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Zusammenfassung

Moderne Gasturbinen werden mit magerer Vormischverbrennung betrieben, um niedri-

ge Emissionsstandards zu erfüllen. Diese Art der Verbrennung ist jedoch äußerst anfällig

gegenüber Störungen der Flamme durch akustische Schwankungen. Hierdurch entstehen

sogenannte thermoakustische Instabilitäten, die sich durch außerordentlich hohe Druck-

pulsationen manifestieren. Diese selbsterregten Schwingungen werden durch die Interak-

tion der instationären Wärmefreisetzung in der Flamme mit den akustischen Moden der

Brennkammer angetrieben. Neben erhöhtem Lärm führt dieses unerwünschte Phänomen

zu einer Einschränkung des Betriebsbereiches der Maschine, so dass der angestrebte Wir-

kungsgrad und die niedrigst möglichen Schadstoffemissionen oft nicht erreicht werden

können. Die Entwicklung von Methoden zur Voraussage und zur Kontrolle von Verbren-

nungsinstabilitäten ist daher für die Weiterentwicklung der Gasturbinentechnologie von

enormer Wichtigkeit. Die vorliegende Arbeit trägt zu diesem Ziel bei.

Zuerst werden thermoakustische Instabilitäten in einem atmosphärischen Brennkam-

merprüfstand untersucht. Es wird ein Regelansatz vorgestellt, der unter Zuhilfenahme

von verschiedenen Aktuationsmechanismen eine effiziente Kontrolle von thermoakus-

tisch instabilen Moden erlaubt. Ein modellfreies, adaptives Regelungsverfahren wird im

Prüfstand bei festen und variierenden Betriebsbedingungen eingesetzt und erreicht eine

Reduktion der Schwingungsamplituden um nahezu zwei Größenordnungen. Subkritische

Instabilitäten, die durch lineare Analysen nicht erfasst werden können und daher beson-

ders schwer voherzusagen sind, werden im Experiment detailliert untersucht. Die Anre-

gung von Grenzzyklusschwingungen in einem linear stabilen System sowie Hysterese bei

einer Variation der Betriebsparameter werden demonstriert.

Eine effiziente Darstellung thermoakustischer Phänomene ist möglich, wenn man die

Separation der Längenskalen in der Flamme–Akustik Interaktion ausnutzt. Hierauf ba-

sierend wird ein Modellierungsansatz vorgestellt, bei dem unterschiedliche Methoden zur

Berechnung des hydrodynamischen und des akustischen Feldes verwendet werden. Die-

ser auf einer konsistenten Kopplung der beiden Berechnungsverfahren beruhende Ansatz

wird anhand von einer einfachen Konfiguration vorgestellt und anschließend durch expe-

rimentelle Untersuchungen validiert. Komplexere Fälle einschließlich Regelung können

ebenfalls simuliert werden.

Heutige Gasturbinen sind in den häufigsten Fällen mit Ringbrennkammern ausge-

stattet, in denen eine Vielzahl von Brennern in eine annulare Kammer feuert. Die akus-

tischen Moden in diesen Geometrien weisen eine dominante Variation in Umfangsrich-

tung auf. Da sich die Großzahl an experimentellen und numerischen Untersuchungen an

Einzelbrennerkonfigurationen, in denen nur rein longitudinale akustische Schwankungen

auftreten, orientiert, sind an Umfangsmoden gekoppelte thermoakustische Instabilitäten

weitaus weniger gut verstanden. Aus diesem Grund wird ein vereinfachtes, auf dem be-

kannten Rijke Rohr basierendes Ersatzsystem entwickelt, das eine grundlegende Unter-

suchung dieser Art von Schwingung im Detail erlaubt. Verschiedene instabile Umfangs-

moden werden im Experiment beobachtet und durch ein Netzwerkmodell berechnet. Der

Einfluss von Asymmetrien im System wird untersucht und ein modales Regelungsverfah-

ren zur Kontrolle der Schwingungen angewandt.
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Abstract

Modern gas turbine technology relies on lean premixed combustion to comply with low-

emission standards. However, combustion systems operating in the lean premixed mode

are highly susceptible to the excitation of high-amplitude pressure fluctuations commonly

referred to as thermoacoustic instability. These self-excited oscillations are a result of the

interaction between unsteady heat release in the flame and the acoustic modes of the com-

bustion chamber. The main consequences of thermoacoustic instabilities are increased

noise, reduced system performance, and reduced system durability. The capability to pre-

dict and to control combustion-driven oscillations, therefore, is of utmost importance for

a further advance in gas turbine technology.

The present work contributes to the knowledge on thermoacoustic instabilities and

their control in a number of ways. Combustion oscillations are investigated in an atmo-

spheric single-burner test-rig. A multiple actuator scheme is developed that allows for

efficient control of unstable acoustic modes, which is an important aspect in view of cur-

rent actuator limitations. Model-free adaptive control is shown to be capable of mitigating

strong pressure pulsations at varying operating conditions with peak amplitude reduc-

tions up to 40 dB. Subcritical instabilities, which are particularly dangerous because they

are not accounted for in linear stability tools, are investigated in a detailed experimental

study. Triggering of limit-cycle oscillations and hysteresis in operating parameter varia-

tions are demonstrated.

To exploit the separation of length scales inherent to flame–acoustic interactions in gas

turbine combustors, a modeling approach based on separate descriptions of the hydro-

dynamic and the acoustic field is developed. This coupled method is demonstrated to be

extremely efficient, and the computational results are validated with corresponding ex-

periments in an elementary thermoacoustic configuration. It is shown that more complex

cases can be handled as well and that active control schemes can be incorporated in this

framework.

Thermoacoustic instabilities observed in modern gas turbines often exhibit a dominant

circumferential variation of the fluctuating pressure field due to the ring-shaped geometry

of the combustion chamber. In order to study these unstable azimuthal modes on a fun-

damental level, we devise a simplified surrogate system on the basis of the well-known

Rijke tube. This mock-up mimics the multitude of flames in an annular combustor by

simple heating grids; both feature a similar dynamic response to acoustic perturbations.

The thermoacoustic dynamics in this set-up are investigated experimentally and by us-

ing a low-order, network-type model. Different unstable azimuthal modes are observed

and characterized in detail. The effect of circumferential asymmetries in the heat sources

is investigated and shown to be strongly related to the symmetry-induced degeneracy of

the modes. A feedback control scheme, based on a modal decomposition of the measured

pressure field, is set up and applied to the experimental configuration. This scheme is

shown to be capable of controlling all unstable modes leading to a complete stabilization

of the system.
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Chapter 1

Introduction

In this chapter, we introduce the phenomenon of combustion instabilities and illustrate

its present and future relevance for the world’s demand for energy and transport. Since

combustion instabilities impede efficient and safe gas turbine operation, we have to both

understand the process on a fundamental level and find countermeasures applicable to

real configurations. A short overview how this thesis contributes to this task is given at

the end of this chapter.

1.1 Background and Motivation

The increasing worldwide energy demand is one of the major challenges for the future.

Although the use of renewable energy sources rapidly grows, fossil fuels will remain to

be the major contribution in ensuring electric power and transport in the near future. The

U. S. Energy Information Administration (2010) projects an 80 % contribution of coal, liq-

uid fuels, and natural gas to the worldwide energy consumption at 2035 (Fig. 1.1), assum-

ing no significant policy changes. The use of renewable energy sources in electric power

production is anticipated to double, but natural gas consumption for electricity generation

is still projected to increase by 44 % (U. S. Energy Information Administration 2010).
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Figure 1.1: Past and projected world-
wide energy use for different re-
sources. The decline starting after 2007
is a result of the global economic reces-
sion but appears to have ended at the
present time. Reproduced from data
available from the U. S. Energy Infor-
mation Administration (2010).
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Maximizing the benefit of limited fossil fuel ressources is therefore imperative. Gas

turbines play a significant role in this process, delivering a large part of the world’s elec-

tricity (21 % in 2007 according to the International Energy Agency 2009, but the trend is

progressive) and being the sole source for air transport. Increasing gas turbine efficiency

is, however, constrained by the demand for lower emissions. While the greenhouse gas

carbon dioxide eventually can only be reduced through an increase in efficiency, the emis-

sions of nitrogen oxides (NOx), which are major contributors to acid rain, are strongly

dependend on the details of the combustion process.

Since NOx production in stationary gas turbines for power generation is strongly tem-

perature dependent, decreasing the stoichiometry is a viable means for a reduction of

NOx emissions (Correa 1992). This was achieved by the gas turbine industry through the

introduction of lean premixed combustion. In this burning mode, in contrast to the for-

merly used diffusion flames, air and fuel are well mixed before entering the flame, and

in addition, the mixture has a low equivalence ratio, i.e., air excess. The lean premixed

combustion mode was found, however, to be particularly susceptible to acoustic pertur-

bations. Also, lower flame temperatures made convectively cooled combustion chambers

more practical than the formerly used film-cooled type. The latter was associated with

significantly higher acoustic damping.

As a result of the more susceptible lean premixed flames and the lower acoustic damp-

ing of the convectively cooled combustion chambers, combustion-driven oscillations be-

came a serious problem for the gas turbine industry in the early 1990s. These so-called

combustion – or thermoacoustic – instabilities result from the interaction of the perturbed

flame and the acoustic field of the combustion chamber. Unsteady heat release acts as an

acoustic source and, under unfavorable conditions, may excite an acoustic resonance of

the chamber. The acoustic mode, in turn, perturbs the flame even stronger, and a feed-

back loop is established, which may lead to extraordinarily high pulsation amplitudes. In

gas turbine combustors, the oscillation level can typically grow up to a few percent of the

static pressure.

Combustion instabilities are an undesirable phenomenon in gas turbines for the fol-

lowing reasons:

• large amplitude pressure fluctuations can cause structural failure and enhance high-

cycle fatigue;

• high levels of acoustic noise are unpleasant and damage human health;

• associated fluctuations of the flow field increase the heat transfer at the combustor

walls, which increases the thermal load and has a negative impact on the efficiency;

• instabilities result in higher NOx emissions;

• strong oscillations of the flow field may lead to flame flashback or blow-off.

In fact, the major part of non-fuel costs in stationary gas turbine operation can be at-

tributed to the repair and replacement of hot-section components, the cause of which often

being related to combustion-driven oscillations (Lieuwen & Yang 2005). Even if hardware

failure can be prevented by appropriate monitoring systems, combustion instabilities re-

strict the operating range of modern gas turbines so that optimum efficiency and emission

levels cannot be realized.



Chapter 1. Introduction 3

Acoustically coupled instabilities in combustion technology have been known for quite

some time. Active research to understand and control combustion dynamics began in the

1950s when problems in solid and liquid propellant rockets appeared (Crocco & Cheng

1956; Culick 1966). Although the pressure oscillation amplitudes associated with this

type of instabilities are much larger than those encountered in gas turbine applications

(up to the order of the mean pressure), and the impact on the structure is, accordingly,

much more severe, this problem is still not solved today and remains an active topic of

research. About a decade later, combustion-driven oscillations became an issue for indus-

trial boilers and furnaces (Putnam 1971). In the 1980s, thermoacoustic instabilities were

recognized to be a problem in ramjet-type jet engine augmentors, which motivated the

work by Langhorne (1988) and Bloxsidge et al. (1988a,b). Combustion instabilities in civil

aeroengine gas turbines are less frequently observed and not as severe as in the power

generation case (Lieuwen & Yang 2005). It is to be expected, however, that this topic

becomes more problematic in this application, too, because current and future emissions

regulations eventually force the aeroengine industry to move towards lean-premixed-type

combustion (Mongia et al. 2003).

Apart from the “large-scale” applications discussed above, thermoacoustic instabilities

can appear in essentially every combustion device in which the flame is coupled to some

kind of acoustic resonator (such as auxiliary heating devices for motor vehicles, Moeck

et al. 2007b; Neunert 2009).

1.2 Scope of this thesis

We begin with a concise description of the fundamental theory and methods relevant to

this work in Chapter 1. The contributions of this thesis are grouped into three main parts.

While some of the chapters focus on experimental work, others tend to include more mod-

eling. All of the work, however, is devoted to the analysis and control of combustion

instabilities.

Part I is dedicated to the analysis and control of combustion instabilities in an atmos-

pheric single-burner test-rig. The experimental set-up is briefly described in Chapter 2.

Strong instabilities with pressure oscillations at frequencies close to 100 Hz occur in this

configuration. We first apply a control methodology based on a combination of acoustic

and secondary fuel actuation, while using a simple control law with empirically deter-

mined parameters (Chapter 4). Both actuators work well individually, but in combined

mode, additional efficiency can be utilized.

The previous control approach is extended in Chapter 5 with an adaptive outer loop,

based on an extremum-seeking scheme. This scheme tunes the control parameters with

the aim to minimize the pressure oscillation amplitude in the combustor. The adaptive

method is first demonstrated on the basis of an elementary model configuration and then

applied in the test-rig. The adaptive controller is tested at different operating conditions

and even at transient parameter variations. Finally, the ability of the extremum-seeking

scheme to find the oscillation minimum in two-dimensional control parameter space is

assessed.
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The work presented in Chapter 6 constitutes a comprehensive experimental investiga-

tion of so-called subcritical instabilities that are observed in the test-rig for certain oper-

ating conditions. This type of instability is particularly dangerous because the oscillation

amplitude may change discontinuously with variations in the operating parameters. Two

stable system states exist in the subcritical regime and persist in a certain range of operat-

ing conditions. We study strongly nonlinear phenomena, such as triggering and hysteresis

in the oscillation amplitude, and find a strong connection to a bistable flame-anchoring lo-

cation of the burner–flame configuration. We set up a nonlinear low-order system model,

partly based on experimentally identified data, that reproduces the phenomena observed

in the test-rig.

Part II proposes an efficient modeling approach for the simulation of dynamic processes

in thermoacoustic systems. Exploiting a distinct scale separation between the fluid-dy-

namic/combustion phenomena and the acoustic field, we derive a coupled representation

for thermoacoustic systems in Chapter 7. A zero-Mach incompressible scheme is used for

the small-scale hydrodynamic part, whereas network-type techniques for the acoustics are

applied to the larger domain. Based on a consistent combination of the two models, a two-

way coupling is achieved, which is extremely efficient. We illustrate the approach on the

basis of an elementary model configuration. In Chapter 8, we apply the coupled method

to an experimental system for validation purposes and give a detailed comparison of the

measurement data and the computational results. Control applications are explored in a

configuration with a two-dimensional flame in Chapter 9. Here, the flame is endowed

with the acoustic environment of a combustor test-rig. Two types of control, utilizing

different actuation mechanisms, are applied to this case.

Part III introduces an annular thermoacoustic surrogate system. Real gas turbine com-

bustion chambers are typically of annular type. The acoustic modes that are often found

to be unstable in these configurations have dominant circumferential variations and are

therefore called azimuthal modes. These are not observed in purely longitudinal single-

burner test-rigs. To study unstable azimuthal modes in a generic set-up, we devise an

annular thermoacoustic system based on the well-known Rijke tube. Twelve ducts with

heating grids, that mimic the flames in a gas turbine combustor, are coupled to a ring-

shaped resonator. In contrast to a full annular combustion chamber, this system is easy

to operate and has a clear definition. Chapter 10 gives a short overview on instabilities in

annular configurations and introduces the experimental arrangement. Modeling tools for

thermoacoustic systems in annular domains and, in particular, for our mock-up are devel-

oped in Chapter 11. A low-order model is built to predict mode stability and the effect of

asymmetries in the configuration. In Chapter 10.3, a detailed experimental study of the

unstable azimuthal modes in the set-up is performed. Based on the low-order model, a

feedback controller is designed to mitigate the instabilities observed in the experiment.

A short summary of the main contributions with recommendations for extensions of

this work follows at the end of the thesis.



Chapter 2

Fundamental Theory and Methods

Thermoacoustic instabilities are system instabilities that arise due to the coupling of flame,

flow, and acoustics. As such, they span a wide range of physical processes that are all rel-

evant to the problem. It may be this combination of often separately taught fields that

has permitted this phenomenon to evade a general solution for a considerable period of

time and despite an enormous effort by an abundance of industrial and academic research

groups. (A recent review article by Huang & Yang 2009 comprises almost 600 references!)

Covering all fundamental aspects of combustion instabilities and their control is not possi-

ble at this point. There are several review articles which can be consulted; we recommend

Candel’s work (Candel 2002, 1992) as general references, the book edited by Lieuwen &

Yang (2005) with particular focus on gas turbines, and the comprehensive compilation

by Culick (2006). The review article by Huang & Yang, mentioned above, is especially

dedicated to combustion dynamics associated with swirl-stabilized burners.

In this chapter, we shall only give an overview of the relevant theory and methods

and go into more detail at later instances whenever necessary. Since the Mach number

M is small in the applications we consider, we use the acoustic equations for a quiescent

medium.

2.1 Ducted sound fields

Neglecting heat conduction and viscous effects, linearized mass and momentum balances

in a quiescent, source-free fluid read (Rienstra & Hirschberg 2006)

∂tρ + ∇·(ρ̄u) = 0, (2.1a)

ρ̄∂tu +∇p = 0, (2.1b)

where ρ̄ is the mean density (not necessarily constant in space), and ρ, u, and p are the

fluctuations in density, velocity, and pressure associated with acoustic wave propagation.

Equations (2.1) are closed by employing energy and constitutive equations to relate pres-

sure and density fluctuations by

∂t p = c2∂tρ + c2u·∇ρ̄, (2.2)

5
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where we assumed a uniform mean pressure and c =
√

γRgT is the acoustic propagation

speed of an ideal gas; γ, Rg, and T denote the ratio of specific heats, the specific gas

constant, and the mean temperature of the fluid, respectively.1 Although γ is a weak

function of temperature, we consider it to be constant in the following.

With the pressure–density relation (2.2), the mass balance (2.1a) can be replaced with

∂t p + ρ̄c2∇· u = 0. (2.3)

Combination of Eqs. (2.1b) and (2.3) yields a wave equation for the acoustic pressure, viz.,

∂tt p = ∇·(c2∇p). (2.4)

Upon introducing temporal Fourier transforms such that ∂t 7→ iω, (2.4) can be reduced to

the Helmholtz equation

∇·(c2∇ p̂) + ω2 p̂ = 0, (2.5)

where ˆ(·) denotes the Fourier transform of a variable, and ω is the angular frequency, the

Fourier transform variable.

In ducted configurations, the solution of the Helmholtz equation (2.5) can be given in

terms of a superposition of modes, particular oscillation patterns characteristic to the prob-

lem. For hard-walled ducts with simple cross-sectional geometries (such as circular or

rectangular) and uniform temperature, these modes are well-known (e.g., Morse & Fesh-

bach 1953; Rienstra & Hirschberg 2006) and can be given in analytical form. We do not

discuss the details of the modal pressure field at this point but postpone the description

to Part III, where we need the higher-order modal content for our model of an annular

system. Here, we shall content ourselves with a qualitative description.

2.1.1 Plane waves

Associated with each mode is an axial propagation constant that is either purely real or

imaginary, depending on the angular frequency ω. If the propagation constant is purely

imaginary, this particular mode is referred to as cut-off – or evanescent – because it decays

exponentially in axial direction (Morse & Feshbach 1953; Rienstra & Hirschberg 2006).

For characteristic acoustic wavelengths λ = 2πc/ω much larger than the characteristic

transversal duct dimension, i.e., at low frequencies, only the plane, axisymmetric mode

propagates. In a circular duct with radius R, this holds for frequencies smaller than

1.84 c/(2πR) (Rienstra & Hirschberg 2006). Taking the duct’s axis to be aligned in x-

direction, the plane-wave pressure field takes the form

p̂ = f̂ e−ikx + ĝ eikx, (2.6)

where k = ω/c is the axial wavenumber, and f̂ and ĝ represent the complex amplitudes

of down- and upstream traveling waves, the Riemann invariants of the acoustic field.

With the Fourier transform of the linearized momentum balance (2.1b), the axial particle

1In the framework of linear acoustics, we will not encounter temperature fluctuations explicitly. Therefore,
we use T solely as the mean temperature without an additional overbar. Likewise, c always denotes the mean
speed of sound.
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velocity u is found to satisfy

û =
1

ρ̄c

(

f̂ e−ikx − ĝ eikx
)

. (2.7)

In isothermal ducts, the inverse of the characteristic impedance can be absorbed into f and

g. Then we have at the reference location x = 0, ℘̂ = f̂ + ĝ and û = f̂ − ĝ, where ℘ =

p/(ρ̄c) is the acoustic pressure scaled with the characteristic impedance of the medium.

For all ducted configurations we investigate in this work, except for that in Part III,

we will only consider the plane wave mode to be relevant. This will be justified based

on the characteristic transversal duct dimension. In Part III, in which we are explicitly

dealing with thermoacoustic instabilities coupled to azimuthal modes, the circumferential

pressure distribution is crucial.

2.1.2 Boundary conditions

To determine the acoustic field in a confined domain, boundary conditions have to be

specified at the surrounding surface. At impermeable, rigid parts of this surface, the nor-

mal component of the acoustic velocity has to vanish, hence u ·n = 0, where n is the

outward pointing unit normal. If the ambient pressure is imposed at a certain location,

on the other hand, the pressure fluctuation has to be zero. A general acoustic boundary

condition is typically formulated in frequency domain and relates the acoustic pressure

and the normal component of the velocity through the acoustic impedance Z via

Z(ω) =
p̂

û·n (2.8)

or the inverse of Z, the admittance. In our case, it is often more convenient to work with

specific impedance and admittance, denoted in the following by Z and A. These are

obtained from Z and Z−1 by scaling them with the characteristic impedance of the fluid

ρ̄c, hence Z = Z/(ρ̄c) and A = ρ̄cZ−1. We will be often using the negative of the specific

admittance but denote it by A as well for convenience.

When working with the complex wave amplitudes f̂ and ĝ, the acoustic boundary

condition is commonly stated in terms of the reflection coefficient R(ω), which is defined

as the ratio of the reflected to the incident wave. For a boundary condition at x = 0,

with the outward pointing normal aligned with the x-axis, the reflection coefficient is,

accordingly, given by R = ĝ/ f̂ . Combination of Eqs. (2.6)–(2.8) then yields

R =
Z − 1

Z + 1
and Z =

1 +R
1 −R . (2.9)

The reflection coefficient is a clear indicator whether the associated boundary condition

conserves energy: if the magnitude of the reflected wave amplitude is smaller than that of

the one incident, in other words, if |R| < 1, acoustic energy is dissipated or transmitted

outside of the system.

One particular boundary condition we will often use is that of an unflanged, open end

of a circular duct. According to Levine & Schwinger (1948), the specific impedance for this



8 Chapter 2. Fundamental Theory and Methods

Figure 2.1: Schematic representation of a lumped
boundary condition. The impedance Z contains the
complete plane-wave response associated with the
domain to the right of the dashed line.

Z(ω)

case can be approximated for small duct Helmholtz numbers kR as

ZLS = 1
4 (kR)2 + i 0.61 kR. (2.10)

The imaginary part without the factor k is typically referred to as the end correction because

it has the effect to shift the pressure node outside of the duct and thus makes it appear

longer by an additional length of 0.61 R. The real part, the resistance, represents radiation

away from the duct’s end and increases with the square of the Helmholtz number. Since

the associated energy is lost to the acoustic field in the duct, the corresponding reflection

coefficient has a magnitude smaller than unity for kR > 0.

For a system in which the conditions for pure plane-wave propagation are satisfied

at a certain location, we can actually represent larger subdomains, with possibly more

complex geometries, by equivalent – or lumped – boundary conditions. This is illustrated

in Fig. 2.1. The impedance at the indicated position represents the complete plane-wave

response of the domain to the right of the dashed line. Here, it does not matter if there is

a non-uniform temperature distribution or multi-dimensional effects beyond the dashed

line. The impedance at the reference location gives a complete description whenever the

acoustic dynamics in that domain are truly linear and time invariant.

The plane wave boundary condition can be measured with the so-called Multi-Micro-

phone-Method. This will be an important aspect at various instances in this thesis. The

experimental procedure is described in Appendix A.

2.2 The effect of unsteady heat release on the acoustic field

As mentioned in the beginning of this chapter, thermoacoustic instabilities arise as a result

of a mutual coupling between the acoustic field and a source of unsteady heat release. This

implies that the unsteady heat release has an effect on the acoustic field and vice versa.

As it turns out, the second part, the unsteady response of the heat release to an acoustic

perturbation, is much more complex. Therefore, we begin with a discussion of the first

part, the excitation of acoustic waves by unsteady heat release, in this section.

In the presence of unsteady heat release, the pressure–density relation (2.2) does no

longer hold but must be supplemented with the non-isentropic contribution, which is

obtained from the entropy equation and the equation of state for an ideal gas (see, e.g.,

Dowling & Stow 2003), viz.,

∂t p = c2∂tρ + c2u·∇ρ̄ + (γ − 1)q, (2.11)
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where q is the unsteady component of the volumetric heat release rate. Combining (2.11)

with linearized mass and momentum balances (2.1), we obtain a wave equation for the

acoustic pressure including the effect of unsteady heat release as

∂tt p = ∇·(c2∇p
)

+ (γ − 1) ∂tq, (2.12)

or alternatively, the Helmholtz equation for the Fourier transform of the acoustic pressure

∇·
(

c2∇ p̂
)

+ ω2 p̂ = −iω (γ − 1)q̂. (2.13)

Equation (2.12) is essentially a corollary of Lighthill’s acoustic analogy (Lighthill 1952).

Clearly, the unsteady heat release acts as a monopole-type source for the acoustic field.

Although (2.12) describes the evolution of the sound field, once supplemented with

suitable boundary conditions, this equation cannot be solved unless the heat release q can

be related to the acoustic variables. This turns out to be a rather complex task and is the

subject of Section 2.3.

2.2.1 Compact heat sources

We consider now the case of a compact heat source, for which the spatial extent of q is

much smaller than the acoustic length scale c/ω.2 This requirement is commonly met

in thermoacoustic instability problems. The exact distribution of q is then not important

because it is confined to a region which is very small compared to the long acoustic wave-

length. Integrating now the Helmholtz equation (2.13) over a volume containing q and

using Gauss’ theorem, we obtain

∫

∂V
c2∇ p̂·n dA + ω2

∫

V
p̂ dV = −iω(γ − 1) Q̂, (2.14)

where Q =
∫

V q dV is the integral heat release and n, as before, denotes the outward

pointing unit normal. Now, since we essentially endowed q with δ-support, the integra-

tion volume can be made arbitrarily small so that the second term on the left hand side of

(2.14) vanishes. Using further the linearized momentum balance to substitute the pressure

gradient by the particle velocity yields

∫

∂V
û·n dA =

γ − 1

γP0
Q̂, (2.15)

where we used the fact that ρ̄c2 = γP0 is constant (P0 denoting the mean static pressure).

Evidently, compact heat release acts as a volume source through unsteady expansion. Also

note that (2.15) does not have an explicit frequency dependence, and therefore, holds also

in time domain.

2If we were to include entropy perturbations in our analysis, the compactness condition would be much
more stringent. Since entropy disturbances are simply advected by the mean flow, the characteristic wave-
length is ū/ω (ū denoting a characteristic convection speed). Accordingly, the width of a heat source distri-
bution which can still be assumed to be compact decreases by a factor of the Mach number (Dowling 1995).



10 Chapter 2. Fundamental Theory and Methods

In a ducted configuration, for frequencies at which only the plane wave mode propa-

gates, Eq. (2.15) takes the form

A(uds − uus) =
γ − 1

γP0
Q, (2.16)

where A is the cross-sectional area of the duct, and subscripts ‘us’ and ‘ds’ correspond

to locations immediately up- and downstream of the heat source. Hence, the integral

unsteady heat release induces a jump in the acoustic velocity across the heat source. Also

note that even if q has δ-support, it follows from Eq. (2.13) that p̂ is still continuous.

For the mean global heat release from the flame, we can write

Q̄ = ρ̄usūus Acp(Tds − Tus), (2.17)

where cp is the specific heat at constant pressure. Using this in (2.16), we find

uds = uus +

(

Tds

Tus
− 1

)

Q

Q̄
ūus. (2.18)

2.2.2 Acoustic energy and Rayleigh’s criterion

Whether the acoustic source actually enhances the fluctuation amplitudes or not is not

apparent from the above discussion. This requires the introduction of the acoustic energy,

which, in its most simple (local) form, can be defined as (Crighton et al. 1992; Rienstra &

Hirschberg 2006)

ea = 1
2

(

ρ̄|u|2 + p2/(ρ̄c2)
)

. (2.19)

In non-isentropic flows, a consistent definition of the fluctuation energy must also include

entropy perturbations (Chu 1965; Nicoud & Poinsot 2005). We do however, content our-

selves at this point with the purely acoustic energy.

From the linearized mass and momentum equations (2.1) and the pressure–density

relation (2.11), we obtain an evolution equation for the acoustic energy as

∂tea + ∇· ia = s, (2.20)

where the energy flux ia = pu is typically referred to as the acoustic intensity,3 and the

source term takes the form

s =
γ − 1

γP0
pq. (2.21)

Integrating the acoustic energy equation (2.20) over a stationary volume, we obtain

d

dt
Ea = −

∫

∂V
pu·n dA +

γ − 1

γP0

∫

V
pq dV, (2.22)

where Ea denotes the integral acoustic energy in the domain. Clearly, the energy increases

whenever the integral pressure–heat-release correlation is positive and exceeds the acous-

tic power flow lost at the system boundaries.

3Some authors define the intensity to be the time-average of pu.
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For oscillatory signals, it is instructive to consider the period-average of Eq. (2.22). Rep-

resenting the time-domain signals by z = Re(ẑ eiωt) and averaging over one period of

oscillation, we have

∆Ea = −1

2

∫

∂V
Re( p̂û∗·n) dA +

1

2

γ − 1

γP0

∫

V
Re( p̂q̂∗) dV, (2.23)

where (·)∗ denotes the complex conjugate, and ∆Ea represents the change of the total

acoustic energy over one period. From Eq. (2.23), we can most clearly identify Rayleigh’s

criterion (Rayleigh 1878): the unsteady heat release is destabilizing if it has an in-phase

component with the fluctuating pressure because, in this case, energy is added to the

acoustic field.

Since we shall not encounter any fluctuations in density from here on, we will drop the

overbar from the mean density and denote it simply by ρ.

2.3 Flame response to acoustic perturbations

The excitation of heat release fluctuations by acoustic perturbations is an essential com-

ponent in thermoacoustic phenomena because it closes the feedback loop between sound

field and flame. This process is typically quantified in terms of the flame transfer function,

which relates the Fourier transform of the normalized fluctuations in heat release rate to

the Fourier transform of the fluctuations in approach flow velocity, mostly in a normalized

form. In contrast to the excitation of the acoustic field by unsteady heat release, which has

been described in the previous section and can be given to quite acceptable accuracy in

analytical terms, this interaction mechanism is exceedingly complex. Yet, without knowl-

edge on the heat release response to acoustic perturbations, no reliable statement about

the stability of a thermoacoustic system can be made. Although various research groups

are devoted to the analytical, numerical, and experimental investigation of flame transfer

functions, only elementary configurations, like the laminar premixed Bunsen flame, seem

to be comprehensively understood (Lieuwen 2003).

2.3.1 Mechanisms

For realistic flames, such as those used in gas turbine combustors, complete theoretical

understanding and predictive modeling capabilities, even only for the linear regime, are

far from being well developed. One reason for this is the sheer complexity of the possible

interaction mechanisms in a technical burner–flame configuration (Paschereit et al. 2002;

Sattelmayer 2003; Zinn & Lieuwen 2005).

In case of laminar premixed flames, acoustically induced oscillations in heat release are

mainly a result of kinematic effects, i.e., wrinkling and movement of the flame, and the

heat release perturbations are generally related to flame surface area variations (Ducruix

et al. 2000; Fleifil et al. 1996; Schuller et al. 2002, 2003). The perturbation of the flame also

includes the hydrodynamic field as an intermediate step. Velocity oscillations associated

with the acoustic field excite receptive shear layers and trigger vortices that are convected

into the flame and cause strong perturbations of the flame front. This vortex–flame in-

teraction is particularly prominent in dump combustors, such as backward facing step
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configurations (Ghoniem et al. 2005; Schadow & Gutmark 1992). Swirl-burners, which

are commonly used in industrial gas turbines, exhibit pronounced flow instabilities, typi-

cally associated with helical structures, that cause fluctuations in the heat release and may

couple to the acoustic field (Huang & Yang 2009; Paschereit et al. 1999a, 2000; Syred 2006;

Thumuluru & Lieuwen 2009).

In gas turbine burners, air and fuel are not perfectly mixed when they reach the flame

front. This would require a long mixing distance, which cannot be realized for safety rea-

sons. For these partially – or technically – premixed flames, pressure and velocity oscilla-

tions at the location of fuel injection cause perturbations in the mixture fraction (Huber &

Polifke 2009; Lieuwen et al. 2001). These perturbations are advected to the flame, subject

to diffusion and dispersion (Polifke et al. 2001a; Sattelmayer 2003), and may generate large

oscillations in the heat release rate. This is in particular so for the lean case, when flame

properties, such as the burning velocity, become strongly susceptible to perturbations in

the equivalence ratio (Lieuwen et al. 2001). Strong temporal variations in the mixture frac-

tion may even lead to a dynamical displacement of the flame anchoring position, which

then results again in the generation of unsteady heat release (Biagioli et al. 2008).

In general, the flame’s response is understood to be mainly caused by velocity fluctua-

tions (and possibly pressure perturbations at the fuel injector). However, since the chem-

ical reaction rate is pressure dependent, there is, in principle, also a direct effect of the

fluctuating pressure on the heat release. This mechanism was investigated theoretically

some 20 years ago (Clavin et al. 1990; McIntosh 1991) with recent experimental (Wangher

et al. 2008) and numerical results (Schmidt & Jiménez 2010). However, this so-called direct

pressure effect is very small (by a factor of the Mach number smaller than heat release cou-

pling by velocity fluctuations, Lieuwen 2003) and probably not one of the major driving

mechanisms in typical combustion instabilities.

A technical burner–flame arrangement may generally exhibit all of the effects described

above. Which ones are dominant depends on the particular set-up and the operating con-

ditions so that it is difficult (or simply not possible) to make any general statements about

the importance of the individual contributions. For liquid fuel flames, the interaction be-

comes even more complex because acoustic perturbations cause unsteadiness in the atom-

ization and vaporization processes.

2.3.2 Models

Although the response of a flame to acoustic perturbations has quite different character-

istics depending on the particular type and the operating conditions, two general prop-

erties have been identified: (i) low-pass, the response decreases with increasing forcing

frequency; and (ii) time-lag, the phase shift between the forcing and the response signal

increases approximately linearly with frequency. The time-lag characteristic of the flame

response was introduced by Crocco & Cheng (1956) with the well-known n–τ model.

Here, the combustion response is modeled as being proportional to n f (t − τ), where n

is called the interaction index, τ is the time lag, and f represents the pressure or velocity

perturbation at some reference position. The time lag τ is of crucial importance for stabil-

ity because it controls the phase relationship of heat release and pressure perturbations.

According to Rayleigh’s criterion, this determines if the effect of the heat release–acoustic



Chapter 2. Fundamental Theory and Methods 13

interaction is destabilizing. Despite its simplicity, the n–τ model is still used today for

fundamental studies.

Most of the modeling effort has so far been restricted to the linear regime. Typically,

the desired relation is the flame transfer function F(ω), a frequency-domain description

that couples (normalized) perturbations in heat release to those in velocity via a linear

time-invariant system. For premixed Bunsen-type and similar laminar flames, heat re-

lease fluctuations are predominantly caused by kinematic effects and can be modeled with

a G-equation for the flame surface, which admits analytical solutions for linearized per-

turbations (Ducruix et al. 2000; Fleifil et al. 1996; Schuller et al. 2002, 2003).

Linear models for perfectly premixed industry-relevant swirl-stabilized flames were

recently established (Hirsch et al. 2005; Komarek & Polifke 2010; Palies et al. 2010). Here,

it was recognized that an acoustic wave impinging on the swirler generates a vorticity

wave. In contrast to the longitudinal acoustic perturbation, which travels at the speed of

sound, the vorticity wave is advected by the mean flow, and the heat release fluctuations

generated by these two mechanisms may thus interfere constructively or destructively.

This phenomenon explains large gain variations observed in measurements. A similar

effect may result from the interference of velocity and mixture fraction disturbances in

case of technically premixed flames (Schuermans et al. 2004a).

2.3.3 Finite-amplitude effects

Compared to the linearized case, the knowledge and modeling capabilities for the flame

response at finite amplitude is significantly less developed. Experimental and numerical

investigations show that nonlinear effects become important at velocity forcing ampli-

tudes comparable to the mean flow (e.g., Bellows et al. 2007a). The effect of nonlinearity

typically is to saturate the heat release response. Since nonlinear effects in the acoustic

field can be generally assumed to be weak, it is the saturation in the heat release response

that determines the final, steady-state oscillation amplitude.

Dowling (1997) used a simple limiter in combination with a time-lagged low-pass to

model the nonlinear flame response of an afterburner configuration. As the heat release

rate cannot become negative, Dowling argued, the amplitude has to be limited by half of

the mean value. By combining this model with a linear description of the system acoustics,

she was able to obtain limit-cycle oscillations in the simulations, showing good agreement

with related experiments. In subsequent work, the nonlinear response was modeled by a

G-equation for the flame front kinematics (Dowling 1999).

Technically premixed flames introduce an additional complexity also in the finite am-

plitude case because the rate of heat release depends on the mixture fraction in a nonlinear

manner. Peracchio & Proscia (1999) modeled this effect explicitly through a nonlinear re-

lation between the equivalence ratio and velocity perturbations (for the case of stiff fuel

injectors) and a nonlinear dependence of the heat release rate on the mixture fraction.

With this approach, they were able to reproduce the instability characteristics observed in

a single-nozzle rig at engine conditions.

Experimental and numerical studies of the nonlinear flame response have been per-

formed for various configurations (Armitage et al. 2006; Balachandran et al. 2005; Durox
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et al. 2009; Lieuwen & Yang 2005) and have recently focused on measurements in swirl-

burner configurations (Bellows et al. 2007b; Palies et al. 2009; Schimek et al. 2010). Nonlin-

ear flame response measurements are typically performed for various forcing frequencies

and amplitudes. These data sets then yield an amplitude-dependent transfer function that

can be used in low-order models to estimate the oscillation amplitude in the unstable case

(see next section). The development of nonlinear (reduced-order) models for the flame

response is, however, not well advanced.

2.4 Linear instability and limit-cycle oscillations

As shown in the previous two sections, there is a two-way coupling between the acous-

tic field and the unsteady heat release in the flame. If the phase relationships of these

processes match, as stated by Rayleigh’s criterion, this interaction generates positive feed-

back so that the fluctuation energy increases in time. Typically, the oscillations observed

in real applications as well as in test-rigs and numerical simulations are understood to

be a result of linear instability. This means that positive feedback occurs already at small

amplitudes. The steady, non-oscillating state is then unstable with respect to infinitesi-

mal perturbations, and the fluctuation amplitudes grow exponentially in the initial phase.

This linear instability can be calculated from a linearized system model. However, at large

oscillation amplitudes, nonlinear mechanisms become important and typically have a sat-

urating effect (see Section 2.3.3) so that the growth of the instability is limited. A finite-

amplitude oscillation is then established, for which the energy gain through the Rayleigh

term (see Eqs. (2.22) and (2.23)) is balanced by the power losses at the system boundaries

and through dissipation inside the system. The system state is periodic with well-defined

amplitude and frequency – a limit-cycle oscillation. Since this oscillation does not need

any external forcing to be established, it is referred to as self-excited.

Figure 2.2 displays pressure data that was measured in a Rijke tube4 to illustrate lin-

ear instability and the subsequent limit-cycle oscillation. The exponential growth marks

the stage of linear instability. After a small overshoot, the oscillation settles on a finite

amplitude, and the system state is periodic. This is evidenced by the phase-plane plot in

Figure 2.2.

Consider now some system parameter, σ say, that controls linear stability. Then there

is some critical value of that parameter, σcrit, such that for σ < σcrit, the system is stable

and for σ > σcrit, the system is linearly unstable, the oscillation amplitude growing con-

tinuously as σ is increased. This scenario corresponds to a supercritical Hopf bifurcation;

a pair of complex eigenvalues of the linearized system crosses the imaginary axis with

non-zero speed at σcrit (Nayfeh & Balachandran 1995).

A stable limit-cycle oscillation can also be associated with a subcritical Hopf bifurca-

tion. In this case, the system is not necessarily unstable for small amplitudes. There is

a finite interval of σ values with σ < σcrit for which the steady state and the limit-cycle

oscillation are both stable with respect to small perturbations. However, finite-amplitude

perturbations can trigger a transition from one system state to the other. In contrast to

4The Rijke tube is the simplest device that exhibits thermoacoustic oscillations. Its set-up is very simple: a
heated gauze is placed inside a tube open at both ends. A review on Rijke tubes and Rijke-like burners was
given by Raun et al. (1993).
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Figure 2.2: Linear instability and limit-cycle oscillation measured in a Rijke tube with 1 m
length. Left: pressure history; right: p– ṗ/ωlc phase plane of the established oscillation.
˙(·) and ωlc denote derivative with respect to time and limit cycle frequency (172 Hz),

respectively.

the supercritical case, in which the system is linearly unstable, the finite-amplitude oscil-

lations associated with subcritical instabilities are not self-excited but only self-sustained.

This type of instability has been observed in various experimental studies of thermoa-

coustic oscillations (e.g., Knoop et al. 1997; Lieuwen 2002; Matveev & Culick 2003) and

was also found in a recent theoretical investigation of a model of a Rijke tube with an elec-

trically heated grid (Subramanian et al. 2010). A comprehensive investigation of this type

of instability in an atmospheric test-rig combustor is the subject of Chapter 6, where in

addition, more background information will be given and the results of previous studies

in this field will be discussed.

It is also important to note that, although the heat-release–acoustic interaction is of

distinctly local nature, being confined to a small region containing the flame, combustion

oscillations are system instabilities. As such, stability of the steady state is influenced by

the complete system configuration, up to a point where the boundary conditions can be

unambiguously specified. This is because the acoustic field at the flame, which (i) gener-

ates the unsteady heat release and (ii) determines whether there is an energy gain through

the Rayleigh term, depends on the complete geometry (and temperature distribution) and

the boundary conditions. The dependence on the latter is evident from the global balance

of acoustic energy (2.22); the whole system boundary is potentially decisive if oscillations

grow (or not). This is in strong contrast to hydrodynamic stability problems of (nearly)

parallel flows, in which stability can often be assessed on the basis of the local mean state

(see, e.g., Schmid & Henningson 2001).

The strong dependence of system stability on the boundary conditions is a particularly

problematic matter in the design of annular combustion chambers. Since experiments in

full annular configurations are excessively expensive, most of the experimental develop-

ment work is restricted to single-burner test-rigs. It is obvious, however, that the acoustic

environment of an annular combustion chamber is quite different from a purely longitu-

dinal set-up. For this reason, methods have been developed to adapt (at least part of) the

acoustic boundary conditions to more engine-like conditions (Bothien et al. 2008; Mongia

et al. 2003).
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We shall also make a clear distinction between combustion instabilities and combustion

noise. Although these terms are sometimes used interchangeably, it is reasonable to as-

sociate with each a distinct type of system behavior. When referring to combustion in-

stabilities, we address a system state that exhibits coherent oscillations as a result of a

linear or a subcritical instability. This oscillation state has a markedly concentrated spec-

tral signature. Opposed to that, we use the term combustion noise for a system state that

exhibits noticeable fluctuation amplitudes in pressure and heat release but not in a co-

herent manner. This signature corresponds to a lightly damped noise-driven system; the

associated linearized model has a pair of eigenvalues close to the stability border, and

high fluctuation amplitudes can be observed at the resonance frequencies. The spectral

power distribution of a noise-driven system is typically broader than in the case of com-

bustion instability. Although the fluctuation amplitudes can exceed the linear regime also

in the noise-driven case, nonlinearity is not a necessary component to explain combustion

noise. One way to distinguish between noise-driven and (noisy) limit-cycle oscillations

in a test-rig experiment is to analyze the probability density function (PDF) of a repre-

sentative system observable, typically the unsteady combustor pressure. As shown by

Banaszuk et al. (1999b) and Lieuwen (2002), the pressure PDF of a limit-cycle oscillation

has a characteristic bimodal shape, whereas a noise-driven system state gives rise to an

approximately Gaussian PDF. For a stable linear system driven by Gaussian noise, the

output signal, i.e., the pressure, would also have a Gaussian distribution. In case of a self-

sustained oscillation, the bimodal PDF structure arises because the system spends more

time at the extrema of the approximately sinusoidal state (Rowley et al. 2006).

2.5 Low-order modeling of thermoacoustic instabilities

Detailed numerical modeling of thermoacoustic oscillations is an inherently complex task

due to their nature as system instabilities, as explained in the previous section. Repre-

senting all the participating physical mechanisms in an appropriate manner leads to a

computationally expensive problem set-up. So-called low-order models, which are of much

lower complexity and capture only the essential physics, often give remarkable insight

and allow for a quick assessment of the stability of a particular system or the effect of

parameter changes; the latter is particularly important in the industrial environment.

Traditionally, representing thermoacoustic systems with network models has been a

frequency-domain approach, and accordingly, is primarily a linear tool. There are exten-

sions to nonlinear frequency-domain methods and to time-domain simulations, which we

shall also briefly discuss below.

2.5.1 Linear systems

One purpose of using low-order thermoacoustic models is to assess linear stability of a

given system. Even if nonlinear oscillations are to be investigated, a major part of the

model, typically the one that can be related to the acoustics only, will remain linear. For

these reasons, linear systems form an essential part of a thermoacoustic network model,

and we shall concisely summarize the types of representations we will be using in the

following. These representations are for time-invariant systems only.
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Representations

One component of a low-order thermoacoustic model can be typically characterized by

some input–output relation that maps one or more input variables, u say, to one or more

output variables y in a linear time-invariant manner. In frequency domain, this mapping

can be represented by some complex-valued, frequency-dependent transfer function or

matrix, viz.,

ŷ = F(ω)û, (2.24)

where the number of columns and rows of F is equal to the number of inputs and outputs

of the system, respectively. F is a complete characterization of the system; it is defined for

frequencies in the whole complex plane and, therefore, also contains information on the

transient dynamics.

Under certain conditions, which we will elaborate on below, an equivalent time-do-

main representation of the system can be given in standard state-space form as

ẋ = Ax + Bu, (2.25a)

y = Cx + Du. (2.25b)

Here x is the state vector with length d, a representation of the system’s internal dynamics,

and A, B, C, and D are constant matrices with appropriate dimensions. The four matrices

constitute the state-space system; d is called the order or the dimension of the system.

The state-space system (2.25) can be converted to the frequency-domain representation

(2.24) by means of the Laplace transform, which yields

F(ω) = C(iωI − A)−1B + D. (2.26)

Hence, F is a rational function of iω. Moreover, if the inverse in (2.26) is written in terms of

the determinant and the adjugate, then it is apparent that the number of poles (the zeros of

the denominator polynomial of this rational form) is equal to the order of the state-space

system. Also, the state-space representation (2.25) is not unique. A similarity transform

can be applied to A, B, and C, which leaves the transfer function (2.26) unaltered. There-

fore, (2.25) is also referred to as a state-space realization.

Transfer functions characterizing acoustic systems are often found to be of non-rational

form. Consider, for example, the impedance of a closed-end duct, which can be written

as Z(ω) = −i cot(kL). Evidently, this transfer function has an infinite number of poles

and, therefore, represents an infinite-dimensional system. A corresponding time-domain

model would need to have an infinite number of states. Typically, infinite-dimensional

systems arise whenever the input–output relation originates from a partial differential

equation, whereas finite-dimensional representations result from systems of ordinary dif-

ferential equations (which is what (2.25) is). Converting a non-rational transfer function

to the time-domain form (2.25) is then only approximately possible by truncating it to a

finite-dimensional state space. This can be done, for example, by using a Padé approxi-

mant (a rational approximation) of F around ω = 0. Generally, this will be accurate only

up to a certain frequency ωmax, but on the other hand, we are not interested in the high-

frequency dynamics. In the following, we will denote the approximation of a non-rational
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Figure 2.3: A 2×2 network element relating pres-
sure and particle velocity on two sides of a subsys-
tem. Frequency-domain transfer matrix (left) and
time-domain state-space model (right).

F(ω)

p̂1 p̂2

û1 û2

[

A B
C D

]

p1 p2

u1 u2

transfer function by a finite-dimensional state-space system as

[

A B
C D

] iω≈ F(ω), for ω < ωmax. (2.27)

We will use this notation also for the identification of state-space models from frequency-

response data, which is the topic of the next paragraph.

Identification

Submodels – network elements – of a thermoacoustic system are often not amenable to

analytical modeling. In this case, there is no direct way of obtaining a transfer function

or a state-space model. One possible remedy is to determine the frequency response of

the element under investigation by experimental or numerical means. The subsystem

is fed with an identification signal, containing the relevant frequencies, and subsequent

spectral analysis of input and output signals then yields the frequency response. The

latter is identical with the transfer function for a discrete set of real frequencies, but there

is no direct possibility to infer the response at complex-valued frequencies or derive a

time-domain representation. This is a system identification matter. There are various

approaches to this task with numerous different algorithms (see, e.g., Ljung 1999). For our

purpose, the identification of acoustic and thermoacoustic systems, we found the routine

developed by Gustavsen & Semlyen (1999) to work quite well.

2.5.2 Network models

A low-order model of a thermoacoustic system is a collection – or a network – of submod-

els, each of which represents a different component of the entire configuration, with con-

nections between geometrically adjacent entities. The individual submodels are mostly

linear and represented in frequency domain by transfer matrices or in time domain by

state-space systems. Such a submodel relates the system variables on different sides of the

element. This technique is particularly efficient in purely plane-wave systems, where at

an interface between two elements, only two acoustic variables, pressure and axial parti-

cle velocity, for instance, need to be coupled. Such an element is shown schematically in

Fig. 2.3.

Combination of two submodels of this type that are represented by transfer matrices

is a straightforward task. If [p̂2 û2]T = F [p̂1 û1]
T and [p̂3 û3]T = G [p̂2 û2]T, then it is

easily inferred that [p̂3 û3]T = GF [p̂1 û1]
T. In the case of a time-domain representation

of the elements, deriving the combined model is not as straightforward, but can be done

by means of elementary matrix-algebraic operations on the state-space matrices of the

individual submodels (see, e.g., Zhou et al. 1996). As Fig. 2.3 indicates, causality has to

be taken into account when working in the time domain (see also discussions by Polifke

& Gentemann 2003). This is not a problem for frequency-domain calculations, in which

input and output variables can be interchanged as necessary.
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A DD Q Z
p̂1 p̂2 p̂3 p̂4

û1 û2 û3 û4

ê

Figure 2.4: An example of a simple frequency-domain network with two boundary con-
ditions, two ducts, one heat source, and an external input ê at the downstream end

One powerful advantage of this approach is that the elements of a network model

can be determined by different means. If the process inside the element is too difficult

to model by theoretical means only, the transfer matrix can be considered as a black box

fed with purely experimental or numerical data (Cremer 1971; Polifke et al. 2001b). A

similar procedure is used extensively for muffler design (Munjal 1987); however, system

instability is typically not an issue in this application.

An example of a simple network in frequency-domain representation is shown in

Fig. 2.4. This system consists of two boundary conditions, two ducts, and a heat source.

An external input, ê, is located at the downstream end. As mentioned above, it is possible

to combine two or more elements into one. Combination of A and D, for instance, results

in one scalar-valued transfer function that represents the boundary condition immediately

upstream of the heat source Q by relating û2 to p̂2 or vice versa.

2.5.3 Linear stability

Coupling the transfer matrices of all elements in an appropriate way results in a represen-

tation for the complete system. If no external forcing is present, i.e., ê = 0, this representa-

tion takes the form of a homogeneous linear system

S(ω)v̂ = 0, (2.28)

where S is the system matrix, containing the transfer matrices of all the network elements

and the boundary conditions, and v̂ is a vector of the acoustic variables at the element

connections. For the network in Fig. 2.4, the system matrix takes the form

S =





























A −1 0 0 0 0 0 0

D11 D12 −1 0 0 0 0 0

D21 D22 0 −1 0 0 0 0

0 0 Q11 Q12 −1 0 0 0

0 0 Q21 Q22 0 −1 0 0

0 0 0 0 D11 D12 −1 0

0 0 0 0 D21 D22 0 −1

0 0 0 0 0 0 −1 Z





























, (2.29)

and the associated vector of acoustic variables is given by

v̂ = [p̂1 û1 p̂2 û2 p̂3 û3 p̂4 û4]
T. (2.30)

It is important to note that (2.28) does not constitute a matrix eigenvalue problem. The

system eigenvalues ω appear in possibly every element of S in a complex algebraic way.
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Non-trivial solutions of (2.28) require the dispersion relation

det S(ω) = 0 (2.31)

to be satisfied. This equation determines the system eigenvalues. Since the transfer ma-

trices of typical network elements have a non-trivial frequency dependence, Eq. (2.31)

is, already for simple systems, a highly transcendental function in ω, which needs to be

solved numerically. In general, the eigenfrequencies are complex, real and imaginary part

corresponding to frequency of oscillation and to negative growth rate, respectively. Hence,

linear stability of a system can be determined in this way.

Assessing linear stability from a state-space description of the individual elements

(Eq. (2.25)) of a network can proceed in a similar manner. If the system is homogeneous

and all elements are connected in an appropriate way, the state-space representation of the

complete system will simply be of the form (Schuermans et al. 2003)

ẋ = Ax, (2.32)

where A is a composition of the state-space matrices of the individual elements and x

represents the internal dynamics of the system. Then stability is easily assessed on the

basis of the eigenvalues of A. As pointed out by Schuermans et al. (2003), computing lin-

ear stability from a state-space description is a straightforward task because even if the

state dimension is high, (2.32) is only a matrix eigenvalue problem and can be solved with

standard methods. In contrast, the solution of Eq. (2.31) is always an iterative procedure

with the risk that not all eigenvalues are found. On the other hand, to arrive at (2.32),

we already made the assumption that all elements in the network can be represented in a

finite-dimensional state space. As mentioned above, this will, in general, not be true for

acoustic systems and therefore requires artificial truncation to finite order. In this sense,

the frequency-domain dispersion relation is exact, whereas (2.32) is only an approxima-

tion. However, in the low-frequency regime, in which we are interested, the difference of

the results is often found to be numerically indistinguishable.

Merk (1957a) appears to have been the first to essentially apply a frequency-domain

type of analysis to determine the stability of thermoacoustic systems (the classical Rijke

tube, Merk 1957b, and a case with a laminar premixed flame, Merk 1958). The approach

has been proven to be enormously useful to predict and analyze linear instability in ther-

moacoustic systems, evidence of which can be found in the numerous publications on

the application of this method and variants of it (see, e.g., Bohn & Deuker 1993; Dowling

1995; Heckl 1988; Kopitz et al. 2005; Matveev & Culick 2003; Paschereit et al. 2001; Sattel-

mayer & Polifke 2003). Nowadays, network codes are a standard tool in most gas turbine

companies (see, e.g., Krebs et al. 2005; Paschereit et al. 2005).

2.5.4 Forced response

A network model can also be used to compute the system response to external or internal

forcing by sources which are independent of the system’s acoustic variables. These sources

can, for instance, correspond to acoustic excitation with loudspeakers or to the stochastic

forcing through turbulent fluctuations in the flame. The source terms enter the network
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model as inhomogeneous terms, and (2.28) takes the form

S(ω)v̂ = ŝ, (2.33)

where ŝ is the vector of source terms (which may be a function of frequency). Assum-

ing that the element at the right end in Fig. 2.4 can be modeled as p̂4 = Z v̂4 + G ê, the

corresponding source vector is ŝ = [0 . . . 0 − G ê]T with S and v̂ unaltered.

The system response in terms of the acoustic variable v̂ to the forcing ŝ can then be

obtained from (2.33) by inversion. This procedure is, however, only valid to compute the

system’s linear response to forcing in the stable case. If the system is unstable, the self-

excited contribution will eventually overwhelm the response part and nonlinear effects

render the linearized description invalid.

2.5.5 Limit cycle estimation

Although network models are primarily frequency-domain tools, the nonlinearity in the

flame response can be incorporated in an approximate way. This procedure is based on

the describing function of the flame, which essentially is an amplitude-dependent trans-

fer function (Dowling 1997; Huang 2001; Noiray et al. 2008). It represents the (complex)

fundamental harmonic gain of the heat release oscillation, F(ω, a), when forced with a

sinusoidal velocity disturbance of amplitude a. Using the describing function in combi-

nation with the linear acoustic representation in a network model then amounts to a first

order harmonic balance analysis and yields, in analogy to (2.31), the amplitude-dependent

dispersion relation

det S(ω, a) = 0. (2.34)

From Eq. (2.34), the eigenvalues can be determined as a function of the oscillation am-

plitude. In case of a linearly unstable system, there is a positive growth rate for zero a.

Due to the saturation character of the flame response, the growth rate decreases with in-

creasing oscillation amplitude. For a certain amplitude, the growth rate vanishes, and this

gives a good estimate of the actual limit cycle.

2.6 Feedback control

Feedback – or closed-loop – control is a tremendously large field, and we clearly do not

attempt to give an adequate introduction to this topic. On the other hand, we apply feed-

back control at various instances in this thesis – an illustration of the basic principle, there-

fore, seems appropriate. Although not the only purpose of feedback control, we use it

exclusively to stabilize a thermoacoustic system that, without the control action, exhibits

high-amplitude oscillations.

Consider the schematic set-up in Fig. 2.5. The upper block represents the thermoacous-

tic system we intend to control. We assume that without control, the system is unstable so

that essentially all system variables either tend to grow exponentially from the steady state

or are already in a limit cycle. There is no access to complete information about the system

state, but we measure one or more sensor signals p, which we assume to be, to some de-

gree, representative of the system dynamics. In case of thermoacoustic instabilities, such a
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Figure 2.5: Schematic set-up of a feedback
control scheme. p and e correspond to sensor
and actuation signals, respectively.

system

control

e p

signal could be the acoustic pressure or a surrogate measurement for the fluctuating heat

release rate. The sensor signal p is passed to the controller which processes it in a suit-

able way to obtain one or more actuation commands e. These actuation commands are

then fed back to the system by some actuation device(s). Typically, the actuators used for

combustion instability control are loudspeakers or fuel valves. Given that the actuation

mechanism has enough bandwidth and authority (which is often an issue), the objective

of the control law is to map p to e such that the system is stabilized.

Applications of feedback control to systems exhibiting thermoacoustic instabilities are

abundant. Reviews can be found in the work by Candel (2002, 1992), McManus et al.

(1993), and Dowling & Morgans (2005); a comprehensive discussion of previous work is

given in Chapter 9 of a recent compilation by Culick (2006). Despite the large number

of applications on the laboratory and single-burner engine scale, active control for the

suppression of combustion instabilities has not yet transitioned to industry practice. The

only application in a full-scale engine over a considerable period of time (about three

years) is summarized by Hermann & Hoffmann (2005). Passive approaches, based on

the implementation of acoustic dampers or utilizing modifications of the burner and the

fuel injector system, are still preferred by the industry, mainly because of their robustness.

In addition to permitting a combustor to operate at nominally unstable conditions,

active control can also be used as a means to study the instability in a manner not possible

without control. It allows to investigate the growth of thermoacoustic oscillations starting

from the unstable steady state (Poinsot et al. 1989, 1992) so that, for example, the growth

rates can be determined (Bothien et al. 2010; Culick 2006, Chapter 9).

As pointed out by Culick (2006, Chapter 9), it is also important to realize that the

suppression of thermoacoustic oscillations by feedback control is fundamentally differ-

ent from noise control by anti-sound (see, e.g., Ffowcs Williams 1984). In the latter, the

sound emitted from a source (the primary field) is simply canceled by a secondary sound

field, which is generated by the control action, so as to minimize the superposition of the

two at a certain receiver location. However, since the source is independent of the acous-

tic field, there is no influence of the actuation on the source. This is in strong contrast to

the control of combustion instabilities. Here, the control action affects the source of sound

(the flame) such that it is eventually reduced to a minimum level. Accordingly, the highest

actuation amplitudes are required to stabilize the system from the limit-cycle oscillation.

Once this is achieved, comparatively small forcing amplitudes are sufficient to maintain

stability.



Part I

Analysis, Modeling, and Control of

Thermoacoustic Instabilities in a

Model Combustor

We investigate different aspects of thermoacoustic instabilities and their

control in an atmospheric combustor test-rig with a swirl-stabilized burner.

After a brief description of the experimental arrangement (Chapter 3), in-

cluding the basic measurement and actuation devices, we investigate the

feasibility of multiple actuator control in Chapter 4. Although control of

combustion instabilities was realized in a multitude of test-rig studies, ap-

plication to full-scale configurations is extremely scarce. One major factor

impeding the transition to industry has been identified as the lack of suit-

able actuators. We show that in combining different actuation mechanisms,

higher flexibility and efficiency can be achieved. The control scheme we em-

ploy is an empirical, fixed-parameter controller that has to be tuned manu-

ally and only works at the design operating conditions. This drawback is re-

moved in Chapter 5 by extending the controller with an adaptive loop. This

scheme is shown to be capable of finding the optimal control parameters,

corresponding to minimum pulsations, and track them during a transient

variation of the operating conditions. Thermoacoustic oscillations are not

necessarily a result of a linearly unstable steady state. So-called triggered

– or subcritical – instabilities have been known for quite some time to fre-

quently occur in rocket engines, but are less well investigated in gas turbine

related combustors. In Chapter 6, we perform a detailed experimental study

of subcritical thermoacoustic instabilities in the test-rig combustor, where

we observe triggered oscillations and a hysteretic dependence of the pulsa-

tion amplitude on the operating parameters. Based on the experimentally

determined combustor acoustics, we set up a low-order model that shows

good agreement with the measurements.





Chapter 3

Test-rig Set-up and Measurement

Equipment

3.1 Experimental facility

The experimental facility for the work presented in this part is an atmospheric combustor

test-rig with a premixed swirl-stabilized burner. A schematic drawing of the arrangement

is shown in Fig. 3.1. The actual test-rig is mounted vertically in the laboratory. Combustion

air enters through an electrical preheater in order to generate higher inlet temperatures,

which are more typical for gas turbine operation. The length of the upstream plenum is

about 940 mm. This extent is necessary to allow for the installation of an acoustic excitation

device and multiple axially distributed microphones.

The air is mixed with natural gas in the burner and generates an aerodynamically stabi-

lized flame downstream of the dump plane. Diameters of the ducts up- and downstream

of the burner are 110 and 200 mm, respectively. Based on these duct diameters (without

accounting for the pilot lance, with a cross-sectional area of 11.34 cm2), the area expansion

ratio at the dump plane is 3.3. With respect to the free burner exit area, the expansion ratio

is 5.8. The first 300 mm downstream of the dump plane are made of silica glass to allow

for optical access to the complete reaction zone in the visible and the UV range. A 317 mm

long radiation-cooled flame tube is attached to the silica cylinder. The set-up downstream

of the flame tube is modular. In most cases, we use a measurement tube, equipped with

axially distributed microphones, and an excitation segment with two speakers mounted

perpendicularly to the main axis, as shown in Fig. 3.1. With this set-up, the complete

length of the downstream part (from burner dump plane to exhaust outlet) is 1840 mm.

This is quite long but has the advantage that there is enough space to accommodate a fa-

vorable spacing of the microphone array and the acoustic excitation. In addition to that,

the quarter-wave mode associated with this length was found to couple with the unsteady

heat release in the flame in large regions of the operating range, which is favorable for in-

vestigating thermoacoustic instabilities and their control.

Different orifice plates can be mounted at the exhaust exit plane to realize various de-

grees of reflectivity and thereby change the stability characteristics at fixed operating con-

ditions. The two extreme cases for the exit boundary condition are (i) the open end with

25
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Figure 3.1: Combustor test-rig with basic measurement instrumentation. The airflow
enters through the preheater; gas is injected inside the burner.

a reflection coefficient magnitude close to unity and (ii) an orifice with an area contraction

designed to generate an anechoic termination as proposed by Bechert (1980).

The test-rig is equipped with a swirl-stabilized burner that is based on the EV-design

by ABB (Döbbeling et al. 1994; Sattelmayer et al. 1992), developed for lean premixed op-

eration.1 The burner has a free exit area of 53.8 cm2 and can be operated with thermal

powers up to 250 kW. Figure 3.2 shows a detailed sketch of the burner. Two half-cones

are shifted in such a way that the air is forced to enter the cone circumferentially through

two slots. The resulting swirling airflow generates a recirculation zone along the center-

line at the burner outlet associated with vortex breakdown (Leibovich 1978; Lucca-Negro

& O’Doherty 2001). There is also an outer recirculation zone in the corner of the dump

plane. The main fuel is injected through 64 small holes (0.7 mm diameter), which are dis-

tributed equidistantly along the two slots. Swirling air and main fuel are well but not per-

fectly mixed before reaching the flame. The fuel–air mixture is thus technically premixed,

which means that the composition is premixed but cannot be considered homogeneous

(in a spatial as well as in a temporal sense). For additional flame stabilization, pilot fuel

can be injected at the cone apex. The pilot injector can also be used as an actuation port for

control of combustion instabilities (Chapter 4). The flame is ignited with a high-voltage

spark-electrode mounted in direction of the flow at the burner dump plane.

3.2 Measurement devices, sensors, and actuators

The combustor test-rig is equipped with measurement devices that allow for an exten-

sive characterization of combustion instabilities associated with low frequency acoustic

modes. In addition to several mean state indicators, such as Coriolis mass flow meters,

thermocouples, and static pressure probes, a number of dynamic sensors can be used for

time-resolved measurements. In particular, the test-rig was specifically designed to allow

for a decomposition of the plane acoustic mode up- and downstream of burner and flame.

1The design of the EV-burner was a key step for the successful realization of lean premixed combustion
technology and significant NOx reduction within ABB/ALSTOM (Döbbeling et al. 2007; Eroglu et al. 2009).
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Figure 3.2: Schematic representation of the swirl-stabilized burner; adapted from Sattel-
mayer et al. (1992)

Multiple axially distributed microphone arrays are located in the up- and downstream

ducts. We use G.R.A.S. type 40BP quarter-inch microphones that measure sound pressures

up to 170 dB and have a flat response to about 10 kHz. The microphones are mounted to

the duct walls in water-cooled probe holders. These impose a constant temperature of

60 ◦C to ensure proper working conditions. The microphones can be operated at up to

150 ◦C, but the preamplifiers (type 26AC) are restricted to below 60 ◦C and indeed fail to

work properly at higher temperatures. Lower temperatures, on the other hand, cannot

be used due to water condensation at the microphone membranes. Although carefully

designed to minimize the impact on the signal frequency response, the probe holders have

an effect on the measured pressure transfer function. Potentially, the deviation from the

wall pressure is not identical for all probe holders, and that is why all microphones are

calibrated in combination with their individual probe holders at operating temperature.

The main purpose of the microphone arrays is the identification of the plane mode of the

acoustic field (see Appendix A).

Photomultipliers (Hamamatsu H5784) with optical band-pass filters are used to char-

acterize the unsteady heat release from the flame. A measure of this unsteady quantity is

extremely important when investigating thermoacoustic processes because it carries cru-

cial information about the interaction of the acoustic field with the flame. Measuring the

unsteady heat release rate in a flame directly is hardly possible. Therefore, surrogate ob-

servables have to be used that can be related to the reaction source term. The chemilumi-

nescence of excited intermediate reaction species, typically radicals, can be used as such a

marker (Haber et al. 2000; Higgins et al. 2001; Najm et al. 1998). Candidates are the OH,

CH, and C2 radicals with peak wavelengths around 308, 431, and 512 nm, respectively.

The photomultipliers with appropriate band-pass filters are connected to the test-rig via

fiber optic probes (see Fig. 3.1) such that they collect light from almost the complete reac-

tion zone. Accordingly, the photomultiplier signals are related to the integral heat release

rate.

An intensified CCD camera with band-pass filters corresponding to light emission from

excited OH-radicals is used to obtain information on the spatial distribution of the heat
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release rate. The acquired images correspond to line-of-sight integrated intensity distri-

butions of the flame’s chemiluminescence. The camera has a sampling rate of only a few

Hertz, so direct time-resolved measurements are not possible. Yet, by using a pressure or

photomultiplier measurement as a reference signal, phase-averaged information can be

obtained by means of a sorting algorithm in a post-processing step. The algorithm we

use for this task is based on the instantaneous phase of the reference signal computed by

means of the Hilbert transform (similar to that proposed by Güthe & Schuermans 2007).

Although the chemiluminescence intensity is related to the heat release rate, it is dif-

ficult to infer quantitative information from these measurements. The main problem is

the dependence of the chemiluminescence intensity on other relevant and possibly non-

homogeneous and unsteady properties, such as temperature, equivalence ratio, strain rate,

turbulence intensity, mixture non-uniformity, etc. (Ayoola et al. 2006; Lauer & Sattelmayer

2010). These effects can be expected to be stronger in spatially resolved chemilumines-

cence measurements than for the integral assessment by means of a photomultiplier. How-

ever, in the following sections, we will frequently refer to the chemiluminescence signals

as heat release rate, keeping in mind that this does not hold true in a perfectly quantitative

sense.

A set of loudspeakers is mounted perpendicularly to the up- and downstream ducts

(see Fig. 3.1). These allow for an excitation of the acoustic field necessary for the measure-

ment of the up- and downstream traveling components of the plane acoustic mode. This

is important, for instance, to determine the acoustic boundary conditions of the test-rig. In

addition to that, the speakers are also used as actuators in a closed-loop mode in combi-

nation with a microphone signal and a controller to suppress thermoacoustic instabilities

(Chapters 4 and 5). The speakers are flanged to the main ducts via water-cooled sidetubes.

The speaker casings are additionally purged with air to prevent hot gas ingestion. This is

also necessary on the upstream side because the air can be preheated up to 600 K.

As a second actuation mechanism, secondary fuel can be injected through the pilot

lance. This is done either with proportional or on–off valves. Put simply, the secondary

fuel generates a modulation of the heat release rate which can be used to cancel the effect

of the primary interaction and thereby suppress the instability. The on–off valve, used in

Chapter 4 for instability control, is a commercially available gaseous-fuel injector from the

automotive industry.

A digital signal processing board DSP1103 (dSPACE) was used for all feedback con-

trol experiments. In principle, sound pressure as well as chemiluminescence measure-

ments can be used as feedback signals. There are, however, two main disadvantages in

using a photomultiplier signal: (i) compared to the microphones, the chemiluminescence

measurement usually has a significantly higher broadband noise floor, and (ii) it contains

strong frequency components at the harmonics of the fundamental oscillation (which do

not need to be controlled). These two drawbacks can, in principle, be circumvented by

using a narrow band-pass filter. On the other hand, this will introduce a steep phase-lag

across the passband, which is undesirable in case the frequency of oscillation changes (Yu

et al. 1998). Therefore, only microphones were used as feedback signals, rendering the use

of a band-pass filter unnecessary.



Chapter 4

Feedback Control with Multiple

Actuators

In this chapter, we apply feedback control to mitigate thermoacoustic instabilities in the

combustor test-rig. Two actuation mechanisms will be used: pilot fuel injection and acous-

tic forcing. Modulated secondary fuel injection was recognized to be efficient in active

control applications for the suppression of combustion instabilities (Hathout et al. 2002;

Paschereit et al. 1999b). This is due to the high control authority that is provided by the

chemical energy of the fuel. Adding small amounts of pilot fuel to a premixed flame

strongly affects the combustion process. As pointed out by Hermann & Hoffmann (2005),

modulated pilot fuel does not only represent an additional heat source, but it also affects

the main premixed flame. Paschereit et al. (1999b) studied the influence of secondary fuel

on premixed combustion with constant and modulated pilot fuel injection. This type of

control is also applicable to full-scale engines (Seume et al. 1998). The effect of a modu-

lation of the main premix fuel on instability suppression was investigated by McManus

et al. (2004).

Besides secondary fuel injection, acoustic actuators have also proven their ability to

control combustion instabilities effectively (Lang et al. 1987), while simultaneously reduc-

ing NOx emissions (Paschereit & Gutmark 2002). The advantage of acoustic actuators

over a modulation of the fuel flow is their ability to generate high-bandwidth, propor-

tional pressure signals in the combustion system with virtually no time lag. The main

drawback, clearly, is their inapplicability at high power densities and elevated pressures.

Dowling & Morgans (2005) pointed out that one of the main issues in active control of

combustion instabilities is to find suitable actuators. The implementation of loudspeakers,

for example, is certainly not feasible for practical applications due to the relatively large

amount of power needed to stabilize an unstable full-scale combustion system (Fung et al.

1991). According to Auer et al. (2005), the high variance of actuator control effectiveness

reported in the literature can be partly traced back to the fact that the specific actuators do

not supply the required modulation amplitudes. This underlines the difficulties in pro-

viding appropriate actuators. For this reason, a combination of secondary fuel injection

and acoustic actuation is proposed here. The idea is to first control the unstable mode

using modulated secondary fuel injection with its high control authority. After a stabiliza-

tion has been achieved, acoustic actuation is employed to maintain stability. This approach

29
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is possible because the highest actuation amplitudes are typically required only to sta-

bilize the system from the limit-cycle oscillation. Once this is achieved, stability can be

maintained with significantly smaller forcing amplitudes. The combination of different

actuators could therefore result in a higher variety of applicable forcing mechanisms. Pre-

vious work utilizing multiple actuators for combustion instability control is scarce, but it

is mentioned to be a possible way to increase control effectiveness in a recent review by

Huang & Yang (2009).

In the following sections, experimental results from the test-rig described in the previ-

ous chapter are presented. The combustor is operated at an equivalence ratio of 0.56 and

a thermal power of 90 kW with an air inlet temperature of 250 ◦C. A digital closed-loop

control system is used to suppress the instabilities in the combustor. Unsteady combustor

pressure and chemiluminescence data is recorded, and the pressure signal is used to drive

the controllers. Control is achieved by means of two different mechanisms: secondary pi-

lot fuel is injected through an on–off valve, and a loudspeaker, mounted upstream of the

burner (Fig. 3.1), is used as an acoustic actuator. The speaker module for the downstream

part was not mounted in this study. The two actuation methods are tested separately and

simultaneously. The main control parameters investigated are (i) the time delay between

the measured pressure signal and the control signal, (ii) the control gain in the case of

acoustic actuation, and (iii) the secondary fuel mass flow when using the pilot valve.

In case of secondary fuel flow modulation, actuation at subharmonics of the main in-

stability frequency is also applied. Subharmonic excitation reduces the need for high-

frequency actuation and extends actuator lifetime. It was shown previously that subhar-

monic control of combustion oscillations can be effective. Jones et al. (1999) used subhar-

monic secondary fuel injection to suppress instabilities in a laboratory-scale dump com-

bustor. They reported an attenuation of the noise level by 22 dB when modulating the

secondary fuel with the fourth subharmonic of the dominant frequency of oscillation.

4.1 Uncontrolled instability

The operating conditions chosen for the investigations corresponded to a strong instability

with high pulsation amplitudes. Although control efficiency at fixed operating conditions

cannot be considered representative for all possible sets of parameter combinations, the

conditions chosen here were the most demanding in terms of actuator authority.

Figure 4.1 displays spectra of normalized chemiluminescence and pressure signals ac-

quired at unstable conditions. A PDF of the combustor pressure fluctuations for the

unstable case is also shown. The strongest peaks in the pressure and chemilumines-

cence spectra, at 99 Hz, correspond to the quarter-wave mode in the combustion-chamber–

exhaust-tube part. The pressure signal primarily consists of a single frequency component,

whereas the heat release exhibits several harmonics, some of which have a magnitude

close to that of the fundamental. This is consistent with the assumption that nonlinear

acoustic effects are weak, even on the limit cycle, and the pulsation amplitude is deter-

mined by the nonlinear response of the flame (Dowling 1997).

Ensemble-averaged perturbation cycles of pressure and chemiluminescence, computed

from 3200 realizations, are shown in Fig. 4.2. The pressure is essentially a pure harmonic,
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Figure 4.1: Normalized amplitude spectra of pressure and OH-chemiluminescence inten-
sity fluctuations in the combustion chamber at unstable conditions. The inset shows a
PDF of the measured pressure signal.

whereas the signal from the chemiluminescence intensity, representing the oscillations of

the heat release rate, is strongly distorted by higher harmonic components. In particular,

the maximum deviation from the mean is much larger than the minimum one. This is a

typical characteristic of nonlinear heat release oscillations. One simple explanation for the

lower bound of the fluctuations is that the total heat release rate obviously cannot become

negative (Dowling 1997). Clearly, the Rayleigh index (product of unsteady pressure and

heat release rate) is positive over the dominant part of the cycle, especially where the heat

release peaks. This indicates a distinct net production of acoustic energy in the reaction

zone (cf. Section 2.2.2).

It is important to note that the system is indeed in a limit-cycling state. In combustion

systems operating closer to the stoichiometric case, high oscillation amplitudes may also

be generated by a stable noise-driven system (Banaszuk et al. 1999a). Yet, the obvious non-

linearity in the heat release signal and the double-hump PDF of the pressure fluctuations

(Fig. 4.1) are well-defined features of a limit-cycling system, as explained in Section 2.4.
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Figure 4.2: Ensemble averages of normalized pres-
sure and OH-chemiluminescence intensity at un-
stable conditions. The Rayleigh criterion is clearly
satisfied.
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Figure 4.3: Schematic representation of the
control set-up. The pressure is fed back
to the loudspeaker via adjustable gain and
delay. A static saturation in the speaker
loop ( 1©) is used in Section 4.2.3 to mimic
insufficient actuation authority. The pilot-
fuel loop ( 2©) includes an additional ampli-
tude detector and a trigger generater; the
latter can also generate trigger signals at
subharmonics.

1
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pilot fuel

1/2
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t−τ2

t−τ1K

amp.
detect

microphone

4.2 Phase-shift control with actuators working in individual and

combined mode

Figure 4.3 shows a schematic representation of the control set-up used for this investiga-

tion. The unsteady combustor pressure is fed back to generate the control command for

the actuators. The microphone signal is phase-shifted and amplified in the first feedback

loop. This signal is used to drive the upstream loudspeaker, which modulates the air mass

flow into the burner and, in addition, directly excites sound waves. In the second loop,

the control board generates a trigger pulse of the phase-shifted input signal. The triggered

valve modulates the secondary pilot fuel, which results in a heat release rate fluctuation.

Moreover, it is possible to set up a threshold value. If the pressure oscillations remain

below this limit, the pilot valve does not open. This can save pilot fuel without adversely

affecting the suppression of heavy oscillations (Jones et al. 1999).

The input signal to the controller was not band-pass filtered. Using a narrow band-

pass filter on the input signal can help to track the dominant mode. However, such a

filter generally induces a rapid phase change across the passband and adversely affects

the control scheme if the frequency of oscillation is shifted by the controller, as mentioned

in Section 3.2. This mechanism can cause an intermittent loss of control (Yu et al. 1998).

As will be shown in Section 4.2.2, the dominant frequency was indeed affected by the

phase-shift controller due to the so-called peak-splitting phenomenon (Banaszuk et al.

1999a; Hibshman et al. 1999). If noise levels are too high so that the unfiltered pressure

is inadequate as a feedback signal, a Kalman filter, which identifies frequency, amplitude,

and phase of the coherent oscillation, should be used (Gelb 1974). In the present work, the

pressure oscillations provided a clear signal so that no further conditioning was necessary.

4.2.1 Pulsed pilot fuel

The influence of time delay and secondary fuel mass flow on the performance of the pi-

lot fuel injector to suppress thermoacoustic instabilities was studied. The pilot actuator
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Figure 4.4: Spectral peak amplitudes of pressure oscillations vs. (a) time delay and (b)
mean pilot-to-premix fuel mass flow ratio. Results are normalized to uncontrolled base-
line conditions. Feedback at fundamental frequency (circles and squares), subharmonic
of order 1/2 (triangles), and subharmonic of order 1/4 (diamonds). Additional labels ↑
and ↓ indicate increasing and decreasing control parameter, respectively.

was operated in three modes: generation of secondary fuel pulses at the frequency of the

dominant mode and at the subharmonics of order 1/2 and 1/4. In case of actuation at

the instability frequency, the valve command is a pulse train with its fundamental fre-

quency equal to that of the measured pressure oscillation. For subharmonic control, the

fundamental frequency of the pulse train is only one-half or one-quarter of that.

In Fig. 4.4(a), the normalized peak amplitude (with respect to baseline conditions) is

plotted as a function of control time delay. The pilot-to-premix fuel mass flow ratio was

held fixed at 3.5 %. This corresponds to the maximum suppression obtained from a pilot

mass flow variation (see Fig. 4.4(b)). Maintaining a constant mean pilot mass flow had the

effect of doubling and quadrupling the fuel pulse per stroke in case of control at the sub-

harmonics of order 1/2 and 1/4, respectively. For all tests (modulation at fundamental and

subharmonics), the time delay was first set to zero and then increased in steps of 0.4 ms

to a maximum time delay of 10 ms. This maximum time delay corresponds to a phase

shift of 360◦ with respect to the dominant oscillation frequency at baseline conditions. For

fuel injection at the fundamental, the suppression performance was also investigated for

decreasing time delay (from 10 ms to 0 ms) to check for hysteresis in the oscillation ampli-

tude.

Regarding the influence of the time delay (Fig. 4.4(a)), a strong suppression of the os-

cillations is observed when operating at the fundamental of the instability frequency with

a time delay of 0–1.2 ms or 8.8–10 ms. At τ2 = 0.8 ms, an attenuation of more than 20 dB

in spectral peak amplitude is achieved. The minimum suppression was observed for a

4.4 ms time delay. However, the peak amplitude is still well below baseline conditions

(6 dB). For fuel modulation at the subharmonic of order 1/2, the change of peak amplitude

with time delay is similar to modulation at the fundamental. The suppression is slightly

lower, achieving a maximum attenuation of 20 dB at a time delay of 9.2 ms. In the case

of control at the subharmonic of order 1/4, the maximum attenuation is again lower than

for that of order 1/2. However, the corresponding curve appears to be shifted by about

−4 ms from the result we would expect when considering excitation at the fundamental

and at the subharmonic of order 1/2. To rule out a measurement error, the corresponding
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experiments were repeated; identical results were obtained. We also note that only for fuel

modulation at the subharmonic of order 1/4, noise amplification is obtained in a narrow

time-delay interval between 1.6 and 2.8 ms. Comparison of the data sets for increasing

and decreasing control parameters shows no indication of hysteresis for the variation of

the phase shift.

Feedback at the fundamental and at the subharmonic of order 1/2 results in smaller

oscillations than in the baseline case for all phase shifts. Using the subharmonic of order

1/4 tends to amplify the instability slightly, but in a narrow phase interval only. Typi-

cally we would expect that generating additional heat release in phase with the pressure

fluctuations should result in higher oscillation amplitudes. On the other hand, by pulsing

the secondary fuel, we also introduce a mean pilot mass flow, which may already have a

stabilizing effect (Paschereit et al. 1999b).

Figure 4.4(b) shows the normalized peak amplitude as a function of the pilot-to-premix

fuel mass flow ratio at zero time delay. Generally, the mean fuel mass flow was increased

during the measurements. Only for the second series, the mass flow was first set to its

maximum and then reduced to check again for hysteresis. The data clearly shows that

a threshold of the secondary fuel flow must be exceeded (here at least 3 % of the premix

fuel mass flow) to achieve significant instability suppression. For all feedback modes, an

optimal pilot-to-premix fuel ratio is found within the interval investigated. For control at

the fundamental and at the subharmonic of order 1/2, the optimal pilot-to-premix mass

flow ratio is 3.8 %; for the subharmonic of order 1/4, it is 6 %. As for the variation of the

time delay, no hysteresis is found for the variation of the pilot fuel mass flow.

The fact that the optimal phase shift for modulation at the subharmonic of order 1/4

differs considerably from those found for modulation at the fundamental frequency and

at the second subharmonic is not fully understood. We performed detailed investigations

on the actuator response and found a rather complex behavior. From integral heat release

measurements in the combustion chamber, it became evident that the fuel pulses strongly

dispersed and partially overlapped. One reason for this is probably the relatively large

distance between the valve and the fuel injection location (approximately 2 m). In addition

to that, the fuel was not injected directly into the premixed flame but at the cone apex of

the burner (see Fig. 3.2). Before reaching the flame, the fuel pulse was, thus, subject to

extensive mixing due to the highly turbulent swirling flow.

It is generally undesirable to use a large amount of pilot fuel. Since the pilot flame burns

in diffusion mode, it will increase NOx emissions due to locally higher temperatures. The

advantage of high control authority associated with pilot fuel injection is accompanied by

the drawback of increased NOx emissions. As Paschereit & Gutmark (2008) have shown,

instability control with open-loop pilot fuel forcing can also lead to a reduction of NOx

emissions for certain actuation amplitudes and frequencies. Minimizing the pressure os-

cillations in a technically premixed system improves mixture uniformity. Thus, controlling

instabilities with pilot fuel can result in a net decrease in emissions. However, if stabiliza-

tion can be achieved without or with less pilot fuel, we can expect the NOx emissions to be

reduced even further. In the next sections, we therefore explore possibilities of minimizing

the amount of pilot fuel necessary for control.
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Figure 4.5: Peak amplitude of pressure and heat release perturbations vs. (a) control time
delay and (b) feedback gain. Results are normalized to uncontrolled baseline conditions.

4.2.2 Acoustic excitation

Phase-shift control with proportional actuators has essentially two parameters: gain and

time delay. These parameters can be tuned manually to yield an optimal suppression

of the pressure oscillation amplitude or can be adjusted by an adaptive scheme, as will

be done in Chapter 5 (see also, e.g., Schneider et al. 2000 or Murugappan et al. 2000).

The latter has the advantage that the controller can compensate for a change in operating

conditions. Since, in this study, the operating parameters were fixed, controller gain and

delay were set manually. When searching for the best combination of parameters, we

assumed that the optimal phase shift (the one that results in minimum peak amplitudes

at the instability frequency) was independent of the feedback gain. The latter was then

varied at the optimal phase shift to find the minimum pulsation amplitude. Hence, not

the complete 2D parameter field was investigated, but only the variation of the time delay

at one fixed gain and the variation of the gain for the optimal time delay.

Figure 4.5(a) shows the peak amplitudes of the fluctuating combustor pressure and

of the heat release rate as a function of the control time delay. The gain was fixed to its

optimal value. All results are normalized with their associated values at uncontrolled

conditions. The time-delay interval shown corresponds to 360◦ in phase with respect to

the main frequency of oscillation. Clearly, the range of time delays in which control is

effective is rather narrow. The highest sound attenuation is obtained for a time delay of

4.6 ms, which corresponds to a phase shift of approximately 165◦. Hence, the loudspeaker

actuates in antiphase. Using the optimal phase shift, the amplitude of the dominant mode

is reduced by about 20 dB. The overall sound pressure level decreases by only 14 dB (not

shown) due to the broadband-noise components, which remain essentially unaffected by

this type of control. For the larger part of possible phase shifts, the instability is, in fact,

amplified.

The influence of the control gain on instability suppression is shown in Fig. 4.5(b). Here,

values of the control gain have been normalized with the one yielding the largest suppres-

sion. The time delay was fixed to the optimum, i.e., 4.6 ms. Starting from small values,

raising the gain has the effect to rapidly diminish the peak amplitude. After a minimum

is attained at the optimal value, a further increase in the gain causes the amplitude of the
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Figure 4.6: Left: OH spectra for different control phase shifts ∆ϕ (black line). The spec-
trum at uncontrolled conditions is plotted as reference (red line). Right: OH spectral peak
amplitude vs. peak frequency for a full period of the control phase shift.

dominant mode to grow. However, for all values of the gain tested, the pulsations were

attenuated compared to the uncontrolled case.

A typical phenomenon encountered when using phase-shift controllers to suppress

combustion instabilities is the so-called peak splitting (Banaszuk et al. 1999a,b; Cohen &

Banaszuk 2003; Hibshman et al. 1999). It is interpreted as a limit of achievable performance

(Banaszuk et al. 2006). With the action of the phase-shift controller, the frequency of the

dominant mode slightly changes. At the optimal phase shift, two peaks are present in the

spectrum of the combustor pressure, one slightly shifted to the left and one slightly shifted

to the right. Figure 4.6 (left) shows sections of the pressure spectrum for different control

phase shifts. Increasing the phase shift from 0◦ has the effect of shifting the frequency of

the dominant mode to lower values in addition to attenuating the amplitude. For phase

shifts larger than the optimal value, the frequency of the dominant peak is shifted to the

right with respect to the uncontrolled peak. The variation of the peak frequency over the

full phase-shift interval is presented in Fig. 4.6 (right). At the lowest peak amplitude (the

optimal phase shift), the peak frequency jumps from 96 Hz to 107 Hz. In fact, two peaks

are present here: one that is decreasing and one that is increasing in amplitude. Both peaks

are equally high at the optimal phase shift. The presence of two peaks in the combustor

pressure spectrum is also apparent in Fig. 4.7 in the next section. In case of modulated

pilot fuel control, this effect was also observed (not shown).

The peak-splitting phenomenon is not inherent to the controlled combustion process

but rather a property of this type of control. Rowley et al. (2006), for example, observed

this effect when using feedback control to suppress cavity flow oscillations. In fact, the

results they obtained and those in Fig. 4.6 (left) look strikingly alike. As Rowley (2002)

points out, cavity oscillations and combustion instabilities are very similar phenomena

(limit-cycle oscillations, flow–acoustic interaction, time delay). An explanation for the

peak-splitting phenomenon can be given based on the area rule and the sensitivity func-

tion of the feedback loop (Banaszuk et al. 1999b; Rowley & Williams 2006): for linear time-

invariant systems with relative degree (number of transfer function poles minus number

of zeros) of two or more, disturbance attenuation over some frequency range is necessarily

accompanied by an amplification at other frequencies.
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4.2.3 Simultaneous pulsed pilot and acoustic control

As a first test for combined control, both actuators were used simultaneously. The control

parameters were set to the optimal values determined in the experiments with only one

actuator (Sections 4.2.1 and 4.2.2). Figure 4.7 shows combustor pressure spectra for the

uncontrolled case, for control with pilot fuel modulation, for control with acoustic forc-

ing, and for simultaneous control. Compared to the cases in which only one actuator was

used to suppress the instability, a simultaneous operation of both actuators resulted in an

additional attenuation of 3 dB; hence, a total reduction of 24 dB was achieved. These re-

sults were obtained without varying the control parameters in simultaneous mode. Since

there are more parameters to tune when using both actuators at the same time, it can be

expected that even better results could be obtained.

Purely acoustic forcing is unlikely to have the control authority necessary to suppress

thermoacoustic instabilities in practical applications. On the other hand, far less power is

required to maintain stability. In other words, an acoustic actuator might not have enough

authority to suppress an instability initially, but might succeed in retaining the system in

a controlled state. To investigate this case, we added artificial saturation to the acoustic

control command in terms of a limiter (see Fig. 4.3). This essentially simulates a power

limitation of the loudspeaker; the pressure sensor signal is not amplified proportionally

but saturates at a predefined limit.

Figure 4.8 presents time traces of the unsteady combustor pressure, the pilot control

command, and the acoustic control command. We consider the left frame first. At t = 6 s,

acoustic control is activated, but due to its limited control authority, the pressure oscilla-

tions cannot be attenuated significantly. After 18 seconds, pilot control starts, and the pres-

sure amplitude decreases almost immediately. Acoustic control is added again at t = 23 s,

but now, after stopping pilot control, the loudspeaker is able to keep the pressure oscil-

lations at a controlled level for 20 more seconds. However, once heavily perturbed from

the controlled state, the acoustic actuator was not able to reattain control due to its lim-

ited authority. This process is shown in the right frame of Fig. 4.8. Initially, the system
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Figure 4.8: Time traces of unsteady combustor pressure p (top), pilot fuel control com-
mand epf (middle), and acoustic control command eac (bottom). Left: Purely acoustic con-
trol cannot suppress the instability but is able to maintain control. Right: Purely acoustic
actuation is not able to maintain control.

is maintained in a controlled state using both actuators. After 3 seconds, pilot control is

switched off. The acoustic actuator is able to maintain a low level of pressure fluctuations

for a period of 9 seconds, but then abruptly loses control.

This drawback could be overcome by enabling the pilot actuator only to inject fuel if

a predefined threshold value for the oscillation amplitude is exceeded. If the pressure

pulsations fall again below this threshold, no additional pilot fuel is added, and control

can be maintained only by actuating with the speaker. Figure 4.9 shows results for this

type of control. An existing instability cannot be suppressed by purely acoustic control

(t = 8–15 s). Therefore, pilot fuel is injected (t = 16 s). After eight injection pulses only, the

oscillation amplitude decreases significantly, and pilot fuel injection is terminated. Every

time the acoustic actuator starts to loose control and the pressure amplitude grows to the

threshold value, secondary fuel injection is activated. To show that the loudspeaker is not

able to keep the instability suppressed, the threshold is set to infinity at 42 seconds, i.e.,

no pilot fuel is added irrespective of the oscillation level. After 3 additional seconds, the

loudspeaker loses control, and only after resetting the previous threshold (at t = 48 s),

control is reattained. In comparison to the cases presented in Fig. 4.8, a lower saturation

value for acoustic actuation was set (effectively putting tighter limits on control authority).

Figure 4.9 (bottom curve) shows that this has the effect that the acoustic control is working

at its limit most of the time.

4.2.4 Concluding discussion

We used different approaches for suppressing thermoacoustic instabilities based on phase-

shifted pressure feedback. The pressure fluctuations in the combustion chamber were fed

back to control the actuation mechanisms. Both secondary pilot fuel modulation by an

on–off valve and acoustic control with a loudspeaker resulted in an attenuation of the

pressure oscillation of approximately 20 dB. The control effectiveness exhibited a strong

dependence on phase shift and gain. While the injection of secondary pilot fuel exhibited
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Figure 4.9: Instability control with combined acoustic actuation and pilot fuel injection.
Pilot fuel is activated only when the pressure oscillation amplitude exceeds a threshold
level. The dashed lines indicate an interval in which the threshold level is set to infinity.

a wide phase range in which the maximum attenuation of the instability was achieved,

the best loudspeaker performance was found only in a narrow phase interval. Combining

both actuators resulted in a total reduction of 24 dB in the spectral peak amplitude of the

combustor pressure.

Contrary to pilot fuel modulation, a loudspeaker does not have the necessary control

authority to suppress an instability in practical applications. The favorable performance

of pilot fuel modulation, on the other hand, is accompanied by the drawback of increased

NOx emissions. Therefore, we investigated a new scheme in which both actuators mu-

tually support each other. In case of limited loudspeaker control authority, an instability

could not be suppressed initially by pure acoustic forcing, but a controlled state could be

maintained. Heavy perturbations exceeding a critical threshold value were additionally

suppressed with secondary fuel injection. This strategy resulted in sufficient suppression

of the instability, while consuming a minimum amount of pilot fuel. Finding suitable ac-

tuators is one of the major issues still impeding the practical application of combustion

instability control (Dowling & Morgans 2005). Combining different actuators with their

particular advantages and drawbacks, as introduced in this chapter, allows for more flex-

ible control solutions. Yet, an adverse effect is the increased complexity of the hardware.





Chapter 5

Adaptive Control

As shown in the last chapter, simple empirical controllers can achieve a strong suppres-

sion of thermoacoustic instabilities. On the other hand, the control parameters have to

be tuned manually, and the optimal values will generally only guarantee stabilization at

fixed operating conditions. If the controller is required to handle several operating con-

ditions and even transients, an adaptive algorithm is necessary (Seume et al. 1998). In

principle, model-based control techniques allow to design a controller which stabilizes

the system without any experimental testing. However, these techniques require a decent

model, which accurately captures all of the essential mechanisms participating in the in-

stability – in a quantitative manner. From the results in the preceding chapter, we note that

the level of sound attenuation is very sensitive to the control parameters, in particular the

control phase (Fig. 4.5(a)). In fact, there may be only a small phase interval in which the

oscillation amplitude is decreased and not enhanced. A priori estimation of the optimal

control phase needs knowledge on actuator and transport delays, which is hard to obtain

with sufficient accuracy for practical configurations (Banaszuk et al. 2000; Johnson et al.

2000). If control is to be applied at varying process conditions, the system model has to

capture these effects as well. Apart from very simple configurations, accurately capturing

all essential thermoacoustic interaction mechanisms under varying operating conditions

lies beyond current modeling capabilities. This suggests the application of an adaptive

control scheme that is able to (i) find the pulsation minima in parameter space online and

(ii) adapt to changing operating conditions. This type of control scheme is particularly

attractive for combustion instabilities because it does not require any modeling effort.

In the last chapter, we already identified a suitable two-parameter control law, which

achieved a significant reduction of the pulsation amplitudes. We will now endow this

controller with an additional adaptive outer loop that optimizes the parameters according

to a suitable cost functional representing control effectiveness. The optimization scheme

we chose is called extremum seeking (Ariyur & Krstić 2003). It is an adaptive, closed-loop

control scheme with the purpose to find an extremum in an unknown field of parameters,

possibly changing in time. A major advantage of this type of scheme is that no plant

model is required for controller synthesis. The algorithm guarantees closed-loop stability

if designed properly (Ariyur & Krstić 2003; Krstić & Wang 2000).

Extremum-seeking control (ESC) has been used earlier for the suppression of com-

bustion instabilities, mainly for phase tuning. Banaszuk et al. (2000, 2004) applied an

extremum-seeking scheme to control combustion oscillations in a full-scale liquid-fueled

41
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single-nozzle configuration. They used an extended Kalman filter in combination with a

phase-shift controller actuating the main fuel with a proportional valve and an amplitude

of about 10 % of the net fuel rate. The control phase was tuned by extremum seeking. It

was noted that for the application of the extremum-seeking scheme during varying op-

erating conditions, an adaptive gain would be required. This extension is realized in the

present work.

Suppression of combustion oscillations in a swirl-stabilized spray combustor using an

extremum-seeking scheme to tune the delay of a phase-shift controller was also investi-

gated by Murugappan et al. (2000). They studied the effect of the extremum-seeking loop

parameters on control efficiency and reported a reduction of the pressure oscillations by

about 50 % at different operating conditions. Johnson et al. (2000) applied a real-time ob-

server based on a pressure signal to identify the unstable mode in a liquid-fuel combustor.

An adaptive scheme, which seems to be quite similar to extremum seeking (Johnson 2006),

tuned the control phase based on the observer output. Actuation was achieved via modu-

lated fuel injection. The control scheme attenuated the root-mean-square (RMS) pressure

by up to 40 % and tracked the optimal control phase during transients. However, no gain

adaptation was implemented in the controller.

Due to the advantage that the extremum-seeking scheme does not need a plant model,

this adaptive algorithm was also used for other flow control problems with complex sys-

tem behavior. Applications include compressor instability control (Ariyur & Krstić 2002;

Wang et al. 2000), separation control on a high-lift configuration with pulsed jets (Becker

et al. 2007), suppression of cavity oscillations (Kim et al. 2009), and separation control with

plasma actuators (Benard et al. 2010).

Other adaptive control schemes for the suppression of combustion instabilities were

successfully applied in test-rig experiments by Schuermans (2003), employing a genetic

algorithm, and Riley et al. (2004), using a self-tuning regulator.

5.1 Feedback control by extremum seeking

The basic principles of ESC are shortly explained in Section 5.1.1 on the basis of the out-

put minimization of a single-input–single-output system. The extension to a dual-input–

single-output plant, as necessary to adapt gain and delay of a phase-shift scheme, and the

application to control of thermoacoustic instabilities is described in Section 5.1.2.

5.1.1 Single-input–single-output system

We consider a plant represented by a static nonlinear input–output-map y = F(v) (which

is unknown), as shown in Fig. 5.1. In order to find the control input v⋆ corresponding

to the minimum steady-state system-output y⋆, a gradient-based online optimization is

performed. The steady-state input–output map F(v) and especially its extremum y⋆ =

minv y = F (v⋆) are unknown and/or changing in time due to variations in the operating

conditions.

The initial control input v0 is superimposed by a small amplitude dithering signal

a sin ωpt. If the period of the harmonic perturbation is larger than the largest plant time
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Figure 5.1: Single-input–single-output extremum-seeking feedback scheme for the mini-
mization of the output y under a variation of the input v. Left: block diagram; right: static
map y = F(v)

constant, an approximately sinusoidal output y will be obtained, initially oscillating

around y0 = F(v0). To achieve a gradient-based optimization, the output signal is passed

through a high-pass filter, which removes the mean value but not the sinusoidal perturba-

tion. Information on the slope of F is obtained by multiplying this zero-mean signal with

a sine of the same perturbation frequency (ωp). The product of the filtered output and the

sine signal has a non-zero mean component as long as the minimum is not attained. If the

plant is initially right of the minimum (v > v⋆), the input and output perturbations are in

phase, and hence, the product will be positive. Conversely, an anti-phase relation, giving

a negative product, will be an indication of being located to the left of the minimum. The

subsequent low-pass filter smoothes the signal.

The term r(F′
ref), that is added to the low-pass output before integration, is only relevant

for the slope-seeking variant, which we will discuss in Section 5.2.3. In case of extremum

seeking, this term is not necessary, and we set it to zero for the time being. The integrated

signal is multiplied by an additional gain −G to yield the parameter update ∆v. As long as

the output of the low-pass is negative, i.e., the system is located to the left of the minimum,

∆v is positive, thus moving the control parameter v closer to the optimum v⋆. For a positive

output of the low-pass, the opposite is true.

The choice of the design parameters depends on the dynamics of the plant. The overall

feedback system has a fast, a medium, and a slow time scale corresponding to the plant

dynamics, the periodic perturbation, and the filters in the extremum-seeking scheme, re-

spectively. If the plant behavior varies due to uncertainties, the time scale of the perturba-

tion signal needs to be larger than the slowest plant dynamics. Cut-off frequencies of the

high-pass and the low-pass need to be lower than the frequency of the perturbation signal

(ωp). For these reasons, the speed of the algorithm is limited. The permanent harmonic

input and output perturbations are another disadvantage. The numerical values of the

control parameters, suitable for the control of thermoacoustic instabilities in the test-rig,

are summarized in the next section.
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Figure 5.2: Block diagram of a dual-input–single-output extremum-seeking feedback
scheme for the minimization of thermoacoustic oscillations. The plant F(K, τ) is boxed
by the double frame. The extremum-seeking scheme optimizes K and τ such that F at-
tains a minimum.

5.1.2 Dual-input–single-output system and application to control of combus-

tion instabilities

In the present study, ESC is applied to find the optimal parameters of a phase-shift con-

troller to suppress combustion instabilities in the test-rig. This type of controller is fed

by a pressure signal measured in the combustion chamber (Fig. 5.2). The measured sig-

nal is sent through a variable gain and a time-delay block, and the generated command

signal e is used to drive the actuator (in this case a woofer). The task of the underlying

extremum-seeking scheme is to find the optimal gain K⋆ and time delay τ⋆, such that the

amplitude of the pressure oscillation is minimized. For the extremum-seeking scheme,

the plant comprises the combustion test-rig, the phase-shift controller, and the amplitude

detector (Fig. 5.2).

The amplitude detector, which generates the cost functional F from the unsteady pres-

sure, is based on the scheme described by Wang & Krstić (2000), shortly summarized be-

low. We assume the measured pressure signal has approximately the form of a harmonic

oscillation p = p̂ cos(ωt + θ) with amplitude p̂, frequency ω, and phase θ. This signal

is squared, resulting in p̂2/2 [cos(2ωt + 2θ) + 1] and subsequently low-pass filtered. The

cut-off frequency needs to be chosen such that the component with twice the oscillation

frequency is sufficiently attenuated, while the DC content, which is half the squared os-

cillation amplitude, remains unaffected. On the other hand, the cut-off frequency of the

low-pass determines the speed of the plant and should, therefore, not be too small. For

the extremum-seeking scheme, it is beneficial if the output responds as fast as possible to

a variation in the input – ideally in phase. Since the squared pressure is oscillating with

twice the instability frequency, the cut-off frequency of the low-pass filter was chosen to

be one-tenth of that, which is a trade-off between plant speed and accurate amplitude

detection.
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Table 5.1: Parameters of the extremum-seeking scheme for control of thermoacoustic in-
stabilities in the combustor test-rig. The perturbation and cut-off frequencies of the filters
are given in terms of the reference instability frequency ω.

loop ωlp a ωp G ωhp

K ω/200 0.5 ω/20 aKωp.K
ω/2000

τ ω/2000 0.5 ms ω/200 aτωp.τ

The parameters used in the two-parameter extremum-seeking scheme to control com-

bustion instabilities in the test-rig are summarized in Tab. 5.1. As mentioned in the preced-

ing section, the largest time scale of the plant determines the highest possible perturbation

frequency of the input variables. For a proper identification of the gradient, the system

output must follow a perturbation at the inlet with a phase shift smaller than π/2. If the

phase shift between input and output perturbation is larger than that, the ESC algorithm

is bound to fail. Therefore, the perturbation frequency of the gain loop (ωp.K) was chosen

to be sufficiently smaller than the cut-off frequency of the low-pass filter in the amplitude

detector. Since the algorithm must be able to distinguish whether a change in the ampli-

tude p̂ resulted from a perturbation in K or τ, the perturbation frequency of the delay loop

was set to one-tenth of that of the gain loop. The cut-off frequencies of the low-pass filters

in the two extremum-seeking loops were set to one-tenth of the respective perturbation

frequency. The perturbation amplitudes aK and aτ of the gain and the delay loop were

chosen to be 5 % of the whole parameter range of K and τ considered. Integrator gains

G were set as functions of perturbation frequency and amplitude. Since the plant output,

the pressure amplitude p̂, is varying with the two perturbation frequencies, the cut-off

frequency of the high-pass filter was chosen to be one-tenth of the lower one (ωp.τ). The

term r(∂KF|ref) in the gain loop is set to zero for extremum seeking. It is only relevant if

the cost functional is to attain a non-zero slope, which is discussed in Section 5.2.3.

5.1.3 Control simulation based on a simplified thermoacoustic model system

Before applying ESC based on phase-shift control to the combustor test-rig, the scheme

was tested in a model simulation. The system we use is only a toy model and is not

supposed to represent the actual test-rig dynamics. It was built just to include the basic

features generating a thermoacoustic feedback loop, i.e., unsteady heat-release response

to velocity perturbations and reflection of acoustic waves at the system boundaries.

Model set-up

The model system represents an elementary Rijke tube configuration consisting of a com-

pact heat source in a duct with one closed and one open end (Fig. 5.3). The unsteady

response of the heat source was described by an n–τ model in combination with a first

order low-pass filter (with time constant t0) as given, for example, by Dowling (1997). For

the model simulation, the heat release response was supplemented by a static saturation

nonlinearity S acting on the velocity perturbation to limit the growth of the unstable mode

(see, e.g., Schuermans et al. 2003 or Pankiewitz & Sattelmayer 2003). The complete heat
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Figure 5.3: Schematic representation of the model for ESC simulation. A heat source Q
is placed in a duct with boundary admittance and impedance A and Z . The pressure
at the heat source, ps, is measured and serves as input signal for the amplitude detector
and as feedback signal for the phase-shift controller. The extremum-seeking scheme min-
imizes the amplitude of oscillation by varying the phase-shift control parameters K and
τ. Actuation is represented by an additional expansion downstream of the heat source.

release model reads

t0
dQ

dt
+ Q = S [u1(t − τs)], (5.1)

where Q represents the global unsteady heat release, u1 denotes the velocity perturbation

upstream of the heat source, τs is the source time lag, and the saturation nonlinearity

is given by S [·] = tanh[·]. The velocity perturbation downstream of the heat source,

u2, is obtained by invoking the jump conditions (2.16) across a compact heat source in a

simplified form as u2 = u1 + Q. Since this is only a toy model, based on which we test

our two-parameter extremum-seeking scheme, we assume that all dependent variables

are non-dimensional.

Time-domain representations for the duct acoustics are set up based on state-space re-

alizations of Padé approximants for the time delays associated with the wave propagation.

The input–output models obtained in this way relate the amplitudes of the up- and down-

stream traveling waves. However, a conversion to acoustic pressure and velocity can be

realized by means of elementary state-space algebra (see, e.g., Zhou et al. 1996). For the

upstream boundary, a time-domain admittance A, corresponding to a partially reflecting

boundary of closed-end type, with a reflection coefficient magnitude of 0.8, is chosen. The

downstream impedance Z is modeled as an unflanged open pipe using Eq. (2.10). The

duct lengths and temperatures and the time lag in the heat release model are chosen such

that the unstable λ/4-mode has a frequency close to the one observed in the experimental

test-rig (≈ 90 Hz). The model is supplemented with a phase-shift controller actuating the

unsteady heat release. In addition to that, two extremum-seeking loops (labeled ESC in

Fig. 5.3) for the control parameters K and τ are added. The instantaneous value of the cost

functional F(K, τ) is proportional to the amplitude of the pressure oscillation at the heat

source (ps) and is obtained by using the amplitude detector described in Section 5.1.2.

Control simulation

Simulation results for the suppression of the unstable quarter-wave mode in the model

by extremum seeking are shown in Fig. 5.4. After the controller is activated at t = 0.8 s,
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Figure 5.4: Simulation results for two-parameter extremum seeking to stabilize a ther-
moacoustic model system; (a) pressure at source position, (b) cost functional, (c) control
command, (d) control delay, (e) control gain

the pressure amplitude actually increases due to unfavorable initial values of the con-

trol parameters (Fig. 5.4 (b)). A few seconds later, the extremum-seeking algorithm has

adapted control delay and gain (τ and K in Fig. 5.4 (d) and (e)) such that the pressure os-

cillation amplitude attains a minimum. The output of the amplitude detector is shown

in Fig. 5.4 (b). Essentially, it is an envelope of the unsteady pressure and represents the

output of the nonlinear plant in the extremum-seeking loop (see Fig. 5.1). Since control

in the model simulation is less demanding in terms of noise and system complexity, less

conservative loop parameters were used than those given in Tab. 5.1, which allowed for

faster adaptation of control gain and delay.

Control of a transient

The model simulations were further used to study the ability of the extremum-seeking

scheme to maintain thermoacoustic stability of the closed-loop system during a change

in the operating conditions. Changing the equivalence ratio or the preheat temperature

typically results in a variation of the time-lag characterizing the flame response (Lohrmann

& Büchner 2004), τs in Eq. (5.1). For this case, the simulation was run with control until

the optimal control parameters were found by the extremum-seeking scheme. The time

delay in the heat release model was then increased from 4 to 8 ms, representing a change

in the operating conditions (Fig. 5.5). First, the system is in a controlled state. The control

parameters have converged to the values corresponding to maximum suppression of the

pressure oscillations. At t = 2 s, the time lag of the flame model (Eq. (5.1)) is increased
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Figure 5.5: ESC simulation during a transient variation of the operating conditions, mod-
eled by a variation of the flame time lag; (a) pressure at source position, (b) control pa-
rameters, (c) flame time lag

linearly at a rate of 1 ms/s, rendering the system with the current values of the control

parameters unstable. The pressure oscillations increase, but after a few seconds, gain and

delay of the phase-shift controller have been adapted so as to successfully suppress the

instability for the new flame time lag.

5.2 Experimental application of extremum-seeking control to sta-

bilize thermoacoustic oscillations

5.2.1 System response to phase-shifted acoustic feedback

To assess the efficiency of the extremum-seeking controller in the test-rig, the effect of

phase-shifted acoustic feedback on the pressure oscillation amplitude was studied first in

an open-loop mode. The parameters of the phase-shift controller were not adapted by

the extremum-seeking scheme but were varied manually for the whole relevant range in

gain–delay parameter space. The equivalence ratio was set to 0.63 at a thermal power

of 105 kW. At these operating conditions, the system exhibited a strong instability at a

frequency of 85 Hz, corresponding to a quarter-wave mode in the combustion chamber. In

contrast to the test-rig set-up that we used in Chapter 4, the downstream speaker module

(see Fig. 3.1) was also mounted for the adaptive control experiments.

A microphone signal in the combustor downstream of the flame was used as the in-

put to the extremum-seeking controller. The effect of phase-shift control on the pressure

oscillation for all relevant combinations of gain and delay was investigated by using the
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Figure 5.6: Root-mean-square of the acoustic pressure normalized with the uncontrolled
case as a function of feedback gain and control delay for (a) downstream actuation and
(b) upstream actuation. Blue and red regions correspond to damping and amplification,
respectively.

following procedure: at a fixed gain, the control delay was varied from 0 to 12 ms (cor-

responding to roughly 2π in phase with respect to the oscillation frequency) in steps of

0.5 ms, where for each phase, the pressure response was measured for 2 seconds; the gain

was then increased and the delay was repeatedly varied.

Figure 5.6 shows the scaled RMS value of the acoustic pressure, prms, as a function of

feedback gain and control time delay. The RMS values for all K and τ have been normal-

ized with prms for the baseline case (i.e., without control). Left and right frames in Fig. 5.6

correspond to downstream and upstream acoustic excitation, respectively. The results pre-

sented are not identical to the equilibrium map F(K, τ). The amplitude detector used to

extract F from the pressure signal focuses on the main oscillation frequency, whereas prms

takes the whole spectrum into account. Yet, since the pressure spectrum is dominated by

the quarter-wave-mode component, the RMS value distribution shown in Fig. 5.6 can be

considered to be representative of the static map F(K, τ).

In the identification of the maps, only positive gains were realized. The RMS values

for negative gains are equivalent to those at positive gains with the phase shifted by π

(corresponding to a change in control delay of 6 ms). Therefore, the results for negative

gains presented in Fig. 5.6 were obtained by mirroring the results for positive gains at the

delay axis and shifting them by a delay corresponding to a phase of π.

For both up- and downstream actuation, distinct regions of high and low pressure os-

cillations exist. In case of downstream actuation (Fig. 5.6 (a)), the minimum pressure fluc-

tuations are obtained for relatively broad delay and gain intervals. For gains larger than

4 and delays between 4.5 and 6 ms, the sound pressure level reduces to only 15 % of the

uncontrolled case. This corresponds to an attenuation of 16.5 dB compared to the uncon-

trolled case. High levels of attenuation also occur for delays close to the optimal values.

Maximum amplification of the pressure oscillations is obtained for high gains and a de-

lay ranging from 8.5 to 9.5 ms. At these control parameters, prms increases by a factor of

1.3. Values of the control delay corresponding to highest attenuation and amplification
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are in very close proximity in case of downstream excitation. In fact, there is a rapid tran-

sition (at τ = 8 ms) from low to high RMS pressures with only small changes in τ. Due

to this observation, the possibility of a hysteretic dependence of the oscillation amplitude

on the control delay was also considered. Two successive measurements with increasing

and decreasing delay for a fixed gain were made. Both results showed exactly the same

dependence of the oscillation amplitude on the control delay so that hysteresis could be

excluded.

With actuation upstream (Fig. 5.6 (b)), the highest levels of attenuation are obtained

only for a very distinct delay of 5.5 ms and a high gain. Here, the RMS pressure is reduced

to 30 % of the baseline case. This corresponds to a reduction of 10.5 dB in sound pressure

level. In contrast to downstream actuation, two maxima can be observed, one at a time

delay around 1.5 ms, the other one at 10 ms. Maximum amplification by a factor of 1.2 is

obtained for both maxima with gains larger than 5. For gains smaller than 4, hardly any

change in the RMS value can be observed. Hence, an extremum-seeking scheme will not

perform well in this region because the driving gradient is absent. Another drawback of

using upstream excitation is the local minimum generated by the “valley” between the two

domains with maximum amplification. Starting the controller with initial conditions in

the valley will not give satisfactory results because the global minimum in sound pressure

level cannot be found by this type of gradient-based optimization.

Comparing both excitation cases, we observe that downstream actuation is more effec-

tive. There are two resons for this behavior: (i) two woofers are mounted downstream,

while there is only one upstream; this obviously results in lower control authority for up-

stream actuation; (ii) the heat release couples to the λ/4-mode of the combustor–exhaust-

tube combination, and the pressure oscillations are much stronger downstream of burner

and flame than upstream; therefore, actuation downstream has a stronger effect on the sys-

tem dynamics. We also note in Fig. 5.6 that there is more tolerance in setting the control

parameters to achieve stabilization when using downstream actuation. These characteris-

tics are specific to the test-rig used in this study and should not be directly translated to

other configurations.

At different operating conditions, even higher attenuation or amplification of the os-

cillation amplitudes could be obtained for the same parameter ranges of control gain and

phase. The location of minima and maxima of prms in control parameter space was also

different; however, the qualitative dependence of the oscillation amplitude on the control

parameters was always similar.

A meaningful choice for the cost functional F(G, τ) does not necessarily need to be

solely based on the pressure. As an alternative, the chemiluminescence signal could be

used as the input to the amplitude detector. Another possibility would be to use the

product of pressure and heat release to minimize the (period-averaged, or low-pass fil-

tered) Rayleigh index. To assess whether the chemiluminescence signal or the product of

the pressure and the chemiluminescence signals should also be tested in the extremum-

seeking scheme, the equilibrium maps corresponding to those shown in Fig. 5.6 were com-

puted for IOH.rms and the low-pass filtered product of the pressure and the chemilumines-

cence signals. Since both were qualitatively similar to the prms map, it was concluded

that there would be no significant difference in the performance of the extremum-seeking
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scheme in case of the alternative cost functionals. Hence, only the pressure input to the

amplitude detector was used.

5.2.2 Combustion instability control by extremum seeking

In this section, we present results from the application of the extremum-seeking scheme

based on phase-shifted pressure feedback to the combustor test-rig. The parameters in

the extremum-seeking scheme were set as given in Tab. 5.1 with a reference instability fre-

quency of 100 Hz. Actuation was achieved by using the speakers mounted up- or down-

stream of the flame. The extremum-seeking scheme could be successfully applied in both

cases. However, when using upstream excitation, the performance of the scheme was

strongly dependent on the initial values of the control parameters due to the unfavorable

topology of the equilibrium map F(K, τ), as shown in Section 5.2.1 (Fig. 5.6 (b)). Since

the results obtained were otherwise similar, only the case with downstream actuation is

discussed in the following.

Gain–delay trajectories for three different pairs of initial values are presented in Fig. 5.7.

With the given initial values of the control parameters, the system state is characterized

by high-amplitude pressure pulsations. The controller locates the region with the highest

attenuation equally well for all initial control parameters. For certain initial values of K

and τ, the algorithm converges to the second minimum, located at a delay around 11 ms

and a gain between −5 and −10. Evidently, the two regions characterized by minimum

pressure fluctuations have their respective basins of attraction. For clarity, the gain–delay

trajectories were low-pass filtered to remove the dithering components.

The variation of the combustor pressure, the control parameters, and the cost functional

F with time, during application of the extremum-seeking scheme to suppress an instability

is shown in Fig. 5.8. Control is started shortly before t = 20 s. Immediately after the control

scheme is activated, the oscillation amplitude increases slightly due to unfavorable initial

values of the control parameters. Only a few seconds later, the scheme has adapted gain

and delay such that the pressure fluctuations decrease below the uncontrolled level. The

control delay has not fully converged to a distinct value after 80 s. This is because in case

of downstream actuation, the delay interval in which stabilization is achieved is rather

broad (see Fig. 5.6 (a)). In this region, ∂F/∂τ, which drives the variation of τ, is almost

zero. In the case of upstream actuation, in which the range of a favorable control delay is

much more narrow (Fig. 5.6 (b)), this slow drift was not observed.

Spectra of the acoustic pressure in the combustion chamber for the uncontrolled and

the controlled case at two different preheat temperatures are shown in Fig. 5.9. For the

non-preheated, uncontrolled case (Fig. 5.9 (a)), there is a distinct peak at 85 Hz, indicat-

ing a thermoacoustic instability coupled to the quarter-wave mode of the combustor. At

higher preheat temperature (Fig. 5.9 (b)), a qualitatively similar spectrum is obtained, ex-

cept that the peak frequency is now at 98 Hz, due to the increased speed of sound, and the

noise level is slightly higher. Regarding the peak reduction at the instability frequency, a

decrease of 26.5 dB is achieved for the non-preheated case. At higher preheat temperature

(200 ◦C), the amplitude of the dominant mode is reduced by almost 40 dB. In Fig. 5.9 (a),

the peak-splitting phenomenon, discussed in Section 4.2.2, can be clearly observed in the

case of control at non-preheated conditions. This also underlines that the controller has
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indeed converged to the optimal control parameters because the two peaks are of exactly

the same height (Fig. 5.9 (a)). Improper phase tuning would result in one of the peaks

having a higher magnitude, as shown in Section 4.2.2. In case of a preheat temperature

of 200 ◦C (Fig. 5.9 (b)), no peak splitting can be observed. Also, for both cases, there is a

noticeable reduction in low-frequency oscillations around 10 Hz if control is activated. It

is interesting to note that, although this low-frequency component is rather small in am-

plitude, a nonlinear interaction with the main oscillation is visible at the sum of the two

frequencies (in the uncontrolled cases).

Control during a transient variation of the preheat temperature

One clear disadvantage of a fixed-parameter control scheme is that its effectiveness is

guaranteed only in a narrow neighborhood of its design operating conditions. A prop-

erly designed adaptive controller, in contrast, is capable of tracking the optimal control

parameters as a function of the operating conditions. Figure 5.10 shows results from the

application of the extremum-seeking scheme during a variation of the preheat tempera-

ture. The time trace starts with the combustor being in a controlled state at an air inlet

temperature of 25 ◦C. Increasing the preheat temperature to 200 ◦C makes a change in

control delay necessary to maintain system stability. This is successfully tracked by the

extremum-seeking scheme. During the transient, a few spikes in the pressure history can

be observed, but no instability develops. With the variation in the preheat temperature,

the main frequency of oscillation changes by about 20 %.

As can be noted in Fig. 5.10, the control delay has not fully converged to a distinct value,

although the preheat temperature is approximately constant after 100 seconds. Again, the

reason is that the delay interval in which control is effective is rather broad (see Fig. 5.6).

An interpretation of the effect of downstream control

To gain more insight into the stabilizing effect of phase-shift control with actuation down-

stream of the flame, and to understand why minimum pressure oscillations correspond to

certain values of K and τ, the downstream end (including control) is regarded as an acous-

tic boundary condition which is affected by the feeback scheme. With sensor and actuator

located downstream of the flame, the complete action of a (linear) feedback controller

can be interpreted as a change in the effective acoustic boundary condition (Bothien et al.



54 Part I. Thermoacoustic Instabilities in a Model Combustor

Figure 5.10: Application of ESC during a
transient variation of the preheat temper-
ature; (a) combustor pressure, (b) control
delay, (c) preheat temperature. The red
bars represent the oscillation level for the
respective preheat temperature without
control.
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2008). Consider the downstream speaker module in Fig. 3.1. In terms of the plane-wave

response, this part can be modeled as (Bothien et al. 2007)1

p̂ = Zû + G ê, (5.2)

where Z corresponds to the uncontrolled end impedance with reference location at the

microphone position, p and u are acoustic pressure and velocity at that position, G can be

interpreted as an actuator transfer function, and e is the control command. Introducing

now feedback via the control transfer function K(ω) as ê = K p̂, (5.2) takes the form

p̂ = Zû + GK p̂, (5.3)

from which we conclude that the control action effectively changes the boundary condi-

tion to Zeff = Z/(1 − GK). If the uncontrolled impedance and the actuator transfer func-

tion are known, the controlled boundary condition Zeff can be calculated as a function of

the phase-shift control parameters K and τ (which determine the transfer function K). We

shall content ourselves at this point with a direct measurement of the uncontrolled and

the controlled boundary conditions. Instead of the impedance we consider the reflection

coefficient R, defined as the ratio of the complex amplitudes uniquely associated with the

reflected and the incident components of the plane acoustic wave (cf. Section 2.1). The

complex wave amplitudes are determined from correlated pressure spectra at four differ-

ent axial positions, as explained in Appendix A. The reflection coefficient was measured

for three cases: (i) no control, preheater off (ii) ESC, preheater off, and (iii) ESC, preheat

temperature set to 200 ◦C.

1Bothien et al. (2007) modeled the response of an actuated end element in terms of the Riemann invariants,
but an equivalent representation can be given based on the primitive variables p and u.
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The reflection coefficients for the three cases are shown in Fig. 5.11. Additionally, the

frequencies of the unstable mode for the cases with and without preheating are indicated

by vertical dashed lines. The control scheme reduces the magnitude of the reflection coef-

ficient around the frequency of the unstable quarter-wave mode. In the uncontrolled case,

with the preheater turned off, the reflection coefficient has a magnitude of about 0.7 at the

unstable frequency. With ESC, this value is reduced by 20 %. This has the effect that more

acoustic energy is lost at the system boundary, and the system is stabilized. The impact

of control on the reflection coefficient phase, on the other hand, is not significant. We also

note that in the controlled cases, the magnitude of R achieves values larger than unity in

certain frequency intervals. This is potentially destabilizing because acoustic waves are

amplified at these frequencies; however, in the present case, no resonance condition is met

at these frequencies.

5.2.3 Extension to slope seeking

The minimum pressure fluctuations are attained in relatively large gain and delay inter-

vals (Figs. 5.6 and 5.7). Furthermore, no clear minimum in gain dependence can be ob-

served. The larger the gain, the more actuator power is needed. This is certainly not a

problem running a laboratory-scale combustor; the loudspeakers have enough authority

to stabilize the system. In industrial applications, however, systems with higher thermal

power are used. Also, the actuator power should be on the lowest limit necessary for sta-

bilizing the system in order to reduce energy costs and increase actuator lifetime. When

using pilot fuel for control, the adverse effect on emissions is another reason for keeping

the actuation amplitudes as low as possible. In our control scheme, there are two possi-

ble means to reduce the forcing amplitudes: (i) modifying the cost functional F to include

a penalty for high actuation amplitudes so that a distinct minimum in gain dependence

exists, or (ii) extend the extremum-seeking scheme to slope seeking. The slope-seeking

scheme is able to drive the plant output F(K, τ) to certain target values of the gradient

of F, not necessarily zero (Ariyur & Krstić 2003). As shown by Becker et al. (2007), this

method can be used to prevent the controller from setting higher forcing amplitudes than

necessary to achieve optimal performance.
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Figure 5.12: Qualitative dependence of the cost functional
on the control gain magnitude with reference slope indi-
cated. If K is positive (negative), then ∂K F|ref is negative
(positive).

|K|

F
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We consider again Figs. 5.1 and 5.2 and shortly discuss the role of r(∂KF|ref). In the

extremum-seeking scheme, this term is zero, but it is essential in case of slope seeking. The

desired reference slope, i.e., the one the plant output will be driven to by the algorithm, is

related to r by

r(F′
ref) = − a ∂K F|ref

2
Re

(

iωp

iωp + ωhp

)

, (5.4)

where ωhp is the corner frequency of the high-pass filter in the scheme (see Ariyur & Krstić

2003 for details). In other words, we add the negative target slope to the detected gradient

so as to generate an apparent extremum at the desired value. The slope-seeking algorithm

is beneficial if no clear extremum is present in the equilibrium map (King et al. 2006) as

evident in Fig. 5.7.

One particular problem we are facing here is that the desired target slope does not have

a unique sign. For a fixed control delay, 5 ms say, a suitable target slope (with small value)

occurs twice – close to the minimum and at amplified oscillation levels (Fig. 5.7). Since

the extremum-seeking scheme is designed to find a minimum in the equilibrium map

(due to the negative integrator gain −G, Fig. 5.2), the slope-seeking extension will cause

convergence to the reference slope with the condition that ∂2F/∂K2 > 0. Hence, there

is no danger that the control scheme will move towards higher-than-baseline pulsation

levels. Yet, the two regions of low oscillation amplitudes (Fig. 5.7) correspond to different

signs in the target slope. For τ = 5 ms, the optimal slope, corresponding to low pulsation

levels at the lowest gain possible, would be some small negative value. Conversely, at

τ = 0 or 11 ms, the optimal slope would be positive. As a result, the desired target slope

depends on the initial control parameters and the domains of attraction of the pulsation

minima. The details of the equilibrium map have to be considered unknown, but quite

generally, we can assume that for some favorable control time delay, the gain dependence

qualitatively takes the form shown in Fig. 5.12. Therefore, if K is positive, we need to set

a negative target slope to achieve low oscillation amplitudes with minimum control gain.

On the other hand, if K is negative, the target slope has to be positive. This can be realized

by simply choosing ∂KF|ref = ε sgn K, where ε is some small value.

A comparison from the experimental application of extremum and slope seeking in

the combustor test-rig in terms of the low-pass filtered cost functional and control gain is

shown in Fig. 5.13. In case of slope seeking, the reference slope has been set to a small

positive value so that the scheme converges to the RMS pressure minimum with K < 0.

This successfully prevents the control scheme from setting control gains much larger than

necessary with only a minor loss in control effectiveness.
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5.2.4 Summary

We successfully applied a two-parameter extremum-seeking scheme to control combus-

tion instabilities in a combustor test-rig. Acoustic excitation downstream of the flame was

used to suppress a quarter-wave-mode instability at frequencies ranging from 85 to 100 Hz

for different preheat temperatures. The reduction of sound pressure levels and peak am-

plitudes was dependent on the operating conditions and could be as high as a 40 dB re-

duction in oscillation amplitude. The adaptive scheme was shown to be capable of locat-

ing the pulsation minima in control parameter space. We further demonstrated that the

extremum-seeking scheme is able to maintain control during a variation of the operating

conditions by tracking the optimal control parameters. Acoustic actuation downstream of

the flame was interpreted as a change in the effective boundary condition. To prevent the

controller from setting unnecessarily high actuation amplitudes, the extremum-seeking

scheme was extended to slope seeking.





Chapter 6

Subcritical Thermoacoustic

Instabilities

As described in Section 2.5, linear low-order models of thermoacoustic systems have been

widely used to predict and analyze system stability. The linear representation suffers from

two major drawbacks. The first one is well recognized: the oscillation amplitudes of an un-

stable system cannot be predicted based on a linear model (Bellows et al. 2007b). This may

be acceptable if unstable operating regimes are strictly avoided. However, in a number of

experimental studies, it has been found that lean premixed combustion systems may also

feature subcritical instabilities (e.g., Lieuwen 2002). In this case, two stable equilibrium

states exist at fixed operating conditions – one with (low-level) broadband noise and one

with high-amplitude, coherent oscillations. From a dynamical systems point of view, the

former corresponds to a stable fixed point, the latter to a limit cycle. In this set-up, the

linearized system is stable with respect to infinitesimal disturbances, but a transition to

the limit-cycling state can be triggered by perturbations of finite amplitude. The existence

of two stable equilibrium states may then give rise to hysteresis phenomena when system

parameters are varied1.

Hysteresis related to thermoacoustic instabilities was observed by, e.g., Knoop et al.

(1997), Lieuwen (2002), Matveev & Culick (2003), Lepers et al. (2005), and Noiray et al.

(2008). In the works cited, fundamentally different experimental configurations were in-

vestigated. Lieuwen (2002) used a premixed swirl-stabilized combustor, which is closest

to the configuration considered in the present work. He observed a hysteretic dependence

of the oscillation amplitude on the combustor inlet velocity. Matveev & Culick (2003)

studied thermoacoustic oscillations in a Rijke tube with an electrically heated grid. They

found hysteresis over a considerable range of the heater power. Subcritical instabilities

in a premixed dump combustor were investigated by Knoop et al. (1997) and Isella et al.

(1997). Hysteresis was observed with respect to the equivalence ratio. In the hysteresis

region, two stable combustion states were identified, one with a turbulent boundary layer

1Subcritical instabilities in liquid- and solid-propellant rocket engines have been known for a long time
(see, e.g., Zinn 1970b). Combustion instabilities in rocket combustion chambers, however, differ markedly
from those encountered in gas turbines when considering the fully nonlinear oscillations. In the former,
the fluctuation amplitudes are significantly higher with clear shifts in the mean pressure. As a result, the
nonlinearity cannot solely be attributed to the heat release but has to be taken into account in the gas dynamics
(i.e., in the acoustic field), too. Yet, it was noted by authors working in this field that the acoustic nonlinearity
alone cannot explain the appearance of triggered instabilities (Ananthkrishnan et al. 2005; Wicker et al. 1996).

59
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downstream of the backward facing step, corresponding to weak oscillations, and one

showing distinct vortex shedding and high-amplitude pressure pulsations. Moreover, it

was demonstrated that a transition from the upper branch (the limit-cycling state) to the

lower branch (the fixed point) could be invoked through active control, in this case, short

pulses of secondary fuel injected near the dump plane or nitrogen injection in the recircu-

lation zone (see Isella et al. 1997, for the latter).

Most notably, Lepers et al. (2005) found a hysteretic dependence of the oscillation am-

plitude of an azimuthal mode on the fuel–air mixture ratio in a full-scale annular combus-

tion chamber. This demonstrates that subcritical instabilities cannot be considered to be

merely peculiar phenomena observed in single-burner laboratory model combustors un-

der special conditions but can potentially occur in realistic full-scale applications. Noiray

et al. (2008) investigated nonlinear thermoacoustic oscillations in an unconfined config-

uration featuring a collection of laminar Bunsen-type flames anchored on a perforated

plate. The plenum length could be varied. By a rigorous nonlinear analysis based on

measured flame describing functions, while keeping the acoustic model linear, they were

able to explain the mode triggering and hysteresis effects that were observed in the ex-

periment. Bellows & Lieuwen (2004) investigated high-amplitude forcing of a nominally

stable premixed swirl-stabilized combustion system. They found a hysteretic dependence

of the oscillation amplitude on the excitation amplitude and frequency. The relation be-

tween velocity and heat release oscillations was, however, single-valued, supporting the

assumption that subcritical phenomena appear as a result of the acoustic feedback and

that the flame transfer function itself is continuous.

As a matter of fact, linear stability analysis does not tell the full truth in case of sub-

critical instabilities. Since the noise level generally has to be considered high in industrial

turbulent premixed combustion systems, triggering of limit-cycle oscillations by stochas-

tic system perturbations may occur. Hence, relying solely on linear stability analyses in

the design process is precarious. High-amplitude self-sustained oscillations may emerge

although the combustion system is linearly stable.

Studying subcritical instabilities is particularly important in the light of recent inves-

tigations on non-normal growth in thermoacoustic systems (Balasubramanian & Sujith

2008a,b). The discovery of non-normal – or non-modal – growth in hydrodynamic stabil-

ity some 20 years ago (see, e.g., Schmid 2007) led to a major change in the understanding

of turbulence transition. Non-normal growth is a consequence of the spectral properties of

the linearized operator that describes the evolution of the system state in time. The eigen-

functions of a non-normal operator are in general not orthogonal. As a consequence, linear

combinations of the eigenfunctions may grow over a finite period of time, even though all

eigenvalues of the operator are stable. This so-called transient growth can be quite large

– orders of magnitude, in fact – so that the assumption of small disturbance amplitudes,

typical for linear stability analyses, is distinctly violated. Consequently, small initial per-

turbations may grow to large magnitudes and trigger nonlinear effects, which are not

captured by the linearized representation. These nonlinear effects may then promote the

disturbance growth. In essence, non-modal growth offers a route to trigger subcritical

instabilities although the initial perturbations are small.
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6.1 Energy gain–loss balance for super- and subcritical instabili-

ties

The dominant nonlinearity in premixed combustion systems, which determines the high-

amplitude behavior of thermoacoustic oscillations, is usually attributed to nonlinear

mechanisms in the response of the flame to oscillations in velocity, as explained in Sec-

tions 2.3.3 and 2.4. Predicting subcritical phenomena, such as triggering of instabilities and

hysteresis in parameter variations, therefore, requires knowledge of the nonlinear flame

response. Experimental investigations have shown that the response of lean premixed

flames to velocity fluctuations generally tends to saturate at high amplitudes (Balachan-

dran et al. 2005; Bellows et al. 2007a; Noiray et al. 2009), but more complex behavior with

a non-monotonic decrease in response was also observed (Thumuluru & Lieuwen 2009).

Subcritical instabilities may appear if the dependence of the energy gain due to ther-

moacoustic processes on the oscillation amplitude is such that the slope varies non-mono-

tonically (Zinn & Lieuwen 2005). In the following, we will assume that the mechanisms

responsible for the damping of acoustic energy are completely linear. This will hold only

approximately at high oscillation amplitudes, in particular, when the velocity perturba-

tions are of the order of the mean flow and whenever sharp corners, such as area con-

tractions and expansions, are involved (see the discussion in Section 7.4.2). The dominant

nonlinearity, causing a saturation in the oscillation amplitude, is however, typically as-

sumed to be solely associated with the heat release response (Dowling 1999; Heckl 1990).

For a qualitative discussion, the assumption of linear acoustic processes is, therefore, ap-

propriate.

We consider the case of a supercritical instability first. If the damping is assumed to

be linear, the gain/loss–amplitude relationship can be sketched as shown in Fig. 6.1(a).

Intersections of the gain and damping curves mark equilibrium solutions. At zero oscil-

lation amplitude, the gain curve has a larger slope than the damping curve; the system

is linearly unstable. The fluctuation energy increases, exponentially in the linear regime,

until the gain decreases. This is a result of the saturation in the heat release response.

Since the increase in energy gain with oscillation amplitude is now smaller than that of

the loss, there is an intersection of the two curves at finite amplitude, which represents an

equilibrium solution – the limit cycle. Stability can be assessed by perturbing the solution

to smaller and larger amplitudes. For lower amplitudes, the gain is larger than the loss

so that the fluctuation energy increases again. Perturbations to larger amplitudes cause a

higher loss and, therefore, a decrease in acoustic energy.

In case of a subcritical instability (Fig. 6.1(b)), the gain curve has a smaller slope than

the damping curve at zero oscillation amplitude so that there is a stable fixed point. In

practice, this state may still show well noticeable perturbations in the pressure and heat

release fields due to the presence of noise, but no coherent oscillations would be observed.

The next intersection of the gain and loss curves represents an unstable limit cycle. For

oscillation amplitudes smaller than this, the system will return to the fixed point. How-

ever, if the system is perturbed beyond the amplitude of the unstable limit cycle, the next

attracting equilibrium solution in state space is the stable limit cycle, the third intersection

of the gain and loss curves. Once the system has entered this state, it will remain on it

if no further action is taken. The two stable equilibrium states will be referred to as the
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Figure 6.1: Acoustic energy gain–loss balance for (a) supercritical and (b) subcritical in-
stability

lower and the upper branch in the following, with the bifurcation diagram in mind (Zinn

& Lieuwen 2005 or Fig. 6.4).

6.2 Experimental observations of subcritical phenomena in the

combustor test-rig

In this section, we present experimental results, which, based on the previous discussion,

clearly demonstrate that subcritical phenomena are present. In particular, two stable equi-

librium states at fixed operating conditions were observed, which differed by an order of

magnitude in their oscillation amplitude. The two states were also associated with differ-

ent flame anchoring positions resulting in an increased pressure loss. A change between

these two states could be invoked by externally induced perturbations. Associated hys-

teresis phenomena were observed in the three major operating parameters.

6.2.1 Triggered instability

As mentioned at the beginning of this chapter, subcritical bifurcations give rise to trig-

gered instabilities. If the system is initially in the non-oscillating state (the stable fixed

point, see Fig. 6.1(b)), a perturbation with amplitude larger than that of the unstable limit

cycle will cause the system to settle on the stable limit cycle. (Note here that we only con-

sider the system dynamics in a strongly simplified way and do not adhere to any possible

transient growth.) Exactly this behavior was observed in the test-rig. The time trace of

the unsteady combustor pressure, at operating conditions corresponding to the subcritical

case, is shown in Fig. 6.2. During the first 15 seconds, the pressure fluctuations consist

of random noise components. The system is linearly stable. At t = 15 s, an external

excitation is applied for one second via the speakers mounted downstream of the flame

(see Fig. 3.1). The system immediately jumps on a high-amplitude limit-cycle oscillation

and remains on it – even without external excitation. The oscillation is self-sustaining (in

contrast to self-excited in the supercritical case).

This demonstrates that both equilibrium solutions, the fixed point with low level noise

and the limit-cycle oscillation, are stable. On the limit cycle, the pressure signal is highly

regular, as shown by the inset in Fig. 6.2. The spectra of the unsteady pressure upstream
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Figure 6.2: Combustor pressure (black) and excitation signal (red) histories for a triggered
instability. The inset shows a close-up of the pressure oscillation pattern. The amplitude
of the forcing signal has an arbitrary scale in this plot.

of the burner and the OH-chemiluminescence intensity in the limit-cycling state exhibit

high-amplitude oscillations at 85 Hz (Fig. 6.3), the quarter-wave-mode frequency of the

combustion chamber. Spectral peaks up to the ninth harmonic are clearly visible. It can

also be noted in Fig. 6.3 that low-frequency oscillations around 20 Hz on the lower branch,

which may be indicators for the flame being close to blow-off (Nair & Lieuwen 2005), are

suppressed on the upper branch.

Without further action, the limit-cycling state would be sustained indefinitely. Through

open-loop forcing with the speakers, a transition from the limit cycle to the fixed point

could be invoked, using high amplitudes at frequencies sufficiently smaller or larger than

that of the main oscillation. This is similar to the control investigations by Knoop et al.

(1997). In the present case, however, it was also possible to cause a transition the other

way round, in contrast to the work cited.
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Figure 6.3: Spectra of (a) pressure and (b) OH-chemiluminescence. Data for the lower
and the upper branch was taken at identical operating conditions and corresponds to the
two stable equilibrium states.



64 Part I. Thermoacoustic Instabilities in a Model Combustor

control parametero
sc

il
la

ti
o

n
am

p
li

tu
d

e

stable fixed point

unstable fixed point

unstable limit cycle

stable limit cycle

0
A B
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6.2.2 Hysteresis in parameter variations

A schematic of the principal bifurcation diagram for a subcritical case with hysteresis is

shown in Fig. 6.4. For values of the control parameter smaller than A, only one equilib-

rium solution exists, a stable fixed point. No coherent oscillations will be observed, even

if the system is perturbed by finite amplitude disturbances. At A, there is a cyclic fold bi-

furcation, a saddle–node bifurcation of periodic solutions (Nayfeh & Balachandran 1995),

where two limit cycles, one being stable, the other unstable, are created. If the control

parameter is increased beyond A but not beyond B, three equilibrium solutions coexist,

the stable fixed point, the unstable, and the stable limit cycle. All perturbations from the

stable fixed point with amplitude smaller than that of the unstable limit cycle will decay,

and the system will eventually return to the fixed point. Disturbances with amplitudes

higher than that of the unstable limit cycle will cause a transition to the upper branch,

the stable limit cycle. For the control parameter equal to B, there is a subcritical Hopf bi-

furcation where the fixed point loses stability. For control parameters larger than B, even

infinitesimal perturbations are amplified; the system is linearly unstable. The limit cycle

is the only attracting solution, and only large amplitude oscillations would be observed in

an experiment.

When increasing the control parameter starting from values smaller than A, the system

will jump on the limit cycle as soon as B is crossed. In the presence of noise, an earlier

transition to the upper branch may be caused. If the control parameter is now decreased,

the system will remain on the upper branch until values smaller than A are attained. This

is observed as hysteresis. For values of the control parameter between A and B, the system

state depends on the history. This may be seen as a major simplification of the actual

processes in the test-rig. The experimental observations, however, clearly demonstrate

that the dominant dynamics follow this scheme.

A hysteretic dependence of the oscillation amplitude on the three essential operating

parameters, the preheat temperature and the air and gas mass flows (which is equivalent

to mixture ratio and power), was observed in the test-rig. The baseline operating condi-

tions had a preheat temperature of 50 ◦C with a power of 97 kW at an equivalence ratio

of 0.55. In the hysteresis experiments described below, two of the operating parameters

were kept at their baseline values and the third was varied. The baseline case was in the
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Figure 6.5: Instantaneous combustor pressure amplitude for increasing and decreasing
control parameters. (a) Variation of preheat temperature, (b) variation of gas mass flow,
(c) variation of air mass flow, (d) variation of preheat temperature, supercritical case

hysteresis region (control parameter between A and B, Fig. 6.4) for all three operating

parameters.

The variation of the combustor pressure oscillation amplitude with increasing and de-

creasing preheat temperature is shown in Fig. 6.5 (a). The low-pass filtered magnitude of

the analytic signal pa = p + iH[p] (H denoting the Hilbert transform) is plotted versus

the instantaneous value of the preheat temperature Tph. For Tph smaller than 30 ◦C, the

system is globally stable. This was confirmed by introducing external perturbations at

various frequencies and amplitudes. For preheat temperatures larger than 30 ◦C, a second

equilibrium solution exists (point A in Fig. 6.4) – a limit cycle with oscillation amplitudes

of more than 3 % of the mean combustor pressure. Increasing the preheat temperature

further up to 65 ◦C, the amplitude of the lower branch slightly grows. At Tph = 65 ◦C, the

fixed point loses stability (point B in Fig. 6.4), and the only attracting solution in phase-

space is now the upper branch, a limit-cycle oscillation. Once on the upper branch, the

preheat temperature has to be decreased down below 30 ◦C to cause a switch to the non-

oscillating solution.

At fixed preheat temperature, in the hysteresis region, a transition of the system state

from the lower to the upper branch could be invoked, by acoustic forcing with the speak-

ers at the limit cycle frequency at high amplitudes (as shown in Fig. 6.2). To cause a tran-

sition from the upper to the lower branch, i.e., to stabilize the system, strong forcing at

frequencies sufficiently larger or smaller than that of the main oscillation was effective.
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Hysteretic dependence of the pulsation amplitude on air and fuel mass flow was also

observed. The corresponding bifurcation diagrams are shown in Figs. 6.5 (b) and 6.5 (c).

The subcritical characteristics, similar to the variation in preheat temperature, are clearly

visible. It can be noted here that the system is generally destabilized if the control pa-

rameters are varied such that the flame moves closer to the burner. As will be shown in

the next section, the two coexisting equilibrium solutions in the hysteresis region are as-

sociated with two different flame anchoring positions – one outside and one inside of the

burner.

The variation of the oscillation amplitude with preheat temperature for the supercrit-

ical case is shown in Fig. 6.5 (d). Here, the equivalence ratio was higher compared to the

case shown in Fig. 6.5 (a). The oscillation amplitude increases continuously with preheat

temperature, and there is a unique relation between the two.

Through the installation of an orifice with a moderate contraction and an additional

extension of the combustion chamber length, it was possible to achieve a global stabiliza-

tion of the system. For high forcing amplitudes at the limit cycle frequency of the original

configuration (and frequencies close to that), high oscillations could be observed. When

increasing and decreasing the forcing amplitude, hysteresis was observed in the system

response with a distinct jump at a certain forcing strength (see also Section 6.3). There

were, however, no oscillations without forcing, contrary to the self-sustained case in the

original configuration. This behavior was also reported by Bellows et al. (2007b).

6.2.3 Oscillating and non-oscillating states associated with the flame anchor-

ing position in the burner

Flame stabilization in combustion chambers with swirl burners usually relies on vortex

breakdown at the burner dump plane (Escudier 1987; Lucca-Negro & O’Doherty 2001).

In recent numerical (Biagioli 2006) and experimental (Güthe et al. 2006) investigations

on the EV double-cone burner, it was found that for a certain equivalence ratio, there is a

sudden transition of the flame anchoring position from outside to inside of the burner. The

associated change in the burner flow field results in a significant increase in the pressure

loss across the burner (henceforth denoted by ∆p). Both flame anchoring positions were

found to be stable over a range of equivalence ratios. It was further found that pressure

pulsations due to thermoacoustic feedback were largest at those values of the equivalence

ratio that correspond to the transition of the flame anchoring position (Biagioli et al. 2008;

Güthe et al. 2006). With different flame imaging techniques, Güthe et al. demonstrated

that during thermoacoustic pulsations, the flame moves between the two possible flame

anchoring positions.

We also observed the two different flame anchoring positions in the experiments as-

sociated with the investigation of subcritical instabilities. Images of the line-of-sight in-

tegrated OH-chemiluminescence intensity of the flame were acquired with an intensified

CCD camera. The results for a variation of the equivalence ratio around the baseline case

are displayed in Fig. 6.6; the burner velocity was held constant. To suppress thermoacous-

tic oscillations, which would have been observed with the original set-up, we reduced the

combustor length to approximately one third. With the shorter combustion chamber, no
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Figure 6.6: Line-of-sight integrated OH-chemiluminescence images of the flame for in-
creasing equivalence ratio (constant burner velocity). Each image has been scaled with
its maximum and represents the average of 500 pictures. Labels (a)–(l) correspond to
equivalence ratio and pressure loss as indicated in Fig. 6.7.

significant pressure oscillations were present. Hence, the images in Fig. 6.6 correspond to

the mean state with no oscillations.

For smaller equivalence ratios, the flame is completely located outside of the burner

(Figs. 6.6(a)–6.6(c)). An increase in the fuel mass flow causes the flame to become more

compact and to move closer to and eventually inside the burner. From Fig. 6.6(g) on, the

flame is anchored deeply inside the burner and a further increase in the equivalence ratio

does not lead to a noticeable change in the mean flame shape (Figs. 6.6(g)–6.6(l)).

The pressure loss associated with the equivalence ratio and the different flame shapes

is shown in Fig. 6.7. A significant increase can be observed up to the point where the flame

is completely anchored inside the burner. This is in agreement with the investigations of

Biagioli (2006) and Güthe et al. (2006). From the point on where the flame does not change

its shape significantly ((g)–(l)), the pressure loss remains approximately constant.

To understand which flame shape is associated with the oscillating and the non-oscil-

lating state, mean images of the flame have been recorded for four more cases:

(i) strong forcing of the stabilized configuration (with orifice) on the lower branch,

Fig. 6.8(a),

(ii) strong forcing of the stabilized system on the upper branch (same forcing amplitude

as (i)), Fig. 6.8(b),

(iii) lower branch of the original configuration (low level noise), Fig. 6.8(c), and

(iv) upper branch of the original configuration (self-sustained oscillation), Fig. 6.8(d).
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Figure 6.7: Non-dimensional pressure ζ = 2∆p/(ρū2) loss as a function of the equiva-
lence ratio at fixed burner velocity. Points (a) through (l) correspond to the chemilumi-
nescence images of the flame in Fig. 6.6.

Upon comparison with Fig. 6.6, we note that the non-oscillating states (Figs. 6.8(a) and

6.8(c)) are associated with the flame being anchored outside the burner. For high-ampli-

tude oscillations on the upper branch, driven (Fig. 6.8(b)) or self-sustained (Fig. 6.8(d)), the

mean flame position is anchored deeply inside the burner. The OH-chemiluminescence

intensity images in Fig. 6.8 are scaled with different maximum intensities to allow for a

better comparison of the flame shapes. Although the mean heat release is identical for the

four images, the equivalence ratio fluctuations for the oscillating cases 6.8(b) and 6.8(d)

generate a significantly larger mean chemiluminescence intensity due to the exponential

dependence on φ (Higgins et al. 2001).

The center of gravity along the streamwise coordinate as a function of the transverse

coordinate, Cx(y), was calculated for the four cases according to

Cx(y) =

∫

i(x, y) x dx
∫

i(x, y) dx
, (6.1)

where i(x, y) denotes the OH-chemiluminescence intensity distribution, x and y are stream-

wise and transverse coordinates, respectively, and the integration is performed over the

(a) max intensity 130 (b) max intensity 280 (c) max intensity 135 (d) max intensity 250

Figure 6.8: Line-of-sight integrated OH-chemiluminescence images of the flame on the
upper and the lower branch with and without excitation; (a) stabilized configuration with
forcing, lower branch, (b) stabilized configuration with forcing, upper branch, (c) original
configuration, lower branch, (d) original configuration, upper branch
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Figure 6.9: Centers of gravity Cx(y) along the
streamwise coordinate for the chemiluminescence
images in Fig. 6.8. The burner exit plane is lo-
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complete image length. The centers of gravity for the cases on the lower branch nearly

coincide (Fig. 6.9). The same is true for the cases on the upper branch. Note again that

cases (a) and (b) correspond to the same operating conditions, identical acoustic bound-

ary conditions, and the same forcing amplitude. Likewise, cases (c) and (d) have iden-

tical parameters. A mean shift of the center of gravity of approximately 15 mm can be

observed between the oscillating and the non-oscillating states. Resulting from this signif-

icant change in mean flame position and shape, a noticeable change in the flame response

to velocity fluctuations for increasing amplitudes can be expected.

Since the pressure loss across the burner is inherently linked to the flame anchoring

position (Biagioli 2006; Güthe et al. 2006, Figs. 6.6 and 6.7), hysteresis effects can be ex-

pected in the pressure loss, too. The oscillation amplitudes of the combustor pressure and

the chemiluminescence intensity, the pressure loss coefficient ζ, and (the positive part of)

the forcing signal, respectively the preheat temperature, are shown in Figs. 6.10 (a) and

6.10 (b). For the computation of the pressure loss coefficient, we used ζ = 2∆p/[ρ(ū2 +

û2/2)], where ū represents the mean bulk velocity, and û is the amplitude of the veloc-

ity oscillations. The latter must be included to account for the DC shift in pressure loss

generated by the quadratic nonlinearity in combination with the approximately harmonic

oscillation. The acoustic velocity, necessary to determine û, was reconstructed from the

pressure measurements upstream of the burner by means of a time-domain realization of

the Multi-Microphone-Method (Bothien et al. 2008; Moeck et al. 2007a).

The results shown in Fig. 6.10 (a) were obtained using the stabilized set-up (with orifice

and chamber length extension). Forcing was applied at a frequency of 85 Hz, identical to

the case with self-sustained oscillations. The pressure and heat release oscillation ampli-

tudes as well as the pressure loss coefficient remain almost constant for forcing amplitudes

smaller than a critical level. (Actually, the perturbations in heat release are apparently

slightly stabilized by low level forcing.) As soon as the critical forcing level is exceeded, the

oscillation amplitudes jump to significantly higher values. At the same time, the pressure

loss coefficient increases by about 15 %, which corresponds to the same amount observed

in non-oscillating conditions through an increase in equivalence ratio (Fig. 6.7). To reach

the lower branch, the forcing amplitude has to be decreased down below the critical level.

The oscillation amplitudes as well as the pressure loss coefficient drop to lower values si-

multaneously. Qualitatively similar characteristics with jumps to even higher oscillation
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Figure 6.10: Time traces of normalized oscillation amplitudes of the combustor pressure
p̂ and the chemiluminescence intensity ÎOH, normalized pressure loss coefficient ζ, and
(a) forcing signal e, (b) preheat temperature Tph

amplitudes and a stronger increase in pressure loss were obtained when forcing at lower

frequencies (80 Hz and 75 Hz). No transition could be caused, however, with forcing at

higher frequencies (90 Hz and 95 Hz).

The variation of the oscillation amplitudes and the pressure loss for increasing and

decreasing preheat temperature in the original set-up is shown in Fig. 6.10 (b). Up to a

preheat temperature of 65 ◦C, the oscillations in pressure and heat release are small, and

the pressure loss has approximately the baseline value. As the preheat temperature is in-

creased beyond 65 ◦C, the oscillation amplitudes jump to high levels, and the pressure loss

increases noticeably (point B). There is a somewhat irregular distribution of the pressure

loss for preheat temperatures up to 120 ◦C. The oscillation amplitudes and the pressure

loss remain on high levels until the preheat temperature is decreased down below 30 ◦C

(point A). These results demonstrate that the pressure and heat release oscillations in the

combustor are inherently linked to the static pressure loss at the burner and the associated

change in the flame anchoring position.

6.3 Flame response to fluctuations in velocity

The crucial ingredient for the subcritical behavior is the nonlinear gain–amplitude rela-

tionship schematically shown in Fig. 6.1(b). As mentioned before, the damping processes

are assumed to be linear since they are essentially acoustic phenomena.

The amplitude response of the normalized global OH-chemiluminescence intensity

IOH/ ĪOH to normalized velocity fluctuations u/ū has been measured in the test-rig with

the stabilized configuration for different excitation amplitudes at the frequency of the self-

sustained oscillation observed in the original set-up (Fig. 6.11). Excitation was applied si-

multaneously with the upstream and the downstream speakers, the phase between them

being shifted such that the maximum amplitude could be achieved. The global chemilu-

minescence intensity from the OH radical was collected with a photomultiplier equipped

with a band-pass filter centered at 308 nm (see Fig. 3.1). Velocity fluctuations upstream of

the burner were obtained from the Fourier transformed pressure signals by applying the
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ê ↓

velocity amplitude |û|/ū
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Figure 6.11: OH-chemiluminescence intensity fluctuation response as a function of (a) the
velocity fluctuation amplitude and (b) the forcing level; data for increasing and decreas-
ing excitation amplitude ê. In (a), the response at the first two harmonics is also shown
(triangles).

Multi-Microphone-Method (Appendix A). The response at the fundamental frequency

as well as at the first two harmonics is plotted in Fig. 6.11 (a). Due to the discontinuous

dependence of the oscillation amplitude on the excitation level (see Fig. 6.10 (a)), an inter-

mediate amplitude range could not be realized. Data for increasing as well as for decreas-

ing excitation amplitude is plotted in Fig. 6.11. While the chemiluminescence fluctuation

amplitude shows a hysteretic dependence on the excitation amplitude (Fig. 6.11 (b)), the

Î vs. û curve does not. The fact that the flame transfer function is continuous was also

emphasized by Bellows & Lieuwen (2004). For smaller amplitudes (on the lower branch),

the harmonic content in the chemiluminescence signal is hardly visible, but a significant

harmonic response can be observed at higher amplitudes (on the upper branch).

We can already deduce from the available amplitude data in Fig. 6.11 (a) that there must

be an inflexion point in the intermediate amplitude range if the flame transfer function is

assumed to be continuous. To obtain more information on the q–u amplitude relation in

the intermediate range, transient data with and without forcing at different amplitudes

was recorded. In this way, several transitions from the upper to the lower branch and vice

versa were captured. Figure 6.12 displays pairs of normalized global chemiluminescence

intensity and normalized velocity fluctuation amplitude from the transient data. The IOH

and u time traces were zero-phase band-pass filtered around the fundamental frequency

of oscillation to remove the higher-harmonic content. Application of the Hilbert transform

then allowed to recover the instantaneous amplitude at the fundamental frequency. For

comparison, the available data from constant amplitude forcing is also added. The dashed

line represents a model for the nonlinear flame response, which is described in the next

section.

Although there is large scatter, the transient data clearly shows a non-monotonic slope

in the Î–û relation. Upon comparison with Fig. 6.1(b), this amplitude dependence can be

assumed to be the reason for the subcritical phenomena observed. We also note that the

inflexion point is quite accurately located at that oscillation amplitude at which backflow

occurs. The large scatter in the data can be explained by the fact that in the transient case,
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Figure 6.12: Instantaneous amplitude of OH-chemiluminescence intensity fluctuation vs.
velocity fluctuation during a transient variation of the oscillation amplitude. The red
dashed line represents a model for the nonlinear flame response, described in the next
section. The symbols are values obtained from constant amplitude forcing (Fig. 6.11).

the q̂–û relation is not unique but depends on the history. This is in particular true for a

nonlinear system.

6.4 Nonlinear system model

In this section, we present a nonlinear model for a thermoacoustic system with a premixed

flame coupled to a linear longitudinal acoustic field. The model is based on experimental

data for the chamber acoustics to match the test-rig characteristics. The only mechanism of

acoustic–flame interaction considered in the model is the generation of equivalence ratio

perturbations by the oscillating air mass flow at the burner (cf. Section 2.3.1) and the as-

sociated fluctuations in the flame speed. Also, the generation and propagation of acoustic

waves are treated in a completely linear fashion, assuming that the dominant nonlinear-

ity is introduced through the interaction between the fluctuating air mass flow and the

heat release in the flame, as detailed in Sections 2.3 and 2.5. Although this model is quite

generic and ignores some physical mechanisms that may also be important (e.g., flame

front kinematics, Thumuluru & Lieuwen 2009, or the negative pressure loss dependence

on the burner velocity, Polifke et al. 2003), it bears qualitative and to a certain extent quan-

titative comparison with the experimental data from the test-rig.

6.4.1 Model set-up

Fluctuations in heat release induced by perturbations in equivalence ratio

Assuming a stiff fuel injection, perturbations in velocity at the burner generate fluctua-

tions in equivalence ratio via (Peracchio & Proscia 1999)

φ′ = φ̄

(

1

1 + kdu/ū
− 1

)

, (6.2)
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where kd is a model constant whose value will be discussed below. The propagation of

the equivalence ratio perturbations (from fuel injection to flame front) is modeled as a

one-dimensional convection–diffusion process so that the evolution of φ′ is given by

(

∂t + ū∂x − Γ∂2
x

)

φ′ = 0. (6.3)

Here, Γ is an effective diffusion coefficient. For time-harmonic perturbations and the con-

dition that φ′ < ∞ as x → ∞, the transfer function between the fluctuating scalar at x = L

(which we take to be the flame position) and at x = 0 (the fuel injector) is given by

Fφ(ω) =
φ̂L(ω)

φ̂0(ω)
= exp

[

Pe

2

(

1 −
√

1 + 4iωτcPe−1

)]

, (6.4)

where τc = L/ū is a characteristic convection time and the Péclet number is defined as

Pe = ūL/Γ. This model is similar to the one proposed by Schuermans et al. (2004b) for

the linear flame transfer function of a turbulent premixed flame. In fact, the high Péclet

number limit of Eq. (6.4) reads

Fφ(ω) = e−iωτc e−(ωτc)2Pe−1

, as Pe → ∞, (6.5)

which corresponds to the successive application of a pure undamped time delay due to

advection and a Gaussian low-pass with variance Pe/(2τ2
c ), and this is identical to the

model given by Schuermans et al. The Péclet number and the convective delay were cho-

sen to match with the low-pass and time-lag characteristics obtained from linear flame

transfer function measurements.

To use Fφ(ω) as given in Eq. (6.4) in a time-domain simulation, a rational approxima-

tion is employed to set up a linear state-space model of the form (cf. Section 2.5.1)

ẋ = Ax + Bφ′
0, (6.6a)

φ′
L = Cx + Dφ′

0, (6.6b)

with
[

A B
C D

] iω≈ Fφ(ω). (6.7)

The laminar flame speed sl is computed from the equivalence ratio through the static

relation given by Abu-Orf & Cant (1996)

sl = aφb e−c(φ−d)2
. (6.8)

Here, a, b, c, and d are empirical constants determined to match the available experimental

data (Abu-Orf & Cant 1996). The influence of turbulence on the flame speed is modeled

by the simple relation (see, e.g., Peters 1992, p. 227 or Lipatnikov & Chomiak 2002)

st = sl

[

1 + C

(

v′

sl

)n]

, (6.9)

where C and n are model constants, and v′ represents the turbulence intensity. We used

the typical values C = 1.25 and n = 0.7. For the turbulence intensity, we chose v′ = 20 %,
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which is a representative value found in cold flow measurements (Lacarelle et al. 2010).

The total heat release associated with the unsteady flame is then obtained from

Q = αρA f sthr . (6.10)

Here, A f represents the flame surface area, and the product αA f is used as a tuning pa-

rameter to adapt the nonlinear flame response to the experimental data (see below). The

specific heat of reaction, hr , depends on the equivalence ratio and is (in case of methane)

proportional to (Hubbard & Dowling 2001; Lieuwen 2003)

min(φ, 1)

1 + 0.05825 φ
. (6.11)

Combining all equations yields a nonlinear time-domain model for the heat release re-

sponse to flow perturbations. The model constants kd in Eq. (6.2) and the product αA f

in Eq. (6.10) have been determined so that the response at 85 Hz matches the amplitude

dependence obtained from the experiments (see Fig. 6.12). There is good correspondence

between the model and the experimental data at low and high amplitudes. In the interme-

diate amplitude range, the agreement is not as good. However, the stable equilibria in the

experiments were located at low and high amplitudes so that the amplitude dependence

in the intermediate range can be expected to mainly influence the transient characteristics

(such as the critical triggering amplitude).

Chamber acoustics

Since we are dealing with a low-Mach-number flow, the pressure is continuous across

the flame (Lieuwen 2003). The role of the plane acoustic field can then be lumped into a

relation mapping the acoustic velocity downstream of the flame to that upstream. This

is done by means of the specific admittance A and impedance Z , which represent the

plane wave acoustics up- and downstream of the flame in frequency domain, respectively

(see Section 2.1). The admittance and impedance were obtained from experimental test-

rig data as follows. To determine the upstream admittance, the reflection coefficient at

the flame Rus(ω) was measured in cold flow conditions using sweep excitation with the

downstream speakers and subsequent application of the Multi-Microphone-Method to

the microphone array in the downstream duct (see Fig. 3.1). From the discrete frequency-

domain data, we then identify a state-space realization (see Section 2.5.1)

[

A B
C D

] iω≈ Rus(ω) (6.12)

and obtain a time-domain admittance model by using

A =
1 −Rus

1 + Rus
. (6.13)

This operation can be performed on the state-space system representing the upstream re-

flection coefficient and results in a system of the same type for the admittance. The state-

space matrices of the two systems are related by elementary matrix-algebraic operations.
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Figure 6.13: Measured and identified reflection coefficients (a) upstream and (b) down-
stream of the flame

The downstream reflection coefficient was determined by forcing the system with the

upstream speakers in hot (reacting) conditions and applying the Multi-Microphone-Meth-

od again to the microphone array in the downstream duct. The same procedure as de-

scribed above for the reflection coefficient on the upstream side then allows to obtain a

time-domain model for the downstream admittance from

Z =
1 + Rds

1 −Rds
. (6.14)

The two measured reflection coefficients and the identified models are shown in Fig. 6.13.

There is good agreement in the frequency range considered. The reference plane for the

reflection coefficients is the average flame location, 105 mm downstream of the burner

dump plane.

Since the pressure is assumed continuous, we can now construct a time-domain rela-

tion in state-space form which maps the velocity perturbation downstream of the flame to

that upstream, viz.,

uus = ξ−1
[

A B
C D

]

uds, with
[

A B
C D

] iω≈ (ZA)(ω), (6.15)

where ξ = (ρc)us/(ρc)ds. This mapping is a representation of the whole chamber acous-

tics. The acoustic model is based on experimental data taken at the reference conditions

at an equivalence ratio of φ = 0.55. In Section 6.4.2, simulation results for a variation of

the equivalence ratio are shown. The associated change in the temperature field and the

impact on the acoustic wave propagation has not been taken into account in the model.

Coupling acoustic and flame models, noise source terms, and excitation

A representation for the complete thermoacoustic system, the nonlinear flame response

coupled to a linear longitudinal acoustic field, is obtained by combining the acoustic

model explained above with the nonlinear flame model. The relation between uus and
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Figure 6.14: Schematic representation of the nonlinear system model. The acoustics up-
and downstream of the flame are lumped into admittance A(ω) and impedance Z(ω);
q denotes the nonlinear heat release model, and ps and us represent the acoustic source
terms of the flame. External forcing is modeled as an additional pressure source.

uds (Eq. (6.15)) is closed by invoking the jump conditions (2.16)2 to calculate the jump in

acoustic velocity across the flame front from the heat release perturbation. In the cou-

pled model, an additional delay of 2.7 ms was added to the flame response to match the

frequency of the self-sustained oscillation in the simulation with that observed in the ex-

periments.

In the simulation, we add colored noise to the pressure at the flame and to the acous-

tic velocity downstream of the flame. A colored-noise sequence is generated by filter-

ing white noise through experimentally determined source spectra (Paschereit et al. 2002;

Schuermans et al. 2009) that were obtained in parallel with flame transfer matrix mea-

surements for the same burner. For the simulation of triggered instabilities and the stabi-

lization from the upper to the lower branch, we include harmonic forcing in terms of an

additional pressure source at the flame in the model. This mimics the open-loop excitation

by the speakers in the experiment. A block diagram of the simulation model, including all

components described above, is shown in Fig. 6.14.

6.4.2 Simulation results

Time-domain simulations were performed in order to investigate if the model exhibits

subcritical behavior. Figure 6.15 shows a triggered instability in the model simulation. Al-

though noise is present, the pressure oscillations remain small in the beginning; the system

is linearly stable. At t = 1.5 s an external perturbation in form of harmonic forcing at 85 Hz

is introduced. After a few cycles, the combustor pressure oscillations grow to the upper

branch, and even if the forcing is stopped, the system remains in a limit-cycling state – the

oscillation is self-sustaining. This clearly demonstrates that subcritical behavior is present

and two stable equilibria exist. Triggering was most effective when perturbing the system

on the lower branch with frequencies equal or close to the limit cycle frequency (±5 Hz).

As in the experiment, a transition from the upper branch to the lower one could be forced

by excitation at frequencies sufficiently larger or smaller than the frequency of the self-

sustained oscillation. At t = 3 s, harmonic excitation at 60 Hz is applied, and a transition

from the upper to the lower branch is induced; the system is stabilized (Fig. 6.15).

2The same strategy – setting up an acoustic mapping which relates the velocity fluctuations downstream
of the flame to those upstream and then closing the system model with a heat release ”module“ – is used in
Chapters 8 and 9. There, however, the heat release is computed by a detailed zero-Mach reacting-flow solver.
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Figure 6.15: Triggered instability and stabilization in the model simulation. Combustor
pressure (black) and excitation signal (red). The amplitude of the forcing signal has an
arbitrary scale in this plot.

To test the model for hysteresis, the equivalence ratio was decreased below the point

where no limit-cycle oscillations could be triggered. The equivalence ratio was then in-

creased beyond the point where the fixed point loses stability and a self-excited oscillation

appears. The variation of the pressure oscillation amplitude for increasing and decreasing

equivalence ratio is shown in Fig. 6.16. Results for two different noise levels are plotted. A

broad region of hysteresis can be noted between φ̄ = 0.53 and φ̄ = 0.65 for the lower noise

level (solid line). However, the parameter range in which hysteresis can be observed de-

pends on the noise level introduced in the simulation. Increasing the noise level resulted

in a narrower hysteresis region (dashed line in Fig. 6.16). This is because when approach-

ing the critical parameter values (bifurcation points A and B in Fig. 6.4), the domains of

attraction of the respective equilibrium solutions shrink and larger noise components may

cause an earlier transition to the other branch.

6.4.3 Nonlinear energy gain and describing function associated with the flame

model

The energy gain in the acoustic field is proportional to the heat release–pressure correla-

tion integrated over one cycle of the fundamental oscillation (see Section 2.2.2)

Egain ∼
∫ T

0
Qp dt. (6.16)

If attention is restricted to the fundamental component, we can write

Egain ∼ |Q̂f||p̂f| cos
(

∠(Q̂f, p̂f)
)

, (6.17)

where the subscript ‘f’ denotes the Fourier component at the fundamental frequency. Since

the flame model does not include an amplitude dependence of the phase, the phase angle

between Q̂f and p̂f is constant for all oscillation levels. Also, the acoustic field is treated

linear, and therefore, the relation between p̂f and ûf is also independent of the amplitude.

Hence, the energy gain is proportional to the product of the amplitudes of the fundamental
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Figure 6.16: Low-pass filtered instantaneous amplitude of pressure oscillations vs. mean
equivalence ratio, simulation results. The red dashed line corresponds to an increased
noise level.

components of the heat release and velocity fluctuations

Egain ∼ |Q̂f||ûf|. (6.18)

We used the nonlinear flame model (Section 6.4.1) to compute the fundamental compo-

nent of the heat release response to a velocity forcing and determined |Q̂f(ûf)| |ûf|/(Q̄ū)

at the main frequency of oscillation for the two critical and one intermediate equivalence

ratio (inferred from Fig. 6.16). This term is proportional to the energy gain, as explained

above, and is displayed as a function of (|û|/ū)2 in Fig. 6.17 (a). The loss curve plotted

over the squared oscillation amplitude is a straight line due to the linearity of the acoustic

field. The slope matches that of the gain curve for φ̄ = 0.65 at low amplitudes because,

at this point, the system loses linear stability (point B in Fig. 6.4). With decreasing equiv-

alence ratio, the gain is reduced. For equivalence ratios smaller than 0.53, the gain does

not exceed the losses for any oscillation amplitude. Hence, the system is globally stable

because the fluctuation energy always decreases. For an intermediate equivalence ratio,

in the hysteresis region (φ̄ = 0.58), the gain and loss curves have two intersections at finite

oscillation levels. The one at higher amplitudes corresponds to the stable limit cycle, the

upper branch in the bifurcation diagram (Fig. 6.4).

We obtain equivalent results by considering the amplitude dependence of the transfer

function gain (the describing function) of the heat release model evaluated at the oscil-

lation frequency, which we compute as the fundamental response to harmonic forcing

divided by the amplitude of the input signal, viz.,

N(a) =
Q̂f[a sin(ωft)]

a
, (6.19)

where a corresponds to |û|/ū. The transfer function gain as a function of the velocity

perturbation amplitude at 85 Hz is shown in Fig. 6.17 (b) for the three equivalence ratios

as in Fig. 6.17 (a). The critical gain, above which the growth rates are positive, is marked by
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Figure 6.17: (a) Gain and loss curves for critical and intermediate equivalence ratios at an
oscillation frequency of 85 Hz. The green dashed line represents the linear acoustic losses.
(b) Describing function gain at 85 Hz for critical and intermediate equivalence ratios. The
green dashed line represents the critical gain.

the dashed line. It coincides with the transfer function gain for φ̄ = 0.65 at low amplitudes.

The next intersection at û/ū = 1.1 represents the amplitude of the limit-cycle oscillation.

For an equivalence ratio of φ̄ = 0.58, the gain is smaller than the critical gain for low

amplitudes so that the growth rate is negative. There are two oscillation amplitudes at

which the growth rate of the 85 Hz mode is zero, û/ū = 0.72 and 1.1. The first corresponds

to the unstable, the latter to the stable limit cycle. For equivalence ratios below φ̄ = 0.53,

the critical gain is not attained for any oscillation amplitude, and therefore, the system is

globally stable.

6.5 Discussion

We investigated subcritical thermoacoustic instabilities in the combustor test-rig. For cer-

tain operating conditions, a linearly stable system, initially exhibiting only low level noise,

could be triggered to high-amplitude self-sustained oscillations. This phenomenon is par-

ticularly dangerous because it cannot be predicted by linear stability analysis. In fact, for

the case at hand, a linear analysis would predict the system to be stable for operating

parameters corresponding to the hysteresis region.

Associated with the subcritical character of the system, we observed a hysteretic depen-

dence of the oscillation amplitude on the three major operating parameters. The sudden

increase in pulsation amplitude, when the system jumped from the lower to the upper

branch, was always accompanied by a noticeable increase in the pressure loss across the

burner. OH-chemiluminescence images of the flame revealed that the two stable equilib-

rium solutions in the hysteresis region, the fixed point and the limit-cycle oscillation, were

associated with different mean flame anchoring locations.

The response of the heat release rate to fluctuations in velocity was determined at the

instability frequency for a range of amplitudes up to those of the self-sustained oscillation.

We found that the flame response exhibits a non-trivial, not purely saturating amplitude

dependence, which explains the appearance of subcritical instabilities.

A nonlinear thermoacoustic model based on flame speed fluctuations induced by per-

turbations in equivalence ratio was presented. The model was capable of simulating
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subcritical phenomena such as triggering self-sustained limit-cycle oscillations and a hys-

teretic dependence of the oscillation amplitude on the equivalence ratio. A transition be-

tween stable and unstable branch could be induced by open-loop harmonic forcing. From

a dynamical systems point of view, it is easy to see why open-loop forcing is able to trigger

a transition between the two equilibrium states. Both have their domains of attraction in

phase space, and the forcing offers a way to transit from one to the other.

It is often implicitly assumed that strong pressure oscillations observed in an experi-

ment are the result of linear instability, the overall impression being that subcritical insta-

bilities are less common than supercritical instabilities. However, in many studies, it is not

really clear whether an experimentally or numerically investigated instability is actually

sub- or supercritical. This question can be thoroughly answered only if the actual growth

phase can be clearly identified to be exponential or if some control technique is used to

suppress the oscillation and it is then assessed if growth sets in immediately after control

is ceased.



Part II

A Hydrodynamic–Acoustic Two-way

Coupling for Modeling

Thermoacoustic Instabilities

Thermoacoustic phenomena comprise a multitude of time and length scales.

Therefore, numerical simulations of combustion instabilities and their con-

trol is conceptually challenging. For low-frequency instabilities, one of the

clearest discrepancies in scales is that of the acoustic wavelength and the

longitudinal extent of the reaction zone. Tackling this problem with a com-

pressible reacting-flow solver is inherently inefficient for two reasons:

(i) detailed numerical resolution is required only in a fraction of the relevant

domain and (ii) time step constraints associated with the speed of sound and

with the mean flow velocity differ by a factor of the Mach number. In the

following chapters, we propose a method to deal with this problem. The

method is based on an explicit decomposition of the actual domain into an

acoustic and a hydrodynamic zone. After the methodology is explained in

detail (Chapter 7), it is applied to three different configurations. The first

is a simple model problem (Section 7.5) based on which the procedure is

demonstrated to deliver meaningful results. The second configuration has

an experimental counterpart to validate the method (Chapter 8). Finally, the

two-way coupling approach is applied to a numerical configuration based

on the test-rig acoustics, where two control schemes are used to suppress

combustion oscillations (Chapter 9).





Chapter 7

Formulation of the Approach and

Application to an Elementary Model

Problem

7.1 Motivation for a hydrodynamic–acoustic coupling

Computational modeling of thermoacoustic processes in combustion chambers in order

to predict unstable operating regimes and to develop and test control methods is highly

desirable because this would reduce the need for expensive experimental investigations.

As shown recently, fully compressible reacting-flow computations based on large eddy

simulations manage to accurately capture the essential thermoacoustic interaction mecha-

nisms in realistic configurations and bear quantitative comparison with experimental data

(Schmitt et al. 2007). The computational effort is, however, still exceedingly high. One rea-

son for this is that, in the compressible case, the time step restriction has to be based on the

speed of sound as opposed to a characteristic advection velocity in incompressible simu-

lations. In gas turbine applications, the Mach number is typically of the order of 0.1 or less

so that the time step in a compressible simulation has to be smaller by more than an order

of magnitude compared to the incompressible case. In addition to that, it is far from trivial

to impose the proper acoustic boundary conditions, represented by frequency-dependent

impedances or reflection coefficients, in a compressible CFD simulation (Huber et al. 2008;

Widenhorn et al. 2008). This is a major restriction because the acoustic boundary con-

ditions have a strong influence on stability, frequency, and amplitude of thermoacoustic

oscillations (Bothien et al. 2008).

Various modeling approaches of lower complexity (and therefore less computational

demand) have been proposed in the literature. Network models, as introduced in Sec-

tion 2.5, divide the thermoacoustic system under investigation in several elements, each

being represented by acoustic frequency response functions for plane-wave (and possi-

bly azimuthal) modes. The coupling of the acoustic field with the flame is incorporated

by means of a flame transfer function/matrix. Such models have been shown to agree

reasonably well with measured instability regimes and oscillation frequencies (see ref-

erences in Section 2.5). The major weakness of the network approach is that the flame

dynamics still need to be determined by experiment or by CFD (see, e.g., Paschereit et al.

83
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2002; Polifke et al. 2001b). Also, taking into account nonlinearities in the flame response

is not straightforward. Information on the transfer function of turbulent premixed flames

at high forcing amplitudes is not easily obtained from experiments because this requires

strong excitation over a broad frequency range. Accordingly, the prediction of the oscilla-

tion amplitude under unstable conditions or capturing inherently nonlinear phenomena,

for example, a hysteretic dependence of the pulsation amplitude on system parameters, as

shown in Chapter 6, is difficult.

For these reasons, we consider a hydrodynamic–acoustic coupling, in which the in-

compressible flame dynamics are coupled to a representation of the acoustic field, as a

valuable tool, trading-off accuracy and efficiency in an ideal way. The principal idea of

coupling different models for thermoacoustic phenomena is not new. A brief overview of

previous work in this field is given in the next section.

7.2 Previous work

One possibility of reducing the computational effort is to use different models for the

computation of the reacting flow and the acoustic field. The comprehensive form of such

a coupling requires a mutual exchange of the two models, in the sense that the action of

the heat release influences the acoustic field and vice versa. For obvious reasons, this is

referred to as a two-way coupling. In the last ten years, various authors have used this

strategy with different approaches.

Dowling (1999) used a G-equation model of a premixed bluff-body-stabilized flame

combined with a wave-amplitude-based representation of the plane mode acoustics for

the computation of self-excited thermoacoustic oscillations. Fluctuations in heat release

rate were obtained from the kinematic evolution of the flame surface area, while assuming

a constant burning velocity. The model reproduced limit-cycle oscillations, observed in the

experiments of Langhorne (1988), with reasonable agreement.

Schuermans et al. (2005a,b) proposed a coupling strategy in which the reacting flow

is computed with compressible URANS (unsteady Reynolds-averaged Navier–Stokes) or

LES (large eddy simulation) solvers, and the acoustic domain is represented in terms of

equivalent boundary conditions. Based on a modal expansion of the Green’s function

for the geometry considered, an acoustic input–output map in the form of a linear time-

invariant state-space model is set up. The latter is either of admittance or impedance

type (i.e., maps pressure to velocity fluctuations or vice versa) and is applied directly to

the boundaries of the CFD domain. The input signals to the acoustic state-space models

are obtained from a plane-wave-based spatial filter of the compressible solution field. By

applying the measured test-rig impedance to the unsteady CFD simulation, they were able

to quantitatively reproduce the experimentally determined pressure spectrum.

A somewhat different approach, considering only linear stability characteristics, was

proposed by Kopitz & Polifke (2008). The system is divided into a CFD and a network

model domain. In a first step, the CFD domain is considered isolated. At the downstream

end, a fully reflecting boundary condition (a pressure node) is specified. The upstream

end is made non-reflective, and an additional identification signal is added, such as broad-

band noise. In this way, essentially, the reflection coefficient of the downstream part can be
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computed from the time-domain solution data. In conjunction with the network represen-

tation of the upstream part, the stability of the entire system can be assessed. The method

was validated with pure network model solutions of an elementary Rijke tube configura-

tion with a heater grid. Kaess et al. (2008) applied the same strategy to the configuration

investigated by Noiray et al. (2007, 2008), an unconfined collection of conical laminar pre-

mixed flames stabilized by a perforated plate and coupled to an upstream duct. A com-

parison with the experimental data showed good agreement in the mode frequencies, but

the growth rates were overpredicted.

A coupled model based on separate representations for the combustion zone and the

acoustics was also proposed by Tyagi et al. (2007). They considered a generic configura-

tion with a ducted non-premixed flame described by a global one-step reaction as well

as infinite-rate chemistry. A Galerkin method was used to model the one-dimensional

acoustic field. Only fully reflecting boundary conditions were considered, which do not

account for the loss of acoustic energy across the system boundaries. In the computations,

no stable limit-cycle oscillation was obtained.

The approach proposed here is the application of a two-way coupling strategy for the

simulation of thermoacoustic instabilities. The method takes advantage of the efficient

acoustic modeling capabilities of the network approach, while on the other hand, incor-

porating the thermoacoustic (linear and nonlinear) flame response by means of a detailed

numerical computation based on an incompressible scheme. Thus, this method will be

able to capture the essential stages of thermoacoustic oscillations – linear instability and

exponential growth, nonlinear saturation, and limit-cycle oscillation. Since the dominant

nonlinearity is fully accounted for, no restriction is made to supercritical instabilities.

In the next section, the methodology of the coupled simulation is presented. An ele-

mentary model problem is considered in Section 7.5 – a one-dimensional flame burning

freely in a closed–open duct. The interaction of the flame with the acoustic field is modeled

through oscillations in equivalence ratio. An actual test case is considered in Chapter 8. To

validate the approach, a flat flame Rijke-type set-up was built. The configuration shows

strong thermoacoustic oscillations at a frequency of approximately 430 Hz, corresponding

to the 5λ/4-mode of the geometry. The coupled simulation was applied to this case. Con-

trol applications are considered in Chapter 9. Here, a two-dimensional flame is embedded

into a real acoustic environment.

7.3 Theoretical basis for the coupled system representation

In the low-Mach-number, long-wave-length case, which is encountered in typical gas tur-

bine combustors, acoustic perturbations act on a scale L much larger than the axial extent

l of burner and flame (Fig. 7.1). Therefore, the effect of an acoustic wave on the burner

flow reduces to a global acceleration of an incompressible medium in the limit of van-

ishing Mach number (Klein 1995). Conversely, the heat released by the flame acts as a

point source on the large scale acoustic field, inducing a jump in the velocity fluctuation.

Therefore, the general strategy is to decouple the small scale hydrodynamic and the large

scale acoustic computation. Then a bilateral coupling can be achieved based on results

from low Mach number asymptotics. It is important to note here that, in contrast to the

work cited in the preceding section, where a compressible CFD solver has been used for
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Figure 7.1: Scale separation between combustion/flow phenomena and long-wave acous-
tics

the combustion zone, we represent the hydrodynamic/combustion part by a zero Mach

incompressible model.

The momentum balance for compressible flow is ill-conditioned for characteristic flow

velocities much smaller than the speed of sound. This is revealed by the dimensionless

form of the Euler equations

∂t̃(ρ̃ũ) + ∇̃·(ρũũ) +
1

M2
∇̃P̃ = 0. (7.1)

Here, ˜(·) denotes a dimensionless quantity, and reference length and time scale are related

by the characteristic flow velocity. We drop the tildes in the following discussion. The

pressure gradient term becomes singular as M → 0. To resolve this deficiency, Klein (1995)

introduces a multiple scale ansatz, in which the solution vector U is expanded in powers

of the Mach number M, viz.,

U(x, t; M) = ∑
i

MiU(i)(x, Mx, t). (7.2)

Here, x resolves the short hydrodynamic length scale and ξ = Mx the long acoustic scale.

The consequences of this ansatz, relevant in the present case, can be summarized as fol-

lows:

(i) To second order in the Mach number, the expansion of the pressure takes the form

P(x, t; M) = P0(t) + Mp(1)(Mx, t) + M2p(2)(x, Mx, t), (7.3)

where each term represents a physically different part. The zeroth-order pressure is

constant in space and corresponds to the thermodynamic background pressure. In

principle, P0 is a function of time, but in our applications of isobaric combustion, it

will be simply a constant. The first-order pressure p(1) takes the role of the acoustic

pressure and satisfies a wave equation (2.4) on ξ. p(1) may vary on the long acoustic

scale, but is spatially constant on the hydrodynamic scale x. The second-order pres-

sure p(2) is identified as the hydrodynamic part and is a function of the short as well

as of the long scales.
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(ii) The momentum equation at leading order reads

∂t(ρu)(0) + ∇x ·(ρuu)(0) + ∇x p(2) = −∇ξ p(1), (7.4)

which reveals that, in addition to the hydrodynamic pressure p(2), the acoustic gradi-

ent on the long scale, ∇ξ p(1), affects the flow field at leading order, acting essentially

as a momentum source. This term pulls the flow on the hydrodynamic scale in the

opposite direction of the acoustic pressure gradient and generates vorticity through

baroclinic torque whenever the flame front normal is not aligned with ∇ξ p(1).

(iii) The leading order energy equation implies a divergence constraint, which, in a sim-

plified form, can be written as

∮

∂V
u(0) ·n dA =

γ − 1

γP0

∫

V
q dV. (7.5)

In the full form, the divergence constraint includes an additional term related to the

temporal variation of the thermodynamic background pressure, which is important

in the case of non-isobaric combustion (see, e.g., Oevermann et al. 2008). Also, for

a clearer discussion, we neglected terms resulting from non-isomolar reactions, heat

conduction, and diffusion, which can be taken into account, though.

The right hand side of (7.5) is of crucial importance for thermoacoustic systems. It

is responsible for the flow divergence of the incompressible velocity field resulting from

heat-release-induced density changes in the domain. This type of unsteady expansion is

a source for the acoustic field, as was shown in Section 2.2. In fact, on comparing (7.5)

with Eq. (2.15), the latter representing the effect of a compact heat source on the acous-

tic field, we observe that the two are identical. However, whereas (2.15) is related to the

acoustic field, the divergence constraint (7.5) imposes the heat-release-associated diver-

gence on the hydrodynamic flow. Accordingly, to be consistent in the limit of (i) vanishing

Mach number and (ii) heat sources compact with respect to the acoustic wavelength, the

hydrodynamic and the acoustic flow perturbations have to be identical. This applies, in

particular, to the purely longitudinal case represented by Eq. (2.16).

Since Eq. (7.5) is linear in u as well as in q, we can apply it to deviations from a mean

state without being restricted to small fluctuations. This point is important as, in general,

relative fluctuations in the heat release rate will not be small in the case of finite-amplitude

oscillations, which we want to include in our approach. In a quasi-one-dimensional set-

ting, in which the velocity fluctuations are approximately plane at the inlet and the outlet

of the hydrodynamic domain, (7.5) simplifies to

A∆u
(0)
av =

γ − 1

γP0
Q, (7.6)

where A is the cross-sectional area, the subscript ‘av’ denotes an area average, and Q is

the global heat release.

The time-dependent acoustic pressure gradient ∇ξ p(1) is provided by the computation

of the acoustic domain. However, in the quasi-one-dimensional applications considered

in the following, this term will not have any effect on the reactive calculation but is im-

portant for studying instabilities associated with multi-dimensional effects. In the model



88 Part II. A Two-way Coupling

acoustic field acoustic field

hydrodynamic domain

Figure 7.2: Schematic representation of the spatial decomposition into hydrodynamic and
acoustic domains

problem considered in the next section, the acoustic field influences the hydrodynamics

only via a model that relates the chemical composition at the inflow to the acoustic ve-

locity (Section 7.5). The perforated-plate-stabilized flame configuration in Chapter 8, on

the other hand, exhibits heat release fluctuations that result from the dependence of the

burning velocity and the flame temperature on the approach flow. The response of the

two-dimensional flame investigated in Chapter 9 is caused, in addition, by kinematic ef-

fects.

7.4 Coupling strategy

To make use of the proposed coupling strategy, we apply a subdivision of the total domain

into hydrodynamic and acoustic parts. Consider the generic combustor set-up in Fig. 7.2,

which corresponds to a typical single-burner test-rig. The actual reaction zone with the

associated flow dynamics – the hydrodynamic domain – is short compared to the overall

longitudinal dimension. This hydrodynamic domain is assumed compact with respect

to the acoustic wavelengths relevant to the problem. For a configuration as in Fig. 7.2,

the flow/flame–acoustic coupling can be considered as essentially one-dimensional: the

acoustic velocity enforces an oscillation in the bulk velocity on the upstream side of the

hydrodynamic zone, and the heat release acts as a volume source for the axial particle

velocity.

Assuming the flame had no unsteady contribution, the acoustic variables on the up-

and downstream side must be continuous (even in the presence of a temperature jump).

With unsteady heat release in the hydrodynamic domain, the pressure remains continuous

because the flame cannot sustain a pressure difference, but the particle velocity has a jump

proportional to the amount of fluctuating heat release (Eq. (2.16)). If there are fluctuations

in the velocity on the upstream side, uus, the hydrodynamic domain entirely determines

the unsteady flow divergence resulting from the associated perturbation in heat release.

In principle, the flow divergence over the hydrodynamic domain will be explicitly com-

puted by a zero-Mach-type solver through the integration of the divergence constraint

Eq. (7.5). However, using the jump conditions (2.16), the integrated heat release can also

be used to deduce the velocity fluctuation on the downstream side, uds. Given now uds,

there are associated pressure fluctuations at the same location that are only determined

by the acoustic properties downstream of the flame. If the combustion chamber diameter

is small compared to the acoustic wavelength, this relation can be simply expressed in
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frequency domain by the impedance Z on the downstream side, viz.,

℘̂ = Z(ω)ûds, (7.7)

where ℘ = p/(ρc). Now, since the pressure is continuous across the flame (ρc is not), the

same reasoning can be applied to the upstream side but vice versa. This gives a relation

between the pressure and the velocity fluctuation upstream in terms of the admittance A

ûus = A(ω)℘̂. (7.8)

With Eqs. (7.7) and (7.8), the upstream velocity fluctuations can be directly related to those

downstream as

ûus = ξ−1AZ(ω)ûds, (7.9)

where ξ−1 = (ρc)us/(ρc)ds, as before. This is the same strategy that we used in Section 6.4.

The ratio of characteristic impedances appears only because we work with specific admit-

tance and impedance, which are scaled with the product of density and speed of sound

on either side of the flame.

The acoustic models are defined at the flame location (the maximum in mean heat

release, say) and, accordingly, contain all factors affecting the plane-wave response up-

stream/downstream of the hydrodynamic zone. As such, complete information on the

acoustic field without unsteady heat release is contained in A and Z . If uus is connected

straight to uds, with no unsteady heat release in between, the resulting homogeneous sys-

tem represents the unforced acoustics of the entire system. Hence, the purely acoustic

eigenfrequencies ωk satisfy ξ−1AZ(ωk) = 1.

Construction of the admittance and impedance models A(ω) and Z(ω) can proceed

in a variety of ways – using network-type techniques, finite-element-based Helmholtz

solvers, or experimental measurements (or combinations of all). This offers a superior

flexibility in setting up the acoustic representation. Also, changing geometric parame-

ters like duct lengths, for instance, is easily accomplished. All of the methods mentioned

above will be used in the following sections for the application of the two-way coupling to

different configurations. For the first case, which is an elementary model problem, we set

up the acoustic model purely based on simple one-dimensional acoustic relations. More

elaborate tools have to be used for the second case because this is an actual thermoacous-

tic system with an experimental counterpart. A combination of experimentally identified

and FEM (finite element method)-calculated submodels is used. For the third problem, we

employ a model exclusively based on experimental combustor test-rig data.

To use the acoustic mapping (7.9) in conjunction with a hydrodynamic solver, a time-

domain version is required. In principle, Eq. (7.9) can be translated to time domain by

means of a convolution integral. This is, however, neither feasible nor efficient. On the

other hand, since the acoustic mapping represents a linear time-invariant system, it is

possible to give a time-domain variant in terms of a standard state-space formulation

ẋ = Ax + Buds, (7.10a)

uus = Cx + Duds. (7.10b)
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Figure 7.3: Illustration of the coupling strategy. The plane-wave acoustic field up- and
downstream of the flame is represented by specific admittance and impedance A and
Z . The velocity divergence across the hydrodynamic domain is related to the upstream
velocity fluctuation by the nonlinear operator N . The pressure is assumed continuous on
the up- and downstream sides.

The dimension of the state vector x is equal to the number of poles of AZ(ω) (see Sec-

tion 2.5.1). In general, this number will be infinite because the acoustic wave equation

represents an infinite-dimensional system. This can be easily inferred from the presence

of time delays associated with finite propagation speed. However, we are only interested

in the low frequency regime, and therefore, a finite-dimensional truncation, approximat-

ing (7.9) in a certain frequency range, is sufficient. As introduced in Section 2.5.1, we write

this as
[

A B
C D

] iω≈ AZ(ω), for ω < ωmax. (7.11)

Closure can now be achieved through the computation of the hydrodynamic zone with

uus as an unsteady boundary condition, with either the unsteady heat release or the down-

stream velocity fluctuation uds as the output. Naturally, this is not an instantaneous map-

ping, but we can write it symbolically as

uds = N [uus], (7.12)

where N is a nonlinear operator given by a zero-Mach-type solver applied to the hydro-

dynamic zone. If the hydrodynamic solver does not deliver the velocity fluctuation on the

downstream side, uds, we can alternatively use the integrated heat release and invoke the

jump conditions (7.6) explicitly.

The coupled system now consists of (7.10), representing the acoustic field on the overall

longitudinal scale, and (7.12), handling the complete hydrodynamic domain. A schematic

illustration is shown in Fig. 7.3. By construction, this scheme treats the acoustic field as

linear, but the nonlinearity of the flame response is fully accounted for in the hydrody-

namic solver. (See also the discussion on the linearity assumption for the acoustics at the

end of this section.)

We shall also remark that if the hydrodynamic solver runs with a constant time step,

(7.10) can be replaced by an equivalent discrete time state-space model. The advantage is

that numerical stability can be ascertained beforehand, and no additional time-integration

scheme has to be implemented for the acoustic model.

In principle, a premixed flame may not only respond to acoustically induced veloc-

ity fluctuations, but also directly to perturbations in pressure (McIntosh 1991; Schmidt

& Jiménez 2010; Wangher et al. 2008). This mechanism, resulting from the sensitivity of

the chemical reaction rate to pressure, can indeed lead to instabilities (Clavin et al. 1990),

in particular if additional coupling with a hydrodynamic instability is present (Pelcé &



Chapter 7. Introduction and an Elementary Model Problem 91

Rochwerger 1992; Searby & Rochwerger 1991; Wu et al. 2003). We assume that in practi-

cal configurations, this effect will be inferior to velocity-fluctuation-induced heat release.

Anyway, including a pressure coupling in the approach presented above is straightfor-

ward. Since the pressure perturbation at the heat source is known from the acoustic model,

we can pass it as an additional input to the hydrodynamic solver. Then instead of (7.12),

we simply have

uds = N [uus, p], (7.13)

with the same coupling relations as before.

7.4.1 Linear stability

Our coupling approach is also easily extended to obtain information on linear stability of

the system. Since the acoustic model is already linear, we only need a linearization of the

hydrodynamic operator (7.12). An explicit linearization of a zero-Mach-type CFD solver is

a rather non-trivial undertaking (but it is possible, van Kampen et al. 2007), and therefore,

we will apply a linearization in a more pragmatic manner, as explained below.

Since the hydrodynamic operator is time-invariant, complete information on its lin-

earized version is contained in the transfer function Nlin(ω) = ûds/ûus. The experimen-

tal measurement of flame transfer functions is an elaborate, time-consuming task and re-

quires a dedicated experimental set-up (Paschereit et al. 2002). In the simulation, however,

the determination of the flame response is not that involved. Since, in our case, the reac-

tion zone can be computed free from acoustics, we do not have to take care of spurious

signals due to wave reflections at the outlet, as would be the case when using a compress-

ible solver. The linear response of the flame can be obtained from an isolated computation

of the hydrodynamic domain with a suitable forcing signal at the inlet. For this purpose,

different input signals, such as white noise, random binary sequences, multi-sines, pulses,

or steps can be used (Huber & Polifke 2009; Polifke et al. 2001b; Zhu et al. 2005). However,

two properties have to be ensured: (i) the forcing amplitude has to be sufficiently small so

that the response lies entirely in the linear regime and (ii) the spectral content of the input

signal must cover the relevant frequency range. As pointed out by Huber & Polifke, a ran-

dom binary sequence is particularly favorable with respect to these requirements. From

the forcing computation, we determine the discrete Fourier transforms of the input signal

uus and the output signal uds. Subsequent system identification (using the routine from

Gustavsen & Semlyen 1999, for instance) then gives a linear model for the heat release

response in time-domain form, viz.,

ẋq = Aqxq + Bquus, (7.14a)

uds = Cqxq + Dquus, (7.14b)

where xq is an auxiliary state vector.

Combining now Eqs. (7.10) and (7.14) results in a homogeneous linear system of the

form ẋc = Acxc, where xc is the combined state vector of the two systems. Ac is the

dynamics matrix of the coupled system, which, using standard results from state-space

algebra (Zhou et al. 1996), can be written in terms of the acoustic (no index) and flame
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(index ‘q’) subsystems as

Ac =

[

A BCq

0 Aq

]

+
1

1 − DDq

[

BDq

Bq

]

[

C DCq

]

. (7.15)

The spectrum of Ac determines stability for the combined system. If Ac has at least one

eigenvalue in the right half-plane, the linearized system is unstable and will exhibit expo-

nential growth. Checking linear stability is particularly useful when running combined

simulations with an expensive hydrodynamic solver, for then it can be checked before-

hand whether any instabilities will be excited.

7.4.2 Discussion on the validity of linear acoustic models

Although the pulsations associated with thermoacoustic instabilities in gas turbine com-

bustors may have significant amplitudes, the pressure variation compared to the mean

pressure is still small, typically not more than 5 %. Therefore, a linear description of

the acoustic field is commonly considered sufficient (Dowling 1997). In general, acoustic

waves tend to steepen at high amplitudes due to the increase of the propagation veloc-

ity with pressure. However, in a recent assessment, Davies & Holland (2004) find that

in practical cases, linear and nonlinear models for acoustic wave propagation in a duct

show only negligible difference for amplitudes up to 10 % of the static pressure. This cor-

responds to a sound pressure level of 170 dB in the atmospheric case. Yet, this addresses

only pure propagation issues. Strong geometrical non-uniformities, such as sharp corners

at discontinuous area contractions or expansions, have to be considered as more critical to

the assumption of linearity.

Area discontinuities provide the possibility of converting acoustic energy to fluctuating

vorticity, which is then dissipated into heat (Bechert 1980; Bellucci et al. 2004; Zinn 1970a).

This mechanism typically enters the nonlinear regime as the amplitude of the fluctuation

velocity becomes comparable to the mean flow. For the no flow case, then obviously, there

is no linear regime at all. Results in clear support of this can be found, for instance, in a

recent paper by Rupp et al. (2010) on the investigation of an orifice subject to sound excita-

tion with different amplitudes and mean flow conditions. The same applies to the acoustic

boundary conditions, e.g., the termination impedance of an open-ended pipe (Heckl 1990;

Skulina 2005).

Evidently, we have to expect localized nonlinear behavior in the acoustic field when-

ever the geometry changes abruptly. However, this phenomenon depends on the par-

ticular case considered and, thus, cannot be handled in a general fashion. We therefore

continue to model the acoustics with linear theory, keeping in mind that for specific parts

of the investigated configuration, nonlinear models may be required. Since our method

works in time domain, this will generally not be difficult to implement.

7.5 Application to an elementary model problem

The simplest thermoacoustic system exhibiting self-excited oscillations, generated by the

interaction of unsteady heat release with the acoustic field, is the well-known Rijke tube
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flow

methane

Figure 7.4: The considered model configuration. A laminar flame is stabilized in a tube
with closed–open boundary conditions. Methane is injected with high pressure loss
shortly upstream of the flame front so that perturbations in the upstream velocity induce
fluctuations in equivalence ratio.

(Raun et al. 1993). This device consists of a tube, usually with open–open or closed–open

boundaries, with a heat source concentrated at a certain axial position. Heat is transferred

to the fluid either by an electrically heated gauze (Heckl 1990; Raun et al. 1993) or by a

compact flame (e.g., Morgans & Dowling 2007).

The set-up we consider here for exemplary purposes is a one-dimensional closed–open

Rijke tube with a flat laminar premixed flame. Different degrees of acoustic reflectivity

(i.e., reflection coefficient magnitude) at the boundaries will be used for the coupled simu-

lations. No specific flame stabilization mechanism is included. We consider the approach

flow velocity to be equal to the flame speed, as e.g., in the experiments of Wangher et al.

(2008). In this case, acoustically induced velocity fluctuations do not generate any un-

steady heat release directly because the flame is merely displaced. A coupling from the

acoustic field to the flame can be established if we account for fluctuations in equivalence

ratio. These will generate perturbations in the burning velocity and thus generate un-

steady heat release. In the model configuration, methane is injected with high pressure

loss at a mean equivalence ratio of φ̄ = 0.7 just upstream of the flame front (Fig. 7.4). In

this case, acoustic velocity fluctuations induce perturbations in equivalence ratio via the

relation proposed by Peracchio & Proscia (1999), which was already introduced in Chap-

ter 6 (Eq. (6.2)). For the simulation of the Rijke tube, we set kd to 0.5.

In the one-dimensional set-up considered here, the axial extent of the hydrodynamic

domain, l, can be chosen so small as to merely accommodate the flame. Since the thick-

ness of a lean, unstrained laminar premixed flame is of the order of 1 mm (Göttgens et al.

1992), the hydrodynamic domain length was chosen to be 5 mm with the flame front be-

ing located at a distance of 1.5 mm (in the mean) from the upstream boundary. The to-

tal up- and downstream duct lengths, denoted by Lus and Lds, were chosen such that

Ldscus/(Luscds) = 3/2, and the total length was set to 2.8 m.

7.5.1 Hydrodynamic domain

The flame dynamics on the hydrodynamic scale are represented by a one-dimensional

zero-Mach solver on a uniform grid.1 The appropriate balance equations for species mass

fractions and temperature and the divergence constraint, that are used for the compu-

tation, as well as the numerical details are given in the paper by Moeck et al. (2009).

1The computations of the hydrodynamic domain with the zero-Mach reacting-flow solver were made by
Prof. Dr.-Ing. Heiko Schmidt, BTU Cottbus.
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Methane–air combustion was represented by a skeletal mechanism consisting of 16 species

and 25 elementary reactions (Peters 1992, p. 41). The velocity at the inflow boundary is

set equal to the time-dependent flame speed to prevent the flame from moving out of the

domain (see previous section). Air and methane mass fractions are set according to the

mean equivalence ratio and the perturbations induced by the acoustic field according to

Eq. (6.2). Integration of the divergence constraint (7.5) over the hydrodynamic domain

yields the velocity outflow condition. The unsteady component of the outflow velocity is

then passed to the acoustic model and serves as input to (7.10).

7.5.2 Representation of the acoustic field

For ease of notation, we work with the scaled acoustic pressure ℘ = p/(ρc) in the fol-

lowing. With reference to Section 7.4, the objective of the acoustic model is to deliver a

time-domain relation which maps the velocity fluctuations downstream of the flame to

those upstream. We split this task into two parts, a lumped impedance downstream of the

flame and a lumped admittance upstream. Eventually, these relations will take the form

of finite-dimensional, linear time-invariant systems, mapping uds to ℘ and ℘ to uus, which

can be combined to give the desired acoustic model (7.10).

When dealing with purely acoustic systems, a more intuitive approach is to model the

input–output behavior of the plane wave mode in terms of the amplitudes of the up- and

downstream traveling waves g and f (cf. Section 2.1.1). Then, for the downstream part

with constant cross-sectional area and uniform temperature, we have

ĝds/ f̂ds = −|Rds| e−iωτds , (7.16)

where the propagation time is given by τds = 2Lds/cds, and |Rds| is the reflectivity (which

we will specify). Due to the time delay involved, the transfer function (7.16) represents an

infinite-dimensional system and cannot be converted to a state-space representation in an

exact manner. However, truncation to a finite-dimensional state space is accomplished by

making use of a Padé approximant of the time delay. Following this procedure yields a

state-space description of the reflection coefficient on the downstream side of the form

ẋ = Ax + B fds, (7.17a)

gds = Cx + D fds, (7.17b)

with
[

A B
C D

] iω≈ Rds. (7.18)

The dimension of the linear system (7.17) is equal to the order of the Padé approximant.

The state-space representation of the impedance on the downstream side, mapping uds

to ℘ds, is then written analogously as

ẋ = Ãx + B̃uds, (7.19a)

℘ds = C̃x + D̃dsuds. (7.19b)
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Using now the elementary plane wave relations ℘ = f + g and u = f − g, it is found that

the state-space matrices in (7.19) are related to those in (7.17) by the transformation

Ã = A + βBC, B̃ = βB, (7.20a)

C̃ = 2βC, D̃ = β(1 + D), (7.20b)

with β = 1/(1 − D). Apparently, this transformation is only possible whenever D 6= 1.

This makes sense because a unit feedthrough in (7.17) corresponds to a velocity node (+

something dynamic) which has an infinite impedance. Note, however, that D will be zero,

typically, as the wave incident to the downstream part, fds, will have no direct feedthrough

to the reflected wave gds.

The same strategy can be used to construct a state-space model for the admittance on

the upstream side, which has a structure analogous to (7.19) but with ℘ as input and uus

as output. The time-domain impedance and admittance systems can then be combined to

yield the relation (7.10), mapping uds to uus, for the particular case considered here.

In the simple case of a duct with constant cross section and uniform temperatures up-

and downstream of the flame, which we consider in this model problem, the exact fre-

quency domain relation (7.9) takes the form

ûus = −ξ−1 1 + iZus tan(kusLus)

Zus + i tan(kusLus)

Zds + i tan(kdsLds)

iZds tan(kdsLds) + 1
ûds, (7.21)

which is based on elementary plane wave calculations. Zus and Zds are the specific bound-

ary impedances at the upstream and the downstream end of the acoustic domain. The

frequency response of the state-space model (Eq. (7.10)), as it is used in the coupled sim-

ulation for the present case, was set up with a state dimension of 26 and is plotted in

Fig. 7.5 with a boundary reflectivity of 0.8 (at the inlet and at the outlet). The analytic

relation (Eq. (7.21)) is added for comparison. Up to 600 Hz, the agreement is excellent.

Deviations at higher frequencies are due to the limited order of the Padé approximants

used to represent the time delays in finite-dimensional state space. The accuracy could be

easily increased by using higher-order Padé approximants. However, since we consider

only the long-wave case, this representation was regarded as being sufficient.

7.5.3 Simulation results

Coupled simulations were run with different degrees of reflectivity at the boundaries. The

state vector x in Eq. (7.10) was initialized with an array of uniformly distributed random

numbers with small magnitude to accelerate the growth of unstable modes.

Figure 7.6 shows the temporal evolution of the laminar burning velocity sl and the

equivalence ratio at the inlet of the hydrodynamic domain. Initially, the reflection coef-

ficient magnitude at the up- and downstream ends is set to 0.8. The system is unstable,

and the quarter-wave mode starts to grow exponentially in time until it settles on a finite-

amplitude limit-cycle oscillation with a frequency of 45 Hz. At t = 0.32 s, the reflectivity

|R| of both boundary conditions is decreased to 0.7. This results in a lower oscillation

amplitude; however, the system is not stabilized.
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û
d

s)

-π

- π
2

-3π
2

-2π

Eq. (7.21)

state space model

Figure 7.5: Transfer function relating velocity fluctuations downstream of the flame to
those upstream. The analytic solution (Eq. (7.21)) is compared with a state-space model
based on Padé approximants for the time delays associated with the acoustic wave prop-
agation.

The same computation was repeated, except that now the reflectivity is decreased from

0.8 to 0.6 (Fig. 7.7). This results in a stabilized system, and the oscillations in equiva-

lence ratio and burning velocity slowly decrease and settle to zero. Simulations were also

performed with reducing the reflectivity even further to 0.2. In this case, the system is

stabilized almost immediately (not shown) because virtually all fluctuation energy that is

generated by the flame is transported out of the system at the boundaries. Similar results

were obtained by Giauque et al. (2007) and Martin et al. (2006) with compressible solvers

and a change in the relaxation coefficient of the characteristic boundary condition (which

changes the reflectivity).
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Figure 7.6: Time traces of equivalence ratio and laminar burning velocity. A finite-
amplitude limit-cycle oscillation at 45 Hz is established. The reflection coefficient mag-
nitude is decreased from 0.8 to 0.7 at t = 0.32 s.
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Figure 7.7: Time traces of equivalence ratio and laminar burning velocity. A finite-
amplitude limit-cycle oscillation at 45 Hz is established. The reflection coefficient mag-
nitude is decreased from 0.8 to 0.6 at t = 0.39 s.

Normalized amplitude spectra of the fluctuations in equivalence ratio and the flame

speed are shown in Fig. 7.8 for a boundary reflectivity of |R| = 0.7. Nonlinear distortion

is more apparent in the φ oscillations, but on the other hand, these are also damped by dif-

fusion before reaching the flame front. Since the convection speed is equal to the burning

velocity (≈ 0.2 m/s) in the current set-up, the wavelength of the equivalence ratio pertur-

bations, traveling from the inlet of the hydrodynamic domain to the flame front, is rather

small. The higher harmonic components are therefore strongly damped by diffusion even

though the φ wave travels less than 2 mm from the inlet to the reaction zone.

To assess the complexity of the unsteady response of the flame, we consider the

trajectory of the limit-cycle oscillation in equivalence-ratio–burning-velocity phase space

(Fig. 7.9). This is a suitable representation of the flame dynamics for this case because the

φ perturbations are imposed by the acoustic field, and the unsteady heat release is a direct

result of the burning velocity oscillation. For comparison, the static correlation of Abu-Orf

& Cant (1996) is added in the plot. The trajectory corresponding to lower reflectivity re-

mains close to the equilibrium parametrization throughout the whole oscillation cycle. In
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Figure 7.8: Amplitude spectra of equivalence ratio and burning velocity fluctuations (nor-
malized with the mean values) for a reflection coefficient magnitude of |R| = 0.7
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this case, the flame dynamics are not unduly complex and could have been modeled by

a static relation and a time lag with reasonable accuracy. With stronger reflection, the in-

stability grows to higher amplitudes and larger deviations from the static φ–sl correlation

can be observed.

7.5.4 Discussion

The hybrid method, a combination of an incompressible reacting-flow simulation and a

time-domain realization of an acoustic network, was shown to be capable of delivering

meaningful results for an elementary model configuration. Linear instability and nonlin-

ear saturation could both be captured by the coupled method. A change in the acoustic

boundary conditions had the expected effect in the coupled simulation. Although the

acoustic model in this example was of the most simple form, there is no restriction in us-

ing more complex networks. The approach is applied to a flat flame Rijke tube in the next

chapter, in order to validate the method with experimental data. Control applications are

considered in Chapter 9.



Chapter 8

Validation of the Coupling Approach

on the Basis of an Experimental Flat

Flame Rijke Tube

To validate the two-way coupling approach for modeling thermoacoustic instabilities,

which was presented in the previous chapter, we consider a generic combustor set-up

specifically built for this purpose. This set-up is similar to the model configuration inves-

tigated before, but more complexities are involved, typical for a real system. The set-up is

essentially of Rijke tube type, but up- and downstream ducts have different cross-sectional

areas. Also, as we will see below, considerable more effort has to be made in modeling the

temperature field and the acoustic boundary conditions. The flame, which is still flat in the

operating regime considered, is stabilized downstream of a perforated plate. Accordingly,

the same zero-Mach solver as in the previous chapter can be used with only slight mod-

ifications. The linear transfer function of this type of burner-stabilized premixed flame

has been studied extensively in the literature. Experimental investigations were made by

Schreel et al. (2002) and analytical and numerical studies by Rook et al. (2002). However,

so far no attempt has been made to model finite-amplitude limit-cycle oscillations for this

kind of set-up numerically.

8.1 Experimental set-up

A schematic of the experimental arrangement is shown in Fig. 8.1. Natural gas and air

are mixed upstream of the plenum duct in feed line tubes of 4.7 mm diameter. The water-

cooled plenum duct has a diameter of Dus = 105 mm, a length of Lus = 725 mm and is

made of steel. A perforated brass plate of 2 mm thickness, mounted between the upstream

and the downstream duct, is used to anchor a planar flame. The holes of the perforation

have a diameter of 0.5 mm with a pitch of 0.7 mm and are assembled in a hexagonal pat-

tern. For this kind of burner, the stabilization of the flame is mainly heat loss controlled

(de Goey et al. 1993).

The downstream duct has a diameter of Dds = 51 mm, a length of Lds = 505 mm

and is made of aluminum; the base is air-cooled. Four 1/4” condenser microphones

(G.R.A.S. 40BP) are mounted in the upstream part, three in the upper half, at x = −168.5,

99
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Figure 8.1: Experimental set-up of the flat flame Rijke tube.
The air–natural-gas mixture enters the plenum duct from the
bottom. A laminar flat flame stabilizes downstream of the per-
forated plate in a duct of smaller diameter. The acoustic field
in the plenum duct can be accessed with four microphones.
Chemiluminescence of OH-radicals is monitored with a pho-
tomultiplier.
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−257.5 ,−346.5 mm, and one close to the bottom at x = −648 mm. A photomultiplier

(Hamamatsu H5784-04), equipped with a UV-filter (Edmund Optics U-340, passband 295–

385 nm) and a collimator (Glen Spectra LC-4U), is set up to detect the chemiluminescence

intensity from OH-radicals. A thermocouple with a 0.3 mm bead is attached inside one

of the holes of the perforation. Air and gas mass flows are monitored with Coriolis flow

meters (Endress & Hauser).

8.2 Coupled model for the flat flame Rijke tube

8.2.1 Hydrodynamic domain

The flame in our set-up is nominally flat. At low equivalence ratios, a cellular instability

was observed (see Section 8.3.2), but these conditions are not considered for the coupled

simulation. Therefore, we can represent the flame still in a one-dimensional setting. In

contrast to the configuration considered in the previous section, the flame is stabilized

downstream of a perforated plate. For this case, the same zero-Mach solver with the iden-

tical chemical scheme was used.1 The hydrodynamic field through the perforated plate

was not modeled in detail. Flame stabilization is achieved by taking into account the heat

loss to the burner plate (Rook 2001, see below). The total length of the hydrodynamic

domain is 7 mm. This amounts to approximately 0.5 % of the total domain length.

The first 2 mm in the numerical model for the hydrodynamic domain represent the

burner. We assume the burner has a constant temperature (infinite heat capacity, Rook

1The computations of the hydrodynamic domain with the zero-Mach reacting-flow solver were made by
Prof. Dr.-Ing Heiko Schmidt, BTU Cottbus.
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2001) and that there is perfect heat transfer to the fluid. The plate temperature was set

to 500 K, close to the temperature measured at the plate in the experimental set-up. At

the inflow boundary, the velocity is set equal to the mean velocity plus a fluctuation. The

latter is obtained from the acoustic model in the coupled simulation.

8.2.2 Acoustic model

In the upstream duct, the cut-on frequency for the first azimuthal mode is approximately

2 kHz (at room temperature). For the downstream part, the plane-wave regime extends

to even higher frequencies, in particular for the case with combustion. We can therefore

model the major part of this set-up with plane-wave assumptions. The mean flow can be

safely neglected in the acoustic model, the Mach number being of the order of 10−3.

As in the preceding chapter, we will set up the acoustic model in two parts, handling

the up- and downstream plane-wave response individually. In principle, we could re-

sort to purely analytical techniques in a network-type fashion. For the set-up considered

here, however, we choose to employ a finite element computation based on the Helmholtz

equation (2.5) to derive a low-order acoustic model. We use the commercial multi-purpose

finite element solver Comsol Multiphysics2 (Version 3.3).

The reason for not using simplified network techniques is twofold: (i) the perforated

plate is located immediately downstream of an area contraction (see Fig. 8.1); the acoustic

near-fields of the two elements thus interfere, which is difficult to account for in a net-

work model; (ii) the temperature distribution in the downstream tube is far from being

homogeneous, in axial as well as in radial direction, due to heat losses at the duct walls.

The finite element model was set up as follows. The geometry of the Rijke tube, as

described in Section 8.1, was represented in an axisymmetric manner. The perforated

plate was modeled as a sequence of rings with the same integral porosity as that of the

original perforation. In general, there will be some dissipation inside the holes of the

perforation associated with the acoustic boundary layer (Melling 1973; Noiray et al. 2007).

Since the plate thickness was only 2 mm, we neglected this effect. Another potential source

for acoustic losses is the mean flow through the perforated plate. Due to the small Mach

number, we consider this effect to be negligible, too. The temperature distribution in the

duct downstream of the flame was calculated by assuming laminar flow inside the tube

and natural convection and radiation to the ambient outside of the tube. The acoustic

boundary condition at the tube exit was specified according to an unflanged open pipe

(Eq. (2.10)).

The upstream boundary condition is close to being sound hard. Due to the mixture

feed line, which acts similar to a λ/4-resonator, the magnitude of the reflection coefficient

was noticeably decreased at distinct frequencies. Therefore, we measured the upstream re-

flection coefficient using the Multi-Microphone-Method (Appendix A). The downstream

tube was removed and exchanged for a speaker to facilitate this measurement. A sweep

signal was used to excite the acoustic field over a broad frequency range. The four micro-

phones were used to decompose the acoustic field into incident and reflected components,

from which the reflection coefficient was calculated. The measured reflection coefficient

is then used as a boundary condition for the upstream end in the finite element model.

2http://www.comsol.com

http://www.comsol.com
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Figure 8.2: Upstream reflection coefficient. Measured results and identified model used
in the finite element computation. The phase reference is at the microphone closest to the
burner plate.

Figure 8.2 shows the measured reflection coefficient and an identified rational approxi-

mation. Reduced reflectivity at frequencies around 150, 500, and 670 Hz can be observed,

which underlines the need to take into account accurate boundary conditions. The phase

reference for the reflection coefficient shown in Fig. 8.2 is at the topmost microphone. In

the finite element model, the phase was corrected to the actual upstream boundary.

The lumped impedance/admittance shown in Fig. 7.3 contain all components affect-

ing the plane-wave response downstream/upstream of the flame. They can be obtained

from the finite element model by cutting the geometry in two halves at the flame loca-

tion and computing the response for the individual parts. In other words, to compute

the downstream impedance, only the upper half of the geometry is considered. At the

flame location, a velocity boundary condition û·n = 1 (n denoting the unit normal point-

ing inside) is applied at all frequencies of interest. The impedance is then calculated from

the solution as Z = ℘̂, where ℘̂ is the scaled pressure at the boundary. An analogous

procedure applied to the upstream part gives the admittance A.

The transfer function relating the velocity perturbation downstream of the flame to

that upstream is simply the product of impedance and admittance, as explained in Sec-

tion 7.4, viz., ûus = ξ−1ZA(ω)ûds. The transfer function ûus/ûds, as obtained from the

finite element model, is shown in Fig. 8.3. The frequencies of the resonant modes of the

purely acoustic system can be estimated from this plot by noting that ûus(ω) = ûds(ω)

holds, whenever ω is an eigenvalue. Since, in our case, the boundary conditions are not

fully reflecting, the eigenvalues are all located in the upper half of the ω-plane, i.e., they

are damped. However, we can recover the approximate mode frequencies by requiring

that the transfer function ûus/ûds is close to 1. The first six mode frequencies, which are

all members of the λ/4-family of the entire geometry (up- and downstream ducts), are

plotted as dashed lines in Fig. 8.3.

From the finite element computation, the transfer function ZA(ω) is only available at

discrete real frequencies. A time-domain relation uds → uus in form of a finite-dimensional

state-space realization (Eq. (7.10)) is obtained from subsequent system identification using
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Figure 8.3: Transfer function relating perturbations in velocity downstream of the flame to
those upstream. Dashed vertical lines denote acoustic resonant modes, from left to right:
λ/4 at 63 Hz, 3λ/4 at 246 Hz, 5λ/4 at 435 Hz, 7λ/4 at 575 Hz, 9λ/4 at 736 Hz, 11λ/4 at
938 Hz.

the routine of Gustavsen & Semlyen (1999), as described in Section 2.5. To cover a fre-

quency range of 0–1200 Hz, a state dimension of 24 was found to be sufficient. The ab-

solute error of the transfer function computed with the Helmholtz solver and that of the

identified state-space realization was smaller than 10−4 in the frequency range mentioned

above.

8.3 Results and discussion

We begin with a discussion of the flame’s response to forcing at the frequency of the 5λ/4-

mode, which was found unstable in the experiment. Subsequently, we shortly summarize

the stability characteristics as observed in the experiment and give a detailed comparison

of the finite-amplitude oscillations computed with the coupled model and obtained from

the measurements.

8.3.1 Flame response to fluctuations in velocity at the 5λ/4-mode frequency

Results for an open-loop forcing of the flame (without acoustic feedback) are shown in

Fig. 8.4. In the experiment, the duct downstream of the flame was removed, and an addi-

tional forcing segment with two compression drivers was installed in the upstream part.

With this set-up, no self-excited oscillations were observed, and the flame response to

fluctuations in velocity could be visualized. A mean image of the side-view of the flame

is shown in Fig. 8.4 (a). The horizontal extent corresponds to roughly half of the burner

plate. Based on the maximum intensity along every image column, the flame can be con-

sidered as flat. The intensity has a larger vertical extent in the middle resulting from the

circular shape of the flame and the associated intensity projection detected by the camera.

Figure 8.4 (b) represents phase-averaged intensity distributions for a forcing frequency of
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Figure 8.4: (a) Mean image of the flame. The black solid line represents the maximum
intensity along the vertical direction. The dashed line marks the location of the perforated
plate. The vertical scale is in millimeters (true aspect ratio). (b) Phase-averaged images of
the center part of the flame submitted to harmonic forcing. The dotted lines denote the
vertical location of the maximum intensity integrated along the horizontal direction.

431 Hz and a velocity fluctuation amplitude of 0.5 m/s. Corresponding numerical results

in terms of the H-radical mass fraction distributions over the forcing cycle are shown in

Fig. 8.5.

The phase-averaged images (Fig. 8.4 (b)) show that the flame acquires its maximum

intensity while moving upstream to the burner. At the minimum stand-off distance, the

intensity drops and remains on a low level while the flame moves back downstream. The

same characteristic is reflected in the H-radical mass fraction distributions for one forc-

ing cycle from the numerical computation (Fig. 8.5). The absolute movement of the YH-

maximum is about 0.4 mm and agrees reasonably well with a displacement of the image

intensity maximum of 0.3 mm in the experiment.

8.3.2 Summary of the stability characteristics of the Rijke tube

Self-excited oscillations were observed in the experiment for equivalence ratios ranging

from 0.65–0.75 (depending on mass flow) up to 1.2–1.3 (Fig. 8.6). Thermoacoustic stabi-

lization, as the equivalence ratio was decreased, was accompanied by the onset of a cellu-

lar flame front instability (Matalon 2007). The boundary between flat and cellular flames

is also shown in Fig. 8.6. It is interesting to note here that the boundaries for thermoacous-

tic and cellular flame front stability almost coincide. The data for the onset of the cellular

Figure 8.5: H-radical mass fraction distributions
from the numerical computation for the same
forcing conditions as in Fig. 8.4. x represents
the coordinate in the hydrodynamic domain; the
trailing edge of the the perforated plate is lo-
cated at 2 mm.
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Figure 8.6: Stability map for the experimental configuration. Squares mark conditions
at which thermoacoustic oscillations were observed, circles those for which this was not
the case. For conditions leaner than the triangles, a cellular flame front instability was
evidenced for the case without downstream tube. The flow velocity is given as a bulk
value with respect to the downstream area.

flame front was, however, acquired with the downsteam tube removed so that, in this case,

the flame is unconfined. This uncertainty could have been removed by using a Pyrex tube.

In this way, it would have been possible to assess whether thermoacoustic stabilization is

indeed accompanied by the onset of a cellular flame front instability. Since this was not

the focus of this investigation, we simply note that there is an intriguing coincidence of

thermoacoustic and hydrodynamic stability borders.

A general trend was that increasing the equivalence ratio from the lean stability border

resulted in higher oscillation amplitudes. The instability was always associated with the

5λ/4-mode of the geometry. With shorter downstream tube (Lds = 300 mm), unstable

3λ/4- and 7λ/4-modes were also observed.

8.3.3 Comparison of coupled simulation and experiment

The results of the coupled simulation are compared to those from the experiment at an

equivalence ratio of 0.85 and a total mass flow of 0.61 g/s, corresponding to a thermal

power of 1.36 kW. These operating conditions were chosen based on the following con-

siderations. Close to the stability border, multi-dimensional effects were expected to be

significant, due to the onset of a cellular flame front instability (see Section 8.3.2). In the

coupled model, the combustion zone is treated only one-dimensional, and therefore, the

equivalence ratio had to be chosen sufficiently far away from the stability border. Lin-

ear stability analysis (see below) was used to assess whether the experimentally observed

oscillation mode was indeed linearly unstable in the coupled model.

Linear stability

The linear stability analysis was based on the acoustic model mapping uds to uus (Eq. (7.10),

see also Section 8.2.2), combined with a numerically determined flame transfer function,

as explained in Section 7.4.1. The latter was obtained from impulse response computations
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Figure 8.7: Response of the unsteady ex-
pansion across the flame, ∆u, to an im-
pulse excitation in the approach flow veloc-
ity. Normalized unsteady components of
the expansion and the approach flow veloc-
ity are shown.
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of the flame with the zero-Mach solver. The numerically computed impulse response is

shown in Fig. 8.7. The inflow velocity was perturbed with a Gaussian pulse with an am-

plitude of 10 % of the mean and a standard deviation of σ = 0.173 ms. The correspond-

ing standard deviation in frequency domain is about 1 kHz so that the input signal has

sufficient spectral content up to that frequency. In general, a pulse is not the optimal ex-

citation signal for the numerical calculation of a transfer function because the maximum

amplitude is large compared to its spectral content. This can be an issue in the presence

of significant noise (Zhu et al. 2005); however, in the present case, the flame is laminar,

and input and output signals were found to be well correlated. A test for the linearity of

the response was conducted by computing a second case with a negative (but otherwise

identical) inflow perturbation. This resulted in a negligible difference in the negative out-

put signal, −∆u, compared to the first simulation. The computed flame response shows

typical effects, such as time-lag and low-pass characteristics (Fig. 8.7).

The dominant eigenvalues of the dynamics matrix of the combined acoustics–flame

system (see Section 7.4.1) are plotted in Fig. 8.8. For a better comparison with the acoustic

convention ∼ eiωt, the eigenvalues have been multiplied by −i so that the lower half-

plane corresponds to instability. The family of λ/4-modes can be clearly identified without

combustion (squares). Since the acoustic boundary conditions are partially absorbing,

all the eigenvalues are in the upper half-plane. Through the interaction with the flame

(triangles), the 5λ/4- and the 7λ/4-modes are destabilized significantly. The unstable

5λ/4-mode, which exhibits the larger growth rate, has a frequency of 446 Hz. This is close

to the oscillation frequency observed in the experiment and in the coupled simulation (see

below).

Pressure histories and spectra for self-excited oscillations

Sample time traces of the pressure at the microphone positions (see Fig. 8.1) from the

coupled simulation and from the experiment are compared in Fig. 8.9. The pressures at

the microphone positions are not explicit variables in the coupled simulation, but they can

be recovered from the velocity fluctuation uus in a post-processing step. Based on the finite

element model for the combustor acoustics, transfer functions relating ûus to the pressures

at the microphone locations can be determined. Time-domain realizations of these transfer

functions are then used to compute the acoustic pressures corresponding to the velocity

fluctuation uus that is obtained from the coupled simulation.
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Figure 8.8: Eigenvalues from linear analysis. Squares: eigenvalues of the purely acoustic
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The pressure signals exhibit strong oscillations at the 5λ/4-mode frequency, as pre-

dicted by linear stability analysis (see Fig. 8.8). The maximum measured sound pressure

level was 137 dB. Significant subharmonic components can also be observed, most clearly

at the location of microphone 4 (see Fig. 8.1). The amplitude of microphone 1 is smallest

because its location is close to a pressure node of the 5λ/4-mode. Although the amplitude

of the fundamental oscillation is slightly larger in the experimental pressure signals, good

agreement is found compared to the computation. In particular, the amplitude and phase

relationships between the four signals are clearly preserved in the simulation.

Corresponding amplitude spectra of the acoustic pressure at the microphone locations

are shown in Fig. 8.10. Results from the experiment and from the coupled simulation are

shown. The highest spectral peak (d) stems from the unstable 5λ/4-mode. The main fre-

quencies of oscillation as obtained from the experiment (427 Hz) and from the simulation

(432 Hz) differ by less than 2 %. Close agreement is found for the amplitudes, too. Both

results also reveal a strong subharmonic component of order 1/2 (b). As a result of the

nonlinear interaction, spectral peaks are also found at frequencies corresponding to the

sum of the fundamental frequency and its subharmonic (e), the 2nd harmonic of the fun-

damental frequency (g), and the sum of the 2nd harmonic and the subharmonic (i). The

features labeled a, c, f and h correspond to damped resonances associated with the stable

λ/4-, 3λ/4-, 9λ/4- and 11λ/4-modes (cf. Fig. 8.8), respectively.

Comparing numerical and experimental results, good quantitative agreement is found

for the dominant features, i.e., the spectral peaks at the fundamental frequency and at

the subharmonic. With respect to the minor spectral features, there is qualitative corre-

spondence between experiment and simulation, but the associated amplitudes are quite

different. In essence, the peaks belonging to the harmonics and nonlinear combinations

with the subharmonic are more distinct in the experimental results. On the other hand, the

resonances associated with the stable acoustic modes are more pronounced in the simula-

tion, in particular, the λ/4-mode. Also, the noise floor is higher in the numerical results.
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Figure 8.9: Sample time traces of acoustic pressure at microphone locations. Top: experi-
ment; bottom: coupled simulation
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Figure 8.11: Modeled and measured pressure distribution upstream of the flame for the
unstable 5λ/4-mode. The coordinate origin is as shown in Fig. 8.1.

It should be noted here, however, that the experimental spectra were obtained from pres-

sure time traces of 32 seconds in length, whereas the total simulation time was only 0.2

seconds. To accelerate the growth to the limit cycle amplitude in the coupled simulation,

the state vector for the representation of the acoustic field (Eq. (7.10)) was initialized with

uniformly distributed random numbers corresponding to moderate amplitudes. Accord-

ingly, all modes are excited at the beginning of the simulation. Due to relatively small

damping rates (Fig. 8.8), the stable modes might thus have had a stronger contribution in

the computation.

We consider the pressure distribution of the unstable 5λ/4-mode in the plenum next.

According to our model, the complex mode shape upstream of the flame can be written as

p̂(x) = ĝ
(

Rus(ωosc) e−iωoscx/c + eiωoscx/c
)

, (8.1)

where Rus denotes the upstream reflection coefficient (see Fig. 8.2) with reference at x = 0

and ωosc corresponds to the oscillation frequency of the 5λ/4-mode. In principle, ĝ rep-

resents the upstream traveling wave, but it can be considered an undetermined factor

because (8.1) has arbitrary amplitude and phase reference (being an eigenfunction). Am-

plitude and phase of the modeled pressure distribution compare well with the measured

results (Fig. 8.11).

Recalling the result from the linear stability analysis (Fig. 8.8), the role of the 7λ/4-

mode needs to be discussed. Clearly, the mode is linearly unstable, but a corresponding

spectral marker cannot be found in Fig. 8.10. The first thing to mention here is the essen-

tial difficulty of predicting the linear growth rates quantitatively correct from a model. In

fact, Bothien et al. (2010) used linear models directly identified from experimental data to

compute growth rates of an unstable premixed combustor and found that – even with es-

sentially no modeling assumptions – a decent quantitative agreement with the measured
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Ī O

H

fundamental

Figure 8.12: Normalized amplitude spectrum of global OH-chemiluminescence mea-
sured at unstable conditions

growth rates could not be obtained. Second, the growth rate of the 7λ/4-mode is sig-

nificantly weaker than that of the 5λ/4-mode. Although it cannot be generally assumed

that the most linearly unstable mode dominates the limit-cycle oscillation, the significant

difference in the growth rates makes it plausible in the present case.

Subharmonic response of the flame

A striking characteristic in the pressure spectra (Fig. 8.10) are the strong subharmonic

components, that were observed in the experimental and in the numerical results. In fact,

the measured OH spectrum (Fig. 8.12) exhibits higher amplitudes at the subharmonic than

at the fundamental frequency of oscillation.

To see whether this phenomenon is a result of the interaction between the acoustic field

and the combustion zone, or solely a property of the flame, simulations with an open-loop

excitation of the flame (no feedback through the acoustic field) at high forcing amplitudes

were run. Figure 8.13 (top frame) displays the inflow velocity perturbation (dashed line)

and the fluctuation of the OH-radical mass fraction normalized with the mean. The exci-

tation amplitude of the upstream velocity was set to 1 m/s, which was close to the self-

excited case. The frequency was set to 431 Hz, corresponding to the unstable 5λ/4-mode.

A strong subharmonic response with respect to the excitation frequency can be clearly

identified. Hence, the spectral peaks at the subharmonic frequency of the fundamental

oscillation in the pressure spectra (Fig. 8.10) are not a result of the acoustic feedback but

rather a natural property of the flame submitted to strong acoustic forcing. The flame–

acoustic coupling at the subharmonic is, therefore, dominantly unilateral – the pressure

field simply responds to the heat release forcing at that frequency.

A sample time trace of the normalized fluctuation of the OH-chemiluminescence in-

tensity, as acquired with the photomultiplier during self-excited oscillations in the exper-

iment, is shown in the lower frame of Fig. 8.13. There is good qualitative correspondence

between the two waveforms from the simulation and the experiment. The normalized

fluctuation amplitude is clearly higher in the experimental results, but in that case, there

is also some additional driving through the acoustic field directly at the subharmonic
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malized perturbation of OH-chemiluminescence intensity during thermoacoustic oscilla-
tion in the Rijke tube (experiment).

(cf. Fig. 8.10). Also note that the numerical result corresponds to the actual OH concen-

tration whereas the OH-chemiluminescence intensity is – at best – proportional to the

concentration of OH molecules in the excited state.

H-radical mass fraction distributions for two periods of the forcing cycle are plotted in

Fig. 8.14. The locus of the maxima is a closed curve with a repetition rate of half the forcing

frequency. Clear differences in height and burner distance of the concentration maximum

can be observed between two successive periods of the forcing cycle. This subharmonic

pattern was qualitatively similar for most of the species in the reaction scheme.
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8.3.4 Discussion of the results

The results obtained with the coupled model bear qualitative and, to a certain extent,

quantitative comparison with the experimental data. Thermoacoustically induced self-

excited oscillations could be captured with favorable agreement in the frequency and am-

plitude of the fundamental mode. Higher-order frequency content of the pressure signals

was also found to be in line, and the strong subharmonic component in the flame response

was confirmed. It remains to demonstrate that the two-way coupling approach can be

used with multi-dimensional flames in the same manner and that the procedure is well

suited for control applications. This is the subject of the next chapter.



Chapter 9

Modeling and Control of a

Two-dimensional Flame in the

Acoustic Test-rig Environment

In this chapter, we apply the coupled method to a configuration with a two-dimensional

flame. The acoustic environment in which the flame is placed is that of the combustor

test-rig, which was investigated in Part I. The combustor acoustics are modeled on the

basis of measured impedance and admittance, as we did in Section 6.4 to set up the non-

linear system model for the investigation of subcritical instabilities. In the present case,

the flame is represented by a zero-Mach solver, which is shortly described below. Also,

as an extension to the preceding applications of the coupled method, we introduce active

control in the simulation to suppress thermoacoustic oscillations. We consider the linear

dynamics of the system first and then proceed to self-excited oscillations and their control.

The numerical solutions for the hydrodynamic domain in this chapter were computed

at the Freie Universität Berlin1 with a CFD solver called MOLOCH (Münch 2008). The

governing equations that are implemented in this solver are:

• the zero-Mach equations,

• the standard k–ε equation to account for turbulence,

• an additional advection–diffusion equation for a turbulent reaction progress vari-

able, and

• an additional advection–diffusion equation for the unburnt equivalence ratio φ.

Combustion is represented by a modified Eddy-Breakup model based on the work of

Lindstedt & Váos (1999). More details on the numerical solution process can be found in

the paper by Moeck et al. (2010). The particular flame considered here is a two-dimensional

lean premixed methane–air flame with a mean equivalence ratio of 0.64 and an approach

flow temperature of 300 K.

1The CFD computations were made by Dipl.-Ing. Carsten Scharfenberg, Freie Universität Berlin.
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Figure 9.1: Transfer functions relating linear fluctuations in heat release to those in ap-
proach flow velocity and equivalence ratio as defined in Eq. (9.1). A picture of the mean
flame shape in terms of the progress variable distribution is shown in addition.

9.1 Linear and nonlinear flame response

To determine the linear response of the flame, we follow the procedure described in Sec-

tion 7.4.1. For the identification signal, we used a Gaussian pulse with an amplitude of

10 % of the mean value, which already proved to work well for the laminar flat flame in

the previous chapter (see Section 8.3.3).

Equivalence ratio fluctuations are not considered in the flame–acoustic interaction here;

the reactants are assumed to be perfectly mixed. However, equivalence ratio modulation

will be used as one means to control the instability. To design the controller, it is therefore

necessary to assess the response of the heat release rate to perturbations in the equivalence

ratio, too. The same method as for the heat release response to fluctuations in approach

flow velocity is used, with an analogous identification signal. The heat release transfer

functions with respect to uus and φ perturbations are shown in Fig. 9.1 in terms of a nor-

malized response, defined as

Fu(ω) =
Q̂

ûus

ūus

Q̄
, Fφ(ω) =

Q̂

φ̂

φ̄

Q̄
. (9.1)

Both transfer functions show low-pass character with distinct time delay, which is typi-

cal for a flame response (Lieuwen 2003). The transfer function with respect to equivalence

ratio perturbations has a significantly higher gain compared to that with respect to fluctu-

ations in approach flow velocity. This shows that the flame is highly susceptible to fluctu-

ations in equivalence ratio – an asset for an efficient actuation mechanism. Above 300 Hz,

the phase response saturates at a constant level, but this might not be accurate because the

gain is virtually zero.

The transfer function Fu only characterizes the flame response to small perturbations.

This is sufficient to determine linear system stability and design a control method that sta-

bilizes the fixed point. However, the linear flame response cannot be used to calculate the

limit-cycle oscillation amplitude because it contains no information on the saturation char-

acteristics. To determine the level of the pressure oscillation, we need a flame describing

function, as described in Sections 2.5.5 and 6.4.3, which in addition to the linear response,

also holds information on the amplitude dependence. Furthermore, knowledge on the
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Figure 9.2: Amplitude dependence of the
flame response at a forcing frequency of
100 Hz. The complex gain is normalized
with the linearized response.

linear flame transfer function is generally not sufficient to guarantee that self-excited os-

cillations can be suppressed. A controller based on the linear model only stabilizes the

steady state but might not be able to suppress limit-cycle oscillations if the flame response

shows significant amplitude dependence (Dowling 1997).

To determine the nonlinear response of the flame, simulations with the zero-Mach

solver, in which the inlet velocity was forced sinusoidally with varying amplitude, were

evaluated. The maximum fluctuation amplitude considered was more than 100 % of the

mean. Although saturation set in clearly before, the flame showed no signs of blow-off.

Figure 9.2 displays the amplitude dependence of the flame response at a frequency of

100 Hz. (This is close to the frequency of the instability, as we will see below.) The ampli-

tude dependence is represented in normalized form as

N(ωexc, a) =
Fu(ωexc, a)

Fu(ωexc, 0)
, (9.2)

where a = |û|/ū denotes the normalized oscillation level, and ωexc = 2π×100 Hz. The

gain dependence clearly exhibits saturation characteristics agreeing qualitatively well with

nonlinear flame response measurements (Noiray et al. 2008; Schimek et al. 2010). While

approximately constant for small amplitudes, the gain decreases monotonically starting at

relative velocity perturbations of about 40 %. A striking fact is that the phase response also

shows considerable variation. In the amplitude range considered, the phase lag changes

almost by π. The decrease in phase lag for high forcing amplitudes can be partially at-

tributed to a shift in mean flame position to the inlet so that the convective time delay

decreases. As a result, a controller solely designed on the basis of a linearized system

model might not be able to stabilize the oscillations at high amplitudes.

9.2 Acoustic model

In the present work, the primary purpose of the network model is not to represent the

complete system, but this will be done in the next section to assess linear stability and

estimate the limit-cycle amplitude. For the coupled simulation, we use a network-type

model only to represent the acoustic environment of the flame. To use a real acoustic

environment, we follow the procedure in Section 6.4 and use acoustic boundary conditions

which were measured in the combustion test-rig (Section 3.1) to set up the acoustic model.
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Figure 9.3: Frequency response of the experimentally identified acoustic system AZ(ω)

In Section 6.4, we combined the acoustic model based on measured test-rig data with

an analytical nonlinear heat-release model for the simulation of subcritical instabilities and

associated hysteresis phenomena. Here, the flame is represented by the zero-Mach solver

introduced at the beginning of this chapter. As in Section 6.4, we use the impedance and

admittance subsystems identified from the measurements to set up a state-space model

that maps the velocity fluctuations downstream of the flame to those upstream (Eq. (7.10)).

The impedance and admittance models can be directly deduced from the associated reflec-

tion coefficients shown in Fig. 6.13. The transfer function mapping uds to uus, AZ(ω), as

identified from the experimental data, is displayed in Fig. 9.3. The resonant λ/4-mode of

the combustion chamber has a frequency of slightly below 100 Hz, approximately where

the phase response has the first zero-crossing.

In the coupled model, the upstream velocity fluctuations uus, as obtained from (7.10),

are prescribed as a time-varying boundary condition at the inlet of the hydrodynamic zone

(which is computed by the flow solver). The induced heat release fluctuations are used in

conjunction with the jump conditions (2.18) to obtain the velocity perturbations on the hot

side. The two-way coupling is then achieved as explained in Section 7.4.

9.3 Linear stability and limit cycle amplitude

Based on the acoustic model and the flame transfer function, linear stability of the coupled

system can be determined as explained in Section 7.4.1. However, to have a clearer connec-

tion to the describing function analysis, which we consider subsequently, we develop the

frequency-domain dispersion relation as well. In frequency domain, the acoustic mapping

(7.10) is simply ξ−1(ZA)(ω). Combining this with the jump conditions (2.18) and using

the flame transfer function to express the heat release in terms of the velocity perturbation

upstream, the dispersion relation takes the form

1 = ξ−1(AZ)(ω) [1 + (Tds/Tus − 1)Fu(ω)] . (9.3)

The eigenvalues for the linearized system, calculated from Eq. (9.3), are shown in

Fig. 9.4. The two lower frequencies correspond to a plenum resonance at 36 Hz and a

quarter-wave mode in the combustion chamber at 88 Hz. These two modes are signif-

icantly destabilized through the interaction with the heat release. However, only the
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lease feedback.

quarter-wave mode is linearly unstable. The 3/4-wave mode at 250 Hz is essentially un-

affected, a result of the strong low-pass character of the flame (see Fig. 9.1). Computed

growth rate and frequency of the unstable mode are consistent with the experimental data

of Bothien et al. (2010), which was obtained in the same acoustic environment, but with

a different flame. We find identical frequencies and similar growth rates. (Note that the

growth rates in the reference above are not divided by 2π.)

With the results in Fig. 9.4, linear instability of the coupled model has been established.

However, the final oscillation amplitude cannot be assessed from the linearized model

because it predicts exponential growth for all times. To determine the amplitude of the

limit-cycle oscillation – at least in an approximate way – we make use of the describing

function technique as introduced in Section 2.5.5 (see also Dowling 1997, 1999 and Noiray

et al. 2008). Since the flame response is the sole source of nonlinearity in the system,

it is sufficient to only take into account the fundamental component of the output. In

other words, we consider the flame transfer function to have amplitude-dependent gain

and phase and compute the growth rates as a function of the oscillation level. With the

nonlinear flame response determined in Section 9.1, the dispersion relation can be written

as

1 = ξ−1(AZ)(ω) [1 + N(ω, a)(Tds/Tus − 1)Fu(ω)] . (9.4)

Since only information on the amplitude dependence at a frequency of 100 Hz was avail-

able from the nonlinear flame response computations (Section 9.1), N(ω, a) is approxi-

mated with the values at that forcing frequency. We conjecture that this will be reasonably

accurate as long as only this particular mode is considered.

The solution pair (ω, a) of (9.4) with Im ω = 0 corresponds to amplitude and frequency

of the limit-cycle oscillation. Figure 9.5 presents the complex eigenfrequencies as a func-

tion of the pulsation level. The intersection of the growth rate −Im ω with the x-axis marks

the oscillation amplitude, which is determined as |û|/ū = 0.48. The associated combus-

tor pressure can then be simply calculated from the experimentally identified admittance

model A(ω) at the oscillation frequency; this yields a pressure amplitude of 1018 Pa. We

also note that the oscillation frequency increases by about 7 Hz from the unstable steady

state to the limit cycle.
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Figure 9.5: Solutions of the nonlinear disper-
sion relation (9.4). Vertical and horizontal
arrows mark limit cycle amplitude and fre-
quency, respectively.
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9.4 Coupled simulation and control

We first show some results of the uncontrolled instability and compare them with the

predictions based on the describing function in the preceding section. Then we apply two

types of control, that were found to be effective in related experiments, to mitigate the

oscillations.

9.4.1 Uncontrolled instability

As an initial perturbation for the coupled simulation, the state vector of the acoustic model

(Eq. (7.10)) was set to uniformly distributed random numbers of small magnitude. Fig-

ure 9.6 shows the temporal evolution of the acoustic pressure at the flame and the nor-

malized heat release rate fluctuation from the coupled simulation. In agreement with the

linear stability analysis in Section 9.3, the steady state of the coupled system is unstable

with respect to small perturbations. Amplitudes of pressure and heat release grow, ex-

ponentially in the linear regime, and then settle on a constant level after passing through

a small overshoot. The close-up in the right frame of Fig. 9.6 shows that Rayleigh’s cri-

terion is satisfied. Pressure and heat release oscillations are not completely in phase, but

the correlation is certainly positive so that the instability can be sustained. The nonlinear-

ity in the flame response distorts the heat release perturbations from a harmonic form to

one that peaks to higher positive than negative values. This is a common characteristic of

nonlinear heat release oscillations (see, e.g., Fig. 4.2).
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Figure 9.6: Time-domain evolution of the instability. The close-up evidences positive
heat-release–acoustic correlation.
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Figure 9.7: Instantaneous frequency (left) and growth rate (right) of the pressure signal in
Fig. 9.6

The describing function analysis in Section 9.3 predicted a frequency shift during the

growth of the unstable mode (Fig. 9.5). To see whether this characteristic is present in

the coupled simulation, we compute the instantaneous oscillation frequency of the pres-

sure signal. From the properties of the Hilbert transform, we can determine the instanta-

neous frequency of a narrow-band signal2 as d/dt(arg pa)/(2π), where pa = (1 + iH)[p]

is the analytic signal of p, and H denotes the Hilbert transform. Moreover, since we have

the instantaneous amplitude available as |pa|, we can compute the associated exponential

growth rate as d/dt(log |pa|)/(2π). Instantaneous frequency and growth rate are shown

in Fig. 9.7. For small amplitudes, the instability has a frequency of 86 Hz, agreeing well

with the results obtained from the linearized system model (Section 9.3). While the am-

plitude is growing, the instability frequency increases up to 92 Hz at the established limit-

cycle oscillation. This is obviously a result of the amplitude dependence of the flame

response (Fig. 9.2) and compares well with the analysis based on the describing function

of the flame in the preceding section. Yet, we have to note that there is a slight deviation

of about 3 Hz in the predicted frequency compared to the one computed from the coupled

simulation data.

The instantaneous growth rate (Fig. 9.7, right) is somewhat smaller at low amplitudes

compared to the linear stability analysis (Fig. 9.4). Between 0.2 and 0.4 seconds, the growth

rate actually increases before saturation sets in. This feature can also be observed in

Fig. 9.5. We may conjecture at this point that when increasing some linear damping mech-

anism continuously, we might find a range (albeit small) in which the system exhibits

subcritical instabilities.

9.4.2 Control by equivalence ratio modulation

Control of combustion instabilities by equivalence ratio (or fuel flow) modulation was

shown to be effective in Chapter 4. Other successful experimental applications were re-

ported by Paschereit et al. (1999b), Hibshman et al. (1999), Campos-Delgado et al. (2003),

Riley et al. (2004), and Guyot et al. (2007). In case of a technically premixed burner, a

loudspeaker also introduces fluctuations in equivalence ratio (the details depending on

the fuel-line impedance), but we do not consider this here.

2Due to the harmonics, the pressure signal is only reasonably narrow-band. Therefore, before applying the
Hilbert transform, the pressure signal was low-pass filtered.
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Figure 9.8: Control of combustion instability by equivalence ratio modulation

We use a direct actuation of the equivalence ratio in the coupled simulation to achieve

a stabilization of the system. With reference to Fig. 9.1, it can be observed that, at the os-

cillation frequency, the heat release transfer functions Fu and Fφ are almost in antiphase.

Hence, a φ′ feedback proportional to u can be expected to have a stabilizing effect. We

have to consider, however, the amplitude dependence of the heat release response. As

Dowling (1997) pointed out, a controller designed to stabilize the steady state is not neces-

sarily capable of suppressing a fully established limit-cycle oscillation. If the heat release

response is strictly of saturation type with no nonlinearity in the phase, a controller based

on the linearized system model can be considered as conservative (Dowling 1997). In the

present case, however, the phase response is strongly amplitude dependent so that the

above argument does not hold. In the framework of the describing function analysis, sta-

bilizing control for the whole amplitude range can be guaranteed if the growth rates are

negative for all relevant |û|/ū. Equivalence ratio feedback with a stabilizing effect over

the whole amplitude range was achieved with an additional small time-lag in the form of

a Padé approximant. The gain had to be chosen quite small so as not to destabilize the

lower frequency mode (see Fig. 9.4).

Results from the application of the equivalence ratio controller are shown in Fig. 9.8.

The control scheme is activated at t = 1 s. The heat release fluctuations are quickly dimin-

ished by the control action. Only slightly more than 10 % of the mean equivalence ratio

is needed at most to suppress the instability. After 0.2 seconds, hardly any oscillations

remain.

9.4.3 Control of the acoustic boundary conditions

Reflection of acoustic waves at the system boundaries is an essential part in the thermoa-

coustic feedback loop. For this reason, reducing the magnitude of the reflection coefficient,

for instance at the combustor outlet, has a stabilizing effect. This was already demon-

strated on the basis of the elementary model configuration in Section 7.5.3. Moreover, this

effect is general because it does not depend on the particular characteristics of the flame

or the burner. In addition to passive methods for the specific manipulation of combustor

boundary conditions (Paschereit & Gutmark 2002; Paschereit et al. 1998, 2000; Tran et al.

2009), active methods based on feedback control have been developed (Bothien et al. 2008).

While these active methods allow to prescribe a general desired impedance, reducing the
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ary condition

reflectivity was shown to have a stabilizing influence in several test-rig experiments (Both-

ien et al. 2008, 2010). In these cases, it was sufficient to reduce the magnitude of the reflec-

tion coefficient only in a narrow interval around the main frequency of oscillation.

Implementing the control strategy described above in the coupled simulation is straight-

forward because, effectively, the control action simply modifies the impedance of the

acoustic model. Hence, instead of the nominal acoustic model (7.10), representing a time-

domain realization of the transfer function AZ(ω), we have one that corresponds to lower

reflection at the downstream side. As in the work of Bothien et al. (2010), we restrict the

control scheme to lower the wave reflection only in a narrow band around the oscillation

frequency.

Results from the coupled simulation for the acoustic boundary control are presented

in Fig. 9.9. To realize this type of control in the coupled simulation, the downstream

impedance model Z(ω) was adapted to mimic the controlled reflection coefficient as de-

termined in test-rig experiments by Bothien et al. (2010). Control is activated at t = 1 s.

The heat release oscillations quickly decrease, and the system is stabilized. In contrast to

control by equivalence ratio modulation, a low-frequency oscillation, corresponding to the

lower acoustic mode (see Fig. 9.4), diminishes only slowly. In principle, this mode could

be also stabilized by the control scheme, but in a practical situation, very low frequencies

are difficult to actuate with acoustic drivers.

9.5 Summary

In this chapter, we applied the coupled method to a two-dimensional flame embedded in

a real acoustic test-rig environment. Based on linear and nonlinear flame response calcu-

lations, linear stability characteristics as well as the limit cycle amplitude and a nonlinear

frequency shift could be predicted. The limit-cycle oscillation observed in the coupled sim-

ulation had a frequency close to those seen in the test-rig. Active control with two types

of actuation was applied: manipulation of the acoustic boundary conditions and feedback

through equivalence ratio modulation. Both control methods successfully mitigated the

instability.





Part III

An Annular Thermoacoustic

Surrogate System:

Modeling and Control of Azimuthal

Instabilities in an Annular Rijke Tube

The vast majority of experimental and numerical investigations of thermoa-

coustic instabilities focuses on single-burner configurations, in which the

heat release couples only to longitudinal acoustic modes, and the interaction

is essentially one-dimensional. However, modern gas turbines are equipped

with annular combustion chambers featuring a large number of burners

around the circumference. Azimuthal modes, for which the dominant pres-

sure variation occurs in angular direction, are often observed in full-scale en-

gines. Since a complete annular combustor with a multitude of flames is an

exceedingly complex system, the knowledge on thermoacoustic instabilities

coupled to azimuthal acoustic modes is distinctly less developed compared

to the longitudinal case. Here, we therefore introduce a thermoacoustic sur-

rogate system – an annular Rijke tube – which, albeit its simplicity, possesses

the basic mechanisms to feature unstable azimuthal modes. A review of pre-

vious work on annular thermoacoustic systems and details on the configu-

ration considered are given in Chapter 10. Chapter 11 introduces modeling

tools generally applicable to annular configurations and particularly useful

for the annular Rijke tube. We set up a frequency-domain network-type

model that is capable of predicting the unstable modes in this configuration

and permits to study the impact of asymmetry. Experimental results and ac-

tive control of azimuthal instabilities are presented in Chapter 12. The struc-

ture of the unstable modes is investigated, and the effect of an asymmetric

power distribution is assessed. Based on the frequency-domain model, a

control scheme is developed, which is able to achieve a complete stabiliza-

tion, but can also target individual modes only.





Chapter 10

Instabilities in Annular Domains and

the Rationale for Studying a

Surrogate System

For reasons of compactness and of having a uniform temperature distribution at the tur-

bine inlet, most modern gas turbine combustion chambers have an annular shape with

multiple circumferentially arranged burners. Apart from the fact that, in this set-up, mul-

tiple heat sources interact with the unsteady pressure simultaneously, the acoustic modes

in an annular geometry are quite different from the purely longitudinal case. An annu-

lar chamber hosts azimuthal acoustic modes, which may become unstable under certain

conditions. As in the purely longitudinal case, the heat release provided by the flame re-

sponds dynamically to acoustic perturbations so that energy can be added to the acoustic

field, and pressure fluctuations grow until limited by nonlinear effects. Although inves-

tigations on annular thermoacoustic systems are significantly more complex than in the

purely longitudinal single-burner case, a number of experimental, numerical, and model-

ing studies focusing on azimuthal modes have been performed over the last decade. We

give a brief overview in the following.

10.1 A review of previous work on instabilities in annular com-

bustor configurations

Thermoacoustic instabilities in annular combustion chambers are often associated with

azimuthal acoustic modes, where both rotating and standing wave patterns have been

observed. The first Siemens gas turbine featuring an annular combustion chamber, the

V84.3A with 24 burners and a base load power of 170 MW, exhibited strong instabilities

coupled to 2nd and 4th order circumferential modes at 217 and 433 Hz. Seume et al. (1998)

applied a feedback control scheme using modulated pilot fuel to suppress these instabil-

ities. Due to this success, the control scheme was also implemented in the larger V94.3A

engine (Hermann & Hoffmann 2005).

The unstable acoustic modes in the Siemens Vx4.3A combustors have been further an-

alyzed by Krebs et al. (1999, 2001, 2002), Berenbrink & Hoffmann (2000), and Krüger et al.
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(2001) based on test-rig measurements and low-order Galerkin and network-type mod-

els. From the experimental data, first-, second-, and fourth-order azimuthal modes, domi-

nantly standing as well as rotating, were identified from the magnitude and phase patterns

of the acoustic pressure along the circumference of the annular combustion chamber. In-

troducing an azimuthal asymmetry by means of a cylindrical burner outlet applied to part

of the burners was found to have a stabilizing influence.

Evesque & Polifke (2002) and Evesque et al. (2003) developed a low-order network

model for annular combustion chambers allowing for asymmetries introduced by the

burner transfer matrices. They considered an annular model combustion chamber geome-

try and compared eigenvalue computations with a Helmholtz solver; good agreement was

found. Since no flame model was implemented, stability calculations were not performed.

Evesque et al. (2003) defined a method for characterizing the rotating or standing nature

of azimuthal modes, the spin ratio. A similar modeling approach was used by Kopitz

et al. (2005) to model longitudinal and circumferential instabilities that were observed in

an annular model combustion chamber. Flame transfer functions measured at stable oper-

ating conditions were extrapolated in thermal power and equivalence ratio (Lohrmann &

Büchner 2004) to compare the model results to the measured instabilities. Partial success

was achieved – the stability of the longitudinal mode was predicted correctly but not so

for the azimuthal mode. In the latter case, the extrapolation of the flame transfer function

was judged to be more critical.

Pankiewitz & Sattelmayer (2003) used an FEM solver for time-domain simulations of

thermoacoustic instabilities in an annular model configuration based on the wave equa-

tion with nonlinear flame model. In cases where the axial mean flow was neglected, they

only found rotating modes in the limit cycle solutions. When taking the axial mean flow

into account, only azimuthally standing waves appeared in the oscillations. The conclu-

sion that the mean flow promotes standing waves was, however, revised by Evesque et al.

(2003) who found that there was no influence on the occurrence of standing or rotating

modes.

A model of a symmetric annular combustor was investigated by Schuermans et al.

(2003) with a time-domain network model. The acoustic response of the annular chamber

was modeled using a modal expansion of the Green’s function of the Helmholtz equation.

On the basis of a linear analysis, two unstable modes were found. Time-domain simula-

tions with a limiter to saturate the heat release response showed only one mode oscillating

in a limit cycle. When suppressing this mode by active control, the second unstable mode

started to grow and settled on a finite-amplitude oscillation. In subsequent work based

on a similar configuration, Schuermans et al. (2006) observed that, while growing, the un-

stable mode was of standing type (resulting from axisymmetric white noise excitation).

However, the long-time periodic solution was always of dominantly rotating type, with

no preference of either spinning direction. It was shown that the saturation nonlinearity

in the flame destabilizes the standing wave mode at finite amplitude and therefore pro-

motes the traveling wave solution. For a simpler model system consisting of only two

first order azimuthal wave components, this mechanism was investigated in more detail.

Depending on the initial conditions the growing wave could be arbitrarily made up of

azimuthally traveling or standing components, but the final periodic solution was again
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always of rotating type. It was shown that there exist two types of equilibrium solu-

tions at finite amplitude in wave amplitude phase-space, one with equal clockwise and

counter-clockwise traveling wave components and the other purely spinning. The former,

corresponding to a standing wave, was associated with a saddle and therefore unstable.

The two purely rotating solutions were found to be stable fixed points.

The Rolls-Royce/Cambridge network code LOTAN (low order thermoacoustic net-

work model) was used in a number of modeling and control studies considering annu-

lar combustor configurations (Morgans & Stow 2007; Stow & Dowling 2004, 2003, 2009).

Stow & Dowling (2003) implemented the effect of Helmholtz resonators attached to the

circumference of the combustion chamber and studied the associated modal coupling.

Optimal resonator placement for maximum damping of unstable azimuthal modes was

deduced. The same authors extended the approach to account for nonlinearities in the

flame model (Stow & Dowling 2004). By using describing function techniques, the limit

cycle amplitude of thermoacoustic oscillations in an annular configuration could be calcu-

lated. Stow & Dowling (2009) extended the approach to time-domain simulations based

on the impulse response of heat release perturbations to those in approach flow velocity

and a nonlinear flame model. The final limit cycle solutions of unstable azimuthal modes

were always of rotating type, in accordance with the theoretical considerations of Schuer-

mans et al. (2006). Morgans & Stow (2007) and Illingworth & Morgans (2008) used the

same network code to develop model-based and adaptive control strategies for thermoa-

coustic instabilities in an annular model combustor. Based on the simulations, they were

able to suppress decoupled azimuthal modes in a rotationally symmetric set-up but also

coupled modes resulting from non-identical burners.

Tiribuzi (2006) used a URANS computation on an extremely coarse grid of a full an-

nular combustion chamber with 24 burners. He found unstable 2nd- and 3rd-order az-

imuthal modes, depending on the parameters of the combustion model. More surpris-

ingly, for fixed conditions (and model parameters), dominantly standing as well as rotat-

ing modes were found, depending on the initial conditions. Using the same approach,

Tiribuzi (2007) investigated the effect of four angular subdivisioning walls in the annular

plenum. He found that an asymmetric pattern could significantly reduce thermoacous-

tic oscillations associated with the second azimuthal mode. The symmetric configuration,

with subdivisioning walls at equidistant angles, forced a standing mode, but did not have

a strong impact on the pulsation strength.

Subcritical instabilities of a circumferential mode in a full annular combustor test-rig

with 24 burners were investigated by Lepers et al. (2005). They found a pronounced hys-

teretic dependence of the pulsation amplitude on the equivalence ratio. Application of

two different sets of 14 Helmholtz resonators resulted in a shift of only the Hopf point (see

Fig. 6.4) or a complete movement of the hysteresis region to fuel richer conditions. In the

latter case, the operating conditions subcritically unstable in the baseline case were glob-

ally stabilized. Accompanying calculations with a network model gave consistent results.

Richards et al. (2007) applied open-loop control to a Solar Turbines full-scale engine

with 12 burners. The control scheme was based on periodic modulation of the equivalence

ratio using solenoid valves at each of the 12 injectors. Six pressure transducers were in-

stalled to measure the acoustic pressure along the circumference. In the uncontrolled case,

a self-excited oscillation at 288 Hz was observed. Unfortunately, no information on the
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type of acoustic mode is given, but a standing wave is mentioned. When modulating the

fuel injectors in two groups, each with six burners (odd and even), the RMS pressure could

be reduced to one-third of the baseline conditions. Different forcing frequencies were used

but showed similar reduction in the pressure oscillations. As a side-effect, NOx emissions

were slightly decreased (in contrast to tests in a single-burner rig), but CO emissions in-

creased significantly. A steady increase of the equivalence ratio at every second injector

did not stabilize the system. Since the azimuthal order of the unstable mode is not stated,

these results are difficult to interpret.

Finite element computations of annular configurations based on the Helmholtz equa-

tion with feedback from the heat release and non-trivial boundary conditions were dis-

cussed by Nicoud et al. (2007) and Sensiau et al. (2008). It was shown by Sensiau et al.

(2009) that an asymmetry in the heat release response can amplify the eigensolution asso-

ciated with a certain spinning direction whereas the other is damped.

Staffelbach et al. (2009) performed an LES of a full annular helicopter combustion

chamber. They observed a dominantly rotating first order azimuthal wave at 740 Hz with a

clockwise-to-counter-clockwise amplitude ratio of 3. Due to the common rotation sense of

all (15) swirlers, an azimuthal mean flow is established in the annular combustion cham-

ber. Yet, since the mean flow component was of essentially negligible Mach number, it

was unclear whether this mechanism promotes the appearance of spinning waves. The

dominant effect of the acoustic waves on the heat release rate was found to result from a

modulation of the axial mass flow through the burners.

10.2 Generic system set-up and the rationale for studying an an-

nular Rijke tube

Studying thermoacoustic instabilities and their control in annular combustion chambers

is a complex task, from an experimental as well as from a computational point of view. As

a result, in contrast to thermoacoustic instabilities in purely longitudinal geometries, less

information regarding azimuthally unstable modes is available. We therefore propose to

study a surrogate system – an annular Rijke tube – which, albeit its simplicity, possesses

the basic mechanisms to feature unstable azimuthal modes. This system, having all essen-

tial ingredients to generate this phenomenon, narrows the gap between elementary model

studies in longitudinal configurations and full-scale applications in annular geometries.

The generic system set-up we consider is as follows. N straight tubes (the “burners”)

are connected to an annular duct (the “combustion chamber”) with their downstream end.

In each tube, there is an element that provides a mean heat release and responds dynam-

ically to fluctuations in axial velocity. The source of unsteady heat release in the original

Rijke tube is a grid of heated wires. It is the simplicity of this source that makes it attractive

for fundamental studies of thermoacoustic instabilities, and this is the reason why we use

it in our annular model system as well. Obviously, a heating grid is much simpler than

a premixed flame; however, both have a qualitatively similar frequency response to axial

flow perturbations – low-pass characteristics with an associated phase-lag.

A principal difference to an annular combustion chamber in a gas turbine is that, in

the set-up proposed here, the sources of heat release do not respond to azimuthal velocity
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Figure 10.1: Schematic representation of the annular Rijke tube with basic dimensions.
Left: top view; right: vertical cut-plane; dimensions in mm.

fluctuations in the downstream annulus but only to an axial perturbation in the tubes. We

assume the latter effect to be dominant, as was found by Staffelbach et al. (2009).

To avoid confusion in this chapter, we refer to the N objects in which the heat sources

are located exclusively as tubes; the term duct is reserved for the annular component.

10.3 Experimental arrangement

The annular Rijke tube has 12 tubes connected to an annular duct at their downstream

end. Figure 10.1 shows a schematic of the set-up with the basic geometrical dimensions; a

photograph of the experimental arrangement is presented in Fig. 10.2. The tubes have an

inner diameter of 60 mm with an associated cut-on frequency for the first azimuthal mode

beyond 3 kHz at room temperature. The annular duct is 400 mm in length and has a mean

diameter of 720 mm with a “hub–tip ratio” of 0.8; the downstream end is simply open. All

parts are made of aluminum with a wall thickness of 10 mm. Although coincidental, we

note that the cross-sectional set-up is quite similar to Solar Turbines’ Centaur engine (see,

e.g., Smith & Blust 2005).

As in a conventional Rijke tube (e.g., Heckl 1990 or Raun et al. 1993), the sources of

mean and unsteady heat release are electrically driven heating grids. The axial center of

the grids is located 100.5 mm downstream of the tube inlets. The axial extent of the grid

modules is 15 mm, thus clearly complying with the assumption of a compact heat source.

Three independent DC sources (EA-PS 9080-50), each with a maximum output of 1.5 kW,

are used to power the grids. In the nominal set-up, 4 heating grids are connected in paral-

lel. The chosen DC sources have a power stage providing the maximum output power for

voltages and currents up to 80 V and 50 A, respectively. Thus, the heating grid resistance

does not need to have one specific value to obtain the maximum power output but can

lie in a certain range. The admissible values of the heating grid resistance, allowing for a

maximum power output, based on the power staging of the DC supplies, is illustrated in

Fig. 10.3(a). If four heating grids are connected in parallel to one power supply, minimum

and maximum grid resistance are given by Rmin = 4Pmax/I2
max and Rmax = 4U2

max/Pmax,
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microphones
heating grids

speaker

Figure 10.2: Photograph of the annular Rijke tube. Only three of the six loudspeakers are
mounted.

respectively, where maximum power, current, and voltage are Pmax = 1500 W, Imax = 50 A,

and Umax = 80 V for the specific power supply used. Based on these constraints, the heat-

ing grids were manufactured to have a cold resistance of 13 Ω (Fig. 10.3(a)).

Special care was taken that all heating grids are identical so that the nominal system

would be as symmetric as possible. The relative difference in the cold electrical resistance

of the 12 heating grids was less than 0.5 %. Unless mentioned otherwise, all heating grids

are supplied with equal electrical power. A photograph of one of the heating grids is

shown in Fig. 10.3(b). The grids have a meandering pattern in two layers and are made

from flat wire with a rectangular 0.18 mm×0.58 mm cross section.

The heating grids are driven by a constant voltage. If the fluid velocity at the grid

oscillates, the heat transfer coefficient is modulated, and as a result, the heat released to

the fluid fluctuates, too. In principle, this may have two effects which are difficult to

account for in a model: (i) the temperature of the wire does not remain constant and (ii)

as a result of (i), the resistance of the wire also changes, which would lead to an unsteady

electric power supplied to the grid. However, an estimate of the thermal inertia of the

wire, as done by Kopitz (2007), shows that the grid temperature can be clearly considered

as constant for frequencies down to 100 Hz.

No external source is used to drive a mean flow. As in the original Rijke tube, the

mean flow is solely convection induced. This restricts the parameter space (power input

and mean flow velocity cannot be varied independently) but allows for essentially noise-

free measurements. Moreover, the acoustic boundary conditions, which have a significant

effect on stability and oscillation amplitudes (Bothien et al. 2008), are well defined.

Microphones, thermocouples, and speakers can be mounted to the annular Rijke tube

via 48 ports in total, 24 each at the tubes and at the annular duct. We use 12 microphones,
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Figure 10.3: (a) Operating chart for one of the power supplies. Black lines correspond to
the electrical resistance of one heating grid, with four grids connected in parallel to the
power source. (b) Photograph of a heating grid (top view).

mounted in the tubes, upstream of the heating grids. In this way, we do not have to

monitor the temperature at the microphones, and the information on the circumferential

structure of the pressure field is identical to what would be inferred from measurements

in the annular duct. For the application of feedback control, six speakers were used in

total, one attached to every second tube, downstream of the heat sources (see Fig. 10.1).

The distance between the axial center of the heating grid and the microphone is 47 mm in

each tube; between heating grid and speaker, the distance is 65 mm.





Chapter 11

Modeling Annular Thermoacoustic

Systems

Modeling thermoacoustic systems is markedly different when considering annular con-

figurations as opposed to geometries with mainly longitudinal extent. In addition to mul-

tiple sources of unsteady heat release, there is now also a three-dimensional acoustic field,

which is difficult to represent by lumped parameter models in an accurate way. While

complete numerical approaches, representing essentially all the physics involved (see ref-

erences in Section 10.1), are possible, this remains a costly task and does not permit to

vary system parameters extensively. Accordingly, acoustic-based models, taking into ac-

count the interaction with the heat release by transfer functions, are still attractive. We will

follow this modeling route for the investigation of our surrogate system.

11.1 The acoustic field in an annular domain

We consider an annular duct as shown in Fig. 11.1. L denotes the axial length and R and

hR the radii of the outer and inner cylinder, respectively (h is the hub–tip ratio).

For vanishing mean flow Mach number and a homogeneous temperature, the acoustic

pressure field is a solution of the Helmholtz equation

∇2 p̂ + k2 p̂ = 0, (11.1)

L

R

hR
r

x

ϕ
Figure 11.1: An annular duct with associated coordi-
nate system and outer and inner radii R and hR, where
h is the hub–tip ratio.
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where p is the acoustic pressure, ˆ(·) denotes a Fourier transformed variable, and k =

ω/c is the wavenumber, as before. The solution to Eq. (11.1) can be written as an infinite

superposition of modes (Rienstra & Hirschberg 2006)

p̂ =
∞

∑
m=−∞

∞

∑
n=0

(

Amn e−ikmnx +Bmn eikmnx
)

eimϕ pmn(κmnr). (11.2)

Here, m and n are azimuthal and radial mode orders, kmn is the axial wavenumber, pmn is

the radial eigenfunction of order (m, n), κmn is the radial eigenvalue, and Amn and Bmn are

complex coefficients (the modal amplitudes). The compatibility condition, induced by the

separation ansatz which leads to (11.2), requires k2
mn = k2 − κ2

mn. With a suitable definition

of the square root, involved in evaluating kmn, the part of the pressure field associated

with Amn corresponds to a downstream traveling wave and that associated with Bmn with

an upstream traveling one. Since the pressure field must be 2π-periodic in the angular

coordinate, we can only have azimuthal eigenvalues m = 0,±1,±2, . . . Instead of the

complex exponential eimϕ, the angular dependence of the pressure field can be represented

by cos mϕ and sin mϕ with m ≥ 0 only. We will use both types of angular basis functions,

depending on which form is more convenient. The reason for this freedom of choice is

the degeneracy of the circumferential eigenfunctions. This topic is discussed in detail in

Section 11.2.

The radial eigenfunctions pmn are solutions of Bessel’s equation satisfying homoge-

neous Neumann conditions at hR and R. Hence, they are given by

pmn(κmnr) = Jm(κmnr) + Cmn Ym(κmnr), (11.3)

where Jm and Ym are Bessel functions of the first and second kind of order m, and Cmn and

κmn can be determined from the radial boundary conditions. In particular, upon intro-

ducing the scaled radial eigenvalue σmn = κmnR, the eigenvalue condition can be written

as

Y′
m(hσmn) J′m(σmn)− Y′

m(σmn) J′m(hσmn) = 0, (11.4)

where (·)′ denotes a derivative with respect to r, and the radial order n is defined such that

σm(n+1) > σmn. For small 1 − h (a “thin” gap), the lower eigenvalues can be approximated

as (Stow et al. 2002)

σm0 =
2m

1 + h
, (11.5a)

σmn =
nπ

1 − h
, for n ≥ 1. (11.5b)

The first few eigenvalues for radial mode orders 0 and 1 (computed numerically from

Eq. (11.4)) and the small gap approximations (11.5) are shown in Fig. 11.2.1 Apparently,

there is sufficient accuracy for the eigenvalues shown for hub–tip ratios larger than 0.7.

For the cases we are interested in, radial modes (i.e., n > 0) are typically highly cut-off.

The complex coefficients Amn and Bmn are determined by the axial boundary conditions

at the inlet and the outlet of the annular duct. For a closed outlet (at x = L), e.g., we have

1The approximation (11.5a) simply means that κm0 = m/R̄, where R̄ is the mean radius of the annular
duct.
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Figure 11.2: Radial eigenvalues as a function of the hub–tip ratio h; numerical solutions
of Eq. (11.4) and small gap approximation (11.5). m denotes the azimuthal mode order.

∂x p̂ = 0 (for all r and ϕ) and, therefore, Bmn = e−2ikmnL Amn. Amn can then be determined

from the boundary data at the duct inlet. If both axial boundary conditions are homoge-

neous, a non-trivial pressure field only exists for special choices of the axial wavenumbers

kmn and, hence, only for global eigenvalues k. More general boundary conditions can be

given in terms of modal reflection coefficients Rmn = Bmn/Amn which relate the reflected

modal amplitudes to those incident. If the axial boundaries are such that they break the

symmetry of the annulus, there may generally be modal coupling, and the amplitudes of

the reflected and incident waves corresponding to different cross-sectional modal orders

mix.

Taking into account the effect of a constant axial mean flow in the solution of the

Helmholtz equation (11.1) is straightforward (Rienstra & Hirschberg 2006, p. 212). Since

the mean flow Mach number in the application considered here is of the order of 10−3 (see

Section 12.2), there is, however, no reason to include this additional complexity.

11.2 Symmetry and azimuthal mode degeneracy

Since the radial eigenfunctions Jm and Ym are symmetric with respect to their order m, it

follows from (11.4) that for an annular duct, the eigenvalues corresponding to m and to −m

are identical. The angular eigenfunctions for positive and negative m, eimϕ and e−imϕ, are

linearly independent, and hence, there is a two-dimensional eigenspace. This is a man-

ifestation of eigenvalue degeneracy. For an axisymmetric configuration this degeneracy

persists for all azimuthal mode orders m.

Mode degeneracy can – in most cases – be attributed to the presence of symmetries in

the eigenvalue problem2 (Hamermesh 1989). The group theoretical explanation is that if

the eigenvalue operator is equivariant under the action of a symmetry group (i.e., it com-

mutes with the group), then every admissible symmetry operation transforms an eigen-

function associated with a certain eigenvalue into an(other) eigenfunction with the same

eigenvalue. If the group operations generate linearly independent eigenfunctions, this

2An exception are so-called accidental degeneracies. These dynamical peculiarities are, however, consid-
ered to be rare in occurrence (Perrin & Charnley 1973).
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particular eigenvalue is degenerate. In this case, the eigenfunctions form a vector space

which is invariant under the action of the symmetry group. Since a certain system sym-

metry is the reason for some eigenvalue to be degenerate, removing that symmetry will,

consequently, split the degenerate mode into two distinct ones.

Loosely speaking, an eigenfunction can be suspected to be a member of a degenerate set

if it has a lower symmetry than that of the eigenvalue problem.3 Since complete axisym-

metry is an infinite-order rotational symmetry, all eigenvalues with m 6= 0 are degenerate

in case of an annular duct. As the eigenspace of the degenerate modes is two-dimensional,

we need not stick to the exponential-type azimuthal eigenfunctions, but can use any lin-

ear combination as basis, such as sin mϕ and cos mϕ. In this case, using positive m only is

sufficient.

Annular combustion chambers, as well as our surrogate model system, feature only

a discrete rotational symmetry because the configuration is not invariant with respect to

rotations by arbitrary angles. In the simplest case, the order of rotational symmetry is

equal to the number of burners. (A counterexample is ALSTOM’s GT13E2, which has two

circumferentially arranged burner rows, with each burner pair being shifted radially with

respect to its neighbors.) The annular Rijke tube has nominally a rotational symmetry of

order 12 and, in addition to that, 12 reflection symmetries at planes which contain the

symmetry axis and pass through angles with multiples of π/24 (see Fig. 10.1). Here, we

consider only the unforced system so that the 6 speakers, mounted in every second tube,

do not reduce the symmetry order. Since the symmetry is only discrete, modes with certain

circumferential orders are distinct. Based on group-theoretical arguments, Perrin (1977)

has shown that this is true for azimuthal orders which are a half-integer multiple of the

order of the associated symmetry group. In the following, we will denote the group of

Nth order rotational symmetry, including the N additional reflection symmetries, by CN.4

Assuming a uniform temperature field, the Helmholtz operator has no explicit coor-

dinate dependence, and the relevant symmetry group is essentially determined by the

geometry and the boundary conditions. We denote geometrical transformations which

leave the problem unchanged by OR. These are the actions of the associated symmetry

group, in our case, rotations by specific angles and reflections with respect to the given

planes of symmetry. Applying one of these symmetry transformations to the Helmholtz

equation (11.1), we obtain

OR(∇2 p̂) + OR(k2 p̂) = 0. (11.6)

Since the Laplacian is equivariant with respect to OR, the two operations commute, and

we have OR(∇2 p̂) = ∇2(OR p̂). Furthermore, the eigenvalue is only a scalar number, and

hence, (11.6) is equivalent to

∇2(OR p̂) + k2(OR p̂) = 0. (11.7)

3Eigenvalue problem refers to differential equation, boundary conditions, and geometrical configuration.
4According to the Schönflies notation (Hamermesh 1989), this group is labeled with CNv to indicate the

additional reflection symmetries. In contrast to the order of rotational symmetry, we cannot change the reflec-
tion symmetries in our set-up. Therefore, we omit the index ‘v’ for convenience and understand the reflection
symmetries to be included when referring to CN .
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Figure 11.3: Pressure patterns of the first azimuthal mode for different degrees of ro-
tational symmetry. Top and bottom rows correspond to two orthogonal eigenfunctions
which may or may not share the same eigenvalue, depending on the degree of symmetry.
The m = 1 mode is degenerate for the C∞, C3, and C4 configurations.

But this means that if p̂ is an eigenfunction with eigenvalue k2, then so is OR p̂ – with

the same eigenvalue. Now if OR p̂ and p̂ are linearly independent, then it follows imme-

diately that the eigenvalue is degenerate because the associated eigenspace is (at least)

two-dimensional.

This somewhat abstract concept can be made more instructive by studying the set of ex-

amples in Fig. 11.3. We consider the first circumferential eigensolutions of the Helmholtz

equation (11.1). The geometrical configurations exhibit symmetries of different order.

From the left to the right column, the associated symmetry groups are C∞, C1, C2, C3,

and C4.5 The configuration in the left column exhibits C∞ symmetry; it is invariant with

respect to rotations by an arbitrary angle and reflections with respect to any plane contain-

ing the axis of symmetry. Because of this property, the eigenfunction shown in the top row

can be rotated by an arbitrary angle and is still an eigenfunction associated with the same

eigenvalue. Clearly, we will manage to find some rotations for which the transformed

pressure pattern is linearly independent from the initial one. A possible choice is shown

in the lower row. These two pressure patterns form a basis of the eigenspace correspond-

ing to the degenerate first azimuthal eigenvalue. It is easy to see that we can apply this

argument to modes of arbitrary azimuthal order. Therefore, all eigenvalues with m 6= 0

are degenerate. Eigenfunctions with m = 0 are still mapped to eigenfunctions by the OR,

but since they are axisymmetric, the symmetry transformations do not generate linearly

independent members, and the corresponding eigenvalues are distinct.

We consider now the configuration in the second column in Fig. 11.3. There is a small

triangular perturbation from the axisymmetric ring shape. The specific form of this geo-

metrical perturbation is not important. We can also assume it to be a Helmholtz resonator,

for instance. However small, this geometrical imperfection breaks the axisymmetry. As a

5Thinking in three dimensions, the proper symmetry group associated with the patterns in Fig. 11.3 is the
dihedral group D, which includes reflections with respect to the paper plane. As these additional symmetries
are obviously irrelevant for thermoacoustic problems in annular domains (because that additional symmetry
is not present), we will only consider the rotational group C.
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result, there remain only two admissible symmetry transformations which leave the prob-

lem invariant: a rotation by 2π (the identity, in fact) and a mirror symmetry with respect

to a line which passes through the centerpoint of the ring and the apex of the triangular

perturbation. If there is a line of symmetry, all eigenvalues have eigenfunctions which are

either symmetric or skew-symmetric with respect to that line (Trefethen & Betcke 2006).

For distinct circumferential eigenvalues corresponding to one azimuthal order, then sim-

ply, one eigenfunction is symmetric and the other is skew-symmetric. In case of a de-

generate eigenvalue, the basis of the degenerate eigenspace can be chosen such that these

properties apply. For m = 1 modes, this means that either the node or the anti-node is

located at the circumferential position of the triangular shape. However, since rotations

by π/2 do not belong to the admissible symmetry transformations for this case, m = 1

modes are not degenerate, and the eigenvalues associated with the two pressure patterns

in the second column in Fig. 11.3 are different. (The eigenvalue associated with the upper

frame is smaller than that for the lower one.) For this simple case, this makes sense: if

the triangular shape were a Helmholtz resonator, then the upper pressure pattern would

be strongly damped and the lower not. The same reasoning applies to all circumferential

modes, and therefore, they are all distinct.

The first azimuthal mode in case of a C2 symmetry is shown in the middle column in

Fig. 11.3. There are two additional symmetries compared to the C1 case: a rotation by π

and a mirror symmetry along a horizontal line passing through the midpoint of the ring.

Again, we cannot generate linearly independent eigenfunctions by the admissible sym-

metry transformations. Consider modes of first azimuthal order. Rotations by π merely

map them onto their negative images; in fact, this is true for all odd m. More generally, we

have for rotations by π, OR p̂ = (−1)m p̂. Therefore, also in the case of a C2 symmetry, all

azimuthal modes are distinct.

Next consider the fourth column in Fig. 11.3, which shows a configuration with C3

symmetry. At first azimuthal order, there has to be an eigenfunction which has its nodal

line passing through the triangular shape at 12 o’clock, say. Due to the C3 symmetry

of the system, we may rotate this eigenfunction by 2π/3 without altering its associated

eigenvalue. In contrast to the C1 and C2 patterns considered before, the eigenfunction

generated by this transformation is linearly independent from the original one. This is

immediately clear by looking at the movement of the nodal line: the rotated eigenfunction

is non-zero at the circumferential position where the original eigenfunction has its node,

and clearly, the two cannot be related by a constant factor. Therefore, the first azimuthal

eigenvalue is degenerate. The same holds for m = 2 because the symmetry transformation

again generates a linearly independent pressure pattern. In case of the third azimuthal

mode, rotations by 2π/3 and 4π/3 map the eigenfunctions onto themselves. Hence, there

are two distinct eigenvalues for m = 3. We can apply these arguments for all values of

m and find, for this specific case, that only the eigenvalues with azimuthal orders being a

multiple of 3 are distinct.

In case of the C4 symmetry, shown in the fifth column in Fig. 11.3, the 1st-order az-

imuthal mode is again degenerate because now we may apply rotations by multiples of

π/2 without changing the eigenvalue. As in the case of the C3 symmetry, this produces

a linearly independent eigenfunction. For m = 2, however, this is not the case. Rotations

by multiples of π/2 map the 2nd-order azimuthal mode onto itself or its negative image.
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Hence, in case of the C4 symmetry, the m = 2 mode is distinct, as well as modes with

azimuthal orders being multiples of 2.

The annular Rijke tube has nominally a 12-fold rotational symmetry with 12 additional

reflection symmetries; its associated symmetry group is C12. From the explanation above,

we conclude that all azimuthal modes except for those with circumferential order equal

to 0 or multiples of 6 will be degenerate. As in an annular combustion chamber, there are

various additional ways in which the nominal symmetry of the system can be reduced.

This will be the case if any of the following conditions is violated:

(i) the tubes are all geometrically equivalent;

(ii) the azimuthal spacing between the tubes is identical;

(iii) the heat sources are all located at the same axial position in the tubes;

(iv) the heat sources in the tubes are all identical and driven by the same electric power;6

(v) there is no azimuthal mean flow in the annular duct; and

(vi) the acoustic boundary condition at the outlet of the annular duct preserves the sym-

metry.7

Conditions (i)–(iii) and (vi) are related to purely geometrical properties. They can be

changed but only discontinuously and by demounting the set-up. Condition (v) can, in

principle, be violated by generating an azimuthal mean flow artificially, but this is not a

straightforward procedure either. One convenient way to introduce an asymmetry is a

circumferential modulation – or staging – of the power distributed to the heating grids

(condition (iv)). It will be shown in later sections that this leads indeed to a splitting of

nominally degenerate modes.

11.3 A frequency-domain network-type model for the annular

Rijke tube

In this section, a theoretical system model for the annular Rijke tube is presented. The

model is based on a frequency-domain representation of the acoustic field coupled to the

heat release transfer functions of the unsteady heat sources. Although the heat sources

considered in this work are electrically driven heating grids, the principal methodology

can be applied to annular combustors as well.

The basic strategy in setting up the system model will be to represent the acoustic re-

sponse up- and downstream of the elements of heat release separately and then combine

the two by making use of the appropriate coupling relations across the heat sources. Fig-

ure 11.4 displays the notation that will be used for the acoustic pressures and velocities

6This ensures that the dynamic response in each tube is identical and that the mean temperature field
preserves the C12 symmetry. It would be possible to have non-identical dynamic responses in the tubes
without breaking the symmetry of the mean temperature field by using different heating grids (with different
wire diameters, for example) but with the same electric power.

7This condition is trivially satisfied in case of a completely open or completely closed end, the former
being what we have in the experimental set-up. However, if the downstream end of the annulus is not fully
closed or open, then, to preserve the full order of symmetry, the outlet area would have to adhere to certain
geometrical properties. We could use, for instance, a plate with N holes coaxially arranged with the tubes or
located halfway between two tubes.
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Figure 11.4: Notation for acoustic pressure and axial particle velocity up- and down-
stream of the heat sources

immediately up- and downstream of the heat sources. pus/ds.n and uus/ds.n denote acous-

tic pressure and axial particle velocity up-/downstream of the heat source in tube n. The

tubes are counted in anti-clockwise direction when looking downstream. In setting up the

model, it will be convenient to work with the acoustic pressure scaled by the (local) char-

acteristic impedance ρc, which we denote by ℘ = p/(ρc). The axial extent of the elements

of heat release as well as the diameters of the tubes are much shorter than the relevant

acoustic wavelengths. Therefore, we can consider the zone of heat release as compact, and

the acoustic field in the tubes can be treated as one-dimensional.

The model is completely linear. Accordingly, we only intend to identify unstable modes

and do not attempt to quantify the limit cycle amplitude. For the latter, detailed knowl-

edge on the nonlinear response of the heat sources would be required (see Section 2.5.5),

which is not available.

11.3.1 Up- and downstream acoustic response

To model the acoustics up- and downstream of the heat sources, we first consider each

part separately. Since we assume plane wave propagation in the tubes, the whole ac-

tion of the acoustic field downstream of all heat sources can be represented as a general-

ized impedance in the sense that it maps the velocity fluctuations downstream of the heat

sources to the pressures, viz.,

℘̂ds = Z ûds, (11.8)

where Z is an impedance matrix such that element (i, j) is the pressure response down-

stream of the heat source in tube i to a unit excitation in acoustic velocity in tube j,

while all other acoustic velocities are set to zero. Hence, the elements of Z are given

by Zij = ℘̂ds.i/ûds.j, with ûds.k = 0 for all k 6= j.

Although the acoustic field in the tubes upstream of the heat sources are not directly

connected, we construct the model to allow for such a coupling, too (in the presence of a

plenum, for instance). Analogous to the downstream part, we define an admittance matrix

A, which relates the acoustic velocities upstream of the heat sources to the pressures by

ûus = A℘̂us. (11.9)
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11.3.2 Heat release dynamics

In each tube, the relations between the up- and downstream acoustic variables are de-

termined by the dynamic response of the heat source (in that tube). In a general linear

framework, this relation can be expressed by a 2×2 transfer matrix in frequency domain

[

℘̂ds.n

ûds.n

]

= Tn

[

℘̂us.n

ûus.n

]

. (11.10)

For the type of compact heat source we consider here, and for a vanishing mean flow Mach

number, the pressure loss is negligible, and the change in acoustic velocity due to the heat

release fluctuations is given by the jump conditions (2.16).

We introduce heat release transfer functions Fn(ω) that relate the normalized heat re-

lease response in tube n to the normalized perturbation in the upstream velocity (in tube

n) via

Fn =
Q̂n

ûus.n

ūus.n

Q̄n
. (11.11)

Then the transfer matrix of the heat source in tube n can be written as

Tn =

[

ξn 0

0 1 +
(

Tds.n
Tus.n

− 1
)

Fn

]

, (11.12)

where ξn =
√

Tds.n/Tus.n is the ratio of characteristic impedances up- and downstream

of heating element n. As proposed by Lighthill (1954) for the case of small wire Strouhal

numbers, we model the heat release transfer function as a first order low-pass

Fn =
ck

1 + iωcτ.n
, (11.13)

with gain and phase parameters ck and cτ.n. We explicitly allow for different temperature

jumps and heat release transfer functions in each tube so that we can study the effect of an

asymmetry in the heat release feedback. For later use, we define diagonal matrices X and

F with elements Xij = ξiδij and Fij = (Tds.i/Tus.i − 1)Fiδij (δij is the Kronecker delta) and

scalar tube transfer functions

Fn = (Td.n/Tu.n − 1)Fn. (11.14)

Note here that the definition of F is different from that in Parts I and II. In the present

case, the normalized temperature ratio is included, as this will be more convenient in the

following.

11.3.3 Submodel coupling and dispersion relation

The model for the entire system can be built as indicated in Fig. 11.5. To couple the acoustic

models of the up- and downstream parts, we use the dynamic heat release characteristics

given by Eq. (11.12). Hence, we have ℘̂ds = X℘̂us, i.e., the pressure is continuous across
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Figure 11.5: Network model representation of the
annular Rijke tube. Q maps upstream to down-
stream pressures and velocities via X and I + F ,
respectively.

A ZQ

p̂us p̂ds

ûus ûds

the heat source, and the jump in acoustic velocity is given by

ûds =
(

I + F
)

ûus. (11.15)

Combining Eqs. (11.8), (11.9), (11.15), and the pressure continuity condition, and drop-

ping the subscript ‘us’ of the vector of pressures upstream of the heat source, we obtain

X℘̂ = Z
(

I + F
)

A℘̂. (11.16)

From Eq. (11.16), it follows that for non-trivial solutions to exist, the dispersion relation

det S = 0 (11.17)

must be satisfied, where the system matrix S is given by

S = Z
(

I + F
)

A− X. (11.18)

Solutions ωk of the dispersion relation are the system eigenfrequencies, Re ωk representing

the (angular) oscillation frequency and −Im ωk the growth rate. The purely acoustic eigen-

frequencies can be obtained for the case with no dynamic heat release as the solutions of

det |ZA − X| = 0. In case of the full nominal discrete symmetry, the system matrix S has

some special properties, which are discussed in Section 11.3.7.

It is interesting to note that (11.17) with S given in (11.18) is a generalization of the sim-

ple one-dimensional case of a single Rijke tube. In this case, the impedance and admittance

are scalar functions which relate acoustic velocity to pressure and vice versa. The disper-

sion relation for this configuration can be written as Z(1 + F)A − ξ = 0 (Schuermans

2003), where A and Z are admittance and impedance immediately up- and downstream

of the source of heat release.

If an eigenvalue ωk of (11.17) has been obtained, the corresponding pressure pattern in

the N tubes, at the heat source positions, can be computed as the null space of the system

matrix evaluated at ωk

℘̂k = ker S(ωk). (11.19)

The multiplicity of the eigenvalue, hence its degeneracy, can be determined from the di-

mension of the null space of S. For a distinct eigenvalue, we have dim ker S(ωk) = 1,

whereas for a degenerate one, such as in the case of a fully symmetric configuration, where

two mode shapes share one characteristic value, the eigenspace is two-dimensional.

The modal content âm of the eigenfunction in the tubes can be determined by means of

a discrete projection on a basis of angular Fourier modes bc,s
m (ϕ), viz.,

âc,s
m =

N

∑
n=1

℘̂k.nbc,s
m (ϕn). (11.20)
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In our case of even N, we use

bc
m = wm cos mϕ, m = 0 . . . N/2, (11.21a)

bs
m = wm sin mϕ, m = 1 . . . (N/2 − 1), (11.21b)

were the coefficients wm are chosen as w0 = wN/2 = N−1/2 and w1, . . . , wN/2−1 = (N/2)−1/2.

Then the N vectors with elements bc,s
m (ϕn) form an orthonormal basis in N-dimensional

Euclidean space. Naturally, using the N pressures in the tubes only, we cannot resolve

modes with azimuthal order higher than N/2. In the case of N even, only the cosine

part of an m = N/2 mode can be detected. However, as will be seen in Section 11.5, all

eigenfunctions associated with frequencies below 1000 Hz lie within the subspace spanned

by the basis (11.21).

11.3.4 Upstream response matrix A

Now, as mentioned above, in the present case considered, the upstream ends of the tubes

are not connected to each other so that A is a diagonal matrix. (This holds true only

approximately, see below.) Moreover, since the tubes are all of the same length, the diag-

onal entries are all identical and simply correspond to the admittance of a tube with an

unflanged open end. Hence, we have

Aij = −1 − iZLS tan kLus

ZLS − i tan kLus
δij, (11.22)

where ZLS is the small-Helmholtz-number approximation of the end impedance of an

open, unflanged tube (Eq. (2.10)); Lus denotes the length upstream of the heat source.

In principle, Lus could be different in each tube, which corresponds to the case where

the heating grids are at different axial locations. Then A would still be diagonal but not

isotropic.

Modeling the upstream admittance matrix by Eq. (11.22) is only an approximation for

two reasons. First, the upstream ends of the tubes are not ideally unflanged due to a sup-

porting ring (see Fig. 10.2). Second, since there is some sound radiation out of the tube

inlets, A is not strictly diagonal. The sound radiated out of tube inlet is reflected from

the laboratory walls and eventually impinges on all others (and also on itself). Modeling

these effects is difficult. The supporting ring is a non-standard geometry and no corre-

lations exist for this case. Likewise, taking into account the sound waves reflected from

the laboratory walls is rather cumbersome. We assume, however, that these effects are not

dominant for small tube Helmholtz numbers.

11.3.5 The acoustic response matrix of an annular duct

To represent the impedance matrix of an annular duct, we use the approach proposed by

Schuermans, which is based on an eigenfunction expansion of the Green’s function for the

Helmholtz equation. Since the eigenfunctions for an annular duct are known analytically,

this method is flexible and fast. The procedure was described in detail by Schuermans

et al. (2003) and Schuermans (2003); we only reproduce the essentials below.
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In terms of the eigenfunctions of the Helmholtz equation, the pressure response to a

velocity excitation on a surface S at the boundary can be written as

℘̂(x) = −ik ∑
α

ψα(x)

k2 − k2
α

∫

S
ψ∗

α(x0)ûν(x0)dA0, (11.23)

where α = {l, m, n} is a multiindex ordered such that Re kα ≤ Re kα+1, l, m, and n are

longitudinal, azimuthal, and radial mode indices, respectively, and ψα is the eigenfunction

associated with the eigenvalue kα; ûν is the particle velocity normal to the boundary. The

eigenfunctions are assumed to form an orthonormal set with respect to the inner product

〈a, b〉 =
∫

V ab∗dV so that 〈ψα, ψβ〉 = δαβ. This will be possible if the homogeneous problem

has only Dirichlet or Neumann conditions at the boundaries (Nicoud et al. 2007).

Considering now an annular geometry enclosed by rigid cylinders, the transversal de-

pendence of the eigenfunctions is the same as that in (11.2). The axial variation of the

eigenfunctions follows from the boundary conditions at the inlet and outlet. In our mod-

eling approach, we need the response of the annular duct to axial velocity fluctuations at

the tube connections. Therefore, we have to consider a hard-walled boundary condition at

the inlet. Since the outlet represents an open end, the axial variation of the eigenfunctions

is simply given by cos(kl x) with kl L = (l + 1/2)π, l = 0, 1, . . . (L being the axial extent of

the annular duct). Hence, the set of eigenfunctions and eigenvalues for this case is

ψlmn = Λ−1
lmn cos(kl x)pmn(κmnr) eimϕ, (11.24a)

klmn =
√

κ2
mn + [(l + 1/2)πL−1]2, (11.24b)

where the scaling constant Λlmn is introduced so that the norm of all eigenfunctions is

unity, and the radial variation pmn is as given in (11.3).

With a constant forcing amplitude at the inlet section on an area corresponding to one

of the tubes, the impedance matrix can be computed from (11.23), when the series is trun-

cated at sufficiently large values of α. Since the annular Rijke tube has a hub–tip ratio

close to unity (as is the case for most gas turbine combustion chambers), we do not in-

clude any radial modes when computing the response. We simply use the mean radius

for the eigenvalues, which is a good approximation for hub–tip ratios close to unity (see

Section 11.1). For acoustic wavelengths distinctly larger than the tube diameter, we can

further approximate the circumferential variation of the eigenfunctions over the tube sur-

face with their value at the center of the tube. Then the integral in (11.23) can be simply

replaced with a multiplication by the cross-sectional tube area A. Evaluating (11.23) at the

tube–annular-duct transition at ϕi with forcing at ϕj then gives

℘̂(ϕi) = ikA ∑
α

ψα(ϕi)ψ∗
α(ϕj)

k2 − iζαk − k2
α

ûν(ϕj), (11.25)

where we added a modal damping term ζα, representing visco-thermal effects, and as-

sumed that the cross-sectional areas of all tubes are identical. Viscous damping typically

increases with frequency, and therefore we assume the relation ζα = ζkα , where ζ is a

small constant. We set this constant to 0.025 and keep this value throughout this work.

This value is actually somewhat large to merely represent visco-thermal damping, but we
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use it concurrently to account for acoustic power losses by radiation from the open end of

the annular duct. This effect is not modeled by the eigenfunction expansion, in which we

used an ideally reflecting pressure-node boundary condition. In Section 12.3, we measure

the modal open-loop response to speaker excitation and compare it with the model results.

The width of the resonance peak, which is a measure for the modal damping, agrees quite

well. Thus, we assume that this damping model can be considered as reasonably accurate.

Equation (11.25) represents the impedance matrix of an annular duct with elements

Z0.ij = ℘̂(ϕi)/ûν(ϕj), where ψα and kα are as given in (11.24) evaluated at x = 0. However,

this is not the impedance matrix in Eq. (11.8) because that one is defined with respect to

the location at the heat sources. To keep track of this distinction, we denote the impedance

matrix defined through (11.25), i.e., with reference location at the tube–annular-duct tran-

sition, by Z0.

The method outlined above is not restricted to configurations with analytically avail-

able eigenfunctions. For more complex geometries with possibly non-uniform tempera-

ture distributions, numerically calculated eigenfunctions can be used (Schuermans 2003)

in Eq. (11.25).

There are also alternative methods to represent the acoustic response matrix Z of an

annular duct. One possibility is to compute it directly by using a numerical Helmholtz

solver. The advantage of this method is that the computation can be evaluated precisely at

the desired location, i.e., the position of the heat sources. In addition to that, it is possible

to specify arbitrary frequency-dependent boundary conditions at the outlet plane of the

annular duct. Computing the response matrices numerically is straightforward. We spec-

ify a velocity excitation as boundary condition on the coupling surface of one of the tubes.

The acoustic velocity on the coupling surfaces of all other tubes are set to zero. As part

of the solution, we obtain the pressures in all N tubes and can thus evaluate one column

of Z. Depending on the degree of symmetry, it may be necessary to do more than one

computation (per frequency).

Determination of the impedance matrix in an experiment is also possible. In principle,

this can be accomplished as in the numerical case. The application of the correct boundary

conditions is obviously more difficult. Assuming that the system can be splitted into an

upstream and a downstream part, at the location of the heat source, a sound hard bound-

ary condition can be realized by simply closing the tubes with a stiff plate. One tube has to

remain open so that excitation with a speaker can be applied. Then, the acoustic velocity

has to be determined in the tube in which the excitation is applied, at the reference plane,

and the pressure in all tubes. This can be realized by using the Multi-Microphone-Method,

but if the tubes are short, this might be difficult to accomplish. Also, by closing the tubes

at the inlet, it is only possible to measure the impedance matrix in the cold case.

However, the numerical solution as well as the measurements provide only discrete

data at real frequencies. In the general case, the stability analysis based on Eq. (11.17)

requires evaluation of the impedance matrix Z at complex frequencies, due to damping,

non-ideal boundary conditions, and acoustically active elements (dynamic heat release).

We would then need to resort to system identification techniques in addition, which is

non-trivial in this case due to the multi-input–multi-output character of the system.
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Comparing the three methods for the determination of the impedance matrix outlined

above, we find the eigenfunction expansion to be the most suitable. Therefore, it is our

method of choice for modeling the annular duct acoustics of the annular Rijke tube.

Symmetry of the annular duct response matrix

If the annular duct exhibits the maximum order of discrete rotational symmetry (this must

also hold for the temperature field), the associated acoustic response matrix Z0 has only

very few distinct elements. For even and odd N, the number of distinct elements is N/2 +

1 and (N + 1)/2, respectively. This is because only the relative locations of excitation

(uds.j) and response (℘ds.i) are of relevance. Excitation at 12 o’clock, for example, results in

identical responses at 10 and 2 o’clock. Moreover, this response is identical to that at 1 and

5 o’clock, when forcing at 3 o’clock. Note, however, that this holds only if the additional

reflection symmetries are present. Otherwise, Z0 has N distinct elements. In any case, the

second column of Z0, which represents the pressure responses to a velocity excitation at

the coupling area to the second tube, can be obtained from the first column by shifting all

elements down by one. If we denote the first column of Z0 by z, we have

Z0.ij = z1+(i−j) mod N. (11.26)

This is precisely the definition of a circulant matrix (Gray 2006). Besides significantly

simplifying the numerical or experimental determination of the impedance matrix, this

property also carries over to the system matrix S defined in (11.18) if the entire system

exhibits the maximum degree of symmetry. This will be further discussed in Section 11.3.7.

11.3.6 Prolongation of the annular duct response along an array of straight

tubes

The acoustic response matrix Z needs to be known at the reference locations immediately

downstream of the heat source. The eigenfunction expansion presented above, however,

only allows to calculate Z0, which is defined directly at the tube–annular-duct transition.

A transformation of the reference locations along an array of straight tubes (which do not

necessarily need to have identical lengths), such as in Fig. 11.4, can be achieved in the

following way.

Consider the impedance matrix of an annular duct (no tubes attached). We denote

the up- and downstream traveling plane wave components at coupling area i as ĝ0.i and

f̂0.i. Then the elements R0.ij of the reflection coefficient matrix R0 can be defined as

R0.ij = ĝ0.i/ f̂0.j, with f̂0.k = 0 if k 6= j. Since, for plane waves, we have ℘̂0.i = f̂0.i + ĝ0.i and

û0.i = f̂0.i − ĝ0.i, the impedance matrix relates incident and reflected plane wave compo-

nents according to f̂ 0 + ĝ0 = Z0( f̂ 0 − ĝ0). Hence, the reflection coefficient matrix can be

computed from the impedance matrix via

R0 = (Z0 + I)−1(Z0 − I), (11.27)

where I is the N×N identity matrix. This is again a generalization of the case of a plane

wave in a single tube, for which the reflection coefficient and the impedance are scalar

functions, related by R = (Z − 1)/(Z + 1).
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Denoting the length of the tubes as ∆xi, the up- and downstream traveling waves at

the tube entrances (the heat source locations), ĝi and f̂i, can be related to those at the inlet

of the annular duct as ĝi = e−ik∆xi ĝ0.i and f̂i = eik∆xi f̂0.i. Accordingly, we have for the

reflection coefficient matrix with reference planes at the heat sources

Rij = e−ik(∆xi+∆xj) R0.ij. (11.28)

Finally, the impedance matrix at the desired reference location, Z, can be calculated using

the equivalent of (11.27)

Z = (I −R)−1(I + R). (11.29)

With (11.28) and (11.29), Eq. (11.27) can be reformulated to directly relate the impedance

matrix at the heat sources to that at the inlet of the annular duct, viz.,

Z =
[

(Z0 + I)D−1 − (Z0 − I)D
]−1 [

(Z0 + I)D−1 + (Z0 − I)D
]

. (11.30)

In (11.30), the matrix D has elements Dij = e−ik∆xi δij.

In the preceding section, we established that the impedance matrix of an axisymmet-

ric annular duct, Z0, is circulant. If the heat source positions are all identical, the matrix

D in Eq. (11.30) is a multiple of the identity and therefore also circulant. Since inverses,

products, and sums of circulant matrices are again circulant (Gray 2006), it is evident from

(11.30) that the impedance matrix Z, with reference location at the heat sources, is circu-

lant, too.

11.3.7 Special properties of the system matrix S

As we found in Sections 11.3.5 and 11.3.6, if the annular duct, the mean temperature field,

and the heat source locations exhibit the maximum degree of discrete rotational symme-

try (i.e., of order N), the impedance matrix Z is circulant. We now assess whether this

property also holds for the system matrix S defined in Eq. (11.18). We first note that in

case of identical heat release transfer functions, the matrix F is a (frequency-dependent)

multiple of the identity. Such a matrix is obviously also circulant. Second, for identical

tubes and mean temperature increase across the grids, the admittance matrix A and the

matrix of characteristic impedance ratios X are also multiples of I. Since the sum and the

product of two circulant matrices is again circulant (Gray 2006), we find from (11.18) that

for a completely symmetric system set-up, the system matrix S is also circulant.

Having established that S is a circulant matrix, we list a few special properties as given,

for example, by Gray (2006). We denote the first column of S by ς and call it the generating

vector. Most of the special properties of a circulant matrix can all be readily derived from

the sole fact that it has the spectral decomposition

S = WΘW†, (11.31)

where (·)† denotes the Hermitian transpose, and W is the unitary discrete Fourier trans-

form matrix of size N with elements

Wij = N
−1/2 exp

(

2πi(i − 1)(j − 1)/N
)

, (11.32)
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and Θ = diag ϑ with the vector of eigenvalues given by ϑ = N1/2 Wς. In other words,

the eigenvectors of S (in fact, of every circulant matrix) are given by a discrete Fourier

basis, and the eigenvalues are the discrete Fourier transform of the generating vector ς.

However, we are not interested in the eigenvalues of S in general, but only if there is one

which is zero. For then S has a non-empty null space, and the dispersion relation (11.17)

is satisfied. In terms of the generating vector ς, the dispersion relation can be written as

det S = N
N/2prod(Wς) = 0, (11.33)

where prod(·) represents the product of all elements of vector (·). Hence, the dispersion

relation is equivalent to the requirement that the generating vector ς has at least one van-

ishing Fourier component (which corresponds to the azimuthal order of the corresponding

eigenfunction). Then evaluating the dispersion relation becomes particularly simple be-

cause we only have to check for zero components of the discrete Fourier transform of the

first row of the system matrix.

11.4 Perturbation of acoustic modes

The frequency-domain system model presented in Section 11.3 is essentially a low-order

method to find solutions to the fundamental thermoacoustic equation (2.13), which is re-

peated here for convenience:

∇·
(

c2∇ p̂
)

+ ω2 p̂ = −iω(γ − 1)q̂. (2.13)

In the case of thermoacoustic instabilities, the source term on the right hand side of (2.13)

is a linear homogeneous function of the acoustic field at some reference location (typically

with quite localized support) that can be expressed in terms of a transfer function. The

heat release transfer function is generally a transcendental function of ω so that (2.13)

constitutes a nonlinear eigenvalue problem (nonlinear in the eigenvalue parameter). It is

possible to solve this equation with numerical tools iteratively, but this is time consuming

and may hide some essential insight, which is only accessible by an analytical technique.

The low-order method presented in Section 11.3, on the other hand, rests on the sim-

plicity of the geometrical set-up and additional assumptions, such as uniform temperature

fields up- and downstream of the heating grids and a concentrated acoustic source with δ-

support. More complex geometries and non-uniform temperature fields could actually be

taken into account by either computing the acoustic response matrices or the eigenfunc-

tions for the modal expansion with a numerical Helmholtz solver. Yet, it would be desir-

able to tackle Eq. (2.13) directly, with all complexities involved (in the case of combustion

chambers, in particular, multi-dimensional distributed heat release–acoustic interaction).

For these reasons, we consider an alternative method based on perturbations of the acous-

tic modes without heat release interaction. A similar approach was presented by Benoit &

Nicoud (2005) and Nicoud et al. (2007). However, they did not address degenerate modes,

which are of major importance for annular systems.

The acoustic source resulting from a normalized heat release perturbation is propor-

tional to the normalized temperature increase Tds/Tus − 1 (see Eq. (2.18)). In case of a
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heating grid, this quantity is quite small. We can therefore think of a particular eigenso-

lution of (2.13) as a perturbation of one without feedback from the heat release (i.e., with

zero right hand side). The advantage is that without heat release, Eq. (2.13) is just an

elementary Helmholtz equation which can be solved with standard tools.

We start by abbreviating the right hand side of Eq. (2.13) as θ = θ(x, ω, p̂,∇ p̂). As

proposed by Benoit & Nicoud (2005) and Nicoud et al. (2007), we expand the eigenfunction

p̂, the eigenvalue ω, and the source term θ in a power series in ε,8 viz.,

[p̂, ω, θ] ∼
∞

∑
n=0

[p̂n, ωn, θn]ε
n, as ε → 0. (11.34)

The assumption that the interaction from the heat release, i.e., the right hand side of (2.13),

is small enters the analysis by imposing θ0 = 0 and θ1 = ∂εθ|ε=0 = −iρω0(γ − 1)q̂0 with

q̂0 = q̂(x, ω0, p̂0,∇ p̂0). Introducing the ansatz (11.34) into Eq. (2.13) and collecting terms

with like powers of ε, we obtain at leading and first order

ε0 : ∇·
(

c2∇ p̂0

)

+ ω2
0 p̂0 = 0, (11.35)

ε1 : ∇·
(

c2∇ p̂1

)

+ ω2
0 p̂1 = θ1 − 2ω0ω

q
1 p̂0, (11.36)

where we added a superscript q to ω1 to indicate that this eigenvalue correction results

from taking into account heat release feedback. At leading order, we recover the Helm-

holtz eigenproblem with no heat release. We assume that this unperturbed problem satis-

fies homogeneous Dirichlet and/or Neumann conditions at the boundaries. This is a cru-

cial restriction, but slight deviations from these ideal boundary conditions can be taken

into account, as we will show later. The leading-order problem (11.35) with these ideal

boundary conditions is just a standard Helmholtz problem that can be solved (numeri-

cally if necessary) without too much effort.

At first order in ε, we obtain an inhomogeneous Helmholtz equation for the correction

of the eigenfunction, p̂1. The forcing terms on the right hand side contain the unperturbed

eigenfunction and the correction of the eigenvalue. The latter, ω
q
1, can be determined by

invoking a solvability condition for the correction of the eigenfunction. Since the operator

acting on p̂1 in Eq. (11.36) is the same as that in (11.35), which is a homogeneous problem,

the first-order equation cannot be solved for arbitrary forcing terms (the Fredholm alterna-

tive). Because the null space of the operator is non-empty, we have to require that the right

hand side of (11.36) lies completely in the complement of the kernel of the adjoint operator

(see, e.g., Miller 2006). Since the unperturbed problem (with homogeneous Neumann and

Dirichlet conditions) is self-adjoint, we simply need the right hand side of (11.36) to be

orthogonal to a basis of the eigenspace of the unperturbed problem. As we will see below,

this holds only in the case of a non-degenerate eigenvalue or if the perturbation preserves

the degeneracy. If the perturbation breaks the symmetry associated with the degenerate

eigenvalue, the solvability condition needs to be considered more carefully.

8We do not associate ε with any particular parameter in (2.13). We assume that it is small and later set it to
unity.
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11.4.1 Non-degenerate eigenvalues and degeneracy-preserving perturbations

We consider first the case for which the unperturbed eigenvalue is non-degenerate. The

kernel of the Helmholtz operator in (11.35) and (11.36) is then one-dimensional, and we

only have to require that the right hand side of (11.36) be orthogonal to the unperturbed

eigenfunction p̂0. By using the standard inner product 〈a, b〉 =
∫

V ab∗dV, the solvability

condition can be written as

〈θ1, p̂0〉 = 2ω0ω
q
1||p̂0||22, (11.37)

where || · ||22 = 〈·, ·〉 denotes the square of the L2-norm. Since θ1 only depends on the

solution of the leading-order problem, we can compute the eigenvalue correction as

ω
q
1 =

1

ω0

〈θ1, p̂0〉
2||p̂0||22

. (11.38)

It is interesting to note that (11.38) is yet another representation of Rayleigh’s criterion.

The first-order correction of the eigenvalue has a destabilizing effect if ω
q
1 has a negative

imaginary part, in other words if −π < arg ω
q
1 < 0. Since we have arg θ1 = arg q̂0 − π/2

and we can assume p̂0 to be real due to the Hermitian nature of the unperturbed problem,

this condition translates to −π/2 < arg 〈q̂0, p̂0〉 < π/2. But this simply means that ω
q
1

is destabilizing whenever the integral correlation of heat release and pressure has a non-

vanishing in-phase component (which is essentially Rayleigh’s criterion).

Once ω
q
1 has been determined, the first-order correction of the eigenfunction can be

computed from (11.36). However, the solution p̂1 is not unique. Since the operator on

the left hand side annihilates the unperturbed eigenfunction, p̂1 is only determined up

to an additional multiple of p̂0. The solution can be made unique by requiring that the

correction is orthogonal to the leading-order solution.9 Suppose a particular correction

p̂1 has been computed from (11.36). Then we can determine one that is orthogonal to p̂0

through a projection on the complement space

˜̂p1 = p̂1 −
〈 p̂1, p̂0〉
||p̂0||22

p̂0, (11.39)

which can be easily verified to satisfy 〈 ˜̂p1, p̂0〉 = 0.

We assumed that the unperturbed eigenvalue is distinct. However, as we will see in the

next section, the procedure described above is also valid if the unperturbed eigenvalue is

degenerate and the perturbation preserves the degeneracy. This will, for instance, be the

case whenever the perturbation does not reduce the symmetry order. For the annular Rijke

tube, this means that a fully symmetric heat release feedback q̂, i.e., one which is identical

in every tube, can be treated with this approach.

11.4.2 Degeneracy-unfolding perturbations

As we have already seen in the preceding sections, degenerate modes are quite common

in annular systems due to the (in general discrete) rotational symmetry. However, apply-

ing the perturbation scheme in case of a degenerate eigenvalue is slightly more complex

9 If the unperturbed operator was not self-adjoint, the additional constraint would be that the correction is
orthogonal to the adjoint eigenfunction.
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because the null space of the operator is two-dimensional. We closely follow classical

Rayleigh–Schrödinger perturbation theory (see, e.g., Ballentine 1998).

In the degenerate case, the unperturbed problem yields two eigenfunctions, p̂
η
0 and p̂

µ
0 ,

say, corresponding to one ω0. These two eigenfunctions are not unique since any pair of

linearly independent basis functions of the null space of the unperturbed operator would

be equally appropriate. Therefore, we use a general linear combination of p̂
η
0 and p̂

µ
0 to

represent the right hand side of (11.36). Since q̂ is a linear homogeneous function of the

pressure field, so is θ1. Hence, we can explicitly split the contributions of the two eigen-

functions and write θ1 = aηθ
η
1 + aµθ

µ
1 . (This separation could have been applied to the full

right hand side disregardless of the perturbation.) For the general linear combination of

the unperturbed eigenfunctions, Eq. (11.36) takes the form

∇·
(

c2∇ p̂1

)

+ ω2
0 p̂1 = aηθ

η
1 + aµθ

µ
1 − 2ω0ω

q
1(aη p̂

η
0 + aµ p̂

µ
0 ). (11.40)

There are now two solvability conditions induced by the pair of eigenfunctions p̂
η
0 and p̂

µ
0 ,

viz.,

aη〈θη
1 , p̂

η
0〉 + aµ〈θµ

1 , p̂
η
0〉 = 2ω0ω

q
1

(

aη〈 p̂
η
0 , p̂

η
0〉 + aµ〈 p̂

µ
0 , p̂

η
0〉

)

, (11.41a)

aη〈θη
1 , p̂

µ
0 〉 + aµ〈θµ

1 , p̂
µ
0 〉 = 2ω0ω

q
1

(

aη〈 p̂
η
0 , p̂

µ
0 〉 + aµ〈 p̂

µ
0 , p̂

µ
0 〉

)

. (11.41b)

This is a linear homogeneous system for the two eigenfunction coordinates aη and aµ,

which can be rearranged to yield

1

2ω0

[

〈θη
1 , p̂

η
0〉 〈θµ

1 , p̂
η
0〉

〈θη
1 , p̂

µ
0 〉 〈θµ

1 , p̂
µ
0 〉

] [

aη

aµ

]

= ω
q
1

[

〈 p̂
η
0 , p̂

η
0〉 〈 p̂

µ
0 , p̂

η
0〉

〈 p̂
η
0 , p̂

µ
0 〉 〈 p̂

µ
0 , p̂

µ
0 〉

] [

aη

aµ

]

. (11.42)

This is another (generalized algebraic) eigenvalue problem for the eigenvalue correction

and the eigenfunction coordinates.10 In general, the solvability conditions cannot be sat-

isfied by arbitrary combinations of the two chosen basis functions of the unperturbed ei-

genspace but only for some special choice. The reason for this will become clearer when

we discuss the two types of possible solutions of (11.42).

Suppose (11.42) admits a double eigenvalue (with geometric multiplicity two). In this

case, the perturbation does not unfold the degeneracy of the leading-order eigenvalue;

to first order, the eigenspace is still two-dimensional. Assuming that the basis of the un-

perturbed eigenspace is chosen such that it is orthonormal, the matrix on the left hand

side of (11.42) is a multiple of the identity. (It could be upper or lower diagonal and still

have a double eigenvalue, but then the geometric multiplicity would be only one.) Then

it is clear that the eigenvalue correction is identical to that given in (11.38). Corrections

to the eigenspace can be computed from Eq. (11.36) by substituting two basis functions

p̂0 = aη p̂
η
0 + aµ p̂

µ
0 with arbitrary but linearly independent combinations of aη and aµ.

On the other hand, if Eq. (11.42) has two distinct eigenvalues, the perturbation breaks

the degeneracy of the leading-order solution. The unperturbed eigenfunctions then can-

not be chosen arbitrarily because the corrections “spin off” of certain directions in the

10The two degenerate eigenfunctions p̂
η
0 and p̂

µ
0 can be made orthonormal. In this case, the matrix on the

right hand side of (11.42) is the identity and can hence be omitted. This is also possible if the unperturbed
operator is not self-adjoint.
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eigenspace. In other words, letting ε → 0, the perturbed eigenfunctions approach two

distinct elements in the unperturbed eigenspace. Those are precisely the ones we have to

add the first-order correction to. These two eigenfunctions form a basis in the degenerate

subspace that diagonalizes the matrix on the left hand side of (11.42).

Until now, we have not made any specific assumptions about the particular configura-

tion. Therefore, the perturbation formulas are valid for a general annular thermoacoustic

system which can be modeled by Eq. (2.13). The specification to the annular Rijke tube

allows some significant simplifications. This is discussed in the next section.

11.4.3 Application to the annular Rijke tube

To assess the usefulness of the perturbation scheme, we apply it to the annular Rijke tube

and compare the results with those obtained from the network model. The first-order

contribution of the right hand side of (2.13) can be written as

θ1 = −iω0(γ − 1)q̂(x, p̂0,∇ p̂0, ω0). (11.43)

The volumetric heat release in tube n, q̂n, can be related to the heat release transfer function

(11.11) by writing it in terms of the integral heat release as

q̂n = Q̂n A−1δ(x − xq.n), (11.44)

where we used the compactness of the heat source (assuming also that q̂ is constant over

the cross section), and A and xq.n denote the tube cross-sectional area and the axial location

of the heat source, respectively. We allow for different heat source locations in each tube,

but assume equal cross-sectional areas. Variations in the latter could be easily included,

though. Substituting now the heat release transfer function for Q̂n, we have

q̂n = Fn(ω0)A−1δ(x − xq.n)Q̄nû0x.n/ūus.n. (11.45)

Note here that all of the variables in (11.45) are potentially different in each tube, in other

words, they are functions of space.

Using now the steady-state energy balance in tube n

Q̄n = ρus.nūus.n Acp(Tds.n − Tus.n), (11.46)

(11.43) takes the form

θ1 = −iω0γP0Fn(ω0)û0x.nδ(x − xq.n), (11.47)

where Fn = Fn(Tds.n/Tus.n − 1), as before. With the above representation for θ1, the inner

product for the eigenvalue correction reads

〈θ1, p̂0〉 = −iω0γP0〈Fnû0x.nδ(x − xq.n), p̂0〉. (11.48)

Evaluating the integration associated with the inner product and replacing the particle

velocity with the pressure gradient by means of the linearized momentum balance (2.1b),
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we have

〈θ1, p̂0〉 = γP0

N

∑
n=1

{

Fn(ω0)
∫

An

[

1
ρn

∂x p̂∗0.n p̂∗0.n

]

xq.n
dA

}

, (11.49)

where the square brackets with the subscript xq.n denote evaluation at xq (in tube n). As

explained earlier, the acoustic field in the tubes is planar for the relevant modes, and the

integration can therefore be replaced by a multiplication with the tube cross-sectional area.

Also note that the pressure gradient is not continuous at the heat source location in our

model because the temperature increases discontinuously. The quantity ρ−1∂x p̂0, how-

ever, is continuous, and hence there is no ambiguity in evaluating the term in the square

brackets in (11.49). This is so only for the zeroth-order pressure field. Since the heat release

induces a jump in the acoustic velocity, the higher-order velocity eigenfunctions contain a

jump at xq. The ambiguity would then be resolved by the fact that the q̂-response is de-

fined with respect to the upstream velocity so that the higher-order equivalent to the term

in the square brackets should then be evaluated at x ↑ xq.

Non-degenerate eigenvalues and degeneracy-preserving perturbations

For the non-degenerate case or if the perturbation does not break the degeneracy, substi-

tuting the inner product (11.49) in the first-order correction of the eigenvalue (Eq. (11.38))

yields

ω
q
1 =

γP0A

2||p̂0||22 ω0

N

∑
n=1

{

Fn(ω0)
[

1
ρn

∂x p̂0.n p̂∗0.n

]

xq.n

}

, (11.50)

where we assumed identical cross-sectional areas for all tubes. This is not strictly neces-

sary; for asymmetric cross-sectional areas, An would need to stay inside the curly brackets.

Consider a fully symmetric system first, in which Fn and xq.n are identical in each tube.

The only term left in the sum in (11.50) is then the one in the square brackets. This term

can be assumed to be positive for all relevant modes for the following reason. Since the

up- and downstream ends of the annular Rijke tube are both open, the modes with the

lowest eigenfrequencies have an axial structure corresponding to a half-wave. All modes

with a three-half-wave or higher axial structure are associated with eigenfrequencies with

too large damping to be unstable, as will be seen in Section 11.5. Since the heat source is

located much closer to the upstream end (see Figs. 10.1 and 10.2), the pressure and its axial

gradient are in phase for axial half-waves. The unperturbed eigenvalue problem (11.35)

is self-adjoint, and hence, the eigenfunction p̂0 can be assumed to be real. Then clearly, as

stated above, the term in the square brackets in (11.50) is positive for every n. As a result,

for ω
q
1 to have a negative imaginary part, i.e., for the perturbation to be destabilizing, we

need ImF(ω) < 0. This is analogous to the case of a single Rijke tube.

Degeneracy-unfolding perturbations

To treat perturbations which break the degeneracy of a mode, we need to solve the alge-

braic eigenvalue problem (11.42) using a basis of the unperturbed degenerate eigenspace.

The inner products of the type 〈θη/µ
1 , p̂

η/µ
0 〉 can be evaluated based on (11.49).

It may happen that we do not know if a given perturbation unfolds the degeneracy of

a certain mode. In this case, we have to solve the algebraic eigenvalue problem and check

whether the degeneracy persists.
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Accounting for volume damping

We shall later compare the results obtained from the network-type model described in Sec-

tion 11.3 and from the perturbation method. However, there are two effects in the network

model which we have not yet accounted for. The first effect is the modal damping in the

expression for the impedance matrix of the annular duct (Eq. (11.25)). We can incorporate

this term in the perturbation method by realizing that this mechanism represents volume

damping and modifies the Helmholtz equation according to

∇·(c2∇ p̂
)− iζω0ω p̂ + ω2 p̂ = 0, (11.51)

where, as we assumed in Section 11.3, ζ is frequency independent. Note, however, that ζ

is not constant in space because we applied it only in the annulus, in part to account for

open-end radiation. Therefore, to be consistent with the network model, we use

ζ(x) =

{

0.025, if x in annulus,

0, else.
(11.52)

Assuming now that the damping term is small, we can copy the procedure from Sec-

tion 11.4.1 to obtain an expression for the eigenvalue correction due to damping as

ωvd
1 =

i

2

∫

V ζ||p̂||22dV

||p̂||22
. (11.53)

If ζ was constant throughout the whole annular Rijke tube, then this would be ordinary

oscillator damping. We do not have to consider degeneracy unfolding perturbations be-

cause the damping is constant in the angular direction.

Accounting for radiation from the tube inlets

The second effect we have yet to take into account in the perturbation method is the radia-

tion of acoustic energy from the upstream ends of the tubes. We modeled this effect explic-

itly in the network model by using the open-end impedance (2.10). Since this boundary

condition deviates only slightly from the idealized pressure-node condition for small tube

Helmholtz numbers ωR/c, we can consider this again as a perturbation from the ideal

case with homogeneous Dirichlet conditions. For this purpose, we express the impedance

at the tube inlets as

Z(ω) = Z0 + εZ1(ω) + O(ε2), as ε → 0, (11.54)

with Z0 = 0 and Z1(ω) = (kR)2/4 + i 0.61 kR. Here, k = ω/c, and R denotes the tube

radius, as before. Again, we use ε simply as an order parameter and eventually set it to

unity.

The boundary conditions at the tube inlets then take the form

p̂ = εik−1Z1∂ν p̂. (11.55)
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With the expansion of the angular frequency, or equivalently the wavenumber, as in (11.34),

the leading and first-order boundary conditions are

ε0 : p̂0 = 0, (11.56a)

ε1 : p̂1 = ik−1
0 Z1(k0)∂ν p̂0, (11.56b)

which is based on an expansion of the impedance as

Z(k) = εZ1(k0) + ε2Z ′
1(k0)k1 + O(ε3), as ε → 0. (11.57)

Next, we multiply the complex conjugate of (11.35) with p̂1, (11.36) with p̂∗0 , and sub-

tract the former from the latter. Using the fact that the unperturbed eigenvalue is real

(because the leading-order problem is self-adjoint), we obtain

p̂∗0∇·(c2∇ p̂1) − p̂1∇·(c2∇ p̂∗0) = −2ω0ωbc
1 |p̂0|2, (11.58)

where we added the superscript ‘bc’ to ω1 to indicate that this results from the perturbed

boundary conditions. We integrate the above equation over the domain and use Green’s

theorem to convert the volume integrals on the left hand side into surface integrals, viz.,

∫

∂V
c2 p̂∗0∂ν p̂1dA −

∫

∂V
c2 p̂1∂ν p̂∗0dA = −2ω0ωbc

1 ||p̂0||22, (11.59)

where ∂V represents the boundary of the domain and ∂ν the derivative normal to the

surface. The surface integrals vanish on the whole of ∂V, with the exception of the tube

inlets, because we have either homogeneous Dirichlet or Neumann conditions for p̂0 and

also for p̂1. (The conditions at those parts of the boundary which are not perturbed are

enforced at each order in ε.) Moreover, the first surface integral on the left hand side

vanishes also on the tube inlets according to the unperturbed boundary condition (11.56a).

Hence, we have
∫

tube inlets

c2 p̂1∂ν p̂∗0dA = 2ω0ωbc
1 ||p̂0||22. (11.60)

Using now the first-order boundary conditions on the tube inlets (Eq. (11.56b)) and ω0 =

k0/c, the eigenvalue correction can be written as

ωbc
1 =

i

2ω2
0||p̂0||22

∫

tube inlets

c3Z1(ω0)|∂ν p̂0|2dA. (11.61)

We note that this is consistent with the observation that the impedance of a passive bound-

ary, i.e., one that does not generate energy, must have a non-negative real part (Rienstra

2006). For if we have ReZ1(ω0) < 0, then Im ωbc
1 < 0, and the eigenvalue correction is

destabilizing.

Equation (11.61) holds only for a degeneracy-preserving perturbation, but this is not a

restriction in our case because the tubes have all the same inlet impedance. In principle, an

analogous procedure as in Section 11.4.2 can be used to investigate asymmetric boundary

perturbations which unfold the eigenvalue degeneracy. In our case, the relevant modes
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are plane in the tubes and, therefore, (11.61) is simple to evaluate because the pressure

gradient is constant on the integration surface.

Total eigenvalue correction

Since we considered only first-order corrections of the individual contributions (i) heat re-

lease feedback, (ii) modal volume damping, and (iii) boundary radiation, the total eigen-

value correction ωtot
1 is simply given by the sum of the three

ωtot
1 = ω

q
1 + ωvd

1 + ωbc
1 . (11.62)

The results based on the perturbation method are compared to those obtained from the

network model in Section 11.5.1.

11.5 Some modeling results

We present a few results of the frequency-domain network-type model, developed in Sec-

tion 11.3, to get an idea of its capabilities. More computational results based on this model

will be presented in the next chapter, in conjuction with the experimental data. In addi-

tion to that, the model will be also used in Section 12.3 to design a stabilizing controller.

We also compare the results from the perturbation method, described in Section 11.4, with

those from the network model.

For the tube transfer function parameters (see Eqs. (11.13) and (11.14)), we use ck =

1.15 and cτ.ref = 0.29 ms and a temperature increase (∆T)ref = 50 K. As indicated, we

consider these as reference values and use them in most computations. While we can take

ck to be a constant, cτ and ∆T depend on the heating grid power. The dependence of cτ

on the input power is based on the fact that the non-dimensional heating grid response

to flow perturbations must be a function of the Strouhal number Sr = ωlgr/ū, where

lgr is a characteristic length of the grid cross section. Then from (11.13), we have cτ ∼
lgr/ū, and the bulk velocity depends on the temperature increase because the mean flow

is convection induced. These reference values as well as the variation of cτ and ∆T with

heating power originate from measurements of the temperature increase as a function of

the electrical power input. This is discussed in the experimental part in the next chapter

(Section 12.2). The constant transfer function gain ck was chosen such that the model

results are consistent with the experimental observations.

An increase in the heating grid power in the model has two effects on the relevant

modes up to 600 Hz: (i) a continuous increase of the mode frequencies and (ii) a continuous

increase of the growth rates. These effects simply result from a higher speed of sound

and larger unsteady expansion due to an increased normalized temperature ratio. Since

these are only quantitative changes, and we cannot expect the model to be quantitatively

accurate in every aspect (cf. Section 11.6), we stick to the reference parameters as given

above for all model calculations, also those in the next chapter. We only make an exception

when considering a non-uniform heating power distribution around the circumference.
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Figure 11.6: Acoustic eigenfrequencies of the annular Rijke tube configuration and cor-
responding azimuthal mode order m for a temperature increase of 50 K; model and
Helmholtz solver results are compared.

11.5.1 Comparison of cold eigenfrequencies with finite element computations

We compare the eigenfrequencies of the annular Rijke tube configuration computed with

the model to those obtained with a finite element Helmholtz solver11 (Fig. 11.6). No dy-

namic heat release was taken into account at this point, but the reference temperature jump

of 50 K across the heating grids, representative of that observed in the experiment (see

Chapter 12), was included. The end correction at the tube inlets was explicitly modeled

by an elongated duct in the finite element geometry. Due to the rotational symmetry of

the set-up, the Helmholtz solver does not need to compute the whole geometry. We make

use of quasi-periodic Floquet–Bloch boundary conditions so that only one segment (one-

twelfth, in our case) needs to be considered. This approach is illustrated in Appendix B on

the basis of an elementary thermoacoustic model problem.

The eigenfrequencies obtained from the network model compare well with the finite

element computation. This demonstrates that the purely acoustic properties have been

represented correctly with the approach described in Section 11.3. Since the boundary

conditions at the up- and downstream end of our configuration are open, all modes have

at least a half-wave structure in axial direction. Moreover, only the axisymmetric modes

and those with azimuthal orders being an integer multiple of 6 are not degenerate (cf. Sec-

tion 11.2). The modal density between 500 and 600 Hz is particularly high (Fig. 11.6).

Azimuthal modes of order 4, 5, and 6 in this frequency range were found to be unstable in

the stability analysis (see below). The pressure patterns in the annular duct corresponding

to these modes are shown in Fig. 11.7 (computed with the Helmholtz solver). The angu-

lar location of the pressure nodes and antinodes is arbitrary for azimuthal orders 4 and 5

because these modes are degenerate (cf. Section 11.2).

11Comsol Multiphysics (Version 3.3), http://www.comsol.com

http://www.comsol.com


158 Part III. Modeling and Control of Thermoacoustic Instabilities in Annular Domains

Figure 11.7: Pressure patterns corresponding to the acoustic modes of the annular Rijke
tube with azimuthal orders 4, 5, and 6 at eigenfrequencies 541, 554, and 557 Hz (from left
to right)

11.5.2 Linear stability

The linear stability characteristics for the experimental system were computed with the

low-order model with and without including the heat release transfer function (11.13). The

reference temperature jump of 50 K across the heat sources was used for this calculation.

Figure 11.8 shows the complex eigenvalues determined from Eq. (11.17). Negative imag-

inary parts correspond to instability. Without including feedback from the heat release,

all eigenvalues lie in the stable half-plane. This results from the modal damping in the

annulus (cf. Eq. (11.25)) and the radiation from the tube inlets (Eq. (11.22)). The imaginary

part of the eigenvalues grows with mode number because both damping mechanisms in-

crease with frequency. All eigenvalues with frequencies larger than 600 Hz were strongly

damped, also for the case with heat release feedback, and are thus not shown.

The heat release destabilizes all eigenvalues in the 600 Hz range. Most strongly af-

fected is a group of modes around 550 Hz with zero or small negative imaginary part.

These eigenvalues correspond to azimuthal mode orders m = 4, 5, and 6 (with increasing

frequency). Since these three modes are of first longitudinal order, they are all axial half-

waves. As we will see in the next section, the theoretical assessment of the stability of the

modes agrees well with the experiment, and modes of higher axial order do not play a

significant role. Therefore, whenever we use one of the terms ‘5th-order azimuthal mode’,

‘4th azimuthal mode’, or ‘m = 6 mode’ or something similar, we implicitly refer to that

circumferential mode which is of first longitudinal order.

As evident from Fig. 11.8, the growth rates of the unstable modes are rather small.

This is because, as mentioned in Section 11.4, the acoustic source character of the nor-

malized heat release perturbation is proportional to the normalized temperature increase

Tds/Tus − 1. Compared to a flame, the temperature increase across a heating grid is much

smaller. For the computational results shown above, we used Tds − Tus = 50 K. However,

the 5th- and 6th-order azimuthal modes, which are identified as unstable in Fig. 11.8, are

found to be strongly oscillating in the experiment and thereby confirm these results, as

will be shown in the next chapter.

11.5.3 Comparison of results from network model and perturbation method

The eigenvalues for the model system with heat release feedback computed from the per-

turbation scheme are shown in Fig. 11.9 (a). Results for a circumferentially uniform heat
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Figure 11.8: Eigenvalues of the annular Rijke tube computed with the low-order model
for a temperature increase of 50 K. Results with and without feedback from the heat re-
lease are shown. Numbers indicate azimuthal mode order.

release transfer function (C12) and for a modulated transfer function gain (C4) are dis-

played. In case of the C4 pattern, the transfer function gain in the individual tubes is

modulated according to |Fn| = sn|F|, where F is the heat release transfer function in the

symmetric case, and the modulation pattern is given by

s = [1/3 4/3 4/3 1/3 4/3 4/3 1/3 4/3 4/3 1/3 4/3 4/3]T . (11.63)

Hence, every third heat source has reduced gain, but the mean value is identical to the

symmetric case. For the perturbation method, we used the acoustic modes that were com-

puted with the Helmholtz solver (see Section 11.5.1) as unperturbed zeroth-order solu-

tion. Since the end correction of the tube inlets was explicitly accounted for in the ge-

ometry of the finite element model, we used only the real part of the Levine–Schwinger

impedance (2.10) in the calculation of the eigenvalue correction due to boundary damping

(Eq. (11.61)).

From the discussion in Section 11.2, we know that degenerate modes with azimuthal

orders being a multiple of 2 should split in this case, whereas for all modes with azimuthal

order different from that, the C4 perturbation preserves the degeneracy. The results from

the perturbation method are fully consistent with this. In the 600 Hz range considered,

modes with azimuthal orders 2 and 4 split, while all other degeneracies are sustained. In

fact, the eigenvalues which are not split by the symmetry reduction are not affected at all.

The 6th-order azimuthal mode is distinct also in the C12 case and therefore cannot split.

Moreover, the gain-modulation-induced splitting is an essentially destabilizing process

because one of the split modes has a larger and one a smaller growth rate compared to the

fully symmetric C12 case. This effect can also be verified experimentally by modulating the

heating grids of the annular Rijke tube with a C4 pattern, as will be shown in Section 12.2.

The analogous results but computed from the low-order model described in Section 11.3

are plotted in Fig. 11.9 (b). We consider the C12 case first. In comparison to the perturba-

tion method, the growth rates are smaller, in particular for those modes which are most

destabilized. An analysis of the individual contributions of the perturbations from the
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Figure 11.9: Comparison of perturbation method and network model results. Eigenval-
ues for a fully symmetric heat release feedback (C12) and for one with a circumferential
modulation of the transfer function gain according to a C4 pattern. Results from computa-
tions with (a) perturbation method and (b) network model. The inset in frame (b) depicts
the gain modulation pattern of the heat release feedback for the C4 case. Numbers indi-
cate azimuthal mode order.

self-adjoint part of the modes, i.e., (i) modal damping in the annulus, (ii) radiation from

the tube inlets, and (iii) feedback from the heat release, reveals that it is effect (iii) which

causes the discrepancy between the results from network model and perturbation method.

This analysis can be performed because the individual contributions can be switched off

in both calculation methods. However, the perturbation method assumes the feedback

from the heat release to be small, in contrast to the network model. Therefore, we consider

the results from the latter to be more accurate.

Qualitatively, both methods give very similar results. In particular, the mode splitting

due to the reduction in symmetry by the C4 pattern is consistent. One qualitative differ-

ence is that while the perturbation method predicts the non-split modes to be unaffected

by the gain modulation, the results from the low-order model show a small influence, e.g.,

for the 5th and 6th azimuthal modes. Accordingly, this must be a higher-order effect.

11.6 Discussion

The low-order model results agree quantitatively well with those computed using the

Helmholtz solver for the case with no heat release feedback. This demonstrates that the

acoustics are correctly represented. Low-order model and perturbation method also show

qualitatively similar results. The disagreement can be traced back to the fact that the per-

turbation method is only of first order in the heat release feedback. On the other hand,

destabilization of the modes through the heat release and the selection of the most unsta-

ble modes agree well. With respect to asymmetries in the heat release response and the

associated eigenvalue splitting, both methods give similar results.

As we will see in the next chapter, the network model results are consistent with mea-

surement data from the experimental set-up. Mode stability, the effect of asymmetries, and

the impact of feedback control agree with the experiments. On the other hand, the model

cannot be considered quantitatively accurate in every aspect. An exact prediction of the
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growth rates, for instance, and along the same lines, an accurate determination of the sta-

bility border is likely beyond its capabilities. Such quantitative predictions are inherently

difficult, even with a model exclusively based on experimental data (Bothien et al. 2010).

In the network model, we assumed a constant temperature downstream of the heat

source. This is only an approximation. Due to heat losses to the walls, the temperature

decreases in downstream direction. Evidently, this effect is stronger for higher heating

powers. Moreover, if we apply non-uniform heating powers around the circumference,

the temperature field will also vary with the angular coordinate, which we do not take into

account by means of the analytical eigenfunction expansion used in the network model.

In principle, non-uniform temperature fields can be included either by using numerically

computed eigenfunctions in the network model or directly in the framework of the per-

turbation method. However, this obviously requires the specification of the complete tem-

perature field, which would have to be acquired experimentally or numerically. This was

not done in the present work.





Chapter 12

Experimental Analysis and Control of

Azimuthal Instabilities

Transformation to modal coordinates

In the experimental investigation of the annular Rijke tube, the acoustic pressure is mea-

sured with 12 microphones equally spaced along the circumference at a fixed axial location

upstream of the heating grids (see Figs. 10.1 and 10.2). Similarly, the frequency domain

model developed in Section 11.3 yields the eigenfunction pressure distribution in the 12

tubes at the heat sources. Although the axial locations of measurement and model output

are not exactly the same, the circumferential distribution of the pressure is identical. Con-

sidering the modal nature of the pressure field and the fact that only a few modes were

found to be unstable in the linear analysis (Section 11.3), a transformation of the vectors

of measured and calculated pressure distributions into coordinates properly representing

the modal structure is appropriate. For this purpose, we introduce unitary transformation

matrices BN of dimension N×N whose columns are a discrete representation of the cir-

cumferential mode shapes. We leave N variable because we want to use the same basis

for the actuation space when applying control, which is of lower dimension. We consider

two types of bases for even N:

basis (i) is a standing wave basis, in which the columns of BN have elements w01,

w1 cos ϕn, w1 sin ϕn, . . . , wN/2 cos N/2ϕn, with ϕn = 0 . . . 2π(N − 1)/N. The coeffi-

cients wi are introduced to make the basis vectors orthonormal so that BN is unitary.

This is achieved by choosing w0 = wN/2 =
√

N and w1 . . . wN/2−1 =
√

N/2. We

used this basis already in Section 11.3.3 for the determination of the modal content

of the modeled eigenfunction.

basis (ii) is a rotating wave basis, in which the columns of BN have elements

ce exp[−iϕnN/2], ce exp[−iϕn(N/2− 1)], . . . , ce exp[iϕn(N/2− 1)], with ce = 1/
√

12.

BN is essentially the unitary Fourier matrix.

We will denote both bases by BN because whenever we refer to it, it will equally hold for

both.

The pressure coordinates in the modal basis represent the coefficients of the modal

pressure distribution. We obtain the modal coefficients by projecting the measured or

163
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calculated pressure vector p̂ on the modal basis vectors, hence

p̂m = B†
N p̂. (12.1)

Since basis (i) is real, it can be applied to frequency- as well as time-domain pressure

vectors. This is not so for the complex basis (ii). The modal basis vectors have a non-

vanishing imaginary part, and therefore, the quadrature component of p is also necessary

to determine the associated modal coefficients.

Note here that with an orthonormal basis, the amplitudes of the modal coefficients

are larger than the maximum pressure amplitude in the tubes by a factor of
√

N/2 for

m = 1 . . . 5 and
√

N for m = 0, 6.

A note on terminology and notation

We refer to the quantities obtained from a modal decomposition of the time-domain pres-

sure signals as modal coefficients and denote them by am. A superscript c, s indicates the

reference to a standing wave basis, either cosine or sine component. ac
5, for instance, rep-

resents the cos 5ϕ component in the measured pressure vector p. For the rotating wave

basis, we use superscripts + and − to indicate counter-clockwise and clockwise spinning

components, respectively. The modal coefficients typically oscillate at the resonance fre-

quencies of their associated modes.

We define modal amplitudes as the oscillation amplitudes of the modal coefficients and

denote them by âm, as the Fourier transform. For a steady-state oscillation, we determine

the modal amplitudes either by Fourier transform or through the RMS, the latter if the

signal is sufficiently narrow-band. In the transient case, we obtain âm as the magnitude

of the analytic signal am + iH[am], again assuming the signal is narrow-band. In addition,

we label an mth-order azimuthal mode of sine or cosine type by sm and cm; clockwise and

counter-clockwise components are labeled by e−m, and e+
m. Particular basis vectors in BN

are referred to as bc,s
m and b±

m.

12.1 Self-excited oscillations

Consistent with the linear stability analysis based on the low-order model, azimuthal

modes of orders 5 and 6 were observed in the experiment for a certain range of input

powers. Figure 12.1 shows the average amplitude of the modal coefficients for a varia-

tion in the input power. For azimuthal orders 1–5, the effective amplitude (âc2
m + âs2

m )1/2 is

plotted. All heating grids were driven with identical power. No instability is observed for

input powers smaller than 1500 W. With increasing heating power, the 6th-order azimuthal

mode becomes unstable. Its amplitude grows with an increase in the electrical power up

to about 1700 W. The 5th azimuthal mode starts to grow and dominates for higher power

values. At an input power of 2000 W, the m = 6 mode is almost completely suppressed.

For larger powers, however, this mode remains significant, although the 5th-order mode is

clearly dominant. The strong suppression of the m = 6 mode around 2000 W was a repro-

ducible feature. Also note that the amplitude of the 5th azimuthal mode increases contin-

uously with input power, which clearly corresponds to a supercritical bifurcation. Regard-

ing the temporal evolution, when the heating grid power is switched on, the m = 6 mode
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Figure 12.1: Measured modal amplitudes for varying total input power

is actually growing much faster and is limited and then reduced in amplitude through the

5th-order azimuthal mode (not shown). The modes with azimuthal order lower than 5

only have a small contribution to the measured pressure signals.

For exemplary purposes, the amplitude spectrum of one of the pressure signals is

shown in Fig. 12.2. The data corresponds to a total input power of 3200 W. A strong peak,

extending more than four orders of magnitude above the background noise, is visible

around 560 Hz. At this scale, the frequencies corresponding to the 5th and 6th and the

stable 4th azimuthal modes cannot be distinguished. A few harmonics are also present.

A more detailed view of the dominant frequency content of the pressure oscillations

is given in Fig. 12.3. The data corresponds to total input powers of 1700 and 2100 W (cf.

Fig. 12.1). A peak with small magnitude is visible between 520 and 530 Hz. This corre-

sponds to the m = 4 mode that was found to be marginally stable in the low-order model.

Two stronger frequency components are found around 540 and 550 Hz. The location of the

peaks slightly increases with input power due to the larger speed of sound downstream
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Figure 12.2: Pressure amplitude spectrum measured in one tube for a total input power
of 3200 W
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Figure 12.3: Pressure amplitude spectra measured in one tube for input powers of 1700
and 2100 W with the m = 6 and m = 5 mode being dominant, respectively

of the heat source. The spacing of the two dominant peaks is only 3–4 Hz, which also com-

pares well with the model results (Fig. 11.8). For an input power of 1700 W, the peak with

the higher frequency is about an order of magnitude larger. On comparison with Fig. 12.1,

we find this spectral component to be associated with the m = 6 mode. At 2100 W, the

5th-order azimuthal mode clearly dominates. The reason for the two unstable modes be-

ing in such close proximity is that the tubes, in which the heating grids are mounted, favor

oscillations in this frequency range. However, the annular duct is still necessary to couple

the dynamics in the tubes. Without annulus, no self-excited oscillations were observed.

The simultaneous oscillation of two instability modes is not often observed in ther-

moacoustic investigations. The common explanation is that the oscillation of the “more

unstable” mode suppresses the growth of the weaker one. In our case, the presence of

two unstable modes with significant amplitudes is clearly related to the close proximity

of their associated oscillation frequencies (see also Fig. 12.3). However, a closer inspection

of the temporal evolution of the modal amplitudes showed that the weaker m = 6 mode

did not have a constant amplitude. It was growing and decaying, seemingly randomly, on

a much larger time scale than the actual oscillation. A growth in amplitude was always

associated with a decay of the m = 5 mode. Thus, there was a continuous competition

between the two modes rather than two coexisting oscillations with constant amplitudes.

The azimuthal instability modes observed in annular combustion chambers can be ei-

ther standing or rotating in angular direction or be a mixture of both (Krebs et al. 2002;

Schuermans et al. 2006; Staffelbach et al. 2009). In the present case, the nature of the os-

cillation patterns is more difficult to assess due to the two coexisting modes. A careful

investigation of the time traces of the 12 pressure sensors showed that the m = 6 mode

was always of standing type. This was expected, since this mode is not degenerate, and

therefore, rotating wave solutions do not exist in the linear regime. Schuermans et al.

(2006) showed that the saturation in the heat release response at high amplitudes favors

rotating wave solutions. We conjecture, however, that this does not apply to azimuthal

modes which are not degenerate.
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The 5th-order azimuthal mode is degenerate so that spinning and standing oscillation

patterns are possible. No information can be gained from the stability analysis because

all linear combinations of the two basis functions spanning the degenerate eigenspace are

equivalent. The postprocessing of the experimental data showed that the m = 5 mode

was not of definite standing or rotating type. In terms of the cos mϕ–sin mϕ basis, az-

imuthally standing components are associated with in-phase modal coefficients ac
m and

as
m. Conversely, a purely rotating solution has modal coefficients which are in quadrature

but have identical magnitudes (Evesque et al. 2003). Thus, the nature of the 5th azimuthal

mode can best be visualized by means of a phase plane with the coefficients of the cosine

and sine modes as coordinates. A circumferentially standing wave is then represented by

a straight line whose slope determines the angular location of the pressure nodes, and a

purely spinning wave corresponds to a circle.

Figure 12.4 shows four exemplary results, which correspond to the same operating

conditions (total power of 3000 W) but different time intervals. Apparently, the 5th-order

azimuthal mode is neither distinctly spinning nor standing. In fact, it does not exhibit any

stationary characteristic at all. Figure 12.4 (b), for instance, clearly corresponds to a cir-

cumferentially standing wave, whereas Fig. 12.4 (c) and (d) represent essentially rotating

modes. A transition between different oscillation patterns can be observed in frame (a).

Qualitatively similar characteristics were also present at other input powers, for which the

m = 5 mode was unstable.
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Similar information is gained by studying the spin ratio ∆
sp
m , as proposed by Evesque

et al. (2003). The spin ratio represents the relative contribution of the energy in the rotating

component to the total acoustic energy in an mth-order azimuthal mode. For a pair of

counter-clockwise and clockwise spinning modes with (complex) coefficients a+
m and a−m ,

the spin ratio is given by

∆
sp
m =

(1 − |a+
m/a−m |)2

(1 + |a+
m/a−m |)2

. (12.2)

In contrast to the cos mϕ–sin mϕ basis, the modal coefficients a+
m and a−m cannot be obtained

simply by projecting the measured pressure signals p on the rotating wave basis. This is

because the latter is complex, and as a consequence, the quadrature component of p must

be included in the projection. In a postprocessing step, this poses no serious difficulty be-

cause the quadrature component is simply obtained from the Hilbert-transformed signal.

Essentially, this amounts to augmenting p with a quadrature component so that the signal

is proportional to eiωt. Then the modal coefficients of the rotating basis are computed from

a projection of the analytic signals corresponding to the measured pressures, viz.,

a±m = (b±
m)† pa, (12.3)

where pa = p + iH[p]. Alternatively, we can obtain the coefficients of the rotating wave

basis from the analytic signals of the coefficients of the standing wave basis. Since the pres-

sure distribution associated with a certain mth-order azimuthal mode must be identical in

the two bases, we have

âc
mwm cos mϕ + âs

mwm sin mϕ = â+
mce e−imϕ +â−mce eimϕ, (12.4)

where wm and ce are the normalization coefficients of the two bases. Thus, the coefficients

of the two bases can be transformed according to

[

â+
m

â−m

]

=
wm/ce

2

[

1 −i

1 −i

] [

âc
m

âs
m

]

, (12.5)

which can be equally applied to the corresponding analytic signals (because p is narrow-

band).

The spin ratio computed from the pressure signals corresponding to the measurements

shown in Fig. 12.4 does not take a stationary value but varies between 0 and 1 (Fig. 12.5).

This represents purely standing and spinning waves, respectively, apparently appearing

in a random fashion. Such complex behavior is somewhat unexpected. Experimental and

numerical investigations on unstable annular thermoacoustic systems (Section 10.1) typi-

cally show one distinct standing-to-spinning-wave ratio (which may depend on the initial

conditions). Yet, we also note that such detailed information on the acoustic mode type

is often omitted. A possible explanation for the seemingly random characteristics in the

present case is the following. As shown by Schuermans et al. (2006), rotating and stand-

ing waves correspond to stable fixed points and saddles, respectively, in wave-amplitude

phase space. The stable manifold of the saddle separates the basins of attraction for the

two (clockwise and counter-clockwise) rotating solutions. For certain initial conditions,

the solution trajectory may first be attracted to the saddle, along the stable manifold, and
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Figure 12.5: Spin ratio of the 5th azimuthal mode for a total input power of 3000 W. Green
stripes correspond to time intervals of frames (a)–(d) in Fig. 12.4.

spend some time in the vicinity of this unstable equilibrium, before eventually approach-

ing one of the two stable fixed points. As mentioned by Schuermans et al. (2006), this

process may take some time. We consider now the effect of noise on the dynamics in this

phase space. The state of the mode will be continuously relocated and, given a sufficiently

large noise level, may even jump between the basins of attraction of the two rotating solu-

tions. The mean flow is laminar and, accordingly, there is no real noise contribution in the

system. However, the simultaneous presence of the 6th azimuthal mode can be considered

as a random component driving the dynamics of the m = 5 mode.

12.2 The effect of an asymmetric power distribution

An azimuthal variation of burner and flame properties in an annular combustion chamber,

either through geometrical changes (Berenbrink & Hoffmann 2000; Krüger et al. 2001) or

burner group staging (Kokanović et al. 2006; Noiray et al. 2010), can have a stabilizing in-

fluence on the pressure oscillations. We mimic this effect in the annular Rijke tube through

an azimuthal variation of the power that is supplied to each heating grid. Changing the

geometry of a burner or the equivalence ratio with which it is supplied typically changes

the flame response. An analogous effect is obtained when varying the power of a heating

grid. To reflect this in the model, we need to determine the variation of the heat release

response parameters with the grid’s input power.

In general, varying the grid’s input power has an impact on the gain as well as on the

phase of the tube transfer function Fn. Higher power leads to an increase in the down-

stream temperature and in the mean velocity (because it is convection induced). Since

the heat release response of the grid is a function of the Strouhal number, the effect of

a change in the supplied power can be estimated based on measured temperatures and

the associated mean velocities for different heating powers. The measured temperature

increase across one of the heating grids as a function of the input power is displayed in

Fig. 12.6. The data can be well represented by the trial-and-error correlation

∆T/K = 2.1×(Psingle/W)
2/3, (12.6)
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Figure 12.6: Temperature increase across a
heating grid as a function of the input power.
Measured data and correlation (12.6) are
shown.
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measured

where the index ‘single’ indicates that this is the power to one grid only. Assuming that

the grid’s input power is transferred to the air with ideal efficiency, and using the mean

bulk energy balance, we have for the mean velocity upstream of the grid

ūus =
1

Aρuscp

Psingle

∆T
, (12.7)

which can be calculated as a function of the input power by using (12.6).

According to Lighthill (1954), the characteristic time of the grid’s wire in the heat re-

lease transfer function (11.13) can be calculated as cτ = 0.2 dw/ū, where dw is the wire

diameter. Opposed to that, Kopitz found from direct numerical simulations a constant of

proportionality of 0.4. For our calculations, we employ the latter value. Moreover, since

the heating grids are made from flat wire (see Section 10.3), we use the corresponding hy-

draulic diameter dh = 0.49 mm (which certainly is a crude approximation). For a reference

temperature increase (∆T)ref = 50 K, we obtain from (12.6) and (12.7) a reference velocity

of ūus.ref = 0.67 m s−1. This yields a characteristic time for the heat transfer from the wire

of cτ.ref = 0.29 ms, as claimed in Section 11.5. Then we can express the effect of a variation

of the input power on the heat release transfer function in tube n, Fn, through

(∆Tsingle)n

(∆T)ref
=

(

P

Pref

)2/3

and
cτ

cτ.ref
=

(

Psingle

Pref

)−1/3

. (12.8)

We take into account the effect of a change in the temperature increase on the unsteady

expansion resulting from heat release fluctuations, but do not model the circumferential

temperature distribution that results from an azimuthal variation of the input power, as

discussed in Section 11.6.

An azimuthal variation of the heat release transfer functions does not necessarily have a

positive effect on thermoacoustic stability. Nominally degenerate azimuthal modes can be

split if the system’s symmetry group is reduced in a particular way through the introduced

circumferential variation (cf. Section 11.2). To illustrate this effect, we investigate two

patterns of azimuthal “staging”: one has a 4-fold rotational symmetry (denoted by C4)

with reduced power at every third heating grid, and the other one has a 3-fold rotational

symmetry (denoted by C3) with groups of two heating grids alternating in lower and

higher electric power. The staging patterns are visualized in Fig. 12.7. In all results shown

in this section, the total electric power is held constant at 2900 W. To quantify the strength
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Figure 12.7: Visualization of the nominal power distribution and of the two staging pat-
terns with associated eigenvalues; darker circles indicate higher electric power. The eigen-
values of the C4 and the C3 case correspond to σ = 1 and σ = 1.5, respectively.

of the circumferential modulation, we define the asymmetry parameter σ as

σ =
∆P

Pmean
, (12.9)

where ∆P is the difference in electric power supplied to the two types of heating grids in

one staging pattern, and Pmean is the mean power (which is held constant).

Since only three independent power sources are used for the 12 grids (see Section 10.3),

it is not possible to realize arbitrary heating power distributions along the circumference

and, at the same time, exploit the full range of electrical power available. For the C3 stag-

ing pattern, for instance, it is already necessary to connect 6 of the heating grids to one

power source. Therefore, the maximum total power that can be used is reduced by a fac-

tor depending on the particular staging pattern.

We discuss the model results for the two staging patterns first. The system eigenvalues

for the reduced symmetry groups C4 and C3 and the corresponding staging patterns are

shown in Fig. 12.7. For comparison, the eigenvalues for the original fully symmetric case

(C12) are also plotted. For clearness, only the frequency range between 540 and 600 Hz is

shown. We consider the effect of the C4 staging pattern first. Here, σ = 1 has been used for

the computations. The m = 4 mode, degenerate in the baseline case with a frequency of

546 Hz and marginally stable, splits into two distinct modes as a result of the reduction in

symmetry. As already noted in Section 11.5.3, this is an essentially destabilizing effect be-

cause one of the split modes has a larger imaginary part, whereas the other moves down

into the unstable half plane. The modes of azimuthal order 5 and 6 at 560 and 564 Hz,

which are dominant in the fully symmetric case, are slightly stabilized. The mode with a

frequency of 593 Hz in the baseline case also splits because it is of 2nd azimuthal order.

However, both m = 2 split modes remain stable. The unfolding of the degeneracy of the
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Figure 12.8: Measured modal amplitudes as a function of the asymmetry parameter σ for
a C4 staging pattern; total power input 2900 W.

4th- and 2nd-order azimuthal modes is consistent with the symmetry arguments intro-

duced in Section 11.2. Thus, based on the linear analysis, we summarize the effect of the

C4 staging pattern as a slight stabilization of the nominally unstable m = 5 and m = 6

modes at the cost of a significant destabilization of one of the m = 4 split modes.

The results of the C3 staging pattern with σ = 1.5 are univocal: all modes are either

stabilized or affected only insignificantly (also those which are not shown in Fig. 12.7).

However, the damping of the 5th-order azimuthal mode is only slightly increased so that

it remains marginally stable. It is important to note here that no destabilizing splitting of

the 6th-order azimuthal mode occurs because this mode is already distinct in the baseline

case due to the 12-fold rotational symmetry. Different values of the asymmetry parameter

σ have been used for the computation of the two staging cases because the experiments

showed an effect of the C4 pattern already at σ = 1 whereas the stabilizing influence of the

C3 pattern could be observed only for σ > 1.3 (see below).

To assess the effect of the reduced circumferential symmetry in the experiment, mea-

surements were performed with a constant total power of 2900 W while varying the distri-

bution to the 12 heating grids according to the C4 and C3 staging patterns. The measured

modal amplitudes as a function of the asymmetry parameter σ are shown in Figs. 12.8 and

12.10, respectively. At σ = 0, only the 5th and 6th-order azimuthal modes are oscillat-

ing, with the former dominating. This corresponds to the case already considered before.

Increasing the asymmetry according to the C4 pattern (Fig. 12.8) leads to a continuous de-

crease in the amplitudes of the 5th- and 6th-order azimuthal modes. At σ = 0.75 both of

these modes are stabilized. However, at the same time, the m = 4 mode is destabilized

and grows in amplitude with a further increase of σ. These results correspond well with

the eigenvalue analysis for σ = 1 (Fig. 12.7).

Since for the C4 staging pattern, the m = 4 modes are not degenerate any more, they

have a distinct pressure pattern along the circumference. Hence, we can compare the

modeled circumferential pressure distribution (Eq. (11.19)) corresponding to the unstable

m = 4 mode with the measured pressure distribution. This comparison is presented in

Fig. 12.9. For completeness, the pressure pattern of the stable split mode is also shown.

The measured and modeled pressure patterns both correspond to σ = 1. The experimental
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Figure 12.9: Modeled and measured pressure distributions in the tubes corresponding to
the 4th-order azimuthal mode for σ = 1, C4 staging pattern. Heating grids in tubes 2, 5, 8,
and 11 have a reduced power input. The stable ( p̂mod,s) and the unstable ( p̂mod,u) m = 4
split modes are shown.

observations confirm the model results. Clearly, the selected pressure pattern identified

in the measured data corresponds to the computed unstable mode. The reason for this

pattern being more unstable is that the pressure nodes are arranged such that they coin-

cide with the locations of the heating grids with reduced power (and thus, smaller trans-

fer function gain). The measured pressure data represents an arbitrary snapshot. Since

the modeled pressure distribution is an eigenfunction, its amplitude is undetermined. In

Fig. 12.9, the amplitude of the computed pressure pattern has been scaled such that it

matches the experimentally determined magnitudes.

An increase in σ according to the C3 pattern (Fig. 12.10) results in a decrease in the

amplitude of the 5th-order azimuthal mode. In contrast, the m = 6 mode is not damped

by the asymmetry. It increases in amplitude, quite significantly around σ ≈ 0.6, and

settles on a constant level for σ = 0.7–1. Increasing the asymmetry parameter further,

both modes are eventually stabilized at σ = 1.3. The fact that both modes become stable
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Figure 12.10: Measured modal amplitudes as a function of the asymmetry parameter σ
for a C3 staging pattern; total power input 2900 W.
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at the same value of the asymmetry parameter indicates significant interaction even at

low amplitudes. The eigenvalue analysis for this staging pattern with σ = 1.5 (Fig. 12.7)

showed the m = 6 mode to be stabilized and the m = 5 mode to be marginally stable. This

does not fully correspond to the experimental data but points in the same direction.

12.3 Feedback control

Controlling thermoacoustic instabilities in annular domains is markedly different from

the purely longitudinal case. This is related to the higher complexity of the acoustic field

and the multiple sources of heat release present. In a longitudinal test-rig, for instance, a

single sensor signal is sufficient for control, whereas for an annular configuration, this is

not the case. The pressure nodes associated with longitudinal acoustic modes are fixed.

If neither actuator nor sensor is located in a node of the unstable mode, the oscillation

can be measured as well as affected, and thus, control is possible, in principle. (There

are other factors which may impede this task, such as actuator bandwidth and authority.)

Degenerate azimuthal modes, in contrast, have the necessary degree of freedom to evade

control if only a single sensor or a single actuator is used. The same holds true if only one

damping device (a Helmholtz resonator, say) is attached to an annular chamber (Stow &

Dowling 2003). As explained in Section 11.2, the degenerate eigenvalue splits, and only

one of the split modes is stabilized. Feedback control with only a single sensor or a single

actuator will have the same effect.

We consider the stabilization of the unstable azimuthal modes in the annular Rijke tube

as a classical feedback control problem as shown in Fig. 12.11. The open-loop plant transfer

function H(ω) maps the 6 actuator commands (the input to the speakers’ amplifiers) to

the 12 pressure signals (left frame in Fig. 12.11). To stabilize the system, the 12 pressure

signals are fed back to the 6 speaker commands via the control transfer function K(ω)

(right frame in Fig. 12.11). As indicated in Fig. 12.11, we will not attempt to control the

complete system but only the unstable modes. This is referred to as modal control and is

explained in detail in Section 12.3.2. The definition of open-loop and closed-loop transfer

function that we use in the following is according to Fig. 12.11.

12.3.1 Including actuation in the model

The model developed in Section 11.3 does not include the effect of actuation and, hence,

is only able to represent free oscillations of the homogeneous system (the eigensolutions).

To design a stabilizing controller K, we need the plant transfer functions H, which map

the control signals to the sensor signals, i.e., p̂ = H(ω)ê. To obtain H, we have to model

how the speakers influence the system. Extending the model from Section 11.3 to include

actuation is not difficult because the whole acoustic field is already accounted for. Also,

since the speakers are mounted to the tubes, we only need to consider the effect on the

respective plane wave amplitudes; the three-dimensional nearfield is restricted to a rather

small region due to the high cut-on frequencies of the non-planar tube modes. We thus

model the effect of a speaker in one of the tubes as a 2×2 transfer matrix with infinitesimal
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Figure 12.11: Definition of open- and closed-loop transfer functions for feedback control
in the annular Rijke tube. Left: open-loop transfer function; right: closed-loop transfer
function. H is the 6×12 plant transfer function that maps the 6 actuator signals e to
the 12 microphone signals p. K is the 12×6 control transfer function that relates the 12
microphone signals to the 6 actuator commands. The scalar variables βm and am are the
modal coefficients of the actuator command and the pressure signals, respectively. hm(ω)
is the modal plant transfer function and relates the modal coefficients of the actuator
signals to the modal pressure coefficients. W(ω) is the compensator transfer function that
is used for modal control. βm, hm and W are defined in Section 12.3.2

axial extent and volume source. Hence, we have the coupling relations

p̂b = p̂a, (12.10a)

ûb = ûa + g(ω)ê, (12.10b)

where subscripts a and b indicate evaluation up- and downstream of the actuator location,

and g(ω) is the speaker transfer function. The term ‘speaker transfer function’ is a bit

fuzzy because it does not clearly define what effects are included. We therefore understand

Eq. (12.10) to be the actual definition of g. As such, it includes the effect of the amplifiers,

the speakers, all parts involved in the mounting mechanism, and the nearfield source

characteristics. The transfer function g also depends on the entire system the speaker is

attached to as a result of the back impedance (e.g., Marx et al. 2006). Therefore, it is not

possible to measure g in an isolated set-up, a Multi-Microphone tube, say, and simply

transfer the result.

We also need to account for the fact that the measured signals are not identical with

the pressure directly at the heat source but at a small distance upstream (see Fig. 10.1).

This is, however, not difficult because we can model this effect by using elementary plane

wave theory. We merely need to add two duct elements (in each tube) with the appropri-

ate length so that we obtain the pressure at the microphone locations and represent the

actuation effect at the proper axial position. The model then takes the form as shown in

Fig. 12.12. The admittance matrix, as defined in Section 11.3.4, now represents the up-

stream part only up to the microphone positions. The plane wave propagation between

the microphones and the heat sources is simply modeled with duct transfer matrices. Like-

wise, the impedance matrix accounts for the annular section and the array of tubes (see

Sections 11.3.5 and 11.3.6) down to the axial location of the speakers. A second duct trans-

fer matrix models the distance between the actuators and the heat sources.
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Figure 12.12: Network model representation of the annular Rijke tube accounting for
proper sensor and actuator locations. Q maps upstream to downstream pressures and
velocities via X and I + F , respectively. Di and Dii represent duct transfer matrices in
each tube, and G models the actuator response. The open-loop transfer function of the
system is defined through p̂1 = H(ω)ê.

Denoting the duct transfer matrix elements by Ti,ii
ij , the open-loop transfer function can

be written as

H(ω) =
[

(Tii
12I −ZTii

12I)X(Ti
11I + Ti

12A) + (Tii
12I −ZTii

22I)(I + F)(Ti
21I + Ti

22IA)
]−1

ZG,

(12.11)

where G is a 12×6 actuator transfer function that distributes the control signal to every

second tube, hence

Gkl(ω) =

{

g(ω), k = l ∧ k odd,

0, else.
(12.12)

12.3.2 Modal control

Designing a controller for the plant transfer function is not straightforward due to its

multiple-input–multiple-output nature. In principle, H∞-loop-shaping techniques can be

used for this task. In the present case, however, the plant transfer function is simply too

complex, essentially due to its transcendental character, so that these methods cannot be

applied directly. Truncation to a finite-dimensional model would be required. On the

other hand, controlling the pressure signals directly may not be the most effective way.

Since we know which modes are unstable, a more sensible approach can be adopted by

controlling the actual modes, as proposed by Schuermans et al. (2003) and Morgans &

Stow (2007). For multiple unstable modes, this method requires one controller for each;

however, these are only single-input–single-output systems, and designing a stabilizing

control law is straightforward.

An additional advantage from a more fundamental point of view is that by being able

to suppress individual modes rather than stabilizing the complete system, we are able,

e.g., to study the growth of each mode unimpeded by the presence of the others. This can

also be of practical value. Consider for instance the oscillation amplitudes of the 5th and

6th azimuthal modes in Fig. 12.1. For large input powers, the m = 5 mode has a distinctly

larger oscillation amplitude than the m = 6 mode. In the case of the latter being acceptable

and the former not, applying dampers designed to suppress the m = 5 mode may actually

increase the oscillation amplitude of the m = 6 mode significantly because both modes

interact nonlinearly. By how much the amplitude of the 6th azimuthal mode will grow is

difficult to predict due to the nonlinear nature of the interaction.
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Modal plant transfer functions

To obtain the modal model, we first project the open-loop plant model

p̂ = H(ω)ê (12.13)

on the modal basis B12, viz.,

B†
12 p̂ = B†

12H(ω)ê. (12.14)

Next we represent the actuation vector in modal coordinates of the six-dimensional actu-

ation space

ê = B6êm, (12.15)

where B6 is a 6×6 matrix whose columns correspond to the continuous standing or ro-

tating wave basis evaluated at the circumferential locations of the speakers. Since we

only have six actuators, aliasing effects are introduced when considering modes up to

azimuthal order 6, which will be necessary to control the unstable modes. Actuating an

m = 5 mode will simultaneously excite modes of azimuthal order 1, and the forcing pat-

tern for m = 6 is identical to that of m = 0. However, the aliasing effect cannot destabilize

these lower modes because the sensor signals have an angular resolution up to m = 6, and

hence do not cause backfolding up to this circumferential order. Therefore, feedback for

the aliased modes is not established; they experience merely an open-loop forcing by the

aliased feedback signal for the unstable modes with m = 5 and m = 6. Furthermore, no

interference of the two unstable modes is generated. This can be directly inferred from the

modal plant transfer function, as we will see in the following.

Combining (12.14) and (12.15), we obtain the modal plant transfer functions with

p̂m = Hm(ω)êm, Hm(ω) = B†
12H(ω)B6. (12.16)

Since our nominal system has a C12 symmetry, which is reflected by the symmetry of the

plant transfer function matrix H, the circumferential modes decouple for the most part,

and cross-talk is only introduced through the aliasing effect associated with insufficient

spatial resolution of the actuators. As a result of this strong decoupling, the modal plant

transfer function matrix Hm has only a few non-zero elements as opposed to H, which is

fully populated (but highly symmetric).

The structure of the modal plant transfer function matrix for the standing and the ro-

tating wave basis are shown in Fig. 12.13. We consider the standing wave basis (left) first.

Up to the third-order cosine mode, the system is diagonal, and every pressure mode can

be directly actuated with the corresponding speaker pattern. The third-order sine mode

cannot be actuated at all. This is because the speakers are located in the nodes of the asso-

ciated pressure distribution. Obviously, this deficiency could be resolved by changing the

coordinate origin. Then, however, the cosine mode could not be actuated or both modes

would be excited simultaneously. Either way, with only six speakers, it is not possible to

control the complete m = 3 eigenspace, a direct result of Shannon’s sampling theorem.

Since the 3rd-order azimuthal modes were not among the unstable ones, this shall not be

of further concern. Actuating the unstable 5th and 6th azimuthal modes is always accom-

panied by an excitation of 1st- and 0th-order modes, respectively, due to backfolding.
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Figure 12.13: Non-zero elements of the modal open-
loop plant transfer function Hm with respect to a
standing (left) and a rotating basis. cm and sm cor-
respond to cosine and sine modes of mth azimuthal
order, and e±m is a shorthand notation for e±imϕ. Stars
indicate unstable modes.
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We have a similar picture for the rotating wave basis (Fig. 12.13, right). The 3rd-order

azimuthal modes can be actuated but only both spinning directions simultaneously. This

again impedes control of the complete m = 3 eigenspace.

To design a suitable control law for stabilizing the unstable 5th- and 6th-order az-

imuthal modes, we consider only the associated non-zero elements of Hm (those marked

by stars in Fig. 12.13). These are the transfer functions hc,s
m (ω) which relate the modal am-

plitudes of the actuation commands β̂c,s
m to those of the modal pressure amplitudes âc,s

m (see

Fig. 12.11), hence

âc,s
m = hc,s

m (ω)β̂c,s
m , where hc,s

m (ω) = (bc,s
12.m)†Hm(ω)bc,s

6.m, (12.17)

and bc,s
12.m and bc,s

6.m are the columns in matrices B12 and B6 associated with mode mc,s.

Schuermans et al. (2003) and Stow & Dowling (2009) propose, in case of a fully sym-

metric system, to obtain a modal model for a particular mode by making an ansatz based

on this mode only. While this is generally a valid procedure because the modes are de-

coupled in a symmetric system, we found this approach to be inaccurate for azimuthal

modes of higher-order, which are of particular interest here. The acoustic nearfield at the

tube–annular-duct transitions has a quantitative influence on the eigenfrequencies. For

the 4th, 5th, and 6th azimuthal modes, with eigenfrequencies around 550 Hz, the reso-

nance frequencies of the corresponding single-mode models were found to be different

from those obtained from the full model (taking into account annular duct circumferen-

tial modes up to order 20) by 10–20 Hz. However, when representing the annular duct,

not all azimuthal orders contribute to a certain system mode. In fact, only those that fold

back due to aliasing have an effect in addition to the actual circumferential mode order.

In case of an mth-order azimuthal system mode, these are the circumferential wavenum-

bers lN ± m, l = 1, 2 . . ., for a configuration with N heat sources. Hence, the additional

computational effort compared to a single-mode approach is clearly acceptable in view of

a higher accuracy.

Calibration of the actuator response

As explained in Section 12.3.1, the open-loop plant model needs to be calibrated with re-

spect to the actuator response. Since the transfer function of the loudspeakers, including

the acoustic characteristics of the connecting parts, is not known, and moreover, cannot be
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Table 12.1: Speaker parameters identified from experimental data

Csp ωsp/(2π) ζsp τsp lsp

484 m s−2 V−1 143 Hz 0.18 s−1 0.6 ms 35 mm

measured directly, we identify this relation from response measurements in the full set-

up. These measurements are performed in cold conditions because an accurate identifica-

tion is not possible in the presence of self-excited oscillations (Morgans & Dowling 2007).

However, the actuator transfer function does not change with a temperature increase, and

therefore, this approach is permissible.

Several ways of calibrating the actuator response are possible. For example, excitation

with a single speaker can be used so that the speaker transfer function can be identified

by investigating the response of each of the 12 microphones. This would have to be done

for all speakers, in principle, to exclude any individual irregularities. As we intend to

apply a modal control scheme, it is only important that the modal response is accurately

represented in the model. For this reason, we identify the actuator transfer function based

on experimentally determined modal response data. This is done by first driving the six

speakers according to a distinct modal pattern, e.g., ej(t) = cos(5 ϕj)s(t), j = 1 . . . 6, for

the cosine part of the m = 5 mode, where s(t) is an identification waveform (we use a

chirp signal), and ϕj corresponds to the angular locations of the speakers. Then the vector

of measured pressure signals is projected on the respective circumferential mode in the

measurement signal space to obtain the modal coefficient ac,s
m (t). After transformation to

the frequency domain, the modal transfer function is calculated as hc,s
m = âc,s

m /êc,s
m .

Now we have to identify the speaker transfer function g(ω), implicitly defined through

(12.10), such that the respective element in the modeled modal transfer function Hm(ω)

matches the corresponding measured hc,s
m as accurately as possible in the relevant fre-

quency range. We model the speaker transfer function as

g(ω) = Csp
iω

−ω2 + 2iζspω + ω2
sp

e−iωτsp sec(ωlsp/c) (12.18)

with parameters ωsp, ζsp, τsp, and lsp. The form of the speaker transfer function represents

the typical high-pass character with slightly pronounced lower resonance frequency ωsp,

damping coefficient ζsp, and an additional delay τsp; Csp is a constant amplification factor.

The delay can be partially attributed to the low-pass filter of the microphone amplifier.

To account for the short connecting tube (see Figs. 10.1 and 10.2), an additional reciprocal

cosine term was added, which represents the acoustic transmission of the particle velocity

along the tube. The parameters in (12.18) are then chosen such that the correspondence be-

tween measurement and model is as good as possible. The identified speaker parameters

are summarized in Tab. 12.1.

Measured and modeled modal transfer functions for the 5th and 6th azimuthal modes,

at cold conditions, for which the parameters in (12.18) were identified, are shown in

Fig. 12.14. For the m = 5 mode, the measured sine and cosine parts are both shown. In

principle, the modal transfer function of the sine and the cosine part should be identical;

the model satisfies this, but it is advisable to confirm this property from the experimental
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Figure 12.14: Measured and modeled modal transfer functions for the 5th (left) and the
6th azimuthal modes; heating grids off. cm and sm correspond to the cosine and the sine
part, respectively.

data, too. The measured responses of the sine and the cosine part of the m = 5 mode

essentially collapse. The modeled transfer functions also agree well with the measured

data. Resonances corresponding to the unstable modes are represented accurately, and

the phase matches up to about 700 Hz. At higher frequencies, the measured phase lag

is progressive. This is not captured by the model, but phase accuracy at higher frequen-

cies is not required for successful control. We also note that the width of the resonance

peak, which is a measure for the modal damping, agrees reasonably well for modeled and

measured results.

Phase-lead compensator design

In Section 11.5.2 we already identified the unstable modes from our model computations

(Fig. 11.8). The instability can also be found in the open-loop transfer function with acti-

vated heating grids (Fig. 12.15). Assuming the system is characterized by a second-order

oscillator around the resonance frequency, a phase increase by π indicates instability (Mor-

gans & Dowling 2007), which is clearly the case. We also note from the open-loop transfer

functions in Fig. 12.15 that additional loop-shaping is not necessary. In fact, as a result of

the modal decomposition, the plant transfer functions have a high response only at the

unstable mode frequency.

This type of instability can be stabilized, for example, with a phase-lead or a phase-lag

compensator (Morgans & Dowling 2007). A principle difference between the two com-

pensators is that high gain is introduced at large frequencies by the former and at small

frequencies by the latter. Morgans & Dowling argued, in case of a longitudinal combus-

tion system, that the phase-lag compensator is more suitable because high frequency noise

is not amplified. Since our system is essentially noise-free and we do not want to desta-

bilize lower modes (these are less damped than the higher modes), we use a phase-lead

compensator, whose gain is small for low frequencies.
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Figure 12.15: Modeled open- and closed-loop transfer functions for the 5th (left) and the
6th azimuthal modes. For the closed-loop case, a compensator gain of 6 has been used.

The standard phase-lead compensator has the transfer function

W(ω) = Cpl

1 + aplτpl iω

1 + τpl iω
, (12.19)

where apl > 1 is the high-frequency gain, and the maximum phase increase occurs at

ω = (
√

aplτpl)
−1; Cpl is the compensator gain. Using apl = (5/2)2 and τpl such that the

maximum phase increase occurs at 550 Hz, which is approximately the average oscillation

frequency in the unstable heating power regime, both the 5th and the 6th azimuthal modes

can be stabilized using the same control parameters. The modal control command is then

computed from the modal pressure coefficients according to

β̂c,s
m = W(ω)âc,s

m , (12.20)

and the control matrix K(ω) (Fig. 12.11) is given by

K(ω) = ∑
c5,s5,c6

bc,s
6.mW(ω)(bc,s

12.m)†. (12.21)

With this form, all unstable modes are controlled. Naturally, we can exclude elements

from the sum in (12.21) to control only part of the unstable subspace, which we will also

do later on.

The stabilizing effect of the phase-lead compensator is apparent in the modeled closed-

loop transfer functions (Fig. 12.15). The phase increase by π across the resonance fre-

quency in the open-loop case is now a phase decrease, which indicates stability. In ad-

dition, the response peak is significantly reduced. The effect of control on the system

eigenvalues is displayed in Fig. 12.16. For a compensator gain of Cpl = 6, both unstable

eigenvalues can be moved into the stable half-plane individually. In case of the 5th-order



182 Part III. Modeling and Control of Thermoacoustic Instabilities in Annular Domains

Figure 12.16: Effect of control on system
eigenvalues with a compensator gain of 6.
For m = 5, both unstable eigendirections are
controlled.
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azimuthal mode, both unstable eigendirections are controlled (with two individual com-

pensators). The now stable eigenvalue is then still degenerate. If only one direction in the

unstable m = 5 subspace is controlled, the degenerate eigenvalue splits, and the uncon-

trolled part remains in the lower half-plane at its original location (not shown).

12.3.3 Application of modal control

To apply the control scheme in the experiment, modal decomposition and recombination,

and the phase-lead compensators were implemented on a control board (DS1103, dSpace)

via Simulink. The sampling frequency was set to 9 kHz.

Complete stabilization

First, we apply control to all unstable modes simultaneously, i.e., we use two independent

compensators of the form (12.19) for a basis of the unstable 5th azimuthal mode and one

for the 6th azimuthal mode. For the degenerate m = 5 mode, we used the standing wave

basis; using the rotating wave basis is more difficult and is discussed in the next para-

graph. Identical control parameters were set for all unstable modes with a compensator

gain of 6. Figure 12.17 presents results from the experimental application of the modal

controller at an input power of 3 kW. After control for all unstable modes is activated, the

instability is quickly diminished (Fig. 12.17, left). A spectral peak amplitude reduction of

nearly 80 dB is achieved (Fig. 12.17, right). The small peak close to the nominally unstable

frequencies corresponds to the 4th azimuthal mode, which was found to be marginally

stable in the linear analysis (Fig. 11.8); no control was applied for this mode.

Control of standing and spinning subspaces

The unstable 5th azimuthal mode is degenerate, and therefore, the associated eigenspace

is two-dimensional. This mode can be completely suppressed by controlling a basis of the

unstable eigenspace, as shown in the preceding paragraph. If this basis is orthogonal, the

two controllers can be independent. Furthermore, it is possible to control only a part of

the unstable eigenspace. With respect to the standing wave basis, we can, for instance,

only control the cosine part of the m = 5 mode. In this case, the sine part remains unstable

and will be oscillating.
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Figure 12.17: Application of the modal control scheme in the experiment. Histories of the
12 measured pressure signals (left) and amplitude spectra of one of the pressure signals
for the uncontrolled and the controlled case (right). (The pressure spectra for all micro-
phone signals are similar.)

Similarly, we can use a spinning basis with clockwise- and counter-clockwise-rotating

wave components eimϕ and e−imϕ. As mentioned at the beginning of this chapter, this

basis is complex, and therefore, the quadrature component of the real pressure signals also

needs to be taken into account in the control scheme. Accordingly, the input to the control

transfer function matrix K(ω) (Fig. 12.11) must be the analytic signal pa = p + iH[p].

Computation of the analytic signal in a postprocessing step is a standard procedure, but

in a control application, pa has to be available at run time. Various causal Hilbert filters

are available from the signal processing literature (e.g., Mirta & Kaiser 1993, Chap. 13);

however, these always introduce an additional time lag. In principle, the analytic signal

can be generated with the time-lagged Hilbert transform by delaying the real component

by the same amount, but an additional time lag is undesirable for control applications.

In the present work, we therefore generate a narrow-band Hilbert transform by simply

using a delay such that the pressure signals are phase-shifted by π/2 at the frequency of

the unstable mode. This procedure is permissible because the signal is distinctly narrow-

band (see Fig. 12.2). With a control board sampling frequency of 9 kHz, a quadrature phase

shift at 560 Hz (which is sufficiently close to the m = 5 and m = 6 modes) is thus achieved

by a discrete delay of four sampling steps.

Figure 12.18 shows results from the application of the control scheme described above.

The unstable 6th-order azimuthal mode is suppressed at all times. In addition, only one

basis function of the unstable m = 5 mode is controlled. By stabilizing, for example, only

the cosine part, we obtain an almost perfect sine distribution (red curve in Fig. 12.18).

Conversely, we can control the sine part only; this results in the blue curve. When control-

ling only one spinning direction, a perfectly rotating mode is observed (which spins in the

uncontrolled direction).

Further results for the control of individual unstable subspaces corresponding to the

5th-order azimuthal mode are presented in Fig. 12.19. In the time intervals indicated,

different components of the m = 5 mode are controlled; the information is summarized

in Tab. 12.2. The m = 6 mode is, again, controlled at all times. For t < t1, all unstable

modes are controlled. At t1, control of as
5 (the sine component of the m = 5 mode) is

ceased. This mode now starts to grow exponentially and settles on an approximately
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Figure 12.18: Standing-wave-basis modal ampli-
tudes for different types of partial subspace control.
The 6th azimuthal mode is always controlled; in ad-
dition, the mode indicated in the legend is also con-
trolled. The length of each trajectory corresponds to
a time interval of 40 ms.
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constant oscillation level. In the spinning wave basis (Fig. 12.19 (a)), the amplitudes of

the two eigenfunction coordinates are equal, as necessary to produce a standing wave

pattern. With respect to the standing wave basis (Fig. 12.19 (b)), only the as
5 component

has a non-zero amplitude. At t2, control is switched to the spinning wave basis, targeting

only the clockwise rotating a−5 component. As a result, only the amplitude of the counter-

clockwise rotating wave, a+
5 , is non-zero (Fig. 12.19 (a)). In the standing wave basis, this

corresponds to equal amplitudes of the two components (but with a phase shift of π/2). At

t3, control is again switched to the standing cosine component with amplitude ac
5. Between

t4 and t5, all unstable modes are controlled. Individual control of the unstable subspaces

corresponding to the amplitudes as
5 and a+

5 is applied at times t5–t6 and t7–t8 and between

t6 and t7, respectively. Similar results as in case of control of the complement modes are

evident.

The spin ratio ∆
sp
5 , as defined in Eq. (12.2), is plotted in Fig. 12.19 (c). When the 5th-

order azimuthal mode is completely controlled, or the amplitudes have not yet attained

a significant level, the spin ratio cannot be computed in a sensible manner. This is repre-

sented by the random variation of ∆
sp
5 between 0 and 1. However, whenever the oscilla-

tion amplitude is non-vanishing, the spin ratio gives a clear indication whether the mode

is standing or rotating.

We consider now frame (d) in Fig. 12.19, which displays the normalized low-pass fil-

tered sum of the 12 squared pressure signals for the different control cases. The plot shows

the quantity E = N−1 ∑
N
n=1 LP[p2

n]/(ρc2), which is representative of the oscillation energy

in the system (LP[·] is a low-pass filter). If the energy in the controlled modes is neglected,

this term is identical to the squared sum of the oscillating modes (because the modal bases

are unitary). We note that the oscillation energy is significantly larger in case of a spinning

mode by approximately a factor of two. Incidentally, this is also evident from frame (b)

when comparing the modal amplitudes between t2 and t3 with those between t3 and t4.

The modal amplitudes in case of the standing and the spinning mode limit cycle are al-

most equally high. However, both standing wave amplitudes are non-zero when the wave

is rotating, and since the pressure field is a superposition of the modal contributions, the

oscillation energy is higher in this case.
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Table 12.2: Annotation to Fig. 12.19. Time intervals for which particular modes are con-
trolled.

time t < t1 t1–t2 t2–t3 t3–t4 t4–t5 t5–t6 t6–t7 t7–t8 t > t8

control a6, ac
5, as

5 a6, ac
5 a6, a−5 a6, ac

5 a6, ac
5, as

5 a6, as
5 a6, a+

5 a6, as
5 a6, ac

5, as
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t1 t2 t3 t4t5 t6 t7 t8

 

 

0

250

500

750

1000

1250

1500

(b)

m
o

d
al

am
p

li
tu

d
e

in
P

a

time

t1 t2 t3 t4t5 t6 t7 t8

âc
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Figure 12.19: Transient variation of subspace control; (a) spinning-wave-basis modal am-
plitudes, (b) standing-wave-basis modal amplitudes, (c) spin ratio, and (d) equivalent of
oscillation energy. A total time interval of 30 seconds is shown.

The reason for the oscillation energy to be higher for the rotating mode is difficult to as-

sess because the limit cycle amplitude is determined by the nonlinear response of the heat

source, information on which we do not have available. Yet, it is reasonable to assume

that the nonlinearity is essentially of saturation type. In case of the rotating mode, all

heating grids experience identical velocity oscillation amplitudes; only the phase is differ-

ent. Therefore, the oscillations in all tubes enter the saturation level at the same amplitude.

This is different for the standing wave mode. Only tubes located at circumferential pres-

sure antinodes experience the maximum velocity oscillations bounded by the saturation

level, whereas those close to nodes hardly see any perturbations at all. Therefore, the ro-

tating mode is more effective in distributing the fluctuation energy among all tubes while

complying with the saturation level at each heating grid.

As a last application of the modal control scheme, we determine the linear growth rates

of the unstable modes. This is achieved by first suppressing all modes and then deacti-

vating control for one mode at a time. The logarithm of the modal amplitudes for this



186 Part III. Modeling and Control of Thermoacoustic Instabilities in Annular Domains

0 2 4 6 8 10 12 14 16 18 20 22 24 26
−2

−1

0

1

2

3

4

5

6

7

8

 

 

time in s

lo
g

â
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Figure 12.20: Investigation of the linear growth of the unstable modes. All modes are
controlled initially. Control is deactivated for one mode at a time. The plot shows the
magnitude of the analytic signals of the modal coefficients. A total input power of 3000 W
has been used.

procedure is shown in Fig. 12.20. Here, the modal amplitudes were computed from the

modal coefficients as the magnitude of the corresponding analytic signals. A total input

power of 3000 W was used for this case. The stage of linear growth can be recognized in

Fig. 12.20 as a linear increase in the logarithm of the modal amplitude. An evaluation of

the slope for small amplitudes yields the growth rates −Im ω/(2π), which we determine

as 0.55 s−1, 0.35 s−1, and 0.37 s−1 for the a6, the as
5, and ac

5 modes, respectively. These values

compare reasonably well with those obtained from our model computation, although for

the experimental data, the m = 6 mode has a somewhat larger growth rate. The two m = 5

modes have nearly identical growth rates, confirming the theory in that both eigendirec-

tions are equally unstable.

During the control experiments, we also noted that for total input powers larger than

3000 W, the 4th azimuthal mode was indeed marginally stable. By activating control for

the unstable m = 5 and m = 6 modes, which is an impulsive action, the m = 4 mode was

excited and could be observed to be oscillating at a rather low level. However, this os-

cillation was distinct, with the other modes being controlled, and persisted for significant

periods of time. The amplitude varied, but only very slowly.

12.4 Concluding discussion

In this chapter, we performed an experimental study of the annular Rijke tube. Consistent

with linear stability analysis, the 5th and 6th azimuthal modes were unstable. For the

degenerate m = 5 mode, no distinct standing or spinning pattern was established. We

conjectured that this can be attributed to the simultaneous presence of the m = 6 mode,

which can be interpreted as a random noise component for the 5th azimuthal mode. As

Schuermans et al. (2006) have shown, it is the saturation nonlinearity in the heat release

response that promotes the spinning wave pattern. Since, in our case, the growth rates are
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very small, the nonlinearity is weak, and the effect on the degenerate m = 5 eigenspace

may not be strong enough to cause a distinct splitting into the two rotating modes.

We investigated the effect of an asymmetric power distribution on the stability of the

azimuthal modes. Two staging patterns were applied, one with a C4 and one with a C3

symmetry. The C4 pattern reduced the oscillation amplitudes of the nominally unstable

m = 5 and m = 6 modes but, at the same time, destabilized the 4th azimuthal mode.

This destabilization could be attributed to a splitting of the mode (which was marginally

stable in the symmetric case) as a result of the reduced symmetry. With the C3 pattern, a

full stabilization could be achieved because no weakly damped modes were split. These

observations were consistent with results from the low-order model.

The asymmetry we applied in this study was quite strong (σ up to 1.5), but this is only

because the parameters of the heat release transfer function vary only weakly with the

electrical input power. For premixed flames in annular combustion chambers, we expect

that less asymmetry in the operating parameters is needed to generate a noticeable effect

in the transfer function. Another possibility is to use different burners or a different inter-

nal fuel staging to achieve a significant circumferential variation of the transfer function

properties (Noiray et al. 2010).

Based on a decomposition of the pressure field into the individual azimuthal contribu-

tions, we set up a modal control scheme utilizing six speakers around the circumference.

This allowed for efficient control, for only the unstable subspace is considered. Three in-

dependent controllers were used, one for each unstable mode. A full suppression of the

pressure oscillations could be achieved, reducing the spectral peak amplitude by almost

four orders of magnitude. Furthermore, the unstable modes could be controlled individ-

ually, which allows to study them in isolated form.





Conclusions and Outlook

Combustion oscillations are one of the main issues for gas turbines operating in lean pre-

mixed mode. This dynamic phenomenon manifests itself in large fluctuations of the pres-

sure and the flow field and effectively constrains the operating envelope of the engine so

that optimal efficiency, power output, and emission levels cannot be achieved. Fundamen-

tal knowledge on thermoacoustic instabilities, modeling tools to predict their occurrence,

and methods for their control are needed to advance gas turbine technology to higher effi-

ciency and lower emissions. The present work has contributed to this task in the following

ways.

In the first part of this thesis, we studied combustion instabilities in an atmospheric

test-rig and successfully applied different control methodologies. We introduced a mul-

tiple actuator scheme for more flexible control, in which acoustic forcing and secondary

fuel injection were used in a combined mode. This strategy was shown to maintain signif-

icantly reduced pressure oscillation levels, while consuming a minimum amount of pilot

fuel. Since actuator limitations are one of the major issues preventing the application of

active control solutions to industrial applications (Dowling & Morgans 2005), combining

the advantages of different forcing mechanisms is a useful approach.

Quantitatively accurate modeling of realistic combustor configurations is not possi-

ble today. Therefore, model-free adaptive control schemes are particularly attractive. We

applied a two-parameter extremum-seeking scheme in a test-rig combustor and demon-

strated that the controller was able to find the pulsation minimum in parameter space. In-

stabilities were successfully mitigated at different operating conditions, and control could

be maintained even for a transient variation of the preheat temperature. Peak amplitude

reductions in the unsteady combustor pressure of up to 40 dB were achieved.

Control of combustion instabilities is an attractive problem from an academic point of

view because it involves so many different disciplines. However, what prevents the tran-

sition of these methods to industry is not the lack of control concepts or test-rig demon-

strations but the actuator issue. Further research should be focused on robust, high-

bandwidth actuators, preferably to modulate the main or some secondary fuel flow. Flu-

idic oscillators, which have no moving parts and are, therefore, extremely robust, are at-

tractive for this task and were shown to be capable of controlling thermoacoustic pulsa-

tions recently (Guyot et al. 2009). Although only suitable for open-loop excitation, cou-

pling this type of actuator to an adaptive scheme, like the one presented in Section 5, so

that amplitude and/or frequency of the oscillator are tuned, appears to be a promising

approach.

We investigated subcritical instabilities in the combustor test-rig and demonstrated

triggering of limit-cycle oscillations in a linearly stable system and hysteresis with respect

189
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to variations in the operating parameters. This is a crucial contribution in light of re-

cent findings on the non-normal character of thermoacoustic dynamics. The possibility

of triggering instabilities in linearly stable systems is not accounted for in most stability

analyses. To assess the importance of these transient aspects in the system dynamics, pre-

cise experimental statements about the nature of the instability (linear or subcritical) are

indispensable.

The hydrodynamic–acoustic coupling approach presented in Part II, was demonstrated

to be an efficient tool for modeling thermoacoustic instabilities in the low-Mach-number

long-wavelength regime and for exploring suitable control scenarios. We validated the

method on the basis of an experimental investigation of an elementary thermoacoustic

configuration. Even though the flame was relatively simple in this case, the principal

methodology has been proven to provide results which compare well with measurement

data. Two control schemes were applied in a configuration with a more complex flame

and showed that the stabilizing influence known from various experiments could be well

captured by the coupled method.

Although not considered in this thesis, the two-way coupling is also suitable to rep-

resent annular combustors. In this case, the circumferential component of the acoustic

pressure gradient causes a transversal acceleration of the flame, an effect which is not well

understood presently. These extensions are currently in development, and test computa-

tions show that multiple flames in an annular set-up, coupled to a reduced-order repre-

sentation of the azimuthal acoustic field, establish a rotating mode limit-cycle oscillation.

Another possible application of this approach are aeroacoustic instabilities in ducted

systems associated with side-branch resonators. The phenomenon is very similar to ther-

moacoustic oscillations from a systems point of view. The combination pipe system–shear

layer can become linearly unstable and exhibit self-sustained oscillations (Kriesels et al.

1995). Here, the feedback is induced by the unsteady shear layer shed from the side

branch’s rim and impinging on the trailing edge. This type of configuration is often associ-

ated with low-Mach-number flows and long acoustic wavelengths of the unstable modes

and can be modeled with low-order methods essentially identical to those used for com-

bustion instabilities (see, e.g., Martı́nez-Lera et al. 2009). Linear stability considerations as

well as describing function based analyses have been applied but, to our knowledge, no

computation of a complete duct system in a limit-cycling state has been performed yet.

To narrow the gap between elementary studies in longitudinal configurations (which

are abundant) and full-scale applications in annular geometries, we devised a surrogate

system for studying thermoacoustic instabilities associated with azimuthal modes (Part III).

This system has a well-defined, simple, and generic set-up, in which heating grids mimic

the flames in an annular combustion chamber. In experimental investigations, we found

unstable modes of azimuthal orders 5 and 6. We have shown that these instabilities can

be suppressed by a circumferential modulation of the heat sources. This is an effect which

cannot be studied in “single-burner” configurations. However, care has to be taken that

the circumferential variation of the heat sources does not cause a splitting of nominally de-

generate, lightly damped modes, as this was found to be an essentially destabilizing effect.

Assessing under what circumstances degenerate modes are split requires to determine the

effect of azimuthal non-uniformities on system symmetry.



Conclusions and Outlook 191

In addition to the experimental analysis of the annular system, we developed a low-

order system model. The results obtained from this model were consistent with the ex-

perimental observations. Mode stability and the effect of a circumferential variation of

the heating power could be correctly predicted. Although we used the developed model-

ing tools only for our surrogate system, application to annular combustor configurations

is also possible. Furthermore, the model was employed to design a controller based on

a modal decomposition of the pressure field. This controller was successfully applied in

the experimental set-up and achieved a complete stabilization of all nominally unstable

modes. Moreover, control of only parts of the unstable subspace was possible so that

purely standing and purely spinning modes could be established.

In the present work, we applied only active control to mitigate the instabilities in the

annular set-up. However, passive solutions, such as Helmholtz dampers, are still favored

by the gas turbine industry. The most effective placement of a set of, possibly different,

dampers (which may be in the order of 10–20 in number, Lepers et al. 2005) to stabilize

a particular mode is a non-trivial undertaking, and tests utilizing full-scale annular com-

bustion chambers are costly and time-consuming. Principal investigations addressing this

question can be carried out in our simplified set-up.





Appendix A

Experimental Decomposition of the

Plane Wave Mode

Plane wave decomposition is a method with which a one-dimensional acoustic field in a

homogeneous duct can be stripped into up- and downstream propagating components.

The experimental realization of this technique in thermoacoustic systems, based on multi-

ple axially distributed measurements of the acoustic pressure, is now typically called the

Multi-Microphone-Method. It is the key technique for the experimental identification of

the acoustic and thermoacoustic properties of the elements in a low-order thermoacoustic

model. This applies to transfer matrices and possibly associated source terms, but also to

the acoustic boundary conditions. In addition to that, the acoustic velocity, that is required

for flame transfer function measurements, can be determined with this method if multi-

ple microphone measurements are available upstream of the flame. Originally, the wave

decomposition goes back to Seybert & Ross (1977) and Chung & Blaser (1980) who used it

for the characterization of absorptive materials and mufflers. Only two microphones were

used, which is the minimum requirement. Poinsot et al. (1986) extended the decompo-

sition method to make use of several microphones for the measurement of the reflection

coefficient of a premixed flame. The direct experimental characterization of transfer ma-

trices of thermoacoustic elements is due to Heckl (1990) for a heating grid and Paschereit

et al. (2002) for a swirl-stabilized premixed flame. It is also possible to determine the ac-

tuator characteristics for active control applications in terms of its plane wave response

(Bothien et al. 2007), which is particularly useful for model-based control approaches (see,

e.g., Gelbert et al. 2008).

In a homogeneous (constant cross-section and temperature) duct with a uniform plug

flow at low Mach number, the frequency-domain plane wave acoustic field can be written

as (Munjal 1987)

p̂ = f̂0 e−ik+x + ĝ0 eik−x, (A.1a)

û = f̂0 e−ik+x − ĝ0 eik−x, (A.1b)

where f̂0 and ĝ0 are the complex amplitudes of the down- and upstream traveling waves

(the Riemann invariants at x = 0) and k± = ω/(c±M) are the associated wavenumbers of

the plane mode (neglecting visco-thermal damping). The pressure has been scaled by the

characteristic impedance ρc, but we denote it simply by p for convenience. For frequencies
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below the cut-on frequency for the first azimuthal mode, only this part of the pressure field

propagates; all other non-planar components decay exponentially.

We consider now N pressure measurements at different axial locations xn and their

associated Fourier transforms p̂ = [p̂1 . . . p̂N ]T. Applying (A.1a) at every xn, we obtain a

linear system of equations that can be written in matrix–vector form as

p̂ = M

[

f̂0

ĝ0

]

, (A.2)

where the propagation matrix M is given by

M =







e−ik+x1 eik−x1

...
...

e−ik+xN eik−xN






. (A.3)

For N ≥ 2, Eq. (A.2) can be solved (in a least squares sense if N is strictly larger than 2) for

the wave amplitudes f̂0 and ĝ0 if the pressure phasors p̂ are known, viz.,

[

f̂0

ĝ0

]

= M+ p̂. (A.4)

In (A.4), M+ is a pseudoinverse of M. Evidently, the determination of the Riemann in-

variants at the reference location, f̂0 and ĝ0, will be more robust against any measurement

errors if N is large.

In principle, this method can be applied in a turbulent combustor without any external

forcing. The stochastic source terms associated with turbulence provide for excitation

of the acoustic field. However, significantly higher accuracy is achieved when using a

broadband forcing signal, or even single-frequency excitation, with a speaker. In this case,

the pressure phasors p̂n can be replaced with the forcing-correlated contribution only, p̂e
n,

say. This can be obtained from the scaled cross-spectrum of the pressure and the excitation

signal as

p̂e
n =

p̂n ê∗√
êê∗

, (A.5)

where the overbar denotes an ensemble average.

The procedure explained above essentially determines the complete pressure field in

the duct applied to. With the Riemann invariants known at the reference location, acoustic

pressure and velocity can be computed at an arbitrary location by making use of (A.1).

This is called the Multi-Microphone-Method. Using only microphones to determine the

plane wave acoustic field has the advantage that no velocity probe is necessary. Measuring

the acoustic particle velocity (associated with small amplitudes) directly is difficult and,

therefore, error prone. This applies in particular to the burnt side of the flame.

The error in the wave decomposition can be estimated on the basis of the normalized

mean squared deviation

δdev =
||(I − MM+) p̂||22

||p̂||22
, (A.6)
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where ||(·)||22 denotes the square of the Euclidean 2-norm. It is important to recognize that

this represents only the deviation between the assumed form of the pressure field and the

measured pressure phasors. Depending on the microphone positions xn and the speed

of sound, the propagation matrix M can be badly conditioned so that small errors in p̂

are amplified and lead to meaningless results for f̂0 and ĝ0. This is, e.g., the case for low

frequencies and small microphone spacings.





Appendix B

Computation of Annular

Thermoacoustic Modes Based on the

Solution in a Reference Cell

Acoustic and thermoacoustic modes in an annular configuration can be computed from

a single reference cell. For this to work, we have to require that all cells are identical.

We need our system to feature a discrete rotational symmetry of order N, where N is the

number of cells (burners, say). Under these circumstances, the method yields exact results.

Here, exact refers to the solution of the full annular configuration. We used this method to

compute the acoustic modes of the annular Rijke tube configuration in Part III for the case

with no heat release feedback. Thermoacoustic modes including heat release feedback can

be calculated with this method as well, as we will show in the following on the basis of a

simple model problem.

The method rests on Bloch’s theorem, that is used in quantum mechanics and solid

state physics for the computation of dispersion curves and bandgaps in crystal solids.

To illustrate this method, we consider an elementary model system related to an annular

combustion chamber and show that the Bloch-type solution can be taken directly from a

well-known example in quantum mechanics, the Kronig–Penney model (see, e.g., Griffiths

1995 or the original article by Kronig & Penney 1931).

We consider the one-dimensional configuration shown in Fig. B.1. N heat sources (all

identical) are arranged in a ring. The spacing between two adjacent sources shall be iden-

tical as well. We can take this model to be a very simplistic representation of flames in an

annular combustion chamber with no axial and radial variations. If we further assume a

constant temperature along the circumference and consider heat sources with point sup-

port, the frequency-domain pressure field (scaled by the characteristic impedance) is gov-

erned by

p̂′′(ϕ) + k2 p̂(ϕ) = −ik
γ − 1

γP0

N

∑
n=1

q̂δ(ϕ − n∆ϕ), (B.1)

where the prime denotes differentiation with respect to ϕ, ∆ϕ = 2π/N is the spacing

between the heat sources, and we have rescaled the wavenumber with the radius R of the

ring so that k = ωR/c now represents a Helmholtz number. Due to the ring structure, we

have boundary conditions of periodicity, viz., p̂(ϕ + 2π) = p̂(ϕ).
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q1 q2

q3

q4

qNqN−1
qN−2

qN−3

Figure B.1: A periodic arrangement of N heat sources in a ring

To close Eq. (B.1), we need to relate q̂ to the acoustic field, and a traditional choice would

be to make it a linear function of the gradient of p̂, i.e., of the acoustic velocity. However,

in this configuration, the gradient of p̂ corresponds to the circumferential acoustic velocity.

Excitation of a compact monopole-type source by a long-wave transverse velocity oscil-

lation is unphysical for symmetry reasons. For simplicity, we therefore assume the heat

source to be a linear function of the pressure. We can actually reason that the pressure will

be related to an in-plane (axial) component of the velocity by some transfer function. We

hence relate the heat source through a transfer function f to the pressure

γ − 1

γP0
q̂ = f (k) p̂ (B.2)

and abbreviate the right hand side of (B.1) so that we can write

p̂′′ + k2 p̂ = −V(ϕ, k) p̂, (B.3)

where the “potential” V is given by

V(ϕ, k) = ik f (k)
N

∑
n=1

δ(ϕ − n∆ϕ). (B.4)

Equation (B.3) is identical to the time-harmonic Schrödinger equation with (scaled) po-

tential V and energy eigenvalue k2. In case of the Schrödinger equation, the potential V

does typically not depend on the eigenvalue. This makes, however, no difference for the

derivation of the solution. The important point is that the potential is periodic in ϕ, with

fundamental period 2π/N. In quantum mechanics, Eq. (B.3) determines the admissible

energy eigenvalues and associated wave functions in a one-dimensional, periodic crystal

lattice where the nuclei generate the Dirac comb potential.1

By invoking now the Floquet–Bloch theorem (Griffiths 1995), the problem can be re-

stricted to a single reference cell (e.g., ϕ ∈ [0, 2π/N]) with quasi-periodic boundary con-

ditions

p̂(ϕ + ∆ϕ) = eib∆ϕ p̂(ϕ), (B.5)

where b is the Bloch wavenumber. Speaking in terms of solid state physics, the Bloch

wavenumber is restricted to the reciprocal unit cell (the first Brillouin zone), i.e., b ∈
1In their original article, Kronig & Penney (1931) actually considered a periodic rectangular potential with

certain width and height. However, in the limit of infinitely thin pulses (which they also considered), this is
equivalent to the Dirac comb.
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Figure B.2: Network model of the ring configuration

(−N/2, N/2]. An alternative formulation of the Floquet–Bloch theorem is that there are

solutions of (B.3) which have the decomposition

p̂(ϕ) = eibϕ v(ϕ), (B.6)

where v(ϕ) is periodic with period 2π/N. The theorem does not say that all solutions

must have this form, and for degenerate modes, this is indeed not the case. We can, how-

ever, construct all solutions from solutions which have the form (B.6). For example, a

degenerate azimuthal mode can have a circumferential variation like cos mϕ, which does

not satisfy (B.6) for any admissible value of the Bloch wavenumber b. Yet, we can recon-

struct this solution from two other solutions which have the form (B.6) (one with positive b

and one with negative b) and share the same eigenvalue. Evidently, the degenerate eigen-

functions we compute based on a reference cell with Floquet–Bloch boundary conditions

are of traveling wave form. In Section 11.2, we found that traveling waves with an az-

imuthal order that is equal to a half-integer multiple of the order of the symmetry group

may not exist. In this case, the quasi-periodic boundary conditions (B.5) simply reduce to

conditions of symmetry or skew-symmetry. (The former if the mode order is a full-integer

multiple and the latter in case of a half-integer multiple.)

Following Griffiths (1995), the dispersion relation for the eigenvalues of (B.3) can be

obtained by requiring that the solution is continuous everywhere and the first derivative

has a jump complying with the Dirac comb. Then the eigenvalues k of our problem are

solutions of

cos(b∆ϕ) − cos(k∆ϕ) +
i

2
f (k) sin(k∆ϕ) = 0. (B.7)

Since we also have 2π-periodicity, b can only take discrete values b = 0,±1,±2, . . . Note

that the sign of b makes no difference in (B.7); it does, however, in (B.5). The correspond-

ing eigenfunctions can be easily obtained because, from (B.3), we find them to be simple

harmonic waves with a jump in the gradient of p̂ at n∆ϕ that is equal to f (k) p̂(n∆ϕ).

Based on the solution in the reference cell, the pressure field in the whole domain can be

obtained by (repeated) application of (B.5).

Before discussing the meaning of (B.7) in the context of circumferential thermoacoustic

instabilities, we consider an alternative way of modeling this problem. Since the config-

uration in Fig. B.1 is completely one-dimensional and the heat sources are modeled as

infinitely thin, we can represent it with network methods in an exact way. To do this, we

connect N duct and heat release elements in series that eventually connect to themselves

(Fig. B.2).

The duct elements account for the wave propagation between two adjacent heat sources

D =

[

cos(k∆ϕ) −i sin(k∆ϕ)

−i sin(k∆ϕ) cos(k∆ϕ)

]

, (B.8)
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Figure B.3: Eigenvalues of the Kronig–Penney model with N = 12, τ = 0.34, and n = 0.1
(left), respectively n = −0.1 (right). Black circles correspond to solutions of (B.7) and red
crosses to solutions of (B.11).

and the Q elements for the jump in acoustic velocity resulting from the pressure induced

heat release

Q =

[

1 0

f (k) 1

]

. (B.9)

Due to the 2π-periodicity, the acoustic field connects to itself after N duct–heat-release

combinations, and we can evaluate pressure and velocity at an arbitrary position in the

network to find
[

p̂n

ûn

]

= (DQ)N

[

p̂n

ûn

]

. (B.10)

Hence, only non-trivial solutions exist if the dispersion relation

det |(DQ)N − I| = 0 (B.11)

is satisfied.

To produce numerical results, we choose the most common heat release transfer func-

tion, an n–τ model, f (k) = n e−ikτ. Here, τ is a non-dimensional time lag related to the

dimensional form by c/R. The eigenvalues of the dispersion relations (B.7) and (B.11) for

N = 12, τ = 0.34, and n = ±0.1 are shown in Fig. B.3. In our one-dimensional setting, the

real part of k roughly corresponds to the azimuthal mode order.

The first thing we should mention is that the range of azimuthal mode orders shown

in Fig. B.3 is actually quite large and exceeds even the cell-width > wavelength limit; but

it is still interesting to see the stability of these modes as well. The stability (Im k > 0)

or instability of the modes can be simply related to a pressure-in-phase-with-heat-release

condition. Another noticeable feature is the eigenvalue splitting that occurs for azimuthal

mode orders with non-zero integer multiples of N/2. This is consistent with the symmetry

considerations in Section 11.2. All other eigenvalues corresponding to non-zero azimuthal

mode orders are degenerate. For integer multiples of N/2, one of the split eigenvalues

has identically zero imaginary part. It is straightforward to see why this is so. If the

azimuthal mode order is a multiple of N/2, then there is always one eigenfunction that

has nodes at ϕ = n∆ϕ, i.e., at the locations of the heat sources. Since the sources are

driven by the local pressure, the source term is identically zero for these cases. The other
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eigenfunction associated with the eigenvalue having non-zero growth rate has an antinode

at the positions of the heat sources. The sign of the growth rate then depends on the phase

of the exponential in the heat release transfer function f (k). From (B.7) we note that for

b = 0, k = 0 is a solution. Associated with this is only the trivial solution p̂ = 0. The

eigenvalues computed from the network model dispersion relation (B.11) are identical to

those obtained from the solution of (B.7), as evident in Fig. B.3.

Although we illustrated the approach only for a simple model system, it can be applied

for complex cases as well. The only requirement is the rotational symmetry of the entire

configuration. If this is given, however, the computational savings can be significant.





Bibliography

ABU-ORF, G. M. & CANT, R. S. (1996). “Reaction rate modelling for premixed turbulent

methane-air flames.” In: Proceedings of the Joint Meeting of the Portuguese, British and

Swedish Sections of the Combustion Institute, Madeira, Spain.

ANANTHKRISHNAN, N., DEO, S., & CULICK, F. E. C. (2005). “Reduced-order modeling

and dynamics of nonlinear acoustic waves in a combustion chamber.” Combust. Sci.

Technol., 177(2):221–248.
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