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Abstract
The rotational elements of a planetary body state its orientation in space with
respect to the International Celestial Reference Frame (ICRF). They are used
for computing control point networks (CPNs) and for creating e.g. maps or
terrain models of the body. This work describes the inertial frame bundle
block adjustment. It is a method to determine rotational elements of planetary
bodies in a direct and analytical way from image point measurements. Simul-
taneously with the rotational parameters, a corresponding CPN is computed
and the external orientation data of the camera are improved. In contrary to
the classical photogrammetric bundle block adjustment, here the interdepen-
dence of the body’s rotational model and the camera’s external orientation is
resolved. The method was tested on simulated data and applied to two real
science cases. The amplitude of forced libration, which contributes to the ori-
entation of the prime meridian, was determined for the Martian moon Phobos.
Using combined images of the missions Viking and Mars Express, an ampli-
tude of 1.13◦ ± 0.13 was computed together with a CPN of 680 points and an
uncertainty of ∅ 55 m. The amplitude is in agreement with previous results,
derived by indirect methods (e.g. Willner et al., 2010; Oberst et al., 2014).
Secondly, the pole axis orientation of Vesta was confirmed using images of the
current Dawn mission. The computed CPN of 82 806 points is compared with
the body-fixed solution of Preusker et al. (2012), showing that both networks
are plausible within the average intersection error of 10 m. The software which
was implemented is focusing on the application to large data sets. It could be
achieved that the costs of memory and running time depend only on the num-
ber of images. In the example of Vesta with 5440 images, 164 hours (out of
168) are saved with respect to a reference adjustment software. The method
is suitable to study and refine rotational models of bodies with solid surfaces.

adjustment, bundle block adjustment ICRF, forced libration amplitude,
Phobos, Vesta, parallel inversion



Zusammenfassung
Die Rotationselemente eines planetaren Körpers geben seine Orientierung im
Raum in Bezug auf den internationalen Himmelsreferenzrahmen (engl. ICRF)
an. Sie sind notwendig für die Berechnung von Kontrollpunktnetzen (KPN)
und für die Erstellung von z.B. Karten oder Geländemodellen des Körpers.
Diese Arbeit beschreibt den Bündelblockausgleich im inertialen Referenzrah-
men. Das ist eine Methode, um Rotationselemente planetarer Körper direkt
und analytisch anhand photogrammetrischer Messungen zu bestimmen. Si-
multan wird ein KPN berechnet und die externen Orientierungen der Kamera
werden verbessert. Im Gegensatz zum klassischen körperfesten Bündelblock-
ausgleich ist hier die bestehende Abhängigkeit zwischen dem Rotationsmo-
dell des Körpers und der Kameraorientierung aufgelöst. Die Methode wurde
anhand einer Simulation getestet und auf zwei reale Datensätze angewandt.
Die Amplitude der erzwungenen Libration, die sich auf die Orientierung des
Hauptmeridians auswirkt, wurde für den Marsmond Phobos bestimmt. Mittels
Bilddaten aus den Missionen Viking und Mars Express ist eine Amplitude von
1, 13◦ (±0, 13) berechnet worden, das zugehörige KPN mit 680 Punkten hat
eine Unsicherheit von ∅ 55 m . Die Amplitude stimmt mit den Ergebnissen
von Willner et al. (2010) und Oberst et al. (2014), die durch indirekte Me-
thoden erhalten wurden, überein. Die Polachsenorientierung von Vesta wurde
mittels Bilddaten aus der aktuellen Dawn Mission bestätigt. Das berechnete
KPN mit 82 806 Punkten wurde verglichen mit dem Ergebnis von Preusker et
al. (2012) aus einem körperfesten Bündelblockausgleich; beide Lösungen sind
innerhalb des mittleren Schnittfehlers von 10 m plausibel. Die Software wurde
mit Schwerpunkt auf große Datensätze implementiert. Dabei konnte erreicht
werden, dass die Kosten für Speicher und Laufzeit nur von der Anzahl der Bil-
der abhängig sind. Beim Vesta-Beispiel mit 5440 Bildern werden im Vergleich
zu einer Referenz-Software 164 von 168 Stunden eingespart. Die Methode ist
geeignet, um Rotationsmodelle von planetaren Körpern mit fester Oberfläche
zu studieren und zu verbessern.

Ausgleichsrechnung, Bündelblockausgleich ICRF, Librationsamplitude, Pho-
bos, Vesta, parallele Inversion
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Chapter 1

Introduction

1.1 Motivation and content

Since the final decades of the 20th century, spacecraft have been launched to
study objects in the solar system. In many cases the spacecraft carries an imag-
ing system to gather optical information about the target. For this thesis the
focus is set on planetary bodies with solid surfaces - that means planets, dwarf
planets, moons, asteroids or comets which are suitable for a photogrammetric
survey. In the field of planetary geodesy images are used to study properties
of planetary bodies, e.g. topography, shape and rotation. Major objectives
of these studies are the definition of reference systems, the determination of
rotational parameters as well as mapping and modelling of planetary surfaces.
This includes in particular the computation of control point networks (CPNs)
which are a first-order realisation of the body’s reference system and define
the body-fixed reference frame by three-dimensional coordinates. While a body
moves in space, it changes its orientation e.g. by self-rotation, the precession
of the pole axis or librations. These changes in orientation are described by
the rotational model of the body in terms of functions of time, formulated with
respect to an inertial reference system. These functions indicate the direction
of the pole axis as well as the orientation of the body’s prime meridian. Any
error in the rotational model contributes to a misalignment between optical
measurements and the corresponding ground coordinates. Hence, in order to
create stable maps of high quality, a precise knowledge of the rotational pa-
rameters is desired.

1
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In the past century spin poles, rates and sense of rotation of the large asteroids
were mostly determined by earth-based measurements of lightcurves and an
analysis which included a theoretical shape model. Magnusson (1986) gives a
good overview about the applied methods and the literature of that era. He
consolidated some of the common methods and proposed a procedure which
is here referred to as (parameter) range scan method. There, a series of anal-
yses with trial values for the parameters to be determined is performed, and
the data are statistically evaluated such that a best-fit yields the final result.
This approach, gradually improved e.g. by De Angelis (1993), was widely
used. With the available image data of the Hubble Space Telescope Camera
and the spacecraft missions, the trial values are typically evaluated with re-
spect to a computed CPN or the related improvements of image observations
(Thomas et al., 1995). A special effect, that has been verified for a few moons
in the solar system, is the forced libration of satellites. This small variation
in the mean self rotation rate depends on the satellite’s moments of inertia
and the gravitational torque that a primary body exerts on its satellite. The
amplitude of the forced libration contributes to the orientation of the prime
meridian and is therefore an important rotational parameter. An angular error
in the model about the prime rotation axis will lead to a positional error of
the control points; this error is proportional to the size of the body. Further-
more, since the magnitude of this libration is related to the magnitude of the
gravitational torque, conclusions about the internal structure of a body can
be drawn (Murray and Dermott, 1999). By applying the range scan method
with a bundle block adjustment or similar type of CPN analysis, amplitudes of
forced libration have been obtained for the Martian moon Phobos (Duxbury
and Callahan, 1989; Willner et al., 2010, a.o.) as well as for the Saturnian
moons Janus, Epimetheus (Tiscareno et al., 2009) and Mimas (Tajeddine et
al., 2013). An alternative method has been introduced by Oberst et al. (2014)
who used a rotation model of Phobos without longitudinal libration and eval-
uated the spacecraft position residuals over the anomalistic period1 after a
bundle block adjustment. With respect to Phobos also a theoretical approach
has been used, where the equations of motion are solved by numerical integra-
tion and the magnitude of forced libration could be determined as one of the

1pericenter to pericenter
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orbit parameters (Jacobson, 2010; Rambaux et al., 2012).
It is important to pay attention to the interdependency of rotational elements
and the computed CPN of a planetary body. The initial result of the CPN,
that is derived from the image measurements, reflects errors in the measure-
ments themselves and in the camera’s external orientation (i.e. the position
and pointing data of the camera). In order to obtain a reliable network, the
camera orientation parameters need to be improved. The classic approach to
minimise such errors is the mentioned bundle block adjustment, an iterative
procedure that finds a Least-Squares Regression solution for the underlying
mathematical model. This is a powerful and well-proven tool in terrestrial
geodesy. In planetary geodesy the orientation of the target is generally not
well-known, esp. not fixed with respect to the observer. The orientation of the
camera reference frame, e.g. obtained by star tracking, is given with respect
to an inertial reference frame. Also the positions are given in inertial coor-
dinates; they are obtained by earth-based tracking methods (e.g. range and
Doppler measurements) and eventually by further numerical integration of the
spacecraft’s trajectory. Based on the assumed rotational model of the target
body, the position vectors and pointing angles are converted into orientation
data with respect to the body-fixed frame and this way, they are linked to the
rotational elements. The classical photogrammetric bundle block adjustment,
designed for geodetic measurements on Earth, cannot resolve this fundamen-
tal dependency since the underlying mathematical model is formulated in the
body-fixed reference frame only. Errors in the rotational model lead to large
position offsets and falsified pointing data in the body-fixed frame. I.e. the
(body-fixed) orientation uncertainties include the uncertainties of rotational
elements of the observed body, too. Therefore, a series of CPNs is computed
together with a set of statistic information which yield the basis of decision
with respect to the most reliable solution.
The methods to determine rotational elements today are indirect methods.
The range scan method requires a large number of adjustments, one for each
assumed value of the rotational parameter in question. Hence, it is only suit-
able for small data sets of a few hundred images. As Thomas et al. (1997)
could determine the spin pole of Vesta with very few images, the precession
movement, recently indicated by theoretical considerations of Konopliv et al.
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(2014), could not be detected by this approach. In order to cover long-time pe-
riods of rotational behaviour as well as the surface of larger planetary bodies,
larger data sets need to be formed and processed. When this is done, the non-
linear increasing computational effort stresses the memory capacity, running
time and hardware expenses in such a way, that even for a single adjustment
an effective resource management is required. The range scan method in these
cases is no longer practicable.

It is an aim of this work to present a method that allows the direct deter-
mination of rotational elements based on an analysis of image data. This
method will be referred to as inertial frame bundle block adjustment, since
the underlying mathematical equations are formulated with respect to the in-
ertial frame. In order to avoid a possible misunderstanding the expression
direct computation shall be clarified. In contrary to the previously mentioned
techniques which yield their results indirectly and by interpretation, within
the inertial frame bundle block adjustment the (time-independent) rotational
parameters become directly adjustable and it takes only the iterations of a
single adjustment to obtain the result. To exemplify the new method, two
planetary objects have been chosen: Phobos, the inner moon of Mars and the
protoplanet Vesta, which is located in the main asteroid belt. The priority
here is the forced libration amplitude of Phobos and Vesta’s mean pole axis
orientation. The second objective of this work is the performance optimisation
of the implemented software with respect to the computation of large CPNs.
In order to describe planetary bodies and their orientation in space, the con-
cepts of reference frames and rotational elements have been developed and
continuously improved. The current chapter provides an introduction to the
topic and its application to the reconstruction of a body’s surface from image
data. It also includes an overview about the numerical tasks, related existing
solutions and the involved missions and image data. More technical informa-
tion and concrete formula will be given in chapter 2 after the statement of the
mathematical notation and foundations. There also the classical method of a
photogrammetric bundle block adjustment is described. This method will then
be extended to an inertial context in chapter 3, where the own work contribu-
tion starts. Subject of chapter 4 are all aspects of implementation, hardware
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and software considerations focusing the challenge of large data sets. The new
concepts and methods are then applied to the science cases Phobos and Vesta
in chapter 5. Chapter 6 includes the summary and an overview about future
goals and further software development.

1.2 Reference frames

The motion and orientation of bodies in the solar system, being natural or
artificial, and specific locations on a certain body are formulated in various
different reference systems. By convention, in planetary science these are right-
handed orthogonal coordinate systems. It proved to be practical to work with
3D cartesian coordinates for locations and with angular expressions to describe
orientations at a given time. Hence, reference systems are defined by specifying
three principle axes (in right-handed order) and the origin. Coordinate systems
of moving and rotating objects are associated with a reference epoch. The
current standard epoch is J2000.0 (1st January 2000, 12:00:00 Barycentric
Dynamical Time) and time is measured in SI seconds with respect to that
date. It is furthermore distinguished between the abstract level of reference
systems and the concrete level of reference frames. While a reference system is
given by definition, the respective reference frame is its concrete realisation by
coordinate values. The coordinate system which is given by the frame respects
the definitions of the reference system as close as possible and is decisive for the
description of the object in question. The following subsections will describe all
coordinate systems which are relevant for this work and how they are related
to each other. Figure 1.2 shows an exemplary scheme of a spacecraft with a
mounted camera and a target body which are moving in space. The explicit
mathematical definition of the frame conversions follows in section 2.2.

1.2.1 International Celestial Reference Frame (ICRF)

The inertial reference system which is taken into account for this work is the
International Celestial Reference System (ICRS). Its origin is the solar system
barycentre and the three principle axes are not rotating. In 1998 with the in-
troduction of the International Celestial Reference Frame (ICRF) this idealised
system was realised first-time. Using radio interferometry with very long base-
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lines (VLBI), the ICRF is defined through the positions of extragalactic radio
sources (mainly quasars) that move only marginal, relative to our solar system
(Ma et al., 1998). Out of the 608 listed sources, grouped according to different
criteria of quality, 212 defining sources were chosen to specify the frame (see
figure 1.1). According to Ma et al., the alignment uncertainty of the principle
axes is less than 0.02 milliarcseconds (compared with the ICRS axes). As a

Figure 1.1: Distribution of the ICRF defining sources on the celestial sphere
(Ma et al., 1998, fig. 10)

consequence the ICRF itself is epochless. All other types of reference frames
can be related directly or in subsequent order to the ICRF. The inertial frame
is used to describe not only the motion of an object within the frame, but
also its orientation relative to the (stable) principle axes. At a given time,
any reference frame can be described with respect to the ICRF by specifying
the orientation of both frames relative to each other. The International Earth
Rotation Service (IERS) who monitors the radio sources released an update
of the frame (Ma et al., 2009) which was adopted by the International Astro-
nomical Union (IAU) as of 1st January 2010. The update is officially referred
to as ICRF2 and the original frame as ICRF1. Since the update is without
any consequence to the rotational models, the distinction is dropped here.
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1.2.2 Hipparcos Celestial Reference Frame (HCRF)

The inertial reference system ICRS is also realised at optical wavelengths by
the Hipparcos Celestial Reference Frame (HCRF), consisting of 85% of the
stars in the Hipparcos catalog. According to Kaplan (2005) the position errors
of these stars in ICRF coordinates with respect to J2000.0 range between 5
and 10 milliarcseconds (mas). The orientation of the spacecraft and camera
reference frame with respect to the ICRF is typically obtained by star tracking,
i.e. it is based on optical observation of stars. Hence, this frame is used by
services which provide the orientation data of spacecraft cameras, e.g. NASA’s
Navigation and Ancillary Information Facility (NAIF).

1.2.3 Spacecraft and camera reference frame

Hierarchy of reference frames with ICRF as fundamental frame

Figure 1.2: Orientation and motion of spacecraft and body are formulated
within the ICRF. The conversion between the frames is accomplished by the
(possibly successive) application of rotation matrices. In this example, the
transformation between spacecraft and camera frame is constant.

The spacecraft motion is described in inertial coordinates, but it has an
attached local frame which is pre-defined by the mission team. The origin
in ICRF coordinates is equal to the position of the probe. Navigation and
stabilisation of the flight system’s orientation is achieved by the attitude con-
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trol subsystems onboard (Doody, 2011). In the frame hierarchy, the camera
reference frame is subordinate to the spacecraft frame (see figure 1.2). There
is a special platform (called instrument head) on which the camera system
is mounted. It has a fixed orientation with respect to the coordinate system
used for the spacecraft. The camera itself has a certain alignment with respect
to the platform and hence to the spacecraft. This alignment is either fix or
depends on pre-defined rsp. commanded moves of the camera. In praxis, the
mounting is often neglected, i.e. the position of camera and spacecraft is taken
as identical.

Here only CCD frame cameras are considered and the object which needs
to be described is the image that the camera has captured at a certain time.
The reference frame is defined by the coordinates of the CCD sensors (pixel)
which lay in a plane behind the camera lens. The origin of the camera frame
is the focal point. The direction from the images’ principle point to the lens is
the bore side direction and the distance between them is the (nominal) focal
length. The information about an instrument on board of a spacecraft is col-
lected in the instrument kernel (IK). The IK contains all required information
to transform pixel coordinates into metric coordinates (focal length, the num-
ber of valid pixels in line and sample direction, the coordinates of the principle
point, the pixel size etc.), including the definition of the three primary axes.
The assignment of the axes varies for different instruments rsp. missions, but
typically one axis contains the bore side vector and the other axes are parallel
to the rectangular CCD boundaries.
Example: +Z points in bore side direction, then the X-Y -plane is parallel to
the CCD – all pixels have the same Z-coordinate which agrees with the neg-
ative focal length. If +X points from left to right (watching from +Z), +Y

points from top to bottom.
The measurement of the image point observations is accomplished within the
coordinate system of the image. In order to compute three-dimensional (3D)
surface coordinates of a target body, they are transformed into 3D centred
and metric coordinates of the camera reference frame. Furthermore the ori-
entation of the frame including its position needs to be known. All camera
orientation data used in this work are either directly obtained by the SPICE
kernels of NAIF (Acton, 1996) or have been originally provided by them and
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where modified later on.

1.2.4 Body-fixed reference frame

The description of the location of a crater on a body, constantly moving and
changing its orientation with respect to the inertial frame, requires a coordinate
frame that is tied to the body. Content of this subsection are the recommen-
dations and conventions given by the IAU Working Group on Cartographic
Coordinates and Rotational Elements (Archinal et al., 2011).
An object-centred reference system is defined with respect to its mean axis
of rotation and an additional choice of the zero-longitude that defines the di-
rection of the X-axis. The corresponding reference frame is called body-fixed
reference frame and its main purpose is to facilitate mapping. The frame is
defined by control points with the origin commonly pinned to the center of
mass.
For planets and moons, the Z-axis is identified with the mean rotation axis
containing the north pole of rotation on the positive side.2 If there is no other
information the axis is assumed to be normal to the mean orbital plane. For
the catagory of small bodies the positive pole of rotation is defined by the
spinning direction of the body: looking onto +Z the body appears to rotate
anti-clockwise. The term north pole is not used here, since there are cases
where the spin pole moves in a short time between north and south of the in-
variable plane. As a consequence only planets and moons can have retrograde
revolutions; Pluto being formerly a retrograde rotating planet is considered a
prograde rotating dwarf planet with its positive pole south of the invariable
plane. According to the recommendations for small irregular bodies, the initial
definition of a body-fixed coordinate system should be, if possible, based on a
shape model and estimate of the moments of inertia (Archinal et al., 2011).
The prime meridian can be chosen in principle as arbitrary as on Earth, but
the IAU recommends to align it with the longest axis or the minimum moment
of inertia. Often a landmark is used, but the prime meridian can be defined
by reference to another celestial object, too. On images topographic features,
typically small craters, are identified and a candidate is chosen that defines a

2The pole that lays north of the invariable solar plane, as it is for Earth
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specific longitude. E.g. on Mercury the prime is defined with respect to Hun
Kal which marks the meridian 20◦ W (Robinson et al., 1999).
The body-fixed coordinates are considered as independent of the self-rotation
and the body’s orientation in space. A reorientation of the spin axis in terms
of polar motion, also known as true polar wander (Matsuyama et al., 2006;
Harada, 2012), is not considered in this context. Furthermore, possible changes
of the topography, e.g. by tidal deformation, are not taken into account since
they are expected small enough to be neglected.

1.3 Rotational elements

The rotational elements of a planetary body are used to describe the orientation
of its body-fixed reference frame with respect to the ICRF at a given time.
The specific directions of the principle axes are recorded with respect to the
standard epoch.
The celestial coordinates α (right ascension) and δ (declination) describe the
direction of the pole axis, from the center to the north pole (rsp. the positive
pole). This vector is given in ICRF polar coordinates and is referred to as pole
axis orientation. In addition the angle W denotes the position of the body’s
prime meridian, relative to the intersection of the body’s equatorial plane and
the ICRF equator (see figure 1.3). The node Q = (α + 90◦, 0◦) coincides with
(W, 0◦) in the body-fixed frame (measured as positive west) and W is referred
to as prime meridian orientation.
The angles α, δ,W are the time-depending functions of the body’s rotational
model and include further models of effects like precession, acceleration or
forced libration. Three subsequent rotations align the ICRF with the reference
frame of the body. A detailed description of this conversion is given in section
2.2 (page 27). It is worth to point out, that in praxis only the rotational
elements are used to describe the principle axes of the body-fixed coordinate
system although there might be a defining CPN. The rotational model implies
the coordinates of the feature that defines the zero-longitude. Hence, when
rotational elements are improved, the original definition of the prime meridian
should be respected (Archinal et al., 2011). In the following, the two rotational
models of Phobos and Vesta will be given. It is t = s/86 400 the magnitude of
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The orientation of a body with respect to the ICRF

Figure 1.3: The pole axis orientation (α, δ) states right ascension and declina-
tion of the body’s Z-axis; W is the prime meridian orientation w.r.t. the node
Q. The longitude L of Q in both reference frames is: LICRF = 90◦ + α (pos.
east) and LBF = W (pos. west). Figure, according to Archinal et al. (2011),
is modified to match current notation.
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days since J2000.0 (without unit) and T = 36 525 t equals one Julian century;
dates before the standard epoch result in negative values.

Phobos (Archinal et al., 2011):

α(t) = α0 − 0.108◦ T + 1.79◦ sin(M1) (1.1)

δ(t) = δ0 − 0.061◦ T − 1.08◦ cos(M1)

W (t) = 35.06◦ + 1128.844585◦ t+ 8.864◦ T 2 − 1.42◦ sin(M1)− λ0 sin(M2)

with the time-independent parameters

α0 = 317.68◦, δ0 = 52.90◦, λ0 = 0.78◦ .

The function M1 = M1(t) = 169.51◦ + 0.435764◦ t models the precession mo-
tion of 826 days and M2 = M2(t) = 192.93◦ + 1128.40967◦ t + 8.864◦ T 2 the
orbital motion. The similarity of M2 and W reflects that Phobos is in syn-
chronous orbit around Mars. The second term in the definition of W is the
spin rate in degrees per day (one revolution takes about 7 h 39min) and the
+ sign indicates the direct sense of rotation. The third term models the spin
acceleration which is caused by Phobos’ gradual approach to Mars. The co-
ordinates (α0, δ0) describe the axis of precession and λ0 is the amplitude of
forced libration. In section 1.4 alternative results of λ0 are given.

Vesta (Archinal et al., 2013; Li and Mafi, 2013):

α(t) = 309.031◦ ± 0.01 (1.2)

δ(t) = 42.235◦ ± 0.01

W (t) = W0 + 1617.3329428◦ t , W0 = 285.39◦ .

The model above contains a fixed pole axis orientation and the rotation rate of
5 h 20m 31.662 s . The coordinate system with W0 = 285.39◦ is called Claudia
Double-Prime system, it assigns a longitude of 146◦ W to the crater named
Claudia such that the prime meridian passes through the feature named Olbers
Regio as defined by Thomas et al. (1997). There is an alternative coordinate
system with W0 = 75.39◦ used by the Dawn team before. It is known as
Dawn-Claudia system and assigns a longitude of 356◦ W to Claudia. Hence
both systems are rotated by 210 degree with respect to each other. Table 1.1
shows a selection of earlier solutions of Vesta’s rotational elements.
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Earlier rotational models of Vesta

publication α δ rotation rate

Gehrels (1967) 191.1◦ 75.1◦ 5h 20m 31.665s proposed
304.4◦ 48.7◦ 5h 20m 31.171s dismissed

Magnusson (1986) 307.3◦ 38.5◦ 5h 20m 31.646s

Thomas et al. (1997) 301.0◦ 41.0◦ 5h 20m 31.664s

Li et al. (2010) 305.8◦ 41.4◦ –

Table 1.1: Selected solutions of the decades prior to Dawn. The pole coor-
dinates (α, δ) are w.r.t. J2000 (values before 1997 are converted). Gehrels
dismissed the 2nd solution because of a larger error in the rotation rate.

1.4 Control point network analysis

The introduced concepts of reference frames and rotational elements are re-
quired to obtain the 3D coordinates of surface points, the so called control point
network (CPN) of a body. As mentioned before, a CPN is the coordinate-based
realisation of the body-fixed reference system and corresponds to a unique set
of rotational parameters. In fact, when the range scan method is applied with
a series of bundle block adjustments, both – the rotational elements and the
CPN – are obtained simultaneously. In this section an overview about CPNs
and the related analysis is given. This includes a brief introduction in how they
can be computed and statistically evaluated. To avoid confusion, it is help-
ful to think of first-order CPNs, defining the body-fixed reference frame, and
second-order CPNs which are obtained by using this reference frame. Those
can be considerable larger than and also be completely different from the defin-
ing network.
The coordinates of a control point (in the body-fixed reference frame) are given
by the intersection of multiple rays which connect the point with its image
representation (in the camera reference frame). The underlying co-linearity
equations involve a rotation matrix which converts the camera reference frame
to the body-fixed reference frame at image time. Hence, the orientation of both
reference frames with respect to the ICRF need to be known at the specific
time (see frame hierarchy in figure 1.2). Merged to a single rotation matrix,
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also the uncertainties of both frames merge and possible errors affect the ini-
tial result of the intersection points. By the procedure of the bundle block
adjustment, where the equations are solved for all control points simultane-
ously, the intersection errors and the camera orientation errors can be reduced.
The knowledge of the uncertainties is very important, because of its major in-
fluence on the result. It is taken into account for the calculation in terms of a
stochastic model which is, briefly stated, a weighting rule for the observations.
A different stochastic model will yield a different result. Hence, in order to
reproduce the results, the uncertainties of all involved observations must be
specified.
An important outcome of the analysis is the stochastic model aposteori, which
states the uncertainties of a) the computed control points, b) the improved
orientation data of the camera and c) the image point observations. Based on
the weighted residuals of all observations an overall system error is computed.
All of these quantities can be taken into account for decision when a parameter
range scanning is applied. E.g. Tiscareno et al. (2009) analysed the difference
between the original image point measurements and their predicted positions
by the functional model after the adjustment and found a forced libration
amplitude (λ0) of 0.3◦ ± 0.9 for Janus and 5.9◦ ± 1.2 for Epimetheus. Tajed-
dine et al. (2013) used a similar evaluation method for Mimas and determined
λ0 = 0.805◦ ± 0.022. They applied different rotation models for the back-
ward projection into the images, but here the camera positions were corrected
with the limb fit method and the pointing angles were kept fixed. Concerning
Phobos Willner et al. (2010) obtained the forced libration amplitude in cor-
respondence with the minimal mean error of the CPN; table 1.2 shows their
solution as well as those of other selected authors.
The following two examples of CPN usage are related to a fixed object-centred
reference frame. In the process of creating a digital terrain model (DTM), con-
sisting of millions of points, also a bundle block adjustment is deployed, but to
a much smaller subset of control points. Here, the improved camera orientation
and their computed uncertainties are the most relevant results of the analysis
and the CPN is only a by-product. The selected control points work as inner
constrains of the network to adjust the orientation data of the camera. The
resulted positions and pointing angles are kept fix when the final number of
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The forced libration amplitude of Phobos

λ0 Publication Method

0.80◦ ± 0.20 Duxbury and Callahan (1989) CPN
1.24◦ ± 0.15 Willner et al. (2010) CPN
1.09◦ ± 0.10 Oberst et al. (2014) CPN
1.03◦ ± 0.22 Jacobson (2010) O
1.10◦ – Rambaux et al. (2012) O

Table 1.2: Selected results of Phobos’ forced libration amplitude λ0, obtained
either by CPN analysis or by analysing the orbital equation of motion (O)

points is computed subsequently. The coordinates of the CPN can also be used
to compute the coefficients of surface spherical harmonics, functions which ap-
proximate the whole surface and the principle axes of the frame. Apart from
the resulting uncertainty, this alternative representation does not depend on
the original measurements any more, but yields a global shape model. Large
networks can also directly be triangulated and rendered to model the surface,
examples of the science cases Phobos and Vesta are given in chapter 5.

1.5 Implementation

Deploying a bundle block adjustment to large networks requires a lot of com-
putation power and the resources running time and memory need to be con-
sidered. The memory restriction of a computer is a hard limit and decides
whether or not a certain program can be executed. The running time also
contributes to qualitative aspects. Considering common block adjustments
with one fixed rotational model, computation times can take several weeks
and months including pre- and post-processing (private communication with
F. Preusker). Since time itself is a critical resource in scientific projects, data
sets might be reduced in order to publish results in time. Here, matrix prod-
ucts and matrix inversion are the most time expensive parts of the program.
Compression techniques and an intelligent implementation design are keys to
an efficient management of both resources. In chapter 4 the topic of sparse
matrix compression and the advantage of symmetric matrices is discussed in
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detail. This section gives an overview about the numerical tasks which need to
be performed, related available solutions and the aspect of computation time.
The reader shall get an idea of the concepts and elements which will be used
later on.
Technically for a symmetric matrix N of dimension n and a given vector b, the
equation Nx = b is to solve and n agrees with the number of parameters that
are to adjust. The straight forward approach is, to invert N and build the
product with b subsequently. It is known that the computation of x = N−1b

can be realised much more efficiently (Dahmen and Reusken (2008), chapter
13), but the bundle block adjustment also includes an evaluation phase that
requires N−1. The handling of measurement errors and the stochastic model
aposteori depend on the inverted matrix. Hence, a solution is sought that re-
duces running time and maintains the statistical information. There are plenty
approaches to matrix inversion, and all involve some transformation into tri-
angular shape and the inversion of the obtained triangular matrix. One of the
common methods to transform a symmetric matrix M into triangular form,
is the Cholesky decomposition. The algorithm computes a lower triangular L
with LLT = M or in a variant a lower triangular L and a diagonal D with
LDLT = M (Dahmen and Reusken (2008), chapter 3). The inverse is then
given by the product (LT )−1D−1L−1.
The actual running time, i.e. the time which it takes for a computer to ex-
ecute an algorithm (or program), depends highly on the specifications of the
machine. In order to analyse the effectiveness of an algorithm, a measure is re-
quired that is independent of the hardware and its performance specifications.
Such a measure is the number of required floating points operations (flops),
e.g. multiplications or additions which are applied to floating point numbers.
The number of flops usually depends on variables of the algorithm which de-
termine the size of the problem, for instance the dimension parameters of a
matrix. In modern books of computer science the term time complexity has
been introduced for this performance-independent consideration of the execu-
tion times, while in classic numerical literature the term running time is used
(assuming that the context of a theoretical consideration is clear). The symbol
O(n3) denotes a running time of cubic order, stating that the number of flops
is bound by kn3 for some real number k. The value for n3 is clearly dominant,
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but the larger n grows, the more the actual value of k needs to be considered.
A standard matrix product of two square matrices with dimension n takes
O(n3) flops, so does a standard inversion algorithm.
Considering six orientation parameters per image and three coordinates per
control point as unknown parameters, n equals 30 000 if the data set consists of
1000 images and 8000 control points. It is n3 = 27 000·109 flops, which is equal
to 27 000 Giga flops (1 Gflop = 109 flops). To estimate the machine-depending
computation time, a value for x = kn3 and the average core performance y in
Gflops/s must be specified. The time in seconds is then approximated by

t =
x flops

y Gflops/s
=
x

y
10−9s .

A core performance of 3.0 Gflops/s and a value of x = 1
3
n3 yields t = 3000 s

rsp. 50 minutes. The structure of the matrix N allows the application of a
well-known technique (Niemeier, 2008) such that, in this case, the computa-
tion time shrinks to about six minutes. The adjustment problem is split into
two partial problems of size n1 = 6000, n2 = 24 000 where n1 only depends
on the number of images and n2 only on the number of control points. The
technique is explained in detail in chapter 4 (section 4.2.1). It basically reduces
the inversion time to O(n3

1) with the additional costs for a product of about
O(n2

1n2). It is owed to the special structure of N , esp. the sparse distribution
of non-zero elements, that the use of the splitting method is of advantage. The
resulting performance improvement is even for small data sets significant, but
the challenge remains if the number of images grows large. For the Vesta data
set, n1 equals 32 640 and it takes with the specifications above 1.5 hours to
solve the partial problem and more than 35 hours for the remaining product.
Using a reference software at DLR Berlin these are realistic numbers; the total
adjustment takes four iterations and about 168 hours. Furthermore the de-
mand on memory depends on the number of control points and exceeds 250
GB (Preusker; private communication).
While implementing the inertial bundle block adjustment, tools of an effective
resource management, e.g. sparse matrix compression and parallel computa-
tion, have been taken into account. All aspects of implementation, hardware
and software considerations focusing the challenge of large data sets are subject
of chapter 4, including the comparison of running times. It will be shown that
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by a combination of splitting technique and matrix compression the product,
which takes about 95 % of the computation time, can be eliminated such that
the requirements for running time can be reduced to O(n3

1) and for memory
to O(n2

1). Hence, the number of involved images becomes the most relevant
factor with respect to resource limitations. At a second level of optimisation
an algorithm has been developed to benefit from multi-core architecture, ei-
ther CPU (compute processing unit) or GPU (graphics processing unit) using
parallel computation for the inversion task. This approach combines the in-
troduced splitting technique and the Cholesky decomposition. Because of the
parallel design for the the single steps in the splitting technique, the procedure
allows a large amount of parallel computation in contrary to other available
inversion techniques (section 4.2.4).
Since the performance of a program depends on different hardware aspects
and the environment of the operational system, it was tested on three different
architectures, all equipped with Linux RedHat Enterprises 6. In addition to
the work-station at TU Berlin which has been used for software development
(4 cores, 16 GB RAM), also computing facilities of DLR Berlin (32 cores, 256
GB RAM) and the North-German Supercomputing Alliance HLRN (24 cores,
64 GB RAM) were used. All core specifications are related to Intel Xeon CPU
chips, differing mainly in clock cycle and Gflops/s. The performance value of
each machine was obtained based on the Whetstone benshmark test (Curnow
and Wichmann, 1976).

1.6 Missions and data

There are three different space missions contributing to this work, two of them
are still on-going. NASA’s Viking mission to Mars and ESA’s Mars Express
mission provided the image data of Phobos. The image data of Vesta is ob-
tained by the Dawn mission of NASA. The next subsections provide brief in-
formation about these missions and describes the selected data of the involved
framing cameras.
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Viking

The Viking mission of NASA towards Mars was represented by two identical
spacecraft, Viking 1 and Viking 2, each consisting of an orbiter and a lander.
The primary mission objectives were to obtain high resolution images of the
Martian surface, characterise the structure and composition of the atmosphere
and surface, and search for evidence of life. During the whole operation pe-
riod, about 500 images of the Martian moons were taken during flybys. Viking
Orbiter 1 (VO1) arrived at Mars on 19th June 1976 and concluded its mis-
sion after 1489 orbits of Mars on 7th August 1980. From 12th February to
11th March 1977, VO1 approached Phobos and maintained an orbit that was
synchronised with the flyby period of the moon. During this close encounter
phase of about 30 martian revolutions, Phobos could be pictured from dis-
tances between 90 to 650 km above the surface. Duxbury and Callahan (1988)
provide a detailed description of astrometric Viking observations that cover the
complete operation time, focusing on the possibility to improve the ephemeris
data of the satellites. Their study includes 166 images of Phobos and states
the uncertainties of spacecraft positions and camera pointing angles, shown in
table 1.3. In this study only images of VO1 are considered and the majority of
them is taken during the early encounter phase, at an average distances of 460
km; only two of the images are captured in late 1977 at 1840 km and 3100 km
distance. The Viking Imaging System (VIS) consisted of two identical cam-
eras, VIS A and VIS B. There is one image of VIS B and 18 images of VIS A
included.

Viking orientation uncertainties
Position 1.0− 8.0 km errors in the early mission phase are smaller

(related to the periapsis passage)

Pointing 0.03− 0.3 km with star tracking method
up to 3.0 km when no star tracking was available

Table 1.3: Uncertainties (1σ) of position and pointing data of the Viking
Imaging System VIS, the true values are expected in 3σ range (Duxbury and
Callahan, 1988).
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Mars Express

Mars Express (MEX) is Europe’s first mission to Mars. The spacecraft entered
an orbit around Mars on 25th December 2003 carrying a lander and seven
instruments, including a High Resolution Stereo Camera (HRSC). The global
investigation of Mars and its two moons, Phobos and Deimos, is still on-going.
MEX performed several manoeuvres to capture Phobos during flybys. The
HRSC pointed to a predefined inertial position where Phobos was expected to
enter the field of view and the activated Super Resolution Channel (SRC) took
a series of images. A detailed report about the imaging performance of the
SRC on Mars Express is given by Oberst et al. (2008). For this study 53 frame
images of the SRC were selected, taken at an average distance of 1887 km
with respect to the moon’s centre of mass. Pasewaldt et al. (2015) evaluated
the image data with respect to the position and pointing uncertainties; they
state that the positions have an uncertainty of ±224 m (according to ESOC)
and the uncertainty for pointing angles is given with 0.01 degree for most of
the images. For some images, shifts of up to 160 pixel in sample direction
and 90 pixel in line direction are recorded (Pasewaldt et al., 2015, fig. 2), and
the maximum shift corresponds to a pointing error of 0.084 degree. The SRC
image data and stochastic model used here is the same as in Willner et al.
(2010) and has been attached in appendix A (table A.1).

Image data of Phobos

Viking (VIS) MEX (SRC)

Pixel Size 0.01176 mm 0.009 mm
Focal Length 474.610 mm 984.76 mm

Distance ∅ 674 km (226 – 3078 km) ∅ 1877 km (579 – 5265 km)
Resolution ∅ 16.68 m (5.6 – 76.3 m) ∅ 17.12 m ( 5.3 – 48.4 m)
Images 19 53

Table 1.4: The nominal ground distance (km), assuming a radius of 11 km and
the resulting ground resolution (m) of Viking and MEX images. The average
resolution of all 72 images together is 17 m.
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Dawn

The launch date of the Dawn mission was 27th September 2007 and has been
recently extended after the end of its prime mission on 30th June 2016. The top
level question of the mission is to understand, how size and water determined
the evolution of the planets. Therefore two massive protoplanets, Vesta and
Ceres, were chosen as mission targets. Dawn is the first spacecraft which went
in orbit around an object of the main asteroid belt. It took about 69 000 images
and collected more than 132 GB of scientific data, and it continues to orbit
its second mission target, the dwarf planet Ceres. The giant asteroid Vesta
was explored from July 2011 to August 2012. There were two mission phases
in a High-Altitude Mapping Orbit (HAMO): 28th September 2011 to 2nd
November 2011 (HAMO-1) and 5th June 2012 to 25th July 2012 (HAMO-2).
The data set considered here, consists of 5440 images, combined from HAMO-1
phase and HAMO-2 phase. Unlike the Phobos data, here all images are taken
by the same spacecraft at distances which are close to the average distance
of 944.5 km. Minimum and maximum are within 35 km range of the mean,
implying a homogeneous ground resolution of about 88.1 meter (see table 1.5).
The distance is measured with respect to the centre of mass. For all images
the position uncertainty is given with 35 m and the pointing uncertainty with
0.006 gon.

Image data of Vesta

Pixel Size 0.0140 mm
Focal Length 150.07 mm

Distance ∅ 944.5 km (915.2 – 979.1 km)
Resolution ∅ 88.1 m (85.40 – 91.3 m)
Images 5440

Table 1.5: The 5440 images, combined from both of Dawn’s High-Altitude
Mapping Orbits, have an average nominal ground resolution of 88.1 metres.
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Chapter 2

Definitions and Foundations

2.1 Mathematical foundations and notation

The methods which will be described and developed in this work, e.g. the bun-
dle block adjustment (section 2.3), involve theorems and subsequent results of
Linear Algebra. In this section the notation for mathematical objects will be
given first. Secondly, a collection of fundamental algebraic results, proven and
presented in detail by Fischer (2012), is stated here and taken for granted in
all further considerations of matrix operations and related algorithms.

• R denotes the real numbers and N the natural numbers including zero.
• M ∈Mn,m is any matrix with n rows, m columns and coefficients in R.
• Mn = Mn,n is the subset of square matrices, i.e. rows equal columns; the
restriction to only one dimension parameter will imply that the matrix in ques-
tion is square.
• In is the unit matrix in Mn, i.e. a diagonal matrix with n ones along the
diagonal; the dimension parameter is omitted if the context is clear.
• O(nx) is an asymptotic bounding condition of a numerical series that depends
on the variable n, x ∈ R arbitrary. The definition is:

S = O(nx) ⇐⇒ lim
n→∞

S

nx
= 0 ⇐⇒ S

nx
< k for some constant k.

This notation is called big-O notation (reading S is of order nx). If x = 1, S
is of linear order, for x = 2 (rsp. x = 3) S is of quadratic (rsp. cubic) order.

23
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• Definition 1 (block diagonal matrix): A square matrix A with dimension
n is called a block diagonal matrix with block dimension s if the s × s blocks
along the diagonal

Bk = {aij ∈ A : (k − 1)s <= i, j < ks} , k = 1, . . . ,
n

s

contain the only possible non-zero entries of A. That is

|aij| > 0 =⇒ aij ∈
n/s⋃
k=1

Bk .

Like the block diagonal matrix is an extension of the diagonal matrix, the
concept of a triangular matrix is extended in an analog way.

• Definition 2 (block triangular matrix): A is called a block triangular matrix
if there exist a block diagonal matrix B and a triangular matrix T such that
A = B + T .
More precisely: Let Bk ∈ Ms,s be defined as above and s a factor of n s.th.
n/s = ns ∈ N. A matrix A ∈Mn with the structure

A =



B1

B2 U
· · ·

L · · ·
Bns


is called upper block triangular matrix (with block size s) if aij = 0 ∀aij ∈ L
and lower block triangular matrix if aij = 0 ∀aij ∈ U . It is

L =
ns⋃
k=2

{aij ∈ A : (k − 1)s <= i < ks; j < (k − 1)s} (lower part)

U =
ns−1⋃
k=1

{aij ∈ A : (k − 1)s <= i < ks; j >= ks} (upper part)

The structure of block triangular matrices will be relevant for the implemen-
tation of the algorithm, described in 4.2.4.

• The determinant of a matrix is a function det : A 7→ R that assigns a
real number to the matrix A. For all A ∈Mn the following holds:
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det(A) = 0 ⇐⇒ there is no inverse of A. Consequently, if det(A) differs from
zero, the inverse A−1 exists and satisfies AA−1 = In.
• For all A,B ∈ Mn with |det(A)| > 0 and |det(B)| > 0 it is |det(AB)| > 0

and (AB)−1 = B−1A−1.
• A 3× 3 matrix M with real coefficients corresponds unique to set of 3 func-
tions that are defined on R3. M then operates on v ∈ R3 by multiplication

Mv =


a11 a12 a13

a21 a22 a23

a31 a32 a33




X

Y

Z

 =


a11X + a12Y + a13Z

a21X + a22Y + a23Z

a31X + a32Y + a33Z

 .

The vector v is mapped to another vector, where each component is a linear
combination of the original vector components. If M has a determinant equal
to +1, the matrix acts as a rotation. The columns are orthonormal vectors,
which are the coordinates of the three base vectors e1, e2, e3 after the rotation.
• The transposed of a matrix A ∈ Mn,m, denoted with AT , is obtained by
exchanging rows with columns, hence AT ∈ Mm,n. The products AAT ∈ Mn

and ATA ∈Mm are always symmetric. Further is (AB)T = BTAT .
• If all column vectors of a matrix are linear independent, it is said to have full
rank. Any square matrix with full rank has a determinant different from zero,
hence its inverse exists. If A ∈ Mn,m with full rank, then N = ATA ∈ Mm

has full rank, too. Hence N−1 exists.
Note: It follows, that the definition of N can be extended to N = ATPA if P
is a diagonal matrix with strictly positive diagonal entries. To see this, P is
written as product P = PsqrtPsqrt with Psqrt(ii) =

√
P (ii) and A is replaced

with PsqrtA.
• The trigonometric functions sin(x), cos(x) and tan(x) are taken as unit
sensitive, i.e. units are transformed into radiant automatically by

x 7→ π x

t
with t =


180 x in degree

200 x in gon

π x is radiant .

2.2 Conversion between reference frames

As stated in the introduction, the conversion of one reference frame into an-
other is accomplished by rotation, i.e. the application of a rotation matrix M
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to the frame’s base vectors. If a vector is given with respect to frame A and
shall be transformed into a vector of frame B, A is called the local frame and
B the target frame.

There are several equivalent options to realise such a rotation, which are all
presented by M . One possibility is to split M in different primary rotations,
that are rotations around a main axis of the coordinate system. They are
defined at first, then two ways of rotation sequences, that matter for the im-
plementation of the bundle block adjustment, are distinguished.

Primary Rotations

Considering a right hand cartesian coordinate system, the three primary ro-
tations R1 = R(1,0,0) around the X-axis, R2 = R(0,1,0) around the Y -axis and
R3 = R(0,0,1) around the Z-axis are defined such that for θ = 90◦ the following
transformation of base vectors is realised:

R1(θ) : (0, 1, 0) 7−→ (0, 0, 1) , Y + 7→ Z+ anti-clockwise

R2(θ) : (1, 0, 0) 7−→ (0, 0, 1) , X+ 7→ Z+ clockwise

R3(θ) : (1, 0, 0) 7−→ (0, 1, 0) , X+ 7→ Y + anti-clockwise

Given this, the single matrices that rotate a vector by θ◦ accordingly have the
form

R1(θ) =


1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

 , R2(θ) =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)



R3(θ) =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 .

Note: Since sin(−x) = − sin(x) and cos(−x) = cos(x) the matrix RT
i (θ) =

Ri(−θ) realises the inverse rotation, that is the rotation in the reversed direc-
tion. Hence RT

i (θ)Ri(θ) = I is for all θ and for all i ∈ {1, 2, 3} the unit matrix.
In general any product of two rotational matrices is a rotation matrix again
and, hence, any sequence of products, too.
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2-1-3 Rotation

M = M2−1−3(φ, ω, κ) := R3(κ)R1(ω)R2(φ) will be called shortly a 2-1-3 rota-
tion. The term specifies the order of the rotation sequence:

◦ 1st rotation: φ◦ around Y -axis, 2nd rotation: ω◦ around X-axis, 3rd
rotation: κ◦ around Z-axis

The 2-1-3 rotation is used e.g. to rotate a camera reference frame into a body-
fixed reference frame. The angles φ and ω reflect the relative orientation of the
pole axis to the Z-axis of the camera, so the first two rotations will align both
axes with each other. Then, κ is the offset between the remaining axes. The
order of the rotation sequence is relevant for the computation of the pointing
angles’ derivatives, M is defined by the entries

M11 = cos(φ) cos(κ) + sin(ω) sin(φ) sin(κ);

M12 = cos(ω) sin(κ);

M13 = − sin(φ) cos(κ) + sin(ω) cos(φ) sin(κ);

M21 = − cos(φ) sin(κ) + sin(ω) sin(φ) cos(κ);

M22 = cos(ω) cos(κ);

M23 = sin(φ) sin(κ) + cos(κ) sin(ω) cos(φ);

M31 = sin(φ) cos(ω);

M32 = − sin(ω);

M33 = cos(ω) cos(φ); (2.1)

and the angles can be received by the following relationship

φ = tan

(
M31

M33

)
, ω = sin(M32), κ = tan

(
M21

M22

)
. (2.2)

The vector (M31,M32,M33) is the pole axis vector e3e3e3 in camera coordinates.

3-1-3 Rotation

The second important rotation sequence is the 3-1-3 rotation which is related
to the rotational model of a planetary body B. The ICRF is the local reference
frame here and the body-fixed reference frame is the target frame. The rotation
matrix, defined by the angles (α, δ,W )

RB = Rα,δ,W := R3(W )R1(
π

2
− δ)R3(

π

2
+ α) (2.3)
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converts local ICRF coordinates into body-fixed coordinates. This sequence
of rotation matches the IAU convention to describe the orientation of the
body-fixed reference frame with respect to the ICRF by means of the body’s
rotational elements.
The inverse rotation RT converts body-fixed coordinates into ICRF coordi-
nates. From there they can be further converted into coordinates with respect
to another reference frame (e.g. camera or primary body) by application of
the corresponding rotation matrix (see eq. 2.4).

Implicit Rotation

Let C and B two reference frames and RC , RB the rotation matrix that rotates
the ICRF into C rsp. B. then the product

RCB = RBR
T
C (2.4)

defines the transformation from C to the target frame B. The local frame C
is rotated back into the ICRF via RT

C and from there rotated into the target
frame B. Using (2.2) for RCB, the relative frame orientation can be received.
On the other hand, if RB and RCB are known, the matrix that converts ICRF
to C-centered coordinates is obtained by

RC = RT
CBRB . (2.5)

2.3 Body-fixed bundle block adjustment

Here, the classical method of a photogrammetric bundle block adjustment
which is formulated in the body-fixed reference frame will be described, as
used in planetary geodesy by e.g. Willner et al. (2010) or Preusker et al.
(2012). As stated before, by applying the method, the orientation parameter
of the camera can be significantly improved. The resulting CPN is cleaned
from errors in image point measurements and the overall intersection error is
reduced. The functional model is based on the following context: A surface
point that was captured multiple times and identified in n ≥ 2 images, can
be expressed as the intersection point of n lines. Knowing the position of the
camera and the orientation of the reference frames at the time the picture was
taken, the 3D coordinates of the point can be calculated.
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In table 2.1 are listed the parameters which are estimated by the classical
(body-fixed) bundle block adjustment. The first two columns show the type
of parameter and the corresponding symbol used for it. The third columns
shows the number of parameters for each group, there are three coordinates
for each control point and of each camera position as well as three pointing
angles. Columns four and five hold the counting variables for each type rsp.
for the total number of parameters. For each of these parameters a starting
value is required that will be updated during the process. Table 2.2 lists the
observation parameters and is structured in the same way. Parameters listed
in both tables are additional observations, the image point observations are
kept constant.

Table of Unknowns

parameter symbol dim count total

Control Point (X, Y, Z) 3 nCP 3nCP
Camera Position (X0, Y0, Z0) 3 nIm 3nIm
Camera Pointing (ω, φ, κ) 3 nIm 3nIm

Table 2.1: Parameters which are estimated in the bundle block adjustment,
their symbols and counting variables

Table of Observations

parameter symbol dim count total

Image Point (ξ, η) 2 nIP 2nIP

Camera Position (X0, Y0, Z0) 3 nIm 3nIm
Camera Pointing (ω, φ, κ) 3 nIm 3nIm

Table 2.2: Parameters which function as observations in the bundle block
adjustment. Since the camera parameters also function as unknowns (table
2.1) they are called additional observations.
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2.3.1 The functional model

The functional model for a photogrammetric bundle block adjustment is de-
rived from the mathematical equation of a line in the three dimensional space
R3. A line L is defined by two points (P0, P1) or a point and a direction vector
P , the direction can be obtained by P = P1 − P0.

L = P0 +mP =


x0

y0

z0

+m


x

y

z

 , m ∈ R (2.6)

Like P0 = (x0, y0, z0) corresponds with m = 0 and P1 with m = 1, any point
of this line belongs to a specific value of m.
Considering the example for a camera reference frame given in subsection 1.2.3
and a planetary body that is pictured by this camera, P0 is the point that
represents the camera lens - the origin of the camera’s coordinate system.
Equation 2.6 describes a line that connects a point P on the CCD with a
surface point of the pictured object (for some unknown but yet existing m).
To express this point in coordinates that are centred within the target body,
the rotation matrix RCTB = R2−1−3(φ, ω, κ), which depends on the pointing
information of the camera, is applied as discussed in 2.2 (p. 27).
The surface point of the target body TB is then given by the functional relation

X

Y

Z


TB

= mRCTB


ξ

η

zf


Camera

+


X0

Y0

Z0


TB

(2.7)

for some real number m where (ξ, η, zf ) is the image point vector in camera
coordinates and (X0, Y0, Z0)TB is P0 in TB-coordinates. Solving for the image
point vector leads to

RT
CTB


X −X0

Y − Y0
Z − Z0


TB

= m


ξ

η

zf


Camera

. (2.8)

The nine parameters on the left side are referred to as unknowns, where as the
image point vector is called observation. Here, (ξ, η) are the coordinates in the
image plane and zf is the (negative) focal length. Obviously this parameter is
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constant in all images of the same camera. The parameter zf is used to further
transform the equation and find a form, that will no longer involve m.
Equation 2.8 is a system of three single linear equations, therefore sometimes
referred to as co-linearity equation. Denoting the left hand side of 2.8

X ′

Y ′

Z ′

 = RT
CTB


X −X0

Y − Y0
Z − Z0


TB

the three lines can be written shortly as

X ′ = mξ, Y ′ = mη, Z ′ = mzf .

Because each line i ∈ {1, 2, 3} depends on the same set of parameters u =

(ω, φ, κ,X0, Y0, Z0, X, Y, Z) resulting from the product of row i of RT
CTB with

the difference vector, one can set

X ′ = F1(u) = mξ

Y ′ = F2(u) = mη

Z ′ = F3(u) = mzf

.

Dividing each line by m = Z ′/zf the representation of the image point obser-
vation does not depend on m any more and

ξ = zf
X ′

Z ′
= zf

F1(u)

F3(u)
=: Fξ(u) (2.9)

η = zf
Y ′

Z ′
= zf

F2(u)

F3(u)
=: Fη(u) (2.10)

can be written as functions of unknowns.
Applying the Taylor development to first order gives

ξ = Fξ(u0) + F ′ξ(u0)(u− u0) + wξ (2.11)

η = Fη(u0) + F ′η(u0)(u− u0) + wη. (2.12)

with F ′ξ(u0) = (p′1, . . . , p
′
9) the vector of partial derivatives, that are obtained

by using the chain and quotient rule:

p′k = zf
F ′1(u0)k F3(u0)k − F ′3(u0)k F1(u0)k

(F3(u0)k)2
.



32

By replacing F1 with F2 the partial derivatives F ′η(u0) = (p′10, . . . , p
′
18) are

obtained. The equation above corresponds to exactly one image point obser-
vation. The variable u0 will be different for any other observation, since it
either corresponds with a different control point or the same point in a differ-
ent image. Therefore, a subscribt i is added to all variables indicating that
they correspond to observation Li = (ξi, ηi). In order to respect the stan-
dard notation in common literature about adjustment theory (Niemeier, 2008,
chapter 4), let

Ai =

(
p′i1 . . . p′i9

p′i10 . . . p′i18

)
, vi = −

(
wξi

wηi

)
, x̂i = ui − ui0 (2.13)

and

L0
i = L̂i =

(
Fξi(ui0)

Fηi(ui0)

)
, li = Li − L̂i .

Equations 2.11 and 2.12 can then be rewritten in matrix form

li + vi = Aix̂i, (2.14)

which yields the linearised functional model for image point observation Li.
Considering all image point observations and combining them into one vector,
a system of 2nIP linear equations is built analogue to (2.14), yielding

l + v = Ax̂ .

Vector l holds the differences of all the actual observations and their approx-
imations according to equations 2.9 and 2.10, v is built analogue to 2.13.
Further x̂ is the difference of all the unknown parameters and their starting
approximations – nU = 6nIm + 3nCP in total (compare table 2.1). A is the
enlarged Jacobi matrix with nU columns, where the entries for uninvolved pa-
rameters are set to zero. For the observed unknowns (additional observations)
of each image j, the functional model is already linear.

(Lj1, . . . , Lj6) = (ω, φ, κ,X0, Y0, Z0)j

denotes the a priori values of the observed image parameters, which are kept
fixed during the adjustment. L̂jk (k = 1, . . . , 6) denotes the estimated or
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improved value, which changes during the course. Hence ljk = Ljk − L̂jk leads
to the functional model

ljk + vjk = Ljk − L̂jk = 1 · x̂jk

for the observed unknowns. Therefore, in addition to the 2nIP rows of A, for
each of the additional observations (see table 2.2) a line is added that has an
entry of +1 in the corresponding column and zero elsewhere. Consequently
the vectors l and v are extended by the corresponding elements of ljk, vjk. By
design the columns of A are related to the unknown parameters in the order
given in table 2.3.

Column order of unknown parameters

Image 1 Image 2 . . . CP 1 CP 2 . . .
(ω, φ, κ,X0, Y0, Z0)1 (ω, φ, κ,X0, Y0, Z0)2 . . . (X, Y, Z)1 . . . . . .

Image parameter columns 1 : 6nIm CP col. 6nIm+1 : nU

Table 2.3: Correspondence of unknown parameters and the columns of the
design matrix A; the total number of parameters is nU = 6nIm + 3nCP

where nIm is the count of images and nCP the count of control points.

The system Ax̂ = l + v has infinitely many solutions. If it is solved such
that v is minimal in length, the functional representation of the observations
is optimal. A Least Squares Method will lead to this result.
For the moment let N = ATA, then

Nx̂ = AT l + ATv (2.15)

is called the normal equation. If x̂ solves Nx̂ = b obviously ATv = 0. The
Least Squares algorithm solves x̂ = N−1AT l and updates u0 = u0 + x̂.
It terminates if x̂ → 0 which is equivalent to u = u0 or, more likely, vTv →
ε > 0. This ensures vTv is minimal at the end and the vector u0 contains the
improved parameters from table 2.1.
This, so far, explains the functional model and the mathematical background.
It is possible to further control the outcome of the adjustment, if a stochastic
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model is introduced in addition. That means, the use of statistical information,
that are available for the set of observations (table 2.2). If no information are
available, the statistic quantities (weights) can be calculated.

2.3.2 The stochastic model

In praxis, observations come with a measure of uncertainty. For image points
this value can be derived from the pixel size, pointing and position information
are assigned with an assumed deviation (σ) that might depend on the method
of tracking.
The stochastic model is given by the covariance matrix Σll. If σi is belongs to
observation i and n is the total number of observations, a n × n matrix Σll

is built that satisfies Σll(i, i) = σ2
i . For large systems, covariances are often

neglected and a diagonal matrix is used instead. This praxis is followed in this
work, too. From there the weight matrix P is constructed as

P = σ2
0Σ−1ll

for some reasonable numerical constant σ0 > 0. The value ensures numerical
stability and can be set to the mean 1

n

∑
σi or simply to the value that corre-

sponds to the uncertainty of an image point observations.
Redefining N as N = ATPA changes the normal equation to

Nx̂ = ATPl + ATPv =: b . (2.16)

Of course, it is preferable to maintain the statistical information during the
process. If the improvements shall be evaluated after each iteration step, tech-
nically the inverse of the normal matrix N , denoted with N−1, is required.
In the literature also Qxx is used to denote the inverse. The diagonal of this
matrix contains at the end the improved weights for the unknown parameters.
To evaluate the image observations the weights are calculated from the HAT-
matrix

H = AN−1AT .

The dimension of H agrees with the total number of observations n = |l|.
Hence, if n is large H requires for the n2 entries a large amount of memory.
Typically only the diagonal entries of H are used to compute the weights for
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observations l and improvements v. Setting s20 = vTPv/(n − nU) the new
weight for observation i is obtained by

s0
√
H(i, i) = σi . (2.17)

Since the additional observations are contained here, the new weights of the
camera orientation parameters are computed implicitly in this step. These
values are not be updated during the iterations of the program. By

s0
√
P−1 −H(i, i) = σvi

the standard deviation of the improvement vi is obtained. The quality variable
sigma a posteriori s0 estimates the system error. Since σ2

0 is replaced with s20
in the next iteration, the factor σ0/s0 converges to +1.
The vector obtained by v̄i = vi/σvi holds the normed improvements. A spec-
ified threshold σmax is used to evaluate the magnitude of the improvements.
Observations for which |v̄i| > σmax are eliminated from the data set. See
Niemeier (2008) for further information.
An effective way to calculate the HAT-diagonal without building H is given in
chapter 4 (see page 65).
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Chapter 3

Inertial Frame Bundle Block

Adjustment

In this chapter the classic bundle block adjustment, described in section 2.3,
will be extended and formulated within an inertial reference frame. This ref-
erence frame is the ICRF. Figure 3.1 shows a scheme of the extended method.
Compared with the body-fixed context, almost all aspects here are the same.
The major difference is, that the rotational model of the body is taken into
account in form of a second rotation matrix. As a consequence the orientation
of the camera is no longer given with respect to the body-centred reference
frame but with respect to the ICRF. This affects also the computation of the
derivatives of the classical parameters which are given in section 3.3.

3.1 The extended functional model

The matrix RCTB in equation (2.7) on page 30 transforms the image coordi-
nates directly into body-fixed coordinates. The principle of the bundle block
adjustment in the inertial frame is the split of the rotation matrix RCTB into
two single rotations which involve the inertial reference frame (ICRF). From
the analytical rotational model the angles α, δ and W are calculated for the
time associated with the image and the 3-1-3 rotation matrix RTB is built ac-
cording to equation (2.3) on page 27. If a light time correction was applied to
obtain the position vector of the camera, the corrected time is used here, too.
The orientation of the camera with respect to the ICRF is given by the matrix

37
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Figure 3.1: Overview of the inertial frame bundle block adjustment

RC such that RC converts ICRF coordinates in camera coordinates and RT
C

vice versa. The conversion between camera reference frame and body-fixed ref-
erence frame can be written as RCTB = RTBR

T
C . Hence, co-linearity equation

(2.7) on page 30, is equivalent to
X

Y

Z


TB

= mRTBR
T
C


ξ

η

zf


Camera

+RTB


X0

Y0

Z0


ICRF

(3.1)

The position vector of the camera is now given with respect to the ICRF. The
solving for the image point vector leads to

m


ξ

η

zf


Camera

= RC

RT
TB


X

Y

Z


TB

−


X0

Y0

Z0


ICRF

 (3.2)

where the right hand side can be shorten again with (X ′, Y ′, Z ′) and the re-
presentation

ξ = zf
X ′

Z ′
, η = zf

Y ′

Z ′
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of the image point observation remains the same as before. Since the equations
for each entry in RTB are known, it is possible to build the partial derivatives
for specified rotational elements and include them in the bundle block adjust-
ment. As a consequence, the vector of unknowns is extended and likewise the
Jacobi matrix A which holds now in addition the derivatives with respect to
these new parameters. Let nRE the number of rotational elements which are
to determine. Since the new unknowns are time independent, they simply ap-
pear once in the unknown vector and result in only nRE additional columns
of A (see figure 3.2).

Pattern of the normal matrix for
n images (Im),
nCP control points (Pt),
nRE rotational elements.
The blank areas are zero entries.
The columns for the rotational el-
ements are dense, all other columns
contain mostly zeros.

Figure 3.2: Distribution pattern of non-zero elements of normal matrix N

Two advantages follow: First, this set up leads to a larger coherence of the
whole network - via the rotational parameters each observation is now con-
nected with any other. Secondly, the computational effort will not significantly
increase. Nevertheless the new approach requires a completely new implemen-
tation of the adjustment algorithm.

3.2 Derivatives of rotational elements

The possible parameters, that are to include in the functional model, depend
on the complexity of the functions, that define the rotational elements. A
general representation is given by

α(t) = α0 + a(t), δ(t) = δ0 + d(t), W (t) = W0 + w(t)
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where a, d, w are time-dependent functions and the other variables are the
initial coordinates for the three angles with respect to the reference epoch. In
case that a, d and w are zero for t = 0, they give exactly the orientation of
the body at J2000.0 . Since the observations are functions of α, δ and W and
furthermore the angles are arguments of trigonometric functions, it becomes
necessary to apply the chain rule for differentiating composite functions t 7→
f(g(t)), which is

f(g(t))′ = g′(t)f ′(g(t)) .

For the body Vesta it is a = d = 0 and λ0 = 0. In this simple case, only the
inertial values are included as rotational elements. Since

∂α

∂α0

=
∂δ

∂δ0
=
∂W

∂W0

= 1 ,

the chain rule gives

∂f(g)

∂g0
=

∂g

∂g0

∂f(g)

∂g
= 1 · ∂f

∂g
= f ′(g) , g ∈ {α, δ,W} . (3.3)

For a body with precession and a forced libration like Phobos the functions
a, d, w can be simplified written as

a(t) = pα sinPt, d(t) = pδ cosPt, w(t) = rt+ pW sinPt + λ0 sinOt

where Pt depends on the precession, Ot on the orbit position and r is the mean
spin rate. In this case λ0 can be included as a unknown parameter. Because
of ∂W/∂λ0 = sinOt the chain rule leads to

∂f(W )

∂λ0
=
∂W

∂λ0

∂f(W )

∂W
= sinOtf

′(W ) .

These examples are sufficient to demonstrate the principle and to show that
the derivatives are specific for a chosen target body.
There is a procedure which is independent of the choice of rotational elements,
the required building of the derivatives f ′(α), f ′(δ), f ′(W ) for the set of func-
tions f that define the entries of the rotation matrix RTB. To do this, equation
3.2 is rewritten as

m


ξ

η

zf

 = RC


r11X +r21Y +r31Z

r12X +r22Y +r32Z

r13X +r23Y +r33Z

−RC


X0

Y0

Z0

 (3.4)



41

with rij entries in RTB = R3−1−3(α + 90, 90 − δ,W ) as defined in 2.3. The
entries rij are linear combinations of trigonometric functions:


r11

r21

r31

 =


− cos(W ) sin(α)− sin(W ) sin(δ) cos(α)

sin(W ) sin(α)− cos(W ) sin(δ) cos(α)

cos(δ) cos(α)




r12

r22

r32

 =


cos(W ) cos(α)− sin(W ) sin(δ) sin(α)

− sin(W ) cos(α)− cos(W ) sin(δ) sin(α)

cos(δ) sin(α)




r13

r23

r33

 =


sin(W ) cos(δ)

cos(W ) cos(δ)

sin(δ)

 .

Since sin′(x) = cos(x) and cos′(x) = − sin(x), it is ∀a ∈ R

∂ (a sin(x))

∂x
= a cos(x) ,

∂ (a cos(x))

∂x
= −a sin(x) . (3.5)

For the sake of space saving let c denote the cosine and s the sine function
in the following three matrices, obtained by building the derivatives for each
entry of RTB:

R′α =


−c(W )c(α) + s(W )s(δ)s(α) −c(W )s(α)− s(W )s(δ)c(α) 0

s(W )c(α) + c(W )s(δ)s(α) s(W )s(α)− c(W )s(δ)c(α) 0

−c(δ)s(α) c(δ)c(α) 0



R′δ =


−s(W )c(δ)c(α) −s(W )c(δ)s(α) −s(W )s(δ)

−c(W )c(δ)c(α) −c(W )c(δ)s(α) −c(W )s(δ)

−s(δ)c(α) −s(δ)s(α) c(δ)


R′W =

s(W )s(α)− c(W )s(δ)c(α) −s(W )c(α)− c(W )s(δ)s(α) c(W )c(δ)

c(W )s(α) + s(W )s(δ)c(α) −c(W )c(α) + s(W )s(δ)s(α) −s(W )c(δ)

0 0 0

 .
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R′α and R′W can both be built from columns (rsp. rows) of matrix RTB it-
self:

∂ rij/∂α : r′i1 = −ri2, r′i2 = ri1, r′i3 = 0; i = 1, 2, 3

∂ rij/∂W : r′1i = r2i, r′2i = −r1i, r′3i = 0; i = 1, 2, 3

Let
u(t) := (ω, φ, κ,X0, Y0, Z0, α, δ,W )t

the subset of the unknown vector that corresponds with the image time t, then

m


ξ

η

zf

 = F (u(t), X, Y, Z)

holds for the observation of point (X, Y, Z) at time t. To get the partial
derivatives with respect to g ∈ {α, δ,W}, the entries rij in equation (3.4) are
replaced with the corresponding entries of the derivative matrix; the right term
is ignored, since it is independent of the rotational elements. This leads to the
general formula

∂F (u(t), X, Y, Z)

∂g
= RCR

′
g


X

Y

Z

 , g ∈ {α, δ,W} . (3.6)

For a particular rotational element p, equation (3.6) becomes

∂F (u(t), X, Y, Z)

∂p
=
∂g

∂p
RCR

′
g


X

Y

Z

 , g ∈ {α, δ,W} .

3.3 Derivatives of classical parameters

Positions: The position values are obtained as in the body-fixed case, but
here RT

CTB is replaced with RC . Hence, if coli is column i ∈ {1, 2, 3} of RC ,
then

∂F

∂X0

= col1 ,
∂F

∂Y0
= col2 ,

∂F

∂Z0

= col3

with F as before. It is clearly to see, that the determination of the position
vector no longer depends on the rotational model.
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Control Points: In the body-fixed case, the values for the control points
are simply the negative position derivatives. Here, the derivatives are derived
from

RCR
T
TB


X

Y

Z

 = RC


r11X +r21Y +r31Z

r12X +r22Y +r32Z

r13X +r23Y +r33Z


as it was the case for the rotational elements. It follows for the X-coordinate

∂F

∂X
=


rc11r11 + rc12r12 + rc13r13

rc21r11 + rc22r12 + rc23r13

rc31r11 + rc32r12 + rc33r13

 ,

where rcij represent the entries of RC . Equally the derivatives for Y are ob-
tained by replacing r1i with r2i rsp. for Z by replacing with r3i, i ∈ {1, 2, 3}.

Pointing angles: It is convenient to build the derivative matrix of RC with
respect to each angle, denoted with R′ω, R′φ and R′κ. Let

P = RT
TB


X

Y

Z


TB

−


X0

Y0

Z0


ICRF

the difference of the control point and the position in ICRF coordinates. then

∂F

∂ω
= R′ωP

is the derivative vector with respect to ω and equally R′φP rsp. R′κP for
the remaining angles. The 2-1-3 rotation was defined on page 27 and the
derivatives can be obtained with rule (3.5) on page 41 as in the classical case.

3.4 Test case - a simulation of Phobos

The principle was first tested on a simulation, because this procedure allows
maximal control and evaluation of an algorithm. Another consequence is a
better understanding of the behaviour with respect to the stochastic model. It
is important to find out, how well the observations need to be known in order to
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reconstruct the given topography successfully. It is furthermore of advantage
to model preferably realistic errors. Here, a realistic model of the Martian
Moon Phobos was created, based on an existing data set of 680 control points
which are distributed in 73 images with given frame parameters (position and
pointing of the camera).
Creating the synthetic data

With the given orientation data the initial coordinates of each control point
are obtained indepently by a simple adjustment minimising the forward inter-
section error. Now these values are kept fix as the defined topography of the
simulated object. The next step is, to change the coordinates of the image
measurements in such a way, that they exactly match the defined points. This
can be done by applying equation 2.8 to each point (X, Y, Z). The vector
from the origin of the camera’s reference frame to the point on the surface is
obtained by 

X ′

Y ′

Z ′


Camera

= m


ξ

η

zf


Camera

.

Then ξ = zf X
′/Z ′, η = zf Y

′/Z ′ are calculated to eliminate the scaling factor
m. If the unit of focal length zf is millimetres, the unit of the image coordinates
will be millimetres, too. In this way image point coordinates are simulated
that perfectly match the defined control points. Furthermore, the simulation
respects the physical properties and rotational elements given in the IAU report
(Archinal et al., 2011) as they are stated on page 12.
For later reference it is defined

pα = 1.79, pδ = 1.08, pW = 1.42, λ0 = 0.78 (3.7)

and emphasised that λ0 is the forced libration amplitude which is focused here
while the other three parameter are related to the precession cone. Further-
more are α0 = 317.68◦ and δ0 = 52.90◦ the time-independent coordinates of
the mean pole axis orientation.
Falsification of the rotational model

To test functional model and software, in a first step only parameters of
the rotational model above were changed and all other parameters kept un-
changed. Rotational parameters like λ0, pα but also α0 and δ0 were set to
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different starting values; the results of the adjustment were then compared to
the original input values: the difference of both is the reconstruction error,
shown in table 3.1. To give an example, λ0 ∈ {−1, 0, 5} (degree) means, that
three different adjustments were performed and the maximal deviation of the
final value from 0.78◦ lies under 0.00012 degree. All other lines in the table
represent a single adjustment for a given pair of parameters, ε = 10−4 denotes
the magnitude of the reconstruction error. The results are obtained with the

Reconstruction of rotational parameters

parameter start value true value error iterations

λ0 {−1, 0, 5} 0.78 < 1.2 ε 2− 4

pα, λ0 (0, 0) (1.79, 0.78) (5.4 ε, 1 ε) 22

(1,−0.1) (3.0 ε, 1 ε) 17

α0, δ0 (316.8, 51.9) (317.68, 52.9) < 2.4 ε 4

(315, 55) < 1.0 ε 5

(300, 40) (0.5 ε, 3 ε) 9

Table 3.1: Different adjustment cases for a simulation with falsified rotational
parameters: forced libration amplitude λ0, precession cone parameter pα and
mean pole axis orientation (α0, δ0). Columns two to four show the false start
values, the true simulated values and the reconstruction errors; ε = 10−4,
values are in degree. Column five shows the number of iterations that the
algorithm needed to perform.

corresponding stochastic model, i.e. negligible errors for camera orientation.
Other stochastic models, assuming higher pointing and position errors induce
slightly higher reconstruction errors and up to four more iterations. The maxi-
mum error of 26 ε corresponds to a model that falsely assumes position errors
of 30 m.
Falsification of the orientation data

In a next step, errors were also added to the orientation data of the camera.
The image point observations themself were not changed.
A pseudo random number 0 ≤ r ≤ mag and a random sign s = ±1 were
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obtained in C/C++ language by setting

r = drand48() ∗mag

s = drand48() < 0.5?− 1 : 1 .

So sr is either positive or negative within magnitudemag. The pseudo random
generator above creates uniformly distributed numbers. This way, a total of
24 different data sets with falsified initial values were created:

• 4 different data sets with pointing errors (gon) :
mag ∈ {0.01, 0.05, 0.1, 0.8}

• 4 different data sets with position errors (m) :
mag ∈ {1, 15, 100, 300}

• 16 different combinations of the pointing and position error magnitudes
above, e.g. (0.01 gon, 1 m); (0.05 gon, 1 m); (0.1 gon, 1 m); (0.8 gon, 1
m) etc.

Now for this falsified data sets, the rotational elements were changed as de-
scribed before. The adjustment for all eight cases (listed in table 3.1) was
repeated for all the 24 data sets with different stochastic models. Because this
complexity lead to far more than 300 test runs, the results are summarised
rather then having all of them listed:

• In all constructed data sets, the forced libration amplitude could be
reconstructed within two to five iterations at an average accuracy level
of 4.5 ε.

• Pointing data could be reconstructed up to an offset of 0.1 gon with
accuracy of 3.5 ε gon.

• Position offsets could not be successfully reconstructed, since the algo-
rithm is more sensitive to pointing corrections. The resulting CPN is
shifted in the magnitude of the mean position error.

Summarising it is to say, that the successful reconstruction of the rotational
elements did not depend on the position or pointing accuracy. It also did
not depend on the successful reconstruction of the topography. The latter
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is unexpected and could result from the uniform distribution of pseudo ran-
dom numbers, so that this independency might not hold in a real data case.
Furthermore, the position accuracy must be smaller than the pixel resolution
error, in order to successfully reconstruct the CPN. For the data sets which
satisfy this condition, the original CPN could be reconstructed within 15 m.
The algorithm itself is functional and reasonabe results for data sets within
the determined error bounds can be expected.

Functional dependency of the precession amplitudes

There is a functional dependency of the precession amplitudes pα = 1.79,
pδ = 1.08, pW = 1.42 and the declination of the precession axis δ0 = 52.9

which shall be discussed briefly. The line that connects the ICRF-Origin with
the point (α0, δ0) is the precession axis of the pole, α0 = 317.69 in the current
example. The plane which is orthogonal to it contains the complementary
precession axes of the other two frame axes. The pole axis describes a circle of
radius pδ around the precession axis, such that the declination δ ranges within
[δ0 + pδ, δ0 − pδ]. Simultaneously, the X-axis describes a circle of radius pδ
around the complementary precession axis which affects the value of W . For
δ0 = 0 the trajectory of the pole in ICRF coordinates would be circular, but
if |δ0| > 0 it has the shape of an ellipse. Because of the declination above
the ICRF equator the pole axis passes through a larger range of longitudes
and the change in right ascension is larger than pδ. The radius of the sphere
at latitude δ0 is given by cos(δ0). The induced trajectory of +X around the
complementary precession axis has an elliptic shape, too. This axis has a
declination of δ0−90 and the sphere radius at this level is cos(δ0−90) = sin(δ0).
This leads to the following relationship between the precession constants:

pα =
pδ

cos(δ0)
and pW = pα sin(δ0) = pδ tan(δ0), (3.8)

where δ0 is the time independent declination of the precession axis over the
ICRF equator and pδ the radius of the precession cone. This dependency needs
to be considered e.g. when the partial derivatives are built with respect to δ0.
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3.5 Numerical stability

It has been noticed that the determinant of the normal matrix equals zero
in many cases. This is caused by the large numerical range of the entries,
i.e. the magnitude for pointing parameters differs greatly from the magnitude
for position parameters. Common implementations of inversion algorithms
either refuse the matrix in this case or compute a pseudo-inverse based on
rounded values. Using Matlab there will be an error message, that the result
is a pseudo-inverse. To avoid an involved pseudo-inverse, a scaling method
has been developed that smooths the numerical range and ensures, that the
diagonal entries are dominant in magnitude. The application of the scaling
increases the numerical stability of the inversion procedure.
Let N the normal matrix and denote with Nii the diagonal entries, 1 ≤ i ≤ n.
The matrix D, defined by

Dij =


√
Nii
−1

i = j ,

0 else

is the scaling matrix for N . D is applied by multiplication from left and right
to N , such that

N = DN D (3.9)

is the scaled normal matrix. The multiplication from left scales the rows of
N and the multiplication from right the columns. Hence, equation (3.9) is
equivalent to the definition

Nij = Nij DiiDjj .

If N is in compressed sparse format with nnz non-zero elements, the scaling
can be quickly realised in O(nnz) (in chapter 4, page 53, the compression
is explained). When tested with Matlab for a defect N , there was no error
message for the scaled matrix.
The inverted matrix N−1 needs to be rescaled for the statistical evaluation. It
is

N−1 = D−1N−1D−1

and a repeated application of the transformation (3.9) gives N−1. To only
calculate the solution x = N−1b, the matrix does not need to be rescaled. It is
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convenient to scale the vector b, too and solve instead of Nx = b the equation

N y = Db .

The solution is given by

y = N−1Db

= D−1N−1b

= D−1x

and hence, it follows
x = Dy .
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Chapter 4

Application to Large Data Sets

The data set for the test case in the previous chapter is so small, that consider-
ations about memory and running time requirements were not necessary so far.
If it comes to large data sets, the computational effort increases significantly.
Therefor the demands on memory and computation time will be analysed in
this chapter. Starting with the general structure of the adjustment problem,
three different levels of resource optimisation will be discussed. The reference
cost level is given by a software and a computing machine of the DLR Berlin
for which the resource requirements are available (Preusker; private communi-
cation). The data set of Vesta with 5440 images and ≈ 83000 control points
is used to exemplify the saving in resources by applying the methods of this
chapter. The reference machine in all corresponding figures is the cluster listed
in table 4.1.
The costs with respect to memory and computing time using the reference
facilities depend on the number of images as well as on the number of control
points. The method, described in section 4.2.2, reduces the main cost factor
to the number of images. The method rsp. algorithm, described in section
4.2.4, can be implemented by taking parallel programming into account. The
parallel design is discussed in section 4.3 and further reduces the running time
by using appropriate parallel computation architecture. Since the performance
of the parallel algorithm is machine-depending, additional computing facilities
were used for performance tests. The operating system of all machines is Linux
Redhat 6, the individual configuration is shown in table 4.1.
In chapter 2, page 34, the adjustment problem is formulated in terms of the
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Configuration of the testing machines

HLRN Cluster Work-station

Chip (Intel Xeon) E5-2670 0 X7560 E5-1607 0
2.60 GHz 2.27 GHz 3.0 GHz

Gflops/s (per core) 2.99 2.14 3.04
Cores 24 32 4
RAM 64 GB 128 GB 16 GB

Table 4.1: The values for the processor performance in Gflops/s have been
obtained based on the Whetstone benshmark test Curnow and Wichmann
(1976).

normal equation Nx̂ = b. Recall, that N is built from the Jacobi matrix A
of the functional model and the weight matrix P ,derived from the stochastic
model, by N = ATPA. The solution consists of two components,

1) functional solution: computation of x̂

2) stochastic solution: computation of the diagonal elements of N−1 and
the diagonal of AN−1AT .

It shall be emphasised again that the stochastic solution is necessary for obtain-
ing the stochastic model aposteori and to evaluate the computed improvements
of the functional model.
The following general assumption on data sets is made: The data set to

which the bundle block adjustment is applied, consisting of nIm images, nCP
control points, and nObs image point observations, respects the relations

nObs

nCP
� nIm� nCP . (4.1)

The assumption states that the average observation rate of the control points is
small against the number of images and the latter is small against the number
of control points. Typically (4.1) is satisfied, but there might be exceptions
which are to exclude from further consideration.
In addition to the notation above, throughout the chapter, N will denote the
normal matrix and dim its dimension.
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4.1 Sparse matrix compression

By construction, the Jacobi matrix A contains mainly zeros in each line and
N has only non-zero entries for correlated parameters. A matrix that has a
majority of elements which are zero is called a sparse matrix, because of its
sparse distribution of non-zero elements (nnz). Sparse matrices are compressed
and used in compressed form since the beginning of programming. The best
example is a diagonal matrix D with dimension n. In this case the location
of all nnz is precisely known, hence the only thing that needs to stored is a
vector of length n. This is a very efficient compression of D. Now for any
m× n matrix M it is true that the more elements are zero the more memory
would be wasted if the space for all mn matrix elements would be allocated.
Hence a representation of a matrix that saves this memory space is of great
advantage. The sparsity S of a matrix M ∈Mn,m is defined as

S(M) :=
size

nm
, size = number of nnz elements . (4.2)

Mathematically S is the density of the nnz, it will be zero for the zero-matrix
and one for a dense matrix. Hence, the smaller S(M) is, the less memory
space is required to store M and the more meaningful a compression becomes.
Since the structure of a matrix is often known beforehand, the density can
help a programmer to decide, whether or not a compression is useful.
Description of a typical compression for a general matrix: Technically the only
information required is where in the matrix the nnz are located. A vector I1
stores the index of the row of each nnz element and another vector I2 keeps
the information where in this vector a new column starts.
Example:

M =


1 0 4

2 3 0

0 0 5


nnz = {1, 2, 3, 4, 5}
I1 = {0, 1, 1, 0, 2}
I2 = {0, 2, 3, 5}

n = 3

m = 3

size = 5

Rows and columns are indexed with 0, 1, 2, such that I1 reflects the information
that "1" is in row 0, "2, 3" are in row 1, "4" is in row 0 and "5" is in row
2. This vector has always the same number of elements as the nnz vector.
The vector I2 has always one elements more than the number of columns, here
m+ 1 = 4. The numbers "1", "3" and "4" are the first nnz of column j=0,1,2
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// A csm in C-code

1 typedef struct csm = {
2 double *nnz;
3 int *I1, *I2;
4 int n,m,size;
5 bool ccf;
6 };

Table 4.2: The data type csm, a compressed sparse matrix, consists of a pointer
to the non-zero elements (2), two pointers to index elements (3), variables to
store dimension parameter and size (4), the format specification (5); defined
in C-language.

and their index inside the nnz vector is given by I2[j]. Therefore if j1 = I2[j]

and j2 = I2[j + 1]

nnz[j1] ≤ x < nnz[j2] , I1[j1] ≤ i < I1[j2]

yields all non-zero elements x of column j with the corresponding row index i.
Together with the number of rows n and columns m and the variable size that
keeps the length of the nnz-vector a compressed sparse matrix (csm) system
that represents M is given. The entry at I2[m] = size ensures a save access
of elements on the implementation level. Table 4.2 shows an example of the
structure in C-code. The length of I1 is the same as that of nnz, but its
elements are integer values. It takes 4 Byte to store an integer value and 8
Byte to store a double value. Neglecting the minor requirements of O(n) for
I2 and the data type itself, it takes 3

2
size · 8 Byte to store the csm. Since 8nm

Byte are required to store the whole matrix and

3

2

8size

8nm
=

3

2
S(M) ,

memory is only saved, if S(M) < 2
3
.

Formats: In the given example the compression format is the column com-
pressed format (ccf) representing a column major order of M . If the column
numbers are stored in I1 and the starts of the next row in I2, this results in
a row compressed format corresponding with a row major order of M . Both
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// Example for a simple transposition method

1 csmTranspose (csm* M) {
2 int swap = M → m;
3 M → m = M → n;
4 M → n = swap; // n,m are swapped
5 M → ccf = !ccf ; // format is flipped;
6 };

Table 4.3: C/C++ code example for a transposition of a compressed sparse
matrix M ; lines 2 to 4 swap the variables for rows n and columns m, in line
5 the boolean variable ccf is negated which changes true to false and vice
versa.

formats are useful, but the most important aspect is that one format is the
transposed version of the other. Transpositions are used to a large extent
within the adjustment program. Therefore the boolean variable ccf was added
to the csm system, such that the order of the representation can be changed
quickly. Setting the variable ccf of a column compressed csm from true to
false changes M to MT (which is now row compressed). Table 4.3 shows the
code example. If S ≥ 2

3
, no memory space is saved any more, but there is

another important aspect of csm-representation, that still does carry weight –
the running time acceleration during matrix multiplication.

The product AB = C of two square matrices A and B can be realised by:
1 int i,j,k;
2 for (i = 0, i < n, i+ +)
3 for (j = 0, j < n, j + +)
4 { double aij = A[i][j];
5 for (k = 0, k < n, k + +)
6 C[i][k] += aijB[j][k];
7 } .

Now for any aij = 0 in line 4 the following two lines will have no mathemat-
ical effect, they only consume runtime of O(n). If A is a csm, aij runs only
through the nnz-vector performing size · n multiplications. Hence the gain
in speed is already (n2 − size)n flops and the number of operations required
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shrinks further if B is also compressed. Therefore the multiplication speeds
up considerably. In the extreme case, where A,B and hence C are diagonal,
the product is done in just n flops instead of O(n3).
Fast csm-products are possible between the following compress format com-
binations: [ccf, ccf ], [crf, crf ] and [ccf, crf ]. If both matrices have the same
format, the product itself can be built as a csm in this format, too. Since
here, the columns (rsp. rows) are built one after another, both versions are
also suitable for parallel computing. For the remaining [crf, ccf ] combination
the product can be realised too, but not with the same speed up factor. A
benefit of this version is, that the output compression format can be chosen,
which improves the flexibility in the algorithm’s design. Code examples for
csm-product routines are given in appendix B.

A square matrix with dimension dim requires 8 dim2 Bytes to be allocated
in double point precision. This means the memory need increases, depending
on the number of parameters to adjust, in quadratic order O(dim2). Because
the normal matrix N is symmetric, the allocation can be restricted to elements
of the upper triangle of the matrix without loosing information. This reduces
the memory space to 8 dim(dim+ 1)/2 Bytes, which is still of quadratic order
but saves almost half of the memory. This reduction will be referred to as
triangular allocation. Figure 3.2 on page 39 shows the distribution pattern of
the nnz in N . The matrix can be split into four parts[

N11 N12

NT
12 N22

]
with N11 ∈Mdim1 , N22 ∈Mdim2 and N12 ∈Mdim1,dim2 ,

and all required parts can be stored in seperated memory blocks, as shown
on figure 4.1. The size of dim2 is given by the number of control points, i.e.
dim2 = 3nCP , and dim1 = dim−dim2 is the number of remaining parameters
which agree with the additional observations (compare section 2.3).
In the following is shown how much memory is required for the single parts,
depending on dim1, dim2 and the observation rate of each control point. Based
on the concrete values of the Vesta data set, figure 4.2 shows the need for the
triangular allocation in total (level 0) and the reduced need ifN22 is compressed
(level 1) respective if N22 and N12 are compressed (level 2). The data set
consists of nIm = 5440 images and nCP = 82 829 control points with an average
rate of 9.3 observations per control point, hence nObs = 770 310 observations.
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Figure 4.1: The splitting of normal matrix N

Out of the 294 GB RAM for the triangular allocation, about 290 GB can be
saved, since:

N11 : only depends on camera parameters: dim1 = 6× nIm
memory: 3.97 GB

N22 : only depends on control points: dim2 = 3× nCP
6 non-zero entries per control point with triangular allocation
memory: 5.69 MB

N12 : the correlation between the two groups of unknown parameters
6× 3× nObs non-zero entries, memory : 105.8 MB

NT
12 : the transposed N12 matrix does not need to be saved .

The example corresponds to a bundle block adjustment in the body-fixed for-
mulation, described in section 2.3. In this case a csm-representation reduces
the memory cost from 290.4 GB to just 111.5 MB (Mega Byte = 10242 Byte).
In the inertial frame context N12 also contains the correlations of the rotational
parameters and the control points. In this case, the number of nnz increases
for each rotational parameter by dim2 for N12 and by dim1 for N11. Since the
rotational parameters are very small in number and each only yields a very
low contribution to the resource demands (about 2 MB in the example above),
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Figure 4.2: Memory need for the single parts of normal matrix N considering
a triangular representation – total (level 0), with compressed N22 part (level
1), with compressed N22 and N12 parts (level 2). The need for the compressed
matrices (< 0.2GB) is below eye resolution.

they will not be considered any further in this context. It is because of the
special structure of the adjustment problem, that N22 contains only nnz on a
3 × 3 block diagonal. The assumption, that the relations (4.1) hold, ensures
that S(N12) is very small, too. The sparsity, defined in (4.2), for both matrices
is given by

S(N22) =
2

3

1

nCP
, S(N12) =

1

nCP

nObs

nIm
.

The two tables on page 59 show how the memory requirements increase with
growing data sets. There are three real cases (Phobos, Mercury and Vesta)
and one general example listed. In table 4.4 the memory need for a general
triangular allocation is compared with the need for the N11 part of the matrix;
table 4.5 shows the memory savings, if the triangular allocation method and
sparse matrix compression are combined, including the requirements for the
non-zero elements of N12 and N22 for different data sets.
Remark: Considering 30000 images one would exceed 120 GB of RAM, so
there will be a natural hardware limit at some point. There is some extra
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Memory requirements to store normal matrix NNN

Images Complete NNN Part N11N11N11 of NNN

Data Set dim memory dim1 memory

Phobos 72 2496 23.7 MB 432 0.71 MB
Mercury 3446 48192 8.65 GB 20676 1.59 GB
Vesta 5440 281127 294.42 GB 32640 3.97 GB

Example 10000 1532640 8750.6 GB 60000 13.4 GB

Table 4.4: Memory need to store the complete normal matrix N (triangular
allocation) and the N11 part of N (see figure 4.1), in four different cases. The
requirements increase with the number of images in quadratic order.

Advantage of using the splitting technique and compression

Control Part N12N12N12 and N22N22N22 Total Memory

Data Set Points no csm csm needed saved

Phobos 688 23 MB 1 MB 1.78 MB 21.92 MB

Mercury 9172 7 GB 13 MB 1.60 GB 7.05 GB

Vesta 82829 290 GB 112 MB 4.08 GB 290.34 GB

Example 500000 8737 GB 641 MB 14.02 GB 8736.6 GB

Table 4.5: Accumulated memory requirements for N12 and N22: without com-
pression (no csm) and with sparse matrix compression (csm) and the total
memory to store N , if the splitting technique is used together with compression
(incl. N11 part, see table 4.4 above). In the case Example a point observation
ratio of 9:1 is assumed, values are rounded.
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space required for the data structure of the compressed matrix. Of course,
also N11 could be compressed, but in order to solve the adjustment problem,
there is space required for matrix operations. The method which is going to
be described now, uses the memory region of N11 to perform the required
transformations. Hence, with respect to the memory resource, the number of
involved images is the most significant factor.

4.2 Optimisation of running time

Having completed the considerations of the memory resource, the same eval-
uation is done with respect to running time. As described in chapter 1, it is
measured in flops and the concrete times depend on the specifications of the
computing machine.

4.2.1 The splitting technique

Using the subdivision scheme for N as before and assuming non-zero deter-
minants of N,N11 and N22, the inverse of N is according to Bronstein and
Semendjajew (2005) given by:

N−1 =

[
N ′11 −N ′11N12N

−1
22

−N−122 N
T
12N

′
11 N ′22

]
(4.3)

with

N ′11 = (N11 −N12N
−1
22 N

T
12)
−1 ∈Mdim1 ,

N ′22 = N−122 N
T
12N

′
11N12N

−1
22 +N−122 ∈Mdim2 .

In Niemeier (2008) the principle is applied within a body-fixed bundle ad-
justment; since both sources use it without proof, a proof is attached in the
appendix (see A.1). The computation of N−1 according to this pattern, re-
quires two inversions and four products1. The inversions and the first two
products form a task sequence that will be called forward operation. The sin-
gle tasks are listed in table 4.6 with their magnitude in flops, the final column
shows the reduction in costs if sparse compression is used. The sequence of
the remaining two products will be called backward operation.
The direct inversion of N requires O(dim3) flops and for dim = dim1 + dim2

1Additions are neglected here.
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without with Gain

Task Compression Compression Factor

N−122 inv. O(dim3
2) O(dim2) 1/dim2

2

N12N
−1
22 prod. O(dim1dim

2
2) O(nObs) S(N12)S(N22)

N12N
−1
22 N

T
12 prod. O(dim2

1dim2) O(dim2
1) S(N22)

N ′11 inv. O(dim3
1) O(dim3

1) 1

Table 4.6: The task sequence of the forward operation to compute N−1 in split
mode (see eq. 4.3). Columns two and three show the magnitude of required
flops without and with sparse matrix compression, column four the factor of
flop cost reduction using compression.

the identity

dim3 = (dim1 + dim2)
3 = dim3

1 + dim3
2 + 3dim2

1dim2 + 3dim2
2dim1

holds, such that the cost gain is not achieved by the splitting technique itself,
but by the sparsity of N12 and N22.
Since N22 is a block matrix, its inverse is obtained fast in O(nCP ) and can
be even done in parallel. Using N22 in compressed form and optimising the
forward products reduces the costs for the whole forward operation to O(dim3

1)

flops. It remains the expensive backward operation of O(dim2
1dim2). The ap-

plication of the splitting technique with a partial compression is implemented
within the reference software and reduces a running time of 40 days to just 1.5
days, but this optimisation can be improved further.

4.2.2 The inverse decomposition method

To a symmetric matrixM ∈Mn a pair (L,D) of matrices, where D is diagonal
and L lower triangular, that satisfies M = LDLT is called the Cholesky LDLT
decomposition of M . It is named after the founder of the widely implemented
and used algorithm that transforms M into L (Dahmen and Reusken, 2008,
chapter 3 p. 87). Since L is triangular, it can be inverted quickly with only
n(n+ 1)/2 flops.
Claim: For a given cholesky decomposition (L,D) of M , it is

M−1 = (LT )
−1
D−1L−1 = (L−1)T D−1 L−1 . (4.4)
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Proof: It is by definition M−1M = I, which is equivalent to

M−1 LDLT = I

⇐⇒ M−1 LD = (LT )−1

⇐⇒ M−1 L = (LT )−1D−1

⇐⇒ M−1 = (LT )−1D−1L−1 .

This is the first equality, to see the second we use I = IT and replace

I = (LL−1)T = (L−1)T LT | × (LT )−1

⇐⇒ (LT )−1 = (L−1)T �

This principle will now be combined with the split technique. Let

N̄11 := N11 −N12N
−1
22 N

T
12 ,

the matrices which need to be inverted can be written as

L1D1L
T
1 = N̄11 (4.5)

L2D2L
T
2 = N22 (4.6)

using their Cholesky decompositions. Consequently

N̄−111 = (L−11 )TD−11 L−11 (4.7)

N−122 = (L−12 )TD−12 L−12 . (4.8)

Replacing N ′11 = N̄−111 in equation (4.3) leads to

N−1 =

[
(L−11 )TD−11 L−11 −(L−11 )TD−11 L−11 N12N

−1
22

−N−122 N
T
12(L

−1
1 )TD−11 L−11 N−122 +N−122 N

T
12(L

−1
1 )TD−11 L−11 N12N

−1
22

]

which can be split into the product

N−1 =

[
(L−11 )TD−11 0

−N−122 N
T
12(L

−1
1 )TD−11 (L−12 )TD−12

][
L−11 −L−11 N12N

−1
22

0 L−12

]
.

By defining

S :=

[
L−11 −L−11 N12N

−1
22

0 L−12

]
, D :=

[
D−11 0

0 D−12

]
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a decomposition of N−1 is found, that satisfies

N−1 = STDS . (4.9)

This is of great advantage, since the decomposition is sufficient to solve the
adjustment problem. The proof of sufficiency will be given in the next sub-
section. It can be seen in the definition of S, that N ′11 does not need to be
computed fully and the large matrix N ′22 does not need to be computed at
all. The product of the triangular matrix L−1 with N12N

−1
22 can be realised

in O(18nObs · dim1) flops, if both matrices are given as csm, but additional
memory is required here. It will be shown, that these additional costs can be
saved, too, by writing S as

S =

[
L−11 0

0 Idim2

][
Idim1 −N12N

−1
22

0 L−12

]
. (4.10)

In fact, there are no backward products required with this method. The tasks
which are to perform are

• decomposing N22 and getting L−12 , D−12

• computing −N12N
−1
22 and N̄11

• decomposing N̄11 and getting L−11 , D−11 .

Figure 4.3 shows how effective this method is; for the large Vesta data set the
method here (level 2) is compared with the previous level of optimisation (level
1). About 36 hours, 96 % of running time in this example, are saved.

4.2.3 Sufficiency of the inverse decomposition

Given the matrix scheme of the inverse normal matrixN−1 =
[
N ′11, N

′
12; (N ′12)

T , N ′22
]

and its decomposition (S,D) as before, it is to show that the functional and the
stochastic solution (see page 52) of the adjustment problem can be obtained.
To solve the normal equation for x̂, the vectors x̂ and b are split into two parts
of [dim1, dim2] accordingly to the split of N . then x̂ = N−1b becomes(

x̂1

x̂2

)
=

(
N ′11 N ′12

(N ′12)
T N ′22

) (
b1

b2

)
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Figure 4.3: Optimisation of invertingN with split technique – level 1: reference
software with partial compression, level 2: method described in subsection
4.2.2, level 3: method described in subsection 4.2.4 using parallel computation.
The inversion of N22 takes only a few seconds.
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and hence by definition of N−1

x̂1 = N ′11b1 −N ′11N12N
−1
22 b2

x̂2 = −(N12N
−1
22 )TN′11b1 + (N12N

−1
22 )TN′11N12N

−1
22b2 +N−122 b2 .

The variables in x̂2 (printed in bold) equal −x̂1, such that the equations above
can be simplified as follows

x̂1 = N ′11(b1 −N12N
−1
22 b2) (4.11)

x̂2 = N−122 b2 − (N12N
−1
22 )T x̂1 (4.12)

From the equations above it can be seen, that the computation of N ′12 is not
necessary, further on equation (4.11) can be realised in two steps

y1 = D−11 L−11 (b1 −N12N
−1
22 b2)

x̂1 = (L−11 )Ty1 .

Hence, the decomposition of N ′11 is sufficient. The same holds for N−122 , since
the parts of its decomposition can be applied to b2 sequentially in the same
way. The product with vectors is obtained quickly, esp. if the matrix on the
left hand side is sparse and compressed. Also recall, that in this case the in-
volved transpositions only require zero-runtime2 (compare section 4.1 on page
55).

It remains to show that the diagonal of the HAT-matrix H := AN−1AT can
be computed. By associative law it is

H = A(ST DS)AT = (AST )D (SAT ) .

Since (SAT )T = AST , a similar decomposition is found for H. Setting LH :=

SAT yields to H = LTHDLH . Now let hi be column i of LH , then

Hii = hTi Dhi =
∑
j

Djj · hi(j)2

is the i-th diagonal entry of H.
Hence, the calculation of LH is sufficient. Denoting with n = |l| the length of

2i.e. less than 1 second
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vector l, the matrix LH has dim×n elements. If LH is computed columnwise,
only the space for a vector of length dim needs to be allocated, which can be
reduced even further.
As mentioned earlier, the computation of L−11 (−N12N

−1
22 ) can be avoided. Us-

ing equation (4.10) leads to

LH =

(
L−11 0

0 Idim2

)[(
Idim1 −N12N

−1
22

0 L−12

)
AT

]

and the right hand product with AT involves only very sparse matrices. Once
again, each column a(i) of AT is split into [a1(i), a2(i)] of dimension dim1 and
dim2; the first part corresponds with additional observation parameters only
and the second contains the remaining control point derivatives. The equation
above becomes

hi =

(
L−11 0

0 Idim2

)(
a1(i)−N12N

−1
22 a2(i)

L−12 a2(i)

)

=

(
L−11 (a1(i)−N12N

−1
22 a2(i))

L−12 a2(i)

)

and the lower part of the right hand vector L22a2(i) consists of only 3 non-zero
elements for all i. Since the upper part is bound by dim1, hi can be stored in
compressed form of maximal dim1 + 3 elements. Hence, again memory as well
as running time is saved by taking into account the sparse nature of A.

4.2.4 An iterative inverse decomposition algorithm

The decomposition of the partial matrix N̄11 consumes still running time of
cubic order, although the dimension of the problem has been reduced to dim1.
For large data sets this is a relevant cost factor, esp. since a bundle block ad-
justment consists of more than just one iteration. Table 4.7 shows the running
times on all testing machines with respect to the inversion of N̄11 for the pre-
viously considered data sets of Phobos, Mercury and Vesta (table 4.4 on page
59); the values are based on n3/3 flops with dimension parameter n = 6nIm.
It can be seen, that for 10 000 images just four iterations take 1–2 days of com-
putation time. Therefore an algorithm was developed which makes use of the
multi-core architecture of modern computing machines and high performance
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Running time for inversion of partial matrix N̄11N̄11N̄11

Data Set Images HLRN cluster work-station

Phobos 72 00:00:00 00:00:00 00:00:00
Mercury 3446 00:16:25 00:22:57 00:16:09
Vesta 5440 01:04:37 01:30:17 01:03:33

Example 10000 06:41:20 09:20:45 06:34:44

Table 4.7: Running times (hh:mm:ss) for different data sets based on n3/3

flops for partial matrix N̄11, n is sixfold number of images. See table 4.1 on
page 52 for description of the three machines.

computers of the North-German Supercomputing Alliance. Depending on the
hardware that is used a saving factor of v 1:7 (cluster) rsp. 1:8 (HLRN) could
be achieved for this part of the adjustment program. The testing machines are
described on page 52.
The algorithm transforms a symmetric matrix M iteratively into a matrix S
and computes simultaneously a diagonal matrix D, such that STDS = M−1 ;
S is a block triangular matrix and the dimension of each block can be bound
by an arbitrary given block size.

Compared with the definition of a block triangular matrix on page 2.1, the
condition that all blocks need to have the same dimension is relaxed here in
such a way, that the block structure is bound by s. That means, the dimen-
sion of all blocks is less or equal to s. The generalisation is owing to the fact,
that the dimension of an arbitrary matrix is not necessarily a multiple of an
arbitrary given block size s. But if for a matrix M ∈ Mdim the dimensions
of the diagonal blocks are bound by s, this matrix can be naturally embedded
into a larger matrix M ′, that has the following properties:

dim = n s+ r, r < s =⇒M ′ ∈M(n+1)s with M ′ =

(
M 0

0 Is−r

)
.

Since Is−r is a unit matrix, it follows

(M ′)−1 =

(
M−1 0

0 Is−r

)
.



68

Both, M ′ and (M ′)−1, are block triangular with block size s. Such an em-
bedding can always be done and hence, the block size can be chosen freely.
Although the algorithm will be applied especially to N̄11, the proof here is for
a general symmetric M for which M−1 exists. In case the inverse does not
exist, the algorithm stops with an error message.
Following the steps of a complete induction, the algorithm is described for
an arbitrary block size s ≤ dim with n = dim/s number of diagonal blocks.
W.l.o.g. dim/s ∈ N holds.
Algorithm for n = 1n = 1n = 1 and s = dims = dims = dim:

This is simply equation 4.4 with S = L−1 and D = D−1.
Algorithm for n = 2n = 2n = 2 and s = dim1 = dim2 = dim/2s = dim1 = dim2 = dim/2s = dim1 = dim2 = dim/2:

This is the split technique and requires only one iteration. The algorithm
performs the following steps as a forward operation:

0: extract M22 block and compute its LDLT form: M22 = L2D2L
T
2

invert the UTM LT2 and replace M22 with the transposed L−12

1: compute B2 = −M12M
−1
22 and replace M12 with B2 (3)

2: compute M̄11 = M11 −M12M
−1
22 M

T
12 (updating M11)

3: repeat step 0 on M̄11 : (L−11 )TD−11 L−11 = M̄−1
11 = M ′

11

⇒ replace M̄11 with L−11

After this steps the backward operation is to perform

• replace B2 with B′2 = L−11 B2

The obtained matrices look like this:

S =

(
L−11 B′2

0 L−12

)
, D =

(
D−11 0

0 D−12

)
.

3Assuming that a copy of M12 exists; this assumption will be droped later on.
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Keeping the definition of B2, B
′
2 in mind, it follows that

STDS =

(
(LT1 )−1D−11 L−11 (LT1 )−1D−11 B′2

(B′2)
TD−11 L−11 (B′2)

TD−11 B′2 + (L−12 )TD−12 L−12

)

=

(
M ′

11 M ′
11B2

BT
2 M

′
11 BT

2 M
′
11B2 +M−1

22

)

= M−1 (4.13)

Algorithm for arbitrary nnn and s = dim/ns = dim/ns = dim/n:

Setting the original matrix M = Mn, a brief description is given by:
Start with calculation of L−1n , D−1n . Complete the forward operation and set
M̄11 = Mn−1. Repeat the forward procedure until M1, the upper left 16 × 16

block, is reached and compute the last elements L−11 , D−11 .

Detailled description: For general n ∈ N the forward steps are

0: (n−1) times - extract diagonal block and compute L−1k , D−1k , n ≥ k ≥ 2

1: (n−1) times - compute Bk = −(M12M
−1
22 )(k), n ≥ k ≥ 2

2: (n−1) times - building M̄11 =: Mk−1, n ≥ k ≥ 2

3: repeat step 0 on M1

After the forward operation terminates, M is

L−11 B2 . . . ∗ ∗
0 L−12 . . . Bn−1 ∗

. . . ∗ Bn

0 L−1n−1 ∗
0 L−1n


(4.14)

and d := (D−11 , D−12 , . . . , D−1n ) is the connected diagonal.

For the n − 1 steps of the backward operation, write D(k) for the diagonal
matrix with diagonal dk = (D−11 , . . . , D−1k ) and set again S1 = L−11 . Starting
with the square in the upper left corner of the matrix
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• replace B2 with B′2 = S−11 B2 and set S2 =

(
S−11 B′2

0 L−12

)

For the case n = 2 it was showed that ST2 D(2)S2 = M−1
2 . Analog

• replace Bk with B′k = Sk−1Bk and set Sk =

(
Sk−1 B′k

0 L−1k

)

for the remaining k ≤ n. This way, the matrix (4.14) changes stepwise to
S2 B′3 . . . ∗
0 L−13 . . . Bn

. . . ∗
0 L−1n

 , . . . ,


Sn−2 B′n−1 ∗

0 Ln−1 Bn

0 0 L−1n

 ,

(
Sn−1 B′n

0 L−1n

)

(4.15)
and STkD(k)Sk = M−1

k holds for each k. The final step n− 1 7→ n is evaluated:

S := Sn =

(
Sn−1 B′n

0 L−1n

)
, D := D(n)

and it follows

STDS =

(
STn−1D

(n−1)Sn−1 STn−1D
(n−1)B′n

(B′n)TD(n−1)Sn−1 (B′n)TD(n−1)B′2 + (L−1n )TD−1n L−1n

)

=

(
M−1

n−1 M−1
n−1Bn

BT
nM

−1
n−1 BT

nM
−1
n−1Bn + (L−1n )TD−1n L−1n

)

=

(
M ′

11 −M ′
11M12M

−1
22

−M−1
22 M

T
12M

′
11 M−1

22 M
T
12M11M12M

−1
22 +M−1

22

)

= M−1 . (4.16)

The equality of line 2 and line 3 is obtained after renaming the variables ac-
cording to the case of the single split scenario n = 2 which holds for arbitrary
dimensions dim2 > 0, dim1 = dim− dim2. �

Because of the iterative structure, the backward operation can not be omitted
here, but matrix products are suitable for parallel computation. The decompo-
sition and inversion of the diagonal blocks can be achieved quickly if the block
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size is small enough. A size of s = 16 was chosen which will be referred to as
the tile size. Because of the specification regarding the memory transfer on a
computing unit, this is currently the optimal tile size in parallel programming
(Hsu and Kremer, 2004).
Applying the decomposition algorithm to N̄11, the running time reduces fur-
ther if the number of parallel processes is sufficiently large. On figure 4.3 the
time for level 3 corresponds with this optimisation, the 1.5 hours are reduced
to 13 minutes of computation time. Subsection 4.2.5 is dedicated to the topic
of parallel computation in general and section 4.3 explains the implementation
design of the algorithm in detail.

4.2.5 Parallel computation

On hardware that is equipped with multiple core processors, several tasks can
be performed in parallel at the same time. A problem is suitable for parallel
computation, if it can be broken in tasks which are independent of each other
(task parallel) and if the memory parts that need to be changed by the tasks
are disjoint (data parallel); it might be required to synchronise certain tasks
which need to be performed on the same memory region successively (Munshi
and Gaster et al., 2012).
The responsibility to avoid conflicts and to synchronise overlapping tasks lies
with the Software designer. The programming language and the compiler need
to be capable of managing parallel programming threads. A simple way of us-
ing parallel computing in C language, is the inclusion of the pthread library.
For more complex tasks that require a deeper control of thread-administration,
there are the application programming interfaces OpenMP and OpenCL. Both
are capable of task parallelism and data parallelism, but with OpenCL one can
execute code on Graphics Processing Units (GPU), too.
For the inversion of triangular matrices parallel computation with pthread is
used within the implementation of the bundle block adjustment. Here, the
columns can be computed independently of each other. The part of the pro-
gram where the 3×3 block matrix N22 is inverted also involves pthread. Since
each block can be inverted independently, the task is very suitable for parallel
computing, too. The speed-up factor matches the number of available parallel
threads nThreads, if the problem size is an (integral) multiple of nThreads.
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Another field, for which parallel computation is used within the software, is
matrix multiplication: To compute the product AB for A ∈ Mn,m, B ∈ Mm

one needs m2 operations for each line, nm2 operations in total. Since each line
can be computed independently, one can divide the task in different groups
which act parallel. In the case, were the problem size n agrees with the num-
ber of available threads, all lines can be computed at the same time. More
typical is a realisation where the memory region of the matrices is structured
in multiple blocks of a certain dimension, the so called tile size, and each block
is computed in parallel. Not all matrix products here are done in parallel, but
the principle is used within a parallel version of the iterative decomposition al-
gorithm (4.2.4). The implementation was realised in OpenCL and is discussed
in the next section. This section closes with a comparison of the running times
for the Vesta using the introduces decomposition methods. The running time
of one complete iteration of the bundle adjustment, including the set up of the
sparse system and the statistic evaluation is about 34 minutes on the super-
computer (HLRN). On the multi-core cluster it takes about 60 minutes and on
the work-station about 90 minutes. Figure 4.4 shows the running times of one
iteration with the method of subsection 4.2.2 alone (right bar) and with the
parallel version of the iterative decomposition algorithm of subsection 4.2.4
in addition (left bar). All other aspects are the same. The speed up factor
due to the parallel computation shrinks to 1:3 for HLRN and to 1:2 for the
cluster. The acceleration factor in the previous chapter is given with respect
to the part of the program, which formerly consumed most of the running
time, the computation of N−1 rsp. its decomposition. Considering the whole
iteration on the HLRN, the evaluation takes about half of the running time
now and the decomposition only a quarter. The adjustments for Vesta took
four iterations with a total running time of 2h:16min on HLRN, about four
hours on the cluster and about six hours on the work-station. In this example
the factor of memory reduction is 1:16, with respect to running time about
1:20 at optimisation level 2 and about 1:40 at level 3 (using the cluster).
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Figure 4.4: Running times for one iteration of the inertial frame bundle block
adjustment, processing the Vesta data set on different hardware – using the
parallel decomposition algorithm (left bar) and the single-thread decomposi-
tion (right bar).

4.3 Implementation of the decomposition algo-

rithm in OpenCL

The algorithm in 4.2.4 requires the use of both, multiplication and inversions
of triangular matrices, on a large scale. Special efforts were taken to ensure
a balanced workload on the computation device which is recommended in
Munshi and Gaster et al. (2012). It could be achieved, that the forward and
the backward operation can be performed at the same time (task parallelism)
– after the point of synchronisation for both operations has been passed for
each iteration.
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4.3.1 Memory design

The algorithm is applied to a symmetric matrix M ∈ Mdim transforming it
into a block triangular matrix S. The dimension of the blocks of S respectively
the tile size is denoted with T . For all dim ∈ N there exist natural numbers
n and r ≤ T such that dim = (n− 1)T + r. As stated on page 67, M can be
embedded into a larger M ′ and M ′ ∈MnT . Hence, if necessary M is enlarged
to dimension nT such that it consists of n2 blocks of size T×T . In a worse case
scenario this would lead to an overallocation of (n+T−1)∗T−n = (T+n)(T−1)

elements which is of O(n) and can be neglected.
A continuous memory region, that can hold the non-zero elements of a block
triangular matrix with block size T and dimension nT , is allocated. This
corresponds with 1

2
n(n+1)T 2 elements. The consequence of saving the memory

of the zero-blocks is, that it must be thought of a memory design in order to
access each element of M . The T × T sub-blocks are sequentially numbered
from 0 to 1

2
n(n + 1) − 1 and a coordinate system, comparable to that of a

matrix, is used to access them. There are ordered in n column-groups cg and
n row-groups rg, as it is shown on figure 4.5.
The numbers of the first blocks in each column-group j, form a numerical

sequence 0,1,3,6,. . . given by the rule

idj =

j∑
i=1

i =
1

2
j(j + 1), j = 0, 1, . . . , n− 1

and the final block for each group is given by the number

idj + j, j = 0, 1, . . . , n− 1 .

Hence, M [idjT
2] will access the first entry of cg j, while M [ ( idj + j ) T 2 ]

refers to the first entry of the diagonal block. This allows to navigate through
the matrix which is partitioned into equal sized small T ×T blocks, optimised
for parallel programming. The values of M are transferred to the memory
block according to this pattern.

4.3.2 Tile size

Meanwhile a lot of publications describe the topic of the tile size in detail. Con-
sidering the publication Hsu and Kremer (2004), which examines the influence
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Figure 4.5: Memory design of a block triangular matrix. The sub-blocks are
numbered from 0 to 1

2
n(n+ 1)− 1 and ordered in a matrix-like structure. The

coordinates CG and RG are used to identify each id via CG(CG−1)/2 +RG.

of the tile size on the performance of parallel multiplication, the term tile refers
to the dimension of the sub blocks of the product which are computed by a
single thread. It can be translated into block size within the current context.
According to the result there, 16 is an optimal tile size, based on some relevant
hardware properties of the computing device. A performance analysis of the
algorithm for different values for T, revealed that for T = 6 the performance is
worse and confirmed that T = 16 is an optimal choice. Despite the fact, that
T = 6 would be an intuitive choice, the tile size was therefore set to 16.

4.3.3 Work-groups and work-items

The functions that are executed in parallel on the OpenCL device are called
kernels. Each instance of a kernel is called work-item and has a unique global
ID. The number of requested work-items can be larger than the number of
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factual parallel cores on the device; in this case the surplus of requests is
queued until an item has finished its work and a new instance can be called.
Hence, a work-item corresponds with a thread of the pthread libraries. The
work- items are organised in work-groups which ensure that all items of the
group execute on the same compute unit. In the simplest case the number of
items in each work-group is just one. For the CPU-version of the algorithm,
which is focused and described here, this is the recommended configuration.
According to the memory design (figure 4.5) each work-group is, depending on
the task which is to perform, assigned to a column-group cg or a row-group
rg and operates on the specified memory region. The number of work-groups
nWG is set to

nWG = n− 1

and corresponds with the number of images via

6nIm = (n− 1)T + r =⇒ nWG =
6

T
nIm− 1 .

This implies that there are less work-groups required than images are given.
Since the number of work-groups is limited to 8892 (for Intel) about 23 700
images can be processed without increasing the tile size T . If T must be
increased, it should be doubled to 32.

4.3.4 The parallel decomposition algorithm

The number of required iterations is n − 2. For each iteration k consider the
forward steps according to detailed description on page 69. The following tasks
within each step can be separated in independent (data parallel) groups:

0: inverting the triangular [16, 16] matrix Lk
groups: maximal 16, each inverting one column

1: computing Bk: [16, (k − 1)]× [16, 16]

groups: k − 1, each computing one block (bki) of Bk

2: computing the 1
2
(k− 1)k blocks of M12M

−1
22 M

T
12: [16, (k− 1)]× [16, (k− 1)]

groups: k − 1, each group computes k/2 (resp. (k − 1)/2) blocks
design: group i = 0, . . . , k − 2 operates on cg i (and k − 2− i, if i < k

2
)
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The algorithm starts at k = n− 1 and stops at k = 1, step 0 is then repeated
separately on the remaining block L0. Hence the number of the required work-
groups decreases in each iteration.
Note (1:) If step 1 is performed at once, one needs to store Bk temporarily
beforehand. The work-item of work-group i computes the product in two steps:

1a) b̃ki = (block i of M12)× (L−1k )T (4.17)

1b) bki = b̃ki × (D−1k L−1k ) . (4.18)

There is no lack of performance, if (4.18) is done after step 2 has finished.
The storage of Bk becomes unnecessary, the product in step 2 simplifies to
B̃kDkB̃

T
k and the completion of step 1b) completes the forward operation.

Note (2:) There is only one column-group j = k
2
−1 that has exactly k

2
blocks.4

The column-groups left of it have less and the column-groups to the right con-
tain more blocks. For each cg < k

2
there is a partner cg′ = k−2−cg, such that

their number of block adds up to k. Hence, both can share the workload easily.

Backward operation: The transformation of the backward products, see (4.15)
on page 70, requires n − 1 iteration steps. As described before, they would
need to be performed after all steps of the forward operation are completed.
Recall that B′k = Sk−1Bk has to be computed in each iteration for k = 1, . . . , n.
Since with growing k the dimensions of Sk−1 and Bk increase, the workload
increases for each iteration. It is true that by definition each of the Sk is a
factor of all sequentially following Sj, j > k. Indeed

S1 =

[
S0, 0

0, I

][
I, B1

0, L−11

]
=

[
S0, S0B1

0, L−11

]

S2 =

[
S1, 0

0, I

][
I, B2

0, L−12

]
=

[
S1, S1B2

0, L−12

]
. . . (4.19)

Sn =

[
Sn, 0

0, I

][
I, Bn

0, L−1n

]
=

[
Sn−1, Sn−1Bn

0, L−1n

]
.

Now each Bk consists of k blocks bk0, . . . , bk(k−1), placed above the diagonal
block of column-group k which holds L−1k . In particular it is B1 = b10, B2 =

4It needs to distinguish between odd and even k.
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(b20, b21)
T and S0 = L−10 . If the Sk are sequentially replaced by their definition,

multiplying everything out leads to

S1 =

[
L−10 , L−10 b10

0, L−11

]

S2 =


L−10 , L−10 B1, L−10 (b20 + b10 b21)

L−11 , L−11 b21

0 L−12



S3 =


L−10 , L−10 b10, L−10 b′20, L−10 (b′30 + b10b

′
31)

L−11 , L−11 b21, b′31

0 L−12 , L−12 b32

L−13

 .

This identity can is used for an alternative approach to realise the backward
operation. To explain the idea, consider S3 above: after the transformation
is done the first time for the final column, the memory block b32 is no longer
required and can be replaced with L−12 b32. Similar in the next iteration, the
blocks b21 and b′31 are no longer involved in further calculations; the can be
replaced with L−11 b21 and L−11 b′31. This way the matrix S is built from bottom
to top and both operations can be done in parallel. As a consequence, the
decomposition is obtained faster if enough parallel cores are available. The
transformation is explained in greater detail within the appendix (page 106).
Hence, the backward operation is obtained by

bji += bkibjk for all column-groups j > k, ∀i = 0, . . . , k

For each j > k a work-group can be set up and launched parallel to the forward
operation after Bk is computed (step 1b on page 77). If k = n−1 the number of
backward work-groups is zero, if k = n− 2 the number is one and so on. Since
the number of forward work-groups decreases from n−2 to one simultaneously,
there is a constant number of n − 2 work-groups throughout the time. This
way an optimal balance of the workload is ensured for parallel computation.
Figure 4.6 illustrates the specific design that realises backward computation on
column-groups j ≥ k and the next iteration of forward calculation on column-
groups j < k (see figure 4.6). Hence, this is an example of task parallelism
and step 1b works as a synchronisation point between both.
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Figure 4.6: Backward and forward operation in task-parallelism. The back-
ward operation is performed on the column-groups j > k and the forward
operation on j < k. The point of synchronisation between both tasks is the
completion of the transformations on column-group CG = k.
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Figure 4.7: Parallel decomposition algorithm on different computing machines
(specifications on page 52); the horizontal axis shows the dimension of the
quadratic matrix.

Figure 4.7 shows the running times of the OpenCL algorithm on the three
machines for matrices with dimensions from 6000 to 60 000. This corresponds
with data sets of 1000 to 10 000 images. For the quad-core PC no acceleration
could be noticed - the times are almost identical to the non-iterative decompo-
sition approach described in 4.2.2. Here the number of cores is not sufficient to
benefit from the iterative and parallel algorithm. The processor performance
of the HLRN with about 3 Gflops/s per core and the 24 physical cores lead
to a speed up factor of approximately 1:8. The DLR cluster is equipped with
more cores but the processor performance is only 2.14 Gflops/s per core; it
takes almost twice the time of the HLRN and the local speed factor of 1:7 is
lower. The comparison shows that both quantities, the number of cores and
the performance factor need to be considered.



Chapter 5

Application to the science cases

Phobos and Vesta

Credit: The data sets described and evaluated here, were produced by Dr.
Konrad Willner (Phobos) and Frank Preusker (Vesta) who have carried out
the photogrammetric measurements as well as the tie point matching across
the image bundle. A data set is a list of image objects as shown in table 5.1,
the position and pointing data of the involved cameras were obtained from
NASA and ESOC.

Image observation Camera Orientation

Image number Focal length Image time

Control point Image point
ID Sample Line
. . . . . . . . .

Position X Y Z

Pointing φ ω κ

Table 5.1: Template of an image object within a data set. Image number,
time and focal length as well as position and pointing data of the camera are
assigned as meta-data to each object; the list of image point observations in
camera coordinates together with a unique ID of the projected control point
completes the format.

81
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5.1 Phobos

The Phobos data set consists of 689 control points and 8010 image point mea-
surements, distributed over 19 Viking Orbiter and 53 Mars Express images.
Willner et al. (2010) computed a control point network of 665 points with an
average accuracy of 40 m and a forced libration amplitude of 1.24◦. The image
data has been described in the introduction.
The analysis of the heterogeneous data is challenging due to the huge differ-
ences between the uncertainties of the cameras’ orientations.

Weighting model and pre-adjustment

Weights: Since the MEX positions are far more accurate than the Viking
positions, the stochastic model is not homogeneous. Furthermore the quality
of SRC images is much higher, esp. with respect to the contrast values. To
compensate the latter the uncertainty for MEX observations was set to one
pixel (0.009 mm) and the uncertainty for Viking observations to the twofold
pixel size (0.02352 mm).
The weighting model for the SRC orientation data is taken from Willner et
al. (2010), see A.1 on page 108. The uncertainties range from 1 m to 1000
m for positions and from 0.01 gon to 0.5 gon for the pointing angles. For the
Viking images, the position weights were initially set to 5 km for close range
images and to 24 km for the two images at far distance from late 1977. For the
pointing uncertainty a constant value of 0.4 gon was adopted. This completes
the initial weighting model.
Pre-adjustment: Firstly, the Viking orientation were adjusted in a prepa-
ration step. For the pre-adjustment the parameters α0 and δ0 were included
with a uncertainty of 0.2◦ and the libration amplitude λ0 with a uncertainty
of 1◦ in a joint adjustment. By this means of control, the initial values for
the rotational elements did not change. The Viking orientation were replaced
with the new values and the resulting weights were replaced in the stochastic
model for the Viking frames only. This way an updated data set with an up-
dated weighting model was obtained; the appendix contains both as table A.2
(weights) and table A.3 (orientation).
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5.1.1 Forced libration amplitude

Recalling the rotation model of Phobos (as given on page 12):

α(t) = α0 − 0.108T + 1.79 sin(M1)

δ(t) = δ0 − 0.061T − 1.08 cos(M1)

W (t) = 35.06◦ + 1128.8445850t+ 8.864T 2 − 1.42 sin(M1)− λ0 sin(M2)

with the time independent parameters

α0 = 317.68◦, δ0 = 52.90◦, λ0 = 0.78◦ .

After the preparation three different types of adjustments were performed,
with the weighting model resulted from the pre-adjustment. In the first case,
only the forced libration amplitude λ0 was included in the functional model:
the given start value of 0.78◦ was adjusted to 1.13◦ (±0.013).
In order to test the independence of this result from other parameters, two
additional cases have been studied. In a second case, only the constant pole
coordinates (α0, δ0) were resolved: a change in right ascension of 0.07◦ and in
declination of only 0.003◦ was noticed. In the third case all three parameters
have been adjusted jointly. Here λ̂0 was computed with 1.132◦ (±0.0133),
confirming the result of the first case. The results of these three adjustments
are listed in table 5.2. In all three cases the rotational elements are included as
complete unknown parameters like the control points and unlike the orientation
parameters which undergo a weight control.
The result for λ̂0 = 1.13◦ is in agreement with 1.09◦ ±0.1◦ (Oberst et al., 2014)
and 1.24◦ ± 0.15◦ (Willner et al., 2010), and very close to 1.1◦, the result of
the theoretical consideration of Rambaux et al. (2012).

5.1.2 Control point network for Phobos

The computed CPN of the adjusted data set consists of 680 points. Considering
the first adjustment case, the average norm of the weight vector (σX , σY , σZ)

is about 55 m and the forward intersection error of the control points is about
13 m (table 5.3 shows the CPN statistics for all three cases).
Figure 5.2 shows a three dimensional model of Phobos, which was created from
679 control points (Burmeister, 2016a). The point cloud is triangulated and
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Results for rotational elements (pre-adjusted Viking)

case param. start val. end value diff. σσσ

Libration λ0 0.78◦ 1.13◦ +0.35◦ 0.013◦

Pole axis α0 317.68◦ 317.75◦ +0.07◦ 0.018◦

δ0 52.9◦ 52.897◦ −0.003◦ 0.01◦

Joint adj. λ0 0.78◦ 1.132◦ +0.352◦ 0.0133◦

α0 317.68◦ 317.654◦ −0.026◦ 0.0130◦

δ0 52.9◦ 52.885◦ −0.015◦ 0.01◦

Table 5.2: Results for three separate adjustments (case) of rotational elements
(param.) with initial values (start value) are shown in col. 4 (end value); col.
5 shows the difference and col. 6 the uncertainty (σ). In the first case only
libration amplitude λ0 is adjusted, in the second case only the mean pole axis
orientataion (α0, δ0), case 3 is a joint adjustment of all the three parameters.
The joint adjustment affects the changes in (α0, δ0) but not the change in λ0.

CPN Statistics (for results in table 5.2)

case s0s0s0 mean error fwi error

Libration 5.09 · 10−11 55.65 m 13.35 m

Pole axis 5.50 · 10−11 60.39 m 14.10 m

Joint adj. 5.06 · 10−11 55.55 m 13.35 m

Table 5.3: Control point network statistic: Col. 1 as in table 5.2, col. 2 holds
the overall system error s0, the CPN mean error in col. 3 is computed from
||(σX , σY , σZ)|| of the adjusted points, col. 4 shows the forward intersection
error. In all three cases, the network consists of 680 points.

rendered with IDL; shading and light source simulation which are needed to
make topographic features visible were done with CloudCompare Viewer. The
large Stickney crater on the western hemisphere is clearly to see in the upper
left image (leading side) and partly to see in the lower left image (northern
hemisphere).
The 3D control points have been converted to polar coordinates and their
distribution is shown in figure 5.1. The figure also shows the different ranges
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Figure 5.1: Distribution of control points on Phobos (unit sphere projection)
with sigma values from 30 m to 345 m. The majority of points has values
under 60 m, the CPN mean error is 55.65 m; in the region between 60◦ and
100◦ East on the northern hemisphere Viking and MEX images overlap.

of σ = ||(σX , σY , σZ)|| for each control point separated in four classes: σ0 = 60

m and smaller, 2σ0, 3σ0 and above. There are 15 points over 180 m, most of
them located in the north-eastern quadrant. The larger sigma values occur in
the region where Viking and MEX images overlap and for the CPs in images
close to that. The CPN solution is consistent with the previously obtained
by Willner et al. (2010). The difference in the libration amplitude λ0 of 0.11
degree leads to a maximal positional offset of about 100 m for the MEX images,
measured in the body-fixed reference frame. The average effect on the positions
is about 30 m, if all images are considered. As far as comparable, both CPNs
differ in parts up to 260 m. The accumulated uncertainty of the points is about
100 m; further deviations can be explained with a possibly different stochastic
model for the Viking images (which is not available for comparison). The
solution obtained here with the inertial frame method is closer to the result of
a body-fixed adjustment that only involves MEX SRC images.
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Western hemisphere showing the
craters 1) Todd, 2) Drunlo and 3)
Stickney

View centred at 180◦ (vertical) and
equator (horizontal), with Todd on
the right half below the equator

Northern hemisphere with four
longitudes (0◦, 90◦E, 180◦E, 90◦W )

Southern hemisphere with four
longitudes (0◦, 90◦W, 180◦E, 90◦E)

Figure 5.2: Reconstructed shape of Phobos from 679 control points, triangula-
ted and rendered with simulated light source. The four different perspectives
are projections into fundamental planes with the view centred at the third
axis. +X intersects the prime meridian, +Y intersects 90◦ E and +Z contains
the northern pole.
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5.2 Vesta

There are 82 806 control points distributed over 5440 images and the average
observation rate is 9.3 per point. Unlike the Phobos data, here all images
are taken by the same spacecraft at distances which are close to the average
distance of 944.5 km (table 1.5 on page 21). The distance is measured with
respect to the centre of mass. The weighting model is provided by Preusker
(private data contribution). For all images the position uncertainty is 35 metres
and the pointing uncertainty is 0.006 gon. The images do not completely cover
Vesta around the northern pole region.

5.2.1 Pole axis orientation

The current rotational model for Vesta is simple, the only dynamical term is
the self rotation period of about 5 h 20min. Parameters of interest are here
the coordinates (α, δ) of the pole axis orientation. Two different models will be
considered in this subsection. The first agrees with the Dawn-Claudia system
stated on page 12. The uncertainty of the pole axis orientation is given with
0.01◦ (Archinal et al., 2013). The second model, proposed by Preusker (private
communication), was applied during the preprocessing of the data set which
is used here:

(Preusker) α(t) = 309.03312◦

δ(t) = 42.22623◦

W (t) = W0 + 1617.3331237◦ t , W0 = 74.6625◦ .

The inertial frame bundle block adjustment was performed for both models.
The uncertainty for α and δ was set to 0.03 degree (3σ). The rotation rate
and the value for W0 remained constant.
Table 5.4 lists the results and the difference with respect to the starting values
for both adjustments . For the first model, the changes for both, α and δ are
less than 0.01◦. For the second model, the change in right ascension is slightly
above 0.01◦ but closer to the IAU value for α. Both results confirm the current
IAU pole axis orientation of (309.031◦, 42.235◦) within the given range of 0.01◦.
Compared with each other, both results differ by 0.0019◦ (alpha) and 0.0074◦

(delta), which is within the computed error of ±0.008◦. The overall system
error σapost of both inertial frame solutions is about 1.4 · 10−6 .
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Adjusted pole axis orientation for Vesta

init. model Dawn-Claudia Preusker

parameter result change result change

α 309.0246◦ −0.0064◦ 309.0227◦ −0.0104◦

δ 42.2296◦ −0.0054◦ 42.2222◦ −0.0040◦

difference of both results: ∆α = 0.0019◦ , ∆δ = 0.0074◦ < 0.008◦

Table 5.4: Adjusted pole axis orientation of Vesta (result) ±0.008◦ for two
different initial models, change indicates the difference to the initial values.
Both results are, compared with the IAU model (309.031◦, 42.235◦), within
the uncertainty range of 0.01◦ and, compared with each other, within 0.008◦.

5.2.2 Comparison with previous CPN solution

Since here, all input and output data of the previous bundle block adjustment
in the body-fixed reference frame are available, the solution can be compared
in detail with the adjustment solution formulated in the inertial frame. Hence,
Preusker’s body-fixed solution and the results, obtained here by the inertial
frame method, are compared with respect to the camera orientation data and
the coordinates of the control points. The difference in right ascension and
declination of both solutions is ∆α = 0.0104◦, ∆δ = 0.004◦. The effect of this
difference on the positions of the body-fixed solution is in average 76 m and
about 0.009 gon on the pointing angles. Hence, the difference of these parame-
ters to the parameters of the inertial frame solution should not be significantly
larger. The adjusted positions differ by ∅ 42 m and the pointing angles by ∅
0.0042 gon. Finally, the coordinates of the control points only differ by 15 m in
average, respecting the given error range of ∅10 m for both CPNs. This shows,
that both networks are plausible. It has to be emphasised that the assumed
uncertainty values of (30 m, 0.006 gon) for the camera orientation data can
not compensate a difference of 0.01◦ in the pole axis orientation. Taking the
uncertainty of the rotational model into account, the body-fixed orientation
uncertainties would need to be increased.
Figure 5.3 shows three perspectives of a 3D model that has been created from
the adjusted CPN (Burmeister, 2016b). The views are projections into stan-
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View centred at the prime meridian
(vertical) and equator (horizontal)

Left view rotated by 180◦ (vertical
axis), showing the "snow man"

The 3D model was created from
82 806 control points, obtained by
the forward intersection method af-
ter the orientation parameters of the
camera have been adjusted. The
point cloud is triangulated and ren-
dered with a simulated light source,
in order to make the topographic
features visible.

Southern hemisphere

Figure 5.3: Reconstruction of Vesta from 82 806 control points - the perspec-
tives above are projections into Y-Z plane, the far side view is 180◦ rotated
around the Z-axes (w.r.t leading side). The perspective below shows the X-Y
plane viewed from above the south pole. See also the reference DTM from
Preusker (Figure 5.4)
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Figure 5.4: Reference DTM of Vesta (Preusker et al., 2012, fig. 2)

dard planes, such that the great circle containing the prime falls onto the Z-axis
(the upper two images) or on the X-axis (the southern hemisphere). The point
cloud was triangulated and rendered with the software GeoMagic, the shading
and view settings were done with CloudCompare Viewer. A reference DTM
based on a body-fixed solution (figure 5.4), published in Preusker et al. (2012),
has been included.

5.2.3 Surface spherical harmonics analysis

The surface spherical harmonics of order j = 0, 1, . . . in R3 are given by

Yj(θ, φ) =

j∑
m=0

Pjm(sin θ) (Cjm cos(mφ) + C̄jm sin(mφ)) , Cjm, C̄jm ∈ R

when θ is the spherical latitude and φ the longitude. Pjm is called Legendre
polynomial for m = 0 and associated Legendre polynomial for m > 0 with
degree j (see definition Bronstein and Semendjajew (2005) 3.3.1.3.4). Since
the coefficients Cm, C̄m are arbitrary real numbers, Yj is as every polynomial
uniquely defined by the choice of its coefficients.

Remark: The typical definition in mathematics states cos θ as argument of
Pjm. It is important to note, that in this case θ is not the latitude. Instead,
one measures the angle from the north pole (0◦) down to the equator (90◦) and
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further to the south pole (180◦). Hence, 0 ≤ θ ≤ 180 is the spherical co-latitude
w.r.t. the north pole. Since cos θ agrees with the sine value of the latitude on
both hemispheres, the definition above is obtained.

The analysis of the topography f based on spherical harmonics relies on the
serial development

f(θ, φ) = r =
∞∑
j=0

Yj(θ, φ) , ∀ surface points P = (θ, φ, r) (5.1)

That means, all control points are projected to the unit sphere (θ, φ) and f

simply assigns r, the distance to the barycentre, to each point. This assignment
must be unique, so obviously it is to assume

||P − P ′|| > 0 ⇐⇒ ||(θ, φ)− (θ′, φ′)|| > 0 .

With this necessary restriction to the topology f is defined on the sphere
and can be represented by equation (5.1) (Bronstein and Semendjajew, 2005,
3.3.2). The equation implies, that f can be described by a set of coefficients
that define the Yj. Since this set is infinite, an approximation of f is to use
instead. The truncation

fd =
d∑
j=0

Yj satisfies lim
d→∞

(f − fd) = 0 (5.2)

where d ∈ N is called the degree of development.
The coefficients of the surface spherical harmonics have been computed based
on equation (5.2) with d = 60 for all 82 806 control points. The system of
equations can be written in matrix form as Ac = b with the vector of radii
on the right hand side and the unknown coefficients c. Weighted with the
stochastic model aposteori PCP for the control points, the solution is obtained
by inversion as

c = (ATPCPA)−1ATPCP b .

In the appendix section A.4 the procedure is explained for j = 0 and j =

1, in total 612 = 3721 coefficients have been computed. Table 5.5 lists the
unnormalised coefficients up to order j = 10, that are the first 121 coefficients
of the series. Figure 5.5 shows a larger spectrum (400 values), normalised to



92

the unit sphere radius by applying Cjm/C00. The vertical lines mark the Cj0
coefficients, they are followed by Cj1, C̄j1, Cj1, C̄j1, . . . , Cjj, C̄jj; the plot shows
the magnitudes in both directions of the zero-line. A figure showing all of the
coefficients has been dismissed because of its low weighting information.
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Spectrum of surface spherical harmonics up to order 19

j=10 j=19

Figure 5.5: Zoom into spectrum of the surface spherical harmonics coefficients
for d = 60 and j = 0, . . . , 19 showing the first 400 values. The vertical lines
mark the legendre coefficients Cj0, followed by Cjm, C̄jm (1 ≤ m ≤ j) suc-
cessively. Values are normalised such that C00 = 1, |C20| = 0.23 (the second
large impulse) is the only other value above 0.04; magnitude is mirrored below
zero-line for better visibility. See table 5.5 for concrete numbers.
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From the coefficients of the spherical harmonics, the shape of Vesta was
reconstructed. For d = 60 the result in kilometres is 559.57 x 560.02 x 456.69.
Compared with the originally obtained CPN there is a difference in X of 30 m,
in Y of 1.3 km and in Z of 10 m, table 5.6 shows the rounded values (full km).
The IAU gives the diameter of Vesta with 578 x 560 x 458 with an uncertainty
of ±10 km each (Archinal et al. (2011), table 6). Hence, there is a significant
deviation for the semi-major axis (18 km). The coordinates of the ellipsoid’s
centre are (1.9, -4.6, 4.6). The dense distribution of measurements in the south-
ern pole region mirrors the obtained offset between the center of mass and the
center of figure. The images of the current data set do not sufficiently cover the
northern pole region and there is a strongly unbalanced distribution of mea-
surements, favouring the southern hemisphere. The section about the centre
of figure (A.4, page 111) contains the well-known connection between the first
order coefficients and the centre of figure; it is included to emphasise, that the
distribution of control points projected onto the sphere should be uniform and
esp. centred. This can be obtained if e.g. a DTM is used to complete the CPN.

Finally, the CPN has been reconstructed from the coefficients. Figure 5.6
shows the same point cloud as before, approximated by a series of surface
spherical harmonics of degree and order 60. The views are the same as for
the original CPN. The average approximation error is 378 m (min. 5 m, max.
4900 m).
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Surface spherical harmonics coefficients for Vesta

jjj Cj0Cj0Cj0 jjj Cj0Cj0Cj0 jjj Cj0Cj0Cj0 jjj Cj0Cj0Cj0 for m = 0m = 0m = 0

0 260357.3 3 9368.7 6 2217.0 9 -293.0
1 1953.5 4 2673.9 7 -1399.1 10 813.1
2 -60315.6 5 -3574.2 8 555.0

jjj mmm CjmCjmCjm C̄jmC̄jmC̄jm jjj mmm CjmCjmCjm C̄jmC̄jmC̄jm for m > 0m > 0m > 0

1 1 -266.2 2601.7 8 1 992.9 -1782.3
2 1 1441.5 1820.1 8 2 229.7 -2840.4
2 2 1517.7 8450.9 8 3 -2448.8 -374.9
3 1 -8080.6 -7028.8 8 4 1827.7 -631.6
3 2 2453.5 -3070.3 8 5 -878.6 1494.5
3 3 -6568.8 -356.7 8 6 2132.7 -881.2
4 1 3372.9 725.8 8 7 -715.4 -239.2
4 2 -2641.9 228.6 8 8 155.1 -715.2
4 3 3448.0 -271.9 9 1 -265.1 -554.0
4 4 1081.6 386.1 9 2 513.0 -992.7
5 1 2176.9 919.3 9 3 553.3 2150.1
5 2 1095.8 553.6 9 4 1318.1 -861.1
5 3 1095.3 3315.0 9 5 207.5 -240.4
5 4 1668.0 1333.8 9 6 210.9 719.4
5 5 -2454.7 1095.9 9 7 888.9 -1396.5
6 1 929.1 -5969.6 9 8 947.4 -1038.0
6 2 -1612.9 -247.8 9 9 531.1 -225.7
6 3 -689.1 -562.7 10 1 182.1 800.0
6 4 1084.3 -232.0 10 2 -374.9 389.4
6 5 -1023.2 1564.4 10 3 2783.1 -150.1
6 6 -2105.4 -2112.5 10 4 -372.9 95.6
7 1 -2555.7 7738.4 10 5 586.7 -398.0
7 2 1246.9 4713.2 10 6 -706.5 508.7
7 3 175.8 -1322.0 10 7 -22.6 -635.5
7 4 -1664.8 -1164.4 10 8 48.3 123.1
7 5 532.4 1551.1 10 9 -1237.4 -943.5
7 6 -209.0 461.5 10 10 112.2 -1337.6
7 7 -1241.1 -1538.0

Table 5.5: Unnormalised coefficients of surface spherical harmonics up to order
10 for degree of development d = 60, obtained by inversion with the stochastic
model for adjusted control points
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Size parameter of Vesta

Source Diameter COE

CPN (best-fit) 560 x 559 x 457 (2, -5.5, 3.5)

SSH (d = 60) 560 x 560 x 457 (2, -5.0, 4.5)

IAU 578 x 560 x 458 —

Table 5.6: Size parameter of Vesta (in km); col. 2 and 3 show the diameters
and centre of the ellipsoid (COE) in X,Y,Z coordinates for a best-fit ellipsoid
using the CPN and computed by surface spherical harmonics of degree and
order 60 (SSH). IAU values (±10 km for each dimension) have been included
from Archinal et al. (2011) for comparison.

View centred at 180◦ (vertical) and
equator (horizontal)

Southern hemisphere

Figure 5.6: The 3D model was created with 82 806 control points, obtained by
a series of surface spherical harmonics of degree d = 60. Latitude and longi-
tude are specified by the points of figure 5.3. The point cloud is triangulated
and rendered with a simulated light source, in order to make the topographic
features visible.
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Chapter 6

Conclusions and Outlook

6.1 Summary and conclusions

The bundle block adjustment in the inertial reference frame is a method to
obtain rotational elements in a direct and analytical way from image point
measurements. It is an extension of the classical method in the body-fixed ref-
erence frame that resolves the interdependence of the rotational model and the
camera’s external orientation (position and pointing). The functionality of the
principle was tested in a case study with simulated data. The new approach
turned out to improve the inner constrains of the control point network. It
furthermore allows to analyse the dependencies of rotational elements and to
identify parameters which are either weakly determined or not yet modelled.
Applied to the real data set of Phobos, the forced libration amplitude λ0 =

1.13◦ ± 0.013 was computed with a CPN of 680 points. The result is in agree-
ment with previous results and hence, supports the assumption of a uniform
density of Phobos (Willner et al., 2010). The mean uncertainty of the CPN is
about 55 m and the forward intersection error is about 13 m. The deviation in
the pole axis orientation from the joint adjustment (table 5.2) indicates, that
an improvement of Phobos’ rotational model is possible and should be subject
to a subsequent analysis. The method can be used for evaluation of further
rotational elements such as the precession period or the acceleration term.

For Vesta, the pole axis orientation was computed together with a large CPN
of ≈ 83 000 control points. The resulting values (309.0246◦ ±0.008, 42.2296◦ ±
0.008) are only slightly smaller then the currently adopted values of (309.031◦,
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42.235◦) and well within the expected range of 0.01◦. Also a comparison to a
body-fixed adjustment was made showing that the new method is consistent
with the previous results. On one hand, this confirms the current pole axis
orientation of the IAU model (Archinal et al., 2013) and on the other hand, it
shows the consistency of the inertial frame adjustment method. A comparing
analysis of the body-fixed solution (Preusker; private data contribution) and
the inertial frame solution with respect to the camera orientation data yielded
another criteria of reliability: the actual differences of the corrected camera
parameters are smaller than the offsets caused by the different pole axis ori-
entation. Furthermore, the coordinates of the control points only differ by 15
m in average with a given forward intersection error of 10 m for both CPN
solutions.

It has been shown, that the implemented software can handle large data
sets; the costs for the resources running time are O(n3) and for memory O(n2)

with 1
6
n being the number of images. Hence, the capacity limit depends on

the number of images and not on the number of control points. This is a
significant improvement compared with the reference adjustment software: the
computation time of 168 hours (seven days) for the adjustment of the Vesta
data set is reduced to about eight hours in a first optimisation step, where
the major work is done by a single core of the CPU (sequential computation).
In a second optimisation step a decomposition algorithm was developed to
benefit from multi-core architecture (parallel computation): the running time
could be further reduced by factor 2 to four hours only on the same machine.
Performance tests of the parallel algorithm showed that the choice of hardware
makes a significant difference with respect to the speed-up factor – on other
testing machines, a of factor 3 (maximum) and a factor of v 1 (minimum)
were obtained. The comparison showed, that four cores are not sufficient to
benefit from this new algorithm. On the other hand it turned out, that the
number of parallel cores is not the most relevant criteria, too. Instead, the
chip performance (in Gflop/s) and the number of cores together need to be
considered. A 3-CPU node of the Xeon E5-2670 (24 cores) was showing the
best performance.

Hence, even for large data sets, rotational elements can be computed in
acceptable time. By means of a weight control, the rotational elements can be
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kept fixed and a body-fixed bundle block adjustment is performed as a conse-
quence. It is also possible to directly choose a body-fixed operation mode, but
the additional resource requirements for the rotational elements are negligible.
The new adjustment software is able to obtain the CPN solution for Vesta,
the improved camera orientations and the pole axis orientation including the
stochastic model aposteori in less than four hours on the reference machine.
This corresponds to a speed-up factor of 42 with respect to the reference soft-
ware.

6.2 Outlook

Further steps

It is planned to perform a bundle block adjustment for 18 000 high resolution
images mapping the equatorial region of Mercury. The focus hereby will be on
the CPN solution, but simultaneously pole axis orientation and spin rate can
be determined. Further geodetic products of Mercury will result from subse-
quent analysis.
Comet CP67, the target of the European Rosetta mission, is a very interest-
ing target with respect to its rotational model. The available images can be
used to study the rotational behaviour in greater detail with the inertial frame
analysis.
The software should be enlarged to a general rotational model. All possible
rotational parameters of an IAU model (Archinal et al., 2011) can be formally
included. The initial rotational model as well as the parameters of interest
could then be specified in a configuration file together with the weight infor-
mation. Not only the pole axis coordinates α0, δ0, also the rate of precession,
the rotation rate as well as the acceleration term for objects like Phobos can
be resolved.
The paper of Konopliv et al. (2014) indicates that Vesta has a precessing pole,
but this is a result of a theoretical consideration and the moment of precession
could not be determined. It is planned to model the precession movement and
to determine its period and momentum with the inertial frame adjustment
method.



100

GPU implementation and further optimisation

The OpenCL implementation of the decomposition algorithm in chapter 4 is
fully applicable for GPU calculation. Since graphic engines can launch thou-
sands of parallel threads, the multiplication on this computation device can
be further optimised. On a CPU device, the number of threads is less than
the number of images and this case, there should be only one thread assigned
to each work group (localworkgroupsize = 1). On a GPU the size of the
local work group can be increased and the work can be distributed to several
threads instead. In this case further care has to be taken to synchronise the
work-items of each group. With the current configuration, the algorithm was
tested on a NVIDIA Quadro 600 with one GB memory. Here, only data sets
of 1000 images could be tested and they are too small to pay off in terms of
running time. For the Vesta data set, a card with 6 GB would be sufficient.
However, the memory limitation of GPUs needs to be considered.

The algorithm computes the decomposition (S,D) with STDS = N−111 , the
upper left region of the inverse normal matrix. Considering the Vesta data
set, at the current level of optimisation this part takes now a quarter of total
running time on HLRN Konrad Berlin. The solution for the unknown vector x
is obtained quickly with the product routines for compressed sparse matrices.
After that part, the diagonal of HAT matrix AN−1AT is computed sequen-
tially. This can be done in parallel and should be implemented in the future.
The building of the sparse system itself, in particular the preparation step for
the decomposition algorithm can be done in parallel as well. On the HLRN,
with 24 cores this would reduce the running time from currently 34 minutes
to about 10 minutes (per iteration) and increase the current speed-up factor
of 3 to 9.
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Appendix A

Appendix

A.1 Proof of the split technique

For a general matrix M ∈ Mdim with |det(M)| > 0 and subdivision scheme

M =

[
AB

C D

]
the following relation holds (Bronstein and Semendjajew, 2005):

M−1 =

[
A′ −A′BD−1

−D−1CA′ D−1 +D−1CA′BD−1

]
(A.1)

where A′ = (A − BD−1C)−1, A ∈ Mdim1 and D ∈ Mdim2 , where dim1 is
arbitrary and dim2 = dim− dim1. Proof:

Using the same subdivision scheme for M−1 =

[
A′B′

C ′D′

]
, the multiplication

MM−1 = I leads to four systems of equations

1) AA′ +BC ′ = Idim1

2) AB′ +BD′ = 0

3) CA′ +DC ′ = 0 ⇐⇒ C ′ = −D−1CA′

4) CB′ +DD′ = Idim2 ⇐⇒ D′ = D−1 −D−1CB′

where the right hand side is the subdivision of the unit matrix Idim.
Replacing C ′ in equation 1) gives

1′) AA′ −BD−1CA′ = I ⇐⇒ (A−BD−1C)A′ = I

⇐⇒ (A−BD−1C)−1 = A′

105



106

Then D′ is replaced in the second equation to obtain

2′) AB′ +BD−1 −BD−1CB′ = 0

(A−BD−1C)B′ +BD−1 = 0 ⇐⇒ (A′)−1B′ +BD−1 = 0

B′ = −A′BD−1 .

If B′ is set into equation 4)

D′ = D−1 −D−1CB′ = D−1 +D−1CA′BD−1

equation 4.3 follows. �

A.2 Backward operation in split mode

The transformation of S2 in the backward operation on page 77 is accomplished

by sequentially replacing S1 with its definition. Note S0 = L−10 , B2 =

(
b20

b21

)
.

S1 =

[
S0, 0

0, I

][
I, B1

0, L−11

]
=

[
S0, S0B1

0, L−11

]

S2 =

[
S1, 0

0, I

][
I, B2

0, L−12

]
=

[
S1, S1B2

0, L−12

]

=

 S1,

[
S0, 0

0, I

][
I, B1

0, L−11

]
B2

0, L−12



=


[
S0, S0B1

0, L−11

]
,

[
S0, 0

0, I

][
b20 +B1 b21

L−11 b21

]
0, L−12



=


L−10 , L−10 B1, L−10 (b20 +B1 b21)

L−11 , L−11 b21

0 L−12


The computation of B1 = b10 is the synchronisation point for the first backward
operation step (transforming the final column-group CG = 2):

1a) b20 + = b10 ∗ b21
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1b) b21 ∗ = L−11 .

The final forward step is then the computation of L−10 (and D0); the final
backward operation step is on the first row-group (RG = 0):

2a) b10 ∗ = L−10

2b) b20 ∗ = L−10

2a) and 2b) can be done in parallel straight away. 1b) has do be performed
after 1a): Since both are realised in the same work-group this is easy if there is
only one work-item per group. If the number will be increased, care has to be
taken here. A local work-group barrier or a separate call for all work-groups
can be used, analogue to step 2.
The steps above are for n = 2, for general n ∈ N they are as follows:

1a) bji + = bki ∗ bjk , i = 0, . . . , k − 1 ∀ k < j < n

1b) bjk ∗ = L−1k ∀ k < j < n

and the final computation step is

2) bj0 ∗ = L−10 j = 1, . . . , n− 1 .

There is a work-group for each j in every step; k = n− 2 in the first iteration
decreases to k = 1.

A.3 Phobos tables

The tables here are additional information to section 5.1.
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initial SRC weights

Image No σX σY σZ σφ σω σκ

44470005 1 1 1 0.01 0.01 0.5
43810004 1 1 1 0.01 0.01 0.5
28050024 1 1 1 0.01 0.01 0.5
46030005 1 1 1 0.05 0.05 0.05
45540005 1 1 1 0.05 0.05 0.05
43400005 1 1 1 0.05 0.05 0.05
28130005 1 1 1 0.05 0.05 0.05
38430003 1 1 1 0.05 0.05 0.05
38430004 1 1 1 0.05 0.05 0.05
28460007 1 1 1 0.05 0.05 0.05
22330005 1 1 1 0.05 0.05 0.05
38680004 1 1 1 0.05 0.05 0.05
38680005 1 1 1 0.05 0.05 0.05
7150004 1 1 1 0.5 0.5 0.5
27390005 1 1 1 0.5 0.5 0.5
46360005 1 1 1 0.5 0.5 0.5
27560005 1 1 1 0.5 0.5 0.5
44140004 50 50 50 0.5 0.5 0.5
43810005 50 50 50 0.5 0.5 0.5
43730004 50 50 50 0.5 0.5 0.5
43730005 50 50 50 0.5 0.5 0.5
27800004 50 50 50 0.5 0.5 0.5
4130002 100 100 100 0.05 0.05 0.05
4130004 1000 1000 1000 0.5 0.5 0.5
26730006 1000 1000 1000 0.5 0.5 0.5
others 1 1 1 0.01 0.01 0.01

Table A.1: SRC weighting model in metres for positions (σX , σY , σZ ) and
gon for pointing data (σφ, σω, σκ).
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pre-adjusted Viking weights

Image No σX σY σZ σφ σω σκ

30609008 466.65 1215.66 944.42 0.325 0.123 0.296
30682813 447.66 885.56 905.40 0.199 0.095 0.156
30756611 448.02 692.62 746.18 0.144 0.081 0.104
30756617 460.72 766.88 850.31 0.154 0.080 0.111
30793514 1313.21 1199.22 1477.15 0.225 0.196 0.156
30793516 733.70 836.98 868.49 0.137 0.113 0.094
31958652 551.44 1096.07 1223.99 0.265 0.113 0.240
30627448 552.17 1376.97 1269.21 0.476 0.172 0.443
30793518 609.99 746.15 789.33 0.125 0.092 0.087
30756618 863.02 919.09 1136.50 0.195 0.123 0.173
30738070 609.31 1093.13 1346.96 0.521 0.189 0.456
30719636 476.17 807.77 1041.87 0.379 0.212 0.286
30719635 585.06 1121.50 1332.78 0.464 0.277 0.343
30682738 566.19 761.58 830.95 0.372 0.225 0.295
30682739 619.37 846.42 1276.26 0.445 0.362 0.281
30719637 579.59 1131.27 1319.47 0.442 0.299 0.316
30719639 781.21 1198.14 1431.54 0.463 0.344 0.347
33379477 18055.54 12512.32 15113.71 0.654 0.623 0.195
47290097 2067.44 2289.28 1817.14 0.215 0.174 0.107

Table A.2: Weighting model for Viking images resulted from the pre-
adjustment in metres for positions (σX , σY , σZ ) and gon for pointing data
(σφ, σω, σκ). In the initial model position weights are set to 24 km for the final
two images and to 5 km for the rest; pointing weights were set to 0.4 gon.
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pre-adjusted Viking orientation

Image No X Y Z φ ω κ

30609008 -509701.44 233275.16 -278300.01 267.91 -24.74 203.47
30682813 -412993.96 329067.86 -280656.79 261.69 -36.25 198.47
30756611 -318507.28 358711.4 -280030.15 254.78 -43.92 190.33
30756617 -363553.65 376609.38 -315200.95 255.45 -42.20 191.47
30793514 -270506.44 416395.79 -277643.96 248.27 -51.31 183.18
30793516 -285298.13 420170.54 -289207.82 249.33 -50.74 184.67
31958652 445092.62 149187.44 -531627.23 155.33 -13.14 -55.83
30627448 -426187.25 201295.38 -232174.43 267.58 -25.45 203.29
30793518 -298170.19 426946.68 -301266.05 250.13 -50.47 186.35
30756618 -370371.87 382187.65 -319847.74 253.68 -42.43 193.25
30738070 333021.49 121682.06 243868.15 59.90 -17.68 205.10
30719636 198906.29 148837.57 156295.07 57.30 -32.43 205.71
30719635 203879.1 144407.99 163983.05 58.34 -30.99 205.17
30682738 142520.48 126899.79 146962.95 48.03 -33.86 208.77
30682739 132253.28 127256.51 141588.25 48.91 -34.95 208.09
30719637 189124.81 147705.46 152857.53 58.15 -33.10 205.12
30719639 172517.79 154358.52 140094.59 58.00 -36.17 204.50
33379477 393514.46 1168304.25 1395701.66 17.54 -42.69 135.39
47290097 -497585.57 432978.41 585023.8 -44.26 -33.50 186.32

Table A.3: Pre-adjusted Viking positions (X, Y , Z) in metres and pointing
angles (φ, ω, κ) in gon.
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A.4 Centre of figure

The origin of the body-fixed coordinates is the centre of mass (COM), the
physical barycentre. It agrees with the centroid or centre of figure (COF), if
the body has a uniform density. Hence, a difference of COM and COF would
indicate a non-uniform mass distribution. It is now shown, how the first order
coefficients (C10, C11, C̄11) of the surface spherical harmonics are related to the
center of figure and further, what assumptions about the measurements need
to be made in order to perform an analysis that allows reliable conclusions.
Consider a cloud of n control points and let in the following θi the latitude, φi
the longitude and ri the distance to the barycenter for point i. The centroid
is given by

M =

(
1

n

n∑
i=1

Xi,
1

n

n∑
i=1

Yi,
1

n

n∑
i=1

Zi

)
=: (Mx,My,Mz) .

Further let

MS =

(
1

n

n∑
i=1

Xi

ri
,

1

n

n∑
i=1

Yi
ri
,

1

n

n∑
i=1

Zi
ri

)
=: (mx,my,mz) ,

the centroid of the projected points which lays inside the unit sphere. It is
important to see, that MS is only related to the distribution of control points
on the surface and it does not depend on the topography. For example, the
Vesta data set yields

M =


−1704.82

3185.18

−19604.1

 , MS =


−0.00618

0.0132

−0.0831

 .

From both points a strong shift towards the southern pole can be noticed. MS,
in polar coordinates (−80◦, 115◦), reveals a high concentration of measurements
around the south pole and that M is not representative for the real planetary
object. Indeed the northern pole is not sufficiently covered.
Since the integral over the unit sphere vanishes,MS is always zero, if the whole
topography f is considered. Hence, the first reasonable assumption to make is
MS = 0, which is equivalent to a balanced distribution of control points. This
is achieved if to each (θ, φ) the diametric point (−θ, φ + 180◦) is included in
the point cloud, but one relies on an interpolation method or a DTM to obtain
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the height value for the diametric points.
Now consider the approximation (5.2) for degree d = 1. The point cloud then
is represented by a system of n linear equations which contain the spherical
harmonics of order j = 0 and j = 1.
Y0 is a constant function and equal to one. Hence for j = 0 the n equations
are simply given by C00 = f1(θi, φi) = ri. For j = 1 it is

C00 + C10 sin θi + C11 cos θi cosφi + C̄11 cos θi sinφi = ri

for each point i. Performing an adjustment just for the case d = 0 gives the
mean radius

C00 =
1

n

n∑
i=1

ri , (A.2)

but for d = 1 the normal equation is

N(C00, C10, C11, C̄11)
T =

(
n∑
i=1

ri

n∑
i=1

Zi,
n∑
i=1

Xi,
n∑
i=1

Yi

)T

(A.3)

with the symmetric matrix

N =


n
∑
zi

∑
xi

∑
yi

∗
∑
z2i

∑
zixi

∑
ziyi

∗ ∗
∑
x2i

∑
xiyi

∗ ∗ ∗
∑
y2i

 ,

xi = cos θi cosφi

yi = cos θi sinφi

zi = sin θi .

The ∗ act as place holders for a better readability.
Scaling equation (A.3) with 1

n
leads to

1

n
N
(
C00, C10, C11, C̄11

)T
=

(
1

n

n∑
i=1

ri , Mz, Mx, My

)T

(A.4)

Since the scaling factor is applied to both sides, it does not effect the values of
the coefficients. Note, that the solution vector on the righthand side contains
the coordinates of M and the first row of N becomes (1,mx,mz,my) which
holds the coordinates of MS. With the demand MS = 0 the first row (resp.
column) changes to the unit vector and equation (A.4) can be written as

C00 =
1

n

n∑
i=1

ri which is the same as (A.2)
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and the remaining
∑
x2i

∑
xiyi

∑
xizi

∗
∑
y2i

∑
yizi

∗ ∗
∑
z2i




C11

C̄11

C10

 =


Mx

My

Mz

 . (A.5)

The matrix was permuted to align the order of coefficients with the principle
axes, so that the equation above can be shortened to QC = M . If M = 0

than also C = 0 because of the linear independence. The matrix Q is the
covariance matrix of the unit sphere coordinates. It is again independent of
the topography and relies only on the choice of measurements. Hence, the
relationship between the centroid M and the first order coefficients is given by

C = Q−1M .

Moving from a discrete point cloud to the continuous case (the whole sphere)
shows, that Q is constant for all topographies. Following the argumentation,
thatMS is always zero for the continuous case, the side entries of Q also vanish
and it is 

λ1 0 0

0 λ2 0

0 0 λ3

 C = M =⇒ CT =

(
Mx

λ1
,
My

λ2
,
Mz

λ3

)
.

One can show λ1 = λ2 < λ3, hence C is not just the scaled COF.
This is the analytical connection between the first order coefficients and the
centroid. The λi will vary for discrete point clouds with the choice of control
points, also for the same object if points are removed or included. They do
not change if only the height values are altered (scaling).
In shape studies it is a common praxis to force the coefficients to be zero since
one wishes to consider a centred figure. Note, that for a balanced measurement
distribution, i.e. MS = 0 the coefficients will be zero, if the points are shifted to
COF (see equation A.5). For ||MS|| > 0 this is not true, because the matrices
Q and N are not diagonal and the values of MS affect the solution for C:

QC = M − kCMS , kC =
1

n

∑
ri − CTMs .

Therefore, after C is computed, the transformation CTPi is used to shift the
points iteratively (within a new adjustment) until C = 0 is reached.
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Remark: If a stochastic model is used for the adjustment, the solution vec-
tor changes to a weighted mean vector. Further note, that any normalisation
N (j,m) of the Legendre polynomials Pjm changes the values of the coefficients.
This change can be reversed, if the norm is known.



Appendix B

Code examples for Compressed

Sparse Matrices

The following pages contain in addition to section 4.1 the C++ class definition
of a compressed sparse matrix (csm) and selected product routines of the class.
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