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Zusammenfassung

Die Analyse praktischer Fragestellungen erfordert oft Modelle, die robust und zugleich
flexibel genug sind um Abh#ngigkeiten in den Daten prizise darzustellen. Nichtparame-
trische Bayesianische Modelle erlauben die Konstruktion solcher Modelle und kénnen
daher fiir komplexe Aufgaben herangezogen werden.

Unter nichtparametrischen Modellen sind dabei solche mit undendlich vielen Para-
metern zu verstehen. Die vorliegende Doktorarbeit untersucht zwei Varianten solcher
Modelle: zum einen , Latent Class Models“ mit unendlich vielen latenten Klassen, und
andererseits ,,Discrete Latent Feature Models“ mit unendlich vielen latenten Merkma-
len. Fiir erstere verwenden wir Dirichlet Prozess-Mixturen (Dirichlet Process Mixtures,
DPM) und fiir letztere den Indian Buffet-Prozess (IBP), eine Verallgemeinerung der
DPM-Modelle.

Eine analytische Behandlung der in dieser Arbeit diskutierten Modelle ist nicht moglich,
was approximative Verfahren erforderlich macht. Bei solchen Verfahren kann die Ver-
wendung geeigneter konjugierter a priori Verteilungen zu bedeutenden Vereinfachungen
fithren. Im Rahmen komplexer Modelle stellen solche Verteilungen allerdings oft eine
zu starke Beschriankung dar. Ein Hauptthema dieser Arbeit sind daher Markov-Ketten
Monte Carlo (MCMC) Verfahren zur approximativen Inferenz, die auch ohne konjugierte
a priori Verteilung effizient einsetzbar sind.

In Kapitel 2 definieren wir grundlegende Begriffe und erkléren die in dieser Arbeit ver-
wendete Notation. Der Dirichlet-Prozess (DP) wird in Kapitel 3 eingefiihrt, zusammen
mit einigen unendlichen Mixturmodellen, welche diesen als a priori Verteilung verwen-
den. Zunichst geben wir einen Uberblick iiber bisherige Arbeiten zur Definition eines
Dirichlet-Prozesses und beschreiben die MCMC Techniken, die zur Behandlung von
DPM-Modellen entwickelt wurden. DP Mixturen von Gauf3verteilungen (Dirichlet pro-
cess mixtures of Gaussians, DPMoG) wurden vielfach zur Dichteschitzung eingesetzt.
Wir zeigen eine empirische Studie iiber die Abwégung zwischen analytischer Einfachheit
und Modellierungsfiahigkeit bei der Verwendung konjugierter a priori Verteilungen im
DPMoG. Die Verwendung von bedingt konjugierten im Gegensatz zu konjugierten a
priori Verteilungen macht weniger einschrinkende Annahmen, was ohne eine deutliche
Erhohung der Rechenzeit zu besseren Schéitzergebnissen fiihrt. In einem Faktor-Analyse-
Modell wird eine Gauf3verteilung durch eine spérlich parametrisierte Kovarianzmatrix
reprisentiert. Wir betrachten eine Mixtur solcher Modelle (mixture of factor analyzers,
MFA), wobei wiederum die Anzahl der Klassen nicht beschréinkt ist (Dirichlet Process
MFA, DPMFA). Wir benutzen DPMFA, um Aktionspotentiale verschiedener Neuronen
aus extrazelluldren Ableitungen zu gruppieren (spike sorting).

Kapitel 4 behandelt Indian Buffet Prozesse (IBP) und unendliche latente Merkmals-
modelle mit IBPs als a priori Verteilungen. Der IBP ist eine Verteilung iiber binére
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Matrizen mit unendlich vielen Spalten. Wir beschreiben verschiedene Ansétze zur Kon-
struktion von IBPs und stellen einige neue MCMC Verfahren zur approximativen Infe-
renz in Modellen dar, die den IBP als a priori Verteilung benutzen. Im Gegensatz zur
etablierten Methode des ,,Gibbs Sampling*“ haben unsere Verfahren den Vorteil, dass
sie keine konjugierten a priori Verteilungen voraussetzen. Bei einem vorgestellten empi-
rischen Vergleich liefern sie dennoch ebenso gute Ergebnisse wie Gibbs Sampling. Wir
zeigen auflerdem, dass ein nichtkonjugiertes IBP Modell dazu in der Lage ist, die laten-
ten Variablen handgeschriebener Ziffern zu lernen. Ferner benutzen wir eine IBP a priori
Verteilung, um eine nichtparametrische Variante des ,Elimination-by-aspects“ (EBA)
Auswahlmodells zu formulieren. Eine vorgestellte Paar-Vergleichs-Studie demonstriert
dessen prézise Vorhersagen des menschlichen Auswahlverhaltens.
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Abstract

The analysis of real-world problems often requires robust and flexible models that can
accurately represent the structure in the data. Nonparametric Bayesian priors allow the
construction of such models which can be used for complex real-world data.

Nonparametric models, despite their name, can be defined as models that have in-
finitely many parameters. This thesis is about two types of nonparametric models. The
first type is the latent class models (i.e. a mixture model) with infinitely many classes,
which we construct using Dirichlet process mixtures (DPM). The second is the discrete
latent feature models with infinitely many features, for which we use the Indian buffet
process (IBP), a generalization of the DPM.

Analytical inference is not possible in the models discussed in this thesis. The use
of conjugate priors can often make inference somewhat more tractable, but for a given
model the family of conjugate priors may not always be rich enough. Methodologically
this thesis will rely on Markov chain Monte Carlo (MCMC) techniques for inference,
especially those which can be used in the absence of conjugacy.

Chapter 2 introduces the basic terminology and notation used in the thesis. Chapter 3
presents the Dirichlet process (DP) and some infinite latent class models which use
the DP as a prior. We first summarize different approaches for defining the DP, and
describe several established MCMC algorithms for inference on the DPM models. The
Dirichlet process mixtures of Gaussians (DPMoG) model has been extensively used for
density estimation. We present an empirical comparison of conjugate and conditionally
conjugate priors in the DPMoG, demonstrating that the latter can give better density
estimates without significant additional computational cost. The mixtures of factor
analyzers (MFA) model allows data to be modeled as a mixture of Gaussians with a
reduced parametrization. We present the formulation of a nonparametric form of the
MFA model, the Dirichlet process MFA (DPMFA). We utilize the DPMFA for clustering
the action potentials of different neurons from extracellular recordings, a problem known
as spike sorting.

Chapter 4 presents the IBP and some infinite latent feature models which use the
IBP as a prior. The IBP is a distribution over binary matrices with infinitely many
columns. We describe different approaches for defining the distribution and present
new MCMC techniques that can be used for inference on models which use it as a
prior. Empirical results on a conjugate model are presented showing that the new
methods perform as well as the established method of Gibbs sampling, but without
the requirement for conjugacy. We demonstrate the performance of a non-conjugate
IBP model by successfully learning the latent features of handwritten digits. Finally,
we formulate a nonparametric version of the elimination-by-aspects (EBA) choice model
using the IBP, and show that it can make accurate predictions about the people’s choice
outcomes in a paired comparison task.
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Notation

Matrices are capitalized and vectors are in bold type. We do not generally distinguish
between probabilities and probability densities.
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cdf Cumulative distribution function

ii.d. Independently and identically distributed

pdf Probability density function

BDMCMC Birth-and-Death MCMC
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CCDP DPMoG model with conditionally conjugate base distribution
CDP DPMoG model with fully conjugate base distribution
CRP Chinese restaurant process

DP Dirichlet Process

DPM Dirichlet Process mixture

DPMFA Dirichlet Process Mixtures of Factor Analyzers
DPMoG Dirichlet Process Mixture of Gaussians

EBA Elimination by Aspects

FA Factor Analysis

IBLF Infinite binary latent features

IBP Indian buffet process

MCMC Markov chain Monte Carlo

MFA Mixtures of Factor Analyzers

MoG Mixture of Gaussians

PCA Principle component analysis

RJMCMC Reversible Jump MCMC
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Symbol Meaning
general
x proportional to; e.g. p(x) o< f(x) means p(z) is equal to f(x) times

a factor that is independent of x

~ distributed according to; e.g. x ~ F(x|6) means x has distribution F(0)
® elementwise multiplication
do(+) probability measure concentrated at 6
A\B set difference
D dimension of input space
Dx1.(pllq) the KL divergence between the density p and ¢
E{ f (qb)} expectation of function f taken with respect to the distribution of ¢
Hy Nth harmonic number, Hy = Zfil 1/i
I(A) the indicator function for a measurable set A;

I(A) =1 if A is true, 0 otherwise
L(qg, o) loss encountered by predicting (ﬁ when the true value is ¢
L(X]O) likelihood of the parameter(s) © for the data points X
N number of training points
X; 1th data point
X data matrix containing the set of observations {xi,...,xxN}
DP
D(ai,...,a) k-dimensional Dirichlet distribution
DP(a,Gy) Dirichlet process with concentration parameter o and base distribution Gy
C; indicator variable for x; showing the component assignment
c set of all indicator variables {ci,...,cn}
{6;}7 sequence of random variables 6;, ¢=1,...,n
0; parameter associated with x;
0_; set of all parameters other than i
Ok parameter associated with kth component (feature)
T mixing proportion for the kth mixture component
N the number of data points assigned to component k
n.<ik the number of data points assigned to component k before

the ith data point
K the number of components in a finite mixture model,
K* the number of active components
Kt the number of represented components
Vg variable that determines the breaking point of the stick at kth iteration for DP
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Symbol

IBP

Zik

Meaning

binary latent feature matrix

an entry of matrix Z

ith row of Z, features of ith customer

kth column of Z, kth feature vector

equivalence class of binary matrix Z

the number of customers that has the kth dish

the number of customers that sampled the kth dish before the ¢th customer
the number of components in a finite mixture model,

the number of existing unique dishes for the ith customer

the number of new unique dishes sampled by the ith customer

the number of active features

the number of represented features

the index of the last active component after changing the component assignment
of x; from k to j

left-ordered form function to map binary matrices to their equivalence classes
history, the binary number corresponding to a binary column vector in Z

the number of columns with history h

Feature presence probability for column k

kth largest value among pq, ..., tg,
feature presence probability for the kth feature in the stick-breaking construction
First k largest values of uq, ..., ux

feature presence probability of the kth active feature

feature presence probability of the kth represented empty feature

the set of indices other than the indices of k largest p’s, {1,..., K}\{l1,...,lx}
variable that determines the breaking point of the stick at kth iteration for IBP
probability of choosing alternative ¢ over alternative j

number of times the alternative ¢ was chosen over alternative j in a choice scenario
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1 Introduction

A statistical model aims to represent the observed data with the goal of obtaining
comprehensible summaries of it and making predictions about the future observations.
Bayesian models seek to model the process that generated the observations, taking
into account the prior belief about the generative process. Bayesian models have the
advantage of making the model assumptions explicit and providing predictions with
uncertainties. The prior belief about the model parameters is expressed by the prior
distributions on the parameters, possibly in a hierarchical manner.

The analysis of complex real world data requires flexible models that are robust to
outliers and that can represent distributions which are not of standard form. Non-
parametric models allow definition of flexible models which can successfully describe
the variability in the data. Nonparametric models are traditionally described to be
models that have infinite dimensional parameters. The focus of this thesis will be on
two types of nonparametric models: mixture models with infinitely many components
and binary latent feature models with infinitely many features. Using conjugate priors
typically makes inference easier however restricts the flexibility of the models. The em-
phasis of this thesis is on nonparametric models with non-conjugate priors and inference
techniques for these complex models.

The Dirichlet process (DP) (Ferguson, 1973) is one of the most widely used nonpara-
metric Bayesian distributions. The DP is a distribution over distributions. Thus, it can
be used as a prior over the distribution of random variables. This provides a means of
expressing the uncertainty about the distributional form of the parameters in a model.
The models in which the DP is used as a prior over the distribution of the parameters
are referred to as the Dirichlet process mixture (DPM) models. We will use the DP for
defining mixture models with infinitely many components for density estimation and
clustering.

Indian buffet process (IBP) (Griffiths and Ghahramani, 2005) is a distribution over
infinite binary sparse matrices. The IBP is a generalization of the Chinese restaurant
process (CRP) which is related to the DP. We will use IBP as a prior over the latent
features for defining nonparametric latent feature models.

Chapter 3 starts with describing several different approaches for defining the Dirichlet
process and explaining various inference techniques for the DPM models using Markov
chain Monte Carlo (MCMC) techniques. After the overview of the definition and prop-
erties of the DP and the inference techniques, we consider the Dirichlet process mixtures
of Gaussians model (DPMoG) for density estimation and clustering.

The DP is defined by two parameters, the base distribution and the concentration
parameter. The base distribution can be interpreted as the prior guess for the random
distribution function and the concentration parameter as expressing the strength of the



1 Introduction

belief in the prior. The specification of the base distribution for the DP, which corre-
sponds to the prior on the component parameters for infinite mixture models, is often
guided by mathematical and practical convenience. For DPM models, the use of conju-
gate priors makes the analysis much more tractable, however conjugate priors might fail
to represent the prior beliefs. Specifically for the DPMoG model, the conjugate priors
have some unappealing properties with prior dependencies between the mean and the
covariance. Empirical assessment of the trade off between modeling performance and
computational cost encountered when using conjugate priors for DPMoG is one of the
primary goals of this thesis. In Section 3.3 we compare the DPMoG model with a conju-
gate and a conditionally-conjugate base distribution in terms of modeling performance
and computational feasibility. It is possible to integrate out some of the parameters in
the conditionally conjugate model, which vastly improves mixing. We show that this im-
provement makes possible the practical use of the more flexible conditionally conjugate
model.

Mixtures of factor analyzers (MFA) is a mixture model that has Gaussian components
with constrained covariance matrices. Assuming that most of the information lies in
a lower dimensional space, high dimensional data can be efficiently modeled using this
reduced parametrization. In Section 3.4 we define the Dirichlet process mixtures of
factor analyzers (DPMFA) model and apply it to a challenging problem of clustering
neuronal data, known as spike sorting.

The second group of nonparametric models we consider is the latent feature models
with infinite number of binary features. The IBP is a distribution over infinite binary
sparse matrices that has many correspondences to the DP. Using IBP as a prior over the
latent features, we can define nonparametric latent feature models. Chapter 4 starts
with the different approaches for defining the distribution induced by the IBP, and
discusses the parallels to the DP. Section 4.2 describes different MCMC algorithms for
inference on IBP models. The sampling algorithms are compared in Section 4.3 to give
an intuition about their general performance. We demonstrate the modeling capability
of the IBP models for learning latent features of handwritten digits in Section 4.4.

The elimination by aspects (EBA) model is an interesting choice model in which the
latent variables are used to represent the features of the alternatives in the choice set
that lead to the choice probabilities. In Section 4.5, we define the EBA model with
IBP prior on the latent features and infer the choice probabilities by learning the latent
features using this model. We conclude the thesis with a discussion in Chapter 5.

The next chapter gives a brief overview of Bayesian modeling to introduce the termi-
nology and the notation that will be used in this thesis. Some mathematical formulas
and statistical definitions are given in Appendix B.



2 Nonparametric Bayesian Analysis

A statistical model tries to explain the data in terms of the properties of the system
that generated it. Probabilistic models assume that the data have been generated from
an unknown probability distribution which may or may not follow a general parametric
form. The model structure M is defined in terms of random variables, referred collec-
tively as the parameters, ¥. The model structure and the parameters are chosen such
that the model can accurately represent the generative process that gave rise to the
observed data. The Bayesian approach treats the parameters as being random quanti-
ties and therefore involves placing distributions over them, representing the prior belief.
The prior is updated in light of the observations, giving the posterior. Below, we give
a broad overview of Bayesian analysis. For details, refer to for example (Bernardo and
Smith, 1994; Gelman et al., 2003; O’Hagan, 1994; Box and Tiao, 2003).

We denote the prior distribution of the parameters by P(¥ | M). The distribution of
the data assumed by the model P(D | ¥, M) is referred to as the sampling distribution.
The likelihood function is the probability density of the observed data X conditioned
on the unknown model parameters W, therefore it is a function of ¥, L(¥| M) =
P(X |, M). The Bayes’ rule yields the posterior density:

P | M)P(X | T, M)

PWU|X,M)= 2.1
The denominator P(X | M), obtained by integrating over the parameters,
P(X|M) = /p(\y | M)P(X | W, M)dD, (2.2)

is referred to as the evidence or the marginal likelihood. Note that this quantity does
not depend on the parameters and it only appears as a normalizing constant for the
posterior distribution of ¥. Therefore, we generally write!

P(¥|X) « P(T)P(X | D), (2.3)

meaning the posterior for the parameters is proportional to the prior times the likelihood.
Thus, the posterior distribution expresses the updated belief about the parameters ¥
after observing data.

A family of prior distributions F is said to be conjugate to the likelihood if the
posterior is also in F. Using conjugate priors, the integral in eq. (2.2) can be analytically
evaluated. However, the conjugate family is not rich enough to always match the prior

'In the following, we drop the conditioning on the model structure M from the notation.
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belief. In this case, one would need to use priors from a larger family. Using a prior
distribution from a more general family will typically result in the integral in eq. (2.2)
being intractable, hence increased computational complexity in posterior calculations.
Conditionally conjugate priors provide a richer family of distributions while retaining
some of the tractability.

Bayesian inference refers to obtaining the posterior distributions for the parameters
of interest and extracting information about these parameters from the posterior. After
updating our beliefs about the model parameters using the Bayes’ rule, we can use the
model to make predictions about new observations x*, or about any unobserved quantity
¢ whose distribution depends on the parameters, using the predictive distribution,

P(61X) = [ Plo|v)p(w|x)av. (2.4)

We may be asked to give a single prediction value gZ;, referred to as a point estimate,
rather than the distribution of the predictions. In this case, we choose a value ¢ from
the predictive distribution that minimizes the expected loss for a given loss function

L(¢,9),
B{L(0)} = [ (6.9) P9] X) o (25)

The optimal choice dA) is referred to as the Bayes estimate.

In density modeling, we want to model the generating density in the light of the
observations. The Kullback-Leibler (KL) divergence is a standard measure of the dis-
crepancy between two distributions. The difference of the estimated density Q(¢) to
the true generating density P(¢) is given as

D(PI@) = [ P() 1ogg§;f§d

Since the generating density P is fixed, maximizing the log-likelihood minimizes the KL
divergence.
Some other widely used loss functions are the squared error loss, L( ,¢) (qb ¢)

¢. (2.6)

which is minimized by the posterior mean, the absolute error loss L qg P) = ‘qb ¢5|
minimized by the posterior median, and the zero-one loss,

Ld,¢)=1 iflp—¢|>¢

R (2.7)
L(¢,9) =0 otherwise,

minimized by the posterior mode.

Assumptions on the Model Structure

Above, we referred to the set of all unknown variables in a model as the parameters,
denoted by ¥. Some of the parameters in a model may have physical interpretations and
therefore their values may be of interest, whereas some are merely necessary for building
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Figure 2.1: Graphical representation of a general generative model with latent variables z; and
parameters #1,...,0 and ®. The observed quantities are shown in squares. The
unknown variables are shown in circles, their posterior distributions are to be in-
ferred. The parameters of these variables are given in the higher level. Their values
may be fixed by prior knowledge, or the hierarchy can be extended by specifying
hyperpriors. Large rectangles with numerals in the lower left hand corner denote
replicated structures.

the model structure and are referred to as the nuisance parameters. Additionally,
auziliary parameters can be used which do not play any role in describing the model
structure but assist the inference. All unknown variables in a model can said to be
latent (or hidden) since they are not observed. But the term latent variable is generally
used to refer to the variables number of which depends on the number of data points.

Generally, the order in which the data points are observed is not important. There-
fore, the data points are assumed to be independent conditional on the underlying
distribution, referred equivalently as the data being exchangeable. More precisely, the
joint distribution of independently and identically distributed (i.i.d.) random variables
can be written as a product of their distribution functions:

N

P(x1,...,xn |®) = [[P(xi| ®). (2.8)
=1

We use the graphical representation depicted in Figure 2.1 to show the general hier-
archical structure of a generative model. The set of observations X = {xi,...,xx} are
modeled with with latent variables z;, i = 1,..., N, parameters ® and 0y, k=1,..., K.
We denote the replicated structures that are i.i.d. conditionally on some variables using
the large rectangles with numerals in the lower left hand corner.

The term parametric model refers to the models in which the model has a form that is
expressed by a finite number of parameters. The likelihood P(X | ¥) may be assumed to
be of a known simple form such that obtaining the posterior distributions of interest is



2 Nonparametric Bayesian Analysis

straightforward. It is possible to make the model more flexible by using a hierarchy and
defining hyper-priors on the priors of the parameters. However, the assumed form of
the distribution may be too restrictive such that the model fails to accurately represent
the data.

Mixture models allow modeling distributions that do not belong to a parametric fam-
ily, by representing the distribution in terms of K > 1 distributions of known simple
form. Mixture modeling is a strong tool of probabilistic models since arbitrary distribu-
tions can be successfully modeled using simple distributions. Deciding on the number
of components in the model is generally considered as a model selection problem. It is
possible to treat the number of components, K, also as a parameter of the model and
infer it from the observations (Richardson and Green, 1997; Stephens, 2000).

An alternative to parametric models is the nonparametric models which are models
with (countably) infinitely many parameters. Nonparametric models achieve high flex-
ibility and robustness by defining the prior to be a nonparametric distribution from
a space of all possible distributions. All parameters in a model may be assumed to
have a nonparametric prior distribution or the nonparametric prior can be defined over
only a subset of the parameters, resulting in fully nonparametric and semiparametric
models, respectively. In this thesis, we refer to all models with a nonparametric part as
nonparametric models regardless of the presence (or absence) of other parameters with
parametric prior distributions.

In spite of having infinitely many parameters, inference in the nonparametric models
is possible since only a finite number of parameters need to be explicitly represented.
This brings close the models with finite but unknown number of components and the
nonparametric models. However, there are conceptual and practical differences between
the two. For instance, to learn the dimensionality of the parametric model we need to
move between different model dimensions (Green, 1995; Cappé et al., 2003). On the
other hand, the nonparametric model always has infinitely many parameters although
many of them do not need to be represented in the computations. As a consequence, the
posterior of the parametric model is of known finite dimension whereas the posterior of
a nonparametric model is also nonparametric, that is, it is also represented by infinitely
many parameters. We will focus on nonparametric models in this work. For more details
on Bayesian nonparametric methods, refer to for example (Ferguson et al., 1992; Dey
et al., 1998; Walker et al., 1999; MacEachern and Miiller, 2000; Gosh and Ramamoorthi,
2003; Miiller and Quintana, 2004; Rasmussen and Williams, 2006).

Approximate Inference Techniques

For some simple models, it is possible to calculate the posterior distribution of inter-
est analytically, however this is not the case generally. The specific form of prior for
which the integral over the parameters can be evaluated to get the marginal likelihood is
referred to as the conjugate prior for the likelihood. Often, the integrals we need to com-
pute to get the posterior distribution is not tractable, therefore we need approximation
techniques for inference.

Approximate inference methods include Laplace approximation, variational Bayes,



mean field approximation, expectation maximization and Markov chain Monte Carlo
(MCMC). We will use MCMC for inference in this thesis. For an introduction to the
MCMC methods refer to for example Neal (1993) and Gilks et al. (1995).
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Bayesian inference requires assigning prior distributions to all unknown quantities in
a model. In parametric models, the prior distributions are assumed to be of known
parametric form, specified by hyperparameters. Hierarchical models are used when
there is uncertainty about the wvalue of the hyperparameters. The uncertainty about
the parametric form of the prior distribution can be expressed by specifying a prior
distribution on the distribution functions using Bayesian nonparametrics. There have
been many Bayesian nonparametric priors developed, see for example (Freedman, 1963;
Ferguson, 1974; Sibisi and Skilling, 1997). The Dirichlet process (DP) is one of the
most prominent random probability measures due to its richness, computational ease,
and interpretability.

The DP, first introduced by Ferguson (1973), can be defined using several different
perspectives. Ferguson (1973) uses Kolmogorov consistency conditions to define the
DP and also gives an alternative definition using the gamma process. Blackwell and
MacQueen (1973) use exchangeability to show that a generalization of the Pélya urn
scheme leads to the DP. A closely related sequential process is the Chinese restaurant
process (CRP) (Aldous, 1985; Pitman, 2006), a distribution over partitions, which also
results in the DP when each partition is assigned an independent parameter with a
common distribution. A constructive definition of the DP was given by Sethuraman
and Tiwari (1982), which leads to the characterization of the DP as a stick-breaking
prior (Ishwaran and James, 2001). Additionally, the DP can be represented as a special
case of many other random measures, see (Doksum, 1974; Pitman and Yor, 1997; Walker
et al., 1999; Neal, 2001).

The DP is defined by two parameters, a positive scalar « and a probability measure
G, referred to as the concentration parameter and the base measure, respectively.

The base distribution Gy is the parameter on which the nonparametric distribution is
centered, which can be thought of as the prior guess (Antoniak, 1974). The concentra-
tion parameter « expresses the strength of belief in Gg. For small values of «, samples
from a DP is likely to be composed of a small number of atomic measures. For large
values, samples are likely to be concentrated around Gj.

The hierarchical models in which the DP is used as a prior over the distribution of the
parameters are referred to as the Dirichlet Process mixture (DPM) models, also called
mixture of Dirichlet process models by some authors due to Antoniak (1974). Putting
a prior G on the distribution of model parameters 6, gives the following model:

Xz’0$ NF(X,‘@Z)
0; ~ G (3.1)
G ~ DP(a,Gy).



3 Dirichlet Process Mixture Models

That is, the data points x; are i.i.d. with distribution function F'(x; | 6;). The parameters
0; specifying the data distribution are i.i.d. draws from G which is a random distribution
function with a DP prior. This defines the basic DPM model.

Although the DP theory had been formally developed by Ferguson (1973), its use has
become popular after the introduction of Markov chain Monte Carlo (MCMC) meth-
ods for inference. The first MCMC algorithm for DP models was introduced in the
unpublished work of Escobar (1988), later published in Escobar (1994). Extensions
and refinements of this method can be found in (Escobar and West, 1995; MacEachern,
1994; West et al., 1994; Bush and MacEachern, 1996). Construction of more flexible
models using the DP became possible with the development of methods for the non-
conjugate DPM models such as the methods in (MacEachern and Miiller, 1998; Walker
and Damien, 1998; Neal, 2000; Green and Richardson, 2001). These methods use a
representation where the DP is integrated out. There are methods that consider ap-
proximations to DP instead of integrating it out, see for example (Muliere and Tardella,
1998; Ishwaran and James, 2002; Kottas and Gelfand, 2001). Recently, methods that
use the explicit representation of the DP without having to use approximation have
been developed by Papaspiliopoulos and Roberts (2005) and Walker (2006).

Other approximate inference techniques used in algorithms for DPM models include
sequential importance sampling (Liu, 1996; Quintana, 1998; MacEachern et al., 1999;
Ishwaran and Takahara, 2002; Fearnhead, 2004), predictive recursion (Newton and
Zhang, 1999), expectation propagation (Minka and Ghahramani, 2003), and variational
approximation (Blei and Jordan, 2005; Kurihara et al., 2007a,b).

Some theoretical results regarding the posterior consistency can be found in (Diaconis
and Freedman, 1986; Ghosal et al., 1999). Convergence rates have been studied by
(Ghosal et al., 2000; Shen and Wasserman, 2001; Walker et al., 2006).

The DPs are getting increasingly popular in machine learning. There have been
several models and model extensions using the DP. Some of these include (Rasmussen,
2000; Rasmussen and Ghahramani, 2002; Beal et al., 2003; Blei et al., 2004; Dubey
et al., 2004; Xing et al., 2004; Zhang et al., 2005; Daumé III and Marcu, 2005; Teh
et al., 2006; Xing et al., 2006; Meeds and Osindero, 2006; Sudderth et al., 2006; Sohn
and Xing, 2007; Beal and Krishnamurthy, 2006; Xue et al., 2007).

The structure of this chapter is as follows. We summarize different approaches for
defining the DP distribution, and give some of the properties of the DP important for
developing models and inference techniques in Section 3.1. In Section 3.2 we describe
some of the MCMC algorithms to give an overview of the development of methods
for inference on the DPM models. Inference techniques for the DPM models with a
conjugate base distribution are relatively easier to implement than for the non-conjugate
case. An important question is whether the modeling performance is weakened by
using a conjugate base distribution instead of a more flexible distribution. And, a
related interesting question is whether the inference is computationally cheaper for the
conjugate DPM models. We address these questions in Section 3.3 using one of the most
widely used DP model for density estimation and clustering: DP mixtures of Gaussians
(DPMoG). The DPMoG model with both conjugate and conditionally conjugate base
distributions have been used extensively in applications of the DPM models. However,

10
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the performance of the models using these different prior specifications have not been
compared. We present an empirical study on the choice of the base distribution for
the DPMoG model. We compare the computational cost and modeling performance
of using conjugate and conditionally conjugate base distributions. When the data is
believed to have a lower dimensional latent structure, it is possible to incorporate this
prior knowledge to the model structure using a mixture of factor analyzers (MFA) model.
In Section 3.4 we formulate the Dirichlet process mixture of factor analyzers (DPMFA)
model and present experimental results on a challenging clustering problem, known as
spike sorting. We conclude this chapter with a discussion in Section 3.5.

3.1 The Dirichlet Process

Let X be a space and A be a o-field of subsets of X'. A stochastic process G on (X, .A)
is said to be a Dirichlet process (DP) with parameters o and Gy if for any partition
(Aq,..., Ag), on the space of support of Gy, the random vector (G(A41),...,G(Ax)) has
a k-dimensional Dirichlet distribution! with parameter (aGo(A1),...,aGo(Ag)), that
is:

(G(Al), N ,G(Ak)) ~ D((aGo(Al), “. ,OéGO(Ak))) (3.2)

We denote the random probability measure G that has a DP distribution with concen-
tration parameter o and base distribution Gy by:

G ~ DP(a, Gy). (3.3)

Ferguson (1973) establishes the existence of the DP by verifying the Kolmogorov con-
sistency conditions, appendix B.3.

Some authors define the DP using a single parameter by combining the two parameters
to form the random measure o = aGy. Denoting the space of support of Gy as X, the
mass of the random measure would be given as a = a(X), and the base distribution
as Go(+) = % In the following, we use the two-parameter notation to denote the
random distribution G with a DP prior, eq. (3.3).

Some important properties of the DP are as follows:

e The mean of the process is the base distribution, E{G} = Gy. Thus, G¢ can be
thought of as the prior guess of the shape of the distribution of G.

e Given samples 01,...,60, from GG, the posterior distribution is also a DP:

G\Hl,...,HHNDP(a—&—n, aGo+ 2z 601()) (3.4)
a+n

Note that the concentration parameter becomes « + n after observing n samples,
and the contribution of the prior base distribution Gy is scaled by «. Thus, the

IThe definition of the Dirichlet distribution and some of its properties necessary for understanding the
DP are given in Appendix B.1.

11
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concentration parameter can be seen as representing the degree of belief in the
prior guess. The role of o will be discussed further in the subsequent sections.

e Draws from a DP are discrete with probability 1. As a consequence, there is
positive probability of draws from a DP being identical.

Being a random probability measure, the DP can be used to express the uncertainty
about the distribution of (some) parameters in a model. We can assume 6, the pa-
rameters governing the distribution of data, to have a random distribution with a DP
prior:

0; ~G (3.5)
G ~ DP(a, Gy).

Viewing the data distribution to be a mixture of distributions F(x; | 6;), the measure G
acts as a mixing distribution since we can write the distribution of x; as

Xi / F(xi | 0)dG(6). (3.6)

Therefore, the model given in eq. (3.5) is referred to as the Dirichlet process mixture
(DPM) model (Neal, 2000). The graphical representation of this model is depicted in
Figure 3.1.

3.1.1 Pélya’s Urn

A sequence {60;}7, (n > 1) of random variables with values in X’ is a Pélya sequence
with parameters a and Gy if for every 0; € X

01 ~ Gg
and

aGo + 31 dg, ()
a-+n

(Ons1]01, -, 0,) ~ Gy = , (3.7)

where 0p(-) denotes the unit measure concentrating at 6. Imagine X to be the set of
colors of balls in an urn, with « being the initial number of balls, and G¢ the distribution
of the colors of balls such that initially there are aGy(#) balls of color 6. The sequence
{0;}1 described by eq. (3.7) represents the result of successive draws from the urn where
after each draw, the ball drawn is replaced and another ball of the same color is added
to the urn.

Blackwell and MacQueen (1973) establish the connection between the DP and Pdlya
sequences by extending the Pdlya urn scheme to allow a continuum of colors. They
show that for the extended scheme, the distribution of colors after n draws converges
to a DP as n — oo. More formally, they state that if {6;}7 is a sequence of random
variables constructed such that #; has distribution Gy and eq. (3.7) holds, then

12



3.1 The Dirichlet Process

Figure 3.1: Graphical representation of a Dirichlet process mixture model. The data is assumed
to be generated from a distribution parameterized by 6. The distribution of the pa-
rameter 6 has a Dirichlet process prior with base distribution Gy and concentration
parameter a.

i. G, converges almost surely as n — oo to a random discrete distribution G.
ii. G has DP(a,Gy) distribution.
iii. The sequence {6;}7 is a sample from G.

Note that eq. (3.7) gives an expression for generating samples from G, which is infinite
dimensional, without having to represent it explicitly. The graphical representation of
the DPM model corresponding to this representation is depicted in Figure 3.2 .

The evolution of G, with increasing number of samples is shown in Figure 3.3 for
a Pélya urn sequence with a Gaussian base distribution and o« = 5. Note that the
contribution of Gg to the distribution of G, gets smaller as the number of samples
increases, and it vanishes for large sample sizes.

The generalized Pélya urn scheme shows that the draws from a DP exhibit a clustering
property by the fact that a new sample has positive probability of being equal to one
of the previous samples, and that the more often a color is sampled, the more likely it
will be drawn again. Note that « determines the probability of choosing a new color.
For small values of a, G,, has only a few atoms whereas for large values, the atoms are
numerous, concentrating on the G distribution. This is illustrated in Figure 3.3 using
a =1 and o = 100.

13
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Figure 3.2: Graphical representation of the DPM using the Pélya’s urn process representation.
Note that G has been integrated out, and the parameters 6 are drawn without
referring to G with the Pdlya urn scheme.

3.1.2 Chinese Restaurant Process

The Pélya urn scheme is closely related to the Chinese restaurant process (CRP) (Al-
dous, 1985; Pitman, 2006) which is a distribution on partitions. The CRP is a sequential
process that uses the metaphor of a Chinese restaurant with an infinite number of circu-
lar tables, each with infinite seating capacity. Customers arrive sequentially at the ini-
tially empty restaurant. The first customer x; sits at the first table. For n > 1, suppose
n customers have already entered the restaurant and are seated in some arrangement,
occupying a total of K* tables. Customer X, chooses to sit next to customer x; with
equal probability 1/(n + «) for each 1 < [ < n, and to sit alone at a new table with
probability a/(n + «). Denoting the table that customer i sits at as ¢,

Ki
oY n
Plent1=kler,... cn) = — +n5Ki+1(‘) +> 5 _fn(sk(')a (3.8)
k=1

where nj denotes the number of customers seated at table k. After n customers have
entered the restaurant, we have a partitioning of the customers {x;}}, the partitions
being defined with the variables ¢;. Ignoring the labeling of the tables and focusing on
only the resulting partitioning, the customers are exchangeable. That is, the order in
which they enter the restaurant does not play a role in the resulting partitioning.

Suppose that independently of the sequence {x;}}], we paint each occupied table by
picking colors ¢y from the distribution over the spectrum of possible colors, Gy. Letting
0; denote the color of the table occupied by the ith customer, the distribution of the

14
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Figure 3.3: Sequential draws from the generalized Pélya urn. The base distribution Gy is a zero-
mean Gaussian with standard deviation ¢ = 0.1. Plots on the first four rows show
the evolution of G, with increasing sample size for the concentration parameter
« = 5. The continuous red curve shows the contribution of the base distribution,
and the crosses show the atomic measures on the sampled points. For visualization,
we show Jp(+) with a unit length line. Note that the influence of the base distribution
vanishes as the sample size increases, and G,, converges to a discrete distribution.
The last row shows G,, after 10000 samples for o = 1 (left) and « = 100 (right),
showing that for large «, the draws concentrate around Gy. (The samples are binned
for visualizing G, for a = 100.)
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Figure 3.4: Graphical representation of the DPM model using the Chinese restaurant process.
Note that the independence of the indicator variables and the parameter values are
made explicit in this representation. The partitioning of the data results from the
CRP, and the parameters are drawn from the base distribution Gg independent of
the partitioning.

colors would be given as

(Ons1l61,-..,0pn) ~

(3.9)

Note that we have the same sequence of {6;}1 as defined by the Pdlya urn scheme given
in eq. (3.7). Hence, {6;}7] is a sample from G ~ DP(«a, Gy).

In the CRP framework, it becomes clear that the parameter assignments (coloring
of the tables) is independent from the partitioning of the data (seating arrangement).
This independence is shown in the graphical model in Figure 3.4 for the DPM using the
CRP representation.

3.1.3 DP as a Normalized Gamma Process

An alternative definition of the DP is given by Ferguson (1973) as a gamma process
normalized to have unit mass. The intuition behind this definition follows from the
definition of the Dirichlet distribution as the joint distribution of a set of independent
gamma variables divided by the sum, see Appendix B.1.

A process with independent increments can be represented as a countably infinite sum
of jumps of random heights at a countably infinite number of random points? (Ferguson
and Klass, 1972). The gamma process, denoted by Z; ~ I'P(aQ(t), 3), is an independent

2Refer to Appendix B.3 for some basic definitions about the independent increment processes.
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increment process with the corresponding Lévy measure given by
AN (z) = 2 e/ Padz, (3.10)

where « and 3 are positive scalars, ¢ € [0, 1] and Q(t) is a distribution function on [0, 1].
That is, defining the distribution of the random jump heights J; > Jo,... to be

P(Jy < 21) = exp (N(a1))

3.11
P(Jj S.CIJJ|J],1 :mjflv-“w]l ::L'l):exp (N(l'j)—N(‘ijl)) ( )

and the random variables related to the jump times Uy, Us, ... to be i.i.d. Uniform(0, 1),

independent from Ji, Jo, ..., the gamma process Z; is defined as
Zy =Y JI{U; € [0,Q(t))}. (3.12)
j=1

See Ferguson and Klass (1972) and Ferguson (1973) for details.

Let 'y > I'(g) > ... denote the jump heights of a gamma process with the scale
parameter 8 = 1. And let 6y ~ Gy i.i.d., independent also of the I'y). The random
measure defined as

G=> Puo() (3.13)
k=1
has a DP(a, Gg) distribution where
T
(k)
Pp= =t (3.14)
2.j=1 L)

This definition explicitly shows the discreteness of the DP as it expresses G as an
infinite sum of atomic measures. The practical limitation of this construction is that we
need to know the value of the infinite sum to know the value of any of the weights. The
next section summarizes another infinite sum representation of the DP which does not
require evaluating the infinite sum, and allows approximating the DP by truncation.

3.1.4 Stick Breaking Construction

Sethuraman and Tiwari (1982) proposed a constructive definition of the DP based on a
sequence of i.i.d. random variables. The proof is provided by Sethuraman (1994). Let
v be i.i.d. with a common distribution v ~ Beta(1l, ). Define

k—1
me=wve [ J(1 =), (3.15)
j=1

and let 0 be independent of the vy and i.i.d. among themselves with common distri-
bution Gy. The random probability measure G that puts weights m; at the degenerate
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Figure 3.5: Iterative construction of the mixing proportions 7 using the stick-breaking proce-
dure. We start with a stick of unit length (top horizontal line). The breaking points
denoted with vertical lines are determined by the random variables v;. The dotted
red lines correspond to the mixing proportions ;. These pieces are discarded after
breaking off, and the breaking process is continued on the other piece shown with
the blue solid lines.

measures 0g, ,
G=> mida, (), (3.16)
k=1

is distributed according to DP(«, Go).

The above construction is referred to as the stick-breaking construction for the DP.
The weights 7, can be imagined to be the lengths of the pieces of a unit length stick that
is broken infinitely many times. Starting with a stick of unit length, at each iteration k, a
piece is broken off the stick, and discarded. The breaking point is given by the random
variable v, with Beta(1, ) distribution. The length of the discarded piece gives the
mixing proportion 7 in the infinite mixture representation, eq. (3.16), see Figure 3.5.

The DPM using the stick-breaking representation of the DP is shown in Figure 3.6.
Note that unlike the CRP or the Pélya urn representation, the random measure G is
represented in this case in terms of infinitely many components with parameters 6, and
mixing proportions 7.

Ishwaran and James (2001) show that using this construction, the DP can be approx-
imated by truncating the number of components,

M
Gy =Y mds, (). (3.17)
k=1

To obtain the approximation at truncation level M, we set vy; = 1 to have a well defined
distribution.

Ishwaran and Zarepour (2000) assess the truncation accuracy by considering the be-
havior of the moments of the tail probability and Ishwaran and James (2002) give a
bound on the truncation error, showing that the total variation between G and Gy is
in the order exp ( — (M —1)/a). This motivates the Gibbs sampling algorithms on the
truncated DP as well as variational bounds on the DP.
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SEEY

Figure 3.6: Graphical representation for the DPM using the stick-breaking construction of the
DP. The DP is represented as a mixture of infinitely many atomic measures on the
parameter values 6 with mixing proportions 7. The mixing proportions determine
the prior probability of component membership for a data point x;.

The definition of the DP as a normalized gamma process summarized in Section 3.1.3
uses a set of random weights that are arranged in strictly decreasing order. It is in-
teresting to note that the weights given in eq. (3.14) are equivalent to the weights
rearranged in decreasing order (Sethuraman, 1994; Pitman, 1996). In the stick-breaking
construction, the sequence of weights is not strictly decreasing, however they are de-
creasing with exponential rate in expectation. The connection of the DP to the gamma
process permits utilizing the truncation approach also to approximate a gamma process
(Ishwaran and James, 2004).

The stick-breaking nature of the weights for the DP leads to the connection of the
DP with other distributions, such as the Pitman-Yor process (Pitman and Yor, 1997)
and the beta two-parameter process (Ishwaran and Zarepour, 2000), which can be seen
as two-parameter extensions of the DP.

3.1.5 Infinite Mixture Models

We have seen that the DP can be defined as an infinite sum of atomic measures using
the gamma process or the stick-breaking construction. These approaches show that the
DPM model eq. (3.5) can be seen as a mixture model with infinitely many components.
In this section, we describe another approach showing that the distribution of parameters
imposed by a DP can be obtained as a limiting case of a parametric mixture model
(Neal, 1992, 2000; Green and Richardson, 2001). Thereby we can gain more insight
about defining DPM models as extensions of parametric models. Furthermore, this
approach shows that the DP can be used as a mixture model that sidesteps the need to
do model selection for determining the number of components to be used.
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3 Dirichlet Process Mixture Models

In the previous sections we mentioned that the parameter a expresses the strength
of belief in the base distribution. Lower « values lead to only a few components being
active in the model. Thus, the infinite mixture model approach suggests that a can be
chosen to represent the prior expected number of active components.

The general finite mixture model with a parameter set © = {6y,...,0x} is given by:

K
P(x|©) = mP(x|6k),
k=1

where 7 are the mixing proportions that are positive and sum to one, and 65 denotes
the parameters of the kth component. We place a symmetric Dirichlet distribution with
parameter o/ K on the mixing proportions:

Tly...,Tg | ~ Dir(a/K,...,a/K)

K
~ I'(a) Lo/ K1 (3.18)
- K k :
a/m)F 1L
Defining indicator variables, ¢ = {cy,...,c,}, whose values encode the mixture compo-
nent to which each observation belongs for the set of observations, X = {x1,...,Xy},

the mixture model can be written in the form:
X”C,@ ~ F(xi‘eci)
¢; | w ~ Discrete(ry, ..., TK)
0 ~ Go
w|a ~ Dir(a/K,...,a/K).

(3.19)

We can integrate over the mixing proportions 7 using the Dirichlet integral, eq. (B.11)
and obtain the incremental conditional class probabilities in terms of the parameter a:

 ngiptao/K

P(c;i =kle.<j,a) = i 1Ta (3.20)

)

where the subscript - < 7 indicates all indices smaller than 4, and n..;j is the number
of data points before x; that are associated with class k.

Letting the number of mixture components K go to infinity, the conditional prior for
¢; reaches the following limits:

components for which n..; z, > 0:

N.cik 3.21a
Plei=Hle.<ie) = 7230 o

any other component:

3.21b
P(c; # ¢y for all i # i/’C~<z‘70¢> = ﬁ' | )
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Eq. (3.21b) is the combined probability for assigning x; to one of the infinitely many
empty components. That is, the prior probability of assigning a data point to a com-
ponent that is associated with other data points is proportional to the number of data
points that have been already assigned to that component, and the probability of it
having its own component is proportional to . This approach is in accordance with
the suggestion in Section 4 of (Kingman, 1975). Note the similarity of the above prob-
abilities to eq. (3.8) and the correspondence of the indicator variables in the CRP and
the infinite mixture model.

3.1.6 Properties of the Distribution

Different approaches for defining the DP summarized above reveal interesting properties
of the random measure and allow development of different inference algorithms for
models using DPs. Here, we summarize some properties of the DP that are important
for building DPM models and developing inference techniques.

The posterior distribution given samples 61, ...,60, from the process is again a DP.
This property makes inference for DP models easier to handle relative to most other
nonparametric models.

The Pélya urn scheme and the CRP show that it is possible to sample from the DP
without having to represent the full nonparametric distribution. Thus, inference on
DPM models is possible by only representing samples from the nonparametric distribu-
tion rather than the infinite dimensional distribution itself.

Draws from a DP are discrete with probability 1. As a consequence, there is positive
probability of draws from a DP being identical. This property might lead to undesir-
able posterior properties for some models (Petrone and Raftery, 1997) but can also be
exploited for defining powerful models such as the hierarchical Dirichlet process (HDP)
(Teh et al., 2006) that allow sharing statistical strength between groups of data.

The DP is defined by two parameters, namely the base distribution Gy and the
concentration parameter a. The mean of the distribution is G, therefore Gy can be seen
as the prior distribution that we center our nonparametric model on. The concentration
parameter represents the ”strength of belief” on this prior distribution, similar to the
scale of the parameters for the Dirichlet distribution.

The concentration parameter « controls both the smoothness (or discreteness) of the
random distributions and the size of the neighborhood (or variability) of G about Gy. In
the DPM models, the prior for selecting a new component to represent the ith data point
is proportional to « as given in eq. (3.21b). Thus, the value of « influences the number
of active components, that is, the number of components that have data assigned to
them. The prior expected number of active components for a set of n data points is
given by > | 295 ~ log(& + 1), (Antoniak, 1974).

For small «a, the model will have a few active components drawn from the base dis-
tribution to represent the data, and for large o there will be many active components,
thus the distribution of the parameters will be concentrated around G, hence the name.
It is not clear what the less-informative value of « corresponds to since a@ — 0 results in
representing the data with a single component and o — oo expresses strong belief that
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3 Dirichlet Process Mixture Models

the data comes from the base distribution, (Walker et al., 1999).

The DP has been introduced as a random probability measure, and its use as a prior
for modeling the uncertainty in the functional form of the distribution of parameters
in a model has been motivated. In this case, larger « values pronounces stronger belief
in the base distribution. The derivation of the DPM as the limit of a finite mixture
model shows that it can be used as a mixture model with intrinsic selection of number
of components. In this case, the concentration parameter does not necessarily need to
be considered as the prior belief about the distribution of the parameters. It can be
regarded as a prior guess for the number of active components in the infinite mixture
model.

The likelihood for o may be derived by taking the limit K — oo of the joint distri-
bution for the indicator variables:
e 1 o iI’(a)

Pley,. .. cn Kt - 22
(c1,- .- cnla) x o Zl;[li—l-i-a Tt a) (3.22)

where K* denotes the number of active components. It is interesting that this expression
depends only on the number of active components and the total number of data points,
and not on how the observations are distributed among the components (unlike the
finite mixture model case).

To allow for flexibility in the model, we need to specify a prior for a. For the simu-
lations in this work, we chose the prior for a~! to have gamma shape with unit mean
and degree of freedom 1:

P(a™) ~ G(1/2,1/2) = P(a) x o 3/% exp(—1/20). (3.23)

This prior is asymmetric, having a short tail for small values of «, expressing our
prior belief, that we don’t expect a very small number of active classes (say K = 1).
Figure 3.7 shows the prior distribution on the number of components for different prior
specifications on «. This figure is inspired from (Navarro et al., 2006).

The base distribution of the DP is the prior guess of the distribution of the parame-
ters in a model. This corresponds to the distribution of the component parameters in
an infinite mixture model. The shape of the priors is governed by a trade-off between
modelling properties and computational considerations. In particular the use of conju-
gate priors makes the analysis in DPM models much more tractable, as we will see in
the following section. However, the computational convenience is not a justification for
using a certain type of prior that fails to represent prior knowledge. There has been a
great deal of research in developing inference methods that do not require conjugacy.
We describe MCMC methods for both cases in the following section, and in Section
3.3, we present an empirical study for comparing conjugate and conditionally conjugate
models.

It is often difficult to directly assign the base distribution with high confidence. Thus
it is customary to utilize hierarchical priors to allow sufficient flexibility of the priors
when they are of parametric form (West et al., 1994; Escobar and West, 1995; Ras-
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Figure 3.7: The effect of the distribution of the concentration parameter o on the prior distri-
bution for the number of components. The plots show the change in the expected
number of mixture components with increasing number of data points. The area
of the squares are proportional to the probability of the corresponding number of
components for a given number of data points. Note that the gamma prior favours
less number of components.

mussen, 2000). In the hierarchical scheme, the priors linking the parameters of the
component mixtures can all be parameterized using hyperparameters, which are them-
selves given vague priors. Alternatively, classical nonparametric priors such as kernel
density estimation (KDE) can be used (McAuliffe et al., 2006). In this work, we consider
the hierarchical model formulation.
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3 Dirichlet Process Mixture Models

3.2 MCMC Inference in Dirichlet Process Mixture Models

Flexible models can be obtained using a DP prior on the functional form of the parameter
distributions. MacEachern and Miiller (2000) show that it is possible to modify standard
parametric models to obtain nonparametric models by simply using a DP over the
distribution of the model parameters. The resulting model is referred to as the DPM
model. Repeating from the previous section, the distributional assumptions of the DPM
model are given by eq. (3.5):

0; ~ G (3.24)
G~ DP(O[, GQ),

where F'(x|60) denotes the data distribution defined by 6. Generally, the data distribu-
tion F' may depend on additional parameters, and the hierarchy may be extended by
specifying priors on these parameters as well as on a and Gy. Refer to Escobar and
West (1998) and MacEachern and Miiller (2000) for a discussion about employing the
DP prior on a part of a hierarchical model.

Analytical inference in the DPM models is not possible, therefore one has to resort to
approximate techniques for inference. The MCMC methods for hierarchical models can
be easily adjusted for inference on models with a nonparametric part. Similar to the
hierarchical models, each parameter can be updated in turn, conditioned on the rest of
the parameters and data. Since the updates for the parametric part of the model will
not be affected, here we focus in the following only on inference on the nonparametric
part.

Gibbs sampling for DPM models can easily be formulated and implemented when
conjugate priors are used. Handling non-conjugate priors is more elaborate since the
conditional posteriors cannot be analytically calculated. Nevertheless there have been
several MCMC algorithms developed for inference in non-conjugate DPM models.

In the previous section, several different definitions for the DP was given. MCMC
schemes that have been developed for DPM models can be divided into two classes
as those that integrate out the mixing distribution G in eq. (3.24) and use the Pélya
urn representation to sample the parameters 6, and those that explicitly represent G
using the stick-breaking representation. The following sections give an overview of the
different MCMC algorithms. We start by describing Gibbs sampling methods using the
Pélya urn scheme. In Section 3.2.1 we describe the methods developed for inference
on the conjugate DPM models, and in Section 3.2.2 we describe methods for the non-
conjugate models. Section 3.2.3 describes the methods that explicitly represent the DP
by using the stick-breaking construction.

As presented in Section 3.1, the DPM model can be seen as a mixture model with
infinitely many components. For a training set of IV data points, there can be at most
N components that have data assigned to them, and the rest of the components will be
empty. We refer to the components that have data assigned to them as the active com-
ponents, and the empty ones as the inactive components. It is infeasible to represent all
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3.2 MCMC Inference in Dirichlet Process Mixture Models

of the infinitely many components when doing inference. For the Pdlya urn represen-
tation, the components are exchangeable, therefore we only need to explicitly represent
those components that are associated with data. For the stick-breaking construction,
since each component has a different stick length, the components are not exchangeable
and we need to represent the components at least up to and including the last active
one. Therefore for the Pdlya urn representation, the set of represented components will
be the same as the active components, whereas for the stick-breaking construction, the
represented components might include some inactive components 3. We refer to the
components associated with only a single data point as singleton components.

In the following, the data points X = {x1,...,xy} and parameters associated with
each data point © = {6y,...,0n} are indexed by i. Due to the clustering property
of the DP, some of the #; will be identical. Grouping the identical parameter values
together as the component parameters, the number of active components will typically
be much smaller than N. We use KT to refer to the number of represented components,
and ¢y, k = 1,...,K' to denote the parameters of each represented component. The
number of active components will be denoted as K*¥. We use indicator variables ¢; that
take integer values to refer to the component membership of the data points, such that

07: = ¢Ci .

3.2.1 Algorithms for Conjugate Models using the Pélya Urn Scheme

In the generalized Pélya urn scheme, the distribution G of the parameters 6 is integrated
out. Nevertheless, the random variables obtained by the Pélya urn scheme are draws
from G; see Section 3.1.1. This property can be used to do inference on the DPM
models without having to explicitly represent the nonparametric part of the model
given in eq. (3.24). The model can be summarized as:

3.25

where G,, is defined in eq. (3.7).

The most straightforward inference scheme defines the state of the Markov chain
to be the parameters 61,...,0y. Each parameter is updated from its full conditional
using the Pélya urn scheme (Escobar, 1994; Escobar and West, 1995). Exploiting the
exchangeability of the data points, we can assume that the parameter 6; that we are
updating belongs to the last data point, and we condition on all the other data points
in the training set, and their parameters.

Treating 60; as the last of the N samples, the prior for 6; conditioned on all other

3To refer to what we call as the active and inactive components, Neal (2000) uses the terms represented
and unrepresented components, and MacEachern and Miller (1998) uses the terms full and empty
components, respectively. Here, we choose the terms active and inactive to have a unified terminology
for the Pélya urn representation and the stick-breaking construction.
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3 Dirichlet Process Mixture Models

parameters 0; for ¢ # j, denoted as 0_;, is given by the Pélya urn scheme as,

o 1
(0:10—:) ~ mGo(') toI N1 ;5@('% (3.26)

with the mixing distribution G integrated out. Combining this with the likelihood
F(x;|6), the conditional posterior is given as

Q 1
(B1lxir0-2) o Fxi|00) (3 Gol) + ————7 2 ,()

, i (3.27)
=qi0Gh(-) + > _ a0, (),
J#i
where G% is the posterior base line distribution based on observation x; only, i.e.

0 o< F(xi|0)Go(0), (3.28)

@0 is « times the marginal distribution of x; under the baseline prior;

dio = o / F(x; |6)dGo(0), (3.29)

and ¢;; is the distribution of x; given 6;. The parameters are updated by repeatedly
sampling from the conditional posterior given in eq. (3.27).

Algorithm 1 Gibbs sampling for conjugate DPM models with full parameter represen-
tation.
The state of the Markov chain consists of the parameters {61,...,0x}

Repeatedly sample:
foralli=1,...,N do

Update 6; by sampling from its conditional posterior given by eq. (3.27)
end for

The convergence of this algorithm is expected to be poor since each parameter 6;
that is associated with a data point x; is updated one at a time. The performance
can be improved by making use of the clustering property of the DP, and using the
representation given by the Chinese restaurant process (Section 3.1.2), or the infinite
mixture models (Section 3.1.5) which demonstrate that the data points associated with
identical parameters can be regarded as belonging to a component of the mixture model
defined by the parameter. We can label each component and use indicator variables ¢;
to denote the assignment of the identical 6; values to the component parameters ¢y.
Instead of updating the parameter 6; corresponding to each data point, we can update
the indicator variables ¢; and the component parameters ¢, which would account to
collectively updating all §; that are equal. This is the method used by West et al. (1994)
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3.2 MCMC Inference in Dirichlet Process Mixture Models

and Bush and MacEachern (1996).

In detail, the state of the Markov chain consists of the indicator variables ¢ =
{c1,...,cn} and the component parameters ¢. = {¢x, k € ¢} The prior for the indica-
tor variables is given by eq. (3.8). Combining this with the likelihood, the conditional
posterior is;

assigning to components for which n_;; > 0:
n_;k
P(Ci :]{|X7;,C77;,Oé,¢) X :

F i ;
N_l+a (xi | ox)

(3.30)

assigning to a new component:
«

P(ci # ci for all i # i'|x;, ¢y, ~ T
(c; # ¢y for all @ # i'|x;, ¢ a)OCN—1+a

| Fexil6)6a(o)

That is, we either choose to assign the data point ¢ to one of the existing components, or
create a new active component by sampling its parameter from G%, defined in eq. (3.28).
Note that if x; belongs to a singleton component, the parameter value of that component
will be removed from the representation when ¢; is updated. After updating the indica-
tor variables, the component parameters are updated by sampling from their posterior
conditioned on the data points assigned to them,

P(or| X, c) o< F(x;,Ve; = k| ¢r)Go. (3.31)

Algorithm 2 Gibbs sampling for conjugate DPM models using indicator variables and
component parameters.
The state of the Markov chain consists of the indicator variables ¢ = {cy,...,cy} and
the component parameters ¢. = {¢x, k € ¢}

Repeatedly sample:
forall:=1,...,N do
Update ¢; using eq. (3.30)
If ¢; is assigned to a singleton, sample a parameter for this component from G
end for
forallk=1,...,K" do
Update ¢, by sampling from its posterior, eq. (3.31)
end for

This algorithm can be further simplified by integrating over the ¢, and eliminating
them from the state (Neal, 1992; MacEachern, 1994).
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The update equations for ¢; is given as:

components for which n_;; > 0:

P(Ci - k‘Xi,C_i,Oé) X A F(XZ | ¢)G*1,k(¢)d¢7
N-1+a / (3.32)

another component:
., «
P(Ci # C;/ for all 4 # ’L,|C7i, Oé) X ]\7—1—|—0[/F(XZ | ¢)G0(¢)d¢

where G_; j; is the posterior distribution obtained by updating the baseline prior with
the observations assigned to component k, other than x;.

Algorithm 3 Gibbs sampling for conjugate DPM models using indicator variables
without parameter representations.

The state of the Markov chain consists of the indicator variables ¢ = {c1,...,cn}

Repeatedly sample:
foralli=1,...,N do

Update ¢; using eq. (3.32)
end for

All the above methods produce ergodic Markov chains. However, they require marginal-
izing over the parameter § which means that the integrals in egs. (3.29), (3.30) and
(3.32)) should be analytically tractable. This restricts the choice of the baseline prior
Gyo to be conjugate to the likelihood F(X |#). This requirement limits the family of
DP models. West et al. (1994) suggest approximating the integral by using numerical
quadrature or Monte Carlo approximation, which would provide only an approximation
to the posterior. Methods for non-conjugate DP models that result in the correct sta-
tionary distribution have been developed later. MacEachern and Miiller (1998) present
a method that attends to the identities of the indicator variables and uses model aug-
mentation. Neal (2000) follows a similar approach and uses auxiliary variables which
exist only temporarily. Walker and Damien (1998) present a different auxiliary variable
sampling scheme that truncates the posterior to avoid calculating the integral. In the
following, we give an overview of these algorithms that do not require conjugacy, which
can all be seen as extensions of the Gibbs sampling algorithm for the conjugate case.
Neal (2000) also presents a combination of Metropolis Hastings proposals and Gibbs
updates for the non-conjugate models, which is also summarized below. After these
algorithms that use the Pélya urn representation, we describe the inference algorithms
that use the stick-breaking construction.

28



3.2 MCMC Inference in Dirichlet Process Mixture Models

3.2.2 Algorithms for non-Conjugate DP Models
No Gaps Algorithm

The algorithms described above use the indicator variables ¢;, ¢ = 1,..., N to assign
identical values of 6 to the component parameters ¢. The set of numerical values of
¢; do not have significance beyond denoting the grouping. The "no gaps” algorithm of
MacEachern and Miller (1998) constrains the labels of the active components to cover
the integers from 1 to K*, and augments the state to include empty components so as
to have a total of N represented components, i.e. KT = N. Augmenting the model
replaces the integral evaluations with likelihood evaluations.

The state of the Markov chain consists of the indicator variables and the parameters
of the N components, K* of which have data assigned, the rest being empty. First the
indicator variable of each data point i is updated as follows. Use K* to denote the
number of distinct groups of data not including the ¢th data point. Label the groups
from 1 to K*. If ¢; is a singleton, with probability K+ / (Ki + 1) leave ¢; unchanged,
otherwise label ¢; as (K Py 1), consequently assigning G gt 4 tO be the existing value

for ¢.,. Update c¢; with the following probabilities:

P(ci =k|xi,c—i,9) o n_j 1, F (x| ¢p) fork=1,... K

_ gt e o . (3.33)
Ple; =KX +1[x4,c-,¢) Ki n 1F(XZ | ¢Ki+1)

After the indicator updates, update the component parameters by sampling from their
conditional posterior, eq. (3.31).

Algorithm 4 The No-Gaps algorithm for non-conjugate DPM models.

The state of the Markov chain consists of the indicator variables ¢ = {cy,...,cy} and
N component parameters ® = {¢1,...,on}
Of the N parameters, only K* + 1 of them are represented

Repeatedly sample:
for all i =1,..., N do {indicator updates}
Let K* denote the number of active components without considering x;
if ¢; is a singleton then
With probability Ki/(Kf + 1) do not update ¢;,
otherwise, label ¢; as K fia
end if
Label the components of all data points other than 4 from 1 to K i
Update ¢; using eq. (3.33)
end for
for all k =1,..., N do {parameter updates}
Update ¢y, by sampling from its posterior, eq. (3.31)
end for
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The no gaps algorithm augments the state to have N components, some of which will
be empty. The values of ¢1,...,¢xN are not altered during indicator variable updates.
Only group labels are changed if needed and the component parameters are updated
only after updating the indicators of all data points. Note that although theoretically
the state includes N components, we only need to represent K' 41 of them since
the rest of the components are not considered when updating ¢;. We can include new
components in the representation by sampling new parameter values from the prior as
needed.

Gibbs Sampling Using Auxiliary Variables (Neal, 2000)

Neal (2000) presents another Gibbs sampling algorithm that uses auxiliary variables that
only exist temporarily, instead of augmenting the state to include empty components.

The state of the Markov chain consists of the indicator variables ci,...,cy and the
active component parameters ¢.. We repeatedly update the indicator variables and the
component parameters. The component parameters can be updated by simply sampling
from their posterior. When we update the indicator variable for a particular data point,
¢ > 1 auxiliary components will be used to avoid the intractable integral.

Treating x; as the last data point, we can either assign ¢; to be equal to one of the
active components, or create a new component. The auxiliary components will represent
the possible new components. Using the same notation as above, there are Kt active
components associated with the data points other than i. The prior probability of
assigning ¢; to be equal to one of the active components is n_; /(N — 1+ «) and the
probability of creating a new component is a/(N — 1 + «), which will be split among
the ¢ auxiliary components.

If ¢; is a singleton, then we assign the parameter of one of the auxiliary variable to be
¢c;, and draw values for the parameters of the rest of the auxiliary variables from Gj.
Otherwise, if ¢; belongs to a component that is also associated with other data points,
then we sample parameters of all auxiliary components form Gy. We update ¢; using
the following probabilities:

Nk

—F(x; fi =1,.... K*
N—1+a« (X2|d)k‘) or k ) s Ay

P(c; = k|xi,ci,¢)
(3.34)

Ples = klxise0) & ke x| g Tor k= (K + 1), (K 4.0).

Note the differences between this method and the no gaps algorithm. Here, we have
used k =1,... ,Ki as the labels for the active components, and k& = Kt +1,... ,Kf 4+
for the auxiliary components only for notational convenience. On the other hand, the
values of the labels were significant for the no gaps algorithm of the previous section.
Furthermore, the prior probability of creating a new component is K s greater for this
algorithm. For large values of (, the auxiliary variables can be thought of approximating
Go and giving an approximation of the integral in eq. (3.29). But the algorithm is valid
for any ¢ > 1. { can be chosen as a compromise between computational cost and mixing
performance.
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Algorithm 5 Gibbs sampling for non-conjugate DPM models using auxiliary compo-

nents
The state of the Markov chain consists of the indicator variables ¢ = {¢1,...,cny} and
the parameters of the active components ® = {¢1,...,dx1}

Repeatedly sample:
for all i =1,..., N do {indicator updates}
if ¢; is a singleton then
Assign ¢, to be the parameter of one of the auxiliary components
Draw values from Gy for the rest of the auxiliary parameters
else
Draw values from Gy for all the ¢ auxiliary parameters
end if
Update ¢; using eq. (3.34)
Discard the inactive components
end for
for all k =1,..., K* do {parameter updates}
Update ¢y by sampling from its posterior, eq. (3.31)
end for

Metropolis-Hastings Updates

Neal (2000) proposes to use Metropolis-Hastings updates combined with partial Gibbs
updates. We can use a Metropolis Hastings algorithm using the conditional priors
as the proposal distribution, leading to the acceptance probability to be the ratio of
the likelihoods. That is, we propose ¢; to be equal to one of the existing components
with probability n_; /(N — 1 + «) and propose to create a singleton with probability
a/(N — 1+ «). The proposal is evaluated with the ratio of the likelihoods.

The probability of considering to create a new component would be very low if «
is small relative to the number of data points N. Therefore Neal (2000) changes the
proposal distribution so as to increase the probability of considering to propose forming
a new component. And, to facilitate mixing, he adds partial Gibbs sampling steps for
the members of the non-singleton components in which only changing ¢; to one of the
existing components is considered. In detail, if the data point ¢ belongs to a singleton, it
will be considered to be assigned to only one of the existing components with assignment
probability n_; /(N — 1). The acceptance ratio of this proposal is

o F(Xz‘¢c;f)}'

min{1, N1 P [6) (3.35)

And, whenever ¢; is not a singleton, proposing to change it to a newly created component
will be proposed with probability 1, and a parameter for this component will be sampled
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from the prior Gg, resulting in the acceptance ratio:

(3.36)

N—lF(Xi|¢c;‘)}.

min {1, == oo

Algorithm 6 Metropolis-Hastings sampling with restricted Gibbs updates for non-
conjugate DPM models

The state of the Markov chain consists of the indicator variables ¢ = {cy,...,cy} and
the parameters of the active components ® = {¢1,...,dx1}

Repeatedly sample:
foralli=1,...,N do
if ¢; is a singleton then
Assign ¢; to one of the active components with probability 7\,’11“
Evaluate the assignment with acceptance probability given in eq. (3.35)
end if
if ¢; is not a singleton then
Assign ¢; to a new component drawing a parameter ¢., from Gy
Evaluate the assignment with acceptance probability given in eq. (3.36)
end if
end for
for all ¢; that are not singletons do
Assigning ¢; to one of the active components with probability o %j’fF(gbk)
end for
forallk=1,...,K% do
Update ¢y by sampling from its conditional posterior, eq. (3.31)
end for

Gibbs Sampling using Auxiliary Variables (Walker and Damien, 1998)

In this section, we summarize another Gibbs sampling algorithm using auxiliary vari-
ables, which is rather different from the methods discussed so far.

Repeating from Section 3.2.1, we want to sample from the conditional posterior of
the parameter given by eq. (3.27),

(Oxis0-0) <F i |0 (S Go() + ———= " 04,())
i (3.37)

=qio G () + Z i500; (+),
J#i

which requires computing the integral gio = a [ F(x]0)dGy(#). To avoid this integral
which is intractable for non-conjugate models, Walker and Damien (1998) suggest in-

32



3.2 MCMC Inference in Dirichlet Process Mixture Models

troducing a latent variable u; and construct the joint distribution of (6;,u;) given by

(63, ui | %) oc {u < F(x; ] 0:)} (aGo(0;) + > 86,(05)), (3.38)
J#i

where I{-} is the indicator function. The full conditionals for the Gibbs sampling are
given as

(uil6;, x;) ~ Uniform (0, F(x; | 6;)) (3.39)

and
(Hl]ul, Xi) X aGg(Hi)H{u < F(Xi ‘ 01)} + Z 59]. (Oj) (3.40)
Ju<F(x;|0;)

The above equation constrains the space of sampling by using the auxiliary variable
u. We set 6; to be equal to 6; with probability proportional to 1 if the likelihood of 6;
is greater than u, and with probability proportional to «, we sample from Gy restricted
to the range where u < F(x;|6;). Thus, we avoid evaluating the integral. Note that,
this method is applicable only to the models in which it is feasible to sample from the
truncated form of Gy.

Algorithm 7 Auxiliary variable sampling for non-conjugate DPM models.

The state of the Markov chain consists of the parameters © = {61,...,0nx}

Repeatedly sample:

foralli=1,...,N do
Sample an auxiliary variable u; with conditional distribution given by eq. (3.39)
Update 6; by sampling from the truncated posterior given the auxiliary variable,
eq. (3.40)
Discard the auxiliary variable

end for

Above, we have summarized several MCMC algorithms for inference on the DPM
models using the Pélya urn representation. Using this representation, the cluster la-
bels are exchangeable and therefore the distribution does not depend on the cluster
identities. A common property of the presented methods is that they are all based on
incremental updates. That is, either the parameter or the indicator variable associated
with each data point is updated incrementally. The mixing behavior of the samplers can
be improved by using more complex sampling steps that can escape local modes. Green
and Richardson (2001) describe a split-merge sampler using RJIMCMC (Green, 1995),
which may be difficult to construct for multivariate data. As an easier to formulate
alternative, Jain and Neal (2000) introduce a split-merge sampler using a Metropolis-
Hastings procedure for conjugate DPM models. A similar sampler that can work in the
nonconjugate case is introduced in Jain and Neal (2005). These split-merge methods
can be combined with any of the above methods to obtain a better mixing chain.
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3.2.3 Algorithms Using the Stick-Breaking Representation

The previous sections presented sampling schemes that do not explicitly represent the
random distribution G with a DP prior, and only work on samples from G. The al-
ternative to this approach is to explicitly represent the DP using the stick-breaking
construction, and update it as well as the parameters drawn from it. The equivalent
model can be written as:

Xi | 0; ~ F(xi|0c;)

ci~ Y mron()
k=1

- (3.41)

v ~ Beta(l,a), 7 =g H(l — vj)
j=1

0 ~ Go

In this formulation, we need to represent the mixing proportions (stick lengths) and the
parameters of each mixture component as well as the indicator variables denoting which
component each observation is assigned to.

Gibbs Sampling for the Truncated DP

In the stick-breaking construction of the DP, the mixing proportions m, decrease ex-
ponentially fast in expectation. This motivates using a truncation of DP which would
be easier to handle than the infinite case. Ishwaran and James (2001) give a bound
for the error introduced by truncating the DP, showing that truncating the number of
mixture components at a moderate level is sufficient to successfully approximate the
DP, see Section 3.1.4. Gibbs sampling using the truncated DP is straightforward since
it accounts to inference on a finite mixture model.

Truncating the number of mixtures in eq. (3.41) to M, the state consists of the
component parameters 61, ..., 0,7, the mixing proportions 71, ..., ms and the indicator
variables ¢;, ..., cy which we repeatedly update. The conditional posterior for the com-
ponent parameters is as given in eq. (3.31) in the previous sections. The conditional
posterior for the mixing proportions again have a stick-breaking construction given as

k—1
m =], and T, = vy, H (U (3.42)
=1
where
M
v ~ Beta(1l + ng, o + Z ny). (3.43)
I=k+1

Since the assignments of the data points are independent given the mixing proportions,
we can update the indicator variables jointly, without conditioning on the other indicator
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variables. This might result in faster mixing chains compared to the Pélya urn samplers
in some cases. The conditional for ¢; is

M
CZ'|Xi,7T1,-..,7TM,91,...,9M ~ Zﬂ'kzék() (344)
k=1

where the mixing proportions of the posterior are given by 7; o< mpF'(x; | k).

Algorithm 8 Gibbs sampling for truncated DP
The state of the Markov chain consists of the component parameters 64,...,0;;,
mixing proportions 71, ..., 7 and indicator variables ¢;, ..., cn.

Repeatedly sample:
for all:=1,..., N do {indicator updates}
Assign ¢; to one of the M components with probability oc 7 F'(x; | 0))
end for
for all k=1,..., M do {parameter updates}
Update 0 by sampling from its posterior < F(x;,Ve; = k| 0)Go
end for
for all k =1,..., M do {mixing proportion updates }
Sample the posterior breaking points v} using eq. (3.43)
Set 7, = v} H;:ll v
end for

This algorithm does not require conjugacy, as we do not need to integrate over the
parameters for indicator variable updates. Gibbs sampling is easy to implement for
the truncated Dirichlet process using the stick-breaking construction. However, it is
desirable to avoid approximations and sample from the exact posterior distribution. In
the following sections, we describe methods by Papaspiliopoulos and Roberts (2005)
and Walker (2006) that use the stick-breaking representation without truncating the
process.

Retrospective Sampling

Retrospective sampling of Papaspiliopoulos and Roberts (2005) suggests allocating com-
ponents as needed instead of using truncation. Since the stick lengths sum up to 1,
prior assignment of the indicator variables is straightforward by starting with only a
few breaks of the stick (components) and breaking the stick more as a point in the
unbroken part is sampled, see Figure 3.8. The posterior distribution of the indicator
variables is given by the combination of the mixing proportions and the likelihood.
In this representation, the clusters are not exchangeable since the mixing proportions
differ. Therefore, we would need to sum over the infinitely many cases to obtain the
normalizing constant for the posterior. Retrospective sampling provides a way to avoid
evaluating this infinite sum by using a Metropolis-Hastings step.
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Figure 3.8: Illustration of extending the DP representation retrospectively. The black horizontal
line is a stick of unit length. The blue vertical lines show the breaking points. The
length of each broken piece corresponds to a mixing proportion. Initially there
are only four components represented (top). To decide on the assignment of the
data point, a value is sampled uniformly from [0, 1], shown by the arrow (middle).
If the part that the arrow points at is not already represented, more pieces are
represented retrospectively by breaking the stick and sampling parameter values for
the new pieces until the arrow falls on a represented piece (bottom).

At each iteration, we denote the last component that has data assigned to it as K.
We only represent the parameters and the mixing proportions of components with index
k < KT. We can assign a data point either to one of the represented components or to
one of the rest. The posterior for the indicator variable ¢; is given as

P(c; = k|x;) < mpF(x; | 0;) for k< KT

(3.45)
P(c; = k|x;) o< mpM; for k> K1
with normalizing constant
Kt Kt
R(EY) = meF(xi | 0k) + (1= Y m) M, (3.46)
k=1 k=1

where M; is a constant controlling the probability of proposing an assignment to one of
the unrepresented components. Papaspiliopoulos and Roberts (2005) choose M; such
that posterior probability of allocating 7 to a new component is greater than the prior.
With the choice of M;(KT) = max; .yt F(x;|0:), the Metropolis-Hastings acceptance
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ratio of changing the component assignment ¢; from k& to j is given as:

1, if j <K' and KT = K],
Ky M(K],

min{l, i T) F(( "Z))}, if j <K and K}, < K

X4
o R(Kp;) k (3.47)
N F(x: 6.
min{l, ”(KT) (X"fﬂ)}, if j> Kt

K(KG;) M(KT)

where we used K lij to denote the index of the last active component after changing
component assignment of x; form k to j. Thus, the algorithm behaves like a Gibbs
sampler when the assignment to an already represented component is proposed if this
move does not change last active component. This algorithm provides a sampler that
does not need to resort to approximations. However, the choice of M; should be made
carefully to satisfy detailed balance when the index for the last active component changes
and obtain a good mixing performance.

Algorithm 9 Retrospective sampling for DPM models using stick-breaking construction

The state of the Markov chain consists of the stick lengths (mixing proportions) and
the component parameters.

Only the mixing proportions and parameters of the components up to and including
the last active component are represented.

Repeatedly sample:
foralli=1,...,N do
Sample u; ~ Uniform|0, 1]
Evaluate the posterior probabilities for component assignments using eq. (3.45).
if Y% P(ci =1) > u; for k < KT then
Represent more components by breaking the stick to obtain the mixing propor-
tions and sampling parameters from the prior until Ele P(c; = 1) < w; for
I<KT.
end if
Propose to move to ¢; = inf{k < KT : Zle P(e; =1) < u;}
Evaluate the proposal with eq. (3.47)
end for

Slice Sampling

The idea of auxiliary variable methods is sampling for the variables we are interested in
by using auxiliary variables which make the updates easier to handle. Slice sampling is
an auxiliary variable method that exploits the fact that sampling from a distribution is
equivalent to sampling uniformly from the region under its probability density function
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(Neal, 2003). Thus, the problem of sampling from an arbitrary distribution reduces to
sampling from uniform distributions.

In Section 3.2.2 we have described an algorithm by Walker and Damien (1998) that
uses auxiliary variables to limit the space of sampling in the Pélya urn representation.
The auxiliary variable in that algorithm is chosen such that it has uniform distribution
defined by the likelihood value. Therefore, given the auxiliary variable, sampling from
the posterior reduces to sampling from a truncated version of the prior.

In this section, we describe a similar idea applied to the stick-breaking construction
of the DP by Walker (2006) that results in an elegant algorithm which is widely applica-
ble. The parameters, the mixing proportions and the indicator variables are repeatedly
updated. We introduce the temporary slice variable s when updating the indicators,
and discard it after the indicator update.

The distribution of the auxiliary variable s is defined such that the joint prior of s
and ¢; is a two-dimensional uniform distribution. Conditioning on s, ¢; is uniformly
distributed on a limited part of the prior space. Combining this with the likelihood, we
have the conditional posterior of the ¢;.

Recall that the prior probability of assigning an observation to one of the components
is given by the mixing proportions @ = {71,...,Teo},

P(ci|m) = me,. (3.48)
Multiplying with the likelihood, the posterior is,
P(cjlm,x;,0) oc e, F(x4]0c;).- (3.49)

We introduce the auxiliary slice variable s such that the joint posterior of the indicator
variable and s is

P(c;, s|m,x;,0) o I{s < m, } F'(x:]6e,)- (3.50)

Thus, the distribution of s given 7 and ¢; is uniform:
(s|m, ;) ~ U0, 7)) ={s < ﬂci}Tr;_l (3.51)
and the distribution of ¢; conditioned also on s is

F(x;]0.,) if s <m,,

_ (3.52)
0 otherwise.

P(Ci|57ﬂ-7xia‘9) X {

That is, the probability of assigning ¢; to components with mixing proportions less than
the slice variable is 0. Therefore, we only need to consider assignment to one of the
components that have a larger stick length than the slice variable s. This will clearly
be a finite number, rather than the infinitely many components.

Using slice sampling, we only need to represent the mixing proportions and the pa-
rameters of the KT components. We allocate new components only when needed. The
slice value is sampled uniformly between 0 and 7.,. Note that the stick lengths are not
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Figure 3.9: Slice sampling for DP. The vertical lines denote the mixing proportions mj of the
represented components in the stick breaking construction. Initially, there are six
components represented and for the data point being considered, ¢; = 4 (left). A
slice value s (shown by the dotted red line) is sampled from Uniform[0, 4] and
the represented components are extended until the sum of the remaining mixing
proportions is less than s (right).

strictly decreasing, but we know that they have to sum to 1. Therefore, if KT compo-
nents are represented, one of the unrepresented components can have a maximum stick
length of 1— ZkK:Tl m. If this value is greater than s, we keep breaking the stick until we
are left with a stick length smaller than s, see Figure 3.9 for a pictorial representation.
We sample parameters for the newly allocated components from the prior. Then we
update the indicator variable given the data and the components above the slice.

Algorithm 10 Slice sampling algorithm for the DPM model using the stick-breaking

construction.
The state of the Markov chain consists of indicator variables for each data point and

the infinitely many components with corresponding mixing proportions and parame-
ters.

Only the mixing proportions and parameters of the components up to and including
the last active component are represented.

Repeatedly sample:
for all i =1,..., N do {indicator updates}
Sample a slice variable s from the conditional distribution eq. (3.51)
if s < Z{Sl m; then
Extend the representation by breaking the stick until s > Z{i Tl m
Sample parameters for the new represented stick pieces from Gg
end if
Assign x; to one of the components above the slice, using eq. (3.52)
end for

The methods presented in this section use the stick-breaking construction of the DP. In
this construction, the mixing proportions of the (infinitely many) mixture components
are represented. Therefore the indicator variables are updated without conditioning
on the other indicators. This feature of the samplers encourages good mixing for the
indicator variables. However, it should be noted that since the mixing proportions of
each component is represented explicitly, with a size-biased ordering of the cluster labels,
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the components are not exchangeable in this representation. Therefore, caution should
be taken for mixing over the cluster labels to avoid clustering bias. Porteus et al. (2006)
discuss this in detail and introduce moves that permutes or swaps the labels to improve
mixing over the cluster labels.

3.3 Empirical Study on the Choice of the Base Distribution

In the previous section, we have described several different algorithms for doing inference
on the DPM models with both conjugate and non-conjugate base distribution. We have
seen that inference in the conjugate DPM models is relatively straightforward. For some
models, it is not possible to specify priors conjugate to the likelihood. The question is
whether one should use conjugate priors at all when they are available. It is known
that generally, conjugacy limits the flexibility of the models. Is the computational ease
worth the price of worse modeling performance? Or, is using conjugate models really
computationally cheaper than the non-conjugate alternatives, and how does the model-
ing performance change with the choice of priors? In this section, we seek to empirically
address these questions using a DP mixture of Gaussians model (DPMoG). We choose
to use a DPMoG because it is one of the most widely used DPM models for which it is
possible to employ a conjugate and a conditionally conjugate base distribution.

In the following, we give model formulations for both a conjugate and a conditionally-
conjugate base distribution. For both prior specifications, we define hyperpriors on Gg
for robustness. We refer to the models with the conjugate and the conditionally conju-
gate base distributions in short as the conjugate model and the conditionally conjugate
model, respectively. After specifying the model structure, we will discuss in detail
how to do inference on both models. We will show that mixing performance of the
non-conjugate sampler can be improved substantially by exploiting the conditional con-
jugacy. We will present experimental results comparing the modeling performance of
the two models and the computational cost of the samplers on several data sets.

3.3.1 The Dirichlet Process Gaussian Mixture Model

The finite Gaussian mixture model may be written as:

p(xi‘alv'”a Zﬂ-j Xl“"’]) 1) (353)

where 0; = {uj, S;} is the set of parameters for component j, 7; are the mizing propor-
tions (which must be positive and sum to one), ; is the mean vector for component
J, and S; is the component precision (inverse covariance matrix). Defining a joint prior
distribution Gy on the component parameters and introducing indicator variables, the
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model can be written in the form of eq. (3.19):

X ’Cia O ~ N(“’ciasc_il)
¢; | ™ ~ Discrete(my, ..., Tk)
m|la~D(/K,...,a/K).

(3.54)

We obtain the Dirichlet Process mixture of Gaussians (DPMoG) model by integrating
out the mixing proportions and taking the limit K — oo, as discussed in Section 3.1.5.
Equivalently, we can define the model by starting with Gaussian distributed data

xi|0 ~ N (xi|p;, Si_l), (3.55)

with a random distribution of the model parameters (u;,S;) ~ G drawn from a DP,
G~ DP(O(, Go)
We put an inverse gamma prior on the DP concentration parameter «,

ot~ G(1/2,1/2), (3.56)

the choice of which is discussed in detail in Section 3.1.6. We need to specify the
base distribution Gg to complete the model. For DPMoG, Gq specifies the mean of
the joint distribution of g and S. For this model, a conjugate base distribution exists
however it has the unappealing property of prior dependency between the mean and the
covariance. We proceed by giving the detailed model formulation for both conjugate
and conditionally conjugate cases.

Conjugate DPMoG

The natural choice of priors for the mean of the Gaussian is a Gaussian, and a Wishart
distribution for the precision (inverse-Wishart for the covariance). To accomplish con-
jugacy of the joint prior distribution of the mean and the precision to the likelihood,
the distribution of the mean has to depend on the precision. The prior distribution of
the mean p; is Gaussian conditioned on S;:

(15185, &, p) ~ N (& (S5)71), (3.57)
and the prior distribution of S; is Wishart:

(S8, W) ~W(B, (BW) ™). (3.58)
The joint distribution of p; and S; is the Normal/Wishart distribution denoted as:

with &, p, B and W being hyperparameters common to all mixture components, express-
ing the belief that the component parameters should be similar, centered around some
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Figure 3.10: Graphical representation of the layered structure of the hierarchical priors in the
MoG model with conjugate priors. Note the dependency of the distribution of
the component mean on the component precision. Variables are labelled below by
the name of their distribution, and the parameters of these distributions are given
above.

particular value. The graphical representation of the hierarchical model is depicted in
Figure 3.10.

Note in eq. (3.57) that the precision for the mean is a multiple of the component pre-
cision itself. This dependency is probably not generally desirable, but is an unavoidable
consequence of requiring conjugacy.

Conditionally Conjugate DPMoG

If we remove the undesired dependency of the mean on the precision, we no longer have
conjugacy. For a more realistic model, we define the prior on p; to be

p(p’]‘é?R) NN(EvR_l) (360)

whose mean vector £ and precision matrix R are hyperparameters common to all mixture
components. Keeping the Wishart prior over the precisions as in eq. (3.58), we obtain
the conditionally conjugate model. That is, the prior of the mean is conjugate to the
likelihood conditional on .S and the prior of the precision is conjugate conditional on p.
See Figure 3.11 for the graphical representation of the hierarchical model.

We put hyperpriors on the hyperparameters in both prior specifications to have a
robust model. We use the hierarchical model specification of Rasmussen (2000) for the
conditionally conjugate model, and a similar specification for the conjugate case. Vague
priors are given to the hyperparameters, some of which depend on the observations which
technically they ought not to. However, only the empirical mean g, and the covariance
Y, of the data are used in such a way that the full procedure becomes invariant to
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Figure 3.11: Graphical representation of the layered structure of the hierarchical priors in the
conditionally conjugate model. The distribution of the component means is inde-
pendent from the component precision.

translations, rotations and rescaling of the data. One could equivalently use unit priors
and scale the data before the analysis since finding the overall mean and covariance of
the data is not the primary concern of the analysis, rather, we wish to find structure
within the data.

In detail, for both models the hyperparameters W and 3 associated with the com-
ponent precisions S; are given the following priors, keeping in mind that 8 should be
greater than D—1:

W ~W(D,5%),  (5=p1) ~ 9(1, 1)- (3.61)

For the conjugate model, the priors for the hyperparameters £ and p associated with
the mixture means p; are Gaussian and gamma:

£~ N(py, Ea), p~G(1/2,1/2). (3.62)

For the non-conjugate case, the component means have a mean vector £ and a preci-
sion matrix R as hyperparameters. We put a Gaussian prior on £ and a Wishart prior
on the precision matrix:

£~ N(py,Z2),  R~W(D,(DS:)7H). (3.63)

3.3.2 Inference Using Gibbs Sampling

In this section, we describe the MCMC algorithms we utilize for inference on the models.
The Markov chain relies on Gibbs updates, where each variable is updated in turn by
sampling from its posterior distribution conditional on all other variables. We repeat-
edly sample the parameters, hyperparameters and the indicator variables from their
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posterior distributions conditional on all other variables. As a general summary, we
iterate:

— Update mixture parameters (mean and precision)

— Update hyperparameters

— Update the indicators, conditional on the other indicators and the (hyper)parameters
— Update the DP concentration parameter o

For the models we consider, the conditional posteriors for all parameters and hyper-
parameters except for «, 0 and the indicator variables ¢; are of standard form, thus can
be sampled from easily. The conditional posteriors of log(«) and log(3) are both log-
concave, so they can be updated using Adaptive Rejection Sampling (ARS) (Gilks and
Wild, 1992) as suggested in (Rasmussen, 2000). We have described several algorithms
for updating the indicator variables of the DPM models in Section 3.2. For the conju-
gate case, we use Algorithm 3 described in Section 3.2.1 that makes full use of conjugacy
to integrate out the component parameters, leaving only the indicator variables as the
state of the Markov chain. For the conditionally conjugate case, we use Algorithm 5
described in Section 3.2.2 utilizing only one auxiliary variable.

The likelihood for components that have observations associated with them is given
by the parameters of that component, and the likelihood pertaining to currently inactive
classes (which have no mixture parameters associated with them) is obtained through
integration over the prior distribution. The conditional posterior class probabilities are
calculated by multiplying the likelihood term by the prior.

The conditional posterior class probabilities for the DPMoG are:

components for which n_; ; > 0: p(c; = jlc—i, p;, Sj, )

o p(e; = jle—i, a)p(xi|p;, S;) (3.64a)
x n—1+ aN(Xm]’SJ)’

all others combined: p(c; # ¢y for all i # i'|c_;, &, p, B, W, )

(3.64b)
x / p(xilis, S)p(ps, S|, p, B, W)dpudsS.

o0 —

n—14+a«
We can evaluate the above integral to obtain the conditional posterior of the inactive
classes in the conjugate case, but it is analytically intractable in the non-conjugate case.

Conjugate Model

When the priors are conjugate, the integral in eq. (3.64b) is analytically tractable. In
fact, even for the active classes, we can marginalize out the component parameters using
an integral over their posterior, by analogy with the inactive classes. Thus, in all cases
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the log likelihood term is:

+n;
1 le_isp, W) =-L21 Dige P "5
ng(X|C apé’ﬁ ) 2 Og7r+2 ng+nj+1
] i+1—D
log (P i AH LD (3.69)
+ 25 log |[W| — FH = log [ 4 25 (x; — €7) (xs — €)',
where
e =g+ Y x)/(p+n))
l:c;=j
and

W* = BW + pg€" + > xix| — (p+n;)e°€ T,
liey=j
which simplifies considerably for the inactive classes.
The sampling iterations become:
— Gibbs sample p; and S; conditional on the data, the indicators and the hyperpa-
rameters
— Update hyperparameters conditional on p; and S;
— Remove the parameters, p; and S; from representation
— Gibbs sample for each indicator variable, conditional on the data, the other indica-
tors and the hyperparameters
— Sample for the DP concentration «, using ARS

Conditionally Conjugate Model

As a consequence of not using fully conjugate priors, the posterior conditional class
probabilities for inactive classes cannot be computed analytically. Here, we give details
for using the auxiliary variable sampling scheme of Neal (2000), summarized in Sec-
tion 3.2.2 as Algorithm 5, and also show how to improve this algorithm by making use
of the conditional conjugacy.

SampleBoth
For each observation x; in turn, the updates are performed by: “invent” auxiliary classes
by picking means p; and precisions S; from their priors. We update ¢; using Gibbs sam-
pling (i.e., sample from the discrete conditional posterior class distribution), and finally
remove the components that are no longer associated with any observations. This is the
algorithm by (Neal, 2000). Here, to emphasize the difference between the other sam-
pling schemes that we will describe, we call it the SampleBoth scheme since both means
and precisions are sampled from their priors to represent the inactive components.

The sampling iterations are as follows:

— Gibbs sample p; and S; conditional on the indicators and hyperparameters .

— Update hyperparameters conditional on p; and S;
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— For each indicator variable:

— If ¢; is a singleton, assign its parameters p. and S¢, to one of the auxiliary
parameter pairs.

— Invent other auxiliary components by sampling values for p; and \S; from their
respective priors.

— Update the indicator variable, conditional on the data, the other indicators and
hyperparameters.

— Discard the empty components.
— Update the DP concentration parameter c.

The integral we want to evaluate is over two parameters, p; and S;. Exploiting the
conditional conjugacy, it is possible to integrate over one of these parameters given the
other. Thus, we can pick only one of the parameters randomly from its prior, and in-
tegrate over the other, which might lead to faster mixing. The log likelihood for the
SampleMu and the SampleS schemes are as follows:

SampleMu
Sampling p; from its prior and integrating over S; gives the conditional log likelihood:
log p(xilc—i, pj, B, W) = — Dlogm+ @10g |W*| — %log W™ + x;x] |
4] 411-D (3.66)
logn(PEU D) jogp AT ELZD)
2 2
where W* = W + Z (x; — pj)(x — pj)T.

liey=j
The sampling steps for the indicator variables are:
— Remove all precision parameters S; from the representation.
—1If ¢; is a singleton, assign its mean parameter p, to one of the auxiliary parameters.
— Invent other auxiliary components by sampling values for the component mean
from its prior.
— Update the indicator variable, conditional on the data, the other indicators, the
component means and hyperparameters using the likelihood given in eq. (3.66).
— Discard the empty components.

SampleS
Sampling S; from its prior and integrating over p;, the conditional log likelihood be-
comes:

log p(xilc—i, Sj, R, &) = —Flog(2m) — 3x] 9jx;
1
+ 36"+ Sin)T((nj +1)5; + R) (& + Sjxi) (3.67)

-1 15;11n;S; + R
£, 1] 31170 ’
) €+ % [(n; + S, 1 R]

— 3¢ (n; S5+ R

where £ = S; > x; + RE.

l:icj=j
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The sampling steps for the indicator variables are:

— Remove the component means p; from the representation.

— If ¢; is a singleton, assign its precision S;, to one of the auxiliary parameters.

— Invent other auxiliary components by sampling values for the component precision
S; from its prior.

— Update the indicator variable, conditional on the data, the other indicators, the
component precisions and hyperparameters using the likelihood given in eq. (3.67).
— Discard the empty components.

Note that SampleBoth, SampleMu and SampleS are three different ways of doing infer-
ence for the same model since there are no approximations involved. One would expect
only the mixing time to differ among these schemes, whereas the conjugate model dis-
cussed in the previous section is a different model since the prior distribution is different.

3.3.3 Experiments

In this section, we present results on simulated and real data sets with different di-
mensions to compare the predictive accuracy and computational time complexity of
the different models and sampling schemes described above. The density of each data
set has been estimated by the conjugate model (CDP), the three different sampling
schemes for the conditionally conjugate model (CCDP), SampleBoth, SampleMu, and
SampleS, and by kernel density estimation* (KDE) using Gaussian kernels.

We use the duration of consecutive eruptions of the Old Faithful geyser (Scott, 1992)
as a two dimensional example, for which we can visualize the estimated densities, see
Figure 3.12. Additionally, the three dimensional Spiral data set used in Rasmussen
(2000), the four dimensional ”Iris” data set used in (Fisher, 1936) and the 13 dimensional
”Wine” data set (Forina et al., 1986) were modeled for assessing the computational cost
in higher dimensions.

Convergence was determined by examining various properties of the state of the
Markov chain, and mixing time was calculated as the sum of the auto-covariance coef-
ficients of the slowest mixing quantities from lag -1000 to 1000. In all experiments, the
slowest mixing quantity was found to be the number of active components. Example
auto-covariance coefficients are shown in Figure 3.13. The convergence time for the
CDP model is usually shorter than the SampleBoth scheme of CCDP but longer than
the two other schemes. For the CCDP model, the SampleBoth scheme is the slowest
both in terms of converging and mixing. SampleS has comparable convergence time to
the SampleMu scheme.

The three different sampling schemes for the conditionally conjugate model all have
identical equilibrium distributions, therefore the result of the conditionally conjugate
model is presented only once, instead of discriminating between different schemes when
the predictive densities are considered.

4KDE is a classical non parametric density estimation technique which places kernels on each training
data point. The kernel bandwidth is adjusted separately on each dimension to obtain a smooth
density estimate, by maximizing the sum of leave-one-out log densities.
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Figure 3.12: The Old Faithful geyser data set and its density modelled by CDP, CCDP and
KDE. The two dimensional data consists of the durations of the consecutive erup-
tions of the Old Faithful geyser.

As a measure for modeling performance, we use the average leave one out predictive
densities. That is, for all data sets considered, we leave out one observation, model the
density using all others, and calculate the predictive density on the left-out data point.
We repeat this for all data points in the training set and report the average predictive
density.

The mixing of all samplers is equally fast for the two dimensional Geyser data set.
There is also not a significant difference in the predictive performance, see Tables 3.1
and 3.2. However, we can see form the plots in Figure 3.12 that the resulting density
estimates are different for all models.

For all data sets, the KDE model has the lowest average leave one out predictive
density, and the conditionally conjugate model has the best (see Table 3.1). To compare
the distribution of the leave one out densities, p-values for a paired t-test are given
(Table 3.2). For the Spiral, Iris and Wine data sets, the difference between the predictive
densities of KDE and both DP models were statistically significant.

The main objective of the models presented in this paper is density estimation, but
the models can be used for clustering as well by observing the assignment of data points
to model components. Since the number of components change over the chain, one
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Figure 3.13: Autocorrelation coefficients of the number of active components for CDP and dif-
ferent sampling schemes for CCDP, for the Spiral data based on 5 x 10° iterations,
the Iris data based on 10° iterations and Wine data based on 1.5 x 106 iterations.

would need to form a confusion matrix showing the frequency of each data pair being
assigned to the same component for the entire Markov chain.

Class labels are avaliable for the Iris and Wine data sets, both data sets consisting
of 3 classes. The CDP model has 3-4 active components for the Iris data and 3 active
components for the Winedata. The assignment of data points to the components shows
successful clustering. The CCDP model has more components on average for both data
sets, but data points with different labels are not assigned to the same component,
resulting in successful clustering. The Spiral data set is generated by sampling 5 points
form each of the 160 Gaussians whose means lie on a spiral. For this data, the number
of active components of CDP and CCDP do not go beyond 21 and 28, respectively.
This is due to the assumption of independence of component means for both models,
which does not hold for this data set. The data has been generated from clusters whose
means lie on a spiral. The distribution of the number of active components for the

Table 3.1: Average leave one out log-predictive densities for kernel density estimation (KDE),
conjugate DP mixture model (CDP), conditionally conjugate DP mixture model
(CCDP) on different data sets. The ratio of the average probability of the DP model
vs the KDE model is given in parenthesis. Note the increase in discrepancy as the
data dimension increases.

DATA SET  KDE CDP CCDP

GEYSER  -1.9058 -1.9023(1.003) -1.8785(1.028)
SPIRAL -7.2052  -7.1228(1.086) -7.1165(1.093)
IRIS -1.8599  -1.5769(1.327) -1.5460(1.369)
WINE -18.9788  -17.5946(3.99) -17.3409(5.15)
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Table 3.2: Paired t-test scores of leave one out predictive densities. The test does not give
enough evidence in case of the Geyser data, however it shows that KDE is statistically
significantly different than both DP models for the higher dimensional data sets.
Also, CDP is signifcantly different than CCDP for the Wine data.
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Figure 3.14: Distribution of number of active components from 1000 iterations. The CDP model
favors a lower number of components for all data sets. The average number of
components for the CCDP model is larger, with a more diffuse distribution. Note
that histogram for the CDP model for the Geyser data set and the Winedata set
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existence of many small components for the CCDP model
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different models are depicted in Figure 3.14. This figure shows that the distribution of
the number of components used by the CCDP is much broader and centered on higher
values. The number of data points assigned to the components averaged over different
positions in the chain is depicted in Figure 3.15.

3.3.4 Conclusions

The Dirichlet process mixtures of Gaussians model is one of the most widely used DPM
models. We have presented and compared the conjugate and conditionally conjugate
hierarchical Dirichlet process Gaussian mixture models. We presented two new MCMC
schemes that improve the convergence and mixing properties of the MCMC algorithm
of Neal (2000) for the conditionally conjugate Dirichlet process mixture model. The
convergence and mixing properties of the samplers have been demonstrated on example
data sets. The modeling properties of the conjugate and the conditionally conjugate
model have been empirically compared. The predictive accuracy of the CCDP model
is found to be better than the CDP model for all data sets considered, the difference
being larger in high dimensions. It is also interesting to note that the CDP model tends
to use less components than the CCDP model.

In the light of the empirical results, we conclude that marginalizing over one of the
parameters by exploiting conditional conjugacy leads to considerably faster mixing in
the conditionally conjugate model. When using this trick, the fully conjugate model
is not necessarily computationally cheaper. The DP Gaussian mixture model with the
more flexible prior specification (conditionally conjugate prior) can be used on higher
dimensional density estimation problems, resulting in better density estimates than the
model with conjugate prior specification.

3.4 Dirichlet Process Mixtures of Factor Analyzers

Factor analysis (FA) is a well known latent variable model that models the correlation
structure in the data. The mixture of factor analyzers (MFA) model combines FA with
a mixture model, allowing each component to have a different latent representation.

The generative model for FA is given by x = Az + pu + €, where z is the hidden
factor, A the factor loading matrix, and € the measurement noise. The factors and
noise are assumed to be Gaussian distributed, z ~ N (0,I) and € ~ N(0, V) where ¥ is
a diagonal matrix. Therefore, x is also Gaussian distributed with mean p and covariance
AAT 4+ W. Considering a mixture of factor analyzers (MFA) with K components, the
data distribution becomes

K
p(x) =D miN (e, AT + D), (3.68)

J=1

where 7; denote the mixing proportions. Each component has a separate mean param-
eter p; and a factor loading matrix A;. The diagonal uniqueness matrix ¥ is common
for all components, capturing the measurement noise in the data.
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FA is generally used as a dimensionality reduction technique by assuming that the
dimension of the latent factors z is much less than the data dimension, Q < D. For
this case, a FA can be interpreted as a Gaussian with a constrained covariance matrix.
Assuming that most of the structure lies in a lower dimensional space, MFA can be used
to model high dimensional data as a mixture of Gaussians with less computational cost.

Analytical inference is not possible for the MFA models but maximum likelihood
methods such as expectation maximization (EM) can be used to make point estimates
for the parameters (Ghahramani and Hinton, 1996) or MCMC methods can be used
for obtaining the posterior distribution (Utsugi and Kumagai, 2001). These algorithms
are straightforward to apply for fixed latent dimension and a fixed number of compo-
nents. Deciding on the latent dimension and the number of components to be used
is an important modeling decision for MFA which is usually dealt with by using cross
validation. Alternatively, learning the latent dimension or the number of components
can be included in the inference.

Bayesian inference on the latent dimension of the FA model has been studied by Lopes
and West (2004) using reversible jump MCMC (RJMCMC).

Ghahramani and Beal (2000) formulate a variational method for learning the MFA
model. They form a hierarchical MFA model by placing priors on the component param-
eters and hyperpriors on some of the hyperparameters and do inference on the model
using a variational approximation to the log marginal likelihood. The dimension of
hidden factors for each component is determined by automatic relevance determination
(ARD) (MacKay, 1994; Neal, 1996), and the number of components are determined by
birth-death moves. The drawback of this method is that it is very sensitive to random
initialization of the parameters and since it is an approximation, it does not guarantee
finding the exact solution.

Fokoué and Titterington (2003) present a method for inferring both the latent dimen-
sion and the number of components in an MFA model using birth and death MCMC
(BDMCMC) of Stephens (2000) which is an alternative to RIMCMC. They treat both
the hidden dimension and the number of components as a parameter of the model and
do inference on both using BDMCMC.

For these approaches, the number of components can be seen as a parameter of the
model which is inferred from the data. The DP prior allows a nonparametric Bayesian
formulation of the MFA model, eliminating the need to do inference on the number of
components necessary to represent the data.

In this section, we introduce the Dirichlet process mixtures of factor analyzers model
(DPMFA), a FA model with a DP prior over the distribution of the model parameters.

Dirichlet Process Mixtures of Factor Analysers

We start with the distributional assumptions of (Ghahramani and Beal, 2000) for the
parametric MFA model, and form the Dirichlet process MFA model by taking K — oo.
In detail, the prior for the means p; is Gaussian,

wy~ N(ER™), (3.69)

53



3 Dirichlet Process Mixture Models

with common hyperparameters for all components. Inverse gamma priors are put on
the entries 02 of the diagonal matrix ¥,

02 ~IG (B, pw). (3.70)

On the columns of the factor loading matrix A of each component, we put a zero
mean Gaussian with a different precision parameter v,

A~ N (0, I/vg), (3.71)

where ¢ = 1,...,Q is the index for the hidden factor dimension and A_jq denotes the
column ¢ of the factor loading matrix for component j. We let the hyperparameters
v, of different latent dimensions vary while each hyperparameter is shared among the
mixture components. This allows sharing information about the latent dimensionality
between components. The number of factors is set to a fixed value @) for all components,
but assigning each column to have a different precision, the effective latent dimension
adjusts to the data by ARD. That is, a large value of v, would force the A,jq to be small,
not contributing much to the covariance.

The top-level priors for the hyperparameters & and R associated with the mixture
means p; are Gaussian and Wishart:

£~ N(py, Ea), R~W(D,(D%:)™"), (3.72)

where p, and ¥, are data mean and covariance as in the previous section. We put
gamma priors on the precisions v, of the columns of the factor loading matrices,

vy ~ G(1/2,1/2). (3.73)

The hyperparameters w and (3 associated with the diagonal entries of ¥ are given
gamma and inverse gamma priors respectively:

w~G(1/2 0,7), B~IG(1/2,1/2). (3.74)

The graphical representation of the hierarchical model is depicted in Figure 3.16.

We obtain the DPM model by putting a symmetric Dirichlet prior with parameters
a/K on the distribution of the mixing proportions 7, and taking the limit K — oo.
An inverse-gamma prior is assumed on the DP parameter «,

a~7TG(1/2,1/2). (3.75)

MCMC Inference

The parameters defining the covariance of the mixture components — i.e., the factor
loading matrices A; and the uniqueness matrix ¥ — appear together in the likelihood,
eq. (3.68). To decouple these parameters and update them separately, we need to
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Figure 3.16: Graphical representation of the layered structure of the hierarchical priors in the
mixtures of factor analyzers model. Variables are labelled below by the name of
their distribution, and the parameters of these distributions are given above. The
number of observations (N), number of mixture components (K) and the latent
factor dimension (@) are denoted by the numerals in the lower left hand corner of
the large rectangles.

condition on the latent factor z which results in the likelihood:
p(xlzacjauijﬁ\Il) :N(lJ’] +AJZ7\II) (376)

This function factorizes over the data dimensions. To make use of this factorization,
we can express the prior distribution on the rows of A as p(Aé.) ~N (0, Tj_l), where
Ai‘l. denotes the dth row of the jth factor loading matrix and Y, is the diagonal matrix
which has vq,...,vg as its entries.

The likelihood function in eq. (3.76) is used to compute the posteriors of A;, ¥ and
z. Once Aj and ¥ are updated conditioned on z, we can compute the covariance matrix
Y = AjAjT + ¥ and condition on the full covariance to update the means and the
indicators using eq. (3.68) with the hidden factors integrated out. The conditional
posteriors for these variables are of standard form and therefore can be sampled from
easily.

The conditional posterior of the indicator ¢; is obtained by combining the prior of
the components with the likelihood. The likelihood of the components that have data
(other than x;) associated with them is Gaussian with mean p; and covariance AAjT—i—\I/.
The likelihood pertaining to the remaining infinitely many components is obtained by
integrating over the prior distribution of the parameters,

p(ci 7é Ci/ for all 4 7é Z'/‘C_Z‘7£,R,V757’U),a)

(6
X T1ra "l / p(xilp, A, ©)p(p, A€, R, v)dpdA.

(3.77)

This integral is not analytically tractable, therefore we need to use an inference technique
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that can deal with non-conjugacy. We choose to use the auxiliary variable method of
Neal (2000) which is discussed above also for inference on the DPMoG model. Using
this method, the effect of the infinitely many components is represented by the auxiliary
variables and the integral is avoided. We note that the mean can be integrated out,
thus we would need to sample only the factor loading matrix from the prior, similar
to the SampleS scheme for the DPMoG. We use this marginalization that leads to a
considerable speedup in mixing of the chain.

In the next section, we demonstrate the modeling performance of the DPMFA model
on a challenging clustering problem.

3.4.1 Spike Sorting Using DPMFA

Studying the spiking activity of neurons is important for understanding the physiological
functions of the brain. Although intracellular recordings from a single neuron provide
good quality signals, recording with an intracellular electrode in awake behaving animals
is extremely difficult. Furthermore, recording from multiple cells at a time is desirable
since it provides information about the interaction between the neurons. Extracellular
electrodes introduced into the brain isolating a single neuron for each electrode have
been successfully used for years for this purpose, see for example Evarts (1968). More
recent work has focused on recording simultaneously from multiple neurons in order
to study their interactions. Electrodes placed in the extracellular medium can record
the activity of multiple nearby neurons but this leads to the question of distinguishing
between the activity of individual neurons, a problem that is known as spike sorting.

Recording with multi-tip electrodes improves the identification of individual neu-
rons compared to standard single-tip electrodes (McNaughton et al. (1983); Recce and
O’Keefe (1989)). Under the assumption that the extracellular space is electrically homo-
geneous, four-tip electrodes (tetrodes) provide the minimal number of recording chan-
nels necessary to identify the spatial position of a source based on the relative spike
amplitudes on different electrodes.

Spike sorting is usually done in three steps, namely spike detection, feature extraction
and clustering. Determination of the occurrence of spikes, which is usually achieved by
high-pass filtering followed by thresholding is known as the spike detection step. The
spikes produced by a particular neuron have stereotypical waveforms. The difference in
the features of the waveforms allows distinguishing between the activities of different
neurons. In the feature extraction stage, a feature vector for each spike is calculated
and clustering is done on this low dimensional feature space. Spike height, width and
the peak-to-peak amplitude are some features that can be used for clustering. The
clustering step involves identifying the number of sources and assigning each detected
spike to one of these. In most laboratories the clustering is done manually, usually
using a small number of features in order to make visualisation possible. There are also
automatic spike sorting techniques that have been proposed which use different methods
for feature extraction and clustering. See (Lewicki, 1998) for a review of spike sorting
techniques.

A problem in spike sorting is that the true labels for the recorded data cannot be
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Figure 3.17: Data recording and representation: Extracellular waveforms are recorded with a
tetrode. Every time the signal exceeded the threshold in one of the channels, a
window of 1ms around this event was extracted from the recordings of each channel
and joined to form the data vectors.

known without the verification of intracellular recordings, which makes it very hard to
evaluate the results obtained by any clustering technique. Furthermore, the number of
different neurons that contribute to the recorded activity is also not known. That is,
we have to infer the number of clusters (different neurons) as well as the cluster assign-
ments from the data. Therefore, we need a method that can determine the number of
different neurons contributing to the data and also give satisfactory clustering results.
This motivates the use of clustering models that are capable of doing automatic model
selection. Nguyen et al. (2003) used reversible jump MCMC for determining the num-
ber of clusters in the spike data and Wood et al. (2006a) present spike sorting results
using DPMoG. Reducing the dimensionality using feature extraction accounts to ignor-
ing some information in the data. This improves the performance only if the ignored
information is irrelevant for clustering. However, in this fully unsupervised setting, it
is not easy to tell what the irrelevant information is. In general, the more relevant
features we know about the signals, the better the clustering will get. Therefore, it is
desirable to do the feature extraction within the clustering model. MFA can be seen
as a model that combines feature extraction and clustering. We have previously used a
parametric MFA model for spike sorting (Goriir et al., 2004). Here, we present results
of applying DPMFA to the spike sorting problem using PCA projections as well as the
raw waveforms as inputs.

3.4.2 Experiments

We used data recorded with tetrodes from awake behaving macaque monkeys. The data
were collected using a multi-channel data acquisition system (Cheetah Inc.). The signal
was band-pass filtered between 600-6000Hz and digitised at 32kHz. The neuronal spikes
were detected via an interrupt-driven, spike voltage threshold-triggered data acquisition

57



3 Dirichlet Process Mixture Models

system. That is, when a signal above threshold was detected in one of the channels, the
occurrence of a spike was assumed and therefore the signal in all channels was stored
within a window length of 1 ms around the triggering event with a corresponding time
stamp. A sample recording from the tetrode and an extracted data vector are shown
in Figure 3.17. To reduce sampling jitter, the extracted 32 dimensional signals for each
channel were aligned to their peak by interpolation using cubic splines and resampling.
Since the alignment was done after extracting the spike data from the recording, the
dimension of the data vectors for each channel was reduced to 28 after alignment.

We did experiments on 5000 data points that had been manually clustered using
peak-to-peak amplitudes of the signals in each channel. We used three different repre-
sentations of the data as inputs:

1. Amplitudes: The peak-to-peak signal amplitudes from each channel (4 dimensional
input vector),

2. PCA projections: The first three principal components of the waveforms from
each channel (12 dimensional input vector), and

3. Waveforms: The 28 dimensional signals from each channel joined together (112
dimensional input vector).

We did clustering on the different representations using the DPMFA model and also the
conjugate and the conditionally conjugate DPMoG models for comparison. We used 3,
8 and 75 latent dimensions for the DPMFA model for the 4, 12 and 112 dimensional
input representations, respectively.

The conjugate DPMoG, the conditionally conjugate DPMoG and the DPMFA model
on the amplitude data all give similar results. There are one small and five big clusters
found by manual clustering, corresponding to activities of six different neurons. One
small cluster and six big clusters have been discovered by all models. Roughly speaking,
the clustering results of all models agree with the manual clustering except separating
one of the big clusters into two. The confusion matrices for cluster assignments of
manual clustering and the different models are depicted in Figure 3.18.

For the 12 dimensional PCA projections as inputs, the clustering results of all models
were similar. Therefore for this representation, we show only the confusion matrix for the
DPMFA model in Figure 3.18. The mixture models found were considerably different.
Especially, there is a big difference in the average number of components employed by
the models. The conjugate DPMoG model has 40 active components in average, whereas
the conditionally conjugate DPMoG has 160. The conditionally conjugate model using
more components is an anticipated result given the experimental results of the previous
section. The average number of components used by the DPMFA model is 80.

Figure 3.19 shows the change of the number of active components over the iterations
for the three different models using the PCA projections. It is interesting to see that
the conjugate model converges to the stationary distribution fairly fast. The conver-
gence and mixing for the conditionally conjugate DPMoG is slower even when using the
improved sampling schemes, SampleS or SampleMu. An observation motivating the use
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Figure 3.18: Confusion matrices for the cluster assignments. Top row: Using the peak-to-
peak amplitudes for: the manual clustering (left), the conjugate DPMoG model
(middle) and the conditionally conjugate DPMoG model (right). Bottom row:
DPMFA results using: the peak-to-peak amplitudes (left), the 12 PCA components
(middle) and the whole waveforms (right). The data is divided into one small
(with 18 data points) and five big clusters (ranging from 370 to 1725 data points)
by manual clustering. Note that the small cluster on the lower right hand corner
of the confusion matrices is not really visible in this plot. All models find similar
clustering using the amplitude data except separating one of the large clusters into
two. The data is divided into more clusters by the DPMFA model using the PCA
projections and the waveforms as input.

of DPMFA in higher dimensions is that the mixing for the DPFMA model is relatively
fast when exploiting the conditional conjugacy.

The models were initialized with all data points assigned to the same component. We
see in Figure 3.20 that the Markov chain for DPMFA using PCA components as inputs
has an interesting behavior. Observing the change in the number of active components
over the iterations, we see that the model initially employs around 400 components to
represent the data, and starts reducing this number after some iterations, stabilizing
after 2000 iterations at about 80 active components.

We also used the whole waveforms as input without a preliminary feature extraction
step. Initially we tried learning all the parameters and hyperparameters, starting with
a single component, like we did with the lower dimensional representations of the data.
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Figure 3.19: Plots showing the change in the number of clusters over the iterations using the
12 PCA components for the conjugate DPMoG (top), the conditionally conjugate
DPMoG using the SampleMu scheme (middle) and the DPMFA model with 8 latent
factors (bottom). The models are initialized with all data points assigned to a single
component, and all parameters and hyperparameters are updated.

However, the sampling was not efficient for any of the models to converge. Both the
conjugate and the conditionally conjugate DPMoG models stayed in the initial one
component state. On the other hand, the DPMFA model employed too many active
components, without converging to the stationary distribution.

A common technique when dealing with complex data using hierarchical models is
to fix the hyperparameters, updating only the parameters in the beginning and start
updating all unknown variables after some iterations. This stops the hyperparameters
from taking values in a low probability region in an early stage of the chain and prevents
the sampler from getting stuck in this low probability region. Following this approach,
we tried initializing the component assignments with the manual clustering labels and
not updating the hyperparameters and the indicator variables for the first 100 iterations,
only updating the parameters. The conjugate and the conditionally conjugate DPMoG
models could not mix at all, staying in the initialized state also in this case. The
DPMFA model again employed too many components as soon as we started updating
the indicator variables.

Since the concentration parameter v controls the number of active components in a
DPM model, we decided to fix this parameter instead of learning it to limit the prior
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Figure 3.20: Change in the number of active components over the iterations for the DPMFA
model using the peak-to-peak amplitudes (top), the 12 PCA components (middle)
and the whole waveforms (bottom) with the parameter « fixed to 1.

probability of proposing new components. To check the effect of this, we also did runs
with fixed « using the PCA projections. Recall that for the run on the 12 dimensions
where o was updated, the number of active components first increased to 400, converging
to around 80 components after 2000 iterations, see Figure 3.19. Interestingly, we observe
the similar behavior even when « is fixed to 1, see Figure 3.20. For this case, the number
of components increases to 250, and converges to around 40 after 1000 iterations for the
12 dimensional representation. For the 112 dimensional representation, the number of
components initially goes up to 500, and settles around 300 after 100 iterations.

Although the number of active components is as high as 300, there are generally only
10 components with more than 5 data points. Figure 3.18 shows that the clustering
generally agrees with the results of the other experiments. We show the manual cluster-
ing results in Figure 3.21 and the DPMFA results using the whole waveforms as inputs
in Figure 3.22 for comparison. Note that the DPMFA finds a similar clustering for most
of the data, except separating one of the big clusters into three.

Superimposed spike waveforms from each of the big clusters found by the DPMFA
model are depicted in Figure 3.23. The waveforms from the three clusters cl, ¢2 and ¢3
were assumed to belong to one big cluster in manual clustering since they have similar
amplitude characteristics. Attending to the shape of the waveforms reveals that they
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Figure 3.21: Manual spike sorting results. The two-dimensional projections of the peak-to-peak
amplitudes of spikes are plotted for all combinations of 4 channels. The expert
works on this representation, manually drawing boundaries around regions that
may correspond to the activity of a single neuron. After cluster assignments,
refractoriness is checked to verify the clustering. Each color represents a different
cluster.

should belong to different clusters. Note that the waveforms assigned to the clusters
c6 and c7 appear to be very similar, thus we may assume that due to the incremental
updates, the sampler fails to merge these two components together which in fact belong
to the same cluster (this is the case also for the the waveforms assigned to ¢8 and c9).

3.4.3 Conclusions

We presented experimental results for spike sorting using the conjugate DPMoG, the
conditionally conjugate DPMoG and the DPMFA models on different data representa-
tions. Although the modeled density differs, the clustering results of all three models are
similar on the amplitude data and on the PCA projections. In all models, the mixing of
the Markov chain was poor when the whole waveforms were used as inputs. This result
can be attributed to the high dimensionality of the data. Although none of the models
seem to be mixing, the DPMFA model could move enough to explore a mode of the
posterior whereas the DPMoG could not move at all from the initial point. This shows
that the DPMFA can handle higher dimensional data more easily. However, the mixing
is not good enough for practical use of the model due to the incremental updates using
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Figure 3.22: Peak-to-peak amplitude plots showing the clustering results of DPMFA using the
whole waveforms. Note that one big cluster of manual clustering (light blue) is
divided into three clusters with this model (light blue, brown and purple).

Gibbs sampling.

The behavior of the Markov chain for the DPMFA model on the PCA components and
the whole waveforms is interesting. No matter if initialized with a single component or
many components, the model first explores the space by introducing many components
and eventually reduces the number of active components to give a good representation of
the data. The sampling can handle this for the lower dimensional PCA inputs, however
for the 112 dimensional inputs, it fails to converge to a stationary distribution when all
variables are updated. For this reason, for using the waveforms as inputs, we fixed the
concentration parameter « to 1. An alternative can be to have better initial values for
the hyperparameters but this would involve a thorough analysis of the data.

The motivation for developing this model is to be able to apply the DPM model to high
dimensional data. Experimental results show that the sampling algorithms used are not
efficient enough. Using the split-merge method of Jain and Neal (2005) would speedup
mixing. Furthermore, the factor loading matrix is rotation independent, therefore not
unique. Restricting it to be unique, e.g. forcing it to be lower diagonal as suggested by
Fokoué and Titterington (2003) may also help speedup mixing.
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Figure 3.23: Example spike waveforms assigned to different clusters by the DPMFA model using
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the whole waveforms as inputs. The waveforms assigned to clusters 1, 2 and 3 have
similar amplitude characteristics. Therefore, they were assumed to belong to one
big cluster in manual clustering since they have similar amplitude characteristics.
DPMFA can discover that they should belong to different clusters by using the
waveform information. On the other hand, the waveforms assigned to the clusters
c¢6 and c7 appear to be very similar. It is possible that due to the incremental
updates, the sampler fails to merge these two components together which belong
to the same cluster. This is also the case for the waveforms assigned to components
c8 and c9.



3.5 Discussion

3.5 Discussion

In this chapter, we have considered the DPM models for density estimation and clus-
tering. The DP has been introduced by Ferguson (1973) and has been extensively used
especially since the development of MCMC methods for inference. There are several
different approaches to define the DP. In the beginning of this chapter, we have summa-
rized some of these approaches to give an insight about the DP and its properties. The
different ways of defining the same distribution has lead to several different inference
algorithms for DPM models. We have outlined some of the MCMC algorithms devel-
oped for inference on the DPM models. The list of algorithms that we described is not
exhaustive, but we believe that they give a good overview of the development of the
techniques.

We compared the DPMoG models with conjugate and conditionally conjugate base
distributions. We showed that for the inference algorithm we used, mixing time of the
samplers can be vastly improved for the conditionally conjugate model by integrating
out one of the parameters while conditioning on the other. Using this improved sampling
scheme, inference for the conditionally conjugate model is not always computationally
more expensive than the conjugate one. The relative mixing performance depends on
the data modeled. The modeling performance of the conditionally conjugate model
for density estimation is found to be always better than the fully conjugate one, the
difference being significant in higher dimensions. These results suggest that one does
not have to resort to using the conjugate base distribution when it does not represent
the prior beliefs.

We have introduced the DPMFA model for modeling high dimensional data that is
believed to have a low dimensional representation as mixture of Gaussians with con-
strained covariance matrices. We have demonstrated the modeling performance of the
DPMFA on a challenging clustering problem. Although the resulting clustering is suc-
cessful, the incremental sampling algorithm used is not feasible for practical use of the
model on high dimensional data and should be improved.

Difference between the DPM models and mixtures with finite but unknown number
of components is that the DPM takes into account the possibility of a yet not observed
data point to be coming from an unrepresented component through the concentration
parameter of the DPM both during training and when the predictive probabilities are
calculated. Although the RIMCMC or BDMCMC give a distribution over the possible
number of components, once an iteration is complete and a number of components
is chosen, it is only those components that are used to explain the new data. The
comparison of the performance if these models remains to be an interesting question.
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4 Indian Buffet Process Models

Latent, or hidden, variable models are powerful tools to model the underlying structure
in data. The idea is to augment the observed data with hidden variables to obtain
a powerful model with an easy to handle inference scheme. Depending on the model
used, the latent variables may be interpretable or not. Unsupervised learning aims to
discover the systematic component in the data to make meaningful summaries of it,
such as density estimation, feature extraction or clustering.

A prominent example of discrete latent variable models are mixture models, which
are also referred to as latent class models. The data is assumed to come from a mixture
of distributions (generally of simple parametric form), and the latent class variables
indicate which mixture component each data point is generated from. Mixture models
have been widely used for density estimation and clustering. Since the classes are
mutually exclusive, mixture models can be a good representation of the data if the data
can be divided into homogeneous disjoint subsets.

Dirichlet process mixture (DPM) models presented in the previous chapter constitute
an example of infinite latent class models, in which each data point is assumed to belong
to exactly one of the classes. In this chapter, we will consider unsupervised learning
using nonparametric discrete latent feature models with nonexclusive features.

A powerful extension of the latent class models is obtained by relaxing the condition
of the classes being mutually exclusive, and assuming each data point to be generated
by a combination of features encoded by the binary feature presence vectors. Recently,
the Indian buffet process (IBP) (Griffiths and Ghahramani, 2005), which specifies a
distribution over sparse binary matrices with infinitely many columns, has been defined.
Inspired by the Chinese restaurant process (CRP) (Section 3.1.2), IBP is a sequential
process for generating sparse binary matrices with an unbounded number of columns. In
the CRP, customers decide which single table to sit at, whereas in the IBP, they decide
which dishes to taste. Each customer can choose any number of offered dishes, which
can be interpreted as the data points belonging to more than one class, or the data
points being described with more than one feature. Thus, infinite binary latent feature
(IBLF) models can be defined using the IBP as a nonparametric distribution over the
matrix of features. In this chapter, we will focus on the IBP and related distributions
for defining IBLF models.

The correspondences between the CRP and the IBP are not restricted to their culi-
nary metaphorical similarities. The distribution on the binary matrices with infinitely
many columns induced by the IBP can be defined in several different ways. Each of
these approaches helps to show interesting properties of the distribution and reveals its
connections to the Dirichlet process. As well as defining the IBP, Griffiths and Ghahra-
mani (2005) derive the distribution defined by the IBP starting with a finite binary

67



4 Indian Buffet Process Models

matrix and taking the limit as the number of columns approaches infinity. Teh, Goriir,
and Ghahramani (2007) construct a stick-breaking representation for the IBP, and show
interesting connections between the stick lengths of the stick-breaking construction for
the DP and the IBP. Thibaux and Jordan (2007) show that the underlying de Finetti
mixing distribution for the IBP is the beta process (Hjort, 1990). In the next section,
we present the description of the IBP and summarize these different approaches for
defining the distribution.

Analytical inference is not possible in the IBLF models. Due to the similarity of
the IBP and the DP, the methods for DPM models can be adjusted for the IBLF
models. Similar to the DPM case, Gibbs sampling in conjugate IBLF models is fairly
straightforward to implement but requiring conjugacy does not hold for many interesting
IBLF models. In Section 4.2, we summarize the Gibbs sampling algorithm for conjugate
IBLF models, as well as other MCMC algorithms that can be used for inference on the
non-conjugate IBLF models. In Section 4.3, we apply the described algorithms for
inference on a simple model on several synthetic data sets for empirically comparing the
performance of the different samplers.

In Section 4.4, we use an IBLF model suggested in (Griffiths and Ghahramani, 2005)
to learn the features of handwritten digits. We employ two-part latent vectors for
representing the hidden features of the observations: a binary vector to indicate the
presence or absence of a latent dimension and a real valued vector as the contribution
of each latent dimension. Using an IBP prior over the binary part, we have an over-
complete dictionary of basis functions. In fact, we have infinitely many basis functions,
only a small number of which are active for each data point. We show that the model
can successfully reconstruct the images by finding features that make up the digits.

Another interesting application of IBLF is modeling the choice behavior using the
latent features to represent the alternatives in a choice set, Goriir et al. (2006). In
Section 4.5 we describe the non-parametric choice model using IBP as a prior. We show
that the features that lead to the choice data can be inferred using the model.

There have been other interesting applications of IBP to define flexible latent feature
models. These include protein-protein interactions (Chu et al., 2006), the structure
of causal graphs (Wood et al., 2006b), dyadic data for collaborative filtering (Meeds
et al., 2007), human similarity judgements (Navarro and Griffiths, 2007) and document
classification (Thibaux and Jordan, 2007).

4.1 The Indian Buffet Process

The Indian buffet process (IBP) (Griffiths and Ghahramani, 2005) defines a distribution
on sparse binary matrices with infinitely many columns, and one row for each observa-
tion. It is a sequential process that has been inspired by the Chinese restaurant process
(see Section 3.1.2) and is described by imagining an Indian buffet restaurant offering
an unbounded number of dishes. The metaphor is describing the N rows of a binary
matrix Z, each row represents a customer arriving at the restaurant and the infinitely
many columns of the matrix represent the dishes offered, a finite number of which will
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Y
x

Figure 4.1: Graphical representation for the infinite binary feature model using the Indian buf-
fet process as a prior over the features. The observations x; defined by binary

features (and possibly other parameters). The binary features z;; are generated by
an IBP(a).

N

be chosen by the customers. An entry z;z = 1 means that the ith customer chose the
kth dish. In a latent feature model, the customers correspond to the data points and
the dishes correspond to the features describing the data. Thus, an entry of the binary
matrix indicates the presence or absence of a particular feature for a data point. And
the different dishes represent the (possible) parameters associated with each column of
the matrix. The process has one parameter o which is a positive scalar.

Customers sequentially enter the restaurant which offers a buffet with infinitely many
dishes that are arranged in a line. The first customer entering the restaurant chooses the
first Poisson(«) number of dishes from the buffet. The next customer considers taking
each dish sampled by the first customer with probability 1/2, then samples Poisson(a/2)
number of new dishes. The ith customer goes along the part of the buffet already visited
by the previous customers. He chooses dishes with probability proportional to their
popularity, i.e. with probability (=52*) where

7

i—1
m <ik = g Zik
j=1

is the number of customers that sampled the kth dish before the ith customer. After
going through all the previously sampled dishes, he tries a Poisson(a//i) number of new
dishes. Combining the Poisson and the Bernoulli terms, the probability of a binary
matrix Z generated by this process is given as

Kt K
a (N —m_g)(m_j —1)!
P(Z) = N, P (—aHy) [] N , (4.1)
[Tz, K7 k=1

where K is the total number of dishes sampled, Kii) is the number of new dishes
sampled by the ith customer, m _j is the number of customers that has the kth dish,
and Hy = Zfil 1/i. The graphical representation of the generative process is depicted

in Figure 4.1. Note that the dependency of z; on z .; is not shown because it is inherent
in the IBP definition.
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In the CRP, exchangeability is achieved by ignoring the labels of the tables and
focusing on the resulting partitioning. A similar approach can be taken for the matrices
by ignoring the column order. The analogue of partitions for class assignment vectors
are the equivalence classes for binary matrices. To establish a well defined distribution in
the infinite limit, Griffiths and Ghahramani (2005) define equivalence classes for binary
matrices with respect to a function called left-ordered form (lof (-)) and focus attention
on the distribution over the equivalence class of Z.

Defining the term history of a column of Z to refer to the binary number corresponding
to that column with the first row as the most significant bit, lof (Z) sorts the columns
of Z from left to right according to the histories. Any two binary matrices are lof-
equivalent if they map to the same left-ordered form. The lof-equivalence class [Z] of a
binary matrix Z is the set of binary matrices that are lof-equivalent to Z.

The columns of a matrix with N rows have (2" — 1) possible different histories (other
than zero, which corresponds to the column of zeros). Using the decimal equivalent
of the binary histories, K} denotes the number of columns with history h. The total
number of columns of Z generated by the IBP can be expressed as K+ = ill_l K.
Considering the lof-equivalence classes of the matrices, there are

[T, K"
2N 1
[Th=1 Ki!
matrices Z that can be generated by the sequential process that map to the equivalent

matrix [Z]. Therefore, the distribution over the equivalent feature matrices generated
by IBP becomes

ozKi K —m ) (m . —1)!
P([Z]):Wexp(faHN)H(N kj)v'(' k=D w2

I1 & =

h=1

which accounts to both the customers and the dishes being exchangeable.

Griffiths and Ghahramani (2005) also describe the ” exchangeable Indian buffet pro-
cess” that directly produces matrices of the left-ordered form, which is established by
the customers attending to the histories of the dishes.

The process described has been inspired by the Chinese restaurant process. In the
CRP, customers choose which table to sit at, and favoring to be social, they tend to sit
at the more crowded tables. Since each customer can sit at only one table, the CRP
results in a partitioning on the customers. In the IBP, customers decide which dishes to
sample. They taste the more popular dishes with higher probability, and may also taste
some dishes which nobody tasted before. Every customer is free to sample any number
from the infinitely many dishes. Since customers can sample more than one dish, their
choices does not result in a partitioning, but can be seen as binary features that are
shared between data points.

Note that, in the CRP, although there are infinitely many tables available, the total
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number of occupied tables is limited by the number of customers. There is no such limit
in IBP since customers can choose many dishes and the resulting matrix Z potentially
has infinitely many non-zero columns. Nevertheless, the expected number of total dishes
sampled remains finite, since the mean number of new dishes a customer samples de-
creases reciprocally. It was assumed that the ith customer chooses Poisson(«a/7) number
of new dishes. We can use the additive property of the Poisson distribution to deduce
that the total number of dishes sampled (the number of non-zero columns of Z) follows
a Poisson(aH ) distribution. This means, the effective dimension of the binary matrix
is determined by the IBP parameter o and the number of customers.

The exchangeability of both the customers and the dishes has been established by fo-
cusing on the equivalence classes of the generated matrices using the lof function. The
process starts with the first customer selecting Poisson(«) number of dishes. Making
use of exchangeability, any customer can be the first one to choose. With this argu-
ment, we can see that the total number of dishes sampled by each customer follows a
Poisson(«) distribution. Therefore, for a matrix with N rows (/N customers), the num-
ber of non-zero entries in Z follows a Poisson(a/V) distribution, which implies that the
IBP produces sparse matrices.

4.1.1 A Distribution on Infinite Binary Matrices

The probability distribution over [Z] defined by the IBP that is given in eq. (4.2) can be
derived as the limit of a distribution over finite size binary matrices when the number of
columns approach infinity (Griffiths and Ghahramani, 2005). This approach is similar
to deriving the equivalent distribution to the Dirichlet process mixtures by considering
a mixture model with infinitely many components (see Section 3.1.5). We start with
defining the distribution over a finite binary matrix Z with N rows (customers) and K
columns (dishes), then take the limit X — oco. Recall that an entry z;; = 1 means that
the ith customer has sampled the kth dish, or equivalently, the ith object has the kth
feature. The graphical representation of the hierarchical model is depicted in Figure 4.2.
Each entry on the kth column of the finite-dimensional matrix is assumed to have a

probability uy of being 1,
(zik | x) ~ Bernoulli(pyg). (4.3)

We will refer to ui as the feature presence probability for column k. Putting an inde-
pendent beta prior on each puy,

[ ~ Beta(%, 1), (4.4)

the posterior distribution for pi given the previous ¢ — 1 entries of the kth column is
also beta by conjugacy;

o a .
(e | zjp, 1 < g <) ~ Beta(g +Mmcik, i — M <) (4.5)

where m ;1 = Z;:ﬁ zji, as defined in the previous section.
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DRt

Figure 4.2: Graphical representation for the binary feature model using finite binary matrix.
The parameters py determine the presence or absence of the features that define
the inputs.
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To see the connection between the distribution over the binary matrix and the se-
quential Indian buffet process, we can think of starting with a matrix of zeros and
sequentially setting each entry of the matrix. The incremental conditional probabilities
are given as:

P(zig | zjg, 1 < j <i) = /P(Zik | o) P | zjks, 1< 7 < i)dpy

T(o/K +1) /1 i pbo K1 o

- ; k = 1— g <ik=lqu. (4.6

T(m<ie + o/ K)C(i —mcip) Jo 15 HE (1— pp) i (4.6)
_M<ik +a/K

i+a/K

Taking K — oo, the conditional probability of z;; becomes

Pz | 25, 1< j < i) = ? for m.<ix > 0 (4.7)

since a/ K — 0. Thus, choosing feature k for object i is proportional to the number of
objects that already possess that feature. For the features that no object sampled, i.e.
m . <ir = 0, the probability is

a/K

P(zir | zjk 1§j<i):m7

form 5, =0 (4.8)
which approaches zero as K — oco. However, note that there are infinitely many possible
features with this diminishing Bernoulli probability. Considering sampling infinitely
many new features, we obtain a Poisson distribution over the number of new features;

N7 .
P(K(i) la) = (Oz/z)K* exp(—a/1) (4.9)
* KO |
Refer to appendix B.4 for the details of obtaining the Poisson distribution as the limit

of infinitely many Bernoulli trials.
The above derivation shows how the generative process can be obtained. Griffiths
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and Ghahramani (2005) show that the distribution over the equivalence classes of the
matrices generated by this model and the IBP are the same, which we briefly present
below. See the referred paper for details of the derivation.

Conditioned on g, the rows of the matrix are assumed to be independent, therefore
the joint distribution over a column is

Pz | ) = (i)™ (1 = ) V7", (4.10)

where m_j, = Zfil Zik, 1s the number of 1s in column k, i.e. the number of objects that
share the kth feature. We can integrate over uj using the Dirichlet integral (B.11), and
express the joint probability of the column directly in terms of the hyperparameter a:

Play) = / Pz | ) P(u) dpa

Z/F(l?(/ofj;)l)ui/f{ L (= ) Nk gy, (4.11)
al'(m i +a/K)I(N—m ;+1)
K (N +a/K +1)

Assuming the columns to be independent, the distribution over the whole matrix be-
comes

K K
_ H Play) = H al(m g +ao/K)I(N —m +1) (4.12)

o K 'N+a/K+1)
Considering the lof -equivalence classes of the matrices, the number of matrices Z defined
by the above generative model that map to the equivalent matrix [Z] is

K!
2N 1Kh

which leads to the following distribution over [Z],

K
P(Z]) = — K! al'(mi+a/K)I(N—-—m j+1)

[ K i T(N +a/K+1) (4.13)

This is the distribution of the equivalence classes for the binary matrix with K < oo
columns. The distribution over the matrix with infinitely many columns can be obtained
by separating the terms for non-zero columns (i.e., columns with m_j > 0) and the zero
columns and simply taking the limit as the number of columns K — oo. The limiting
distribution is found to be equal to eq. (4.2).

We repeat the argument of the previous section: even though Z has infinitely many
columns, its distribution favors sparsity. We can compute the expected number of non-
zero entries in Z for the finite case, and take the limit to obtain the expression for the
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Figure 4.3: Graphical representation for the infinite latent feature model using the stick breaking
construction of the Indian buffet process. Note the strictly decreasing order of the
feature presence probabilities.

N

=
Y

X

N

infinite matrix:
N
E{17271} = E{ Z Zik ) = KZE{%}
ik i=1

N
=K | mpl)du (4.14)
i=170

a/K a
N =N
l1+a/K 1+a/K

Taking the limit as K — oo, the expected number of non-zero entries for the infinite
matrix is found to be aN, consistent with the result of the previous section.

The derivation presented above starts with defining the distribution over a finite
dimensional matrix and uses the conjugacy of the beta distribution to the binomial
distribution to integrate out the feature presence probabilities uj. Although the rows
are independent given u, marginalization couples the rows, and the probability of an
entry is given in terms of the hyperparameter o and the number of other entries in that
column that are set to one, i.e. the number of objects sharing the feature. For the
distribution over the infinite matrix to be well defined, the column indices are ignored
by focusing on the permutation-invariant equivalence classes of matrices using the lof(+)
function before taking the infinite limit.

In the next section, we derive the same distribution with another approach, in which
the feature presence probabilities are explicitly represented instead of being integrated
out. To have a well defined distribution over the matrix with infinitely many columns,
a strictly decreasing ordering of the pygs is imposed, which results in the so called stick-
breaking construction.

4.1.2 Stick-Breaking Construction

In Section 3.1.4 we described the stick-breaking construction for the DP. In this section,
we describe a similar construction for the IBP which allows representing the feature pres-
ence probabilities explicitly in the IBLF model, see Figure 4.3. The derivation starts
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from the distribution on a finite binary matrix and imposing a strictly decreasing order-
ing of the feature presence probabilities before taking the infinite limit. Denoting the
kth largest feature presence probability with (), we will show that the stick-breaking
construction for the IBP has the following law for the feature presence probabilities,

k

(k) = Vi B(k—1) = Hyl, with pe)y =1 and v ~ Beta(a,1). (4.15)
=1

That is, each feature presence probability p ) is a product of the previous one, p_1),
and the random variable vg. This can be described metaphorically as starting with
a stick of unit length (1) = 1), and breaking a piece off the stick at each iteration,
discarding that piece and recursing on the piece that we kept. The breaking point is
determined by the variable v, and the feature presence probability p,) is the stick
length left after k iterations. Note that this procedure enforces a strictly decreasing
ordering of the p’s since fi() is given by the stick length that we have left after the kth
iteration! and we recurse on the piece of the stick left at each iteration, see Figure 4.4
for a pictorial representation.

In the following, we present the outline of derivation of the stick-breaking construction
for the IBP. Details of the derivation are given in Appendix A. We start with the same
distributional assumptions on the entries of a finite binary matrix with N rows and K
columns as in Section 4.1.1. That is, for the unordered columns we assume

(zik | pu) ~Bernoulli(ug)

NB t 1 .
M € a( Fra )

The density of g is given as:

i x 1 1-1
== pg (=) IO < g < 13
P(7)T(1) (4.17)

where [{A} is the indicator function for a measurable set A; I[{A} = 1 if A is true, 0
otherwise. The cumulative distribution function (cdf) for py is:

i .
Flug) = / %t?’l]l{() <t<1}dt
0 (4.18)

= {0 < e <13+ T{T < pu

We define p1) > p2) > -+ = px) to be the decreasing ordering of w1, ..., ux. Thus,
(1) is defined as

pay = max i, (4.19)

L

'For the DP, the mixing proportions correspond to the length of the piece that we discard. This
relation be discussed further in the section
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The cumulative distribution function of the maxima of a set of independent random
variables is the product of the cumulative distribution functions of each of the variables.
We obtain the cdf for p(;) by taking the product of the K (identical) cdf’s,

% K
Fluay) = [uf)HO < pay < 1F+T{1 < pgry}] (4.20)
= puiy {0 < pay <13+ {1 < pgy}
Differentiating, we obtain the probability density function (pdf) of p(y:
p(p) = aufgl {0 < p1y < 1} (4.21)

That is, (1) ~ Beta(a, 1).

Following the same approach for the subsequent feature presence probabilities, the
density of p 1) is obtained to be,

(1) k) = P(k+1) [ (k)

K — ]{7 704ka aufl (422)
= oy "~ Hgy WO S pe) S gt

This is the density of the (k + 1)th largest value of K random variables all with distri-
bution given in eq. (4.16). To obtain the distribution of the probabilities corresponding
to the columns of the infinite matrix, we take the limit as K — oco. In the limit, the
density of p 1) becomes

Pty | 1) = gy M?,;rll) {0 < prgry < iy }- (4.23)

Defining p(g) = 1, the above equation gives the densities for the feature presence prob-
abilities for all columns of the infinite dimensional binary matrix Z sorted in a strictly
decreasing order.

Note that given p), p41) is independent of all other p values. We introduce a
H(k)
H(k—1)
[0, f£(1—1)], Vi has range [0, 1]. Using a change of variables, the distribution of v} can be

obtained from eq. (4.23) to be,

set of variables v, = to make use of this Markov property. Since p ) has range

dpr)
de

P | 1—1y) = 2y | (1:k—1))

(4.24)
= ow,?‘*l]I{O <y, <1}

Thus, vy is independent from fi(;.,—1) and is simply Beta(a, 1) distributed. We obtain
the stick-breaking representation by expanding p ),

k

1y = Vi tige—) = | [ 21 (4.25)
=1
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Figure 4.4: Stick-breaking construction for the DP and IBP. The black line at top is the stick
of unit length. The vertical lines show the break point of the stick. The horizontal
blue lines show the length of the stick left after each iteration, which determines
the values for the feature presence probabilities ji(x). The red dotted lines show the
discarded pieces of the stick corresponding to the mixing proportions for the DP.

We refer to this representation as the stick-breaking construction due to its corre-
spondence to the standard stick-breaking construction for the DP (Sethuraman, 1994;
Ishwaran and James, 2001).

Let 7, be the length of stick piece discarded at iteration k. We have,
k—1
me = (1= ve)pg-ny = =) [[ e (4.26)
=1
Making a change of variables vy = 1 — v,
B k—1
ve % Beta(l,a), m = o [J(1 - w) (4.27)
=1

giving the standard stick-breaking construction for DP, eq. (3.16).

In both constructions the weights of interest are given in terms of the stick lengths. In
DP, the weights 7, are the lengths of the discarded pieces, while in IBP, the weights 11z,
are the length of the stick we keep, see Figure 4.4. This difference leads to the different
properties of the weights: for DP, the stick lengths sum to a length of 1 and are not
strictly decreasing, but are in a size-biased order. In IBP the stick lengths may sum to
a value greater than 1 but are decreasing. For both, the weights decrease exponentially
quickly in expectation.

The particular ordering of the columns results in some interesting properties of the
distribution on Z. As stated earlier, y ) is the prior probability of any of the objects
having feature k. There is a positive probability for any data point to have any of
the infinitely many features. However, since the feature presence probabilities have a
strictly decreasing order with exponential rate, in expectation the infinite dimensional
Z matrix has only finitely many non-zero entries.

We can calculate the distribution of the number of non-zero entries to the right of
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column k in row 4, given fi(y). This does not depend on ¢ due to the exchangeability
of the rows. The distribution of the unordered feature presence probabilities p; after
the kth largest one is given by eq. (A.2). The entries z; are Bernoulli distributed with
probability p;. Marginalizing over y;, we have;

k)
p(za | ) = /0 p(zi | p)p(pa | ey )diu

o —a/K a/K-1 4.928
—/ Nl?ﬂ(k) Hy du ( )
o (6

o+ KH®):

Taking the limit as K — oo of the Bernoulli trials with the above probability results in
a Poisson(ayu(y)) distribution over the number of non-zero entries in the ith row. This
result is intuitive, stating that the expected number of non-zero entries depends on the
limiting p () value, and the parameter a. If we consider the entries of the whole row,
i.e. the case k = 0, we recover the distribution derived in the previous section for the
total number of non-zero entries in a row, Poisson(«).

We can also calculate the probability of all entries to the right of column k being zero:

N .
(1= pw))'
P(Z,.>k) = 0] ) = exp (— aHn + O‘Z #)’

Z (4.29)
=1

where Hp is the Nth harmonic number. See Appendix A for the details of derivation.

4.1.3 A Special Case of the Beta Process

Beta process has been defined for use in survival analysis as a cumulative hazard rate
process with nonnegative independent increments® by Hjort (1990). Thibaux and Jordan
(2007) show that a special case of the beta process is related to the Indian buffet process
(IBP) the way the Dirichlet process is related to the Chinese restaurant process.

They define the following generative model for the binary feature matrix Z:

A ~ BP(c,a4y),

Z ~ BeP(A), (4.30)

where BeP(A) denotes a Bernoulli process with hazard measure A and BP(c,aAy)
denotes a beta process with base measure a4y and concentration function c¢. Ag is a
probability measure, « a positive scalar, and ¢ a deterministic function. The distribution
of Z is equivalent to that of the matrix generated by the IBP(«) for the particular choice
of ¢ being the constant function ¢ = 1, BP(1, aAy) .

Considering the beta process BP(c,Ap) with a constant concentration function in
the above generative model results in a two-parameter generalization of the Indian buffet

2See Appendix B.3 for the definition of the independent increment processes
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4.1 The Indian Buffet Process

process. Customer ¢ samples the previously sampled dishes with Bernoulli probability
(mcfz’“ ) and samples Poisson(%) new dishes. We can sequentially generate from this

generalized Indian buffet process for N customers. In detail, at each step (for each
customer) ¢ > 1,

~ Sample the number of new atoms K®) ~ Poisson( ;)
— Sample K@ new locations 0; independently from Ag

— Sample their weight p; ~ Beta(1,c+ ¢ — 1) independently

— Define A; = A;_1 + ijf 11300, (")
The resulting Ay is an approximation of the beta process A since limy_.oc Ay = A
with probability one. Note that the weights j; of the atoms are the feature presence
probabilities defined in the previous sections. In this construction, they are generated
in a size-biased order, similar to the weights 7; of the stick-breaking construction of the
DP.

Beta process is an independent increment process with the corresponding Lévy mea-
sure given by

AN (w,z) = c(w)z™ (1 — )@ da Ag(dw), (4.31)

(Hjort, 1990). Therefore, it can be represented as a countably infinite sum of random
jumps at random points, similar to the gamma process discussed in Section 3.1.3. Unlike
the gamma process, the beta process has fixed points of discontinuity, i.e. atoms at fixed
locations but with random mass. Wolpert and Ickstadt (1998) show how to construct the
beta process using the inverse Lévy measure (ILM) which results in the strictly decreas-
ing ordering of the feature presence probabilities. Thus, the stick-breaking construction
for the IBP presented in Section 4.1.2 turns out to be an elegant way of describing the
ILM for the beta processes with a constant concentration function.

4.1.4 Properties of the Distribution on the Infinite Binary Martices

We have summarized the different ways of describing the distribution on the binary
matrices imposed by the IBP, and the properties of the distribution. Here, we give an
overview of the properties that are important for building IBLF models and developing
techniques for inference.

The IBP produces binary matrices with infinitely many columns. The rows of the
matrix can be thought of as corresponding to the observations and the columns to the
binary features of the observations. An entry being 1 means the presence and 0 means
the absence of a feature for an observation. The key idea is that the features are not
mutually exclusive. That is, each observation can have any number of the infinitely
many features. Consequently, the total number of active features (nonzero columns)
for a certain number of observations (rows) is not limited a priori. One of the most
important properties of IBP that makes inference tractable is its sparsity. Only a small
finite number of columns will have nonzero entries. Defining the model such that only
the active feature columns play a role in the likelihood, we do not have to deal with
the infinitely many inactive columns. For a matrix with N rows, the distribution of
the number of nonzero columns follows a Poisson(aHy) distribution. Each row has
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4 Indian Buffet Process Models

Poisson(a) nonzero entries, and the distribution of the total nonzero entries in the
matrix follows a Poisson(aN) distribution.

The equivalence classes have been defined by using the lof(.) function. The ordering
of the columns is not important for the lof representation, however the stick-breaking
representation has a particular ordering. The columns are sorted with decreasing feature
presence probabilities fix). This representation allows the p () being represented in
computations rather than being integrated out. The construction of the feature presence
probabilities is such that the rate of decay is exponential. Given a part of the matrix,
this representation allows judgment about the distribution of entries of the rest of the
matrix. In particular, after a column with a feature presence probability fiy), the
expected number of nonzero entries in the rest of the row has a Poisson(a ), and the
rest of the matrix a Poisson(a ) N) distribution.

The stick-breaking construction for the IBP and for the DP has an interesting relation.
For the IBP, the feature presence probabilities pi;) correspond to the stick lengths that
we have left after breaking a piece off the stick, and for the DP the mixing proportions
7, correspond to the piece we discard. For this reason, the stick-breaking construction
for the IBP has strictly decreasing weights and the DP has size-biased ordering of the
weights.

The direct correspondence to stick-breaking in DP implies that a range of techniques
for and extensions to the DP can be adapted for the IBP. For example, we can generalize
the IBP by replacing the Beta(«, 1) distribution on v}’s with other distributions. One
possibility is a Pitman-Yor extension (Pitman and Yor, 1997) of the IBP, defined as

k
v ~ Beta(a + kd, 1 — d) Py = H v (4.32)
=1

where d € [0,1) and a > —d. The Pitman-Yor IBP weights decrease in expectation as
a O(k_%) power-law that has heavier tails for the distribution of the number features.
This may be a better fit for some naturally occurring data which have a larger number
of features with significant but small weights Goldwater et al. (2006).

An example technique for the DP which we can adapt to the IBP is to truncate
the stick-breaking construction after a certain number of break points and to perform
inference in the reduced space. Ishwaran and James (2001) give a bound for the error
introduced by the truncation in the DP case which can be used here as well.

Thibaux and Jordan (2007) show the connection between the beta process and the
IBP. This suggests that the beta process, which has been extensively used in survival
analysis, can be used for defining binary latent feature models. Furthermore, they use
the connection between the IBP and the beta process to develop a new algorithm to
sample beta processes with size-biased ordering of the weights.

Wolpert and Ickstadt (1998) show how to construct the beta process with strictly
decreasing weights using the inverse Lévy measure. The stick-breaking construction is
a neat way of describing this algorithm.

A direct consequence of the stick-breaking construction and the relation of the IBP to
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4.2 MCMC Sampling algorithms for IBLF models

the beta process is that a draw from a beta process has the form Y72 yuxdg, (-) with
(k) drawn form the stick breaking prior for the feature presence probabilities, and 63,
is independent from p(;) and is drawn from the base measure H. Generalizations of the
stick-breaking constructions lead to generalizations of the beta process.

The IBP parameter « affects the number of active features therefore updating this
parameter would give more flexibility to the model. The likelihood for « can be de-
rived from the joint distribution of the features given in Equation 34 of Griffiths and
Ghahramani (2005) to be,

p(Z|«a) x o exp(—aHN),

where K* is the number of active components and N is the number of rows. We can
put a gamma prior on «,

a~G(1,1).

Combining this likelihood with the prior, we get the posterior distribution for «
pla|Z) =G(1+ K* 1+ Hy). (4.33)

Since this posterior is of standard form, it can be sampled from easily.

Note that the construction of IBP and related distributions described above concerns
the prior for Z only. Using Z in a IBLF, we update it by sampling its entries using the
full conditional distributions which involves conditioning on the data. In the following
section, we describe methods for inference on IBLF models.

4.2 MCMC Sampling algorithms for IBLF models

The previous section summarized several different approaches for defining the distribu-
tion induced by the Indian buffet process, which has strong connections to the Dirichlet
Process. In this section, we describe MCMC methods for inference on the latent feature
models that use the IBP as the nonparametric prior over the feature matrix, which we
refer to as the infinite binary latent feature (IBLF) models.

The general form of the models we will consider assumes the data generating process to
be living in a latent space of possibly infinite dimension. Each data point x; is described
by an infinite dimensional binary latent vector z; = 2; 1..c that encodes the presence
or absence of the infinitely many features characterized by the parameters © = 6.,
and possibly other parameters ® that live in the observable space. The state of the
binary latent variables determine which features are actively used, that is, the effective
latent dimensionality. Equivalently, we refer to the vector z; as the binary latent feature
vector, and © as the set of parameters of the features. We put an IBP prior on the
feature presence matrix Z, which has the vectors z; as its rows. The parameters © and
® are given standard parametric priors. The data distribution is assumed not to depend
on the features that do not belong to any of the data points, that is, the zero columns
of Z and the parameters 6;, that are associated with those columns. The model can be
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N

Figure 4.5: Graphical representations of a general latent feature model. The data x; is generated
by latent features, z;, parameters associated with the latent features, 6, and other
parameters ¢, all of which have assigned prior distributions. The hierarchy can be
extended by specifying priors on the hyperparameters.

summarized as follows:
(Xi | Z;, Ga (I)) ~ F(Xl | Z;, 67 (I))
Z ~ IBP(a)

O ~ Go(0k | §)
O~ H(®|7)

(4.34)

where F(-) is the distribution of the data and G¢ and H are prior distributions for the
parameters, specified by hyperparameters. See Figure 4.5 for a graphical representation.
The model can be extended by adding more layers to the hierarchy by specifying priors
for the hyperparameters. Note that there are infinitely many latent features. But since
the data distribution does not depend on the inactive features, inference on this model
is still tractable.

We will consider updating each set of variables sequentially. Given the nonparametric
part of the model concerning the latent variables, i.e. given Z and ©, the updates
for the rest of the parameters ® is just like in the parametric hierarchical models.
Furthermore, although © is infinite dimensional, Z will only have finitely many non-
zero columns. Since the likelihood does not depend on the zero columns, the posterior
for 0 corresponding to the inactive columns of Z is same as the prior. Therefore, we
only need to update those 0 that are associated with the active features. This is again
simply sampling from the conditional posterior of 6y,

P(0,| X, Z,®)  Go(0 | ) F(X | Z,0, ) (4.35)
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as in the parametric models. Updating Z is more involved, since we have to deal with
the infinite dimensionality. Therefore, in the rest of this section, we will focus on updates
concerning Z.

In the following, we describe several different MCMC algorithms for inference on the
IBLF models. Conjugacy of the distribution of the feature parameters to the likelihood
function makes inference computationally easier. However, requiring conjugacy limits
the use of IBP. We start with describing sampling for conjugate IBLF models and
continue with other sampling algorithms that do not require conjugacy.

As for the DP, the sampling algorithms for IBLF models may be divided into two
subgroups: the ones that integrate out the feature presence probabilities ug, and the
ones that explicitly represent these probabilities using the stick-breaking construction.
We present algorithms that use these different approaches in the following subsections.

All methods described below update each entry of Z incrementally. Note that in the
IBP, the customers use different criteria for choosing dishes already sampled and for
choosing new dishes. As a consequence, the methods that use the representation where
1y is integrated out employ different update rules for the features owned by other data
points and for the (existing or new) unique features of the data point being considered.
On the other hand, for the methods that use the stick-breaking construction, we need
not make such a distinction.

In the following sections, Z denotes the binary matrix (with unbounded number of
columns), z;; an entry of Z. The index ¢ = 1,..., N runs over the rows, and k = 1,..., K
runs over the columns of Z. Similar to the terminology used in the previous chapter for
the DPM models, the columns of Z with non-zero entries will be referred to as the active
features, and the columns of zeros as the inactive features. Although Z has infinitely
many columns, only finitely many of them will be active. We denote the number of active
features with K+ and the number of features explicitly represented for the computations
(which includes all active features and possibly some inactive features) with KT. The
variable m is used to denote the number of entries that are set to 1 in a specified part
of Z, e.g. m_j means number of 1s in the kth column, and m ;s the same for the kth
column for rows 1,...,7 — 1.

4.2.1 Gibbs Sampling for Conjugate IBLF models

Griffiths and Ghahramani (2005) show how to do inference using Gibbs sampling for the
IBLF models with conjugate priors. If the prior distribution for © is conjugate to the
likelihood, we can update the model parameters and the entries of the binary features
by sampling from their full conditionals. Algorithm 11 summarizes this method.

In detail, for updating the entries of Z, we can exploit the exchangeability of the
rows of the matrix and treat the data point being considered as the last data point. We
use m_;; to denote the number of data points other than ¢ that have feature k. The
conditional posterior for the features with m_;; > 0 is proportional to the product of
the prior given in eq. (4.7) and the likelihood;

p(zik =1 | Z—ikaXaga (I)) X %F(X | zik = 1, Z—ika 67(1)) (436)
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For the features for which m_;; = 0, i.e, the features that no object has (other than
possibly object i), the prior probability approaches zero when we consider K — oo.
Therefore, instead of considerig these features separately, we consider the distribution
over the number of new features K for the ith data point? which has a Poisson(a/N)
prior. There is a parameter 0 associated with each column k = 1,..., 00 of the latent
feature matrix Z. To obtain the posterior distribution over the number of features, we
need to integrate over the parameters to get the marginal likelihood,

F(X|Z,®) = /F(X 1 2,0,8)dGy(0 | €). (4.37)

This integral is analytically tractable only for the case where the prior for © is conjugate
to the likelihood function F(X | Z,©,®). The conjugacy requirement is similar to the
DP models. Without conjugacy, we need to represent the parameters associated with
each feature. Therefore the features are no longer exchangeable and we need to choose
which of the infinitely many features to choose. When we integrate over the parameters,
exchangeability is preserved and we only need to decide how many features to include.

Combining the Poisson prior with the marginal likelihood gives the conditional pos-
terior;

_ (/M) exp(—a/N)
K0
(a/N)K exp(—a/N)
KW

p(K*EZ) ‘ Z—K(i)va(I))

/F(X | ZKii) 2 _g,0,0)dP(O)

X

F(X|Zg0, 2 gw,®),
(4.38)

where Z_ ;i) denotes the part of the matrix Z without the columns corresponding to
the existing unique features of data point ¢, and Z f%0) denotes the columns with the

K ii) new unique features for 1.

Note that, to have a closed form expression for the posterior eq. (4.38), we also need
the marginal likelihood function F(X | Z, ®) to be conjugate to the Poisson prior. If
this is not the case, we can sample from the posterior for example by approximating
the posterior by evaluating the probabilities for a range of values K ii) up to an upper

bound.

Although the application of Gibbs sampling to the conjugate models is straightfor-
ward, requiring conjugacy limits the models that can be developed using IBP. In the
following, we describe algorithms that do not require conjugacy.

3We overload the notation here. Note that in the previous section, K ,@ was used also as the number
of new features for object i, but here we assume each object to be the last since we condition on all
others. Here, the superscript ¢ denotes the identity of the data point, not its place in the sequence.
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Algorithm 11 Gibbs sampling for conjugate IBP

The state of the Markov chain consists of the infinite feature matrix Z and the set of
infinitely many parameters © = 01...
Only the Kt active columns of Z and the corresponding parameters are represented.
Repeatedly sample:
for all rows i =1,..., N do {Feature updates}
for all columns k= 1,...,K* do
if m_;, > 0 then
Update z;; by sampling from its conditional posterior, eq. (4.36).
end if
Remove the columns of Z for which m_; ; = 0 and the corresponding parameters
0. from the representation.
Sample the number of new unique features for i from the posterior, eq. (4.38).
Update Z to include the new number of unique features of i.
end for
end for
for all active columns k = 1,..., K* do {Parameter updates}
Update 6; by sampling from its conditional posterior, eq. (4.35).
end for

4.2.2 Approximate Gibbs Sampling for Non-Conjugate Models

For the models in which the prior for the parameters © and the likelihood are not con-
jugate, the likelihood cannot be marginalized over ©. Hence, the parameters associated
also with each inactive feature column need to be represented explicitly. This prevents
us from computing the limiting posterior distribution over the infinite feature matrix.
The prior for the entries of the columns with m_; ; > 0 is well defined, therefore we can
still use Gibbs sampling for updating these features, conditioning also on the parame-
ter values. For sampling for the unique features, Goriir et al. (2006) propose using an
approximation to the posterior.

Note that in Section 4.1.1, the Poisson prior over the number of new features has been
obtained as the limit of K Bernoulli trials with probability % which approaches
zero as K — oo. We can obtain an approximation to the infinite case by truncating
the number of Bernoulli trials at a finite value K, and considering the joint posterior
probability of these K features. Note the difference compared to a finite model where
the number of total features is fixed at a certain value. There are always infinitely many
features, most of them being inactive, hence they do not affect the likelihood. However,
when doing posterior updates, we need to take into account the possibility of any of
these features becoming active. We use the truncation as an approximation for the
Gibbs sampling updates only for the (existing or new) unique features. Therefore, the
number of features the model can introduce is not bounded, contrary to a model with
a finite but large number of features.

We use K aux1hary variables to represent the possible values for the parameters
6 = 01 i of the K features that are not associated with any other object. We asso-
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ciate parameters of the existing unique features of object ¢ with some of the auxiliary
parameters and draw values from the prior Go(éj |€) for the rest of the auxiliary pa-
rameters. Since each feature has a parameter associated with it, the particular order of
the columns is important, unlike the case in the previous section. There are 2% possible
combinations for the K unique features for object i. We denote the part of the ma-
trix with active features that are not unique to object ¢ with Z_ ;) and the auxiliary
features that are not associated with any object other than (possibly) object ¢ with 21
where the index I € [1,...,2%] denotes the possible feature settings. (Note that all
entries of Z; are zero except the ith row.) We evaluate the posterior probabilities of all
possible Z, and sample from this distribution to decide on which to include. The joint
posterior for the ith row of Z; will consist of the prior Bernoulli probabilities of setting

each feature in the ith row to 0 or 1 (with probability Ni/a I;K), and the probability of

the data given Z_ ¢y, 0_r), Z, and ©,
P(Z| X, Z_@,©_g@,0) x P (Z) P <X \ ZZ7Z_K(Z‘)7@_K(1')7©> : (4.39)

The IBLF models have close correspondences with the DPM models which allows
infinite components in the mixture model. The unique features of an object can be
thought of as the singleton components in the DP, and the inactive features as the mix-
ture components that do not have any data associated with them. The sampling scheme
described in this section (summarized as Algorithm 12) is inspired from ” Algorithm 8”
of Neal (2000) for inference in the Dirichlet process models with non-conjugate priors
(described in Section 3.2.2, Algorithm 5). However, note that Neal’s algorithm for DP
models is exact, whereas the algorithm described here for the IBLF models uses an ap-
proximation. The quality of approximation gets better with larger values of truncation,
however it should be noted that the stationary distribution will be different than the
actual posterior distribution due to the approximation.

4.2.3 Metropolis-Hastings Sampling

As discussed above, not having conjugacy is a problem only when Gibbs sampling for
the unique features of the data point being considered. Meeds et al. (2007) suggest using
Gibbs sampling for the features with m_; 1~ and treating the unique features separately
using Metropolis-Hastings sampling, which results in the true posterior distribution. We
describe the algorithm below and give a summary in Algorithm 13.

The set of features with m_;; = 0 contains the finitely many unique features of
data point ¢ and the infinitely many features that do not belong to any of the data
points. Instead of calculating the posterior over the number of new features and sampling
directly from this distribution as in Section 4.2.1, we can propose the number of unique
features K and the set of parameters assomated with them © = 01 & from a proposal

distribution Q(K , @) and consider this proposal with a Metropolis Hastings acceptance
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Algorithm 12 Approximate Gibbs sampling for non-conjugate IBP
The state of the Markov chain consists of the infinite feature matrix Z and the set of
infinitely many parameters © = 01..
Only the K* active columns of Z and the corresponding parameters are represented.
Repeatedly sample:
for all rows i =1,..., N do {Feature updates}
for all columns k =1,..., K% do
if m_;; > 0 then
Update z;; by sampling from its conditional posterior, eq. (4.36).
else {m_;, =0}

Set one of the unallocated auxiliary parameters éj to 0.
end if
end for
Remove the columns of Z for which m_;; = 0 and the corresponding parameters
0 from the representation.
Sample values from the prior Gy for the yet unallocated auxiliary parameters éj.
foralll=1,...,2% do
Calculate the posterior for Z; using eq. (4.39)
end for
Pick a feature combination Z; with probabilities calculated above
Update © by appending S)
Update Z by appending Z
Remove zero columns of Z and the corresponding parameters 8y from the repre-
sentation.
Discard Zl and ©
end for
for all active columns k = 1,..., K* do {Parameter updates}
Update 6 by sampling from its conditional posterior, eq. (4.35)
end for
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ratio.

Meeds et al. (2007) choose the product of the prior distributions as the proposal
distribution; Q(K,© | n, ©) = Poisson(K | a/N)Go(© | €). That is, the number of unique
features K for data point ¢ is chosen from the Poisson distribution, and that many
parameters are sampled from the prior distribution Go(6 |£). We use the same notation
as the previous sections and denote the existing unique features of i with K. Thus,
the feature matrix without these features and the corresponding set of parameters are
denoted with Z_ ;i) and ©_ ), respectively. The acceptance ratio is given as

P(K,0]X) QK" 6|K,6)
P(K®,0|X) Q(K,0|K®,0)
_ F(X ‘ K’ 67[{(1')’@’ ZfK(i)a Za q))

F(X|KWY 0,7 0) (4.40)

y Poisson(K | a/N)Go(©¢) QKD 0| K,0_w),0) '

Poisson(K®) | a/N)Go(O]€) Q(K,0_xw),0| K®,0)

:F(X | K? @7[((1')7 (:)7 ZfK(iMZAv CD)
F(X|KY, 0,7 )

Thus, the acceptance probability reduces to the ratio of the likelihoods. Note that
even if the current number of unique features for i is greater than zero, the parameters
corresponding to these features are ignored, and all proposal parameters are sampled
from the prior. This might lead to low acceptance probabilities if the prior distribution
is not a good representation of the posterior distribution for the parameters.

For the conjugate models, the parameters © can be integrated out, resulting in
the marginal likelihood F(X |n,Z,®). In that case, we only need to consider sam-
pling the number of unique features to introduce with the simpler proposal distribution
Q(K |n) = Poisson(K | a/N). The acceptance ratio is found to be the ratio of marginal
likelihoods: . o . )

P(K|X) QUK | K) _ FIX|K.Z . 2.9) )
PR|X)QE|K) F(X|K.Z®) |

This algorithm has the true posterior distribution as its stationary distribution since
it does not suffer from the approximation error introduced by approximating the dis-
tribution of the unique features as in the Gibbs sampling algorithm of Section 4.2.2.
However, acceptance ratios for non-conjugate models are likely to be small, since we
cannot expect the prior to be a good representation of the posterior distribution of
the parameters. The parameters of the existing unique features are ignored, and the
parameters for the proposed unique features are sampled from the prior.

4.2.4 Gibbs Sampling for the Truncated Stick-Breaking Construction

The stick-breaking construction described in Section 4.1.2 results in a strictly decreasing
ordering of the feature presence probabilities. The stick lengths decrease with exponen-
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Algorithm 13 Metropolis-Hastings sampling for IBP
The state of the Markov chain consists of the infinite feature matrix Z and the set of
infinitely many parameters © = {6 }9°.

Only the Kt active columns of Z and the corresponding parameters are represented.

Repeatedly sample:
for all rows i =1,..., N do {Feature updates}
for all columns k= 1,..., K% do
if m_; > 0 then
Update z;; by sampling from its conditional posterior, eq. (4.36).
end if
end for
Propose a number K for unique features from the prior Poisson(a/N)
Sample K parameters for the unique features. and ©
Evaluate the proposal using the acceptance ratio, eq. (4.40)
end for
for all active columns k = 1,..., K* do {Parameter updates}
Update 6j by sampling from its conditional posterior, eq. (4.35)
end for

tial rate, which suggests adapting the truncation used for approximating the DP to the
IBP. The bound on the error introduced by the truncation for the DP stick-breaking
construction has been calculated by Ishwaran and James (2001). Noting the correspon-
dences between the stick weights of the IBP and the DP, a similar approach can be used
in this case.

Let M be the truncation level. Setting p(pr41) = 0 constrains all ) = 0 for k > M,
while the joint density for (1.5 is given as

M
= H P(M(k) \ M(kfl))
k=1

. (4.42)
=My [ G O < many < <y < 13
k=1

Inference using Gibbs sampling is straightforward to implement on the truncated
model. The entries of Z are independent given fi(;.pr), thus

N M
p(Z [ paan) = H H ”“ (1 — pagiy) ' 75k (4.43)

Since the entries in a column are independent given the feature presence probabilities,
we do not need to worry about whether the other data points have the feature being
updated or not. That is, we do not need separate update rules for separate cases in this
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representation. We can sample entries of all columns from their conditional posterior
p(zik ‘ H(k)» X, 0, (b) X /‘L(k)F(X | zig = 1,2, X, O, (b) (444)

Since the feature presence probabilities are explicitly represented in this construction,
they should also be updated. We obtain the posterior for p ) by combining the prior
from eq. (4.42) and the likelihood from eq. (4.43),

Pluwy | Z, b)) = O‘MN((IM) N?}i])c_l (1- N(k))mek 1) < by < -1yt (4.45)

This density is not of standard form. But it can be shown that the log posterior is
log-concave, therefore it can be sampled from efficiently using ARS.

Algorithm 14 Gibbs sampling for truncated IBP
The state of the Markov chain consists of the finite feature matrix Z with M columns,
the feature presence probabilities pi.0s = p1, - .., pas corresponding to each feature
column and the set of parameters © = {6}, All variables are represented.

Repeatedly sample:

for all rows i =1,..., N and columns k=1,... M do {Feature updates}
Update z;; by sampling from its conditional posterior, eq. (4.44).

end for

for all columns k =1,..., M do {Parameter updates}
Update 6 by sampling from its conditional posterior, eq. (4.35)

end for

for all columns k£ =1,..., M do {Update feature presence probabilities}
Update py, by sampling from its conditional posterior, eq. (4.45) using ARS

end for

4.2.5 Slice Sampling Using the Stick Breaking Construction

Inference on the truncated stick-breaking construction using Gibbs sampling is easy
to implement and due to the ordering of the feature presence probabilities, the error
introduced by the truncation can be bounded. However, it is possible to avoid approx-
imation all together and do inference on the complete nonparametric model by using
slice sampling (Teh, Goriir, and Ghahramani, 2007). This method can be interpreted
as adaptively choosing a truncation level at each iteration. See (Neal, 2003) for an
overview of slice sampling.

Slice sampling has been successfully applied to DP mixture models by Walker (2006)
(see Section 3.2.3), and the algorithm for IBLF models described below is related to
this approach.

In detail, we introduce an auxiliary slice variable,

s | Z, p(1:00) ~ Uniforml[0, p*] (4.46)
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4.2 MCMC Sampling algorithms for IBLF models

Figure 4.6: Pictorial representation of slice sampling for IBP. The slice value is sampled uni-
formly randomly between 0 and the stick length of the last active feature. The slice
is cut through the stick pieces. The representation is extended to include all features
with stick lengths higher than the slice.

where p* is a function of ji(1.00) = {p(x) }7° and Z, and is chosen to be the length of the
stick for the last feature with a non-zero entry,

f—omind 1 i _ 4.47
p mm{ ,Hrl,r’l;ir;:lu(k)} (4.47)

The joint distribution of Z and the auxiliary variable s is

p(Za $ | X, //J(loo)) = p(Z | X, /‘L(loo)) p(S | Zv M(loo)) (448)

where 1
P(s|Z; o)) = EH{O Ss<pth (4.49)

Clearly, integrating out s preserves the original distribution over Z, while conditioned
on Z and fi(1:0c), s is simply drawn from (4.46). Given s, the distribution of Z becomes:

p(Z ’ X, S, ,u(l:oo)) X p(Z ‘ X, M(loo))?l*ﬂ{s < M*} (450)

which forces all columns k of Z for which p ) < s to be zero. This can be interpreted
as the auxiliary variable s cutting a slice through the feature presence probabilities,
leaving only those with a larger weight than s to be updated. Since s is sampled
uniformly between 0 and the height of the last active feature, the features below the
slice are fixed to zero.

Let K be the maximal feature index with iy > 8- Thus z; = 0 for all k& > f(,

and we need only consider updating those features k < K. Notice that K serves as a
truncation level insofar as it limits the computational costs to a finite amount without
approximation.

Let KT be an index such that all active features have index k < KT (note that KT itself
would be an empty feature). The computational representation for the slice sampler con-
sists of the slice variables and the first KT features: {s, K, K1, ZyNakt Bt Ot 3
The slice sampler proceeds by updating all variables in turn.

The slice variable is drawn from (4.46). If the value of s is less than the last represented
feature presence probability (KT then we need to extend the representation. We
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sample more fi()s until K < KT and extend Z by adding the necessary number of
columns of zero, see Figure 4.6 for a pictorial explanation. In the appendix we show
that the stick lengths p () for new features k > K  can be drawn iteratively from the
following distribution:

a—1

p(ﬂ(k) ’M(szl), Z. sk=0) X H (k) (1- M(k))N exp(a Zﬁ\;l %(1 - ,U«(k))i)

(4.51)
{0 < py < pe—1) b

which is obtained by conditioning on the fact that there are no non-zero entries beyond
the kth column, eq. (4.29). We can use ARS to draw samples from (4.51) since it is
log-concave in log pi(3). Finally, parameters for the new represented features are drawn
from the prior 6, ~ H.

Given s, we only need to update zy, for each i = 1,...,N and k = 1,..., K. The
conditional probabilities are:

Kk
p(zik = 118, prys Z—ik, 01.51) o #f(xi | zik = 1, Z_ik, 01 1) (4.52)

The p* denominator is needed when different values of z;; induces different values of p*
(e.g. if z;; = 1 prior to the update, and was the only non-zero entry in the last non-zero
column of 7).

For k=1,..., K —1, combining (4.42) and (4.43), the conditional probability of (k)
is

m. p—1 —-m
Plry | =1y, Z) ocpgy™ (1= Loy )N TN
1) < ey < -1y} (4.53)

where m. , = Zfi 1 Zik- For k= K . in addition to taking into account the probability
of z g+ = 0, we also have to take into account the probability that all columns of Z
beyond K is zero. The resulting conditional probability of [ty s given by (4.51) with
k = K'. Drawing from both (4.53) and (4.51) can be done using ARS. The conditional
probability of 6 for each k = 1,..., KT, is as given before, eq. (4.35).

The feature columns are sorted in a specific way in the stick-breaking representation,
therefore they are no longer exchangeable. This can result in poor mixing over the
features, similar to the DP case as pointed out by Porteus et al. (2006). This problem
becomes more apparent when one of the features with a large index happens to con-
tribute highly to the likelihood. In this case, this feature would persist, which would
require keeping all other unnecessary features in between the representative ones even
though they are not active. We can consider moves that facilitate mixing over the fea-
ture indices and use Metropolis-Hastings sampling to evaluate the proposals similar to
the ones proposed for the DP case by Porteus et al. (2006). However, the additional
constraint of the stick lengths being in a strictly decreasing order complicates the for-
mulation of the moves. In the following section, we describe an alternative method to
facilitate mixing in the stick-breaking representation.
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4.2 MCMC Sampling algorithms for IBLF models

Algorithm 15 Slice sampling for stick-breaking IBP

The state of the Markov chain consists of the infinite feature matrix Z, the feature
presence probabilities fi(1.00) = (1), K(2), --- corresponding to each feature column
and the set of infinitely many parameters © = 6;..

Only the KT columns of Z up to and including the last active column and the corre-
sponding parameters are represented.

Repeatedly sample:
for all rows i =1,..., N do {Feature updates}
Sample a slice s uniformly between 0 and the stick length of the last active com-
ponent.
if s < ,U/(KT) then
Extend the representation by breaking the stick until s > ikt using eq. (4.51)
Sample parameters for the new represented features from the prior
end if

for all columns k =1,..., K" do {update features above the slice}
if pu) > s, update 2, using the full conditional eq. (4.52)
end for
end for

for all columns k = 1,..., KT do {Parameter updates}
Update 0 by sampling from its conditional posterior, eq. (4.35)

end for

for all columns k£ =1,..., KT — 1 do {Update feature presence probabilities}
Update py by sampling from its conditional posterior, eq. (4.53) using ARS

end for

for column KT, the last represented column, update I(kty, by sampling from its

conditional posterior, eq. (4.51)

4.2.6 Change of Representations and Slice Sampling for the Semi-Ordered
Stick-Breaking

Both the stick-breaking construction and the standard IBP representation are different
representations of the same nonparametric object. Therefore, it is possible to make use
of both representations in calculations by changing from one representation to the other
(Teh, Goriir, and Ghahramani, 2007). More precisely, given a posterior sample in the
stick-breaking representation it is possible to construct a posterior sample in the IBP
representation and vice versa.

We use the infinite limit formulation of both representations to derive the appropriate
procedures. Note that for IBP, the feature labels in an arbitrarily large finite model are
ignored. On the other hand, the stick-breaking construction is obtained by explicitly
representing the feature presence probabilities and enforcing an ordering of the feature
indices with decreasing stick lengths. Therefore, for changing from the stick-breaking
to the IBP representation we simply drop the stick lengths as well as all the inactive
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features, leaving only the K* active feature columns along with the corresponding pa-
rameters. To change from IBP back to the stick-breaking representation, we have to
draw the stick lengths and sort the features in decreasing stick lengths, introducing
empty features if required.

We consider the finite binary matrix of Section 4.1.1 with the same distributional
assumptions. We index the K* active features with k = 1,..., K¥. Let Z;. s be the
feature presence matrix, that is, the matrix composed of only the active feature columns.
Suppose that we have K > K* features in the finite model. For the active features, the
posterior for the feature presence probabilities are simply

,u;f | 2. ~ Beta(% +m. g, 1+ N —m.g), (4.54)

see eq. (4.5). Taking the limit as K — oo, the posterior becomes,
Beta(m.ﬁ, 1+ N — m.,k). (4.55)

In the stick breaking representation, we need to represent at least all features up to
and including the last active feature. Therefore, the representation may include some
inactive features. When changing the representation from IBP to the stick-breaking, it is
sufficient to represent only those empty features with stick lengths larger than ming ,u;.
Thus we consider a decreasing ordering u‘(’l) > ,u‘(’Q) > -.- on the stick lengths of the
inactive components. For each p,,, we condition on the fact that there are no active
features beyond that feature. Thus, considering infinitely many features, the density
for ,u‘(’k) is given by (4.51). ARS can be used to draw ”?1:K°) until M?KO) < ming .
We sample parameters for the newly represented inactive features from the prior. The
stick-breaking representation is obtained by reordering u;ﬁ Kt “?1: K°) in decreasing order,
with the feature columns and parameters taking on the same ordering (columns and
parameters corresponding to empty features are set to 0 and drawn from their prior
respectively), resulting in KT = Kt 4 K° features in the stick-breaking representation.
The validity of this representation can be seen by referring to the connection of the IBP
to the beta process Thibaux and Jordan (2007).

Semi-Ordered Stick-Breaking

In deriving the change of representations from the IBP to the stick-breaking represen-
tation, we made use of an intermediate representation whereby the active features are
unordered, while the empty ones have an ordering of decreasing stick lengths. It is in
fact possible to directly work with this representation, which we shall call semi-ordered
stick-breaking.

The Z matrix consists of K* active and unordered features, as well as an ordered
sequence of infinitely many empty features. The stick lengths for the active features
have conditional distributions:

i |z ~ Beta(m.y, 1+ N —m.) (4.56)
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while for the empty features we have a Markov property:

POy | 10—1y) o (1)1 = i)™

exp(ZiNzl %(1 . N?k))i»ﬂ{o < /J’?k) S u((jk—l)}' (4.57)

Note that this equation is the same as eq. (4.51), with the conditioning on the rest of
Z being inactive is inherent in the definition of u°.

Slice Sampler

To use the semi-ordered stick-breaking construction as a representation for inference,
we can again use the slice sampler to adaptively truncate the representation for empty
features. This gives an inference scheme which works in the non-conjugate case, is
not approximate, has an adaptive truncation level, but without the restrictive ordering
constraint of the stick-breaking construction, summarized in Algorithm 16.

The representation consists only of the active features and the features and stick
lengths associated with these features. The slice variable is defined as

s ~ Uniform|0, p*] @ = min {1, min ,u;} (4.58)
1<k<Kt
Once a slice value is drawn, we extend the representation by generating K° empty
features, with their stick lengths drawn from (4.57) until [{roqq) < 5. The associated
feature columns Z3., are initialized to 0 and the parameters 67 ,. are drawn from
their prior. Sampling for the matrix entries and the parameters proceed as before.
Afterwards, we remove the zero columns and the corresponding parameters and stick
lengths from the representation. Finally, the stick lengths for the new list of active
features are drawn from their conditionals (4.56).
We have presented several MCMC algorithms for inference on the IBLF models. The
important question is which of these algorithms to use in practice. In the next section,
we give an empirical comparison of some of the samplers.

4.3 Comparing Performances of the Samplers

We have described several sampling algorithms for inference on the models using IBP in
the previous section. It is important to have an intuition about the comparative perfor-
mance of the different samplers when choosing which one to use in practice. An espe-
cially interesting question is how the computational cost is effected when non-conjugate
samplers are used. Therefore, we compare the mixing performance of the conjugate
Gibbs sampler (described in Algorithm 11) to the performance of the slice sampler us-
ing the strictly decreasing ordering of the stick lengths (Algorithm 15) and using the
semi-ordered stick-breaking representation (Algorithm 16). We also compare the results
of the the approximate Gibbs sampler (Algorithm 12) to the conjugate Gibbs sampler
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Algorithm 16 Slice sampling for the semi-ordered IBP
The state of the Markov chain consists of the infinite feature matrix Z, the feature
presence probabilities 1.0 = 1, - - -, loo corresponding to each feature column and
the set of infinitely many parameters © = {60 }5°.
Only the K* active columns of Z up to and including the last active column and the
corresponding parameters are represented.

Repeatedly sample:
Change to SB representation:
Sample us for active features (u) from their posterior, eq. (4.56)
Sample us for inactive components (1°) using eq. (4.57) until the smallest u* is larger
than the smallest p°
Sort columns to have ps in decreasing order
foralli=1,...,N do

Do feature updates in the SB representation
end for
Change to IBP representation:
Remove feature presence probabilities from the representation
Remove inactive feature columns from the representation
for all columns k = 1,..., KT do {Parameter updates}

Update 6 by sampling from its conditional posterior, eq. (4.35)
end for

results to have a sense of the accuracy of the approximation. Since for both cases the
conjugate Gibbs sampling is taken as a basis of comparison, we use a conjugate model.

We choose to use the linear-Gaussian binary latent feature model from Griffiths and
Ghahramani (2005). The model is summarized below, see the referred paper for a
detailed description. Each data point x; is assumed to be generated by a combination
of a subset of the rows of A and distorted by spherical Gaussian noise,

X, = z;A+ e, (459)

with € ~ AN(0,02]). The infinite dimensional binary vector z; encodes which features
are contributing to x;, and A is a matrix (with infinitely many rows) whose kth row
corresponds to the parameters for the kth feature. This model can be interpreted as a
binary factor analyzer with an infinite dimensional latent space. The distribution over
the whole data matrix X can be written as a matrix Gaussian,

X|Z,A,0, ~ N(ZA, 21). (4.60)

Entries of A are drawn i.i.d. from a zero-mean Gaussian with variance 0124. We can
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denote the distribution over a finite (K x D) part of A also as matrix Gaussian,
Aloa ~ N(0, o3D), (4.61)

where 0 denotes a K x D matrix of zeros. We put an IBP(«a) prior on the latent binary
feature matrix Z, and a gamma prior on the IBP parameter « ~ G(1,1), completing
the model.

We compare the mixing performance of the two slice samplers (on the strictly de-
creasing weights, and on the semi-ordered weights) and Gibbs sampling described in the
previous section. We chose to apply the samplers to simple synthetic data sets so that
we can be assured of convergence to the true posterior and that mixing times can be
estimated reliably in a reasonable amount of computation time for all samplers. We also
chose to use a conjugate model since Gibbs sampling requires conjugacy. However, note
that our implementation of the two slice samplers did not make use of the conjugacy.

We generated 1,2 and 3 dimensional data sets from the model with data variance
fixed at 02 = 1, varying values of the strength parameter o = 1,2 and the latent feature
variance 04 = 1,2,4,8. For each combination of parameters we produced five data sets
with 100 data points, in total 120 data sets. For all data sets, we fixed o2 and 0124 to
the generating values and learned the feature matrix Z and a.

We are interested in how the samplers on the nonparametric part of the model perform
Therefore, we fix the o, and o4 values and learn Z, A and « for all cases. For each
data set and each sampler, we repeated 5 runs of 15,000 iterations. We used the
autocorrelation coefficients of the number of represented features K+ and o (with a
maximum lag of 2500) as measures of mixing time. We found that mixing in K¥ is
slower than mixing in « for all data sets and all three samplers. We also found that in
this regime the autocorrelation times do not vary with dimensionality or with 0124. In
Figure 4.7 we show the autocorrelation times of a and K over all runs, all data sets,
and all three samplers. As expected, the slice sampler using the decreasing stick lengths
ordering was always slower than the semi-ordered one. Surprisingly, we found that the
semi-ordered slice sampler was just as fast as the Gibbs sampler which fully exploits
conjugacy. This is about as well as we would expect a more generally applicable non-
conjugate sampler to perform. This is a motivating result for using the semi-ordered
slice sampler for inference on complex non-conjugate IBLF models.

The first algorithm introduced for inference on the non-conjugate IBLF models is the
approximate Gibbs sampling algorithm (Algorithm 12). Even though efficient sampling
techniques that do not need to use an approximation have been developed, it is inter-
esting to have an insight about how the approximate method performs compared to the
non-approximate ones. We compare the modeling performance of Algorithm 12 to the
conjugate Gibbs sampling results using the model described above.

We generated a synthetic data set of 6 x 6 images described in Griffiths and Ghahra-
mani (2005). The input images are composed of a combination of (a subset of) four
latent features and zero-mean Gaussian noise with 0.5 standard deviation. We used
the Gibbs sampling for conjugate models and the approximate Gibbs sampling for non-
conjugate models to learn the latent structure. For the approximate scheme we used
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Figure 4.7: Comparison of the mixing times for a (left) and the number of active features K*
(right) for the slice sampler on stick-breaking representation with decreasing stick
lengths, the slice sampling for the semi-ordered stick-breaking representation, and
for the conjugate Gibbs sampler. As expected, mixing is slowest when the stick
lengths are constrained to have the strictly decreasing ordering. The slice sampler
on the semi-ordered stick lengths not exploiting conjugacy is as fast as the Gibbs
sampler using conjugacy.

five auxiliary features for unique feature updates. Since the approximate scheme is
more sensitive to hyperparameter values, we fixed the values of o and o 4 for the initial
25 iterations for both samplers. The mixing time of the approximate scheme is slower
as expected, since only a finite number of new features with specific parameters are
considered instead of integrating over the infinitely many features. Nevertheless, the
modeling performance of the approximate scheme is found to be comparable to the ex-
act scheme. The latent features making up the images and the generating noise scale
can be accurately recovered. The trace plots of both samplers are depicted in Figure 4.8
and Figure 4.9.

4.4 A Flexible Infinite Latent Feature Model

The binary feature model used in the previous section models the observations as a
combination of the latent features. Each latent feature is either present with weight 1
or does not contribute at all to the observation. We can obtain a more powerful model
by allowing the latent features to take on real values while preserving sparsity. We use
a sparse real-valued latent feature matrix F' composed of two components: a binary
matrix Z that encodes the presence or absence of the features, and a real-valued matrix
Y expressing the weight of each feature for each object, as suggested in Griffiths and
Ghahramani (2005). In particular, we define Y to be a matrix of the same size as Z,
with i.i.d. zero mean unit variance Gaussian entries. We model each x; as

(Xi|zi7yi7 Aa Ui) ~ N((Zi,: ® yi,:)A)o-g%I)v (462)

where ® denotes elementwise multiplication. Specification for the rest of the parameters
A, 0., 04 and « is as in the previous section.
Since the data distribution eq. (4.62) does not depend on the zero columns of Z, the
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Figure 4.8: Trace plots for the Gibbs sampling using conjugacy. The sampler converges in a few
iterations to the high probability regions, employing five to seven latent features.
The generating value of o, is recovered.
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Figure 4.9: Trace plots for the approximate Gibbs sampler not exploiting conjugacy with five
auxiliary features for unique feature updates. Compared to the conjugate Gibbs
sampler, the chain moves slower, especially for K. However the samples for all
parameters have similar values to the samples from the conjugate Gibbs sampler.
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Figure 4.10: Features that are shared between many images. Observe that different segments
are pronounced in different features.

effective latent dimension is determined by the number of nonzero columns of Z, similar
to the simpler model in the previous section. This model has two sets of parameters, ¥
and A, associated with Z. We can not integrate over both of them. Therefore we need
an algorithm for non-conjugate IBP models for inference on this model. Motivated by
the results of the previous section, we choose to apply the semi-ordered slice sampler to
learn the latent features.

We modeled 1000 examples of the digit 3 in the MNIST data set. The digit images are
first preprocessed by projecting on to the first 64 PCA components, and the sampler is
ran for 10000 iterations. We show results for the digit 3. The distribution of the number
of nonzero features and the trace plots of the log likelihood are shown in Figure 4.12.

The model succesfully finds latent features to reconstruct the images as shown in
Figure 4.11. Some of the latent features found are shown in Figure 4.10. These appear
to model edge segments of the digit 3.

4.5 A Choice Model with Infinitely Many Latent Features

Modeling choice is an important topic of study for psychology, economics and related
sciences. The goal is to understand and model the behavioral process that leads to
the subject’s choice. In a choice scenario, the subject is presented with more than
one alternative from a choice set and is asked to choose one of the alternatives. The
alternatives may be items or courses of actions.

The answer to the question how much can be treated using regression models. The
choice models address the question which. Ordinal regression can be seen as a choice
model for which the alternatives have a particular ordering. Here, we will consider
discrete choice models where there is no particular ordering of the alternatives. Discrete
choice models assume there to be finitely many alternatives, all of which are included in
the choice set. The alternatives are assumed to be mutually exclusive, that is, choosing
one alternative implies not choosing any other. As data, we have outcomes of repeated
choice from subsets of the choice set. We use the number of times each alternative is
chosen over some others. We want to learn the true choice probabilities.

Psychologists have long been interested in the mechanisms underlying choice behavior
(Luce, 1959). In virtually all psychological experiments subjects are (repeatedly) asked
to make a choice and the responses are recorded. Often the choice is very simple like
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Figure 4.11: Examples of reconstructed images and their latent features. Last column: original
digits, second last column: reconstructed digits, other columns: features used for
reconstruction. For each image, the binary vector z; determines the presence or
absence of a feature. The real valued vector z; determines how much each feature
contributes to the observed image.
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Figure 4.12: Distribution of the number of active features over 10000 iterations (left). Distri-
bution of number of active features for each input at one iteration (right). Note
that the number of features that a particular data point has is much less than
the total number of active features. The number of observations possessing each
feature at one iteration. Note that although the total number of active features is
much larger, about half of the features belong to only a few observations.
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pressing one of two buttons. However, even in these simple choices one finds probabilis-
tic responses. In what seem to be identical experimental conditions, one can observe
that different subjects respond differently. Responses vary even for the same subject
that is repeatedly presented with the same choice scenario. Choice is an omnipresent
phenomenon in economics as well. Consumers choose one brand instead of another,
commuters choose to take the bus rather than the car and college students prefer one
university over another. Considerable effort has been put into probabilistic modeling of
data arising from such choice situations (McFadden, 2000; Train, 2003).

In accordance with economic theory, choice models in economics often assume that
humans are rational and make choices by maximizing utility. The reason for the observed
probabilistic variations in choice behavior is the random variations in utility. These
variations may arise because different decision makers make different judgments about
the utility of an option, or because each decision maker varies randomly in her assessment
of utility over time. Models that fit into this framework are called random utility models
(RUMs). In contrast to RUMs many psychological models do not assume a rational
decision maker—instead they attempt to explain the (probabilistic) mental processes
that take place in the course of a decision.

In spite of the differences in the approaches, the models proposed in these two different
fields have correspondences. One of the most influential psychological models is the
Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952; Luce, 1959), which can be
interpreted also as the random utility model logit (Tversky, 1972). However, it is well-
known that the BTL (or logit) cannot account for all of the choice patterns that can be
observed in choice outcomes. There is a large literature on how choice data can violate
the assumptions built into the BTL model (Restle, 1961; Rumelhart and Greeno, 1971;
Tversky, 1972; Train, 2003).

Within the RUM framework several other models have been suggested to cope with
more general choice patterns, e.g. the probit model with correlated noise, the nested
logit and mixed logit models (Train, 2003). Recently, a mixed multinomial logit model
with a non-parametric mixing distribution has been proposed by James and Lau (2004)
using the Dirichlet process.

Similarly, there have been more general models developed in psychology. The elimi-
nation by aspects (EBA) model (Tversky, 1972) —which includes the BTL model as a
special case—is a well known choice model in psychology. The correspondences of the
EBA model and some RUMs are discussed in Batley and Daly (2006). We focus on the
EBA model in this section.

The EBA model assumes the options to be represented by binary feature vectors,
called aspects. If the choice was between several mobile phones the features could be
whether they have a built-in MP3-player, the display is in color, the battery lasts long
enough, etc. Each feature has a weight associated with it reflecting the importance of
each aspect for the choice. The subject selects a feature at random (but more important
features have a higher probability of being selected) and eliminates all options that do
not have this feature. This process is repeated until only one option remains. If the
features are known their weights can be estimated from choice data (Wickelmaier and
Schmid, 2004). However, generally the features that the subject considered are not
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available to the researcher and one would like to infer them from observed choices.
Although the EBA model can account for many choice scenarios, its usefulness for the
analysis of choice data has been extremely limited by the fact that inference about the
underlying features is very difficult (Tversky and Sattath, 1979; Batsell et al., 2003).

In the following, we present a Bayesian formulation and analysis of the EBA model.
We employ the IBP as a prior over the latent binary features of alternatives in the choice
set and infer the latent features and their weights (importance of each feature to the
choice maker) using MCMC and demonstrate the performance of the proposed model on
a data set studied in psychology. We describe the non-parametric Bayesian formulation
of the EBA model in the next section. The MCMC algorithm used for inference on the
model is presented in Section 4.5.2, followed by experimental results in Section 4.5.3,
and we conclude with a discussion in Section 4.5.4.

4.5.1 Model Specification

The EBA model is defined for choice from a set of several options but for clarity of
presentation we consider only the paired comparison case here which reduces the EBA
model to Restle’s choice model (Restle, 1961; Tversky, 1972). Nevertheless, the inference
techniques we describe below are also valid for the general EBA model.

In a paired comparison experiment there is a set of N options but the subject is
presented only with pairs of options at a time. The task of the subject is to indicate
which of the two options ¢ and j she prefers. In the EBA model, options are described
by K-dimensional binary vector of features z, referred to as aspects. The probability of
choosing option ¢ over option j is given as

Zk wizik (1 — ij) (4.63)

Pii = ’
Y wrzin(l = zjk) + 2 wrzje(l — zik)

where z;;, denotes the binary value of the kth feature of option 7 and wy, is the positive
weight associated with the kth feature. The greater the weight of a feature, the heavier
its influence on the choice probabilities. The sum ), w2k (1 — zj5) collects the weights
for all the aspects that option ¢ has but option j does not have. Therefore, the choice
between two alternatives depends only on the features that are not shared between
the two. Equation (4.63) expresses that the EBA model can account for the effects of
similarity on choice. For the above equation, we define the ratio g = 0.5. That is,
if two alternatives have exactly the same set of features, the choice probability is 0.5.
On the other extreme, if the options are characterized only by unique aspects, i.e. no
option shares any feature with any other option, the BTL model is recovered. Recently,
Ruan et al. (2005) have developed a choice model using a Poisson race model in which
the choice probabilities are mainly determined by the difference in the features of the
alternatives, but the similarities are also allowed to have some effect. This model can
be seen as a generalization of the EBA model.

If one option ¢ has all the features that another alternative j has and more features on
top of these then 7 will always be preferred over j. This is a reasonable assumption but

in real choice data it can happen that subjects occasionally fail to choose alternative
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Figure 4.13: Graphical representation of the elimination by aspects model with IBP prior.

i because of error or lack of concentration (Kuss et al., 2005). In order to make our
inference more robust to these lapses we add a lapse probability ¢ to the choice prob-
abilities that we assume to have a small value. Thus the choice probabilities become
ﬁij = (1 — €)pij + 0.5¢.

Let us denote the number of times that ¢ was chosen over j in a paired comparison
experiment by x;;. It is assumed that x;; is binomially distributed

Tij + Tj - Nz, . g
P(wij | 2i, 2, w) = ( Yo ) (Bi)™ (1 = pis)™", (4.64)
)

and is independent of all other comparisons in the experiment. We can therefore write
the likelihood of all the observed choices in a paired comparison experiment as

N
P(X|z,w) =[] ] P(xijlzi, 2, w), (4.65)

j=11i<j

where X is a matrix that collects the results of all paired comparisons z;;, Z is a N x K
binary matrix of features with entries z;; for the kth feature of option ¢, and w is a
vector containing the weights wy, of all features.

To complete the model we need to specify the priors over the binary features and the
weights. Since we do not know the features a priori we use an IBP prior over the binary
feature matrix and independent gamma priors on the weights,

Z ~ IBP(q) (4.66)

wy, ~ G(1,1). (4.67)
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4.5 A Choice Model with Infinitely Many Latent Features

See Figure 4.13 for a graphical representation of the model.

4.5.2 Inference using MCMC

Inference for the above model can be done using MCMC techniques. Goriir et al. (2006)
present results using the approximate Gibbs sampling for updating the feature matrix
Z. Here, we use slice sampling with the semi-ordered stick-breaking representation. We
use Gibbs sampling for the IBP parameter o and Metropolis Hastings updates for the
weights w.

Gibbs sampling for the feature updates requires the posterior of each z;; conditioned
on all other features Z_(;;,) and the weights w. The conditional posterior for the entries
of the feature matrix can be obtained by combining the likelihood given in eq. (4.65)
with the prior feature presence probability i),

We update the weights using Metropolis Hastings sampling. We sample a new weight
from a proposal distribution Q(w}|ws) and accept the new weight with probability

Pw|X., Z. w_ A /
min | 1, (il X, Z, W, Ok )Q(wf‘wk) . (4.69)
P(wk|X7 Z7 W—k7 wk»7 )\) Q(wk‘wk)

As the proposal distribution we use a gamma distribution with mean equal to the current
value of the weight, w;, and standard deviation proportional to it,

Q(wi|wk) = G(nw, n/wg). (4.70)

We adjust 7 to have an acceptance rate around 0.5 initially.

Note that there are infinitely many weights that are associated with the infinitely
many features. Since the inactive features and their weights do not affect the likelihood,
we need to only represent and update the weights that are associated with the active
features.

4.5.3 Experiments

In this section, we present empirical results on an artificial and a real data set. Both
data sets have been considered in the choice model literature.

We initialize the parameters «, Z and w randomly from their priors and set the lapse
parameter to € = 0.01.

Paris-Rome

We first consider a synthetic example given by Tversky (1972). It was constructed as
a simple example that the BTL model cannot deal with. We will use this example to
illustrate that the EBA model with infinitely many latent features can recover the latent
structure from choice data.
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Figure 4.14: Feature matrix representation and simulation results on the toy data: the choice
between trips to Paris and Rome. Top left: Features weighted by the associated
values are shown. Rows correspond to the alternatives and columns correspond
to the features. Darker means smaller in amplitude. The alternatives P and P+
share the feature of being the trip to Paris and R and R+ share the feature of being
the trip to Rome. P+ and R+ share the small bonus denoted by the $ column.
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4.5 A Choice Model with Infinitely Many Latent Features

Table 4.1: Choice probabilities for the Paris-Rome example. Columns are chosen over rows.

P+ P R R+
P+ 0.50 0 0.48 0.50
P 1 0.50 0.50 0.52
R 0.52 0.50 0.50 1
R+ 050 0.48 0 0.50

Consider the choice between two trips that are on offer at a travel agency: one to Paris
(P) and one to Rome (R). Another travel agency offers exactly the same trips to Paris
and to Rome except that there is an additional small bonus. We denote these options
by P+ and R+, respectively. The options in the choice set consist of P, P+, R, R+.
We assume that the decision maker assigns the same value to the trip to Paris and to
the trip to Rome. Hence, she will be equally likely to prefer the trip to either city.
We denote the probability that Paris is chosen over Rome with P(P, R) = 0.5. As it
is always better to get a bonus than to not get it we can assume that when given the
options P and P+ she would choose P+ with certainty, i.e. P(P+,P) = 1. However,
since a small bonus will not influence the choice between the two cities, P(P+, R) will
be close to 0.5, and likewise for P(R+, P). We assume that the trip itself to either city
has a feature with value w and the bonus is worth 0.0l1w. Thus, the binary feature
matrix weighted with the importance of the features can be represented as shown in the
top left of Figure 4.14. The alternatives P and P+ share the feature of being the trip
to Paris and R and R+ share the feature of being the trip to Rome. P+ and R+ share
the small bonus denoted by the $ column. Note that there might be some features that
trips to either city possess such as taking the plane, going to Europe, etc. Since these
features will be common to all options in the choice set they do not affect the choice
probabilities. The matrix of the deterministic choice probabilities calculated assuming
the EBA model using eq. (4.63) is shown in Table 4.1.

We generated choice data of 100 comparisons for each pair using these probabilities
and used the EBA model with infinitely many latent features (iEBA) to infer the latent
structure of the options. The results of a sample run for the iEBA model are shown in
Figure 4.14. The top row shows the feature matrix that is used to generate the data,
histogram of the frequencies for the active features and the posterior distribution of the
IBP parameter . The plots below show the change in the log likelihood, the number of
active features of the IBP part of the feature matrix and « over the sampling iterations.
It can be seen from the trace plots that the burn-in time is very short and the chain
seems to mix well.

The iEBA model takes only the choice data as input, and it can recover the feature
matrices given in Figure 4.14 from the data. Some sample feature matrices from the
chain are depicted in Figure 4.15 which shows that the model successfully finds the latent
feature representation that was used to generate the data. Note that the mapping
from the choice probabilities to features is not unique, that is, several latent feature
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P+
P
R

R+

Figure 4.15: Random binary feature matrix samples weighted with the feature weights from
the chain for the Paris-Rome example. The gray level indicates the weight of each
feature. Rows correspond to options and columns to features. Only the active
features are shown. It is inferred that there are features that only P and P+
share, and only R and R+ share. Note that there are also some features common
to all options which do not affect the likelihood. The first four columns in these
figures are the unique features, remaining columns are from the posterior of the
infinite part. Note that the weights of the unique features for P and R are very
close to zero, which is expected since they are not supported by the data. The
unique features for P4 and R+ have small weights representing the small bonus.

representations may result in the same choice probabilities. The important point is that
the model can learn the true choice probabilities by inferring that there are features
that only P and P+ share, and there are features that only R and R+ share. The
small bonus that R+ and P+ have in common is represented as two different features
with similar weights. Models on a larger set of alternatives might result in feature
representations that cannot be interpreted easily, as will be seen in the next example.

Celebrities

As a second example we analyze real choice data from an experiment by Rumelhart
and Greeno (1971) that is known to exhibit choice patterns that the BTL model cannot
capture. Subjects were presented with pairs of celebrities and were asked with whom
they would prefer to spend an hour of conversation. There are nine celebrities in the
choice set that were chosen from three groups: three politicians, three athletes and three
movie stars. Individuals within each group are assumed to be more similar to each other
and this should have an effect on the choice probabilities beyond the variation that can
be captured by the BTL model. The data had been collected assuming that the choice
probabilities could be fully captured by a feature matrix that has unique features for each
individual plus one feature for being a politician, one feature for being an athlete and
one feature for being a movie star. The assumed feature matrix is shown in Figure 4.16.
This feature matrix can also be depicted as a tree therefore we refer to this model as
the tree EBA model (tEBA) (Tversky and Sattath, 1979).

We modeled the choice data with different specifications for the EBA model: the
model which assumes all options to have only unique features (BTL), the EBA model
with fixed features of tree structure (tEBA), two finite EBA models with the number of
features fixed to be 12 and 15 (EBA12 and EBA15), and the EBA model with infinitely
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Figure 4.16: Representation of the assumed features for the celebrities data. The tree structure
on the right shows nine celebrities of three professions. Each individual is assumed
to have a unique feature and one feature that he shares with the other celebrities
that have the same profession. The left panel shows this assumed feature matrix
which is used for training the tEBA model.

many latent features (iIEBA).

We compare the predictive performance of each model using a leave-one-out scenario.
We train the models on the data of all possible pairwise comparisons except one pair.
We then predict the choice probability for the pair that was left out and repeat this
procedure for all pairs. We evaluate the performance of the models using the loss
function £(0,60) = —logd — (1 — 0)log(1 — f) which expresses the discrepancy between
the true probabilities 8 and the predicted probabilities . The mean of the predicted
probabilities minimizes the expected loss. Therefore we take this as a point estimate
and report the negative log likelihood on the mean of the predictive distribution for
each pair.

The negative log likelihood of each model averaged over the 36 pairs is shown in
Table 4.2. For better comparison we also report the values for a baseline model that
always predicts 0.5 and the upper bound that could be reached by predicting the em-
pirical probabilities exactly. Furthermore, to see how much information we gain over
the baseline model by using the different models we report an information score for
each single paired comparison: The negative log likelihood averaged over the pairs and
number of comparisons in bits with the baseline model subtracted.

The choice set was designed with the tree structure in mind. As expected, the BTL
model cannot capture as much information as the other models. The iEBA and the
tEBA models have the best predictive performance on average. This shows that the
underlying structure could be successfully represented by the infinite model. However,
we cannot observe the tree structure in the latent features that are found by the iEBA.
Note that different feature representations can lead to the same choice probabilities.
The mean number of active features for the iEBA model for different pairs is between
30 and 50—much more than the number of features in tEBA. This explains why the
average performance of EBA12 and EBA15 is worse than that of iEBA and tEBA even
though they could implement the tree structure in principle. As we cannot know how
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Figure 4.17: The negative log likelihood of one model versus another. Each point corresponds
to one paired comparison.

Table 4.2: Predictive performance of different models: The baseline model that always pre-
dicts a probability of 0.5 (BASE), the Bradley-Terry-Luce model (BTL), the finite
EBA model with 12 features (EBA12), finite EBA model with 15 features (EBA15),
EBA model with tree structure (tEBA), the EBA model with IBP prior (iEBA), and
for comparison the empirical probabilities (EMP). NLL: The negative log likelihood
values on the mean predictive probabilities. IS: Information score in bits (the in-
formation gain compared to the model that always predicts 0.5). NLL and IS both
express the same values in different scales.

MODEL NLL IS
BASE 17.57 0
BTL 4.66 0.0795
EBA12 4.50 0.0806
EBA15 4.31 0.0817
tEBA 3.95 0.0839
iEBA 3.92 0.0841
EMP 2.89 0.0905

many features will be necessary beforehand this is a strong argument in the favor of
using a non-parametric prior.

Figure 4.17 shows a more fine-grained analysis of the BTL, tEBA and iEBA models.
Each point corresponds to one paired comparison: the negative log likelihood of one
model versus the negative log likelihood of another model. Out of 36 pairs BTL has a
smaller log likelihood for 23 of the pairs when compared to tEBA and 26 when compared
to iEBA. However, it can be seen that the bad performance of the BTL model on average
is also due to the fact that it cannot capture the probabilities of some pairs at all. The
iEBA and tEBA likelihoods are comparable although there are some pairs on which
iEBA performs better than tEBA, and vice versa.
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4.6 Discussion

4.5.4 Conclusions

EBA is a choice model which has correspondences to several models in economics and
psychology. The model assumes the choice probabilities to result from the non-shared
features of the options. The usefulness of the EBA model has been hampered by the lack
of a method that can accurately infer the unknown features of the alternatives. We have
suggested to use an infinite latent feature matrix to represent the unknown features. We
showed empirically that the infinite latent feature model (iIEBA) can capture the latent
structure in the choice data as well as the handcrafted model (tEBA). For data for
which we have less prior information it might not be possible to handcraft a reasonable
feature matrix.

Different feature matrices can result in the same choice probabilities and therefore are
not distinguished by the model. For example, features that are shared by all options
do not affect the likelihood. Furthermore, only the ratio of the weights affects the
likelihood. What seems to be a non-identifiability problem is not an issue for sampling
since we are interested in inferring the choice probabilities, not the ”true” features.

On a more conceptual side, the non-identifiability of the features makes the samples
from the posterior hard to interpret. For instance, for the celebrities data one might
have hoped to find feature matrices that correspond to a tree or at least find matrices
with some other directly interpretable structure. However, although the experiment by
Rumelhart and Greeno (1971) was designed with the tree structure in mind Figure 4.16,
we do not know the true latent features that lead to the choices of the subjects. Nev-
ertheless, we can use the posterior to predict future choices from past data, assess the
similarity of the options and cluster or rank them.

The EBA model does not take into account neither the time ordering of choice out-
comes nor the identities of the choice makers. For some choice scenarios this information
is irrelevant or not available. However, a model that can make use of the additional infor-
mation when available would potentially be more powerful in representing the structure.
This is a direction that the EBA model can be improved.

Another possible improvement of the EBA model would be to take into account the
shared features as well when calculating the choice probabilities. One possibility is to
add to eq. (4.63) the effect of the shared features with a scaling factor s € [0, 1]. The
EBA model would be recovered for s = 0, whereas the BTL model would be obtained
when the similar features are treated the same as the differences, that is, with s = 1.
Using a small but nonzero scale value may improve recovering the latent structure of the
alternatives especially when there are pairs of alternatives that have not been compared.

4.6 Discussion

The Indian buffet process has been recently introduced by Griffiths and Ghahramani
(2005), and rapidly attracted interest due to its conceptual simplicity and promising
flexibility for defining nonparametric latent feature models. Its relation to the DP and
related distributions has inspired models and inference algorithms from the DP literature
to be adjusted to the IBP models. The different approaches with which the equivalent
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distribution on the binary matrix can be defined suggests generalizations of the IBP.

In this chapter, we have summarized the different approaches for defining the distri-
bution induced by the IBP. We have described the MCMC algorithms that have been
developed for inference on the IBP models. We have compared the performance of the
different samplers on a simple model to have an intuition about their performances.
We demonstrated the use of the IBP as a prior on two models: A sparse factor analysis
model with an over-complete basis for learning latent features of handwritten digits, and
a choice model with infinitely many features describing the alternatives in the choice
set.

Given the performance of the proposed models, development of nonparametric models
using IBP and generalizations for treating many other machine learning problems is an
area for future research. There is much insight to gain from studying the connections
between the IBP and related distributions, which would lead to further understanding
of the theoretical and practical properties of the distribution. Development and im-
provement of inference algorithms on IBP models is also another direction for future
research.

112



5 Conclusions

The analysis of real-world problems demands a principled way of summarizing the data
and representing the uncertainty in these summaries. Bayesian methods allow repre-
senting prior belief about the system generating the data and provides uncertainties
about the predictions. The analysis of complex systems often requires flexible models
that accurately capture the dependencies in the data. Simple parametric models can
become inadequate for complex real-world problems. Nonparametric methods are pow-
erful tools that allow definition of flexible models, since they can be used to approximate
any of a wide class of distributions.

The Dirichlet process (DP) is one of the most prominent random probability distribu-
tions. Although introduced in the 70s, its use have become popular only recently due to
the development of sophisticated inference algorithms. The Indian buffet process (IBP)
is a generalization of the related Chinese restaurant process which allows definition of
more powerful models. In this thesis, we have presented empirical analysis of models
using the DP and the IBP.

The DP is defined by two parameters, a base distribution and a concentration pa-
rameter. The base distribution is a probability distribution, determining the mean
of the DP. The concentration parameter is a positive scalar that can be seen as the
strength of belief in the prior guess. Use of conjugate priors makes computations for
inference much easier for Bayesian models in general. However, conjugate priors may
fail to represent one’s prior belief. The trade off between the computational ease and
modeling performance is an important modeling question. The Dirichlet process mix-
tures of Gaussians (DPMoG) model is one of the most widely used Dirichlet process
mixture (DPM) models. We have empirically addressed this question in the DPMoG
using conjugate and conditionally conjugate base distributions. We have compared the
modeling performance and the computational cost of the inference algorithms for both
prior specifications. We have empirically shown that it is possible to increase compu-
tational efficiency by exploiting conditional conjugacy while obtaining better modeling
performance than the fully conjugate model.

DPM models can be seen as mixture models with infinitely many components. Al-
though the number of components are not bounded, there is an inherent clustering
property in DPM models. We formulated a nonparametric form of the mixtures of fac-
tor analyzers (MFA) model using the DP. The MFA models the data as a mixture of
Gaussians with reduced parametrization. Hence, the Dirichlet process MFA (DPMFA)
model allows modeling high dimensional data efficiently. We have exploited the clus-
tering property of the DPMs for the task of spike sorting, that is, clustering of spike
waveforms that arise from different neurons in an extracellular recording.

The IBP, a distribution over sparse binary matrices with infinitely many columns,
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has been defined as an extension of DP. An IBP can be used as a nonparametric prior
over latent binary features in a hierarchical model. We have described several different
approaches for defining and generalizing the distribution given by the IBP.

We have summarized the MCMC techniques developed for inference on the IBP mod-
els. The modeling performance of an IBP model is demonstrated by successfully learning
the features of handwritten digits. We have formulated a nonparametric version of a
choice model, elimination by aspects (EBA) and applied the slice sampling algorithm
to infer latent features of alternatives in a choice experiment.

The development and assessment of sophisticated models using DP and extensions as
well as inference techniques for these models is an ongoing area of research. The flexibil-
ity and statistical strength of the nonparametric Bayesian models motivates application
of these models to challenging real-world problems.
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A Details of Derivations for the
Stick-Breaking Representation of IBP

The stick-breaking construction of the IBP has been summarized in Section 4.1.2. Here,
we give details of derivation for obtaining this representation.

A.1 Densities of ordered stick lengths

The density for the kth largest feature presence probability is obtained by considering
the decreasing order statistics of K i.i.d. random variables in the limit as K — co. We
define p, > py, > -+ > . to be the decreasing ordering of p1, ..., ux, and Ly to be
the set of indices other than the k largest u’s,

Ly ={1,...,KN\{l,.... L.

Thus, the indices for the k largest feature presence probabilities are {l1,...,l;}. Denot-
ing p(ky = u,,, the k largest values among py.x is denoted as fi(1.4) = {u(l), . ,/L(k)}
and we have

< pgy  forall 1€ Ly. (A1)

Thus, the range of the subsequent p’s given iy is restricted to [0, j1()], resulting in
the following pdf:

o g
1 a —o a_q

Pl | mary) = “(k[){a . = E“(kf JTT AN (A.2)

/ —txtdt

0
Integrating, the cdf for y; conditioned on fi(1.1) is found to be
(| e R S
el (1:k)) = M
= gy 1 10 < < pgry) + Ly < pur)
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The p for | € Ly are independent given fi(1.), therefore we can obtain the distribution
for p(py1) = max iy by taking the product of the cdf’s of y;’s:
€L

_a o K—k
Fpggny | Bawy) = [M(kﬁ(ﬂlzﬂ)ﬂ(() < Bty < fey) + Wy < peen))
oKk K-k (A4)
=ty © Koy 10 < pgerny < p) + Loy < pern))-
Differentiating the above equation, the density of ;1) is obtained to be,
P(M(kH) |/~L(1;k)) = P(M(kH) \ M(k))
K—k —alizk oKk (A.5)

-1
:u(k H k+1) I[(O < H(k+1) < /L(k))

A.2 Probability of a part of Z being inactive

Given g ), we can calculate the probability of all entries to the right of column £ being
zero. We denote the set of indices after the kth largest feature presence probability with
Li. The density of the (unordered) feature presence probabilities with index [ € Ly
is given in eq. (A.2). The entries z; are Bernoulli distributed with probability ;.
Marginalizing over p;, we have;

P(Z(,>k) = 0 pry) —/p(Z(:,.>k) = 0| pa(y» b )p(pr)dpr,

i) o —2 oy N
—Hgy #E T (L= p) dp
[ o K%

o

Applying change of variables v = p/u(k) to the above integral,

|
= xe
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=
=
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(

=
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(A7)

=|e

vE 11 —v+v— Vu(k,))Ndy

=l X|e

v _1((1 —v)+v(l— ,u(k)))Ndy.

1
| e
C\,_.

=e

Using the binomial series,
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A.2 Probability of a part of Z being inactive

Using the Dirichlet integral,

N L a i
Z%Z <N> 0 ) D(i 4+ 2)D(N —i+1)

o \! N+ #+1)
N . i—1
N! (N —)! =+
:%Z (N — i)l (1= new)' ( J)VHJ —ox 1 (A.9)
i=0 o 2o %+
N { Q@ i 1— )’ H; B +J}
B T - k T
L+ K & “ g
Raising the above equation to the power K — k and taking the limit as K — oo,
)’
p(Z., >k)—0|Mk))—eXP{_04HN+0427}. (A.10)

1
=1

The first term is obtained by using the limit given in eq. (B.14), and the second term is
obtained by the fact that the product inside the sum in the last line of eq. (A.9) reduces
to (¢ — 1)! in the limit.
Using the series expansion for the natural logarithm given in eq. (B.16), the second
term in the above equation can be approximated with a logarithm for large IV,

p(Z¢, sk =0l ppy) =exp{ —aHy —aln(l — (1 — )}

A1l
:,u@o)‘exp{—aHN}. ( )
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B Mathematical Appendix

B.1 Dirichlet Distribution

In the following, we describe the Dirichlet distribution and give some of its properties
important for understanding the Dirichlet processes.
The gamma distribution with shape parameter o > 0 and scale parameter § > 0 is

given as
1

G0|a,B8) = 0“1 exp{—0/3}. B.1
010.0) = a0 exe{=0/8} (B.1)
Let 0;, i =1,...,k be independent random variables with

91' ~ Q(ai, 1). (B.Q)

The Dirichlet distribution D(ay,...,ax) is defined as the distribution of (71, ..., 7),
where

m:Hi/ZQj for i:1,...,k. (B.3)
The density function is given as,

F(Zkﬂ ) : i—1
D(m,...,ﬂklal,...,ak):k]i & .

7'(' B4
[1;—1 T(ey) j=1 ’ 4

Dirichlet distribution is conjugate to the multinomial distribution

A random variable taking two different values with probability m; and o = 1 — 7y is
Bernoulli distributed:

oy ={ T (8.5)

T2, T = X2

The count of the occurrence of one of the events (e.g. = = z1) in a sequence of n
Bernoulli trials is generally represented with the Binomial distribution:

. n _
ply|m) = Bingy | m,n) = () (1 = m)
The conjugate prior for the Binomial distribution is the Beta distribution:

F(a + ﬁ) a—1

p(m1) = Beta(m |, 5) = Wﬂ'l (1—mp)P L.
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Multinomial distribution is the distribution of a random variable that can take a
countable number of different values. The conjugate prior for the multinomial distribu-
tion is the Dirichlet distribution, which is the multivariate generalization of the Beta
distribution.

The marginal distribution of each 7; is beta

It follows from the definition of the Dirichlet distribution and the additive property of
the gamma distribution that if (m1,...,7m) ~ D(aq,...,ax) and ri,...,r; are integers
such that 0 < rq,...,r; =k, then

Tl Tl
Zm,Zm o g milat, ..., o g 0417204@ e g a;), (B.6)
r1+1 ri_1+1 r1+1 ri_1+1

In particular, the marginal distribution of each ; is Beta(a, (Z’f o)) — ;).

Scale of the Dirichlet distribution
The first and second moments of m; are given by;

E{m} = %, Var(m;, m;) = 022((0; +a1]))’
where o = Z]K: 1 o is referred to as the scale of the distribution. The mean of the
distribution does not depend on the scale of the parameters, however scale determines
the spread.
Posterior distribution

The posterior distribution of the m; given multinomially distributed data is:

p(ﬂl,...,wk\xl,...,xn):D(al—i—nl,...,ak—i—nk),

where n; is the number of occurrence of the jt" event. The parameters of the Dirichlet
distribution can be interpreted as the pseudo observations; for larger scale, the distri-
bution will be more concentrated around the mean, thus the prior will have more effect
on the posterior.

We can marginalize out the multinomial parameters 7; using the Dirichlet integral
(B.11) and express the probability of the observation directly in terms of the Dirichlet
parameters:

k
a] + nj
p(T1,. T |, .. ap) = H
(Zz jar+n) j=1
Thus, the conditional distribution for a new observation x, 41 given the previous obser-
vations is:
: oj 1y
P(Tns1 = J |21, Tny 00, o) = )
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B.1 Dirichlet Distribution

Figure B.1: Effect of the scale of the parameters for the Dirichlet distribution. Top row: Samples
from Dirichlet distribution with three different parameter settings. Bottom row:
Parameter values. The samples lie on the 2-D simplex denoted by the triangle.
Note that the relative magnitudes for the distribution parameters are the same,
however the scale changes, which effects the spread of the samples. The samples
get more concentrated around the mean the higher the scale gets.
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B.2 Parameterization of the Distributions Used

- Tla+p)
- T()T(B)

(1 —m)" Y

rF ek
Dirichlet(ﬂ'17...77Tk‘a17,..7ak) : M q; 1

s
[T T'(ey) j=1 ’

Beta(f | a, ) 011 — 0)°1

YRy
< 3
~_

Binomial(y | 1, n)

Gamma(f | «, 3) : F(ozl)ﬂa 6 exp{—0/3}
Multinomial(y | 7, n) : <y1 y: yk> ik
Normal(x | 4, %) : Jﬁ exp { — ()57 x — )}
Poisson(k | \) : )\k;!_/\
Wishart (W | S, 3) : (2<ﬁD/2>7rD(D1>/412[r(5+2H))_1
i=1

_ _p_ 1 _
X [S]7012 W=DV 2 exp{—— (S )}

B.3 Definitions

Lévy Processes

A distribution F' is infinitely divisible if for every n > 1, there exists a characteristic
function v, such that
n
Yr(t) = (Ya(t)", (B.7)
that is, if F' is the distribution of a sum of n i.i.d random variables.

Each infinitely divisible distribution corresponds to a process with stationary inde-
pendent increments, called a Lévy process. Lévy-Khintchine formula states that every
infinitely divisible distribution has a characteristic function ¥ (t) = [e"*F(dz) of the
form,

Y(t) = exp {ita — t26%/2 + /[eit“ — 1 —ith(u)]v(du)}, (B.8)

for a € R, 0? € R4 and a Lévy measure v(du).
+

A subordinator is a Lévy process with increasing sample paths.
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B.4 Equalities and Limits

Construction of A Process

The most fundamental characteristic of a random process is the set of its finite-dimensional
distribution functions. Kolmogorov’s theorem on existence of a process is the condition
that needs to be satisfied for a family of distribution functions to define a process, see
for example Shiryaev (1995).

Exchangeability

The sequence of random variables {x;}] is said to be exchangeable if any permuta-

tion {xr,, ¢ = 1,...,n} have the same joint probability distribution. The variables of
an infinite sequence are exchangeable if any finite subset of the sequence is exchangeable.

de Finetti’s representation theorem:

If the sequence of random variables {x;}} is said to be infinitely exchangeable with
probability measure P, there exists a probability measure ) over the space of all dis-
tribution functions on R such that the joint distribution function of xi,xs,...,x, has

the following form:

P(x1,...,%,) = / ([T1F (=) dQ(F), (B.9)

i=1
where Q(F) = lim,,_,o, P(F}), and F,, is the empirical distribution function defined by
X1yewoyXp.

B.4 Equalities and Limits

Recursive Property of the Gamma Function

The Gamma function has the following recursive property,

I'n)=(Mn-1)I'(n-1), (B.10)
For integer n, I'(n) = (n — 1)\.
The Dirichlet Integral
n+1
/0;‘1—1 B € R R < [N [ 711:1%1(9 ) (B.11)
P(Zi:l ‘91')

Poisson distribution as a limit of the beta distribution

The joint probability of sampling r of K new features for object i is

P(r|a, K) = ( If ) (%) <1 - %)K_r. (B.12)
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Taking the limit,

o () () (- 2w)

= (K i)w (K(i/iz);i)’" ( B Ki/jx/i)K (1 B Kjé—/;/z)_r (B.13)
Ny . K . —r

= A K(K(;(lla/g( — (a:; : (1 - K(jr/;/i> (1 - Ki@/i)

_ (a/i)riﬁp{a/i}‘

The last equality is obtained from the fact that the limit of the first and the last term
is 1 and

K
Klii]n(>C> <1—i—i/K> = exp{—z}. (B.14)
Binomial Series
(x+y)" = z": (Z) akynk (B.15)
k=0
Series expansion for the natural logarithm
ln(l—I—z):z—%zQ—l—éz?’—..., |z| <1,andz # 1 (B.16)
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