positive real if the matrix-valued rational function

Φc(s) := T H
c (−s) + Tc(s)

is positive semidefinite for s on the imaginary axis, i. e. Φc(ıω) � 0 for all ω ∈ R and it is
called strictly positive real if Φc(ıω) � 0 for all ω ∈ R.

We associate with Φc a system pencil

Sc(s) :=

 0 A− sIn B
AH + sIn 0 CH

BH C R

 , (3)

where R := D + DH. Here (3) has a Schur complement which is the transfer function Φc(s)
and the generalized eigenvalues of Sc(s) are the zeros of Φc(s).
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For X ∈ Hn we introduce the matrix function

Wc(X) :=

[
−X A−AHX CH −X B
C −BHX D +DH

]
,

If Tc(s) is positive real, then the linear matrix inequality (LMI)

Wc(X) � 0 (4)

has a solution X ∈ Hn and we have the sets

X�

c := {X ∈ Hn |Wc(X) � 0, X � 0} ,

XÏ

c := {X ∈ Hn |Wc(X) � 0, X � 0} .

An important subset of X�

c are those solutions to (4) for which the rank r of Wc(X) is minimal
(i. e. for which r = rank Φc(s)). If R is invertible, then the minimum rank solutions in X�

c

are those for which rankWc(X) = rank(R) = m, which in turn is the case if and only if
the Schur complement of R in Wc(X) is zero. This Schur complement is associated with the
continuous-time algebraic Riccati equation (ARE)

Riccc(X) := −XA−AHX − (CH −XB)R−1(C −BHX) = 0. (6)

Solutions X to (6) produce a spectral factorization of Φc(s), and each solution corresponds

to a Lagrangian invariant subspace spanned by the columns of Uc :=
[
In −XT

]T
that

remains invariant under the action of the Hamiltonian matrix

Hc :=

[
A−BR−1C −BR−1BH

CHR−1C −(A−BR−1C)H

]
, (7)

i. e. Uc satisfies HcUc = UcAFc for a closed loop matrix AFc = A− BFc with Fc := R−1(C −
BHX) (see e.g., [8]). Each solution X of (6) can also be associated with an extended
Lagrangian invariant subspace for the pencil Sc(s) (see [4]), spanned by the columns of

Ûc :=
[
−XT In −FT

c

]T
. In particular, Ûc satisfies 0 A B

AH 0 CH

BH C R

 Ûc =

 0 In 0
−In 0 0

0 0 0

 ÛcAFc .

The sets X�

c ,X
Ï

c are related to the concepts of passivity and strict passivity see [20]. If for the
system M := {A,B,C,D} of (3) the LMI (4) has a solution X ∈ X�

c then M is (Lyapunov)
stable (i.e. all eigenvalues are in the closed left half plane with any eigenvalues occurring on
the imaginary axis being semisimple), and passive, and if there exists a solution X ∈ XÏ

c then
M is asymptocially stable, (i.e. all eigenvalues are the open left half plane) and strictly passive.
Furthermore, if M is passive, then there exist maximal and minimal solutions X− � X+ of
(4) in X�

c such that all solutions X of Wc(X) � 0 satisfy

0 ≺ X− � X � X+,

which implies that X�

c is bounded. For more details on the different concepts discussed in
this section, see [2].
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2.2 Positive-realness and passivity, discrete-time

For each of the results of the previous subsection there are discrete-time versions which we
briefly recall in this section, see [12, 17]. Note, that these results can be obtained by applying
a bilinear transform (see Appendix B) to the continuous-time counterparts.

The transfer function Td(s) in (2) is called positive real if the matrix-valued rational
function

Φd(z) := T H
d (z−1) + Td(z)

satisfies Φd(e
ıω) = ΦH

d (eıω) � 0 for 0 ≤ ω ≤ 2π, and it is called strictly positive real if
Φd(e

ıω) � 0 for 0 ≤ ω ≤ 2π.
We consider an associated the matrix function

Wd(X) =

[
X −AHX A CH −AHX B
C −BHX A BHX B +R

]
,

where again R = D +DH, the sets

X�

d := {X ∈ Hn |Wd(X) � 0, X � 0} ,

XÏ

d := {X ∈ Hn |Wd(X) � 0, X � 0} .

and the system pencil

Sd(z) =

 0 A− zIn B
zAH − In 0 CH

zBH C R


whose Schur complement is Φd(z).

If the system is positive real then, see [20], there exists X ∈ Hn such that Wd(X) � 0. If
that is the case, a transfer function Td(z) := C(zIn−A)−1B+D is called passive and strictly
passive if even Wd(X) � 0. We again have an associated discrete-time Riccati equation
defined as

Riccd(X) := −AHXA+X − (CH −AHXB)(R−BHXB)−1(C −BHXA) = 0. (9)

from which one directly obtains a spectral factorization of Φd(z). The solutions of the discrete-
time Riccati equation can be obtained by computing a Lagrangian invariant subspace spanned

by the columns of Ud :=
[
In −XT

]T
of the symplectic matrix

Sd :=

[
I BR−1BH

0 AH − CHR−1BH

]−1 [
A−BR−1C 0
CHR−1C I

]
,

satisfying SdUd = UdAFd
, where AFd

:= A−BFd with Fd := (R−BHXB)−1(C −BHXA).
Each solution X of (9) can also be associated with an extended Lagrangian invariant

subspace for the pencil Sd(z) (see [4]), spanned by the columns of Ûd :=
[
−XT In −FT

d

]T
.

In particular, Ûd satisfies 0 A B
In 0 CH

0 C R

 Ûd =

 0 In 0
AH 0 0
BH 0 0

 ÛdAFd
.
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Again, if the system is passive, then there exist maximal and minimal solutions X− � X+ in
XÏ

d , such that all solutions X of Wd(X) � 0 satisfy

0 ≺ X− � X � X+,

which implies that X�

d is bounded.

3 The analytic center

If the sets XÏ

c , XÏ

d in (5), respectively (8), are non-empty, then we can define their respective
analytic center. Following the discussion in [10], we first consider the continuous-time case,
the discrete-time case is derived in an analogous way. We choose a scalar barrier function

b(X) := − ln detWc(X),

which is bounded from below but becomes infinitely large when Wc(X) becomes singular. We
define the analytic center of the domain XÏ

c as the minimizer of this barrier function.

3.1 The continuous-time case

The solutions X+ and X− of the Riccati equation Riccc(X) = 0 in (6), are both on the
boundary of X�

c , and hence are not in XÏ

c . Since we assume that XÏ

c is non-empty, the
analytic center is well defined, see, e. g., , Section 4.2 in [16].

To characterize the analytic center, we first need to find a variation of the gradient bX of
the barrier function b at point X along direction ∆X , which is equal to〈

Wc(X)−1, ∆Wc(X)[∆X ]
〉
,

where bX = Wc(X)−1 and ∆Wc(X)[∆X ] is the incremental step in the direction ∆X , for
details see Appendix A. It appears that X is an extremal point of the barrier function if and
only if 〈

Wc(X)−1, ∆Wc(X)[∆X ]
〉

= 0 for all ∆X = ∆H
X .

The increment of Wc(X) corresponding to an incremental direction ∆X = ∆H
X of X is given

by

∆Wc(X)[∆X ] = −
[
AH∆X + ∆XA ∆XB

BH∆X 0

]
.

The equation for the extremal point then becomes〈
Wc(X)−1,

[
AH∆X + ∆XA ∆XB

BH∆X 0

]〉
= 0 for all ∆X = ∆H

X . (10)

Defining
Fc := R−1(C −BHX), Pc := −AHX −XA− FH

c RFc,

then

Wc(X) =

[
I FH

c

0 I

] [
Pc 0
0 R

] [
I 0
Fc I

]
.
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For a point X ∈ XÏ

c it is obvious that we also have Pc = Riccc(X) � 0, and hence (10) is
equivalent to〈[

P−1
c 0
0 R−1

]
,

[
I −FH

c

0 I

] [
AH∆X + ∆XA ∆XB

BH∆X 0

] [
I 0
−Fc I

]〉
= 0,

or 〈
P−1
c , AH∆X + ∆XA− FH

c B
H∆X −∆XBFc

〉
= 0,

and this is equivalent to
P−1
c AH

Fc
+AFcP

−1
c = 0, (11)

where we have set AFc = A−BFc.
We emphasize that Pc is nothing but the Riccati operator Riccc(X) defined in (6), and

that AFc is the corresponding closed loop matrix. For the classical Riccati solutions we
have Pc = Riccc(X) = 0 and the corresponding closed loop matrix is well-known to have its
eigenvalues equal to a subset of the eigenvalues of the corresponding Hamiltonian matrix (7).

Since Pc = Riccc(X) � 0, it follows that Pc has a Hermitian square root Tc satisfying
Pc = T 2

c . Transforming (11) with the invertible matrix Tc, we obtain

T−1
c AH

Fc
Tc + TcAFcT

−1
c = 0.

Hence ÂFc := TcAFcT
−1
c is skew-Hermitian and has all its eigenvalues on the imaginary axis,

and so does AFc . Therefore, the closed loop matrix AFc of the analytic center has a spectrum
that is also central.

It is important to also note that

detWc(X) = detRiccc(X) detR,

which implies that we are also finding a stationary point of detRiccc(X), since detR is constant
and non-zero.

Since the matrix Pc is positive definite and invertible, we can rewrite the equations defining
the analytic center as

RFc = C −BHX,

Pc = −AHX −XA− FH
c RFc,

0 = Pc(A−BFc) + (AH − FH
c B

H)Pc,

where X = XH and Pc = PH
c � 0. We can compute the analytic center by solving these three

equations which actually form a cubic equation in X.
Note that even though the eigenvalues of the closed loop matrix Fc associated with the

analytic center are all purely imaginary, the eigenvalues of the original system and the poles
of the transfer function stay invariant under the state space transformation Tc.

3.2 The discrete-time case

For discrete-time systems, the increment of Wd(X) equals

∆Wd(X)[∆X ] = −
[
AH∆XA−∆X AH∆XB

BH∆XA BH∆XB

]
,
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for all ∆X = ∆H
X . Defining Fd := (R−BHXB)−1(C−BHXA), Pd := −AHXA+X−FH

d (R−
BHXB)Fd, and AFd

:= A−BFd, then Wd(X) factorizes as

Wd(X) =

[
I FH

d

0 I

] [
Pd 0
0 R−BHXB

] [
I 0
Fd I

]
,

and the equation for the extremal point becomes〈[
P−1
d 0
0 (R−BHXB)−1

]
,

[
I −FH

d

0 I

] [
AH∆XA−∆X AH∆XB

BH∆XA BH∆XB

] [
I 0
−Fd I

]〉
= 0,

or 〈
P−1
d , AH

Fd
∆XAFd

−∆X

〉
+
〈

(R−BHXB)−1, BH∆XB
〉

= 0.

This is equivalent to

AFd
P−1
d AH

Fd
− P−1

d +B(R−BHXB)−1BH = 0, (13)

which is a non-homogenous discrete-time Lyapunov equation. Since (A,B) is controllable (by
assumption), so is (AFc , B) and it follows then from (13) that the eigenvalues of AFd

are now
strictly inside the unit circle. This is clearly different from the continuous-time case, where
the spectrum of AFc was on the boundary of the stability region. The equations defining the
discrete-time analytic center then become

(R−BHXB)Fd = C −BHXA,

Pd = CHR−1C +X −AHXA

− FH
d (R−BHXB)Fd,

0 = (A−BFd)P−1
d (AH − FH

d B
H)

− P−1
d +B(R−BHXB)−1BH.

Remark 3.1. Note that we could have transformed the solution of the corresponding continuous-
time problem via a bilinear transform, which would then yield a feedback Fd that puts all
eigenvalues on the unit circle, but the feedback would of course be different. For a more
detailed discussion, see Appendix B.

4 Numerical computation of the analytic center

In this section we present methods for the numerical computation of the analytic center.
Suppose that we are at a point X0 ∈ XÏ

c (XÏ

d ) and want to perform the next step using
an increment ∆X . We discuss a steepest ascent and a Newton-like method to obtain that
increment.
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4.1 A steepest ascent method

In order to formulate an optimization scheme to compute the analytic center, we can use the
gradient of the barrier function b(X) with respect to X to obtain a steepest ascent method.

In the continuous-time case, we then need to take a step ∆X for which 〈bW (X0), ∆Wc(X0)[∆X ]〉
is maximal, which is equivalent to

∆X := arg max
〈∆X ,∆X〉=1

〈
P−1
c (X0)AFc(X0)H +AFc(X0)P−1

c (X0), ∆X

〉
.

The maximum is obtained by choosing ∆X proportional to the gradient

P−1
c (X0)AFc(X0)H +AFc(X0)P−1

c (X0).

The corresponding optimal stepsize α for the increment ∆X can be obtained from the deter-
minant of the incremented LMI Wc(X0 + α∆X) � 0.

In the discrete-time case, we obtain the increment from

∆X :=

arg max
〈∆X ,∆X〉=1

〈
AFd

(X0)P−1
d (X0)AH

Fd
(X0)− P−1

d (X0) +B(R−BHX0B)−1BH, ∆X

〉
.

The maximum is obtained by choosing ∆X proportional to

AFd
(X0)P−1

d (X0)AH
Fd

(X0)− P−1
d (X0) +B(R−BHX0B)−1BH,

and the stepsize α for the increment ∆X can again be obtained from the determinant of the
incremented LMI Wd(X0 + α∆X) � 0.

Remark 4.1. The detailed explanation how to compute the stepsize α will be done later as
a special case of the derivation of the Newton step, see subsection 4.2. The idea is to find the
second order Taylor expansion of the function f(X0 + α∆X) = − ln detG(X0 + α∆X) and
then to maximize this quadratic function in the scalar α.

4.2 A Newton-like method

For the computation of a Newton-like increment ∆X we also need the Hessian of the barrier
function b. In order to simplify the derivation we first equivalently reformulate the barrier
function into a more suitable form.

4.2.1 The continuous-time case

In the continuous-time case, we have that

Wc(X0 + ∆X) =

[
Q0 CH

0

C0 R0

]
−
[

∆X

0

] [
A B

]
−
[
AH

BH

] [
∆X 0

]
,

where [
Q0 CH

0

C0 R0

]
:= Wc(X0).
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Up to the constant (−1)n, the determinant of Wc(X0 + ∆X) is equal to

det


0 In ∆X 0
In 0 A B

∆X AH Q0 CH
0

0 BH C0 R0

 = det


0 In ∆X 0
In 0 AFc B

∆X AH
Fc

P0 0

0 BH 0 R0

 ,
where AFc := A− BR−1

0 C0 and P0 := Q0 − CH
0 R
−1
0 C0 are associated with the current point

X0. Carrying out an additional congruence transformation with

Zc :=


P
− 1

2
0 0 0 0

0 P
1
2

0 0 −B̂R−1
0

0 0 P
− 1

2
0 0

0 0 0 Im

 ,
we obtain 

0 In ∆̂X 0

In −B̂R−1
0 B̂H ÂFc 0

∆̂X ÂH
Fc

In 0

0 0 0 R0

 := Zc


0 In ∆X 0
In 0 AFc B

∆X AH
Fc

P0 0

0 BH 0 R0

ZH
c ,

where B̂ = P
1
2

0 B, ÂFc := P
1
2

0 AFP
− 1

2
0 , and ∆̂X = P

− 1
2

0 ∆XP
− 1

2
0 . It is clear that the determinant

of the congruence transformation introduces a factor det(P0). Finally, the determinant of the
transformed matrix is, up to a constant det(R0), equal to

det
[
−∆̂X In

] [ −B̂R−1
0 B̂H ÂFc

ÂH
Fc

In

] [
−∆̂X

In

]
= det

[
In − ∆̂XÂFc − ÂH

Fc
∆̂X − ∆̂XB̂R

−1
0 B̂H∆̂X

]
.

This is the multiplying factor of the current value of detWc(X0) and we can make it larger
than 1 if ÂFc is not skew-Hermitian yet. Introduce

f(X) := − ln det(G(X)),

Qc := B̂R−1
0 B̂H,

G(X) := In −XÂFc − ÂH
Fc
X −XQcX.

In the set of Hermitian matrices (over the reals), the gradient of f(X) then is given by

fX(X)[∆] = 〈−G(X)−1,−(∆ÂFc + ÂH
Fc

∆ + ∆QcX +XQc∆)〉

and the Hessian is given by

fXX(X)[∆,∆] =
〈
−G(X)−1(∆ÂFc + ÂH

Fc
∆ + ∆QcX +XQc∆)G(X)−1,

−(∆ÂFc + ÂH
Fc

∆ + ∆QcX +XQc∆)
〉

+ 〈−G(X)−1,−2∆Qc∆〉.

10



A second order approximation of f (at X = 0) is given by

f(∆) ≈ T (2)
f (∆) = f(0) + fX(0)[∆] +

1

2
fXX(0)[∆,∆]

= 〈In,∆ÂFc + ÂH
Fc

∆〉+
1

2
〈∆ÂFc + ÂH

Fc
∆,∆ÂFc + ÂH

Fc
∆〉

+ 〈In,∆Qc∆〉,

and we want the gradient of f to be 0. For the Newton step we want to determine ∆ = ∆H

such that
∂T

(2)
f

∂∆ (∆) = 0, i. e. we require that

〈In, Y ÂFc + ÂH
Fc
Y 〉+ 〈∆ÂFc + ÂH

Fc
∆, Y ÂFc + ÂH

Fc
Y 〉+ 2〈In, Y Qc∆〉 = 0

for all Y = Y H. Using the properties of the scalar product, we obtain that this is equivalent
to

〈Y, ÂH
Fc

+ ÂFc + ÂFc∆ÂFc + ÂFcÂ
H
Fc

∆ + ÂH
Fc

∆ÂH
Fc

+ ∆ÂFcÂ
H
Fc

+Qc∆ + ∆Qc〉 = 0

for all Y = Y H, or equivalently

ÂFc∆ÂFc + ÂFcÂ
H
Fc

∆ + ÂH
Fc

∆ÂH
Fc

+ ∆ÂFcÂ
H
Fc

+Qc∆ + ∆Qc = −ÂH
Fc
− ÂFc .

If we fix a direction ∆ and look for α such that f(α∆) is maximal, then the Newton step can
be computed in an analogous way. With g(α) = f(α∆), we then have

g(α) ≈ f(0) + αfX(0)[∆] +
1

2
α2fXX(0)[∆,∆]

and thus the Newton correction in α is given by

δα = −
〈In,∆ÂFc + ÂH

Fc
∆〉

〈In,∆Qc∆〉+ 1
2‖∆ÂFc + ÂH

Fc
∆‖2

. (15)

4.2.2 The discrete-time case

For the discrete-time case, we have that

Wd(X0 + ∆X) =

[
Q0 CH

0

C0 R0

]
−
[
AH

BH

]
∆X

[
A B

]
+

[
In
0

]
∆X

[
In 0

]
,

where [
Q0 CH

0

C0 R0

]
:= Wd(X0).

The determinant of Wd(X0 + ∆X) is, up to the constant (−1)n, equal to

det


−In 0 ∆X 0

0 In A B

In AH∆X Q0 CH
0

0 BH∆X C0 R0

 = det


−In 0 ∆X 0

0 In AFd
B

In AH
Fd

∆X P0 0

0 BH∆X 0 R0
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where R0 = R−BHX0B, C0 = C −BHX0A, Q0 = −AHX0A+X0, AFd
:= A−BR−1

0 CH
0 and

P0 := Q0 − C0R
−1
0 CH

0 are associated with the current point X0. Setting

Z` :=


P
− 1

2
0 0 0 0

0 P
1
2

0 0 −B̂R−1
0

0 0 P
− 1

2
0 0

0 0 0 Im

 , Zr :=


P

1
2

0 0 0 0

0 P
− 1

2
0 0 0

0 0 P
− 1

2
0 0

0 −R−1
0 B̂H∆̂X 0 Im

 ,

transforming with Z` from the left and Zr from the right, and substituting B̂ = P
1
2

0 B,

ÂFd
:= P

1
2

0 AFd
P
− 1

2
0 , and ∆̂X = P

− 1
2

0 ∆XP
− 1

2
0 , we obtain the matrix

−In 0 ∆̂X 0

0 In − B̂R−1
0 B̂H∆̂X ÂFd

0

In ÂH
Fd

∆̂X In 0

0 0 0 R0

 := Z`


−In 0 ∆X 0

0 In AFd
B

In AH
Fd

∆X P0 0

0 BH∆X 0 R0

Zr.
The determinant of the transformed matrix is equal to

det

[
In − B̂R−1

0 B̂H∆̂X ÂFd

ÂH
Fd

∆̂X In + ∆̂X

]
· detR0.

We introduce

f(X) := − ln< det(G(X)),

G(X) :=

[
In −QdX ÂFd

ÂH
Fd
X In +X

]
,

Qd := B̂R−1
0 B̂H,

and compute the gradient and the Hessian of f(X). The computation of the gradient is not
as straight-forward as in the continuous-time case, since we consider non-Hermitian matrices.
It is given by

fX(X)[∆] =

〈
− detG(X)

< detG(X)
G(X)−H,

[
−Qd∆ 0

ÂH
Fd

∆ ∆

]〉
,

see Appendix A for more details. Revisiting the steps for the derivation of G(X), we notice
that det(G(X)) is still real and the solution ∆ is still unique and Hermitian. Thus, the
Hessian is given by

fXX(X)[∆,∆] =

〈
G(X)−H

[
−Qd∆ 0

ÂH
Fd

∆ ∆

]H
G(X)−H,

[
−Qd∆ 0

ÂH
Fd

∆ ∆

]〉
,

12



and a second order approximation of f (at X = 0) is given by

f(∆) ≈ T (2)
f (∆)

= f(0) + fX(0)[∆] +
1

2
fXX(0)[∆,∆]

= −
〈[

In 0

−ÂH
Fd

In

]
,

[
−QdY 0

ÂH
Fd
Y Y

]〉
+

1

2

〈[
In 0

−ÂH
Fd

In

] [
−∆Qd ∆ÂFd

0 ∆

] [
In 0

−ÂH
Fd

In

]
,

[
−Qd∆ 0

ÂH
Fd

∆ ∆

]〉
= −

〈
In −Qd − ÂFd

ÂH
F , ∆

〉
+

1

2

〈
Qd∆Qd∆− 2ÂFd

ÂH
Fd

∆Qd∆− ÂFd
ÂH
Fd

∆ÂFd
ÂH
Fd

∆ + 2ÂFd
∆ÂH

Fd
∆−∆2, In

〉
.

We want the gradient of f to be 0, so for the Newton step we determine ∆ = ∆H such that
∂T

(2)
f

∂∆ (∆) = 0, or equivalently

0 = 〈In −Qd − ÂFd
ÂH
Fd
, Y 〉+ 〈Qd∆Qd + ÂFd

ÂH
Fd

∆Qd, Y 〉
+ 〈Qd∆ÂFd

ÂH
Fd

+ ÂFd
ÂH
Fd

∆ÂFd
ÂH
Fd
− ÂFd

∆ÂH
Fd
− ÂH

Fd
∆ÂFd

+ ∆, Y 〉

for all Y = Y H. Using the properties of the scalar product, we obtain that

In −Qd − ÂFd
ÂH
Fd

= Qd∆Qd + ÂFd
ÂH
Fd

∆Qd +Qd∆ÂFd
ÂH
Fd

+ ÂFd
ÂH
Fd

∆ÂFd
ÂH
Fd

− ÂFd
∆ÂH

Fd
− ÂH

Fd
∆ÂFd

+ ∆. (16)

If we fix a direction ∆ and look for α such that f(α∆) is maximal, then the Newton
correction in α is given by

δα =
2
〈
In −Qd − ÂFd

ÂH
F , ∆

〉
〈
Qd∆Qd∆− 2ÂFd

ÂH
Fd

∆Qd∆− ÂFd
ÂH
Fd

∆ÂFd
ÂH
Fd

∆ + 2ÂFd
∆ÂH

Fd
∆−∆2, In

〉 .
Remark 4.2. To carry out the Newton step, we have to solve equation (15) in the continuous-
time case or (16) in the discrete-time case. This can be done via Kronecker products (for the
cost of increasing the system dimension to n2), i. e. via(

(In ⊗ ÂFc + ÂFc ⊗ In)(ÂTFc
⊗ In + In ⊗ ÂH

Fc
) + In ⊗Qc +Qc ⊗ In

)
vecX

= vec(ÂFc + ÂH
Fc

)

in the continuous-time case, or(
(ÂFd

⊗ ÂFd
− In ⊗ In)(ÂTFd

⊗ ÂH
Fd
− In ⊗ In) +Qd ⊗ ÂFcÂ

H
Fc

+ÂFcÂ
T
Fc
⊗Qd +Qd ⊗Qd

)
vecX = vec(In −Qd − ÂFd

ÂH
Fd

)

in the discrete-time case.
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4.2.3 Convergence

In this subsection, we show that the functions that we consider here actually have a globally
converging Newton method. For this we have to analyze some more properties of our functions
and refer to [6, 16] for more details. Recall that a smooth function f : Rn → R is self-
concordant if it is a closed and convex function with open domain and

|f (3)(x)| ≤ 2f (2)(x)
3
2

in the case n = 1, and if n > 1, then f is self-concordant if it is self-concordant along every
direction in its domain. In particular, if n = 1 then f(x) = − ln(x) is self-concordant and
in general, if f is self-concordant and in addition A ∈ Cn×m, b ∈ Rn, then f(Ax + b) is also
self-concordant. These results can be easily extended to the real space of complex matrices
showing that the function b(X) = − ln det(W (X)) is self-concordant. Let

λ(X) :=
〈

(bXX)−1 bX , bX

〉
,

where (bXX)−1 bX = ∆ in the Newton step, i. e. λ(X) =
〈
∆, AFcP

−1
c + P−1

c AH
Fc

〉
in the

continuous-time case, or λ(X) =
〈

∆, AFd
P−1
d AH

Fd
− P−1

d +B(R−BHXB)−1BH
〉

in the

discrete-time case respectively. In both cases λ(X) can be easily computed during the Newton
step and gives an estimate of the residual of the current approximation of the solution.

Furthermore, for every X ∈ XÏ

c (XÏ

d ) the quadratic form of the Hessian in the original
coordinates can be expressed as

〈bXX∆X , ∆X〉 = tr
(
W−

1
2 ∆W [∆X ]W−1∆W [∆X ]W−

1
2

)
.

Using the Courant-Fischer theorem twice, see e. g. [3], this implies that

tr
(
W−

1
2 ∆W [∆X ]W−1∆W [∆X ]W−

1
2

)
≥ 1

λmax(W (X))
tr
(
∆W [∆X ]W−1∆W [∆X ]

)
≥ 1

λ2
max(W (X))

tr (∆W [∆X ]∆W [∆X ]) .

Note that ‖∆W [∆X ]‖F 6= 0 for controllable (A,B) and ∆X 6= 0. Minimizing the left-hand
side over all ∆X with ‖∆X‖2F = 1 yields uniform positivity of the Hessian, since the spectrum
of W (X) is bounded.

Hence, it follows, see e. g. [6], that the Newton method is quadratically convergent, when-
ever λ(X) < .25 in some intermediate step. Once this level is reached, the methods stays in
the quadratically converging regime. If the condition does not hold, then one has to take a
smaller stepsize (1 + λ(X))−1∆X in order to obtain convergence.

4.2.4 Initialization

Note that for the reformulations of the Newton step we have to assume that the starting
value X0 is in the interior of the domain. In this section, we show how to compute an initial
point X0 ∈ XÏ

d , which therefore satisfies the LMIs Wc(X0,M) � 0 and Wd(X0,M) � 0 for
the model M = {A,B,C,D}. Since the reasoning for both the continuous-time case and the
discrete-time case are very similar, we first focus on the continuous-time case.
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We start the optimization from a model M that is minimal and strictly passive. It then
follows that the solution set of Wc(X0,M) � 0 has an interior point X0 � 0 such that

Wc(X0,M) � 0, 0 ≺ X− � X0 � X+.

To construct such an X0, let α := λminWc(X0) > 0 and β := max(‖X0‖2, 1) > 0. Then, for
0 < 2ξ ≤ α/β, we have the inequality

Wc(X0,M) � 2ξ

[
X0 0
0 Im

]
.

In order to compute a solution X0 for this LMI, we rewrite it, up to a scaling factor, as

Wc(X,Mξ) :=

[
−(A+ ξIn)HX −X(A+ ξIn) CH −XB

C −BHX (D − ξIm)H + (D − ξIm)

]
� 0.

for the modified modelMξ := {A+ ξIn, B, C,D− ξIm}. The solution set of this shifted LMI
can be obtained from the extremal solutions X−(ξ) and X+(ξ) of the Riccati equations for
Mξ. It therefore follows that

0 ≺ X− ≺ X−(ξ) � X+(ξ) ≺ X+.

The reasoning for the discrete-time case is very similar. Starting from a strictly passive
and minimal model M, we have the inequality

Wd(M) � 2ξ

[
X0 0
0 Im

]
, for 0 < 2ξ ≤ α/β = λminWd(X0)/max(‖X0‖2, 1).

In order to compute a solution X0 for this LMI, we rewrite it as an LMI

Wd(X0,Mξ) :=

[
X0 −AH

ξ X0Aξ CH
ξ −AH

ξ X0Bξ
Cξ −BH

ξ X0Aξ DH
ξ +Dξ −BH

ξ X0Bξ

]
� 0

for the modified modelMξ := {Aξ, Bξ, Cξ, Dξ} := {A/
√

1− 2ξ,B/
√

1− 2ξ, C/(1− 2ξ), (D−
ξIm)/(1 − 2ξ)}. The solution set X−(ξ) � X0 � X+(ξ) of this scaled LMI is again strictly
included in the original solution set.

The procedure to find an inner point is thus to choose one of the Riccati solutions X−(ξ)
or X+(ξ) of shifted or scaled problems, respectively, or some kind of average of both, since
they are then guaranteed to be an interior point of the original problem.

Another possibility to compute an initial point is to take the geometric mean of the
minimal and maximal solution of the Riccati equations (6), respectively (9), denoted by X−
and X+, which is defined by X0 = X−(X−1

− X+)
1
2 , see [15]. However, e. g., if X− and X+ are

multiples of the identity matrix, then the geometric mean is a convex combination of X− and
X+ and will not necessarily be in the interior.

4.3 Numerical results

We have implemented the steepest ascent method of Subsection 4.1 and the Newton method
introduced in Subsection 4.2. The software package is written in python 3.6. The code and
all the examples can be downloaded under [1].

We have performed several experiments to test convergence for the different methods
developed in this paper.
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Figure 1: Convergence behavior for the Newton method applied to the example as in Exam-
ple 4.1

Example 4.1. As a prototypical example consider a randomly generated continuous-time
example with n = 30 and m = 10, i. e. the overall dimension of the matrix Wc(X) is 40× 40
and we have a total of 465 unknowns.
As one would expect, the steepest ascent method shows linear convergence behavior, whereas
the Newton method has quadratic convergence as soon as one is close enough to the analytic
center.

Figure 1 shows the convergence behavior using the Newton method. Note, that the barrier
function det(W (X)) increases monotonously, whereas the distance of the argument X to the
analytic center Xc slightly increases in the linearly convergent phase. The number of steps
required in the steepest ascent approach, however, is much higher than in the Newton approach.

Also, the initial point computed by the geometric mean approach turns out to be much
better in all the practical examples, even though one cannot guarantee positivity in some
extreme cases.

Note that one has to be extremely careful with the implementation of the algorithm.
Without explicitly forcing the intermediate solutions Xk to be Hermitian in finite precision
arithmetic, the intermediate Riccati residuals Pk may diverge from the Hermitian subspace.

5 Computation of bounds for the passivity radius

Once we have found a solution X ∈ XÏ

c , respectively X ∈ XÏ

d , we can use this solution to
find an estimate of the passivity radius of our system, i. e. the smallest perturbation ∆M to
the system coefficients M = {A,B,C,D} that puts the system on the boundary of the set
of passive systems, so that an arbitrary small further perturbation makes the system non-
passive. In this section we derive lower bounds for the passivity radius in terms of the smallest
eigenvalue of a scaled version of the matrices Wc(X,M) or Wd(X,M), respectively. Since
the analytic center is central to the solution set of the LMI, we choose it for the realization
of the transfer function, since then we expect to maximize a very good lower bound for the
passivity radius.
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5.1 The continuous-time case

As soon as we fix X ∈ XÏ

c , the matrix

Wc(X,M) =

[
−AHX −X A CH −X B
C −BHX D +DH

]
is linear as a function of the coefficients A,B,C,D. When perturbing the coefficients, we thus
preserve strict passivity, as long as

Wc(X,M+ ∆M)

:=

[
−(A+ ∆A)HX −X (A+ ∆A) (C + ∆C)H −X(B + ∆B))

(C + ∆C)− (B + ∆B)HX (D + ∆D) + (D + ∆D)H

]
� 0.

We thus suppose that Wc(X,M) � 0 and look for the smallest perturbation ∆M to our model
M that makes detWc(X,M+ ∆M) = 0. To measure the model perturbation, we propose to
use the norm of the perturbation of the system pencil

‖∆M‖ :=

∥∥∥∥∥∥
 0 ∆A ∆B

∆H
A 0 ∆H

C

∆H
B ∆C ∆D + ∆H

D

∥∥∥∥∥∥
2

≈
∥∥∥∥[ ∆A ∆B

∆C ∆D

]∥∥∥∥
2

.

We have the following lower bound in terms of the smallest eigenvalue λmin of a scaled version
of Wc(X,M).

Lemma 5.1. The X-passivity radius, defined for a given X ∈ XÏ

c as

ρcM(X) := inf
∆M
{‖∆M‖|detWc(X,M+ ∆M) = 0},

satisfies
λmin(YcWc(X,M)Yc) ≤ ρcM(X), (17)

for

Yc :=

[
In +X2 0

0 Im

]− 1
2

� In+m.

Proof. We first note that

det


0 In X 0
In 0 A+ ∆A B + ∆B

X AH + ∆H
A 0 CH + ∆H

C

0 BH + ∆H
B C + ∆C R+ ∆H

R


= det

[
0 In
In 0

]
detWc(X,M+ ∆M), (18)

since Wc(X,M + ∆M) is just the Schur complement with respect to the leading 2n × 2n
matrix. Here we have set R := D +DH and ∆R := ∆D + ∆H

D.
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If we introduce the n× (n+m) matrix Zc :=
[
−X 0

]
, then (18) is equivalent to

[
Zc
Im+n

]H  0 A+ ∆A B + ∆B

AH + ∆H
A 0 CH + ∆H

C

BH + ∆H
B C + ∆C R+ ∆R

[ Zc
Im+n

]
= Wc(X,M+ ∆M).

If we replace the matrix

[
Zc
Im+n

]
by the matrix Uc =

[
Zc
Im+n

]
Yc with orthonormal columns,

which we can e. g. obtain from a QR decomposition [11], then we obtain

UH
c

 0 A+ ∆A B + ∆B

AH + ∆H
A 0 CH + ∆H

C

BH + ∆H
B C + ∆C R+ ∆R

Uc
= YcWc(X,M+ ∆M)Yc

= YcWc(X,M)Yc + UH
c

 0 ∆A ∆B

∆H
A 0 ∆H

C

∆H
B ∆C ∆R

Uc.
Therefore, the smallest perturbation of the matrix YcWc(X,M)Yc to make YcWc(X,M +
∆M)Yc singular must have a 2-norm which is at least as large as λmin(YcWc(X)Yc), and since
the perturbation is a contraction of the proposed one, the lower bound in (17) follows.

5.2 The discrete-time case

In the discrete-time case, for a fixed X the LMI takes the form

Wd(X) =

[
−AHXA+X CH −AHXB
C −BHXA D +DH −BHXB

]
� 0,

and its perturbed version is

Wd(X,M+ ∆M)

:=

[
−(A+ ∆A)HX(A+ ∆A) +X (C + ∆C)H − (A+ ∆A)HX(B + ∆B)

C + ∆C − (B + ∆B)HX(A+ ∆A) R+ ∆R − (B + ∆B)HX(B + ∆B)

]
� 0,

where again R := D +DH and ∆R := ∆D + ∆H
D.

Note that, in contrast to the continuous-time case, for given X ∈ XÏ

d , Wd(X,M+∆M) is
not linear in the perturbations. Nevertheless, we have an analogous bound as in Lemma 5.1
also in the discrete-time case.

Lemma 5.2. The X-passivity radius, defined for a given X ∈ XÏ

d as

ρdM(X) := inf
∆M
{‖∆M‖|detWd(X,M+ ∆M) = 0},

satisfies

λmin(Yd

(
Wd(X,M)−

[
AH + In
BH

]
X

2

[
∆A ∆B

]
−
[

∆H
A

∆H
B

]
X

2

[
A+ In B

])
Yd)

≤ ρdM(X), (19)
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where

Yd :=
[
In+m + ZH

d Zd
]− 1

2 � In+m, Zd = −
[
X
2 (A+ ∆A − In) X

2 (B + ∆B)
]
.

Proof. We first observe that

det


0 In

X
2 (A+ ∆A − In) X

2 (B + ∆B)
In 0 A+ ∆A + In B + ∆B

(AH + ∆H
A − In)X2 AH + ∆H

A + In 0 CH + ∆H
C

(BH + ∆H
B)X2 BH + ∆H

B C + ∆C R+ ∆R


= det

[
0 In
In 0

]
detWd(X,M+ ∆M), (20)

since again Wd(X,M+∆M) is just the Schur complement with respect to the leading 2n×2n
matrix. Note that this matrix (20) is linear in the perturbation parameters, since X is fixed.
Using the definition of the matrix Zd, then from (20), it follows that we can consider

[
ZH
d Im+n

]  0 A+ ∆A + In B + ∆B

AH + ∆H
A + In 0 CH + ∆H

C

BH + ∆H
B C + ∆C R+ ∆R

[ Zd
Im+n

]
= Wd(X,M+ ∆M).

If we replace the matrix

[
Zd
Im+n

]
by the matrix with orthonormal columns Ud =

[
Zd
Im+n

]
Yd,

then we have

UH
d

 0 A+ ∆A + In B + ∆B

AH + ∆H
A + In 0 CH + ∆H

C

BH + ∆H
B C + ∆C R+ ∆R

Ud = YdWd(X,M+ ∆M)Yd

from which it follows that

YdWd(X,M+ ∆M)Yd = UH
d

 0 ∆A ∆B

∆H
A 0 ∆H

C

∆H
B ∆C ∆R

Ud
+ Yd

(
Wd(X,M)−

[
AH + In
BH

]
X

2

[
∆A ∆B

]
−
[

∆H
A

∆H
B

]
X

2

[
A+ In B

])
Yd,

and the smallest perturbation of the matrix YdWd(X,M)Yd needed to make YdWd(X,M +
∆M)Yd singular must have a 2-norm which is at least as large as

λmin(UH
d

 0 A+ In B
AH + In 0 CH

BH C R

Ud) ≈ λmin(YdWd(X,M)Yd).

Again, since the perturbation is a contraction of the proposed one, the (approximate) lower
bound in (19) follows.
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5.3 Examples with analytic solution

In this subsection, to illustrate the results, we present simple examples of scalar transfer
functions (m = 1) of first degree (n = 1).

Consider first an asymptotically stable continuous-time system and transfer function
T (s) = d+ cb

s−a i. e. with a < 0. Then

Wc(x) =

[
−2ax c− bx
c− bx 2d

]
and its determinant is det(Wc(x)) = −4adx− (c− bx)2, which is maximal at the central point
xa = c

b −
2ad
b2

. We then get

Wc(xa) =

[
4da

2

b2
− 2cab 2dab

2dab 2d

]
=

[
1 a

b
0 1

]
.

[
p 0
0 2d

] [
1 0
a
b 1

]
,

with p = 2da
2

b2
− 2cab which implies that det(Wc(xa)) = 2d · p. For the transfer function to

be strictly passive, it must be asymptotically stable and positive on the imaginary axis and
hence also at 0 and ∞. Thus, we have the conditions

a < 0, d > 0,
da− cb
a

> 0. (21)

The function Φc(ıω) = 2d− 2acb
a2+ω2 is a unimodal function, which reaches its minimum either

at 0 (namely Φc(0) = p b
2

a2
) or at ∞ (namely Φc(∞) = 2d) and hence the conditions in (21)

are sufficient to check passivity. Thus, for the modelM, strict passivity gets lost when either
one of the following happens

d+ δd = 0, a+ δa = 0,
[
c+ δc d+ δd

] [ −b− δb
a+ δa

]
= 0.

Therefore, it follows that

ρ = min

(
d, a, σ2

[
a b
c d

])
= σ2

[
a b
c d

]
At the analytic center xa we have

detWc(xa) = 2dp = 4
ad

b2
(ad− bc)

and the smallest perturbation of the parameters that makes this determinant go to 0, yields
exactly the same conditions as (21). This illustrates that theX-passivity radius at the analytic
center yields a very good condition for strict passivity of the model.

In the discrete-time case the transfer function is T (z) = d+ cb
z−a and for it be asymptotically

stable we need a2 < 1, when we assume the coefficients to be real. Then

Wd(x) =

[
x− a2x c− abx
c− abx 2d− b2x

]
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and the analytic center, where detWd(x) = (1 − a2)x(2d − b2x) − (c − abx)2 is maximal, is

given by xa = d−a2d+abc
b2

with

detWd(xa) =

(
a2 − 1

)
(bc− (a− 1)d)(bc− (a+ 1)d)

b2
.

The function Φd(z) = bc
1
z
−a + bc

z−a + 2d will be minimal on the unit circle at z = 1 or z =

−1. Thus positivity will be lost, when either a reaches 1 or −1, or bc − (a − 1)d = 0 or
bc − (a + 1)d = 0. This is exactly the condition also reflected in the determinant of W (xc)
at the analytic center xa. This again illustrates that the X-passivity radius at the analytic
center gives a good bound the passivity radius of the system.

6 Concluding remarks

We have derived conditions for the analytic center of the linear matrix inequalities (LMIs)
associated with the passivity of linear continuous-time or discrete-time systems. We have
presented numerical methods to compute these analytic centers with steepest ascent and
Newton-like methods and we have presented lower bounds for the passivity radii associated
with the LMIs evaluated at the respective analytic center.
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A Derivatives of functions of complex matrices

In this appendix we present a precise derivation of the formulas for the differentiation of a
matrix function with respect to a complex matrix. Here we distinguish between complex
vector spaces Cn and the corresponding real vector space Rn + ıRn. Both spaces can be
identified by c : Cn → Rn + ıRn, c(v) = <(v) + ı=(v). For matrix spaces of dimension
m × n we use the usual identification with the vector spaces Cn and Rn + ıRn. The space
Cn is equipped with the standard scalar product 〈x, y〉C := xHy. By ∂

∂X we denote the
differentiation in a real vector space, whereas the differentiation of a holomorphic function
g is denoted by g′. Note that if we write c ◦ g(x) = u(xr + ıxi) + ıv(xr + ıxi), then by the
Cauchy-Riemann equations, see e. g. [9], we have c ◦ g′(x) = ∂

∂xr
u(xr + ıxi)− ı ∂∂xiu(xr + ıxi).

Then we have the following result:

Lemma A.1. Assume that g : Cn×n → C is holomorphic. Then f : Rn×n + ıRn×n → R
defined by

f(Xr + ıXi) := <g(X)

is differentiable over R with

∂

∂X
f(Xr + ıXi) = <(g′(X) ◦ c−1)

and 〈 ∂

∂X
f(Xr + ıXi),∆

〉
R

= <〈g′(X), c−1(∆)〉C, ∆ = ∆r + ı∆i.

For the holomorphic function g(X) = det(X) the following fact is well-known, see e. g. [14]
for a proof in the real case, that easily extends to the complex case.

Lemma A.2 (Jacobi’s formula). Let g(X) = det(X) and X ∈ Cn×n. Then g′(X) = adj(XT )
and the directional derivative of g in direction ∆ ∈ Cn×n equals

g′(X) ◦∆ = tr(adj(X)∆) = 〈adj(X)H,∆〉C.

Applying the chain-rule we finally obtain the differentiation formula, which is used through-
out this paper.

Corollary A.1. Let f : Rn×n + ıRn×n → R with f(Xr + ıXi) = ln< det(X) and X ∈ Cn×n
with < det(X) > 0. Then

∂

∂X
f(Xr + ıXi) = c ◦

(
det(X)

< det(X)
X−H

)
.

B Differences between continuous-time and discrete-time sys-
tems

Usually, statements for a continuous linear time-invariant system can be transformed back
and forth to discrete-time systems using some bilinear transform. However, the equations
determining the analytic center in both cases are cubic in X, which suggests that there might
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not be a one-to-one correspondence. We have shown that the eigenvalues of the feedback
system matrix AFc at the analytic center lie on the imaginary axis in the continuous-time case,
whereas they lie inside the unit disk in the discrete-time setting. In this appendix we show
that it is indeed necessary to consider the continuous-time and discrete-time case separately
by showing that the three equations determining the analytic center are not preserved under
the usual bilinear transformations.

B.1 Bilinear transformations

The bilinear transformation s = (z−1)/(z+ 1) maps every asymptotically stable continuous-
time system {Ac, Bc, Cc, Dc} to a corresponding asymptotically stable discrete-time system
{Ad, Bd, Cd, Dd}. For some Qc, Qd ∈ Cn×n and Rc = Dc +DH

c , Rd = Dd +DH
d set

Wc :=

[
Qc CH

c

Cc Rc

]
, Wd :=

[
Qd CH

d

Cd Rd

]
.

Then, starting from a continuous-time system {Ac, Bc, Cc, Dc} we obtain a transformed
discrete-time system by setting

Ad := (Ac − I)−1(I +Ac)

Bd :=
√

2(Ac − I)−1Bc

Tc :=

[ √
2(I −Ac)−1 (I −Ac)−1Bc

0 I

]
,

Wd := TH
c WcTc,

(22)

where Cd, Dd, and Qd are obtained from Wd. Vice versa, starting from a discrete-time sys-
tem {Ad, Bd, Cd, Dd} and using the inverse transformation z = (1 + s)/(1 − s) we obtain a
continuous-time system by setting

Ac := (Ad + I)−1(Ad − I)

Bc :=
√

2(Ad + I)−1Bd

Td :=

[ √
2(I +Ad)

−1 −(I +Ad)
−1Bd

0 I

]
,

Wc := TH
d WdTd.

Note that (I −Ad) = 2(I −Ac)−1.
Bilinear transformations preserve asymptotic stability, and they also relate the domains

of the continuous-time and discrete-time linear matrix inequalities. To see this, we express
the two LMIs as

Wc(X) :=

[
Qc CH

c

Cc Rc

]
−
[
AH
c I

BH
c 0

] [
0 Xc

Xc 0

] [
Ac Bc
I 0

]
� 0,

Wd(X) :=

[
Qd CH

d

Cd Rd

]
−
[
AH
d I

BH
d 0

] [
Xd 0
0 −Xd

] [
Ad Bd
I 0

]
� 0,

respectively. Since [
0 Xc

Xc 0

]
=

[
I I
I −I

] [
Xc
2 0

0 −Xc
2

] [
I I
I −I

]
,
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we can also express Wc(Xc) as

Wc(Xc) =

[
Qc CH

c

Cc Rc

]
−
[
Ac + I Bc
Ac − I Bc

]H [ Xc
2 0

0 −Xc
2

] [
Ac + I Bc
Ac − I Bc

]
.

Applying the congruence transformation Tc defined in (22), then

TH
c Wc(Xc)Tc =

[
Qd CH

d

Cd Rd

]
−
[
AH
d I

BH
d 0

] [
Xd 0
0 −Xd

] [
Ad Bd
I 0

]
,

with Ad, Bd, Cd, Dd and Qd defined as in (22). This shows that maximizing detWd(Xd)
over Xd and maximizing detWc(Xc) over Xc is equivalent. Thus, the respective solutions at
the continuous-time and discrete-time analytic center coincide, i. e. Xd = Xc. The bilinear
transformation also preserves the solution of the Riccati equation as well as the domain of the
linear matrix inequality. For the transformation of the matrices Cc, Dc, and Qc we obtain[
Qd CH

d

Cd Dd +DH
d

]
= TH

c

[
Qc CH

c

Cc Dc +DH
c

]
Tc = TH

c

[√
2Qc(I −Ac)−1 Qc(I −Ac)−1Bc + CH

c√
2Cc(I −Ac)−1 Cc(I −Ac)−1Bc +Dc +DH

c

]
(23)

where the (1, 1), (1, 2), (2, 2) blocks are given by

2(I −Ac)−HQc(I −Ac)−1,
√

2(I −Ac)−HQc(I −Ac)−1Bc +
√

2(I −Ac)−HCH
c ,

(I −Ac)−1Bc +BH
c (I −Ac)−HQc(I −Ac)−1Bc +BH

c (I −Ac)−HCH
c +Dc +DH

c ,

respectively.
The transfer function also does not change, provided that one rephrases it in terms of the

new variable, i. e. Φd(z) = Φc(s). This can be seen as follows. Let us replace the variable
z of the system matrix SWd

(z) by (1 + s)/(1 − s) and then scale the first block row and
block column by (1− s) and transform the second block row and block column by the upper
triangular congruence transformation Td, which does not change the transfer function, then
we obtain [

(1− s)In 0

0 TH
d

] 0 Ad − zIn Bd
zAH

d − In Qd CH
d

zBH
d Cd Rd

[ (1− s)In 0

0 Td

]

=

 0 Ac − sIn Bc
AH
c + sIn Qc CH

c

BH
c Cc Rc

 .
B.2 Transformation of the deflating subspaces

Following [7] we consider the pencils

sEc −Ac =

 0 −sI +Ac Bc
sI +AH

c Qc CH
c

BH
c Cc Dc +DH

c
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corresponding to the continuous-time case and

zAH
d −Ad =

 0 zI −Ad −Bd
zAH

d − I (z − 1)Qd (z − 1)CH
d

zBH
d (z − 1)Cd (z − 1)(Dd +DH

d )


corresponding to the discrete-time case.

If X is solution of Riccd(X) = −Qd, then there is a deflating subspace of the form 0 Ad − zI Bd
I − zAH

d (z − 1)Qd (z − 1)CH
d

−zBH
d (z − 1)Cd (z − 1)(Dd +DH

d )

−X (I −Ad +BdFd)
I
−Fd


=

 I
(I −AH

d )X
−BH

dX

 (Ad −BdFd − zI) .

Applying a generalized bilinear transformation to the pencil sEc −Ac gives

zÂd − ÂH
d := z(Ec −Ac)− (−Ec −Ac)

=

 0 z(Ac − I)− (I +Ac) zBc −Bc
−z(I +AH

c )− (AH
c − I) (z − 1)Qc (z − 1)CH

c

−zBH
c −BH

c (z − 1)Cc (z − 1)(Dc +DH
c )

 ,
and then performing the bilinear transform from the previous section on the last two block
columns and rows, we obtain the new pencil

zǍd−Ǎd
H

:=

[
1√
2
I 0

0 TH
c

](
zÂd − Âd

H
)[ 1√

2
I 0

0 Tc

]
=

 0 Ad − zI Bd
I − zAH

d (z − 1)Qd (z − 1)CH
d

−zBH
d (z − 1)Cd (z − 1)(Dd +DH

d )

 .
If, conversely, there is a continuous-time solution X of Riccc(X) = −Qc, we have the deflating
subspace  0 −sI +Ac Bc

sI +AH
c Qc CH

c

BH
c Cc Dc +DH

c

−XI
−Fc

 =

 IX
0

 (Ac −BcFc − sI) .

Then, using the same transformation we obtain

(
zǍd − Ǎd

H
)[√

2I 0
0 T−1

c

]−XI
−Fc

 (I −Ac +BcFc)
−1

=

[
1√
2
I 0

0 TH
c

] IX
0

 (z(−I +Ac −BcFc)− (I +Ac −BcFc)) (I −Ac +BcFc)
−1,

which is equivalent to

(
zǍd − Ǎd

H
) −X(I −AFd

)
I

−
√

2Fc(I −Ac +BcFc)
−1

 =

 I
(I −Ad)HX
−BH

dX

 (AFd
− zI) ,
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where AFd
denotes the bilinear transform of the matrix AFc = Ac − BcFc. Thus, the trans-

formed feedback matrix Fd can be defined by

Fd :=
√

2Fc(I −Ac +BcFc)
−1. (24)

It needs to be analyzed how the Riccati operator Pc(X) is transformed for a fixed X.
Clearly, then X fulfills the Riccati equation Riccc(X) = −Qc with Qc := −Pc(X). From the
equations Riccc(X) = −Qc and Riccd(X) = −Qd one would then expect, that Pd(X) = −Qd.
However, we have the relation[
Pd 0
0 Rd −BH

dXBd

]
= (TP )H

[
Pc 0
0 Rc

] [
I 0
Fc I

] [√
2(I −Ac)−1 (I −Ac)−1Bc

0 I

] [
I 0
−Fd I

]
︸ ︷︷ ︸

TP :=

,

(25)
where we compute

TP =

[√
2(I −Ac +BcFc)

−1 (I −Ac)−1Bc
0 I + Fc(I −Ac)−1Bc

]
,

and used that
√

2Fc(I −Ac)−1 − Fd − Fc(I −Ac)−1BcFd = 0. We thus obtain that

Pd = 2(I −Ac +BcFc)
−HPc(I −Ac +BcFc)

−1,

which, by considering that Pc � 0 and equation (23), only coincides with −Qd if Fc = 0.
Thus we have shown, that if we enforce a feedback, that keeps the feedback system matrix
AFd

on the unit circle, then the transformed residual of the Riccati operator Pc does not
correspond to the discrete-time residual Pd. In other words, since relation (25) has to hold,
the transformation of the feedback (24) cannot be true, and thus the discrete-time feedback
system matrix AFd

does not lie on the unit circle. Indeed, as mentioned before, the eigenvalues
lie strictly inside the unit circle.
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