
Journal of Geodesy (2020) 94:23
https://doi.org/10.1007/s00190-020-01354-y

ORIG INAL ART ICLE

A new hybrid method to improve the ultra-short-term prediction
of LOD

Sadegh Modiri1,2 · Santiago Belda3,4 ·Mostafa Hoseini5 · Robert Heinkelmann1 · José M. Ferrándiz4 ·
Harald Schuh1,2

Received: 28 January 2019 / Accepted: 18 January 2020 / Published online: 5 February 2020
© The Author(s) 2020

Abstract
Accurate, short-term predictions of Earth orientation parameters (EOP) are needed for many real-time applications including
precise tracking and navigation of interplanetary spacecraft, climate forecasting, and disaster prevention. Out of the EOP,
the LOD (length of day), which represents the changes in the Earth’s rotation rate, is the most challenging to predict since
it is largely affected by the torques associated with changes in atmospheric circulation. In this study, the combination of
Copula-based analysis and singular spectrum analysis (SSA) method is introduced to improve the accuracy of the forecasted
LOD. The procedure operates as follows: First, we derive the dependence structure between LOD and the Z component of
the effective angular momentum (EAM) arising from atmospheric, hydrologic, and oceanic origins (AAM+HAM+OAM).
Based on the fitted theoretical Copula, we then simulate LOD from the Z component of EAM data. Next, the difference
between LOD time series and its Copula-based estimation is modeled using SSA. Multiple sets of short-term LOD prediction
have been done based on the IERS 05 C04 time series to assess the capability of our hybrid model. The results illustrate that
the proposed method can efficiently predict LOD.

Keywords LOD · EOP · Copula-based analysis · Prediction

1 Introduction

Earth orientation parameters (EOP) are a collection of param-
eters that describe irregularities in the rotation of the Earth.
EOPare classified into three groups: polarmotion (PM)given
by the x, y, parameters; diurnal rotation (e.g., ERA=Earth
rotation angle, or UT1-UTC); and precession–nutation (PN)
pair, which give the orientation of the conventional Celestial
Intermediate Pole (CIP) in the geocentric celestial reference
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frame. The EOP can be observedwithmodern high-precision
space geodetic techniques, such as very long baseline inter-
ferometry (VLBI), satellite laser ranging (SLR), and global
positioning system (GPS) (Tapley et al. 1985; Lichten et al.
1992; Schuh and Schmitz-Hübsch 2000). Real-time EOP
estimation is needed for many applications including pre-
cise tracking and navigation of interplanetary spacecraft,
climate forecasting, and disaster prevention. However, the
complexity and time-consuming in data processing always
lead to time delays. Consequently, the prediction of EOP
from past observed data or combining with the geophysical
phenomena is of great scientific and practical importance. In
addition to the five EOP, the length of day (LOD) is used
to model the variations in the Earth’s rotation rate. LOD
is the difference between the duration of the day measured
by space geodesy and nominal day of 86,400s duration and
defined as: LOD = − d(UT1-UTC)

dt (Freedman et al. 1994).
LOD is changing due to gravitational effects from exter-
nal bodies and geophysical processes occurring in different
Earth layers. Consequently, its knowledge is essential for
various applications related to reference frame determina-
tion and metrology, such as interplanetary navigation and
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space geodesy orbitography (i.e., precise orbit determina-
tion) because of its couplingwith the orbit node.However, the
LOD prediction is extremely difficult due to extreme events
such as El Niño which demonstrated themselves in the LOD
signals (Holton and Dmowska 1989; Gross et al. 1996).

Several techniques have been developed to improve the
accuracy of LOD prediction. These algorithms could be
classified into two groups: first, the methods that use the
informationwithin theLODtime series, e.g., auto-covariance
(AC) (Kosek et al. 1998; Kosek 2002), wavelet decomposi-
tion (Akyilmaz et al. 2011), or neural network (Schuh et al.
2002; Liao et al. 2012; Lei et al. 2015, 2017). Besides, this
group includes the hybrid methods using the combination of
least squares (LS) and auto-regressive (AR), auto-regressive
moving average (ARMA), auto-covariance, and neural net-
work (Kosek et al. 2005; Xu and Zhou 2015;Wu et al. 2019).
In the second group, we cast the methods that take into
account the axial component of effective angular momentum
(EAMZ ) (Freedman et al. 1994; Gross et al. 1998; Johnson
et al. 2005;Niedzielski andKosek2008;Kosek2012;Nastula
et al. 2012; Dill et al. 2019). Freedman et al. (1994) showed
that the use of atmospheric angular momentum (AAM) wind
terms in the Kalman filter technique to predict LOD varia-
tions improved near-term predictions. Johnson et al. (2005)
usedUT1-like observations determined byAAM in theUT1-
UTC combination solution to predict UT1 which showed a
significant reduction in the prediction errors when compared
with the previous prediction method (McCarthy and Luzum
1991). Also, Dill et al. (2019) used 6days long predicted
EAM values for the PM and UT1-UTC prediction using LS
extrapolation and AR model. The Earth orientation parame-
ters prediction comparison campaign (EOP PCC) took place
within 2005–2009, and it was organized to assess the var-
ious prediction techniques under the same conditions and
rules. One of the main results of the EOP PCC was that there
is not a specific method preferred for all EOP and all pre-
diction intervals (ultra-short term and long term). Also, as
the EOP prediction accuracy benefits from AAM forecast
data, EOP PCC recommended paying more attention to the
analysis and prediction of atmospheric angular momentum
(AAM), continental hydrology angular momentum (HAM),
and ocean angular momentum (OAM) (Kalarus et al. 2010).
Therefore, a new prediction method is required to fully cap-
ture the dependence structure between AAM, HAM, OAM,
and EOP. Although there are approaches to quantify the
dynamical relation between the geophysical fluids (the atmo-
sphere, the ocean, and the land hydrology) and the LOD
variation (Gross 2015), we ignore them in our work as we
exactly want to assess this relation directly independent of
theoretical implications through comparing the LOD and the
effective angular momentum function z-component by the
Copula method. In this paper, we introduce an algorithm
to improve the LOD prediction for reaching the accuracy

goals pursued by the Global Geodetic Observing System
(GGOS) of the International Association of Geodesy (IAG),
i.e., 1mmaccuracy and 0.1mm/year stability on global scales
in terms of the International Terrestrial Reference Frame
(ITRF) defining parameters (Plag and Pearlman 2009). We
explored the combination of Copula-based analysis and sin-
gular spectrum analysis (SSA) to predict LOD. In Modiri
et al. (2018), we applied the combination of SSA and Copula
for the first time as a novel deterministic-stochastic tool for
PMprediction. In thismethod, deterministic part is estimated
by SSA, whereas Copula is used for modeling the stochastic
part. The results indicated that the proposed approach can
efficiently predict PM. Moreover, the improvement in PM
prediction accuracy up to 365days in the future is found to
be 40% on average compared to the current PM prediction
data from the International Earth Rotation and Reference
Systems Service (IERS) Rapid Service/Prediction Center
(RS/PC), hosted by theUSNaval Observatory (USNO) (Petit
and Luzum 2010). The Copula method contains both lin-
ear and nonlinear dependence structures between variables,
and it is a powerful tool for dealing with multi-dimensional
data and for modeling the relationship between parameters
(Joe 1997). SSA is a subspace-based technique which makes
use of empirical functions derived from the data to model
the time series in a pre-specified level of details. It can
be used for trend extraction and extrapolation (Alexandrov
2009; Modiri et al. 2018), periodicity detection, seasonal
adjustment, smoothing, noise reduction (Golyandina et al.
2001; Ghil et al. 2002) as well as for change point detec-
tion (Moskvina and Zhigljavsky 2003; Hoseini et al. 2020).
First, we derive the dependence structure between LOD and
EAMZ . Based on the fitted theoretical Copula, we then
simulate LOD from the EAMZ data. Next, the difference
between LOD time series and its Copula-based estimation
is modeled using SSA. After that, the LOD will be com-
puted from predicted EAMZ . Finally, the difference will be
predicted and will be added to LOD predicted by Copula.
Multiple sets of ultra-short-term (10days) LOD prediction
have been made based on IERS 05 C04 time series to assess
the capability of our hybrid model. We consider the same
conditions as EOP PCC to show the effectiveness of the
presented method. We compare the prediction results with
those of existing techniques of EOP PCC, and the results
evidence that the proposed approach can efficiently predict
LOD.

2 Methods

The combination of stochastic and deterministic methods is
used for LOD prediction. The Copula-based analysis tech-
nique aims to estimate the models for capturing the depen-
dence structure between observedLODand theEAMZ . Also,
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SSA is used as a deterministic technique to obtain stochas-
tic residuals (the difference between the observed data and
the Copula generated data). Finally, let us remark that we
used the IERS EOP time series available at the time of
the EOP PCC so that our results could be easily compared
to the former analyses. In the following section, the the-
oretical background of Copula theory and SSA is briefly
sketched.

2.1 Copula-based analysis

The Copula approach exploits linear and nonlinear depen-
dency between variables. Copula is a flexible tool offering
an enormous improvement in capturing the real correlation
pattern. This technique provides the grounds for dealing with
multi-dimensional data and modeling the relation between
parameters based on the marginal distribution functions of
the variables (Embrechts et al. 2002).

Copula appeared in the mathematics context for the first
time by Sklar (1959). Sklar’s theorem indicates that a Copula
function C connects a given multivariate distribution func-
tion with its univariate marginal. For bivariate distribution,
there is a bivariate Copula C which models the joint cumula-
tive probability distribution function of two variables X and
Y based on the marginal cumulative distribution functions
FX (x) and FY (y).

P(X ≤ x,Y ≤ y) = FX ,Y (x, y) = C(FX (x), FY (y))

= C(u, v)
(1)

whereC describes the joint distribution function FX ,Y (x, y).
The variables u and v are transformations of X and Y to uni-
form distribution, respectively. The Copula is unique when
the marginals are continuing functions. As the Copula is a
reflection of the dependence structure itself, its construc-
tion is reduced to the study of the relationship between the
variables, giving freedom for the choice of the univariate
marginal distribution. Further information about Copula can
be found, e.g., in Joe (1997) and Nelsen (2006). For many
years, the Copula method has been used for modeling the
dependence structure between random variables in different
types of studies, such as Economics (Rachev and Mittnik
2000; Patton 2006, 2009), Biomedicine (Wang and Wells
2000; Escarela and Carriere 2003), Hydrology (Bárdossy
and Li 2008; Bárdossy and Pegram 2009; Verhoest et al.
2015), Meteorology (Laux et al. 2011; Vogl et al. 2012),
Hydro-geodesy, and Geodesy (Modiri et al. 2015, 2018). Six
different bivariate Copula families are used in this research:
theArchimedean 12,Archimedean 14,Clayton, Frank,Gum-
bel, and Joe. Further information about mathematical details
on these families can be found inAppendixA,Nelsen (2006),
or in Salvadori and De Michele (2007).

2.2 Singular Spectrum Analysis

SSA is a time series analysis tool which can be used to
retrieve robust components of a dataset aiming to provide
an easier to interpret picture of complex observations. The
method diagonalizes a lag-covariance matrix concerning a
basis of orthogonal eigenvectors and computes the corre-
sponding eigenvalues (Groth and Ghil 2015). SSA is able to
reveal useful information about hidden underlying processes
of a time series. Within its four steps, SSA groups correlated
information in a time series and offers the opportunity of
reproducing new versions of the time series based on their
different characteristics [see Appendix B, Golyandina et al.
(2001), and Ghil et al. (2002), for more details].

2.3 Error analysis

The mean absolute error (MAE) is used in order to evaluate
the prediction accuracy. The MAE is calculated for the kth
day in the future as follows:

MAE = 1

k

k∑

i=1

(|Pi − Oi |) (2)

where Pi is the predicted value of the ith prediction day, Oi is
the corresponding observed value, and k is the total prediction
number.

3 Calculation and analysis

3.1 Data description

3.1.1 Length of day (LOD)

Daily time series of LOD in this contribution are from IERS
EOP 05 C04 series (Gambis 2004). The LOD time series are
available from (http://hpiers.obspm.fr/eop-pc) and span the
time interval from 1996 to 2008.

3.1.2 Effective angular momentum (EAM) functions

EAM functions in both mass and motion terms explain the
non-tidal geophysical excitation of the Earth’s rotation due
to mass redistribution in atmospheric and terrestrial hydro-
sphere, and in the oceans. The EAM data consist of three
main components X , Y , and Z . The X and Y components
are associated with the excitation of polar motion, whereas
the Z component is responsible for the excitation of LOD
variation (Salstein 1993; Dobslaw and Thomas 2005; Dill
2008; Jungclaus et al. 2013; Dobslaw 2016). The EAM func-
tions are dimensionless with the sampling of 1day and are
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Fig. 1 Scheme of the prediction algorithm (Copula+SSA model). The Copula-based joint distribution function between LOD and EAMZ (Cali-
bration step) is shown in green. EAMZ prediction is shown in purple. The prediction of LOD using the calibrated model (final step) is illustrated
by orange

provided by the Earth System Modeling group at Deutsches
GeoForschungsZentrum Potsdam (ESMGFZ) (Dobslaw and
Dill 2018). The EAM time series are available from: (ftp://
ig2-dmz.gfz-potsdam.de/EAM/).

3.2 Data processing and analysis

In this paper, we defined an algorithm for LOD predic-
tion as shown in Fig. 1. It is important to note that LOD
can be decomposed into several components (e.g., variations
related to zonal components of solid Earth tides and ocean
tides, atmospheric circulation, internal effects, and transfer
of angular momentum to the Moon orbital motion). Taking
into account that the accuracy of the different models may
be not homogeneous, we decide to include in the modeling
of this study the total variation in LOD. We are aware that it
may bemore challenging for testing themethod performance
that relying partially in previous models for certain compo-
nents, but we preferred not to remove too many difficulties
when testing themethod as amean to get more insight into its
capabilities. Having said that, the methodology is structured
as follows. We analyze the EAMZ which is the sum of mass
andmotion terms ofAAM,HAM, andOAM(see Fig. 2). The
dependence structure between observed LOD and EAMZ is
captured and modeled by using Copula-based analysis. The
difference between the observed LOD and Copula LOD esti-
mated data is modeled using the SSA method. After that, the
EAMZ is predicted as described in detail in Modiri et al.

(2018). The prediction algorithm is demonstrated through
the following steps:

1. Copula-based joint distribution function of LOD and
EAMZ

– Model the dependency structure between LOD and
EAMZ

– Model the periodic residual using SSA
– Calibrate the Copula+SSA model

2. EAMZ prediction

– SSA periodic terms estimation
– Copula anomaly modeling

3. LODprediction using the calibratedCopula+SSAmodel

– Sample random data from the conditional Copula;

as it is shown in Fig. 3, the training interval is between 1996
and 2003.

3.2.1 Copula-based joint distribution function of LOD and
EAMZ

In this study, the training dataset which ranges from 1996
to 2003 is used to fit a Copula-based joint distribution
function; both EAMZ and LOD are transformed to uni-
formly distributed values between (0, 1) interval through
their empirical cumulative distribution function. Thereafter,
the dependence structure between the EAMZ and LOD is
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Fig. 2 The EAMZ being the sum of mass and motion terms of AAM, HAM, and OAM (ZAAM + ZHAM + ZOAM)

Fig. 3 Time series of LOD and
(ZAAM + ZHAM + ZOAM)
between 1996 and 2008. The
time series is divided into three
parts: training part (1996–2003),
validation (2003–2005), and
prediction (2005–2008)

1998 2000 2002 2004 2006 2008

2

2.5

3

3.5

4

(Z
A

A
M

+
Z

H
A

M
+

Z
O

A
M

) 10-8

Z
AAM

+Z
HAM

+Z
OAM

1998 2000 2002 2004 2006 2008

-1

0

1

2

3

LO
D

 [m
s/

da
y]

LOD

Training

Training

Validation

Validation

Prediction

Prediction

investigated. First, the empirical Copula is estimated using
the Eq. 3. As it can be seen in Fig. 4, there is a scat-
ter plot (upper panel) of LOD and EAMZ , and it shows
approximately a linear dependence structure with both upper
and lower heavy tail which can be modeled by using the
Archimedean Copula. Therefore, the theoretical bivariate
Archimedean Copula functions with their estimated param-
eters are fitted to the estimated empirical Copula. The LOD
data are sampled based on the Copula and the empirical
marginal distribution of EAMZ . Next, the residuals of the
generated LOD by Copula are estimated using SSA. After

that, the (ZAAM + ZHAM + ZOAM) data between 2003 and
2005 are used for the validation of LOD prediction (calibra-
tion step). Here, the predicted EAMZ are used for the LOD
prediction in the time interval between 2005 and 2008.

3.2.2 EAMZ prediction

For this step, we defined an algorithm for EAMZ predic-
tion as shown in Fig. 1. The (ZAAM + ZHAM + ZOAM)
time series can be split up into two parts. The first part is
dealing with periodic effects such as annual and semiannual
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Fig. 4 Scatter plot of LOD and (EAMZ ) and its empirical Copula
(upper panel). The fitted Archimedean 12 (θ = 1.30), Archimedean
14 (θ = 1.53), and Clayton (θ = 1.31) Copula (middle panel), Frank

(θ = 5.10), Gumbel (θ = 1.69), and Joe (θ = 2.92) Copula (lower
panel) between 1996 and 2003 in the rank space [0 1]

variations due to the spectral analysis of EAMZ (illustrated
in Figure 5). The SSA models the periodic terms of the
(ZAAM + ZHAM + ZOAM) (see Fig. 6). Then, the difference
between the observedEAMZ andSSAestimated data ismod-
eled by using the Copula-based analysis method. First, the
window length (L = 365days) is selected considering the
main periodicity (see Figure 5). After that, the number of

singular vectors for reconstruction of the EAMZ time series
is determined. The trajectory matrix is constructed by having
the window length and number of singular vectors. The cyan
curve depicts the SSA-reconstructed EAMZ time series. The
periodic terms of EAMZ are extrapolated using the SSA as a
priori model. The difference between the values predicted by
SSA and the predictions based on the EAMZ is called EAMZ
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Fig. 5 Spectral analysis of the LOD (up), ZAAM + ZHAM + ZOAM (down) using fast Fourier transform (FFT)

Fig. 6 The original time series
and the reconstructed time series
(upper panel), and the difference
between the original and
reconstructed time series (lower
panel) for
(ZAAM + ZHAM + ZOAM)

anomaly and has a stochastic nature. This anomaly part is pre-
dicted using the Copula-based model. The anomaly part is
displayed in Fig. 6 (lower panel). This part is formedwith the
same window length L. The dependence structure between
the columni and columni+1 in the residual matrix is investi-
gated. As can be seen in Fig. 7, the scatter plot illustrates a
linear dependence between the two adjacent columns which
are modeled by Archimedean Copula. Then, the empirical
Copula is determined using Eq. 3. The next step is fitting
a bivariate Archimedean Copula. In this study, Frank Cop-
ula is selected for predicting the EAMZ anomaly due to its
ability to capture the linear dependence structure. Finally,
the Copula-based predicted anomalies are added to the pre-

viously described deterministic part. Here, we utilized seven
years of EAMZ time series from September 1998 to Septem-
ber 2005 for the 10days ahead forecasting during the interval
between October 2005 and 2008, i.e., the same interval as it
has been used for the EOP PCC. As can be seen in Fig. 8,
the MAE of the EAMZ prediction is up to the 0.76 for the
next days which is two orders of magnitude smaller than
the EAMZ magnitude. In Fig. 7, the scatter plot shows a
linear relationship between columni and columni+1. Then,
the corresponding empirical Copula is estimated. Finally, the
anomalies are added to the SSA-forecasted time series.
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3.3 LOD prediction from predicted EAMZ using the
calibrated Copula + SSAmodel

The predicted EAMZ dataset from 2005 to 2008 is employed
as input time series for the calibrated model. As can be seen
in Fig. 1, the periodic terms in the residual part are predicted
using SSA extrapolation as well. Finally, the Copula-based
predicted data are added to the SSA-forecasted residual. To
asses the proposed method, the results are compared with the
EOP PCC solutions.

4 Discussion of the results

In this paper, a hybrid LOD prediction method Copula+SSA
has been tested. The proposed combination method is exam-
ined based on the hind-cast experiments using the data from
the past, i.e., the LOD data are predicted using the same
time span (2005–2008) as the EOP PCC. Figure 9 shows the
MAE of ultra-short-term prediction. The MAE of our hybrid
Copula+SSA models indicates fewer errors compared to
the EOP PCC solutions. However, the Kalman filter with

forecasted AAM shows a comparable performance with our
proposed model with smaller MAE for the first 4days in
the future. Table 1 presents the MAE of Copula+SSA and
EOP PCC results in numbers. Adoptive transform, AR, LS
collocation, and NN show errors of more than 0.1ms/day
for the first day of prediction. Also, the MAE of the wavelet,
LS extrapolation LS+AR, and He approaches reach more
than 0.1ms/day after 2 or 3days in the future. From all con-
tributions to the EOP PCC solution, Kalman filter provides
the best accuracy. However, the MAE of the Kalman filter
gets larger than 0.1ms/day after 7days. All Copula+SSA
models showMAE smaller than 0.1ms/day over 10-day pre-
diction, except smaller Joe Copula+SSA. Figure 10 presents
theMAEof 10-day-ahead prediction between 2005 and 2008
for all six hybrid models to understand better the prediction
performance and its causes. Different features can be seen,
and there are some common patterns such as high errors from
the beginning of 2007 which might be caused by the El Niño
effect or certain geomagnetic jerk events as pointed out by
Shirai et al. (2005) or Malkin (2013). As NOAA National
Centers for Environmental Information, State of the Climate
reported, the El Niño warm event had a peak in December
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Table 1 Comparison of
Copula+SSA prediction and
EOP PCC prediction errors
(unit: ms/day)

Prediction day 1 2 3 4 5 6 7 8 9 10

Archi 12+SSA 0.047 0.060 0.063 0.063 0.059 0.064 0.066 0.061 0.072 0.083

Archi 14+SSA 0.050 0.065 0.066 0.068 0.064 0.067 0.072 0.064 0.073 0.082

Clayton+SSA 0.051 0.067 0.079 0.085 0.079 0.078 0.084 0.078 0.086 0.093

Gumbel+SSA 0.052 0.065 0.073 0.076 0.070 0.076 0.085 0.080 0.082 0.094

Frank+SSA 0.047 0.062 0.070 0.086 0.083 0.081 0.084 0.085 0.092 0.097

Joe+SSA 0.052 0.079 0.081 0.088 0.097 0.102 0.116 0.111 0.120 0.121

Kalman filter 0.042 0.051 0.057 0.062 0.071 0.084 0.094 0.107 0.119 0.128

wavelet 0.096 0.131 0.164 0.197 0.233 0.258 0.271 0.322 0.313 0.398

LSE 0.061 0.088 0.107 0.117 0.128 0.138 0.151 0.163 0.171 0.173

LS+AR EOP PC 0.070 0.097 0.118 0.133 0.142 0.143 0.154 0.171 0.179 0.188

Adaptive transform 0.165 0.158 0.162 0.159 0.160 0.160 0.154 0.179 0.528 0.593

AR 0.154 0.182 0.183 0.193 0.207 0.216 0.224 0.239 0.253 0.261

LSC 0.176 0.222 0.245 0.266 0.276 0.275 0.264 0.255 0.254 0.255

NN 0.161 0.196 0.218 0.237 0.250 0.257 0.256 0.257 0.264 0.274

HE 0.093 0.157 0.200 0.235 0.257 0.281 0.289 0.279 0.273 0.266

0 1 2 3 4 5 6 7 8 9 10

Days in future 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
ea

n 
ab

so
lu

te
 e

rr
or

[m
s/

da
y]

LOD Prediction 
Archimedean 12 + SSA
Archimedean 14 + SSA
Clayton + SSA
Frank + SSA
Gumbel + SSA
Joe + SSA
Kalman Filter
Wavelent and fuzzy inference system
LS extrapolation
LS+AR EOP product centre
Adaptive trasformation from AAM to LODR
AR
LS collocation
Neural network
HE method of approximation

Fig. 9 Mean absolute errors of the predicted LOD using Archimedean
12+SSA, Archimedean 14+SSA, Clayton Copula+SSA, Gumbel
Copula+SSA, Frank Copula+SSA, Joe Copula+SSA, and EOP PCC
results

2006 and started to dissipate during January 2007. Thus, the
equatorial Pacific sea-surface temperature (SST) anomalies
decreased during the first two months of 2007, eventually
declining to near average by the end of March 2007. Kalarus
et al. (2010) suggested benefiting from the prediction of
the AAM, OAM, and HAM. Therefore, our better predic-
tion performance may be due to considering both mass and
motion terms of EAMZ for modeling the dependence struc-
ture between LOD and EAMZ . It is important to note that
the Copula+SSA Archimedean 12 and 14 Copula provide

significantly smaller errors than the other methods. On the
other hand, the Joe Copula exhibits slightly larger errors than
the two aforesaid models. This may have been caused by
Archimedean 12 and 14 Copula’s ability to capture the upper
and lower heavy tail dependence structure.

5 Summary and Conclusion

LOD represents the variation in Earth’s rotation rate which is
most difficult to predict, because of the occurrence of extreme
events in the LOD signal. In this paper, we introduce several
approaches based on Copulas which were applied to bivari-
ate frequency analysis. Using Copula is promising since it
allows to take into account a wide range of correlation, fre-
quently observed in time series. The presented work here is
aimed at the possibility of utilizing the EAMZ data to predict
LOD data due to the existing relationship between them. In
order to study this relationship, two datasets were compared:
the observed LOD from IERS EOP C05 and EAMZ derived
from GFZ. The comparison with results of other methods
indicates that the Copula+SSA can efficiently and precisely
predict the LOD parameter at ultra-short term. All of our
methods introduced here provide comparable error with the
existingmethods used for their evaluation in the time interval
considered of up to 10days. Besides, it is clearly demon-
strated that the predicted AAM, HAM, OAM time series as
additional input information can improve the LOD predic-
tion. Among the analyzed combinations, the Archimedean
12+SSA and Archimedean 14+SSA show the most sophis-
ticated performance with low errors. As the Kalman filter
prediction provides better results within the first 3 to 4days,
we will investigate this topic further in future in order to find
out how the EAM functions can deliver even better LOD pre-
dictions. The EOP PCC proved once more to be very useful.
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As long as the data are still available for post-processing, new
methods can adequately be compared in a consistent way to
the methods applied in the past.
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A Copula-based analysis

A.1 Empirical Copula

The empirical Copula approximates the unknown theoretical
Copula distribution. The empirical Copula is purely based on
the data, and it is defined in the rank space as follows (Genest
and Rivest 1993; Genest and Favre 2007; Laux et al. 2011):

Ce(u, v) = 1

n

n∑

i=1

1
(

ri
n + 1

≤ u,
si

n + 1
≤ v

)
(3)

where

(r1), (r2) . . . , (rn) denote the pairs of ranks of the vari-
able (x1), (x2), . . . , (xn),
(s1), (s2) . . . , (sn) denote the pairs of ranks of the vari-
able (y1), (y2), . . . , (yn),
n is the length of the data vector,
1(…) is the indicator function. If the condition is true, the
indicator function is equal to 1. Otherwise, the indicator
function is equal to 0.

A.2 Archimedean Copula

SomeCopulas canbe estimateddirectlywith the simple form.
They are named Archimedean Copulas. An Archimedean
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Copula can be described in the following form:

C(u, v) = φ−1{φ(u) + φ(v), θ} (4)

where θ is the Copula parameter and the function φ is the
generator of the Copula with the following characteristics
(Nelsen 2006):

– for all u ∈ (0, 1), φ(u) < 0, φ is decreasing and convex
(Table2),

– φ(1) = 0,

and φ−1 is defined by

φ−1(t) =
{

φ−1(t; θ), if 0 ≤ t ≤ φ(0)

0, if φ(0) ≤ t ≤ ∞ (5)

A.2.1 The relationship between Copula parameter � and
classical dependence parameter

There is a functional relationship between classical depen-
dence parameters such as Kendall τ and Copula parameters.
For one-parametric Copulas, the functional relationship
between the Kendall τ Copula functions, namely:

τ = 4
∫ 1

0

∫ 1

0
Cθ (u, v)dCθ (u, v) − 1, (6)

Equation 7 can be used to estimate the Copula parameter.
Kendal τ for Archimedean Copula with the generator Φ(t)
is shown:

τ = 1 + 4
∫ 1

0

Φ(t)

Φ(t)′ dt . (7)

Thus, the relations between the Kendall τ and the
Archimedean Copula parameters are illustrated in Table 3.
Here D is Debye functions.

Dk(k) = k

xk

∫ x

t=0

t

et − 1
dt

A.3 Simulating from Copula-based conditional
random data

This subsection provides the essential steps for data sim-
ulation using Copula-based conditional random data. The
following steps are taken to fit the proper theoretical Copula
function and simulation data (Laux et al. 2011; Vogl et al.
2012; Modiri et al. 2018). Ta
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Table 3 The link between Archimedean Copula parameter θ and
Kendall τ (Cherubini et al. 2004)

Family τ

Archimedean 12
θ− 2

3
θ

Archimedean 14 2θ−1
2θ+1

Clayton θ
θ+2

Frank 1 − 4
θ
[1 − D1(θ)]∗

Gumbel θ−1
θ

Joe 1 − 4
θ
D1(θ)

* Dk(x) is the Debye function for any positive integer k

1. Independent identical distribution (iid)-transformation of
input time series.

2. Compute the marginal distributions FX (x) and FY (y) of
the input data x and y.

3. Transformdata to rank spaceusing the estimatedmarginal
distributions of data with ui and vi in rank space.

4. Compute the empirical Copula to the dependence struc-
ture of randomvariables using the rank-transformed data.

5. Fit a theoretical Copula function Cθ (u, v).
6. Compute the conditional Copula function.
7. Sample random data from the conditional Copula cumu-

lative distribution function (CDF).
8. Transfer the sample back to the data space using the

inverse marginal.

B Singular Spectrum Analysis

In the first step which is called embedding, we form a tra-
jectory matrix (X) by moving a window of length L over the
elements of the time series ( fi ), i.e.,

X=

⎡

⎢⎢⎢⎢⎢⎣

f1 f2 f3 . . . fK
f2 f3 f4 . . . fK+1

f3 f4 f5 . . . fK+2
...

...
...

. . .
...

fL fL+1 fL+2 . . . fN

⎤

⎥⎥⎥⎥⎥⎦
,

{
1<L<K
K = N − L + 1

(8)

ThematrixX is a symmetricmatrix having identical elements
on anti-diagonals. In the next step, we apply a singular value
decomposition (SVD) to the trajectory matrix X, i.e.,

X = UΣΣΣVT (9)

with the superscript T the transpose operator. The matrices
U and V are orthonormal and are called left and right singu-
lar vectors, respectively. ΣΣΣ is a diagonal matrix containing
nonnegative entries, the singular values, which reflect the
importance of the singular vectors.

If λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0 denote diagonal entries ofΣΣΣ ,
the trajectory matrix can be written as:

{
X = X1 + X2 + · · · + Xd

Xi = λiUiVT
i

(10)

where λi is the corresponding singular value of Xi and d
is the number of nonzero singular values (d ≤ L).

In the next step, the grouping step, we select a group from
{X1,X2, . . . ,Xd} which will be used for reconstructing a
new version of the time series. For instance, for reproducing
a representative trend of the time series, we would choose
the most critical part of X which is retrievable using the first
few singular vectors and their corresponding singular values.

The last step is dedicated to the reconstruction of the
time series using the selected group. Based on the fact
that the original trajectory matrix had the same entries on
anti-diagonals, we reconstruct a model of the time series
(G = (g1, g2, . . . , gN )) by anti-diagonal averaging:

gi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
i

i∑
m=1

x̂m,i−m+1 1 ≤ i < L

1
L

L∑
m=1

x̂m,i−m+1 L ≤ i ≤ K

1
N−i+1

N−K+1∑
m=i−K+1

x̂m,i−m+1 K < i ≤ N

(11)

where x̂i, j is an estimation of the element fi+ j−1 of the
original time series.
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