
Secrecy Included:
Confidentiality Enforcement

for Machine Code
vorgelegt von

Tobias Ferdinand Pfeffer, M.Sc.

an der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
- Dr.-Ing. -

Doktor der Ingenieurwissenschaften

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Markus Brill
Gutachterin: Prof. Dr. Sabine Glesner
Gutachter: Prof. Dr. Florian Tschorsch
Gutachter: Prof. Dr. Christian Hammer
Tag der wissenschaftlichen Aussprache: 19. Juli 2021

Berlin 2022

Abstract

Confidential software is an important requirement for the ongoing digitaliza-
tion. Yet, since confidentiality is a program-wide property, this requirement
is at odds with modern software development. In order to produce software
cheaply and quickly, existing software components from third-party manufac-
turers are regularly included in new products. Consequently, a method is
needed to ensure the confidentiality across third-party components, which are
usually shipped in compiled form.

In this thesis we present a new method that enforces confidentiality for
compiled programs. Our approach protects against leaks through data flow,
control flow, termination behavior, and timing of outputs. At the same time,
it achieves per-channel transparency, thereby preserving the functionality of
secure components. Our solution is the first practical application of the concept
of Secure Multi-Execution to machine code.

Secure Multi-Execution is an enforcement mechanism that achieves confi-
dentiality by design. The target program is executed multiple times, where
each copy has restricted access to input and output channels. Unfortunately,
this multi-execution comes with a significant performance overhead. Thus,
we propose two optimizations that significantly increase the efficiency of the
protection mechanism. Our principle is to avoid redundant calculations as
much as possible. On the one hand, we show how creation of multiplied exe-
cutions can be delayed through our dynamic instancing method. On the other
hand, we show how multiplied executions can be terminated early through our
bounding method.

In order not to reduce the security guarantees of Secure Multi-Execution
through our optimizations, we additionally present a new scheduling strategy
for the multiple executions. This strategy allows us to ensure independent
progress of executions, while maintaining external dependencies in their output
behavior. We also present our contributions to static analysis of binary code,
which serves as a basis for further research into the automatic determination
of suitable termination points for our optimizations.

We have successfully applied our method to the Linux operating system
and the widely used x86_x64 architecture. In our evaluation of benchmark
programs and real-world targets, we show that our system protects against
the above mentioned information leaks while changing the functionality of the
target program as little as possible. With our work we enable for the first time
the protected use of existing components and thus a fast and cost-effective
development of confidential programs.

Zusammenfassung

Vertrauliche Software ist eine wichtige Voraussetzung für die fortschreitende
Digitalisierung. Da Vertraulichkeit jedoch eine programmweite Eigenschaft ist,
steht diese Anforderung im Widerspruch zur modernen Softwareentwicklung.
Bestehende Softwarekomponenten von Drittherstellern werden regelmäßig in
neue Produkte integriert, um Software kostengünstig und schnell entwickeln
zu können. Folglich ist eine Methode erforderlich, um die Vertraulichkeit von
Komponenten von Drittherstellern, die in der Regel in kompilierter Form aus-
geliefert werden, zu gewährleisten.

In dieser Arbeit stellen wir eine neue Methode vor, die die Vertraulichkeit
für kompilierte Programme garantiert. Unser Ansatz schützt vor Informa-
tionsverlust durch Datenfluss, Kontrollfluss, Terminierungsverhalten und den
Zeitpunkten der Ausgaben. Gleichzeitig wird eine Transparenz für pro Kanal
erreicht, wodurch die Funktionalität der sicheren Komponenten erhalten bleibt.
Unsere Lösung ist die erste praktische Anwendung des Konzepts der Secure
Multi-Execution auf Maschinencode.

Secure Multi-Execution ist ein Enforcement Mechanismus, der Vertrau-
lichkeit per Konstruktion erreicht. Das Zielprogramm wird mehrfach ausge-
führt, wobei jede Kopie einen eingeschränkten Zugang zu den Ein- und Aus-
gabekanälen hat. Allerdings ist diese Mehrfachausführung mit einem erhe-
blichen Performance-Overhead verbunden. Daher präsentieren wir zwei Opti-
mierungen, die die Effizienz des Schutzmechanismus erheblich steigern. Unser
Prinzip ist es, redundante Berechnungen so weit wie möglich zu vermeiden.
Einerseits zeigen wir, wie die Erstellung von Mehrfachausführungen durch
unser dynamisches Instantiieren verzögert werden kann. Zum anderen zeigen
wir, wie multiplizierte Ausführungen durch unser Bounding vorzeitig beendet
werden können.

Um die Sicherheitsgarantien von Secure Multi-Execution durch unsere Op-
timierungen nicht zu verringern, stellen wir zusätzlich eine neue Ablaufpla-
nung für die Mehrfachausführungen vor. Diese Strategie ermöglicht es uns,
einen unabhängigen Fortschritt der Ausführungen zu gewährleisten und gle-
ichzeitig externe Abhängigkeiten in ihrem Ausgabeverhalten beizubehalten.
Wir stellen auch unsere Beiträge zur statischen Analyse des Binärcodes vor,
die als Grundlage für weitere Forschungen zur automatischen Bestimmung
geeigneter Endpunkte für unsere Optimierungen dient.

Wir haben unsere Methode erfolgreich auf das Linux-Betriebssystem und
die weit verbreitete x86_x64-Architektur angewandt. Bei der Auswertung von
Benchmarkprogrammen und echten Zielen zeigen wir, dass unser System gegen
die oben genannten Informationslecks schützt und gleichzeitig die Funktional-
ität des Zielprogramms so wenig wie möglich verändert. Mit unserer Arbeit
ermöglichen wir erstmals die geschützte Nutzung bestehender Komponenten
und damit eine schnelle und kostengünstige Entwicklung von vertraulichen
Programmen.

Danksagung

Diese Arbeit ist zu einem großen Teil während der COVID-19 Pandemie im
Home Office entstanden. Für diese Zeit gilt mein größter Dank meinen Kol-
legen Joachim Fellmuth und Dr. Verena Klös, die mir aus der Ferne mit Rat
und Tat zur Seite standen. Joachim Fellmuth gilt zusätzlich mein Dank für
die gemeinsame Arbeit in der Lehre zu einer Zeit, in der sich die Studierenden-
zahlen verdoppelten. Es war nicht immer einfach, aber mit vereinter Kreativ-
ität und Disziplin haben wir ein wie ich finde stolzes Ergebnis erreicht. Auch
möchte ich mich bei den Kollegen des Fachgebiets für die wunderbare Atmo-
sphäre, das eine oder andere Kickerspiel, die turbulenten Filmdrehs und das
konstruktive Feedback bedanken. Gerne wäre ich noch ein letztes Mal mit
euch zum Retreat gefahren. Schließlich geht mein Dank an die ehemaligen
Kollegen, allen voran Prof. Dr. Paula Herber und Dr. Thomas Göthel, die als
Postdoktoranden meine ersten Schritte begleitet und meine Arbeit wesentlich
beeinflusst haben.

Ein großer Dank gilt Prof. Dr. Sabine Glesner für die Chance zu pro-
movieren und für die vielzählige Unterstützung in diesen Jahren. Ihr großes
Vertrauen gab mir die Möglichkeit, meiner Kreativität zu folgen. Sie hat
mich auch zu vielen Erfahrungen während der Promotion ermuntert, darunter
das Beantragen und Leiten eines eigenen Projekts, die Teilnahme an Beru-
fungskommissionen, die Betreuung von Abschlussarbeiten und Seminaren und
das Besuchen von Konferenzen und Summer Schools. Diesbezüglich gilt mein
Dank auch den Veranstaltern, Dozenten und Teilnehmern der Markt Oberdorf
Summer School 2017, insbesondere den Professoren Magnus Myreen, Daniel
Kroening und Nikolaj Bjørner für Ihre entscheidenden Hinweise. Ebenso dank-
bar bin ich den Veranstaltern, Teilnehmern und beteiligten Unternehmen des
Software Campus, sowie dem DLR und dem BMBF für die Förderung meines
Projekts. Die Erfahrungen aus den Weiterbildungen und der Projektleitung
haben bereits jetzt mehrfach Anwendung gefunden.

Zum Schluss gilt mein Dank natürlich auch meiner Familie und meinen
Freunden. Ein konzentriertes Arbeiten an der Promotion wäre ohne sie in
den vergangenen Jahren nicht möglich gewesen. Gelegentliche Zerstreuung im
berliner Nachtleben allerdings auch nicht. Für beides - und noch viel mehr -
bin ich ihnen sehr dankbar.

Contents

List of Symbols v

List of Semantics vi

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background 9
2.1 Confidentiality . 9

2.1.1 Security Model . 10
2.1.2 Program Behavior . 11
2.1.3 Noninterference . 14

2.2 Secure Multi-Execution . 19
2.2.1 Local Semantics . 21
2.2.2 Global Semantics . 22
2.2.3 Transparency . 23

2.3 Machine Code . 24
2.3.1 Semantics . 25
2.3.2 Data Flow . 27
2.3.3 Control-Flow Integrity . 29

2.4 Summary . 30

3 Related Work 33
3.1 Multi-Execution Enforcement . 33
3.2 Language-Based Enforcement . 36
3.3 Binary Analysis . 37
3.4 Summary . 38

ii Contents

I Confidentiality Enforcement for Machine Code 41

4 Threat Model 45
4.1 Decryption Service . 45
4.2 Compiled Form . 48
4.3 Leaks . 52
4.4 Attacks . 53
4.5 Summary . 55

5 Secure Multi-Execution for Machine Code 57
5.1 Core Elements . 58
5.2 Semantics . 61
5.3 Example . 62
5.4 Summary . 67

6 Dynamic Instancing Optimization 69
6.1 Reasoning . 70
6.2 Semantics . 72

6.2.1 Local Semantics . 72
6.2.2 Global Semantics . 74

6.3 Implementation . 76
6.3.1 Fork Injection . 76
6.3.2 Shared Input . 78

6.4 Example . 78
6.5 Summary . 82

7 Bounding Optimization 83
7.1 Synchronization . 84
7.2 Semantics . 88
7.3 Implementation . 90

7.3.1 Setting Boundaries . 90
7.3.2 Identifying Input . 91

7.4 Example . 92
7.5 Summary . 96

8 Timing-Sensitive Scheduling 97
8.1 Reordering . 98
8.2 Construction . 99
8.3 Example . 102
8.4 Summary . 106

9 Boundary Analysis 109

Contents iii

9.1 Boundary Extraction . 109
9.2 Indirect Call Resolution . 113

9.2.1 Resolution . 113
9.2.2 Summary . 116

II Evaluation 119

10 Benchmark 125
10.1 Setup . 127
10.2 Results . 128
10.3 Summary . 131

11 Coreutils 133
11.1 Setup . 134
11.2 Results for Word Count . 136
11.3 Results for Cat . 138
11.4 Summary . 143

12 Conclusion 145

Bibliography 149

A Benchmark Programs 159

B Additional Results 169
B.1 Sort . 169
B.2 SHA Sum . 171

C Stream Input 179
C.1 Interaction . 179
C.2 Virtual Filesystem . 181
C.3 Example . 182

List of Symbols

s State
C Abstract channels
B Boolean values
N Natural Numbers
` Security level
L Security lattice
L Security level subset
tX Least upper bound
π Labeling function
a−→ Event transition
c?v Input event
c!v Output event
• Silent event
e Environment
� Projection function
δ Dummy input
σ Scheduler
Σ Program text
ρ Register store
µ Value store
pc Program counter
ι Current instruction
sp Stack pointer
⇓ Expression evaluation
� Input terminator
B Boundary function
B Boundary stack
β Boundary condition
× Termination event
? Blocking input
b Buffer
r Global input pointer
p Local input pointer

List of Semantics

2.1 Local Secure Multi-Execution semantics 21
2.2 Global Secure Multi-Execution semantics 23
2.3 Machine Code State . 25
2.4 Machine Code Semantics . 26

4.1 System call semantics for input and output 50

5.1 Local Secure Multi-Execution semantics for machine code 62

6.1 Local Secure Multi-Execution semantics with Dynamic Instancing 73
6.2 Dynamic Instantiation Semantics . 74

7.1 Barrier-Based Bounding Semantics . 89

C.1Semantics for volatile/visible input . 180

List of Figures

1.1 Schematic comparison of SME and our optimizations 5

2.1 Confidentiality in our program model 11
2.2 Projection function definition . 13
2.3 Examples of weak and strong timing-sensitive programs [42] 18
2.4 Secure Multi-Execution with two levels 20
2.5 Explicit flow through pointers . 28
2.6 Control-Flow Integrity [1] . 30

3.1 Schematic comparison of our SME optimizations 44

4.1 Information flow schematic of the example program 46
4.2 Security lattice for the decryption service 47
4.3 Exemplary timing-attacks . 55

5.1 Schematic comparison of unprotected and SME-protected execution 58
5.2 Secure Multi-Execution via Syscall Monitoring 59
5.3 Secure Multi-Execution based enforcement system 60
5.4 Protection against timing-attacks 64
5.5 SME Efficiency . 65
5.6 Visualization of Secure Multi-Execution applied to the example . . 66

6.1 Comparison of SME protection without and with Dynamic Instancing 70
6.2 Illustration of Dynamic Instantiation 71
6.3 Fork injection . 77
6.4 Efficiency improvement of Dynamic Instancing 79
6.5 Optimized run of the example . 80
6.6 Protection against timing-attacks with Dynamic Instancing 80

7.1 Illustration of our Bounding Optimization 84
7.2 Bounds of the information flows in the example program 85
7.3 Illustration of our Bounding Optimization 86
7.4 Bounded run of the example . 93
7.5 Efficiency improvement of our Bounding Optimization 94

7.6 Timing-Attacks on SME with bounding 94

8.1 Effect of our timing-sensitive scheduling 98
8.2 Forking new executions with virtual executions 101
8.3 Timing-sensitive optimization of the example 102
8.4 Timing-attack on optimized SME with timing-sensitive scheduling . 105
8.5 Efficiency impact of timing-sensitive scheduling 106

9.1 Control- and data-flow graph of the running example 111
9.2 Instrumented calls example . 114
9.3 (Optimized) Secure Multi-Execution toolchain for machine code . . 122

10.1 Information flows in the benchmark programs 127

11.1 Lattices used during evaluation . 134
11.2 Schematic CFGs with data-flow and boundaries for the two categories135
11.3 Effect of confidentiality enforcement on wc 136
11.4 Evaluation results for wc . 137
11.5 Run-time sampling of cat . 139
11.6 Level sampling of cat . 140
11.7 Time sampling of the first output event 141
11.8 File split sampling of cat . 141

B.1 Overhead sampling for different input sizes for sort 169
B.2 Overhead sampling for different number of input levels for sort . . 170
B.3 Run-time sampling of sha1sum . 171
B.4 Level sampling of sha1sum . 172
B.5 Time sampling of the first output event 173
B.6 File split sampling of sha1sum . 173
B.7 Samplings of sha224sum . 174
B.8 Samplings of sha256sum . 175
B.9 Samplings of sha384sum . 176
B.10 Samplings of sha512sum . 177

List of Tables

4.1 Exemplary attacks and timing-insensitive results 54

5.1 Noninterference through Secure Multi-Execution for the example
from Chapter 4. 63

6.1 Progress-sensitive noninterference of the example in Chapter 4 through
SME with Dynamic Instancing. 81

7.1 Timing-insensitive results with Bounding Optimization 95

8.1 Queue states for the execution in Figure 8.3 103
8.2 PSNI-noninterference results of the example Chapter 4 for our timing-

sensitive scheduler . 104

10.1 Overview of benchmark examples 126
10.2 Evaluation results . 129

C.1 Evaluation results . 183

Chapter 1

Introduction

Confidential software, meaning software that does not leak sensitive inputs, is re-
quired in many areas of modern society. It allows sharing of private information
between private citizens as well as company secrets between business partners.
Unfortunately, development of confidential software is not an easy task. Confiden-
tiality is a program-wide property, meaning that a program can only be confidential
if all of its components are confidential. This is at odds with modern software de-
velopment. Developers routinely include third-party components to reduce the
time to market and development cost of new software. These components may be
insecure, especially when not designed with confidentiality in mind. Additionally
they are usually shipped closed-source to protect intellectual property. This raises
the question how to enforce confidentiality across all components of a program,
including third-party code that is shipped in compiled form.

As an example, many nations recently initiated programs to produce appli-
cations that track the spread of the COVID-19 pandemic. Given that such an
application must collect sensitive data, its use is often voluntary. Yet, the effec-
tiveness of the application depends on its wide-spread use. Thus, the measure will
only be successful if the general public can be convinced of the confidential treat-
ment of the collected data. To inspire confidence in the solution, some nations
released the source code of the application. Yet, this approach relies on volun-
teering experts to scrutinize the code, including all reused components. Wherever
compiled third-party code is included, this would require thorough analysis of ma-
chine code, unlikely to be feasible in practice. Restricted access to the sensitive
information, on the other hand, would break the functionality of the application.

The problem is that no practical solution exists to enforce strong confidentiality
across all components of a system, including third-party components or legacy
code. Existing solutions mostly focus on validation of confidentiality for a program.

2 Chapter 1. Introduction

This limits them in three ways. First, static analysis of binaries is still a challenging
task, leading to a high error rate [4, 10, 54, 75]. Second, leaks through external
timing behavior are either not covered or lead to a very restrictive computation
model [42]. Third, successful identification of a leak is only the first step to a
functioning and secure component, which would then require a binary rewriting
step to make the target secure. Yet, like binary analysis, binary rewriting is sill a
challenging task [85].

Our goal is, thus, to define and develop a new method to enforce confidentiality
for machine code. With this new method, it should be possible to prevent poten-
tially insecure components from leaking sensitive information. At the same time,
we aim to retain as much of the original functionality of the components as possi-
ble. Concretely, outputs produced by secure components should remain the same
in content and order. At the same time, leaking outputs from insecure components
should be either suppressed or sanitized to not contain sensitive information. Such
a solution would allow developers to reuse the functionalities provided by existing
software components without breaking the confidentiality requirements of their
products.

Naturally, the solution also needs to be practical. First and foremost, this
means that it should apply to compiled code. Since most third-party compo-
nents are shipped in compiled form, focus on a specific high-level language would
be insufficient. Yet, the security and transparency guarantees should not require
knowledge of the code. Comprehensive analysis of compiled programs is a com-
plex task that still requires oversight by expert personnel, which might not always
be available. However, additional information may be used to increase the en-
forcement efficiency. In some recent enforcement approaches, dealing with many
users at different levels of security clearance leads to exponential overhead. Since
this impedes the wide-spread use of the technique, we aim to find a more efficient
solution. In the following, we describe the objectives of our work in more detail.

Secure. Our primary objective is to enforce confidentiality. This means that ob-
servation of public outputs from a program execution should not allow an
unauthorized observer to infer sensitive inputs to the program. In other
words, sensitive inputs should not interfere with public outputs, usually de-
scribed as noninterference. A program is noninterferent when the content
of public outputs does not depend on private inputs. Additionally, infor-
mation may leak due the timing of public outputs. As long as they are
not delayed in correlation with sensitive input content or size, we consider
the enforcement timing-sensitive. Additional information side-channels like
power consumption, heat radiation or noise are not the focus of this thesis.

3

Transparent. The enforcement should not break the functionality of the target
program. This means that for any program, outputs to authorized users
should not change. Additionally, for all originally secure programs, unau-
thorized users should also observe the same outputs in the same order as
the original execution. Due to the security requirements, public output from
insecure components may have to be altered or removed. For the same rea-
son, it cannot generally be guaranteed that messages appear at the same
time under enforcement nor that the order of outputs between channels is
maintained.

Efficient. Where enforcement requires additional computation at run time, it
usually induces an overhead. Naturally, this overhead should be as small as
possible. This can be achieved in two ways, either through optimization of
the implementation, or through optimization of the enforcement approach.
In this thesis, we focus on the latter. Thus, we aim to reduce the conceptual
overhead of the enforcement method. Ideally, the overhead would remain
constant, even if the number of users or complexity of the target was in-
creased. More users, with more unique security clearances, usually implies
more complex information flows that must be addressed by the enforcement
method. A more complex target, roughly estimated by code size, also in-
creases the complexity of the enforcement. An exponential growth due to
either attribute would adversely limit the applicability of the approach.

Practical. To be practical, the enforcement system must be applicable to com-
piled code. This means that it must be able to deal with prevalent pecu-
liarities of compiled code, such as interaction with the operating system,
blending of data- and control-flow, lack of high-level information and more.
The resulting technical complexity should not result in insecurity. Thus,
even where precise analysis is not available or infeasible, security must be
guaranteed. Consequently, a practical solution uses expert knowledge only
to increase the efficiency. Support of more complex features such as multi-
threading, inter-process communication, or socket communication are not
the focus of this thesis and probably best be integrated into a kernel-level
implementation.

Our proposed solution is based primarily on the concept of Secure Multi-
Execution, as described in the seminal paper by Devriese and Piessens [32]. Secure
Multi-Execution has been formally proven to provide timing-sensitive noninterfer-
ence guarantees, while also ensuring transparency for authorized and unauthorized
users [16, 65]. This makes it a promising solution, as it satisfies both our security
and transparency requirements. Furthermore, it can be formulated independent

4 Chapter 1. Introduction

of the operational semantics of the target language. This theoretically shows that
it can be applied to enforce confidentiality for machine code.

Notwithstanding the benefits of Secure Multi-Execution, its technical complex-
ity has so far discouraged an application to machine code. Thus, we provide the
first practical application of Secure Multi-Execution to machine code. To achieve
this, we reformulate Secure Multi-Execution based on the operational semantics of
machine code and implement it as a monitoring system for Linux running on the
wide-spread x86_x64 architecture. As the name suggests, Secure Multi-Execution
executes the same program multiple times, once for each security clearance that
users can hold. When users can hold multiple clearances, the possible combina-
tions require additional executions. This results in an exponential overhead that
quickly becomes impractical. Thus, we design and develop new optimizations that
allow to reduce the run-time overhead and thus to increase the efficiency of our
enforcement method, without sacrificing security or transparency.

First, we introduce a method to instantiate new executions dynamically. This
allows us to create new executions only when information at an hitherto unser-
viced clearance is obtained. Notably, it allows us to create as few executions as
possible and as late as possible, potentially leading to far less executions than the
number of unique security clearances would indicate. Additionally, we introduce a
method to terminate multiplied executions when they become redundant. Where
two executions perform computations based on the same information, one compu-
tation would suffice. Thus, our bounding optimization ensures that we terminate
executions as soon as possible. In the best case, our optimizations ensure that
the enforcement overhead stays constant both with increasing program size and
increasing number of security levels, making multi-execution based confidentiality
enforcement practical.

Naturally, our optimizations must be realized in accordance with the other
criteria. Thus, we additionally introduce a timing-sensitive scheduling for our
Bounding Optimization. The key idea is to allow executions for lower levels of
security clearance to progress and terminate independently of executions with
higher security classification. At the same time, we reorder outputs to higher
channels, to guarantee the ideal mixture of timing-sensitive noninterference and
order-preserving transparency. Finally, our Bounding Optimization requires addi-
tional information that must be provided as input. It can be provided manually,
based on developer knowledge, or through static analysis. To aid automatic ex-
traction of termination conditions from binaries, we contribute heuristics to resolve
indirect call targets. This allows us to automatically extract termination condi-
tions, which can be refined manually or with further analysis.

The difference between unprotected execution, protected execution, and our

5

(a) Native

(b) Secure Multi-Execution
(c) Dynamic Instancing
and Bounding

Figure 1.1: Schematic comparison of SME and our optimizations

optimized protection is visualized in Figure 1.1. Here, we consider a program that
consists of three components, two of which are secure and one that is insecure.
Information from the first secure component is passed through the insecure com-
ponent on to the second secure component. The insecure component connects
information with higher clearance to outputs with lowest clearance, which violates
confidentiality. This models a situation where an insecure library is included into
an otherwise secure system. Using Secure Multi-Execution enforcement, the three
components are executed three times, once per security level. This needlessly mul-
tiplies execution of the secure parts of the system. Additionally, assuming that
input is only obtained on two out of the three levels, it also needlessly creates addi-
tional executions for the third level. On the other hand, using our optimized Secure
Multi-Execution enforcement, only the insecure component is executed multiple
times. It is also only multiplied twice, when input from only two levels is needed.
Thus, assuming equivalent cost for each component, the optimized Secure Multi-
Execution overhead is only four thirds (133 %), whereas the unoptimized Secure
Multi-Execution overhead is nine thirds (300 %). Consequently, in this idealized
setting, the efficiency of our optimized enforcement is more than twice as high.

Our work reflects recent findings that show that transparent enforcement of
confidentiality requires multi-execution based approaches [2]. It also reflects the
finding that these approaches are generally not efficient when applied in a black-
box setting, and that increased efficiency requires knowledge of the program code.
Our solution demonstrates how a demand-driven multi-execution enforcement can
cross the bridge between security, transparency and efficiency. Thus, it offers
a promising direction for future research, beyond its practical consequences. In
detail, we make the following contributions.

1. We are the first to apply Secure Multi-Execution to machine code and the
first to provide a working prototype for Linux on x86_x64 to demonstrate
the practicality of the approach. This provides a method to achieve practical
security and transparency.

6 Chapter 1. Introduction

2. We provide a Dynamic Instancing optimization for Secure Multi-Execution
to increase the enforcement efficiency. Through Dynamic Instancing, we
create new executions only when needed. This increases the enforcement
efficiency in many cases.

3. We provide a Bounding Optimization to further increase the efficiency through
termination of multiplied executions. This increases the efficiency of our en-
forcement method in even more cases and can severely reduce the overhead
resulting from a high number of security levels.

4. We provide a timing-sensitive scheduling method for our Bounding Opti-
mization of Secure Multi-Execution. Our scheduler enables high enforce-
ment efficiency in many cases, without compromising the high security and
transparency guarantees of Secure Multi-Execution.

5. We provide heuristics that aid the automatic extraction of termination con-
ditions for our Bounding Optimization from machine code programs. This
shows a promising direction to make our Bounding Optimization applicable
to any target, without the need for manual analysis.

Note that we also provide formalized semantics of our enforcement solutions
throughout the thesis. These are intended to illustrate their construction as an ab-
straction from the real code. We do not provide rigorous proofs for these semantics.
Yet, to ensure their correctness, we emulated and validated them in a prototypical
implementation. We then implemented an enforcement toolchain for real compiled
code based on our formalized semantics. We use this toolchain to evaluate both a
benchmark set, extracted from various papers and highlighting various challenges
for transparent information flow control, and real-world, compiled examples to
show the practical effect of our solution with test cases, measurements, and visu-
alized traces. Throughout the thesis, we use an additional, synthetic example to
highlight the usefulness and capabilities of our system. Our evaluation results show
that our ideas carry over into our implementation and that our solution works on
actual binaries. The contributions in this thesis extend our work as published in
the following papers.

• Tobias Pfeffer, Thomas Göthel, and Sabine Glesner. Efficient and Precise
Information Flow Control for Machine Code through Demand-Driven Secure
Multi-Execution, page 197–208. Association for Computing Machinery, New
York, NY, USA, 2019 (Outstanding Paper Award)

• Tobias Pfeffer and Sabine Glesner. Timing-sensitive synchronization for effi-
cient secure multi-execution. In Proceedings of the 2019 ACM SIGSAC Con-

7

ference on Cloud Computing Security Workshop, CCSW’19, page 153–164,
New York, NY, USA, 2019. Association for Computing Machinery

• Tobias Pfeffer, Thomas Göthel, and Sabine Glesner. Automatic analysis of
critical sections for efficient secure multi-execution. In 2019 IEEE 19th In-
ternational Conference on Software Quality, Reliability and Security (QRS),
pages 318–325, 2019

• Tobias Pfeffer, Paula Herber, Lucas Druschke, and Sabine Glesner. Efficient
and safe control flow recovery using a restricted intermediate language. In
2018 IEEE 27th International Conference on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE), pages 235–240, 2018

For the implementation, we use additional insights from the following paper.

• Konstantin Scherer, Tobias Pfeffer, and Sabine Glesner. I/o interaction anal-
ysis of binary code. In 2019 IEEE 28th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), pages
225–230, 2019

The thesis is structured as follows. First, in Chapter 2, we provide background
information on confidentiality and on Secure Multi-Execution. We also define the
semantics of our machine code model. We use this model, after discussing related
works in Chapter 3, when we illustrate the problem addressed in this thesis in
Chapter 4. We then demonstrate our solution in four steps. In Chapter 5, we
show how we apply Secure Multi-Execution to machine code and demonstrate the
effectiveness of our solution with the running example. We then introduce our Dy-
namic Instancing Optimization in 6 and our Bounding Optimization in Chapter 7.
In each section, we also show the effect of our optimizations on the enforcement
guarantees and efficiency. In Chapter 8, we introduce our timing-sensitive schedul-
ing to improve the security guarantees of our Bounding Optimization. We close
the main part of this thesis in Chapter 9, were we outline our contributions to
static control-flow reconstruction of binary code. In the second part of this thesis,
we present our evaluation results for benchmark examples in Chapter 10 and for
real-world binaries in Chapter 11. Finally, we conclude the thesis and give point-
ers for future research in Chapter 12. The appendix contains more details on our
evaluation and an extension for stream input.

8 Chapter 1. Introduction

Chapter 2

Background

Our goal in this thesis is to develop a practical method to enforce confidentiality
across all components of a system, including machine code. Thus, in this section,
we discuss the relevant aspects of confidentiality, enforcement, and machine code.
For confidentiality, we provide a definition of noninterference [37] and discuss
different notions of termination- and timing-sensitivity. We then introduce Secure
Multi-Execution [32] as the enforcement method of our choice in depth. Finally,
we introduce a model of machine code, including operational semantics, which we
use to describe the threat model in the next chapter.

2.1 Confidentiality

Our aim is to ensure that a program cannot leak sensitive information through its
behavior. To achieve this, we first need to express confidentiality as a property
of programs. Thus, we first define a model of deterministic interactive programs,
using the definitions from Clark and Hunt [24]. Based on this model, we then define
noninterference as our confidentiality property, based on definitions from Rafnsson
and Sabelfeld [65] and Devriese and Piessens [32]. We elaborate on the various
levels of sensitivity with respect to the termination and timing behavior of the
system, as well as the behavior of the environment. In the next section, we show
how a termination- and timing-sensitive notion of noninterference can be enforced
using Secure Multi-Execution. This chapter concludes with our introduction of a
machine code model that will be used as reference in the rest of the thesis.

10 Chapter 2. Background

2.1.1 Security Model

In our definition of confidentiality, programs are treated as black boxes. This allows
our definitions to define confidentiality independent of the program language and
system definition. We assume that only the input and output behavior of the
program is observable. Input to, and output from them is realized through abstract
channels, collectively denoted C. For most of this thesis, a channel c∈C represents
a file on the system. Yet, it may also represent a network connection or another
type of data stream.

To describe confidential communication, we need to equip each channel with a
security level. The security level ` ∈ L of a channel c describes the classification
of the information that is obtained through channel c. We introduce a labeling
function π : C 7→ L, to assign security levels to channels. It also describes the
classification of outputs produced on channel c. To support incomparable levels of
security, they are usually partially ordered.

Definition 1 (Partial Order) A partial order for set L is a relation v: L×L
that is reflexive (i.e. ∀l ∈L : lv l), transitive (i.e. ∀l1, l2, l3 ∈L : l1 v l2∧ l2 v l3⇒
l1 v l3), and anti-symmetric (i.e. ∀l1, l2 ∈ L : l1 v l2∧ l2 v l1⇒ l1 = l2). A partial
order is total if ∀l1, l2 ∈ L : (l1 v l2)∨ (l2 v l1).

To describe combinations of incomparable levels, the partially ordered levels
must additionally form a lattice [30, 69].

Definition 2 (Lattice) A lattice (L,v) = (L,v,t,u,⊥,>) is a partially ordered
set (L,v) such that every pair of elements l1, l2 ∈ L have a least upper bound
t{l1, l2} ∈ L and greatest lower bound u{l1, l2} ∈ L. tX is a least upper bound of
a set X ⊆ L if

1. ∀` ∈X � `v tX, and
2. ∀ub ∈X � (∀` ∈X � `v ub) =⇒ tX v ub.

The definition of the greatest lower bound uX is analogous.

This setup allows a simple definition of confidential programs. When informa-
tion does not flow from channels with higher level to channels with lower level,
then the program is secure [31]. As an example, we illustrate this definition in
Figure 2.1. Here, we assume a simple two-level security lattice (L,v) such that
L = {L,H} and v= {(L,L),(L,H),(H,H)}. Further we assume three channels,

2.1. Confidentiality 11

A(H)

B(L)

C(L)

A(H)

B(L)

C(L)

H

L

(L,v) :

Figure 2.1: Confidentiality in our program model

C = {A,B,C}, and security labeling π = {(A,H),(B,L),(C,L)}. Then, flows from
channel A to channels B or C violate confidentiality. On the right, we illustrate
the security lattice using a Hasse diagram. In a Hasse diagram, each security level
is represented by a vertex in a two-dimensional graph. An edge is added between
two levels `1 and `2 such that `1 is placed lower than `2, whenever `1 ≤ `2 and
there is no other `3 where `1 ≤ `3 ≤ `2 would hold.

An important take away from our security model is that at least three parts
are needed to violate confidentiality:

1. The program communicates with at least two channels.
2. The channels are equipped with at least two different security levels.
3. Information flows from a channel to another channel with lower security level.

Consequently, programs that communicate with only one channel are assumed
to be trivially secure and are thus of no further concern to us. Additionally, we
generally assume that at least two different levels of security are used. While the
security lattice and mapping depends on the context, whether or not a violating
flow exists depends on the program behavior. Thus, we describe a model of the
behavior next.

2.1.2 Program Behavior

Since we treat programs as black boxes, we denote the internal state by the abstract
state s, hiding the memory and register contents. We write s1 6= s2 to describe two
different states of a program, without qualifying the difference. To model progress
in a black box program, we define its behavior as a transition system (TS).

Definition 3 ((Labeled) Transition System) A transition system (TS) is a
tuple (S,→) where S is a set of states and →⊆ S × S is a transition relation.

12 Chapter 2. Background

We write s→ s′ to denote that the system transitions from state s to state s′ in
one step. A labeled transition system (LTS) is a TS with a set of labels L such
that each transition is labeled. Thus, the labeled transition relation is defined as
→⊆ S×L×S. We write s `−→ s′ do denote that the system transition from state s
to state s′ with label `.

To express the observable input and output behvaior of deterministic interactive
programs, we use the model introduced by Clark and Hunt [24]. The behavior of
the program is described as an input-output labeled transition system (IOLTS).

Definition 4 (Input-Output labeled Transition System) An input-output la-
beled transition system (IOLTS) is a labeled transition system (LTS) (S,L,→)
where

L := • | c!v | c?v

Input of value v from channel c is described by the input event c?v, while output
of v to c is denoted c!v. Unobservable internal transitions are denoted with the •
event.

We then express input and output by annotating the transition between two
states with the appropriate event. Thus, s c!v−→ s′ means that the system progresses
from state s to state s′ while emitting value v as output on channel c. s c?v−−→ s′

means that the system progresses from state s to state s′ while obtaining value v
as input from channel c. Silent transitions are notated by the •-action, e.g. s •−→ s′.
We omit the target state to denote that a transition is possible. For example, s c?v−−→
means that the system could progress from state s to some state while obtaining
v from c.

We generally assume that the target programs are input-neutral and determin-
istic. Input neutral means that a program that accepts one input value from a
channel also accepts any other value from that same channel. In other words, an
input-neutral program cannot reject specific values as inputs on channels.

Definition 5 (Input-neutral IOLTS) An IOLTS (S,L,→) is input-neutral if
for all states s ∈ S and all channels c ∈ C

∃v � s c?v−−→=⇒ ∀v′ � s c?v′
−−→

2.1. Confidentiality 13

(o : ā) �? = ā �?, if o 6= c?v (• : ā) �• = ā �•
(c?v : ā) �? = c?v : (ā �?) (c!v : ā) �• = c!v : (ā �•)

(o : ā) �! = o : (ā �!), if o 6= c?v (• : ā) �` = • : (ā �`)
(c?v : ā) �! = • : (ā �!) (c$v : ā) �` = • : (ā �`), if π(c) 6v `

(• : ā) �c = • : (ā �c) (c$v : ā) �` = c$v : (ā �`), if π(c)v `
(c′$v : ā) �c = • : (ā �c), if c′ 6= c (ā) �−→• = ε, if ∀ā′ : a : ā′′ ≤ ā : a= •
(c′$v : ā) �c = c′$v : (ā �c), if c′ = c (ā′ : c$v : ā′′) �−→• = ā′ : c$v : (ā �−→•)

Figure 2.2: Projection function definition

Determinism is often defined as allowing only one successor state for each state
of the program. In an interactive systems, determinism allows multiple successors
of a state, as long as the difference is due to different input. Note that the difference
can only be in the input value, not in the input channel.

Definition 6 (Deterministic IOLTS) An IOLTS is (S,L,→) deterministic if
for all states s ∈ S and all channels c ∈ C

1. s a−→ s1∧ s a−→ s2 =⇒ s1 = s2

2. s a1−→∧s a2−→∧a1 6= a2 =⇒ a1 = c?v1∧a2 = c?v2∧v1 6= v2

We write s ā−→ s′ to mean that the system progresses from state s to state s′ in
multiple steps, producing the trace (list) of actions ā. To compare different traces,
we define a filter function � similar to the definition by Rafnsson and Sabelfeld [65].
The exact definitions are given in Figure 2.2. For example, we consider two traces
ā1 = A?3 : • : • : B!2 : C!1 : •, and ā2 = A?4 : • : B!2 : C!2 : • : •. We additionally
assume the security labeling introduced above, π = {(A,H),(B,L),(C,L)}. Then,

14 Chapter 2. Background

ā1 �• = A?3 :B!2 : C!1 ā1 �A = A?3 : • : • : • : • : •
ā2 �• = A?4 :B!2 : C!2 ā2 �A = A?4 : • : • : • : • : •
ā1 �−→• = A?3 : • : • :B!2 : C!1 ā1 �L = • : • : • :B!2 : C!1 : •
ā2 �−→• = A?4 : • :B!2 : C!2 ā2 �L = • : • :B!2 : C!2 : • : •
ā1 �? = A?3 ā1 �H = ā1
ā1 �! = • : • : • :B!2 : C!1 : • ā2 �H = ā2

For brevity, we write ā �`,•,c to mean ((ā �`) �•) �c. We also write ā1 =`,•,c ā2 to
mean ā1 �`,•,c= ā2 �`,•,c. Thus, for example

ā1 6=B ā2 ā1 =?,L,• ā2
ā1 =B,• ā2 ā1 6=?,H,• ā2
ā1 =•,B ā2 ā1 6=!,L,• ā2

Based on these definitions, we can give a trace-based characterization of confi-
dentiality next.

2.1.3 Noninterference

The example above hints at a trace-based definition of confidentiality. Both exam-
ple traces ā1 and ā2 obtain the same public inputs. Thus ā1 =?,L,• ā2 holds. Yet,
they produce different public outputs. Where ā1 emits a 1 on public channel C,
ā2 emits a 2. Since the programs are deterministic, this difference must be due to
different private inputs. In other words, this means that private inputs interfered
with public outputs. Consequently, noninterference, meaning that private inputs
do not interfere with public outputs, can be used to define confidentiality [37].

Unfortunately, the definition of noninterference is not as simple as “same public
inputs, same public outputs”, as described by ā1 =?,L,• ā2 =⇒ ā1 =!,L,• ā2. Given
this definition, an attacker could vary the number of public inputs, depending on
the private inputs. Then, the premise of the implication would be falsified and
thus the program would be considered secure under all circumstances. Hence, we
must consider the possible public inputs instead of the actual public inputs in our
definition.

2.1. Confidentiality 15

We describe the possible inputs to a program collectively as the environ-
ment [24]. An environment e : C 7→ i∗ is a mapping from channels to lists of
input events. Taking an input from channel c in environment e is denoted e(c).
The list of input events of channel c in environment e is denoted ec. Given an
environment e and a program in state s, we say that s performs trace ā under
environment e, denoted e |= s

ā−→, if for each channel the actual inputs in ā form
a prefix of the possible inputs in ec: ā ≤?,c,• ec. Two environments e1 and e2 are
equivalent regarding level `, written e1 =` e2, if

∀c ∈ C � π(c)v ` =⇒ ec1 = ec2

In the literature, it is generally assumed that these lists of input events represent
streams or queues, such that drawing input from the environment removes said
input from the list [24,32,65]. We also assume that access to input is non-blocking
and that environments are total. Rafnsson and Sabelfeld extended the formal
model with blocking access and nontotal environments to model attacks based on
delay of private input [65]. These attacks do not play a prominent role throughout
this thesis and are thus discussed in Appendix C.

Definition 7 (Progress-Sensitive Noninterference) A program starting in state
s is progress-sensitively noninterferent (PSNI) regarding level ` if

e1 =` e2∧ e1 |= s
ā1−→∧e2 |= s

ā2−→=⇒ ā1 =!,`,• ā2

This notion of noninterference is called progress-sensitive noninterference (PSNI),
as it takes the order of outputs into account. With all silent events as well as out-
puts on channels with level not lower than ` removed, all that remains is a list of
outputs to channels lower or equal `. For these to be equivalent, the two programs
must have produced the same `-observable outputs in the same order, indepen-
dent of potentially differing input from higher channels in the environments e1
and e2. Next, we discuss how information can be leaked through the termination
behavior and what kind of termination behavior is covered by our definition of
noninterference. We then discuss the even more elusive timing-attacks and extend
our definition to express a form of weak timing-sensitivity.

Termination

Askarov et al. show that (non-)termination can be used to leak more than one
bit [6]. They also provide an example to illustrate the problem, which we repeat

16 Chapter 2. Background

Listing 2.1: Leak through counting [6]
1 in(h, H);
2 for (l := 0) to maxNat {
3 out(l, L);
4 if (l == h) then { while true do skip };
5 };

in Listing 2.1. The program counts upwards in a public variable and emits the
intermediate values on a channel that is publicly observable. By itself, this is not
a security violation, as the counting is independent of the secret value stored in
variable h. However, when the public counter reaches the secret value, the program
diverges. Thus, no more values will be emitted on the public channel henceforth.
This can be observed by unauthorized users, who can then infer the exact value
of the secret.

Fortunately, this leak is covered by our definition of noninterference. Because
different values of h would produce a different amount of public outputs, this
program is not progress-sensitive noninterferent. Yet, it highlights another inter-
esting property. Assuming that the secret value in h must be positive will always
diverge. Programs that either always terminate or always diverge are considered
termination-sensitive, as the termination behavior does not depend on inputs.
Unfortunately, PSNI cannot ensure that programs are termination-sensitive, as it
does not consider actual termination.

This is in accordance with the findings from Ngo et al., who show that termina-
tion-sensitivity is impossible to enforce [59]. Thus, they consider the security guar-
antees achieved by a system that enforces PSNI as indirect termination-sensitivity.
An indirectly termination-sensitive program may or may not actually terminate af-
ter producing the last observable output, as longs as it will never produce another
observable action. The reasoning being that an attacker cannot observe termina-
tion directly, but only indirectly through the observations of actions. Just as it is
impossible to enforce direct termination-sensitivity due to the halting problem, it
is also impossible for an attacker to judge whether a silent program has terminated
or not.

The difference of direct and indirect termination-sensitivity is shown in List-
ing 2.2. In contrast to the termination-sensitive program from Listing 2.1, this
program is not termination-sensitive. Only when the secret value in h coincides
with the public value in l does it diverge. Otherwise it terminates. However,
because no output is produced, it is trivially indirectly termination-sensitive.

2.1. Confidentiality 17

Listing 2.2: Leak through (non-)termination
1 in(l, L);
2 in(h, H);
3 if (h == l) then {
4 while true do skip;
5 };

The program also highlights another interesting point. While for the program
shown in Listing 2.1 it is possible to define one value for h to ensure termination,
this is not the case for the program in Listing 2.2. Here, termination depends on the
choice of both l and h and therefore no static value for h can be provided such that
the termination behavior is independent of l. This is an important distinction for
enforcement systems that replace sensitive information with dummy values, such
as Secure Multi-Execution. Algehed and Flanagan introduced the term mono-
tonically termination-sensitive to describe this difference [2]. In a monotonically
termination-sensitive program, higher inputs can be statically replaced by a fixed
value without altering the termination behavior. Thus, Listing 2.1 is monotonically
termination-sensitive while Listing 2.2 is not. Algehed and Flanagan show that Se-
cure Multi-Execution can enforce monotonically termination-sensitivity, thus such
programs are the focus of this thesis.

Timing

Progress-sensitive noninterference considers the order of outputs, but does not
describe leaks due to timing behavior. Due to the •-filter, all internal events are
ignored. Thus, delays due to intermediate computation are also ignored. However,
when these delays depend on sensitive information, then information can leak
through the timing of public outputs. As an example, we consider the programs
shown in Figure 2.3.

Both programs in Figure 2.3 are timing-insensitively noninterferent. The pri-
vate input from channel H, stored in variable h, does not flow to variable l, which
is eventually emitted as output on the public channel L. Yet, the timing of the
output differs. In Figure 2.3a, the output is delayed by the duration of the ex-
ecution of one skip statement, depending on the sensitive information in h. As
an example, we assume two environments e1 and e2. We further assume that
eH1 =H?1 and eH2 =H?2. Then,

18 Chapter 2. Background

1 l := 0;
2 in(h, H);
3 if (h % 2 == 0) {
4 skip; skip;
5 } else {
6 skip;
7 }
8 out(l, L);

(a)

1 l := 0;
2 in(h, H);
3 if (h % 2 == 0) {
4 a := b;
5 } else {
6 a := c;
7 }
8 out(l, L);

(b)

Figure 2.3: Examples of weak and strong timing-sensitive programs [42]

e1 |= s
ā1=H?1:•:L!0−−−−−−−−→

e2 |= s
ā2=H?2:•:•:L!0−−−−−−−−−→

Here, e1 =` e2 ∧ e1 |= s
ā1−→ ∧e2 |= s

ā2−→ =⇒ ā1 =!,`,• ā2 holds, as the differing
number of • events are filtered out. However, an unauthorized observer of the
public channel can infer whether the private input is even or odd, based on the
timing of the public output.

This can be described using weak timing-sensitive noninterference (TSNI),
where execution of any instruction takes a fixed amount of time. The weak timing
model can be expressed by counting the number of silent events in a trace, up to
the last output.

Definition 8 Weak Timing-Sensitive Noninterference A program starting in state
s is weakly timing-sensitive noninterferent (TSNI) regarding level ` if

e1 =` e2∧ e1 |= s
ā1−→∧e2 |= s

ā2−→=⇒ ā1 =!,`,−→• ā2

The exemplary traces above are not TSNI, as

H?1 : • : L!0 =!,L,−→• • : • : L!0 6= • : • : • : L!0 =!,L,−→• H?2 : • : • : L!0

This model protects against leaks on the timing-channel in an idealized set-
ting. It does not take delays based on the architecture, pipeline, caches, process
switching and more into account. This is exemplified in Figure 2.3b. Because all in-
structions are assumed to take the same amount of time in the weak timing-model,

2.2. Secure Multi-Execution 19

this program is weak timing-sensitively noninterferent. Yet, the instructions a :=
b and a := c may actually take a different amount of time. For example when it
can be assured that the value of b is cached while the value of c is not.

Throughout the thesis, we use the weak timing-sensitive model in our formal-
ization, but measure real values in our evaluations. Thus, on the one hand, our
measured timing-sensitivity is stronger than the weak model presented here. On
the other hand, timing measurements on actual systems are always jittery due
to contention for resources. Thus, we aim to show non-correlation with sensitive
inputs in our experiments.

2.2 Secure Multi-Execution

Secure Multi-Execution (SME) was first introduced by Devriese and Piessens
in their seminal paper on noninterference enforcement [32]. What makes Se-
cure Multi-Execution a promising confidentiality enforcement method is that it
combines some of the best characteristics at once. As a multi-execution enforce-
ment mechanism, it offers the best achievable termination-sensitivity [2, 16]. As a
scheduling enforcement mechanism, it is timing-sensitive [42, 65]. As a black-box
enforcement mechanism, it can be applied without analysis [2, 65]. These results
show that an enforcement mechanism based on Secure Multi-Execution can satisfy
our criteria of security, transparency.

Secure Multi-Execution enforces noninterference by design [32]. A potentially
insecure program is transformed such that the resulting program must be secure.
This is achieved by restricting the access to input from private channels. A pro-
gram that has no access to private input is trivially secure, as absent information
cannot interfere with public outputs. Yet, this restriction also thwarts transparent
enforcement. If the private inputs are never obtained, any private output that
depends on them cannot be produced by the program. This would violate our
requirement that the same secure outputs are produced under enforcement, com-
pared to native execution. Thus, another execution is added under SME, which is
restricted in its output behavior. This second execution has access to the private
inputs, but is not allow to produce output for public channels. Consequently, the
private inputs in this second execution also cannot interfere with public outputs.

We visualize the concept in Figure 2.4. Here, we assume a two-level lattice with
L@H. Through SME, the program is executed twice. One execution is responsible
for output on the lower level, one for output on the higher level. Both executions
have access to the low input, as flows in the upward direction of the lattice are
permitted under confidentiality. Yet, only the higher execution has access to high

20 Chapter 2. Background

H

L

δ

H

L

Figure 2.4: Secure Multi-Execution with two levels

inputs. Where the lower execution requires high input, it is fed unclassified input
from a dummy source δ instead. Responsibilities for output on channels are split
among the two executions. The higher execution produces output only for channels
at high security level, the lower execution only for channels at low security level.
Thus, all original flows remain unchanged, only insecure flows from higher to lower
levels are replaced by secure flows from dummy input.

Naturally, the security lattice might be more complex in a real-world scenario.
Yet, the principle remains the same. An execution is created for each level in the
security lattice. Each execution is responsible for output to channels with equal
security level. Input is restricted to channels with equal or lower level. Thus, all
legal flows remain unchanged but insecure flows are removed.

The technical requirements to implement SME enforcement follow from its
design. First and foremost, a method is required to intercept input and output
operations of the target. Otherwise, input and output operations could not be
restricted. Second, a method is required to identify and classify channels targeted
by input and output operations. This is necessary to decide when restrictions
apply. Third, a method is required to redirect input to a dummy source. And
fourth, a method is required to suppress output to channels. We formalize these
requirements when we discuss the local semantics of SME in Section 2.2.1. Ad-
ditionally, when input has observable side-effects or is volatile, a method to copy
input to higher execution is necessary. We discuss these additional requirements
in Appendix C.

As mentioned above, Secure Multi-Execution can also be used to thwart leaks
through the timing behavior. This is not a consequence of the transformation of
each individual execution, but a consequence of the scheduling of these executions.
For example, we could first run the lower executions to termination, before the
higher execution is scheduled. This way, it is guaranteed that the termination-
or timing-behavior of the higher execution cannot interfere with the termination

2.2. Secure Multi-Execution 21

Silent s
•−→ s′

`,π,δ ` s •−→ s′

Input-T
s
c?v−−→ s′ π(c)v `
`,π,δ ` s c?v−−→ s′

Input-F
s
c?v−−→ s′ π(c) 6v ` s

c?δ−−→ sδ

`,π,δ ` s •−→ sδ

Output-T
s
c!v−→ s′ π(c) = `

`,π,δ ` s c!v−→ s′

Output-F
s
c!v−→ s′ π(c) 6= `

`,π,δ ` s •−→ s′

Semantics 2.1: Local Secure Multi-Execution semantics

or timing of the lower execution. Unfortunately, this simple strategy may lead to
intransparencies and is insufficient when incomparable levels exist in the security
lattice. Thus, we discuss more complex scheduling in Section 2.2.2, when we
introduce the global semantics of SME.

2.2.1 Local Semantics

The local semantics of Secure Multi-Execution are given in Semantics 2.1. An
individual execution consists of the abstract state s, just like an unprotected exe-
cution. Yet, it is executed in the context of a static security label ` ∈ L, a channel
classification π : C 7→ L, and dummy value δ. Since this is a black-box definition,
semantics of internal transitions (denoted by • actions) are unaltered. Similarly,
input from channels with security classification of equal or lower level as well as
output to channels with equal security classification are unchanged. If, however,
input from channels with higher security classification is requested, we instead
provide the dummy value and progress to the corresponding state sδ. This state
must exist, as we assume that programs are input-neutral. Similarly, if output to
channels at different security classification is requested, it is suppressed, making
it appear as a silent action. This alteration is hidden from the program such that
we still progress to state s′.

Given an execution at level ` in state s that contains no information with
classification higher than `, it is clear that this property is retained during ex-

22 Chapter 2. Background

ecution. Due to the interactive nature of the program, the only way to intro-
duce `-information to s would be through input from a channel with classification
higher than `, resulting in violating state s′. However, in this case, the execution
progresses to sδ which cannot contain classified information as it obtained the
unclassified dummy value δ, instead of the classified value v.

Furthermore, since only the `-execution is allowed to produce output on chan-
nels with that same classification and only one `-execution exists, output on these
channels is produced only by this `-execution. In a secure program, where re-
placement of inputs from channels with classification higher than ` does not alter
the outputs on `-channels, it follows that the `-execution produces the exact same
output. Thus, the minimum of termination- and timing-insensitive transparency
is achieved.

2.2.2 Global Semantics

From the local semantics it follows that each execution guarantees noninterference
with respect to its level. This, however, does not mean that any combination of the
executions also guarantees noninterference. To illustrate this, consider a scenario
with the typical two-level lattice such that L @ H. Following the semantics of
Secure Multi-Execution, this gives rise to two executions, one for level L, one for
level H. If we now where to combine both executions such that we first execute the
H execution and then the L execution, if and when the L would be executed would
then be dependent on the H execution. This dependency could then be exploited
by an attacker to leak information about the classified inputs in the H execution.
Thus, correct scheduling is vital for the timing- and termination-sensitivity of
Secure Multi-Execution.

In the original work by Devriese and Piessens, a low-priority scheduling strategy
is used [32]. In this scheduling strategy, executions are scheduled in ascending
order. Thus, one execution starts running when all executions with lower priority
have run to completion. Naturally, this is problematic when the lattice is non-
linear, such that incomparable levels exist. To be able to define an ascending
order, a partially ordered lattice would have to be extended to become a total order.
However, any such extension inevitably leads to a situation where scheduling of one
execution depends on the timing and termination behavior of another execution
at originally incomparable level.

Kashyap et al. discuss this and alternative scheduling strategies in more de-
tail [42]. They show that, to be secure even under very strong assumptions such as
no real parallelism, shared finite resources, and perfect timing capabilities of the
attacker, executions must run to completion before executions with higher clas-

2.2. Secure Multi-Execution 23

Step
s= S(`) `,π,δ ` s a−→ s′

π,δ ` ` : σ,S a−→ σ,S[`← s′]

Semantics 2.2: Global Secure Multi-Execution semantics

sification can be executed. Consequently, none of their strategies allows for such
strong guarantees between incomparable levels. They do note, however, that a
weaker timing model, where execution times of instructions are uniform and re-
sources are not shared, can be achieved by round-robin scheduling of all executions.
Rafnsson and Sabelfeld generalize this further and show that any deterministic and
fair scheduler achieves weak timing guarantees [65]. A scheduler σ is an (infinite)
list of security levels. It is fair when it schedules all `-runs infinitely often. As an
example, Rafnsson and Sabelfeld propose round-robin schedulers.

Secure Multi-Execution is than instantiated for a program starting in state s by
cloning the state as often as there are levels. We then use an execution mapping,
denoted S, that maps each security level to the corresponding execution state. As
shown in the Step rule from our global semantics in Semantics 2.2, the head of the
scheduler σ describes the next level to be executed. The state of the corresponding
execution is given by S(`) and leads to the next state s′. The mapping is than
updated accordingly, by setting s′ as the value mapped to by `. Any event a
performed by the execution is visible from the global view.

2.2.3 Transparency

Apart from the timing-sensitive security guarantees, Secure Multi-Execution (SME)
also provides strong transparency [2, 16, 65, 89]. Transparent enforcement means
that the behavior of secure components remains the same. Secure Multi-Execution
achieves this as the internal computations of the target program are unchanged.
Thus, any output produced independent of sensitive input would still be produced
under enforcement, where the sensitive input is replaced by dummy values. Nat-
urally, full transparency cannot be assured for components that are leaking infor-
mation, as that would require the enforced solution to recreate the leak, thwarting
the security efforts.

Due to the individual scheduling of individual executions and replacement of
sensitive inputs, it may be that secure outputs are produced earlier or later than
normal. Thus, it may be that the order of secure outputs from executions on
different levels may be changed. Consequently, Secure Multi-Execution does not
guarantee transparency across all levels, but rather per-channel transparency. This

24 Chapter 2. Background

means that, on each level, the secure outputs are produced with the same contents
and the same order.

Additionally, because the outputs produced for the highest security level are
always secure, top-level transparency can be assured in any case. Thus, the outputs
produced on the highest level are always the same in content and order as an
unenforced execution of the target would produce. Yet, because of the scheduling
necessary to break leaks on the timing-channel, SME cannot assure that outputs
are produced at the same time as for unenforced execution. Thus, no timing-
sensitive transparency guarantees can be given.

2.3 Machine Code

The targets of our enforcement mechanism are software components in compiled
form. More precisely, we target the wide-spread x86_x64 architecture. Yet, this
architecture has more than 1000 different instructions and thus far too many to be
described fully here. Instead, we provide a minimal machine code language here,
similar to the SimpIL language provided by Schwartz et al [68]. The language is
also similar to intermediate languages used by binary analysis tools such as the
BIL language of BAP [18].

The machine code model highlights two important aspects that make static
analysis of binary code very hard [54]. First, instead of abstract variables that are
assumed to be uniquely identified by their name, our model uses a memory that
maps addresses to values. Second, the control-flow of machine code programs is
much less obvious than it is in source-code programs.

Since addresses are a subset of the possible values, this allows multi-level point-
ers and pointer arithmetic. It also means that any value could be used a pointer,
implying that all values must be considered pointers a well. Consequently, it is
crucial for static analysis of binaries to combine flavors from numerical analysis
and pointer analysis in a single analysis [10]. Note that we also use variable-like
registers in our model, but assume that their number is very limited. For example,
the x86_x64 architecture has only 16 general purpose registers. Thus, high-level
variables are usually mapped to memory, not to registers.

Furthermore, machine code is unstructured, with conditionals and loops im-
plemented through goto-like jump statements. It also lacks abstractions such as
functions or scopes, which are hard to recover [4]. Even more problematic, how-
ever, is that the targeted code address of jump statements may depend on data
flow. Indirect jump statements allow targets to be computed at run-time, with
adverse implications for static control-flow analysis. Similar to how static binary

2.3. Machine Code 25

A⊆ N Addresses
Σ : A9 Inst Mapping from address to instruction
ρ : N9V Mapping from registers to values
µ : A9V Mapping from addresses to values
pc ∈ dom(Σ) Program counter
ι ∈ Inst Instruction

Semantics 2.3: Machine Code State

analysis must track pointers and numeric values at the same time, control-flow
recovery requires data-flow analysis at the same time. Since data-flow analysis
requires a control-flow graph to work on, this has been described as a “chicken and
egg”-problem [43].

Next we introduce our machine code semantics in detail. We also use these
semantics in Chapter 4, to provide an example of a compiled target. Finally, we
introduce control-flow integrity as an increasingly popular mechanism to protected
against control-hijacking attacks. We use this information again, when we discuss
our contributions to static analysis in Chapter 9.

2.3.1 Semantics

A state in our machine code model is describes as a tuple 〈Σ,ρ,µ,pc, ι〉, where
Σ is a program-specific mapping from code addresses to statements, which are
usually called instructions in this context. The currently executed code address
is stored in the program counter pc. The currently executed instruction is given
by ι. Thus, Σ[pc] = ι describes the instruction at the current location given the
program text Σ. We assume that code addresses can be any value, but access to
an undefined location in Σ leads to abnormal termination of the program. We
use a−→ to denote that the program progresses to a new state with event a, the ⇓
to denote evaluation of an expression. Static inputs to the evaluation are written
on the left side of the `. We use two different stores in our model. The register
store ρ maps register names to values, similar to high-level variable stores. The
memory store µ maps values to values. Updates to the store are written using the
← symbol, e.g. ρ[x← v] means the value of x in ρ is updated to v. Values are
looked up using ρ(x), which gives the value assigned to x in ρ.

The difference between the stores is reflected on instruction level. Registers are
updated by assignment statements, where the left operand is a valid register name.
The right operand of the assignment is an expression that evaluates to the new
value for the updated register. Register names can also be used in any expression,

26

Expressions:

[Const] c ∈ V
ρ,µ ` c ⇓ c [Var]

v = ρ(x)
ρ,µ ` x ⇓ v

[Load]
ρ,µ ` e ⇓ v v′ = µ(v)

ρ,µ ` [e] ⇓ v′

[Op]
ρ,µ ` e1 ⇓ v1 ρ,µ ` e2 ⇓ v2 v = v1⊕v2

ρ,µ ` e1⊕ e2 ⇓ v

Instructions:

[Assign]
ρ,µ ` e ⇓ v ρ′ = ρ[x← v] ι= Σ[pc+ 1]

Σ ` ρ,µ,pc,x := e
•−→ ρ′,µ,pc+ 1, ι

[Store]
ρ,µ ` e1 ⇓ v1 ρ,µ ` e2 ⇓ v2 µ′ = µ[v1← v2] ι= Σ[pc+ 1]

Σ ` ρ,µ,pc, [e1] := e2
•−→ ρ,µ′,pc+ 1, ι

[Conditional-T]
ρ,µ ` b ⇓ 1 ρ,µ ` e ⇓ v ι= Σ[v]

Σ ` ρ,µ,pc,jcc (b) e •−→ ρ,µ,v, ι

[Conditional-F]
ρ,µ ` b ⇓ 0 ι= Σ[pc+ 1]

Σ ` ρ,µ,pc,jcc (b) e •−→ ρ,µ,pc+ 1, ι
Compound Instructions:

jmp e ::= jcc (0 == 0) e

call e ::=

[sp] := pc+ 1
sp := sp−1
jmp e

return ::=
sp := sp+ 1

jmp [sp]

Semantics 2.4: Machine Code Semantics

2.3. Machine Code 27

which leads to a lookup of their value in the register store during evaluation.
Memory is updated using specific store statements, where the left operand is an
expression that evaluates to a memory address. The right operand evaluates to
the new value that the memory address subsequently maps to. Memory can be
referenced in expressions by providing an expression that evaluates to a memory
address. Further expressions allow to provide constants and to compute new values
using typical binary and unary operators.

For both the assignment and store statements, the control flow is transferred
to the next instruction, meaning the instruction at the next code location. Thus,
in these cases, the program counter pc is increased by one and the next instruction
ι′ is loaded from the program text at the next location, ι′ = Σ[pc+ 1]. Branching
and more complex control-flow transfers are realized with the conditional jump
instruction. The conditional jump instruction takes an expression as the first
operand that decides whether or not the jump is taken. If the expression evaluates
to zero, the jump is not taken and the next instruction is loaded instead. If the
expression evaluates to 1, the jump is taken. Then the second operand expression
is evaluated and control is transferred to the resulting address. Note that we
assume that typical comparison operators such as == exist and adhere to the logic
of the language (i.e., 4 == 5 evaluates to 0, while 4 == 4 evaluates to 1). Thus, the
conditional jump instruction encapsulates both the mechanic to express structured
code in machine code as well as the possibility for computed jumps.

Finally, we add three additional instructions as practical abbreviations for mul-
tiple instructions. First, the unconditional jump instruction is a conditional jump
instruction with a tautological condition expression such that the jump is always
taken. We assume that such an unconditional jump can be trivially detected such
that it raises no adverse effects for branch prediction or target feasibility assump-
tions in control-flow recovery [87]. Second, we add call and return statements
that transfer to a code block and back towards the caller. Here, we assume that
a special stack pointer register sp exists and that it points to a memory region
that is unaffected by other memory operations. Thus, when a call instruction is
follow by a return instruction, we assume that the return instruction transfers
control back the instruction following the call.

2.3.2 Data Flow

A fundamental difference between machine code and high-level code is the limited
availability of variable-like registers. A register, similar to a high-level variable, is
a unique storage element that can only be updated using named assignments. This
has the great benefit that for any data flow analysis, it can be safely assumed that

28 Chapter 2. Background

p := x
y := q

[p] := x
y := [q]

Figure 2.5: Explicit flow through pointers

all registers that are not the target of an assignment remain unchanged. Thus,
assignments can generally be assumed to be free from side effects, which enables
fast and precise data-flow analysis. In contrast to this, updates of the memory
store are not side-effect free.

Which part of the memory is updated is specified by an arithmetic expression.
Therefore, the result might depend on other variables. Thus, which part of the
memory is altered by the update, cannot generally be determined in isolation.
As any arithmetic expression can be used, any update may potentially change
any part of the memory, not restricted to live references. Even worse, in the
case of multi-level pointers, the target of an update may depend on the result of
a load instruction, whose target may depend on other variables. Unfortunately,
since registers require complex hardware support, processors typically have fewer
than 20 general purpose registers. Consequently, abundant high-level variables are
usually mapped to memory regions and updated via stores instead of assignments.
Practically, this means that all variables are promoted to pointers and all n-level
pointers are promoted to n+ 1-level pointers.

To demonstrate the added complexity due to pointers, we consider the code
snippet in Figure 2.5. The code on the left uses no pointers. Thus, it is trivial
to determine that information from x does not flow to y, because p and q are
different variables. The assignment of p has no effect on the value of q and thus
the information in x has no effect on the information in y. This is a result from
the assumption that different identifiers describe a different location.

This is not true for the code on the right. Here, the value of x is stored at
the address described by the value of p. Then, the value stored at the address
described by the value of q is assigned to the variable y. Due to the semantics
of the load and store instructions, it is possible that the update of the value at
address p affects the value stored at q. Thus, information may flow from x to y.
This can only be ruled out if the feasible values of p and q at this part of the
program can be determined. Only if p can never have the same value as q can we
rule out a flow of information.

This illustrates that the wide-spread use of arithmetic, multi-level pointers in
machine code severely complicates information flow analysis. We outline existing
approaches and their limitations in more detail in Section 3.3. Here, it is sufficient

2.3. Machine Code 29

to state that safe and reasonably precise analyses come with great complexity. As
we show next, the complication of data-flow analysis in machine code affects other
areas of analysis as well, as both control-flow recovery and system call semantics
depend on it.

2.3.3 Control-Flow Integrity

An important consequence from the machine code semantics is the conflation of
control and data flow. As shown in Semantics 2.4, most instructions are followed by
the succeeding instructions. Yet, the branching instruction allows to transfer the
control flow to a computed target, dependent on the current state. This has two
closely related consequences. First, precise static analysis of the possible control
flow in an binary requires precise data-flow analysis, which, as described above,
is infeasible. Second, it means that user data can interfere with the control flow,
violating the integrity of the control flow. The latter is of great importance to
computer security and is the target of techniques such as control-flow integrity
(CFI) which we describe here. As it happens, these mechanism can also be used
to solve the first problem, as we show when we introduce our heuristic for efficient
control-flow recovery in Section 9.2.

As the name suggests, control-flow integrity is a technique to ensure that user
input does not interfere with the control information of an execution. This is
possible, wherever control-flow transfer depends on the program state, as is the
case in indirect calls and function returns. As outlined above, an indirect call
transfers control to the result of a target expression, evaluated in the current
machine state. It may thus depend on user information, allowing the user to stage
control-hijacking attacks. Conversely, the return instruction transfers control to
the value on top of the stack at the current machine state. In a benign program,
the top of the stack contains the address of the next instruction after the most
recent call. However, since this information is stored in a writeable memory area,
it can be overwritten, most notably by buffer-overflow attacks [80].

To counter these attacks, Abadi et al. proposed to enforce control-flow in-
tegrity [1]. They achieve the enforcement by instrumenting call and return sites
with bit patterns, and a dynamic check that ensures that each control is transferred
only between valid patterns. More concretely, the patterns describe equivalence
classes of targets. Two destinations are considered equivalent when they can be
reached from the same set of sources. Consequently, with these targets enforced at
run time, malicious redirection of the control flow is only possible along predefined
paths. This reduces the attack surface dramatically.

An example of CFI is given in Figure 2.6. Here, sort2 sequentially applies the

30 Chapter 2. Background

Figure 2.6: Control-Flow Integrity [1]

sort function to two lists. The sort function is implemented as a higher order
function, taking a ordering function as an argument. For list a, lt is used, for list
b, gt. Consequently, the functions lt and gt are called from the same source (the
sort) function and thus labeled equivalently. Conversely, the call site in the sort
function is labeled to ensure that lt and gt must return to it. The call to sort
in the sort2 function remains unchecked as it can be implemented using secure
direct calls. However, the return from sort is checked, as it may return to two
different locations.

To ensure valid flows, CFI requires a call graph as input that describes legal in-
direct control transfers. Recent advances in source-level pointer analysis allow fast
approximation of call graphs during compilation [49], which in turn has lead to the
first practical CFI implementations [83]. Challenges remain, as the approximate
nature of the CFI enforcement leaves sufficient room to evade the technique [33].

2.4 Summary

In summary, Secure Multi-Execution is an enforcement method that guarantees
progress-sensitive noninterference and, beyond that, also weakly timing-sensitive
noninterference. By implication, it also guarantees indirect termination-sensitive
noninterference, with direct termination-sensitive noninterference shown to be im-
possible to enforce. Consequently, it achieves among the strongest security guaran-
tees of current information flow control approaches. Furthermore, it achieves per-
channel transparency for secure behavior and top-level transparency in all cases.
Thus, it allows to guarantee confidentiality without breaking the functionality of
secure components.

2.4. Summary 31

Secure Multi-Execution also does not require changes to the target program.
Instead, only the input and output behavior is transformed. Hence, it can be
used to enforce secure even for targets that are not thoroughly comprehended.
This makes it an attractive solution in our scenario, as static analysis of machine
code is highly non-trivial. Because of the ubiquitous use of multi-level arithmetic
pointers and lack of function scopes, precise information flow analysis quickly
becomes infeasible. Unfortunately, due to the existence of computed branching
instructions in low-level languages, control flow conflates with data-flow at various
points in the code. This raises the related security issue of control-flow integrity,
which can be thwarted by instrumenting indirect call sites.

The results discussed here point us in the direction of our work. Because we aim
for a transparent enforcement of timing-sensitive noninterference for low-level code,
we focus on Secure Multi-Execution. This allows us to side-step the challenges
associated with low-level static analysis and achieve a general enforcement method.
Yet, because Secure Multi-Execution comes with high performance overhead, we
aim to reuse what can be learned about the information flows in the target to
apply the enforcement only where necessary.

In the next chapter, we discuss related approaches from information flow control
and low-level analysis. Then, in Chapter 4, we use our machine code model to
introduce an exemplary target and corresponding attacks. Based on these, we
show in Chapter 5 how Secure Multi-Execution can be applied to low-level targets
to thwart these attacks. In the following chapters, we focus on optimizations
to reduce the overhead of the enforcement. In Chapter 9 we finally discuss out
contributions to control-flow recovery, before providing evaluation results for our
wok in the second part of this thesis. We conclude with pointers to future work in
Chapter 12.

32 Chapter 2. Background

Chapter 3

Related Work

In this section, we discuss works related to ours. For more clarity, we separate
them into three groups. First and as the most relevant, we discuss enforcement
solutions that use some kind of multi-execution. Then, we discuss language-based
enforcement solutions that make up much of the earlier research on confidentiality
enforcement. These solutions often focus on higher-level languages, therefore we
discuss approaches focusing on binary analysis in a separate, third group. Our
research shows that while there are closely related practical approaches for low-level
systems such as TightLip or shadow execution, they do not achieve the timing-
sensitive noninterference guarantees of Secure Multi-Execution and do not make
use of static analysis to increase the enforcement efficiency.

3.1 Multi-Execution Enforcement

Our solution is based on the seminal paper by Devriese and Piessens on nonin-
terference [32]. In this work, the authors propose Secure Multi-Execution (SME)
as the technique to enforce timing-sensitive noninterference for interactive and de-
terministic programs in a transparent way. They also provide an experimental
implementation in form of a Javascript engine, and provide benchmark results to
demonstrate the effectiveness and practical feasibility of the concept. Furthermore,
De Groef et al. later integrated the technique into the confidential web browser
FlowFox [28]. With their work, the authors show that Secure Multi-Execution can
be used in practice, albeit with some overhead.

The original definition of SME uses a low-priority scheduler, such that ex-
ecutions are scheduled in ascending order of their respective security level. This
leads to two problems. First, Devriese and Piessens assume that security levels are

34 Chapter 3. Related Work

totally ordered. As Kashyap et al. show, their low-priority scheduler is not timing-
sensitive between incomparable levels [42]. If neither is lower than the other, than
the low-priority scheduler has to choose either, which might lead to a interferent
delay in the outputs of the other. Second, in the case of reactive programs where
executions do not terminate, lower levels have to be scheduled after higher lev-
els eventually. This might lead to leak on the timing-channel, as Rafnsson and
Sabelfeld describe for the FlowFox browser [65]. To remedy the problems, Rafns-
son and Sabelfeld propose the use of a fair interleaving scheduler. Kashyap et al.
show that this strategy actually achieves weak timing-sensitive noninterference for
any security lattice. Yet, they note that no scheduling can achieve strong timing-
sensitive noninterference between incomparable levels, as this stricter notion also
takes effects such as caching, pipelining, etc. into account.

From the various works that extend the work by Devriese and Piessens, the
most related to our work are those from Cormac Flanagan. Inspired by SME,
Austin and Flanagan proposed the use of values with multiple facets (MF) to sim-
ulate computations from multiple executions on a single value [8]. By allowing
a single variable to represent different values for different security classifications,
they can replace multiple executions with fewer, more powerful executions, which
increases the overall enforcement effectiveness. In their overview paper, Bielova
and Rezk compare the security and transparency guarantees from different en-
forcement approaches, including SME and MF [16]. They conclude that SME is
more secure and more transparent than MF.

Schmitz et al. later improve on their method, with the introduction of faceted
Secure Multi-Execution (FSME) [71]. FSME aims to use efficient multiple facets
enforcement as long as possible and only falls back on more expensive Secure Multi-
Execution when one execution branch seem to have diverged. Thus, their approach
improves the termination-sensitivity guarantees compared to the multiple facets
approach, while being more efficient than pure SME.

Our optimizations are inspired by the FSME approach, but differ in the re-
alization. While Schmitz et al. target programs written in Haskell, we focus on
programs in machine code. Consequently, we cannot make the same adaptions
to the language semantics as the authors of FSME, as that would imply changes
to the hardware. Additionally, FSME comes with a simple merging mechanism
for executions from different branches. On the one hand, Haskell is a structured
languages, which simplifies the definition of control-flow merge points in the pro-
grams. Furthermore, where the values of two variables differ in two merging states,
they can be replaced by a faceted value representing both options. In contrast to
this, we require static analysis to define merge points of the control flow, as ma-
chine code is unstructured. Even worse, we cannot simply merge two states as

3.1. Multi-Execution Enforcement 35

machine code does not support faceted values. Thus, we have to decide on one of
the two states to continue execution, as we discuss more thoroughly in Chapter 7.
More recently, Algehed et al. proposed more optimizations for the faceted Secure
Multi-Execution approach [3]. Yet, as these again require support of faceted val-
ues, they do not apply in our scenario. Interestingly, they independently propose
a mechanism to remove unnecessary views that uses developer knowledge similar
to our bounding optimization. In their most recent work from this year, Algehed
and Flanagan prove that transparent information flow control (IFC) is intimately
linked to multi execution and, unfortunately, pose the conjecture that transparent,
and secure black-box IFC cannot be efficient in the general case [2]. Yet, they note
that it is still be applicable in our case and that the situation may be helped by
integrating static analysis results.

Another similar approach is that of lightweight dual execution (LDX) by Kwon
et al. [47]. Here, the authors propose to use two executions to infer which events
causally depend on which preceding event. The two execution are executed in tight
lock-step and are provided the same inputs, except for the event in question. The
idea bears similarity to the definition of strong dependency by Cohen et al. [26],
who propose that an event e1 depends on another event e2 when variety in e2
carries to event e1. The LDX approach allows to detect information leaks and
other security attacks, but does not thwart them.

An early version of multi-execution based confidentiality enforcement for ma-
chine code has been proposed by Capizzi et al. [20]. In their shadow execution
approach, the target program is executed twice, with each execution in an iso-
lated environment based on virtualization. Consequently, their approach comes
with far greater resource requirements than ours and does not allow fine-grained
optimizations such as our dynamic instancing or bounding approach. It is limited
to two classification levels. Another early approach is proposed by Yumerefendi
et al. with their TightLip system [88]. Similar to SME and shadow execution,
TightLip uses a sandboxed doppelganger process, which is created dynamically
when sensitive information is read. The doppelganger is fed dummy information
and both executions continue as usual. When the two processes try to write dif-
ferent outputs, the original execution is replaced by the doppelganger, effectively
mitigating the leak. Yet, as the doppelganger lacks the actual input, subsequent
messages to authorized users will become intransparent. More false positives may
be produced when the doppelganger takes a different execution path due to the
dummy input, leading to similar problems as with the termination-insensitive mul-
tiple facets approach. In contrast to our work, both systems focus on detecting
leaks, but cannot always recover from them.

Many more multi-execution engines exist for machine code with the aim of

36 Chapter 3. Related Work

guaranteeing control-flow integrity instead of confidentiality. In this case, the
same input is fed to slightly altered variants of the target program [27]. When
different output is produced, it must be due to interference between the user input
and the introduced variations. Zhang et al. provide an overview of the different
techniques [91]. In work outside the scope of this thesis, we contributed to the field
with a mechanism to detect differences in the control-flow when they occur [64].
The approaches usually only work with a small number of variants and use a
simple record and replay approach to multiply inputs [84]. Unfortunately, these
techniques do not apply in our scenario where executions are allowed to diverge.

3.2 Language-Based Enforcement

Earlier work in the field follows the certification approach from Denning and Den-
ning [31]. Their groundbreaking work focuses on verifying the confidentiality of
a target program based on its operational semantics. The idea is to provide a
compile-time checking routine to guarantee confidentiality by design. As such, it
is not suited to enforce confidentiality of pre-compiled targets, yet it has inspired
field of language-based information-flow security [67]. Consequently, many tools
have been produced to develop applications with confidentiality in mind.

For example, Barthe et al. propose to use self-composition to verify confiden-
tiality in programs [12]. The idea is to duplicate the statements in the target
program with fresh variables and then use Hoare logics to prove equality of public
memory after termination. They also discuss the use of more sophisticated sep-
aration logic, which extends Hoare logic to include references to heap-allocated
objects [66]. While Barthe et al. state that their approach is not decidable in
general, they propose its use to automate or shorten confidentiality proofs. In this
regard, Terauchi and Aiken argue that such an optimistic prospect is unrealistic
in practice [82]. They used the self-composition approach together with state of
the art verification tools but where able to find unsolvable examples.

The idea of self-composition caters to the characterization of noninterference
as a hyperproperty [25]. Because it requires at least two traces to identify an
interference, Terauchi and Aiken consider it a 2-safety property. Hamlen et al.
show that similar properties, such as their secret file property, are not enforce-
able by either static analysis nor single-trace run-time monitoring [40]. Yet, they
show that enforcement can be achieved through program rewriting, hinting at
multi-execution based solution. Ngo et al. show that it is impossible to enforce
termination-sensitive noninterference, when attackers can observe the actual ter-
mination of the target [59]. Instead, they propose to settle for the enforceable

3.3. Binary Analysis 37

indirect termination-sensitivity, where termination can only be inferred by the
absence of outputs.

With the rise of Secure Multi-Execution, Barthe et al. also show how pro-
grams can be statically transformed to adhere to the Secure Multi-Execution se-
mantics [13]. Because we focus on low-level languages that are hard to rewrite
statically [14,85], we follow Devriese and Piessens in transforming the target dur-
ing run-time. In this framework, our optimizations can then be understood as a
form of run-time partitioning.

Other approaches make use of extended type systems, which can be checked
during compilation. For example, JIF [46, 57] for Java, FlowCaml [76] for Caml,
the SPARK Examiner for Ada [22], and most recently F* [52]. However, these do
not cover the frequently used languages from the C family and can only guarantee
security within the application code. Tools exist to validate confidentiality for
Java [78] based on dependence-graphs. This, however, is unlikely to be feasible
for compiled code, where dependencies are much harder to analyze [10]. For Java
bytecode used in Android devices, information flow analysis can be done using
taint tracking [5,36,38], which can also be done for machine code [39]. This could
be a promising approach to defining boundaries in the future but cannot on its
own precisely determine malicious flows [21,72].

A good overview of dynamic techniques before 2007 can be found in LeGuernics
thesis [50]. Bielova and Rezk compare no-sensitive upgrade [90] and permissive up-
grade [7] with SME and MF [16]. Their results show that these single-execution
monitoring approaches are less secure and less precise than multi-execution based
enforcement. Static analysis results can be used to make the monitor more per-
missive, leading to hybrid monitoring [50]. Yet, such approaches still only allow
for mitigation of leaks, not for their repair. As Kashyap et al. note, mitigation
does not actually enforce noninterference but merely makes it less harmful [42].

3.3 Binary Analysis

As low-level code does not support types and lacks a range of other supporting
features of high-level languages, information flow analysis and certification for
binary targets is more difficult to achieve. The interest goes back to decompilation
efforts, for example by Cifuentes and Gough in 1995 [23], with the goal to recover
high-level code from compiled targets. Such a solution would open legacy code to
all kinds of source-code analyses, optimizations, and transformations. Yet, because
of the complexity of the problem, much is still done through potentially unsound
heuristics. In a recent overview study, Andriesse et al. show that while some

38 Chapter 3. Related Work

binary analysis tools achieve very precise results, none is reliable for higher levels
of optimization and most are poor on function start recognition [4].

The compared approaches include simple, heuristics-based approches [29, 73]
that are incapable of precisely resolving indirect jump targets [35, 48]. Resolving
indirect jump targets requires precise data-flow and points-to analysis, which is
hard to achieve. Yet, precise a CFG is not always necessary, for example when
looking for vulnerabilities instead of proving their absence. Thus, in their paper
on Bitblaze [79], Song et al. connect unresolvable branches to a special node, that
allows Bitblaze to recognize unsound results in later stages. Yet, where sound
analysis results are required, more advanced techniques are needed.

In CodeSurfer/x86 [10], Balakrishnan et al. use their value set analysis (VSA)
approach first described in [9]. In VSA, the machine code is interpreted in an
abstract domain that overapproximates all reachable memory states. Kinder et al.
proposed a similar approach with their work on Jakstab [43]. Based on the work
by Flexeder et al. on inter-procedural control-flow reconstruction [35], Miahila
devised a hierarchical structure of cofibered domains to increase the precision of
VSA-based control-flow and data-flow anlyses [55]. Additional binary analysis
frameworks exist, such as Binoca [11,34] or BAP [18,19].

Lately, approaches based on symbolic execution have gained attention [74,75].
These are mostly used to prove the presence of vulnerabilities and do not aim
for full coverage of the control flow. Milushev et al. used symbolic execution to
create abstract models of the possible output bevhavior of compiled targets [56].
These can be used to detect interference by a self-comparison, similar to the self-
composition approach on source code. Yet, due to the poor scalability of current
symbolic execution engines, the greatest program in their evaluation set contains
only 430 instructions. In contrast to this, we successfully enforce confidentiality
for the cat binary with over 16000 instructions.

Current trends focus on parallelizing the analyses to achieve better scalabil-
ity [53]. A better scaling and more precise binary analysis solution would help our
approach to allow for automatic extraction of boundary conditions, as described
in Chapter 9.

3.4 Summary

The related work show the intricate nature of confidentiality enforcement for ma-
chine code. What may seem straightforward at first, is actually uncharted territory
in many different ways. First, much discussion revolves around which kind of confi-
dentiality can be enforced by which enforcement mechanism, and with which kind

3.4. Summary 39

of transparency. Here, multi-execution based approaches such as Secure Multi-
Execution are most promising, as they offer strong security and high transparency.
Yet, recent works suggest that the inherent inefficiency may be irreducible in the
black-box case. This points to solutions that make use of static analysis results
to increase the efficiency, such as our optimizations. Unfortunately, while static
analysis is well-researched on higher-level languages, low-level languages still pose
difficult challenges. Much work has focused on finding violations of the integrity
of the control flow, leaving methods to proof the absence of data leaks for future
work. Still, the current results are sufficiently precise to aid developers in providing
the information needed for our approach.

40 Chapter 3. Related Work

Part I

Confidentiality Enforcement for
Machine Code

42

Overview

The problem addressed in this thesis is that software that includes preexisting com-
ponents may inherit insecure behavior from them. Thus, a protection mechanism is
needed to enforce confidentiality across all components in the system. The solution
that we propose is based on the concept of Secure Multi-Execution, as introduced
by Devriese and Piessens in their seminal paper [32]. Secure Multi-Execution has
been formally proven to guarantee timing-sensitive noninterference [65]. It has
also been proven to achieve per-channel transparency [65], making it the most
secure enforcement mechanism with high transparency [16]. Recent work suggests
that multi-execution is a shared feature of all transparent information flow control
systems [2].

Yet, two key challenges prevent the wide-spread use of Secure Multi-Execution
up to now. First, while there exist implementations for high-level languages such
as JavaScript [32] or Haskell [41], no practical solution exists to protect compiled
components with Secure Multi-Execution. Second, due to the required multi-
execution of the target system, Secure Multi-Execution is very inefficient. With
the technique based around executing the target system once per security level,
the enforcement overhead grows substantially with the complexity of the target
and number of levels.

In this part, we present our solution in six steps. First, in Chapter 4, we
introduce a running example program to demonstrate the problem addressed in
this thesis. We provide a compiled form of the program in Section 4.2, extending
the machine code semantics from Section 2.3 with semantics for interaction with
the operating system. Using this example, we show how information leaks can
occur and connect the results to a real-world implementation of the example in
Section 4.4.

Then, in Chapter 5, we show how we apply the concept of Secure Multi-
Execution to machine code. We execute the target multiple times and intercept
I/O-requests from the the individual executions. We then alter the input and
output semantics according to Secure Multi-Execution semantics. As a result, we

44

(a) Secure Multi-Execution
(b) Dynamic Instancing (c) Dynamic Instancing

and Bounding

Figure 3.1: Schematic comparison of our SME optimizations

accomplish our goals of practical, secure and transparent enforcement. We demon-
strate this in Section 5.3, where we apply our solution to the running example.

Yet, Secure Multi-Execution is known to be inefficient, as illustrated in Fig-
ure 3.1a. The key idea to our optimizations is to reduce redundant computations
in two ways. On the one hand, we create as few executions a possible and do so
only when needed. We achieve this through our dynamic instancing optimization,
as described in Chapter 6. Here, executions are created only when information
from a hitherto unserviced level is obtained, as illustrated in Figure 3.1b. As we
show in Section 6.4, our optimization roughly halves the enforcement overhead for
our example.

Furthermore, we terminate as many executions as early as possible, as illus-
trated in Figure 3.1c. We introduce our bounding optimization in Chapter 7.
Unfortunately, early termination of executions may break the functionality of the
target. This requires the definition of termination conditions, called boundaries,
that define when it is safe to terminate an execution. Assuming a definition of the
boundaries for the running example, our optimization again roughly halves the
overhead, as we show in Section 7.4.

Our Bounding Optimization may introduce a dependency between executions
at lower levels and executions at higher levels. This could lead to a delay that
can be exploited to leak information through the timing side-channel. Thus, we
introduce a timing-sensitive scheduler in Chapter 8 that guarantees both timing-
sensitive security and per-channel transparency, while enabling increased efficiency
through our optimizations.

Finally, we outline our contributions to static binary analysis in Chapter 9. A
a precursor to automatic extraction of boundary conditions from binary code, we
introduce a heuristic to resolve indirect calls during control-flow reconstruction.
This allows us to increase the precision of extracted control-flow graphs. These can
be used to identify merge points in the unstructured code, from which boundary
conditions can be derived.

Chapter 4

Threat Model

In this section we motivate the threat scenario and illustrate leaks due to dif-
ferent kind of flows. We introduce an insecure example program, which we also
use throughout the rest of the thesis to illustrate our confidentiality enforcement
approach. The example follows the motivation outlined in the introduction of
this thesis. It is a combination of high-level code, under control of the developer,
and low-level library code, included but not under control of the developer. To be
functional, sensitive information must be passed to the low-level component, which
may then leak the information with our without malicious intent. We assume that
either identifying the insecurities in the included library code is too costly or com-
plex, or that the developer has no alternative to including the insecure library.
This motivates the requirement for an automatic, program-wide confidentiality
enforcement method that guarantees confidentiality across all components of the
software system.

4.1 Decryption Service

As the running example of this thesis, we consider a service that has the function-
ality to decrypt encrypted data from different sources with a given key. Crypto-
graphic algorithms are hard to implement efficiently, prone to side-channel attacks,
and crucial to get right. It is therefore advised to use an existing implementation,
in this case shipped in the form of a pre-compiled library. The library requires
the key as input, as well as an identifier to select the ciphertext input and deter-
mine the plaintext output channel. When executed, the library reads the selected
ciphertext, performs the decryption using ciphertext and key, and writes the result-
ing plaintext to the plaintext location. For the sake of the argument, we assume

46 Chapter 4. Threat Model

Key Encn

Decn Log Stat

n
decrypt

Log

Figure 4.1: Information flow schematic of the example program

that the library additionally produces debug and statistical information, e.g. for
performance profiling or code maintenance. Since the library can only decrypt
one ciphertext at a time, it is called in a loop until all ciphertexts from different
sources have been processed.

Figure 4.1 illustrates the architecture of the example and involved channels as a
Hasse diagram. The first component, which is under control of the developer, reads
in the key and calls the decryption function, implemented in a black-box library.
All that is known to the developer about the information flows in the library is that
it requires the key information, that input from the ciphertext channel Enc can be
obtained, and that output may be written to the plaintext channel Dec, as well as
to the logging channel Log and the statistics channel Stat. Since ciphertext from
multiple sources may be processed, the library is executed in a loop, reusing the key
information. Thus, there may be n ciphertext and plaintext channels, where n is
the number of sources to be processed. When all sources have been processed, the
third component, again under control of the developer, writes a final confirmation
message to the Log channel and the program terminates. Conclusively, a maximum
of 2n+ 3 channels are involved in the execution of the program.

The security lattice used to classify the channels in this example is illustrated in
Figure 4.2. It is the consequence of various constrains that arise from the scenario.
First, it is clear that the ciphertext channel cannot be classified higher than the
key channel. Otherwise, users with access to the ciphertext would also be granted
access to the key, which consequently grants them access to the plaintext (assuming
that the cryptographic routine is not a secret itself). On the other hand, users
with access to plaintext implicitly need access to information about the key and
the ciphertext, as the plaintext depends on it. Yet, access to one plaintext should
not imply access to all ciphertexts. Therefore, access to key information should not
include access to ciphertext information. Thus, key and ciphertext are classified
with incomparable levels, but both are less classified than plaintext information.
Additionally, the logging information should be readable by anyone and thus not

4.1. Decryption Service 47

Log

Enc1

Dec1

Key Enc2

Dec2

Stat

.

Figure 4.2: Security lattice for the decryption service

contain any information about the key, ciphertexts or plaintexts. Conversely, the
statistical information may combine information from all plaintexts and thus must
have the highest classification. Note that while the size of the lattice depends on
the number of sources in a run of the program, we assume that it is fixed and
finite.

Whether or not sensitive information may leak through the library depends on
its code. Unlike the developer, who has no knowledge of this code, the attacker
does control the library in our scenario. Thus, the library could be arbitrarily
complex, include additional malicious features, or be obfuscated against analysis.
Yet, as we show here, information may also leak from a simple, straight-forward
implementation of the required functionality. Thus, we assume the simple imple-
mentation as represented in pseudo-code in Listing 4.1.

We assume that decryption is impossible if no key is provided. Thus, if this
is the case, the library logs an error code (i.e. -1) and returns immediately.
Otherwise, the ciphertext is read in from the Enc channel, specified as an argument.
The plaintext is then computed using the ciphertext, the key, and a cryptographic
operation, denoted with ⊕ here. Subsequently, the plaintext is written to the
specified decrpytion channel Dec, and the length of the plaintext is written to the
statistics channel. Finally, the length of the key is logged for debugging purposes.
As a whole, this code achieves the behavior as required above.

48 Chapter 4. Threat Model

1 decrypt (key , Enc , Dec):
2 if (key) then
3 ciphertext := in(Enc);
4 plaintext := key ⊕ ciphertext ;
5 out(Dec , plaintext);
6 out(Stat , length(plaintext));
7 out(Log , length(key));
8 else
9 out(Log , -1);

Listing 4.1: Pseudo-code of the library

4.2 Compiled Form

When compiled, the pseudo-code implementation from Listing 4.1 is turned into
the low-level representation shown in Listing 4.2. We express this implementation
in our machine code semantics as outlined in Section 2.3. First, the arguments are
stored in memory and the sum of processed bytes is initialized with zero. Then, the
length of the key is checked to ensure that a non-empty key has been provided. If
this is is not the case, then an error code is written to the Log level and the library
returns. Else, the ciphertext is obtained (lines 32-37), the decryption operation is
called (line 42), and the plaintext is written to the decryption channel (lines 43-47).
Finally, the total number of decrypted bytes is written to the Stat channel (lines
50-53) and the key length is logged (lines 54-57). Then, the execution returns from
the library in line 58.

The low-level implementation differs from the high-level pseudo-code in three
important ways. First, it lacks functions and structure, instead using the goto-like
jump instruction to model complex control flow and specific argument registers to
pass arguments to called functions as well as the special retval register to return
results (similar to the System V AMD64 ABI of modern Linux systems [51]). We
also use the argument registers to pass the encryption and decryption channels
from the main object to the library. Second, variables holding strings are inter-
preted as pointers to arrays of fixed size. Thus, the ciphertext is decrypted in
chunks of 100 bytes, as shown in line 35. The decryption loop, between lines 32
and 49, is broken when no more input is obtained. This is the case when the read
system call from line 36 returns 0. Third, input and output is handled via calls to
the operating system. Thus, we add a syscall instruction to our machine code
model and provide the semantics for input and output functionality in Semantics
4.1.

49

22 [enc] := arg1
23 [dec] := arg2
24 [sum] := 0

25 jcc ([key_len] > 0) 32
26 sysno := write
27 arg1 := Log
28 arg2 := -1
29 arg3 := 1
30 call 20
31 jmp 58

32 sysno := read
33 arg1 := enc
34 arg2 := encoded_str
35 arg3 := 100
36 call 20
37 [encoded_len] := retval

38 jcc ([encoded_len] == 0) 50
39 arg1 := key_str
40 arg2 := encoded_str
41 arg3 := decoded_str
42 call ⊕
43 sysno := write
44 arg1 := dec
45 arg2 := decoded_str
46 arg3 := encoded_len
47 call 20
48 [sum] := [sum] + [encoded_len]
49 jmp 32

50 arg1 := Stat
51 arg2 := sum
52 arg3 := 1
53 call 20
54 arg1 := Log
55 arg2 := key_len
56 arg3 := 1
57 call 20

58 return

Listing 4.2: Library object code

50 Chapter 4. Threat Model

Read-Iterate

ρ ` (syno,arg1,arg2,arg3) ⇓ (read,c,b,n)
n > 0 e(c) = v v 6= � µ′ = µ[b← v]

ρ′ = ρ[arg3← (n−1),arg2← (b+ 1), tmp← ρ(tmp) + 1]
e,Σ ` ρ,µ,pc,syscall c?v−−→ ρ′,µ′,pc,syscall

Read-Stop

ρ ` (syno,arg1,arg2,arg3) ⇓ (read,c,b,n)
n≤ 0∨ e(c) = � ρ′ = ρ[retval← ρ(tmp), tmp← 0]

e,Σ ` ρ,µ,pc,syscall •−→ ρ′,µ,pc+ 1,Σ[pc+ 1]

Write-Iterate

ρ ` (syno,arg1,arg2,arg3) ⇓ (write,c,b,n) n > 0 v = µ(b)
ρ′ = ρ[arg3← (n−1),arg2← (b+ 1), tmp← ρ(tmp) + 1]

e,Σ ` ρ,µ,pc,syscall c!v−→ ρ′,µ,pc,syscall

Write-Stop

ρ ` (syno,arg1,arg2,arg3) ⇓ (write,c,b,n) n≤ 0
ρ′ = ρ[retval← ρ(tmp), tmp← 0]

e,Σ ` ρ,µ,pc,syscall •−→ ρ′,µ,pc+ 1,Σ[pc+ 1]

Semantics 4.1: System call semantics for input and output

The syscall instruction handles all kinds of requests to the kernel and thus
provides a range of functionalities. Since the instruction takes no argument, the
functionality is chosen by assigning platform-specific identifiers to a special reg-
ister, represented by the sysno register. Here, we focus on the read and write
system calls, which represent input and output functionality. Arguments to the
system calls are also taken from the special argument registers arg1...3. In case of
a read system call, the arguments specify the channel c, the buffer location b, and
the maximum input length n. Input is then obtained by taking values from the
environment and storing them at the buffer location b. After each input value, the
buffer location is increased by one and the number of requested bytes decreased by
one. Additionally, an internal counter register tmp is also increased by one, to later
return the total number of bytes read. Once the channel is depleted, meaning an
EOF-signal (denoted �) is returned, or the required input length has reached zero,
then the return value register retval is set to the counter stored in tmp (which is
subsequently reset to 0) and the program continues. Following these semantics,
the read system call loops until the requested amount of input is obtained or the
channel is depleted. The write system call is analogous to the read system call.
The system call may also block on input when it is obtained from streams such as
network sockets. We show how we handle blocking stream input in Appendix C.

4.2. Compiled Form 51

1 sysno := read
2 arg1 := Key
3 arg2 := key_str
4 arg3 := max_key_len
5 call 20
6 [key_len] := retval

7 [i] := 0
8 jcc ([i] == nchannels) 14
9 arg1 := [enc_channels + [i]]

10 arg2 := [dec_channels + [i]]
11 call 22
12 [i] := [i] + 1
13 jmp 8

14 sysno := write
15 arg1 := Log
16 arg2 := "·"
17 arg3 := 1
18 call 20

19 return

20 syscall
21 return

Listing 4.3: Main object code

Because the syscall instruction provides different kernel functionality, it is
usually wrapped by library functions to provide error handling, improve perfor-
mance, enrich the functionality, add buffering etc. We reflect this behavior in our
example by using a single syscall instruction that is called from different points
in the code. The syscall wrapper is located on line 20 in the main object code,
shown in Listing 4.3. The main object code contains the entry point and repre-
sents the component under control of the developer. It starts with obtaining the
key from the Key channel (lines 1-6). We then enter the main loop that advances
through the the encryption and decryption channels and calls the library function
for each (lines 7-13). This main loop terminates when all nchannels have been pro-
cessed. When this is the case, the main object finally prints a termination symbol
to the Log channel (lines 14-18), indicating termination of the service, and exits.

52 Chapter 4. Threat Model

4.3 Leaks

An explicit flow, meaning an information leak through data flow, occurs in the li-
brary when the length of the key information is written to the log file. This allows
users not authorized to access key information to infer information about the key.
To show that this behavior violates progress-sensitive noninterference (PSNI), and
thus also timing-sensitive noninterference (TSNI), we consider two executions with
no input on the Log channel. We assume that e1(Log) = e2(Log) = Log?�, and
some encryption input, e1(Enc1) = e2(Enc1) = Enc1?a : Enc1?�. Yet, the envi-
ronments provide keys of different lengths, such that e1(Key) =Key?x :Key?� 6=
e2(Key) =Key?x :Key?x :Key?�. We thus get e1 |= s

ā1−→=⇒ ā1 �!,Log,•= Log!1 :
Log!· and e2 |= s

ā2−→=⇒ ā2 �!,Log,•= Log!2 : Log!·. These executions violate PSNI
because e1 =Log e2 ; ā1 =!,Log,• ā2.

An implicit flow, meaning an information leak through control flow, occurs in
the library when no key is provided. In this case, the error value -1 is written to
the log file. This violates PSNI, when compared to a trace with key information.
Assume e3(Log) = e1(Log) and e3(Key) =Key?�. Then e3 |= s

ā3−→=⇒ ā3 �!,Log,•=
Log!−1 : Log!·. And thus e1 =Log e3 ; ā1 =!,Log,• ā3.

Next, we consider the more covert leaks through termination and timing. Infor-
mation leaks through the termination channel when the execution does not return
from invocation of the library. To illustrate this, we assume that the cryptographic
operator ⊕ diverges when the key is the value 0. Then, we assume e4(Log) =
e1(Log) and e4(Key) = Key?0 : Key?�. Thus, e4 |= s

ā4−→ =⇒ ā4 �!,Log,•= ε and
therefore e1 =Log e4 ; ā1 =!,Log,• ā4.

Alternatively, when we assume that the cryptographic operator ⊕ terminates
abnormally when the ciphtertext is 0, then we leak information about the ci-
phertext through the termination behavior. Assume e5(Log) = e6(Log) = Log?�,
e5(Key) = e6(Key) = Key?x : Key?�, e5(Enc1) = Enc1?0 : Enc1?�, e6(Enc1) =
Enc1?1 : Enc1?diamond, and e5(Enc2) = e6(Enc2) = Enc2?2 : Enc2?�. Then
e5 |= s

ā5−→ =⇒ ā5 �!,Dec2,•= Key?x, as the execution terminates abnormally be-
fore the second ciphertext is processed. However, e6 |= s

ā6−→ =⇒ ā6 �!,Dec2,•=
Key?x : Enc2?2 : Dec2! . . ., and thus e5 =Dec2 e6 ; ā5 =!,Dec2,• ā6. Note that the
abnormal execution is also visible on the Log channel, which constitutes another
leak through the termination channel.

Information leaks due to timing occur when the timestamps of equal out-
puts are different under the same low inputs. This is even more elusive than
termination attacks and depends on the formalization. Yet, assuming that only

4.4. Attacks 53

the ⊕ operator takes time proportional to the input, it is clear that information
leaks about the presence and length of ciphertexts. Assume e7(Log) = e6(Log),
e7(Key) = e6(Key), e7(Enc2) = e6(Enc2), but e7(Enc1) = Enc1?� 6= e6(Enc1).
Then e7 |= s

ā7−→ =⇒ ā7 �!,Dec2,
−→• = Key?x : • : Enc2?2 : Dec2! Thus e7 =Dec2

e6 ; ā7 =!,Dec2,
−→• ā6.

To show that these theoretical leaks also occur in practice, we implemented the
example in C and compiled it into a binary. We use the binary to test the attacks
in practice and discuss the results next. We use the binary again throughout the
rest of the thesis, to demonstrate the practicality of our enforcement approach.

4.4 Attacks

In practice, the progress-sensitive attacks can be validated by finding pairs of
inputs that are the same for all levels below or equal to some ` but produce
different output for that level. Thus, we execute seven different attacks to show
that leaks through explicit, implicit, termination and timing are possible in the
example. The results are shown in Table 4.1, where one test case consists of two
different inputs.

Case 1 shows that the same inputs lead to the same outputs across all levels,
demonstrating that the program is deterministic. This is a prerequisite for nonin-
terference, as it allows to attribute differences in the output to differences in the
input. Case 2 shows that a different key leads to different decryption and logging
results. This does not violate progress-sensitive noninterference (PSNI) for the
decryption channels Dec1 and Dec2, as the key is classified lower than these levels.
Thus, regarding these channels the prerequisite of equal low inputs is not given.
It does however violate PSNI for the Log level, as here the prerequisite is satisfied
but the outputs differ. This attack shows an illegal explicit flow. Case 3 shows an
illegal implicit flow. As demonstrated, the presence or absence of the key leads to
different logging output. Unlike case 2, this is a consequence of diverting control
flow instead of different data.

Cases 4, 5 and 6 show leaking through (non-)termination. To collect the results,
we terminate the execution after a sufficient timeout has been reached. In case 4,
the zero in the key leads to an immediate divergence of the execution. Thus, no
output is produced on any channel. Yet, this only violates PSNI on the Log level,
as all other levels have access to the key information and thus this behavior is ex-
pected. In case 5, a zero in the first ciphtertext leads to divergence. Consequently,
the second ciphertext is not decrypted and no logging output is produced. Both
effects are illegal, as users without clearance for the first ciphertext could infer

54 Chapter 4. Threat Model

Inputs Outputs
Key Enc1 Enc2 Dec1 Dec2 Log Stat

1 key ikoupgnp epjunvutv sometext othertext 3 3 . 8 9
key ikoupgnp epjunvutv sometext othertext 3 3 . 8 9

2 abcd ikoupgnp epjunvutv ilqxphps eqlxnwwwv 4 4 . 8 9
key ikoupgnp epjunvutv sometext othertext 3 3 . 8 9

3 ikoupgnp epjunvutv -1 -1 .
key ikoupgnp epjunvutv sometext othertext 3 3 . 8 9

4 0 ikoupgnp epjunvutv
key ikoupgnp epjunvutv sometext othertext 3 3 . 8 9

5 key 0 epjunvutv
key ikoupgnp epjunvutv sometext othertext 3 3 . 8 9

6 key ikoupgnp 0 sometext 8
key ikoupgnp epjunvutv sometext othertext 3 3 . 8 9

7 key ikou... epjunvutv some... othertext 3 3 . 8000 9
key ikoupgnp epjunvutv sometext othertext 3 3 . 8 9

Table 4.1: Exemplary attacks and timing-insensitive results

from these results that the first ciphertext contains a zero. Thus, this is an illegal
flow from Enc1 level to Log and to Dec2 level. In case 6, the divergence occurs
after the first ciphertext has been processed. Thus, only the missing output to
Log constitutes an illegal flow here. Note that all three cases look the same when
observing the logging output. Thus, the attacker could not differentiate between
them. Additionally, since this is a termination attack, the attacker cannot know
if the execution diverged indefinitely or will eventually return with a result. How-
ever, it is reasonable to assume that an attacker aware of the library code can
eventually make that decision with high confidence.

The last test case, case 7, demonstrates a leak through the timing-channel.
Here, the first ciphertext is repeated multiple times. As shown, this does not
adversely affect any outputs, making this test case PSNI-secure. Yet, the different
size of the input does affect the timing behavior. We demonstrate the deviation
of the timestamps of the last output to the decryption and logging channel for
different sizes of the first ciphertext in Figure 4.3. Although we keep the size
of the Enc2 input constant, a delay proportional to the input size of Enc1 can be
detected in the timestamps of the last output to Dec2. The same is true for the last
output to the Log channel. This shows that the example is not timing-sensitively
noninterferent.

4.5. Summary 55

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·105

0

2 ·10−2

4 ·10−2

6 ·10−2

8 ·10−2

0.1

0.12

Size of Enc1 input in bytes

T
im

e
to

la
st

ou
tp

ut
on

ch
an

ne
li

n
s Dec2

Log

Figure 4.3: Exemplary timing-attacks

4.5 Summary

The example presented in this section demonstrates the problem addressed in this
thesis. It represents a software product that is developed using existing compo-
nents. However, the included code is no confidential. It allows to leak information
between levels of a security lattice through various channels. Information may
leak explicitly, meaning that data with lower classification flows to an output on
a channel with higher classification. Furthermore, information may leak implic-
itly, meaning through observable changes in the output behavior to lower channels
depending on information from higher channels. Internally, this is the result of
control flow that depends on sensitive information. Finally, information may also
leak through the termination and timing behavior.

Yet, the developer may still wish to include the library, either because the in-
securities are unknown or because no better alternative exists. To achieve system-
wide confidentiality, this requires an enforcement approach that can be applied
to compiled code. In the following, we demonstrate how we enforce confidential-
ity for machine code using concepts from Secure Multi-Execution. This allows

56 Chapter 4. Threat Model

us to transform the semantics of the insecure library at run time, yielding secure
behavior while the intended functionality remains unaltered. Because this solu-
tion comes with high resource demands, we introduce further optimizations that
increase the enforcement efficiency. Together with our timing-sensitive schedul-
ing, this eventually leads to our enforcement method that efficiently guarantees
security and transparency for machine code components, including the example
demonstrated here.

Throughout the discussion of our enforcement approach, we come back to the
example to illustrate the effect on the security, transparency, and efficiency of our
contributions. We reuse the attack cases to show how progress-sensitive noninter-
ference for explicit, implicit, and termination-leaks is achieved and we reuse the
timing-attack to demonstrate how timing-sensitive noninterference is guaranteed.

Chapter 5

Secure Multi-Execution for
Machine Code

With our work, we aim to provide a timing-sensitive confidentiality enforcement
that does not alter the outputs of secure parts of the program. A promising method
to achieve these requirements is Secure Multi-Execution (SME), illustrated in Fig-
ure 5.1. Under SME enforcement, the target program is executed multiple times,
once for each security level. The input semantics for each execution are changed
such that executions can only obtain input from channels with equal or lower secu-
rity level. Additionally, the output semantics are changed such that executions can
only produce output on channels with equal security level. Together, this ensures
that output on channels at any level has been produced by an execution that never
had access to input from channels with higher classification. Thus, noninterference
is guaranteed by design.

The problem when applying Secure Multi-Execution to machine code is that
it is not trivial to change the semantics of the target. Existing solutions focus
on Javascript or Haskell, where the interpreter semantics can be altered to secure
programs. In machine code, the language semantics are defined by the hardware.
Thus, changes to the semantics would require changes to the processing unit.
Alternatively, the target program itself could be rewritten. Yet, binary rewriting
is a complex task and unlikely to be feasible in a transparent way.

We solve the problem and provide the first implementation of Secure Multi-
Execution for machine code with a monitoring approach. With our monitor, we
intercept communication between the target and the operating system through the
ptrace mechanic. When we intercept a system call at run time, we have access to
the full state of the execution, including the type of the system call and provided
arguments. We then identify channels with file descriptors and classify them based

58 Chapter 5. Secure Multi-Execution for Machine Code

(a) Native

(b) Secure Multi-Execution

Figure 5.1: Schematic comparison of unprotected and SME-protected execution

on the resource that they provide access to. Depending on the classification of the
execution and channel, we manipulate the arguments to replace input or skip out-
put. When dummy values need to be provided, we redirect the input request to a
shared file descriptor that we inject into the target program. To support protec-
tion against input-delay attacks and input side-effects, we furthermore implement
a virtual filesystem that allows to block executions until input is available.

To show that our implementation achieves timing-sensitive noninterference and
per-channel transparency for targets in compiled form, we apply our prototype to
the running example introduced in Chapter 4. Our results in Section 5.3 show
that our implementation thwarts all attacks outlined in Section 4.4, including leaks
through the timing-behavior. At the same time, outputs from secure behavior are
unaltered. Thus, we fulfill our goals of security, transparency and practicality with
our application of Secure Multi-Execution to machine code. Yet, as we show, this
solution comes with a high enforcement overhead. Thus, in the following chapters,
we introduce two novel optimizations for Secure Multi-Execution to increase the
enforcement efficiency.

5.1 Core Elements

The key assumption of our approach is that communication between environment
and application must be done via the operating system. This is the case for exam-
ple in layered operating systems such as Linux. Consequently, all communication
between environment and application can be intercepted at operating system level.
Given tool support to manipulate the requests before they are executed by the op-
erating system, we can add our run-time transformation rules as a monitoring
component. Under Linux, this can be achieved by the native ptrace system calls.
The resulting conceptual architecture of our Secure Multi-Execution monitoring is
illustrated in Figure 5.2.

Legal communication, meaning communication between an execution and chan-

5.1. Core Elements 59

OS

Exec.

Environment

Monitor

interception

manipulation

execution

adaption

return

legal communication

Figure 5.2: Secure Multi-Execution via Syscall Monitoring

nels on corresponding security levels, is merely checked by the monitor and then
patched through. This is illustrated on the right. If, however, an execution re-
quests interaction with a channel that it is not allows to access, we intercept the
request in the monitor. We then manipulate the request to nullify output, redirect
input, and perform additional bookkeeping. Next, we forward the manipulated re-
quest to the operating system to perform the manipulated action. The operating
system returns the result, which is again intercepted by our monitor. This allows
us to adapt the result, for example to hide our manipulations from the execution
or fake success. We then return the adapted result to the execution, as illustrated
on the left of Figure 5.2. All in all, this allows us to change the intended effect
while keeping the changes transparent to the execution.

Naturally, this requires that the operating system as well as our monitor can
be trusted. However, trusting the operating system is a given, as otherwise no
security can be guaranteed. With Linux as a widely used open-source operating
system and our monitor as a rather small additional component, we believe that
there is more reason to do so than to trust the plethora of third-party libraries.
Consequently, our monitoring component becomes the only target, minimizing the
trusted computing base. We give an overview of all parts that make up our Secure
Multi-Execution system in Figure 5.3.

Our enforcement system requires four inputs, the target binary, the security
lattice, a classification and dummy input. We assume that the security lattice L
is finite and does not change during execution. In our application of SME, we
furthermore identify files on the system with (abstract) channels. Consequently,
our classification π maps file paths to security levels from a given security lattice.

60 Chapter 5. Secure Multi-Execution for Machine Code

Binary
(Σ)

Lattice (L,v)

Classification
(π : Path 7→ Level)

Dummy Input (δ)

Monitoring System

Process

Level
Process

Level
Process

Level(`) Tr
an

sfo
rm

at
io

n

syscall
syscall

syscall

K
er

ne
l

syscall

Input

Output

Figure 5.3: Secure Multi-Execution based enforcement system

More complex classification systems are conceivable but not the focus of this thesis.
Finally, we define a dummy channel δ, which provides executions with declassified
information as a replacement for inaccessible input. The definition of the dummy
values is ongoing research that we leave for future work.1 Thus, we generally use
empty input if not otherwise specified.

The Secure Multi-Execution enforcement is then initiated by creating one exe-
cution per security level in the lattice L. The individual executions are scheduled
in an interleaving and fair manner, for which we use the default process sched-
uler of the operating system. Thus, we make no changes to the global Secure
Multi-Execution semantics. The instantiation of the local Secure Multi-Execution
semantics for machine code is more complex. We describe it in more detail next.

1Generally speaking, the dummy values should not lead to a crash or other abnormal behavior
of the system that breaks its functionality. For example, if some values stored in an XML
document should be protected, the dummy input should at least be a well-formatted XML
document, as otherwise the target may reject it.

5.2. Semantics 61

5.2 Semantics

The semantics of our transformation is given in Semantics 5.1. Our goal in the
definition of our transformation is to instantiate the local SME semantics with as
little alteration to the machine code semantics as possible. As we only want to
alter the behavior of input and output operations, we filter for system calls with
the appropriate request. Silent internal operations are thus left unchanged, as
shown in the Silent rule. This makes our transformation widely applicable, as
we do not need specialized rules to handle the vast range of instructions present
in low-level languages. Instead, we simply progress from the abstract state s to
s′, given the instruction ι and next instruction ι′ and emit a silent event. Thus, in
this instruction, the level of the execution, denoted by `, is ignored.

When an execution is about to execute a read system call, we intercept it and
compare the classifications. If the requested channel c has lower or equal security
level as the execution, then the input operation is permitted. Otherwise, the input
is redirected to the dummy channel, denoted by δ. This implement the Input-T
and Input-F rules from the local SME semantics as given in Semantics 2.1. Thus,
these adaptions ensure that each execution can only access information of equal or
lower classification. In our concretization, the channel c is described by the path
to the requested resource. For example if the file at /etc/passwd is requested, we
look up the file path in the user-defined classification denoted by π to derive the
security level of the resource. If no classification is given for a path, we assume
that it is unclassified (i.e. maps to ⊥).

Similarly, we intercept calls to the operating system that request write func-
tionality. Here, we look up the classification of the target channel c and perform
the write only if the execution has the same classification. When this is not the
case, we skip the output by setting the requested output amount to zero. In any
case, we return a successful write notification to the target binary to ensure trans-
parent enforcement. We achieve this by setting the return value in the retval
register with the requested n amount of bytes written.

Our adaptions to the machine code semantics are minimal yet sufficient to
instantiate the local SME semantics from Semantics 2.1. This allows us to use the
same global SME semantics, as provided in Semantics 2.2. We thus instantiate
one execution per level in the security lattice at the start of the program. The
scheduling of the executions is left to the default scheduler of the operating system,
from which we only require that it is fair, as otherwise executions may starve and
output might be lost. The complete fair scheduler (CFS) of Linux is fair [86].

62 Chapter 5. Secure Multi-Execution for Machine Code

Silent
ι 6= syscall ρ,µ,pc, ι

•−→ ρ′,µ′,pc′, ι′

π,δ,` ` ρ,µ,pc, ι •−→ ρ′,µ′,pc′, ι′

Read

ρ ` (sysno,arg1,arg2,arg3) ⇓ (read,c,b,n)
π(c)v ` ρ,µ,pc,syscall c?v−−→ ρ′,µ′,pc′, ι

π,δ,` ` ρ,µ,pc,syscall c?v−−→ ρ′,µ,pc′, ι

Read-Dummy

ρ ` (sysno,arg1,arg2,arg3) ⇓ (read,c,b,n)
π(c) 6v ` ρδ = ρ[arg1← δ]
ρδ,µ,pc,syscall δ?v−−→ ρ′,µ′,pc′, ι

π,δ,` ` ρ,µ,pc,syscall c?v−−→ ρ′,µ′,pc′, ι

Write

ρ ` (sysno,arg1,arg2,arg3) ⇓ (write,c,b,n)
π(c) = ` ρ,µ,pc,syscall c!v−→ ρ′,µ′,pc′, ι

π,δ,` ` ρ,µ,pc,syscall c!v−→ ρ′,µ,pc′, ι

Write-Skip

ρ ` (sysno,arg1,arg2,arg3) ⇓ (write,c,b,n)
π(c) 6= ` ρ′ = ρ[arg3← 0]

ρ′,µ,pc,syscall •−→ ρ′′,µ′,pc′, ι ρ′′′ = ρ′′[retval← n]
π,δ,` ` ρ,µ,pc,syscall •−→ ρ′′′,µ′,pc′, ι

Semantics 5.1: Local Secure Multi-Execution semantics for machine code

5.3 Example

To demonstrate how our Secure Multi-Execution for machine code transparently
enforces confidentiality across a composed system, we rerun the attacks from Sec-
tion 4.3 on the example. The results are shown in Table 5.1.

As demonstrated, the first case, where all input is the same, is also secure under
our Secure Multi-Execution for machine code. The same inputs on all levels lead to
the same outputs. This shows that the program is noninterferent in this case and,
more specifically, that our enforcement does not introduce any non-determinism to
the execution. Also note that the logging output is changed to the error code "-1
-1", representing a missing key. This is a consequence of the enforcement, where
the Log-level execution is not allowed to obtain the key. Consequently, to users

5.3. Example 63

Inputs Outputs
Key Enc1 Enc2 Dec1 Dec2 Log Stat

1 key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

2 abcd ikoupgnp epjunvutv ilqxphps eqlxnwwwv -1 -1 . 8 9
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

3 ikoupgnp epjunvutv -1 -1 .
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

4 0 ikoupgnp epjunvutv -1 -1 .
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

5 key 0 epjunvutv othertext -1 -1 .
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

6 key ikoupgnp 0 sometext -1 -1 . 8
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

7 key ikou... epjunvutv some... othertext -1 -1 . 8000 9
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

Table 5.1: Noninterference through Secure Multi-Execution for the example from
Chapter 4.

who are only authorized on Log level, the execution behaves as if there is no key at
all. At the same time, users with higher authorization do get the correct result on
their channels, reflecting that there was a key. This shows that our system repairs
the leaking behavior, while keeping the secure behavior unchanged. Note that this
is achieved automatically, without requiring any knowledge about the target.

Furthermore, The first case shows that we produce the same results as the
native execution for the decryption levels as well as the Stat level. Flows on these
levels are secure in the original execution, thus, producing the same outputs is
required for per-channel transparency. Output on the Log level is the result of
implicit and explicit flows, as described in Section 4.3. Thus, we cannot produce
the same outputs as the native execution here, as this would mean reproducing
the insecurity. Different outputs on the Log-level are thus a desired consequence
of the enforcement.

Naturally, regarding the top level, any program behavior is secure. As users
with maximum clearance are allowed to see all information, there is no reason for
us to change the output on their level during enforcement. In fact, due to the
construction of Secure Multi-Execution, the top-most execution only differs from
the native execution in that we only take the top-level outputs from it. Therefore,
as it is implied by per-channel transparency, we also achieve top-level transparency

64 Chapter 5. Secure Multi-Execution for Machine Code

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·105

0

0.1

0.2

0.3

0.4

Size of Enc1 input in bytes

T
im

e
to

la
st

ou
tp

ut
on

c
in

s Dec2
Log

Figure 5.4: Protection against timing-attacks

here.
The changes of the output on Log level are the same for all other cases. As

the Log-level execution is not allowed to obtain any information from the key or
encryption levels, it always produces the same result. Consequently, this design
ensures that no information can leak through implicit or explicit flows on the
Log-level. Thus, the originally leaking cases two and three are also noninterferent
under our enforcement. Furthermore, because of the independent scheduling, the
Log-level execution terminates independently of the decryption progress. Thus,
the leaks on the termination channel in cases four to six are also mitigated. For
the same reason the termination-channel leak from the first decryption to the
second decryption in case five is mitigated. Thus, as demonstrated here, our en-
forcement ensures practical protection against attacks via implicit, explicit and
termination-sensitive leaks. Still, the information on the Log-level provides func-
tional information about the number of processed inputs.

Case seven represents attacks on the timing-channel. In the original execution,
the length of the first ciphertext delays the processing of all subsequent output.
Thus, as shown in Figure 4.3, there exists a direct correlation between the length
of the first ciphertext and the added delay in the timestamps of the outputs on the
the Dec2- and Log-level channels. These represent timing-sensitive leaks. Users
authorized to obtain the second ciphertext but not the first could infer the length
of the first ciphertext. Additionally, users with access only to the log file could also

5.3. Example 65

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·105

0

0.5

1

1.5

2

2.5

3

Size of multiplied input in bytes

To
ta

lr
un

tim
e

in
s

Native
Secure Multi-Execution

Figure 5.5: SME Efficiency

infer the length of the first ciphertext. We consider these leaks timing-sensitive as
the effect is strong enough to be measured on a real system, where delays are also
introduced due to other mechanics.

As shown in Figure 5.4, this correlation is resolved using our enforcement.
Increasing size of the first ciphertext does not lead to a direct correlation with
any of the timestamps. This is because the Log, Dec1, and Dec2 output are all
produced by individual executions, running in parallel, with the Dec2- and Log-
level executions unaware of the Enc1 input. Thus, observers of the log channel or
the second decryption channel cannot infer the length of the first ciphertext under
our enforcement. Note that due to the overhead introduced by our enforcement,
the noise is also magnified. As the multiplied executions content for resources on
the system, the increased load is reflected in the noise. Thus, while attacks cannot
leak sensitive information through our enforcement, they potentially can notice
that enforcement is happening. We do not consider this an insecurity with respect
to confidentiality. Therefore, we consider our practical enforcement secure and
transparent, as reflected in the results presented here.

Yet, the increased noise hints at a fundamental problem of Secure Multi-
Execution, namely its inefficiency. Due to the multiplied execution, also the
resource requirements of the target application are multiplied. Even when the
multiple executions are executed concurrently, the additional stress on the system
leads to an increasing run time. This is shown in Figure 5.5, where we compare the
run times of native execution versus execution under enforcement. As is clearly

66 Chapter 5. Secure Multi-Execution for Machine Code

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Log

Key

Enc1

Dec1

Enc2

Dec2

Stat

Run time in ms

Le
ve

l

Execution timeline
Input
Ouput
Exit

Figure 5.6: Visualization of Secure Multi-Execution applied to the example

shown, the enforcement overhead increases several times with increasing size of
the input, compared to the native execution.

The origins of this inefficiency is best seen in the visualized trace of the enforced
execution given in Figure 5.6. Here, we show the run-time behavior of the repli-
cated execution for each level. To illustrate the protection against timing-attacks,
we used two ciphertexts that differ in length. In our example, the first ciphtertext
is twice as long as the second ciphtertext (16.000 versus 8.000 bytes, respectively).
As the graph shows, the Log level execution starts running first and attempts to
read in the key. Because it does not have access to the Key channel, we replace
the input with empty dummy information (not shown). Consequently, reading in
encrypted information is skipped in the Log-level execution. Instead, the error
codes are emitted in corresponding output events and the execution terminates.
Concurrently, the encryption-level executions are started. They also do not get
access to the Key information, but additionally, they are also not allowed to write
to the Log channel. Thus, they are terminated without emitting output. This is
also true in the Key-level execution, which does obtain the key, but is not allowed
to access the encrypted information.

As visualized, these four levels terminate very fast. Furthermore, although the
decryption level executions perform most of the work, they run concurrently under
Secure Multi-Execution, which assures timing-sensitivity. Here, we can also see

5.4. Summary 67

the effect of the inner decryption loop. Because the input is processed in chunks,
input and output events alternate until all information is processed, A bigger issue
is shown in the Stat-level execution. Being the top-level execution, this execution
has access to the key and the encryption information. Thus, it recomputes the
results of both decryption level executions, but has no access to the decryption
channels. The recomputed results are only used to emit the statistical information
at the end. To produce these results, the Stat-level execution effectively performs
a full run of the original program. Therefore, all other executions become surplus,
adding to the enforcement overhead.

5.4 Summary

To achieve timing-sensitive noninterference for machine code, we provide an en-
forcement system based on Secure Multi-Execution. We implement the necessary
changes to the execution semantics using a monitoring approach. Through in-
terception and manipulation of system calls at run time, we can instantiate lo-
cal SME semantics for executions running compiled code. We demonstrate the
effectiveness of our approach with the running example. Here, we show that
our enforcement system achieves timing-sensitive noninterference and per-channel
transparency. Yet, we also visualize the enforcement overhead, inherent to multi-
execution. To tackle this, we introduce our demand-driven optimizations for Secure
Multi-Execution next.

68 Chapter 5. Secure Multi-Execution for Machine Code

Chapter 6

Dynamic Instancing Optimization

With the application of Secure Multi-Execution (SME) to machine code, we achieve
a secure and transparent confidentiality enforcement method. Yet, due to the mul-
tiplied executions inherent to SME, this method comes with a high enforcement
overhead. To counter this, we introduce a novel optimization to reduce the amount
of redundancy and thereby increase the efficiency of our approach.

The key idea to our Dynamic Instancing Optimization is to create as few ex-
ecution as possible as late as possible. Instead of initially starting one execution
per level in the security lattice, we aim to create new executions only when input
from an hitherto unserviced level is obtained. In other words, we emulate multiple
executions with fewer executions as long as possible, thereby reducing the over-
head. The effect is illustrated in Figure 6.1, where the multiplication of the first
component can be saved. In this scenario, we further assume that input is only
obtained on two out of three levels in security lattice. Our optimization allows to
adapt the actual demand, saving additional resources.

The correctness of the emulation follows from the determinism of our target pro-
grams. Due to the determinism, two executions starting in the same state progress
through the same states as long as they obtain the same input. Under Secure Multi-
Execution, all executions with classification higher or equal classification as the
input get the same input, while all others also get the same dummy input. Thus,
newly arriving input splits the executions into two equivalence classes, those who
obtained the input and those who obtained dummy information instead. Out of
each of these classes, one execution can be chosen as a representative. Thereby,
only two new executions are needed when new input is obtained. In many cases,
this leads to a great improvement of the overall enforcement efficiency.

70 Chapter 6. Dynamic Instancing Optimization

(a) Secure Multi-Execution
(b) With Dynamic Instanc-
ing

Figure 6.1: Comparison of SME protection without and with Dynamic Instancing

6.1 Reasoning

We illustrate the idea in Figure 6.2. In Figure 6.2a we demonstrate an exemplary
run of Secure Multi-Execution with 6 levels. All executions start in the same state
s0. Because the underlying execution is deterministic, all executions progress
through the same states s0 to s3. This includes output on channel C, which is
performed by the respective execution as per design of SME. Note, however, that
any of the other executions would have produced the same output, as they are all
still in the exact same states. Only when new input from channel D is obtained
in state s3, the executions diverge. However, with all executions on levels lower
than D obtaining the same dummy value δ, they form an equivalence class, within
which they are still progressing through the same states. The same goes for the
executions with classification D and higher.

In contrast to this, Figure 6.2b shows a run of Secure Multi-Execution with
our Dynamic Instancing Optimization in the same setting. Here, we initially
only create one execution, with the lowest level possible. This execution emu-
lates multi-execution throughout the first three states, based on the observation
that it contains enough information to produce the same outputs. Thus, in state
s1, it produces the correct output on channel C, emulating the corresponding ex-
ecution. Only when sensitive information from channel D is obtained in state
s3 is another execution created. To guarantee security, the execution on level A
cannot obtain the input from level D. On the other hand, the execution for level
D cannot service levels A to C. Thus, both executions are needed to partition the
responsibility for outputs on all channels between them. Thus, when output on
channel E is created in state s4, only the D execution is allowed to produce it.
The A execution may not have the required information to do so. As can be seen
from the illustration, the optimized enforcement requires far less executions. Still,
the correct outputs are created in the right order by executions with no access to
information higher than the channel that they produce output for.

6.1. Reasoning 71

A
B
C
D
E
F sF

0 sF
1 sF

2 sF
3 sF

4 sF
5 · · ·C!5 D?3 E!3

sE
0 sE

1 sE
2 sE

3 sE
4 sE

5 · · ·C!5 D?3 E!3

sD
0 sD

1 sD
2 sD

3 sD
4 sD

5 · · ·C!5 D?3 E!3

sC
0 sC

1 sC
2 sC

3 sC
4 sC

5 · · ·C!5 D?δ E!δ

sB
0 sB

1 sB
2 sB

3 sB
4 sB

5 · · ·C!5 D?δ E!δ

sA
0 sA

1 sA
2 sA

3 sA
4 sA

5 · · ·C!5 D?δ E!δ

(a) Unoptimized Secure Multi-Execution

A
B
C
D
E
F

sA
0 sA

1 sA
2 sA

3 sA
4 sA

5 · · ·

sD
4 sD

5 · · ·

C!5 D?δ E!δ

D?3 E!3

(b) Dynamic Instancing Optimization

Figure 6.2: Illustration of Dynamic Instantiation

Our Dynamic Instancing semantics differ from the original secure multi-execu-
tion in three key aspects. First, individual executions are responsible for output
on more than one level. Second, initially only one execution is created. And third,
further executions are created during execution. Next we discuss the changes to
the enforcement semantics in more detail and argue why our optimization preserves
the security and transparency guarantees of SME. We then show further evidence
of the correctness of our optimization by applying it to the running example.
In the same context, we also show that the enforcement efficiency is increased
significantly for our example run.

The efficiency can be further increased, when dynamically created executions
are terminated. Thus, in the next chapter, we provide another optimization that
allows to save redundancy during execution. Together with this Bounding Opti-
mization, our two optimizations allow for very high enforcement efficiency in many
cases.

72 Chapter 6. Dynamic Instancing Optimization

6.2 Semantics

In the original semantics of Secure Multi-Execution, each execution is responsi-
ble for output on one level only. This execution has access to information from
channels with equal or lower classification, ensuring secure outputs. On the other
hand, because all levels are always serviced by one execution each, it is ensured
that outputs are neither duplicated, nor missing. Thus, both the security and
the transparency guarantees of Secure Multi-Execution are tightly bound to this
design principle.

Since this is also the origin of the inefficiency of SME, our optimization changes
this principle. In our Dynamic Instancing Optimization, existing executions are
responsible for output on a subset of the security levels. Thereby, one optimized
execution can emulate the output behavior of many unoptimized SME executions.
Consequently, we do not need to always run all executions, but instead run a subset
of necessary executions. This gives our optimization the potential to be more
efficient than SME in many cases. However, the changes to the semantics must be
applied carefully, to retain the original security and transparency guarantees.

6.2.1 Local Semantics

As can be seen in our Dynamic Instancing semantics in Semantics 6.1, we keep the
changes to the local semantics as minimal as possible. Specifically, we only change
the classification level of the execution from a single level ` in the security lattice
to a sub-lattice of levels L. This change allows us to use one execution to produce
outputs for all levels in the sub-lattice (see the Write rule).

Security of our demand-driven optimization is guaranteed by the same design
principle as for Secure Multi-Execution. An execution with responsibility for out-
puts on the level in L can only access information from channels with equal or lower
classification than the lowest level in L. We describe this level with the infimum
of the sub-lattice L, denoted uL. Apart from this alteration, the rules for Read
and Read-Skip are equivalent to those of Secure Multi-Execution. Because of
the restricted access, an execution that writes to levels L cannot leak information
from levels greater than uL through explicit or implicit flows. As it is also not
allowed to write to levels outside of L, it also cannot leak to levels lower than uL.
Leaks through termination- and timing-channels is precluded through the global
scheduling of individual executions.

Transparency of SME is a result of the principle that each level is always ser-
viced by exactly one execution with sufficient access to information. Since our

6.2. Semantics 73

Silent
ι 6= syscall ρ,µ,pc, ι

•−→ ρ′,µ′,pc′, ι′

π,δ,L ` ρ,µ,pc, ι •−→ ρ′,µ′,pc′, ι′

Read

ρ ` (sysno,arg1,arg2,arg3) ⇓ (read,c,b,n)
π(c)v (uL) ρ,µ,pc,syscall c?v−−→ ρ′,µ′,pc′, ι

π,δ,L ` ρ,µ,pc,syscall c?v−−→ ρ′,µ,pc′, ι

Read-Dummy

ρ ` (sysno,arg1,arg2,arg3) ⇓ (read,c,b,n)
π(c) 6v (uL) ρδ = ρ[arg1← δ]
ρδ,µ,pc,syscall δ?v−−→ ρ′,µ′,pc′, ι

π,δ,L ` ρ,µ,pc,syscall c?v−−→ ρ′,µ′,pc′, ι

Write

ρ ` (sysno,arg1,arg2,arg3) ⇓ (write,c,b,n)
π(c) ∈ L ρ,µ,pc,syscall c!v−→ ρ′,µ′,pc′, ι

π,δ,L ` ρ,µ,pc,syscall c!v−→ ρ′,µ,pc′, ι

Write-Skip

ρ ` (sysno,arg1,arg2,arg3) ⇓ (write,c,b,n)
π(c) 6∈ L ρ′ = ρ[arg3← 0]

ρ′,µ,pc,syscall •−→ ρ′′,µ′,pc′, ι ρ′′′ = ρ′′[retval← n]
π,δ,L ` ρ,µ,pc,syscall •−→ ρ′′′,µ′,pc′, ι

Semantics 6.1: Local Secure Multi-Execution semantics with Dynamic Instancing

Dynamic Instancing Optimization differs from SME in exactly these points, trans-
parency is less obvious here. With some executions responsible for output on
multiple levels, we have to ensure that at any time during the execution only one
execution is responsible for each level at all times. Additionally, we have to ensure
that the execution responsible for output at a level has access to sufficient infor-
mation. Otherwise, we may either create duplicate output, miss some outputs, or
create incorrect output. Together, these requirements drive our global semantics,
illustrated in Semantics 6.2.

74 Chapter 6. Dynamic Instancing Optimization

Progress
S(`) a−→ s′

L ` ` : σ,S a−→ σ,S[`← s′]

Enter

s= S(`) s
c?v−−→ s′ π(c) 6v u(s.L)

`new = π(c)tL (u(s.L)) `new ∈ s.L (1)
sl = s′[L←{`′ | `′ ∈ s.L∧ `′ 6w `new}] (2)
sh = s[L←{`′ | `′ ∈ s.L∧ `′ w `new}] (3)

S′ = S[`← sl, `new← sh]
L ` ` : σ,S c?v−−→ σ,S′

Semantics 6.2: Dynamic Instantiation Semantics

6.2.2 Global Semantics

The Enter rule describes our Dynamic Instancing. Its design shapes the trans-
parency and efficiency guarantees of our optimization. It applies whenever the
scheduled execution s wants to obtain new input from a channel c with a classifica-
tion π(c) not lower or equal than what this execution has access to (π(c) 6v u(s.L)).
In this situation, s will not obtain the input but obtain dummy values instead.
When this is the case, we first determine the lowest possible level for new execution
that has a) access to all the information of s (and thus information up to level
u(s.L)), and b) access to the new input π(c). This level `new is given by the join
between both accesses, as computed in (1).

Note that we compute `new using the join from the original lattice L. This is
because the subset of levels that the current execution s is responsible for (denoted
by s.L) may itself not form a lattice. Since it only contains some of the levels from
the original lattice, it may be that some pair of levels does not have a least upper
bound within s.L. However, all pairs of levels must have a least upper bound in
L by definition. The greatest lower bound of s.L on the other hand must exist.
In the original execution, s.L is the original lattice L which has a greatest lower
bound by definition. In executions that are created dynamically, s.L is formed
in a way that a unique greatest lower bound is preserved. For the higher part,
it is given by `new, as sh.L is formed by taking all levels greater than `new and
`new. For the lower part, the greatest lower bound is the same as for execution s
(u(sl.L) = u(s.L)) as we do not interfere with the original greatest lower bound.

Because we use the original join to compute `new, it might not fall within the
responsibilities of s. Thus, we check if `new ∈ s.L and if so, we split the responsibil-
ities s.L into two portions. This represents the creation of new equivalence classes

6.2. Semantics 75

for the executions: those with access to π(c), represented by sh, and those without,
represented by sl. The new execution sh is responsible for the upper boundary
with regard to `new of the original responsibilities s.L (see (3)). To ensure that
never two executions are responsible for the same level, the responsibilities of s
are changed to all levels strictly not in the upper boundary of `new (see (2)). Fi-
nally, both executions are added to the execution mapping S, with ` mapping to
the lower execution sl and `new mapping to the higher execution sh. Also note
that sh is created from s (and not s′), meaning before the input is obtained. As
it is guaranteed that sh has access to this input, it will obtain it next time it is
scheduled.

Our global semantics ensure three important points for transparency. First,
only one existing execution is responsible for output on a certain level at all times.
Second, this execution has access to sufficient information to produce new output.
Third, there always is at least one execution serving a level. The first follows from
the way we split responsibilities. As the responsibilities of the original process
are separated into to disjoint sets, there can never be two processes with joint
responsibility for any level. Note that neither sets can be the empty set, for `new
is in s.L and at least u(s.L) is not greater or equal to `new. The second follows
from the way we compute the new level `new. Since we join the level of the input
π(c) with the greatest level of information in s (described by u(s.L)), the new
level must have access at least to all information in s and the new input. Thus, it
has sufficient information to produce outputs for levels in its responsibility. Once
input with higher classification is obtained, another execution is created from this
execution with even higher classification. The third point holds when the first
execution is initially responsible for the complete lattice. Then, all levels are
trivially serviced at the beginning. When a new execution is created from this
first execution, the responsibilities are split such that again all levels are serviced
by an execution. The same argument holds for each of the new executions and
their sub-lattices.

Termination-sensitivity follows from the same arguments as for unoptimized Se-
cure Multi-Execution. As long as the target is monotonically terminating, meaning
dummy values can be found that don’t alter the termination behavior of an exe-
cution, then our optimization does not adversely affect the termination behavior
of the enforced execution. A major difference is that in our optimized setting,
diversion in lower executions can lead to higher executions not being started.
However, if the lower execution diverges due to obtained input, then the higher
execution would also diverge due to the same input. As it makes no observable
difference if output is not created because the responsible execution is diverged or
because it has never been instantiated, we expect our optimization to preserve the
termination-sensitive guarantees of Secure Multi-Execution.

76 Chapter 6. Dynamic Instancing Optimization

The instancing of new executions at run-time has two effects on the timing-
behavior. First, instancing of a new execution introduces a one-time delay while
the operating system is busy cloning the process. Yet, this delay only signifies
that a new execution was created because input from a higher level channel was
requested. It does not leak whether input was obtained, nor how much, and
nothing about its contents. Additionally, the delay only occurs the first time that
input is obtained, as afterwards an execution for that level will exist. Thus, we
consider the security impact of this delay as negligible. We also expect a kernel-
level implementation of our technique to be able to mask the effect.

Second, the number of parallel executions may have a noticeable effect on the
performance of individual executions. This is the fact when more executions are
created than cores are available on the system. The presence of higher executions
may then introduce slight delays in the outputs of lower executions, due to con-
tention for resources. However, we expect this channel to be too noisy to reliably
extract leak meaningful information through it. Additionally, a kernel-level im-
plementation with more control over the scheduling should be able to mask the
effect.

6.3 Implementation

Before we demonstrate the effectiveness of our Dynamic Instancing Optimization
with the running example, we first discuss the necessary changes to the implemen-
tation. In particular, we present methods to dynamically clone executions and to
unshare input between clones. This is necessary to resolve dependencies that arise
from our cloning mechanism.

6.3.1 Fork Injection

Our Dynamic Instancing Optimization requires a mechanism to create new execu-
tions as clones from existing executions during run time. The fastest and simplest
mechanism to duplicate a running process we discovered, uses the fork mecha-
nism intended to spawn new threads in a Unix-like environment. This, essentially,
creates a second process that is running on the same code. Unfortunately, the
fork needs to be executed in the context of the running process. To overcome this
problem, we developed a method to inject a fork into a running process.

Due to the architecture of our system, our dynamic enforcement monitor is
always signaled when an execution is about to enter a read system call. Since the
functionality of a system call is defined by an identifier value stored in a register,

6.3. Implementation 77

A
B
C
D
E
F

sA
3 sA

3′ sA
3′′ sA

3 sA
4

sD
3′′ sD

3 sD
4

read
fork

read
fork

read
fork D?δ

D?3

Figure 6.3: Fork injection

it can easily be altered using ptrace. For the fork injection, we first backup the
identifier and argument values of the original system call. Then, we exchange the
identifier for the fork ID. The system call is executed and the forked process is
connected to our enforcement engine using ptrace. Since we replace the original
read system call, this would effectively suppress an input event. To mask this,
we rewind the program counter in the stored process context before executing the
system call. When returning from the system call, the altered program counter is
loaded and both processes continue from the original system call location, repeat-
ing the actual read. The copies are identified by unique PIDs and equipped with
a security level ` in the monitor.

In the example shown in 6.3, an A-level execution in state s3 requests to read
from a channel with higher classification D. The monitor intercepts the read
requests and replaces it with a request to fork, reaching an intermediate state s3′ .
When the execution continues, the operating system creates a clone of execution
instead of performing the read, leading to the state s3′′ . Before we pass control to
the operating system, we also rewind the program counter in state s3′ , such that
the system call will be requested again. In the newly created states s3′′ and s3′′′ we
then reset the requested functionality from fork back to read. Thus, we end up
with two executions in state s3, where one is responsible for levels A to C and the
other for levels D to F . We then perform the input operation according to SME
semantics, meaning we redirect the A-execution to obtain input from the dummy
channel, and allow the D-execution to obtain the regular input. Consequently,
state sA4 and sD4 differ only in the input value that they obtained, and in the levels
that they represent.

A follow-up problem from this mechanic is that cloned executions share the
same file description in the Linux kernel. This means that we cannot maintain
individual file offsets for cloned executions. Consequently, executions would con-
test for input from files, leading to a race condition. Thus, we introduce another

78 Chapter 6. Dynamic Instancing Optimization

mechanic to unshare file offsets in the enforcement monitor.

6.3.2 Shared Input

Because we clone new executions from existing executions, both executions share
the same file descriptions under Linux. This means that even when a normal file
is accessed, the cursor position is advanced for all executions. Consequently, when
a high and a low execution read from the same low file, each execution would
only get parts of the input and skip what the other execution has read. This not
only prevents transparent execution, it could also be used as a side-channel to leak
information from the high execution to the low execution. If reading from the low
channel depends on sensitive information, then querying the cursor position in the
low execution could be sufficient to infer the sensitive information. Thus, we add
a mechanic to truly unshare file accesses between multiple executions.

To achieve this, we keep copies of the cursor positions for each execution and
each file in the monitor. Whenever an execution requests input from a file via
the read system call, we instead start reading from the cursor position provided
by the monitor. This can be achieved by replacing read/readv system calls with
pread/preadv variants. These allow specification of a starting offset. We then
intercept the amount of bytes read through the system call and advance the cor-
responding cursor position accordingly. This effectively hides file accesses between
executions, even for normal files. As streams are generally buffered in the monitor,
no additional handling is necessary. Naturally, writing requests would have to be
treated similarly. Yet, in our scenarios, we treat outputs as streams and thus do
not support writing at offsets.

Currently, we consider this solution to be the most efficient, as it does not
require buffering of inputs in the monitor. However, in the future, kernel-level
support for individual file descriptions should make these adaptions obsolete and
simplify our enforcement system. Next, we demonstrate the effectiveness of our
optimization on the running example. To increase the enforcement efficiency even
further, we then introduce another optimization in Chapter 7.

6.4 Example

To demonstrate the effectiveness of our optimization, we compare the run times
of unprotected execution, unoptimized SME, and SME with Dynamic Instancing
of the example from Chapter 4. The graph in Figure 6.4 shows how the run time
increases with the amount of input to be decrypted. It shows that our optimization

6.4. Example 79

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·105

0

0.5

1

1.5

2

2.5

3

Input size in bytes

Ru
n

tim
e

in
s

Native
Secure Multi-Execution

with Dynamic Instancing

Figure 6.4: Efficiency improvement of Dynamic Instancing

is more than twice as fast as the unoptimized SME execution. The reason for this
increase in efficiency becomes apparent when comparing the visualization of the
optimized run in Figure 6.5, with that of the unoptimized run in Figure 5.6.

Figure 6.5 shows both aspects of the optimization. First, the initial part of the
program, up to obtaining the key information, is not replicated at all. Unlike the
unoptimized SME version this part is run just once. Once the key is read in, the
execution is duplicated. However, even then only two executions (instead of seven)
exist. The responsibilities are split, such that the execution at Key level is also
responsible for the decryption and Stat levels, whereas the execution at Log level
remains responsible for output on the encryption levels. Yet, as the execution at
Log level does not obtain a key, it immediately returns from the decryption library,
writing an error code to the log. This change in the semantics is deliberate, and
removes the explicit and implicit flow present in the original program.

Meanwhile the execution at Key level requires encryption information. How-
ever, as the Enc and Key levels are incomparable, neither the Key execution should
obtain the encrypted information, nor can we create an encrypted execution from
an execution that holds key information. Thus, as described in our global se-
mantics, we set the level for the new execution to the corresponding decryption
level (computed by joining the Key level with the corresponding encryption level).
This also means that no execution is ever created for the input level Enc1, saving
additional resources.

80

0 10 20 30 40 50 60 70 80 90 100 110 120

Log

Key

Enc1

Dec1

Enc2

Dec2

Stat

Run time in ms

Le
ve

l

Timeline
Input

Output
Exit

Figure 6.5: Optimized run of the example

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·105

0

2

4

6

·10−2

Size of Enc1 input in bytes

T
im

e
to

la
st

ou
tp

ut
on

c
in

s

Dec2
Log

Figure 6.6: Protection against timing-attacks with Dynamic Instancing

6.4. Example 81

Inputs Outputs
Key Enc1 Enc2 Dec1 Dec2 Log Stat

1 key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

2 abcd ikoupgnp epjunvutv ilqxphps eqlxnwwwv -1 -1 . 8 9
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

3 ikoupgnp epjunvutv -1 -1 .
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

4 0 ikoupgnp epjunvutv -1 -1 .
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

5 key 0 epjunvutv othertext -1 -1 .
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

6 key ikoupgnp 0 sometext -1 -1 . 8
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

7 key ikou... epjunvutv some... othertext -1 -1 . 8000 9
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

Table 6.1: Progress-sensitive noninterference of the example in Chapter 4 through
SME with Dynamic Instancing.

After creating the Dec1 execution, the execution on Key level is now only
responsible for Key information and the Dec2 level. Conversely, the Dec1 execution
is responsible for output on the Stat level as well. Consequently, the Dec2 level
is created from the key information, but not responsible for output on the Stat
level. Instead, when the Dec1 level requests Enc2 input, a new execution on Stat
level is created, that recomputes the result for Dec1 to output the corresponding
message on the Stat channel. While this is not optimal in terms of efficiency, it
is important that only one execution creates the output on Stat. Thus the Dec2
execution cannot also be responsible for the Stat level. Because it is not known
whether the information emitted to Stat requires knowledge of both Dec1 and
Dec2 or not, it is unavoidable to eventually create an execution with access to
both. Note, however, that in the unoptimized execution, the Stat execution must
recompute even the Dec1 information.

The effect of our optimization on the security and transparency of the enforce-
ment is shown in Table 6.1. As presented in the table, our Dynamic Instancing
Optimization does not alter the results of the enforcement, compared to unop-
timized SME (cf. Table 5.1). It also achieves progress-sensitive noninterference
and per-channel transparency. As Figure 6.6 shows, our optimization furthermore
achieves timing-sensitive noninterference. Again, the timestamps of the first out-
puts on the various channels do not correlate with the length of the first ciphertext

82 Chapter 6. Dynamic Instancing Optimization

under our enforcement.

6.5 Summary

Our Dynamic Instancing Optimization addresses the efficiency problem of our Se-
cure Multi-Execution based confidentiality enforcement system for machine code.
Instead of creating all executions at the beginning, we create new executions dy-
namically at run time. This allows us to create them only when needed, instead
of always creating one execution for each level in the security level. Consequently,
we can often use less executions for a large part of the execution and still get the
same strong security and transparency results. This is reflected in example results,
which optimization dramatically improves the efficiency.

Yet, there is still potential for even more improvement. Dynamically created
executions can become obsolete when the information stored therein is no longer
live. Then, computations from these executions could also be provided by an-
other execution, which would allow to save additional resources. To make use of
this effect, we next introduce another optimization, with the goal to terminate
spawned executions as soon as possible. Through our method called bounding, we
can increase the efficiency even further, by dynamically reducing the number of
executions during the run.

Chapter 7

Bounding Optimization

Our Dynamic Instancing Optimization for Secure Multi-Execution leads to a con-
siderable reduction of the overhead by creating as few executions as possible as late
as possible. This saves redundant computations at the beginning of a program.
Yet, Dynamic Instancing does not help to save redundant computations at the
end of the program, leaving potential for increased efficiency unused. Thus, we
introduce an additional optimization, called bounding, that reduces redundancy at
the end of the program.

The inspiration for our optimization is illustrated in Figure 7.1. In Figure 7.1a,
we show the effect of our Dynamic Instancing Optimization. In this example, re-
dundant computation of the initial, secure component can be saved. However,
once sensitive information is obtained in the second, insecure component, a new
execution is created and the rest of the program is executed twice. This may be
wasteful, if, for example, the last component would be secure again, in the sense
that it does not use the sensitive information. In such a scenario, we could poten-
tially save additional resources when the multi-execution can be fully restricted
to the insecure component. Then, we could terminate multiplied executions and
progress with a single execution, as implied in Figure 7.1b.

Naturally, we cannot terminate executions as longs as the information stored
therein is still live. Doing so would harm the transparency of our enforcement. We
demonstrate this with the decryption service example from Chapter 4. Figure 7.2
illustrates the information flows through the components in the example. Here, the
ciphertext information that is processed in the decryption library is not further
needed. Thus, we could terminate multiplied executions responsible for output
on Enc-levels and above. The information about the decryption key, however, is
reused for the next iteration of the decryption routine. Thus, we cannot terminate
the Key-execution early, as we would then lose the key information for subsequent

84 Chapter 7. Bounding Optimization

(a) Dynamic Instancing (b) Dynamic Instancing
and Bounding

Figure 7.1: Illustration of our Bounding Optimization

decryption passes.
Our solution to this problem is to define boundary conditions that describe

when it is safe to terminate an execution and thereby effectively erase the in-
formation mix stored therein. In theory, these conditions could be arbitrarily
complex, providing an exact definition of states in which specific information is no
longer live. In practice, however, we usually use merge points in the control flow
of the program such as after a loop, after a function call, or after a conditional
block. For example, safe boundaries in our example are marked with inner and
outer in Figure 7.2. The inner boundary is at the end of the decryption loop body,
defining the point where executions with levels not lower or equal to the key level
can be terminated. It corresponds with line 12 in Listing 4.3. The outer boundary
is after the decryption loop and describes when the execution at key level can be
terminated as well. It corresponds with line 14 in Listing 4.3.

Boundaries like these could be defined by the developer. The outer boundary
requires no additional information than what can be derived from the application
layout about which the developer has full control. The inner boundary requires
additional knowledge about whether or not the library is stateful. This information
could most likely be obtained from the documentation of the library, simple tests,
or other inexpensive ways. However, defining the boundary may not always be
trivial. For the rest of this chapter, we assume that these boundaries exist and
focus on the termination and merging mechanics needed for this optimization. We
return to the question of automatic boundary analysis in Chapter 9.

7.1 Synchronization

Another problem that can impede the early termination of redundant executions is
late output to channels with higher classification. According to the Secure Multi-
Execution semantics, output on a channel is only allowed for executions with

7.1. Synchronization 85

Key Encn

Decn Log Stat

n
decrypt

Log

inner outer

Figure 7.2: Bounds of the information flows in the example program

equal security classification. This implies that after termination of the execution
responsible for output on level `, no further output will be produced for that
level, thwarting the transparency of the approach. Under our Dynamic Instancing
semantics, executions are responsible for output on a subset of the security lattice
L. Thus, premature termination of executions with Dynamic Instancing may lead
to missing or incorrect output on a range of channels. Yet, since information
flows from lower inputs to higher outputs are allowed under confidentiality, we
must support the creation of output on higher channels that does not depend on
sensitive information.

To solve these problems, we introduce two changes to our enforcement seman-
tics. First, we add a synchronization mechanism that ensures that multiplied
executions arrive at the boundary together. Then, when both executions have
progressed to the barrier, we transfer the output responsibilities from the higher
execution back to the lower execution before terminating the higher execution.
This ensures that even though the higher execution has been terminated, its re-
sponsibilities are still serviced by an execution, namely the corresponding lower
execution.

A similar synchronization mechanism is discussed for example by Rafnsson
and Sabelfeld for their definition of fully-transparent Secure Multi-Execution [65]
or by Schmitz et al. in their definition of faceted Secure Multi-Execution [71].
While it is a relatively simple mechanism that ensures transparent enforcement,
it is known to impact the termination- and timing-sensitive security guarantees
of Secure Multi-Execution. Thus, for scenarios where termination- and timing-
sensitivity is needed, we present a more elaborate scheme in the next chapter.

Figure 7.3 illustrates the problem. In Figure 7.3a we show exemplary traces
that are the result of Secure Multi-Execution enforcement with our Dynamic In-
stancing Optimization. In some state s6, we assume that the execution has already
been multiplied once, due to sensitive input with classification D. Then, in state

86

A
B
C
D
E
F

sA
6 sA

7 sA
8 sA

9 sA
10 sA

11

sD
6 sD

7 sD
8 sD

8 b sD
9 sD

10 sD
11

sB
8 sB

9 sB
10 sB

11
B?δ C!2 E!5 A!0

B?2 C!1 E!7 E!5 A!0

B?2 C!1 E!5 A!0

(a) End traces with Dynamic Instancing

A
B
C
D
E
F

sA
6 sA

7 sA
8 sA

9 sA
10 sA

11

sD
6 sD

7 sD
8 sD

8b sD
9

sB
8 sB

9
B?δ C!2 E!5 A!0

B?2 C!1 E!7

B?2 C!1

(b) Early termination with boundary in state s9

A
B
C
D
E
F

sA
6 sA

7 sA
8 sA

9 sA
10 sA

11

sD
6 sD

7 sD
8 sD

8b sD
9

sB
8 sB

9
B?δ C!2 E!5 A!0

B?2 C!1 E!7

B?2 C!1

(c) Early termination with level reset and barrier synchronization

Figure 7.3: Illustration of our Bounding Optimization

7.1. Synchronization 87

s7, input with classification B is required, which leads to the creation of another
execution. Thus execution at B level takes over the responsibility for output
on levels B and C, as described by our Dynamic Instancing semantics (cf. Sec-
tion 6.2). The executions continue according to Secure Multi-Execution semantics
with different information. The D-execution, having obtained the D-input, sub-
sequently produces an additional output on the E-level before state s9. The other
executions, unaware of the D-input, omit this output and progress faster than
the D-execution. After state s9, however, all executions perform the same trace,
reflecting that this part of the execution is independent of sensitive information.
Consequently, the multiplied execution of states nine to eleven is redundant and
could be saved through early termination.

In Figure 7.3b we show the effect if we terminated the redundant executions
above level A in state s9. As illustrated, the redundant computation for the B
execution can be saved correctly. Yet, the output on the E channel has become
intransparent, as the E!5 message is not emitted by the A-execution, following
SME semantics. The underlying problem is twofold. First, the A-level execution
has insufficient responsibility and is thus not allowed to produce output on the E
level. Second, even if it was allowed to emit the correct message, it would be too
early, potentially leading to an incorrect order of the messages on the E-channel
(thereby violating per-channel transparency).

Figure 7.3c shows the traces resulting from our synchronization mechanism.
Here, we assume that the state s9 forms the boundary for all executions. The A
and B-executions reach the boundary in states sA9 and sB9 , respectively, at the same
time. Thus, the B execution can be terminated, transferring the responsibility for
output in levels B and C back to the A execution. The A execution must then wait
for the D execution to reach the boundary at state sD9 . When the D execution
terminates, the responsibilities for output are transferred back to the A execution.
This recreates the initial, very efficient setup, where only one execution without
any sensitive information is servicing all levels. Combined, the outputs of the
traces with our Bounding Optimization are the same as those without, shown in
Figure 7.3a. This shows that our Bounding Optimization does not adversely alter
the observable behavior of the target.

Next, we discuss the changes to our Dynamic Instancing semantics in more
detail. We then illustrate the effect of our Bounding Optimization on the running
example from Chapter 4. As we discuss in the semantics and show in the example,
our Bounding Optimization can introduce a timing side-channel. Therefore, we
introduce a timing-sensitive scheduling approach in the next chapter that allevi-
ates the problem. Additionally, our Bounding Optimization is parameterized by
the definition of the bounding conditions. We thus discuss their automatic extrac-

88 Chapter 7. Bounding Optimization

tion from the target in Chapter 9, highlighting our contributions to static binary
analysis.

7.2 Semantics

Our Bounding Optimization is realized in two parts, through local adaptions and
global adaptions. We extend the local semantics of individual executions with
handling of termination and merging conditions. Termination conditions are our
mechanic to specify when to terminate an execution. Thus, we define a boundary
β that, when satisfied by the current state s, leads to the termination of the execu-
tion, signaled by a termination event ×. Yet, once a higher execution responsible
for output on certain levels is terminated, these levels would go unserviced. This
could lead to intransparency, if later output to once of these level is required. Thus,
we secondly require a mechanic to pass the responsibilities for output to the lower
execution from which it was forked. To achieve this, we set the same boundary in
the lower execution as a merging condition and record a reference to the higher
execution. Thus, once the lower execution reaches the boundary, it can retake the
responsibilities that it temporarily gave to the higher execution.

The mechanics are formalized in the local rules of our bounding semantics
in Semantics 7.1. Boundary conditions are denoted by β, while the reference to
the corresponding execution is given by its scheduling level `. Because multiple
executions can be created from a single execution, we keep a stack of boundaries for
each execution, denoted by B. For created executions, the termination condition is
placed on the bottom of the stack, such that B = (β,ε). It can never be removed,
as satisfying it leads to termination of the execution, as described by the End
rule. If the boundary contains at least one additional element, we assume that
this element describes a merging condition. When this condition is satisfied, the
execution signals to the monitor that it requests to be joined with the execution
at the recorded level. This is described by the Join rule.

Compared to the global rules for Dynamic Instancing semantics from Semantics
6.2, we add creation of the boundaries to the Enter rule and add three more
rules for the barrier-styled synchronization. Additionally, we define an abstract
function B : State 7→ (State 7→ B) that provides a boundary condition for a given
state. Thereby, this function allows to provide different boundary conditions,
depending on the current state. Using this function, we generate a boundary β
when a new execution is instantiated, as shown by equation four in Enter. For the
newly created higher execution, this boundary acts as the termination condition,
forming the bottom of its boundary record stack (equation 6). For the continuing

89

Local rules:

End
s |= β

Σ,Π, δ ` (β,ε),L,π,s, ι ×−→ (β,ε),L,π,s, ι

Join
s |= β

Σ,Π, δ ` (β,`) :B,L,π,s, ι `−→B,L,π,s, ι

Global rules:

Progress
S(`) a−→ s′ a 6∈ (dom(S)∪{×})
B,L ` `.σ,S a−→ σ,S[` 7→ s′]

Enter

s= S(`) s
c?v−−→ s′ π(c) 6v u(s.L)

`new = π(c)tL (u(s.L)) `new ∈ s.L
sl = s′[L←{`′ | `′ ∈ s.L∧ `′ 6w `new}]
sh = s[L←{`′ | `′ ∈ s.L∧ `′ w `new}]

β = B(s) (4)
s′l = sl[B← (β,`new) :B] (5)
s′h = sh[B← (β,ε)] (6)
S′ = S[`← s′l, `new← s′h]

B,L ` ` : σ,S c?v−−→ σ,S′

Ended
S(`) ×−→

B,L ` ` : σ,S •−→ σ,S

Wait
S(`) `′−→ S(`′) a−→ a 6=×
B,L ` ` : σ,S •−→ σ,S

Merge

S(`) `′−→ s S(`′) ×−→
s′ = s[L← s.L∪S(`′).L]
B,L ` ` : σ,S •−→ σ,S[`← s′]

Semantics 7.1: Barrier-Based Bounding Semantics

90 Chapter 7. Bounding Optimization

lower execution, this boundary is added on top of the boundary record stack,
indicating that the execution on level `new is the most recent execution created
from it (equation 5).

When an execution that satisfies the provided termination condition (and thus
emits a termination signal ×) is scheduled, we do not update its state. Thus, it
remains in the terminating state until replaced by another execution, according
to the Ended rule. Hence, when the corresponding lower execution requests to
join with this execution, we check its termination status. If it is not terminated
yet, it may still produce output on higher levels. Thus, the lower execution should
not progress with reset responsibilities yet. We use the Wait rule to remain in
the current state in this situation. However, if the lower execution requests to join
with a terminated execution, we merge the responsibilities into the lower execution
and progress as usual (see rule Merge).

7.3 Implementation

Our monitor handles the setting and checking of boundaries. To do so in an
efficient manner, we use breakpoints to track where boundary conditions should
be checked. In our case, boundaries usually coincide with specific merging points
in the control flow of the target and are thus placed at these points. Additionally,
we implement a mechanic to differentiate between different inputs, even when they
are requested through the same syscall function.

7.3.1 Setting Boundaries

Our semantics suggest that the boundary conditions are evaluated at every step.
In practice, evaluating the condition after every instruction of the target would
severely worsen the efficiency of the enforcement. Thus, we instead evaluate the
condition only at specified code locations. We achieve this by setting breakpoints
in the target, and connect the boundary condition as a callback function in our
monitor. This allows us to continue executions without monitoring overhead until
either a breakpoint or call to the operating system is encountered.

Furthermore, it could happen that multiple boundaries must be evaluated on
the same location. As outlined in our semantics, processes hold stacks of boundary
conditions to allow nesting of boundaries. For example, a high execution may be
created from a low execution with a boundary at symbolic location A. Thus, a
breakpoint is set in both executions at location A and connected with the bound-
ing condition. Subsequently, an even higher execution may be created from the

7.3. Implementation 91

1 x := in(A);
2 out(x, B);
3 y := in(C);
4 out(y, D);
5 ...

Listing 7.1: Pseudo-code

high execution and also be bounded at location A. Then, in the high execution,
two boundary conditions would now hold at the same location. First comes the
condition to signal merging with the highest execution, then comes the condition
to be merged with the lower execution. Thus, we connect each breakpoint not
just with one bounding condition, but rather with a stack of bounding conditions.
Upon meeting the breakpoint, the topmost (last added) condition is evaluated
first. After handling the topmost condition, the next condition is popped from the
stack, simulating a repeated arrival at the breakpoint.

7.3.2 Identifying Input

In the semantics, we also assume a function B that provides boundary condi-
tions for a given state. The idea is to allow different boundary conditions depending
on the conditions under which a new execution is created. A simple example is
given by a program that obtains inputs from different channels and services mul-
tiple output channels, as shown in Listing 7.1. Here, static analysis would show
that information stored in variable x are not live after execution of line 2. Thus,
executions created due to the input in line 1 could be terminated upon reaching
line 3 to save resources. Executions created due to the input on line 3, on the other
hand, should be terminated after execution of line 4. This illustrates a situation
where different boundaries should be provided for different states. Here, B might
be defined as

B(s) :=
λs′ � (s′.pc) == 3, if s.pc== 1
λs′ � (s′.pc) == 5, if s.pc== 3

In machine code, however, input is obtained through system calls as described
in Section 4.2. As discussed in Section 4.2, often a single syscall instruction
is used for all input requests to reduce the attack surface. This means that the
program counter of the execution obtaining the input will show the location of
the syscall instruction, instead of the location where the input was originally

92 Chapter 7. Bounding Optimization

requested. Consequently, the program counters of the two calls to in shown in
Listing 7.1 would be indistinguishable.

We solve this problem by using return values left on the stack instead of the
program counter. Assuming that the distance to the top of the stack of the return
value is known when the system call is intercepted, we can peek its value and use
it to discriminate different input requests. For example, assuming that the return
value is the topmost value on the stack (thus at sp+1, as sp always points to the
next empty cell) and that the calls to in return to the next line, we could define
B as

B(s) :=
λs′ � (s′.pc) = 3, if s.µ[s.sp+ 1] = 2
λs′ � (s′.pc) = 5, if s.µ[s.sp+ 1] = 4

This shows the strengths of the flexible definition of B. As it takes the complete
state as input, bounding conditions can be provided for various different situations.
Next, we show how our Bounding Optimization can be used to increase the effi-
ciency of confidentiality enforcement for our example from 4.

7.4 Example

Considering the information flow schematic of the example from Chapter 4, repli-
cated in Figure 7.2, it is clear that the final logging output is independent of any
information beyond Log level. Therefore, running any execution with information
higher than Log level at this point is unnecessary. Consequently, we consider the
execution point between the loop and the output to log level as a boundary for
any execution higher than Log level. This means that we terminate any execution
higher than log level once it progresses to this point.

On the other hand, the outputs created by the decryption library are depen-
dent on the key information as well as information from one encryption channel.
Yet, later iterations of the library do not depend on information from previous
iterations. This means that executions on levels not lower or equal to Key can
be terminated upon return from the library. Thus, we add another, inner bound-
ary for executions with information not lower or equal to Key level at this point.
Note that this inner boundary is the key to saving the redundant recomputation of
the statistical information. This can be seen by comparing Figure 6.5, optimized
without bounding, and Figure 7.4, optimized with bounding. Knowing that the
statistical information for the second decryption does not depend on information
from the first decryption means that we do not need an additional execution on

7.4. Example 93

0 10 20 30 40 50 60 70 80

Log

Key

Enc1

Dec1

Enc2

Dec2

Stat

Run time in ms

Le
ve

l

Timeline
Input

Output
Exit
Join

Figure 7.4: Bounded run of the example

Stat level, but can create correct information from the decryption levels. Our
barrier-style synchronization further ensures that the Dec1-execution must be ter-
minated before the Dec2-execution is started. This ensures that the Stat-level
output is emitted from the two executions in correct order. Thus, in our example,
we define the boundary as follows.

B(s) :=
λs′ � (s′.pc) = 14, if s.µ[s.sp+ 1] = 6
λs′ � (s′.pc) = 12, if s.µ[s.sp+ 1] = 37

As visualized in Figure 7.4, our Bounding Optimization can be used to save even
more resources than the Dynamic Instancing Optimization alone. This effect is also
shown in Figure 7.5, where the bounded demand-driven optimization saves roughly
half of the optimized run time. Compared to unoptimized Secure Multi-Execution,
this is a speed up of more than 450%. When compared to Figure 6.5, the speedup
becomes apparent. Because the first decryption process reaches the boundary
after executing the inner loop body, it is terminated. Additionally, its output
responsibilities are merged back into the Key-level execution. Consequently, the
Dec2-level execution that is subsequently forked from the Key-level execution can
inherit the responsibility for output on the Stat-channel. As a result, the statistical
information does not have to be recomputed, saving the creation of a Stat-level
execution.

94

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·105

0

0.5

1

1.5

2

2.5

3

Size of multiplied input in bytes

T
im

e
to

fir
st

ou
tp

ut
on

D
ec

2
in

s

Native
Secure Multi-Execution

with Dynamic Instancing
and Bounding

Figure 7.5: Efficiency improvement of our Bounding Optimization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·105

0

0.2

0.4

0.6

Size of Enc1 input in bytes

T
im

e
to

la
st

ou
tp

ut
on

c
in

s

Dec2
Log

Figure 7.6: Timing-Attacks on SME with bounding

7.4. Example 95

Inputs Outputs
Key Enc1 Enc2 Dec1 Dec2 Log Stat

1 key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

2 abcd ikoupgnp epjunvutv ilqxphps eqlxnwwwv -1 -1 . 8 9
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

3 ikoupgnp epjunvutv -1 -1 .
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

4 0 ikoupgnp epjunvutv -1 -1
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

5 key 0 epjunvutv -1 -1
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

6 key ikoupgnp 0 sometext -1 -1 8
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

7 key ikou... epjunvutv some... othertext -1 -1 . 8000 9
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

Table 7.1: Timing-insensitive results with Bounding Optimization

Our timing-insensitive security guarantees are shown in Table 7.1, while our
timing-sensitive guarantees are shown in Figure 7.6. The results demonstrate the
downside of our barrier-style synchronization. While it is simple to implement and
achieves the best efficiency, it cannot guarantee termination- and timing-sensitive
noninterference. Because lower executions may have to wait for higher executions
to reach the barrier, our synchronization introduces a dependency between these
executions. This is shown in Case 4, where the non-termination of the Key-level
execution leads to non-termination of the Log-level execution. As the outer barrier
is placed before the final Log-level output, but never reached by the Key-level
execution, the final output will never be produced. Thus, an observer with Log-
level clearance could infer non-termination of the decryption operation.

For the same reason, Cases 5 and 6 show the same problem. In Case 5, the
non-termination of the decryption of the first ciphertext hinders progress of the
Key-level execution as it waits forever at the inner boundary. Consequently, the
second ciphertext is never processed and the final Log-level output never produced.
In Case 6, the second ciphertext is processed, but the decryption does not termi-
nate. Consequently, the final Log-level output is not produced. These results
show that our barrier-style synchronization for our Bounding Optimization is not
termination-sensitive. Comparing the output timestamps in Case 7, as shown in
Figure 7.6, additionally shows that it is not timing-sensitive. Here, a clear corre-
lation between size of the first ciphertext and output timestamps for the second

96 Chapter 7. Bounding Optimization

ciphertext becomes apparent. The same correlation shows, when considering the
timestamp of the final output to the Log-channel.

7.5 Summary

The goal of our Bounding Optimization is to terminate multiplied executions when
they become redundant. This state is signified to the executions through boundary
conditions. Once the boundary becomes satisfied, the execution is terminated. Its
output responsibilities are then merged into the corresponding lower execution.
Boundaries are efficiently implemented through breakpoints in the target. To
achieve transparency, we also introduce a simple barrier-synchronization mechanic.
Our synchronization ensures that exactly one execution is responsible for output
on each channel at all times.

As our results show, our Bounding Optimization roughly halves the overhead
when compared to Dynamic Instancing alone, and thus roughly quarters the over-
head when compared to unoptimized Secure Multi-Execution. Unfortunately, the
barrier-synchronization introduces a dependency between executions. Thus, while
this mechanism is very simple and most efficient, it reduces the security guaran-
tees to termination- and timing-insensitive noninterference. We introduce a more
complex but similarly efficient timing-sensitive scheduling next.

Chapter 8

Timing-Sensitive Scheduling

Through the application of Secure Multi-Execution to machine code, we achieve
our main goals regarding security and transparency. We further achieve our goal of
efficiency through our optimization techniques of Dynamic Instancing and bound-
ing. Unfortunately, the latter optimization is in conflict with the termination- and
timing-sensitive security guarantees of our approach. Bounding, when used with
barrier-style synchronization, may allow information to leak through termination
and timing side-channels. Thus, in this section, we provide a timing-sensitive
scheduling scheme for bounded Secure Multi-Execution.

The problem is that barrier-style synchronization introduces a scheduling de-
pendency between executions with different classifications. As a consequence,
progress of executions responsible for output on channels with lower classification
depends on the progress of executions with access to input from channels with
higher classification. Therefore, the timing of output on lower classified channels
can enable an observer to infer information about higher classified inputs. Omit-
ting the barriers, on the other hand, can lead to executions overtaking higher
executions. This could lead to out-of-order output on higher channels, thwarting
the transparency guarantees.

Our solution to the problem is twofold. First, we allow lower executions to
progress independently of higher executions. This breaks the termination and
timing side-channels, thus enforcing real timing-sensitive noninterference. Second,
we introduce reorder buffers for outputs to higher channels. This ensures that
the same enforcement mechanism can also guarantee top-level transparency and
per-channel transparency. The resulting mechanism allows us to use our Dynamic
Instancing and Bounding Optimizations without having to sacrifice security or
transparency. Due to the added complexity of the buffering, it is, however, slightly
less efficient than our barrier-style scheduling.

98 Chapter 8. Timing-Sensitive Scheduling

A
B
C
D
E
F

sA
6 sA

7 sA
8 sA

9 sA
10 sA

11

sD
6 sD

7 sD
8 sD

8b sD
9

sB
8 sB

9
B?δ C!2 E!5 A!0delay

B?2 C!1 E!7

B?2 C!1

(a) Bounding with barrier synchronization

A
B
C
D
E
F

A
A B A

A

A
D
D

A
A

sA
6 sA

7 sA
8 sA

9 sA
10 sA

11

sD
6 sD

7 sD
8 sD

8b sD
9

sB
8 sB

9
B?δ C!2 A!0

E!5
B?2 C!1

E!7

B?2
C!1

(b) Bounding with timing-sensitive scheduling

Figure 8.1: Effect of our timing-sensitive scheduling

8.1 Reordering

We illustrate the idea behind our timing-sensitive scheduling in Figure 8.1. In
Figure 8.1a we show the effect of our barrier-based synchronization, as introduced
in Chapter 7. It includes an information leak on the timing-channel through the
output on the channel with classification E. Here, an implicit flow in the D-
execution induces an extra computation step between states s8 and s9. Thus, the
D-execution, which is also responsible for output on the E-channel, reaches the
boundary state s9 later than the A-execution. To ensure in-order output on the
E-channel, the A execution must therefore wait before producing output on the E-
channel. Yet, due to the barrier-style synchronization, this delay is also noticeable
in the subsequent output to the A channel, which consequently leaks information
about the D-execution. Later output on the A-channel hints at a longer execution
time of the D-execution, and thus at different information in these executions.

8.2. Construction 99

To prevent this, but still enable our Bounding Optimization, we use our timing-
sensitive scheduling as demonstrated in Figure 8.1b. Unlike the barrier-based
synchronization, we do not wait for the higher execution before continuing with
the lower execution. Instead, we add queues to each channels that ensure correct
execution order. Into these queues, we then put buffers that are connected to
executions, which allow them to write ahead of the logical order, without having
to wait for higher executions. In state s6, the A-execution services all levels below
D, while the D-execution services all other levels. Thus, there are two buffers
connected to the A-execution queued on levels B and C, and two buffers connected
to the D-execution queued on levels E and F .

When the B execution is created, the responsibility for output on the C level
is transferred from the A-execution to the B-execution, according to our Dynamic
Instancing semantics from Section 6.2. Consequently, the buffers for channel B
and C of the A-execution are terminated and a new buffer on level C is created
for execution B. Output to the C-channel from the B-execution is then redirected
to this buffer. Since no other execution is servicing the C-level at that time (and
therefore the buffer is on top of the queue), the output is emitted immediately.
The same is true for the output to the E-channel from the D-execution in state
s8b.

However, when the A-execution is ready to produce output on the E-channel,
its corresponding buffer is not on top of the queue. Because the D-execution is still
busy servicing the E-level at that point, the E-output from the A-execution needs
to be delayed. It is thus copied to the buffer of the A-execution. This allows the
A-execution to progress without delay, emitting the A!0-message as if no sensitive
information was present. Once the D-execution reaches the boundary in state s9
and terminates, the buffers connected to the A-execution are dequeued. Then, the
stored E!5-message is emitted, preserving the correct order of the outputs on the
E-channel and thereby achieving per-channel transparency.

The main difference with the normal scheduling is that we add waiting queues
to each level. We use these queues to start executions in correct logical order, as
well as to insert outputs at the correct places. Next, we discuss the construction
of this scheduling in more detail.

8.2 Construction

We implement the buffers illustrated above as virtual executions. Virtual execu-
tions are responsible for creating output on their corresponding level. Yet, they
contain no code and do not produce output themselves. Instead, they hold a queue

100 Chapter 8. Timing-Sensitive Scheduling

of messages forwarded to them from a corresponding real execution. While sched-
uled, virtual executions emit the messages in their queues or skip when the queue
is empty. As a result, the virtual executions allow us buffer messages ahead of the
schedule. Naturally, the introduction of virtual executions leads to adaptions in
the other aspects of the scheduling as well.

As before, we initially start only one execution. Under Dynamic Instancing,
this execution is responsible for output on all levels. For our timing-sensitive
scheduling, we restrict this execution to produce output only on its lowest level,
similar to original Secure Multi-Execution semantics. Output to higher levels is
instead forwarded to connected virtual executions started on these levels. We thus
start with one real execution on the lowest level and virtual executions on higher
levels that act as proxies for the real execution. All executions are initially the only
entry in the queue at their level and thus are allowed to progress when scheduled.

When input on a new level is obtained, a new execution is forked as described in
Section 6.3.1. According to our Dynamic Instancing semantics, the new execution
is responsible for output on all levels not smaller than the new level of the levels
the old execution was responsible for. Thus, for all these levels, we pass the
virtual executions from the old execution to the new execution. Automatically,
this passes the right to produce output on these levels from the old execution to
the new execution. Yet, the old execution might leave the boundary before the
new executions reaches it. In this case we want to allow the old execution, which
represents a lower level, to progress directly, without having to wait. However,
we also need to reset the output responsibilities at this point. After leaving the
boundary, the old, lower execution is again allowed to produce output on the
higher levels. But, since in this case the old execution could be ahead of the new
execution, its output should be emitted after any output produced by the new
execution. Thus, we add new virtual executions for the old execution after the
virtual executions for the new execution. Consequently, the old, lower execution
can write to these virtual executions and progress without delay. However, these
messages are buffered in the virtual executions until the higher execution has
terminated, as the new virtual executions are enqueued behind it.

When an execution terminates, all connected virtual executions are also flagged
for termination. Yet, the virtual executions may still contain buffered messages.
Thus, we first empty the buffers of the virtual executions when they are on top
of the queue. Only when the virtual execution is flagged for termination and its
buffers are empty, then we dequeue the execution, moving the next in line to the
top of the queue.

We illustrate our construction in Figure 8.2. Initially, only one actual execution
is running on the lowest level, here level A. All higher levels are serviced by virtual

8.2. Construction 101

A

B

C

D

E

(a) Initial queues (b) New execution

A

B

C

D

E

(c) Nested execution (d) Another execution

Figure 8.2: Forking new executions with virtual executions

executions connected to this execution as shown in lighter color in Figure 8.2a.
We then assume that a new execution is created on level C, such that new virtual
executions are inserted into the queues as shown in Figure 8.2b. This new execution
might then fork another execution on level D and pass its responsibilities to it, as
shown in Figure 8.2c. Consequently, the virtual executions for level E is passed to
the D execution and new virtual executions for the C-level execution are enqueued
behind the D-executions. Due to the difference in information, it may be that the
A-execution reaches the boundary faster than the C-execution. It thus regains
responsibility on all higher levels and may pass them on to another new execution
on B-level, as shown in Figure 8.2d. At any point, only one execution or virtual
execution services each level, while lower executions can progress without having
to wait.

102 Chapter 8. Timing-Sensitive Scheduling

0 10 20 30 40 50 60 70 80 90

Log

Key

Enc1

Dec1

Enc2

Dec2

Stat
I II III IV V VI

Run time in ms

Le
ve

l

VE Ouput
VE Exit
Timeline

Input
Output

Exit
Leave

Figure 8.3: Timing-sensitive optimization of the example

In this illustration, we assumed a total lattice. Yet, in our running example
from Chapter 4, we use a partially ordered lattice. To show that our method
applies to this scenario as well and to demonstrate the security, transparency, and
efficiency achieved by our timing-sensitive scheduling, we discuss its effect on our
example next.

8.3 Example

Figure 8.3 shows an enforced run of the example in Chapter 4, using our timing-
sensitive optimization. Initially, only the execution at the Log level is created. As
it is the only execution, it is responsible for output on all levels. Thus, virtual
executions for all levels are created and connected with the Log-level execution.
This is shown at point I in Table 8.1. Capital letters describe a real executions,
small letters represent virtual executions.

Upon requesting the Key information, another execution is started, leading to
the situation at point II. The execution on Key level takes over the responsibility

8.3. Example 103

Queue at point
Level I II III IV V VI
Stat l k l d1 k l d1 d2 k l d1 d2 k l d1 d2 k l
Dec2 l k l k l D2 k l D2 k l
Enc2 l l
Dec1 l k l D1 k l D1 k l D1 k l D1 k l
Enc1 l l
Key l K l K l K l
Log L L

Table 8.1: Queue states for the execution in Figure 8.3

for output on the decryption and Stat levels as well. Thus, the virtual executions
for these levels are passed on to the Key execution. However, as now a real
execution on Key level exists, the virtual execution on that level is flagged for
termination. Since its buffer is empty, it is terminated immediately, scheduling in
the Key execution. The Key execution obtains the Key information and proceeds.
The boundary for the Key and Log execution is set to the outer boundary, as
depicted in 7.2.

The Log-level execution keeps the responsibility for output on the Log and
Encn levels. Thus, the virtual executions for these levels remain with the Log
level. Additionally, since the Log-level execution may produce additional output
for the higher levels after leaving the boundary, new virtual executions for the
higher levels are created and enqueued after the Key execution and its connected
virtual executions. The Log-level execution concurrently produces the error codes
on the Log channel, as it has not obtained the Key information. It then surpasses
the boundary. This termination triggers the virtual executions for the encryption
levels, which remained with the Log-level execution, to be flagged for termination
as well. As they are empty, they are removed from the queue. The Log-level
execution then produces the final Log output and is terminated shortly before
point III.

Meanwhile the Key execution requests the first ciphertext, which triggers an-
other execution creation. The new execution at Dec1 level is enqueued after the
virtual execution form the Key level for the Dec1 level, which is immediately ter-
minated as it is empty. Furthermore the virtual executions for the Stat level is
passed from the Key-level execution to the new Dec1-level execution, along with
the responsibility for output. New virtual executions for the Key-level execution
are created and inserted behind the executions connected to the Dec1 level. Yet,
they are inserted before the virtual executions from the Log level, as these may

104 Chapter 8. Timing-Sensitive Scheduling

Inputs Outputs
Key Enc1 Enc2 Dec1 Dec2 Log Stat

1 key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

2 abcd ikoupgnp epjunvutv ilqxphps eqlxnwwwv -1 -1 . 8 9
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

3 ikoupgnp epjunvutv -1 -1 .
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

4 0 ikoupgnp epjunvutv -1 -1 .
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

5 key 0 epjunvutv othertext -1 -1 .
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

6 key ikoupgnp 0 sometext -1 -1 . 8
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

7 key ikou... epjunvutv some... othertext -1 -1 .
key ikoupgnp epjunvutv sometext othertext -1 -1 . 8 9

Table 8.2: PSNI-noninterference results of the example Chapter 4 for our timing-
sensitive scheduler

contain output created after termination of the Key-level execution. The reasoning
here is that the Key- and Dec-executions share the inner boundary, while the Key-
and Log-execution share the outer boundary. Thus, the Key-execution will recover
responsibility for Dec-level output first, before relinquishing all responsibility back
to the Log-level execution.

As the Key-level execution does not obtain the actual ciphertext, it progresses
to surpass the boundary while the Dec1-level execution is running. Since we do not
use barriers here, the Key-level execution is allowed to progress independently. It
then requests the second ciphertext. This initiates another execution creation for
the Dec2 level. As the Key-level execution has regained responsibility for the Stat
level after leaving the boundary, it now passes this responsibility on the the Dec2
execution. Yet, the Dec1 execution also still holds responsibility for output on Stat
level, represented by a corresponding virtual execution on top of the queue. This
results in the queues at point IV, where the virtual process at Stat level from the
Key-level execution is split into the Dec2 virtual execution and a new Key-level
virtual execution, enqueued after the Dec1 virtual execution.

Subsequently, the Key-level execution reaches the inner boundary and then the
outer boundary, leading to its termination. Thus, all virtual executions connected
to the Key level are flagged for termination and the enqueued virtual execution

8.3. Example 105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·105

0.00

0.02

0.04

0.06

0.08

0.10

Size of Enc1 input in bytes

T
im

e
to

la
st

ou
tp

ut
on

c
in

s Dec2
Log

Figure 8.4: Timing-attack on optimized SME with timing-sensitive scheduling

from the Log level for the Key level is dequeued. Since this virtual execution is
also empty and the termination flag is already set, it terminates immediately. The
result are the queues at point V.

Meanwhile, the decryption level executions progress concurrently. If, as shown
here, the decryption of the second ciphertext is completed faster, it also produces
output for the Stat level first. However, since the Stat level is higher than the
level of the Dec2 execution, this output is redirected to the corresponding virtual
execution. Thus, the output event is buffered after output from the Dec1 execution,
enforcing transparent ordering. When the Dec2 execution is finished, as shown at
point VI, the output remains buffered in the virtual execution on Stat level, which
is flagged for termination.

Finally, the Dec1 execution completes the decryption and produces output on
Stat level. As its virtual execution is enqueued before the Dec2 virtual execution,
the redirection of this output ensures the correct order. The Dec1 execution then
reaches the boundary and terminates, dequeueing the Key-level virtual execution
and flagging its virtual execution on Stat level for termination. When the Dec1
virtual execution on Stat level terminates (after emitting the buffered output),
the Dec2 virtual execution is dequeued. The Dec2 virtual execution then emits
the buffered output in correct order and terminates, dequeueing the last virtual
execution. When all executions are terminated, the run is complete.

106 Chapter 8. Timing-Sensitive Scheduling

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·105

0

0.5

1

1.5

2

2.5

3

Size of input in bytes

Ru
n

tim
e

in
s

Native
Secure Multi-Execution

with Dynamic Instancing
and Bounding

and TS-Scheduling

Figure 8.5: Efficiency impact of timing-sensitive scheduling

The resulting timing-sensitivity is further exemplified in Figure 8.4. As shown,
no correlation between the size of the Enc1 input and the Log and Dec2 output
timestamps exists. Thus, an authorized observer could not infer information about
the first ciphertext under our enforcement. Successful PSNI-noninterference for
the other leaks in demonstrated in Table 8.2. Here, our timing-sensitive scheduler
achieves the same results as unoptimized Secure Multi-Execution enforcement.
The loss of efficiency compared to barrier-style optimization in this scenario is
relatively small, as evidenced in Figure 8.5. This shows that our timing-sensitive
scheduling scheme for our demand-driven optimization leads to an confidentiality
enforcement method for machine code that is secure, transparent, and efficient.

8.4 Summary

Our timing-sensitive scheduling finally allows us to use our Bounding Optimization
without sacrificing the termination- and timing-sensitive security guarantees. At
the same time, it also ensures per-channel and top-level transparency. We achieve
this by allowing lower executions to progress independently of higher executions,
while buffering their outputs. While this more complex strategy proves to be
slightly less efficient than simple barrier-style synchronization, it is still a significant

8.4. Summary 107

improvement over unoptimized Secure Multi-Execution with all the same benefits.
In the next chapter, we demonstrate our vision towards fully automatic extrac-

tion of boundaries from target binaries. While we believe that boundaries can be
provided by developers in many cases, advances in static information flow analysis
of low-level code may eventually allow to automate this step, further advancing
the practicality of our approach.

108 Chapter 8. Timing-Sensitive Scheduling

Chapter 9

Boundary Analysis

The key idea of our bounding optimization is to terminate an execution when
the information stored therein will not be used again. Naturally, this requires
knowledge about the future of a given state. Previously, we assumed that this
information is provided by the developer. Yet, we also envision an automatic
approach to extract this information, based on static binary analysis. In the special
case of binaries hardened with control-flow integrity, we additionally provide a
novel heuristic to resolve indirect call targets during control-flow reconstruction.

The core problem in static boundary analysis is that it requires precise knowl-
edge of the information flows through the target program. Yet, data-flow analysis
for machine code is much more complex than for source code targets. As described
in Section 2.3.2, the abundance of multi-level arithmetic pointers thwarts efficient
analysis in practice. Consequently, we were not able to obtain the necessary results
with any existing tools, including the angr analysis platform [75], BAP [17] with
Saluki [39] and Primus, and Bindead [55].

Thus, in the following we assume that such a solution exists and present our
approach to extract boundaries from information flow analysis results. Based
on our results, future work in the area could enable fully automatic boundary
extraction, which further strengthens the applicability of our approach. It also
highlights the need for a precise information flow analysis solution for binary code.

9.1 Boundary Extraction

Boundaries specify states where an execution has become redundant. Each of
the multiplied executions represents a specific mix of information from various

110 Chapter 9. Boundary Analysis

channels. It becomes redundant when the information stored in the execution will
not affect future outputs. When this can be guaranteed, then the execution can
be terminated safely and the future output can be produced by another execution.
In other words, the boundary for a specific mix of inputs is reached, when the
obtained information is no longer live.

We propose to automatically extract the boundary from a compiled target in
multiple steps. First, a model of the control-flow is needed to determine which
outputs are reachable from which inputs. For this, existing solutions for control-
flow reconstruction can be used (cf. [4]). In the special case of a target hardened
with control-flow integrity, our heuristic to resolve indirect calls, as explained in
the next section, can increase the precision of the result. Given the reconstructed
control-flow graph (CFG), we then identify input and output requests. For this,
we need to partially recover the arguments to system call instructions in the code,
to determine the requested functionality. This can be achieved with techniques
similar to those from Scherer et al. [70]. Once inputs and outputs are identified
in the CFG of the target, a data-flow analysis is required to determine the infor-
mation flows through the program. Through symbolic execution [75], value-set
analysis [10], or future methods, data dependencies between parts of the code can
be approximated. Together, these analysis provide a control-flow graph with input
and output nodes and data-flow information.

In Figure 9.1, we show a simplified version of the control- and data-flow from
our running example, introduced in Chapter 4. First, the key is obtained from the
Key channel, creating a key object. This key object is checked when the library
is called, assuming that more input is available. When the key object exists,
the ciphertext is obtained from the encryption channel. Both the ciphertext and
key information are subsequently used to produce the plaintext. The plaintext
object is then written to the decryption channel and used again to emit statistical
information on the Stat channel. Before returning, the library logs the length of
the key object. When all inputs have been processed, the end marker is written
to the log and the program exits.

To identify the boundary nodes, we analyze each input individually. For each
node, we first find all outputs that use key information or information derived
from key information. These nodes represent outputs that may be affected by
information stored in the execution started at the input node. Therefore, this
execution cannot be terminated as long as one of these nodes is reachable. We
thus compute the backwards slice over the control flow, starting from these nodes,
until the input node is reached. The resulting subgraph contains all nodes where
the information obtained at the input may still be live and thus the corresponding
execution should not be terminated. We call this subgraph critial section. Con-

111

library

Start

Read Key
From Key

Next?

Key?

Read Ciphertext
From Enc

Decrypt

Write Plaintext
To Dec

Write Info
To Stat

Write Key Info
To Log

Write Error
To Log

Return

Write End
To Log Exit

key

cipher

plain

input output

control flow

obj data flow

Figure 9.1: Control- and data-flow graph of the running example

112 Chapter 9. Boundary Analysis

versely, the first nodes outside the critical section describes its boundary. These
nodes are the destination of an edge where the source node is in the critical section
but the destination is not.

In our example, the key information directly affects one output in the library,
namely the logging of key the key length. Yet, the outputs that use plaintext
information are also affected by key information, since the plaintext is derived
from it. These three outputs are reachable from the input through the data flows
and thus must be part of the critical section regarding the key information. When
computing the backwards slice from these nodes, we get the subgraph highlighted
in blue in Figure 9.1. It starts with reading of the key information and includes the
check for input and the complete library, encompassing the entire loop. The first
node outside this critical section is the final logging node, shortly before exiting the
program. Therefore, this node determines the boundary for the execution created
when obtaining the key information.

The other input obtains the ciphertext. From the ciphertext, the plaintext
is derived, which then affects the outputs in the library, namely the writing of
the result to the decryption channel and the writing of statistical information. A
backwards slice from these nodes gives the shorter purple section, highlighted in
Figure 9.1. It only contains four nodes in the library, bounded by the logging
of the key information. This shows that executions created when obtaining the
ciphertext can be terminated after writing the statistical information.

In practice, some unsolved problems still persist that require additional work.
First and foremost, a scaling, precise data-flow analysis that allows to identify the
information flows through compiled code as stipulated here. Such a solution seems
to be held back by the complexity of pointer analysis in low-level code. Second, the
control-flow graph produced by current reconstruction methods is usually inter-
procedural, with unclear function bounds [4]. Consequently, backward slicing on
this graph may become imprecise due to missing context-sensitivity. We pursued a
graph-based solution to this problem in our work [62]. Third, information created
within loops may carry over to the next iteration, which would require to extend
the critical section to include the complete loop. This problem could potentially
be handled by unrolling the loops in the control-flow graph and add data flows
for information from previous iterations. Finally, one problem that arises during
control-flow reconstruction is posed by indirect calls. Sound identification of their
targets usually requires complex data-flow analysis which often does not scale.
Thus, we propose a fast heuristic for targets that are hardened with control-flow
integrity protection in the next section.

9.2. Indirect Call Resolution 113

9.2 Indirect Call Resolution

A prerequisite to any information flow or, in our case, boundary analysis is
a sound control-flow graph (CFG) of the target binary. Yet, since machine code
is unstructured and higher-level abstractions such as functions are usually not
present, control-flow analysis is not as straightforward as it is on source code. As
outlined in Chapter 3, algorithms exist to recover much of intended the control
flow. However, some special cases require complex data-flow analysis to be resolved
precisely. Precise resolution is achieved if the final CFG contains as little infeasible
transitions as possible.

One of the major problems are indirect calls. Indirect calls transfer the control
to the address specified by a register. For the static analysis, this means that the
target of the control-flow transfer cannot be resolved without context. Instead,
a precise resolution needs to determine all feasible values in the register for each
indirect call. Consequently, the control flow in a binary is dependent on its data
flow, and thus the control-flow analysis is dependent on data-flow analysis results.

Our solution to the problem is a simple heuristic that efficiently resolves indirect
calls protected by control-flow integrity. Through control-flow integrity (CFI), the
possible targets of an indirect call can be restricted to a reasonable subset of the
functions in the binary. This is achieved by preceding the indirect call-site with
a validity test that checks whether the value in the respective register is in a
valid target set. Through these checks, the attack surface for code-reuse attacks is
drastically reduced. As a side-effect, it allows us to quickly determine a sound and
relatively precise approximation of the possible targets of an indirect call, without
the need for expensive data-flow analysis.

While the idea to make use of CFI-information in the target is general, the
actual resolution algorithm depends on the implementation. Control-flow integrity
implementations vary with different compilers. Here, we explain our heuristic
based on the CFI-implementation for binaries compiled with Clang and linked
with the Gold linker [83]. Similar techniques should apply to Microsoft’s Control
Flow Guard [58,81].

9.2.1 Resolution

Clang inserts two different CFI-checks, depending on the number of targets. In
Figure 9.2 we show an example of the two types of instrumented calls. Figure 9.2a
shows a call with multiple targets, Figure 9.2b shows a call with a single target.
Both code blocks end with an indirect call instruction that uses a register to

114

405 abe: 48 89 f8 mov rax ,rdi
405 ac1: 48 b9 30 1a 41 movabs rcx ,0 x411a30

00 00 00 00 00
405 acb: 48 29 c8 sub rax ,rcx
405 ace: 48 89 c1 mov rcx ,rax
405 ad1: 48 c1 e9 03 shr rcx ,0x3
405 ad5: 48 c1 e0 3d shl rax ,0 x3d
405 ad9: 48 09 c1 or rcx ,rax
405 adc: 48 83 f9 02 cmp rcx ,0x2
405 ae0: 48 89 7c 24 08 mov [rsp+0x8],rdi
405 ae5: 76 02 jbe 405 ae9
405 ae7: 0f 0b ud2
405 ae9: 48 8b 44 24 08 mov rax ,[rsp+0x8]
405 aee: ff d0 call rax

(a) Instrumented call with multiple targets

40591b: 48 89 c1 mov rcx ,rax
40591e: 48 bf d0 19 41 movabs rdi ,0 x4119d0

00 00 00 00 00
405928: 48 39 f9 cmp rcx ,rdi
40592b: 48 89 04 24 mov [rsp],rax
40592f: 74 02 je 405933
405931: 0f 0b ud2
405933: 48 8b 7c 24 08 mov rdi ,[rsp+0x8]
405938: 48 8b 04 24 mov rax ,[rsp]
40593c: ff d0 call rax

(b) Instrumented call with single target

0000000000411 a30 <close_stdout >:
411 a30: e9 0b fd fe ff jmp 401740 <close_stdout.cfi >

0000000000411 a38 <__vm_wait >:
411 a38: e9 03 6b ff ff jmp 408540 <dummy.cfi >

0000000000411 a40 <__stdio_exit >:
411 a40: e9 1b fe ff ff jmp 411860 <__stdio_exit.cfi >

00000000004119 d0 <call >:
4119 d0: e9 db 40 ff ff jmp 405 ab0 <call.cfi >

(c) Indirect call targets

Figure 9.2: Instrumented calls example

9.2. Indirect Call Resolution 115

determine the target. The instrumented check allows the control flow to reach
the indirect call only when a preceding conditional jump is taken. Otherwise,
the control falls through to the ud2 instruction, representing an undefined error
state and halting the program. The conditional jump, on the other hand, depends
on a preceding compare instruction, which checks the outcome of a preceding
computation. This pattern is distinctive enough to be easily identified during
control-flow recovery.

The instrumentation code implements a membership validation of the address
pointed to by the register and a list of trampoline targets. The trampoline targets,
shown in Figure 9.2c, redirect the control flow to the appropriate function start.
These trampolines are added to ensure that the possible values for the register fol-
low a known pattern. They are grouped by function signature and aligned to eight
bytes distance. For example, the three functions close_stdout, _ _vm_wait,
and __stdio_exit take no arguments and are therefore grouped into the range
from 0x411a30 to 0x411a40. Each indirect call targets addresses with matching
function signature and thus from within a subset of the possible targets.

This can be seen at address 0x405ac1 in Figure 9.2a and address 0x40591e in
Figure 9.2b, where the address to the first elements in the group is loaded. We call
address the base value of the indirect call. This information implies that the call in
Figure 9.2a targets functions starting at 0x411a30, while the single-target call in
Figure 9.2a targets the function at 0x4119d0. For a single-target call, resolution of
the base value is sufficient to precisely determine the possible target. In the case of
multiple targets, the index for the target in the group is determined by subtracting
the base value and dividing it by the eight byte alignment. The call is valid when
the index is smaller or equal to the number of elements in the group. Additional
computation ensures that a target lower than the base leads to an infeasibly large
index. The number of elements, denoted n, is defined by a constant argument to
the comparison, for example shown at address 0x405adc in Figure 9.2a. Thus, it
can be easily recovered from the code pattern. Conclusively, the valid targets can
be computed from these values in the following way.

targets= {target | target= base+ 8∗ i,where i ∈ N : 0≤ i≤ n}

Our resolution algorithm, implemented as a plug-in to the angr binary analysis
framework in our typhoon toolchain, is shown in Algorithm 1. We use an addi-
tional filter function to identify the code pattern and extract the necessary values.
As the base and number of elements are hard-coded, we can extract them without
further data-flow analysis.

116 Chapter 9. Boundary Analysis

Algorithm 1 Indirect Call Resolver resolution
Require: Σ, CFG, check_node
Ensure: targets

targets := []
insns := instructions(Σ, check_node)
compare := insns[-3]

if operand_types(compare)[1] = REGISTER then
n := 0
movabs := insns[-4]

else
n := operands(compare)[1]
movabs := insns[-9]

end if

base := operands(movabs)[1]
for all i ∈ [0,n] do
targets = targets + [base + i * 8]

end for

return target

9.2.2 Summary

With our contributions to static analysis, we show how boundary descriptions
could be extracted automatically from control- and data-flow information. From
the control-flow graph, all paths between an input node and an output node can be
established. With additional data-flow information, it can be validated whether
information can flow between the input and an output node along one of these
paths. All nodes visited by paths for which this is the case together form the
critical section. The boundary is then determined by the first nodes outside this
critical section.

Unfortunately, precise static control-flow and data-flow analysis of low-level
code is still not feasible. Due to the abundance of multi-level arithmetic pointers
and lack of scopes, points-to analysis quickly becomes an intractable, program-wide
problem. Because low-level languages support dynamic branching instructions,
whose control-flow target depends on the memory state, the problem carries over
to control-flow analysis. For the latter, we contribute a heuristic to resolve indirect

9.2. Indirect Call Resolution 117

calls protected by control-flow integrity techniques. Still, further investigation is
needed to find a scalable and automatic solution, on which we could then extend
our boundary analysis.

118 Chapter 9. Boundary Analysis

Part II

Evaluation

120

Overview

To show that our enforcement approach can be used in practice, we implemented
a toolchain for the Linux operating system, running on the wide-spread x86_x64
architecture. Our typhoon toolchain, shown in Figure 9.3, consists of two parts.
The ddsme package contains our monitoring system. It takes the target program,
the security lattice, a mapping from paths to security levels, and a dummy input
source as arguments. The monitoring system handles the invocation, duplication,
and progress of executions, contained in individual processes. It also manages
the connection to the operating system and enforces the transformations of the
execution semantics. In case of an enforcement optimized with barrier- or queue-
based bounding, the monitor additionally manages the barriers or queues. In this
case, the monitor also takes the boundary information as input.

The boundary information can be provided manually or through our experi-
mental static binary analysis, contained in the critter package. Our static anal-
ysis is based on the angr analysis framework for binary code [75]. We extend
the framework with our heuristic to resolve indirect calls based on control-flow in-
tegrity information. Additionally, we implemented a fast identification of system
call types, based on the results from our joint work with Scherer et al. [70]. From
the recovered control-flow graph and identified system calls, we can then derive
safe boundaries automatically.

We implemented the toolchain in the Python language, to allow for rapid
development of new features. Interaction with the operating system and access to
process registers is realized through C-bindings with the ptrace library. Access
to the process memory, setting of breakpoints, and mapping of file descriptors
to paths is realized though the proc file system. Processes are traced using the
PTRACE_SYSCALL command, which allows to step to the next system call or break-
point. This reduces the number of interruptions of the execution as well as the
number expensive context switches. Interception and manipulation of system call
functionality is realized through hooks, which are invoked when the execution
requests a corresponding system call.

122

Binary

C
FI

Lattice
(L

,v
)

C
lassification

(P
a
th

7→
L

ev
el)

D
um

m
y

Input

critter

Static
A

nalysis

C
ontrol-Flow

Integrity
R

esolver

C
ontrol-Flow
A

nalysis

System
C

all
Identification

C
riticalSection

A
nalysis

C
FG

C
FG

sources
sinks

Boundary

ddsme

M
onitoring

System

M
anager

Barriers
Q

ueues

Process

L
ev

el
Process

L
ev

el
Process

L
ev

el

Transformation

syscall
syscall

syscall
K

ernel
syscall

Input

O
utput

typhoon

Bounding
Barrier-based

Q
ueue-based

Figure
9.3:

(O
ptim

ized)
Secure

M
ulti-Execution

toolchain
for

m
achine

code

123

We evaluate our implementation in three different settings. The first setting
is the decryption service described in full detail in Chapter 4. For this example,
we provided measurements and test results at the end of the previous chapters.
The decryption service combines different information leaks in a single example,
making it a very challenging scenario. To further demonstrate the versatility and
generality of our approach, we provide results for a set of benchmark programs
from related work and for assorted programs from the widely-used coreutils
package next.

The benchmark programs represent a collection of different attacks that are
often discussed in related work. Each program highlights a challenging aspect in
terms of security or transparency. Our results, shown in Chapter 10, demonstrate
that our toolchain achieves both for all examples. This highlights the effectiveness
of our approach, guaranteeing timing-sensitive noninterference for all discussed
attacks. We further show that we produce the same classified results that an
unprotected execution of the target would produce. This shows that we achieve
top-level transparency for all programs. Additionally, we show that we produce
the same public results as an unprotected execution, as longs as the unprotected
execution is timing-insensitively noninterferent. Thus, we also achieve per-channel
transparency in all these cases.

We then demonstrate the practicality and optimized efficiency of our enforce-
ment approach by applying it to real-world binaries. The programs cat, sha*sum,
wc, and sort are widely-used, highly-optimized, and well-tested tools from the
coreutils package that is part of many Linux distributions. We demonstrate
that our toolchain can be applied to them and transparently enforce security in
Chapter 11. On the one hand this shows that with our solution, we can handle
real binary code, despite the technical challenges that this entails. Furthermore,
it shows that our approach provides a general solution and does not have to be
adjusted for different targets, with the exception of providing individual bound-
aries. Finally, we compare our Secure Multi-Execution enforcement solution with
and without our optimizations in place. Here we can show that our optimizations
can reduce the enforcement overhead significantly in many cases.

We summarize our contributions and results when we conclude this thesis in
Chapter 12. There, we also provide pointers for future work, for example how
to make our method more accessible to developers. We provide details on the
benchmark programs in Appendix A, as well as more evaluation results for the
sha*sum family of programs and the sort tool in Appendix B. In Appendix C, we
demonstrate how our toolchain can be used to thwart input-delay attacks.

124

Chapter 10

Benchmark

With the benchmark tests, we show that our approach achieves security and trans-
parency for a range of examples from related work. We used all 14 examples in-
troduced by Bielova et al. to discuss transparency [16], five examples from the
discussion about termination-sensitvity by Askarov et al. [6], four examples fur-
ther addressing tremination-sensitivity from Ngo et al. [59], and one additional,
unpublished example to highlight attacks via the timing side-channel1. Together,
these 24 examples cover explicit and implicit flows, and leaks through the termi-
nation and timing-channels. They also contain secure programs that have been
falsely flagged as insecure by other approaches in the past [16]. In contrast to
this, we can show that our approach achieves per-channel transparency for these
examples.

To apply our toolchain to the examples, we translated the examples to C code
and compiled them into binaries. The examples provided in the related work are
usually represented in a simple, interactive, WHILE-like language. While they do
not always provide semantics for the language, most constructs are well-known
and can be directly translated to C code. An exception are input and output
commands that are not always clearly defined. Still, due to the simplicity of the
examples, we assume the semantic gap between the original specification and our
implementation is minimal.

Next, we provide details on the examples, our implementation, and configura-
tion for the tests. We then provide evaluation results regarding progress-sensitive
noninterference and finally demonstrate timing-sensitive noninterference enforce-
ment with our toolchain. In the next chapter, we focus on practicality and effi-

1We were unable to find a suitable example for timing-attacks in the related work. The effects
discussed in the timing-sensitive example from Kashyap et al. [42] are too small to be measured
against the noise of a system under stress.

126

Leak
Source ID E I T Description

[6]

a01 X Counting loop with public output of the
index until h is reached.

a02 X X a01, but diverging after the loop.
a03 X a02, but no implicit flow in loop limit.
a04 X Divergence on specific h.
a05 X X Direct leak of h then divergence.

[16]

b01 X Implicit flow on specific private value.
b02 X Divergence on specific h.
b03 b01, but l is sanitized.
b04 X Divergence on combination of l and h.
b05 Sanitized implicit flow.
b06 X l implicitly changed.
b07 X Divergence through implicit flow.
b08 Always divergence.
b09 Sanitized implicit flow.
b10 X Implicit flow of h in one branch.
b11 X Transitive implicit flow through l2.
b12 X Implicit flow of h.
b13 X Implicit flow on combination of l and h.
b14 X X Implicit divergence or flow.

[59]

n01 X Public input dependent on h.
n02 X Divergence on specific h.
n03 X Implicit output, then divergence.
n04 Sanitized implicit output.

- u01 Timing-Attack Output delayed through computation.
Leak types: E = explicit, I = implicit, T = termination

Table 10.1: Overview of benchmark examples

10.1. Setup 127

h

l

Hout

Lout

Hout

Lout

Hin Hout

Lin Lout

run()

boundary

Figure 10.1: Information flows in the benchmark programs

ciency when applying our toolchain to real-world binaries.

10.1 Setup

An overview of the benchmark set and represented attacks is given in Table 10.1.
Examples from Askarov et al. [6] and Ngo et al. [59] focus on leaks through ter-
mination (or divergence, resp.), while Bielova et al. [16] focus more on implicit
leaks and transparency. Out timing attack is inspired by examples from Kashyap
et al. [42]. We discuss is in more depth after discussing progress-sensitive nonin-
terference.

To implement the examples, we translated them to C code. Details on each
example are given in Appendix A. The examples implement a run function that
is called from a common main function. A schematic of the composition and
information flows is given in Figure 10.1. The main function declares two variables
l and h. We use a two-level lattice and classify them as low and high, respectively.
Their initial value is set to some unused value in the examples (e.g. 42). The
values of both variables are also emitted on their respective channels before and
after the example is run to detect interferences in the examples or intransparency.
Shortly before the l value is emitted for the last time, the h variable becomes dead
as the information stored therein is not used again. Thus, we place the boundary
between the last outputs of the h and l variables. When the execution reaches
this program location, the high execution will be signaled to merge or terminate,
depending on the synchronization mechanism.

For the evaluation, we ran each test case with altering private inputs (i.e.
{0,1,2,7,17,400}) but constant public input. To test different execution branches,
we reran the test cases with different public values (i.e. {0,1,2}). We provided
an unrelated dummy value to not adversely affect the termination criteria (i.e.
7). Diverging executions were interrupted after a generous timeout. To assess the

128 Chapter 10. Benchmark

timing-sensitivity of our enforcement, we additionally timed the outputs on the
low channel. Table 10.2 shows the results of for all our test cases, noting different
security and transparency criteria.

To measure progress-sensitive noninterference (PSNI), we compared the public
outputs of test cases with equal low inputs. The criteria is violated when at least
one test case produces differing public output. Timing-sensitive noninterference
(TSNI) is less straight forward to asses, as there are natural differences in the
timing of outputs. We attributed values between 0.000s and 0.010s to stress on
the evaluation system. Thus, we consider a maximum difference in the timestamp
of public outputs below 0.010s as secure. Note that TSNI requires PSNI, as other-
wise public outputs are incomparable. Note also that while PSNI implies indirect
termination-sensitivity, direct termination-sensitivity (TS) cannot generally be en-
forced, as proven by Ngo et al. [59]. We mark an example as TS when either all
tests terminated or all tests diverged.

In terms of transparency of the enforcement, we validated two criteria, namely
top-level transparency (TLT) and per-channel transparency (PCT). TLT is given
when the enforcement produces the same high output content as the unprotected
run. We aim to generally guarantee TLT both for secure and insecure programs,
such that it should always be fulfilled. Additionally, we aim to guarantee PCT for
secure programs, such that the low channel output contents are the same as for an
unprotected run. In an insecure program, we may have to alter the low-channel
outputs to achieve noninterference, thus PCT cannot always be established. Thus,
we only evaluate PCT for programs that are originally PSNI-secure.

We explain the results of our timing-insensitive test cases next, and then focus
on the timing-sensitive test case.

10.2 Results

Considering the results from Table 10.2, we can see that they reflect our expec-
tations from Table 10.1. Except for programs b03, b05, b08, b09, n04 and
u01, all programs are violating progress-sensitive noninterference (PSNI). By im-
plication, these also do not satisfy TSNI. For those that do, no measurable delays
in public outputs could be measured. Some cases (a04, b02, b04, b07, b14,
n02) are also not termination-sensitive. In these cases, high inputs interfered with
the termination behavior.

In terms of security, our results show that our Secure Multi-Execution im-
plementation (S) does indeed achieve PSNI for all examples. Furthermore, it also
satisfies our timing-sensitive noninterference criteria (TSNI) and both the top-level

129
Se
cu
ri
ty

Tr
an

sp
ar
en

cy
N
at
iv
e

PS
N
I

T
SN

I
T
S

T
LT

PC
T

ID
PS

N
I

T
SN

I
T
S

S
B

Q
S

B
Q

S
B

Q
S

B
Q

S
B

Q
a0
1

×
×

X
X
X
X

0.
00
2

0.
12
0

0.
00
5
X
X
X
X
X
X

-
-

-
a0
2

×
×

X
X
X
X

0.
00
3

0.
00
2

0.
00
3
X
X
X
X
X
X

-
-

-
a0
3

×
×

X
X
X
X

0.
00
2

0.
00
7

0.
00
5
X
X
X
X
X
X

-
-

-
a0
4

×
×

×
X
×
X

0.
00
5

×
0.
00
3
×
×
×
X
X
X

-
-

-
a0
5

×
×

X
X
X
X

0.
00
1

0.
00
5

0.
00
2
X
X
X
X
X
X

-
-

-
b0

1
×

×
X

X
X
X

0.
00
2

0.
00
3

0.
00
3
X
X
X
X
X
X

-
-

-
b0

2
×

×
×

X
×
X

0.
00
1

×
0.
00
5
×
×
×
X
X
X

-
-

-
b0

3
X

0.
00
0
X

X
X
X

0.
00
2

0.
00
3

0.
00
4
X
X
X
X
X
X
X
X
X

b0
4

×
×

×
X
×
X

0.
00
2

×
0.
00
3
×
×
×
X
X
X

-
-

-
b0

5
X

0.
00
0
X

X
X
X

0.
00
3

0.
00
3

0.
00
6
X
X
X
X
X
X
X
X
X

b0
6

×
×

X
X
X
X

0.
00
1

0.
00
3

0.
00
5
X
X
X
X
X
X

-
-

-
b0

7
×

×
×

X
×
X

0.
00
2

×
0.
00
6
×
×
×
X
X
X

-
-

-
b0

8
X

0.
00
0
X

X
X
X

0.
00
1

0.
00
1

0.
00
1
X
X
X
X
X
X
X
X
X

b0
9

X
0.
00
0
X

X
X
X

0.
00
2

0.
00
3

0.
00
3
X
X
X
X
X
X
X
X
X

b1
0

×
×

X
X
X
X

0.
00
2

0.
00
5

0.
00
5
X
X
X
X
X
X

-
-

-
b1

1
×

×
X

X
X
X

0.
00
1

0.
00
4

0.
00
6
X
X
X
X
X
X

-
-

-
b1

2
×

×
X

X
X
X

0.
00
2

0.
00
5

0.
00
6
X
X
X
X
X
X

-
-

-
b1

3
×

×
X

X
X
X

0.
00
2

0.
00
2

0.
00
3
X
X
X
X
X
X

-
-

-
b1

4
×

×
×

X
×
X

0.
00
2

×
0.
00
4
×
×
×
X
X
X

-
-

-
n0

1
×

×
X

X
X
X

0.
00
2

0.
00
4

0.
00
5
X
X
X
X
X
X

-
-

-
n0

2
×

×
×

X
X
X

0.
00
1

0.
00
1

0.
00
1
X
X
X
X
X
X

-
-

-
n0

3
×

×
X

X
X
X

0.
00
1

0.
00
4

0.
00
5
X
X
X
X
X
X

-
-

-
n0

4
X

0.
00
0
X

X
X
X

0.
00
1

0.
00
4

0.
00
6
X
X
X
X
X
X
X
X
X

u0
1

X
0.
01
1
X

X
X
X

0.
00
1

0.
01
5

0.
00
2
X
X
X
X
X
X
X
X
X

Ta
bl
e
10
.2
:
Ev

al
ua

tio
n
re
su
lts

130 Chapter 10. Benchmark

1 #include "../ common.h"

2 void run () {
3 // for i = 0 to secret {keep busy }; output l
4 h = input(Hin);
5 for (int i = 0; i < h; i ++) {
6 for (int j = 0; j < 3000; j++) {
7 int a = (i * h) / (i ^ h);
8 }
9 }

10 output(Lout , l);
11 }

Listing 10.1: Benchmark program u01.c

transparency (TLT) and per-channel transparency (PCT). This shows that our im-
plementation translates the theoretical guarantees to practice. As expected, our
implementation cannot generally guarantee direct termination-sensitivity (TS).
Here, n02 poses an exception, as our dummy value always leads to divergence in
this case.

The results for our optimized Secure Multi-Execution with barrier-synchroniza-
tion (B) show the expected outcome. Because the boundary is set before the final
public output, divergence of the high execution led to a suppression of this value in
the termination-insensitive cases. Consequently, our barrier-synchronization fails
to guarantee PSNI (and therefore TSNI) for some cases. Additionally, in case a01,
the output to the public channel is delayed while the high execution is executing
the loop. Thus, in this case, it fails TSNI while providing PSNI guarantees. Top-
level and per-channel transparency, on the other hand, is guaranteed as expected.

In contrast to this, our timing-sensitive scheduler based on queues (Q) does
achieve the same guarantees as unoptimized Secure Multi-Execution. Because our
scheduler breaks dependencies between lower and higher executions, divergences of
higher executions do not affect lower executions. Consequently, PSNI is achieved
even for the termination-insensitive cases. For the same reason, it furthermore
achieves TSNI in all cases. Due to the reordering of output, is also achieves
top-level and per-channel transparency. As a result, our optimized Secure Multi-
Execution with timing-sensitive scheduling achieves the same strong security and
transparency guarantees as the unoptimized implementation.

Finally, we consider the timing-attack from u01 in more detail. In Listing 10.1,
we show the code of the run function for this example. The attack is inspired by the

10.3. Summary 131

examples from Kashyap et al. [42]. They use an implicit flow to introduce a delay
into the public output that is dependent on private information. We replicate this
scenario here, by performing an time-consuming (and nonsensical) computation
based on private information. Thus, the greater the value stored in h, the longer
the delay.

This is reflected in our results, which show that the program is PSNI, but not
TSNI without enforcement. Considering the enforcement results, our unoptimized
Secure Multi-Execution once again does achieve TSNI for this example. Because
the computation is performed based on consistent dummy input in the public
execution, different private information has no effect on the timestamp of the
public output. Thus, the maximum difference in timing is 0.001, representing
noise from the system. In contrast to this, the barrier-synchronized optimization
again fails to guarantee TSNI, as it waits for the high execution to finish the
computation before progressing to the final public output. Yet, our queue-based
termination-sensitive scheduler alleviates the problem and successfully enforces
timing-sensitive noninterference for this test case as well.

10.3 Summary

Our benchmark test cases show that the results provided in previous chapters are
not coincidental. Even for 24 different examples from related work, highlighting
different kinds of leaks and challenges for transparency, our enforcement could
consistently guarantee security and transparency. While our barrier-synchronized
optimization fails to enforce termination- and timing-sensitivity as expected, our
queue-based timing-sensitive scheduler does indeed provide the same guarantees
as our unoptimized Secure Multi-Execution implementation.

Consequently, progress- and timing-sensitive noninterference could be guaran-
teed for all examples, including termination-insensitive cases and an attack on the
timing-channel. At the same time, top-level transparency could be guaranteed for
all examples as well, while per-channel transparency could be guaranteed for all
originally secure examples. This shows that our approach provides strong security
without unintentionally breaking the functionality of the target.

Next, we show that our approach can also be applied to more complex real-
world examples from the coreutils collection. Here, we also show the impact
of our optimizations on the enforcement efficiency in two different settings. The
results demonstrate the practicality of our approach, as well as the improved effi-
ciency. For a discussion of input-delay attacks and our countermeasure, we refer
the reader to Appendix C.

132 Chapter 10. Benchmark

Chapter 11

Coreutils

Besides the benchmark programs that demonstrate the effectiveness of our ap-
proach against various attacks, we also validated our approach on several pro-
grams from the popular coreutils collection. This demonstrates that existing
code that was neither programmed with confidentiality in mind, nor crafted to
fit our solution, still benefits from our optimization. Additionally, although the
use-cases of coreutils programs are usually quite simple, their code is highly
optimized, which leads to complex binaries. Yet, our approach can be applied to
all supported examples with no adjustments except for binary-specific boundaries.
Finally, we use the examples to also highlight the efficiency improvements that
we achieve through our optimizations for Secure Multi-Execution. Note that we
are only interested in the relative improvement of efficiency when compare to our
unoptimized Secure Multi-Execution implementation. Construction of a more ef-
ficient implementation, perhaps directly integrated in the kernel, is left for future
work.

We evaluate our approach on four different targets from the coreutils suite,
namely wc (word count), sort, cat, and the sha*sum family. We chose these
targets as they take multiple files as input, which allows us to perform tests with
multiple input channels. They also use a limited set of file-handling system calls
that we support in our prototype. To support more examples, handling additional
system calls would have to be implemented. From our experience, we expect this
to range from relatively simple, for which lseek is an example, to very intricate,
for example for the multi-purpose system call ioctl. Ultimately, support of all
system calls in our prototype would come close to mirroring the kernel in our
monitor running in user space. Therefore, we suggest for the future to integrate
our approach with the kernel instead.

Considering our bounding optimization, the targets differ in two important as-

134 Chapter 11. Coreutils

>

H

A B

L
(a) LABHT-Lattice

0

1

2

>

(b) Total-order lattice

Figure 11.1: Lattices used during evaluation

pects. In wc and sort, input is obtained very early and remains live throughout
most of the execution. Thus, it represents the worst case for our optimizations.
Still, we show that we can transparently enforce security and benefit from dynamic
instancing in cases where input is obtained on a subset of the possible channels.
Conversely, cat and the sha*sum programs obtain and process new input sequen-
tially. Here, information from one file is dead after the file has been processed.
New information is also only accessed when the previous processing is completed.
Consequently, these targets lend themselves well to our bounding optimization,
leading to a significant reduction of the enforcement overhead.

We discuss this difference in more detail next. Then, we give an overview of the
test setup, with a focus on the used lattices. Subsequently, we first show how our
dynamic instancing can lead to a reduction of the enforcement overhead in worst-
case programs such as wc. Then, we demonstrate the effect of our optimizations
including bounding on better suited targets such as cat. To keep this section brief,
and because they show the same effects, we moved the addtional results for the
sort and sha*sum programs to Appendix B.

11.1 Setup

For the evaluation of the coreutils targets, we feed the targets test files with
random content of controlled length. In each run, we first produce the expected
output using an unprotected execution. This gives us a baseline for subsequent
tests to ensure that our results are secure and transparent. Each mark in the
following plots represents a successful test case. We additionally measure the time
before and after execution of a test case to determine the real run time.

During our evaluation, we use two different lattices. To demonstrate that we

11.1. Setup 135

main

fstat

file?

read

input? process

write

write

exit

TF

F
T

data-flow
control-flow

(a) Dependent output examples

main

file?

read

input? process

write

exit

TF

F
T

(b) Independent output examples

Figure 11.2: Schematic CFGs with data-flow and boundaries for the two categories

can handle incomparable levels, we use the LABHT-lattice shown in Figure 11.1a.
During our tests, we compare the outputs on the H-level, as correct output on
this level demonstrates both security (omission of >-level information) and per-
channel transparency for the complex case with incomparable levels. Thus, to
create the baseline, we execute the program normally but replace the> information
with the dummy input. Then, we run the protected execution with the actual >
information, using the same dummy source. Consequently, when the two outputs
are exactly the same, we show that our protection a) removes the sensitive >
information from the output, while b) retaining the original order and content
at H-level. Therefore, each successful test shows both security and transparency
of our enforcement. To eliminate differences due to resource contention between
incomparable levels during tests of scalability with the lattice size, timing, and file
splitting, we use the total-order lattice shown in Figure 11.1b in these settings.

In our tests, we also use different boundaries, as illustrated in Figure 11.2. In
the case of wc and sort, shown in Figure 11.2a, most of the program is part of the
critical section. Input for all channels is obtained right after starting the program
when information about the input files is checked using fstat. This information is
used in the final output and thus remains live right until the program exits. While
we can provide a safe boundary here, it does not lead to increased performance as it
merely replaces the normal exit with our termination procedure in the executions.
Thus, we use only our dynamic instancing optimization in these programs.

In contrast to this, cat and programs in the sha*sum family process each file
sequentially. Thus, information is obtained very late and becomes dead when

136 Chapter 11. Coreutils

118 520 3811 /home/ pfeffer /. bashrc
45 76 2643 /etc/passwd

163 596 6454 total

(a) Unprotected output

118 520 3811 /home/ pfeffer /. bashrc
0 0 0 /etc/passwd

118 520 3811 total

(b) Protected output

Figure 11.3: Effect of confidentiality enforcement on wc

the inner loop is left. Consequently, we can use our bounding optimization to
terminate newly created executions after they handled each individual file. As a
result, a maximum of two executions are running at any time, proposing a great
increase in enforcement efficiency.

11.2 Results for Word Count

As the name suggests, word count (wc) counts the words in all provided files
and prints the result. The results are listed per file as well as overall. In Fig-
ure 11.3 we illustrate the effect of our confidentiality enforcement on the word
count program. Above, we show the output produced by an unprotected run
using /home/pfeffer/.bashrc and /etc/passwd as input. Assuming that no in-
formation about /etc/passwd should be leaked, we show the output produced by a
protected run below. As can be seen, the revealing counters for /etc/passwd have
been replaced with benign counters for empty dummy input. The total counters
reflect this change correctly. Except for the definition of the boundaries, no static
analysis, binary rewriting, nor knowledge of the target was necessary to achieve
this effect.

We do the same kind of experiment in Figure 11.4a, yet with five input files
and the more complex LABHT-lattice. Each mark in the plot demonstrates a case
where the secret top-level information is removed, while all other counters are un-
altered. The plot shows how the run-time increases with larger input sizes for both
unprotected execution (native) and protected execution of two kinds (unoptimized
and optimized). As expected, the Secure Multi-Execution of the target induces a
significant overhead. Unfortunately, our dynamic instancing also does not help in

137

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
·107

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Input size in bytes

T
im

e
in

s

Native
Secure Multi-Execution

with Dynamic Instancing

(a) Overhead sampling for different input sizes

0 5 10 15 20 25 30 35

0

2

4

6

8

Levels serviced

T
im

e
in

s

Native
Secure Multi-Execution

with Dynamic Instancing

(b) Overhead sampling for different number of input levels

Figure 11.4: Evaluation results for wc

138 Chapter 11. Coreutils

this case, as input information is obtained very early in the execution. Thus, we
very quickly must create executions for all levels, leading to the same overhead as
unoptimized Secure Multi-Execution.

Yet, our optimization can still improve the performance in some cases. Fig-
ure 11.4b shows the run times when the amount of input remains the same but is
divided between increasingly many security levels. Here, we use a total lattice with
32 levels. Because unoptimized Secure Multi-Execution cannot adapt dynamically
to the actually used levels, it must always pessimistically create all 32 executions
to service all levels in case they are needed. Naturally, this leads to a high over-
head in all cases. The overhead remains relatively stable here, as the total amount
of input is the same. In contrast to this, since our dynamic instancing does allow
to adapt to the actually used levels at run time Consequently, we achieve a sig-
nificant efficiency improvement in may cases. At half the levels actually in use,
we only need roughly half the time to process all inputs. When nearly all levels
are actually serviced, our optimization effect diminishes. This shows that even in
worst-case targets such as wc, our optimization can lead to a significant increase
in performance, depending on how the program is used.

11.3 Results for Cat

The cat tool follows the schema shown in 11.2b. The purpose of the program is
to concatenate multiple input files into the output file. Thus, the contents of each
file are emitted without change. Because inputs are processed independently, we
can terminate the corresponding execution after each file. This leads to a great
reduction of the performance overhead. As shown in Figure 11.5, our optimizations
reduce the overhead to up to one third compared to unoptimized protection.

Interestingly, in Figure 11.5a, our bounding optimization does not increase the
performance beyond our dynamic instancing optimization. This effect is a result
of the order in which input is provided to the program. Here, we provide the input
in ascending total order of the lattice, meaning L,A,B,H and then T -level. Each
new input thus leads to the creation of a new execution, while the existing, lower
executions obtain empty dummy information instead. Therefore, only the new
execution handles the new input, while the other executions skip the processing
due to empty input. The effect is so strong that dynamic instancing alone leads
to the full improvement.

When the input is provided in reverse order, the situation is different. As
shown in Figure 11.5b, here dynamic instancing does not lead to an increase in
efficiency. Because higher executions are created first and then have access to

139

0 1 2 3 4 5 6 7 8 9
·107

0

0.5

1

1.5

2

Input size in b

Ru
n

tim
e

in
s

Native
Secure Multi-Execution

with Dynamic Instancing
and Bounding

and TS-Scheduling

(a) LABHT-order

0 1 2 3 4 5 6 7 8 9
·107

0

0.5

1

1.5

2

2.5

Input size in b

Ru
n

tim
e

in
s

(b) THBAL-order

Figure 11.5: Run-time sampling of cat

140

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

Lattice size

Ru
n

tim
e

in
s

Native
Secure Multi-Execution

with Dynamic Instancing
and Bounding

and TS-Scheduling

(a) Ascending total order

0 5 10 15 20 25 30 35

0

2

4

6

8

10

Lattice size

Ru
n

tim
e

in
s

(b) Descending total order

Figure 11.6: Level sampling of cat

141

0 1 2 3 4 5 6 7 8 9
·107

0

5 ·10−2

0.1

0.15

0.2

0.25

0.3

0.35

Private input size in b

T
im

e
to

pu
bl

ic
ou

tp
ut

in
s

Secure Multi-Execution
with Dynamic Instancing

and Bounding
and TS-Scheduling

Figure 11.7: Time sampling of the first output event

0 5 10 15 20 25 30 35
5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

Number of files

Ru
n

tim
e

in
s

Figure 11.8: File split sampling of cat

142 Chapter 11. Coreutils

subsequent lower input, all executions obtain all input. Consequently, redundant
computations occur when only dynamic instancing is used. Yet, as the graph
shows, through our bounding optimization, we can achieve the same speedups
as for the best-case order of inputs. With executions terminated early, we again
achieve a situation where only one execution obtains the actual input, saving all
redundant computations. Finally, because higher channels are served first under
this order, and thus are more busy, our timing-sensitive scheduling becomes more
complex as well. Thus, as expected, it performs slightly worse than our simpler
barrier-style synchronization.

The significant performance increase persists when the complexity of the lat-
tice is increased. In Figure 11.6, we measured the run times of different protection
configurations for a total-order lattice with increasingly many levels. Unlike the
measurement performed for word count, where we pessimistically assumed that
the number of actually needed levels is not know before execution, here we opti-
mistically assume that it is. Consequently, unoptimized Secure Multi-Execution
performs better for smaller as they require less executions. Still, our optimizations
significantly improve the performance and allow the enforcement to scale with
the lattice complexity. Only when the input order is detrimental to our dynamic
instancing and no bounding is used, will our optimizations achieve the same over-
head as unoptimized Secure Multi-Execution. In all other cases, our optimizations
achieve the desired effect.

Our tests show that bounding greatly decreases the enforcement overhead. Yet,
they also show that a simple barrier-style synchronization performs slightly better
than our timing-sensitive, queue-based scheduling. However, as the name suggests,
our timing-sensitive scheduling also protected against leaks through the timing-
channel. This is shown in Figure 11.7, where we measure the elapsed time until
the public output is finally emitted. As can be seen, all protection configurations
correctly remove any correlation between sensitive input size and the public output
timestamp, except for bounding with barrier-style synchronization.

Finally, an interesting effect shows in Figure 11.6a for a larger number of levels
in the lattice. Because the same amount of input is split up between an increasing
number of files, the size of each file decreases with each additional level. Conse-
quently, the time spent in the critical section reduces for each execution, which
amplifies the overhead for the creation of a new execution. Thus, for a complex
lattice with small file sizes, the overhead of dynamic instancing starts to rise. To
isolate this effect, we performed another test with a small amount of input that
is split across an increasing number of files. The results are shown in Figure 11.8.
Here we can see that for increasingly many files, and thus increasingly smaller crit-
ical sections, the overhead of our more complex optimizations starts to rise. This

11.4. Summary 143

points to interesting question regarding the optimal size of the critical section. It
may be beneficial to move the boundaries out of small critical loops, to prevent a
repeated creation and termination of executions.

All in all, our results for cat show the promising effects of our optimizations.
Not only do they reduce the enforcement overhead for executions that spent an
increasing amount of time inside the critical section. They also allow the enforce-
ment to scale with the complexity of the lattice. Our timing-sensitive scheduling
further ensures that these benefits do not come at the cost of the strong security
guarantees of Secure Multi-Execution.

11.4 Summary

Beyond wc and cat, we also performed the same tests again for sort and program
from the sha*sum family. The results are shown in Appendix B and generally
support our findings for wc and cat. Like wc, sort adheres to the unfortunate
flows shown in Figure 11.2a and thus lends itself badly to our optimizations. Still,
our dynamic instancing can again be used to increase the performance compared to
unoptimized Secure Multi-Execution when only a subset of levels is serviced. The
programs in the sha*sum family, on the other hand, follow the construction of cat.
Unlike cat, the sha*sum programs do process the input to compute the SHA hash
of the files, leading to longer run times overall. Yet, again our optimizations can
significantly reduce the enforcement overhead, allow the enforcement to scale with
larger lattices, and ensure timing-sensitivity. Consequently, our finding show that
Secure Multi-Execution can be made efficient for real-world programs in complied
form.

144 Chapter 11. Coreutils

Chapter 12

Conclusion

In this thesis, we addressed the problem of information leaks from library code
included in new software. Including third-party library code is often necessary
to reduce the development costs and time to market of the software product.
Yet, library code is usually shipped in compiled form, which is notoriously hard to
analyze. Thus, a method is needed to enforce confidentiality across all components
of a software product, including compiled third-party library code.

Our goal in this thesis is to design and develop a mechanism to enforce confi-
dentiality of compiled software components. We propose a solution that is secure,
transparent, efficient, and practical. Security in this context means that no in-
formation about sensitive inputs can be inferred from observing public outputs
of the enforced program. This means that no information leaks neither through
data flow, control flow, termination behavior, nor timing-behavior. Conversely,
transparency means that all secure behavior remains intact. This ensures that
the enforcement mechanism does not break the functionality of the target, which
would make the solution impractical. Lastly, the enforcement mechanism should
be practically applicable to machine code. This implies that the enforcement is
efficient, meaning any imposed performance overhead scales with the complexities
of the target and application scenario.

Our solution is based on the concept of Secure Multi-Execution as proposed
by Devriese and Piessens in 2010 [32]. Under Secure Multi-Execution, the target
is executed multiple times. Each execution is responsible for outputs on a certain
security level and only has access to information with equal or lower classification.
This way, security is ensured by design. The individual executions can be sched-
uled independently, achieving protection against termination- and timing-attacks
as well. Additionally, Secure Multi-Execution has been shown to achieve high
transparency [16], making it a good fit for our requirements.

146 Chapter 12. Conclusion

Yet, until now, no practical application of Secure Multi-Execution to machine
code existed. Thus, it was unclear whether the technique can be applied, how
it can be applied, and how well it performs. Furthermore, the practicality of
Secure Multi-Execution is severely limited by its inefficiency. As a consequence of
the multi-execution, the resource requirements of the target application are also
multiplied. In many cases, this leads to an unacceptable overhead, which grows
exponentially with the granularity of the security levels.

We solve these problems with five contributions. First, we are the first to apply
Secure Multi-Execution to machine code, demonstrating the effectiveness of the
approach in our scenario. To achieve this, we provide concrete implementations
for the various abstract concepts that are used to formally define Secure Multi-
Execution. The resulting system successfully enforces a termination- and timing-
sensitive notion of confidentiality across all components of a pre-compiled target.
At the same time, it produces correct outputs for secure behaviors, demonstrating
high transparency of the approach.

To improve the enforcement efficiency, we propose two novel optimizations.
The key idea is to remove as much as possible of the redundant computation
that was introduced through the multiplication of the execution. In our Dyanmic
Instancing optimization, we aim to create as few executions as possible and do so
as late as possible. This means that we effectively reduce redundant computation
from executions in equivalent states. The key idea is that in a deterministic system
all executions behave the same, as longs as no secret information has been obtained.
Our second optimization, called bounding, aims to terminate as many executions
as early as possible. This is enabled by reusing static analysis results that provide
information about the future behavior of executions. Whenever an execution can
be replaced by another execution without loss of observable outputs, we terminate
one executions and emulate its behavior with another execution. This way, we can
save redundant computations after multiple executions have converged in their
behavior without impairing the transparency of our enforcement.

While our Bounding Optimization provides great reduction of the enforcement
overhead, it impacts the termination- and timing-sensitive security guarantees of
Secure Multi-Execution, and requires a-priori knowledge about the target. Re-
garding the first problems, we introduce a timing-sensitive scheduling that breaks
revealing dependencies between executions, while reordering outputs to preserve
transparency. The necessary a-priori knowledge could be provided by the applica-
tion developer, yet we also worked towards an automatic solution. Here, we show
how it could be extracted from information flow analysis results and provide a
heuristic to aid in the control-flow recovery process.

Finally, we integrated our contributions into a single toolchain for the enforce-

147

ment of confidentiality of machine code. We applied this toolchain to a range of
benchmark examples, collected from related work, as well as some assorted binaries
from the coreutils suite. Our benchmark validation shows that our enforcement
mechanism protects against leaks through data flow, control flow, termination, and
timing. At the same time, it provides per-channel and top-level transparency. Fur-
thermore, our validation of programs from the coreutils package shows that our
enforcement extends to real-world binaries. Our Dyanmic Instancing optimization
significantly increases the efficiency in many cases, effectively halving it in our run-
ning example. Where applicable, our Bounding Optimization further significantly
increased the efficiency in the remaining cases and allows our approach to scale
with increasing lattice sizes.

While our work provides a practical solution to confidentiality enforcement
for low-level components, it also raises new, promising questions. Most pressing
is the need for a precise and scalable information flow analysis for binary code.
The problem seems to be that dynamic memory addresses require knowledge of
the possible execution contexts, which thwarts compositional approaches. Yet,
Meng et al. started to work in that direction with efforts to parallelize their
DynInst analysis framework [53]. Separation logic is another approach to deal
with compositional analysis in the presence of heaps. Reynolds worked towards a
low-level application, but the work remains unfinished [66].

A different path could be taken altogether, when focusing on developer-provided
knowledge. Descriptions of critical sections could be included into higher-level
languages, allowing developers to bind multi-execution enforcement to object life-
times. Then, executions created together with objects could be terminated by
garbage collection, also leasing to an automatic description of boundaries. Such
implementation work could go hand in hand with a kernel-level implementation
of our approach, which promises to greatly reduce the monitoring overhead. Re-
cent work by Koning et al. on multi-variant execution shows that a switch from
ptrace to dune [15] as the interfacing library could greatly increase the perfor-
mance [45]. More targets could also be supported with the integration of network
communication predicates, on which we are currently working.

Finally, an area closely connected and mutually beneficial is that of testing.
On the one hand, our work requires the definition of dummy inputs that do not
crash the target. Here, fuzzing could be of use. Yet, since in our case dummy
values have to be provided at run time, a more complex system may be necessary.
Promising recent work by Singh et al. show how advances in artificial intelligence
could lead to systems that can provide well-formatted dummy inputs [77]. On
the other hand, our system provides the ability to compare outputs produced by
legacy code when differing input is applied. This could be useful for testing of

148 Chapter 12. Conclusion

hyperproperties [25,44]. Besides, it also allows to automatically group inputs into
equivalence classes based on their effect on outputs, which could aid change impact
analysis and legacy code forensics. Finally, it could be used to apply game-based
reenforcement learning to bug hunting, with one player trying to produce safe
output and the other player trying to crash the target or leak information.

Bibliography

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In Proceedings of the 12th ACM Conference on Computer and Com-
munications Security, CCS ’05, page 340–353, New York, NY, USA, 2005.
Association for Computing Machinery.

[2] Maximilian Algehed and Cormac Flanagan. Transparent ifc enforcement:
Possibility and (in)efficiency results. In 2020 IEEE 33rd Computer Security
Foundations Symposium (CSF), pages 65–78, 2020.

[3] Maximilian Algehed, Alejandro Russo, and Cormac Flanagan. Optimising
faceted secure multi-execution. In 2019 IEEE 32nd Computer Security Foun-
dations Symposium (CSF), pages 1–115, 2019.

[4] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert
Bos. An In-Depth analysis of disassembly on Full-Scale x86/x64 binaries. In
25th USENIX Security Symposium (USENIX Security 16), pages 583–600,
Austin, TX, August 2016. USENIX Association.

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’14,
page 259–269, New York, NY, USA, 2014. Association for Computing Machin-
ery.

[6] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands.
Termination-insensitive noninterference leaks more than just a bit. In Sushil
Jajodia and Javier Lopez, editors, Computer Security - ESORICS 2008, pages
333–348, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[7] Thomas H. Austin and Cormac Flanagan. Permissive dynamic information
flow analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Pro-

150 Bibliography

gramming Languages and Analysis for Security, PLAS ’10, New York, NY,
USA, 2010. Association for Computing Machinery.

[8] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic
information flow. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’12,
page 165–178, New York, NY, USA, 2012. Association for Computing Ma-
chinery.

[9] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86
executables. In Evelyn Duesterwald, editor, Compiler Construction, pages
5–23, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[10] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you see is not what
you execute. ACM Trans. Program. Lang. Syst., 32(6), aug 2010.

[11] Sébastien Bardin, Philippe Herrmann, Jérôme Leroux, Olivier Ly, Renaud
Tabary, and Aymeric Vincent. The bincoa framework for binary code anal-
ysis. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided
Verification, pages 165–170, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg.

[12] G. Barthe, P.R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In Proceedings. 17th IEEE Computer Security Foundations
Workshop, 2004., pages 100–114, 2004.

[13] Gilles Barthe, Juan Manuel Crespo, Dominique Devriese, Frank Piessens,
and Exequiel Rivas. Secure multi-execution through static program transfor-
mation. In Holger Giese and Grigore Rosu, editors, Formal Techniques for
Distributed Systems, pages 186–202, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[14] Erick Bauman, Zhiqiang Lin, and Kevin W Hamlen. Superset disassembly:
Statically rewriting x86 binaries without heuristics. In Network and Dis-
tributed System Security Symposium (NDSS), 2018.

[15] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières,
and Christos Kozyrakis. Dune: Safe user-level access to privileged cpu fea-
tures. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, page 335–348, USA, 2012. USENIX
Association.

Bibliography 151

[16] Nataliia Bielova and Tamara Rezk. A taxonomy of information flow monitors.
In Frank Piessens and Luca Viganò, editors, Principles of Security and Trust,
pages 46–67, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[17] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz.
Bap: A binary analysis platform. In Ganesh Gopalakrishnan and Shaz
Qadeer, editors, Computer Aided Verification, pages 463–469, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

[18] David Brumley, Ivan Jager, Edward J Schwartz, and Spencer Whitman. The
bap handbook, 2013.

[19] David Brumley, JongHyup Lee, Edward J. Schwartz, and Maverick Woo.
Native x86 decompilation using semantics-preserving structural analysis and
iterative control-flow structuring. In 22nd USENIX Security Symposium
(USENIX Security 13), pages 353–368, Washington, D.C., August 2013.
USENIX Association.

[20] Roberto Capizzi, Antonio Longo, V.N. Venkatakrishnan, and A. Prasad
Sistla. Preventing information leaks through shadow executions. In 2008 An-
nual Computer Security Applications Conference (ACSAC), pages 322–331,
2008.

[21] Lorenzo Cavallaro, Prateek Saxena, and R Sekar. Anti-taint-analysis: Practi-
cal evasion techniques against information flow based malware defense. Secure
Systems Lab at Stony Brook University, Tech. Rep, pages 1–18, 2007.

[22] Roderick Chapman and Adrian Hilton. Enforcing security and safety models
with an information flow analysis tool. In Proceedings of the 2004 Annual
ACM SIGAda International Conference on Ada: The Engineering of Correct
and Reliable Software for Real-Time & Distributed Systems Using Ada and
Related Technologies, SIGAda ’04, page 39–46, New York, NY, USA, 2004.
Association for Computing Machinery.

[23] Cristina Cifuentes and K. John Gough. Decompilation of binary programs.
Software: Practice and Experience, 25(7):811–829, 1995.

[24] David Clark and Sebastian Hunt. Non-interference for deterministic interac-
tive programs. In Pierpaolo Degano, Joshua Guttman, and Fabio Martinelli,
editors, Formal Aspects in Security and Trust, pages 50–66, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

[25] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In 2008 21st
IEEE Computer Security Foundations Symposium, pages 51–65, 2008.

152 Bibliography

[26] Ellis Cohen. Information transmission in computational systems. In Proceed-
ings of the Sixth ACM Symposium on Operating Systems Principles, SOSP
’77, page 133–139, New York, NY, USA, 1977. Association for Computing
Machinery.

[27] Benjamin Cox and David Evans. N-variant systems: A secretless framework
for security through diversity. In 15th USENIX Security Symposium (USENIX
Security 06), Vancouver, B.C. Canada, July 2006. USENIX Association.

[28] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
Flowfox: A web browser with flexible and precise information flow control. In
Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, page 748–759, New York, NY, USA, 2012. Association for
Computing Machinery.

[29] Bjorn De Sutter, K De Bosschere, Peter Keyngnaert, and Bart Demoen. On
the static analysis of indirect control transfers in binaries. In International
Conference on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA), volume 2, pages 1013–1019, 2000.

[30] Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, may 1976.

[31] Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Commun. ACM, 20(7):504–513, jul 1977.

[32] Dominique Devriese and Frank Piessens. Noninterference through secure
multi-execution. In 2010 IEEE Symposium on Security and Privacy, pages
109–124, 2010.

[33] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Ri-
nard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control jujutsu: On
the weaknesses of fine-grained control flow integrity. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS ’15, page 901–913, New York, NY, USA, 2015. Association for Comput-
ing Machinery.

[34] Emmanuel Fleury, Olivier Ly, Gérald Point, and Aymeric Vincent. Insight:
An open binary analysis framework. In Christel Baier and Cesare Tinelli,
editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 218–224. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

Bibliography 153

[35] Andrea Flexeder, Bogdan Mihaila, Michael Petter, and Helmut Seidl. In-
terprocedural control flow reconstruction. In Kazunori Ueda, editor, Pro-
gramming Languages and Systems, pages 188–203. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[36] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
Highly precise taint analysis for android applications. Technical report, TU
Darmstadt, Tech. Rep, 2013.

[37] J. A. Goguen and J. Meseguer. Security policies and security models. In 1982
IEEE Symposium on Security and Privacy, pages 11–11, 1982.

[38] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen
Nguyen, and Martin C Rinard. Information flow analysis of android applica-
tions in droidsafe. In 2015 Network and Distributed System Security (NDSS),
2015.

[39] Ivan Gotovchits, Rijnard van Tonder, and David Brumley. Saluki: finding
taint-style vulnerabilities with static property checking. In Proceedings of the
NDSS Workshop on Binary Analysis Research, volume 2018, 2018.

[40] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computabil-
ity classes for enforcement mechanisms. ACM Trans. Program. Lang. Syst.,
28(1):175–205, jan 2006.

[41] Mauro Jaskelioff and Alejandro Russo. Secure multi-execution in haskell.
In Edmund Clarke, Irina Virbitskaite, and Andrei Voronkov, editors, Per-
spectives of Systems Informatics, pages 170–178, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[42] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing- and
termination-sensitive secure information flow: Exploring a new approach. In
2011 IEEE Symposium on Security and Privacy, pages 413–428, 2011.

[43] Johannes Kinder. Static Analysis of x86 Executables. PhD thesis, Technische
Universität Darmstadt, 2010.

[44] Johannes Kinder. Hypertesting: The case for automated testing of hyperprop-
erties. In Workshop on Hot Issues in Security Principles and Trust (HotSpot),
2015.

[45] Koen Koning, Herbert Bos, and Cristiano Giuffrida. Secure and efficient
multi-variant execution using hardware-assisted process virtualization. In

154 Bibliography

2016 46th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), pages 431–442, 2016.

[46] Elisavet Kozyri, Owen Arden, Andrew C. Myers, and Fred B. Schneider. Jrif:
Reactive information flow control for java. In Joshua D. Guttman, Carl E.
Landwehr, José Meseguer, and Dusko Pavlovic, editors, Foundations of Secu-
rity, Protocols, and Equational Reasoning: Essays Dedicated to Catherine A.
Meadows, pages 70–88. Springer International Publishing, Cham, 2019.

[47] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Bren-
dan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. Ldx: Causality in-
ference by lightweight dual execution. In Proceedings of the Twenty-First In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’16, page 503–515, New York, NY, USA,
2016. Association for Computing Machinery.

[48] Arun Lakhotia and Prabhat K Singh. Challenges in getting formal with
viruses. Virus Bulletin, 9(1):14–18, 2003.

[49] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world. In Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’07, page 278–289, New York, NY, USA, 2007.
Association for Computing Machinery.

[50] Gurvan Le Guernic. Confidentiality enforcement using dynamic information
flow analyses. PhD thesis, Kansas State University, 2007.

[51] HJ Lu, Michael Matz, J Hubicka, A Jaeger, and M Mitchell. System v appli-
cation binary interface. AMD64 Architecture Processor Supplement, 2018.

[52] Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou.
Lio*: Low level information flow control in f*. hal-03137132, 2020.

[53] Xiaozhu Meng, Jonathon M. Anderson, John Mellor-Crummey, Mark W.
Krentel, Barton P. Miller, and Srđan Milaković. Parallelizing binary code
analysis, 2020.

[54] Xiaozhu Meng and B Miller. Binary code is not easy. Technical report, Tech.
rep., Computer Sciences Department, University of Wisconsin, Madison, 2015.

[55] Bogdan Mihaila. Adaptable Static Analysis of Executables for proving the
Absence of Vulnerabilities. PhD thesis, Technische Universität München, 2015.

Bibliography 155

[56] Dimiter Milushev, Wim Beck, and Dave Clarke. Noninterference via symbolic
execution. In Holger Giese and Grigore Rosu, editors, Formal Techniques for
Distributed Systems, pages 152–168, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[57] Andrew C Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. Jif: Java information flow. Software release. Located
at http://www. cs. cornell. edu/jif, 2005, 2001.

[58] Microsoft Developer Network. Control flow guard. https://msdn.
microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85)
.aspx, 2015. Last checked 2017-07-13.

[59] Minh Ngo, Frank Piessens, and Tamara Rezk. Impossibility of precise and
sound termination-sensitive security enforcements. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 496–513, 2018.

[60] Tobias Pfeffer and Sabine Glesner. Timing-sensitive synchronization for effi-
cient secure multi-execution. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Cloud Computing Security Workshop, CCSW’19, page 153–164,
New York, NY, USA, 2019. Association for Computing Machinery.

[61] Tobias Pfeffer, Thomas Göthel, and Sabine Glesner. Efficient and Precise
Information Flow Control for Machine Code through Demand-Driven Secure
Multi-Execution, page 197–208. Association for Computing Machinery, New
York, NY, USA, 2019.

[62] Tobias Pfeffer, Thomas Göthel, and Sabine Glesner. Automatic analysis of
critical sections for efficient secure multi-execution. In 2019 IEEE 19th In-
ternational Conference on Software Quality, Reliability and Security (QRS),
pages 318–325, 2019.

[63] Tobias Pfeffer, Paula Herber, Lucas Druschke, and Sabine Glesner. Efficient
and safe control flow recovery using a restricted intermediate language. In
2018 IEEE 27th International Conference on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE), pages 235–240, 2018.

[64] Tobias F. Pfeffer, Stefan Sydow, Joachim Fellmuth, and Paula Herber. Pro-
tecting legacy code against control hijacking via execution location equiva-
lence checking. In 2016 IEEE International Conference on Software Quality,
Reliability and Security (QRS), pages 230–241, 2016.

https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx

156 Bibliography

[65] Willard Rafnsson and Andrei Sabelfeld. Secure multi-execution: Fine-
grained, declassification-aware, and transparent. Journal of Computer Se-
curity, 24(1):39–90, 2016.

[66] J.C. Reynolds. Separation logic: a logic for shared mutable data structures.
In Proceedings 17th Annual IEEE Symposium on Logic in Computer Science,
pages 55–74, 2002.

[67] A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[68] K. Sagonas, M. Pettersson, R. Carlsson, P. Gustafsson, and T. Lindahl. All
you wanted to know about the hipe compiler: (but might have been afraid
to ask). In Proceedings of the 2003 ACM SIGPLAN Workshop on Erlang,
ERLANG ’03, page 36–42, New York, NY, USA, 2003. Association for Com-
puting Machinery.

[69] Ravi S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19,
1993.

[70] Konstantin Scherer, Tobias Pfeffer, and Sabine Glesner. I/o interaction anal-
ysis of binary code. In 2019 IEEE 28th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), pages
225–230, 2019.

[71] Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro
Russo. Faceted secure multi execution. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’18,
page 1617–1634, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[72] Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and Andrei Sabelfeld.
Explicit secrecy: A policy for taint tracking. In 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS P), pages 15–30, 2016.

[73] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code
revisited. In Ninth Working Conference on Reverse Engineering, 2002. Pro-
ceedings., pages 45–54, 2002.

[74] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. Firmalice - automatic detection of authentication by-
pass vulnerabilities in binary firmware. 2015 Network and Distributed System
Security (NDSS), 2015.

Bibliography 157

[75] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christo-
pher Kruegel, and Giovanni Vigna. Sok: (state of) the art of war: Offensive
techniques in binary analysis. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 138–157, 2016.

[76] Vincent Simonet. The flow caml system. Software release. Located at
http://cristal.inria.fr/˜simonet/soft/flowcaml, 116:119–156, 2003.

[77] Rishabh Singh, William Blum, and Mohit Rajpal. Not all bytes are equal:
Neural byte sieve for fuzzing. arXiv preprint arXiv:1711.04596, November
2017.

[78] Gregor Snelting, Dennis Giffhorn, Jürgen Graf, Christian Hammer, Martin
Hecker, Martin Mohr, and Daniel Wasserrab. Checking probabilistic nonin-
terference using joana. it-Information Technology, 56(6):280–287, 2014.

[79] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager,
Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and
Prateek Saxena. Bitblaze: A new approach to computer security via binary
analysis. In R. Sekar and Arun K. Pujari, editors, Information Systems Se-
curity, pages 1–25, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[80] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war
in memory. In Proceedings of the 2013 IEEE Symposium on Security and
Privacy, SP ’13, page 48–62, USA, 2013. IEEE Computer Society.

[81] Jack Tang and Trend Micro Threat Solution Team. Exploring control flow
guard in windows 10. Available at ht tp://blog. trendmicro. c om/trendlabs-
security-intelligence/exploring-control-flow-guard-in-windows-10, 2015.

[82] Tachio Terauchi and Alex Aiken. Secure information flow as a safety problem.
In Chris Hankin and Igor Siveroni, editors, Static Analysis, pages 352–367,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[83] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. Enforcing forward-edge control-flow
integrity in GCC & LLVM. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 941–955, San Diego, CA, August 2014. USENIX Associa-
tion.

[84] Stijn Volckaert, Bart Coppens, and Bjorn De Sutter. Cloning your gadgets:
Complete rop attack immunity with multi-variant execution. IEEE Transac-
tions on Dependable and Secure Computing, 13(4):437–450, 2016.

158 Bibliography

[85] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl.
From hack to elaborate technique—a survey on binary rewriting. ACM Com-
put. Surv., 52(3), jun 2019.

[86] C.S. Wong, I.K.T. Tan, R.D. Kumari, J.W. Lam, and W. Fun. Fairness
and interactive performance of o(1) and cfs linux kernel schedulers. In 2008
International Symposium on Information Technology, volume 4, pages 1–8,
2008.

[87] Liang Xu, Fangqi Sun, and Zhendong Su. Constructing precise control flow
graphs from binaries. Technical report, University of California, Davis, 2009.

[88] Aydan R. Yumerefendi, Benjamin Mickle, and Landon P. Cox. Tightlip: Keep-
ing applications from spilling the beans. In 4th USENIX Symposium on Net-
worked Systems Design & Implementation (NSDI 07), Cambridge, MA, April
2007. USENIX Association.

[89] Dante Zanarini, Mauro Jaskelioff, and Alejandro Russo. Precise enforcement
of confidentiality for reactive systems. In 2013 IEEE 26th Computer Security
Foundations Symposium, pages 18–32, 2013.

[90] Stephan Arthur Zdancewic and Andrew Myers. Programming languages for
information security. Cornell University, 2002.

[91] Gaofei Zhang, Zheng Zhang, Bolin Ma, and Jiang Wang. Multi-variant exe-
cution: State-of-the-art and research challenges. In 2020 12th International
Conference on Communication Software and Networks (ICCSN), pages 196–
201, 2020.

Appendix A

Benchmark Programs

1 #include "../ common.h"

2 void run () {
3 // for i = 0 to secret {output i on

public_channel };
4 h = input(Hin);
5 for (int i = 0; i < h; i ++)
6 output(Lout , i);
7 }

Listing A.1: Benchmark program a01.c

1 #include "../ common.h"

2 void run () {
3 // for i = 0 to secret {output i on

public_channel }; while true do skip;
4 h = input(Hin);
5 for (int i = 0; i < h; i ++)
6 output(Lout , i);
7 while (1);
8 }

Listing A.2: Benchmark program a02.c

160 Appendix A. Benchmark Programs

1 #include "../ common.h"

2 void run () {
3 // for i = 0 to maxNat {output i on

public_channel ; if (i = secret) then (while
true do skip)};

4 h = input(Hin);
5 for (int i = 0; i < 1000; i ++) {
6 output(Lout , i);
7 if (i == h) {
8 while (1);
9 }

10 }
11 }

Listing A.3: Benchmark program a03.c

1 #include "../ common.h"

2 void run () {
3 // if (secret = 0) then (while true do skip);

public = 0
4 h = input(Hin);
5 if (h == 0) {
6 while (1);
7 }
8 l = 0;
9 }

Listing A.4: Benchmark program a04.c

1 #include "../ common.h"

2 void run () {
3 // output secret on public_channel ; while true do

skip
4 h = input(Hin);
5 output(Lout , h);
6 while (1);
7 }

Listing A.5: Benchmark program a05.c

161

1 #include "../ common.h"

2 void run () {
3 // if h = 0 then l = 1; output l
4 h = input(Hin);
5 l = 0;
6 if (h == 0) l = 1;
7 output(Lout , l);
8 }

Listing A.6: Benchmark program b01.c

1 #include "../ common.h"

2 void run () {
3 // l = 1; (while (h=1) do skip); output l
4 h = input(Hin);
5 l = 1;
6 while (h == 1);
7 output(Lout , l);
8 }

Listing A.7: Benchmark program b02.c

1 #include "../ common.h"

2 void run () {
3 // if h = 0 then l = 1; l = 0; output l
4 h = input(Hin);
5 if (h == 0) l = 1;
6 l = 0;
7 output(Lout , l);
8 }

Listing A.8: Benchmark program b03.c

162 Appendix A. Benchmark Programs

1 #include "../ common.h"

2 void run () {
3 // if l = 0 then {while h = 0 do skip ;} else {

while h = 1 do skip }; output l
4 h = input(Hin);
5 l = input(Lin);
6 if (l == 0) {
7 while (h == 0);
8 } else {
9 while (h == 1);

10 }
11 output(Lout , l);
12 }

Listing A.9: Benchmark program b04.c

1 #include "../ common.h"

2 void run () {
3 // if h = 0 then l = 0 else l = 0; output l
4 h = input(Hin);
5 if (h == 0) {
6 l = 0;
7 } else {
8 l = 0;
9 }

10 output(Lout , l);
11 }

Listing A.10: Benchmark program b05.c

163

1 #include "../ common.h"

2 void run () {
3 // if h = 0 then l = 1; if l = 1 then l = 0;

output l’
4 int l2 = 0;
5 h = input(Hin);
6 if (h == 0) l = 1;
7 if (l == 1) l = 0;
8 output(Lout , l2);
9 }

Listing A.11: Benchmark program b06.c

1 #include "../ common.h"

2 void run () {
3 // if h = 0 then l = 0 else l = 1; if l = 0 then

{while true do skip ;} else l = 0; output l
4 h = input(Hin);
5 if (h == 0) {
6 l = 0;
7 } else {
8 l = 1;
9 }

10 if (l == 0) {
11 while (1);
12 } else {
13 l = 0;
14 }
15 output(Lout , l);
16 }

Listing A.12: Benchmark program b07.c

164 Appendix A. Benchmark Programs

1 #include "../ common.h"

2 void run () {
3 // l = 0; if h = 0 then skip else {while true do

l = 1}; output l
4 h = input(Hin);
5 l = 0;
6 while (1) {l = 1;}
7 output(Lout , l);
8 }

Listing A.13: Benchmark program b08.c

1 #include "../ common.h"

2 void run () {
3 // l = 0; if h = 0 then l = 0 else skip; output l
4 h = input(Hin);
5 l = 0;
6 if (h == 0) l = 0;
7 output(Lout , l);
8 }

Listing A.14: Benchmark program b09.c

1 #include "../ common.h"

2 void run () {
3 // if h = 0 then l’ = 1 else l = 1; output l
4 int l2 = 0;
5 h = input(Hin);
6 if (h == 0) {
7 l2 = 1;
8 } else {
9 l = 1;

10 }
11 output(Lout , l);
12 }

Listing A.15: Benchmark program b10.c

165

1 #include "../ common.h"

2 void run () {
3 // if h = 0 then l = 0 else l = 1; if l = 0 then

l’ = 0 else l’ = 1; output l’
4 int l2 = 0;
5 h = input(Hin);
6 if (h == 0) {
7 l = 0;
8 } else {
9 l = 1;

10 }
11 if (l == 0) {
12 l2 = 0;
13 } else {
14 l2 = 1;
15 }
16 output(Lout , l2);
17 }

Listing A.16: Benchmark program b11.c

1 #include "../ common.h"

2 void run () {
3 // if h = 0 then l = 0 else l = 1; output l
4 h = input(Hin);
5 if (h == 0) {
6 l = 0;
7 } else {
8 l = 1;
9 }

10 output(Lout , l);
11 }

Listing A.17: Benchmark program b12.c

166 Appendix A. Benchmark Programs

1 #include "../ common.h"

2 void run () {
3 // if l = 0 then {if h = 1 then l = 1 else skip ;}

else {if h = 0 then l = 0 else skip ;}; output
l

4 h = input(Hin);
5 if (l == 0) {
6 if (h == 1) {
7 l = 1;
8 }
9 } else {

10 if (h == 1) {
11 l = 0;
12 }
13 }
14 output(Lout , l);
15 }

Listing A.18: Benchmark program b13.c

1 #include "../ common.h"

2 void run () {
3 // if h = 0 then {while true do skip ;} else {if h

= 1 then l = 1 else l = 2;}; output l
4 h = input(Hin);
5 if (h == 0) {
6 while (1);
7 } else {
8 if (h == 1) {
9 l = 1;

10 } else {
11 l = 2;
12 }
13 }
14 output(Lout , l);
15 }

Listing A.19: Benchmark program b14.c

167

1 #include "../ common.h"

2 void run () {
3 h = input(Hin);
4 if (h > 1) {
5 l = input(Lin);
6 }
7 }

Listing A.20: Benchmark program n01.c

1 #include "../ common.h"

2 void run () {
3 output(Lout , 1);
4 h = input(Hin);
5 if (h > 1) {
6 while (1);
7 }
8 }

Listing A.21: Benchmark program n02.c

1 #include "../ common.h"

2 void run () {
3 h = input(Hin);
4 if (h > 1) {
5 output(Lout , 0);
6 } else {
7 output(Lout , 1);
8 }
9 while (1);

10 }

Listing A.22: Benchmark program n03.c

168 Appendix A. Benchmark Programs

1 #include "../ common.h"

2 void run () {
3 h = input(Hin);
4 if (h > 1) {
5 output(Lout , 0);
6 } else {
7 output(Lout , 0);
8 }
9 }

Listing A.23: Benchmark program n04.c

Appendix B

Additional Results

B.1 Sort

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
·107

0

2

4

6

8

10

12

14

Input size in bytes

T
im

e
in

s

Native
Secure Multi-Execution

with Dynamic Instancing

Figure B.1: Overhead sampling for different input sizes for sort

170

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

16

18

Levels serviced

T
im

e
in

s

Native
Secure Multi-Execution

with Dynamic Instancing

Figure B.2: Overhead sampling for different number of input levels for sort

B.2. SHA Sum 171

B.2 SHA Sum

0 1 2 3 4 5 6 7 8 9
·107

0

2

4

6

Input size in b

Ru
n

tim
e

in
s

Native
Secure Multi-Execution

with Dynamic Instancing
and Bounding

and TS-Scheduling

(a) LABHT-order

0 1 2 3 4 5 6 7 8 9
·107

0

2

4

6

Input size in b

Ru
n

tim
e

in
s

(b) THBAL-order

Figure B.3: Run-time sampling of sha1sum

172

0 5 10 15 20 25 30 35

0

5

10

15

20

Lattice size

Ru
n

tim
e

in
s

Native
Secure Multi-Execution

with Dynamic Instancing
and Bounding

and TS-Scheduling

(a) Ascending total order

0 5 10 15 20 25 30 35

0

5

10

15

20

Lattice size

Ru
n

tim
e

in
s

(b) Descending total order

Figure B.4: Level sampling of sha1sum

173

0 1 2 3 4 5 6 7 8 9
·107

0

0.5

1

1.5

2

2.5

Private input size in b

T
im

e
to

pu
bl

ic
ou

tp
ut

in
s

Secure Multi-Execution
with Dynamic Instancing

and Bounding
and TS-Scheduling

Figure B.5: Time sampling of the first output event

0 5 10 15 20 25 30 35
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Number of files

Ru
n

tim
e

in
s

Figure B.6: File split sampling of sha1sum

174

0 2 4 6 8
·107

0

2

4

6

Input size in b

Ru
n

tim
e

in
s

(a) LABHT-order

0 2 4 6 8
·107

0

2

4

6

Input size in b

Ru
n

tim
e

in
s

(b) THBAL-order

0 10 20 30
0

5

10

15

Lattice size

Ru
n

tim
e

in
s

(c) Ascending total order

0 10 20 30
0

5

10

15

Lattice size

Ru
n

tim
e

in
s

(d) Descending total order

0 2 4 6 8
·107

0

1

2

3

4

Private input size in b

T
im

e
to

pu
bl

ic
ou

tp
ut

in
s

(e) Time sampling of the first output event

0 10 20 30
1.4

1.6

1.8

2

2.2

Number of files

Ru
n

tim
e

in
s

(f) File split sampling of sha224sum

Figure B.7: Samplings of sha224sum

175

0 2 4 6 8
·107

0

2

4

6

Input size in b

Ru
n

tim
e

in
s

(a) LABHT-order

0 2 4 6 8
·107

0

2

4

6

Input size in b
Ru

n
tim

e
in

s
(b) THBAL-order

0 10 20 30
0

5

10

15

Lattice size

Ru
n

tim
e

in
s

(c) Ascending total order

0 10 20 30
0

5

10

15

Lattice size

Ru
n

tim
e

in
s

(d) Descending total order

0 2 4 6 8
·107

0

1

2

3

4

Private input size in b

T
im

e
to

pu
bl

ic
ou

tp
ut

in
s

(e) Time sampling of the first output event

0 10 20 30
1.4

1.6

1.8

2

2.2

Number of files

Ru
n

tim
e

in
s

(f) File split sampling of sha256sum

Figure B.8: Samplings of sha256sum

176

0 2 4 6 8
·107

0

2

4

6

Input size in b

Ru
n

tim
e

in
s

(a) LABHT-order

0 2 4 6 8
·107

0

2

4

6

Input size in b

Ru
n

tim
e

in
s

(b) THBAL-order

0 10 20 30
0

5

10

15

Lattice size

Ru
n

tim
e

in
s

(c) Ascending total order

0 10 20 30
0

5

10

15

Lattice size

Ru
n

tim
e

in
s

(d) Descending total order

0 2 4 6 8
·107

0

1

2

3

Private input size in b

T
im

e
to

pu
bl

ic
ou

tp
ut

in
s

(e) Time sampling of the first output event

0 10 20 30

1.4

1.6

1.8

2

Number of files

Ru
n

tim
e

in
s

(f) File split sampling of sha384sum

Figure B.9: Samplings of sha384sum

177

0 2 4 6 8
·107

0

2

4

6

Input size in b

Ru
n

tim
e

in
s

(a) LABHT-order

0 2 4 6 8
·107

0

2

4

6

Input size in b
Ru

n
tim

e
in

s
(b) THBAL-order

0 10 20 30
0

5

10

15

Lattice size

Ru
n

tim
e

in
s

(c) Ascending total order

0 10 20 30
0

5

10

15

Lattice size

Ru
n

tim
e

in
s

(d) Descending total order

0 2 4 6 8
·107

0

1

2

3

Private input size in b

T
im

e
to

pu
bl

ic
ou

tp
ut

in
s

(e) Time sampling of the first output event

0 10 20 30

1.4

1.6

1.8

2

Number of files

Ru
n

tim
e

in
s

(f) File split sampling of sha512sum

Figure B.10: Samplings of sha512sum

178 Appendix B. Additional Results

Appendix C

Stream Input

In the previous descriptions of our contributions, we generally assumed that the
same input can be consumed by multiple executions and that input events are side-
effect free. These assumptions are valid for all examples in this thesis, where we
consider inputs from files. Yet, Secure Multi-Execution was originally designed to
also cope with volatile, observable input, for example from (network) streams. To
show that our methods are compatible with these settings, we discuss how our work
can be extended to handle stream input here. First, we introduce the necessary
changes to the semantics, then we discuss how these can be implemented for low-
level code. Finally, we evaluate our approach with a short benchmark example
from Rafnsson and Sabelfeld [65].

C.1 Interaction

A noteworthy extension to this fundamental definition of Secure Multi-Execution
(SME) is the treatment of input that induces side-effects [32] and blocking in-
put [65]. Input with side effects occurs, for example, when a user is asked to
provide a value during execution. Following our SME definition, each execution
equal or higher than the user’s classification may request that value. Thus, the
user may be asked multiple times, which harms the transparency of the approach.
Also, the timing of the request may leak information, for example if the input is
reached faster when the classified information conforms to some checks.

Additionally, requested input may not always be available. For example in
a network communication, input may be consumed faster than it is produced.
This may lead to producer-controlled delay in the consumer program, which could
allow to leak information. Clark and Hunt investigated attacks based on the user’s

180 Appendix C. Stream Input

Local:

Input-Block
π(c) = ` s

c??−−→ s′

`,π,δ,b,r ` s,p c?v−−→ s,p

Input-New
π(c) = ` s

c?v−−→ s′ v 6= ?

`,π,δ,b,r ` s,p c?v−−→ s′,p

Input-Wait
s
c?v−−→ s′ π(c)@ ` p(c)> r(c)

`,π,δ,b,r ` s,p •−→ s,p

Input-Old

s
c?v−−→ s′ π(c)@ `

p(c)≤ r(c) v = b(c,p(c))
s
c?v′
−−→ s′′ p′(c) = p(c) + 1
`,π,δ,b,r ` s,p •−→ s′′,p′

Input-Dummy
s
c?v−−→ s′ π(c) 6v ` s

c?δ−−→ sδ

`,π,δ,b,r ` s,p •−→ sδ,p

Global:

Step
b ` S(`) a−→ s′ a= c?v =⇒ v = ?

` : σ,b,r,S a−→ σ,b,r,S[`← s′]

Buffer
b ` S(`) c?v−−→ s′ b′ = b[c← b(c) : v] r′ = r[c← r(c) + 1]

` : σ,b,r,S c?v−−→ σ,b′, r′,S[`← s′]

Semantics C.1: Semantics for volatile/visible input

behavior [24]. They show that for deterministic programs, user behavior can be
abstracted as input streams. Thus, Rafnsson and Sabelfeld extend the notion of
environments and introduce the special input value ? to the environments [65].
Unlike other input values, the ? is not buffered, such that e(c) returns the next
value even if not all ?-values have been consumed yet.

The Secure Multi-Execution semantics can then be extended to thwart leaks
through side-effects or user-induced delays. The key idea is to only allow the ex-
ecution at the same level to obtain new input from a channel. The (potentially
volatile) input value is then buffered inside the monitor and forwarded to higher
executions when needed. Consequently, if an execution requires this input be-
fore the respective execution has obtained it, the execution is blocked. Thus, no

C.2. Virtual Filesystem 181

information about sensitive inputs can leak through the input side-effect.
The necessary changes to the SME semantics are shown in Semantics C.1. Here,

we introduce new local and global rules. The major difference to our previous
definition of the local SME semantics is the introduction of local input pointers
for each channel, denoted p : C 7→ N. This pointer keeps track of how much input
has been obtained from a channel, representing the current cursor position in
the global buffer. The global buffer b is a list of inputs for each channel that
allows random access through a cursor position. Finally, the global input pointer
r : C 7→ N denotes the amount of input obtained for a channel. It allows to check
whether a higher execution is requesting lower input faster than the corresponding
execution.

In contrast to the previews definition of SME, we use four different local input
rules here. The Input-Block rule shows how a non-total environment is handled
by idling on the same state. Conversely, when the environment is ready to provide
new input on channel c, the Input-New rule shows how it can be obtained by the
fitting execution. When input from lower channels is requested, both the Input-
Wait and Input-Old rules apply. We check whether input is available in the
global buffer by comparing the local input pointer p with the global input pointer
r for that channel. When the execution is ahead of the buffer, we wait. Otherwise,
we obtain the value v from the buffer for channel c, denoted b(c), at the location
pointed to by p(c). We then feed this buffered input to the execution and advance
the local input pointer. Finally, in case an execution requires input from a higher
channel, we perform the usual Input-Dummy rule.

In the global rules, we Step the executions as usual, unless they obtain new
actual, input. When this is the case, be Buffer the new input value by appending
it to the corresponding buffer b(c), and increase the global input pointer for that
channel. As a consequence of these semantics, new input is obtained only once by
the according execution and input delays from higher channels cannot effect lower
executions.

C.2 Virtual Filesystem

We implement the semantics from Semantics C.1 through a virtual file system.
Since our implementation runs in user-space, we cannot extend the kernel to buffer
streaming input. Instead, we buffer all input in the monitoring process. Executions
interacting with blocking streams do not return from the corresponding system
call until either input is provided or the endpoint is terminated. Thus, the Input-
Block and Input-New rules follow from the behavior of the operating system.

182 Appendix C. Stream Input

1 #include "../ common.h"

2 void run () {
3 // in H h ; out L 0
4 h = input(Hin);
5 output(Lout , l);
6 }

Listing C.1: Insecure input-delaying program from [65]

1 #include "../ common.h"

2 void run () {
3 // in H h ; out L 0
4 l = input(Lin);
5 output(Lout , l);
6 }

Listing C.2: Secure input-delaying program from [65]

When input from a lower channel is obtained, we compare our buffer size with
the local input pointer for the corresponding execution. When the execution is
ahead of the buffer, we implement the Input-Wait rule by performing a wait on
the buffer in the corresponding monitoring thread. The execution is thus desched-
uled until awoken by a corresponding call to notify. This call is issued when the
responsible execution execution writes new input to the buffer. Then, all wait-
ing executions progress, obtain the new values from the buffer, and advance their
respective local input pointers.

C.3 Example

To demonstrate the security of our implementation, we use two example programs
from Rafnsson and Sabelfeld [65]. Listing C.1 shows an insecure program, where
a delay in the sensitive H-input normally leads to a delay in the public L-output.
Conversely, Listing C.2 shows a secure program, where the timestamp of the L-
output depends only on L-input. This is reflected in the evaluation results shown
in Table C.1.

Here, we fed input to both programs with increasing delays. At the maximum,

C.3. Example 183

Security Transparency
Native PSNI TSNI TLT PCT

ID TSNI S B Q S B Q S B Q S B Q
Listing C.1 0.401 X X X 0.001 0.405 0.003 X X X X X X
Listing C.2 0.001 X X X 0.002 0.002 0.001 X X X X X X

Table C.1: Evaluation results

we delayed the private input by 0.4 seconds. This shows in the measurement of the
low outputs from the insecure example. Here, the average delay across multiple
executions was 0.401 seconds, directly correlating with the private input delay.
In contrast, the average output delay in the secure example was 0.001 seconds,
which can be attributed to noise on the system and thus does not constitute an
information leak.

Note that both programs are PSNI-secure, which our enforcement could pre-
serve. Also, the programs produced the same outputs under enforcement, reflected
in the transparency results of our evaluation. With regarding to thwarting of the
input-delay attacks, both our Secure Multi-Execution and queue-based optimiza-
tion achieved timing-sensitive noninterference for the insecure example. Only our
barrier-based enforcement did not, as expected. Here, the delay in the private
input leads to a delay in the private execution which subsequently reaches the
barrier later and thus also affects progress in the public execution.

184 Appendix C. Stream Input

fin.

	Title Page
	Abstract
	Zusammenfassung
	Danksagung
	Contents
	List of Symbols
	List of Semantics
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Confidentiality
	2.1.1 Security Model
	2.1.2 Program Behavior
	2.1.3 Noninterference

	2.2 Secure Multi-Execution
	2.2.1 Local Semantics
	2.2.2 Global Semantics
	2.2.3 Transparency

	2.3 Machine Code
	2.3.1 Semantics
	2.3.2 Data Flow
	2.3.3 Control-Flow Integrity

	2.4 Summary

	3 Related Work
	3.1 Multi-Execution Enforcement
	3.2 Language-Based Enforcement
	3.3 Binary Analysis
	3.4 Summary

	I Confidentiality Enforcement for Machine Code
	4 Threat Model
	4.1 Decryption Service
	4.2 Compiled Form
	4.3 Leaks
	4.4 Attacks
	4.5 Summary

	5 Secure Multi-Execution for Machine Code
	5.1 Core Elements
	5.2 Semantics
	5.3 Example
	5.4 Summary

	6 Dynamic Instancing Optimization
	6.1 Reasoning
	6.2 Semantics
	6.2.1 Local Semantics
	6.2.2 Global Semantics

	6.3 Implementation
	6.3.1 Fork Injection
	6.3.2 Shared Input

	6.4 Example
	6.5 Summary

	7 Bounding Optimization
	7.1 Synchronization
	7.2 Semantics
	7.3 Implementation
	7.3.1 Setting Boundaries
	7.3.2 Identifying Input

	7.4 Example
	7.5 Summary

	8 Timing-Sensitive Scheduling
	8.1 Reordering
	8.2 Construction
	8.3 Example
	8.4 Summary

	9 Boundary Analysis
	9.1 Boundary Extraction
	9.2 Indirect Call Resolution
	9.2.1 Resolution
	9.2.2 Summary

	II Evaluation
	10 Benchmark
	10.1 Setup
	10.2 Results
	10.3 Summary

	11 Coreutils
	11.1 Setup
	11.2 Results for Word Count
	11.3 Results for Cat
	11.4 Summary

	12 Conclusion

	Bibliography
	A Benchmark Programs
	B Additional Results
	B.1 Sort
	B.2 SHA Sum

	C Stream Input
	C.1 Interaction
	C.2 Virtual Filesystem
	C.3 Example

