
This version is available at https://doi.org/10.14279/depositonce-10663

This work is licensed under a CC BY-NC-ND 4.0 License (Creative 
Commons Attribution-NonCommercial-NoDerivatives 4.0 International). For 
more information see https://creativecommons.org/licenses/by-nc-nd/4.0/.

Terms of Use

Rama, G., Marinkovic, D., & Zehn, M. (2018). High performance 3-node shell element for linear and 
geometrically nonlinear analysis of composite laminates. Composites Part B: Engineering, 151, 118–126. 
https://doi.org/10.1016/j.compositesb.2018.06.007

Rama, G.; Marinkovic, D.; Zehn, M.

High performance 3-node shell element 
for linear and geometrically nonlinear 
analysis of composite laminates

Accepted manuscript (Postprint)Journal article     |



High performance 3-node shell element for linear and

geometrically nonlinear analysis of composite laminates

Gil Ramaa, Dragan Marinkovica,b,∗, Manfred Zehna

aDepartment of Structural Analysis, Berlin Institute of Technology, Strasse des 17, Juni

135, 10623 Berlin, Germany
bFaculty of Mechanical Engineering, University of Nis, Serbia

Abstract

Thin-walled structures hold primacy among modern engineering structures. All

the advantages offered by the curved geometry and thinness of the walls come

even more to the fore when combined with exquisite properties of fiber-reinforced

composite laminates. Directionally dependant material properties open vast

possibilities for tailoring global structural properties and, therewith, optimiza-

tion. Successful design of such structures calls for high performance shell type

finite elements. This paper presents a linear triangular shell element based

on the equivalent single-layer approach and the first-order shear deformation

theory. The shear locking effect is resolved by the descrete shear gap (DSG)

approach combined with the cell smoothing technique. To improve the element

performance with respect to the membrane behavior, the assumed natural de-

viatoric strains (ANDES) formulation is applied, with necessary modifications

to meet the requirements of curved structures with anisotropic material prop-

erties. Geometric nonlinearities are addressed by the co-rotational formulation.

Examples demonstrate the element applicability and performance.
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1. Introduction

With a roughly estimated share of some 80%, thin-walled structures make

the group of most commonly encountered engineering structures. This is clearly

the consequence of numerous advantages they offer. The thinness of the walls

combined with the curved geometry allows the use of high membrane stiffness to5

carry transversely applied loads. In this manner, a favorable load-to-weight ra-

tio is achieved. The advantages provided by the geometry are further enhanced

through application of modern engineering materials, primarily fiber-reinforced

composite (FRC) laminates. FRC laminates provide outstanding mechanical

properties combined with further weight saving. Also, directionally dependent10

properties intrinsic for composites make possible tailoring of structural proper-

ties already on the material level.

The research on FRC laminated structures is quite diverse, ranging from the

work on their general improvements to the work on failure models, detection

and localization. As a possibility for further improvement of already exquisite15

material properties, a number of researchers considered the use of functionally

graded materials [1], [2], [3]. At the same time, a great potential for improve-

ment of general structural properties was seen in application of multi-functional

materials, such as piezoelectric materials, which allow active control of their

mechanical behavior [4]. Consequently, a great deal of work was dedicated to20

the development of modeling tools for active composite laminates [5], [6], [7],

[8]. On the other side of the research spectrum, due to the proneness of FRC

laminates to hidden failures including delamination, research efforts strived to

provide reliable models for interlaminar damage and failure of FRC structures,

as presented in the survey by Rohwer [9]. Also, methods were developed with25

the aim of non-destructive damage detection and localization [10], [11]. This

rather short glimpse at the research scope related to the composite laminate

structures serves only to give a general impression about the attractiveness of

the topic.

Accurate and reliable modeling and simulation are the prerequisites of success-30
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ful research in all the above mentioned research directions. Most frequently the

Finite Element Method (FEM), as the method of choice in the field of structural

analysis, is used for the purpose. Depending on the research field, models of

various complexity and detail levels may be required. This work puts focus onto

the global structural behavior. Bearing this in mind, the main workhorse ele-35

ments in FEM programs are equivalent single-layer shell elements based either

on the classical first-order theory (Kirchhoff-Love elements) or the first-order

shear deformation theory (Reissner-Mindlin elements). The latter is more gen-

eral as it includes the consideration of transverse shear effects, which is a rather

important aspect for composite laminates. However the main reason why most40

elements are based on it relies primarily on the reduced continuity requirements

from the FE shape functions. The family of degenerate shell elements is a large

group of shell elements based on the Reissner-Mindlin kinematics and most of

them have also been applied for modeling laminate composite structures [12],

[13], [14]. The basic advantage of this element group is the applicability to a45

relatively wide range of thickness and curvatures. However, they are limited in

the aspect of strain and stress recovery in case of laminate structures. Layer-

wise theories [15], [16] offer a remedy with respect to the stress/strain recovery,

but this positive aspect is accompanied by an increased numerical effort. As

a well-balanced compromise, Carrera et al. [17] and Valvano and Carrera [18]50

proposed finite elements with node-dependant kinematics. The approach com-

bines the equivalent single-layer approach and the layer-wise approach. The

basic idea is to apply the latter locally in order to provide the adequate accu-

racy in the structural sub-domains where the strains and stresses are of interest.

Finally, the recently proposed isogeometric approach addresses the problem of55

seamless integration of design and analysis. The basic idea behind it resides in

the use of the same shape functions (NURBS) for both the description of CAD

geometry and displacement field of the FE model. Isogeometric developments

for composite plates and shells involved the Kirchhoff-Love, Mindlin-Reissner

and higher order kinematics [19], [20], [21], [22].60

Obviously, the development of finite elements for shell structures and particu-
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larly those made of composite laminates has attracted a great deal of interest.

This paper aims at a high performance triangular shell element based on the

first-order shear deformation theory. Geometric nonlinearities are addressed by

means of the co-rotational formulation.65

2. Triangular shell element

The obvious advantages offered by linear triangular elements are the exquisite

meshing ability and very high numerical efficiency regarding the computation of

matrices and vectors for a single element. As usual, advantages are accompanied

by certain disadvantages. Not only may the convergence rate be rather slow due

to the ability of the classical linear 3-node element to represent only constant

strain and stress states, but the element is also susceptible to the notorious

shear locking possibly causing convergence to an erroneous, stiffer solution. To

resolve these issues and produce a high performance element, both the bending

and membrane behavior of the element will need to be properly modified.

In the element formulation, both the global (x, y, z) and local (x′, y′, z′) coor-

dinate systems are used, Fig. 1. The local coordinate system is defined so that

the z′-axis is perpendicular to the element surface, while one of the in-plane

axes, the x′-axis, is oriented from element node 1 toward element node 2. The

1

2

3

x′

x′

y′

y′

z′ z′

Mid-plane

Figure 1: Element geometry, coordinate systems and material architecture
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element employs the classical linear shape functions:

N1(x
′, y′) =

1

2A
(x′

2y
′

3 − x′

3y
′

2 + y′23x
′ + x′

32y
′)

N2(x
′, y′) =

1

2A
(x′

3y
′

1 − x′

1y
′

3 + y′31x
′ + x′

13y
′) (1)

N3(x
′, y′) =

1

2A
(x′

1y
′

2 − x′

2y
′

1 + y′12x
′ + x′

21y
′)

where x′

i and y′i (i = 1, 2, 3), are the local coordinates of the element nodes, A

is the element surface area and x′

ij and y′ij denote the abbreviated coordinate

differences, i.e. x′

ij = x′

i−x′

j and y′ij = y′i− y′j. The element geometry is simply

regenerated from its mid-surface:
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where h is the element thickness and ξ the natural coordinate (−1 < ξ < +1)

in the thickness direction. As a consequence of the degeneration process (from

3D to 2D) and the assumed Reissner-Mindlin kinematics, the displacement field

{u′, v′, w′}T in the local coordinates is given by:
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(3)

where θx′ and θy′ are the rotations around the local x′- and y′-axes and i in the

right subscript denotes the node number.

Up to this point, all the equations fit into the classical formulation. However,

as already discussed above, the strain field directly derived using the kinematic70

relations produces a too stiff element that suffers sub-optimal convergence or

even a convergence toward an erroneous solution. Hence, special techniques are

needed as a remedy. Since a flat element is considered here, its deformational

behavior can be represented as a superposition of plate and membrane elements.

The development presented here implements already existing solutions for both75

bending and membrane behavior, but it represents a novel combination of those
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solutions. In what follows, the basic ideas and most important formulae are

given as the available literature that is referenced below provides the necessary

details.

2.1. Plate behavior80

Since the element is based on the first-order shear deformation theory, the

stiffness matrix of the plate element consists of the bending stiffness and trans-

verse shear stiffness. Using the discretized displacement field (Eq. (3)), the

bending strains with respect to the local coordinate system are directly derived:
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(4)

thus yielding the corresponding strain-displacement matrix [Bpb] in the straight-

forward form:

[Bpb] =
1

2A











0 0 y′23 0 0 y′31 0 0 y′12

0 x′

32 0 0 x′

13 0 0 x′

21 0

y′23 x′

32 0 y′31 x′

13 0 y′12 x′

21 0











(5)

Due to the susceptibility of the element to shear locking, a more sophisticated

approach is required. Exactly the same technique as the one used in the for-

mulation of the piezoelectric 3-node element by Marinkovic and Rama [23] is

applied here as well. It is the descrete shear gap (DSG) technique originally

proposed by Bletzinger et al. [24], the basic idea of which is in the separa-

tion of the deformation into the part due to transverse shear and a part due to

bending. This further allows extraction of the part that is only due to trans-

verse shear, denoted as shear gap. The shear gaps are then evaluated at the

nodes, interpolated using the linear shape functions given in Eq. (1) and finally

differentiated to obtain the transverse shear field based on the DSG approach.

When used in combination with a linear triangular plate element, the resulting

strain-displacement matrix with respect to the local coordinate system, [Bs],
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has the following closed form:

[

Bs

]

=
1

2A





x′

32 A 0 x′

13 a1 a3 x′

21 −a2 −a3

y′23 0 −A y′31 a4 a2 y′12 −a4 −a1



 (6)

with the following geometric parameters:

a1 = 1
2y

′

12x
′

13 a2 = 1
2y

′

31x
′

21

a3 = 1
2x

′

21x
′

13 a4 = 1
2y

′

12y
′

31

(7)

This approach tackles the shear locking effects, but notable shear stress oscilla-

tions between elements may still appear. The so-called cell-smoothing technique

[25] is applied as a remedy. The idea is relatively simple. The element is divided

into three sub-elements using the element centroid as an additional node. Equa-

tion (6) is applied to each of the sub-elements. Additionally, the displacement

at the element centroid is interpolated from the nodal displacements, i.e. it is

their mean value. This results in three strain-displacements matrices, [B
△j

s ],

j = 1, 2, 3, each one for one of the sub-elements:

[B△1

s ] =
[
[

1
3B

△1

s1 +B△1

s3

] [

1
3B

△1

s1

] [

1
3B

△1

s1 +B△1

s2

]
]

[B△3

s ] =
[
[

1
3B

△3

s1 +B△3

s2

] [

1
3B

△3

s1 +B△3

s3

] [

1
3B

△3

s1

]
]

[B△2

s ] =
[
[

1
3B

△2

s1

] [

1
3B

△2

s1 +B△2

s2

] [

1
3B

△2

s1 +B△3

s3

]
]

(8)

where [B
△j

si ] (i = 1, 2, 3), is the transverse shear strain-displacement matrix of

the ith element node. Finally, the strain-displacement matrix related to the

transverse shear is obtained as a mean value of the matrices given in Eq. (8):

[Bps] =
1

3

3
∑

i=1

[B△i

s ] (9)

Using the well-known ABD material matrix for composite laminates [26], the

stiffness matrix for the plate part of the element is given as:

[Kp] =

∫

(A)

[Bpb]
T [D][Bpb] dA+

∫

(A)

[Bps]
T [F ][Bps] dA (10)

where [F ] is the transverse shear stiffness of the composite laminate computed

according to Rolfes and Rohwer [27].
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2.2. Membrane behavior

The membrane part of the element is resolved using the assumed natural

deviatoric strain (ANDES) formulation by Felippa and Militello [28]. The idea

behind this approach is representation of the displacement field by a carefully

selected set of modes. Hence, the discretized displacement field given by Eq.

(3) is abandoned for the membrane part. The selected set of mode shapes

is a complete set of linearly independent modes comprising basic modes, i.e.

rigid-body and constant strain modes, and higher order modes. In the case

of the linear triangular element, the higher order modes are the linear strain

modes. These are actually the modes that cannot be represented by the classical

formulation of the element and, hence, this is where the additional quality is

introduced. The overall number of linearly independent modes has to be the

same as the number of degrees of freedom, which also guarantees the rank

sufficiency of the element stiffness matrix. If the selected modes are not linearly

independent, then a sufficient number of additional kinematic constraints are

to be introduced. Finally, the variational correctness is kept by enforcing the

orthogonality of the linear strain modes and the constant strain modes.

Analogously to the grouping of the modes into basic and higher order modes,

the membrane stiffness also comprises the basic, [Kb], and higher order stiffness,

[Kh]:

[Kmem] = [Kb] + [Kh] (11)

The basic stiffness is determined in the same manner as in the free formulation

by Bergan and Nygard [29], but modified to account for the composite laminate

material architecture:

[Kb] = (V h)−1 [L][A][L]T (12)

where V is the element volume, [A] is the laminate membrane stiffness contained

in the ABD matrix, while [L] is the force-lumping matrix that consistently maps
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an arbitrary constant stress field into the element nodal forces [29]:

[L] =
h

2















































y′23 0 x′

32

0 x′

32 y′23
α
6 y

′

23 (y
′

32 − y′12)
α
6 x

′

32 (x
′

31 − x′

12)
α
3 (x′

31y
′

13 − x′

12y
′

21)

y′31 0 x′

13

0 x′

13 y′31
α
6 y

′

31 (y
′

32 − y′12)
α
6 x

′

13 (x
′

12 − x′

23)
α
3 (x′

12y
′

21 − x′

23y
′

32)

y′12 0 x′

21

0 x′

21 y′12
α
6 y

′

12 (y
′

32 − y′12)
α
6 x

′

21 (x
′

23 − x′

31)
α
3 (x′

23y
′

32 − x′

31y
′

13)















































(13)

with α denoting a free parameter that will be discussed later.

The higher order stiffness allows the element to properly recover the in-plane

bending. For this purpose, three in-plane bending modes that induce linear

strains within the element are used. The drilling degree of freedom (rotation

about the normal), θz′ , plays the major role in the description of these modes.

Without going into all the details, which are available in [30], [31], it is important

to emphasize that the modes are selected so that the drilling degree of freedom

at one of the nodes is set to zero, while the values at the remaining two nodes

have the same absolute value, but are of the opposite sign. Also, the element is

(in-plane) bent so that the center of curvature is on the side of the node with

the zero drilling degree of freedom. Since the so selected three modes are not

linearly independent, an additional, (in-plane) torsional mode is introduced, in

which the drilling degree of freedom at each node has the same value. This

approach leads to the following form of the higher order membrane stiffness:

[Kh] = β0
9

4
[Tθu]

T [Kθ][Tθu] (14)

where β0 is one of the dimensionless parameters and:

[Tθu] =
1

4A
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21 y′21 0
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(15)
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[Kθ] =
1

3

(

[Q4]
T [Anat][Q4] + [Q5]

T [Anat][Q5] + [Q6]
T [Anat][Q6]

)

(16)

where [Anat] is given by:

[Anat] = [Tnat]
T [A][Tnat] (17)

with the following transformation matrix between the so-called natural orienta-

tions and the Cartesian orientations:

[Tnat] =
1

4A2
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′
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′
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13 x′

12x
′

32l
2
13 (y′12x

′

23 + x′

21y
′

32) l
2
13











T

(18)

The Q-matrices in Eq. (16) are obtained in the following manner:

[Q4] =
1
2 ([Q1] + [Q2])

[Q5] =
1
2 ([Q2] + [Q3])

[Q6] =
1
2 ([Q1] + [Q3])

(19)

with
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(20)

The choice of free parameters α and β0-β9 aims at optimal membrane behavior

of a shell element for composite laminates. Fellipa [30] provided the optimal85

values of α and β-parameters for the purely membrane triangular element. On

the other hand, the deformational behavior that involves both membrane and
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bending deformation and their coupling requires modified values. Shin and Lee

[32] demonstrated that the following values represent a good choice for the shell

element: α = 1
8 , β0 = α2

/4, β1 = 1, β2 = 2, β3 = 1, β4 = 0, β5 = 1, β6 = −1,90

β7 = −1, β8 = −1, β9 = −2.

3. Co-rotational formulation

In the previous two decades, the co-rotational (CR) approach attracted

significant attention as a FE formulation suitable for structural deformations

characterized by large rotations but small strains [33], [34], [35], [36]. Geometri-

cally nonlinear deformations intrinsic for thin-walled structures in the working

regimes mostly fit into this description.

The key idea behind the CR approach is to decompose the overall motion into

the rigid-body motion and pure deformation. This is achieved by introducing

a co-rotational coordinate system (CR frame) that is attached to the element

and performs the same rigid-body motion as the element, Fig. 2. The pure

deformations are then measured in the CR frame. The assumption of small

Initial configuration
Deformed configuration

Deformed element

rotated back
[Si]

[R]T

Figure 2: Co-rotational approach

strains allows the use of the matrices and vectors developed in the linear ele-

ment formulation, which counts for one of the main advantages of the approach.
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The present element is extended to cover the geometrically nonlinear analysis,

whereby the CR formulation by Nour-Omid and Rankin [37] is adopted. The

following relations are used to obtain the deformational nodal translations and

rotations:

{ue
i } = [E]T ({ug

i }+ {Xg
i } − {ug

0})− {Xe
i } (21)

[T i] = [E]T [Si][E0] (22)

where the subscripting i denotes the node number, the superscripting g and e

mean that the quantity is given in the global and CR frames, respectively, {ui}

are the deformational translations, {ui} are the global translations, {u0} the

translation of the CR frame origin, and [T i] is the rotational matrix associated

with the deformational rotations. [E] and [E0] are the element CR frames in

the current and initial configurations, respectively, {X} is the initial element

configuration (i.e. nodal coordinates), and finally, [Si] is the total rotational

matrix of the nodal triad [38]:

[Si] = [I] +
sin (γi)

γi
[Ni] +

1

2

( sin (γi/2)

(γi/2)

)2

[Ni]
2 (23)

where:

γi =
√

θ2xi + θ2yi + θ2zi (24)

and:

[Ni] =











0 −θzi θyi

θzi 0 −θxi

−θyi θxi 0











(25)

After several transformations, the variation of Eqs. (21) and (22) can be repre-

sented in the following form [37]:

δ{ue
i } = Spin

(

{xe
i}
)

δ{ωe
E}+ δ{ue

i} (26)

δ[T i] =
(

Spin
(

δ{ωe
S}

)

− Spin
(

δ{ωe
E}

)

)

[T i] (27)
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where δ{ωe
E} and δ{ωe

S} are the variations (spin) of triads [E] and [Si] in the

element (CR) coordinates, {xe
i} are the current coordinates of the ith node in

the CR frame, while Spin denotes a skew-symmetric spin tensor built from a

3-dimensional rotation vector {ω} = {ω1, ω2, ω3}
T :

Spin
(

{ω}
)

=











0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0











(28)

The fact that the internal forces can be defined in two ways - as a derivative of the

strain energy with respect to the global displacements, but also as a derivative

of the strain energy with respect to the deformational displacements leads to

a relation between the internal forces in the global and in the local coordinate

systems by means of the generalized Jacobian transformation matrix between

the global displacements and their deformational counterpart in the CR frame.

This matrix, [P ], has a property of a projector matrix and is given as [37]:

[P ] =





∂{u}T/∂{u} ∂{θ}T/∂{u}

∂{u}T /∂{θ} ∂{θ}T /∂{θ}



 = [I]− [Ψ][Γ]T (29)

where [I] is the identity matrix, [Ψ] reads [37]:

[Ψ] =
[

−Spin
(

{xe
1}
)T

[I] −Spin
(

{xe
2}
)T

[I] −Spin
(

{xe
3}
)T

[I]
]T

(30)

and the nodal [Γi] [37]:

[Γi] =





∂{ωE}
T /∂{ui}

∂{ωE}
T /∂{θi}



 (31)

In Eq. (31) the upper part of the matrix is associated with translations, while

the lower part with rotations. In case of the triangular element, the [Γ] matrix

is computed as:

[Γ] =
[

[Γ1]
T [0] [Γ2]

T [0] [Γ3]
T [0]

]T

(32)
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with:

[Γ1]
T =











0 0 −1/ye3

0 0
(

1/xe
2

)

(1 − ye2)/y
e
3

1/ye3 0 0











[Γ2]
T =











0 0 0

0 0 −1/xe
2

0 0 0











[Γ3]
T =











0 0 1/ye3

0 0 ye2/ (x
e
2 y

e
3)

−1/ye3 0 0











(33)

where xe
i , y

e
i are the first two components of {xe

i}. Finally, with the projector

matrix defined, the stiffness matrix [Kg] and internal forces {fg
int} in the global

coordinate system are computed as follows:

[Kg] = [E][P ]T [Ke][P ][E]T (34)

{fg
int} = [E][P ]T [Ke]

{

{ue}T {θe}T
}T

(35)

4. Numerical examples

In order to validate the developed element and examine its properties, several

test examples are considered below. The examples involve both academic and95

practical examples, linear and geometrically nonlinear, and the verification is

done by comparing the obtained results with those yielded by the shell elements

of other authors or the S3 element from Abaqus, while for the practical example

also the experimental results are used. Some of the considered examples are

proposed by various authors and involve different systems of units. To avoid any100

inconsistency in the units used, all numerical values are given as dimensionless.

As a matter of fact, in each example, any set of units can be associated with

the values as long as it is used consistently throughout the example.
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4.1. Laminated strip under three-point bending

The first studied example is a relatively simple one. It is proposed by105

NAFEMS [39] as a linear static composite benchmark case [40]. The lami-

nate has a stacking sequence [0/90/0/90/0/90/0] with respect to the material

reference direction, which is the global x-axis. The layer thicknesses are given

in Fig. 3, while Table 1 provides the material properties. The laminated strip

is subjected to a constant line load of q = 10 acting along the mid-span of the110

structure as shown in Fig. 1, above. The symmetry of the structure and ap-
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90◦
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x
y zz

z

A

A
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Figure 3: Laminated strip under three-point bending

Table 1: Material properties - laminated strip

E1 E2 ν12 G12 G13 G23

100·109 5·109 0.4 3·109 2·109 2·109

plied boundary conditions allow modeling of only one quarter of the structure

with an appropriate extension of the kinematic boundary conditions (symmetry

along the internal edges). The vertical displacement and the in-plane bending

stress at point A (at mid-span, lower surface of the structure) are computed115
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for several meshes using the present element and its Abaqus counterpart. As it

is generally known, the results for displacements converge typically faster than

those for stresses. This is also the case here and both elements yield the con-

verged result for the displacement already with the roughest mesh used. For

that reason, only the convergence for the stress result is given in Table 2, which120

obviously shows rather similar convergence rate of both elements. The results

in Table 2 are normalized by the reference solution reported in the NAFEMS

publication [40].

Table 2: Convergence data - bending stress at point A normailized by 684 [40]

Elements Present Abaqus S3

14 0.884 0.879

32 0.904 0.908

120 0.952 0.952

528 0.980 0.982

800 0.989 0.988

4.2. Clamped angle-ply cylindrical composite panel

The case of the clamped angle-ply cylindrical composite panel depicted in125

Fig. 4 was proposed by Yeom and Lee [41] and later extended by Kulikov and

Plotnikova [42]. The focus in the example is on the geometrically nonlinear

behavior of the anisotropic shell structure. The curved edges are free, while the

straight edges are clamped. The geometry and dimensions are shown in Fig. 4.

The total shell thickness is h = 0.496 and it includes two plies of equal thickness,130

that is 0.248. The α1-direction shown in Fig. 4 is the material reference direc-

tion. Whereas Yeom and Lee [41] considered only the ply-laminate with the ply

sequence [45/-45], Kulikov and Plotnikova [42] extended the example by another

two stacking sequences: [75/-75] and [15/-15]. The material properties are given

in Table 3. The shell structure is exposed to a concentrated force f = 10000135

acting at the center point, Fig. 4. The results reported by Yeom and Lee [41]
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Figure 4: Clamped angle-ply cylindrical composite panel geometry

Table 3: Material properties - cylindrical composite panel

E1 E2 ν12 G12 G13 G23

4.785·106 1.595·106 0.25 0.64·106 0.957·106 0.957·106

are obtained using a full biquadratic (9-node) quadrilateral degenerate shell el-

ement. On the other hand, Kulikov and Plotnikova [42] used a linear (4-node)

quadrilateral element based on a mixed formulation (Hu-Washizu variational

principle). Fig. 5 gives the load-displacement curves for the center point for all140

three angle-ply laminates computed using the present element and the results

reported by Kulikov and Plotnikova [42]. It also includes the results by Yeom

and Lee [41] for the angle-ply [45/-45]. The results show very high agreement.

17



Ref. [41] [45/-45]

0.25

0.5

0.75

1.0

0.0 0.5 1.0 1.5 2.0

L
o
a
d
in
g
fa
ct
o
r

Present [90/-90]

Ref. [42] [45/-45]

Present [75/-75]

Ref. [42] [75/-75]

Present [15/-15]

Ref. [42] [15/-15]

Vertical displacement

Figure 5: Load-displacment curves of the clamped angle-ply cylindrical panel case

4.3. Snap-through of a clamped cylindrical shell

By its nature, the next test case represents an extension of the previous145

example into extreme geometric nonlinearities. The considered structure is of

a rather similar geometry. It is a cylindrical composite shell with a width of 1

shown together with its remaining dimensions in Fig. 6. The kinematic bound-

ary conditions are exactly the same as in the previous case and the concentrated

transverse force of f = 10000 acts also at its center point. The shell is made of150

two layers, [0/90], with the 0◦ - direction along the circumference. Both layers

have the same thickness of 1. The material properties are presented in Table 4.

Similarly to the first considered case, due to the symmetry only a quater of the

structure is modeled using 40 elements. The results reported by Li et al. [43]

Table 4: Material properties - laminated arch

E1 E2 ν12 G12 G13 G23

25·106 1·106 0.3 0.2·106 0.5·106 0.5·106
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Figure 6: Clamped laminated arch geometry

are obtained using a 4-node co-rotational quadrilateral composite shell element155

with the assumed natural strain approach. The load-displacement curves for the

central point obtained by the present formulation and those reported by Li et al.

[43] are illustrated in Fig. 7. Obviously, the problem at hand is characterized

by the snap-through effect. It can be noticed that two results are reported by

the present element. The static force-controlled computation (force increments)160

yields the results only up to the limit point, at which the solution becomes insta-

ble and the Newton-Raphson procedure fails to converge from that point. Upon

switching to the static displacement-controlled computation (displacement in-

crements), the complete curve is obtained. However, another solution procedure

was applied as well dynamic relaxation. The basic idea of dynamic relaxation165

is to get the static solution by computing a dynamic case with a relatively large

damping, so that the structure comes to rest relatively quickly. This yields the

result characterized by the almost horizontal line from the limit point to the

part of the load-displacement curve at which the external force is incrementally

larger than at the limit point (Fig. 7). The diagram also shows that the results170

computed by the present element are practically congruent with those reported

by Li et al. [43].
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Figure 7: Load-displacement curves at mid-span of the laminated shallow arch

4.4. Composite slit annular plate

This example serves as one of the standard benchmark cases to test the

developed finite elements in geometrically nonlinear analysis. The initial ge-175

ometry is relatively simple (see Fig 8). It is a ring plate with a slit along the

global x-direction across the whole width. One edge of the slit is exposed to

a constant transverse line load q = 25, while the other edge is clamped. The

initial geometry with dimensions and the FE mesh involving 350 elements is

depicted in Fig. 8, left. Choosing the material reference direction to run in the180

circumferential direction of the ring, two different composite stacking sequences

are considered: [0/0/0/] and [90/0/90], with the material properties as given in

Table 5. Each layer has a thickness of 0.015. The diagram in Fig. 9 shows the

Table 5: Material properties - composite slit annular plate

E1 E2 ν12 G12 G13 G23

2·106 0.6·106 0.3 0.24·106 0.3·106 0.4·106

vertical displacements of points A and B against the load and for both stacking
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Figure 8: Composite slit annular plate

sequences. The obtained results are compared with those reported by Liang185

[44], who used a co-rotational quadratic triangular shell element with zig-zag

functions. A good agreement between the results is observed.
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Figure 9: Load-displacment curves of the slit annular plate case
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4.5. Modal analysis of a concrete boom pumps arm web segment

The concrete boom pumps arm web segment depicted in Fig. 10 is made of

FRC composite laminate consisting of 70 layers. A detailed description of the

structural geometry and material data would take significant space. For the sake

of brevity, it is omitted here. Another reason for this is the fact that the example

does not belong to typical numerical benchmark cases that impose the need for

repeatability. The aim is rather to compare numerical and experimental results

in the case of a structure typically encountered in practice. The experimental

Figure 10: Arm web segment of a concrete boom pump

modal analysis of the investigated composite web structure was done by means

of a laser scanning vibrometer (Polytech). The scanning-software defines its

own mesh of measurement points over the real structure. For processing and

comparing the measured and numerical modal data, the measurement points

should be ideally coincident with the nodes of the FE model. This is not always

easy to achieve in practice. Fig. 11 shows in parallel the real test object with

the generated scanning mesh (the left-hand side) and the FE model, with the

much finer FE mesh (the right-hand side). The marked nodes of the FE mesh

are those that closely match the measurement points. The measured modal data

and those from the FE analysis are compared based on the Modal Assurance

Criteria (MAC) values and determined eigenfrequencies. The MAC value for

the ith numerical mode, {φci}, and the jth experimentally determined mode,
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Scan points

Figure 11: CFR composite web arm: real structure with the scanning mesh and the FE model

with the nodes matching the scanning points

{φej}, is determined as:

MAC =

(

{φci}
T {φej}

)2

({φci}T {φci}) ({φej}T {φej})
(36)

The results are summarized in Table 6 for the first several modes. In the exper-

iment, the structure was excited by a shaker acting perpendicularly to the web190

segment at one point (rather small surface). This excitation cannot excite the in-

plane modes nor the out-of-plane modes whose nodal lines run through or quite

close to the position at which the shaker acts. For that reason no correspond-

ing experimental modes were found for the 3rd and 5th numerically determined

modes. Furthermore, though the MAC values in Table 6 show a clear corre-195

spondence between the remaining experimentally and numerically determined

modes, some differences are still notable, particularly in higher modes. In fact,

this was expectable, as the FE model represents the idealized version of the real

structure. The considered real structure was laminated by hand, so that the

thickness varies somewhat across the surface. Additionally, the clamped edge200

on the upper bushing does not represent an ideal clamp, as considered in the

numerical simulation. The numerical model neglects the damping present in

the real model. And finally, the comparison is done using the points that do
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not coincide, but are closely matched, which has a greater influence in more

complex mode shapes.205

Table 6: Modal Assurance Criterion (MAC) results

Measurement

F
E
M

ca
lc
u
la
ti
o
n

MACs
Mode 1

7.9 Hz

Mode 2

35 Hz

Mode 3

97 Hz

Mode 4

183 Hz

Mode 5

213 Hz

A-Mode 1

7.3 Hz
0.99 0.16 0.22 0.02 0.01

A-Mode 2

35 Hz
0.19 0.98 0.05 0.20 0.05

A-Mode 3

69 Hz
0.06 0.03 0.68 0.01 0.07

A-Mode 4

92 Hz
0.17 0.05 0.95 0.01 0.09

A-Mode 5

94 Hz
0.08 0.005 0.01 0.004 0.01

A-Mode 6

174 Hz
0.02 0.24 0.05 0.94 0.02

A-Mode 7

218 Hz
0.01 0.004 0.17 0.01 0.92

5. Conclusion

Thin-walled structures gain in importance and their field of application be-

comes more diverse each day. The improvement of their general properties and

further growth are driven by application of modern engineering materials. The

material architecture in form of FRC laminates opened up promising possibili-210

ties in design of thin-walled structures. At the same time, the complexity in the

mechanical behavior of thin-walled structures became more emphasized thus

calling for numerically efficient, accurate and reliable modeling tools.

The focus of the paper is on the proposed linear triangular shell element.
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Whereas the numerical efficiency and meshing ability of such an element are215

indisputable, the general performance of linear shell elements, particularly tri-

angular, has been the upsetting factor for the researchers and gave them there-

with the impetus to improve the existing solutions. The developed shell element

relies on the equivalent single-layer approach based on the Reissner-Mindlin

kinematics. To resolve the weaknesses intrinsic for linear elements, this element220

implements already existing solutions for plate and membrane part, but as a new

combination. The shear locking is resolved by means of the descrete shear gap

method and the oscillations of the transverse shear stresses between elements are

alleviated by means of the cell-smoothing technique. For the membrane behav-

ior of the element, the assumed natural deviatoric strain formulation is applied.225

The element employs six degrees of freedom per node, whereby the drilling de-

gree of freedom is of particular importance for the ANDES formulation of the

membrane part. As thin-walled structures are susceptible to geometrically non-

linear behavior, the consistent co-rotational approach is implemented with the

presented element.230

The examples prove a very good performance of the element in both linear and

geometrically nonlinear analyses. The examples cover both academic and prac-

tical cases. The validation was done using the results reported by other authors,

those obtained by commercial FE codes and the experimental results were also

addressed. Future work should extend the element formulation so as to include235

multi-functional materials and associated coupled-field effects.
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