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Abstract

The first part of the thesis deals with the problem of admission control and air interface

selection in heterogeneous communication networks, i.e., systems in which several access

technologies are used jointly. For this, statistical information about user traffic and chan-

nel conditions is taken into account for the optimization of admission and assignment

policies, employing a semi-Markov decision process formulation. We propose an efficient

approximation algorithm for the optimization of such policies.

The remaining chapters of the thesis take a more fundamental perspective. We first

study the problem of computing the boundary of the capacity region of the discrete mem-

oryless multiple access channel. We demonstrate that a result on the optimality conditions

for this problem reported in the literature is incorrect. We then investigate optimality con-

ditions of the capacity computation problem for the discrete memoryless two-user multiple

access channel with binary input and binary output alphabets. For a subclass of these

channels, earlier results in the literature are generalized. Moreover, we investigate a re-

laxation approach for the capacity computation problem. For a subclass of channels, we

derive conditions under which it is possible to construct an optimal solution for the actual

(non-relaxed) problem from the solution to a convex (relaxed) problem.

Next, building upon some results for the multiple access channel capacity computation

problem, we investigate duality relations between the multiple access and the broadcast

channel both for discrete memoryless and for fading channels without channel knowledge

at the transmitter, respectively. We introduce the notion of weak duality and derive a

sufficient condition and a necessary condition for a discrete memoryless broadcast channel

to be weakly dual to a certain class of discrete memoryless multiple access channels.

Concerning fading channels, we show that duality holds only under certain conditions.

However, we demonstrate that, even in absence of duality, the dual multiple access channel

can be used in order to approximatively solve optimization problems for the broadcast

channel.

In the last part of the thesis, we turn to a more general network structure, a basic

cellular channel. We analyze it using the linear deterministic approximation model, which

constitutes an approximative description of the underlying physical channel. We derive

the capacity and optimal coding schemes under various interference scenarios.
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Zusammenfassung

Das erste Kapitel der Arbeit behandelt die Optimierung der Zugriffssteuerung in heteroge-

nen Systemen, bei denen mehrere verschiedene Zugriffstechnologien zur Verfügung stehen.

Der hier verfolgte Ansatz besteht darin, statistische Kenntnisse über das Nutzerverhal-

ten und die Kanäle in die Optimierung mit einzubeziehen. Hierzu wird das System als

Semi-Markov Decison Process modelliert und, basierend auf einer geeigneten Zustand-

sraumaggregation, ein effizienter approximativer Optimierungsalgorithmus entwickelt.

Die übrigen Kapitel der Arbeit widmen sich eher grundlegenden und informationsthe-

oretischen Fragestellungen. Zunächst wird das Problem der expliziten Berechnung der

Kapazitätsregion des diskreten gedächtnislosen Vielfachzugriffskanals behandelt. Es wird

gezeigt, dass ein in der Literatur beschriebenes Ergebnis bezüglich der Optimalitäts-

bedingungen nicht gültig ist. Weiterhin werden Optimalitätsbedingungen für den Kanal

mit zwei Sendern und binären Eingangs- und Ausgangsalphabeten untersucht und bekan-

nte Resultate verallgemeinert. Darüber hinaus wird ein Optimierungsansatz betrachtet,

der mittels Relaxierung auf ein konvexes Problem führt.

Einen weiteren Schwerpunkt der Arbeit bildet die Untersuchung von Dualitätsbezie-

hungen zwischen dem Vielfachzugriffskanal und dem Broadcastkanal sowohl für diskrete

gedächtnislose Kanäle als auch für Schwundkanäle ohne Kanalkenntnis am Sender. Hierbei

wird zunächst der Begriff der schwachen Dualität definiert und ein hinreichendes und ein

notwendiges Kriterium dafür angegeben, dass ein Broadcastkanal schwach dual zu einer

bestimmten Klasse von diskreten gedächtnislosen Vielfachzugriffskanälen ist. In Bezug

auf Schwundkanäle wird nachgewiesen, dass Dualität nur unter speziellen Bedingungen

vorliegt. Es wird jedoch gezeigt, dass auch bei nicht vorhandener (perfekter) Dualität der

duale Vielfachzugriffskanal für die (approximative) Optimierung für den Broadcastkanal

genutzt werden kann.

Der letzte Teil der Arbeit befasst sich mit einem allgemeineren Kanalmodell, welches ein

einfaches zellulares System beschreibt. Dieses System wird mittels des linearen determin-

istischen Modells untersucht, bei dem der physikalische Kanal näherungsweise modelliert

wird. Für dieses Kanalmodell werden Kapazitätsresultate für unterschiedliche Interferen-

zszenarien hergeleitet und die entsprechenden effizienten Kodierungsstrategien entwickelt.
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1 Introduction

1.1 Background

Wireless communication technology has undergone a rapid growth in the recent years, and

this trend is expected to further accelerate in the future. Besides classical services mainly

designed for voice and data communication, new applications of wireless technology are

emerging. Among them are wireless sensor networks, which can be used for a multitude

of applications such as environmental monitoring, object tracing, supervision of manufac-

turing processes or intelligent monitoring of buildings. Other fields of application that

are envisioned for the future are telemedical applications, machine to machine (M2M)

communication, automated highways or communication among nano-sized devices.

From an engineering viewpoint, the wireless channel is rather difficult to handle and

poses severe challenges concerning the design of reliable and efficient systems. These dif-

ficulties arise especially from the specific properties of the communication medium, that

is, the propagation of electromagnetic waves in a constantly changing environment and

include fading (small-scale and large-scale) and interference in systems where multiple

communicating entities share the same resources. Information theory provides tools for a

fundamental study of the trade-offs and potentials involved in (wireless) communication

systems. Since Shannon’s seminal publication [Sha48], which introduced the central con-

cepts of the field, the recent decades have seen quite substantial progress in information

theory, especially concerning the case of several users participating in the communication,

and many concepts and techniques have found their way to implementation in practical

systems. However, there are still many fundamental questions that are completely un-

solved or not understood to a satisfactory degree. For an example, consider two basic

structures of multi-user communication, namely the broadcast channel (BC) and the mul-

tiple access channel (MAC). In a broadcast channel, there is one transmitter and several

receivers; the transmitter intends to convey a message to each of the receivers (where the

messages can differ from each other). The multiple access scenario is the reverse setup,

where multiple transmitters each have a message for the central receiver (cf. Figure 1.1).

Note that the broadcast channel and the multiple access channel model the downlink and

the uplink in a conventional cellular system: the downlink refers to the transmission of

1



1 Introduction

Figure 1.1: Multiple access channel (left) and broadcast channel (right).

a central base station to the users in the cell the base station serves, whereas the uplink

means communication of the cell users to the base station. A rather generic model for a

communication channel is the discrete memoryless channel, which has a finite set of input

and output symbols and which is specified by the pairwise probabilities of switching from

an input symbol to an output symbol for the transmission of a single symbol. Results for

this channel can often be translated to the more specific Gaussian channels, which have

continuous (typically complex) input and output alphabets and are disturbed by additive

white Gaussian noise (AWGN). While the capacity region (i.e., the set of all user rates

achievable under reliable communication) is known for the Gaussian MAC and BC and

for the discrete memoryless MAC, it is still unknown for the discrete memoryless BC.

Despite the similarities of the multiple access and the broadcast structure, there seems

to be a tendency of the BC to be more difficult to handle in terms of an information-

theoretic analysis. Several problems that are comparatively easy to solve for the MAC are

substantially harder to solve in the broadcast scenario. This has motivated researchers to

investigate the connection between the two channel classes more closely, unveiling surpris-

ing and very useful relationships, known as duality, between them. While duality has been

shown for a number of channel classes, it is an interesting open question to what extent

duality holds for the quite generic class of discrete memoryless channels. Investigating

this issue, a natural problem that arises is to find appropriate characterizations of the

boundaries of the MAC or the BC. The capacity region for the discrete memoryless MAC

is known—however, the boundary of the region is given implicitly as the solution of an

optimization problem. Solving this problem is, for itself, an interesting task.

Considering the enormous difficulties encountered in the analysis of multi-user systems,

approximative solutions to information-theoretic problems have drawn increasing attention

2



1.2 Outline and Main Results of the Thesis

in the recent past. One of the successful strategies to obtain such results involves an

approximate description of the physical (Gaussian)1 channel. Here, the channel operates

deterministically on bit vectors. Basically, the effect of the channel is to erase a certain

number of bits while keeping the remaining bits unchanged. The linear deterministic

model obtained in this way is considerably easier to analyze. However, some important

properties of the wireless medium are retained in the model. It is frequently the case

that efficient communication strategies devised for the linear deterministic model can be

translated to (almost optimal) strategies for the physical channel.

Another challenging aspect of wireless communication is the increasingly heterogeneous

structure of systems: when new wireless technologies are deployed, system operators gen-

erally are interested to keep existing infrastructure in operation as long as possible. More-

over, it is nowadays possible to support multiple wireless technologies in a single mobile

device, allowing a flexible choice of the access technology to be employed. This flexibility

also provides operators with new degrees of freedom for the optimization of system perfor-

mance with respect to different performance measures such as throughput, fairness or sys-

tem reliability. Analytical studies in this context naturally take a higher-level perspective

than the information-theoretic investigations described above. Yet, information-theoretic

results for the systems in question are valuable in order to assess the data rates that are

achievable in the different systems when a certain amount of resources (such as power or

bandwidth) are available.

1.2 Outline and Main Results of the Thesis

This thesis deals with different, but interconnected aspects of the issues mentioned above

that arise in the context of wireless communication systems and their information-theoretic

evaluation. The first chapter takes a more higher-level view and deals with the question

of how resource usage can be optimized in heterogeneous network environments, taking

statistical information about user behavior into account. For the remaining chapters, the

perspective switches to be more fundamental and information-theoretic. First, we study

the problem of explicitly computing the boundary of the capacity region of a discrete

memoryless MAC, which is still a largely unsolved problem. Building upon these results,

we investigate duality relations for discrete memoryless channels and for Gaussian fading

channels without channel state information at the transmitter. Finally, we derive approx-

1By the “physical channel”, we generally mean the corresponding Gaussian channel model. Of course,
this is also an approximative model of the “real-world” channel in the sense that it is obtained by
making certain assumptions and simplifications.

3



1 Introduction

imative capacity results for cellular channels using the linear deterministic approximation

model. More precisely, the main topics and results of the thesis are outlined below.

Chapter 2 deals with the problem of admission control and air interface selection in

heterogeneous network environments. The statistics of random user arrivals, channel con-

ditions and service durations are considered for the optimization of heterogeneous access

management strategies with respect to minimizing the expected mean cost for blocking

events. Based on state aggregation in a semi-Markov decision process formulation, an effi-

cient approximation algorithm for policy optimization is proposed. Though this solution is

suboptimal, it still offers considerable performance gains in comparison to simpler heuristic

strategies, which is demonstrated by simulations in a heterogeneous GSM/UMTS scenario.

Furthermore, structural properties of optimal user assignment policies are studied, proving

certain monotonicity properties for a specific type of systems.

The work presented in Chapter 2 has been published in [2], [11] and [12].

Chapter 3 is devoted to the problem of explicitly computing the boundary of the

capacity region of the discrete memoryless MAC. The following topics form the core of

this chapter:

• In the literature, it has been claimed that the Karush-Kuhn-Tucker conditions

provide a necessary and sufficient condition for sum-rate optimality for a certain

sub-class of discrete memoryless MACs. We first show that this claim does not

hold, even for two-user channels with binary input and binary output alphabets.

As a consequence, the capacity computation problem for the discrete MAC remains

an interesting and mostly unsolved problem.

• We study optimality conditions of the capacity computation problem for the discrete

memoryless two-user MAC with binary input and binary output alphabets. For a

subclass of these channels and weight vectors, previous results known from the

literature are generalized. It is shown that, depending on an ordering property of

the channel matrix, the optimal solution is located on the boundary, or the objective

function has at most one stationary point in the interior of the domain. For this,

the problem is reduced to a pseudoconcave one-dimensional optimization and the

single-user problem.

• We investigate properties of the optimality conditions for a relaxation (user coop-

eration) approach for the MAC capacity computation problem. We give conditions

under which a solution to the relaxed problem has the same value as the actual

optimal solution and show that these conditions can in some cases be applied to

construct solutions for a restricted class of discrete multiple-access channel using

convex optimization.

Parts of the work discussed in Chapter 3 have been published in [1], [9] and [10].
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1.2 Outline and Main Results of the Thesis

In Chapter 4, we turn to the duality relations between the MAC and the BC. The

motivation for the work reported in this chapter stems from the question to what extent the

existing duality relations that have been found for certain channel classes, such as Gaussian

channels, can be extended to other relevant channel models. Two important classes are

investigated in this work with respect to duality, namely the discrete memoryless channels

and fading channels with imperfect channel state information. The chapter consists of two

main parts, each dealing with one of these two channel classes:

• Motivated by the existing duality relations, we define a new notion of duality,

namely weak BC-to-MAC duality. Based on some results for the MAC capacity

computation problem from Chapter 3, we derive both a sufficient condition and a

necessary condition for a discrete memoryless BC to be weakly dual to a certain

class of discrete memoryless MAC channels. Applying these conditions, we show

that the binary symmetric BC is weakly dual to this class of MACs for a large set

of parameter choices.

• In the second part, we study duality relations for the fading BC under additive white

Gaussian noise and a strict ordering of the fading distributions without channel state

information at the transmitter and the natural corresponding dual fading MAC.

We prove that if the fading distribution for the weaker user is non-deterministic,

the achievable rate region using superposition coding with Gaussian signaling and

successive decoding, which is conjectured to be the capacity region, differs from the

dual MAC region. Duality holds only in the case of one-sided fading, where the

fading distribution for the weaker user is deterministic. Despite this lack of duality,

we propose to use the dual MAC in order to approximatively solve a non-convex

problem for the BC. Specifically, we consider the problem of weighted sum-rate

optimization for the BC and give, under some assumptions, upper bounds on the

error incurred by using this procedure.

Parts of the work presented in Chapter 4 have been published in [7] and [8].

The concluding chapter of the thesis deals with the linear deterministic approxima-

tion model for Gaussian channels, focusing on cellular-type channels. Effective coding and

interference mitigation schemes for cellular channels are still an active area of research.

Approximative models such as the linear deterministic approach might help to gain more

insight into these problems, which motivated the work presented in this chapter. Here, we

study a basic model for the uplink of a cellular system in the linear deterministic setting:

there are two users transmitting to a receiver, mutually interfering with a third transmit-

ter that communicates with a second receiver. In short, the model consists of a two-user

MAC (forming cell 1) mutually interfering with a point-to-point link (cell 2).
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1 Introduction

We first consider the case of symmetric weak interference, where the interference links

from cell 1 user to the cell 2 base station are identical and the sum of the interference gains

are less than or equal to the smallest direct link. We derive an efficient coding scheme

and prove its optimality, i.e., characterize the capacity region for the system. This coding

scheme is a form of interference alignment which exploits the channel gain difference of the

two-user cell. We then relax the restriction on the interference strength and derive outer

bounds on the achievable sum rate. Again, we develop a coding scheme achieving the

outer bounds, thereby obtaining the sum capacity. In this case, interference alignment is

employed as well; however, it is generally required to code across the bit levels forming the

channel input. Establishing the connection to the Gaussian counterpart of the channel,

we use the results to derive lower bounds on the generalized degrees of freedom of the

Gaussian channel for rational link ratio parameters. This measure represents a high SNR

description of the system, where the channel gains are kept in constant relation in the dB

scale, which allows a more detailed asymptotic description of the system as opposed to

the degrees of freedom characterization (in which only the transmit power is scaled).

We conclude the thesis by returning to one of the central themes of the thesis, namely

duality. A general network duality result for linear coding implies achievable rates for

the dual (downlink) cellular setup, i.e., a BC interfering with a point-to-point link. We

conjecture that these rates cannot be exceeded, which would imply that duality holds

between the uplink and the downlink scenario in the linear deterministic model. The

proof of this conjecture is left for future studies.

The work in Chapter 5 has (partially) been published in [4], [5] and [6].

1.3 Notation

Unless stated otherwise, we use the following notation and conventions throughout the

thesis: R+ = {x ∈ R : x ≥ 0} denotes the non-negative reals, and R++ = {x ∈ R : x > 0}
denotes the positive reals. The set of natural numbers (including 0) is denoted by N, and

Fp is the finite field (Galois field) of size p.

Concerning notation for certain basic functions, we denote the natural logarithm func-

tion (to the base e) by ln, whereas the logarithm function to base 2 is written as log. We

use the standard expressions I for mutual information and H for entropy. For a scalar

p ∈ [0, 1], the function H(p) denotes the binary entropy [CT06]. Unless stated otherwise,

we express all entropy and mutual information quantities in nats. exp denotes the expo-

nential function, i.e., exp(x) = ex. The symbol 11 denotes the indicator function, that is

11[A] = 1 if statement A is true and 11[A] = 0 otherwise. ⌊x⌋ denotes the maximum integer

lower or equal to x, while ⌈x⌉ is the minimum integer greater or equal to x. Moreover, div
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and mod denote integer division and the modulo operation, respectively, where we use the

convention x div 0 = 0. For x ∈ R, the positive part is denoted by (x)+ = max(x, 0). By

D(p||q), we will denote the Kullback-Leibler divergence between two binary probability

functions defined by p, q ∈ [0, 1], that is,

D(p||q) = p ln
p

q
+ (1− p) ln

1− p

1− q
, (1.1)

where we use the standard convention that 0 ln 0
q = 0 for q ∈ R+ and p ln p

0 = ∞ for

p ∈ R++. The symbol ⊕ denotes addition in the finite field F2, i.e., addition modulo-2.

For a function f , we write f(x) ր (ց) to indicate that f is monotonically increasing

(decreasing). The notation f(x) րy (ցy) also specifies the maximum (minimum) value

y of f . Generally, derivatives on the boundary of closed intervals are to be understood as

one-sided derivatives. As usual, ∇f denotes the gradient of a function f .

In general, matrices and vectors are denoted by bold letters and the entries referred to

with the corresponding plain letters, such as for the matrix A = (Aij). Where appropriate,

the entries of a matrixAmay be referred to by A(i, j) instead of Ai,j (similarly for vectors).

1 denotes the matrix (vector) with all entries equal to 1, 0 is the zero matrix (or vector). As

usual, the unit matrix is denoted by I and AT denotes matrix transposition. Occasionally,

the dimension m×n is also specified by 0m×n, 1m×n and by In for the n×n unit matrix.

For two vectors x,y, we denote component-wise inequalities as x < q,x ≤ q etc. For two

matrices A and B, we denote by [A;B] the matrix that is obtained by stacking A over B.

Moreover, for a sequence of matrices A1, . . . ,An, we write (Ak)
n
k=1 for the stacked matrix,

i.e., (Ak)
n
k=1 = [(Ak)

n−1
k=1 ;An]. Similarly, [A|B] and [A B] stand for placing A next to B.

For a matrix A ∈ Fn×m
2 , for 1 ≤ i ≤ j ≤ n, the sub-matrix A[i : j] ∈ F

j−i+1×m
2 is given

by taking only the rows i to j of the matrix A. Moreover, we write |A| for the number of

ones in A. The rank of the matrix is denoted by rank(A), det(A) is its determinant and

〈A〉 its image. The dimension of a vector space V is expressed as dim(V ).

Finally, Pr[E ] denotes the probability of an event E , Pr[E|F ] is conditional probability

(conditioning on the event F), E is the expectation operator, andCo denotes the operation

of forming the closure of the convex hull of a set.
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2 Heterogeneous Access Management

Today’s communication infrastructure is becoming more and more heterogeneous in terms

of different access technologies and the services that are provided to users. New radio

access technologies emerge frequently, and system operators are interested in a continued

utilization of systems that have already been deployed. Moreover, advances in integrated

circuit design and software-defined radio nowadays allow to support multiple access tech-

nologies (AT, also referred to as air interfaces) in a single wireless user terminal. The

number of different types of services is also increasing: While voice services made up the

major part of the system load until recently, the traffic generated by data services (such

as WWW, video conferencing, gaming etc.) is increasing dramatically.

In order to efficiently manage the resources provided by the different ATs, it is envisioned

to employ a central entity that controls the assignment of user requests (each possibly

requesting a different type of service) to the available ATs. This is generally called hetero-

geneous access management (HAM) and involves admission control and resource sharing

policies among the different access technologies. HAM also endows operators with new

degrees of freedom for the optimization of system performance with respect to through-

put, fairness or system reliability. HAM concepts have been studied in the literature in

various contexts and assumptions and for different objectives. Among them are load-

balancing [PRSA07], service-based [FZ05] and cost-based [BW07], [BWKS09] strategies

and strategies based on Markov or Markov decision process formulations [YK07], [SN-

MRW08], [GPRSA08], [HF08] and fuzzy neural methodologies [GAPRS08].

In this chapter, we present a generic framework for the optimization of admission con-

trol and access selection in heterogeneous networks. We study the cost-based approach,

introduced in [BW07], in a dynamic setting where users randomly arrive over time ac-

cording to a Poisson process and require a random, exponentially distributed service time.

The cost-based approach allows to bundle many relevant system parameters such as dif-

ferent service requirements, characteristics of the ATs, user positions and channel gains

into one cost value per user and AT. The formulation is general enough to be employed

for various types of systems for which resource costs required to support a user in an AT

are either orthogonal among the users or, for interference-limited systems, depend only

on the sum of interference but not on the composition among the different interference
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2 Heterogeneous Access Management

sources [BW07], [BWKS09]. We remark that for analytical and algorithmic tractability,

our model requires the assumption of Poisson arrivals and exponential holding times, which

is used widely in the literature [YK07], [SNMRW08], [GPRSA08], [HF08]. Moreover, if

these assumptions are not satisfied perfectly for a practical system to be optimized, we

can at least expect to get reasonable suboptimal solutions.

The system is analyzed using a semi-Markov decision approach under a system relia-

bility (expected mean blocking cost) optimization criterion, which is a common call-level

objective for admission control policy design [GB06]. We remark that a similar Markov

model for the case of a single available resource (AT) has been studied in [AJK01], [RT89b],

[RT89a] in the context of the stochastic Knapsack problem. Even though the theory of

Markov decision processes provides a powerful tool for control optimization under uncer-

tainty, a typical problem that occurs is the curse of dimensionality, which refers to the

immense size of the state space for problems of realistic size, which renders standard algo-

rithms such as Policy Iteration or Value Iteration infeasible. The main contribution of the

work presented in this chapter is the proposal of a suboptimal solution to the HAM control

problem based on state aggregation, thereby significantly reducing the state space size (and

hence, computational requirements) and allowing the numerical solution of scenarios of

realistic size. In a sample heterogeneous GSM-EDGE/UMTS scenario (which is also used

in [BWKS09] for performance evaluation in a similar fashion), we demonstrate that our

algorithm, even though suboptimal, shows remarkable performance gains in comparison to

straightforward heuristic control policies. Secondly, structural properties of optimal HAM

control policies are analyzed in this chapter. We demonstrate certain non-monotonicity

properties of optimal policies. For the situation of two ATs and two user classes and a

specific ordering of the system parameters, we prove that the heuristic “Greedy” user as-

signment is optimal except for unforced (not necessarily required) blocking events and that

the optimal policy exhibits a certain monotonicity property. These results are obtained

employing the technique of event-based Dynamic Programming [Koo06].

2.1 System Model, Problem Formulation and Heuristic Policies

2.1.1 System Model

The system model considered here is as follows: The system offers S ATs, each with

load capacity C. Depending on physical layer capabilities, channel conditions and user

requirements, each user belongs to one of K different user classes. Users arrive to the

system over time according to a Poisson arrival process with mean arrival rate λ. An

arriving user belongs to a specific class k with probability pk. Note that due to the
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probabilistic splitting property of Poisson processes, we can equivalently assume a Poisson

arrival process for each class k with rates λk = λpk. Each time a user arrives to the

system (and requests to be served), the HAM control policy specifies if the user should

be offered service or not. If the user is served, the controller also decides which AT the

user will be assigned to. A user of class k that is assigned to the AT s will demand an

amount csk of resources in this AT for the duration of service. We will refer to these

values as cost values. The resources taken by an assigned user will be released after an

exponentially distributed service time with class-dependent mean time 1/µk. If a user of

class k is blocked, a penalty bk is incurred. We assume a prespecified quantization of the

available resources: We assume that all cost values in each AT s are integer multiples of

a basic resource unit ∆s, so that csk = c̃sk∆s where 1 ≤ c̃sk ∈ N. This quantization may

arise due to different reasons. First of all, it is often the case that distributable resources

such as time slots or power levels are inherently quantized. The quantization might also

be the result of an approximate system modeling.

We describe the state of the system at time t by a matrix X(t) ∈ X , where X(t)sk

denotes the number of users of class k in the AT s and the state space X (the set of

possible states of the system) is given by

X :=

{
M ∈ NS×K : ∀1 ≤ s ≤ S

K∑

k=1

cskMsk ≤ C

}
. (2.1)

The problem we consider is to construct HAM policies that minimize the expected mean

cost for blocking events. More precisely, our goal is to find an optimal HAM policy π :

X × R × {1, . . . ,K} → {0, 1, . . . , S}. Here, π(X, t, k) specifies the AT that a class k user

arriving at time t to the system in state X is assigned to (0 stands for blocking). Let

t1, . . . , tN(t) be the (random) epochs of user arrivals up to time t and the class of the

arrival at ti be denoted by k(ti). The policy π is considered optimal [for initial state

X(t1)] if it minimizes the expected blocking cost per unit time (expected mean cost)

Jπ := lim sup
t→∞

1

t
E



N(t)∑

i=1

11 [π(X(ti), ti, k(ti)) = 0] bk(ti)


 , (2.2)

where N(t) specifies the number of arrivals up to time t. A policy is called stationary if it

is independent of time t, and we write π(X, t, k) = π(X, k) in this case. We remark that

from the properties of the semi-Markov decision process formulation given subsequently,

it follows that an optimal stationary policy always exists. For this, the cost Jπ is also

independent of the initial state and the limit (not only the limit superior) in (2.2) exists.

11
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2.1.2 Heuristic Policies

A simple heuristic policy is given by the Load-based policy πl which assigns each user to

the AT with minimum total load [BW07]. More precisely, it is defined as follows. Let

Xk ⊆ X be the set of states that are totally loaded for class k users, i.e., that do not allow

the admission of class k user to any of the ATs and Eij be the S×K matrix that contains

a one at position (i, j) and zeros elsewhere. The Load-based policy performs HAM control

as follows:

πl(X, k) :=





0, X ∈ Xk

argmin
{s:X+Esk∈X}

∑
k cskXsk, otherwise. (2.3)

Here, ties (equal load situations) are broken arbitrarily (in our examples, we use the

AT with smallest index number). Another simple heuristic for HAM control is given by

assigning each arriving user to the AT in which it causes the minimum resource usage:

The Greedy policy πg is defined as the stationary policy

πg(X, k) :=





0, X ∈ Xk

argmin
{s:X+Esk∈X}

csk, otherwise. (2.4)

If there are several s that minimize the cost value, the policy chooses among them the one

corresponding to the AT having minimum current total load; ties among equally loaded

ATs are broken arbitrarily (again, in our examples, we use the AT with smallest index

number).

2.2 Semi-Markov Decision Process Formulation and Optimal

HAM Policies

In this section, we present a semi-Markov decision process (SMDP) [Tij86], [Ber07] for-

mulation of the problem. We define X as the state space of the SMDP. Following the

approach chosen in [RT89a] for the stochastic Knapsack problem, we choose the action

space A = {0, 1, . . . , S}K . The interpretation of the actions is as follows: Assume that in

state X the action a = (a1, . . . , aK) is chosen and that a class k user arrives while the

system is in state X. Then the user will be blocked if ak = 0 (and the system remains in

state X and a penalty bk is incurred); otherwise, the user will be assigned to AT ak and

the system state changes. Consequently, for a state X ∈ X , the set of admissible actions
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is defined by

AX :=

{ {
a ∈ A \ {0} : X+Eajj ∈ X if aj > 0

}
, X = 0{

a ∈ A : X+Eajj ∈ X if aj > 0
}
, X 6= 0.

(2.5)

The transition rate from a state X ∈ X to the state Y 6= X ∈ X under action a is given

by

λXY(a) =





λk, Y = X+Esk and ak = s

µkXsk, Y = X−Esk

0, otherwise.

(2.6)

The sojourn times (i.e., the expected amount of time spent in a state before moving to a

different state) and transition probabilities are given by

τX(a) =
1∑

Y 6=X λXY(a)
(2.7)

and

pXY(a) = τX(a)λXY(a), (2.8)

respectively. The expected cost in state X until transition to the next state using action

a ∈ AX is calculated as

cX(a) = τX(a)
K∑

k=1

λk11[ak = 0]bk. (2.9)

Note that the state 0 is reachable from any other state, so that the SMDP satisfies

the unichain property [Tij86]. This implies the existence of a stationary policy γ : X →
A, γ(X) ∈ AX minimizing the expected cost per unit time (which is independent of the

initial state). Using π(X, k) = γ(X)k then yields the policy π with the expected mean

cost Jπ given in (2.2).

The optimal policy γ can be found using standard algorithms such as Value Iteration

or Policy Iteration. Value Iteration is an iterative procedure that updates in the nth

step a value function Vn that maps each element of the state space to a real value. The

procedure stops when a specified stopping criterion is satisfied. For the implementation

of Value Iteration, a transformation to an equivalent discrete-time model is carried out

using uniformization [Tij86], [Ber07]: For the uniformization constant, we choose

τ =
1

2

(
S∑

s=1

K∑

k=1

µk

⌊
C

csk

⌋
+

K∑

k=1

λk

)−1

. (2.10)

Uniformization results in the following data transformation of cost values and transition
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2 Heterogeneous Access Management

Table 2.1: Experimental parameters.

No. S K C (λk) (µk) (csk) (bk)

I 2 2 2 (1 1) (1 1)

(
0.5 0.6
0.4 0.5

)
(1 1)

II 2 3 1.8 (3 1.5 2) (1 2 1.5)

(
0.5 0.6 0.4
0.3 0.7 0.4

)
(1 6 2)

probabilities: c̃X(a) := cX(a)/τX(a),

p̃XY(a) =

{
τ

τX(a)pXY(a), X 6= Y

1− τ
τX(a) , X = Y.

(2.11)

Then, the Value Iteration step for the value function Vn(X) is given by

Vn+1(X) = min
a∈AX

[
c̃X(a) +

∑

Y∈X
p̃XY(a)Vn(Y)

]
. (2.12)

Similarly as in [RT89a] for the stochastic Knapsack problem, the Value Iteration step

(2.12) allows the following simplification: As

∑

Y∈X
p̃XY(a)Vn(Y)− τ

τX(a)
Vn(X) = τ

∑

Y 6=X

λXY(a)Vn(Y)− τ

τX(a)

∑

Y 6=X

pXY(a)Vn(X)

= τ
∑

Y 6=X

λXY(a) (Vn(Y)− Vn(X)) , (2.13)

the Value Iteration step decomposes to

Vn+1(X) = Vn(X) +
∑

k

λkMn(X, k) + τ
∑

s,k

µkXsk (Vn(X−Esk)− Vn(X)) , (2.14)

where

Mn(X, k) = min

{
min

s∈SX,k

τ (Vn(X+Esk)− Vn(X)) , bk

}
(2.15)

and SX,k := {s ∈ {1, . . . , S} : X+Esk ∈ X} .

2.2.1 Examples for Optimal Policies

In the following, we discuss some general properties of optimal policies by means of a

simple example. While the Greedy and the Load-Based assignment decisions take only
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Figure 2.1: Stationary distribution for different load states for the Greedy policy.

the current system state into account, the optimal solution also considers the randomness

of future developments of the system. Most importantly, the number of user arrivals in a

certain time interval is random, and the optimal policy takes the probabilities for these

random variations into account.

This can be illustrated by two effects that typically occur for optimal policies. First

of all, it is generally not optimal to assign an arriving user to the AT in which the user

causes minimum resource cost (as the Greedy policy does). We call such a control decision

a non-Greedy user assignment. This is due to the fact that the optimal policy generally

tends to balance usage of resources across the different ATs. Thereby, it is possible to

accommodate more users (or more users with a higher blocking cost) in the “efficient” AT

in the case of a large number of users arriving in a short period of time. Clearly, load

balancing is also the intention behind the Load-based policy, which however is often quite

wasteful in terms of resource usage. Optimal strategies therefore can be thought of as

seeking for the best possible trade-off between load-balancing and efficient resource usage.

We illustrate this by means of a simple example. Consider the system I given in Table

2.1. For this system, the user class characteristics are identical except for the cost values,

and for both users AT 2 offers a slightly more resource efficient service. Looking at the

optimal policy (obtained by Value Iteration as given by (2.14)), it can be seen that Greedy

assignments are not optimal in all states. In fact, the expected cost for the Greedy policy

is about 6.3 · 10−3, whereas the optimal policy reduces this cost by about 37% down to
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Figure 2.2: Stationary distribution for different load states for the optimal policy.

3.9 · 10−3. This gain can be explained, as discussed above, by looking at the stationary

probability for different load states, displayed in Figure 2.1 for the Greedy policy and in

Figure 2.2 for the optimal policy. Here, one can see that the optimal policy achieves a

more balanced resource usage for the different systems. Moreover, optimal policies might

deny service to users requesting service even if there are enough resources in one of the ATs

to accommodate the user, which we call unforced blocking. By doing so, optimal policies

reserve resources for potentially arriving users that have lower resource requirements or a

higher blocking penalty. Structural properties of optimal policies with respect to unforced

blocking are discussed in more detail in Section 2.5.

2.3 The Aggregated SMDP

The SMDP formulation and Value Iteration algorithm described in the last section in

principle allow to find optimal HAM policies. However, for problem instances encountered

in real-world scenarios, the size of the state space renders these algorithms computation-

ally infeasible. To encounter this problem, we define an aggregated [Ber07] SMDP model

which considerably reduces the computational complexity but still allows substantial per-

formance gains in comparison to the Greedy and the Load-based strategy. From now on,

we consider the case S = 2. For technical reasons to become clear later, we introduce

an additional artificial “dummy” user class to the system, for which cs,K+1 = ∆s and
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pK+1 = ǫ for some small ǫ > 0. We adjust the occurrence probability of each original user

class k to pk − ǫ/K. For notational convenience, we will in the following still denote the

number of user classes by K, assuming that the dummy class is already among these K

classes.

2.3.1 State Aggregation

We form state clusters in the original SMDP model and specify an aggregated SMDP

model on the cluster set. The states are clustered according to the total load they require

in the system: For each load pair (l1, l2) for which l1 = k1∆1, l2 = k2∆2, k1, k2 ∈ N, 0 ≤
k1 ≤ ⌊C/∆1⌋, 0 ≤ k2 ≤ ⌊C/∆2⌋, we define the corresponding state cluster as

C(l1, l2) :=

{
X ∈ X :

∑

k

cskXsk = ls, s = 1, 2

}
. (2.16)

As state space for the aggregated SMDP model, we use

X̂ := {0,∆1, . . . ,∆1⌊C/∆1⌋} × {0,∆2, . . . ,∆2⌊C/∆2⌋} × {0, 1, . . . ,K} . (2.17)

Here, the state (l1, l2, 0) represents the system state with load (l1, l2) just after a user

departure, and (l1, l2, k), k > 0 represents the system state with load (l1, l2) just prior

to a class k user arrival. The action set is defined as A = {0, 1, 2}. Again, 0 represents

the blocking action and 1, 2 denote the admission to AT 1 and 2 respectively. The set of

admissible actions in the state x = (l1, l2, k), k > 0 is then given by

Ax := {0} ∪ {s ∈ {1, 2} : ls + csk ≤ C}. (2.18)

For the states (l1, l2, 0), the only admissible action is 1; it merely plays the role of a

dummy action and has no operational meaning. A stationary policy is given by the

mapping π : X̂ → A such that π(x) ∈ Ax for all x ∈ X̂ and such that π(0, 0, k) > 0

for at least one k, 1 ≤ k ≤ K (this is just a technical requirement in order to ensure the

finiteness of the sojourn time in the zero state). For the probability in state (l1, l2, k)

for moving to the state (l′1, l
′
2, k

′) using policy π, we use the notation pπ(l1, l2, k, l
′
1, l

′
2, k

′).

Due to the state aggregation, information about the actual state composition and hence

over the actual departure statistics is lost. We encapsulate some information about the

departure statistics in the aggregated states as follows. For the load l, we define the set

Ds(l) := {k : l − csk ≥ 0} of classes that are possible constituents of a system state with

load l in AT s. If class k was the only user class present in AT s with load ls, then

there would be ls/csk users in the system. To approximate the departure rate of class k

17
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users (where k ∈ Ds(ls)) in AT s, we weight this number by the occurrence probability

fraction pk/
∑

j∈Ds(ls)
pj of this class among the possible constituents, intending to reflect

the “typical” proportional share of class k. By finally weighting by the class departure

rate µk, we define

µsk(l1, l2) := 11[k ∈ Ds(ls)]
µkpkls

csk
∑

j∈Ds(ls)
pj

(2.19)

as the exponential departure rate in AT s of a class k user in the states (l1, l2, q), q ≥ 0.

Note that µsk(l1, l2) only depends on the state component ls, so that we also use the

notation µsk(ls) in the following. By τπ(l1, l2, k), we denote the sojourn time in the state

(l1, l2, k) when using policy π. It is easily verified to be given by

τπ(l1, l2, k) =
1∑

s,k µsk(ls) +
∑

k 11[π(l1, l2, k) 6= 0]λk
. (2.20)

We further write

lπs (l1, l2, k) = ls + 11[π(l1, l2, k) = s]csk (2.21)

and 1 = 2, 2 = 1. Then, the transition probabilities are evaluated as

pπ(l1, l2, 0, l
′
1, l

′
2, k

′) = λk′τπ(l1, l2, 0)11[l
′
1 = l1, l

′
2 = l2],

pπ(l1, l2, 0, l
′
1, l

′
2, 0) = µsk(ls)τπ(l1, l2, 0)11[l

′
s = ls − csk and ls = l′s for s = 1or 2, some k],

pπ(l1, l2, k, l
′
1, l

′
2, k

′) = λk′τπ(l1, l2, k)11[l
′
s = lπs (l1, l2, k) for s = 1and 2],

pπ(l1, l2, k, l
′
1, l

′
2, 0) = µsl(ls)τπ(l1, l2, k)11[l

′
s = lπs (l1, l2, k) and l

′
s = lπs (l1, l2, k)− csl

for s = 1or 2 and some l]. (2.22)

The expected cost cπ(l1, l2, k) until transition to the next different state is zero for states

just after a user departure, i.e., cπ(l1, l2, 0) = 0. Since (l1, l2, k) for k > 0 denotes the

state just prior to a class k arrival, it is also zero for k > 0 if class k users are admitted.

Otherwise, the expected cost is composed of the blocking cost bk of the current arrival

and bk times the number λkτπ(l1, l2, k) of expected class k arrivals during the following

transition period. We can thus write the expected cost in state (l1, l2, k), k ≥ 0 as

cπ(l1, l2, k) = 11[π(l1, l2, k) = 0](bk + λkτπ(l1, l2, k)bk). (2.23)

(note that for k = 0, the only admissible action is defined to be 1). For the above SMDP

model, we find the optimal (stationary) policy with respect to minimizing the expected

mean cost. Owing to the introduction of the unit cost dummy user class, the model

satisfies the unichain property [Tij86] since the zero state (0, 0, 0) is reachable from any
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other state: It is assured that from each state (l1, l2, k) ∈ X̂ , there is a “downward chain”

to the zero state in the sense that there exists n ≥ 1 such that the probability of moving

in n steps from (l1, l2, k) to (0, 0, 0) is strictly positive (which would generally not be the

case without the dummy user class). From the solution π∗ of the aggregated model, we

define the HAM policy π̃ as π̃(X, k) := π∗(l1, l2, k) for X ∈ C(l1, l2).

2.3.2 Implementation of Policy Iteration

The Policy Iteration algorithm starts with an arbitrary stationary policy. We use the

Greedy policy as the initial policy [which is defined for the aggregated model in the

obvious manner similar to (2.4)]. For the value determination step (which evaluates the

performance of the current iteration policy) in iteration step n, we have to solve the

following system of linear equations in vn ∈ R|X̂ |−1, γ ∈ R:

[
−τπn |Pπn − I

]
(
γ

vn

)
= −cπn . (2.24)

Here, the notation for a policy π is as follows: By τπ, we denote the column vector

of state sojourn times τπ(x), x ∈ X̂ . The transition probability matrix is denoted as

Pπ = (pπ(x, y))x,y∈X̂ , and cπn denotes the column vector of cost values cπ(x), x ∈ X̂ . By

A, we denote the matrix that is obtained from the matrix A by removing the first column,

and | separates the first column from the others. From the structure of the transition

probabilities, we see that in the matrix
[
−τπn |Pπn − I

]
, most of the entries are zero. In

fact, there are only O(|X̂ |) = O
(
(K + 1)C2/(∆1∆2)

)
non-zero entries. Hence, the system

is sparse and can efficiently be solved using iterative methods for sparse and large linear

systems such as BI-CGSTAB (biconjugate gradients stabilized method) [vdV92], which

we used in our implementation and typically shows fast convergence in our applications.

Note that by the same sparsity argument, we see that the policy improvement step can

be implemented using only O(|X̂ |) steps. We also remark that the overall Policy Iteration

procedure in our applications typically requires only a few (about 5) iterations until the

optimal policy is found.

2.4 Example Application: GSM/UMTS system

In this section, we present an example for the application of the algorithm described in the

previous section in a heterogeneous GSM-EDGE/UMTS environment. In the following,

we will refer to the GSM-EDGE system simply as GSM. We consider a single cell in a

multi-cell downlink scenario in which each cell is equipped with a UMTS and a GSM base
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Table 2.2: System parameters.

Transmit power Pgsm 15W
Transmit power Pumts 20W
Time slots GSM Tgsm 21

Path loss constant GSM κgsm 12.8
Path loss constant UMTS κumts 15.3
Path loss exponent GSM γgsm 3.8

Path loss exponent UMTS γumts 3.76
Orthogonality factor ρ 0.4
Noise power ηgsm, ηumts -100 dBm

Inter-cell interference GSM Igsm -105 dBm
Cb 1.4 · 109
Db 10−3

Cell radius rcell 1000m

station (BS) at the cell center and we assume that each mobile is capable of establishing

a connection to both of them, but exclusively to one at the same time.

2.4.1 System Model

We assume that there are two main types of users: The first group of users [Quality-of-

Service (QoS) class] is subject to quality-of-service guarantees: For each of these users, a

minimum data rate out of the set of possible rate requirements {RQoS(1), . . . , RQoS(Q)}
is specified. The probability for a user to have rate requirement RQoS(q) is denoted by

pQoS(q). The service time of the qth QoS class is exponentially distributed with mean

1/µQoS(q). Furthermore, for each QoS class a blocking cost bQoS(q) is specified. The users

of the second group are best-effort users that share the resources that are unused by the

users in the QoS group and are not subject to optimization here.

For simplicity, we assume the cell area to be of circular shape of radius rcell. QoS users

randomly arrive to a location inside the cell area according to a Poisson process with

rate λ and remain at this position for the duration of their service. We assume that the

probability for a user to be located at a specific location is uniform over the cell area.

The propagation model includes only path loss; the channel gain of a user located at

distance d from the base station follows the path loss model gs(d) = d−γs10−
κs
10 , where

s ∈ {gsm, umts} and γs, κs are constants.

We model the system characteristics of the two ATs as follows (the modeling is mostly

along the lines of [BWKS09]):
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Table 2.3: QoS class specifications.

Parameter QoS class I QoS class II

Rate requirement RQoS(q) 36 kbps 12.2 kbps
Occurrence probability pQoS(q) 0.3 0.7

Service rate µQoS(q) 0.5/min 1/min
Blocking cost bQoS(q) 2 1

GSM system characteristics. We assume a fixed BS transmission power Pgsm. The

signal to interference and noise ratio (SINR) of a GSM user depends on the distance d of

the user from the base station. For a user at distance d, it is given by

β(d) =
ggsm(d)Pgsm

ηgsm + Igsm
. (2.25)

In (2.25), ηgsm is the noise power and Igsm the inter-cell interference power, which is

assumed to be constant. The achievable rate at a certain SINR per time slot is defined

by a SINR-rate mapping f(β), given in Figure 2.3. This mapping curve is obtained

from the MRRM Simulator specification [KSB+08] and is based on link level simulations

from [Agi99].

Each user i is assigned an amount of bandwidth (time slots or frequency slots) si; the

rate that is achieved at SINR βi is then given by sif(βi). The total amount of bandwidth

is limited by Tgsm, implying that it must hold that

∑

user i in the system

si ≤ Tgsm. (2.26)

UMTS system characteristics. For the interference-limited UMTS AT, we again as-

sume a fixed BS transmission power Pumts and use the rate approximation from [BWKS09],

which leads to a linear relationship between the data rate and the assigned resources and

which offers a good approximation for fixed transmit powers and low link SINRs. More

precisely, for a UMTS connection at BS distance d which is assigned the power P , the

achievable data rate is approximated by Rumts(d) ≈ Pgumts(d)
CbDb

I(r) where Cb,Db are con-

stants parameterizing the system characteristics such as bandwidth, modulation and bit

error rate and

I(d) = ρgumts(d)Pumts +
∑

n∈N
g(n)Pumts + ηumts. (2.27)

Here, ρ is the orthogonality factor which accounts for reduced inter-cell interference, ηumts
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Figure 2.3: SINR-rate mapping for GSM.

is the noise power, N denotes a set of neighboring base stations and g(n) the channel gain

between the cell center and the neighboring base station n. In our implementation, we

chose for N the base stations of two cell rings surrounding the cell under consideration.

Resulting cost and arrival model. We assume a quantization of the normalized

resource values by ∆gsm,∆umts. For the normalization, we let the AT capacities both

equal one, that is, C = 1. The normalized and quantized resource amounts required to

support a QoS class q at BS distance d are then given by

cgms(d, q) = ∆gsm

⌈
RQoS(q)

f(β(d))Tgsm∆gsm

⌉
, (2.28)

cumts(d, q) = ∆umts

⌈
I(d)RQoS(q)

gumts(d)CbDbPumts∆umts

⌉
.

The areas for which the quantized and normalized cost values are constant for both ATs

for QoS class q users form C(q) concentric circular areas (rings) around the cell center.

Since arrivals are geometrically uniform, the probability for a user to be located in a

specific ring with area A is given by p(A) = A
πr2

cell

. Altogether, we have K =
∑Q

q=1 C(q)

different user classes, where the arrival rate for a rate RQoS(q) user in ring with area A is

given by λpQoS(q)p(A).

2.4.2 Simulation Results

We implemented the algorithm described in the last section and applied it to the scenario

described above using MATLAB. The system parameters that were used are given in Table
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Figure 2.4: Normalized and quantized cost values for the two QoS classes in different ATs.

2.2. As an example, we consider a scenario of two QoS user classes, denoted as I and II

and having the specifications given in Table 2.3. As (normalized) resource granularities,

we assume ∆gsm = 1/150,∆umts = 1/80. The resulting normalized cost values for the

two QoS classes are illustrated in Figure 2.4. This cost model gives rise to 21 constant

cost rings for QoS class I and 7 rings for QoS class II, so that there are K = 29 different

user classes (including the dummy user class). The resulting number of states is 366 930,

which is a reasonable number from the viewpoint of computational requirements. We

remark that computing the actual number of states in the non-aggregated state space X
is difficult. However, it is easy to see that the size of X is extremely large in comparison to

the size of the aggregated state space: Counting only the number of possible states with

up to three positive entries in the state matrix, one obtains a count of 636 807 614 states.

Clearly, the actual size is much larger than this number. The system was simulated using

the (non-aggregated) SMDP model from Section 2.2 for an equivalent of about 1.5·105
minutes and for different mean arrival rates λ, comparing the expected mean blocking

cost results for the aggregation, the Greedy and the Load-based policy. The computation

time required for the optimization for each arrival parameter λ was roughly 60 minutes,

which is reasonable considering the complexity of the problem that is dealt with here.

Figure 2.5 shows the simulation results in terms of the improvement in percentage that

the aggregation policy shows in comparison to the other two strategies. We see that the

performance improvement in comparison to the Load-based policy is big over the whole

range of mean arrival rates. It is also substantial with respect to the Greedy policy,

especially for lower arrival rates.
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Figure 2.5: Performance improvement of the aggregation policy with respect to the Greedy
and the Load-based policy.
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Figure 2.6: Fraction of HAM assignments for QoS class I in the aggregation policy that
differ from the Greedy policy (excluding unforced blocking actions).
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In the following, we illustrate some properties of the aggregation policies that were

obtained. Figure 2.6 displays for each arrival rate λ and each ring of QoS class I the

fraction of non-Greedy assignments, i.e., the fraction of states (l1, l2, k), k > 0 in which

the aggregation policy differs from the Greedy policy (on the aggregated state space), not

counting the cases in which blocking occurs but is not enforced due to capacity limits.

Just as for optimal policies (as discussed in Section 2.2), these non-Greedy assignments

increase the system performance by occasionally assigning users of QoS class I to an AT

with higher cost, thereby balancing the load across the two ATs and reserving capacity

for a potentially arriving burst of QoS class II users, which have a higher occurrence

probability. We see that such assignments take place mainly between the rings 8 and 15,

where roughly every second class is redirected almost completely to the more expensive

AT, in this case the UMTS system. Figure 2.7 shows, again for QoS class I, the fraction of

states in which blocking occurs in the aggregation policy, but is not necessary due to the

capacity constraint (unforced blocking). We see that unforced blocking is rather rare, but

happens more frequently with increasing arrival rates and increasing cost values. Since

non-Greedy assignments for QoS class I are directed to the UMTS system, one intuitively

expects them to be less frequent if the load in the UMTS system is high and more frequent

if the GSM load is high. In fact, this can be seen in Figure 2.8, which displays for the

case λ = 28 users/minute the number of non-Greedy assignments for QoS class I in the

aggregation policy for each possible system load pair.

Finally, we remark that the Greedy and the Load-based policy are oblivious of differences

in the blocking cost values of the user classes. However, the performance improvement

using the aggregation algorithm for systems with identical blocking cost is typically in the

same order of magnitude as in examples with differing blocking cost values.

2.5 Structural Results for Optimal Policies

In this section, we discuss some structural properties of optimal policies. Particularly,

we are interested in certain monotonicity properties. In general, optimal policies are of

complex and often non-intuitive structure. For example, this can be demonstrated by

looking at monotonicity properties with respect to user blocking: For user classes k, l and

an AT s, we say that a stationary policy π is (k, s, l)-monotone if for all X ∈ X the

following holds:

π(X, k) = 0 ⇒ π(X+Esl, k) = 0 if X+Esl ∈ X . (2.29)

25



2 Heterogeneous Access Management

5

10

15

20

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

0

0.2

0.4

0.6

0.8

1

Mean arrivals per minuteRing number

N
u

m
b

e
r 

o
f 

u
n

fo
rc

e
d

 b
lo

c
k

in
g

 a
c

ti
o

n
s

 [
%

]

Figure 2.7: Fraction of unforced blocking actions for QoS class I in the aggregation policy.
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1,X12 = 0,X13 = 2.

In other words, if a (k, s, l)-monotone policy blocks a class k user in some state X, then it

also blocks this user class in the system state that is reached by assigning a class l user to

AT s. Generally, monotonicity is violated for optimal policies. As an example, consider

the optimal policy for the system II given in Table 2.1. It is (k, s, l)-monotone except for

k = 1, s = 2, l = 1 and k = 1, s = 2, l = 3. Figure 2.9 shows the projection of the state

space to AT 2 where the state of AT 1 is fixed to X11 = 1,X12 = 0,X13 = 2 and for each

state the optimal policy π and the Greedy policy πg. The state X21 = 0,X22 = 1,X23 = 1

violates both (1, 2, 1)-monotonicity and (1, 2, 3)-monotonicity. Even though monotonicity

is generally violated, there are some cases where such a property can be proved. We

demonstrate this in the remainder of this section.

A powerful technique for the investigation of structural properties of MDP models is

provided by the method of event-based Dynamic Programming introduced in [AK95] (see

also [AJK01], [Koo06] and [Koo96] for more details on this approach). Here, the value

function evolution is described by the application of a Dynamic Programming (DP) op-

erator, which is a linear combination of event operators, allowing to prove properties of

the value function by proving these properties for the event operators separately. This

technique has been applied for the stochastic Knapsack problem in [AJK01] to obtain

structural policy properties, showing submodularity of the value function and a resulting
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monotonicity property of the optimal policy for the case of two user classes. In this section,

we extend some of these results to the situation of multiple ATs. Here, we prove mono-

tonicity and supermodularity of the value function in certain layers of the state space for

the case of two user classes and ATs and a specific ordering of the cost values, also result-

ing in a monotonicity property of the optimal HAM policy and “almost-optimality” of the

Greedy policy. We remark that since we are dealing with a cost-based model rather than a

reward-based model as in [AJK01], we obtain supermodularity instead of submodularity.

In order to apply event-based Dynamic Programming, we define the following event

operators on the set of functions f : NS×K → R: For each class k, the HAM operator T
(k)
A

is defined as

T
(k)
A f(X) := min

{
min

s∈{1,...,s}
{f(X+Esk), f(X) + bk}

}
. (2.30)

For each class k, each AT s and each l with 1 ≤ l ≤ ⌊C/csk⌋, we define the departure

operator T
(k,s,l)
D by

T
(s,k,l)
D f(X) :=

{
f(X−Esk), Xsk ≥ l

f(X), otherwise.
(2.31)

For the modeling of capacity constraints, we further introduce the boundary function

Q(X), which is defined as Q(X) = 0,X ∈ X and Q(X) = ∞ if X /∈ X . The event-based

DP operator is then given by the following linear combination of control and departure

operators:

Tf(X) := Q(X) +

K∑

k=1

λkT
(k)
A f(X) +

S∑

s=1

K∑

k=1

µk

⌊C/cs,k⌋∑

l=1

T
(s,k,l)
D f(X). (2.32)

The (event-based) value function vn is then recursively defined using the DP operator

by v0(X) := Q(X), vn+1(X) := Tvn(X). We now show some structural properties of

the event-based value function. Following notation in [Koo06], for an operator O and

properties P1,P2 of the value function vn, we write O : P1 → P2 if the following holds:

∀n ∈ N : vn satisfies property P1 ⇒ Ovn satisfies property P2. (2.33)

In the following, we prove several properties of the event-based value function. The basic

proof strategy is induction over n. For the induction step, it is shown for each operator O

independently that O : P → P for the property P to be proved, and then extending the

result to the value function by using the fact that the properties P are closed under linear

combinations [Koo06]. In the following, we will again denote 1 = 2, 2 = 1. We start with
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the following general monotonicity property:

Lemma 1. (Monotonicity) For all n ≥ 0, X ∈ NS×K and all i, j ∈ {1, 2}, it holds that

vn(X+Eij) ≥ vn(X).

Proof. The proof is similar to the monotonicity proof in [AJK01] (Lemma II.1).

We now consider the more specific case of a system with S = K = 2 and where there

is the specific ordering of the cost values c11 ≤ c12, c11 ≤ c21, c22 ≤ c12, c22 ≤ c21 and

µ1 = µ2. We refer to such systems as ordered binary systems. For these systems, we have

the following lemmata:

Lemma 2. (Ordering monotonicity) For an ordered binary system, for all n ≥ 0 and

all X ∈ NS×K and j ∈ {1, 2}, it holds that vn(X + Ejj) ≥ vn(X + Ejj) Moreover, if

X+Ejj ∈ X then vn(X+Ejj) ≥ vn(X+Ejj).

Proof. Due to the ordering of the cost values, the inequalities are certainly true for n = 0.

Let M1,M2 denote the first and the second monotonicity property, respectively and M
denote M1 and M2 together. For T

(k)
A : M → M, it suffices to prove T

(k)
A : M1 → M1

and T
(k)
A : M → M2, which are easily established using the induction assumption. T

(s,k,l)
D :

M2 → M2 follows immediately except for the cases (X+Ejj)sk = l, (X+Ejj)sk < l and

(X + Ejj)sk < l, (X + Ejj)sk = l, in which case the statement is proved by combining

these two cases together as in the monotonicity proof in [AJK01] (Lemma II.2). It is here

where we need that µ1 = µ2. Similarly, one can prove T
(s,k,l)
D : M1 → M1.

Lemma 3. (Partial supermodularity) For an ordered binary system, for all n ≥ 0 and all

X ∈ NS×K , it holds that

vn(X) + vn(X+E11 +E22) ≥ vn(X+E11) + vn(X+E22), (2.34)

i.e., the event-based value function is supermodular in each X11-X22 layer of the state

space. Moreover, for s ∈ {1, 2} such that X+Ess /∈ X , it holds that

vn(X) + vn(X+Es1 +Es2) ≥ vn(X+Es1) + vn(X+Es2). (2.35)

Proof. We denote the claimed supermodularity properties (2.34) and (2.35) by S1 and

S2, respectively, and S1 and S2 together by S. Clearly, S holds for n = 0. For the

induction step, we prove that T
(s,k,l)
D : S → S and T

(k)
A : S → S. It is easily verified that

T
(s,k,l)
D : S → S. To show T

(k)
A : S → S, it obviously suffices to prove that T

(k)
A : S2 → S2

and T
(k)
A : S → S1.
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We start with T
(k)
A : S2 → S2. For this, we let s ∈ {1, 2} andX be such thatX+Ess /∈ X .

We denote by p(k) the minimizing action of T
(k)
A in state X and by q(k) the minimizing

action of T
(k)
A in state X + Es1 + Es2 (where 0 denotes blocking). Due to X + Ess /∈ X

and the cost value ordering, p(k) 6= s and q(k) 6= s. In the case p(k) = q(k), the statement

immediately follows from (2.35). For p(k) = 0 and q(k) = s, we have

T
(k)
A vn(X) + T

(k)
A vn(X+Es1 +Es2) = vn(X) + bk + vn(X+Es1 +Es2 +Esk)

= vn(X) + bk + vn(X+ 2Esk +Esk)

≥ vn(X+Esk) + vn(X+ 2Esk)

≥ T
(k)
A vn(X+Esk) + T

(k)
A vn(X+Esk) (2.36)

by applying (2.35) twice. For p(k) = s and q(k) = 0, we get

T
(k)
A vn(X) + T

(k)
A vn(X+Es1 +Es2) = vn(X+Esk) + vn(X+Es1 +Es2) + bk

≥ T
(k)
A vn(X+Esk) + T

(k)
A vn(X+Esk). (2.37)

Next, we prove T
(k)
A : S → S1. For this, let X ∈ NS×K . In the following, we denote by p(k)

the minimizing action of T
(k)
A in state X and by q(k) the minimizing action of T

(k)
A in state

X+E11 +E22 (where 0 denotes blocking). Again, the case p(k) = q(k) easily follows from

(2.34). Lemma 2 implies that the situation p(k) = k, q(k) = k is impossible. Now consider

the case p(k) = k, q(k) = k. Here,

T
(k)
A vn(X) + T

(k)
A vn(X+E11 +E22) = vn(X+Ekk) + vn(X+E11 +E22 +Ekk)

= vn(X+Ekk) + vn(X+Ekk +Ekk +Ekk)

≥ vn(X+Ekk +Ekk) + vn(X+Ekk +Ekk)

≥ T
(k)
A vn(X+E11) + T

(k)
A vn(X+E22), (2.38)

where the second-last inequality follows from X+ 2Ekk /∈ X (this follows from Lemma 2

since q(k) = k) and applying inequality (2.35). Next, we study the case p(k) = 0, q(k) = k.

Here again, it holds that X+ 2Ekk /∈ X , so that

vn(X+Ekk)+vn(X+Ekk+Ekk+Ekk) ≥ vn(X+Ekk+Ekk)+vn(X+Ekk+Ekk). (2.39)

Adding this inequality to inequality (2.34), we obtain

vn(X) + vn(X+Ekk +Ekk +Ekk) ≥ vn(X+Ekk) + vn(X+Ekk +Ekk). (2.40)

30



2.5 Structural Results for Optimal Policies

Then

T
(k)
A vn(X) + T

(k)
A vn(X+E11 +E22) = vn(X) + bk + vn(X+E11 +E22 +Ekk)

≥ vn(X+Ekk) + vn(X+Ekk +Ekk) + bk

≥ T
(k)
A vn(X+E11) + T

(k)
A vn(X+E22). (2.41)

For the case p(k) = 0, q(k) = k, we have

T
(k)
A vn(X) + T

(k)
A vn(X+E11 +E22) = vn(X) + bk + vn(X+ 2Ekk +Ekk)

≥ vn(X+Ekk) + bk + vn(X+ 2Ekk)

≥ T
(k)
A vn(X+E11) + T

(k)
A vn(X+E22). (2.42)

In the case p(k) = k, q(k) = 0, we get

T
(k)
A vn(X) + T

(k)
A vn(X+E11 +E22) = vn(X+Ekk) + vn(X+E11 +E22) + bk

≥ T
(k)
A vn(X+E11) + T

(k)
A vn(X+E22).

(2.43)

It only remains the situation p(k) = k, q(k) = 0. Here,

T
(k)
A vn(X) + T

(k)
A vn(X+E11 +E22) = vn(X+Ekk) + vn(X+E11 +E22) + bk

= ∞
≥ T

(k)
A vn(X+E11) + T

(k)
A vn(X+E22), (2.44)

since p(k) = k implies X+Ekk /∈ X by Lemma 2. This completes the proof.

From the above lemmata, we conclude the following properties of optimal policies for

ordered binary systems:

Theorem 1. For an ordered binary system, the optimal policy π is (2, 1, 1)-monotone.

Moreover, if no unforced blocking occurs for user class k in state X ∈ X , the optimal

HAM assignment in state X for class k users is according to the Greedy policy: π(X, k) =

πg(X, k).

Proof. For the first statement, let n ∈ N and X ∈ NS×K such that X + E22 ∈ X and

vn(X) + b2 ≤ vn(X+E22). Using equation (2.34) in Lemma 3 then implies

vn(X+E11)− vn(X+E11 +E22) ≤ vn(X)− vn(X+E22) ≤ −b2 (2.45)
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For the case X + E22 /∈ X , we similarly use (2.34) with s = 1 in Lemma 3. Since these

inequalities hold for any n (and hence also in the limit), the statement for the optimal

policy follows. Likewise, the inequalities in Lemma 2 carry over to the limit, so that the

second statement is a direct consequence of this lemma.

2.6 Summary and Conclusions

In this chapter, we studied the cost-based model for HAM, that is, access management

(admission control and access selection) in heterogeneous network environments, thereby

considering information about user traffic (random arrivals and departures) for the mini-

mization of the expected mean cost for blocking events. Two heuristic strategies for HAM

are given by the Greedy policy and the Load-based policy. The Greedy policy “greedily”

assigns users to the AT which is most efficient in terms of resource requirements, whereas

the intention behind the Load-based policy is to balance resource usage over the ATs. The

problem was modeled as a semi-Markov decision model, allowing to find optimal policies

using standard algorithms such as Value Iteration. For complexity reasons, this is only

possible for relatively small system dimensions. The model sizes that arise when dealing

with models of real-world systems preclude this approach. In order to tackle this problem,

we presented a state aggregation procedure for the computation of HAM policies which

results in a drastic state space (and hence, complexity) reduction.

The algorithm was applied in a heterogeneous GSM-EDGE/UMTS scenario, obtaining

significant performance gains in comparison to the straightforward Greedy and Load-based

policies. This indicates that the aggregated model, though of greatly reduced state space

size, still carries enough information about the problem structure to be able to find good

control policies. Therefore, the techniques proposed in this chapter represent a promising

approach for the optimization of admission control and access selection in heterogeneous

network environments. Moreover, we also investigated structural properties of optimal

admission control policies. It was shown that generally, one cannot expect monotonicity

properties with respect to blocking of users. However, for the case of ordered binary

systems (systems with two ATs and two user classes with identical service rates and

satisfying a specific cost value ordering), we proved such a monotonicity property and also

showed that for these systems, the Greedy policy is “almost” optimal.
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Access Channel

In the previous chapter, the problem of user assignment for heterogeneous networks has

been studied. For this, a simple orthogonal model has been used to establish the connection

between the achievable data rates and the amount of resources spent. The capacity regions

(or achievable rate regions) provided by information theory predict that generally, much

higher rates can be attained in multi-user systems such as the multiple access channel by

employing more sophisticated transmission techniques.

For some multiuser channel models, the capacity region can be characterized in terms

of mutual information expressions. However, even for channels where such a single-letter

representation is available, evaluation of the capacity region is often a hard problem since

computation of the capacity region boundary is generally a difficult and non-convex op-

timization problem. For the single-user discrete memoryless channel, computation of ca-

pacity is a convex problem, and several numerical methods that allow to calculate the

capacity within arbitrary precision have been developed, e.g. the Blahut-Arimoto algo-

rithm [Bla72], [Ari72]. For the discrete memoryless multiple access channel, no algorithms

for the computation of the capacity region boundary are known. A fundamental step in

this direction has been taken in [Wat96], where a numerical method for calculating the

sum-rate capacity (also called total capacity) of the two-user MAC with binary output has

been developed. This was achieved by showing that the calculation of the sum capacity

can be reduced to the calculation of the sum capacity for the two-user MAC with binary

input and binary output and by giving necessary and sufficient conditions for sum-rate

optimality by a partial modification of the Karush-Kuhn-Tucker (KKT) conditions. The

work in [CPFV07] considers the computation of not only the sum capacity, but of the whole

capacity region of the two-user discrete MAC, i.e., the problem of maximizing weighted

sum-rate over the capacity region. The problem of sum-rate optimization as in [Wat96]

is obtained as a special case by choosing equal weights in the weighted sum-rate problem.

In [CPFV07] it is shown for the two-user case that the only non-convexity in the problem

stems from the requirement of the input probability distributions to be independent, that

is, from the constraint for the probability matrix specifying the joint probability input
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distribution to be of rank one. An approximate solution to the problem is proposed by

removing this independence constraint (i.e., relaxation of the rank-one constraint), ob-

taining an outer bound region to the actual capacity region. By projecting the obtained

probability distribution to independent distributions by calculating the marginals, one

obtains an inner bound region.

In this chapter, we discuss three different aspects of the MAC capacity computation

problem. First of all, in a recent work [WK09] (the main results were already reported

in [WK02] and [WK04]), the results in [Wat96] have been extended to the (n1, . . . , nK ;m)-

MAC, which is the K-user discrete MAC with m users, each with an alphabet of size nk

and output alphabet of size m. Such a channel is defined as elementary if the size of each

input alphabet is less than or equal to the size of the channel output alphabet, i.e., nk ≤ m

for all k = 1, . . . ,K. For any (n1, . . . , nK ;m)-MAC, one can construct an elementary sub-

MAC by restricting the admissible input distributions. In [WK09], it is shown that for

any (n1, . . . , nK ;m)-MAC, there exists such an elementary sub-MAC that achieves the

same total capacity as the (n1, . . . , nK ;m)-MAC. The main part of the paper is concerned

with the investigation of the (KKT) conditions for the sum-rate optimization for the ele-

mentary MAC. It is claimed that the KKT-conditions provide a necessary and sufficient

condition for optimality for the elementary MAC. Here, we demonstrate that this claim is

not true. It is also noteworthy that the work in [RG04] uses the sufficiency result for the

KKT conditions to generalize the Blahut-Arimoto algorithm for the computation of the

sum capacity of the (n1, . . . , nK ;m)-MAC. From this, we conclude that the capacity com-

putation problem for the discrete multiple-access channel remains an interesting unsolved

problem.

Secondly, we investigate properties of the optimality conditions for the capacity compu-

tation problem for the case of two users and binary input and output alphabets. We prove

that for a class of (2, 2; 2)-MACs, the weighted sum objective function has at most one

stationary point in the interior of the domain. Beside the fact that this is an interesting

structural property which gives valuable insight into the general problem, it can also be

employed for numerical solutions of the problem. Since the maximum of the objective

function on the boundary can be found by solving the single-user problem, it suffices to

search for stationary points in the interior of the domain: as there is at most one sta-

tionary point in the interior, methods such as gradient descent can return a suboptimal

solution only if the global optimum is located on the boundary, which is then found by

the boundary search. What is more, we prove the statement by showing that the problem

in the interior can be reduced to a pseudoconcave one- dimensional problem, resulting in

an efficient optimization procedure for a specified tolerance of deviation from the optimal

point for one of the input parameters. We remark that there is numerical evidence for the
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conjecture that also for the general (2, 2; 2)-MAC, there is at most one stationary point in

the interior of the domain, which we unfortunately could not prove. In addition, we prove

comprehensiveness of the set of rates achievable using successive interference cancellation

in a fixed decoding order.

Finally, we study properties of the optimality conditions for the relaxation (cooperation)

approach suggested in [CPFV07]. We derive conditions under which a solution to the

relaxed problem has the same value as the actual optimal solution and show how these

conditions can in some cases be applied to construct solutions for a restricted class of

(2, 2; 2)-MACs using convex optimization. Opposed to this, we demonstrate by examples

that even for these channels, the marginal approach suggested in [CPFV07] generally offers

only suboptimal solutions. We remark that in addition, these results offer a convenient

characterization of the capacity region for this channel subclass which can be used for

further studies such as the investigation of duality relations between the discrete multiple

access and broadcast channel (see Chapter 4).

3.1 Problem Formulation

The communication model under study in this chapter is the discrete memoryless K-user

multiple-access channel. In this channel model, there are K transmitters, each conveying

a message to a single receiver. The channel has, for each user k ∈ {1, . . . ,K}, an input

alphabet Xk = {1, . . . , nk} of size nk and an output alphabet Y = {1, . . . ,m} of size m.

The channel is given by a channel matrix

Q = (Q(y|x1, . . . , xK))1≤y≤m,1≤xk≤nk
(3.1)

of size m× (n1 · · ·nK) which specifies the channel transition probabilities. More precisely,

denoting the input random variable for user k as Xk and the output random variable as

Y , we have Pr[Y = y|X1 = x1, . . . ,XK = xK ] = Q(y|x1, . . . , xK). Hence, Q is required to

satisfy
∑m

y=1Q(y|x1, . . . , xK) = 1 for all xk ∈ Xk. Moreover, the channel is memoryless,

meaning that for input sequences xk ∈ X n
k and an output sequence y ∈ Yn

Pr[Y n = y|Xn
1 = x1, . . . ,X

n
K = xK ] =

n∏

i=1

Q(y(i)|x1(i), . . . , xK(i)), (3.2)

where the input random variable sequences are denoted as Xn
k and the output random

variable sequence as Y n. Note that here, and in the next section, we address the kth

component of a vector x by x(k). We denote the channel defined above as (n1, . . . , nK ;m)-

MAC in the following. In [WK09], the (n1, . . . , nK ;m)-MAC is called elementary if nk ≤ m
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Figure 3.1: The (n1, . . . , nK ;m)-MAC with encoders fk and the decoder g. Here, Qn

denotes the extension of Q to n time slots according to (3.2).

holds for all users k ∈ {1, . . . ,K}, that is if each input alphabet size is less or equal than

the cardinality of the output alphabet.

We now give some basic information-theoretic notions for the discrete memoryless MAC

(see Figure 3.1 for an illustration). A [(|W1|, . . . , |WK |), n]-code is given by the message

sets Wk = {1, . . . , |Wk|} and encoding functions

fk : Wk → X n
k (3.3)

for the users k ∈ {1, . . . ,K}, i.e., transmitter k uses the codeword fk(Wk) of length n to

encode the message Wk, which is assumed to be drawn uniformly out of the message set

Wk. Finally, the receiver uses the decoding function

g : Yn → W1 ×W2 × · · · ×WK (3.4)

in order to produce an estimate g(Y n) = (Ŵ1, Ŵ2, . . . , ŴK) of the transmitted messages.

The figures of merit associated with the code are the transmission rate (in nats/symbol

transmission), given by Rk = ln |Wk|
n for user k, and the average probability of error1

P (n)
err =

1∏
k |Wk|

∑

(w1,...,wK)∈W1×···×WK

Pr [g(Y n) 6= (w1, . . . , wK)|(w1, . . . , wK) sent] .

(3.5)

1Note that unlike for the single-link discrete memoryless channel, the capacity region is generally smaller
(and still unknown) under the maximal error probability criterion [Due78].

36



3.1 Problem Formulation

From this, the notion of the capacity region of the channel is defined as follows:

• A rate vector (R1, . . . , RK) is said to be achievable if there exists a sequence of

[(⌈enR1⌉, . . . , ⌈enRK ⌉), n]-codes with P (n)
err → 0 for n→ ∞.

• The capacity region C(n1,...,nK ;m) of the (n1, . . . , nK ;m)-MAC is defined as the clo-

sure of the set of achievable rate vectors.

The capacity region C(n1,...,nK ;m) can be expressed as follows: for each user k, we define

the set Pk :=
{
p ∈ R

nk
+ :

∑nk

i=1 p(i) = 1
}
of probability vectors and set P := P1×· · ·×PK .

We remark that we use the Cartesian product instead of the Kronecker product as in

[WK09] to form the space of admissible input probability distributions. However, this

amounts just to a difference in notation. For a subset S ⊆ {1, . . . ,K} we let S denote

the complement of S and set X(S) := {Xi : i ∈ S}. Moreover, for a vector r ∈ RK and

S ⊆ {1, . . . ,K}, we let r(S) :=
∑

s∈S r(s). For each input probability distribution (IPD)

(p1, . . . ,pK) ∈ P, define the set

R(p1, . . . ,pK) :=
{
r ∈ RK

+ : r(S) ≤ I(X(S);Y |X(S)) for allS ⊆ {1, . . . ,K}
}
. (3.6)

Then, the capacity region C(n1,...,nK ;m) of the (n1, . . . , nK ;m)-MAC is given by [Ahl71],

[Lia72], [CT06]

C(n1,...,nK ;m) = Co


 ⋃

(p1,...,pK)∈P
R(p1, . . . ,pK)


 . (3.7)

We note that each set R(p1, . . . ,pK) forms a convex polytope with K! corner points, cor-

responding to rate points achievable by the K! possible successive interference cancellation

orders: for each user permutation (ordering) π and IPD (p1, . . . ,pK) ∈ P, such a corner

point is given by cπ(p1, . . . ,pK) ∈ RK
+ , where

cπk(p1, . . . ,pK) = I(Y ;Xπ(k)|X({π(l) : l < k})) (3.8)

Here, π specifies the order in which the decoding is performed in order to achieve the

corresponding rate point: user π(1) is decoded first, revealing the messageWπ(1) (assuming

perfect reconstruction). Then, user π(2) is decoded under using the knowledge of Wπ(1),

giving Wπ(2), and so on, i.e., user π(k) decodes using the messages Wπ(1), . . . ,Wπ(k−1).

For a weight vector w ∈ Rn
+, the weighted sum-rate optimization problem is formulated

as
max

(p1,...,pK)∈P
r∈RK

+

wT r

subject to ∀S ⊆ {1, . . . ,K} : r(S) ≤ I(X(S);Y |X(S)).
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The special case of maximizing sum-rate as studied in [WK09] arises for the case w = 1.

Writing I(p1, . . . ,pK) instead of I(X1, . . . ,XK ;Y ) for the mutual information for an IPD

(p1, . . . ,pK) ∈ P, it is easy to see that the problem of maximizing sum-rate can be written

as

C∗ = max
(p1,...,pK)∈P

I(p1, . . . ,pK). (3.9)

In [WK09], the quantity C∗ is also called the total capacity of the channel. The mutual

information I(p1, . . . ,pK) is given by

I(p1, . . . ,pK) =
∑

j,i1,...iK

p1(i1) · · · pK(iK)Q(j|i1, . . . , iK) ln
Q(j|i1, . . . , iK)

q(j)
, (3.10)

where

q(j) =
∑

i1,...iK

p1(i1) · · · pK(iK)Q(j|i1, . . . , iK) (3.11)

is the output probability of the symbol j. Defining the function

J(p1, . . . ,pK ; k, ik) :=
∂I(p1, . . . ,pK)

∂pk(ik)
+ 1 (3.12)

=
∑

j,i1,...,ik−1,ik+1,...,in

p1(i1) · · · pk−1(ik−1)pk+1(ik+1) · · · pK(iK)

×Q(j|i1, . . . , iK) ln
Q(j|i1, . . . , iK)

q(j)

for k ∈ {1, . . . ,K},ik ∈ {1, . . . , nk}, it is easy to see that the KKT conditions for problem

(3.9) can be formulated as [WK09]

J(p1, . . . ,pK ; k, ik)

{
= I(p1, . . . ,pK), pk(ik) > 0

≤ I(p1, . . . ,pK), pk(ik) = 0
(3.13)

for all k ∈ {1, . . . ,K}, ik ∈ {1, . . . , nk}.

These conditions provide a necessary condition for an IPD (p1, . . . ,pK) ∈ P to be optimal.

In [WK09], Theorem 2, it is claimed that the KKT conditions above provide a necessary

and sufficient condition for optimality for the elementary (n1, . . . , nK ;m)-MAC. In the

following section, we demonstrate that this is not true.

We remark that there are two important features of the (n1, . . . , nK ;m)-MAC that add

to the difficulty of capacity calculation:

• Unlike for the situation of additive white Gaussian noise (AWGN MAC), the ca-

pacity region of the (n1, . . . , nK ;m)-MAC is generally not a polyhedron. This is

because in general, there is no input distribution that simultaneously optimizes the
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mutual information bounds in (3.6) (also see Chapter 4).

• In general, the union over all polyhedron regions for different input distributions is

not convex, so the convex hull operation is actually needed. Of course, this is not

the case for the AWGN channel.

3.1.1 The Elementary MAC Decomposition

We now briefly sketch how the sum capacity for the (n1, . . . , nK ;m)-MAC can be reduced

to finding the capacity of elementary channels, as is shown in [WK09] and [Wat96]. For

this, an elementary sub-MAC of a given (n1, . . . , nK ;m)-MAC with channel matrix Q is

defined to be the MAC that has the same channel matrix Q, but under restricted input:

for each user k with nk > m, a set Λk of m indices is chosen and each input probability

distribution for user k is restricted to satisfy pk(l) = 0 for l /∈ Λk. We remark that

equivalently, an elementary MAC could be defined by retaining m input symbols for each

user k with nk > m, and removing the appropriate columns in the transition matrix.

The set of all elementary sub-MACs is denoted as Φ
(m)
K . Writing the sum capacity of an

elementary sub-MAC E ∈ Φ
(m)
K as C(E), the following decomposition of the sum capacity

problem is proven in [WK09]:

C∗ = max
(p1,...,pK)∈P

I(p1, . . . ,pK) = max
E∈Φ(m)

K

C(E). (3.14)

Note that this involves an optimization over a number of (at most)

∣∣∣Φ(m)
K

∣∣∣ =
∏

k:nk>m

(
nk
m

)
(3.15)

different elementary channels, which can be very large.

3.1.2 The Blahut-Arimoto Algorithm

We briefly turn to the problem of capacity computation for the single-user case, i.e.,

K = 1. Besides other algorithms using conventional Lagrangian techniques [Mur53] or

that are based on convex optimization [MO67], a well-known and standard algorithm

for this task is the Blahut-Arimoto algorithm, discovered independently by Arimoto and

Blahut [Bla72], [Ari72] and which will subsequently be described in some detail. For an

IPD p ∈ P, the mutual information is given by

I(p) =

m∑

j=1

n∑

i=1

Q(j|i)p(i) ln Q(j|i)∑n
k=1Q(j|k)p(k) , (3.16)
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and the capacity of the channel is C = max
p

I(p). Introducing additional variables by the

matrix Φ = (φ(i, j)) ∈ [0, 1]n×m, define the function

Λ(p,Φ) :=

m∑

j=1

n∑

i=1

Q(j|i)p(i) ln φ(i, j)
p(i)

. (3.17)

Then, for fixed p ∈ P, the mutual information I(p) can be expressed as the maximum of

Λ over all matrices Φ ∈ [0, 1]n×m:

I(p) = max
Φ

Λ(p,Φ) = Λ(p,Φ∗
p), (3.18)

where the entries of the maximizing matrix Φ∗
p are

φ∗p(i, j) =
Q(j|i)p(i)∑n

k=1Q(j|k)p(k) . (3.19)

Hence, the capacity C can be written as

C = max
p

max
Φ

Λ(p,Φ). (3.20)

For fixed Φ, the maximizing input probability distribution can also be found analytically:

max
p

Λ(p,Φ) = Λ(p∗
Φ,Φ), (3.21)

with

p∗Φ(i) =
exp (

∑m
k=1Q(k|i) ln φ(i, k))∑n

l=1 exp (
∑m

k=1Q(k|l) ln φ(i, l)) . (3.22)

The Blahut-Arimoto algorithm works iteratively by optimizing over one variable (using

the expressions (3.19) and (3.22), respectively) while keeping the other one fixed: starting

from an arbitrary p1 (recommended to be chosen uniformly), the algorithm produces the

sequence

p1 → Φ∗
p1

= Φ1 → p∗
Φ1

= p2 → Φ∗
p2

= Φ2 → p∗
Φ2

= p3 → · · · (3.23)

This sequence converges to the optimal p∗: we write V (t) = Λ(pt+1,Φt) for the value

of the objective function after t iterations. In [Ari72], it is shown that this sequence

converges monotonically from below to the capacity: limt→∞ V (t) = C. It is noteworthy

that an important ingredient of the convergence proof is that the KKT conditions (3.13) are

necessary and sufficient for optimality in the single user case. Moreover, the convergence

speed is also addressed: the approximation error is inversely proportional to the number
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3.2 Non-sufficiency of the KKT Conditions for the Elementary MAC

of iterations, and if p1 is chosen as the uniform distribution, then the error is bounded by

C − V (t) ≤ lnn−H(p∗)
t

, (3.24)

where H is binary entropy (in nats). What is more, if p∗ is unique and strictly positive,

it is even shown that the error decreases exponentially with the number of iterations t.

The work in [RG04] generalizes the Blahut-Arimoto algorithm described above for the

computation of the total capacity of the MAC. Here, a sequence of probability distribu-

tions is constructed in a similar way as in (3.23), and it is shown that it converges to a

point satisfying the KKT conditions (3.13). Clearly, this implies that a capacity-achieving

distribution is found if the conditions (3.13) are sufficient for optimality, as is claimed

in [WK09]. However, this is not the case, as will be shown in the next section. Other

generalizations of the Blahut-Arimoto algorithm include the capacity computation for

channels with side information known non-causally at the transmitter [DYW04]. Finally,

we remark that a simple iterative procedure that alternatingly optimizes over one of the

two input probabilities is suggested in [Wat96] for the computation of the sum capacity

of the (2, 2; 2)-MAC.

3.2 Non-sufficiency of the KKT Conditions for the Elementary

MAC

In this section, we show the non-sufficiency of the KKT conditions for the elementary

MAC. For this, it even suffices to consider the (2, 2; 2)-MAC, which is elementary. For the

purpose of illustration, we now consider I as a function on the domain [0, 1]2 and define

I(p1, p2) := I(p1,p2) where p1 = (p1, 1− p1)
T ,p2 = (p2, 1− p2)

T . The sum-rate capacity

problem then reads as

C∗ = max
(p1,p2)∈[0,1]2

I(p1, p2). (3.25)

It is easy to see that if (p1, p2) ∈ [0, 1]2 satisfies the KKT conditions for problem (3.25),

then p1 = (p1, 1−p1)T ,p2 = (p2, 1−p2)T also satisfy the KKT conditions for problem (3.9).

Particularly, each stationary point of I in the interior of the domain [0, 1]2 corresponds to

a KKT point for problem (3.9). We demonstrate non-sufficiency of the KKT conditions by

means of two examples. The first example (Example 1) is the (2, 2; 2)-MAC with channel

matrix specified by

11 12 21 22

1

2

(
2/3 1/4 0.001 5/8

1/3 3/4 0.999 3/8

)
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Figure 3.2: Equal level lines of mutual information I for Example 1.

and the second one (Example 2) given by the channel matrix

11 12 21 22

1

2

(
0.4 0.68 0.7 0.5

0.6 0.32 0.3 0.5

)

Figure 3.2 and Figure 3.3 display the equal level lines of the mutual information I(p1, p2)

over the range p1 ∈ [0, 1], p2 ∈ [0, 1] for the two sample channels. One can see that in both

cases, there is a saddle point in the interior of the domain. We denote these saddle points

by (p11, p
1
2) for Example 1 and by (p21, p

2
2) for Example 2. These points are stationary points

of I, and p1
1 = (p11, 1− p11)

T ,p1
2 = (p12, 1− p12)

T and p2
1 = (p11, 1− p11)

T ,p1
2 = (p22, 1 − p22)

T

satisfy the KKT conditions (3.13). However, these points are not optimal. We remark

that p1
1 and p2

1 can be found numerically and be verified to satisfy (3.13).

In what follows, we give an explanation for the occurrence of such non-optimal KKT

points and indicate where the proof in [WK09] fails to be valid. The details of the defini-

tions and notations are not given here; the reader is referred to [WK09].

Proposition 3 in [WK09] states that, for any (n1, . . . , nK ;m)-MAC (elementary or not),

every solution to the KKT conditions is a local maximum. The examples presented above

show that is not true. The basic idea behind the proof of Proposition 3 is the fact that the

sum-rate optimization problem (3.9) can, for each user ordering, be equivalently formu-

lated as an optimization over the region traced out over all possible input distributions by

the polyhedron corner point corresponding to this user ordering: for each of the possible
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Figure 3.3: Equal level lines of mutual information I for Example 2.

user orderings πi, i = 1, . . . ,K!, one obtains the set of “achievable rates”

Gi =
⋃

(p1,...,pK)∈P
{cπi(p1, . . . ,pK)} . (3.26)

Then

C∗ = max
(p1,...,pK)∈P

1T cπi(p1, . . . ,pK). (3.27)

Roughly speaking, the idea then is to show that an IPD satisfying the KKT conditions

corresponds to a point on the boundary of each Gi. By looking at projections to different

two-dimensional “cross-sections” and local properties around the optimal boundary point,

it is aimed to show that any IPD satisfying the KKT conditions is a local maximum.

However, there are two problems with this approach:

(1) The proof implicitly assumes convexity of the cross-sections.

(2) It is not ensured rigorously that each point satisfying the KKT conditions actually

corresponds to a boundary point on the regions Gi.

We emphasize that the non-convexity of the cross-sections is, for itself, enough to make

the proof of Proposition 3 invalid and will be demonstrated by means of examples in the

following. The second point is mentioned here more for the sake of completeness. We

remark that we could not find an example where an IPD satisfying the KKT conditions

does not correspond to a point on the boundary of each Gi. However, for a rigorous proof,
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Figure 3.4: The non-convex region G1 for Example 1.

there is one step missing, as will be discussed in more detail later.

We detail on point (1) for the (2, 2; 2)-MAC in the following. Consider, as in the proof

of Proposition 3, a solution (p∗
1,p

∗
2) ∈ P to the KKT equations with p∗

1 > 0, p∗
2 > 0.

Choosing p′′
1 = p′′

2 = (1 0)T and p′
1 = p′

2 = (0 1)T , it is easy to see that the set G1 of

achievable rates is given by

G1 =
⋃

(p1,p2)∈P

{
(I(Y ;X1|X2), I(Y ;X2))

T
}
=

⋃

(p1,p2)∈P
{cτ (p1,p2)} , (3.28)

where τ(1) = 2, τ(2) = 1.

Also, since there are only two users, the cross-section G1(R1, R2) defined by equation

(15) in [WK09] is given by G1(R1, R2) = G1. Now, the argumentation that (p∗
1,p

∗
2) must

be a local maximum implicitly assumes that G1 is a convex set. This assumption however,

cannot be made in general. Again, we demonstrate this by an example. Figure 3.4 shows

a plot of the non-convex region G1 for Example 1; Figure 3.5 shows the same for Example

2. These figures also show the points x1 = cτ (p1
1,p

1
2) and x2 = cτ (p2

1,p
2
2), respectively,

which are located on the boundary of G1 where the tangent line of slope -1 touches the

region G1. As a consequence, the claim in Proposition 3 does not hold. Also, Proposition

4 (the connectedness property), which bases on Proposition 3, is wrong. This can also be

easily seen from the contour level plots in Figure 3.2 and Figure 3.3. Similarly and also

as a consequence, Lemma 1 and the main result, Theorem 2, are invalid.
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Figure 3.5: The non-convex region G1 for Example 2.

Concerning point 2), the “boundary equations” state the KKT conditions for a input

probability distribution to correspond to a point on the boundary of Gi. Proposition 2

states that any IPD (p∗
1, . . . ,p

∗
K) that satisfies the KKT conditions (3.13) and for which

p∗
i > 0 also satisfies the boundary equations. In the proof of Proposition 3, the point

corresponding to such an IPD in G1 is denoted by R(θ∗1, . . . , θ
∗
K) = cτ (p∗

1, . . . ,p
∗
K). The

proof of Proposition 3 relies on the fact that R(θ∗1, . . . , θ
∗
K) is located on the boundary of

G1, and hence on the boundary of the cross-sections G1(R1, Rk). However, in order to be

able to make this assumption, one would have to show that the boundary equations provide

a sufficient condition for an IPD to result in a point cτ (p∗
1, . . . ,p

∗
K) on the boundary of

G1.

As a final remark, we consider the examples above with respect to the work in [Wat96].

Here, two classes of (2, 2; 2)-MACs are distinguished: case A and case B channels. For case

B channels, the KKT conditions as given above are proved to be sufficient for optimality.

For case A channels, the conditions have to be slightly modified to be sufficient; essentially

the modification consists in requiring the optimal point to be located on a certain boundary

of the domain. The definition of the two different cases in [Wat96] is quite cumbersome,

we remark here that one can derive a simpler condition to distinguish between the two

cases: Define Pmin = min
(i,j)∈{1,2}2

Q(1|i, j), Pmax = max
(i,j)∈{1,2}2

Q(1|i, j) and for real numbers

a, b, we let 〈a, b〉 = [a, b] if a ≤ b and 〈a, b〉 = [b, a] if a > b. Then a (2, 2; 2)-MAC is of
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3 Capacity Computation for the Multiple Access Channel

case B if

[Pmin, Pmax] = 〈Q(1|1, 1), Q(1|2, 2)〉 or [Pmin, Pmax] = 〈Q(1|1, 2), Q(1|2, 1)〉 (3.29)

and of case A if the condition (3.29) is not satisfied.

Now both the channels given by Example 1 and Example 2 are of case A. Also, they

satisfy the condition of (v(1, 1),v(2, 1)) being in the strictly outer position [Wat96] (which

simply means that Pmin = Q(1|1, 1), Pmax = Q(1|2, 1)). According to [Wat96], Proposition

2, a necessary and sufficient condition for an optimal IPD (p1,p2) ∈ P is given by

p2(1) = 1, (3.30)

p2(2) = 0, (3.31)

J(p1,p2; 1, i1) = I(p1,p2) for i1 ∈ {1, 2}, (3.32)

J(p1,p2; 2, 1) = I(p1,p2), (3.33)

J(p1,p2; 2, 2) < I(p1,p2). (3.34)

One can verify that for the two examples, these conditions actually provide necessary and

sufficient conditions for optimality. As a result, our examples are in accordance with and

without contradiction to the work in [Wat96].

3.3 Optimality Conditions for the (2, 2; 2)-MAC

In the previous section, we have demonstrated that the KKT conditions generally do not

provide a sufficient condition for optimality of the discrete memoryless MAC. This is even

the case for the setup of two users and binary alphabets, i.e., the (2, 2; 2)-MAC. This

suggests that even the restricted (2, 2; 2)-MAC captures the difficulties involved in the

MAC capacity computation problem. In this section, we exclusively study this channel

with respect to computation of the entire capacity region, that is, weighted sum-rate

optimization for arbitrary weight vectors. More precisely, the problem we consider now is

the maximization of the weighted sum-rate over the capacity region C(2, 2; 2) of the (2, 2; 2)-
MAC for a given weight vector w = (w1, w2)

T > 0:

max
r∈C(2, 2; 2)

wT r. (3.35)

Each polyhedron region R(p1,p2) [cf. (3.6)] is specified by the corner points
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Figure 3.6: Illustration of the capacity computation problem: weighted sum-rate optimiza-
tion for the weight vector w.

C1(p1,p2) := cπ1(p1,p2) ∈ R2
+, (3.36)

C2(p1,p2) := cπ2(p1,p2) ∈ R2
+, (3.37)

where π1 corresponds to decoding user 1 first, i.e., π1(1) = 1, π1(2) = 2 and π2 results from

decoding user 2 first, that is π2(1) = 2, π2(2) = 1 (cf. Section 3.1). It is easily verified that

the weighted sum-rate optimization problem (3.35) can be stated in terms of optimization

over the region defined by the C1, C2 points as follows: for w1 ≤ w2, it holds that

max
r∈C(2, 2; 2)

wT r = max
(p1,p2)∈P

wTC1(p1,p2) (3.38)

and for w1 > w2, the optimization can similarly be performed by optimizing over the C2

points.

For the channel transition matrix, we write

11 12 21 22

Q =
1

2

(
a b c d

1− a 1− b 1− c 1− d

)

in the following, that is a := Q(1|1, 1), b := Q(1|1, 2), c := Q(1|2, 1) and d := Q(1|2, 2).
Moreover, we let ∆1 := a − b,∆2 := c − d and recall that D(p||q) denotes the Kullback-

Leibler divergence between two binary probability functions defined by p, q ∈ [0, 1]. We
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assume without loss of generality (w.l.o.g.) that 0 < w1 ≤ w2: for the case w1 > w2, we can

use the fact that I(Y ;X2) and I(Y ;X2|X1) are obtained from I(Y ;X1) and I(Y ;X1|X2)

by interchanging the roles of p1 and p2 and the roles of b and c. For (p1,p2) ∈ P, we
define

Ψ(p1,p2) := wTC1(p1,p2). (3.39)

For channels with a = b and c = d, it is I(Y ;X2|X1) = 0 for all p1,p2 ∈ P; we exclude

this degenerate case from investigation. Similarly, for channels with a = c and b = d,

I(Y ;X1) = 0 for all (p1,p2) ∈ P, and we also omit this case. In what follows, we are thus

concerned with the optimization problem

max
(p1,p2)∈P

Ψ(p1,p2). (3.40)

Obviously, for w1 = w2 the problem (3.40) reduces to the sum capacity problem studied

in the previous section.

3.3.1 Reduction to a One-dimensional Problem

As already stated in the previous section, it is helpful to consider Ψ as a function on the

domain [0, 1]2 instead, i.e., we are concerned with the maximization of Ψ(p1, p2) where the

input probability distribution is specified by p1 = Pr[X1 = 1] and p2 = Pr[X2 = 1]. Our

derivation is based on the following observations: First of all, the boundary points of the

capacity region on the two rate axis are (e1, 0)
T and (0, e2)

T , where

e1 = max
i∈{0,1}

max
p1∈[0,1]

I(X1,X2;Y )p2=i, (3.41)

and e2 is given similarly by fixing the value of p1 to 0 and 1. Observe that e1 and e2 can

be found by solving the single-user capacity maximization problem (for example, using

the Arimoto-Blahut algorithm as in Section 3.1.2).

Furthermore, I(X2;Y |X1) is linear in p1, and for (all but at most one, namely the one

that satisfies h2(p2) = 0, see below) fixed values of p2, I(X1;Y ) is strictly concave in p1.

Hence, the first component in the stationarity equation

∇Ψ(p1, p2)
!
= 0, p1, p2 ∈ (0, 1) (3.42)

has a unique solution in p1 for fixed p2 in the case of strict concavity. What is more,

we can find an explicit expression for this solution by simplifying the partial derivative of

I(X1;Y ) with respect to p1 such that p1 occurs only once in the expression: the partial
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derivatives of mutual information at p1, p2 ∈ (0, 1) with respect to p1 are given by

∂I(Y ;X1)(p1, p2)

∂p1
= h1(p2) + h2(p2) ln

(
1

h3(p2) + p1h2(p2)
− 1

)
(3.43)

and

∂I(Y ;X2|X1)(p1, p2)

∂p1
= −p2H(a) + (p2 − 1)H(b) + p2H(c)− (p2 − 1)H(d) (3.44)

+H(b+ p2(a− b))−H(d+ p2(c− d)).

Here, we used the notation

h1(p2) := H(d+ p2(c− d)) −H(b+ p2(a− b)), (3.45)

h2(p2) := −b+ d+ p2(−a+ b+ c− d), (3.46)

h3(p2) := 1− d+ p2(d− c). (3.47)

We will also write h4(p2) := ∂I(Y ;X2|X1)(p1,p2)
∂p1

. Let P2 := {p ∈ (0, 1) : h2(p) 6= 0} and

P 2 := {p ∈ P2 : f(p) ∈ (0, 1)}. Note that we have excluded the case a = c and b = d, so

that there is at most one p ∈ (0, 1) for which h2(p) = 0. For fixed p ∈ P2, the explicit

solution for p1 in the first component of (3.42) is given by f(p), where f : P2 → R is

defined by

f(p) :=
1(

eh(p) + 1
)
h2(p)

− h3(p)

h2(p)
, (3.48)

with

h(p) :=
−w2

w1
h4(p)− h1(p)

h2(p)
. (3.49)

For p2 ∈ (0, 1) \ P2, it is easy to show that I(X1;Y ) = 0 for all p1. Define φ : P 2 → R

by φ(p) := Ψ(f(p), p). Collectively considering the above facts, we obtain the following

lemma:

Lemma 4. If ∇Ψ(p1, p2) = 0 for (p1, p2) ∈ (0, 1) × P2, then p2 ∈ P 2, φ
′(p2) = 0 and

there is no p̃1 ∈ (0, 1) such that p̃1 6= p1 and ∇Ψ(p̃1, p2) = 0. Moreover,

max
p1,p2∈[0,1]2

Ψ(p1, p2) = max

{
max
p∈P 2

φ(p), w1e1, w2e2

}
. (3.50)

3.3.2 The 3-parameter (2, 2; 2)-MAC

The channels we focus on in the following are (2, 2; 2)-MACs with the restriction a =

Q(1|1, 1) = Q(1|1, 2) = b on the channel transition probabilities. We call such a channel
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a 3-parameter (2, 2; 2)-MAC. The information-theoretic interpretation of such channels is

as follows: conditioned on the event that user 1 transmits the symbol 1, the channel that

user 2 sees is the single-user antisymmetric binary channel, which has zero capacity. In

other words, whenever user 1 transmits 1, the symbol of user 2 cannot be distinguished

at the receiver. In fact, it is easily verified that I(Y ;X2|X1 = 1) = 0. If we give the same

property to user 1 for user 2 transmitting 1, i.e., a = b = c, then I(Y ;X1|X2 = 1) = 0 and

all the points on the boundary of the capacity region can be achieved by “time-sharing

between the extremal points on the rate axis”. Moreover, we have e1 = e2, so that the

capacity region is an isosceles triangle. Furthermore, for a = b, we can exchange the values

c and d without changing the capacity region. In the following, we thus assume w.l.o.g.

that a 6= c, a 6= d and c > d. We also restrict to weight vectors w = (w1, w2)
T with

0 < w1 ≤ w2. Unlike in the previous section, this actually is a restriction here: the case

w1 > w2 cannot be treated by exchanging the roles of c and b and p1 and p2, since this

would result in a (2, 2; 2)-MAC that is not of 3-parameter type.

Now consider the extension of φ to P2, i.e., φ̂ : P2 → R defined by φ̂(p) := Ψ(f(p), p)

and which is easily verified to be well-defined. We will show that Ψ can have at most one

stationary point in the interior. We prove this by showing that φ̂ is pseudoconcave on

(0, 1). Recall that a twice differentiable function c : D ⊆ R → R is called pseudoconcave

if c′(p) = 0 ⇒ c′′(p) < 0. In this case, each local maximum of c is also a global maximum,

and c has at most one stationary point. More precisely, we prove

Proposition 1. The function φ̂ has the following properties:

• For a ∈ (d, c) : φ̂′(p) 6= 0 for all p ∈ P2.

• For a /∈ (d, c) : φ̂ is pseudoconcave on P2 = (0, 1).

Proof. We first prove the following properties of h:

• For a ∈ (d, c) : h′(p) 6= 0 for all p ∈ P2.

• For a ∈ [0, d) : h′(p) = 0 ⇒ h′′(p) < 0.

• For a ∈ (c, 1] : h′(p) = 0 ⇒ h′′(p) > 0.

The first derivative of h can be written as

h′(p) =
∆2

w1−w2
w1

D(a||d+ p∆2) +
w2
w1
δ(a, c, d)

h2(p)2
, (3.51)

where

δ(a, c, d) := (c− d)(H(d) −H(a))− (H(c) −H(d))(d − a). (3.52)

For a ∈ (0, 1),
∂2

∂a2
δ(a, c, d) = (c− d)

(
1

1− a
+

1

a

)
> 0, (3.53)
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implying that δ is strictly convex in a. Now δ(c, c, d) = δ(d, c, d) = 0, so that δ(a, c, d) > 0

for a /∈ (d, c) and δ(a, c, d) < 0 for a ∈ (d, c). A similar argument shows δ(0, c, d) > 0

and δ(1, c, d) > 0. In addition, D(a||d + p∆2) ≥ 0 by the non-negativity of Kullback-

Leibler divergence. This implies that h′(p) < 0 for a ∈ (d, c). Now consider the situation

a /∈ (d, c). For a ∈ [0, d), we have h2(p) > 0 for all p ∈ (0, 1) and for a ∈ (c, 1], h2(p) < 0

for all p ∈ (0, 1), so that P2 = (0, 1) for a /∈ (d, c). Since

h′′(p) =
w2−w1

w1
h′′1(p)− 2∆2h

′(p)

h2(p)
, (3.54)

the claimed property of h follows for w1 < w2 from the strict concavity of h1. If w1 = w2,

then h′(p) > 0 from (3.51), so that the statement also holds in this case.

We now show that f(p) < 1 for all p ∈ (0, 1). For this, we first prove that f(p) 6= 1 for

all p ∈ (0, 1). This follows easily for a ∈ {0, 1}, so that we let a ∈ (0, 1). We also assume

c, d ∈ (0, 1); the situations c ∈ {0, 1} or d ∈ {0, 1} can be treated similarly. It suffices to

prove that

v(p) :=
∂I(Y ;X1)(p1, p)

∂p1

∣∣∣∣
p1=1

< 0 (3.55)

and h4(p) < 0 for all p ∈ (0, 1). To see this, we first note that it can be shown that

v′(p) = ln

(
1

1− a
− 1

)
h′2(p) + h′1(p) 6= 0 (3.56)

for all p ∈ (0, 1). Moreover, we get v(0) = −D(d||a) < 0 and v(1) = −D(c||a) < 0, which

together with (3.56) imply (3.55). For the second statement, observe that

h′′4(p) =
∆2

2

(p∆2 + d)(1− (p∆2 + d))
> 0, (3.57)

so that h4(p) is strictly convex in p. h4(p) < 0 then follows from the fact that h4(0) =

h4(1) = 0. Secondly, also using non-negativity of Kullback-Leibler divergence, one can

prove lim
p→0+

f(p) < 1, which together with f(p) 6= 1 and the continuity of f implies that

f(p) < 1 for all p ∈ (0, 1).

To conclude the proof of the proposition, one can find the following factorized represen-

tation for φ̂′:

φ̂′(p) = w1(1− f(p))h2(p)h
′(p). (3.58)

With the shown properties of h and f , the statement follows directly from (3.58) for the
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case a ∈ (d, c). For the other case, we have that

φ̂′′(p) = w1h
′(p)

(
−f ′(p)h2(p) + ∆2(1− f(p))

)
+ w1(1− f(p))h2(p)h

′′(p), (3.59)

implying that with the properties of h and f follows that

φ̂′(p∗) = 0 ⇒ h′(p∗) = 0 ⇒ φ̂′′(p∗) < 0, (3.60)

which concludes the proof.

It can be verified that for h2(p2) = 0, it holds that Ψ(p1, p2) 6= 0 for all p1 ∈ (0, 1). As

a consequence, Proposition 1 and Lemma 4 imply that in the case a ∈ (d, c) the function

Ψ has no stationary point in the interior; the optimum input probability distribution is

located on the boundary and it suffices to solve the single-user problems. Speaking in

terms of the KKT conditions (3.13), this means that each point satisfying these equations

is located on the boundary, as in the case of the sum-rate problem [Wat96]. For the case

a /∈ (d, c), pseudoconcavity of φ̂ implies that there is at most one stationary point (or,

equivalently, at most one KKT point) in the interior of the domain. We summarize this

in the following theorem:

Theorem 2. For the 3-parameter (2, 2; 2)-MAC with a 6= c, a 6= d, c > d and w1 ≤ w2, it

holds that:

• For a ∈ (d, c), the optimal input distribution is located on the boundary of [0, 1]2,

and there is no stationary point of Ψ in the interior of [0, 1]2.

• For a /∈ (d, c), there is at most one stationary point of Ψ in the interior of [0, 1]2.

By Lemma 4, the problem of finding the maximizing input distribution can be reduced

to the single-user problem and the optimization of φ (for which it suffices to optimize φ̂, as

described in the following). Since φ̂ is pseudoconcave, it can efficiently be optimized using

a simple standard bisection algorithm: for a given tolerance ε, we start with the interval

[ǫ, 1−ǫ] and determine if one of the intervals [ǫ, 1/2], [1/2, 1−ǫ] contains the optimal point

by checking the sign of h′ (i.e., the sign of φ̂′ by (3.58)) at the interval boundaries. If this is

not the case, we assume the optimal point to be on the boundary. Otherwise, we continue

bisecting the interval that contains the stationary point until the interval length is smaller

than ε, and find a solution pǫ within ǫ deviation tolerance from the optimal using only

O(log(1/ǫ)) evaluations of h′, which is much more efficient than a brute-force search. By

the definition of φ, (p∗1, p
∗
2) = (f(pǫ), pǫ) is used as optimization output if f(pǫ) ∈ (0, 1).

If f(pǫ) /∈ (0, 1), we assume that the stationary point of φ̂ is outside of P 2, and we also

assume the optimal point for Ψ to be on the boundary. Note that in principle, we could
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find the optimal p1 for this choice of p2 = pε by solving the single-user problem for fixed

p2 = pε. However, it is clear that for sufficiently small ǫ, we will have f(pǫ) ∈ (0, 1) if Ψ

has a stationary point in the interior. Note that we can only give a deviation tolerance for

p∗2. However, p
∗
1 = f(pǫ) is still a reasonable solution since it is optimal “conditioned” on

the choice of p∗2 = pǫ. We remark that a gradient descent algorithm employed for Ψ also

typically shows fast convergence to the optimal input distribution.

3.3.3 An Explicit Solution

We finally consider the 3-parameter (2, 2; 2)-MAC with a = b = 0, 0 < d < c and w1 < w2.

We refer to this channel as the 2-MAC. For this channel, it is possible to give an explicit

solution for the optimization of φ, as described in what follows.

It can be shown that P 2 = (0, 1), so that φ̂ ≡ φ. Moreover, we can find the zero of

(3.58) by solving h′(p) = 0 for p, resulting in

p = p∗(c, d,w) :=
1− d− exp

(
− w2δ(0,c,d)

∆2(w2−w1)

)

∆2
, (3.61)

where δ(0, c, d) = (c− d)H(d)− d(H(c)−H(d)). Hence, the maximum weighted sum-rate

is given by

max
r∈C(2, 2; 2)

wT r =




φ(p∗(c, d,w)), if p∗(c, d,w) ∈ (0, 1)

max{w1e1, w2e2}, otherwise.
(3.62)

We summarize this in the following corollary:

Corollary 1. For the (2, 2; 2)-MAC with a = b = 0, 0 < d < c and w1 < w2, the optimal

input distribution p∗1, p
∗
2 is given by p∗1 = f(p∗2) and

p∗2





= p∗(c, d,w) =
1−d−exp

(
− w2δ(0,c,d)

∆2(w2−w1)

)

∆2
, if p∗(c, d,w) ∈ (0, 1)

∈ {0, 1}, otherwise.
(3.63)

3.3.4 Relation to Prior Work

We now briefly discuss how the above results relate to the work in [Wat96], which deals

with optimality conditions for the (2, 2; 2)-MAC with respect to the sum rate. Recall

from Section 3.2 that according to the results in [Wat96], the set of (2, 2; 2)-MACs can be

divided into two subsets, which are referred to as case A and case B channels, respectively.

For case B channels, the KKT conditions are sufficient for optimality, whereas for case A

channels, the KKT conditions have to be slightly modified to be sufficient and require the

optimal point to be located on a certain boundary of the domain. In Section 3.2, we have
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Figure 3.7: Illustration of the different classes of (2, 2; 2)-MACs.

also given a simple condition for a channel to be of class A (B), and it is easy to see that

for the 3-parameter (2, 2; 2)-MAC with a 6= c, a 6= d, c > d, the case a ∈ (d, c) corresponds

to a case A channel, and a /∈ (d, c) to a case B channel. Hence, Theorem 2 can be regarded

as a generalization (for a subclass of (2, 2; 2)-MACs) of the results in [Wat96] concerning

sum rate optimality conditions for the (2, 2; 2)-MAC to the case of more general weight

vectors. Note that the set of 2-MACs, for which an explicit solution has been given above,

is a subset of class B channels. The subdivisions of the set of (2, 2; 2)-MACs into the

different classes is illustrated by a Venn diagram in Figure 3.7.

3.4 Comprehensiveness of the Achievable Point Set

In the previous sections, we have derived structural properties of the capacity computation

problem for the (2, 2; 2)-MAC with respect to the optimality conditions. In this brief

section, we look at a second interesting structural property. We have seen that the capacity

computation problem can be formulated as an optimization over the region G1 or G2 formed

by the SIC points C1 or C2 [cf. equations (3.26) and (3.36)]. Generally, the sets G1 and G2

are not convex. However, we will prove that G1 and G2 are comprehensive: a set A ⊆ R2
+

is called comprehensive if for each x ∈ A and y ∈ R2
+ it holds that y ≤ x ⇒ y ∈ A.

This comprehensiveness property of G1 and G2 might be useful for further investigations

or optimization approaches for the problem.

Due to symmetry, it suffices to show comprehensiveness of G1 only, and for simplicity

we write G := G1. Furthermore, we use the notation from Section 3.3 and again consider

C1 and the weighted sum rate objective function Ψ as specified on the domain [0, 1]2,
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i.e., as C1(p1, p2), and Ψ(p1, p2), where the input probability distribution is specified by

p1 = Pr[X1 = 1] and p2 = Pr[X2 = 1], respectively. Recall that we define the set of

achievable points by G = {C1(p1, p2) : p1, p2 ∈ [0, 1]}, [cf. equations (3.26)] and refer to

the rate points in G as achievable. Note that for weight vectors w with w1 ≤ w2, we have

the following two formulations of the problem in the probability and the rate domain,

respectively:

max
(p1,p2)∈[0,1]2

Ψ(p1, p2) = max
x∈G

wTx. (3.64)

We then have the following property of the set of achievable rates:

Theorem 3. G is a comprehensive set.

Proof. A set A ⊆ R2
+ is called left-comprehensive if for each x ∈ A and y1 ≥ 0 it holds

that y1 ≤ x1 ⇒ y = (y1, x2)
T ∈ A. The left-comprehensive hull of a set A ⊆ R2

+ is

defined as lcomp(A) := {x ∈ R2
+ : x1 ≤ a1, x2 = a2 for some a ∈ A}. In the follow-

ing, we will write φ1(p1, p2) = I(X1;Y )p1,p2 and φ2(p1, p2) = I(X2;Y |X1)p1,p2, so that

C1(p1, p2) = (φ1(p1, p2), φ2(p1, p2))
T . We first show that G is left-comprehensive. Con-

sider the achievable point (R1, R2)
T = C1(p1, p2). For fixed p ∈ [0, 1], the solution in p̃1

of the equation φ2(p̃1, p) = R2 is given by

p̃1 = s(p) :=
R2 + u(p, a, b, c, d)

h(p)
(3.65)

where u(p, a, b, c, d) := −H(cp + d(1 − p)) + pH(c) + (1 − p)H(d) and h(p) := ∂φ2(p1,p)
∂p .

Define ŝ(p) := φ2(p1, p2)+ u(p, a, b, c, d) and s̃(p) := φ2(p1, p2)+ u(p, a, b, c, d)− h(p). One

can easily establish the following properties of these functions:

• ŝ, s̃ are convex functions.

• ŝ(0) = ŝ(1) = s̃(0) = s̃(1) = φ2(p1, p2).

• ŝ′(0) < 0, ŝ′(1) > 0, s̃′(0) < 0, s̃′(1) > 0.

It follows that ŝ′(p̂) = 0 and s̃′(p̃) = 0 each have a solution in [0, 1] (at which the functions

ŝ, respectively s̃ attain their minimum), and these solutions can, after some algebra, be

shown to be given by

p̂ =
eξ(c,d)

(1 + eξ(c,d))(c− d)
− d

c− d
and p̃ =

eξ(a,b)

(1 + eξ(a,b))(a− b)
− b

a− b
, (3.66)

where

ξ(x, y) :=
H(y)−H(x)

x− y
. (3.67)

Hence, the minimum of s̃ is given by γ̃ := γ̃(p1, p2) := s̃(p̃). Now γ̃(p1, p2) is linear in p1 and

increasing for h(p2) ≥ 0, so that γ̃ ≤ γ̃(1, p2) in this case. It holds the identity γ̃(1, p2) =
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−u(p2, a, b, a, b)+u(p̃, a, b, a, b). From the properties of s̃, it follows that −u(p2, a, b, a, b)+
u(p̃, a, b, a, b) ≤ 0 for all p2 ∈ [0, 1]. This implies that in the case h(p2) ≥ 0, s̃ has at

least one zero p̃2 ∈ [0, 1], so that s(p̃2) = 1 and C1(s(p̃2), p̃2) = C1(1, p̃2) = (0, R2). A

similar line of argument shows that if h(p2) < 0, there exists a zero p̂2 ∈ [0, 1] of ŝ, which

is also a zero of s, i.e., C1(s(p̂2), p̂2) = C1(0, p̂2) = (0, R2). This shows the existence

of p∗ := argmin
p∈[0,1]:s(p)∈{0,1}

|p − p2|. We assume w.l.o.g. that p∗ < p2. We now prove that

any point (R1 − ∆, R2) ∈ G for all ∆ ∈ [0, R1). For this, we fix ∆ ∈ [0, R1) and define

q∆(p) := φ1(s(p), p)− φ1(p1, p2) +∆. To prove that (R1 −∆, R2) ∈ G, it suffices to show

that q∆ has a zero p∆ ∈ [0, 1] such that s(p∆) ∈ [0, 1]. Clearly, it holds that s(p2) = p1,

s(p) = 0 ⇒ qφ1(p1,p2)(p) = 0, s(p) = 1 ⇒ qφ1(p1,p2)(p) = 0 and q∆(p2) = ∆. Now

s(p∗) ∈ {0, 1}, s(p2) = p1 ∈ [0, 1] so that by continuity of s and the choice of p∗, there is

no value p between p∗ and p2 such that s(p) /∈ [0, 1]. In other words, s([p∗, p2]) ⊆ [0, 1].

Furthermore, qφ1(p1,p2)(p
∗) = 0 and qφ1(p1,p2)(p2) = φ1(p1, p2). To conclude the proof of

left-comprehensiveness, we use the following fact which easily follows from the intermediate

value theorem for continuous functions: let f : D ⊆ R → R be a continuous function that

has a zero in an interval [l, r] ⊆ D and let there be d ∈ [l, r] such that f(d) ≥ C for some

C > 0. Then for any ǫ ∈ [0, C], there exists z ∈ [l, r] such that f(z)− ǫ = 0. From this and

the relation q∆(p) = qφ1(p1,p2)(p) +∆− φ1(p1, p2), it follows that there exists p∆ ∈ [p∗, p2]

such that q∆(p∆) = 0 and s(p∆) ∈ [0, 1]. The following properties of φ1, φ2 can easily be

verified: φ1(p1, p2) is convex in p2, φ2(p1, p2) is concave in p2 and φ2(p1, 0) = φ2(p1, 1) = 0.

For each p1 ∈ [0, 1], define Gp1 := C1(p1, [0, 1]) as the trace of C1 points obtained by

varying p2, so that G =
⋃

p1∈[0,1]G
p1 . Using the properties of φ1 and φ2 given above,

one can prove that for each p1 ∈ [0, 1], the left-comprehensive hull lcomp(Gp1) of Gp1 is

comprehensive. By left-comprehensiveness of G, it holds that lcomp(Gp1) ⊆ G, so that

G can be written as the union G =
⋃

p1∈[0,1] lcomp(Gp1) of comprehensive sets. Since the

union operation preserves comprehensiveness, G is comprehensive.

3.5 Solutions by User Cooperation

The work presented in this section is based on the relaxation approach for the MAC

capacity computation problem proposed in [CPFV07] and is, to some extent, parallel to

further work presented in a recent journal article [CPFV10]. The channel considered

here is the (N1, N2;M)-MAC, i.e., the discrete memoryless two-user MAC with alphabet

sizes N1,N2 (for the inputs) and M (for the output) and which is specified by a channel

transition probability matrix Q = (Q(j|n1, n2)) ∈ RM×N1N2
+ .

The main result of [CPFV07] consists in showing that the only non-convexity of the

weighted sum rate optimization problem for this channel is due to the requirement of the
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input probability distributions to be independent, that is, the constraint for the probability

matrix specifying the joint probability input distribution to be of rank one. For this, the

following functions for matrices P = (Pij) ∈ RN1×N2 and vectors p1 = (p1i) ∈ RN1 ,p2 =

(p2i) ∈ RN2 are defined:

f1(P,p2) :=
∑

y,i,j

PijQ(y|i, j) ln Q(y|i, j)p2j∑
k PkjQ(y|k, j) , (3.68)

f2(P,p1) :=
∑

y,i,j

PijQ(y|i, j) ln Q(y|i, j)p1i∑
k PikQ(y|i, k) , (3.69)

f12(P) :=
∑

y,i,j

PijQ(y|i, j) ln Q(y|i, j)∑
k,l PklQ(y|k, l) . (3.70)

Here, P models the joint input probability distribution (not necessarily independent for

the two users), p1 and p2 specify the marginal distributions for each user and f1, f2, f12

are obtained by a slight modification of the mutual information expressions (allowing

dependent distributions). The capacity computation problem can then, for a weight vector

w = (θ, 1 − θ)T ≥ 0, be equivalently formulated as (note that we consider minimization

instead of maximization here)

min
R1,R2,P,p1,p2

−(θR1 + (1− θ)R2) (3.71)

subj. to R1 ≥ 0, R2 ≥ 0

R1 ≤ f1(P,p2) (3.72)

R2 ≤ f2(P,p1) (3.73)

R1 +R2 ≤ f12(P) (3.74)

P1 = p1,P
T1 = p2,P ≥ 0,1TP1 = 1

rank(P) = 1. (3.75)

In what follows, we refer to this problem as the extended capacity computation problem

(ECCP). It is shown in [CPFV07] that f1, f2, f12 are concave functions, so that non-

convexity in the above problem is only caused by the rank one constraint (3.75) which

forces the joint distribution specified by P to be independent. By removing this constraint,

and hence allowing cooperation of the users, one obtains a convex problem, which is

efficiently solvable using standard convex optimization techniques. Subsequently, we refer

to this problem as the relaxed problem. The objective function value frelaxed at a solution

(R1, R2,P,p1,p2) for the relaxed problem gives a lower bound to the objective value

foptimal of the actual (non-relaxed) problem. The matrix P obtained by solving the relaxed

problem is generally not of rank one. In [CPFV07], it has been proposed to use the product
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distribution P′ = pT
1 p2 (which is of rank one and obtained by forming the independent

distribution specified by the marginals of P) as a heuristic solution, called the marginal

approach here: one fixes P′,p1,p2 in the problem above and solves the convex problem

in R1, R2, resulting in an objective value function fmarginal, which is an upper bound

to the actual optimum value. We remark that it is easy to see that this solution is, for

θ ≤ 1
2 , given by R1 = f12(P

′) − f2(P
′,p1), R2 = f2(P

′,p1). From this, it also follows in

this case that fmarginal = −Ψ(p1,p2). For θ > 1
2 , one similarly obtains R1 = f1(P

′,p2),

R2 = f12(P
′)− f1(P

′,p2).

In the following, we first give, for the general case, a sufficient condition for the situation

that frelaxed = foptimal. We then apply this condition to a specific class of channels,

showing that for this channel class, the capacity computation problem can in some cases

be solved by first solving the relaxed problem and then calculating a rank one solution

with the same objective value function. Additionally, we show by examples that in these

cases the approach by taking the marginals generally yields suboptimal solutions, i.e.,

fmarginal > frelaxed = foptimal.

Subsequently, we study optimality conditions for the relaxed problem. This is a convex

problem (as shown in [CPFV07]), and the KKT conditions provide necessary and suffi-

cient conditions for optimality. Introducing Lagrange multipliers λ ∈ R5
+,α ∈ RN1 ,β ∈

RN2 ,µ ∈ RN1×N2
+ , τ ∈ R, the Lagrangian function [BV04] for the relaxed problem is given

by

L(· · · ) = −(θR1 + (1− θ)R2)− λ1R1 − λ2R2 + λ3(R1 − f1(P,p2)) (3.76)

+λ4(R2 − f2(P,p1)) + λ5(R1 +R2 − f12(P))

+αT (P1− p1) + βT (PT1− p2)−
∑

i,j

µi,jPi,j + τ(1TP1− 1).

We define

Aij :=
∂

∂Pij
f1(P,p2) =

∑

y

Q(y|i, j) ln Q(y|i, j)p2j∑
k PkjQ(y|k, j) − 1 (3.77)

Bij :=
∂

∂Pij
f2(P,p1) =

∑

y

Q(y|i, j) ln Q(y|i, j)p1i∑
k PikQ(y|i, k) − 1, (3.78)

Cij :=
∂

∂Pij
f12(P) =

∑

y

Q(y|i, j) ln Q(y|i, j)∑
k,l PklQ(y|k, l) − 1. (3.79)

Moreover, we write Di :=
∂

∂p1i
f1(P,p2) =

∑
j Pij

p1i
and Ei :=

∂
∂p2i

f2(P,p1) =
∑

j Pji

p2i
. Then,

the stationarity conditions of the Lagrangian at the KKT point are given by the set of
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equations

−λ1 + λ3 + λ5 = θ (3.80)

−λ2 + λ4 + λ5 = 1− θ (3.81)

∀i : −λ4Di − αi = 0 (3.82)

∀i : −λ3Ei − βi = 0 (3.83)

∀i, j : −λ3Aij − λ4Bij − λ5Cij + αi + βj − µij + τ = 0 (3.84)

Subsequently, we restrict to the case θ ≤ 1
2 , the other case can, by symmetry, be treated

similarly. Consider an optimal solution (R1, R2,P,p1,p2) with R1 > 0, R2 > 0. From

complementary slackness, we have λ1 = λ2 = 0. Furthermore, it is clear that at least one

of the constraints (3.72)-(3.74) must be active for this solution. First consider the case

that (3.72) is not active. Then λ3 = 0, implying λ4 = 1−2θ > 0, λ5 = θ > 0, so that (3.73)

and (3.74) are active. If (3.73) is not active (λ4 = 0), then λ5 = 1−θ and λ3 = 2θ−1 < 0,

so that (3.73) must always be active. For inactive (3.74), it follows that (3.72) and (3.73)

must be active. Summarizing, there are three cases possible:

1. (3.72) active, (3.73) active, (3.74) active

2. (3.72) inactive, (3.73) active, (3.74) active

3. (3.72) active, (3.73) active, (3.74) inactive

Now consider the case 2) where (3.72) is inactive and P > 0. Clearly, at the optimum,

Di = Ei = 1 and by complementary slackness, µ = 0, simplifying the system (3.80)-(3.84)

to

∀i, j : (1− 2θ)Bij + θCij = 2θ − 1 + τ (3.85)

Now, for each P ∈ RN1×N2
+ and channel transition matrix Q, we define the sets of

matrices

S(Q,P) :=

{
P̃ ∈ RN1×N2 : P̃ ≥ 0, P̃1 = P1,1T P̃1 = 1,

∀y :
∑

k,l

(Pkl − P̃kl)Q(y|k, l) = 0,

∀i, y :
∑

k

(Pik − P̃ik)Q(y|i, k) = 0

}
(3.86)

and

S1(Q,P) :=
{
P̃ ∈ S(Q,P) : rank(P̃) = 1

}
. (3.87)

The set S(Q,P) consists of the positive solutions of a linear system defined by the channel
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3 Capacity Computation for the Multiple Access Channel

matrix Q and the solution matrix P. One obtains the following sufficient conditions for

frelaxed = foptimal:

Proposition 2. Let θ ≤ 1
2 and (R1, R2,P,p1,p2) be a solution to the relaxed problem such

that f1(P,p2) < R1 [i.e., (3.72) is inactive], P > 0 and R1, R2 > 0. If P ∈ S1(Q,P),

then (R1, R2,P,P1,P
T
1) is a solution to the non-relaxed problem, where R1 = f12(P)−

f2(P,P1), R2 = f2(P,P1).

Proof. The expressions Bij and Cij are kept invariant by the matrices in S(Q,P). Hence,

choosing the same Lagrange multipliers as for (R1, R2,P,p1,p2), by inspection of the

stationarity condition (3.85) and observing that the complementary slackness conditions

hold, it follows that (R1, R2,P,P1,P
T
1) also satisfies the KKT conditions. Finally, note

that R1 ≥ 0 from the properties of mutual information.

3.5.1 Relaxation Solutions for the 3-parameter (2, 2; 2)-MAC

For some channels, it is possible to explicitly construct matrices in S1(Q,P). For example,

this is the case for the 3-parameter (2, 2; 2)-MAC as defined in Section 3.3.2, i.e., the

(2, 2; 2)-MAC with the restriction Q(1|1, 1) = Q(1|1, 2) on the channel matrix Q. For a

matrix P ∈ R2×2
+ , we define

P̂ :=





P+ det(P)
P21+P22

(
−1 1

0 0

)
, if P21 + P22 > 0

P, if P21 + P22 = 0.

(3.88)

For the 3-parameter (2, 2; 2)-MAC, it holds that for each P ∈ R2×2
++ ,P > 0, the set

S1(Q,P) contains the matrix P̂: it is easily verified that P̂ ∈ S(Q,P), and one quickly

checks that det(P̂) = 0, implying rank(P̂) = 1 since P 6= 0. From this, we get the

following sufficient conditions for the constructability of a rank one solution out of the

relaxed solution:

Corollary 2. For the 3-parameter (2, 2; 2)-MAC and θ ≤ 1/2, it holds that if the solution

(R1, R2,P,p1,p2) to the relaxed problem satisfies f1(P,p2) < R1, P > 0 and R1, R2 >

0, then (R̂1, R̂2, P̂, P̂1, P̂T1) is a solution to the ECCP (3.71), where R̂1 = f12(P̂) −
f2(P̂, P̂1), R̂2 = f2(P̂, P̂1) and yields the same objective value, i.e., foptimal = frelaxed.

Applying this corollary, the following solution approach for the 3-parameter (2, 2; 2)-

MAC for θ ≤ 1/2 can be applied:

1. Solve the relaxed problem, obtaining a solution (R1, R2,P,p1,p2).
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Figure 3.8: Relative performance loss using the marginal approach in comparison to the
optimal solution for example I.

2. Check if rank(P) = 1 (if yes, then a solution to the non-relaxed problem has been

found).

3. If f1(P,p2) < R1, P > 0 and R1, R2 > 0, then a solution to the non-relaxed

problem is (R̂1, R̂2, P̂, P̂1, P̂T1) with R̂1 = f12(P̂) − f2(P̂, P̂1), R̂2 = f2(P̂, P̂1),

i.e., optimal input probability distributions are given by p1 = P̂1,p2 = P̂T1.

Opposed to this, the approach of obtaining a rank one solution via the marginals (i.e.,

using P′ = pT
1 p2 as described above) is generally suboptimal even for the 3-parameter

(2, 2; 2)-MAC. We demonstrate this by two examples in the following. The first example

(example I) is given by the 3-parameter (2, 2; 2)-MAC with channel parameters Q(1|11) =
Q(1|12) = 0.7, Q(1|21) = 0.6, Q(1|22) = 0.1. For the second example (example II), we

use the parameters Q(1|11) = Q(1|12) = 0.4, Q(1|21) = 0.1, Q(1|22) = 0.36. Here, we

choose a discretization of weight values θ in the interval (0, 12) of step size 10−4. For each

such value θ, we first solve the relaxed (convex) problem using the MATLAB function

fmincon, resulting in a solution (R1, R2,P,p1,p2) with objective function value frelaxed.

The marginal approach results in the objective function value fmarginal = −Ψ(p1,p2) and

rate pairs
(
Rmarginal

1 , Rmarginal
2

)
. If the relaxed solution satisfies the conditions in Theorem

4, then foptimal = frelaxed and the optimal input distributions are computed as p∗
1 =

P̂1,p∗
2 = P̂T1. The corresponding optimal rates are given by Roptimal

1 = R̂1, R
optimal
2 =

R̂2. For the two examples and the different θ values, we compare the objective function
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Figure 3.9: Relative performance loss using the marginal approach in comparison to the
optimal solution for example II.

values foptimal and fmarginal, the rate regions given by the points
(
Rmarginal

1 , Rmarginal
2

)
and

(
Roptimal

1 , Roptimal
2

)
, respectively, and the input probability distributions obtained.

Figure 3.8 and Figure 3.9 show the relative performance loss (in percentage with respect

to the optimal solution) of the marginal approach in comparison to the optimal solution

for example I and example II, respectively. In each of the figures, it is displayed for a range

of θ values (which suffices to trace out the boundary of the capacity regions). We remark

that for all values in this range, the conditions in Theorem 4 hold. One sees that there

is a small, but notable performance loss for the marginal approach as compared to the

optimal solution. Figure 3.10 and Figure 3.11 display a section of the rate regions obtained,

illustrating that the boundary obtained via the marginal approach is strictly contained

inside the actual capacity boundary. Finally, Figure 3.12 displays the input probability

distributions p1,p2 and p∗
1,p

∗
2 for both examples. For each example, the curves show the

pairs of the first components of the vectors p1,p2 and p∗
1,p

∗
2, respectively. The figure

demonstrates that the input probability distributions obtained by the marginal approach

generally differ considerably from the optimal ones.
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Figure 3.12: Comparison of the optimal input probability distribution and the distribution
obtained by the marginal approach for example I and example II.

3.5.2 Sufficient Condition for the Constructability of an Optimal ECCP

Solution for the 3-parameter (2, 2; 2)-MAC

We now give a sufficient condition under which for a matrix P ∈ R2×2
+ , a solution to the

ECCP can be constructed. This condition will be useful for the (weak) duality investiga-

tions for discrete memoryless channels in the following chapter. For this, we define

Γij(P) := (1− 2θ)Bij + θCij. (3.89)

Then we have the following lemma:

Lemma 5. For the three-parameter (2, 2; 2)-MAC and θ ≤ 1/2, it holds that if P ∈ R2×2
+

satisfies 1TP1 = 1 and

∀i, j, k, l : Γij(P) = Γkl(P) (3.90)

then (R1, R2, P̂, P̂1, P̂T1) is a solution to the ECCP (3.71), where R1 = f12(P)−f2(P,P1),

R2 = f2(P,P1) and P̂ is given in (3.88). Furthermore, the optimal value is, for any

i, j ∈ {1, 2}, given by

f(P) := −(θR1 + (1− θ)R2) = −(Γij(P) + 1− θ). (3.91)

Proof. It is easily verified that for all i, j ∈ {1, 2}, we have Γij(P) = Γij(P̂), f2(P̂, P̂1) =
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f2(P,P1) and f12(P̂) = f12(P). Moreover, rank(P̂) = 1. Using ∂
∂p1i

f1(P̂, P̂1) = 1

and choosing Lagrange multipliers λ1 = λ2 = λ3 = 0, λ4 = 1 − 2θ, λ5 = θ,µ = 0 and

p1 = P̂1,p2 = P̂T1, the stationarity conditions (3.80)-(3.84) reduce to

∀i, j : Γij(P̂) = 2θ − 1 + τ, (3.92)

which is, by (3.90), true for the appropriate choice of τ . Furthermore, R1, R2 ≥ 0 and the

complementary slackness conditions are satisfied by the choice of R1, R2 and the Lagrange

multipliers. Now, for any P,p1,p2, we have the following useful relations:

∑

i,j

Pij
∂

∂Pij
f2(P,p1) = f2(P,p2)− 1, (3.93)

∑

i,j

Pij
∂

∂Pij
f12(P) = f12(P) − 1. (3.94)

By weighting equation (3.92) by the P̂ij values and summing, one obtains that

∑

i,j

P̂ijΓij(P̂) = −f(P)− (1− 2θ)− θ = 2θ − 1 + τ, (3.95)

so that f(P) = −(τ + θ).

Note that Corollary 2 can also be derived from Lemma 5 instead of from the more

general condition given by Proposition 2.

As a final remark, we note that the extension of the relaxation approach to the case of

an arbitrary number of users is quite straightforward, as is demonstrated in [CPFV10].

This work also describes a randomization approach for as an alternative to the marginal

approach. Here, a rank one solution is constructed randomly under guidance of the solution

to the relaxed problem. What is more, this work also gives conditions under which the

inner bound and / or the outer bound obtained by the relaxation and marginal approach

are tight.

3.6 Summary and Conclusions

In this chapter, we discussed the problem of computing the capacity region of the discrete

memoryless MAC. In the literature, it has been claimed [WK09] that if the MAC is

elementary, i.e., if the size of each input alphabet is less than or equal to the size of

the channel output alphabet, then the KKT conditions provide necessary and sufficient

conditions for an input probability distribution to be optimal. We have demonstrated
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3 Capacity Computation for the Multiple Access Channel

that this claim is invalid, even for the case of the (2, 2; 2)-MAC, that is, the two-user

MAC with binary alphabets. We used two example channels to serve as counter-examples

to the sufficiency claim in [WK09] and outlined where the proof given in [WK09] fails

to hold. However, the examples are not in contradiction to earlier work on the problem

in [Wat96]. Our first conclusion is that the capacity computation problem and even the

problem of sum-rate optimization for the discrete multiple-access channel remains open

and an interesting subject for further research.

In the light of the facts mentioned above, we further focused on weighted sum rate

optimization for the (2, 2; 2)-MAC. The problem was first reduced to a one-dimensional

problem and the single user problem and then studied for the 3-parameter (2, 2; 2)-MAC,

for whichQ(1|1, 1) = Q(1|1, 2). For weights satisfying w1 ≤ w2, we showed that, depending

on an ordering property of the channel transition probability matrix, either the maximum

is attained on the boundary, or there is at most one stationary point in the interior of the

optimization domain. These results represent a generalization of the results in [Wat96] to

more general weight vectors. The proof was obtained by showing that the reduction to the

one-dimensional problem leads to a pseudoconcave formulation, which can also be used

numerically for the capacity optimization. For a further restricted class of (2, 2; 2)-MAC

channels, an explicit solution for the one-dimensional problem could be given. As a second

structural property, we showed that the region G formed by the successive interference

cancellation points C1 or C2 is a comprehensive set, which might be a useful property for

further investigations of the problem.

For future work, it is an interesting question whether it is possible to find a general

classification of discrete memoryless MACs, stating for which channels the KKT conditions

are necessary and sufficient and for which they are not.

In the last part of the chapter, we studied the relaxation (user cooperation) approach

suggested in [CPFV07]. This method identifies a rank one constraint as the only non-

convexity of the problem, allowing to find suboptimal solutions via convex optimization

by removing this constraint. We derived conditions under which a solution to the (convex)

relaxed problem has the same value as the actual optimal solution. For the class of 3-

parameter (2, 2; 2)-MAC, we applied these results to show that, in some cases, it is possible

to obtain the optimal solution by first solving the convex problem and then computing

an optimal solution for the actual (non-relaxed) problem. By means of two examples, we

demonstrated that even for these channels, the marginal approach suggested in [CPFV07]

offers only suboptimal solutions. These results also provide a useful characterization of the

capacity region for the class of 3-parameter (2, 2; 2)-MACs, which will be used for duality

investigations for the discrete memoryless MAC and BC in the following chapter.
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and Fading Channels

The (discrete memoryless) multiple access channel has been the subject of the previous

chapter. We now also consider communication in the reverse direction, that is, the broad-

cast channel (BC), for which there is one transmitter intending to convey a message to each

of several receivers. Despite the fact that the MAC and the BC are structurally similar,

the BC is generally more difficult to handle in terms of an information-theoretic analysis.

Most notably, while the discrete memoryless MAC is understood quite well information-

theoretically, this is not true at all for the discrete memoryless BC—the capacity region

is (except for some special cases) still unknown even for the case of two users. The capac-

ity region of the Gaussian BC is known, and has recently also been found for the MIMO

case [WSS06], i.e., the case of multiple antennas at the transmitter and the receivers. How-

ever, several problems that are comparatively easy to solve for the MAC are substantially

harder to solve in the BC. This has motivated researchers to study the connection between

the MAC and the BC more closely, resulting in the uncovering of very useful relationships

between them, known as MAC-BC duality or uplink-downlink duality. Speaking in general

terms, duality means that it is possible to express a certain performance criterion for the

BC (such as data rate or capacity) in terms of a dual MAC and vice versa. There are

many examples where a problem for the BC can be “translated” to the dual MAC setup,

solved there efficiently and “translated” back to a solution for the original BC problem.

For example, an efficient calculation of optimal transmit covariance matrices for the Gaus-

sian MIMO BC can be performed by employing this procedure [VJG03]. While duality is

known for a variety of different types of channel models (see below), there is still interest in

finding dualities for other classes of channels. From a more general viewpoint, MAC-BC

duality is also believed to contribute to a better understanding of network information

theory. For example, duality might guide a way to a better comprehension of the capacity

region of the discrete BC, which is still unknown. Considering this, it is of interest to

what extent there is a duality between the discrete memoryless MAC and BC. A kind of

such a relation has been found for a class of deterministic channels in [JVG03], but the

general problem remains open.
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In this chapter, we study two different channel classes with respect to the existence

(or non-existence) of duality between the MAC and the BC. At first, we turn to the

discrete memoryless channels and define weak BC-to-MAC duality, which is a slightly

more general condition than the existing duality definitions. In short, weak BC-to-MAC

duality means that for each x that is a solution to a maximum weighted sum-rate problem

for a weight vector w over the BC capacity region, there exists a MAC such that x is

also a solution to the w-weighted sum-rate problem over the MAC capacity region. While

our definition of weak duality increases the degrees of freedom for the shape of the dual

MAC channels as opposed to duality in the sense of the Gaussian case, it is still a useful

definition since a necessary condition for weak duality is also necessary for duality in the

“stronger” Gaussian sense. What is more, establishing weak duality can be used as a step

to showing duality in the stronger sense by additionally proving that all “dual” MACs

are contained in the BC region. Using the results from the previous chapter, we derive

a sufficient condition as well as a necessary condition for a BC to be weakly dual to a

class of discrete memoryless MACs, namely the 2-MAC. Note that this channel has been

studied in Section 3.3.3. Furthermore, we apply these results for the binary symmetric

BC and prove that under some conditions, this channel is weakly dual to the 2-MAC.

Secondly, duality relations are explored for fading channels for which no channel state

information is provided to the transmitter. Concerning duality of fading channels, some

results have been reported in the literature. As already pointed out in [JVG04], in the case

where the fading states are known to the transmitter (and the receiver), the transmitter

can adapt its transmission to the current fading state, and the duality for the non-fading

case directly extends to channels with fading. Lack of duality for channel state information

at the transmitter only has been shown in [Jor06] for the case of linear transmitters and

receivers without time-sharing. In this chapter, we study duality relationships for the

(fast) fading BC under additive white Gaussian noise (AWGN) and a strict ordering of the

(discrete) fading distributions where the instantaneous fading states are perfectly known

to the receiver, but unknown to the transmitter. An achievable rate region is obtained by

using superposition coding and successive decoding (SCSD) and Gaussian signaling. This

region is conjectured to be the capacity region of the channel [TS03]. We consider the

natural corresponding dual fading MAC, which is simply obtained by reversing the roles

of the transmitters and receivers and letting the sum of the individual power constraints

equal the BC power constraint. We show that if the fading distribution for the weaker

user is non-deterministic, the achievable region using SCSD and Gaussian signaling is

different from the dual MAC region. Opposed to this, in the case of a deterministic fading

distribution for the weaker user, i.e., the situation of one-sided fading, the achievable

region equals the achievable MAC region using successive interference cancellation, where
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4.1 Duality for the Gaussian MAC and BC

Figure 4.1: Gaussian multiple access channel (left) and Gaussian broadcast channel (right).

the stronger user is decoded first. Hence, duality holds in this case and the well-known

way for solving BC problems via the dual MAC can be applied. If there is no duality, such

an approach appears not to be applicable. However, we suggest that for some problems,

it might be possible to obtain good solutions for a BC problem by solving the problem

over the corresponding dual MAC and then heuristically constructing a solution for the

BC based on the outcome of the MAC optimization. As an example, we consider the

problem of weighted sum-rate optimization for the fading BC, which is non-convex. We

demonstrate that for the channels at hand, such a procedure can successfully be applied for

this problem. Moreover, under a certain assumption, we derive upper bounds depending

only on the channel statistics for the error induced by this approach.

The duality concept can best be illustrated by the real-valued Gaussian SISO (single

antenna) MAC and BC, which is the topic of the following section. We remark here

that the extension of the duality property to channels with complex-valued symbols is

straightforward.

4.1 Duality for the Gaussian MAC and BC

The (real) Gaussian MAC with K transmitters has received signal

Y =
K∑

k=1

√
hkXk + Z, (4.1)

where Z ∼ N (0, σ2) is additive white Gaussian noise, hk are the channel gains and the

transmit signals Xk are subject to individual average power constraints given by the

vector P = (P 1, . . . , PK)T (cf. Figure 4.1). We collect the channel gains in the vector
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h = (h1, . . . , hK)T and write the capacity region as CMAC(P,h). It is given by

CMAC(P,h) =

{
R ∈ RK

+ : ∀M ⊆ {1, . . . ,K}
∑

k∈M
Rk ≤ 1

2
ln

(
1 +

∑
k∈M hkP k

σ2

)}
.

(4.2)

This region is a polytope in K dimensions and the rate points contained in it can be

achieved by the technique of successive interference cancellation (in combination with

time sharing), and each corner point of the polytope corresponds to one of the possible

decoding orders (cf. Section 3.1 or [Gol05]). Alternatively, the rates in CMAC(P,h) can

be achieved by the technique of rate splitting [RU96].

The (real-valued) Gaussian BC with K receivers takes input symbols X ∈ R, and the

received signal Yk ∈ R at the kth receiver is given by

Yk =
√
hkX + Zk, (4.3)

where Zk ∼ N (0, σ2) represents additive white Gaussian noise, hk are the channel gains

and the transmit signal is subject to an average power constraint of P .

Under a power allocation specified by the vector P = (P1, . . . , PK)T , the rates

RBC(P,h) =

{
R ∈ RK

+ : Rk ≤ 1

2
ln

(
1 +

hkPk

σ2 + hk
∑K

j=1 Pj 11[hj > hk]

)}
(4.4)

are achievable using superposition coding and successive decoding [BC74], [Ber74] or, as an

alternative, by dirty paper coding [Cos83], [YC01], [WSS06], [Gol05].

Then, the capacity region CBC(P ,h) is obtained by varying over all admissible power

allocations:

CBC(P ,h) =
⋃

P∈RK
+ :

∑K
k=1 Pk=P

RBC(P,h). (4.5)

As already mentioned in Chapter 1, these channels are commonly used as models for

cellular systems: the MAC corresponds to the uplink in a cell (transmission of the mobile

users to the base station), and the BC models the downlink (where the base station

transmits to the mobile users). For the Gaussian channels, we can see that the major

differences between the MAC and the BC are as follows: in the uplink, there is only one

additive noise term, but K power constraints. Opposed to this, for the downlink, there are

K noise terms to be considered, but only one power constraint. Moreover, in the downlink,

both the signal and interference for a specific user pass through the same channel, whereas

in the uplink the user signal and the interfering signals are subject to different channels.

Despite the structural similarities between the two channels, the capacity regions differ

70



4.1 Duality for the Gaussian MAC and BC

Figure 4.2: Illustration of MAC-BC duality: BC-to-MAC duality (left) and MAC-to-BC
duality (right).

quite substantially in their shapes. While the MAC region is a polytope in K dimensions,

the BC region has a smooth boundary (cf. Figure 4.2). Yet, the capacity regions of the

Gaussian MAC and BC exhibit a close connection, as has been demonstrated in [JVG04]:

the capacity region of the Gaussian K-user BC with power constraint P can be expressed

as a union of capacity regions of the Gaussian K-user MAC, where the union is taken over

all channels having sum power constraint P . On the other hand, the capacity region of a

Gaussian BC can be written as the intersection of a set of Gaussian MAC regions. This

relation is known as duality between the MAC and the BC. More precisely, the Gaussian

BC capacity region can be expressed in terms of a set of Gaussian MAC channels:

CBC(P ,h) =
⋃

P:
∑

i P i=P

CMAC(P,h). (4.6)

This relation is also referred to as BC-to-MAC duality. Conversely, the Gaussian MAC

capacity region can be written as an intersection of Gaussian BC capacity regions as

CMAC(P,h) =
⋂

α>0

CBC

(
K∑

i=1

Pi

αi
, (α1h1, . . . , αKhK)

)
, (4.7)

which is called MAC-to-BC duality. These duality relations are illustrated in Figure 4.2.
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4.2 Other Dualities

Channel duality has been investigated for more general network structures and different

types of channel models. A couple of these extensions and variations are listed below.

Note that some of these duality results are only mentioned here and will be treated in

more detail later on.

• First of all, the duality results given above easily extend to the fading Gaussian

MAC and BC where channel state information is available at the transmitter. This

has already been reported in [JVG04] with respect to ergodic capacity and out-

age capacity. In the case where no channel state information is provided to the

transmitter, duality holds only under specific conditions, as will be discussed in

detail in Section 4.5.

• The extension to the MIMO case of the Gaussian MAC and BC, i.e., with

multiple antennas at the transmitters and receivers, yields duality relations analo-

gously to the expressions (4.6) and (4.7), where the capacity regions are replaced

by the corresponding regions for the MIMO channels [VJG03], [Yu06]. Note that

the capacity region for the BC equals the dirty paper coding region, as shown

in [WSS06].

• Another line of extension of duality results is concerned with relaying structures.

Here, the MAC and BC are augmented by one or more relays in between the

transmitters and receivers in order to help the communication. The known duality

results for relaying structures mostly consider the relaying technique of amplify-

and-forward (AF) where each relay transmits a scaled version of its received signal

to the destination(s). Known dualities include results for two-hop AF relaying with

multiple antennas [GJ10] and for multi-hop AF MIMO relaying with single antenna

source and destination nodes [JGH07]. Note that the work in [RK11] establishes

SINR duality (see below) for a more general case.

• Some work concerning duality of discrete memoryless channels is presented for

the case of deterministic channels in [JVG03]. This topic will also be discussed in

detail subsequently (see Section 4.4).

• A few duality results are known for the linear deterministic model [ADT11],

which was designed to represent an approximative model for Gaussian channels.

Under linear coding, a duality results holds for general networks: any rate region

that is achievable by linear encoding strategies at the network nodes is also achiev-

able in the corresponding dual network (that is obtained by reversing link directions

and transposing channel gain matrices) [RPV09]. Note that this applies not only

to the linear deterministic model, but also to models with more general finite-field
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channel gain matrices. Beyond that, there are also duality results with respect to

the capacity regions of linear deterministic networks. These include the duality be-

tween the many-to-one and the one-to-many interference channel [BPT10].

For the two-user interference channel with cooperative links, duality holds

between the receiver cooperation and the transmitter cooperation channel both for

in-band [PV08] and out-of-band cooperation [WT11a], [WT11b]. The linear deter-

ministic model is treated in detail in Chapter 5, including an elaboration on the

corresponding duality results.

The duality relations described above all refer to duality with respect to the capacity

region of a system and its corresponding dual. While this notion of duality takes center

stage in this thesis, it is important to note that duality has also been investigated for

other performance criteria. Specifically, two other types of MAC-BC dualities are known

as SINR duality and MSE duality.

SINR duality refers to the equivalence of the uplink and downlink regions of the achiev-

able signal-to-interference-and-noise ratios (SINR). Early work using the SINR duality of

uplink and downlink can be found in the context of power control [ZF94] and beamform-

ing [RFLT98] and has been extended in later works [BS02a], [BS02b], [VT03], [SB04].

Recent work in [RK11] establishes SINR duality for the MAC and BC with an arbitrary

number of AF relaying hops and an arbitrary number of antennas.

MSE duality refers to the performance criterion of mean square error (MSE) between

the transmitted symbol and the received symbol, which is also preserved when changing

from downlink to the uplink or vice versa. These dualities have been shown for linear

filtering using the SINR duality in [SS05b], [SSB07], later in [KTA06] and for (non-linear)

dirty paper coding in [SS05a] and [MHJU06]. Moreover, MSE duality has also been shown

directly in [HJU09] and also for the case where the transmitter has partial or even only

statistical knowledge of the channel [JVU10]. Moreover, a so-called filter-based duality

with respect to data rate using MMSE receivers is proposed in [HJ08], and a rate duality

under some conditions for MIMO channels under linear precoding is given in [NCH11].

4.3 Weak Duality

In this section, we introduce a generalization of BC-to-MAC duality. The definition is

based on the standard notion of duality: let a BC B with capacity region CB be given.

Generally, for BC-to-MAC duality, in the light of (4.6), one would be interested in ex-

pressing the BC capacity in terms of MAC capacity regions, i.e., in relationships of the
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4 MAC-BC Duality for Discrete Memoryless and Fading Channels

Figure 4.3: Illustration of the definition of weak duality: for the weight vector w, there
exists a MAC region (displayed in red) such that there is a common solution
for the weighted sum rate problem for both the BC and the MAC (here r∗);
weak duality requires this property to hold for all weight vectors.

form

CB =
⋃

D∈M
D (4.8)

for a set of MAC channels with corresponding set of capacity regions M. We now define

a slightly more general duality condition: we say that there is a weak BC-to-MAC duality

between the capacity region CB and the set M of MAC capacity regions if the following

condition is satisfied:

∀w ≥ 0 : x = argmax
r∈CB

wT r ⇒ ∃D ∈ M : x = argmax
r∈D

wT r. (4.9)

In this case, we also write

CB ∼= M (4.10)

to indicate the weak duality relation. Note that occasionally, we will refer also to the

weak duality of a broadcast channel and set of MAC channels, meaning weak duality with

respect to the corresponding capacity region.

For a schematic illustration of the definition, see Figure 4.3. Clearly, the definition of

weak duality increases the degrees of freedom for the shape of the dual MAC channels as

opposed to duality in the sense of (4.8). However, weak duality relations are still worth

investigating for the following reasons:

• Any necessary condition for weak duality is also necessary for (4.8).

• If CB ∼= M and additionally D ⊆ CB holds for all D ∈ M, then we have (4.8). In
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4.4 Duality Relations for Discrete Memoryless Channels

other words, establishing weak duality can be used as a step to showing duality in

the form of (4.8).

In the following section, we derive weak duality conditions for the BC region with respect

to a subclass of discrete memoryless MACs, namely the 2-MAC.

4.4 Duality Relations for Discrete Memoryless Channels

The discrete memoryless MAC has been the subject of the previous chapter; the discrete

memoryless broadcast channel is defined in a similar manner: in this channel model, there

is one transmitter communicating an individual message to each of K receivers. Before

turning to duality results, for the sake of completeness, we briefly recall the definition of

the capacity region for this channel. The channel has an input alphabet X = {1, . . . , n}
and output alphabets Yk = {1, . . . ,mk} for k = 1, . . . ,K and is specified by a channel

matrix

Q = (Q(y1, . . . , yK |x))1≤yk≤mk ,1≤x≤n (4.11)

containing the channel transition probabilities and satisfying
∑

y1,...,yK
Q(y1, . . . , yK |x) = 1

for all x ∈ X . Moreover, the channel is memoryless, meaning that for an input sequence

x ∈ X n and output sequences yk ∈ Yn
k

Pr[Y n
1 = y1, . . . , Y

n
K = yK |Xn = x] =

n∏

i=1

Q(y1(i), . . . , yK(i)|x(i)), (4.12)

where the input random variable sequence is denoted as Xn and the output random

variable sequences as Y n
k . We now define some important information-theoretic notions

for the channel (see Figure 4.4 for an illustration). A [(|W1|, . . . , |WK |), n]-code is given

by the message sets Wk = {1, . . . , |Wk|} and an encoding function

f : W1 × · · · ×WK → X n. (4.13)

Each receiver k uses the decoding function gk

gk : Yn
k → Wk (4.14)

to get an estimate gk(Y
n
k ) = Ŵk of the transmitted message intended for her. The trans-

mission rates are

Rk =
ln |Wk|
n

, (4.15)
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4 MAC-BC Duality for Discrete Memoryless and Fading Channels

Figure 4.4: The discrete memoryless BC with encoder f and the decoders gk. Here, Qn

denotes the extension of Q to n time slots according to (4.12).

and the average probability of error is given by

P (n)
err =

1∏
k |Wk|

∑

(w1,...,wK)∈W1×···×WK

Pr [gk(Y
n
k ) 6= wk for some k|(w1, . . . , wK) sent] .

(4.16)

Again, the notion of the capacity region of the channel is defined as follows:

• A rate vector (R1, . . . , RK) is said to be achievable if there exists a sequence of

[(⌈enR1⌉, . . . , ⌈enRK⌉), n]-codes with P (n)
err → 0 for n→ ∞.

• The capacity region is defined as the closure of the set of achievable rate vectors.

Unlike for the discrete memoryless MAC, the capacity region of the discrete memoryless

BC is, in general, unknown. However, it is known for special cases such as deterministic

channels [Pin78], [Mar79], degraded channels [Ber73], [Gal74], less noisy channels [KM77]

or more capable channels [Gam79].

4.4.1 Duality for Deterministic Discrete Memoryless Channels

Concerning duality relations for the discrete memoryless BC and MAC, there are very

little results in the literature at the time of writing of this thesis. In fact, these results pri-

marily concern deterministic channels [JVG03]. For these channels, the channel transition

matrices Q contain only zeros or ones, specifying a deterministic mapping of the inputs

to the outputs. In what follows, we briefly sketch the duality relations for such channels.

The deterministic BC with input alphabet X and output alphabets Y1,Y2 is specified by

a function

f : x ∈ X 7→ (y1, y2) ∈ Y1 ×Y2. (4.17)
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4.4 Duality Relations for Discrete Memoryless Channels

Similarly, the deterministic MAC with input alphabets X1,X2 and output alphabet Y is

given by a function

g : (x1, x2) ∈ X1 × X2 7→ y ∈ Y. (4.18)

We denote the corresponding capacity regions by CBC(f) and CMAC(g), respectively. Fur-

thermore, we assume the alphabet sizes of the channels to be given by

|X | = |Y| =M (4.19)

and

|Y1| = |Y2| = |X1| = |X2| = N. (4.20)

In this case, a duality relationship can be proved in the case that M = aN for an integer

a with 1 ≤ a ≤ N : The capacity regions satisfy

Co


⋃

f

CBC(f)


 = Co

(⋃

g

CMAC(g)

)
. (4.21)

4.4.2 Conditions for Weak 2-MAC Duality

In this section, we derive conditions under which a capacity region C is weakly dual to

a set of 2-MAC channels. Recall that this channel is defined as the (2, 2; 2)-MAC with

the additional restriction Q(1|1, 1) = Q(1|1, 2) = 0 on the channel transition probabilities

(cf. Section 3.3.3). This channel is fully specified by two parameters c = Q(1|2, 1) and

d = Q(1|2, 2), where w.l.o.g. we may assume d ≥ c. In the following, we denote the

capacity region of this channel by C2−MAC(c, d). We let

V (C, θ) := max
r∈C

(θ, 1− θ)T r, (4.22)

b(C, θ) := argmax
r∈C

(θ, 1− θ)T r (4.23)

for weight vectors w = (θ, 1− θ)T ; if there are several maximizers in (4.23), we choose any

one of them. Furthermore, we write

θmin(C) = max {θ ∈ [0, 1] : ∃ b(C, θ) that satisfies (4.23) with b1(C, θ) = 0} , (4.24)
θmax(C) = min {θ ∈ [0, 1] : ∃ b(C, θ) that satisfies (4.23) with b2(C, θ) = 0} .

for the weights corresponding to the slopes of the region on the two rates axis, i.e., the

minimum and maximum values of θ required to describe the region, respectively.
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4 MAC-BC Duality for Discrete Memoryless and Fading Channels

Then, we have a sufficient condition and a necessary condition for weak duality as given

in the following theorem:

Theorem 4. Let C be a (BC) capacity region for which 0 < θmin(C) ≤ θmax(C) ≤ 1
2 . If C

satisfies
V (C, θ)

θ
≤ ln 2 (4.25)

for all θ ∈ [θmin(C), θmax(C)], then there exists a parameter set P ⊆ [0, 1]2 for the 2-MAC

such that

C ∼= {C2-MAC(c, d) : (c, d) ∈ P} . (4.26)

Conversely, if there exists a parameter set P ⊆ [0, 1]2 for the 2-MAC such that (4.26)

holds with c 6= d for all (c, d) ∈ P, then the (BC) capacity region C satisfies

exp

(
−V (C, θ)

θ

)
+ exp

(
−V (C, θ)

1− θ

)
≥ 1 (4.27)

for all θ ∈ (θmin(C), θmax(C)).
Proof. We use the notation and some of the results from Section 3.5 in the following. For

the first part of the theorem, assume that (4.25) holds for all θ ∈ [θmin(C), θmax(C)]. Using
Lemma 5, it suffices to show the existence of c, d ∈ [0, 1] and P ∈ R2×2

+ such that

(a) 1TP1 = 1 and condition (3.90) holds

(b) −f(P) = Γij(P) + 1− θ = V (C, θ) for some i, j ∈ {1, 2}
(c) f2(P,P1) = b2(C, θ).

In what follows, for a probability distribution matrix P and channel parameters c, d, we

let γ := cP21 + dP22, ǫ := P21 + P22. Now

Γ11(P) = Γ12(P) = θ − 1 + θ ln

(
1

1− γ

)
(4.28)

and Γ21(P) and Γ22(P) can be written as

Γ21(P) = Tθ(c, γ, ǫ) + θ − 1, (4.29)

Γ22(P) = Tθ(d, γ, ǫ) + θ − 1, (4.30)

where for x ∈ [0, 1] and ǫ ∈ [γ, 1]

Tθ(x, γ, ǫ) := θD(x||γ) + (1− 2θ)D
(
x
∣∣∣
∣∣∣γ
ǫ

)
. (4.31)

Moreover,

f2(P,P1) = P21D
(
c
∣∣∣
∣∣∣γ
ǫ

)
+ P22D

(
d
∣∣∣
∣∣∣γ
ǫ

)
. (4.32)
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Using (4.28), in order to satisfy (b), we let γ = 1 − e−V (C,θ)/θ in the following. For

x ∈ [0, 1], define T̂θ(x, ǫ) := Tθ (x, γ, ǫ) . Then, it is easy to see that (a)-(c) are equivalent

to the existence of a solution ǫ ∈ [γ, 1], c, d, P21 , P22 ∈ [0, 1] to the following system of

equations:

γ = cP21 + dP22 (4.33)

ǫ = P21 + P22 (4.34)

T̂θ(c, ǫ) = T̂θ(d, ǫ) (4.35)

T̂θ(c, ǫ) = V (C, θ) (4.36)

f2(P,P1) = b2(C, θ). (4.37)

As a positive linear combination of Kullback-Leibler divergences, T̂θ(x, ǫ) is convex in x.

Define T̂l,θ(ǫ) := T̂θ(0, ǫ) and T̂r,θ(ǫ) := T̂θ(1, ǫ). Let x̃ be such that ∂
∂x T̂θ(x̃, ǫ) = 0, which

can be found explicitly and shown to be contained in [0, 1]. Then T̂min,θ(ǫ) = T̂θ(x̃, ǫ) is

the minimum value of T̂θ over x ∈ [0, 1]. Hence, if T̂l,θ(ǫ) ≥ V (C, θ), T̂r,θ(ǫ) ≥ V (C, θ) and
T̂min,θ(ǫ) ≤ V (C, θ) for some ǫ ∈ [γ, 1], subsequently referred to as condition A, convexity

of T̂θ(x, ǫ) implies that there are c, d ∈ [0, 1] such that (4.35) and (4.36) are satisfied. First

assume d > c. Then, from (4.33) and (4.34), we have

P21 =
γ − dǫ

c− d
and P22 =

γ − cǫ

d− c
, (4.38)

so that P21 ≥ 0 and P22 ≥ 0 if c ≤ γ/ǫ ≤ d. For c = d, we get c = d = γ/ǫ. Define

T̂b,θ(ǫ) := T̂θ(γ/ǫ, ǫ). Then, if for some ǫ ∈ [γ, 1], T̂b,θ(ǫ) ≤ V (C, θ) (denoted by condition

B in the following) and also condition A holds, it follows again by convexity of T̂θ that the

system (4.33)-(4.36) for this choice of ǫ has a (unique) solution in c, d, P21, P22 ∈ [0, 1], d ≥
c. We define Fθ as the set of ǫ ∈ [γ, 1] for which both condition A and condition B are

satisfied. Furthermore, for ǫ ∈ Fθ, we define f2(ǫ) = f2(P,P1) where c, d, P21, P22, d ≥ c

form the unique solution to the system (4.33)-(4.36).

Now, after some algebra, the following properties of T̂l,θ, T̂min,θ, T̂l,θ and T̂b,θ can be

verified: T̂l,θ(ǫ) ≥ V (C, θ), T̂r,θ(ǫ) ր, T̂min,θ(ǫ) ց0 and T̂b,θ(ǫ) ց0. From this, we deduce

that either Fθ = ∅ or Fθ = [ǫ∗, 1] is an interval. Now one can show that T̂min,θ(γ) =

T̂b,θ(γ) = −θ ln(γ). From (4.25), we have that T̂min,θ(γ) = T̂b,θ(γ) = −θ ln(1−e−V (C,θ)/θ) ≥
V (C, θ), so that there exists ǫmin ∈ [γ, 1] such that T̂min,θ(ǫmin) = V (C, θ), and for which

clearly T̂r,θ(ǫmin) ≥ V (C, θ). In addition, there is ǫb ∈ [γ, 1] such that T̂b,θ(ǫb) = V (C, θ).
We conclude that Fθ = [ǫ∗, 1] where ǫ∗ = max{ǫmin, ǫb}. By continuity, the image f2(Fθ)

of Fθ under f2 forms an interval as well, and 〈f2(ǫ∗), f2(1)〉 ⊆ f2(Fθ), where 〈a, b〉 = [a, b]

for a ≤ b and 〈a, b〉 = [b, a] for b ≤ a. If ǫ∗ = ǫb, then for the solution values for ǫ = ǫb, we
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have d = γ/ǫb, so that P21 = 0, implying

f2(ǫb) = P21D

(
c

∣∣∣∣
∣∣∣∣
γ

ǫb

)
+ P22D

(
γ

ǫb

∣∣∣∣
∣∣∣∣
γ

ǫb

)
= 0. (4.39)

For the case ǫ∗ = ǫmin, we similarly have c = d = γ/ǫmin, resulting in f2(ǫmin) = 0. Finally,

for ǫ = 1, we have for the solution values that

D(c||γ) = D(d||γ) = V (C, θ)
1− θ

, (4.40)

implying

f2(1) = (1− P22)D(c||γ) + P22D(d||γ) = V (C, θ)
1− θ

(4.41)

= b2(C, θ) +
θ

1− θ
b1(C, θ) ≥ b2(C, θ).

Consequently,
[
0, b2(C, θ) + θ

1−θ b1(C, θ)
]
⊆ f2(Fθ), which implies the existence of a solu-

tion for the system (4.33)-(4.37).

For the converse part of the theorem, assume that (4.26) holds and that for some

θ ∈ (θmin(C)), θmax(C)), condition (4.27) is not satisfied. Then, for this θ, there is a

solution (R1, R2,P,p1,p2) to the ECCP with R1 > 0, R2 > 0,P > 0. In this case, since

c 6= d and from the properties of mutual information, f1(P,p2) + f2(P,p1) > f12(P), it

is easy to see from (3.80)-(3.84), complementary slackness and weak duality that (a)-(c)

must hold. This in turn implies the existence of solution to the system (4.33)-(4.37). Now

T̂r,θ(1) = (θ−1) ln(γ), so that exp
(
−V (C,θ)

θ

)
+exp

(
−V (C,θ)

1−θ

)
< 1 implies T̂r,θ(1) < V (C, θ),

i.e., Fθ = ∅. Hence, (4.33)-(4.37) has no solution, which is a contradiction and concludes

the proof of the theorem.

4.4.3 Duality 2-MAC / Binary Symmetric BC

In this section, we exemplarily apply Theorem 4 in order to derive (weak) duality condi-

tions for the 2-MAC with respect to the Binary Symmetric Broadcast Channel (BSBC)

[CT06]. This binary memoryless broadcast channel is specified by the channel matrix Q

with

Q(x1, x2|y) = (s11[x1 6= y] + (1− s)11[x1 = y])(t11[x2 6= y] + (1− t)11[x2 = y]), (4.42)

where x1, x2, y ∈ {1, 2}, 0 < s < t < 1
2 (cf. Figure 4.5). Note that since both the 2-

MAC and the BSBC offer two degrees of freedom in the specification of the transition
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Figure 4.5: Binary Symmetric Broadcast Channel.

probabilities, the pair 2-MAC/BSBC is a natural candidate for duality investigations.

For the BSBC, the boundary ∂CBSBC(s, t) of the capacity region CBSBC(s, t) can eas-

ily be characterized in terms of a parametric representation [CT06]: ∂CBSBC(s, t) =

{r(β) : β ∈ [0, 1/2]}, where

r(β) =

(
H(β ∗ s)−H(s)

ln 2−H(β ∗ t)

)
, (4.43)

with the “convolution” x∗y = x(1−y)+(1−x)y. The sum-rate at the capacity boundary

point corresponding to β ∈ [0, 1/2] is then given by

V (CBSBC, β) := θ(β)r1(β) + (1− θ(β))r2(β), (4.44)

where θ(β) =
(
1− r′1(β)

r′2(β)

)−1
. We obtain

Proposition 3. Let s0 be the solution to 1
2 (1− 2s)arctanh(1− 2s) = ln 2

2 (s0 ≈ 0.131988).

For any s0 ≤ s < t < 1
2 , there exists a parameter set P ⊆ [0, 1]2 for the 2-MAC such that

CBSBC(s, t) ∼= {C2-MAC(c, d) : (c, d) ∈ P} . (4.45)

Proof. First of all, 0 < θmin(CBSBC) ≤ θmax(CBSBC) ≤ 1
2 . By Theorem 4, it suffices to

show that for s0 ≤ s < t < 1
2 ,

V (CBSBC, β)

θ(β)
= r1(β) +

1− θ(β)

θ(β)
r2(β) ≤ ln 2 (4.46)

for all β ∈ [0, 1/2]. For this, we prove that, for channel parameters as above, both of the

summands are less than or equal to ln /2. Clearly, r1(β) is maximal for β = 1/2, and
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Figure 4.6: Numerical evaluation of the weak duality conditions given in Theorem 4 for
the BSBC.

it is quickly verified that r1(
1
2 ) = ln 2 − H(s) ≤ ln 2/2 for s > s0. Define h(β, s, t) :=

1−θ(β)
θ(β) r2(β). After some algebra, one verifies that for each fixed s, β ∈ [0, 1/2], h(β, s, t) ր

in t, and that the maximum value of h is given by

h(β, s, 1/2) =
1

2
(2β − 1)(2s − 1)arctanh[(2β − 1)(2s − 1)]. (4.47)

Now h(β, s, 1/2) ց in β and h(0, s, 1/2) = 1
2(1−2s)arctanh(1−2s) ց in s, which concludes

the proof.

Figure 4.6 illustrates the results of evaluating the conditions in Theorem 4 numerically

for the BSBC over a range of channel parameters s, t. Three areas are to be distinguished:

1. The parameter range in which the sufficient condition (4.25) is satisfied represents

channels for which weak duality to the 2-MAC holds. It is displayed in green in

Figure 4.6. Note that for parameters s, t with s > s0, weak duality always holds

according to Proposition 3.

2. There is a small range (shown in red) of choices of s, t where weak duality does

not hold (i.e., the necessary condition (4.27) is not satisfied).

3. Finally, for some parameters s, t, condition (4.27) is satisfied, but (4.25) does not

hold, so that no statement about weak duality can be made using the conditions

in Theorem 4. The corresponding region is indicated by the “?”.
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Figure 4.7: Capacity region of the BSBC with parameters s = 0.2, t = 0.3 and some of the
corresponding dual 2-MAC capacity regions.

Figure 4.7 shows the capacity region of the BSBC for s = 0.2 > s0, t = 0.3 and some

of the dual 2-MAC channels found by solving the system (4.33)-(4.37) numerically. We

remark that for this example, all the MAC capacity regions are strictly contained in the

BC region, so that actually BC-to-MAC duality in the sense of (4.8) holds. Looking at

experimental results, this property seems to hold generally: it appears that for the BSBC

in the case of weak duality to the 2-MAC, the corresponding dual channels are always

contained in the capacity region of the BSBC. However, this remains to be proven and is

left open as a conjecture.

4.5 Duality for Fading Channels Without Transmitter Channel

State Information

In this section, we investigate duality relations for Gaussian (fast) fading channels. Here,

two different scenarios are of specific interest: in the case where channel state information

(CSI) is available to the transmitter, it is possible to adapt to the current fading state, and

the duality for the non-fading case extends to channels with fading [JVG04]. Opposed to

this, in the case that the transmitter has no access to CSI, the situation is more involved.

The situation of no CSI at the transmitter has already been investigated in [Jor06] with

respect to the existence of MAC-BC duality. This work is restricted to linear transmitters

and receivers and also precludes time-sharing. Under these assumptions, it is shown that
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duality does not hold. In the work presented in this section, we study a more general case

and allow the usage of dirty paper coding, superposition coding and successive interference

cancellation, i.e., non-linear transmitters and receivers, respectively.

4.5.1 Fading BC System Model

The channel we study here is the scalar two-user BC with additive white Gaussian noise

and discrete fading where CSI is available only to the receiver, but not to the transmitter.

For this channel, the received signals Y1 at receiver 1 and Y2 at receiver 2 are given by

Y1 = GX + Z1, (4.48)

Y2 = HX + Z2.

Here, Zi ∼ N (0, 1), i = 1, 2 is additive white Gaussian noise, X ∈ R is the transmit

signal, subject to an average power constraint E[X2] ≤ P , where P > 0. G and H are

the fading coefficients, which for each symbol duration are randomly chosen out of a set

G = {g1, . . . , gN1} andH = {h1, . . . , hN2}, respectively. We remark here that all the results

in this section easily carry over to the case of continuous-type fading distributions. The

probability mass functions on G and H are denoted as p1 and p2, respectively, that is,

Pr[G = gk] = p1(k) and Pr[H = hl] = p2(l) for 1 ≤ k ≤ N1, 1 ≤ l ≤ N2. Without loss of

generality, we assume that p1(k) > 0 and p2(l) > 0 for 1 ≤ k ≤ N1, 1 ≤ l ≤ N2. We further

assume G and H to be independent and the instantaneous fading states (i.e., realizations

of G and H) unknown to the transmitter, but perfectly known to the receivers. However,

the transmitter is aware of the fading distributions specified by p1, p2. We refer to this

channel as the CSIR-AWGN-BC. A graphical illustration of the system model is given in

Figure 4.8. For this chapter, we make the following additional ordering assumption for

the fading distributions:

max
1≤j≤N2

hj ≤ min
1≤i≤N1

gi, (4.49)

in which case we speak of an ordered CSIR-AWGN-BC.

Unfortunately, very little is known in terms of capacity of the CSIR-AWGN-BC; see

[TS03], [TY09] for more details on this channel and the following capacity and achievability

discussion. For the AWGN BC (without fading), the capacity region is known and all

rate points in the capacity region are achievable by superposition coding and successive

decoding (SCSD) or, alternatively, by dirty paper coding (DPC) (cf. Section 4.1). If

the CSIR-AWGN-BC is degraded, SCSD is always possible, and the capacity region is

known in terms of mutual information expressions, also achieved by SCSD. However,

this representation involves an optimization over an auxiliary and the input distribution,
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Figure 4.8: System model for the fading broadcast channel.

which are not known how to be chosen optimally. Yet, an achievable rate region is given by

choosing these distributions jointly Gaussian. We remark that for non-degraded channels,

performing SCSD is generally not possible, but there are cases for which the channel is

not degraded, but SCSD is still possible. In such situations, an achievable rate region

is also given by evaluating the degraded region for Gaussian signaling. For the ordered

CSIR-AWGN-BC, assumption (4.49) ensures that the channel is degraded with user 1

being the “stronger” user, and the achievable rate region using SCSD and Gaussian input

is then evaluated as [TS03] C̃BC = Co (RBC) , where

RBC =
⋃

β∈[0,1]

{
(R1, R2)

T : R1 ≤ rB1 (β), R2 ≤ rB2 (β)
}

(4.50)

with

rB1 (β) = E

[
1

2
ln
(
1 + βPG2

)]
(4.51)

and

rB2 (β) = E

[
1

2
ln

(
1 + PH2

1 + βPH2

)]
. (4.52)

Here, β ∈ [0, 1] determines the power split among the superimposed signals intended for

each user. We remark that it is conjectured in [TS03] that Gaussian input is optimal for

the CSIR-AWGN-BC. In our case, this reduces to the conjecture that C̃BC is the capacity

region for the ordered CSIR-AWGN-BC. We also note that in the next section, it is shown

that RBC is a convex set, so that the convex hull operation is actually not necessary.

However, this property is mainly due to the assumption (4.49) and might not hold if

(4.49) is not satisfied.
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Figure 4.9: System model for the dual fading multiple access channel.

We now consider the problem of weighted sum-rate optimization over the region C̃BC.

For this, let θ ≤ 1
2 and define

fBC
θ (β) := θrB1 (β) + (1− θ)rB2 (β). (4.53)

The problem of maximizing weighted sum-rate then reads as

max
β∈[0,1]

fBC
θ (β). (4.54)

Now fBC
θ (β) generally is not concave in β, so that (4.54) is a non-convex problem, just

like for the AWGN BC. For the AWGN BC, it is well-known that problem (4.54) can be

solved via its dual MAC. The question that arises at this point, then, is whether for the

fading case, a similar solution by duality is possible.

4.5.2 The Dual MAC and Lack of Duality

A natural extension of the definition of the dual MACs for channels without fading to the

CSIR-AWGN-BC is as follows: one defines the set of dual MACs as the MACs that have

identical noise and fading statistics as the BC and individual power constraints P1, P2 for

the two users such that P1+P2 = P , i.e., the sum of the two individual power constraints

equals the BC power constraint. More precisely, for each α ∈ [0, 1] we define the dual

α-MAC as the fading MAC channel with received signal

Y = GX1 +HX2 + Z, (4.55)
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where Z ∼ N (0, 1) is additive white Gaussian noise, X1,X2 ∈ R are the transmit signals

of user 1 and 2, subject to average power constraints E[X2
1 ] ≤ P1 = αP and E[X2

2 ] ≤ P2 =

(1−α)P , respectively. The fading random variables G and H follow the same distribution

as for the BC, i.e., are independent and specified by p1 and p2 and their realizations are

assumed to be perfectly known to the receiver, but unknown to the transmitters. The

system model is graphically depicted in Figure 4.9.

Using Gaussian inputs and successive interference cancellation (SIC), an achievable rate

region is given by C̃MAC(α), constituting a pentagon which is specified by the two rate

points achievable by SIC by decoding user 1 first (decoding order 1 → 2) and decoding

user 2 first (decoding order 2 → 1), respectively. Taking the union over all dual α-MACs,

we define

C̃MAC := Co


 ⋃

α∈[0,1]
C̃MAC(α)


 . (4.56)

It is helpful to express C̃MAC in terms of the two SIC points as follows: tracing the SIC

point corresponding to the decoding order 1 → 2 for varying α, we obtain the set

C̃1→2
MAC :=

⋃

α∈[0,1]

{
(R1, R2)

T : R1 ≤ rM1 (α), R2 ≤ rM2 (α)
}
, (4.57)

where

rM1 (α) = E

[
1

2
ln

(
1 + αPG2 + (1− α)PH2

1 + (1− α)PH2

)]
(4.58)

and

rM2 (α) = E

[
1

2
ln
(
1 + (1− α)PH2

)]
. (4.59)

Similarly, one defines C̃2→1
MAC by tracing over the SIC rate point corresponding to the de-

coding order 2 → 1. Clearly, we then have C̃MAC = Co
(
C̃1→2
MAC ∪ C̃2→1

MAC

)
. Now C̃BC and

C̃MAC are related as follows:

Theorem 5. If the fading distribution for H is non-deterministic, i.e., N2 > 1, then

C̃BC 6= C̃MAC. If H is deterministic, then C̃BC = C̃1→2
MAC.

Proof. We first show that RBC given in (4.50) is a convex set, i.e., that C̃BC = RBC. The

boundary of the region RBC is given by the image of the parametric curve ψB : [0, 1] →
R2, β 7→ (rB1 (β), r

B
2 (β))

T . Since rB1 is strictly increasing and rB2 is strictly decreasing, ψB

is an injective parametric curve. Moreover, it is differentiable, and the tangent slope of
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the curve in the point ψB(β) is given by tB(β) :=
d
dβ r

B
2 (β)/

d
dβ r

B
1 (β) as

tB(β) = −E

[
PH2

1 + βPH2

](
E

[
PG2

1 + βPG2

])−1

. (4.60)

Now

d

dβ
tB(β) =

{
E

[
PG2

1 + βPG2

]
E

[
P 2H4

(1 + βPH2)2

]
(4.61)

−E

[
PH2

1 + βPH2

]
E

[
P 2G4

(1 + βPG2)2

]}(
E

[
PG2

1 + βPG2

])−2

.

Using condition (4.49), the independence of G and H and the fact that x/(1 + βx) is

increasing in x, it is easy to see that d
dβ tB(β) ≤ 0, which implies that ψB is convex, i.e.,

that RBC is a convex set.

First consider the case that H is non-deterministic, i.e., N2 > 1. We show that C̃BC 6=
C̃MAC. For this, we consider the boundary of C̃1→2

MAC as the image of the injective and

differentiable parametric curve ψM : [0, 1] → R2, α 7→ (rM1 (α), rM2 (α))T , which has tangent

slope tM (α) := d
dαr

M
2 (α)/ d

dα r
M
1 (α). Clearly, it suffices to show that there exists a point

x ∈ C̃1→2
MAC for which x /∈ C̃BC. Since ψM(1) = ψB(1) and C̃BC is a convex set, the existence

of such a point x follows by comparing the tangent slopes at the end of the curves (on the

rate axis for user 1) as tM (1) < tB(1). To see this, we have

tM(1) = −E
[
PH2

](
E

[
PG2(1 + PH2)

1 + PG2

])−1

, (4.62)

tB(1) = −E

[
PH2

1 + PH2

](
E

[
PG2

1 + PG2

])−1

. (4.63)

Since x/(1 + x) is strictly concave on the interval (0,∞] and H is non-deterministic, it

follows from Jensen’s inequality that E
[

PH2

1+PH2

]
<

E[PH2]
1+E[PH2] , which yields

−tB(1) = E

[
PH2

1 + PH2

](
E

[
PG2

1 + PG2

])−1

(4.64)

<
E
[
PH2

]

E [1 + PH2]

(
E

[
PG2

1 + PG2

])−1

= −tM (1),

where the last equality follows from independence of G2 and H2. Note that similarly, one

can show that tM (0) > tB(0). Finally, we turn to the case that H is deterministic. Here,

there is a one-to-one mapping between the images of ψM and ψB, induced by the bijective
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parameter mapping

b(α) :=
α

1 + h21(1− α)P
. (4.65)

For each α ∈ [0, 1], we have ψM(α) = ψB(b(α)). Similarly, for each β ∈ [0, 1], it is

ψM(b−1(β)) = ψB(β).

Two remarks concerning Theorem 5 and its proof are in order. First, there is strong

numerical evidence that the stronger condition C̃BC ( C̃MAC holds in the case of non-

deterministic H, but has yet to be proven. In fact, the conditions tM (1) < tB(1) and

tM (0) > tB(0) support this conjecture. Second, the MAC capacity region can only be

larger than the achievable region C̃MAC, and there is, for non-deterministic H, always a

point in C̃MAC that is not contained in C̃BC. This means that if C̃BC is, as conjectured,

actually the capacity region of the ordered CSIR-AWGN-BC, then Theorem 5 implies that

there is no duality for non-deterministic H even with respect to the capacity regions.

4.5.3 Approximative Solutions via the Dual MAC

In the previous section, we have demonstrated that if the fading random variable H is

deterministic, we have BC-MAC duality in the sense that C̃BC = C̃1→2
MAC. In this case, the

non-convex weighted sum-rate problem for the BC can be solved via the dual MAC as

follows: define

fMAC
θ (α) := θrM1 (α) + (1− θ)rM2 (α), (4.66)

which is easily verified to be a concave function. Then, the weighted-sum rate optimization

problem over the region C̃1→2
MAC

α∗ = argmax
α∈[0,1]

fMAC
θ (α) (4.67)

is a convex problem, and since C̃BC = C̃1→2
MAC, the solution α

∗ immediately gives the optimal

argument value β∗ for the optimization over C̃BC as

β∗ =
α∗

1 + h21(1− α∗)P
(4.68)

[cf. equation (4.65)].

Considering the case that H is non-deterministic, this approach cannot be applied di-

rectly since in this situation, there is no perfect duality between the BC region and its

corresponding dual MAC region. However, the weighted sum-rate optimization problem

over C̃1→2
MAC is still convex, and it is reasonable to surmise that it might still be possible to

obtain suboptimal, but good solutions for the BC problem by solving the problem over
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the dual MAC region and then heuristically constructing a solution for the BC problem

based on the outcome of the MAC optimization. To be precise, we suggest and analyze

the following line of approach:

1. Solve α∗ = argmax
α∈[0,1]

fMAC
θ (α).

2. Compute a power split β̃ as an approximative solution for problem (4.54) by β̃ =

π(α∗), where π : [0, 1] → [0, 1].

We refer to π as the power split mapping. There are different conceivable choices for the

power split mapping π. A specific choice for π is motivated by (4.65): for each γ > 0,

πγ(α) :=
α

1 + γ(1− α)P
(4.69)

is a possible power split mapping. This form of π can experimentally found to produce

good results in many cases for an appropriate choice of γ. For example, taking γ as the

mean channel gain for user two, i.e., γ = E
[
H2
]
, is generally a good choice.

Under the assumption that C̃BC ⊆ C̃MAC, the error ∆π(θ) incurred by this procedure

can be bounded as

∆π(θ) = fBC
θ (β∗)− fBC

θ (π(α∗)) ≤ fMAC
θ (α∗)− fBC

θ (π(α∗)) =: ∆π
g (θ), (4.70)

where β∗ is the optimizer of (4.54). ∆π
g (θ) is an “a posteriori” bound that can be evaluated

only after the MAC optimization problem has been solved; it then gives a guarantee on

the maximum deviation from the optimum. One might also be interested in an “a priori”

error bound that does not depend on α, but only on the channel parameters. Such a

bound can, for instance, be obtained as

∆π(θ) ≤ max
α∈[0,1]

(
fMAC
θ (α)− fBC

θ (π(α))
)
≤ θ∆π

1 + (1− θ)∆π
2 , (4.71)

where for i = 1, 2, we let ∆π
i := max

α∈[0,1]

[
rMi (α) − rBi (π(α))

]
.

Theorem 6. ∆
πγ

1 is bounded by

∆
πγ

1 ≤ 1

2

∑

j:h2
j≤γ

p2(j) ln
γ

h2j
. (4.72)

For γ ≤ E[H2], it also holds that

∆
πγ

2 ≤ −(
√
1 + γP − 1)2

2γ2
E

[
H2(γ −H2)

1 + PH2

]
. (4.73)
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Proof. We have

rM1 (α)− rB1 (πγ(α)) = EG,H

[
s1(α,G

2,H2, γ, P )
]

(4.74)

with

s1(α, x, y, γ, P ) =
1

2
ln

(1 + (1− α)Pγ)(1 + (1− α)Py + αPx)

(1 + (1− α)Py)(1 + (1− α)Pγ + αPx)
. (4.75)

Now for y ≤ γ, s1(α, x, y, γ, P ) is increasing in P and

lim
P→∞

s1(α, x, y, γ, P ) =
1

2
ln

[
γ(α(x − y) + y)

(γ − αγ + αx)y

]
, (4.76)

which, in turn, is increasing in α. This shows that s1(α, x, y, γ, P ) ≤ 1
2 ln

γ
y for y ≤ γ.

Now it is easy to see that s1(α, x, y, γ, P ) ≥ 0 iff y ≤ γ, from which (4.72) follows.

For the second bound, assume γ ≤ E[H2]. Without loss of generality, we also assume

that H is non-deterministic. Here, we have

rM2 (α) − rB2 (πγ(α)) = EH

[
s2(α,H

2, γ, P )
]
, (4.77)

where

s2(α, y, γ, P ) =
1

2
ln

(1 + (1− α)Py)(1 + P ((1− α)γ + αy))

(1 + (1− α)γP )(1 + Py)
. (4.78)

Now, using lnx ≤ x− 1, one can bound EH

[
s2(α,H

2, γ, P )
]
≤ φ(α, γ, P ), where

φ(α, γ, P ) = t(α, γ, P )E

[
H2(γ −H2)

1 + PH2

]
(4.79)

with

t(α, γ, P ) =
−α(α− 1)P 2

2((α − 1)γP )− 1)
. (4.80)

Applying Jensen’s inequality, we get

E

[
H2(γ −H2)

1 + PH2

]
≤ E

[
H2
]
(γ −E

[
H2
]
)

1 + PE [H2]
≤ 0, (4.81)

where the last inequality follows from γ ≤ E[H2]. Now it holds that ∂2

∂α2 t(α, γ, P ) > 0,

which together with (4.81) implies that φ(α, γ, P ) is concave in α. After some algebra,

one finds that ∂
∂αφ(α, γ, P ) = 0 has exactly one solution α̂ in [0, 1], which is given by

α̂ = 1+γP−√
1+γP

γP and for which, by concavity, φ(α, γ, P ) takes on its maximum value for

α ∈ [0, 1]. Substituting α̂ into φ(α, γ, P ), one obtains (4.73).

Note that ∆
πγ

1 → 0 and ∆
πγ

2 → 0 for H becoming “increasingly deterministic”, which

means that the duality becomes “better” when the randomness for H is reduced.
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Figure 4.10: Actual errors ∆π(θ) and “a posteriori” error bounds ∆π
g (θ).
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g (θ)/r(θ).
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Figure 4.12: “A priori” error bounds using Theorem 6 for examples A and B.

We discuss two examples in the following. We consider the case N1 = N2 = 50, P = 103

and uniform fading: p1 and p2 are chosen such that the fading gains G2 and H2 are

distributed uniformly in the interval [0.6, 1] and [0.2, 0.6] (example A) and [0.2, 0.9] and

[0.1, 0.2] (example B), respectively. We compare, for different values of θ out of a fine

discretization of [0, 12 ], the approximative approach using the power split mapping π = πγ

for γ = E
[
H2
]
to the solutions obtained by a simple brute force optimization, which is, in

principle, possible for the channels at hand but is likely to be impractical for more general

channel models.

Figure 4.10 depicts, for the two examples, the actual error ∆π(θ) and the “a posteriori”

bound ∆π
g (θ) for θ ∈ [0.2, 0.5] (they are zero outside this interval). For each θ, we determine

the range r(θ) := max
β∈[0,1]

fBC
θ (β) − min

β∈[0,1]
fBC
θ (β), which is the maximum possible error.

Figure 4.11 displays the actual errors and error bounds relative to r(θ), i.e., ∆π(θ)/r(θ)

and ∆π
g (θ)/r(θ), respectively. Finally, Figure 4.12 shows the error bounds obtained using

Theorem 6 and (4.71). Clearly, these figures illustrate that the approximative solutions

are close to the optimum.

4.6 Summary and Conclusions

Duality between the MAC and the BC is an interesting concept in information theory and

refers to the possibility of expressing a certain performance criterion (such as capacity,
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SINR or MSE) for the BC in terms of a dual MAC and conversely. These relations are

not only interesting for themselves, both also from an algorithmic perspective in that they

often allow to efficiently solve difficult optimization problems for the BC via a detour over

the dual MAC.

In this chapter we investigated the existence of duality relations between the MAC and

the BC for two specific classes of channels, namely

• discrete memoryless channels and

• fading channels without channel state information at the transmitter.

Motivated by the existing duality relations, we defined the concept of weak BC-to-MAC

duality: A BC is weakly dual to a set of MACs if every weighted sum-rate maximizer

over the BC region is also a maximizer for one of the capacity regions of the MACs.

This notion of duality is more general than the existing duality definitions as it imposes

less restrictions on the shape of the dual MAC channel capacity regions. Yet, it is still

a useful definition, since any necessary condition for weak duality is also necessary for

“strong duality”—non-existence of weak duality implies non-existence of “strong duality”.

In addition, establishing weak duality can be used as a step to showing “strong duality”:

if weak duality can be shown to hold, it suffices to prove that the capacity regions of the

weakly dual channels are all contained in the BC capacity region.

Based on a boundary characterization for the 2-MAC, we gave a sufficient condition and

a necessary condition for a BC to be weakly dual to the class of 2-MACs. These conditions

were applied to the binary symmetric BC, showing that this channel is weakly dual to the

class of 2-MACs for a large set of parameter choices. Concerning future work in this area,

it would be interesting to investigate to what extent the (weak) duality found here can be

carried over to more general classes of channels.

For fading channels without CSI at the transmitter, there generally is a lack of duality:

we have demonstrated that the achievable SCSD region (conjectured to constitute the

capacity region) is different from the SIC region for the corresponding dual MAC if the

fading distribution for the weaker user is non-deterministic. Duality holds only in the

case of one-sided fading, where the fading distribution for the weaker user is deterministic.

However, we demonstrated by means of the problem of weighted sum-rate optimization

that the principle of solving problems for the BC by the construction of the dual MAC is

promising even in the case where no perfect duality is present. This raises the question for

future work whether similar principles can applied to more general channel models and or

different optimization problems.
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Channel Models

In recent years, approximate characterizations of capacity regions of multi-user systems

have gained more and more attention, with a well-known example being the characteri-

zation of the capacity region of the Gaussian interference channel to within one bit/s/Hz

in [ETW08]. One of the tools that arose in the context of capacity approximations and

which has been shown to be useful in many cases is the linear deterministic model (LDM),

also known in the literature as the ADT model or shift linear deterministic model, intro-

duced in [ADT07], [ADT11]. In the LDM, the effect of the channel is to erase a certain

number of ingoing bits, while superposition of signals is given by the modulo addition.

Even though this model is deterministic and deemphasizes the effect of receiver noise, it

is able to capture some important basic features of wireless systems, namely the superpo-

sition property and the broadcast property of electromagnetic wave propagation. Hence, in

multi-user systems where interference is one of the most important limiting factors on sys-

tem performance, the model can also be useful to devise effective coding and interference

mitigation techniques. There are many examples where a linear deterministic analysis can

be successfully carried over to coding schemes for the physical (Gaussian) models or be

used for approximative capacity or (generalized) degrees of freedom determination.

From a practical viewpoint, cellular systems are of great interest. Generally, a cellular

system consists of a set of base stations each communicating with a distinct set of (mobile)

users. Effective coding and interference mitigation schemes for such systems are still an

active area of research. Approximative approaches such as the LDM might help to gain

more insight into these problems. The work presented in this chapter takes a step into

this direction and investigates a cellular setup using the LDM. More precisely, we study

the LDM for a two-user multiple-access channel interfering with a point-to-point link. We

remark that this channel also serves as a basic model for device-to-device communication

underlaying an uplink transmission in a cell, where both the cellular network and the

device-to-device communication use the same resources and which has recently drawn in-

creasing attention [DRW+09]. We derive LDM capacity results under various interference

scenarios and give, for the Gaussian channel, lower bounds on the generalized degrees of
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freedom for rational link ratio parameters. Note that the cellular channel has also been

studied in [SW11], which derives the degrees of freedom of cellular (MIMO) systems in a

fading environment and gives interference alignment algorithms that achieve these degrees

of freedom under some conditions.

5.1 The Linear Deterministic Model

In the LDM, the channel is given by a deterministic mapping that operates on bit vectors

and mimics the effect the physical channel and interfering signals have on the binary

expansion of the transmitted symbols. More precisely, consider the basic example of a

real point-to-point AWGN (additive white Gaussian noise) channel with system equation

Y =
√
SNRX + Z, (5.1)

where the input signal X is subject to an average power constraint E[X2] ≤ 1, the noise

is Z ∼ N (0, 1) and SNR ≥ 0 represents the signal-to-noise ratio. Assuming X,Z ∈ [0, 1]

and writing the input symbol and the noise term in binary expansion as X =
∑∞

k=1 xk2
−k

and Z =
∑∞

k=1 zk2
−k with xk, zk ∈ F2, one can show that the channel is approximately

described by a deterministic channel that has bit vectors x,y ∈ F
q
2 with entries from the

binary finite field F2 as input and output symbols, respectively. The input and output

vectors are related as

y = Sq−nx, (5.2)

where q ≥ n, n = 1
2(⌈log(SNR)⌉)+ and

S =




0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0




∈ F
q×q
2 (5.3)

is the downshift matrix. The entries of these bit vectors are also referred to as bit levels:

the effect of the channel is to erase the q−n lowest bit levels that are, after passing through

the channel, below the noise level at the receiver, whereas the first n levels are received

unaltered.

Clearly, the capacity Cdet of the channel given by (5.2) is

Cdet = n =
1

2
(⌈log(SNR)⌉)+ bits/channel use. (5.4)
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Hence, the LDM approximates the capacity of the AWGN channel

CAWGN =
1

2
log(1 + SNR) bits/channel use (5.5)

to within 1
2 bits/channel use.

The model can easily be extended to more general network structures. Let the network

be given by a directed graph G = (V, E) with vertex set V and edge set E . For each edge

(i, j) ∈ E , a channel parameter nji is specified that determines the number of bits that

can be passed over that edge. As above, this number roughly corresponds to the channel

gain of the link in logarithmic scale. Let xi(t) ∈ F
q
2 be the signal transmitted by node

i ∈ V at (discrete) time t. Then the received signal yj(t) at node j ∈ V at time t is given

by the superposition

yj(t) =
∑

i:(i,j)∈E
Sq−njixi(t), (5.6)

where summation is in the finite field F2 and q = max
(i,j∈E)

nji is the reference vector length.

Moreover, a set M ⊆ {(s, d) : s, d ∈ V, s 6= d} of source-destination pairs for the mes-

sages is specified with corresponding messagesWsd for (s, d) ∈ M. The size of the message

set for message Wsd is denoted by wsd, and each message Wsd can be represented by a bit

vector msd ∈ F
⌈log(wsd)⌉
2 . The notion of codes and transmission rates are defined in the

usual way [CT06]: during each coding period of length N ≥ 1, the transmitted symbol at

the node j at time m is a function f
(m)
j of the symbols received during the past m time

instances and the source messages mjd with (j, d) ∈ M originating from node j. Stacking

all the input vectors, the encoding function can be assumed to also operate on bit vectors,

and the transmit symbol xj(m) of node j at time m ∈ {0, . . . , N − 1} is given by

xj(m) = f
(m)
j

(
[(yj(t))

m
t=0; (mjd)d:(j,d)∈M]

)
. (5.7)

Similarly, decoding is performed for each message Wsd at the corresponding destination

node d ∈ V by a decoding function gsd, which takes all the symbols previously received at

node d in the current transmission period as input and outputs the estimate

Ŵsd = gsd

(
(yd(t))

N−1
t=0

)
(5.8)

of the message Wsd. The transmission rate corresponding to the message Wsd is Rsd =
log(wsd)

N . Since the channel is deterministic, it suffices to use a zero error probability cri-

terion (also see e.g. [AK11]): the rates rds, (s, d) ∈ M are achievable if there exists a

period length N , encoding functions f
(m)
j and decoding functions gsd such that for all

(s, d) ∈ M it holds that Wsd = Ŵsd and rds ≤ Rsd. Again, the capacity region is defined
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Figure 5.1: Illustration of the received signals (bit vectors) y1 and y2 for the linear deter-
ministic two-user interference channel. The bars represent the bit vectors as
seen at the two receivers; the zero parts due to the channel shifts are not dis-
played. A capacity-achieving coding scheme is of Han-Kobayashi type where
the transmit signals are split into private and common information parts.

as the closure of the set of achievable rate vectors, taken over all possible encoding and

decoding functions. We say that the rates rds are achieved by linear coding if the encod-

ing functions f
(m)
j and the decoding functions gsd are linear, i.e., f

(m)
j (x) = A(m,j)x and

gsd(x) = B(s,d)x for matrices A(m,j), B(s,d) of appropriate sizes. As a special case of linear

coding, we use the term orthogonal coding if the transmission is uncoded and the bit levels

are used in an orthogonal fashion in the sense that at each receiving node, the incoming

signals do not interfere on any bit level. More precisely, we require that N = 1 and for

all codewords, for each receiving node j (i.e., a node that is a message destination) and

for each bit level k, there is at most one node i with (i, j) ∈ E and for which the signal

component Sq−njixi(1) has a 1 at level k. Hence, each link (i, j) ∈ E has a dedicated set

of receiver bit levels at node j. Moreover, for each message (s, j) ∈ M, the corresponding

encoding function operates as the identity on the bit levels reserved for the link (s, j).

Clearly, this model is considerably simpler than the Gaussian system it mimics. For this

reason, it is often considerably easier to characterize capacity-optimal operating points for

LDMs. Interestingly, it is frequently the case that the schemes constructed for the LDM

can guide the development of techniques for the Gaussian case as well. As mentioned

above, even though the receiver noise is neglected here, the model captures some important

basic features of wireless systems, namely the superposition and the broadcast property

[ADT11] of electromagnetic wave propagation. As an example, consider the deterministic

two-user interference channel where there are two pairs of transmitters and receivers that
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mutually interfere: the LDM for this channel is given by

y1 = Sq−n11x1 ⊕ Sq−n12x2, (5.9)

y2 = Sq−n21x1 ⊕ Sq−n22x2.

Here, a natural communication scheme consists in splitting the transmit signal into two

parts, namely a common part and a private part: the common part is the portion of the

signal that is seen as interference at the non-intended receiver, while the private part is

only seen at the intended receiver (cf. Figure 5.1). It can be shown [BT08] that a capacity-

achieving scheme can always be constructed in this way such that each receiver is able

to decode both common messages and his own private message. This scheme essentially

implements the well-known Han-Kobayashi scheme [HK81], which for the Gaussian chan-

nel is close to optimal [ETW08]. In this example, a seemingly complex strategy for the

Gaussian channel naturally emerges from the analysis of the linear deterministic counter-

part [BT08]. What is more, a characterization of the capacity within a constant number of

bits (i.e., independent of the channel parameters) can be found for the Gaussian channel,

as is also shown in [BT08]. The capacity region of the interference channel in the LDM is

given by the set of points (R1, R2) ∈ R2
+ that satisfy

Ri ≤ nii, i = 1, 2 (5.10)

R1 +R2 ≤ (n11 − n12)
+ +max(n22, n12) (5.11)

R1 +R2 ≤ (n22 − n21)
+ +max(n11, n21) (5.12)

R1 +R2 ≤ max(n21, (n11 − n12)
+) + max(n12, (n22 − n21)

+) (5.13)

2R1 +R2 ≤ max(n11, n21) + (n11 − n12)
+ +max(n12, (n22 − n21)

+) (5.14)

R1 + 2R2 ≤ max(n22, n12) + (n22 − n21)
+ +max(n21, (n11 − n12)

+). (5.15)

5.1.1 Related Work

In the literature, there is a large amount of work concerning the LDM and examples for

which a linear deterministic analysis can be successfully carried over to coding schemes

for the Gaussian models or be used for approximative capacity or degrees of freedom

determination. Here, the optimal transmission schemes often also involve interference

alignment as introduced in [CJ08], where the transmitted signals are designed such that at

the receivers, the undesired part of the signal that is due to the different interfering signals

aligns in a certain subspace of the receive space. A considerable portion of this work deals

with relaying structures where a message is to be transported to its destination through a

network of several intermediate nodes. Actually, such a situation was the motivation for
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the introduction of the LDM in [ADT11]. This work studies relay networks in which there

is one message source and one or multiple destination nodes for this message, which is

relayed along the (acyclic) network. It is shown that the capacity is given by an extension

of the classical max-flow-min-cut theorem for wired networks [FF58]. More precisely, the

capacity equals the minimum of the rank of all transfer matrices GΩ,Ωc corresponding to

the possible node partitions (cuts) (Ω,Ωc) into two subsets with one containing the source

and the other containing the destination:

C = min
cuts (Ω,Ωc)

rank(GΩ,Ωc). (5.16)

Achievability of this rate is shown using random coding, i.e., by choosing the encod-

ing matrices at the relaying nodes randomly. In addition, a connection to the Gaussian

channel is made in [ADT11]: using the insight from the deterministic analysis, a new

relaying scheme—quantize-map-and-forward—for the Gaussian channel is proposed. The

performance of this scheme can be shown to be within a constant gap from the optimum,

that is, the gap is independent of the channel parameters. Other work in this direction

includes extensions to multiple sources (with a single destination) [BCM10], fading chan-

nels [JC09], nodes with half-duplex constraints [KHK09] and code construction algorithms

and connections to algebraic network coding [KEYM11], [YS10], [GIZ09].

Another line of work concerning the LDM considers different variations of relaying prob-

lems, such as bi-directional relaying or relaying with multiple source-destination pairs. The

reference [AST10] studies the linear deterministic bi-directional relaying channel where

two nodes A and B each have a message to be transmitted to the other receiver. A

relay node in between helps the communication. In this work, full-duplex operation is as-

sumed, i.e., all nodes can transmit and receive at the same time. In [AST10], the capacity

for the LDM is derived and used to provide a relaying scheme for the Gaussian channel

that is within at most 3 bits from the optimum, regardless of the channel gains. An ex-

tension of this scenario to the case of two communicating pair and a single full-duplex

relay is carried out in [HSKA09] and [AKSH09]. A related system model is investigated

in [MDFT08] [MTD09], [SMT10]. Here, there is a two-hop chain of interference channels,

i.e., there are two communicating transmitter-receiver pairs and two relay nodes. Again,

the deterministic capacity and constant-gap approximations for the Gaussian case are de-

rived for some specific configurations of the channel gains. Apart from relaying systems,

the deterministic model has been successfully applied to a multitude of communication

problems and network structures. An interesting direction of research are studies of the

impact of cooperation among nodes [PV11b], [PV11a], [WT11a], and [WT11b]. These

works will be elaborated on below in the context of duality results. An (incomplete) list
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of references of work on some other network structures includes the 3- user interference

channel [SB10], the K-user interference channel [CJS09], the X-channel [HCJ09], the Z

channel [CJV09], fading broadcast channels without channel state information at the trans-

mitter [TY09], many-to-one and one-to-many interference channels [BPT10], interference

channels with feedback [SAYS10], [VA10], cognitive radio channels [RTD10], and cyclically

symmetric deterministic interference channels [BEGVV09]. The work in [MM11] studies

the generalized degrees of freedom that are achieved by a greedy algorithm for LDM for

the symmetric K-user interference channel. Another interesting research direction has

been taken by the work in [SCAL10], which investigates cross-layer utility optimization

for wireless networks based on the LDM.

5.1.2 Limitations and Extensions

As a final remark concerning the background and related work, we briefly point to the

work in [AK09], which discusses some of the limitations of the LDM approach. Here, it

is demonstrated that the gap between the capacities of a Gaussian relay network and the

corresponding LDM can be unbounded in certain cases. In other words, the LDM is not

always a good approximation to the physical channel. One of the major reasons is that the

LDM fails to capture the phase of received signals. This also renders the application of the

LDM to MIMO systems infeasible. The discrete superposition model (DSM) is proposed

in [AK09] as an alternative deterministic approximation approach. An interesting property

of the DSM is shown in [AK11] for relay networks with a single source-destination pair,

interference networks, multicast networks and the MIMO versions of these networks: any

code for the DSM can be lifted to a code for the corresponding Gaussian network such

that the difference between the rate in the Gaussian channel and in the DSM is at most

a constant number of bits. This constant depends only on the number of network nodes,

but not on the channel gains or SNR. Moreover, the capacities of the Gaussian network

and the DSM are within a constant of each other.

It is worth mentioning that while the discrete superposition model has better approxima-

tion properties as compared to the LDM, this comes with the price of a higher complexity:

finding the capacity of discrete superposition networks is much more difficult than for the

LDM—this is even true for the basic example of the MAC [SS11].

5.2 A Cellular System: MAC and Point-to-Point Link

We now turn to the core subject of this chapter: the system we study here represents a

basic version of the uplink of cellular system and consists of three transmitters (mobile

users) Tx1, Tx2 and Tx3 and two receivers (base stations) Rx1, Rx2 (cf. Figure 5.2).
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Figure 5.2: The system model: a MAC interfering with a point-to-point link.

The transmitters Tx1, Tx2 (in cell 1) communicate with the base station Rx1, mutually

interfering with the cell 2 user Tx3 which is transmitting to the base station Rx2. In other

words, the system consists of a MAC interfering with a point-to-point link.

The system is modeled using the LDM [ADT11] as described in the previous section.

The input symbol at transmitter Txi is given by a bit vector xi ∈ F
q
2 and the output bit

vectors yj at Rxj are deterministic functions of the inputs: the input-output equations of

the system are given by

y1 = Sq−n11x1 ⊕ Sq−n12x2 ⊕ Sq−n13x3, (5.17)

y2 = Sq−n21x1 ⊕ Sq−n22x2 ⊕ Sq−n23x3.

Again, q is chosen arbitrarily such that q ≥ maxj,i{nji}, S ∈ F
q×q
2 is the downshift matrix

given by (5.3) and nji determines the number of bits that can be passed over the link

between Txi and Rxj .

There are three messages W11,W21 andW32 to be transmitted in the system, whereWij

denotes the message from transmitter Txi to the intended receiver Rxj. The definitions

of (block) codes, achievable rates and the capacity region are as given above in Section

5.1. In what follows, the transmission rate corresponding to message W11 is represented

by R1, the rate corresponding to W21 by R2 and the rate for W32 by R3.

In the following, we assume without loss of generality that n11 ≥ n12. Moreover, we

write n1 := n11, n2 := n12, n3 := n23, nD := n13 and ∆ := n1 − n2. Also, we may choose

q = max{n1, n3}. Furthermore, we restrict ourselves to the case n21 = n22 =: nM , to which

we refer to as symmetric MAC interference. Note that this property holds approximately
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Figure 5.3: Illustration of the split of the system in terms of the bit vectors as seen at the
receivers.

if the distance between the two cells is comparatively large. We will refer to the channel

defined above as the MAC-P2P.

5.2.1 The Weak Interference Case

We start with the case of limited interference strength and assume the weak interference

condition, which requires the sum of the two interference strength values not to be greater

than the smallest direct link strength, i.e.,

nD + nM ≤ min {n2, n3} . (5.18)

The MAC-P2P that satisfies this property is called W-MAC-P2P in the following.

An Achievable Region

We now derive an achievable rate region for the case of weak interference. For this, we split

the system into two subsystems and derive achievable regions for each of them, denoted

as R(1)
ach and R(2)

ach, respectively. The sum of these two regions then results in an achievable

region Rach for the overall system. We begin by analyzing each of the two subsystems and

the corresponding achievable rate regions. The first system is given by the equations

y
(1)
1 = Sq(1)−n

(1)
1 x

(1)
1 ⊕ Sq(1)−n

(1)
2 x

(1)
2 ⊕ Sq(1)−nDx

(1)
3 , (5.19)

y
(1)
2 = Sq(1)−n

(1)
3 x

(1)
3 ,
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where n
(1)
1 = n

(1)
2 = n2 − nM , n

(1)
3 = n3 − nM and q(1) = max{n(1)1 , n

(1)
3 }. The second

system is defined by

y
(2)
1 = Sq(2)−n

(2)
1 x

(2)
1 ⊕ Sq(2)−n

(2)
2 x

(2)
2 , (5.20)

y
(2)
2 = Sq(2)−nMx

(2)
1 ⊕ Sq(2)−nMx

(2)
2 ⊕ Sq(2)−n

(2)
3 x

(2)
3 ,

with q(2) = n
(2)
1 = nM +∆, n

(2)
2 = nM and n

(2)
3 = nM . Note that this split is possible due

to the weak interference condition nD + nM ≤ min {n2, n3}: roughly speaking, it ensures

that, at each receiver, there is no overlap of the private signal part with the common

part of the interfering transmitter(s) in the other cell. The corresponding transmitters

and receivers are denoted as Tx
(s)
i and Rx

(s)
i in the subsystem s ∈ {1, 2}. Figure 5.3 and

Figure 5.4 illustrate the split of the system.

We define R(1)
ach as the set of points

(
R

(1)
1 , R

(1)
2 , R

(1)
3

)
satisfying

R
(1)
3 ≤ n

(1)
3 (5.21)

R
(1)
1 +R

(1)
2 ≤ n

(1)
1 (5.22)

R
(1)
1 +R

(1)
2 +R

(1)
3 ≤ n2 + n3 − nD − 2nM . (5.23)

Similarly, R(2)
ach is defined by the set of equations

R
(2)
1 +R

(2)
2 ≤ n

(2)
1 (5.24)

R
(2)
1 +R

(2)
3 ≤ n

(2)
1 (5.25)

R
(2)
2 +R

(2)
3 ≤ nM (5.26)

R
(2)
1 +R

(2)
2 +R

(2)
3 ≤ nM + ϕ(nM ,∆). (5.27)

Here, the function ϕ for p, q ∈ N is defined as

ϕ(p, q) :=




q + l(p,q)q

2 , if l(p, q) is even

p− (l(p,q)−1)q
2 , if l(p, q) is odd.

(5.28)

where l(p, q) :=
⌊
p
q

⌋
for q > 0 and l(p, 0) = 0.

We now show that the rate regions R(1)
ach and R(2)

ach are achievable in the respective

subsystems. Both regions can be achieved by an orthogonal bit level assignment (and

possibly time-sharing). More precisely, for each transmitter, a set of bit levels to be used

for data transmission is specified such that at the intended receiver, there is no overlap

of these levels with levels used by any other transmitter (cf. the definition of orthogonal
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Figure 5.4: Resulting system diagrams after splitting the system: in system 1, only receiver

Rx
(2)
1 suffers from interference, while in system 2 only receiver Rx

(2)
2 is subject

to interference.

coding in Section 5.1). In this way, the achievability of the points in R(1)
ach follows directly

from the results on the interference channel: if we first consider the one-sided interference

channel obtained by removing (or silencing) transmitter Tx
(1)
2 , the points

(
R

(1)
Σ , R

(1)
3

)
with

R
(1)
3 ≤ n

(1)
3 , R

(1)
Σ ≤ n

(1)
1 , R

(1)
Σ +R

(1)
3 ≤ n2+n3−nD−2nM can be achieved in this one-sided

interference channel using orthogonal coding, which follows from the results in [BT08] [see

also (5.10)-(5.15)]. The same rates can be achieved for the interference channel obtained

by removing Tx
(1)
1 . Then, since the signals x

(1)
1 and x

(1)
2 are shifted by the same amount

at the first receiver, it is clear that in system 1, we can achieve R
(1)
1 and R

(2)
1 such that

R
(1)
1 +R

(1)
2 ≤ R

(1)
Σ , which implies the achievability of region R(1)

ach.

To show the achievability of R(2)
ach, let a ∈ FnM

2 specify the levels used for encoding

(in an orthogonal fashion) the message from transmitter Tx
(2)
3 to receiver Rx

(2)
2 , where

ai = 1 if level i is used and ai = 0 otherwise. Moreover, we define γ(a) = 1nM
− a,

γ1(a) = [γ(a);1∆] and γ2(a) = [0∆; γ(a)]. Then we can achieve R
(2)
3 = |a| and all rates(

R
(2)
1 , R

(2)
2

)
with

R
(2)
1 ≤ |γ1(a)| = nM +∆− |a| (5.29)

R
(2)
2 ≤ |γ2(a)| = nM − |a| (5.30)

R
(2)
1 +R

(2)
2 ≤ |γ1(a)|+ |γ2(a)| − ρ(|a|), (5.31)

where

ρ(x) := min
a∈FnM

2 :|a|=x
γ1(a)

T γ2(a). (5.32)

An assignment vector a solving (5.32) for a given x can be shown to be of the form

described in the following. Let l = nM div ∆ and Q = nM mod ∆, i.e., nM = l∆+Q. We
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Figure 5.5: Example for optimal bit level assignment: the MAC interference aligns at

receiver Rx
(2)
2 .

subdivide a into l∆ subsequences (blocks) of length ∆ and one remainder block of length

Q. We distribute ones over a until x entries in a have been set to 1: we start with the

even-numbered blocks, followed by the remainder block. If l is even, we finally distribute

over the odd-numbered blocks. If l is odd, we also fill the odd-numbered blocks, but in

reversed (decreasing) order. To be precise, we define for the case that l is even

Aeven :=
(
01× l

2
; ek

)l/2
k=1

⊗ I∆, (5.33)

Aodd :=
(
ek;01× l

2

)l/2
k=1

⊗ I∆ (5.34)

and

Aeven :=

[(
0
1× (l−1)

2

; ek

)(l−1)/2

k=1
;01× l−1

2

]
⊗ I∆, (5.35)

Aodd := Ml∆

([(
ek;01× (l+1)

2

)(l−1)/2

k=1
; e l+1

2

]
⊗ I∆

)
(5.36)

for odd l. Here, ⊗ denotes the Kronecker product, ek the unit row vector of appropriate size

with 1 at position k and MN = (eN−k+1)
N
k=1 is the flip matrix. Then, defining the matrix

P := [Aeven|0l∆×Q|Aodd], we obtain an optimal assignment a by setting a = P[1x;0nM−x].

We remark that this assignment is not the unique optimal one. Furthermore, it can be

interpreted as interference alignment [CJ08] at the receiver Rx
(2)
2 : The bit levels are chosen

such that the interference caused by x
(2)
1 and x

(2)
2 (MAC interference) aligns at Rx

(2)
2 as

much as possible in the levels that are unused by x
(2)
3 . Figure 5.5 displays the optimal
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assignment for the case l = 6, Q = 0 and x = R
(2)
3 = 3∆. The rates achieved here for the

first two transmitters are R
(2)
1 = 4∆ and R

(2)
2 = 3∆. The optimal assignment described

above for the case l even results in the following form of the function ρ:

ρ(x) =





nM − 2x, if 0 ≤ x ≤ l∆
2

Q+ l∆
2 − x, if l∆

2 ≤ x ≤ l∆
2 +Q

0, if l∆
2 +Q ≤ x ≤ nM .

(5.37)

In the case that l is odd, we similarly obtain

ρ(x) =





nM − 2x, if 0 ≤ x ≤ Q+ ∆(l−1)
2

∆(l+1)
2 − x, if Q+ ∆(l−1)

2 ≤ x ≤ ∆(l+1)
2

0, if ∆(l+1)
2 ≤ x ≤ nM .

(5.38)

Substituting into (5.31), it is easy to verify that all points in R(2)
ach are achievable.

Finally, we obtain an achievable region Rach = R(1)
ach+R(2)

ach for the overall system. This

sum region can be computed in explicit form by employing the Fourier-Motzkin elimination

algorithm [Sch98]. The resulting region is stated in the following proposition:

Proposition 4. An achievable region Rach for the W-MAC-P2P is given by the set of

points (R1, R2, R3) ∈ R3 satisfying the constraints

R1 ≤ n1 (5.39)

R2 ≤ n2 (5.40)

R3 ≤ n3 (5.41)

R1 +R2 ≤ n1 (5.42)

R1 +R3 ≤ n1 + n3 − nD − nM (5.43)

R2 +R3 ≤ n2 + n3 − nD − nM (5.44)

R1 +R2 +R3 ≤ n2 + n3 − nD − nM + ϕ(nM ,∆) (5.45)

R1 +R2 + 2R3 ≤ n1 + 2n3 − nD − nM . (5.46)

Capacity Region

In what follows, we show that the achievable region Rach actually constitutes the capacity

region CMAC-P2P of the W-MAC-P2P. For the proof, we will need the following lemma:
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Lemma 6. For two independent random matrices A,B ∈ Fn+∆×m
2 with m,n,∆ ∈ N,m ≥

1, it holds that

H(A⊕ S∆B)−H(S∆A⊕ S∆B) ≤ mϕ(n,∆), (5.47)

H(A⊕ S∆B)− 2H(S∆A⊕ S∆B) ≤ m∆. (5.48)

Proof. In order to show (5.47), we let l = n div ∆, Q = n mod ∆ and introduce the

following labels for blocks of rows of the matrices A and B: A = [U; (Ak)
l+1
k=1],B =

[T; (Bk)
l+1
k=1], where U,T ∈ F

Q×m
2 and Ak,Bk ∈ F∆×m

2 . Then the shifted versions of A

and B are S∆A = [0∆×m;U; (Ak)
l
k=1] and S∆B = [0∆×m;T; (Bk)

l
k=1], respectively.

First consider the case that l is even. Then we have

H(A⊕ S∆B)−H(S∆A⊕ S∆B) (5.49)

= H
[
U;A1 ⊕ [0∆−Q×m;T]; (Ak+1 ⊕Bk)

l
k=1

]
−H

[
U⊕T; (Ak ⊕Bk)

l
k=1

]

≤ H
[
U;A1 ⊕ [0∆−Q×m;T]; (Ak+1 ⊕Bk)

l
k=1

]

−H
[
U⊕T; (Ak ⊕Bk)

l
k=1

∣∣∣T, (A2k−1)
l/2
k=1, (B2k)

l/2
k=1

]

= H
[
U;A1 ⊕ [0∆−Q×m;T]; (Ak+1 ⊕Bk)

l
k=1

]
−H

[
U; (A2k)

l/2
k=1; (B2k−1)

l/2
k=1

]

≤ m∆

(
1 +

l

2

)
+H

[
U; (A2k ⊕B2k−1)

l/2
k=1

]
−H

[
U; (A2k)

l/2
k=1; (B2k−1)

l/2
k=1

]

≤ m∆

(
1 +

l

2

)
= mϕ(n,∆).

where the last inequality is due to the independence of A and B.

For odd l, we can bound the expression as follows:

H(A⊕ S∆B)−H(S∆A⊕ S∆B) (5.50)

= H
[
U;A1 ⊕ [0∆−Q×m;T]; (Ak+1 ⊕Bk)

l
k=1

]

−H
[
U⊕T; (Ak ⊕Bk)

l
k=1

]

≤ H
[
U;A1 ⊕ [0∆−Q×m;T]; (Ak+1 ⊕Bk)

l
k=1

]

−H
[
U⊕T; (Ak ⊕Bk)

l
k=1

∣∣∣U, (A2k)
(l−1)/2
k=1 , (B2k−1)

(l+1)/2
k=1

]

= H
[
U;A1 ⊕ [0∆−Q×m;T]; (Ak+1 ⊕Bk)

l
k=1

]

−H
[
T; (A2k−1)

(l+1)/2
k=1 ; (B2k)

(l−1)/2
k=1

]
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≤ m
∆(l + 1)

2
+mQ+H

[
A1 ⊕ [0∆−Q×m;T]; (A2k+1 ⊕B2k)

(l−1)/2
k=1

]

−H
[
T; (A2k−1)

(l+1)/2
k=1 ; (B2k)

(l−1)/2
k=1

]

≤ m
∆(l + 1)

2
+mQ = mϕ(n,∆).

The bound (5.48) follows from

H(A⊕ S∆B)− 2H(S∆A⊕ S∆B) (5.51)

≤ H(A) +H(S∆B)− 2H(S∆A⊕ S∆B)

≤ m∆+H(S∆A) +H(S∆B)− 2H(S∆A⊕ S∆B)

= m∆+H(S∆A⊕ S∆B) +H(S∆A|S∆A⊕ S∆B)− 2H(S∆A⊕ S∆B)

= m∆+H(S∆A|S∆A⊕ S∆B)−H(S∆A⊕ S∆B)

= m∆+H(S∆A|S∆A⊕ S∆B)−H(S∆A) +H(S∆B|S∆A⊕ S∆B)−H(S∆B)

≤ m∆,

where we used H(A) +H(B) = H(A⊕B) +H(A|A⊕B).

We are now ready to prove the main result for the weak interference case:

Theorem 7. The capacity region CW-MAC-P2P of the W-MAC-P2P is given by Rach [de-

fined by (5.39)-(5.46)].

Proof. Consider the interference channel formed by Tx1, Tx3, Rx1 and Rx2 with corre-

sponding capacity region CIC1/3, the interference channel build from Tx2, Tx3, Rx1 and

Rx2 with capacity region CIC2/3 and the multiple-access channel consisting of Tx1, Tx2

and Rx1 with capacity region CMAC. Then, it is clear that if (R1, R2, R3) ∈ CW-MAC-P2P,

we must have (R1, R2) ∈ CMAC, (R1, R3) ∈ CIC1/3 and (R2, R3) ∈ CIC2/3. Evaluating the

corresponding capacity regions [BT08], this implies the bounds (5.39) - (5.44).

In order to prove (5.45), we apply Fano’s inequality: for each triple of achievable rates

(R1, R2, R3) ∈ CW-MAC-P2P, Fano’s inequality implies that there exists a sequence εN with

εN → 0 for N → ∞ and a sequence of joint factorized distributions on the input sequences

such that for all N ∈ N, N ≥ 1

R1 +R2 ≤
1

N
I(xN

1 ,x
N
2 ;yN

1 ) + εN , (5.52)

R3 ≤
1

N
I(xN

3 ;yN
2 ) + εN . (5.53)

We let β = n2−nD−nM , ǫ = n3−nM −nD, Tk = [0q−k×m;1k×m] and define the following

partial matrices of the components of the received signals (note that β, ǫ ≥ 0 from the
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weak interference condition):

x̂1 := Sq−nMxN
1 ,x

↑
1 := Sq−nM−∆xN

1 ,x
↓
1 := TnD+βx

N
1 , (5.54)

x̂2 := Sq−nMxN
2 ,x

↓
2 := TnD+βx

N
2 ,

x̂3 := Sq−nDxN
3 ,x

↑
3 := Sq−nD−ǫxN

3 ,x
↓
3 := TnM

xN
3 .

Then we have the chain of inequalities

(R1 +R2 +R3)N − εNN (5.55)

≤ I(xN
1 ,x

N
2 ;yN

1 ) + I(xN
3 ;yN

2 )

= H(yN
1 )−H(yN

1 |xN
1 ,x

N
2 ) +H(yN

2 )−H(yN
2 |xN

3 )

= H(yN
1 )−H(x̂3) +H(yN

2 )−H(x̂1 ⊕ x̂2)

≤ H(x↑
1 ⊕ x̂2) +H(x↓

1 ⊕ x↓
2 ⊕ x̂3)−H(x̂3)

+H(x↑
3) +H(x↓

3 ⊕ x̂1 ⊕ x̂2)−H(x̂1 ⊕ x̂2)

(a)
≤ H(x↑

1 ⊕ x̂2)−H(x̂1 ⊕ x̂2) +N(n2 + n3 − nM − nD)

(b)
≤ Nϕ(nM ,∆) +N(n2 + n3 − nM − nD),

where (a) follows from

H(x↓
3 ⊕ x̂1 ⊕ x̂2) ≤ NnM , (5.56)

H(x↓
1 ⊕ x↓

2 ⊕ x̂3) ≤ N(n2 − nM , (5.57)

H(x↑
3)−H(x̂3) ≤ N(n3 − nM − nD) (5.58)

and (b) is obtained by applying Lemma 6. A similar argument, using the second part of

Lemma 6, shows the bound (5.46).

As an example, Figure 5.6 shows the capacity region for n1 = 18, n2 = 16, n3 = 14,

nM = 6 and nD = 7.

5.2.2 Sum Capacity for Arbitrary Interference

We now relax the constraints on the interference strength and study the sum capacity of

the system. We retain the same assumptions and notation as above (without the weak

interference constraint). However, in order to keep the presentation clear and reduce the

number of cases to be distinguished, we make some further assumptions on the channel

gains: we let the direct link strength for the point-to-point link to be equal the strongest
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Figure 5.6: Capacity region of the W-MAC-P2P for channel parameters n1 = 18, n2 = 16,
n3 = 14, nM = 6 and nD = 7.

direct MAC link, i.e., n23 = n1 (recall that we assumed n1 ≥ n2). In addition, we assume

identical interference links ni := n21 = n22 = n13. We refer to this channel as the A-MAC-

P2P in what follows. We remark that these restrictions can easily be relaxed and the

techniques applied in the following extend to more general cases as well. To be specific,

the input-output equations of the A-MAC-P2P are given by

y1 = Sq−n1x1 ⊕ Sq−n2x2 ⊕ Sq−nix3, (5.59)

y2 = Sq−nix1 ⊕ Sq−nix2 ⊕ Sq−n1x3.

Again, we write ∆ = n1 − n2 for the direct link strength difference in the MAC. For

achievable rates R1, R2, R3, we denote the resulting sum rate as RΣ = R1 +R2 +R3.

The corresponding (real) Gaussian channel is defined by output symbols

Y1 = h1X1 + h2X2 + hiX3 + Z1, (5.60)

Y2 = hiX1 + hiX2 + h1X3 + Z2

with (constant) channel coefficients h1, h2, hi ∈ R+ satisfying h1 ≥ h2, input symbols Xi

subject to power constraints E[X2
i ] ≤ Pi and noise Zi ∼ N (0, 1). Note that a related

model with identical channel gains in the two-user cell (h1 = h2) is studied in [CS10].

This work derives a capacity outer bound which is achievable in some cases.
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For the weak interference case (which is characterized by the condition 2ni ≤ n2 here),

the capacity region for the deterministic model has been characterized in the previous

section, and from these results, it can be seen that the maximum sum rate is given by

RΣ ≤ n1 + n2 − 2ni + ϕ(ni,∆). (5.61)

We now derive outer bounds on the achievable sum rate for scenarios with arbitrarily

strong interference.

Outer Bounds on Sum Rate

Before stating the outer bounds, we introduce some definitions. Throughout the following,

we let α := ni

n1
, β := n2

n1
≤ 1, σ := 2ni − n1 and τ := 2ni − n2. Furthermore, recall that

for p, q ∈ R+, we defined l(p, q) =
⌊
p
q

⌋
for q > 0 and l(p, 0) = 0. Moreover, we define the

function ω : R+ × R+ → R as (note that 0 is considered an even number)

ω(p, q) :=




p− l(p,q)q

2 , if l(p, q) is even

(l(p,q)+1)q
2 , if l(p, q) is odd.

(5.62)

Recall that the function ϕ is defined in a similar manner in (5.28). Moreover, let α :=

min
(
1− β

2 ,
2
3

)
. Then, we have the following outer bound on the achievable sum rate:

Proposition 5. For α < β, the achievable sum rate for the A-MAC-P2P is bounded by

RΣ ≤





n1 + n2 − 2ni + ϕ(ni,∆), α ∈
[
0, 12
]

2ni + ω(n2 − ni,∆), α ∈
(
1
2 , α

)

2ni + ω(2n1 − 3ni,∆), α ∈
[
α, 23

)

min (2n1,max(n1, ni) + (n1 − ni)
+) , α ∈

[
2
3 ,∞

)
.

(5.63)

For α ≥ β, it holds that

RΣ ≤ min
[
max(n1, ni) + (n1 − ni)

+, 2 ·max(ni, (n1 − ni)
+)
]
. (5.64)

We remark that the bounds for α ≥ β and α < β,α ≥ 2
3 coincide with the sum capacity

for the interference channel formed by Tx1, Tx3 and Rx1, Rx2.

Proof. In order to prove the outer bounds on the sum rate, we again apply Fano’s in-

equality: for each triple of achievable rates (R1, R2, R3), Fano’s inequality implies that

there exists a sequence εN with εN → 0 for N → ∞ and a sequence of joint factorized
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Figure 5.7: Illustration of received signals and the signal parts used for upper bounding
the sum rate for the case α ∈

[
α, 23

)
(and α < β).

Figure 5.8: Illustration of received signals and the signal parts used for upper bounding
the sum rate for the case α ∈

(
1
2 , α

)
(and α < β).

distributions on the input sequences such that for all N ∈ N, N ≥ 1

R1 +R2 ≤
1

N
I(xN

1 ,x
N
2 ;yN

1 ) + εN , (5.65)

R3 ≤
1

N
I(xN

3 ;yN
2 ) + εN . (5.66)

The upper bound obtained in this way is bounded further in different ways for the different

channel gain regimes determined by α and β.

i) The case α < β: We start with the case α ≥ 2
3 . Here, the bound is obtained by
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letting a genie provide xN
1 and xN

2 to receiver Rx2, which results in

(R1 +R2 +R3)N − εNN (5.67)

≤ I(xN
1 ,x

N
2 ;yN

1 ) + I(xN
3 ;yN

2 ,x
N
1 ,x

N
2 )

= H(yN
1 ) +H(xN

3 )−H(yN
1 |xN

1 ,x
N
2 )

≤ Nmin
(
2n1,max(n1, ni) + (n1 − ni)

+
)
.

For α ∈
(
1
2 ,

2
3

)
, we write G1 := yN

1 [σ + 1 : σ + τ ], G2 := yN
2 [1 : ni], x̂3 := xN

3 [1 : ni],

xd
1 := xN

1 [σ + 1 : n1 − ni],x
d
2 := xN

2 [σ + 1 : n1 − ni], x
t
1 := xN

1 [1 : σ] and xt
2 := xN

2 [1 : σ]

(cf. Figure 5.8 and Figure 5.7). Then, we have

(R1 +R2 +R3)N − εNN (5.68)

≤ I(xN
1 ,x

N
2 ;yN

1 ,G1) + I(xN
3 ;yN

2 ,G2)

= H(G1) +H(yN
1 |G1)−H(yN

1 |G1,x
N
1 ,x

N
2 ) +H(G2)

−H(G2|xN
3 ) +H(yN

2 |G2)−H(yN
2 |G2,x

N
3 )

= H(G1) +H(yN
1 |G1)−H(x̂3) +H(G2)

−H(xt
1 ⊕ xt

2) +H(yN
2 |G2)−H(yN

2 |G2,x
N
3 )

≤ 2niN +H(G1)−H(xd
1 ⊕ xd

2),

where we used H(yN
1 |G1) ≤ N(σ + ni), H(yN

2 |G2) ≤ N(n1 − ni), H(G2) − H(x̂3) ≤
H(x̂3) +H(xt

1 ⊕ xt
2)−H(x̂3) = H(xt

1 ⊕ xt
2) and H(yN

2 |G2,x
N
3 ) ≥ H(xd

1 ⊕ xd
2). Now

H(G1)−H(xd
1 ⊕ xd

2) ≤




Nω(2n1 − 3ni,∆), if σ ≥ ∆

Nω(n2 − ni,∆), if σ < ∆,
(5.69)

which for σ ≥ ∆ follows from applying Lemma 7 given below. A slight modification of

Lemma 7 shows the other case. Note that σ < ∆ corresponds to α ∈
(
1
2 , α

)
and σ ≥ ∆ to

α ∈
[
α, 23

)
.

The bound for α ∈
[
0, 12
)
is proved by a similar argument, which we sketch only here:

G1 and G2 are taken as G1 := yN
1 [1 : n1−ni] and G2 := yN

2 [1 : ni], respectively and by an

appropriate adjustment of Lemma 7, the bound follows. We remark that for α ∈
[
0, β2

)
,

the outer bound also follows from the results for the weak interference case.

ii) The case α ≥ β: The bound RΣ ≤ 2·max(ni, (n1−ni)+) follows easily by providing

the genie information G1 := xN
1 [1 : min(n1, ni)] and G2 := xN

1 [1 : min(n1, ni)] to receiver

Rx1 and Rx2, respectively. The other bound RΣ ≤ min (2n1,max(n1, ni) + (n1 − ni)
+)

has already been shown above in (5.67).

114



5.2 A Cellular System: MAC and Point-to-Point Link

Lemma 7. Let A ∈ Fn×m
2 , B ∈ Fn+∆×m

2 be independent random matrices with m,n,∆ ∈
N,m, n ≥ 1 and B′ := B[1 : n],B′′ := B[∆ + 1 : n+∆]. Then, it holds that

H(A⊕B′)−H(A⊕B′′) ≤ mω(n,∆). (5.70)

Proof. We let l := n div ∆, Q := n mod ∆ and introduce the following labels for blocks

of rows of the matrices A,B′ and B′′: A = [(Ak)
l
k=1;QA],B′ = [(Bk)

l−1
k=0;Q

′
B],B

′′ =

[(Bk)
l
k=1;Q

′′
B], where QA,Q

′
B,Q

′′
B ∈ F

Q×m
2 and Ak,Bk ∈ F∆×m

2 . First consider the case

that l is even. Here, we have

H(A⊕B′)−H(A⊕B′′) (5.71)

≤ m∆+H
[
(Ak+1 ⊕Bk)

l−1
k=1;QA ⊕Q′

B

]
−H

[
(Ak ⊕Bk)

l
k=1;QA ⊕Q′′

B

]

≤ m∆+H
[
(Ak+1 ⊕Bk)

l−1
k=1;QA ⊕Q′

B

]
−H

[
(Ak ⊕Bk)

l
k=1

∣∣∣(A2k−1)
l/2
k=1, (B2k)

l/2
k=1

]

= m∆+H
[
(Ak+1 ⊕Bk)

l−1
k=1;QA ⊕Q′

B

]
−H

[
(A2k)

l/2
k=1; (B2k−1)

l/2
k=1

]

≤ m
l∆

2
+mQ+H

[
(A2k ⊕B2k−1)

l/2
k=1

]
−H

[
(A2k)

l/2
k=1; (B2k−1)

l/2
k=1

]

≤ m
l∆

2
+mQ = mω(n,∆),

where the last inequality is due to the independence ofA andB. A similar line of argument

can be applied for the case that l is odd.

Achievability

We now describe how the outer bounds given in Proposition 5 can be achieved. It turns out

that it suffices to restrict to linear coding over a single symbol period (cf. the definitions

in Section 5.1). For this, each transmitter Txi chooses a coding matrix Vi ∈ F
ki×q
2 and

transmits the signal Vixi, where xi ∈ Fki×1
2 represents the message. Let us write A := V1,

B := Sq−n2V2, C := Sq−niV3, D := Sq−niV1, E := Sq−niV2 and F := V3. Then the

following rate R1 is achievable:

R1 = dim (〈A〉+ 〈B〉+ 〈C〉)− dim (〈B〉 + 〈C〉) (5.72)

= rank([A B C])− rank([B C]). (5.73)

Similarly, we can achieve the rates

R2 = rank([A B C])− rank([A C]), (5.74)

R3 = rank([D E F])− rank([D E]). (5.75)
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Figure 5.9: Illustration of the code resulting from the coding matrices given in (5.76)
for n1 = 23, n2 = 21, ni = 13, achieving the outer bound RΣ = 30 (with
R1 = 13, R2 = 5, R3 = 12). Again, the bars represent the bit vectors as seen
at the two receivers and ai, bi and ci are the data bits for Tx1, Tx2 and Tx3,
respectively.

In the following, we sketch how to construct coding matrices Vi that achieve the outer

bounds. The construction of the coding matrices again depends on the channel parameters.

For the cases α ≥ β and α < β,α ≥ 2
3 , the maximum sum-rate can be achieved by

keeping transmitter Tx2 silent and applying the sum-rate optimal interference channel

code for the interference channel formed by Tx1, Tx3 and Rx1, Rx3. The results from

[BT08] show that in this way, the bounds can be achieved (by linear coding).

For α < β,α ∈ [0, β2 ], an optimal construction follows from the weak interference case,

and the extension to the case α < β,α ∈ (β2 ,
1
2 ] is straightforward. Here, the maximum

sum rate can be achieved by orthogonal coding, where for each transmitter, a set of bit

levels to be used for data transmission is specified such that at the intended receiver, there

is no overlap of these levels with levels used by any other transmitter. Recall that the

assignment can be interpreted as interference alignment: the bit levels are chosen such

that the interference caused by Tx1 and Tx2 aligns at Rx2 as much as possible in the

levels unused by Tx3.

For the remaining case α ∈
(
1
2 ,

2
3

)
, the maximum sum rate can not be obtained by

orthogonal coding; instead, coding across levels is necessary (as is for the interference

channel in a certain interference range [BT08]). However, interference alignment still
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plays a key role. To describe the construction, we let ρ := ni − σ− τ in what follows. For

the construction, three cases have to be distinguished: a) ρ < 0, b) ρ ≥ 0 and α ∈
(
1
2 , α

)

and c) ρ ≥ 0 and α ∈
[
α, 23

)
. We only consider case c) here in detail; the constructions

for a) and b) are similar. For n,∆ ∈ N, we let K∆
n := {k ∈ {1, . . . , n} : mod(k, 2∆) < ∆}

and for an element k ∈ K∆
n , i

∆
n (k) denotes the position of the element in the sequence of

increasingly ordered elements in K∆
n . Then, coding matrices achieving the outer bound

can be constructed as follows:

V1(k, k) = 1, 1 ≤ k ≤ ∆ (5.76)

V1(n1 − ni + k, k) = 1, 1 ≤ k ≤ ∆

V1(τ + k,∆+ i∆ρ (k)) = 1, k ∈ K∆
ρ

V1(ni +∆+ k,∆+ |K∆
ρ |+ k) = 1, 1 ≤ k ≤ n2 − ni

V2(k, k) = 1, 1 ≤ k ≤ σ

V2(n1 − ni + k, k) = 1, 1 ≤ k ≤ σ

V2(τ + k, σ + i∆ρ−∆(k)) = 1, k ∈ K∆
ρ−∆

V3(k, k) = 1, 1 ≤ k ≤ τ

V3(ni + k, τ + i∆ρ+∆(k)) = 1, k ∈ K∆
ρ+∆

V3(2(n1 − ni) + k, τ + |K∆
ρ+∆|+ k) = 1, 1 ≤ k ≤ σ.

An example for this coding scheme is given in Figure 5.9 for the A-MAC-P2P with

parameters n1 = 23, n2 = 21 and ni = 13. We summarize the achievability results in the

following theorem:

Theorem 8. The sum capacity of the A-MAC-P2P equals the sum rate bounds given in

Proposition 5.

5.2.3 Generalized Degrees of Freedom

In this section, we investigate the connection to the Gaussian channel given in (5.60). The

input-output equations can equivalently be written as

Y1 =
√
pX1 +

√
pbX2 +

√
paX3 + Z1, (5.77)

Y2 =
√
paX1 +

√
paX2 +

√
pX3 + Z2

with p, a, b ∈ R+, b ≤ 1, power constraints Pi = 1 and Gaussian noise Zi ∼ N (0, 1).

In this model, the parameter a ∈ R+ specifies the interference strength, relative to the

stronger direct link in the MAC. On the other hand, b ∈ [0, 1] determines the relation of
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the link strengths of the two direct links in the MAC. Then, the generalized degrees of

freedom [ETW08] are defined as

d(a, b) := lim sup
p→∞

CΣ(p, a, b)
1
2 log(p)

, (5.78)

where CΣ(p, a, b) is the sum capacity of the channel. This measure represents a high SNR

description of the system, where the channel gains are kept in constant relation (deter-

mined by a and b) in the dB scale, which allows a more detailed asymptotic description of

the system as opposed to the degrees of freedom characterization (also see e.g. [BT08]).

The technique given in [JV10], [CJS09] (and also applied in e.g. [HCJ09]) allows to

transfer an achievable scheme for the deterministic model to a coding scheme for the

Gaussian channel. The basic idea is to inscribe the code obtained for the LDM into a

Q-ary expansion of the transmit signals, asymptotically mimicking the behavior of the

deterministic channel. The information about the message is contained in the digits of the

transmitted symbols: generally, each symbol of a block code for the LDM is encoded into

a real number which represents the corresponding code symbol in the Gaussian channel.

Note that since the scheme presented above for the A-MAC-P2P operates on a single time

slot (i.e., block length one), the corresponding Gaussian codewords consisting of merely

one symbol (real number).

This code construction method can, in principle, also be applied for the channel at

hand. However, we restrict to rational parameters a, b ∈ Q here. We outline the code

construction and the achievability proof in the following. For this, we write a, b ∈ Q as

a =
sa
t
, b =

sb
t
. (5.79)

with sa, sb, t ∈ N. We assume a ≤ 1; for a > 1, the bound given in Proposition 6 follows

from the generalized degrees of freedom results [ETW08] for the interference channel

consisting of Tx1, Tx3 and Rx1, Rx2. We define a sequence of channels, each specified by

an integer k: we define

̺k := Q2kt (5.80)

for some (large) constant expansion base Q ∈ N. Then

√
̺ak√
̺k

= Qk(sa−t) and

√
̺bk√
̺k

= Qk(sb−t). (5.81)

We note that the technique given in [JV10] and [HCJ09] cannot be applied directly if a

or b are irrational numbers, i.e., if a ∈ R \Q or b ∈ R \Q. This is because in these cases,
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Figure 5.10: Achievable generalized degrees of freedom for a range of parameters a, b ∈ Q.

we have to operate with rational approximation sequences converging to a and b: ska
tk

→ a

and
skb
tk

→ b. Proving the convergence to a channel that asymptotically behaves as a LDM

using the techniques from [JV10] seems not to be possible immediately.

Now, it is clear that the coding scheme for the LDM described above can easily be

extended from operating on F2 to a greater field size FQ̃. Consider the (linear deterministic)

A-MAC-P2P specified by channel parameters n1 = kt, n2 = ksb and interference strength

ni = ksa. Then a coding scheme that achieves the sum capacity has transmit signals

xi ∈ Fkt
Q̃

for i ∈ {1, 2, 3}, with the lth bit level being referred to as xi(l) ∈ FQ̃. As

in [HCJ09], we choose Q̃ sufficiently small in order to avoid carry-overs form interfering

terms and form the actual (physical) transmit symbol Xi for transmitter Txi by inscribing

the LDM code in the Q-ary expansion of the signal:

Xi =
1√
̺k

kt−1∑

l=0

xi(l)Q
l =:

1√
̺k
X̃i. (5.82)

Again as in [HCJ09], each transmit signal Xi satisfies the power constraint E[X2
i ] ≤ 1,

and decoding at the receiver side is performed by reconstructing the Q-ary expansion of
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Figure 5.11: Achievable generalized degrees of freedom for b = 0.8 and a ∈ Q.

the received signal. The received signals Y1 and Y2 in the Gaussian channel are

Y1 = X̃1 +Qk(sb−t)X̃2 +Qk(sa−t)X̃3 + Z1, (5.83)

Y2 = Qk(sa−t)X̃1 +Qk(sa−t)X̃2 + X̃3 + Z2. (5.84)

In the asymptotic limit (for k → ∞), the effects of noise terms Z1, Z2 disappear, and the

effective asymptotic behavior of the channel is

Y1 = X̃1 +Qk(sb−t)X̃2 +Qk(sa−t)X̃3, (5.85)

Y2 = Qk(sa−t)X̃1 +Qk(sa−t)X̃2 + X̃3. (5.86)

This essentially implements the LDM model (on the bits of the Q-ary expansion of the

signals), in which we can achieve the sum rate

RLDM
Σ (kt, ksa, ksb) logQ Q̃ = kRLDM

Σ (t, sb, sb) logQ Q̃, (5.87)

where RLDM
Σ (n1, n2, ni) denotes the sum capacity of the A-MAC-P2P with parameters

n1, n2, ni and which is given in Theorem 8. In the Gaussian channel, we can achieve the

sum rate (using the same argument as in [HCJ09])

RΣ = kRLDM
Σ (t, sb, sa) logQ Q̃+ o(k), (5.88)
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implying the generalized degrees of freedom bound

d(a, b) ≥ lim sup
k→∞

kRLDM
Σ (t, sb, sa) logQ Q̃+ o(k)

1
2 logQ ̺k

(5.89)

= lim sup
k→∞

RLDM
Σ (t, sb, sa) logQ Q̃+ o(k)

t
(5.90)

=
1

t
RLDM

Σ (t, sb, sa) logQ Q̃. (5.91)

Considering that Q can be chosen arbitrarily large and plugging in the sum capacity

expression given by Theorem 8, one obtains the following lower bound on the generalized

degrees of freedom:

Proposition 6. Let a, b ∈ Q and b ≤ 1. For a < b, it holds that

d(a, b) ≥





1 + b− 2a+ ϕ(a, 1 − b), a ∈
[
0, 12
]

2a+ ω(b− a, 1− b), a ∈
(
1
2 , a
)

2a+ ω(2− 3a, 1 − b), a ∈
[
a, 23
)

min (2,max(1, a) + (1− a)+) , a ∈
[
2
3 ,∞

)
.

(5.92)

For a ≥ b,

d(a, b) ≥ min
(
max(1, a) + (1− a)+, 2max(a, (1 − a)+)

)
. (5.93)

Figure 5.10 displays the lower bound on d(a, b) in the range a ∈ [0, 0.7]∩Q, b ∈ [0.8, 1]∩Q.

For b = 0.8, the achievable generalized degrees of freedom are shown in Figure 5.11 for

different a values, together with the generalized degrees of freedom for the interference

channel consisting of only Tx1, Tx3 and Rx1, Rx2. Note that the latter one represents the

well-known W curve [ETW08] of the generalized degrees of freedom for the (symmetric)

interference channel. For a < 2
3 , the channel gain difference in the two-user cell can be

exploited for interference alignment, pushing the achievable generalized degrees of freedom

higher than the W curve, whereas for a ≥ 2
3 , the lower bound can be achieved by coding

only for the interference channel consisting of Tx1, Tx3 and Rx1, Rx2. Note that, for

a fixed b and for a < 2
3 , the achievable generalized degrees of freedom have a “zigzag”

shape, which is due to the definitions of the functions ϕ and ω, respectively. From these

definitions, and as can also be observed in Figure 5.10, the period of the “zigzag” oscillation

becomes smaller when b approaches 1. This reflects the fact that the closer b is to 1, the

“finer” is the resolution of the ∆-blocks used to implement interference alignment in the

LDM.
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5.3 Duality for Linear Deterministic Channels

In this section, we return to the topic of Chapter 4, namely duality relations between

different network structures. There are some interesting aspects to be considered in the

context of the LDM: first of all, a quite general duality holds for arbitrary networks under

the restriction to linear coding. Secondly, there are duality results for some specific LDM

networks. Finally, the LDM can also be applied in order to obtain approximate duality

results for Gaussian channels; here, duality holds to within a constant number of bits.

The work in [RPV09] studies general networks defined by a graph G = (V, E) with

vertex set V and edge set E . As a generalization of the LDM network as in (5.6), each

link (i, j) ∈ E is specified by a channel gain matrix Gji ∈ F
q×q
p , and the received signal at

(discrete) time t at node j is given by

yj(t) =
∑

i:(i,j)∈E
Gjixi(t) (5.94)

for transmit signals xi(t). Encoding, decoding and achievable rates are defined as in

Section 5.1 for the LDM. The dual or reciprocal network is obtained as G′ = (V, E ′) by

reversing the link and message directions, i.e., (i, j) ∈ E ′ :⇔ (j, i) ∈ E and (i, j) ∈ M′ :⇔
(j, i) ∈ M (cf. Section 5.1). Moreover, the channel gain matrix G′

ij for link (i, j) ∈ E ′ is

given by G′
ji = GT

ij . Then, duality holds in the following sense [RPV09]:

Any rate vector that is achievable by linear coding is also achievable by linear coding in

the corresponding dual network.

Note that setting Gji = Sq−nji , one obtains the LDM (5.6). The dual network as defined

above operates with upshift matrices instead of downshift matrices. However, this is just

a technical issue since the direction of the shift is unimportant—duality also holds with

respect to the regular (downshift) dual model [RPV09].

The duality described above is shown under the restriction to linear coding strategies.

In the literature, duality results for the LDM with respect to the capacity region have also

been reported for some specific networks. We briefly discuss some of these results here.

The first set of duality results of interest here is concerned with cooperation in inter-

ference channels. These models extend the interference channel as described above (cf.

Section 5.1) and allow the receiving nodes or the transmitting node to cooperate. These

channels are motivated by the current research for cooperating base stations. The work

in [WT11a] and [WT11b] deals with the case of out-of-band cooperation, where a dedi-

cated cooperation channel of finite capacity is reserved for information exchange between

the transmitters and the receivers, respectively. For transmitter cooperation, a so-called

conference over the cooperation link is carried out between the two source nodes during
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5.3 Duality for Linear Deterministic Channels

Figure 5.12: The dual channel for the MAC-P2P: a BC interfering with a point-to-point
link.

the encoding process. For receiver cooperation, the destination nodes similarly exchange

cooperative messages prior to decoding. The network for transmitter and receiver coop-

eration are duals of each other in the sense as described above. Concerning duality, the

work in [WT11a] and [WT11b] shows that the LDM capacity regions for transmitter co-

operation and receiver cooperation are identical. Moreover, it provides a characterization

of the capacity region for the corresponding Gaussian channel within a constant number

of bits, also both for transmit and receive cooperation. Interestingly, a constant-bit dual-

ity approximation is shown as well: independent of the channel parameters, the capacity

region of the Gaussian channels for transmitter cooperation and receiver cooperation are

within a constant number of bits. Closely related to this work are the results in [PV11b]

and [PV11a], which also study cooperation in the interference channel. The model differs

from the one previously described in that the cooperation is performed in an in-band fash-

ion, i.e., the cooperative links share the same band as the actual data transmission and

hence interfere with the signals used for data communication. Besides providing constant-

gap approximations for the sum capacity in the Gaussian channel, a duality result is given

as well: the sum capacity for the LDM is the same both for transmitter and receiver coop-

eration. A different model is considered in [BPT10], namely the many-to-one interference

channel. This is a K-user interference channel where only one receiver suffers from inter-

ference. The capacity region for the LDM is derived, along with a constant-gap capacity

approximation for the Gaussian channel. The dual setup is the one-to-many interference

channel, in which only one transmitter causes interference at other nodes. Again, duality
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5 Capacity Results for Approximative Channel Models

holds for the LDM: the capacity for the many-to-one and the one-to-many interference

channel are identical.

In the light of all these dualities known for the LDM, it is of interest to study the dual

setup corresponding to the MAC-P2P channel as investigated in the previous section.

The dual channel is given by a BC and a point-to-point link (cf. Figure 5.12) and has

input-output equations

y1 = Sq−n11x1 ⊕ Sq−n12x2, (5.95)

y2 = Sq−n21x1 ⊕ Sq−n22x2,

y3 = Sq−n31x1 ⊕ Sq−n32x2.

In the previous section, we have derived the capacity region for the case of weak interference

(i.e., the W-MAC-P2P) and the sum capacity for arbitrary interference (for the A-MAC-

P2P). These capacities can all be achieved by linear coding—in some cases, it even suffices

to use orthogonal coding. Under the corresponding restrictions, we refer to the dual

channels as the W-BC-P2P and the A-BC-P2P, respectively. Applying the above duality

result for linear coding [RPV09], one immediately obtains the following achievable rates

for the dual channels:

Corollary 3. An achievable region for the W-BC-P2P is given by the set of points

(R1, R2, R3) ∈ R3 satisfying the constraints

Ri ≤ ni, i = 1, 2, 3 (5.96)

R1 +R2 ≤ n1

R1 +R3 ≤ n1 + n3 − nD − nM

R2 +R3 ≤ n2 + n3 − nD − nM

R1 +R2 +R3 ≤ n2 + n3 − nD − nM + ϕ(nM ,∆)

R1 +R2 + 2R3 ≤ n1 + 2n3 − nD − nM .

Corollary 4. The following sum rates are achievable for the A-BC-P2P:

For α < β,

RΣ =





n1 + n2 − 2ni + ϕ(ni,∆), α ∈
[
0, 12
]

2ni + ω(n2 − ni,∆), α ∈
(
1
2 , α

)

2ni + ω(2n1 − 3ni,∆), α ∈
[
α, 23

)

min (2n1,max(n1, ni) + (n1 − ni)
+) , α ∈

[
2
3 ,∞

)
.

(5.97)
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For α ≥ β,

RΣ = min
[
max(n1, ni) + (n1 − ni)

+, 2 ·max(ni, (n1 − ni)
+)
]
. (5.98)

We conjecture that these achievable rates cannot be exceeded, i.e., actually give the

capacities. However, the proof for this statement is still open. The difficulty is in finding

appropriate modifications to Lemma 6 and Lemma 7 for bounding the rates in the dual

setup.

5.4 Summary and Conclusions

In view of the tremendous difficulties involved with an exact information-theoretic analysis

of multi-user systems, there is a recent trend to an approximative characterization of

channel capacity. One of the research avenues that arose in this context is the linear

deterministic model introduced in [ADT11], here briefly referred to as LDM. This approach

has its origin in looking at the alternation of the individual bits in the binary expansion

of the transmit symbols when passing over an AWGN channel. The resulting simplified

model describes the channel as a deterministic bit pipe, where a certain number of bits

are passed over the channel unchanged, whereas the other bits are erased completely. The

number of bits that are transferred over the channel roughly corresponds to one half of

the signal-to-noise ratio in logarithmic scale. Moreover, superposition of signals received

is modeled by modulo-2 addition.

In this chapter, we first gave a brief introduction and review of the LDM and then

analyzed a specific channel using the LDM: we discussed the LDM for the MAC-P2P, i.e.,

the two-user multiple access channel mutually interfering with a point-to-point link. This

constitutes a basic model for a cellular channel: there are two users (in cell 1) transmitting

to a receiver (base station 1), mutually interfering with a third transmitter (in cell 2)

communicating with a second base station (base station 2). Note that this setup can also

be regarded as a model for the situation of device-to-device communication underlaying a

cell.

We first studied the case of symmetric weak interference where the interference links

from cell 1 user to the cell 2 base station are identical and the sum of the interference

gains are less or equal then the smallest direct link (the W-MAC-P2P). We derived the

capacity region and the corresponding transmission scheme. Here, all the points in the

capacity region can be achieved by orthogonal coding. Even though the system resembles

the interference channel, the presence of the second link in cell 1 offers additional potential

for aligning the interference caused by the two users at the receiver in the second cell. For
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this, the transmitted signals in cell 1 are chosen such that the interference at the second

receiver aligns on the part of the signal that is unused by the transmitter in cell 2 as much

as possible.

Furthermore, for the case of unrestricted interference and under certain symmetry as-

sumptions on the channel gains (the A-MAC-P2P), we derived the sum capacity and the

corresponding transmission schemes. These schemes also make use of interference align-

ment and linear coding, possibly across bit levels. While for a large parameter range,

the sum capacity is identical to the sum capacity of the interference channel obtained by

silencing the weaker user in the MAC, for a certain parameter range, the channel gain

difference in the MAC allows to get a higher sum rate using interference alignment. From

these results, a lower bound on the generalized degrees of freedom for the Gaussian chan-

nel was given for rational link ratio parameters a and b, increasing the so-called W curve

for the interference channel in a certain interference range.

Although we made some restrictions on the channel models here, we believe that the

achievability and converse arguments presented here give valuable insights for the con-

sideration of less restricted systems. Future work should study extensions to the more

general case with additional users. Another interesting direction for future investigations

is to further explore the connections to the Gaussian equivalent of the channel, specifi-

cally concerning outer bounds on the generalized degrees of freedom of the system and

approximate capacity characterizations.

Finally, it is still an interesting open issue if duality to the dual setup, i.e., the case of

a BC interfering with a point-to-point link, holds. Since the coding schemes constructed

for the W-MAC-P2P and the A-MAC-P2P are linear, existing duality results directly

imply achievable rates for the corresponding dual channels. However, deriving the outer

bounds required to show the duality conjecture is an interesting open task for future work.

Related to this, it would be interesting to investigate if a constant-bit duality result (as it

holds for the cooperating interference channel [WT11a], [WT11b]) can be derived for the

corresponding Gaussian channels.
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[GPRSA08] X. Gelabert, J. Pérez-Romero, O. Sallent, and R. Agust́ı. A marko-

vian approach to radio access technology selection in heterogeneous mul-

tiaccess/multiservice wireless networks. IEEE Trans. Mobile Computing,

7(10):1257–1270, Oct. 2008.

[HCJ09] C. Huang, V. R. Cadambe, and S. A. Jafar. Interference alignment and the

generalized degrees of freedom of the x channel. In Proc. IEEE International

Symposium on Information Theory (ISIT), pages 1929–1933, Seoul, Korea,

June/July 2009.

[HF08] A. Hasib and A. O. Fapojuwo. Analysis of common radio resource man-

agement scheme for end-to-end qos support in multiservice heterogeneous

wireless networks. IEEE Trans. Vehicular Technology, 57(4):2426–2439, July

2008.

[HJ08] R. Hunger and M. Joham. A general rate duality of the mimo multiple access

channel and the mimo broadcast channel. In Proc. IEEE Global Telecommu-

nications Conference (GLOBECOM), New Orleans, LA, USA, Dec. 2008.

[HJU09] R. Hunger, M. Joham, and W. Utschick. On the mse-duality of the broadcast

channel and the multiple access channel. IEEE Trans. Signal Processing,

57(2):698–713, Feb. 2009.

[HK81] T. S. Han and K. Kobayashi. A new achievable rate region for the interference

channel. IEEE Trans. Information Theory, 27(1):49–60, Jan. 1981.

[HSKA09] B. Hassibi, A. Sezgin, M. A. Khajehnejad, and A. S. Avestimehr. Approxi-

mate capacity region of the two-pair bidirectional gaussian relay network. In

Proc. IEEE Int. Symp. Information Theory (ISIT), Seoul, Korea, June/July

2009.

[JC09] S. Jeon and S. Chung. Sum capacity of multi-source linear finite-field relay

networks with fading. In Proc. IEEE Int. Symp. Information Theory (ISIT),

Seoul, Korea, June/July 2009.

133



Bibliography

[JGH07] S. A. Jafar, K. S. Gomadam, and C. Huang. IEEE Trans. Information

Theory, 53(10):3350–3370, Oct. 2007.

[Jor06] E. A. Jorswieck. Lack of duality between siso gaussian mac and bc with

statistical csit. Electronics Letters, 42(25):1466–1468, July 2006.

[JV10] S. A. Jafar and S. Vishwanath. Generalized degrees of freedom of the sym-

metric gaussian k user interference channel. IEEE Trans. Information The-

ory, 56(7):3297–3303, July 2010.

[JVG03] N. Jindal, S. Vishwanath, and A. Goldsmith. On the duality between general

multiple-access/broadcast channels. In Proc. IEEE Int. Symp. Information

Theory (ISIT), pages 313–313, Yokohama, Japan, June/July 2003.

[JVG04] N. Jindal, S. Vishmanath, and A. Goldsmith. On the duality of gaussian

multiple-access and broadcast channels. IEEE Trans. Information Theory,

50(5):768–783, 2004.

[JVU10] M. Joham, M. Vonbun, and W. Utschick. Mimo bc/mac mse duality with

imperfect transmitter and perfect receiver csi. In Proc. IEEE Intern. Work-

shop on Signal Processing Advances in Wireless Communications (SPAWC),

Marrakech, Morocco, June 2010.

[KEYM11] M. Kim, E. Erez, E. M. Yeh, and M. Médard. Deterministic network model

revisited: An algebraic network coding approach. arXiv:1103.0999v1 [cs.IT],

2011.

[KHK09] A. Keshavarz-Haddad and M. A. Khojastepour. On capacity of determin-

istic wireless networks under node half-duplexity constraint. In Proc. 47th

Allerton Conf. on Communication, Control, and Computing, Monticello, IL,

USA, Sep./Oct. 2009.

[KM77] J. Körner and K. Marton. The comparison of two noisy channels. Topics

in Information Theory (Coll. Math. Soc. J. Bolyai No. 16), pages 411–423,

1977.

[Koo96] G. Koole. Dynamic programming tools for control of telecommunication

systems. In Proc. 35th IEEE Conference on Decision and Control, Kobe,

Japan, 1996.

[Koo06] G. Koole. Monotonicity in markov reward and decision chains: Theory and

applications. Foundation and Trends in Stochastic Systems, 1(1):1–76, 2006.

134



Bibliography

[KSB+08] I. Karla, R. Sigle, I. Blau, U. Bergemann, and C. Reinke. Mrrm simula-

tor specification, version 2.8. Technical report, ALCATEL Research and

Innovation (R&I), 2008.

[KTA06] A. M. Khachan, A. J. Tenenbaum, and R. S. Adve. Linear processing for the

downlink in multiuser mimo systems with multiple data streams. In Proc.

IEEE International Conference on Communications (ICC), volume 9, pages

4113–4118, Istanbul, Turkey, June 2006.

[Lia72] H. Liao. Multiple access channels. PhD thesis, Department of Electrical

Engineering, University of Hawaii, Honolulu, 1972.

[Mar79] K. Marton. A coding theorem for the discrete memoryless broadcast channel.

IEEE Trans. Information Theory, 25(3):306–311, May 1979.

[MDFT08] S. Mohajer, S. Diggavi, C. Fragouli, and D. Tse. Transmission techniques for

relay-interference networks. In Proc. 46th Allerton Conf. on Communication,

Control, and Computing, pages 467–474, Monticello, IL, USA, Sep. 2008.

[MHJU06] A. Mezghani, R. Hunger, M. Joham, and W. Utschick. Iterative thp

transceiver optimization for multi-user mimo systems based on weighted

sum-mse minimization. In Proc. IEEE Intern. Workshop on Signal Pro-

cessing Advances in Wireless Communications (SPAWC), Cannes, France,

July 2006.

[MM11] H. Maier and R. Mathar. Max-min greedy interference alignment on lin-

ear deterministic k-user interference channels. In Proc. IEEE International

Conference on Communications (ICC), Kyoto, Japan, June 2011.

[MO67] B. Meister and W. Oetti. On the capacity of a discrete, constant channel.

Information and Control, 11:341–351, 1967.

[MTD09] S. Mohajer, D. Tse, and S. Diggavi. Approximate capacity of a class of

gaussian relay-interference networks. In Proc. IEEE Int. Symp. Information

Theory (ISIT), Seoul, Korea, June/July 2009.

[Mur53] S. Muroga. On the capacity of a discrete channel i. J. Phys. Soc. Jap.,

8:484–494, 1953.

[NCH11] J. Nam, G. Caire, and J. Ha. Block triangularization: A new linear precoding

strategy for gaussian mimo bc. In Proc. IEEE Int. Symp. Information Theory

(ISIT), Saint Petersburg, Russia, Aug. 2011.

135



Bibliography

[Pin78] M. Pinsker. The capacity region of noiseless broadcast channels. Probl. Inf.

Transm., 14(2):97–102, 1978.
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