Approximation Algorithms for Complex
Network Flow Over Time Problems

vorgelegt von
Diplom-Informatiker

Martin Grof3
geboren in Duisburg

Von der Fakultat II — Mathematik und Naturwissenschaften
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
— Dr. rer. nat. —

genehmigte Dissertation

Promotionsausschuss
Vorsitzender: Prof. Dr. Boris Springborn

Gutachter: Prof. Dr. Martin Skutella
Gutachter: Prof. Dr. Gerhard J. Woeginger
Tag der wissenschaftlichen Aussprache: 28. Januar 2014

Berlin 2014
D&3

Preface

About four years ago, I started working as scientific assistant and PhD student in the
group of Martin Skutella at TU Berlin. Now, my thesis has taken shape and I wish to
thank the people who have supported me and made this possible.

First of all, I want to thank my advisor Martin Skutella for his support, encouragement
and supervision of my thesis. In particular, I want to thank him for introducing me to the
field of network flows over time which now have become the main focus of my research.
I am very grateful for the independence he allowed me in my work and research, and the
opportunity to participate in various international conferences and workshops. In this
regard, [also want to thank the DFG and the MATHEON for the funding they provided
me for this. I am also very grateful to Gerhard Woeginger for his interest and willingness
to take the second assessment of this thesis.

A special thanks goes to all the people I did research with, in particular, the co-authors
of my papers, Ashwin Arulselvan, Jan-Philipp Kappmeier, Daniel Schmidt, Melanie
Schmidt and Martin Skutella. It is a pleasure to work with you. I am especially grateful
to Melanie Schmidt for her support during my PhD time and for reading my thesis very
diligently on short notice. Her careful reading and comments were invaluable for me in
order to give my thesis the final polish.

I also wish to thank Dorothea Kiefer for helping me with all the administrative aspects
of my work, Ralf Hoffman for solving all my computer-related problems and Wiebke
Hohn for sharing her experiences of the formalities involved in writing a thesis at TU
Berlin.

Furthermore, I want to thank all the members of COGA for creating a great atmo-
sphere for research. Without you, work and research here would not have been half as
nice. In particular, I want to Mohsen Rezapour for being my office mate and having the
patience to put up with my sometimes seemingly endless CoMa-related work.

Finally, I want to thank my family and friends for supporting me and just being there!

Contents

[Contents
(1__Introductionl
2.1 Graphs|. e
2.1.1 Definitions e
[2.1.2 Subgraphs: Sequences, paths, cycles and more]
[2.1.3 Attributes of arcs, edges and nodes|.
22 StaticFlows
221 Definitions
[2.2.2 Flow Decompositions and Path-based Flows|.
[2.2.3 Residual Graphs| o000
2.3 Flows over Timel
2.3.1 Definitionsl e
2.3.2 Continuous and Discrete Time Modeld
2.4 Approximating Flows over Time]
3__Flow over Time Problems|
[3.1 Single Commodity Problems without Costs or Gains|
B.1.1 Maximum Flows over Timel
[3.1.2 Quickest Flows and Transshipments|
B.1.3 Summary|
3.2 Multiple Commodity Problems without Costs or Gaing|.
[3.2.1 Multi-commodity Maximum Flows over Time|
13.2.2 Multi-commodity Quickest Flows over Time|f.
(3.2.3 Maximum Concurrent Flows over Timel
[3.2.4 The Importance of Storage|
[3.2.5 Summary|
3.3 Minimum Cost Flows over Timel
8.4 _Generalized Flows over Timel,
3.5 Farliest Arrival Flows oo
(3.6 Orientations and Flows over Timel

17
17
17
19
21
23
24
27
32
33
33
36
37

41
42
42
43
45
46
46
48
49
50
95
95
o7
59
62

CONTENTS

[4 Time Expansion|

5.3 Sequence Condensation|,

5.3.1 The Dual Separation Problem|.

[5.3.2 The Maximum Multi-Commodity Flow over Time Problem|

[0 Temporal Repetition|

[6.1 Generalized Maximum Flows over Time with Proportional Losses|.

|6.1.1 A Variant of the Successive Shortest Path Algorithm|.

16.1.2 Turning the Algorithm into an FPTAS|.

[/ Complexity|

[(.1 __Generalized Maximum Flows over Timel

[7.1.1 Arbitrary and Lossy Gains|

[7.1.2 Lossy and Proportional Gains|.

[8.1.6 Price for Multi-commodity Flows|

8.2 Complexity|

67
67
67
69
74
76
7

83
83
86
91
95
99
100
103
110

113
113
114
120

123
123
123
125

129
129
129
135
137
138
139
140
141

149

163

1 Introduction

Networks are omnipresent in our current world. We live in houses which are connected
by water pipelines, power lines and telecommunication cables. Once we step out on the
street, we have a network of roads at our disposal, either as a pedestrian, car driver or by
using public transportation Systemsﬂ which form large networks of their own in many
cities. On a larger scale, we have trains, ships or airplanes available for travelling, and
their connections again form networks. Aside from transportation and infrastructure,
networks can appear in many other settings. For example, they appear as phylogenetic
trees in biology, as molecular graphs in chemistry, as financial networks in economy or
as molecular topology in pharmacology. Even in our leisure time, networks have found
their way into many popular board games — for example, we can model the boards of
popular games like the Settlers of Catan or Kingdom Builder as graphs.

Since many of these networks are part of our everyday lives, we use them on a regular
basis and usually, there is some kind of objective involved. If we travel, we usually want
to minimize the time necessary for that — perhaps because we want to waste as little
time as possible, or to avoid the dreaded “Are we there yet?” questions of children.
On the other side, the providers of transportation systems want to attract customers to
make profit. Therefore, they attempt to offer a good selection of connections which can
be operated with economical pricing. Using telecommunication networks, we want to
send or receive data as quickly as possible — having an important email arrive minutes or
hours later, or watching a movie stream that lags all the time can be quite annoying. The
telecommunication companies on the other hand should try to satisfy their customers as
profitable as possible. In financial networks, the goal would be to use assets to generate
profit — the list of networks could go on and on.

Many of these problems have in common that people, objects or some kind of abstract
commodity need to be transported, and often, many things need to be transported
at once. Such transportation problems gave rise to the field of network flows. From
a mathematical point of view, a network (or graph) consists of a set of nodes which
represent street crossings, computers, houses or other kinds of — potentially abstract —
locations, and arcs (or edges) which model connections between nodes, like roads or
cables. Additionally, the arcs have capacities that limit the amount they can transport.
This model is highly useful for many applications and has been the focus of a lot of
research, see for example Ahuja, Magnanti and Orlin [2]. Network flows can be seen as a
special case of linear programming and be solved as such, but specialized combinatorial
algorithms exist for many network flow problems (see [2]).

However, many of these problems have in common that two of their aspects are not

'If we happen to live in a city which actually has a decent public transportation system.

1 Introduction

captured by (classic) network flows at all. The first of these aspects is the variance of
flow over time. For example, traffic is going to be much more intense during the rush
hours than in the middle of the night. In telecommunication networks, there can be
spikes in traffic due to streaming services, as movies are usually watched in the evening.
Similar effects can occur if a new version of a popular software becomes available for
download. Planning aircraft, train or passenger transport schedules can also benefit from
not having to use exactly the same routes every hour, in order to accommodate demands
and legal restrictions like night flight bans. Power management sees daily variation as
well as seasonal variation — normally, the demand for energy is higher in winter, due to
increased lighting and heating needs. Logistic service providers will usually have highly
varying requests, as most people will not get the same letter or parcel every day.

The second aspect is the delay between the departure and arrival of flow. For instance,
no one would expect cars, busses, trains, air planes or parcels to arrive instantaneously.
Whenever some kind of physical distance needs to be overcome, there is a natural speed
limit imposed by the speed of light. Normally, this speed seems so high that it is
inconsequential, but sending data from a point on earth to its antipode would already
take 66.8 ms if a direct optical fiber cable were available between these two spots. 67
ms might seem to be an insignificant amount of time, but for time-sensitive applications
like distributed computing, this can already be very noticeable. And this assumes a
perfect infrastructure between the two points, which we will generally not have. Also,
most applications involve passengers or physical objects which can travel only far more
slowly, which makes the delays highly significant. This gets even intensified by the fact
that most applications involve deadlines. Arriving at work late, receiving a priority
package after a month or waiting on a delayed air plane is not what we want.

Thus, both variance and delays need to be incorporated into the flow model. This was
first done by Ford and Fulkerson over half a century ago by introducing the concept of
dynamic flows. These flows allow for a different flow rate to be specified at any point
in time, instead of a single flow value that classic flows would use. Furthermore, they
added transit times to the arcs to allow delays to be specified — any flow entering an arc
leaves the arc only after the specified transit time. Finally, they added a time horizon
to the problem, which acts as a deadline for the flow: all flow needs to have arrived at
its destination within the time horizon.

Recently, the term flows over time has been introduced for dynamic flows in order to
prevent misunderstandings, as dynamic graph algorithms in theoretical computer science
(e.g., Eppstein, Galil and Italiano [28]) refer to problems where the input changes after
solving a problem, and the solution needs to be “repaired” to reflect the change in the
input.

Sometimes, capacities, transit times and a time horizon are not sufficient. Consider
for instance the examples above, where we want to accomplish something as cheaply or
as profitably as possible. This requires the adding of costs for arcs to our model. The
cost of an arc specifies a fee that needs to be paid for the usage of the arc. Usually, costs
can be negative to model profits. Another aspect that requires an additional attribute is
the scenario if flow increases or decreases during the traversal of an arc. For example, in
a financial flow, we can generate interest on our flow — thus, we might get more money

out of an arc than we send into it. Or, we might want to model currency exchanges. This
can be modelled by gains, which depending on their value can also model losses that
could occur through evaporation or theft. Finally, there is the aspect of modelling the
origins and destinations of the flow, as well as the amount of flow that we can (or need
to) send. Classically, there would be a single origin, the source, and a single destination,
the sink, with a supply and a demand specifying the amount of flow that can or needs
to be sent. The supply could for example be an amount of money that we can invest,
or an amount of a good that we have to send. The demand could represent a bill that
needs to be paid, or an order of a good that needs to be delivered.

This can be generalized to a set of sources and sinks, where flow from any source can
be sent to any sink. This is a realistic assumption, if all our flow is of a single type
— like money, for example. However, in applications like logistics where we have many
different parcels to send, we require multiple types of flow. Such types of flow are usually
referred to as commodities. Thus, if we have different types of flow we say that our flow
has multiple commodities.

A peculiarity of flows over time with multiple commodities is that letting flow wait
can allow us to send flow faster. This might seem counterintuitive at first glance, but
if we consider a road trip for example, we would probably not be surprised if a route
which involves some waiting might still be faster than its alternatives.

Depending on our setting, flows over time can have different objectives. The classic
objective is to send as much flow as possible from a given source to a given sink within
a time horizon — this is the maximum flow over time problem. Related to this is the
setting where specific amounts of supplies and demands are given, and we need to find the
minimal time needed to fulfill them. This is referred to as the quickest flow or quickest
transshipment problem. We already mentioned the task of sending a given amount of
flow as cheaply as possible within a given time — this is called the minimum cost flow
over time problem. Sending as much flow as possible in a network with gains is referred
to as the generalized mazximum flow over time problem.

Another application of flows over time is their usage for evacuation planning. In this
setting, we need to send evacuees to safety as quickly as possible. There are many
scenarios which can require an evacuation, ranging from a burning building, or a natural
disaster like a hurricane or a wildfire, to a terrorist attack. In these settings, we usually
do not know exactly beforehand how much time we have at our disposal. Thus, an
evacuation plan that is optimal independently of the time available would be perfect.
This objective can be captured by earliest arrival flows, which are exactly what we want
— they send a maximal amount of flow at any point in time, making them well suited for
evacuation problems. They were introduced by Gale [41] under the name of universal
maximal flows in 1959. However, while earliest arrival flows do always exist in networks
with a single sink, networks with multiple sinks do not permit earliest arrival flows in
general. Then, we have to settle for time- or value-approximative earliest arrival flows.
The concept of time-approximative earliest arrival flows was studied by Fleischer and
Skutella [30] and Baumann and Kohler [10], whereas value-approximative earliest arrival
flows were first studied by Hoppe and Tardos [66] and by Grof, Kappmeier, Schmidt
and Schmidt [50]. These approximative flows still make a guarantee about the flow value

1 Introduction

sent at any point in time, but a weaker one. An a-time-approximative earliest arrival
flow sends at any point in time 6 at least as much as could have been sent until time
0/a, whereas a [-value-approximative flow sends at any point in time 6 at least 1/ of
what could have been sent until time 6.

An aspect of flows that we have neglected so far is the direction of flows and the
underlying network. For example, roads can theoretically be used in any direction —
it is just that traffic becomes much safer for humans if there is a concept of lanes and
directions imposed on them. In some problems, like evacuations on a larger scale, we
are able to change these directions in order to accelerate the evacuation. This type of
problem is usually referred to as the contraflow problem or the lane reversal problem.

The concept of flows over time has found widespread acceptance in applications, and
we will mention several of them in later chapters. Examples can also be found in the
surveys of Aronson [4] and Powell, Jaillet and Odoni [92]. Alternatively, searching
Google Scholar or similar search engines produces thousands of resultsﬂ Of course,
having applications and a model is only the first step, as we still need to find optimal
solutions in the model.

Computing flows over time that are optimal for some objective harbors the problem
that there are many degrees of freedom — at every point in time, we can choose a different
flow rate for an arc. On the one hand, we need this freedom in order to capture the
desired variance of flow over time. On the other hand, we need to bound the freedom
somehow so that we can compute optimal solutions efficiently. Aside from introducing
flows over time, Ford and Fulkerson also developed two approaches for dealing with this
problem. The first approach is to search for temporally repeated structures — if there are
optimal solutions which show a repetitive behaviour that we can exploit, this reduces
our freedom and helps us to find an optimal solution efficiently. However, this is only
possible in the special case of problems where we do not use the full amount of variance
over time that we are allowed to. The second approach is to perform a time expansion,
which consists of copying the underlying network for every point in time and linking the
copies according to the transit times of the arcs. Thus, if we had two nodes A and B with
an arc between them with a transit time of two hours, we would for instance have nodes
(A,1pm) and (B,3pm) which would be connected in the time expansion. This gets
rid of the temporal dimension altogether, but at the expense of a huge, non-polynomial
blow-up in network size, as the number of copies of the network is determined by the
time horizon. Since the time horizon is given by a number in the input, this leads to a
pseudo-polynomial running time. However, this technique can be applied to most flow
over time problems, making it very powerful even though it is not efficient.

Thus, after Ford and Fulkerson’s seminal work on flows over time, there were algo-
rithms available to solve them, but the algorithms for anything other than the maximum
flow over time problem were unsatisfactory in the sense that they were not efficient and
at the same time, there was no indication that efficient algorithms could not be found.
In fact, about three decades passed, until progress was made in form of an NP-hardness

2When searching for “flow over time” or “dynamic flow” together with “graph” or “network”, which
seems to produce results in the area of research we are interested in.

10

result for minimum cost flows over time by Klinz and Woeginger [70} [71], which trig-
gered several further results in this area. If a problem is known to be NP-hard, finding
an exact efficient algorithm is exceedingly unlikely, as it would imply P = NP which is
almost unanimously believed to be not the case.

As a consequence, efficient approximation algorithms replaced exact algorithms as a
research goal for those problems for which NP-hardness was established. In terms of flows
over time, an approximation algorithm has an approximation guarantee ¢ that can refer
to the flow value, the cost or the time horizon, depending on the type of approximation.
If it refers to the flow value, then the approximation algorithm produces a solution that
is at least as good as an optimal exact solution, with the caveat that it only needs to
send 1/c¢ of the flow. We call this a flow approzimation. Similarly, a cost approximation
yields a solution that has a cost of at most ¢ times the cost of an optimal solution but
still sends everything in time, and a time approrimation results in a solution at least as
good as the optimal solution in terms of flow sent or cost, but with ¢ times the time
horizon. In some cases, an approximation algorithm can approximate two or more of
these parameters at once — in this case, we speak of a multicriteria approximation.

Preferably, we would have approximation algorithms whose approximation guarantees
are as good as possible. Ideally, this would mean that we find an algorithm A, with an
approximation guarantee of 1 + ¢ for any € > 0. A family of algorithms (A¢)->0 such
that the running time of any A, is polynomial in the input size of the problem is called
a polynomial-time approximation scheme (PTAS). Notice that the running time can be
exponential in e~! for a PTAS. If all of the algorithms A, have a running time that
is polynomial in the input size and =1, then (A.).>o is called a fully polynomial-time
approzimation scheme (FPTAS).

An important result for developing approximation algorithms for flows over time was
the work by Fleischer and Skutella [30, BT, 2], who introduced an approximation tech-
nique based on time expansion which is called condensed time-expanded networks. We
will also refer to this as time condensation for short. This technique is based on rounding
transit times and scaling them down, which reduces the size of the time expansion. If
the rounding is done carefully, this yields a time-approximation FPTAS for several flow
over time problems. However, this technique has the drawback that its approximation
guarantee fails for flow over time problems where optimal solutions might need to send
flow in cycles. This might seem counter-productive at first, but can actually be neces-
sary for problems involving costs, gains or multiple commodities which are not allowed
to wait.

For problems where we might need to send flow in cycles, we can use sequence conden-
sation (Grof and Skutella [52]). This technique uses linear programs which are based
on variables for the flow values of sequences of arcs, instead of individual arcs. We
then round the transit times of these sequences instead of the transit times of single
arcs, which produces a much better approximation guarantee in the case of flow run-
ning in cycles. However, the sequence-based linear program has exponentially many
variables, and solving it requires the separation of its dual problem. Luckily, we can
give an FPTAS for the separation problem, which is good enough for our purposes. This
generalizes time condensation to quite a few more problems.

11

1 Introduction

Generally, flow over time algorithms can be classified along the approaches that Ford
and Fulkerson used: those that use time expansion and those that work on the normal
network and instead rely on temporal repetition or similar structures. In this thesis, we
will follow this classification and split our new algorithmic results in the Chapters [
and @ which are based on time expansion (Chapters 4] and [5) and temporal repetition
(Chapter @, respectively. Our new results in the area of computational complexity can
be found in Chapter [7} Finally, we discuss the setting where we are allowed to orient a
graph for a flow over time problem in Chapter 8] A detailed overview of the structure
of this thesis and its new contributions can be found in the following.

Chapter [2} Preliminaries. In this chapter, we introduce our definitions and notations.
We begin with definitions of undirected and directed graphs, as well as important spe-
cial graphs like paths and cycles, followed by the attributes of their nodes, edges and
arcs. After that, we define classical static flows and important concepts for them, like
decomposition results and residual networks. We then give definitions of flows over time
and objectives for them as well as a discussion of the time models that we can use for
flows over time. Finally, we define the time- and value-approximation concepts for flow
over time objectives.

Chapter [3} Flow over Time Problems. In the third chapter, we list the flow over time
problems that we consider in this thesis and give a survey of the state of the art for these
problems, as well as a more detailed overview of our contributions to these problems.
Additionally, we discuss the peculiarity of flows over time with multiple commodities
that letting flow wait in nodes can allow us to send flow faster. It has been an open
question how much faster we can get by allowing waiting. We show that there are
instances where we can be a factor of 2 faster, a result due to Grofl and Skutella. This
improves upon a decade old result of Fleischer and Skutella [30], who showed that this
factor must be between % and 2, and together, these results give a tight bound of 2 on
the benefit of waiting.

Chapter [} Time Expansion. In this chapter, we give a detailed introduction into time
expansion. The concept of time expansion was developed by Ford and Fulkerson [39],
and we describe time expansion in the context of gains and multiple commodities. This
allows us to use time expansion for generalized maximum multi-commodity flow over
time problems.

Furthermore, we study the problem of finding approximative earliest arrival flows in
networks where earliest arrival flows do not exist — this is the case in most networks with
multiple sinks and is therefore a rather common scenario. Grofl, Kappmeier, Schmidt
and Schmidt [50] analyzed how good the approximation guarantees for time- and value-
approximations can be in arbitrary networks and gave tight bounds for almost all cases.
Here, we will describe an algorithm based on iterative time expansion, which computes
2-value-approximative earliest arrival flows, which is best possible for arbitrary networks.
This is also the first algorithm of its kind and has been published in [50] as well.

12

Chapter Bt Time Condensation. In this chapter, we introduce the concept of time
condensation, as well as of our contribution of sequence condensation [52]. As for time
expansion, we consider a more general approach for time condensation than used by
Fleischer and Skutella [32], as we describe it with gains and multiple commodities,
allowing us to use it for generalized maximum multi-commodity flow over time problems.
This has first been published in Grofi and Skutella [51]. Sequence condensation allows us
to give an FPTAS for the minimum cost multi-commodity flow over time problem without
storage, as well as for the multi-commodity flow over time problems without storage.
The best previously known results were by Fleischer and Skutella [32], who gave 2 + ¢
approximation algorithms for both of these problems and an FPTAS for the minimum
cost flow over time problem with storage and conservative cost functions — i.e., cost
functions without negative cycles. All these approximations are time-approximations,
and the approximations for problems without waiting approximate both time and value.
Generalized flows over time have not been considered before [51] to our knowledge, so
no previous results were known.

Also, we continue our discussion of finding approximative earliest arrival flows in
networks where earliest arrival flows do not exist. Here, we discuss how to use a special
form of time condensation called geometric time condensation to construct an FPTAS for
finding the best possible approximation guarantee for a given instance, which can be
much better than what is possible in the general case. These results were also published
in Grof, Kappmeier, Schmidt and Schmidt [50].

Chapter [6f Temporal Repetition. In this chapter, we study techniques which do not
require time expansion, but work on the normal network instead.

In particular, we study the special case of generalized maximum flows over time, where
we have only losses and no gains (which we also refer to as lossy gains) and the losses
are proportional to the transit times. That means that on any arc with a transit time of
7, we lose the same fraction v of flow. We describe a successive shortest path variant for
this case, which works on the normal network, but requires a pseudo-polynomial number
of iterations in the worst case. Building upon this algorithm, we devise an FPTAS for this
problem, which is a value-approximation instead of a time-approximation. This is a rare
feature for flow over time approximations, because usually, it is the temporal dimension
which introduces the complexity which has to be dealt with. This FPTAS has the second
special property that the error € appears only logarithmically as loge™! in the runtime
of the FPTAS — this makes it extremely cheap to obtain very accurate approximations.
This was published in Grof3 and Skutella [51].

Chapter [/} Complexity. In this chapter, we will study techniques to prove the NP-
hardness of flow over time problems.

We will present an NP-hardness result for generalized maximum flows over time with
arbitrary or lossy gains that builds on the reduction of Klinz and Woeginger [71]. In fact,
this reduction even yields a non-approximability result in terms of flow value for them.
This result has been published in Grof and Skutella [51] and was the first hardness result

13

1 Introduction

for this particular problem.

Finally, we study the special case of generalized flows over time with lossy gains, that
are also proportional to transit times. Here, we show a connection to earliest arrival flows
— a maximum generalized flow over time without intermediate storage fulfills the earliest
arrival property. This becomes significant in conjunction with recent results by Disser
and Skutella [25], who showed that earliest arrival flows are NP-hard. The mentioned
connection to earliest arrival flows was first published in Grofl and Skutella [51].

Chapter Orientations and Flows over Time. In the final chapter, we investigate
the problem of orienting an undirected graph such that the orientation is favorable for
a subsequent flow over time computation.

We consider the setting where we can choose the direction of arcs in a preprocessing
step, and are not allowed to change it later on. This is reasonable in the sense that
we might not have the resources necessary to change the direction of lanes during an
evacuation. Of course, there will be settings where we do have the resources to do so,
but we will have to leave that question to further research. Also, we assume that we
have to orient each arc exclusively into one direction, splits are not possible. But, if we
want to orient the lanes of a road individually, we can still do so by modelling the road
by using an arc for each of its lanes.

We will focus predominately on the question of how much the orientation of the arcs
in a preprocessing step costs us. In order to define this cost, we compare flows over
time in an oriented network with a flow over time in an undirected graph. This flow
over time in the undirected network can be seen as something we could do, if all cars
were controlled by a single artificial intelligence (AI) — then we would not need lanes or
directions, because the Al could react and plan fast enough so that this would become
unnecessary. Cars controlled by humans need directed lanes, however, which is bound
to use the roads less efficiently than the AI could accomplish. Here, we are interested
in how much worse than the Al we can get, if we use our model of orientation. More
formally, we introduce a flow price of orientation which is based on the quotient of flow
that the AT can send divided by what we can send in the most favorable orientation, for
a given time horizon. Analogously, the time price of orientation is defined as the ratio
of the amount of time we need to send a given amount of flow in a favorable orientation
compared to what the Al can do.

It follows from Ford and Fulkerson’s work [39] that both prices of orientation are 1
if we have a single source and sink. For the case of multiple sources and / or sinks, we
are able to show tight bounds for the flow price of orientation, which turns out to be
2 if we have either multiple sources or multiple sinks, and 3 if we have both. We give
an algorithm for finding orientations with a flow price of orientation of at most 3 (2 for
a single source or sink). The algorithm reduces the problem to the single source and
sink case, by simulating supplies and demands through capacities of auxiliary arcs. This
simulation is not precise, however, and we show how to obtain good capacities to obtain
the 2 and 3 bounds by using an iterative approach that uses Brouwer fixed-points [17].
For the time price of orientation, we give lower bounds that are linear in the network

14

size. Furthermore, we show that not even approximative earliest arrival flows exist in
this setting, if we want to maximize over all orientations. We conclude this chapter by
considering orientations in conjunction with multi-commodity flow over time problems
and show that computing the price of orientation is NP-hard and sometimes even non-
approximable in this case. All of this is a — as of yet unpublished — work by Arulselvan,
Grof8 and Skutella [7].

Concluding remarks. This thesis is supposed to be mostly self-contained, however, we
assume our reader to be familiar with the basic concepts of approximation algorithms,
combinatorial optimization, complexity theory, linear programming and classical net-
work flow theory.

For an introduction to these topics, see for example the books by Grétschel, Lovasz and
Schrijver [53], Korte and Vygen [75], Nemhauser and Wolsey [81] and Schrijver [102]. For
network flow theory in particular, the book by Ahuja, Magnanti and Orlin [2] provides
a comprehensive overview. A thorough introduction into complexity theory can also be
found in the books by Arora and Barak [6] and Garey and Johnson [43]. An introduction
into approximation algorithms in combinatorial optimization can for example be found
in the books by Hochbaum [64], Vazirani [114], or Williamson and Shmoys [119]. Alter-
native introductions to network flows over time can for example be found in Hoppe [65]
or Skutella [104].

As a final remark, notice that we will only discuss fractional flow over time problems
in this thesis, i.e., problems where we do not force the flow rates to be integral. This
is due to the fact that just adding the temporal dimension adds many challenges on its
own, which we want to focus on and having integrality constraints would dilute that to
a certain extent. Of course, this does not mean that integral flows over time would not
be interesting, quite on the contrary. However, since even fractional flows over time are
not completely understood, it seems not unreasonable to focus on understanding them
first.

15

2 Preliminaries

This chapter focuses on providing a formal introduction into the concepts that are re-
quired for the later chapters. The organisation of this chapter is as follows:

e Chapter defines directed and undirected graphs and our notations for them. In
addition, we highlight important types of subgraphs like cycles and paths and spe-
cialized notations for them. Finally, we introduce the attributes (e.g., capacities,
costs, gains, etc.) for arcs, edges and nodes that we will study in this thesis.

e In Chapter we define classical static network flows and introduce important
techniques — namely flow decomposition and residual networks — that will be used
in the later chapters.

e In Chapter we define flows over time (sometimes also called dynamic flows),
which are static flows with an added temporal dimension. These flows will be the
main focus of this thesis and will be discussed in detail in the later chapters.

e Finally, in Chapter we discuss what kind of approximations are possible for
flow over time problems.

2.1 Graphs

In this chapter, we define our basic notations for graphs. We begin with directed graphs,
as classical flows are usually defined for them. This is reasonable, as flows are often used
to solve logistical and related problems — and in these problems, there is usually a
concept of direction in the underlying networks. However, these directions are usually
not inherent in the network but only enforced by rules applied to the network. For
example, we could use street lanes in any direction — it would just be prone to cause
many accidents if everyone would choose a direction by themselves. But even if using
streets without any rules is a bad idea, there are settings where influencing the rules
is within our possibilities. For instance, we might be able to change the direction of
street lanes in a planning stage. For such problems, we define undirected graphs and
orientations of them.

2.1.1 Definitions

In the literature, graphs are sometimes referred to as networks and vice versa. The
distinction between these two terms is not always clear. Usually, a network refers to
a directed graph, a directed graph with capacities or a directed graph with multiple

17

2 Preliminaries

attributes like capacities, costs and transit times. In contrast to this, a graph can be
either undirected or directed, and may not have any attributes. We will use the terms
graph and network interchangeably and we will take care to make always clear whether
our graphs are undirected or not, and which attributes are used.

Directed graphs. A directed graph G consists of a finite set of nodes V(G) and a finite
set of arcs A(G), with an arc a € A(G) being a pair of nodes (v, w), v,w € V(G). We
set n := |V(G)| and m := |A(G)]. For an arc a = (v,w) € A(G),v,w € V(G), we
refer to v as its start node and w as its end node. Arcs a,a’ € A(G), a # a’ are called
parallel, if they have the same start and end node, i.e., a = (v,w) and a’ = (v,w) for
some v,w € V(G). A loop a € A(G) is an arc with the same start and end node, i.e.,
a = (v,v) for some v € V(G). We assume that our graphs have neither parallel arcs nor
loops — this no significant restriction, as we can split parallel arcs or loops by introducing
additional nodes. A sketch of these constructions can be seen in Figure Due to this
assumption, we can identify arcs by their start and end node.

a = (v,w)
30 G
a = (v,w)
C/a&m\(@ a1 = (v,v')
D g o-lli-0
as = (v',v)

(a) (b)

Figure 2.1: (a) Parallel arcs and a construction to break them up. (b) A loop and a
construction to break it up.

We define 6,(v) as the set of arcs of G leaving a node v € V(G), which we refer
to as outgoing arcs. Similarly, we define J,(v) as the set of arcs of G entering a node
v € V(G), which we also refer to as the set of incoming arcs, and dg(v) as the union of
the two:

6&(v) :=={a € A(G) | a= (v,w) for some w € V(G)},
da(v) :=={a e A(G) | a = (u,v) for some u € V(G)},

)

)
Sc(v) =64 (v) Udg (v).

4

(
We call the arcs a € dg(v) incident to v, and we refer to nodes v,w € V(G) for which
an arc a = (v,w) € A(G) exists as adjacent. If the graph G can be inferred from the
context, we just write 67 (v), 6~ (v) and §(v).

18

2.1 Graphs

Undirected graphs and orientations. An undirected graph G consists of a finite set of
nodes V(G) and a finite set of edges E(G). An edge e € E(G) is a set {v, w} containing
two nodes v, w € V(G). Similarly to directed graphs, we call edges e,¢’ € E(G), e # ¢
parallel, if e = {v,w} and € = {v,w} for some v, w € V(G), and call edges {v, w} with
v = w loops. Analogously to the directed case, we assume that our graphs do not contain
parallel edges, allowing us to identify edges by their sets of nodes. For undirected graphs,
we define m := |E(G)|.
We define dg(v) as the set of edges of G that contain a node v € V(G):

da(v) :={ee€ E(G) | e ={v,w} for some w € V(G)}.

Again, edges e € d¢g(v) are called incident to v, and nodes v,w € V(G) are called
adjacent, if an edge e = {v,w} € E(G) exists. We write d(v) instead of dz(v), if G can
be inferred from the context.

An orientation of an undirected graph G is a directed graph G with V(a) =V(Q)

and A(a) satisfying

e ={v,w} € E(G) < either (v,w) € A(a) or (w,v) € A(a)

2.1.2 Subgraphs: Sequences, paths, cycles and more

For the purpose of analyzing graphs and flows, it can be helpful to split a graph into
simpler, easier to understand subgraphs. We define a subgraph of a directed graph G to
be a directed graph G’ that consists of a subset of nodes and arcs of the original graph:
V(G') C V(G) and A(G") C A(G). Subgraphs of undirected graphs are defined analo-
gously. We are now interested in simple subgraphs which consist of a single, connected
sequence of arcs.

Sequences, paths and cycles. Let G be a directed graph. A v-w-sequence S in G is
a sequence of arcs (a1, az,...,a;)), a; = (vi,viy1) € A(G) with v = vy, w = vgj41. A
v-w-path is a v-w-sequence with v; # v; for all i # j. A v-cycle is a v-v-sequence with
v; = v; implying i = j or 4,5 € {1,]S| + 1}. Thus, no arc or node occurs twice or more
in paths and cycles (with the exception of v; = Vjol+1 in cycles). Our paths and cycles
are therefore simple arc sequences. A v-w sequence naturally induces a subgraph G’ of
G by V(G') == {v1,...,vg41} and A(G) :={a; | i=1,...,|S|}. We will sometimes
identify a sequence with its induced subgraph.
We will treat sequences as sets, if the order of arcs is not important. Thus, we write
a € S if an arc a is contained in a sequence S and likewise v € S if a node v is incident
to one of the arcs contained in S. We refer to the number of occurrences of an arc a
in a sequence S as #(a, S). We denote the subsequence of the arcs from the beginning
of the sequence up to (but not including) the k-th occurrence of an arc a € A(G) by
S|— (a,k)]. Thus, for
S=(ar,...,a,...,a,...,q4),
——

k—1

19

2 Preliminaries

we get
Sl—= (a,k)] = (a1, ... ,3,\./._;).
k—1
Here, the a,... stands for arc a followed by zero or more arcs a’ # a. Similarly, we
define S[— i] for i = 1,...,|S]| as the subsequence of the arcs from the beginning of
the sequence up to (but not including) the i-th element in the sequence: S[— i] :=
(a1,...,a;—1). Furthermore, we extend the concept of incidence from arcs to sequences

and write S € 6f(v) if a1 € 65 (v) and S € 6 (v) if 5| € d(v). Figure illustrates
some of these notations. For undirected graphs G, we define a v-w-sequence S as a

S = (a,b,c,d,b,e)
(a) S[—= (b,2)] = (a,b,c,d)

@ a b 6@ #(a75):1a#(b75):2
b)) (rre—>e—>u) P=(ab)

Figure 2.2: (a) A v-w-sequence S = (a,b,c,d,b,e). (b) A v-w-path P.

sequence of edges (e1,e2,...,€/5)), €& = {v;,viy1} € E(G) with v = v, w = v|g;41 and
use the same notations as for sequences of arcs.

Sequence decomposition. Notice that a v-w-sequence S of arcs or edges can always
be decomposed into a v-w-path and (zero or more) cycles. We formalize this in the
following lemma.

Lemma 2.1. A v-w-sequence S of arcs or edges can always be decomposed into a (possi-
bly empty) v-w-path P and zero or more cycles Cy,...,Cy. This can be done in O(|S|).

Proof. In the following, we show the result for sequences in directed graphs. The proof
for undirected graphs works analogously. Let S = (a1,...,a)5)), a; = (vi,viy1) with
v =v1, w = v|g4+1 be our v-w-sequence that is to be decomposed. If S is simple, we are
done by setting P := S, k := 0. Otherwise, there is a node x that occurs at least twice
in S. Let v;,v;, ¢ < j be the first two occurrences of € S, and choose x so that j is

minimal. Then C := (a; = (v;, Vi41),...,aj—1 = (vj—1,v;)) is a z-cycle, as by choice of
x, there cannot be two or more occurrences of a node other than z in C.

Now consider the sequence S’ = (a1, ...,a;—1,a;,..., a‘5|) that is obtained from S by
removing (ai,...,aj—1). Due to z = v; = vj, S’ is a v-w-sequence with fewer arcs than

S. Thus, we can apply the procedure outlined above again. This yields a decomposition
in a path and cycles, and can be done in O(|S|), as only a single iteration of the sequence
is necessary to do this — we can essentially traverse the sequence and split of cycles while
traversing. (]

We refer to this decomposition of a sequence S as its path-cycle-decomposition. Notice
that the algorithm is deterministic, so the path-cycle-decomposition is well defined.

20

2.1 Graphs

Cycle-paths, path-cycles and bi-cycles. Aside from paths and cycles, we will need
three structures that consist of paths and cycles. These are important to describe el-
ementary generalized flows, which we will study later. A path-cycle in G consists of a
path P = (a1,...,a;p| = (v|p,v|p|+1)) and a v pj4i-cycle C, such that P and C are
arc-disjoint, i.e., A(P) N A(C) = 0. A cycle-path in G consists of a vi-cycle C' and a
path P = (a1 = (v1,v2),...,ayp|) such that P and C are arc-disjoint. A bi-cycle in G
consists of a v-cycle C, a w-cycle Cy and a v-w-path P such that C7, Cy and P are
pairwise arc-disjoint. Like sequences, these structures induce subgraphs of G and we will
identify these structures with their subgraphs. Figure illustrates these structures.

Y|P|+1 ”\P.Hl
P “
C P w
¢ V1 Cl
: el
V1

(a) (b) (c)

Figure 2.3: (a) A path-cycle, (b) a cycle-path and (c) a bi-cycle.

2.1.3 Attributes of arcs, edges and nodes

In this section, we introduce attributes for arcs, edges and nodes that are necessary to
model various real-world phenomena.

We begin by defining attributes for directed graphs and arcs and discuss their meaning.
For undirected graphs, we are mainly interested in how attributes of edges can be carried
over to arcs in orientations, as we will work mostly on naturally directed graphs or
orientations of undirected graphs.

Capacities. Capacities are given by a function u : A(G) — R} U {oo} and are used
to limit the flow that can be sent into an arc. The way capacities do this depends on
the setting. For static flows, capacities limit the total amount of flow on an arc — this is
akin to limiting the total number of cars on a street, for example. For flows over time,
capacities limit the rate at which flow can enter an arc at any point in time, i.e., like
the number of lanes on a street restricts the number of cars that can enter it at the same
time.

Transit times. Transit times are given by a function 7 : A(G) — Rd U{oo} and specify
the amount of time a unit of flow needs to traverse an arc, i.e., if flow enters an arc
a = (v,w) at time 6, it arrives at w at time 6 + 7(a). We will mostly focus on constant
transit times, i.e., transit times that are not dependent on time, or the amount or rate

21

2 Preliminaries

of flow on the arc. Related to transit times, there is often a constant 1" €]Rar U oo called
the time horizon specified in flow over time problems. This acts as a deadline, after
which no flow may be left in the network.

Costs. Costs are given by a function ¢ : A(G) — RU{—o00, 00} and denote a price that
is to be paid for sending flow through an arc. We use linear costs, i. e., if x4 units of flow
are sent though arc a, the cost for sending them is ¢(a)z,. This can be used to model
shipping costs and similar fees.

Gains. Gains are given by a function v : A(G) — R} U{oo} and can be used to model
that the amount of flow changes while traversing through an arc. This can model taxes,
interest, theft, evaporation and much more. If z, units of flow enter an arc a, there will
be v(a)z, flow units leaving the arc. Therefore, gains < 1 are also called losses and a
graph G with vy(a) <1 for all a € A(G) is called lossy.

Supplies and demands. For nodes, we have supplies and demands of multiple com-
modities as attributes. As the name suggests, these denote some (potentially abstract)
goods that need to be shipped through a network. Each commodity has nodes with
its supplies from where the goods need to be sent to the nodes with its demands. No-
tice that using supplies of one commodity to satisfy demands of another commodity
is not possible. Formally, we assume that we have k commodities 1,...,k from a set
K :={1,...,k}. For each commodity ¢ € K, we have supplies and demands (sometimes
also referred to as balances) given by a function b : V(G) — R U {—oc0,c}. Notice
that we allow supplies and demands to be infinite — this is because we want to model
problems like the classical maximum s-t-flow problem with supplies and demands as
well. This will allow us to use the same notations for maximum flow and transshipment
problems (these problems will be described in detail in Chapter [3). We accumulate all
these supplies and demands under a single function b : V(G) x K,b(v,4) := b*(v). For
brevity, we write b for b! in the single commodity case. Furthermore, we set bi := b(v)
for i € K,v € V(G) and b, := (b}, ... b5)T.

For a commodity i € K, nodes v € V(G) with b > 0 are called sources of commodity
i and their b is referred to as supply. Nodes v € V(G) with b! < 0 are called sinks
of commodity 4, and their % is referred to as demand. All other nodes, i.e., nodes
v € V(G) with b} = 0 are called intermediate nodes of commodity i, in contrast to
the sources and sinks, which are summarized under the term terminals. We define the
set of sources of commodity i by S := {v € V(G) | b, >0} and the set of sinks of
commodity i by S” := {v € V(G) | bi, < 0}. Furthermore, we write Sy = J;cx 5% for
the set of the sources of all commodities and S_ := J,c; S_ for the set of the sinks
of all commodities. Finally, we define B! :=) b! to be the sum of all supplies

veSi
of commodity i, and B! := D vesi bl to be the sum of all demands of commodity i.
Likewise, we have By := > ., Bi as the sum of all supplies and B_ :=)", B! as

the sum of all demands.

22

2.2 Static Flows

If all supplies and demands are finite, we assume that Zvev(c) b = 0 holds for all

commodities ¢ € K, unless specified otherwise. In this case, Bi + B* =0 holds for all
i € K, which means that all supplies can be used and all demands can be fulfilled.

Attributes for undirected graphs. As we mentioned before, we are interested in car-
rying over attributes of edges to their corresponding arcs when orienting graphs. We
accomplish this by defining orientations of edge attributes as follows. Let u, 7, ¢,y be
capacities, transit times, costs and gains for an undirected graph G. Then we define
their oriented versions 7, 7, ?, 7 for 8 by

7@:(1},1{1) = Ue={v,w}> ?a:(v,w) = Te={v,w}s

_>

Ca=(vw) = Ce={v,w}s 7a=(v,w) = Ye={v,w}-

Since nodes are not affected by orientations, we do not have to modify supplies and
demands.

Notations for arcs and sequences. For brevity, we define u, = u(a), 7, := 7(a),
¢q = c(a) and 7, := v(a) for an arc a € A(G). Furthermore, we extend these arc
attributes to sequences S = (a1,...,qg)) by defining 75 := Zi'l Ta;s CS = Zﬁ'l Ca;
and vg := H‘Zi‘l Ya;- Thus, 7g is the time needed to travel through S, cg is the cost of
doing so and g is the factor by which the outflow depends on the inflow. Cycles C with
vo = 1 are called unit gain cycles, cycles with y¢o > 1 flow-generating cycles and cycles
with 7o < 1 flow-absorbing cycles. Cycles C' with cc < 0 are called negative cost cycles.
A cost function c is called conservative for a graph G, if G has no cycle C of negative
cost.

Short notation for attributes. For brevity, we sometimes write a graph G and its
associated attributes as a tuple (G,u,,...). The size of the tuple varies depending on
the number of attributes associated with the graph. When using the tuple notation, u
refers to the capacities, v to the gains, ¢ to the costs and b to the supplies and demands.
We also add a time horizon to the tuple, if present, as well as terminals if they are
important. This is usually the case when there is only a single source and sink. In
this case, the single source and sink are sometimes called super-terminals. When using
super-terminals, s usually refers to the super-source and ¢ to the super-sink.

2.2 Static Flows

In this chapter, we give an introduction into classical static network flows that do not
incorporate any concept of time. We begin by defining flows and continue by introducing
flow decompositions and residual networks. We will define our flows for the case of mul-
tiple commodities and gains, and treat flows without gains or with a single commodity
as special cases. We will also define flows for undirected networks by reducing them to
flows in directed networks.

23

2 Preliminaries

2.2.1 Definitions

In order to define flows (and flows over time later on) for directed networks, we will
make the assumption that sources do not have incoming arcs and sinks have no outgoing
arcs. This makes defining flows easier and can be done without loss of generality, since
we can slightly modify graphs to guarantee this property. We discuss this process in the
following.

For a given directed graph G, we create a slightly modified directed graph G’ whose
sources do not have incoming arcs and whose sinks have no outgoing arcs. We define G’
by introducing a new node for each source and sink. This new node is then connected
to the terminal it was created for — this ensures that the desired property holds for G’:

V(G):=V(G@)U{s, | ve S }U{t, | veS_Y},
A(G) == A(Q)U{(sp,v) | veE€ SLTU{(v,ty) | vES_}.

Let u, ¢, v and 7 be capacities, costs, gains and supplies and transit times for G. We
extend the attributes to the new arcs by choosing “neutral” values for them:

ul = {ua a€AG) = {Ca a€AG) for all a € A(G"),

? a

oo else 0 else
A A o A

o e a€AG) L) Ta e CAG) e A,
1 else 0 else

Finally, if G has supplies and demands b, we shift these supplies and demands to the
new terminals: '
bl v =s,
V=S b o =t, forallv' € V(G'),i€ K.
0 else

Since this creates at most n = |V(G)| new nodes and arcs, we can do this in time O(n).
We will now use this assumption to define flows.

Flows in directed graphs. We begin by defining classical static flows for directed
graphs. A (static) generalized multi-commodity flow x in a directed graph G with capac-
ities u, costs ¢, gains v and supplies and demands b of commodities i € K = {1,...,k}
is a function z : A(G) x K — R that assigns a flow value ¢ := x(a,i) to every arc for
every commodity, subject to the following constraints:

o Flow conservation constraints ensure that we neither use more supplies nor fulfill
more demands of a commodity than a node has. The amount of used supplies and
fulfilled demands depends of the difference between incoming and outgoing flow of
a node:

min(0, b)) < Z - Z Yo, < max(0, b)) for all v € V(Q),i € K.

aeﬁg (v) a€dg (v)

24

2.2 Static Flows

If all supplies and demands are used, i.e.,

Z - Z xl =0 for all v € V(G),i € K,

aeég(v) acd, (v)
we say that all supplies and demands have been fulfilled.

e Capacity constraints make certain that the flow values assigned to the commodities
for an arc do not violate its capacity:

Zx& < uq for all a € A(G).
€K

e Non-negativity constraints are used to guarantee non-negativity of the flow:
0<a! for all a € A(G),i € K.

This is sensible, as flow usually represents some kind of real world commodity,
which often cannot take negative values.

There are two important special cases. The first case is when we have only a single
commodity, i.e., k = 1. In this case, x is a single commodity flow and we call x just
a generalized flow. The second case is if we have unit gains, i.e., v, = 1 for all arcs
a € A(G). In this setting, we have “normal” flow conservation and refer to x just as a
multi-commodity flow.

We refer to the flow values of a commodity i € K by z° : A(G) — R, 2% := 2%(a) :=
x(a,i). Each 2°,i € K can be interpreted as a single commodity flow. For notational
brevity, we omit all the notations for commodities in the single commodity case and
write z, instead of zl, and so on. Finally, if it is clear from the context that our
flows are multi-commodity and / or generalized, we omit this and call the generalized /
multi-commodity flows just flows.

The value |x| of the flow x is defined as the amount of demands of all commodities

that z fulfills: ' '
|| :== Z |z*|, |z'|:= Z Z YaTq-
ek veSt acd (v)

The concurrent value |z|conc of a flow z is defined as the minimal fraction of demands
of a commodity that is fulfilled by x:

2’|
B |

|Z]conc := greuf? € [0,1].

Thus, the commodity of which the smallest fraction of demands has been fulfilled, de-
termines the concurrent value of a flow. The cost of a flow x is defined by

c(x) = Zc(a:i), c(z?) = Z Caq.

€K acA(G)

Finally, we call flows circulations in the special case of b, = 0 for all i € K, v € V(G).

25

2 Preliminaries

Flows in undirected graphs. We define flows in undirected graphs by identifying them
with flows in modified, directed versions of the undirected graphs. We do this as follows.
Let G be an undirected graph with capacities u, costs ¢, gains 7 and supplies and
demands b. We modify it into a directed graph G’ by replacing every edge e = {v,w} €
E(G) with the construction depicted in Figure More formally, we define G’ by

(1)
omto o
©

(a) (b)

Figure 2.4: (a) An undirected edge and (b) a gadget of directed arcs as its replacement.

V(G :=V(G)U{e1,es | e € E(G)},
A(G') :=={(v,e1), (w,e1), (e1, €2), (e2,v), (e2,w) | e € E(G)}.

We define capacities v, costs ¢’ and gains ' for all a € A(G’) by

o {ue a = (e1,e2) r {Ca a=(er,e2) ;o {'ya a= (e, e)

c o
Y a) a
oo else 0 else 1 else

Supplies and demands V' are defined for all v € V(G’) and i € K by

H%:FiUEWQ‘

0 else

Thus, (e, e2) inherits the attributes of the original edge and the other arcs and new
nodes get neutral attributes. The purpose of this construction is to be able to send flow
from v to w and w to v under the constraint that the sum of the flows sent in both
directions does not exceed the capacity of the original edge. This is accomplished by
the shared (ep,e2) arc. In this sense, the construction allows us to orient parts of the
capacity of the edge in different directions, as would be possible with the lanes of a road,
for example.

For the sake of completeness, we mention that there is another way to define flows in
an undirected graph G. Recall that a generalized multi-commodity flow z can be split
into single commodity flows z? for each commodity. In this other way, z is a flow in
G if there exist orientations for each commodity, such that z° is a directed flow in its
orientation. Additionally, the capacity constraints), 2! < u, must hold for each edge
e € E(G). For more details on this type of definition, see for example Schrijver [102].

The differences between the two definitions are that ours does not require orientations
but allows flow to use (v,e1), (e1,e2), (e2,v)-sequences which have no counterpart in

26

2.2 Static Flows

the undirected graph. This is unproblematic if running in these cycles has no benefit,
which will be the case in our applications. Thus, we prefer the first definition, since it
circumvents the need for orientations.

2.2.2 Flow Decompositions and Path-based Flows

We have now defined flows and will now look into their structure. Therefore, we will
analyze the structure of flows in the following. In particular, we will focus on decom-
posing flows in arbitrary graphs into flows on very basic graphs. This will allow us to
find new ways to describe flows. The process of decomposing a flow is referred to as flow
decomposition.

In this section, we will restrict ourselves to single commodity flows. This is due to the
fact that a multi-commodity flow with k& commodities consists of k£ single commodity
flows, which are independent of each other with the sole exception that they share the
capacities of their graph. But since we are just interested in decomposing a given flow,
we do not need to concern us with capacities — the flow values on each arc have to remain
the same after the decomposition. Thus, we can decompose the k single commodity flows
independently.

Historically, decomposition of single commodity flows was first done for flows without
gains (or with unit gains, i.e., the case of 7, = 1 for all arcs a). However, since this is
a special case of flow decomposition with arbitrary gains, we will begin with the more
general case first and show what simplifications can be made in the unit gain case later
on.

Flows with arbitrary gains in a directed graph G can be decomposed into flows in
subgraphs G;, i € N such that each subgraph G; is either a path, a cycle, a path-cycle,
a cycle-path or a bi-cycle. Figure depicts these five types of subgraphs. We will
formalize and prove this claim in the following theorem. Structurally, our proof follows
Wayne [117] and Gondran and Minoux [49], where a version of this theorem with a single
source and sink with infinite supplies and demands was shown.

OFOQJQ)O

Path Cycle Path-cycle Cycle-path Bi-cycle

Figure 2.5: The five types of elementary generalized flows.

Theorem 2.2 (Generalized Flow Decomposition). Let = be a generalized flow in a
directed graph G with capacities u, costs x, gains vy and supplies and demands b. Then
there exists a family of subgraphs G := {G1,...,G;} of G along with flows x1,...,x; in

27

2 Preliminaries

Figure 2.6: A network with gains (top left), a generalized flow in this network (top right)
and a decomposition of this flow into elementary generalized flows (bottom).

G that are only positive in their respective subgraphs, i.e., (x;)q =0 fori=1,...,j and
a & A(G;). Furthermore, the sum of these flows yields the original flow:

J
Tgq = Z(x’)“ for all a € A(G).

=1

The subgraphs G1,...,G; and flows x1,...,x; can be chosen such that j < n+m =
[V(G)| + |A(G)| and G; is of one of the following types: path, cycle, path-cycle, cycle-
path or bi-cycle.

Proof. The idea of this proof is to use the flow conservation constraints to split a flow
in an arbitrary graph into flow along the mentioned types of subgraphs. We show
this result by induction over the number of arcs with positive flow value |A’(z)|, with
Al(z) :=={a € A(G) | z, > 0}. In every step of the decomposition, either |A’(z)| or the
number of nodes with finite, non-zero supply or demand V'(b), V'(b) := {v € V(G) | b, #
0,—0c0 < b, < oo} will decrease. If |A’(x)| = 0, choosing P = () and C = () suffices to
show the claim. We will show how we can subtract a flow along the mentioned types
of subgraphs from z to obtain a new flow 2’ with new supplies and demands b’ with
|A' ()] < |A'(z)| or |V'(2")] < |V'(x)|. To this end, we distinguish the following cases.

28

2.2 Static Flows

Case 1: A'(z) is acyclic. Then we can find a path P from a source s to a sink ¢ due
to flow conservation. We determine the bottleneck capacity up of P = (a1,...,ap|) so
that up is maximal under the constraints that

i—1
up < bs, upyp < bl UPH’Yaj < g, foralli=1,...,[P|
j=1

Notice that an empty product is 1. This will guarantee that we can reduce as much flow
as possible along the path, without creating negative flow values, turning sources into
sinks or vice versa. The reduction of flow along P creates a new flow z’ by

i—1
w — T 0 = a; A P
. {:E ; —up H]_l Ya; @ =0i € (P) for all a € A(G)

Ta else

and new supplies and demands b by

by, —up V=35
V,:= b, +upyp v=t forallveV(G).
by else

Since at least one of the constraints in the definition of up must be tight, we have
|A'(2")] < |A(z)] or |[V'(2')| < |V'(z)| and we found the path P as a subgraph for G.

Case 2: A'(z) contains a cycle. Let C' = (ai,...,qc|) be this cycle and let s be the
start node of a;. For this case, we need to distinguish three sub-cases, depending to the
gains along the cycle.

Case 2a: (' is a unit-gain cycle: vc = 1. In this case, we define its bottleneck capacity
uc to be maximal such that

i—1
UCH%LJ- <, foralli=1,...,]C]|.
=1

Again, this allows us to split off as much flow as possible without violating non-negativity
constraints. The remainder of this split-off is a new flow z’ defined by

for all a € A(G).
Tq else

. {xai — uc H;;ll Ya; a=a; € A(C)

The supplies and demands are the same as before, since we split off flow along an unit-
gain cycle. This gives us the cycle C' as a subgraph for G and new flow 2’ that has less
arcs with positive flow value than x by choice of uc.

29

2 Preliminaries

Case 2b: C'is a flow-generating cycle: vo > 1. We define the bottleneck capacity uc
such that it is maximal under the constraints that

i1
UCH’Yaj < foralli=1,...,]|C]|.
j=1

Splitting off flow along C' alone would generate uc(vc — 1) additional supplies in s, since
C is flow-generating. However, due to flow conservation, there is a (potentially trivial)
path P = (af,... ,a"P‘) from s to either a sink ¢ or a flow-absorbing cycle C".

Case 2b;: Path P from s leads to a sink ¢. If P leads to a sink ¢, we compute a new
bottleneck capacity v’ such that it is maximal under the constraints that v’ < uc and

i—1
u'yoyp < bl, uye H’ya;_ <zg foralli=1,....|P|
j=1

C and P form a cycle-path together — the additional constraints ensure that we do not
create negative flow values along the paths or use more demands then exists at ¢ (see
Figure [2.7). The new flow 2’ is defined by

Zq, — U H;-;ll”yaj a=a; €AC)
Ty 1= T — U H;;ll Vo @ = a, € A(P) for all a € A(G).

T else

The corresponding new supplies and demands o’ are:

v,

by — 1 —t
U.:{ werr v for all v € V(G).

by else

At least one of the constraints in the definition of ' must be tight, so we get |A'(2')| <
|A'(z)| or |[V'(2")| < |V'(x)| and the cycle-path consisting of C' and P for G.

(a) P (b)

NP

Figure 2.7: The subgraphs and their components for (a) Case 2b; and (b) Case 2bs.

30

2.2 Static Flows

Case 2b,: Path P from s leads to a flow-absorbing cycle C’. If P leads to a flow-
absorbing cycle C" = (af, ... ,a"’o/|), we compute u' such that it is maximal under the

constraints that v’ < uc and

i—1 i—1
’U,/’YCH’YG]' S.fl?ai fOI' allz:la?‘P‘v u/’YCfYPHfYQy S.’Z’aé' fOI' a'11@2177|C'I|
j=1 j=1

C, P and C' form a bi-cycle together (see Figure [2.7). Once again, the additional
constraints ensure that no negative flow values are created in the new flow 2’ which is

defined by

Tq, — U H;;ll Ya; a=a; € AC)
/ i—1 I
Ty —uwye | i Vo a=a. € AP
P L CAP) e A,
zar —uyovp[lj=17ay @ = a € A(C)
Tq else

In this case, the supplies and demands are not effected. Since at least one of the con-
straints in the definition of «' must be tight, we have again |A'(2')| < |A'(x)| and a
bi-cycle consisting of C1, P and Cs for G.

Case 2c: C'is a flow-absorbing cycle: vo < 1. This case can be handled analogously
to Case 2b but creates flow along path-cycles instead of cycle-paths.

Analysis. Notice that every case decreases either the number of arcs with positive flow
values or the number of nodes with non-zero, finite supply or demand. Thus, we need
to apply this case distinction at most m + n times, which gives us the desired bound on
the number of subgraphs G1,...,G;. O

If we have unit gains, we have neither flow-generating nor flow-absorbing cycles. Thus,
we do not need path-cycles, cycle-paths and bi-cycles for the decomposition, which can
be done solely with paths and cycles. This leads to following theorem, which was shown
by Ford and Fulkerson [39] and Gallai [42]. In its original form, this was stated for the
case of a single source and sink with infinite supply and demand, respectively.

Theorem 2.3 (Flow Decomposition Theorem). Let x be a generalized flow in a directed
graph G with capacities u, costs ¢ and supplies and demands b. Then there exists a family
of subgraphs G1,...,G; of G along with flows x1,...,x; in G that are only positive in
their respective subgraphs, i.e., (x;)q =0 fori=1,...,j and a € A(G;). Furthermore,
the sum of these flows yields the original flow:

J

Tq = Z(xl)a for all a € A(G).

i=1
The subgraphs G1,...,G; and flows x1,...,x; can be chosen such that j < n+m and
G is either a path or a cycle.

31

2 Preliminaries

Path-based flows. These flow-decomposition theorems have the interesting aspect that
the flow in each subgraph — i.e., each path, cycle, etc.. — can be specified by the flow
value of a single arc. The remaining flow values are then uniquely determined by the
flow conservation constraints. Thus, we can define variables z¢, that specify the flow
value of some designated arc in G; and gain a description of a flow that is equivalent
to giving the flow values of every arc. We refer to this description of a flow as its path-
based description (even when it contains cycles, cycle-paths, path-cycles or bi-cycles), in
contrast to the previously defined arc-based description (or edge-based in the case of an
undirected graph). For subgraphs that consist of a single sequence, we set zg, to be the
flow value of its first arc.

The path-based description is particularly easy in the unit-gain case, since — due to
flow conservation constraints — the flow values must be the same for every arc in the
path or cycle. Thus, we can just write zp for the flow value of the path, which is then
the flow value of all its arcs. The same holds for unit-gain cycles.

The main advantage of a path-based description is that flow-conservation constraints
are guaranteed automatically. However, the number of potential paths and cycles is
usually exponential in the size of the graph, which is a serious disadvantage of this kind
of flow description.

2.2.3 Residual Graphs

A very important tool for computing flows are residual graphs (also called residual net-
works). They consist of a graph and a flow in the graph and provide the capability to
send more flow or to undo flow already sent. This feature of cancelling flow is helpful in
designing algorithms for flow problems, since it can help to fix decisions that turned out
to be suboptimal. We begin by giving a formal definition for a single commodity and
arbitrary gains.

Definition 2.4. Let G be a directed graph G with capacities u, costs ¢, gains v and
supplies and demands b. Let x be a flow in G. We define a reverse arc @ = (w,v) for

every arc a = (v,w) € A(G) and denote the set of reverse arcs by A(G) . Moreover, we

set % :=a. The residual graph G, of G and a flow x is defined by
V(G.) :=V(G),
“— STn
A(Gy) ={a € AG) | zoa <ugtU{a | a € A(G), o, >0} C A(G) U A(G).

The capacities of the residual graph are referred to as residual capacities u, and they

are defined by

(Ug)q := {ua Tl ac é@ for all a € A(Gy),

Targ a€ A(G)

where costs and gain factors are extended to Gy by:

1
e = —Cay Vo = ~ for all a € A(G).

a a
a

32

2.3 Flows over Time

The residual capacities are defined in such a way that for arcs a € A(G) the residual
capacity is exactly the remainder of the capacity of a not already used by z. For arcs
@ e A(G), the residual capacity is exactly the amount of flow that is sent by z in a,
i.e., the amount of flow that can be cancelled in a. Notice that a residual graph can
have parallel arcs due to the reverse arcs. But if this is not desired, we can prevent this
as described in Chapter Figure shows an example of a residual graph.

(a) (b)

Figure 2.8: (a) A graph G with capacities annotated along side the arcs, and gain factors
and a flow below it. (b) The corresponding residual graph G, and the gain
factors for it. Reverse arcs are gray.

2.3 Flows over Time

In this chapter, we will introduce flows that incorporate a temporal dimension. In these
flows, flow does not arrive instantaneously at its destination but only after a delay. These
flows are called flows over time or dynamic flows. We begin with the definitions, which
we will make for the most general case with multiple commodities and gains. The single
commodity case and the case of unit-gains will then be treated as special cases. We will
define flows over time in directed graphs first and then extend this to undirected graphs,
analogously to our approach for static flows.

2.3.1 Definitions

Recall that we make the assumption that sources do not have incoming arcs and sinks
have no outgoing arcs (see Chapter [2.2.1]).

Flows over time in directed graphs. Let G be a directed graph with capacities u,
transit times 7, costs ¢, gains -y, supplies and demands b of commodities ¢ € K =
{1,...,k} and a time horizon T'. A generalized multi-commodity flow over time f in G
is a function f: A(G) x K — ([0,T) — R{) that assigns a Lebesque-integrable flow rate
function fi : [0,7) — RJ to every arc a € A(G) for every commodity i € K = {1,...,k}.

33

2 Preliminaries

We call the value assigned to an a arc a at a point in time 0 for a commodity 4 the flow
rate of commodity ¢ at time # into arc a. The flow rate specifies, as its name indicates,
the rate with which the flow is entering the arc. This could for example be the number
of cars entering a road at a given point in time. Due to the transit times, flow entering
an arc a = (v,w) at time # will arrive at w at time 6 + 7,. This flow rate function is
typically only defined in [0,7") — however, for the sake of convenience we assume that
fi0) :=0for 0 ¢ [0,T),i € K, a € A(G). These flow rate functions have to obey the
following constraints:

e Flow conservation constraints ensure that we do not use more supplies and de-
mands than we have:

0—7q .
min(0,) < Z /fl d¢ — Z / Yafi(€) d€ < max(0, b))

a€6g (v) acd

for all v € V(G),i € K,0 € [0,T). If all supplies and demands are used, we say all
supplies and demands have been fulfilled and the following equalities hold:

3 / fie) de— 3 /T " efi€) dE= b

a€sl(v) acdc (v)
for all nodes v € V(G) and commodities i € K.

e Capacity constraints make certain that the flow rates assigned to the commodities
for an arc do not violate the capacities of an arc:

Z fL0) < uq for all a € A(G),0 € [0,T).
€K

e Non-negativity constraints are used to guarantee non-negativity of the flow:

0 < £i(0) for all a € A(G),i € K,0 €[0,T).

Analogously to static flows, there are two important special cases. The first is the
case where we have only a single commodity. In this case, f is called a single commodity
flow over time and we call f a generalized flow over time. The second case is if we have
unit gains, i.e., 7, = 1 for all arcs a € A(G). In this setting, we have “normal” flow
conservation and refer to f just as a multi-commodity flow over time.

Similar to static flows, we refer to the flow rate functions of a commodity ¢ € K
by f¢: A(G) — R, f(a) := fi := f(a,i). Each fi,i € K can be interpreted as a
single commodity flow over time. For notational brevity, we omit all the notations
for commodities in the single commodity case and write f, instead of f!, and so on.
Furthermore, if it is clear from the context that our flows are multi-commodity and /
or generalized, we omit this and call the generalized / multi-commodity flows just flows
over time.

34

2.3 Flows over Time

The definition of flows over time used above allows flow to arrive at an intermediate
node, wait there for some time, and continue onwards. This behaviour of flow is called
storage of flow or holdover. Depending on the problem modelled by the flow, this can
be the desired behaviour. However, if storage of flow is a problem — in our example
with cars and streets, waiting at nodes would be equivalent to parking on crossings — we
cannot use the above definition. In this case, we need additional constraints to forbid
waiting at intermediate nodes:

min(0,05) < > fiO) = > Yafi(0 — 7a) dE < max(0, b))

a€5+ (v) a€d (v)

for all v € V(G),i € K,0 € [0,T). Together with the flow conservation constraints
from above, these constraints are called strict flow conservation constraints and we refer
to flows fulfilling them as flow over time without holdover or flow over time without
(intermediate) storage.

The value |f| of the flow over time f is defined as the amount of demands of all
commodities that f fulfills within the time horizon T

Ta

A=S1L 1f=3 S / Yo fi(€) de.

€K veSt acds (v)

Analogously, the value |f|g of a flow over time f until time 6 is the amount of flow that
has reached the sinks until time 6:

0—71q4
o=l W= 2 2 / GRS
€K veSL acég
Thus, |f| = |f|r. The concurrent value |f|conc of f is defined as the minimal fraction of

demands of a commodity that is fulfilled by f:

/]
K |BL|

| f|cone := mln € [0,1].
Therefore, the concurrent value is determined by the commodity of which the least
fraction of demands has been fulfilled. The cost of a flow over time f is defined by

T—7a)
()= el elryi= X [it de
acA(@) 0

€K

The arrival pattern of a flow over time f is the function py : [0,T) — RJ, p(0) := |flo
that assigns to every point in time 6 the total amount of flow that has arrived at the
sinks until time 6.

Let f7*** be a flow over time in a graph G with time horizon # that maximizes |f|g
over all flows over time for G. We define pg : [0,T) — Rd,pc(0) := |f;"**|s as the
function that specifies for every point in time 6 the maximum value of flow that can be
sent to the sinks in G until time 8. The function pg is called the earliest arrival pattern
of G. We write p instead of pg if G can be inferred from the context.

35

2 Preliminaries

Flows over time in undirected graphs. We define flows over time in undirected graphs
by using the same transformation into directed graphs that we employed to define static
flows in undirected graphs in Section [2.2.1] This time, we have an undirected graph
G with capacities u, costs ¢, gains +, transit times 7 and supplies and demands b.
The modification into a directed graph G’ is once again done by replacing every edge
e = {v,w} € E(G) with the construct shown in Figure

(en)
oo o
©

(a) (b)
Figure 2.9: (a) An undirected edge and (b) a gadget of directed arcs as its replacement.

G’ is defined by

V(G/) = V(G) U {61,62 ’ e e E(G)},
A(G') == {(v,e1), (w,e1), (e1, e2), (€2,v), (e2,w) | e € E(G)}.

Capacities v/, costs ¢/, gains 4/ and transit times 7/ are defined by

, {ue a= (e1,e) , {ca a = (e1,e2)
u, =

b C =)
oo else 0 else

1 else ’ o 0 else

;o {'ya a = (e1,ez) / {Ta a= (e, e2)

for all a € A(G"). Supplies and demands b’ are defined for all v € V(G’) and i € K by

yi {bg veV(G)

0 else

As in the static transformation, the attributes of the original edge are transferred to
(e1,e2) with the other arcs and new nodes getting neutral attributes.

Forcing flow between v and w to travel through (e1,es) enforces a common capacity
constraint. However, the construction has the draw back that it creates v- and w-cycles.
We will see later that we only use this construction for problems that do not benefit
from the new cycles, which makes it fine for our purposes.

2.3.2 Continuous and Discrete Time Models

Our definitions of flows over time are based on assigning Lebesque-integrable flow rate
functions fZ : [0,T) — Ry to every arc a for commodity i. This assumes a continuous

36

2.4 Approximating Flows over Time

time model, as the flow rate can be different at any time 6 € [0,7). In practical
applications, we will usually not see the phenomenon that flow rates change infinitely
many times. Therefore, discrete time models are often used as well. In a discrete
time model, we assign flow rate functions f¢:{0,1,...,7 — 1} — Rg to every arc a for
commodity 4. It is then assumed that the flow rate is constant in a time interval [0, 0+1)
and specified by f(6). Thus we can choose only T flow rates per arc and commodity,
instead of infinitely many ones. However, this is normally no big restriction, if we can
choose a sufficiently fine discretization of time. In most cases, results for one time model
carry over to the other (e.g., Fleischer and Tardos [33] or Fleischer and Skutella [32]).
We will study these equivalence in greater detail in Chapter where we will see that
results in a discrete time expansion carry over to flows over time with a continuous time
model (under some restrictions, of course).

2.4 Approximating Flows over Time

We conclude our preliminaries with a short introduction into approximation concepts
for flows over time. Normally, a c-approximation algorithm for an optimization problem
is defined as follows (Williamson and Shmoys [119]).

Definition 2.5. A c-approximation algorithm for an optimization problem is a poly-
nomial-time algorithm that for all instances of the problem produces a solution whose
value is within a factor of ¢ of the value of an optimal solution. If OPT is the value
of an optimal solution to our optimization problem, then a c-approrimation algorithm
computes a solution with a value of at most OPT - ¢ if the optimization problem is
a minimization problem. If the optimization problem is a maximization problem, a c-
approximation algorithm computes a solution with a value of at least OPT/c.

We already mentioned in the introduction that for flows over time there are gener-
ally multiple avenues for approximation. Some of them fit directly with the definition
of approximation algorithm as above. We begin with flow-approximations, as in the
introduction.

Definition 2.6. A c-flow-approximation algorithm for an optimization problem is a
polynomial-time algorithm that for all instances of the problem produces a solution which
needs to fulfill the following flow-related criteria depending on the objective:

o [f the objective is to maximize the flow value, the flow value of the solution needs
to be at least 1/c times the flow value of an optimal solution.

o [f the objective is to minimize the time horizon or the costs, the solution needs to
be at least as good as the optimal solution, but is allowed to fulfill only 1/c of the
demands and use only 1/c of the supplies.

These two different criteria stem from the fact that in the first case, we approximate
optimality, and in the second feasibility. Usually, approximating optimality might seem
more intuitive, but the approach of approximating optimality is impractical for problems

37

2 Preliminaries

where finding any feasible solution is NP-hard. One prominent example is the minimum
bounded degree spanning tree problem. For such problems, there is still the option
of approximating feasibility, i.e., we allow our solutions to violate constraints slightly.
E.g., for the minimum bounded degree spanning tree problem, it is possible to give
approximation algorithms that violate the degree bound slightly [45] [103].

Flows over time have a slightly different problem, namely that a description of a
solution can be exponential in the input size. This is due to the fact that we might need
to specify many different flow rates for an arc at different time points. As a consequence
of this, many approximation algorithms for flows over time approximate the temporal
dimension. We therefore define time-approximations next.

Definition 2.7. A c-time-approximation algorithm for an optimization problem is a
polynomial-time algorithm that for all instances of the problem produces a solution to
fulfill the following time-related criteria depending on the objective:

o [f the objective is to minimize the time horizon, the time horizon of the solution
needs to be at most ¢ times the time horizon of an optimal solution.

o [f the objective is to maximize the flow value or to minimize the costs, the solution
needs to be at least as good as an optimal solution, but it is allowed to use a time
horizon that is longer by a factor of c.

In some cases, we will see algorithms that approximate both time and value. These
bicriteria approximation algorithms are defined as follows.

Definition 2.8. A c-time-c’-value-approximation algorithm for an optimization problem
is a polynomial-time algorithm that for all instances of the problem produces a solution
to fulfill the following time- and value-related criteria depending on the objective:

e If the objective is to minimize the time horizon, the time horizon of the solution
needs to be at most ¢ times the time horizon of an optimal solution, and is allowed
to fulfill only 1/ of the demands and use only 1/c’ of the supplies.

e If the objective is to maximize the flow value, the solution needs to be at least 1/c
times the flow value of an optimal solution and is allowed to use a time horizon
that is longer by a factor of c.

For all of these settings, we would like to have approximation algorithms whose ap-
proximation guarantees are as good as possible. Ideally, this would mean that we find
an algorithm A. with an approximation guarantee of 1 4 ¢ for any € > 0. If we can do
so, we have a polynomial-time approximation scheme (PTAS).

Definition 2.9 ([I19]). A polynomial-time approximation scheme is a family of algo-
rithms {A:} such that there is an algorithm for each € > 0, such that A is a (1 + ¢)-
approrimation algorithm.

However, with a PTAS, we have no guarantee how the running time of the algorithms
behaves if € becomes very small. Even more desirable are therefore fully polynomial-time
approximation schemes (FPTAS).

38

2.4 Approximating Flows over Time

Definition 2.10. A fully polynomial-time approximation scheme is a family of algo-
rithms {A:} such that there is an algorithm for each € > 0, such that Az is a (1 + ¢)-

approximation algorithm and the running time of A. is polynomial in the input size of
the problem and 1/¢.

39

3 Flow over Time Problems

In this chapter, we introduce the flow over time problems which we study in this thesis.
For every problem, we provide formal definitions and a brief history. We give an overview
of the state of art for each problem and highlight the contributions of this thesis to the
respective problems.

The organization of this chapter is as follows. We begin by dealing with the classical
problems, which have only a single objective and just consist of a flow over time com-
putation. We classify these problems by the number of commodities and the attributes
they use, leading to the following structure for this chapter:

e In Section we study problems that have capacities, transit times and supplies
and demands of a single commodity. The goal is either to send as much flow as
possible within a given deadline, or to send a specified amount of flow as fast as
possible. Costs or gains are not considered here. Examples for this type of problem
are the maximum flow over time or the quickest flow over time problem.

e Section deals with problems which have supplies and demands of multiple
commodities in addition to capacities and transit times (but still no costs or gains).
The goals are similar to the previous section — in fact, the problems we consider here
are the multi-commodity counterparts to the problems of the last section. Aside
from introducing these problems, we discuss a peculiarity of multi-commodity flows
over time in this section: letting flow wait can allow us to send more flow or to
send flow faster, which might seem counter-intuitive at first.

e Section considers problems that have costs in addition to capacities, transit
times and supplies and demands. The objective is then to find a flow over time
that fulfills all supplies and demands within a given time, such that the costs of
the flow are minimal. The resulting family of problems are minimum cost flow
over time problems. We consider both single and multiple commodity versions of
these problems here.

e Section deals with problems that add gains to capacities, transit times and
supplies and demands. The objectives remain the same as in Section [3.1] These
problems are called generalized maximum flow over time problems.

After these problems, we study two types of more complex problems, which are par-
ticularly relevant to evacuations. The first type are earliest arrival flows, who try to
maximize the flow sent at multiple points in time instead of a single point. The second
type are problems in undirected graphs, where we are allowed to orient the graph before
solving a flow over time problem, making this a class of two stage problems.

41

3 Flow over Time Problems

e Section studies the mentioned earliest arrival flows, where we are looking for
flows that maximize the amount of flow sent at all points in time. Since such flows
are not guaranteed to exist, we characterize the existence of such flows as well as
algorithms for finding them.

e Section deals with problems in undirected graphs, where we are allowed to
orient edges in a preprocessing step. Here we study the influence of the orientations
on the quality of the flow over time solutions.

3.1 Single Commodity Problems without Costs or Gains

In this chapter we will introduce flow over time problems that just use capacities, transit
times and supplies and demands of a single commodity, and nothing more. We catego-
rize these problems into maximum flow problems, where we have infinite supplies and
demands and want to send as much as possible, and transshipment problems, where we
have specific, finite amounts of supplies and demands that need to be shipped as fast as
possible.

3.1.1 Maximum Flows over Time

We begin with the problems that have infinite supplies and demands. Infinite supplies
and demands have the advantage that we can assume without loss of generality, that
we have only a single source and a single sink. This is because we can add a super-
source and super-sink, which have infinite supply and demand, respectively. These
super-terminals are then connected to the sources and sinks in the original graph, using
arcs with infinite capacities and zero transit time. Figure [3.1]sketches this construction.
For reference purposes, we make the following observation.

Observation 3.1. Without loss of generality, we can assume that for every commodity
the number of sources with infinite supply and sinks with infinite demand is 1.

(a) (b)

Figure 3.1: (a) A graph with multiple sources (white) and sinks (gray). (b) The same
graph with an added super-source and -sink.

We will see in the next section that such a construction cannot be used with finite
supplies and demands.

42

3.1 Single Commodity Problems without Costs or Gains

A natural question in this setting is to ask how much flow can be send from the sources
to the sinks within a given time horizon 7. This problem is called the mazimum flow
over time problem and was introduced by Ford and Fulkerson [38] in the 1950’s.

MaxiMmuM FLoOw OVER TIME PROBLEM

Input: A directed graph G with capacities u, transit times 7, infinite supplies
and demands b of a single commodity and a time horizon T

Output: A flow over time f in G maximizing the flow sent |f|.

They proposed two techniques for dealing with them, both of which reduce the problem
to known static flow problems. The first reduction uses a technique called time expansion
to remove the temporal dimension, transforming the problem into a static maximum flow
problem. The downside of this technique is that it causes a large blow-up in the size of
the graph — the input for the static maximum flow problem is larger by a factor that
is linear in the time horizon, resulting in a pseudo-polynomial running time for this
approach. Details on time expansion can be found in Chapter

The second reduction generates a static minimum cost flow problem by transforming
the transit times into costs. The solution to the minimum cost flow problem can be
decomposed into a family of paths (see Theorem [2.3)), along which flow is send for as
long as the time horizon and the path lengths permit. Such flows are called temporally
repeated flows. This technique exploits that we have a single source and sink with
infinite supplies and demands, respectively. This allows us to send as much flow as we
want without risking that a source might run out of supply or a sink run out of demand.
In contrast to time expansion, there is no blow-up involved. Together with a strongly
polynomial algorithm for the static minimum cost problem (e. g., Orlin [85]), this yields a
strongly polynomial algorithm for the maximum flow over time problem. This algorithm
has also the properties that no storage of flow is necessary for an optimum solution and
that it produces an optimal solution that sends flow only along simple paths.

3.1.2 Quickest Flows and Transshipments

In this section we will deal with problems where finite amounts of supplies and demands
are given, and we have to fulfill them all as fast as possible. In the case of finite supplies
and demands, we cannot make the assumption that we have only a single source and
sink. Adding super-terminals is not helpful here, as shifting supplies and demands to
them leaves us with no guarantee that we get a flow that respects the original supplies
and demands. Notice that adding finite capacities to the construction of Observation [3.1
does not work, as we would need capacities that limit the total flow over an arc in the
time interval [0,7"), which we do not have in our model.

Thus, it makes sense to distinguish problems with a single source and sink and prob-
lems with multiple sources and sinks. We begin with the single source and sink case.
Since we are given specific supplies and demands, the question in this setting is usually
to determine the smallest time horizon such that all supplies and demands can be ful-

43

3 Flow over Time Problems

filled. One application for this are evacuation scenarios [13| 20, 22, [56]. In this setting,
we have some evacuees who need to be brought to safe locations and usually, the sooner
the better. This problem is referred to as the quickest flow problem or quickest flow over
time problem.

QUICKEST FLOW PROBLEM

Input: A directed graph G with capacities u, transit times 7, finite supplies
and demands b of a single commodity, such that there is only a single
source and sink.

Output: The minimal time horizon T such that a flow over time f with time
horizon T' can fulfill all supplies and demands.

Burkard, Dlaska and Klinz [I8] gave a strongly polynomial algorithm for the quick-
est flow problem by embedding the strongly polynomial algorithm of Ford and Fulk-
erson [38] for the maximum flow over time problem into Megiddo’s parametric search
framework [77]. Since this algorithm builds on Ford and Fulkerson’s algorithm, it does
neither require storage nor sending flow along non-simple paths. Using time expansion
to obtain a pseudo-polynomial algorithm would work as well.

Notice that we can obtain an upper bound for the minimal time horizon, if neces-
sary, through the given transit times and supplies and demands. The transit time of a
simple path in a graph G is at most n - max,c o(g) 7o and by the algorithm of Burkard,
Dlaska and Klinz we know that we do not require non-simple paths for an optimal so-
lution. Therefore, we do not have to use paths that have a transit time larger than
N - MaXqe A(G) Ta- Furthermore, we can use any path P for at most By / mingep u, time
units before supplies and demands have been exhausted. This gives us a bound for T
that is pseudo-polynomial in the input, which we formalize in Observation This
observation can be extended to case of multiple sources and sinks (Hoppe [65]).

Observation 3.2. The minimal time horizon necessary to fulfill all supplies and de-
mands in a graph G with capacities u, transit times T and supplies and demands b is at

By
most n - MaXge A(G) Ta + T

If we consider the application of evacuations, having only a single source and sink is
quite restrictive — usually, not all the evacuees are grouped up but spread over an area.
Also, there might be more than a single safe location for them to go. Thus, we would
prefer to solve the version with multiple sources and sinks, which is called the quickest
transshipment problem or quickest transshipment over time problem. The version with
multiple sources and single sink is sometimes referred to as evacuation problem [13, 20].
In this case, the single sink is usually justified because the sink represents something like
the whole outside of a building — for the evacuation, it is important to get the people
out, but the specific destination outside is not so important.

44

3.1 Single Commodity Problems without Costs or Gains

QUICKEST TRANSSHIPMENT PROBLEM
Input: A directed graph G with capacities u, transit times 7, finite supplies
and demands b of a single commodity.

QOutput: The minimal time horizon T such that a flow over time f with time
horizon T can fulfill all supplies and demands.

Again, using time expansion combined with a search framework yields a pseudo-
polynomial algorithm. Finding a strongly polynomial algorithm is not so easy, how-
ever, since we cannot use Ford and Fulkerson’s algorithm — we cannot introduce super-
terminals easily, and our supplies and demands can run out. Thus, we need another
algorithm to solve the corresponding feasibility problem for a given time horizon, which
is called the transshipment over time problem.

TRANSSHIPMENT OVER TIME PROBLEM
Input: A directed graph G with capacities u, transit times 7, finite supplies
and demands b of a single commodity, a time horizon T

Output: YES, if a flow over time f exists that can fulfill all supplies and demands
within time horizon T, NO otherwise.

Hoppe and Tardos [65] 67] managed to find a strongly polynomial algorithm for this
feasibility problem, which can then be combined with Meggido’s search framework. This
algorithm produces an optimal solution that does not require storage and uses only
simple paths. However, their algorithm relies on submodular function minimization as a
subroutine. While submodular function minimization can be done in strongly polynomial
time, all known algorithms have a high running time — the recently presented algorithm
by Orlin [86], which improved the best previously known bound by more than a factor of
n, still has a running time of O(n>EVAL + n%). EVAL is here the time necessary for an
evaluation of the submodular function that is to be minimized, which is a static maximum
flow computation in our case. Weakly polynomial-time algorithms can improve the
exponent of the n a bit, but for practical purposes, the pseudo-polynomial algorithm
based on time expansion can easily be faster for this problem. Here we will discuss the
time expansion approach in Chapter 4] but not the submodular function based one — it
seems not to be as easily extendable to other flow problems as time expansion, and the
obtained algorithms have very high running times.

3.1.3 Summary

We conclude this chapter by a summary of the problems presented here. These problems
are listed in Table Notice that the dash in the objective column signifies feasibility
problems — such problems have no specific objective function. The results known for these
problems are listed in Table[3.2 We do not mention pseudo-polynomial algorithms based
on time expansion there, as all of the problems presented here have such algorithms.

45

3 Flow over Time Problems

Problem Objective Comment
Maximum Flow over Time max |f| Infinite supplies and demands
Transshipment over Time — Finite supplies and demands

Quickest Flow min T Single source and sink
Quickest Transshipment min T’ Multiple sources and sinks

Table 3.1: An overview of the flow over time problems with a single commodity and
neither costs nor gains.

Problem Complexity Technique

Static minimum cost flow

Maxi Fl Ti
aximum Flow over Time P Ford, Fulkerson [3]

Submodular function minimization

T hi t Ti
ransshipment over Time Hoppe, Tardos [63, 7]

Maz. Flow over Time + Meggido

ickest Fl
Quickest Flow Burkard, Dlaska, Klinz [I8]

| 9| T

Trans. over Time + Meggido

ickest Tt hi t
Quickest Transshipmen Hoppe, Tardos [63, 7]

Table 3.2: An overview of results for the flow over time problems with a single commodity
and neither costs nor gains.

3.2 Multiple Commodity Problems without Costs or Gains

The problems we considered so far had only a single commodity. However, we often re-
quire multiple commodities in order to model applications. Some recent examples where
problems that can be modelled as multi-commodity flows over time occur include aircraft
routing [99], cloud computing [I} [105], disaster management [57, 88], evacuations [76],
logistics [3], [62], packet routing [90] and shared-ride systems [16].

In this chapter, we will first introduce multi-commodity flow over time problems and
then study an important phenomenon that does not occur with single commodity flows
over time and is related to storage in nodes.

3.2.1 Multi-commodity Maximum Flows over Time

We begin with the introduction of the multi-commodity version of the maximum flow
over time problem, which is called the multi-commodity mazimum flow over time prob-
lem.

46

3.2 Multiple Commodity Problems without Costs or Gains

MuLrTI-coMMODITY MAXIMUM FLOW OVER TIME PROBLEM

Input: A directed graph G with capacities u, transit times 7, infinite supplies
and demands b of £ commodities and a time horizon T

Output: A flow over time f in G maximizing the flow sent |f|.

We will see later (Chapter that storage makes a difference for problems with
multiple commodities — it can allow us to send more flow in the same time horizon in
some instances. Since storage is not desired in some applications, we define the multi-
commodity problems in two versions — the normal one, where storage is allowed, and
another one, where storage is forbidden.

MULTI-cCOMMODITY MAXIMUM FLOW OVER TIME PROBLEM WITHOUT STORAGE

Input: A directed graph G with capacities u, transit times 7, infinite supplies
and demands b of £ commodities and a time horizon 7.

Output: A flow over time without storage f in G maximizing the flow sent |f|.

Analogously to the single commodity case, we can assume that there is a single source
and sink for every commodity. The multi-commodity maximum flow problem with or
without storage can be solved by time expansion — this transforms the problem into
a static multi-commodity maximum flow problem, which can be formulated as an lin-
ear program. Although there is no strongly polynomial algorithm known that solves
arbitrary linear programs, Tardos [I08] showed that for linear programs representing
multi-commodity maximum flow problems there is a strongly polynomial algorithm.
This works for both the version with and without storage. However, time expansion
causes a pseudo-polynomial blow-up of the graph.

The question whether a better, efficient algorithm for a version of this problem exists
was answered by Hall, Hippler and Skutella [55]. They showed by an reduction from
PARTITION that both versions of this problem are weakly NP-hard. Their reduction
also holds for only two commodities that have only a single source and sink, and series-
parallel graphs. In this sense, a pseudo-polynomial algorithm is the best we can hope
for, at least as far as exact algorithms are concerned — unless P=NP should be true.

However, the result of Hall, Hippler and Skutella still permits efficient approximation
algorithms. Since this problem is easy in the static case, it makes sense to approximate
the temporal dimension. One way to do this was proposed by Fleischer and Skutella [32]:
they introduced the concept of condensed time-expanded graphs, which rely on rounded
transit times that lead to a rougher discretization of time, which in turn leads to a
smaller time expansion. More on this technique can be found in Chapter

This technique leads to an FPTAS for this problem, as long as optimal solutions exist
that use only simple paths. While this is the case if storage is allowed, it is not if storage
is forbidden — running around in cycles can simulate waiting, which can be advantageous

(see also Chapter [3.2.4)).

While the non-simple paths cannot be handled by normal condensed time-expanded

47

3 Flow over Time Problems

networks, it is possible to obtain an FPTAS for the problem with forbidden storage by
using sequence-condensed time-expanded graphs, which do not round transit times of
individual arcs, but only transit times of small arc sequences. This was proposed by
Grof8 and Skutella [52]. This technique is described in detail in Chapter and is one
of the contributions of this thesis. The previously best known approximation algorithm
by Fleischer and Skutella [32] had a guarantee of 2 + ¢ and was based on temporally
repeated flows.

3.2.2 Multi-commodity Quickest Flows over Time

For the case of finite supplies and demands, we get the multi-commodity flow over time
problem as counterpart to the transshipment over time problem and the multi-commodity
quickest flow problem as analogon to the quickest transshipment problem. Notice that
in the setting of multiple commodities, we call problems with multiple sources and
sinks flow problems instead of transshipment problems — this is because they have been
established this way [55]. We will see later that the number of sources and sinks has
no big influence on the computational complexity, which justifies that we do not differ
between single and multiple terminal problem versions.

Murti-comMmoDITY FLOW OVER TIME PROBLEM

Input: A directed graph G with capacities u, transit times 7, finite supplies
and demands b of a k commodities, a time horizon T

Output: YES, if a flow over time f exists that can fulfill all supplies and demands
within time horizon T', NO otherwise.

MULTI-COMMODITY QUICKEST FLOW PROBLEM
Input: A directed graph G with capacities u, transit times 7, finite supplies
and demands b of £ commodities.

Output: The minimal time horizon T such that a flow over time f in G exists
that fulfills all supplies and demands.

As it was the case for multi-commodity maximum flows over time, allowing or forbid-
ding storage can make a big difference. We will see in Chapter that a flow without
storage might take twice as long to fulfill the same supplies and demands. Thus, we
study these problems both with and without storage.

MurTI-coMMODITY FLOW OVER TIME PROBLEM WITHOUT STORAGE

Input: A directed graph G with capacities u, transit times 7, finite supplies
and demands b of a k£ commodities, a time horizon T

Output: YES, if a flow over time without storage f exists that can fulfill all
supplies and demands within time horizon T, NO otherwise.

48

3.2 Multiple Commodity Problems without Costs or Gains

MULTI-COMMODITY QUICKEST FLOW PROBLEM WITHOUT STORAGE
Input: A directed graph G with capacities u, transit times 7, finite supplies
and demands b of £ commodities.

Output: 'The minimal time horizon T such that a flow over time without storage
f in G exists that fulfills all supplies and demands.

The results for this problem are very similar to the results for the multi-commodity
maximum flow over time problem. Once again, we can use time expansion to remove the
temporal dimension. This transforms the multi-commodity flow over time problem into
a static multi-commodity flow problem, which can be formulated as a linear program.
This works both for the case with and without storage at the cost of a pseudo-polynomial
blow-up.

The reduction from Hall, Hippler and Skutella [55] can be used to show that the multi-
commodity flow over time problem (and consequently, the multi-commodity quickest flow
problem) are weakly NP-hard. The reduction retains the property that it works in the
case of two commodities with a single source and sink each, and series-parallel graphs.

For approximation algorithms, the condensed time-expanded graphs (Chapter
of Fleischer and Skutella [32] give an FPTAS for the multi-commodity flow over time
problem with storage, and the sequence-condensed time-expanded graphs (Chapter
of Grof} and Skutella [52] give an FPTAS for the version without storage. Notice that
both FPTAS approximate the time horizon, i. e., they relax the feasibility of this problem.
In fact, the sequence condensation approximates both time and value.

The 2 + e-approximation algorithm of Fleischer and Skutella [32] using temporally
repeated flows can also be used here. The multi-commodity quickest flow problem can be
solved by combining an algorithm for the multi-commodity flow over time problem with
a search framework (e.g., Megiddo [77]). An upper bound for the minimal time horizon
can, for example, be obtained through the 2+ e-algorithm by Fleischer and Skutella [32].
Depending on the algorithm used for multi-commodity flow over time problem, this yields
an pseudo-polynomial exact algorithm or FPTAS for the multi-commodity quickest flow
problem.

3.2.3 Maximum Concurrent Flows over Time

A multi-commodity flow over time problem which has no single commodity counterpart
is the mazimum concurrent flow over time problem. In this problem, we have multiple
commodities and might not be able to fulfill all supplies and demands in the given time
horizon. Here, we are interested in the fraction of the demands that we can fulfill. More
specifically, we want to find the maximum value x, such that there is a flow over time
that fulfills at least xz-times the demand of every commodity. z is then the concurrent
flow value |f/|conc-

49

3 Flow over Time Problems

MAaxiMuM CONCURRENT FLOW OVER TIME PROBLEM

Input: A directed graph G with capacities u, transit times 7, finite supplies
and demands b of a k commodities and a time horizon T.

Output: A flow over time f in G maximizing the concurrent flow value |f|conc-

This problem is also weakly NP-hard as a consequence of the multi-commodity flow
over time problem being weakly NP-hard [55]. Since this problem can be formulated as
an LP, we can apply time expansion and condensation to obtain exact pseudo-polynomial
algorithms and FPTASs approximating the time horizon. However, we will place our main
focus on the other problems that we introduced and only skim this one.

3.2.4 The Importance of Storage

We have already mentioned that for multi-commodity flows over time, storage can make
a difference. In this section, we will study and give tight bounds on the scale of this
effect. In particular, we are interested in the minimal time horizon necessary to send
given supplies and demands in a graph if we allow or forbid storage. Obviously, allowing
storage cannot be worse than forbidding storage, since we only get more options. Let
T3, be the minimal time horizon to fulfill all supplies and demands with storage, and
T* be the minimal time horizon without storage. We are interested in the ratio 7% /T,
which we will refer to as the benefit of storage.

This effect was already studied a decade ago by Fleischer and Skutella [30], who did
not name this effect. They managed to show that the benefit of storage is at most 2 for
any instance. Furthermore, they gave an instance where the benefit of storage is 4/3.
Recently, Grofl and Skutella showed that the factor of 2 for the benefit of storage is tight.
In this section, we will discuss the lower bound results by Fleischer and Skutella [30]
and Grofl and Skutella. The upper bound result by Fleischer and Skutella [30] consists
essentially of an algorithm which computes a flow over time without storage that takes
at most twice as long as a flow with storage to fulfill all supplies and demands (in any
instance).

A 4/3-lower bound on a path. We begin with the lower bound of 4/3 by Fleischer
and Skutella [30], where an example without a formal proof is given. It is also still the
best known bound for acyclic graphs — the improvement by Grofi and Skutella requires
a cycle.

Theorem 3.3. There are instances based on a path for the quickest multi-commodity
flow problem, where the benefit of storage is 4/3 — i. e., the time horizon necessary to
fulfill all supplies and demands is a factor of 4/3 larger without storage than with it.

Proof. Consider the instance depicted in Figure (3.2

This example has three commodities, each with a single source and sink and a unique
source-sink path. Therefore, we have only to determine when we send flow into a path
and where we let flow wait. If we allow storage, we can send flow from the first and third

50

3.2 Multiple Commodity Problems without Costs or Gains

=1 T=2 b =2 7=0 v=1 7=0 T=2
(@) 20, (d) 20,
bt = -1 b= -2 b =—1

Figure 3.2: An example where storage allows us to fulfill all supplies and demands faster.
Transit times and supplies and demands are zero unless annotated otherwise,
capacities are all 1.

commodity into their respective paths during [0,1) and do not let any of this flow wait.
For the second commodity, we send flow into its path during the interval [0,2) and we
let the flow sent during [0,1) wait at node ¢ for two time units. Then all supplies and
demands have been fulfilled at time 3.

If we forbid storage, we cannot use the waiting at ¢. Due to capacity constraints and
the fact that flow cannot wait, we get the following inequalities:

Loy 0) + [300®) <1, J20y(0) + [3.0)(8) = G,0(0) + [y (0) <1 forall §>0.
If all supplies and demands are fulfilled, the following equalities must hold:
T T-2 T
| sbo@a= [py@ =1 [70 a0 -2

The interval boundaries are a consequence of the transit times of the arcs. Due to
Tlap) = 2, f(lb ¢ has to be zero in [0,2). Similarly, f(‘r’)’c o) has to be zero in [T —2,T).
Furthermore, we know that three flow units must traverse through (b, ¢), (¢, d):

T 2
| 50+ 5300 a0+ [150 0=

<1

T—2 T
/0 [0 (0) + fl.0)(0) A0+ /T) e (6) dO = 3.

<1

Adding these equalities and replacing the first integrals with upper bounds yields

2 T
AT -2+ [fho0) b+ [fho0) 820
0 T-2

=2

if all supplies and demands are fulfilled. This yields T = 4 as minimal time horizon if
storage is forbidden, completing the proof. O

Furthermore, it can be beneficial for a multi-commodity flow over time to run in cycles,
if storage is forbidden, as we can see by a slight extension of the above example. The
cycle can then act as a replacement for waiting in a node, see for example Figure [3.3

Observation 3.4. There are instances for the quickest multi-commodity flow problem
without storage where solutions using non-simple paths can fulfill all supplies and de-
mands faster than solutions which use simple paths only.

o1

3 Flow over Time Problems

b= -1

Figure 3.3: An example where storage allows us to fulfill all supplies and demands faster.
Transit times and supplies and demands are zero unless annotated otherwise,
capacities are all 1.

A 2-lower bound on a cycle. This 4/3-lower bound can be improved by using cycles.
This result is due to Gro8 and Skutella, which is unpublished as of yet.

Theorem 3.5. There is a family of instances based on a cycle for the quickest multi-
commodity flow problem, where the benefit of storage converges against 2.

Proof. Consider the following family of directed graphs Gg, k € N defined by

V(Gk) = {1)1,1)2, . ,’Uk},
A(Gy) == {a1 = (v1,v2),...,a5-1 = (Vk—1,Vk), ar, = (v, v1)}.

All arcs get unit transit times and unit capacities. There are k commodities with the
following supplies and demands for a node v € V(Gy,) for a commodity i € {1,...,k}:

2 ’L':]_,’U:U27
-2 1=1,v=wy,
by:=41 i>1,9=Vimodk+1,
-1 1> 1Lv=w,

0 else.

Figure illustrates such an instance.

We will now analyze the time horizon necessary to fulfill all commodities in G, k — oo
and show that if storage is permitted, this can be done within a time horizon of k + 1;
but if storage is forbidden, we require a time horizon of more than 2k — 2. We show
this in two steps in Lemma [3.6] and Lemma [3.7] which proves that the benefit of storage
converges against 2 due to limy_,o(2k — 2)/(k+ 1) = 2. O

We begin by proving that we can fulfill all supplies and demands within a time horizon
of k + 1, if storage is permitted.

Lemma 3.6. There is a flow over time with storage f with time horizon k + 1 in Gy,
k > 3 that fulfills all supplies and demands.

52

3.2 Multiple Commodity Problems without Costs or Gains

bk =1 bl =2
bt = -2 b2 =—1

Figure 3.4: An instance Gg, k € N. All arcs have unit capacities and transit times, node
supplies and demands are zero unless specified otherwise in the picture.

Proof. The following multi-commodity flow over time f satisfies all supplies and demands
within time £k + 1.

e For commodity 1, we send flow with a rate of 1 into the path vo — --- = v, — 11
during the time interval [0, 2). This flow does not wait at any node and is completed
at time (k —1)+2=Fk+ 1.

e For commodities ¢ > 1, we send flow with a rate of 1 into the path v;modx+1 —
<o = v — vp — -+ — v; during the time interval [0,1). This flow waits at node
v for one time unit, if ¢ > 2. These flows are completed by (k—1)+1+1=Fk+1
time.

This flow satisfies supplies and demands as well as flow conservation and non-negativity
constraints by construction. Thus, we only need to check the capacity constraints. By
our choice of flow rates, capacity violations can only occur if two paths send flow into
an arc at the same time.

We define A(7j,0) to be the set of arcs commodity j sends flow into at time 6 € [0, k).

93

3 Flow over Time Problems

By construction of the flow, we get

{as} ji=10<1,

{a1110), a2410)} J=L1<0<k-1,
A(j.0) = {ar} '].:1,]?—1§9<k,

{a(+10)modmy+1} J> 1,5+ 0] <k,

0 i>1,j+0) =k+1,

{agj+16]) modk | i>Lj+ (0] >k+2

For i,5 € {2,...,k}, i <j, a € A(i,0) N A(j,0) would require
(i + [0])modk = (j+ [#]) modk = i=jmodk

or
(t+[0])modk = (j+ [#]) modk+1,j>i+2 = 1=j—imodk

which is not possible. Thus, A(i,0)NA(j,0) = 0 fori < jand i,j € {2,...,k}. Similarly,
we can check that A(1,6) N A(5,0) = 0 for j > 1 and 6 € [0, k), which guarantees the
satisfaction of the capacity constraints and completes the proof. O

In the next step, we show that without storage, a time horizon of at least 2k — 2 is
required to send all supplies and demands.

Lemma 3.7. A flow over time without storage that fulfills all supplies and demands in
G, k > 3 requires a time horizon of at least 2k — 2.

Proof. Assume that a flow over time without storage exists that fulfills all supplies and
demands with a time horizon of T' < 2k — 2. We define

k—1
U0,k —1) := Z/O Ug dE = k(k—1)=k> —k

aEA(Gk)

as the maximal amount of flow that can be sent into arcs of Gy in the time interval
[0, k—1). Now let us consider by how much U decreases, if we send flow from a commodity
i into its source-sink path at time 6 € [0,k — 1). If we send from into its source-sink
path any later than that, it will not reach the sink before 2k — 2 and can therefore not
help us to fulfill supplies and demands in time.

If we send flow of commodity 7 into its source-sink path at time 6 € [0,k — 1) with rate
x, we use z capacity on arc v;y1 at time ¢, and we use z capacity of arc v(114 j)modk
at time 6 + j, j € {1,...,k —2}. Also, we lose x capacity of arc v(;}14j)mods at time
0 —j,5€{l,...,|0]}, as storage is not possible and < k + 1 time is not enough to
complete sending flow of any commodity. Thus, if we send flow of commodity ¢ into its
path starting at time 0 € [0,k — 1) with rate x, we lose (k — 1)x capacity of U[0,k — 1).

We need to send k + 1 flow units in total which in order to reach their sinks before
time 2k — 2, must start their paths before time k£ — 1. Each of these units must therefore
lose k — 1 capacity of U. However, (k—1)(k+1) =k? —1 > k? —k = U. Thus, we do
not have enough capacities to send all k£ 4 1 supplies to their sinks in time. O

o4

3.3 Minimum Cost Flows over Time

3.2.5 Summary

Let us conclude this section with a summary of the problems we introduced and an
overview of results known for them. The problems introduced are listed in Table |3.3
All of these problems have versions where storage is allowed and forbidden, but in order
to prevent bloat, we do not list both versions of each problem there.

Problem Objective Comment
Multi-commodity Max1mum max |f] Infinite supplies and demands
Flow over Time
Multi-commodity Flow over Time —
Multipl d
Multi-commodity Quickest Flow min T (P e Soutees atl

sinks, finite supplies
Multi-commodity Maximum and demands

. max |f|c0nc
Concurrent Flow over Time

Table 3.3: An overview of the flow over time problems with multiple commodities.

In terms of computational complexity, these problems turn out to be very similar. The
only major difference is that for problems without storage, more sophisticated techniques
are required to obtain an FPTAS. An overview of results can be found in Table
Pseudo-polynomial algorithms based on time expansion exist for all of these problems
and have been omitted.

Problem Complexity Approximation
Time-FPTAS
Multi-commodity Flow over Time Condensation
Time with Storage weakly NP-hard Fleischer, Skutella [32]

Chapter
Time-/Value-FPTAS

Multi-commodity Flow over Sequence Condensation
Time without Storage Gro8, Skutella [52]

Chapter

Table 3.4: Results for multi-commodity flow over time problems. All results hold for the
maximum and quickest versions of the problems as well.

Reduction from PARTITION
Hall, Hippler, Skutella [55]

3.3 Minimum Cost Flows over Time

In this chapter, we discuss minimum cost flow over time problems in their single and
multi-commodity versions. These problem uses capacities, transit times and supplies
and demands.

95

3 Flow over Time Problems

In the single commodity version, this problem is a generalization of the maximum
flow over time problem studied by Ford and Fulkerson [38] that adds costs to the arcs.
Analogously, the multi-commodity version is a generalization of the multi-commodity
maximum flow over time problem. This is an important modelling feature, as sending
flow is usually not free. Flow might for example correspond to goods that need to be
shipped, which incurs costs for fuel or other kinds of transportation fees. Many of the
examples listed in Chapter have costs that would preferably be minimized. Some
examples include aircraft routing [99], cloud computing [21] and power system man-
agement [36]. More applications where costs play an important factor can be found in
Ahuja, Magnanti and Orlin [2], Aronson [4], Orlin [84] and Powell, Jaillet and Odoni [92].
This leads us to the minimum cost flow over time and multi-commodity minimum cost
flow over time problems.

MiniMuM CoST FLow OVER TIME PROBLEM

Input: A directed graph G with capacities u, costs ¢, transit times 7, finite
supplies and demands b of a single commodity and a time horizon T

Output: A flow over time f in G fulfilling all supplies and demands of minimum
cost ¢(f).

Murri-coMmMoDITY MINIMUM COST FLOW OVER TIME PROBLEM
Input: A directed graph G with capacities u, costs ¢, transit times 7, finite
supplies and demands b of k£ commodities and a time horizon T.

Output: A flow over time f in G fulfilling all supplies and demands of minimum
cost ¢(f).

The most straightforward way to solve this problem is to use time expansion (Ford and
Fulkerson [39], see Chapter [4). This transforms the problem into its static counterpart
without transit times, the (multi-commodity) minimum cost flow problem, at the cost of
a pseudo-polynomial blow-up in graph size. The static problems can be formulated as a
linear programs, yielding pseudo-polynomial algorithms for the original problems. These
linear programs can be solved in strongly polynomial time (Tardos [I08]), and for the
single commodity version, there are also strongly polynomial combinatorial algorithms
(e.g., Orlin [85]). Other exact approaches, like the algorithm proposed by Aronson and
Chen [5], are also only pseudo-polynomial.

Efficient algorithms were found for special cases of this problem, however. Orlin [84]
studied a version of this problem with an infinite time horizon and gave a polynomial al-
gorithm for this setting. For the general case, weak NP-hardness was shown by Klinz and
Woeginger [71] by a reduction from EVEN-ODD-PARTITION (Garey and Johnson [43]).
This reduction works even in the case of a single commodity and series-parallel graphs.

For this problem, we again make a case distinction whether storage is allowed or not.
If storage is allowed, there are always optimal solutions that send flow along simple paths
only and that do not require storage (Fleischer and Skutella [32]). In this setting, we

56

3.4 Generalized Flows over Time

can employ time condensation [32] to obtain an FPTAS, which is described in detail in
Chapter

However, if storage is forbidden, this approach fails to give a good approximation
guarantee, because flow along cycles to simulate storage can become necessary for an
optimal solution. In this case, we can employ the sequence condensation developed by
GroB and Skutella [52], described in Chapter [5.3] which yields an FPTAS for this case as
well.

Notice that both FPTASs work for single and multiple commodities. Together, these
results give the picture of the complexity of minimum cost flow over time problems de-
picted in Table[3.5] Once again, pseudo-polynomial algorithms based on time expansion
exist for all these problems and have been omitted from the table.

Storage Complexity Approximation
Time-FPTAS
“th Time Condensation
With storage weakly NP-hard Fleischer, Skutella [32]
Reduction from Chapter
EVEN-ODD-PARTITION Time-FPTAS
Klinz, Woeginger [71] Sequence Condensation

ith
Without storage GroB, Skutella [52]

Chapter

Table 3.5: An overview of results for minimum multi-commodity cost flow over time
problems.

3.4 Generalized Flows over Time

In this chapter, we consider flow models that have gains in addition to capacities, transit
times and supplies and demands. Gains can, for example, be used to model interest —
e.g., we might put some amount of money into an investment and get three percent
interest after a year, which could be modelled by an arc with a gain factor of 1.03 and
a transit time of one year. Other applications include modelling leakage, evaporation,
breeding or theft, for example. We will focus on the generalization of the maximum flow
over time problem, which is the generalized mazimum flow over time problem, but we
can apply the same generalization to problems with finite supplies and demands.

GENERALIZED MAXIMUM FLOW OVER TIME PROBLEM

Input: A directed graph G with capacities u, gains =y, transit times 7, supplies
and demands b of a single commodity and a time horizon T'.

Output: A flow over time f in G maximizing |f|.

o7

3 Flow over Time Problems

Generalized flows (without transit times) have been suggested as a tool in production
planning as early as 1939 by Kantorovich [68]. Interestingly, generalized flows over
time have not been studied so far, even though there has been considerable research on
the static generalized maximum flow problem. Since static generalized flow problems
can be formulated as linear programs [23], they can be solved in polynomial time. The
first combinatorial polynomial-time algorithm for computing static generalized maximum
flows was proposed by Goldberg, Plotkin and Tardos [46] and has subsequently been
improved by Radzik [94], [05]. Fleischer and Wayne [35], Goldfarb and Jin [47], Goldfarb,
Jin and Orlin [48], Restrepo and Williamson [97] and Wayne [116), [117] described further
polynomial-time algorithms.

Truemper [I11] noted that generalized maximum flow algorithms show several analo-
gies to minimum cost flow algorithms, if the negative logarithm of a gain factor is used as
the cost. For example, there are successive highest-gain path algorithms for generalized
flows and successive shortest paths algorithms for minimum cost flow problems which
behave analogously, and such similarities also extend to cycle cancelling algorithms.
Nonetheless, these analogies are limited — it is an open problem whether a strongly poly-
nomial time algorithm for the generalized maximum flow problem exists, contrary to the
minimum cost flow problem.

For this problem, we distinguish three cases depending on the given gains. Aside from
arbitrary gains, we will study lossy gains, where 7, < 1 for all arcs a € A(G) holds.
For such gains, there are no flow-generating cycles, which allows us to find optimal
solutions that send flow only along paths. Furthermore, we will study gains where
every path with same transit time has also the same gain — in this case, we call transit
times and gains proportional to each other. Since transit times are additive and gain
factors multiplicative along paths, proportional means that there exists a ¢ € R such
that v, = 2¢7 for every arc a € A(G). Such gain factors are motivated by the fact that
in many applications effects such as leakage, evaporation or interest rates are strictly
time-bound. Also many processes of growth or decay in nature can be captured by such
proportional gain factors.

For arbitrary gain factors, Grofl and Skutella [51] show that the generalized maximum
flow over time problem is NP-hard — there is even no polynomial approximation algorithm
that leaves the time horizon intact, unless P = NP.

For the case of lossy networks, we show that the concept of condensed time-expanded
networks by Fleischer and Skutella [32] can be extended to generalized flows over time
(Chapter . This gives an FPTAS that approximates the time horizon. The NP-
hardness proof of [51] applies to this setting as well.

For the case of proportional losses, i.e., gains which are both lossy and proportional,
Grof} and Skutella [51] gave an FPTAS which only approximates the flow value and not
the time horizon — this is very uncommon for flow over time problems, because usually,
the temporal dimension is responsible for the difficulty and must be dealt with. Another
peculiarity of this FPTAS is that the running time depends only logarithmically on the
error, whereas normally a polynomial dependency would be expected. This FPTAS does
also not require storage. Furthermore, Grofl and Skutella show that generalized maxi-
mum flows over time are also always earliest arrival flows in this case. More on earliest

o8

3.5 FEarliest Arrival Flows

arrival flows can be found in the next section.

Gains Complexity Approximation
Arbitrary weakly NP-hard ?
Reduction from PARTITION
GroB, Skutella [51] Time-FPTAS
Chapter Time Condensation
Lossy GroB, Skutella [51]
Chapter

Value-FPTAS
Successive Shortest Path
Gro8, Skutella [51]
Chapter @

Earliest Arrival Flow
Lossy & Proportional GroB, Skutella [51]
Chapter

Table 3.6: An overview of results for generalized flows over time.

3.5 Earliest Arrival Flows

In this section, we will study flows which have multiple objectives. More precisely, we
will study flows which attempt to maximize the amount of flow sent at multiple points
in time. Compared to that, maximum flows over time maximize the amount of flow sent
only at a single time — the time horizon. Flows which attempt to maximize the amount
of flow at multiple times are called multiple deadline flows (Stiller and Wiese [106]). A
special case of multiple deadline flows are flows which are maximal at all points in time —
such flows are called universal mazximal flows or earliest arrival flows. Even though they
are a special case of multiple deadline flows, earliest arrival flows have a much longer
history — they were introduced by Gale [41] in 1959. It is not clear that they always
exist, but Gale managed to prove that for graphs with a single sink, they do always
exist.

For this type of flow, it matters if we are using the discrete or continuous time model,
as in the first case, we have to be optimal at times 0,1,...,T7 — 1 whereas in the second
case, we have to be optimal at all § € [0,7). In general, we will use the discrete time
model, which was also the setting which Gale studied. However, we will give some results
for the continuous time model as well.

Maximizing the amount of flow sent at all points in time is very desirable in evacuation
planning. When preparing for an evacuation, it is usually unclear how much time there
will actually be to enact the plans. Thus, it would be preferential, if we had a plan
that was optimal independent of the time available to execute it — and this is exactly
what earliest arrival flows offer. Since the existence of earliest arrival flows was at first

99

3 Flow over Time Problems

only guaranteed for a single sink, the computation of earliest arrival flows was at first
restricted to graphs with a single sink.

The resulting problem is called the earliest arrival flow problem or the earliest arrival
transshipment problem. The former is usually used for instances with a single source
and sink, whereas the latter is used for instances with multiple sources and single sink.
We will not use that distinction, however, as we will also deal with earliest arrival flow
problems with multiple sources and sinks, for which no term has been established yet.
We will refer to all such problems as earliest arrival flow problems and specify the number
of sources and sinks that they have explicitly instead.

EARLIEST ARRIVAL FLOW PROBLEM

Input: A directed graph G with capacities u, transit times 7, finite or infinite
supplies and demands b of a single commodity and a time horizon 7.

Output: An earliest arrival flow over time f in G.

Notice that the time horizon is sometimes omitted from the input if supplies and
demands are finite. In this case the time horizon is implicitly given by the time horizon
of a quickest flow for the input.

Gale’s proof for the existence of earliest arrival flows was non-constructive. The first
algorithms for computing earliest arrival flows were found by Minieka [78] and Wilkin-
son [11§]. Their algorithms are based on time expansion, and are therefore not efficient
but only pseudo-polynomial. Finding an earliest arrival flow is complicated by the fact
that the earliest arrival pattern, which specifies the amount of flow an earliest arrival
flow sends at a given time, is a piecewise linear function with potentially exponentially
many breakpoints, as follows from the work of Zadeh [122].

For the continuous time model, Philpott [91] showed the existence of earliest arrival
flows in graphs with one sink and Fleischer and Tardos [33] developed an algorithm for
them. An algorithm for earliest arrival flows that works in both time models and graphs
with multiple sources and a single sink was given by Baumann and Skutella [IT]. Their
algorithm is based on an algorithm for the quickest transshipment problem given by
Hoppe [67], and its running time is polynomial in input size and the size of the earliest
arrival pattern.

The complexity of the earliest arrival flow problem was open for a long time, but very
recently, Disser and Skutella [25] managed to prove that computing an earliest arrival
flow is NP-hard. However, for special classes of graphs, efficient algorithms can be found.
For example, for series-parallel graphs, an efficient algorithm was described by Ruzika,
Sperber and Steiner [100].

For arbitrary graphs, we have to settle for approximation algorithms, if we want our
algorithms to be efficient. Since earliest arrival flows maximize multiple objectives at
once, approximation algorithms for them usually approximate all objectives at once as
well. As before, we have two ways for approximation — either by time or by value.

Definition 3.8. An a-time-approximate earliest arrival flow is a flow over time f that
sends at every point in time 0 € {0,...,T — 1} at least as much flow value as possible

60

3.5 FEarliest Arrival Flows

at time 0/a, i.e. |flo > p (| 2]).

Definition 3.9. A S-value-approximate earliest arrival flow is a flow over time f that
sends at every point in time 6 € {0,...,T — 1} at least a B-fraction of the mazimum
flow value at time 0, i.e. |flg > %.

a-time-approximate earliest arrival flows were defined by Baumann and Kdéhler [10]
in the context of flows over time with flow-dependent transit times. In this transit time
model, the transit time of an arc depends on the flow, as the name suggests. In this
setting, earliest arrival flows do usually not exist as well. Baumann and Kohler gave an
approximation algorithm which guarantees for each point in time 6 that the amount of
flow that has reached the sink until 6 is at least equal to the maximum amount of flow
that can be sent to the sink until time /4. B-value-approximate were defined by Grof,
Kappmeier, Schmidt and Schmidt [50] for earliest arrival flows in networks with multiple
sinks. Both concepts were used before, though, even if they were not explicitly named.
In fact, Hoppe and Tardos [66] gave a value-approximative FPTAS for the earliest arrival
flow problem and Fleischer and Skutella [32] described a time-approximative FPTAS for
earliest arrival flows.

In settings with multiple sinks, earliest arrival flows do not necessarily exist [11].
Here, the case of zero transit times is relatively well understood — in networks with a
single source and multiple sinks, they do exist [I0I], but this does not hold for networks
with both multiple sources and sinks (Fleischer [34]). For this setting, Schmidt and
Skutella [I01] gave a characterization of the class of all graphs with zero transit times
that always allow for earliest arrival flows regardless of their capacities and supplies and
demands.

For graphs with multiple sinks and arbitrary transit times, it is still possible to find
approximative earliest arrival flows. Grof}, Kappmeier, Schmidt and Schmidt [50] gave
an algorithm that computes a 2-value-approximate earliest arrival flow in an arbitrary
network, and complement it with a family of instances where no value-approximation
better than 2 is possible. This lower bound holds even for zero transit times. Thus, 5 = 2
is the best possible value-approximation factor. The algorithm is pseudo-polynomial in
the general case, as it uses time expansion, but it is efficient for the special case of
networks with zero transit times. We will study this algorithm in Chapter 4.2

Time-approximation on the other hand turns out to be almost impossible for networks
with multiple sources and sinks, although Grof}, Kappmeier, Schmidt and Schmidt [50]
extended an approximation technique by Baumann and Koéhler [I0] to give a 4-time-
approximation for the case of a single source and multiple sinks. The lower bounds are
not tight for this case, however, as the best known lower bound here is 2 [50]. Compared
to this, the case with multiple sources and sinks has a lower bound that is linear in the
time horizon. Table shows an overview of existence results for approximate earliest
arrival flows with arbitrary transit times — for zero transit times, the only difference is
that earliest arrival flows exist if there is a single source.

For evacuation scenarios, like for evacuating a specific ship or building, a constructive
algorithm that computes a 2-approximate earliest arrival flow is certainly more useful

61

3 Flow over Time Problems

Abproximation 1 Source 24 Sources 1 Source 24 Sources
pp 1Sink 1 Sink 2+ Sinks 2+ Sinks
1 2, 4] Q(T)
a-Time Gale [M1] Grof et al. [50]
Baumann, Skutella [I1]
1 2
p-Value Gale [1] GroB et al. [50]
Baumann, Skutella [I1] Chapter

Table 3.7: An overview of existence results for approximate earliest arrival flows with
arbitrary transit times.

than a non-existence result. However, even more desireable would be to have an earliest
arrival flow approximation that is the best possible approximation for the given instance.

Grof3, Kappmeier, Schmidt and Schmidt adopted the concept of geometrically con-
densed time-expanded networks from Fleischer and Skutella [32] in order to give an
FPTAS for computing the best possible approximation factor for a given instance. For
an arbitrary € > 0, it incurs additional (1 + ¢)-factors for both time and value. This
FPTAS is presented in Chapter

3.6 Orientations and Flows over Time

We conclude this chapter with a discussion of the problem of orienting an undirected
graph such that the orientation is as beneficial as possible for a subsequent flow over
time computation. We are going to assume that the orientation is done once, before
the flow over time is sent, and cannot be changed afterwards. This is motivated by
evacuation settings where we might not have the resources to change direction of lanes
during an ongoing evacuation. There are surely cases where changing direction can be
done more often, both in evacuation scenarios and in everyday life — consider for example
the reversal of lanes to speed up traffic into a city in the morning and out of it in the
afternoon or evening. However, since little research has been done on the connection of
orientations and flows over time, we focus on one model first, which is the model of a
single orientation in the beginning. This model is probably one of the easiest to realize
in practice, which is why we study it first. Other models we will have to leave to further
research.

We will assume that we have to orient each edge completely into one direction and
splitting the capacity is not possible. This is no significant restriction, as we could still
model lanes of a road as individual edges, if we want to orient the lanes individually.

We have chosen a relatively simply and straightforward model, so it would be inter-
esting to know how much potential is lost by this simplicity. Thus, we need something

62

3.6 Orientations and Flows over Time

to compare our models to. For this purpose, we compare flows over time in an oriented
network with flows over time in the original undirected network. As we mentioned in
the introduction, the flow over time in the undirected graph can be interpreted as a flow
with an optimal utilization of the edge, like what an artificial intelligence controlling all
vehicles at once might achieve.

More formally, we introduce two prices of orientation that are based on the comparison
of what is possible with the best orientation in our model compared to what is possible
in the undirected network. The first price is based on the flow value and is essentially
the quotient of the maximal flow values in both scenarios. Formally, it is defined as
follows.

Definition 3.10. The flow price of orientation for an undirected network over time
N = (G,u,b,7,T) is the ratio between the value of a mazimum flow over time fn in N

and maximum of the values of mazximum flows over time fﬁ i orientations of N:

||

maXﬁ orientation of N |fﬁ|

Analogously, the second price is based on the time horizon and is the quotient between
the time horizons necessary to send everything in both scenarios. It is defined as follows.

Definition 3.11. The time price of orientation for an undirected network over time
N = (G,u,b,7) is the ratio between the minimal time horizon T(fw) of a quickest flow

fﬁ i an orientation N) of N and the time horizon T(fn) of a quickest flow over time
fn in N:
minﬁ orientation of N T(fﬁ)
T(fn)

To our knowledge, these prices of orientation have not been studied before for flows
over time. However, there has been a lot of research on orienting graphs, and orienting
graphs in conjunction with static flows. Robbins [98] studied the problem of orienting
streets already in 1939. His research was motivated by the problem of controlling the
congestion of city streets during a weekend, in particular by making streets one-way only
during the weekend. He showed that a undirected graph has to be 2-edge connected, if
it can be oriented into a strongly connected directed graph, and vice versa. This result
was later generalized by Nash-Williams [80]. An example for orientations in conjunction
with static flows is the minimum cost strong network orientation problem (Burkard,
Feldbacher, Klinz and Woeginger [19]), which finds application in automated guided
vehicle systems (see also [44] [115]).

The problem of changing or prescribing the direction of lanes or streets is also well
studied, as it is an important strategy to mitigate congestion during an emergency
situation or at rush hours. This problem is then called a contrafiow, reversible flow or
lane reversal problem. Contraflows are an important tool for hurricane evacuation [120],
and in that context the importance of modeling time has become prevalent in the past
decade [121]. It is also employed to handle traffic during rush hours [61].

63

3 Flow over Time Problems

Here, we want to combine the orientation of a network with flows over time — more
specifically, we want to find an orientation of the network that is as beneficial as possible
for the flow over time problem. We begin by combining orientations with the maximum
flow over time problem. This leads us to the mazimum contraflow over time problem.

MAXiMUM CONTRAFLOW OVER TIME PROBLEM
Input: A undirected network N = (G, u,7,b,T), consisting of a graph G with
capacities u, transit times 7, supplies and demands b of a single com-
modity and a time horizon T

Output: An orientation ﬁ of N such that the value of a maximum flow over
time in ﬁ is maximal over all possible orientations of N.

Similarly, we define a contraflow version of the quickest flow problem, which becomes
the quickest contraflow problem.

QUICKEST CONTRAFLOW PROBLEM

Input: A undirected network N = (G, u,7,b), consisting of a graph G with
capacities u, transit times 7 and finite supplies and demands b of a
single commodity.

Output: An orientation Nz of N such that the time horizon of a quickest flow
in NV is minimal over all possible orientations of N.

The same kind of generalization can be done for the multi-commodity versions of these
problems, resulting in the mazimum multi-commodity flow over time and the quickest
multi-commodity contraflow problems. Since we have two types of flow values in settings
with multiple commodities, the total flow value and the concurrent flow value, we also
get the maximum concurrent multi-commodity contraflow over time problem.

Also, we can define a contraflow version of the earliest arrival flow problem. For a given
network N = (G, u,7,b), this earliest arrival contraflow problem asks for an orientation

of N and a flow over time f in N, such that |f|y = p(#) holds for all points in time
0, if p is the earliest arrival pattern of the undirected network. This means that we have
to find an orientation and a flow over time that is maximal for any point in time over all
possible orientations. Since such a flow over time and orientation will usually not exist,
we will have to settle for a-time- or S-value-approximate earliest arrival flows. For these
approximations, the |f|g = p(f) constraint is replaced by |f|g > p (L%J) and |flop >]%6),
respectively, for all points in time 6.

For the case of a single source and sink, it follows from the work of Ford and Fulk-
erson [39] that both the time and the value price of orientation is 1. This is because
their algorithm for the maximum flow over time problem produces a temporally repeated
solution out of a static minimum cost flow. This temporally repeated solution uses each
edge in only one direction, and can therefore be used to obtain the desired orientation.
For problems with multiple sources or sinks, this does not hold, however. Consider the

64

3.6 Orientations and Flows over Time

example depicted in Figure [3.5

Figure 3.5: An instance where an optimal quickest flow solution has to use edge (7, j) in
both directions.

In the undirected graph, we can fulfill the supplies and demands in time 7"+ 1 by
sending flow along s; — ¢ — j — t and s — j — i — t. If we have to orient {i,j}, we
have two possibilities. Either, we orient it as (7,j) and send the supply of s2 via j to t,
which takes 2T time. Or, we orient it as (j,4), then we have to send the supply of s; via
i to t, which blocks {i,t} for T' time units. However, since we cannot send more than
% units of flow from sy via j to ¢ in time 7'+ 1, we have to send 1 — % flow units of s9
through {7, 5}, which is not possible in time 7"+ 1.

It was also shown that finding an optimal orientation for a quickest contraflow problem
with multiple sources and sinks is NP-hard (see Kim and Shehkar [69], Rebennack,
Arulselvan, Elefteriadou and Pardalos [96]). Because of the complexity of the problem,
heuristic and simulation tools are predominantly used in praxis, e. g., [69) 112 113 120].

We extend these results by showing tight bounds for the flow price of orientation,
which turns out to be 2 if we have either multiple sources or multiple sinks, and 3 if we
have both. We give an algorithm to compute an optimal orientation, which reduces the
problem to the single source and sink case, by simulating supplies and demands through
capacities of auxiliary arcs. This simulation is not precise, however, and we show how
to obtain good capacities to obtain the 2 and 3 bounds by using an iterative approach
whose convergence is guaranteed by Brouwer fixed-points. Furthermore, we describe
instances for which the bounds of 2 and 3 are tight, respectively. For the time price of
orientation, we give instances where the price is linear in the number of nodes.

Since we have two ways to pay the price of orientation — flow value and time horizon
— the question arises whether it might be desirable to pay the price partly as flow value
and partly as time horizon. We prove that by doing so, we can achieve a bicriteria-price
of 2/2 for the case of multiple sources and sinks, compared to 3 and Q(n) if we would
pay as flow value or time horizon alone. This price means that we can send at least half
the flow value in twice the amount of time. Table [3.8 shows an overview of our results.

Notice that even for simple graphs like trees, we cannot hope for a price of orientation
of 1, as we will see in Chapter [§ In practice, orienting road networks is an important
aspect of evacuation management. In terms of evacuations, earliest arrival flows (or
approximations thereof)) are very desirable, as they provide optimal routings independent
of the time that is available. However, we are able to show that earliest arrival flows

65

3 Flow over Time Problems

Price of Orientation 1 Source 1 Source 24 Sources 24 Sources
1 Sink 2+ Sinks 1 Sink 24 Sinks
1 2 2 3
1
Value Ford, Fulkerson [39] Arulselvan, Gro8, Skutella [7]
Chapter
1 Q(n)
Time Ford, Fulkerson [39] Arulselvan, Gro8, Skutella [7]
Chapter
1 2/2
Ti 1
ime & Value Ford, Fulkerson [39] Arulselvan, Gro8, Skutella [7]
Chapter

Table 3.8: An overview of price of orientation results.

and the approximations developed by Baumann and Kohler [I0] and Grof, Kappmeier,

Schmidt and Schmidt [50] do not exist in this setting.

In terms of computational complexity, it turns out that the maximum contraflow over
time problem cannot be approximated by value within a factor of 2, unless P = NP.
Similarly, the quickest contraflow problem cannot be approximated by time within a
factor of 2, unless P = NP. For the multi-commodity flow problems, there are even
stronger results — the quickest multi-commodity contraflow problem cannot be approxi-
mated in time better than within a factor of ©(v/U), where U is the largest capacity in
the input, and the maximum concurrent multi-commodity contraflow problem cannot be
approximated at all, unless P = NP. These complexity results are all due to Arulselvan,

Grof and Skutella [7] and can be found in Chapter

66

4 Time Expansion

In this chapter we focus on techniques which are based on time expansion. All these
techniques have in common that they transform a dynamic problem with transit times
and a time horizon into a static problem without transit times and time horizon. This
problem can then be solved by network flow algorithms that normally cannot handle
transit times. However, these reductions can cause an exponential blow-up in network
size, but we will see how we can handle the blow-up in the next chapter.

This chapter is split into two parts. In the first part, we give an introduction into
time expansion by defining time-expanded networks and proving that they allow us to
compute flows over time as static flows. This result is also the reason that we can usually
switch between the continuous and discrete time models.

In the second part, we show an iterative time expansion that adds time layers sequen-
tially instead of all time layers at once to value-approximate earliest arrival flows. This
result was published in Grof, Kappmeier, Schmidt and Schmidt [50].

4.1 Introduction

The concept of time expansion goes back to Ford and Fulkerson 38| [39]. We assume now
that we have integral transit times and an integral time horizon, but we will discuss how
to handle the non-integral case later. The idea of time expansion is to create a copy of
the nodes of the network for every integral point in time from 0 to the time horizon. The
node copies represent a node at a specific point in time (or in a time interval of length 1,
depending on the preferred view). These copies are then linked with arcs according to
the transit times of the arcs. The resulting network is called a time-expanded network.
Depending on the problems they are used for there are several variants which depend
on the attributes used (e.g., capacities, costs, gains, etc.) and whether storage of flow in
nodes is permitted or not. We give general definitions covering most variants, beginning
with the case that storage of flow is forbidden. In this case, we still need to model that
flow can be stored in sources and sinks. This is done by holdover arcs. These arcs link
two copies of a node in adjacent time layers. Thus, flow travelling through a holdover
arc can be interpreted as flow staying in a node for one time step.

4.1.1 Definitions

For this chapter, we assume that sources have no incoming edges and sinks have no
outgoing edges. This can be done without loss of generality by introducing dummy
nodes (see Chapter , and this makes handling the holdover arcs much simpler. For
the sake of convenience, we assume —oo, 400 € R.

67

4 Time Expansion

Definition 4.1 (Time-expanded network without storage). Let G be a directed graph
with integral transit times 7 : A(G) — No and an integral time horizon T' € Ng. The
time-expanded network without storage GT of G for the time horizon T is constructed
by defining

V(GT) :={wvg | v V(G),0€{0,1,...,T —1}},

H(G") == {(vg,vp41) | vE€V(G):Jie Kb, #0,0 € {0,...,T —2}},

A(GT) i= H(GT) U {ag = (vg,w04r,) | a= (v,0) € A(G),0 € {0,...,T — 7, —1}}.

The arcs in H(GT) are called holdover arcs. Capacities u : A(G) — R for G are
extended to capacities ul . A(GT) — Ry for GT' by giving each copy of an arc the
capacity of the original arc and holdover arcs infinite capacity, 1. e.,

T u, a =ag € AGT)\ H(GT),
YT 1o d € H(GT).
Similarly, we can extend costs ¢ : A(G) — R and gains v : A(G) — R{ from G to GT
by giving holdover arcs zero costs and unit gains, and giving copied arcs the costs and
gains of the original arc:

ca a =age AGT),
0 d € H(GT),

l T
T T + Yo a =agec AG"),
CAGT) = R,y =

Y () 07 {1 = H(GT)

Let K = {1,...,k} be the set of commodities. Balancesb:V(G)x K — R are extended
from G to balances b7 : V(GT) x K — R for GT by transferring supplies to the node
copies in the first time layer and demands to the node copies in the last time layer. Or
more formally,

' AGT) = R, L = {

A bl 0 =0,b >0,
(ﬂﬁf: b 0=T-—1,b <0,
0 else.

Notice that by our assumption, holdover arcs cannot be used for storage in inter-
mediate nodes. An illustration of this construction for a graph G with transit times,
capacities, single-commodity balances and a time horizon of 4 is shown in Figure
If storage in intermediate nodes is allowed, the time-expanded network gains additional
holdover arcs for all intermediate nodes to model this.

Definition 4.2 (Time-expanded network with storage). Let G be a directed graph with
integral transit times T : A(G) — No and an integral time horizon T € Ng. The time-
expanded network with storage G, of G for the time horizon T differs from GT only in
the additional holdover arcs, i.e., we replace H(GT) in Deﬁm’tz’on by H(GL,), which
1s defined as

H(GL) := {(vg,v911) | v € V(G),0 €{0,...,T —2}}.

68

4.1 Introduction

G

Figure 4.1: A network G and its time-expanded network without storage G*. The
holdover arcs are dashed. Balances that are not specified are 0.

Figure shows the construction with storage at intermediate nodes for a graph G
with transit times, capacities, single-commodity balances and a time horizon of 4. For
notational brevity, we will omit the g -subscript in the following if it is clear whether we
allow storage at intermediate nodes or not.

G

Figure 4.2: A network G and its time-expanded network with storage G,. The holdover
arcs are dashed. Balances that are not specified are 0.

4.1.2 Flows over Time and Static Flows in the Time Expansion

Now we need to link flows over time in the original graph G with static flows in the

time-expanded graph G” or G, respectively, which is done by following theorem, which

69

4 Time Expansion

is also based on the results of Ford and Fulkerson [38, [39]. Essentially, we can find an
equivalent flow over time without storage in G for a static flow in GT, and vice versa.
Analogously, we can find an equivalent flow over time with storage in G for a static flow in
G7T,, and reversely. For the proof, we begin with the latter case and follow Skutella [104],
where a proof sketch for a version of the theorem with storage, but without multiple
commodities and gains is shown.

Theorem 4.3. Let G be a directed graph with integral transit times 7 : A(G) — N,
capacities u : A(G) — R, costs ¢ : A(G) — R, gains v : A(G) — RT, commodities
= {1,...,k}, balances b : V(G) x K — R and an integral time horizon T" € Ny,
with the corresponding time-expanded network with storage Gg; and extended capacities
ul © A(GL) — R, costs T+ A(GL) — R, gains T+ A(GL) — R{, balances bT :
V(GL) x K — R. For any multi-commodity flow over time f in G there exists a
static multi-commodity flow x in G, that sends the same amount of flow for every
commodity with the same cost, i.e., |f!| = |x*| for all commoditiesi € K and c(f) = c(z).
Analogously, there exists a multi-commodity flow over time f in G for any static multi-
commodity flow x in G, with | f*| = |2*| for all commodities i € K and c(f) = c(x).

Proof. We will show that given a flow z in G, or flow over time f in G, we can construct
an equivalent flow over time or flow, respectively. We begin by constructing a flow z
in G7, given a flow over time f in G. The idea for that is to have each arc in the
time-expanded network represent an arc in the original network during a time interval
of length 1.

Constructing = from f. Given f, we define x by assigning the amount of flow f sends
from a commodity i into an arc @ in an time interval [0, 60 + 1) to 7,

) 0+1
Tl = / fi€) d¢ for all ag € A(GL)\ H(GL).
0

Then we set the flow values of the holdover arcs so that flow conservation is fulfilled for
all nodes. For every commodity i € K, we begin with the nodes v € V(G) : b, < 0 that
do not have supply and set for all time points 6 € {0,...,T — 2}:

. 0+1_Ta 0+1
"'E(Ug,’l)g_‘_l) = Z /0 ’Vafa dé‘ - Z / f(l
a€dg(v) a€dt(v)

For sources, we determine the flow value of the holdover arcs based on how much is
sent from later copies of the source. Thus, we set for all commodities ¢ € K and nodes
veV(G): b >0,0€{0,....,T -2}

(1)9,09+1) Z dg.

70

4.1 Introduction

Non-negativity and capacity constraints of x. Firstly, we need to check that z is
indeed a flow in G7,, i.e., that is satisfies non-negativity, capacity and flow conservation
constraints. Non-negativity of x is guaranteed, since f is non-negative and satisfies flow
conservation. Holdover arcs have infinite capacities, so capacity constraints are fulfilled
for them by default. They also hold for other arcs ag € A(GL) \ H(GL,) due to:

Z xae Z /9+1 e de = /9+1 Z) de < /0+1 o d— s — uaTG

€K ieK ieK

Flow conservation of z. That leaves us to verify flow conservation. For notational
simplicity, we assume that f,(#) = 0 for all arcs a € A(G) and 0 ¢ [0,T), and that
xq = 0, if a refers to a non-existing arc like (v_1,wp). We make a case distinction
between nodes with supply and those without — due to the differences in the definitions
of flow for their holdover arcs — and begin with the latter.

For a commodity i € K, a node v € V(G) with b} <0 and a time § € {1,...,T — 2},
flow conservation holds because of

DL Mata =y uy t DL N,

aGS;T (ve) acd, (v)
0—7q 60— Ta+1)
- Z / Yl (€) dE — /fa g+ 3 %/ e
a€dy a€dsd(v a€dg (v) o
9+1—7q 9+1 ‘ 0+1
- Z/ Tufi(€) dE — Z/ €) de + Z/ fie
a€dy a€df (v a€df (v
1 .
s (UG»UG-H Z T Z Ta-
a66+() 116(5Jr (vg)

et

Analogously, we can show flow conservation for § = 0 by omitting the holdover arc
(v_1,vp) for a node vy € GL:

Z ’Yaxfl = Z "Yaxflo

aGJ;Z; (vo) aeTié (81)7
=Z%/fa ds—z/fa d§+Z/fa
a€dy a€d (v a€d (v
Ta 0
:xzvo,v1)+ Z Toy = Z xy.
a€6g('u) a€5+ (vo)

st

Notice that for 6 € {0,...,T — 2}, we had b,, = 0 for all v € V(G), which does not hold
for 6 = T — 1 — this changes the equality (1) into the following inequality, which follows

71

4 Time Expansion

from the flow conservation of f:

T—7q
Z/ i@ de— Y / Fie) de + Z/ rie
a€dy a€dt (v aedt(v
bﬁ,T) Z mz

aeégg(vT,l)

<

This leaves us to check flow conservation for nodes v with a supply of commodity 1, i. e.
by, > 0. Fora 6 € {1,...,T — 1}, we have b, = 0 and d;(v) = () by construction and
get

. . 9+1
Z VaTq = xl(ve—l,ve) = Z fl §) d€ + Z /
)

_ 0+1
aGdGTf (vg) aeég (v) a€6Jr (v
= Z(vg,g41) T Z Tag = Z Ta-
aeég (v) aEJ;T (vg)
st

For 8 = 0, we get the following from the fact that f obeys flow conservation:

B+ > k=t = Y / £i() de + /J”
)

aEé;Tt (ve) ae&é(v a€6+ (v
S
)
vo,vl Z x Z Ta-
a€5+() aeﬁga (vo)

With this, we have established flow conservation for z. Thus, x is a feasible flow in G,.

Value and cost of x. Now we need to check that z and f are equivalent in terms of
flow sent and cost. We begin with the former:

|$Z| = Z Z ’yaﬂffl = Z :E?é'UT—%”UTfl)—'_ Z ryal’szlfra

vgeV(GT), a€8_r (vp) veV(G), a€dg (v)
b,y <0 st b;, <0
T—1—7q4 Ta ‘ .
=X Y Y- XX / Wf0) db = |
veV(G), aedy; (v) veV(G),aea (v)
bl <0 bi <

For the cost of x, we get

9+1
Z Z Cag® ae Z Z /
i€K qpe A(GT) i€K ape A(GT)
T— Ta)
Y Y af R©d-dn.
i€EK ac A(G)

72

4.1 Introduction

This proves the first part of the theorem, which leaves us to show the reverse direction.
For this, we have to define a flow over time f from a static flow x in the time-expanded
network and show that f fulfills all requirements — non-negativity, capacity and flow
conservation constraints, and that f and x have an equal flow value and cost.

Constructing f from z. For the other direction, we construct a flow over time based
on the static flow in the time-expanded network by taking the flow value of an arc there,
and interpret it as the flow rate for the original arc in the time interval that the copy
represents. More formally, given x, we define f by

fi9) := for all a € A(G), 1€ K, 0 €[0,7).

@l0]

Non-negativity and capacity constraints of f. Since 2%, > 0 for all a € A(G1,), i € K,
we get non-negativity by default. f fulfills the capacity constraints, because x does as
well:

S F0) =, <uforallac AG),0€0,T).
i€EK ieK

Flow conservation of f. Again, we assume that f,(6) = 0 for all arcs a € A(G) and
0 ¢ [0,T), and that z, = 0, if a refers to a non-existing arc like (v_1,wp). For every
node v € V(G), commodity i € K and time 6 € [0,T"), we have

0—7q 0—74—1

max(0, b)) + Z / Yafi(€) d€ = max(0,b’) Z Z Yalg, d€
acog(v) "’ acg(v) €0
-1
= max(0,b)) + 2y, T D, D Th,
a€df(v) €=0
)
> min(0, b)) Z Zxae

aeég (v) €=0

. o
=)+ Y [i) de

aE(Sg (v) 0

For 6 = T, the inequality (2) becomes an equality, since (vy_1,vr) does not exist and z
satisfies all supplies and demands. Thus, f fulfills flow conservation.

Value and cost of f. Now we need to check that z and f are equivalent in terms of
flow sent and cost. We begin with the former and make use of the fact that sinks do not

73

4 Time Expansion

have outgoing arcs:

T—1—7q4
LRI RO AR TR YD S MRS
veV(G), agd (v) veV(G), agdg (v) 6=0
bi <0 bi <0
- Z ‘IE?(UT727UT71)+ Z ryaszflfm - Z Z Ta |x|
veV(G), a€dg (v) veeV(G ¢), a€d” 1 (vg)
bi, <0 b, ot
For the cost of f, we get
T—Ta
PP / fite
1€EK ac A(G
YT ey =Y Y)
€K acA(G) £=0 €K ae A(GT)
This completes the proof of the theorem. O

Thus, we can solve static flow problems in the time-expanded graph to solve flow over
time problems in the original graph. For flows over time without storage, we get the
following theorem, which can be proved analogously to Theorem [£.3]

Theorem 4.4. Let G be a directed graph with integral transit times 7 : A(G) — N,
capacities u : A(G) — R, costs ¢ : A(G) — R, gains v : A(G) — RT, commodities
K ={1,...,k}, balances b : V(G) x K — R and an integral time horizon T € Ny, with
the corresponding time-expanded network without storage GT and extended capacities
ul o AGT) = RY, costs T+ A(GT) — R, gains T+ A(GT) — R{, balances bT :
V(GT) x K — R. For any multi-commodity flow over time f without storage in G there
exists a static multi-commodity flow x in GT that sends the same amount of flow for every
commodity with the same cost, i.e., |f!| = |x*| for all commoditiesi € K and c(f) = c(z).
Analogously, there exists a multi-commodity flow over time f without storage in G for
any static multi-commodity flow x in GT with |f*| = |2%| for all commodities i € K and

o(f) = c(x).
4.1.3 Extensions
We continue by briefly discussing possible extensions to time-expanded networks as

discussed above. Notice that this list is by no means exhaustive.

Non-integral transit times. So far, we have considered integral transit times. Techni-
cally, we can use time expansion also for transit times or time horizons that are rational
numbers by scaling the transit times so that they all become integral. This causes an

74

4.1 Introduction

additional blow-up in network size, however. If we assume that a transit time 7, is given
by a nominator n, and a denominator d,, we can scale all transit times and the time
horizon by the least common denominator of all d,,a € A, which is at most [, AG) dg.
This guarantees the integrality of all transit times after the scaling. Notice that in order
to keep the amount of flow send the same, we have to scale the capacities by the same
factor to accommodate the finer time scale (see also the discussion in Chapter [5.1]). We
can handle a rational time horizon in a similar way.

For real numbers, this is not always possible. However, irrational numbers are hard
to use computationally as there is usually a limit to the precision with which the com-
putations are done. And since any real number has rational numbers arbitrarily close
to it, it makes sense if we limit ourselves to rational numbers.

Attributes of holdover arcs. Depending on the application the time expansion is used
for, it can be useful to assign finite capacities to holdover arcs — e.g., if holdover arcs
model buffers of a limited size in telecommunication networks. Similarly, assigning non-
zero costs to them can be used to model storage costs in logistic networks and non-unit
gains can model interest of investments in financial flows. We will not make use of
these modelling capabilities here; however, they are an advantage of time expansion
that should be noted.

Time-dependent attributes. Another modeling advantage of time expansion is that it
is easy to realize time-dependent attributes like capacities, costs and transit times. This
is due to the fact that we have copies of a node or an arc for every point in time. Thus,
we can just give each copy of a node or an arc different attributes. Tjandra [109] [110]
discusses this approach in depth.

Flow-dependent attributes. Time expansion can also be used to approximate flow-
dependent attributes — for example, transit times that change with the rate of flow
entering an arc or costs that scale non-linearly with the amount of flow. We give a
brief discussion of this idea (which is due to Kohler, Langkau und Skutella [72]) for the
case of transit times that vary based on the rate of flow entering an arc. This type of
flow-dependent transit times is referred to as inflow-dependent transit times. The basic
idea for the approximation is to replace a single arc with inflow-dependent transit times
with a structure that permits multiple ways between start and end of the arc, where
each way has a limited capacity and increasing transit times. The resulting network is
called a bow graph and its time expansion a fan graph. The first flow units can then use
the fastest way but after the capacity of the fastest way is reached, the second-fastest
way needs to be used, and so on. For a more detailed explanation and analysis of this
technique we refer to [72]. A small sketch of a bow graph and its fan graph is depicted
in Figure 4.3

Cyclically expanded networks. For applications that deal with problems that show a
periodic structure, e.g., the optimization of traffic signals, it can be useful to a employ

75

4 Time Expansion

a time-expanded network that is periodic as well. This means that copies of arcs that
would normally not be realized in the time expansion due to leaving the time horizon,
do now exist to generate the periodicity. Thus, an arc a = (v,w) with a transit time of
2 would now get a copy ar—1 = (vr—1,w;) if T is our time horizon. The resulting time-
expanded network is called a cyclically expanded network or a pattern expanded network.
Figure shows a sketch of such a network. For more details on this technique and
setting, we refer to Kohler and Strehler [73], [74] or Harks, Konig, Matuschke, Richter
and Schulz [59]. Another approach to make use of periodicity has been proposed by Bast
and Storandt [9], who use frequency data compression, a technique that compresses the
periodic structures in a time-expanded graph.

Figure 4.3: A bow graph G’ and its fan graph G”, and a sketch of a cyclically expanded
network G.

4.1.4 Discussion

By Theorem and we know that we can solve static network flow problems in
a time-expanded network instead of solving flow over time problems in the original
network. Combined with the possibility for extensions that we have sketched in the last
section, this makes time expansion a powerful technique for these problems — they allow
us to use all algorithms and techniques for static problems (e. g., residual networks) and
offer easy extensibility to accomodate side-constraints.

However, the major disadvantage of time expansion is that the network size increases
linearly in the time horizon. If the time horizon is not polynomially bounded in the

76

4.2 Iterative Time Expansion

size of the network, which we cannot assume in general, time expansion will cause a
superpolynomial blow-up in network size.

Still, due to their powerful modelling capabilities and easy applicability, time-expanded
networks find widely spread use in applications. Recent examples include data transfer
optimization [I07], evacuation management [26, 27], public transportation routing [8, 9],
tour planning [60], traffic and traffic signal optimization [I5] [73| [74], train timetabling
[29], and water supply management [93].

Thus, these applications have to deal with potentially very large networks. This can
be done in several ways. The most straight-forward one is by usage of vast amounts
of computation power. More sophisticated are techniques that either generate only the
actually used parts of a time-expanded network, or which do not generate the time-
expanded network explicitly at all, i.e., by data structures that store the flow rate of an
arc at every point in time. Depending on the flow rate functions for the arcs, this can be
much more compact than an actual time-expanded network. However, we have usually
no guarantee that the flow rate functions behave nicely or that only small parts of the
time-expanded network need to be generated. Neither can we assume that we have an
infinite amount of computation power or that the instances are small enough. Thus, the
main algorithmic problem is to reduce the network size somehow — a problem we will
deal with in Chapter

4.2 lterative Time Expansion

We will now discuss a modification of time expansion that is designed to compute 2-
value-approximative earliest arrival flows. This approach constructs the time-expanded
network gradually, time-step by time-step, and freezes the arriving flow at the sinks for
every layer that is not the current one. We will see in the proof of the next theorem,
that this construction is powerful enough to give us the desired 2-value-approximation
for earliest arrival flows. This result was first published in Grof}, Kappmeier, Schmidt
and Schmidt [50].

Theorem 4.5. Let (G,u,7,b,T) be an instance of the earliest arrival flow problem.
Then there exists a 2-value-approzimative earliest arrival flow for this instance in the
discrete time model.

Proof. We will prove this result constructively by describing an algorithm for this prob-
lem. The algorithm will iteratively compute static maximum flows in residual time-
expanded networks in which the time horizon increases by 1 in each iteration. To ensure
the 2-value-approximation guarantee, we remove some arcs from the network before
performing a maximum flow computation.

For this algorithm, we will use a slightly modified type of time-expanded network, that
transforms our problem into a problem with a single super-source o and single super-sink
w. For a given network (G, u,7,b,T) we define our time-expanded network G* by

V(GT) :={vg | veV(G),0€{0,....,T—1}}U{s* | s€ S, US_}U{o,w},

7

4 Time Expansion

and

AGT) :={ap = (v, wp1r,) | a = (v,w) € AG),0 € {0,...,T —1}}
U{(0,8") | s€S:}U{(s"s9) | s€5+,0€{0,...,T—1}}
U{(t*w) | teS_YU{(te,t") | t€S_,0€{0,..., T —1}}.

The capacities u’” are defined for all a € A(GT) by

Ug @ = ag,

JT b a=(o,s),
“ —b a=(t",w),
oo else.

The supplies and demands b’ are given by b, := By and b, := —b,. Figure shows
such a time-expanded network.

_ 1
7=0

—>0

S =0 r=1_ L

® >@ >0

r=2 B

—0

Figure 4.4: A graph G and its time expansion G* as defined above.

Since we are only considering single commodity earliest arrival flows, we omit the
storage at intermediate nodes here. Adding it would be no problem for the construction,
but it would get slightly more convoluted. The storage at sources and sinks is realized
by the arcs of the form (s*,sj) and (t;,t*). These arcs are also the arcs that we will
delete, later on. The algorithm is as follows.

1. Let f =0 be the zero-flow in G' and set 6 := 0.

2. We define a subgraph 6%1 of the residual time-expanded network G4~ by remov-

0+1
f@
ing the arcs (t*,t¢) for all points in time £ =0,...,0 and all sinks t € S_.

. . . H0+1
3. Compute a static maximum o-w-flow z? in G 0 -

4. Add z? to our hitherto existing flow f?, yielding a new flow f0+1 .= f¢ 4 29,

78

4.2 Iterative Time Expansion

r=0_0 50 Gl 9 t3
— === >@----->0
-1 h N
\}S* \
* ~~ t* t*
t ' 1 ~_ 2 3
S =0 T=1_2 N
o >® >® ¢
3 -1 g w
u=1
r=9 13 4..
—

®
o

Figure 4.5: A graph G and its time expansion G' with a maximum flow 2° marked by the
dashed arcs. Below that the modified residual time-expanded network éio.
Notice the missing (¢, t(l)) arc, which would complete the dotted o-w-path.

5. If not all supplies and demands have been fulfilled by f?*!, set # := 6 + 1 and go
back to Step 2, otherwise stop and output f+1!.

Notice that the arcs that we remove to create 6%1 are reverse arcs and can only be
present if we sent flow through their normal counterparts before. If we would not delete
these arcs, we would iteratively compute maximum flows for the time horizons 1,2, and
SO on.

In order to show that this algorithm computes a 2-value-approximate earliest arrival
flow, we prove that f? is a 2-value-approximate earliest arrival flow with time horizon 6.
Let f

max

a new flow g := |f%.. — f%| in wa by

L (glax)a - (fe)a ac A(G0)7(renax)(l - (fe)a >0 r 0
o {(f")a (e T € AGY), (e — (f1)a <0 A EACR)

By definition of g, we have that |f? . | = |f?| + |g|. This flow is valid in the residual
‘,
since f? contains a maximum flow in @?971, every flow unit in g must make use of the

be a maximum flow in the time-expanded network with time horizon 6. Define

time-expanded network G%,, but not in éfce where some arcs were removed. In fact,

deleted arcs. The difference in the amount of flow between Gfm and é?ce is bounded by
the sum of the capacities of the deleted arcs, which were exclusively reverse arcs. Thus,
the sum of the capacities of the deleted arcs is at most | f?|.

79

4 Time Expansion

It follows that |g| < |f?| and therefore | 2. | < |f?| 4 |f?|, which proves that f? is in
fact a 2-value-approximate earliest arrival flow. O

The algorithm described in Theorem has only a pseudo-polynomial running time,
since it is based on time expansion. However, as we are only interested in an existence
result here, this is fine for our purposes. For a more efficient algorithm, see our FPTAS in

Chapter

Continuous time-model. Notice that the above algorithm only works in the discrete
time model. For the continuous model, we conclude that there always exists a (1+¢)-time
and 2-value-approximate earliest arrival flow due to the following lemma. This lemma
assumes that no flow arrives before time 1. If all transit times are positive, this can be
guaranteed by scaling transit times to make them integer. Otherwise, zero transit times
have to be handled separately along the lines discussed in [32]. However, applications
usually have positive transit times.

Lemma 4.6. Let f be a a-time-B-value-approzimate earliest arrival flow in the discrete
time model, with & as the length of a time step, in a network which has no flow arriving
before time 1. Then there exists a (1+¢)a-time-B-value-approzimation in the continuous
time model.

Proof. Notice that we can interpret f as a continuous flow over time that sends flow
at a constant rate during a time step. The value-guarantee is fulfilled up to time 1,
since no flow can arrive earlier. For all later points in time 6 that are multiples of
e, we know that |f(0)| > p(0/a)/B. Furthermore, we know that p is monotonically
increasing. This means that for a time point 6 € (ke, (k + 1)), k € N we know that
lf((k+1e)| > p((k+1)e/a)/B > p(8/a)/B. Thus, our time-approximation guarantee
gets worse by a constant value of €. Since no flow arrives before time 1, this gives a
factor of at most (1 +), proving our claim. O

Zero-transit times. We conclude this chapter by studying the algorithm from above in
the special case of zero-transit times. As we discussed earlier, in this case earliest arrival
flows exist always if we have either a single source or a single sink (Fleischer [34]), and for
multiple sources and sinks we have a characterization of all networks that always allow
for earliest arrival flows regardless of the capacities and supplies and demands (Schmidt
and Skutella [101]).

As it turns out, zero-transit times are beneficial to our 2-value-approximative algo-
rithm of Theorem [4.5] as well. In this setting, we can implement the algorithm by
computing static maximum flows and repeating them until a terminal runs out of sup-
ply or demand. As this can happen at most once per terminal, we have at most O(n)
maximum flow computations. The approach works in the discrete and in the continuous
time model. This leads to the following algorithm.

1. Define new balances b), := b, and set 6 := 1,

80

4.2 Iterative Time Expansion

2. Compute a static maximum o-w-flow ¢ respecting b’ and define

ex,0(v) == Z o Z 22,

a€d(v) a€dt(v)

3. Determine the maximal amount of times §Y we can send z? until a source or sink
runs empty,
max 07,

st. b +0% exp(w) > 0 forallvesS,,
b, 4+ 6% - ex,o(v) < 0 forallveS_.

4. Update the balances according to the flow z% sent:

b, == bl + % - ex,o(v) for all v € V(G),

5. If o/ # 0, set 6 := 0 + 1 and go to Step 2.

6. Output the flow over time f that sends z? starting at Z?

;i 87 for 6% time units.

The correctness of this algorithm follows analogously to Theorem The difference
is here that due to the zero transit times we always send a static maximum flow at any
point in time, which changes when terminals run out.

Lemma 4.7. For networks with zero transit times, a 2-value-approximate earliest arrival
flow can be computed with at most t static mazimum flow computations in the continuous
time model and at most t10g byee static maximum flow computations in the discrete time
model, with t := |S; U S_| being the number of terminals and bpq, = Maxyes, us_ |by|
being the highest supply or demand.

Proof. The algorithm performs one static maximum flow calculation per step. The choice
of z guarantees that at least one source or sink runs empty in every iteration, ensuring
that ' = 0 after ¢ iterations. Note that in the discrete time model, we have to choose
an integer x;, so we get |x; | compared to the continuous case. This means that we have
sent more than half of supply or demand of a terminal since otherwise, we could have
send f; at least one more time. This leads to at most log b4, iterations per terminal,
since our capacities and balances are integral. O

81

5 Time Condensation

In the last chapter, we studied time expansion. While being a very powerful technique,
time expansion has the drawback of potentially causing exponential blow-ups in the
network size. This is due to the fact that we copy the original network for every discrete
time step until the time horizon. Thus, if we want an efficient algorithm that uses some
form of time expansion, it is necessary to apply some form of rounding to the time horizon
and the transit times in order to contain the blow-up. This rounding is referred to as
time condensation in the setting of time-expanded networks. Since rounding introduces
an error, we have to find the correct balance between the accuracy of the solution and
the size of the blow-up.

We begin by giving an introduction into time condensation in a form that is ap-
plicable to generalized (multi-commodity) flows with lossy gains. This particular case
was first published in Grofi and Skutella [51], and builds very closely on the previ-
ous work by Fleischer and Skutella [32] who described flow condensation for minimum
cost multi-commodity flows over time with conservative costs. After that, we discuss
a special form of time condensation that is useful for earliest arrival flow problems to
construct an FPTAS that computes the best possible approximations for earliest arrival
flows in arbitrary networks. This result was published in Grof}, Kappmeier, Schmidt
and Schmidt [50]. We conclude the chapter by introducing sequence condensation, a
more powerful generalization of time condensation which was developed by Grofl and
Skutella [52].

5.1 Time Condensation

The main idea behind time condensation is the following. If the time horizon is poly-
nomially bounded in the size of the network, we can use time expansion and experience
only a polynomial blow-up in network size, which would be fine for our purposes. This
rises the question whether we might be able to simply scale down time horizons that are
too large.

In some settings, this is surely possible. Consider a network where all transit times
and the time horizon are whole minutes, but everything is specified in seconds. Thus,
all transit times and the time horizon are multiples of 60. In this case, we could change
the time unit from seconds to minutes, which is equivalent to dividing everything by
60. This seems like an insignificant change, but the time expansion of the network with
times in minutes is a factor of 60 smaller than the time expansion of the network with
times in seconds. The general concept behind this idea are condensed time-expanded
networks or just time-condensed networks for short. We will now define time-condensed
networks. When doing so, we have to take care to adjust capacities along with transit

83

5 Time Condensation

times, when we scale them. This is because a capacity is a bound on the maximal rate
into an arc at a given time. Thus, a rate of 2 per second would be scaled to 120 per
minute in our previous example.

Definition 5.1 (Condensed Time-Expanded Networks). Let N = (G,u,c,7,7v,b,T)
be a network. In order to define the condensed time-expanded network NT/A =
(GT /A o b)) of N for a A > 0, we begin by defining scaled transit times and
a scaled time horizon:

7= [1,/A] foralla € A(G), T :=[T/A].

With these scaled transit times and time horizon, we define the actual condensed time-
expanded network:

V(GT/A) ={vy | veV(G),0=0,1,...,T -1},

AGT/A) == {ag = (vo, wp4r) | a= (v,w) € A(G),0=0,...,T — 7, — 1}
U{avg = (vg,v941) | vEV(G),0=0,..., T —2}.

Capacities for the condensed time-expanded network are adjusted to take the scaling of
time into account:

Aug =

ul = fa =10 for all a € A(GT/A).
o0 a = (vg, vg+1)

Gains, costs, as well as supplies and demands are handled like in normal time-expanded

networks:

N = Ta A= 40 , = Ca @ =d0 for all a € A(GT/A),
1 a=(vg,vp4+1) 0 a=(vg,v9+1)
b 0=0,b >0

(b’)ig =0 =T —1,bi <0 for allvg € V(GT/A).

0 else

Notice that we did not assume that the transit times and the time horizon are multiples
of A in the above definition. Also, we included storage arcs in the above definition, but
these arcs can easily be removed if this is not desired. We will now begin our analysis
with the case that they are multiples, and then generalize to arbitrary transit times and
time horizons.

Analogously to normal time-expanded networks, there is an equivalence between static
flows in the A-condensed time-expanded network and generalized flows over time in the
original network.

Lemma 5.2. If T and 14 are multiples of A for all a € A(G), then every generalized
multi-commodity flow over time f in a network N that is completes within the time
horizon T corresponds to a static generalized multi-commodity flow x in the A-condensed
time-expanded network NT /A and vice versa. The corresponding flows send the same
amount of flow and incur the same costs.

84

5.1 Time Condensation

Proof. Let f be an arbitrary generalized flow over time in G. We define a static gener-
alized flow x by accumulating the flow values f,(f) during a time interval between two
multiples of A:

] o+1Aa
Ty = / fo(€)d¢ forallae A(G),i€e K,0=0,..., T — 71, — 1.
0A

The flow values of the holdover arcs are chosen such that flow conservation is guaranteed.
We give a definition for flow values of holdover arcs at intermediate nodes, the flow values
for holdover arcs at sources and sinks are defined analogously:

(0+1) A4 (9+1)A ,
I Z / i) de— 3 / dc
)

acd a€5+ (v

foralli € K,0 =0,...,7"—2 and all nodes v € V(G) with b/, = 0. Capacity constraints
are obeyed by x, since

Z p /(0+1)A Z Fle) de < / (0+1)A o dé - Au,

€K ieK

foralli € K,a € A(G),0 =0,...,T" — 1. For holdover arcs, the capacities are infinite
and cannot be violated. Since the total amount of flow through an arc does not change,
neither does the flow value or the cost.

On the other hand we can construct a generalized flow over time f in G from a static
generalized flow = in GT'/A:

. x
£i0) = % forall i € K,a € A(G),6 € [0,T).

Since x4, < Au, by definition, we have that fi(6) < u, foralli € K,a € A(G),0 € [0,T).

Because z satisfies flow conservation, so does f as it is derived by sending a scaled x

over a time interval. The total amount of flow send through an arc is again not changed,

so that the total amount of flow and its cost remains the same. O

If only the transit times are multiples of A but the time horizon is not, we can get a
similar although slightly weaker result.

Corollary 5.3. If 7, are multiples of A for all a € A(G), then every generalized multi-
commodity flow over time f in a network G that completes within a time horizon T
corresponds to a static generalized multi-commodity flow x in the A-condensed time-
ezpanded network GT /A and every static generalized multi-commodity flow in GT /A
corresponds to a generalized multi-commodity flow over time that is completed within the
time horizon T+ A. The corresponding flows send the same amount of flow at the same
cost.

85

5 Time Condensation

5.1.1 Time Condensation with Arbitrary Transit Times

So far, we have a time condensation that works only with transit times that are a multiple
of some A > 0. Of course, all transit times are multiples of 1, but choosing A = 1 does
not decrease the size of the time expansion. Thus, we need to be able to find a A that
is sufficiently large in order to reduce the size of the blow-up. In other words, we must
make arbitrary transit times multiples of a A that is large enough for our purposes. In
principle, we can pick a A and round all transit times up to the next multiple of A. This
will introduce a rounding error, which causes two major problems: an increase in path
lengths, which can cause viable paths to become longer than the time horizon, and a
distortion of path lengths, where path lengths change disproportionately to each other.

Problem: Increased path lengths. We have already seen in the case of transit times
that are multiples of A and a time horizon which is not that a flow in the condensed
time-expanded network corresponds to a flow over time that completes in time T+ A,
and not in T'. This effect is exacerbated if the transit times are not multiples A as well,
and are rounded up to the next multiple instead. Consider the example in Figure [5.1
Here we have a path of arcs with transit time 1 and a time horizon of T. We round up
the transit times, we get an increase in path length that is A — 1 per arc. Thus, the
length of the path increases by a factor of almost A.

T=1 T=1 T=1
® >0 >® -+ OH—>0
7 =A T =A T =A

Figure 5.1: The transit time of a path can greatly increase when switching from the
original transit times 7 to transit times 7’ rounded up to the next multiple
of A.

Thus, if we do not want to lose previously feasible paths after the rounding, we have
to consider an increased time horizon. The more we have to increase the time horizon,
the worse our time-approximation gets. Thus, our first problem is to bound the increase
of path lengths.

Solution: Bounding the increase in path length. For arcs a € A(G) we define rounded
transit times by

7= {%—‘ A for all a € A(G).

These rounded transit times are by construction all multiples of A, therefore we have
To <70 <Te+A forall a € A(G).

Let S = (a1,...,qa5) be an arc sequence in G. Since the rounding error per individual
arc is bounded by A, we get the following bound for the rounding error of the length of
S:

s <16 <715+ AlS] .

86

5.1 Time Condensation

Thus, if S is a simple arc sequence — a path — then the rounding error is bounded by An.
We restrict our application of time condensation to problems that have always optimal
solutions that send flow only along simple sequences. Examples for such problems are
(maximum) multi-commodity flow problems with storage, minimum cost flows without
negative cycles and generalized flows over time with lossy gains. For all of these problems,
cycles do not benefit the objective, and can be replaced by waiting. For other problems,
we have to use sequence condensation (Chapter [5.3).
How should be choose A for such problems? We would like two properties:

e the path lengths should increase at most by a factor of 14 O(e) for € — 0:

T+ An < (1+0(¢e))T,

e and the number of time layers after scaling by A should be polynomial in the size
of the original network and £!:

% € O(poly(n,eil)).

We will now choose A := 2T /n. This fulfills both properties, as the maximal rounding

error for a path is €27 and the number of time layers is ne 2.

Problem: Contorted path lengths. Since we round transit times of individual arcs,
it can happen that paths with different lengths with regard to the non-rounded transit
times 7 can have the same length with regard to the rounded transit times 7/. Consider
the example in Figure With the unscaled transit times, we can send one unit of flow
into the top and the bottom path during the time interval [0, 1) and they arrive at arc a
one after another — at time 3 and 4, respectively. However, with the scaled transit times
for A = 2 they arrive both at the same time, which can cause a violation of capacity
constraints.

Figure 5.2: Paths with different transit times have the same transit times after scaling
and rounding the transit times.

This can happen in the other direction as well — paths with the same lengths with
regard to the non-rounded transit times 7 can have the different lengths with regard to
the rounded transit times 7/. Consider Figure For A = 3, we can send flow during
the time interval [0,1) into the top and bottom path without causing conflicts, since
the rounded transit times are 6 for the top and 3 for the bottom path. In the original
network, both paths have a transit time of 3, however.

87

5 Time Condensation

T=2,7=3

T=3,7=3

Figure 5.3: Paths with same transit times have different transit times after scaling and
rounding the transit times.

The resulting capacity violations are problematic for two reasons. First, an optimal
solution in the original network should somehow translate to a solution of the same
value in the time-condensed network. Second, we want to be able to translate our
solutions from the time-expanded network back to the original network. The second
part is relatively easy, if we allow waiting in nodes. Then we can simulate the longer
rounded transit times by waiting in a node, if necessary. However, this still leaves us to
cope with the first problem.

Solution, Part I: Smoothed flows. Our main problem here is that flow units that
arrived one after another may now be delayed so that they collide with each other. In
order to lessen the impact of a collision, we now define a smoothed flow over time fq,
out of a given flow over time f. We write f as a sum of flows along a family of paths P.
Let fp(0) be the rate at which flow is sent into a path P € P at time 6. The we define
a path-based, smoothed version f*" of f by:

, 1 9 .
i) = / fo(€) e forallic K,,PeP,0€0,(1+e)T)
€T Jo_er

Figure illustrates what this smoothing does with a unit of flow — it averages the flow
rate over a time window of length €7, thereby smearing the flow over a longer period
of time. This prevents any sharp drops in flow rate at the beginning and the end of
the flow unit. This has the side effect of increasing the time horizon that fs,;, needs to
complete by the length of the time window, which is 7" in our case. Notice that the
averaging cannot violate capacity constraints, and the total amount of flow through an
arc also remains constant.

Flow Rate Flow Rate

1 1 /\
f Tlme f t T Tlme
eT 2eT 3eT eT 2eT 3eT

Figure 5.4: A flow rate function for an arc, and its smoothed counterpart.

88

5.1 Time Condensation

Now, let us analyze what happens if we take a flow over time f that uses the normal
transit times 7, smooth it, resulting into f*™ and then try to send f*™ using the rounded
transit times 7’. Preferably, we would be able to show that f5™ violates capacities only
slightly when using the rounded transit times 7/. In order to do so, we must first
determine the flow rate into an arc a € A at a point in time §. We do so by summing
over all paths with contain our arc. For each such path, flow entering a path at time
0 — 7'1/;.[3] will enter a at 6, which is what we need (recall that 7'}_,[o] refers to the time
a flow unit needs to traverse P from its start to node v with regard to the transit times
7'). Finally, we need to take gain factors on the way to the start node a = (v, w), which
are denoted by vp[_,, for a path P. Then we can compute the flow rate of a flow over
time f into an arc a for a commodity ¢ at time 6:

JH0) = Z VP[0 [P (0 — Tp[0]) -

PeP:acP

Notice that a flow over time with storage cannot be modelled by such path flows directly,
because a path contains no possibility to specify time spend waiting in nodes. This can
be fixed by adding a delay vector 6 = (d1,...,6|p|) to a path P, that specifies the waiting
time at every node in P, resulting in a path with delays P°. For a path with delays P?,
P =(a1,...,a4,a,...,aP|), the time needed to traverse from its beginning to a node v
is
J
Tpiie) 1= Y, (Tay +0i) -

i=1

In order to check how much f*" violates the capacities if we send it using the rounded
transit times 7/, we compute the total flow rate of f** into a at a point in time ffor this
scenario. Since we are interested in the total flow rate, we sum over the flow rates of all
commodities:

PO =" Y s (O = Ths) -

i€K PScP:acP

If we send flow according to fs, into the network with rounded transit times 7/, we
might violate capacity constraints. Using the definition of f* yields:

5m(9) = Z Z YPs[—v) f;glﬂ(a - T1,35[—>v])

1€EK PScP:acP

IR
"3 X e o €)

€K PScP:acP

1 9_7—;35[%'0] i
Y Y [Fn(€) ds
0—71s €

€K PScP:acP —eT

(=]

Now we use the that the length of a path with normal and rounded transit times differs

89

5 Time Condensation

by at most An:

0—r1' 51 e)
EODND DEEIRY B AP

0—7' —eT

€K PSeP:aeP P[]
1 eiTP‘S[%v] .
<Y Y i [Fon(€) de
i€K PSeP:acP 0=Tps(_yy —An—eT

0 .
_ 1 Yo D psnfbe (€ — Tpopny) dE

el 0—An—eT 1€EK PScP:acP
1 0
== fal8) de
el 0—An—eT ()
We know that the flow rate of f into a is bounded by the capacity of a:
I 1 An
— (&) d§¢ < —(A Thug =14+ — | uq -
o[des aneni = (1457)

For our choice of A = ‘EZTT this yields:

An eTy
(1+J)Ua:<1+ ZT Ua:(lJr&)ua.

Thus, f5 violates the capacities by at most a factor of (1 + ¢) if 5™ is send with the
rounded transit times.

Solution, Part II: Scaled flows. Having the smoothed flow which violates capacities by
at most a factor of (1+¢) when sent with rounded transit times is good, but not perfect.
In order to guarantee that capacity constraints are upheld, we scale the smoothed flow
by a factor of 1/(1 4 ¢). This guarantees that the capacity constraints are satisfied, but
reduces the flow value by the same amount:

1

sc .
U 1+¢

me .

Solution, Part Ill: Amplified flows. Now we have a scaled smoothed flow f*¢ that
does not violate the capacity constraints when sent with the rounded transit times, but
it does not yet send enough flow. However, we can remedy this by amplifying — we do
everything (1 4 ¢€)-times as long to send (1 + ¢) more flow. We formalize this technique
in the next lemma.

Lemma 5.4. Let f be a generalized multi-commodity flow over time that fulfills some
supplies and demands b in a time horizon of T with a cost at most C. Then for any
A > 1, there exists a generalized multi-commodity flow over time f' that fulfills supplies
and demands Ab in a time horizon of NI with a cost of at most \C.

90

5.1 Time Condensation

Proof. Let N = (G, u,T,7v,c,b,T) be the instance in which f is sent. Then f corresponds
to a static flow z in the time-expanded network N7 = (GT,u”, 7T, c",bT). Notice that
we can rescale time to make all transit times and the time horizon integer, if necessary.
Now consider an instance AN = (G, u, AT,7, ¢, b, \T') where all transit times and the
time horizon are multiplied by A. Then, the A-time-condensed network AN/ of AN is
identical to the time-expanded network N7 but all capacities are multiplied by .
Therefore \z is a feasible flow in AN/A which fulfills supplies and demands Ab in a
time horizon of AT with a cost of at most AC. As we have seen in Lemma Ax
corresponds to a flow over time with a time horizon of XT" in AN, which can be seen
as a relaxation of N since it has increased times. These increased transit times can be
simulated by flow in N by waiting in nodes, which concludes our proof. O

Solution, Part IV: Putting the parts together. Let us summarize what we have done
so far. We rounded transit times to be able to use time condensation, but were met with
the problems of increased and contorted path lengths.

e We bounded the increases in path length due to rounding by the choice of A
and restricting us to problems with optimal simple paths solutions. This yielded
An = €T as an upper bound for the increase in path length.

e We introduced smoothed flows as a way to make a flow more resistant to being
sent with the rounded transit times instead of normal transit times. The smoothed
flow violates the capacities by a factor of at most (1 + ¢), at the cost of increasing
the time horizon by an additional 7.

e In order to fix the capacity violation of the smoothed flow, we scaled it by a factor
of 1/(1 4+ ¢). The resulting flow does not violate the capacities when sent with
the rounded instead of normal transit times, but the scaling costs us a factor of
1/(1+¢) in flow sent.

e Finally, we showed the we can increase the time horizon by a factor of (1 +¢) to
send a factor of (1 4 ¢) more flow.

Together, we can use these techniques to transform a solution in the original network
into a similar solution with rounded transit times, and the other way round, although we
have not talked about this yet. In the next section, we will formalize these claims and
use them to design an FPTAS for the generalized multi-commodity flow problem with
lossy gains.

5.1.2 An FPTAS for Generalized Maximum Flows over Time

Here, we are considering the generalized maximum (multi-commodity) flow over time
problem with lossy gains, i.e., v, < 1 for all arcs a. This means that flow is never gained
but only lost when travelling through the network. This restriction guarantees that
cycles are not necessary for optimal solutions, allowing us to apply time condensation.
Notice that networks without flow-generating cycles can be turned into networks with

91

5 Time Condensation

lossy gains by scaling techniques, see e.g., Wayne [I17]. Thus, the results discussed in
this section hold for all networks without flow-generating cycles. A consequence of the
absence of flow-generating cycles is that in such networks with lossy gains, only paths
increase the flow value.

We will study the multi-commodity variant of this problem here, as it can be solved
by the same technique as the single commodity problem. In the following, we will speak
of supplies and demands b for the problem. Usually, we these supplies and demands are
infinite for the generalized maximum (multi-commodity) flow over time problem, but
the argumentation holds for finite supplies and demands as well. We could also add
costs and a cost bound to this problem, as we have seen that smoothing, scaling and
amplifying do not affect costs too much.

We will now describe an FPTAS that takes an instance of the generalized maximum
multi-commodity flow over time problem N = (G,u,7,7,b,T) and a precision ¢ > 0
as its input and computes a generalized multi-commodity flow over time f with a time
horizon of (14 O(e))T" that fulfills as much supplies and demands from b as possible. It
works as follows:

1. Set the time condensation factor A := ¢>T/n, and set an extended time horizon
of T" := [(1 4+ €*)T/A| A to use with the time condensation.

2. Create the A-time-condensed network N7’ /A and solve the corresponding static
generalized multi-commodity maximum flow problem in it using a linear program
formulation. Let x be an optimal solution of this linear program formulation.

3. Transform z, which is a static flow in N7’ /A, into a flow over time f in N with
time horizon (1 + ¢)7” that has at least as much flow value than |z|.

If storage at intermediate nodes is not forbidden, it is sufficient to compute a flow x
fulfilling supplies and demands b in Step 2, as we can simulate the longer rounded
transit times by waiting in the original network. This simulation replaces the work for
the transformation of x in Step 3, where we lose a factor of 1/(1 +¢) of flow sent during
the transformation. In order to show the correctness of the FPTAS, we need to prove two
claims.

1. Let f be a generalized multi-commodity flow over time in N that fulfills supplies
and demands b within a time horizon of T. Then there exists a static generalized
multi-commodity flow 2 in N7’ /A that fulfills supplies and demands (1 +)b for
T':=[(1+¢)*T/A] A and A := *T/n.

2. Let x be static generalized multi-commodity flow in the A-condensed time-exp-
anded network N7’ /A that fulfills supplies and demands (1 + £)b. Then we can
construct a generalized multi-commodity flow f in N that fulfills supplies and
demands b within a time horizon of (1 4 €)7".

The first claim guarantees us for every flow over time in N the existence of a static flow
in the time-condensed network N7’ /A that has a time horizon of T’ and sends (1 + &)

92

5.1 Time Condensation

more flow. The second claim guarantees us that we can transform a flow from the time-
condensed network N7’ /A back into a flow over time in the original network N with
a loss of a factor of at most 1/(1 + £). Together, they guarantee us that we will be
able to find a solution at least as good as the optimal solution within a time horizon of
(14+0(e)T.

We begin with proving the first claim, for which we have laid the groundwork by
introducing the techniques of smoothing, scaling and amplifying flows over time.

Lemma 5.5. Let f be a generalized multi-commodity flow over time in N that fulfills
supplies and demands b within a time horizon of T'. Then there exists a static generalized
multi-commodity flow z in NT' /A that fulfills supplies and demands (1+ €)b for T' :=
[(1+e)’T/A] A and A :=£*T/n.

Proof. According to Lemma[5.2]it is sufficient to show that there exists a flow over time
f' in the network N with the rounded transit times 7’ satisfying supplies and demands
(1 4+ £)b within a time horizon of T”. This is because the rounded transit times are
multiples of A, and 7" is a multiple of A as well.

We know due to Lemma [5.4] that we can amplify the flow over time f to fulfill the
supplies and demands (14 ¢)2b within a time horizon of (1+¢)?T. We call the amplified
flow over time f*"?. Now we apply smoothing as discussed above to f™P, resulting in
a flow over time f*™*™P which completes within a time horizon of (1 +)27 + T and
violates capacities by a factor of at most (1 + ¢) if send with the transit times 7/ in N.
femtamp also fulfills the supplies and demands (1 +)2b.

Thus, scaling f5™T2" by a factor of 1/(1 + ¢) yields a flow over time fsctsm+amp
that does not violate capacities when sent in N with the rounded transit times 7’.
fetsmtamp requires a time horizon of (1 + €)?T + €T + 2T, with the additional 2T
stemming from the fact that path lengths can increase by at most €27 when using the
rounded transit times instead of the normal ones. Due to the scaling, f5¢Tsm+amp fylfills
the supplies and demands (1 + €)b as we required. Our proof is completed by the fact
that (1+€)’T+ T +eT < (1+ T < T'. O

For the first claim, we had to send a flow computed using normal transit times with
rounded transit times. For the second claim, we have to do the reverse: take a flow
computed using rounded transit times and send it with normal transit times instead. If
we are allowed to let flow wait, this is easy — we simulate the longer rounded transit
times by waiting in nodes. But, even if we are not allowed to use waiting for this, we
can apply smoothing and scaling again.

Lemma 5.6. Let x be a static generalized multi-commodity flow in the A-condensed
time-expanded network NT' /A that fulfills supplies and demands (1 +)b. Then we can
construct a generalized multi-commodity flow f in N that fulfills supplies and demands
b within a time horizon of (1 + €)T".

Proof. Given such a static generalized multi-commodity flow z in N7’ /A, we can obtain
a flow over time f from it in the network N with rounded transit times 7" and a time
horizon of T’. We can try to send f with the original transit times, but we would run

93

5 Time Condensation

into the previously discussed problems. Luckily, the techniques of smoothing and scaling
flow can be applied here as well to solve our problem.

Consider a decomposition of f into flows over time on paths with delays P? € P with
flow values fps. We define a smoothed and scaled flow by

Lo
14+eeT” Jo_or

O Tps(§) ¢ forallie K, P°€P,0€0,(1+¢)T")

that completes in a time horizon of (1 4+ &)7”. Above we checked what happens if we
send a flow computed using normal transit times with rounded transit times instead.
Here, we need to do the reverse thing — f was computed using rounded transit times
and will be sent with the original transit times.

The actual proof to show that 3¢ does not violate capacities using transit times
T is relatively similar to what we saw above. Recall that path lengths can be up to £27”
shorter with regard to the normal transit times 7 instead of the rounded transit times
7/. The total flow rate into an arc a at time 6 is then:

L@ =37 Y i O = Tps)

i€K PoeP:acP

:1+EET/Z Z fYPa[_m}/

i€eK PScP:acP =1

P[]
0=Ths
= 1+55T’Z Z fypa[”“}/ /

— — i
i€K PSeP:acP 0=Tps 0T
1 1 9+€2T/

= — < .
1 +é eT”’ O—eT! fa(g) df = ta

0=Tps 1)

fps(€) d¢

—eT’

This proves our claim. O

Runtime of the FPTAS. The last part missing is to analyze the runtime of the
FPTAS and check that it is polynomial in the input size and e~!'. The A-condensed
time-expanded network has O(ne~?) time layers and its size is therefore polynomial in
the input size and e~!. Thus, we can solve the linear program formulation in Step 1
in polynomial time. In order to execute Step 3 in polynomial time as well, we need to
ensure that f has a polynomial-size encoding.

Lemma 5.7. A path-decomposition of the flow x computed in Step 2 into flows on j
paths in NT' /A can be transformed into a path-decomposition (fp)pep on j paths with
delays in N such that the time interval [0,T') can be partitioned into T'/A = O(ne~2)
subintervals where fp is constant.

Proof. Consider a path-decomposition of z into flow on paths P € P in N /A with
flow values 33’1'3, P € P,i € K. Such a path P will use storage at a source, then leave
the source and continue onwards to a sink. We can assume here that the path does not
contain a later copy of the source, since then we would have a cycle in N which could

94

5.2 Geometric Time Condensation

be replaced by storage in a source. Furthermore, we can assume that the path ends in
a sink, because ending in flow-absorbing cycle does not help with the objective.

Any path P € P induces therefore a path with delays P° in N with a flow rate
function f},; : [0,7") — R*,i € K that is 0 except for an interval [A¢, A(£+1)) for some
¢ €{0,...,T"/A — 1}, where it is 2% /A. Multiple paths in NT//A can correspond to
the same path in IV, possibly resulting in a flow function for a path P° that is piecewise
constant in an interval [A&, A(4+ 1)) for some & € {0,...,T"/A —1}. O

Therefore the f;?sm’i,i € K have at most O(ne~2) breakpoints as well and are

piecewise linear due to

prermigg) = -1 fhs(€) de

C 14eeT Jo_op

and can be computed efficiently. Lemma [5.5| guarantees us that for every solution in
the original graph, we can find a solution of equivalent value in time-condensed graph,
which has an implicit time horizon that is longer by a factor of (1+¢)3 than the original
time horizon. Solutions in the time-condensed graph on the other hand have a solution
of equivalent value in the original graph due to Lemma[5.6]that again has a time horizon
which is larger by a factor of (1+¢). Together, this gives an increase of the time horizon
by a factor of (14 ¢)*. However, for € — 0 we can find for any ¢/ > 0 an € > 0 such that
(14 ¢)* <1+ ¢, This yields the following theorem.

Theorem 5.8. Given an instance of the generalized mazimum multi-commodity flow
over time problem N = (G,u,7,7,b,T) and a precision € > 0, we can compute a gener-
alized multi-commodity flow over time f with a time horizon of (1 + €)T that fulfills at
least as much supplies and demands from b as possible within a time horizon of T'.

Problems with time condensation and arbitrary gains. Unfortunately, it is not clear
whether Theorem can be generalized to the case of arbitrary gain factors on the
arcs. The main problem is that the assumption of simple flow paths no longer holds in
the general setting. Taking a closer look at the analysis in the proof of Theorem [5.8] it
suffices to bound the number of times a flow particle visits a node by a polynomial in
the input size. But even this relaxed condition does in general not hold for arbitrary
gain factors, as can be seen from the example depicted in Figure We assume unit
transit times and gains, unless specified otherwise. Then in a generalized maximum flow
over time each flow particle has to use the cycle as many times as possible to generate
as much flow as possible behind the bottleneck edge leaving s. Note, however, that this
cycle cannot be used to generate flow from scratch as its transit time is not zero —i.e.,
we can amplify flow by spending time in the cycle, but we cannot generate flow from
scratch.

5.2 Geometric Time Condensation

In Chapter [4.2)we described an algorithm that computes a 2-value-approximative earliest
arrival flow in arbitrary networks. We also know that there are instances where no 5 < 2-

95

5 Time Condensation

~
L J
t

Figure 5.5: An instance where flow visits nodes multiple times. The exact number de-
pends on the time horizon and the transit time of the cycle and can be
pseudo-polynomial.

value-approximations exist (Grof, Kappmeier, Schmidt and Schmidt [50]). However, for
a specific instance, better value-approximations might exist. The same is true for time
approximations.

In this section, we will study the use of time expansion and condensation to approxi-
mate the best possible approximation factor. The results presented here have first been
published in [50]. Our goal here is the following: if an instance permits a [-value-
approximative earliest arrival flow, we want to be able to compute it, or an approxi-
mation of it. An approximation in this case would for example be a (1 + ¢)-time- and
(1 4 &)p-value-approximative earliest arrival flow, for some € > 0. Similarly, we want to
compute an a-time- or at least (1 + £)a-time-approximative earliest arrival flow, if an
instance permits a a-time-approximative earliest arrival flow.

Theorem 5.9. An a-time-approximate earliest arrival flow or a B-value-approrimate
earliest arrival flow can be computed using an LP of pseudo-polynomial size, where «
and B are the best time- and value-approximations possible for the given instance. This
assumes the discrete time model.

Proof. We can use the following LP to compute the best possible value-approximation.
G is the graph we are computing the value-approximate earliest arrival flow in, T is the
time horizon and T :={0,...,T — 1} is the set of all discrete time steps up to the time
horizon.

max [,
0 0—7q4
st D> D Tag— », Y, Tae < max{0,b,} forallveV(G),0eT,
aest €=0 acé, &=0
0 0—7q4
Yoo D Tae— Y, >, Tae > min{0,b,} forallveV(G),0eT,
acéf €=0 acés, &=0
Tq,0 < U, for all a € A(G),0 € T,
0—7q4
YooY Tag > ['p(6) for all € T,
vEV(G):by<0 ges; §=0
Tq0 >0 for all a € A(G),0 € T.

In this LP, 5/ = 1/f is the inverse of the value-approximation guarantee /3, which we are
looking for. p(#), 6 € T is the value of the earliest arrival pattern at time 6. The solutions

96

5.2 Geometric Time Condensation

of this LP are by construction feasible flows that are 1/4’-value-approximations. Since
every feasible flow in the discrete time model can be transferred into a solution of this
LP, we obtain the best possible approximation factor by solving this LP.

Notice that in order to obtain a time-approximation, we can adjust the above LP by
replacing 5'p(0) by p(|8/a]) in the fourth type of inequalities and by replacing max 3’
by min « in the objective function. O

We cannot reduce the size of the above LP easily via time condensation, because
earliest arrival flows give guarantees about the flow values at all points in time. Other
flow problems usually ask for a flow that fulfills certain properties at a specific point in
time, namely the time horizon. The previously introduced time condensation was built
around the fact that we wanted to give a good time-approximation guarantee at the
time horizon T'. There, an error of 7" is just a factor of (1 +) more. However, at time
1, this error is a factor of €T more.

Therefore we need a time-condensed network that is more precise near time 0 and
less precise near time 7. Such a time-condensed network was introduced by Fleischer
and Skutella [32], and is referred to as geometrically condensed time-expanded network,
because the size of the time-intervals increases geometrically. For a directed graph G,
they define an L-time-expanded network N for a sorted list of times L = (0 = 6y <
61 <--- <6, =T) by creating r copies of the node set V(G). Let v, be the g-th copy of
a node v. Then arcs a = (v, w) are inserted into the node copies by adding a copy a, of
a between every v, and wy with 6,47, < 6, and ¢}, := min { q" | Og+ 70 < Oy } The
capacity of ag is ua, := uq(0g11 — 04). Essentially, the classic time-expanded network
is a special case of an L-time-condensed network with L = (0,1,...,7). The more
general L-time-condensed networks just omit some time layers and adjust the arcs and
their capacities correspondingly. Geometrically time-condensed networks are L-time-
condensed networks with

L:=(0,1,2,...,2p,
2p+1),2(p+2),...,2-2p,

27 (p+1),2 (p +2),...,2) .

Here, p := (2115_2] is chosen depending on the desired accuracy ¢ > 0, and £ :=
min {ﬂ’ | 2T < 25/p}. T is here the time horizon of an optimal flow over time. Notice

that the cardinality of L € O(ne 2logT) is polynomial in the input size and 7!
Fleischer and Skutella [32] managed to show several results for such L-time-expanded
networks, which essentially generalize time-condensation to L-time-expanded networks.
The next two lemmas are similar to Lemma and — they guarantee us for every
solution a similar solution in the L-time expansion, and that solutions in the L-time
expansion can be transferred back to the original network.

97

5 Time Condensation

Lemma 5.10 (Lemma 5.2 in [32]). Let L = (0 = 6y, ...,0,) with 04 — 0;—1 < 0441 — 0
for allq=1,...,7 —1. Then any static flow in N* corresponds to a flow over time in
N such that the amount of flow reaching t in N by time Oq11, ¢ = 0,...,7 — 1 is the
same as the amount of the flow reaching node t, in NE.

Lemma 5.11 (Lemma 5.3 in [32]). Let L = (0 =6y, ...,0,) with 0 — 0;—1 < 0441 — 0,
forallqg=1,...,7r —1. Let f be any flow over time that completes ny time 0, in the
network Nmodified such that all transit times are increased by A := 0, — 0,_1. Then
f induces a feasible static flow in N of the same value. Then any static flow in N*
corresponds to a flow over time in N such that the amount of flow reaching t in N by
time 0441, ¢ = 0,...,7 — 1 is the same as the amount of the flow reaching node t, in

NL.

Besides the problem that the relative error becomes larger the closer we get to zero,
another problem is that in time-expanded networks, the flow rate is averaged between
two time layers. This can introduce an error as large as the difference between two
time layers. If we assume that our transit times are integer, which we can guarantee
by scaling, we have path lengths of 0, 1, and so on. If we discretize time into steps of
length e the error by averaging is no problem for flow which arrives using paths of length
at least 1 because it takes then at most a factor of (1 +) longer. We can then either
assume that we have no zero-transit times, as they usually do not occur in evacuation
settings, or use techniques for zero-transit time earliest arrival flows to handle them in
a preprocessing step (see for example Hajek and Ogier [54]). A detailed discussion of
choosing a good time discretization can be found in Fleischer and Skutella [32, Lemma
5.1].

The combination of Theorem and geometrically condensed time-expanded net-
works yields the following theorem.

Theorem 5.12. For arbitrary € > 0 with 1/e integral, a (1 + O(e))a-time- and (1 +
e)-value-approzimate earliest arrival flow or a (1 + O(e))-time- and (1 + €)S-value-
approzimate earliest arrival flow can be computed in running time polynomial in the
input size and €=, where a/B are the best time/value-approzimations possible for the
given instance. This holds in the discrete and continuous time model.

Proof. We use the LP described in the proof of Theorem [5.9) and base it on a geomet-
rically condensed time-expanded network instead of a time-expanded network. We use
the same geometrically condensed time-expanded networks as described above (see also
[32) Section 5.3]) and assume a sufficiently fine discretization of time as we discussed
before.

This gives us a condensed time-expanded network N’ with time layers that are ge-
ometrically spread over [0,7"), with more layers near 0 and less layers near T. The
geometrical spread ensures that the resulting network has the necessary precision for
an FPTAS, but is still polynomial in the input size and e~'. The resulting network has
the following form, with 6y, ..., 6, denoting the time points at which the time layers are

98

5.3 Sequence Condensation

placed.

max (3,

st > xe— Y w, < max{0,b,} forallve V(NL),
acdy a€dy,
o za— Y x4 > min{0,b,} forallve V(NE),
acdy a€d,
Zaq, < ua(9i+1 — 91) for all a; € A(NL),
|z(0)| > B'p(0) for all 6 € L,
Zq >0 for all a € A(NT).

The |z(6)| in the LP refers to the amount of flow of x that has arrived at the sinks until
time #. By construction, an optimal solution (8’,z) to this LP contains a static flow
z in the L-time-expanded network that obeys supplies and demands, flow conservation
and capacities. Furthermore, it offers the best value-approximation 8 = 1/ possible at
all time points 6 € L.

The approximation guarantee follows then by the same argumentation as in [32] — we
can use Lemma and similar to Lemma and in order to guarantee the
solutions carry over between the original and L-time-expanded network. This yields the
same 1 + O(g)-time-approximation guarantee as in [32]. Notice that we can exchange
the |z(0)] > p'p(f), 8 € L counstraint by |z(af)| > p(#), 8 € L in order to obtain a
time-approximation.]

5.3 Sequence Condensation

The time condensation techniques we studied so far have the drawback that they can only
be applied to problems having optimal solutions which use only simple paths. Prominent
classes of problems that do not fall into this category include multi-commodity flows
over time without intermediate storage, minimum cost flows over time, and generalized
maximum flows over time.

In this chapter, we present a more elaborate condensation technique for time-expanded
networks whose analysis no longer requires that flow is being sent along simple paths
only. Normal time condensation uses the number of arcs on a path to bound the rounding
error, which does not yield good bounds for non-simple paths due to the potentially high
number of arcs in them. To this end, we will introduce a new type of LP formulation for
flow over time problems that is somewhere in between an arc-based and a path-based
formulation. We call this a sequence-based formulation, and the technique of applying
time condensation to it sequence condensation. The sequence LP has a dual which can be
approximately separated in polynomial time for most flow problems, or more precisely,
for flow problems that use standard flow conservation.

We start by studying the separation problem of the dual of the sequence LP from a
general point of view in Chapter — after all, if we cannot handle the separation
problem well enough, our LP formulation does not help us. It turns out that while the
separation problem is NP-hard, we describe an FPTAS for it, which is sufficient for our

99

5 Time Condensation

purposes. This FPTAS is based on dynamic programming in conjunction with Meggido’s
parametric search framework [77].

After that, we will describe sequence condensation using the example of the maximum
multi-commodity flow over time problem without intermediate storage in Chapter [5.3.2]
and show that it yields an FPTAS for this NP-hard problem. Finally, we discuss how
sequence condensation can be extended to minimum cost multi-commodity flow over
time problems in Chapter The results in this chapter have first been published in
Grof and Skutella [52].

5.3.1 The Dual Separation Problem

In this section, we define the dual separation problem, which we call the restricted
minimum cost s-t-sequence problem. This problem consists of finding an arc sequence
of minimum cost between two nodes whose length is restricted to lie in a given interval.
This length constraint implies that it can be necessary to incorporate cycles in an optimal
solution. We present an FPTAS for this NP-hard problem. In Chapter we see that
this problem can be used to separate the dual of sequence LPs, resulting in solutions to
the primal problems with approximated feasibility.

Definition 5.13. An instance of the restricted minimum cost s-t-sequence problem is
given by a directed graph G with costs ¢, > 0 and lengths £, > 0 on the arcs a € A(G),
two designated nodes s,t € V(G) and a threshold value A > £*, with {* := max,e 4(g) la-
The task is to find an s-t-sequence S of minimum cost cs :=) g #(a,S) - cq under the
constraint that A — 0* < lg < A.

This problem is NP-hard, similar to related resource-constrained shortest path prob-
lems (e.g., [58]). The FPTAS that we will develop for this problem approximates the
length constraint, i.e., it computes a solution at least as good as an optimal solution
but with a relaxed length constraint (1 —e)A — ¢* < {g < (14 ¢)A for a given € > 0.
We begin by classifying the arcs into two groups.

Definition 5.14. Given ¢ > 0, an arc a € A(G) is short if {, < €A/n, and long
otherwise. A sequence is short, if all of its arcs are short, and long otherwise.

It follows that a solution to the restricted minimum cost s-t-sequence problem can —
due to the length constraint — contain at most n/e long arcs. Since a long cycle needs
to contain at least one long arc, it follows that at most n?/e arcs of the solution can be
part of long cycles; the remaining arcs are part of an s-t-path or short cycles. Due to the
fact that a path does not contain duplicate nodes, we make the following observation.

Observation 5.15. Let S be a solution to the restricted minimum cost s-t-sequence
problem. Then S contains at most n +n?/e arcs that are not part of short cycles.

For our FPTAS, we would like to round the arc lengths without introducing too much
error. Sequences without short cycles are fine, because they have a nicely bounded
number of arcs. However, we cannot simply restrict ourselves to sequences without

100

5.3 Sequence Condensation

short cycles. Therefore, we now define a nice v-w-sequence S to be a v-w-sequence that
contains at most one short cycle, but is allowed to make several passes of this cycle. We
will see that we can handle such sequences efficiently while losing not too much accuracy.
Notice that we can ignore zero-length cycles, as these cycles do neither help us reach ¢
nor can they improve the objective value.

Lemma 5.16. For an s-t-sequence S with a path-cycle-decomposition, let C' be a short
cycle in the decomposition of S with maximal length-to-cost ratio % and let Lgport

ac

be the total length of all short cycles in the decomposition of S. (Zero-cost cycles are
assumed to have infinite ratio.) We define a corresponding nice sequence S’ with cycle C

by removing all short cycles and adding VSELEMJ copies of C. Then bg—eA < /lg—{lc <
lgr < lg and cgr < cg.

Proof. Let S* be the sequence obtained by removing all short cycles from S. S* is then
a sequence without any short cycles and length {5+ = g — lsp0r:. Now we add VS;—S”J
copies of C' and gain S’. It follows that

Lshor Lshor
by =Lge + | =P 1o = bg — Lopore + | 20 | 4
EC EC

¢
< ES - gshort + short EC’

=ls .

Since C' is a short cycle, /o < n - 5% = ¢A holds, yielding

ES or
U5t = s — Lahort + U”J le
C

L
> L5 — Lohort + o — Lo
le
=ls—Lc
>flg —eA .
Now let C1,...,Cy be the removed short cycles. Due to C having maximum length-to-

cost-ratio and therefore minimum cost-to-length-ratio, it follows that the cost of S’ is
bounded by

k
2 : Cc; Eshort

Cgr = CS — ECZ. Z—I-\‘ JCC
= e te

cc

k
cc
< cs — chzi + gshm‘t
o o te

=cg .

101

5 Time Condensation

Recall that we are looking for an s-t-sequence of lower or equal cost than the cost
of an optimal solution, but with relaxed length constraints. Based on our observations,
each optimal solution to the problem yields a corresponding nice sequence of lower or
equal cost in the length interval between A — ¢* — ¢A and A. Thus, it is sufficient to
describe an algorithm that computes an optimal solution in the set of nice sequences
within this length interval. In the following, we describe an algorithm that does so, but
with a slightly larger set of allowed sequences. This can only improve the objective,
however.

Computing the best-ratio-cycles for each node. For each node v € V(G), we compute
the best-ratio short cycle containing v and refer to it as C,,. We can compute the cycle
with the best ratio by using Megiddo’s framework [77].

Defining rounded lengths. In order to compute the rest of the sequence, we will now
introduce rounded lengths. Define § := ¢2A/n? and rounded arc lengths ¢ by £, :=
|4,/0] 6 for all a € A(G).

Computing the optimal sequences with regard to rounded lengths for each node.
We use the rounded arc lengths in a dynamic program. Let S(v,w,z,y) be a v-w-
sequence of minimum cost with length = (with regard to ¢') that contains y arcs. We
denote the cost of S(v,w,z,y) by ¢(v,w,z,y). Notice that storing these values requires
only O(n-n-n?c2-(n+n%~1)) space, as there are only n nodes, n?c~2 different lengths
and at most n + n?e~! arcs in the sequences we are looking for (see Observation .
We initialize the dynamic program with ¢(v,w,z,y) := 0 for v = w, x = 0, y = 0
and c(v,w,z,y) := oo for either x = 0 or y = 0. For z € {0,5,..., Ln2/€2J 5} and
Yy € {0, 1,..., Ln + n25_1J} we compute

c(v,w,x,y) = min{c(v,u,x—ﬁg,y—l)—kca‘ a= (’LL,U})G A(G),x—f; ZO} .

We now define C(v,w,z) := min{c(v,w,:p,y) | y e {0, 1,..., Ln + an_lJ }} as the
minimum cost of a v-w-sequence with length = (with regard to ¢) and at most y arcs.
The sequences corresponding to the costs can be computed with appropriate bookkeep-
ing. This dynamic program will either compute a sequence that does not use short cycles
or at least a sequence that does not use more arcs than a nice sequence potentially would
— which is also fine for our purposes.

Bounding the rounding error. The rounding error for an arc a is bounded by §. Our
sequences have at most n 4 n?/e arcs. Therefore the rounding error for such a sequence
S is at most (n +n?/e)d = (¢ +¢%/n)A. Therefore we can bound the length of S with
regard to the rounded lengths by g — (£ +?/n) A < £y < (g.

Putting the parts together. For this computation, we test all possible start-nodes v
for short cycles and all ways to distribute length between the s-v-, v-t-sequences and
the short cycles. There are at most O((n?c72)?) = O(n*c*) ways to distribute the

102

5.3 Sequence Condensation

length. If the s-v- and v-t-sequence do not have sufficient length to match the length
constraint, the remaining length is achieved by using the best-ratio cycle at v. We
define L := {0, O,y LnQ /£2J 1) } for brevity. Since we compute s-v- and v-t-sequences
with regard to #, we incur a rounding error of 2(¢ + &2 /n) there. Thus, we have to look
for sequences with a length of at least L := (1 — 3¢ — 2¢%/n)A — £* with regard to ¢ in
order to consider all sequences with a length of at least A — £* — /A with regard to £.
We can compute an s-t-sequence S with cost at most the cost of an optimal solution by

L_ !l
Lbob] oty

ys)

min { C(s,v,0,) + cc, {

= v EV(G), L. g;eL,egwggL}
and using bookkeeping. The minimum can be computed in time O(n’c~*). Thus, we
can find a sequence S with cost at most the cost of an optimal solution and

(1-32—2%/n) A —0* <y < (142 +2%/n) A .

Theorem 5.17. For a given instance I of the restricted minimum cost s-t-sequence
problem and € > 0, we can compute in time polynomial in the input size and e~ an
arc sequence whose cost is at most the cost of an optimal solution to I and whose length
satisfies (1 —e)A —0* < /lg < (14 ¢)A.

5.3.2 The Maximum Multi-Commodity Flow over Time Problem

We will now use sequence condensation to obtain an FPTAS to the maximum multi-
commodity flows over time without intermediate storage. We study this problem for the
sake of simplicity, as this problem has no costs, and we assume that all supplies and
demands are infinite. We will see in the next chapter that costs or finite supplies and
demands can be handled as well, but they increase the notational complexity somewhat.

LP-Formulations. Using the discrete time model, we can formulate the problem as an
LP in arc variables. Since we have infinite supplies and demands, we can assume that
each commodity i € K has a single source s* and a single sink t* and we will refer to
their corresponding counterparts in the time expansion by s” and t". For brevity, we
define T := {0,...,7 — 1}. A variable xfw describes the flow rate of commodity ¢ into
arc a at time step 6 which is equivalent to the flow on the copy of a starting in time
layer € in the time-expanded network.

max 3 30 3 T

€K aeét_’ 0T
i

st Y b, < wu, forallae A(G),0€T,
€K . .
oxhy . — Y oaby, =0 forallie K,oeV(G)\{s",t"},0€T,
a€dy, 7 acst
T > 0 forallee A(G),iec K,0€T.

It is not difficult to see that due to flow conservation, all flow contributing to the objective
function is sent from a source to a sink along some sequence of arcs. We define S to be

103

5 Time Condensation

the set of all s"-t""-sequences for all i € K. Then there is always an optimal solution
to the maximum multi-commodity flow over time problem that can be decomposed into
sequences S* C §. We want to split the sequences S € S into smaller parts of nearly the
same length A > 0. Let 7* be the maximum transit time of an arc. Then we can split .S
into subsequences of lengths between A — 7% and A. The length of the last subsequence
can be anywhere between 0 and A, though, because we have to fit the remaining arcs
there. This leads to the following definition.

Sﬁ,T* = {v—t’i—sequences S ‘ i€ K,veV(G),1s < A}
U {v-w-sequences S | i € K,v,w € V(G),A — 7" <719 < A}.

Since optimal solutions can be decomposed into sequences in Sﬁq*, we can also formu-
late an LP based on variables for all sequences in Sﬁ_T*. Variable .Igﬁ describes the flow
rate of commodity ¢ into sequence S at time step 0. Therefore, the following LP, which
we will refer to as the split-sequence LP, can be used to compute an optimal solution to
our problem:

max Z > fo‘?ﬁ—fs’
€K Sed, 0T

st. > > > b 0—rg < wu, forallae A(G),0 €T,
€K SeSA , j=1,.|S|:’ ey

. Tsg g — 2. Tgy =0 forallieK,veV(G)\{s",t"},0€T,
S€éy Seés
zi, >0 foral SeSy ., i€ K,0€T.

This formulation of the problem has two advantages over the initial arc-based formula-
tion. Firstly, all sequences in Sﬁ_T* — with the exception of those ending in a sink —
have a guaranteed length of A —7*. Since the time horizon T is an upper bound for the
length of any sequence in S, we can conclude that a sequence S € S can be split into
at most [T/(A —7*)] 4+ 1 segments. Secondly, when rounding up the transit times of
the sequence-segments, we know that the error introduced by the rounding is bounded
by 7* for all segments save for the last one, which ends in a sink. These two advantages
together allow us to obtain a strong bound on the rounding error.

Solving the split-sequence LP. Unfortunately, the split-sequence LP cannot be solved
directly in polynomial time due to its enormous size. We will approach this problem in
two steps.

1. We round transit times to generate a number of discrete time steps that is polyno-
mially bounded in the input size and ¢~!. This introduces a rounding error, which
we bound in next paragraph.

2. The resulting LP has still exponentially many variables; therefore we will consider
its dual, which has exponentially many constraints, but only polynomially many
variables (in the input size and ~!). Finally, we argue that the dual separation
problem can be approximated which yields an FPTAS for the original problem.

104

5.3 Sequence Condensation

We begin by introducing a set Sp, := {S is a v-w-sequence with 7¢ > L} that be will
necessary later due to the fact that we can only approximate the dual separation problem.
We define gﬁ = S8 __. US[, and replace S§__. with 3% in the LP above. It is easy
to see that this does not interfere with our ability to use this LP to solve our problem.
We now round the transit times of the sequences in 3% up to the next multiple of A,
i.e, 75 = [1g/A] A for all S € 3%. Moreover, we define 77 := [(1+¢)T/A] A and
T := {0,A,...,T7" — A}. Using these transit times yields the following LP, which we
will refer to as the sequence-rounded LP:

max Z > fvgﬁ_T,S,

€K Ses 0T’
st > > #(a,8) 75, < Au, forallac A(G),0€T,

€K Segé

>oak, = 3 xfw =0 for all i € K,v € V(G)\{s",t},0 € T/,
ses; % sest
2, > 0 forall S € S7,ie K,0¢T.

Bounding the error of the sequence-rounded LP. In this section, we will analyze
the error introduced by using sequence-rounded transit times. The lemmas and proofs
used in this subsection built on and extend techniques introduced by Fleischer and
Skutella [32]. We begin by bounding the error introduced by switching from the given
transit times to the sequence-rounded transit times.

Lemma 5.18. Let S € S be a source-sink sequence and let T be the normal tmnszgf times
and 7' the sequence-rounded transit times. Then 7s < 74 < 75 + 2T, for A == % and

L:=(1—1/4e%/(1 4+ 1/4e?))A.

Proof. The rounding error for an sequence S’ € 3% is bounded by max(7*, A — L) for

all sequences not ending in the sink of a commodity, for those ending in the sink it is

bounded by A. W.l.o.g, we will now assume that A — L > 7%, as we can decrease 7* to

A — L by splitting arcs — this requires at most mﬁ € O("Z*) additional arcs for the L

that we choose below. The rounding error for a source-sink-sequence decomposed into
=A .

sequences of & is then bounded by

{ﬂ (A—L)+A§%A—T+2A—L.

We will now choose A := EZ—HT and L := (1 —¢)A. Then

T ¢ exT
—“A-TH2A-L=—-"T+(14+4)—.
L + 1—4 + +)4n
1.2
Now we choose £ := ﬁ and get
e2r 1 1 12 2p
— T+ (14+0)—— = =T+ —£T 4 — 1.
1-— +(+)4n 4 +4n€ Jrl—l—iszéln_e

105

5 Time Condensation

Thus, the rounding error is bounded by 2T, i.e., a sequence is at most €27 longer when
using the sequence-rounded transit times instead of the original ones. O

This result enables us construct flows feasible with regard to the sequence-rounded
transit times out of normal flows.

Lemma 5.19. Let f be a multi-commodity flow over time, sending |f| flow units within
a time horizon of T. Then, for ¢ > 0, there exists a multi-commodity flow over time
that is feasible with regard to the sequence-rounded transit times, sending |f|/(1+¢) flow
units within a time horizon of (1 +¢)T.

Proof. W.l.o.g., we can assume that f can be decomposed into s"-t""-sequences. Other-
wise, there exists a flow of equal value with this property. All these s"-t""-sequences can
be further decomposed into sequences of g%. We will now examine the effects of sending
f with sequence-rounded transit times. This means that all flow particles of f still travel
along the same sequences, as specified by the decomposition, but the time to traverse
a sequence is now different than before. This does not affect flow conservation, since
we just change the speed at which flow travels. However, we might violate capacities.
Therefore, we define a smoothed flow based on the sequence-decomposition in order to
lessen the effects of this:

1

6
fsml()= sT/G_Eng(f) d¢ for all Segf,i €eK,0el0,(1+¢)T) .

Due to the smoothing, this flow requires a time horizon that is €71 longer than the
original one, resulting in a time horizon of (1 + ¢)T for fs;,,. The flow value of each arc
a at a point in time 6 is then bounded by:

fsm Z Z Z fsm Z(S[Haj})

ZEKSGSL] 1,...,|S]:a=a;

077"/5.%‘1,]
=2 > X [e ae

/
zGKSE j=1,...,|S|:a=a; 975T*TS[—>aj]

In the next step, we use the bound on the error introduced by the sequence-rounding
which we have obtained in Lemma This gives us the following estimation:

T)
DD DENED DI BN

_ !
ieKSEgAjzl,...,|S|:a:aj 0—eT TS[—ay]

0— TS[—ay]

ZZ > /9 Fi(6) de

zGKSES j=1,...,|S|:a=a; eT—e*T~ TS[—ay]

B ET Z Z Z F(& = Ts15a,)) dE.

2
—eT— ETZEKSGSL] 1,...,|S|:a=aqa;

106

5.3 Sequence Condensation

This can be further transformed to:

> Z S SEE — Tsiay) dE

O—eT— 52T%€KSG j=1,...|S]:a=a;
1 0
= fa(§) d§
eT 0—eT—e2T ¢
1 [eT +€*T
ST Joaron Uq d§ T g = (1 +¢)ug
Therefore we can scale the smoothed flow by 77 and obtain a feasible flow, that sends
1+5 | f| flow units within a time horizon (1 4 E)T.
fLetomig) = fsm’(, 0) forall S€Sr,icK,0€(0,(1+e)T) .
This concludes the proof.]

Furthermore, we can obtain a solution to the sequence-rounded LP out of any flow
feasible with regard to the sequence-rounded transit times.

Lemma 5.20. Let f be a feasible multi-commodity flow over time with regard to the
sequence-rounded transit times. Then there exists a solution x to the sequence rounded
LP with equal value.

Proof. Define x by
] o+1nAa
T g ::/ fi(€) d¢ forallie K,ae A(G),0 €T .
0A

Since f is feasible with sequence-rounded transit times, = is feasible in the sequence-
rounded LP. Due to f obeying flow-conservation, so does x. It is easy to see that the
total flow value sent does not change, proving the claim. O

Finally, a solution to the sequence-rounded LP can be turned into a normal flow.

Lemma 5.21. Let x be a solution to the sequence-rounded LP. Then, for anye > 0, one
can compute a multi-commodity flow over time without intermediate storage that sends
|z| /(1 + &) units of flow within time horizon (1 +¢)T.

Proof. Consider the flow over time f corresponding to x and a decomposition (fg) 5esd
of f. We will now analyze what happens if we send the flow of f using normal transit
times. This means that all flow particles of f still travel along the same sequences,
as specified by the decomposition, but the time to traverse a sequence is now different

than before. This does not affect flow conservation, since we just change the speed at

107

5 Time Condensation

which flow particles travel. However, due to the different transit times, we might violate
capacities. Therefore, we define a smoothed flow by

1

. 0 . J—
£ 1= 6T/ Fi(€) d¢ forall Se€Sr,ie K,0€0,(1+)T) .
0—eT

in order to limit the capacity violations. The new flow requires €1" more time, resulting
in a time horizon of (1+¢)7T". Now we need to examine how much capacities are violated
by f%™ if send with the normal transit times:

=22 X SO -Tsa)

ieK Segﬁ j=1,...,|S|:a=a;

1 [0-TsI=a;]

=22 X T e de

: .. 0—eT— .
€K SES%j:L“"'S':a:aj €L =TS[—ay)

At this point, we use the fact that the error introduced by the sequence rounding is at
most 2T (see Lemma |5.18)). We use this for the following estimation:

1 9775[—)(1‘]

2> X 7 EFHIGKS

O—eT— .
ZGKSE j=1,...,|S|:a=aqa; EL TS~y

+6T

S ID DY /95““ Fi() de

T
zEKSES j=1,...,|S|:a=a; T

S[—ay]

1 0+e2T

7/ >y F5(€ = T515a,)) A€

i€K e j=1,...|S|a=a,

1 9+€2T

== fa(&) d¢

el 0—eT
1 9+€2T

< — d
=T Jor Ug d§

eT + 2T

=7 U= (1+¢e)ug

Therefore, we can scale f%™ to get an flow, that sends ﬁ]w\ flow units within a time
horizon (1 4 ¢)T and obeys the capacities:

Foetsmig) .= FEm0) for all S € 8p,i€ K,0€[0,(1+¢e)T) .

1+€

Since f is feasible, this flow also fulfills flow conservation making it feasible as well.

108

5.3 Sequence Condensation
Consider an arbitrary i € K,v € V(G) \ {s',t'},0 € [0,7):

z: sc+sm7, z: sc-i—smz

Sedy Sest
:Zl+5f <) Zl+5f ()

Ses, Sesf

) DIEEILEY LTSI S S N "
= T s - T S

Sear 1 + e eT 0—cT Se(sj 1 + e eT O—eT
= L&) de

1 T/ Z f5(¢ Z fs(8)

el Jo—er Sesy Sest
11 /[
1 + e eT 0—cT §
This concludes the proof.]

For the sake of completeness, we also discuss the computation of f$¢T™ and related
functions used in previous lemmas.

Lemma 5.22. fT™ can be computed efficiently.

Proof. Let z be a solution to the sequence-rounded LP that can be decomposed into
sequences. There is no waiting in intermediate nodes — thus, each sequence can let flow
wait at the source only. Therefore, each sequence S of the decomposition of z induces
a sequence-flow over time fg that sends xg flow in a time interval of length A and zero
flow otherwise; i.e. each fg is a step-function with one non-zero-step. There are at
most as many sequences as time-layers in the time-expanded network that correspond
to the same sequence in the static network (recall that waiting at intermediate nodes is
forbidden). Thus, the result is a piecewise constant function describing the flow for each
sequence, that has at most as many steps as time-layers (T’ \ A € O(ne~?)). Thus, each

of fsc+sm " is efficiently computable and the number of such functions is polynomial in
the input as well (since x is a flow in a network of polynomial size). O

Solving the Sequence-Rounded LP’s Dual. It remains to show that we can solve the
sequence-rounded LP efficiently. Recall that the sequence-rounded LP is

max », Y. szer

€K S€6 96’]1"
st Y Z #(a, S) ~a:is70 < Au, forallae A(G),0 €T,

iGKSESL o

> Tgg - - > gy = 0 for alli € K,v e V(G)\{s",t"},0 € T,
Ses, Sest

J:Sﬁ >0 forallSegf,ieK,He’]T’.

109

5 Time Condensation

The dual of this LP has a variable Ozf]ﬁ for every flow conservation constraint of a
commodity i € K, node v € V(GQ) \ {s",t"}, and time § € T', as well as a variable 3, ¢
for every capacity constraint of an arc a € A(G) and time 6 € T’. This leads us to the
following observation.

Observation 5.23. The dual of the sequence-rounded LP is

min Y. Y. Augfa,

acA(G) 0T
st —algtal, .+ ¥ #(a,8)e 2 1 foralSe STieK,0eT,
' acA(G)
Ba0 > 0 foralaecA(G),0eT.

with O‘i’ie = ai'ia = 0 for all commodities 1 € K and 0 € T, since these variables
do not correspond to constraints in the primal LP and have just been added for nota-
tional brevity. The separation problem of this dual is to find a sequence S € 3% with

aa #(a,S) - Bap <1+ Oﬂv’e - a:UﬂJrTé for some v,w,1,0.

Notice that the number of different combinations of v, w, ¢, 0 is polynomially bounded
such that we can enumerate them efficiently. Thus, the separation problem is to find a
v-w-sequence S of minimum cost with regard to 8 and S € ?é. This is the restricted
minimum cost s-t-sequence problem introduced in Chapter [5.3.1|with 8 as the costs and 7
as the lengths and A as the threshold. As we have seen there, we can only approximately
solve this separation problem in the sense that we get a solution with a length between
(1—e)A—7* and (14¢)A. Recall that we have defined 3? as SX__.US, for this purpose.
Until this point, choosing S;, = () would have been completely fine, we have not needed
it so far. However, using the equivalence of separation and optimization [53], we can
find a solution to a dual problem where Sp contains the additional sequences of length
at least (1 —e)A — 7* found by the ellipsoid method. This leads to L := (1 —¢)A — 7%
which is also in line with the value of L we have used in the analysis before. We conclude
this section by stating our main result.

Theorem 5.24. Let I be an instance of the mazimum multi-commodity flow over time
problem without intermediate storage and let OPT be the value of an optimal solution
to it. There exists an FPTAS that, for any given € > 0, computes a solution with value
at least OPT /(1 + €) and time horizon at most (1 +¢)T.

5.3.3 Extensions

Our approach above is based on the fact that we can efficiently approximate the sep-
aration problem of the dual LP. We will now show that this is also the case for the
multi-commodity flow over time problem without storage and the minimum cost multi-
commodity flow over time problem.

We focus now on the minimum cost multi-commodity flow over time problem without
intermediate storage, as this problem is a generalization of the multi-commodity flow

110

5.3 Sequence Condensation

over time problem without intermediate storage. The case with intermediate storage
can be done similarly.

We begin by considering an arc based LP formulation that is again based on a time-
expanded network. Since we are using a time expansion, we can introduce a super-source
s'" and -sink " for each commodity i € K, even though our supplies and demands may
be finite. For this purpose, we define additional nodes s! for each v € V(&) with supply
bl > 0 and ¢! for each node v € V(G) with demand b% < 0. Then we define new supplies
and demands b’ by b/%, := D veVibi >0 b, b = D vV bi <0 bi and b/* = 0 for the rest of the
nodes. After that, we connect the super-nodes by arcs a = (s", s') and ap = (ti, ")
with the supply/demand-nodes. The capacity of the new arcs is determined by the
supply and demand of the nodes they are connected to, i.e. Uay = bi], Ua, = |bE].

These arcs have zero transit time and zero cost. The supply nodes s’ and demand nodes
t! are then connected with all copies of their node v in the time-expanded network by
arcs with infinite capacity, zero transit time and zero cost. This gives us a network
where only two nodes per commodity have non-zero supply and demand, which makes
the structure of the LP much nicer. Also, these nodes have only outgoing and only
incoming arcs, respectively.

In order to make the LP more similar to the last problem, we transform it into a max-
imization problem. For brevity, we define V := {s" ¢ | i € K}. We get the following
LP based on arc variables. Notice that the arcs incident to nodes of V exist only once,
i.e. they are outside the copied structure.

max — ». . an'wiﬁ,

i€K acA(G) 0€T

st > at, < wu, forallae A(G),0 €T,
i€k '
D Tag— D Tg ., =0 forallie K,veV(G)\V,0€T,
agdf acdy ‘
ooxh— >l = b forallie K,veV,0eT,
a€dy agdy
Top > 0 forallae A(G),i€ K,0¢€T.

Notice that the changes compared to the maximum multi-commodity flow over time
problem without intermediate storage are mostly in the objective function and the right
side of the flow conservation constraints. Again we can consider a sequence-rounded LP.

max — 3 3 Y cs- gy,

i€k gga €T
st. >0 > #(a,9) 'xis,e < Au, forallae€ A(G),0 €T,

zeKSegé
> T — 2 xgﬁ_Té =0 forallie K,v e V(G)\V,0 €T,
Sesi a€dy '
>oorg— Yy = b forallie K,oeV,0eT,
Sest Seéy
T g, T >0 forallSeSé,ieK,HeT’.

111

5 Time Condensation

The dual of this sequence-rounded LP is:

min Z Auaﬂaﬁ + Z gaf),%

acA(G),0€T’ i€EK,veV,0eT’
s.t. O‘i,e - afu’0+73+ Y. #(a,8)Bay > —cs forall Se gf,i cK 0ecT,
acA(G)
Ba0 >0 for all a € A(G),0 € T'.

with O‘i/i 0 = O‘i'i g =0 for all commodities ¢ € K and 6 € T’, since these variables do
not correspond to constraints in the primal LP and have just been added for notational
brevity. Notice that cg = ¢ A(G) #(a, S)cq. Therefore, we can write the constraint for

all Se?ﬁ,z’ €K, 0eT as

Y #(a,8) (Bag +ca) = —alg+al, g0
a€A(G)

For non-negative costs, this leads once again to a restricted minimum cost s-t-sequence
problem as the separation problem.

Theorem 5.25. Let I be an instance of the minimum cost multi-commodity flow over
time without storage problem with non-negative arc costs and let OPT be the value of an
optimal solution to it. There exists an FPTAS that, for any given € > 0, finds a solution
of value at most OPT, with time horizon at most (1+¢)T that fulfills a (14+-¢)~! fraction
of the given supplies and demands.

We mention that for the multi-commodity flow over time problems with storage at
intermediate nodes considered in [32], Fleischer and Skutella obtained a stronger approx-
imation result where only the time horizon is increased by a factor 1+ ¢ but the original,
optimal flow values are sent. In our setting without storage, however, we also need to
approximate the flow values and can only send a 1/(1 + ¢) fraction. This is due to the
fact that for the case where intermediate storage is allowed, increasing the time horizon
by a factor A allows to increase flow values by a factor of A (see Lemma . Such a
result does not hold without storage, see for example our discussion in Chapter [3.2.4
We can apply Lemmal[5.4] to the minimum multi-commodity cost flow over time problem
with storage, though, in order to send all supplies and demands.

112

6 Temporal Repetition

In this chapter, we present our algorithmic results that work on the original graph and
do not require time expansion. More specifically, we study the special case of generalized
maximum flows over time with proportional losses. That means that on any arc with a
transit time of 7, we lose the same fraction v of flow. We construct a successive shortest
path variant for this setting which works on the original network, but requires a pseudo-
polynomial number of iterations in the worst case. Based upon this algorithm, we create
an FPTAS for this problem. This FPTAS is a value-approximation instead of the time-
approximations that we saw in the last chapter. This is a relatively rare feature for flow
over time approximations, as they usually approximate time. Another peculiarity of this
FPTAS is that the error € appears only logarithmically as loge™! in the runtime of the
FPTAS — making it extremely cheap to obtain very accurate approximations. This was
published in Grofi and Skutella [51].

6.1 Generalized Maximum Flows over Time with Proportional
Losses

Here, we consider the case of lossy and proportional gains, i.e., v = 2°7, for some
constant ¢ < 0. This means that in each time unit the same percentage of the remaining
flow value is lost. This is motivated by problems where goods cannot be transported
reliably, e.g., due to leakage or evaporation. In many applications, this loss depends
on the time spent in the transportation network, and many processes of growth or
decay in nature evolve over time according to an exponential function. This concept
of proportional transit times and gains is analogous to the setting of minimum cost
flows over time, where Fleischer and Skutella [31] considered the special case of costs
proportional to transit times. We will focus on the setting of a single source and sink
here, which we will usually refer to as s and ¢t. We assume that source and sink have
infinite supplies and demands, respectively. We split our results for this case into two
parts.

e First, we show that the generalized maximum flow over time problem can be solved
in the static network by a successive shortest path technique. While successive
shortest path based algorithms can require pseudo-polynomially iterations, the
important point of this algorithm is that it does not require time expansion like so
many other algorithms do.

e Second, we employ the algorithm from the first part to obtain a value-FPTAS for
the generalized maximum flow over time problem with proportional losses. An

113

6 Temporal Repetition

interesting point here is that this is a value-FPTAS, whereas most flow over time
FPTASs are time-FPTAS. That we can approximate this problem by value is essen-
tially due to the fact that we have the algorithm from the first part, which does
not require time expansion.

The work in this chapter was first published in Grof and Skutella [51].

6.1.1 A Variant of the Successive Shortest Path Algorithm

Due to the work of Onaga [82], R3] it is known that augmenting flow successively along
highest gain s-t-paths solves the generalized maximum flow problem with a single source
s and a single sink t. More precisely, Onaga’s algorithm for lossy networks proceeds
as follows. Begin with the zero-flow and the corresponding residual network. If no
source-sink path exists in this residual network, terminate. Otherwise, augment flow
along a source-sink path of maximum gain and continue with the resulting flow and
residual network. Thus, applying Onaga’s algorithm in the time-expanded network
solves the generalized maximum flow over time problem — at the cost of potentially
requiring pseudo-polynomially many augmentations in the pseudo-polynomially large
time-expanded network.

We will now present an algorithm capable of solving the special case described above
using only the original — not time-expanded — network. The idea of this algorithm is to
employ a strategy similar to Onaga’s in the original network and use this as a foundation
to construct a flow over time solving the special case. In order to do this, we need some
temporally repeated structures that we can work with.

Temporally repeated structures in a time expansion. We begin by introducing some
notations; more precisely, we introduce a slightly non-standard way of building a time-
expanded network from copies of the original network. Let (G, u,T,7,s,t,T) be a (resid-
ual) network, let 4,_,, be the maximum gain of a v-w-path in G and 7,_,,, the length of a
shortest v-w-path (with respect to transit times) in G. Notice that 7,_,, = %log Yo—sw-

We begin by subdividing a time-expanded network G into parts using the original
graph G. We do this by identifying copies of G in GT — we pick a copy sg of the source
s in GT, and add arcs and nodes panning out from sy along shortest paths. We call
the resulting copy of G a 6-copy G, for some 6 € {0,...,T — 75,y — 1}. O-copies are
somewhat simpler to define in highest gain networks, which are equivalent to shortest
path networks in our setting. In these networks, all paths from s to a node v have the
same gain and transit time. The @-copy 0G of G for is then defined by:

V(OG) :={ve e V(G") | veV(G), £ =0+ 7o},
A(0G) = {ac € A(G") | a= (v,w) € A(G), £ =0+ Ts0}.

Figure shows a highest gain network and a #-copy in its time expansion.

114

6.1 Generalized Maximum Flows over Time with Proportional Losses

Figure 6.1: A highest gain network G and its time-expanded network G°, with the #-copy
0G marked by dashed arcs and black nodes.

For more general graphs, define the 6-copy 6G of G for some 6 € {0,...,T — 75y — 1}
to be the following subgraph of the time-expanded network G':

A(0G) = {ag € A(GT) } a= (v,w) € A(G),E =0+ Ts—v, &+ Ta + Tt < T},
V(0G) == U {v,w}.

a=(v,w)EA(0G)

For the special case mentioned above these two definitions coincide. Figure [6.2] shows
an example of a network and a #-copy in its time expansion.

We continue to define unions of adjacent 8-copies together with the holdover arcs that
connect them. A union of the #-copies from 0 to 0’ for 0 < 0 < ¢ <T —74_; — 1 is then
called [6,6']G, and defined as:

”
V([0,0G) = |V (£G),

£=0

0’ 0 +75_p—1
A6 =JAacau | U Aweve)}-
£=0

vEV(Q) §=0+Ts—0

Figure shows a network and its [0, 1]-copies in the time expansion.

We are particularly interested in 6-copies in which we can send flow from the source
to the sink, which are the copies from 0 to T'— 1 — 75, if T — 1 — 75 < T — 1. All
later A-copies start too late to have flow arriving before the time horizon. Therefore,
we define for brevity G := [0,T — 754 — 1]G if 75y < T — 1 and as the empty graph
otherwise.

115

6 Temporal Repetition

Figure 6.2: A network G and its time-expanded network G°, with the #-copy 0G marked
by dashed arcs and black nodes.

If we consider a normal time-expanded network without the #-copy structure, we can
always remove all arcs and nodes that are not part of s’-t’-paths (with s’, ¢’ being the
source and sink of the time-expanded network, see Definitions and . Furthermore,
if we consider time-expanded residual networks, we can simplify the network slightly
further. In this case, the residual network G}; corresponding to a flow f can have reverse
holdover arcs at source and sink. These reverse holdover arcs do not help to construct
new s'-t’-paths in the time-expanded-network or new flow-generating cycles with a path
to t/, since we already have holdover arcs of infinite capacity between all copies of the
source and the sink, respectively. Thus, we can omit them without reducing the value of

an optimal solution as well. We write G;‘C for the subnetwork of G}F created by removing
nodes and arcs not on s'-t’-paths and reverse holdover arcs at source and sink. Figure
shows such a pruned network.

We will show later (Lemma that G = G;‘C holds for the flows we are considering,

i.e., G is the subnetwork of G? containing exactly the nodes and arcs of G? that can
be part of s'-t’-paths.

Flows in f-copies. Now we want to extend the concept of #-copies to flows. We begin
by transferring a flow z in a normal graph to a flow in a #-copy. Let us assume that x
is a flow in a static unique gain network G. We define the 6-flow 0z of x in G for some
0 €10,....,T — 755t — 1} by (02)a, 1= 7, for all ag € A(OG).

Similarly, we can define a transfer of x to a series of temporally adjacent #-copies. We
define the [0, 0']-flow [0, 6|z of x in [0,0']G for some 6,0" € {0,...,T — 75,4 — 1} with
6 < 0’ by setting ([0,6']x), := x, for all arcs a = a¢ in a specific f-copy. For holdover

arcs between nodes that are not copies of source or sink, we set ([0, 0']7) (v v,) = 0,

116

6.1 Generalized Maximum Flows over Time with Proportional Losses

Figure 6.3: A network G and its time-expanded network G®°, with the [0, 1]-copies [0, 1]G
marked by dashed arcs and black nodes.

v e V(G)\ {s,t}. For holdover arcs between copies of the source s, we define

(0" —0+1)|z| a=(s¢8e41),E <,
(0.0)2)0 = @ —Ola] a=(sesen)0<E <0,
0 a:(3§a85+1)a0/§€'

Similarly, we define for holdover arcs between copies of the sink 7"

0 a = (t§7t§+1)7§§0+7—8—>t7
([070/]x)a = (6_0_T8—>t+1)|x’ a = (t£7t£+1)70+7—5—>t < é. < 0/+TS—H§7
(" — 6+ 1)z 0= (e tes1) € > 0+ 7y
Again, we define for brevity 7 := [0,7 — 75—y — 1]z for a flow z in G, if 75y <T — 1

and as the zero flow otherwise.

The algorithm. Informally spoken, the idea of our algorithm is to start with the zero
flow, compute a maximum flow in the highest-gain / shortest-path subnetwork of the
static residual network, augment this flow and repeat this process until no s-t-path exists
in the static residual network. We then use the augmented maximum flows to construct
an optimal solution to our problem, by sending each flow as long as possible into the
network (i.e., temporally repeated). We will use the notations introduced above to
describe the construction of the flow over time in the last step of our algorithm, and
show its optimality.

Algorithm 6.1. Let I = (G,u,1,7,s,t,T) be an instance of the generalized mazximum
flow over time problem.

117

6 Temporal Repetition

Figure 6.4: A network G and its pruned time-expanded network G>.

1. Begin with i := 0 and the static zero-flow xg := 0.

2. If no s-t-path ezists in Gy, or if Tssy > T in Gy, then set k := 1 —1 and go to
step 6.

3. Restrict the static residual network G, to the network G, containing only paths
of mazimum gain and compute a generalized mazimum flow xj in G, ..

4. Define x;y1 by adding ! to x; as follows: (Tit+1)a = (i)a + (@})a + v5 1 (2h) 4 for
all a € A(G). Notice that x4 is a feasible flow in G, since) is a feasible flow in
a restricted residual network of x;.

5. Seti: =i+ 1 and go to step 2.

6. Construct a generalized flow over time f defined by f = ZJ —0 7
Correctness. We will prove the correctness of Algorithm[6.1]by comparing it to Onaga’s
algorithm applied to the time-expanded network. For¢ =0, ..., k+1, define a generalized

flow over time f; := E; %; In particular, fy is the zero flow over time and f = fry1.

The strategy for our proof is to show that in every iteration 377 is a flow along highest gain
paths in GT Then successively adding zf, . . ?k produces the same result as Onaga’s
algorithm apphed to the time-expanded network showing correctness of our algorithm.
The following lemma turns out to be helpful in proving the correctness of Algorithm [6.1]

Lemma 6.2. For eachi =0,...,k+ 1, it holds that G, = G};, i. e., the copied static
network is equal to the pruned time-expanded network after each iteration of the algo-
rithm.

118

6.1 Generalized Maximum Flows over Time with Proportional Losses

Proof. The proof uses induction on i. For i = 0, we get G, = G = C/ﬁ = E;\fo . Now

we assume that G, = G’? holds for some ¢. In iteration i, the algorithm adds ;; to f;
and), to xz;, resulting in .Zf’l:-i-l and ;41, respectively. Due to z, being a maximum flow
in the highest gain network of G, it follows that 2/ is a maximum flow in the highest
gain network of G, .

Sending z} in G, causes all copies 0G,, of G, to be changed as well. These changes
due to sending flow are the same that sending 2/ in G, causes. In contrast to Gy, Gapr
might also gain or lose arcs that either become again part of an s’-t-path or are no longer
part of an s'-t-path. However, note that both x; and 2/ are flows in the highest gain
network of G, and G, respectively. This implies that sending these flows does not
increase the gain of source-node- or node-sink-paths. By proportionality of gains and
transit times it follows that the transit time of source-node- or node-sink-paths does not
decrease; thus, no arcs are gained this way. Similarly, all arcs lost due to no longerﬁgi_rig

on an s'-t’-path in G,,,, are by definition also removed in G};H. Thus, G, = G?:H[lj.

This concludes the proof.

Theorem 6.3. Algorithm [6.1] computes a generalized mazimum flow over time.

Proof. Making use of Lemma we show that, for ¢ = k + 1 (i.e., after the final
iteration), there is no s'-t’-path in G?. Since the algorithm terminates, there is no s-

t-path in G, and therefore no s'-t’-path in G, = G?. As G? has no more s'-t’-paths

then G? the result follows. Note that our instance has no flow-generating cycles to begin
with, due to ¢ < 0, and sending flow along highest gain paths does not generate new
flow-generating cycles (see Onaga [82), 83]).

Thus, our algorithm starts with the zero flow over time fj, similar to Onaga’s algo-
rithm. In every iteration, flow is only being augmented along highest gain paths in G,

and by Lemma this equals G}; as well. Since this is exactly what Onaga’s algorithm
does, the correctness of our algorithm follows. Note that Lemma [6.2] also guarantees
that f is a feasible generalized flow over time, due to each z} being a flow in G, which

is a restricted residual network of G%. This concludes the proof. O

Running time. We conclude this section by examining the running time of Algo-
rithm Let n := [V(G)], m = |A(G)| and U := max,c (@) ta for a problem in-
stance (G, u,T,7,s,t,T). In our case, a highest gain path can be found in O(nm) time
using Moore-Bellman-Ford’s algorithm (see Bellman [12], Ford [37], Moore [79]) or in
O(m+nlogn) by applying Dijkstra’s algorithm [24] with Fibonacci heaps (see Fredman
and Tarjan [40]) and reduced costs. For both algorithms, 7, = %10g ~a is being used as
a cost function. Both algorithms are capable of computing the highest-gain network as
well. A generalized maximum flow in the highest-gain network can then be computed by
a standard maximum flow algorithm. Since there are at most 71" time steps, there can be
at most T iterations. The running time of an iteration is dominated by the maximum
flow computation, yielding a running time of O(maz flow - T'), where O(max flow) is

119

6 Temporal Repetition

the running time of the maximum flow algorithm. Orlin [87] described a maximum flow
algorithm with a running time of O(nm), resulting in a running time of O(nm - T') for
our algorithm.

For special cases, this runtime can be improved further. Beygang, Krumke, and
Zeck [14] recently studied static generalized maximum flows in series-parallel networks
and discovered that a greedy-strategy that chooses always the highest-gain path in the
original — not residual — network is sufficient for finding an optimal solution. This can
be carried over to our setting and can be used for bounding the number of paths used.
Since each augmentation saturates an arc, there can be at most m iterations, yielding a
polynomial-time algorithm.

6.1.2 Turning the Algorithm into an FPTAS

In this section, we will see that Algorithm can be terminated early to obtain an
approximate solution. In fact, the algorithm can be turned into an FPTAS.

Theorem 6.4. Let OPT be the value of an optimal solution to a generalized maximum
flow over time problem instance I = (G,u,7,v,s,t,T), € > 0, and U := maxsecs uq.
Algorithm has found a solution of value at least OPT — ¢ after all paths of length
< 7* with
T = —%(logé +logm +logU + 2logT)

have been processed (recall that the lengths of the paths used by the algorithm are mono-
tonically increasing). For a constant ¢ < 0 and using a mazimum flow based approach
as proposed in Chapter this leads to a Tunning time of O(maxz flow - (loge™! +
logU +1ogT)) for a solution of value at least OPT — ¢.

Proof. Algorithm computes an optimal solution for the generalized maximum flow
over time problem. For i € {0,...,7 — 1}, let a; denote the amount of flow sent into
paths of length (transit time) ¢ in a time step 6 € {0,...,7 —i — 1} by the algorithm.
Note that the algorithm does not use storage; the gain factor of a path of length 7 is
therefore 2°% and flow is sent into a path of length i for T' — 4 time steps. The length
of the paths used by Algorithm increases monotonically. After all paths of length
< 7 have been found, only paths of length ¢ 4+ 1,...,7 — 1 remain. The amount of flow
arriving at the sink by such paths equals

T—1 ‘

D a2 (T).

j=i+1
Due to ¢ < 0 it follows that max {2‘3(”1), e QC(T*D} = 2¢(+1) " Furthermore, it is clear
that T'— 7 < T. The amount of flow sent into paths in one time step is bounded by
m - U. This yields

T-1 T—1
Z aj-2°9 (T —j) < Z m-U - 260t . <y . 2elt D) L2
j=it1 j=it1
For i = —%(log% +logm +logU + 2logT) — 1, the right hand side equals ¢. O

120

6.1 Generalized Maximum Flows over Time with Proportional Losses

The above theorem allows an approximation within a constant value . For an FPTAS,
we need to approximate OPT within a factor of (1 —) or a value of eOPT. This can
be done by a slight modification of Theorem

Theorem 6.5. Let OPT be the value of an optimal solution for a generalized maximum
flow over time problem instance I = (G,u,7,7,8,t,T), € > 0 and U := maxX,cA Uq.
Algom'thm has found a solution of value at least (1 —e)OPT after T iterations with

= [-Mlog : +logm + ogU + 21og T)

For a constant ¢ < 0 and using a mazximum flow based approach as proposed in Chap-
ter this leads to a running time of O(maxflow - (loge™ + logU + logT)) for a
solution of value at least (1 —e)OPT.

Proof. We use the arguments and notations of the proof of Theorem Let ig be the
length of the first iteration’s paths. We assume w.l.o.g that the minimum capacity in
the network is 1. Consequently, at least 2 flow is sent in the first iteration. We now
want to determine 7* such that the amount of flow sent to the sink by later iterations is

<eOPT.
> a 299 (T —j) <m-U-2¢0F) . T2 < 2% < cOPT
Jj=to+7*
This inequality can be transformed to

* 2 * 1 1
m-U-27 -T*<e < 7°>—-(log_+logm+logU +2logT)

This concludes the proof.]

121

7 Complexity

In this chapter, we present our results in the area of complexity theory. First, we show
an NP-hardness result for generalized maximum flows over time with arbitrary or lossy
gains. This reduction builds on the reduction of Klinz and Woeginger [71]. We will see
that this reduction even yields a non-approximability result in terms of flow value for
them.

Second, we consider the special case of generalized flows over time with lossy gains,
that are also proportional to transit times. Here, we show that maximal flows are also
earliest arrival flows — together with the very recent results by Disser and Skutella [25],
this should lead to an NP-hardness result for this special case as well. Both results in
this chapter have first been published in Grof§ and Skutella [51].

7.1 Generalized Maximum Flows over Time

In this chapter, we study the complexity of the generalized maximum flow over time
problem. We classify the generalized maximum flow over time problem based on the
gains used into the cases of

e arbitrary gains 7, € R>q,
e lossy gains 7, € [0, 1],
e and lossy and proportional gains v, = 2¢7¢ for some constant ¢ < 0.

The results presented here have first been published in Grofi and Skutella [51].

7.1.1 Arbitrary and Lossy Gains

We begin with the cases of arbitrary and lossy gains. Here, we will adapt the reduction of
Klinz and Woeginger [71] to the generalized maximum flow over time problem, showing
that this problem is weakly NP-hard. In fact, this reduction will yield even a non-
approximability result for value-approximations.

Theorem 7.1. There is neither a polynomial-time algorithm nor a polynomial-time
value-approximation algorithm for the gemeralized maximum flow over time problem,
unless P = NP. This holds even on series-parallel graphs.

Proof. Let

n
Ip = (z1,...,2y), 22951-22117 T1,...,Tn, L EN
=1

123

7 Complexity

be an instance of the PARTITION problem. We define a directed graph G by
V(G) = {Uo, (% ,Un_H} y
A(G) = {ai = (viavi-i-l) ‘ L= 17' 7n}U{a; = (v’iavi-i-l) ‘ L= 17" . 7n}u{(U07U1)}’
=A ::A2

Furthermore, we define capacities and transit times by

1 a=(vg,v1), r; a=a; € Ay,
Uq = Tag - —
oo else, 0 aeAyU{(vo,v1)},

for all a € A(G). Gain factors 74, a € A(G) are defined to be proportional to the transit
times, i. e., v, = 27 for a constant ¢ > 0 that we will fix later. Supplies and demands are
defined by by, = 400, b,,,, = —oo and b, = 0 for all other nodes v € V/(G) \ {vo, Vn+1}.
The time horizon is T := L + 1. Note that the gain factors are encoded implicitly
by the transit times; the resulting instance of the generalized maximum flow over time
problem is therefore polynomial in the size of the partition instance. Figure depicts
this instance.

T =1 T =2Xn
T=0
+OO o« o o —0Q0
u=1
u = 0o u = 0o

Figure 7.1: A generalized maximum flow over time instance obtained from an instance
for the PARTITION problem. Capacities, transit times and supplies and
demands are as annotated, gains are implicitly given by transit times via
v = 2¢7. Supplies and demands not specified are zero.

YES-instance — at least 2°C units flow can be sent. If Ip is a YES-instance with
a solution I C {1,2,...,n}, then there is a generalized flow over time that sends at
least 2¢L units of flow from vy to v, 41 within the time horizon T'. This is, for example,
achieved by sending one unit of flow during the time interval [0, 1) into the path induced
by the arc set {a; | i € I} U{d} | i € I}. This path has length L and gain factor 2¢¢
yielding 2¢ flow units arriving at the sink in the time interval [L, L + 1).

NO-instance — at most O(2°(“~1)) units flow can be sent. If Ip is a NO-instance,
then there exists no path of length L. Thus, due to the time horizon of L + 1, there
exists no path with length at least L that is able to carry flow to the sink in time. Flow
can leave the source at a rate of at most one of at any point in time 6 € [0, L + 1), and
gemin{L—1,L—0} ig the highest gain factor possible for flow leaving the source at time 6.
This yields an upper bound of

1 L+1 L 9cL _ 1
/ ge(L-1) d9+/ 2e(L=101) g = 9ell-D) 1 3" 9elb—0) _ ﬁJr2c(L71)
0 ! 6=1 B

124

7.1 Generalized Maximum Flows over Time

on the amount of flow that can be sent into the sink in a NO-instance. Notice that,
for ¢ sufficiently large, this amount is strictly smaller than the lower bound 2¢* on the
maximum flow value for a YES-instance. The size of the gap depending on c is:

2¢k B 2¢k(2¢ — 1) -1 -1
2Ll poge(l=1) 2¢b— 14 (20— 1)2b-) 2L — LT 2

Thus, we can make the gap arbitrarily large by choosing ¢ appropriately. Therefore any
polynomial-time value-approximation algorithm for the generalized maximum flow over
time problem is able to solve the NP-hard PARTITION problem. O

A similar result can be shown for lossy networks, i.e., networks where all gain factors
are < 1. We can use the same reduction as above, but we define gains v by

1 € AU
Yo =< “ /1 {(wo, 1)} for all a € A(G)
27 a=aj € A

for some constant ¢ > 0. Notice that a vg-v,+1-path with a transit time of 6 has a gain
of 2¢CL=9) " Using these gains, we can send at least 2-°F units of flow in a YES-instance,
using the same argumentation as above. In NO-instances, we can still send flow into
source-sink paths with a rate of at most 1 at each point in time. However, the highest
gain factor possible for a path used at time 6 € [0, L + 1) is now 9—c(2L—min{L—1,L—0})
This gives us

1 L+1 L
/ g—c(L+1) d9+/ g—e(L+10)) gg _ 9—e(LtD) +27CLZ2%9
0 1 =1

— 2—C(L+1) + 2—cL <1 — 2_CL

—c(L+1)
71 > €0(2)

as an upper bound for the amount of flow that can be sent. This produces a similar
gap as above with at least 27°F flow for YES-instances and at most O(2~¢t+1) flow for
NO-instances.

Note that Theorem [7.1]still holds if we encode a number n as n = m-2¢ and use binary
encoding for m and e. This is common when using floating-point numbers, for instance.
This allows us to encode a number n that is a power of 2 in space O(loglogn); it is
easy to check that the hardness proof still holds in this case. It is an interesting open
question whether the theorem holds when a number n in the input has to be encoded in
space O(logn).

7.1.2 Lossy and Proportional Gains

In this section, we will study the complexity of generalized maximum flow over time
problems with lossy and proportional gains, i.e., gains of the form v = 27 for some
constant ¢ > 0. Furthermore, we focus on instances with a single source s and sink ¢ with
unlimited supply and demand. We will show that under these conditions, all generalized

125

7 Complexity

O[’OQJQ,O

Path Cycle Path-cycle Cycle-path Bi-cycle

Figure 7.2: The five types of elementary generalized flows.

maximum flows over time share the same arrival pattern if holdover at intermediate
nodes is not used, and therefore are earliest arrival flows as well.

Theorem 7.2. Let I = (G,u,T,7,s,t,T) be an instance of the generalized mazximum
flow over time problem such that v = 2°7 for some constant c < 0. Let f, f' be generalized
mazimum flows over time for I that do not use holdover in any node except for s and t.
Then f and f' have the same arrival pattern.

Proof. Assume that f and f’ fulfill the requirements of the theorem but have different
arrival patterns. Consider the time-expanded network GT and treat f and f’ as gener-
alized static flows in GT. We can define f — f’ to be a generalized flow in the residual
network G}F, of f" as follows:

(f = o= {max{fa ~ a0} a € A(G), for all a € A(G?/).

max {(fL — f&) 74,0} @ € A(GT),

Generalized flows can be decomposed into five types of elementary generalized flows
according to Theorem (see also Figure . Such an elementary flow g in G}F, can
be added to f’ in GT' in the following way:

(f'+9)a:=fr+gs—gsye forallac A(GT).

Thus we can conclude that the decomposition does not contain flows along paths or cycle-
paths since they could be added to f’ increasing the total flow sent, which would yield a
contradiction to the maximality of f’. Similarly, the decomposition cannot contain flows
along path-cycles or bi-cycles that contain a copy of the sink in the time expansion,
since such a flow would contain a path or a cycle-path which we could use to increase
the flow value of f’. All other kinds of flows along path-cycles or bi-cycles cannot affect
the arrival pattern when added to f’. Due to our choice of f and f’, one of these flows
needs to change the arrival pattern, however. This leaves flow along unit-gain cycles as
the only possibility left. Here, we can confine ourselves to flows along unit-gain cycles
sending flow along holdover or reverse holdover arcs at t — if no form of holdover is used,
the arrival pattern does not change due to flow conservation. Notice that such a flow
along a unit-gain cycle does not use holdover at s since it would otherwise contain a flow
along a path.

126

7.1 Generalized Maximum Flows over Time

We now partition the arcs used by a flow along a unit-gain cycle into the set of all
used holdover arcs H, the set of all used reverse holdover arcs R and the set of all other
arcs O. This leads to:

1:'YC:H’7a'H’7a‘H’)’a — H’7a21.

acH a€R a€e0 a€e0
—— ——
=1 =1

Each arc @ € O corresponds to an arc at a certain point in time, each arc a € H
corresponds to waiting one time unit at a node and each arc a € R corresponds to
canceling waiting time at a node for one time unit. The unit-gain cycle C' itself must
have transit time 0, yielding

0=r0=|H|-|Rl+ > 7a-
acO

Proportionality of transit times and gain factors give us

1=J]r=]]27 =22ec0™ = Y 7,=0 = |H|=|R]|.

acO a€eO a€O

Thus we know now that flows along unit-gain cycles using holdover / reverse holdover
at t must use an equal number of holdover and reverse holdover arcs. We will complete
the proof by showing that flow along a unit-gain cycle that uses an equal number of
holdover and reverse holdover arcs at ¢ and none at s allows us to reroute flow along a
flow-generating cycle in contradiction to the maximality of f’. Figure depicts this
rerouting.

Let f* be such a flow along a cycle. By assumption, there is a holdover arc used
by f* to let flow wait in ¢ from time layer a to a + 1 and a reverse holdover arc used
by f* to cancel waiting in t from time layer 8 to S — 1. There are two possible cases,
depending on which happens earlier in time. We will refer to the case where a < 8 as
Case 1, the other as Case 2. Figure [7.3] shows these two cases. Due to the fact that
holdover arcs at the sink have unlimited capacity, we can reroute the flow by letting the
flow wait at ¢ from « to 8 — 1 in the first case and 8 to a + 1 in the second case. The
resulting cycles are flow-generating, since they use holdover but no reverse holdover; the
rest of the cycle must therefore have negative transit time, which implies flow-generation
by proportionality of transit times and gain factors. This shows the contradiction and
completes the proof. O

If we consider a slightly different model of flow-conservation, where flow can only be
safely stored at source and sink and is subject to the same proportional loss when waiting
in a node that occurs when traversing arcs, we can give a stronger version of the previous
theorem.

Theorem 7.3. Let I = (G,u,T,7,s,t,T) be an instance of the generalized mazximum
flow over time problem such that v = 2 for some constant ¢ < 0 and holdover at a

127

7 Complexity

B o a+1
g—1 «
* X — ¢ °* X — ¢
a+1 I}
a 6—1 o
t t t
Case 1 Case 2

Figure 7.3: Rerouting to construct flow-generating cycles out of unit-gain cycles.

node v € V(G) \ {s,t} has a loss factor of 2¢ for each time unit spent waiting. Let f,
f! be generalized maximum flows over time for I. Then f and f' have the same arrival
pattern.

Proof. The arguments of the previous proof hold here as well, if we make a single modi-
fication: instead of partitioning the arcs of the flows along unit-gain cycles into holdover,
reverse holdover and normal arcs, we partition the arcs now into holdover arcs at the
sink, reverse holdover at the sink and all other arcs (i.e. normal arcs and holdover arcs
at intermediate nodes). This is due to the fact that holdover arcs in nodes other than
source and sink are now allowed, in contrast to the previous theorem. These holdover
arcs behave the same as normal arcs in terms of proportional loss and are therefore
grouped with them. The argumentation of the previous proof can then be applied to
show this claim as well. a

128

8 Orientations and Flows over Time

In this final chapter, we study the problem of orienting an undirected graph such that
the orientation is as beneficial as possible for a subsequent flow over time computation.
This chapter is split into two parts. In the first part, we study prices of orientations
for various problems. We consider both the flow price of orientation as well as the time
price of orientation and hybrid prices which combine these two concepts.

In the second part, we discuss the computational complexity of finding good orien-
tations. Here, we will see several non-approximability results for various contraflow
problems. The results in this chapter are an as of yet unpublished work of Arulselvan,
Grof} and Skutella [7].

8.1 The Price of Orientation

In this chapter, we study the price of orientation. As we discussed before, there are
two different ways to pay the price — either in flow value, or by the time horizon. We
begin by studying the price of orientation for the maximum contraflow over time and
quickest contraflow problems. First, we analyze the flow price of orientation, followed by
the time price of orientation. We conclude this chapter by considering paying the price
partly in flow value and partly in time horizon, and by discussing prices of orientations
for multi-commodity and earliest arrival problems.

8.1.1 Price in Terms of Flow Value

In this subsection, we will examine the flow price of orientation. We will see that
orientation can cost us two thirds of the flow value in some instances, but not more. This
is assuming that we have multiple sources and sinks with finite supplies and demands.

Theorem 8.1. Let N = (G,u,b,7,T) be an undirected network over time, in which B

units of flow can be sent within the time horizon T'. Then there exists an orientation]4\}
of N in which at least B/3 units of flow can be sent within time horizon T .

Proof. The idea of this proof is to simplify the instance, such that a temporally repeated
solution can be found. Such a solution gives us an orientation that we can use, if the
simplification does not cost us too much in terms of flow value. We will achieve this by
simulating the balances using additional edges and capacities, creating a maximum flow
over time problem which permits a temporally repeated solution — these solutions use
edges only in a single direction, which is exactly the property that we need (Ford and
Fulkerson [39]). Then we show that the resulting maximum flow over time problem is
close enough to the original problem for our claim to follow.

129

8 Orientations and Flows over Time

Simulating the balances. We achieve this by adding a super-source s and a super-sink
t to the network, resulting in an undirected network over time N’ = (G', v/, 7', s,t,T)
with

V(G') = V(G) U {s 1},

B(G') = B(G)U{{s,s4} | 5+ €S, }U{{s 1} | s_ €5},

r_ {ue e € E(G), o {Te e € E(G),

Uy -
oo else, 0 else.

We refer to the newly introduced edges of E(G’)\ E(G) as auziliary edges. Furthermore,
we sometimes refer to an auxiliary edge by the unique terminal node it is adjacent to
and write wu, for ue,e = (s,v) and so on. An illustration of this construction can be
found in Figure 8.1

Figure 8.1: The modified network consisting of the original network (white), the super-
terminals (black) and the dashed auxiliary edges.

The network N’ describes a maximum flow over time problem which has an optimal
solution that is a temporally repeated flow, which uses each edge only in one direction

during the whole time interval [0,7"). Thus, there is an orientation N’ such that the

value of a maximum flow over time in N’ is the same as in N’. However, an optimal
solution for N’ will generally be infeasible for N, since there are no balances in N’.

Thus, we need to modify N’ such that balances of N are respected — but without
using actual balances. This leaves us the option to modify the capacities of the auxiliary
edges. In the next step, we will show that we can always find capacities that enforce
that the balances constraints are satisfied and have nice properties for bounding the loss
in flow value incurred by the capacity modification. These properties are then used in
the last step to complete the proof.

Enforcing balances by capacities for auxiliary edges. In this step, we show that we
can choose capacities for the auxiliary edges in such a way that there is a maximum flow
over time in the resulting network that respects the original balances. Choosing finite
capacities for some of the auxiliary edges will — in general — reduce the maximum flow
value that can be sent, though. In order to bound this loss of flow later on, we need
capacities with nice properties that can always be found. We make the following claim.

Lemma 8.2. There are capacities u” that differ from . only for the auziliary edges,
such that the network N" = (G',u",7',s,t,T) has a temporally repeated maximum flow

130

8.1 The Price of Orientation

over time f with the following properties:

o The balances of the nodes in the original setting are respected:
T T
= [50 d8= [f(® ao<Ib| Voe s Us.,
0 0

e and that terminals without tightly fulfilled balances have auziliary edges with un-
bounded capacity
|fol < bo] = up =00 Vo€ S;US_.

Proof. The idea of this proof is to start with unbounded capacities and iteratively modify
the capacities based on the balance and amount of flow currently going through a node,
until we have capacities satisfying our needs. In order to show that such capacities
exist, we apply Brouwer’s fixed-point theorem on the modification function to show the
existence of a fix point. By construction of the modification function, this will imply the
existence of the capacities.

Prerequisites for using Brouwer’s fixed point-theorem. We begin by defining U :=
B=3 S, b, as an upper bound for the capacity of auxiliary edges and we will treat
U and oo interchangeably from now on. This allows us to consider capacities in the
interval [0, U], which is convex and compact, instead of [0,00). This will be necessary
for applying Brouwer’s fixed point theorem later on.

Now assume that we have some capacities u € [0,U]S+US— for the auxiliary edges.
Since we leave the capacities for all other edges unchanged, we identify the capacities
for the auxiliary edges with the capacities for all edges. Compute a maximum flow
over time f(u) for (G',u,7’,s,t,T) by using Ford and Fulkerson’s reduction to a static
minimum cost flow. For this proof, we need to ensure that small changes in u result
in small changes in f(u), i.e., we need continuity. Thus, we will now specify that we
compute the minimum cost flow by using successive computations of shortest s-t-paths.
In case there are multiple shortest paths in an iteration, we consider the shortest path
graph, and choose a path in this graph by using a depth-first-search that uses the order
of edges in the adjacency list of the graph as a tie-breaker. The path decomposition
of the minimum cost flow deletes paths in the same way. This guarantees us that we
choose paths consistently, leading to the continuity that we need.

Defining the modification function. In order to obtain capacities for a maximum flow
over time that respects the balances, we define a function h : [0, U]5+Y5- — [0, U]5+Y5-
which will reduce the capacities of the auxiliary edges, if balances are not respected:

by
|fo(w)]
by

We define Tty to be infinity for |f,(u)| = 0. | f,(u)| refers to the amount of flow going
through the auxiliary edge of terminal v € S, US_, if f is the solution of the maximum

(h(u)), := min {U, u} Yo e S, US..

131

8 Orientations and Flows over Time

flow over time algorithm described above with u as the capacities for the auxiliary edges.
Due to our rigid specification in the maximum flow computation, |f,(u)| is continuous,
and therefore h is continuous as well.

Using Brouwer’s fixed-point theorem. Thus, h is continuous over a convex, compact
subset of R°+Y9-_ By Brouwer’s fixed-point theorem & has a fixed point @ with h(7) = ,
meaning that for every v € Sy U S_ either uw, = U or u, = Wbﬁﬂv < by, = |fo(T)]
holds, which is exactly what we require of our capacities. O

We can now choose capacities u” in accordance to Lemma and thereby gain a
maximum flow over time problem instance N” = (G',u”, 7', s,t,T'), that has a temporally
repeated optimal solution which does not violate the original balances. What is left to
do is to analyze by how much the values of optimal solutions for N and N” are apart.

Bounding the difference in flow value between N and N”. We now want to show
that we can send at least B/3 flow units in the network N” with the auxiliary capacities
of the previous step. For the purpose of this analysis, we partition the sources and sinks
as follows:

S}r::{s+65+ | u8+<oo},Si i={sy €54 | u,, =00},
Sli={s_ €S | u,_ <oo},5%:={s_ €S | u,_ =o0}.

The partitioning is also shown in Figure [8.2

st

S2

O 50D

OO 0
K

Figure 8.2: The partitioning based on the capacities of the auxiliary edges. Dashed edges
have finite capacity, dotted edges have infinite capacities.

Now let f be a temporally repeated maximum flow in N that does not violate bal-
ances. Notice that the auxiliary edges to terminals in Si and S?%, respectively, have
infinite capacity and that the supply / demand of nodes in Si and S! is fully utilized.
Thus, |f| > max {b(S1),b(S1)}.

Should b(S%) > B/3 or b(S1) > B/3 hold, we would be done - so let us assume
that b(S%) < B/3 and b(SL) < B/3. It follows that b(S?) > 2/3B and b(S%) > 2/3B
must hold in this case. Now consider the network N’ with the terminals of Sle and S

132

8.1 The Price of Orientation

removed, leaving only the terminals of Si and S2. We call this network N’ (Si, S2).
Let |f'| be the value of a maximum flow over time in N'(5%,52). Since B units of flow
can be sent in N (and therefore N’ as well), we must be able to send at least B/3 units
in N’(S%,52). This is due to the fact that b(S%) > 2/3B,b(S%) > 2/3B — even if B/3
of these supplies and demands were going to S and coming from S!, respectively, this
leaves at least B/3 units that must be send from S? to S2. Thus, B/3 <|f’|. Since the
capacities of the auxiliary edges of Si and S? are infinite, we can send these B/3 flow
units in N” as well, proving this part of the claim.

Thus, we have shown that a transshipment over time problem can be transformed
into a maximum flow over time problem with auxiliary edges and capacities. If these
edges and capacities fulfill the requirements of Lemma [8.2] we can transfer solutions for
the maximum flow problem to the transshipment problem such that at least one third
of the total supplies of the transshipment problem can be send in the flow problem.
Finally, the proof of Lemma [8:2] shows that such capacities do always exist, completing
the proof.]

Notice that the algorithm described in the proof is not necessarily efficient — it relies on
Brouwer’s fixed-point theorem, and finding a Brouwer fixed-point is known to be PPAD-
complete [89] and exponential lower bounds for the common classes of algorithms for this
problem are known [63]. Since the algorithm is efficient aside from finding a Brouwer
fixed-point, our problem is at least not harder than finding a Brouwer fixed-point. Thus,
our problem is probably not FNP-complete (with FNP being the functional analogon of
NP) as PPAD-completeness indicates that a problem is not FNP-complete [89]. However,
it is possible that the fixed-point can efficiently be found for the specific function we are
interested in. Omne problem for finding such an algorithm is however, that changing
the capacity of one auxiliary edge does not only modify the amount of flow through its
associated terminal but through other terminals as well — and this change in flow value
can be an increase or decrease, making monotonicity arguments problematic.

Now we have an upper bound for the flow price of orientation and it turns out that
this bound is tight. In order to show this, we can construct a network with three sources
and sinks where each source has to send flow to a specific sink (due to capacities and
transit times) but the network topology prevents flow from more than one source-sink
pair being able to be send in any orientation.

Theorem 8.3. For any e > 0, there are undirected networks over time N = (G, u, b, 7,T)
in which B units of flow can be sent, but at most B/3 + ¢ units of flow can be sent in

any orientation N of N.

Proof. Consider the family of undirected networks over time N5. = (G,u,b,7,T + ¢)
depicted in Figure for some € > 0,4 € (0,1). For ¢ < 6T, we cannot send flow from
s1 to tg within the time horizon, and we can only send ¢/7 flow from s; to ¢;. Thus, we
have to orient {vs,v4} as (v3,v4) or lose the supply of s; in the case of € — 0. Orienting
{vs,v4} as (vs,v4) causes us to lose the demands of ¢; and ty, though, resulting in only
one third of the flow being able to be sent.

133

8 Orientations and Flows over Time

Figure 8.3: The undirected network over time Ns.. Not specified transit times and
balances are 0 and not specified capacities are infinite.

Therefore let us now orient {vs,v4} as (vq,v3). Supply from s3 needs to go through
{s3,v2} at a rate of at most 1/T. Thus, if we were to route flow through {ss,ve} and
{v2,v4} we can send at most (T'+¢ — (1 —0)T")/T = ¢/T + § to vy (and the sinks)
within the time horizon. For §,¢ — 0 this converges to 0 as well. Since we already lost
the supply of s1, we need the supply of s3 if we want to send significantly more than
one unit of flow. Therefore, we would have to orient {vi,v2} as (ve,v1) to accomplish
this. However, due to the capacity of 1/T on {v1,v4} we can send at most 1+ /T flow
through this edge, and one unit of this flow comes from s3, leaving only /T units for
flow from s5. Thus, for §,& — 0 the flow we can send converges to one.

In the undirected network, we can send all supplies. The supply from s is sent to t3,
using {vs,v4} at time 7. The supply from s9 is sent to to, via {v1,va} at time 0, {ve, v4}
and {vg,v3} at time (1 — §)T. The supply from s3 is sent to t; by {ve,v1}, {v1,v4} and
{v4,v3} during the time interval (0,7"). This completes the proof. O

With these theorems, we have a tight bound for the flow price of orientation in net-
works with arbitrarily many sources and sinks. In the case of a single source and sink,
we have a maximum flow over time problem and we can always find an orientation in
which we can send as much flow as in the undirected network (Ford and Fulkerson [39]).
This leaves the question about networks with either a single source or a single sink open.
However, if we use the knowledge that only one source (or sink) exists in the analysis
done in the proofs of Theorem and Theorem we achieve a tight factor of 2 in
these cases.

Theorem 8.4. Let N = (G,u,b,7,T) be an undirected network over time with a single
source or sink, in which B units of flow can be sent within the time horizon T. Then
there exists an orientation N of N in which at least B/2 units of flow can be sent within
time horizon T, and there are undirected networks over time for which this bound is
tight.

Proof. For this proof, we can use most of the argumentation of the proof of Theorem [8.1]
The differences start only in the last part, where the differences in flow value between the

134

8.1 The Price of Orientation

original network N and the network with capacitated auxiliary edges N” is considered.
In the proof of Theorem [8.1] we partitioned the sources and sinks, but now we have
either a single source or a single sink which does not need to be partitioned. Let us
assume now that we have a single sink, the case with a single source follows analogously.
We partition the sources as follows.

Sii={sy €84 | us, <oo},S%:={sy €54 | us, =0},

We assume b(S1) < B/2, because otherwise there is nothing to show. This implies
that b(S?) > B/2, however. We can now consider the network N’ with the sources
Si removed and refer to the resulting network as N’ (S_%,S_). Since B units of flow
can be sent in N (and therefore N’ as well), we must be able to send at least b(S?)
units in N'(S%, S_), since we still have all sinks available. Because of b(S%) > B/2, this
proves the first part of the claim. For the second part, the lower bound, consider the
construction from Theorem [R.3]

If we restrict the network described there to s, s3,v1,v2,v4 and set the balance of vy
to —2, we can apply the same argumentation as in Theorem to get a proof for the
case of a single sink. For the case of a single source, we can do something similar, but we
have to perform more changes. The result can be seen in Figure the argumentation
is analogous to Theorem O

T=01-0T

Figure 8.4: An undirected network with a single source where every orientation can send
at most one half of the flow possible in the undirected setting. Not specified
transit times and balances are 0 and not specified capacities are infinite.

8.1.2 Price in Terms of the Time Horizon

Now that we have tight bounds for the flow price of orientation with single and multiple
sources and sinks, let us now consider the time price of orientation. Here, we examine
by how much we need to extend the time horizon in order to send as much flow in a
favorable orientation as in the undirected network. It turns out that there are instances
for which we have to increase the time horizon by a factor that is linear in the number
of nodes. This is due to the fact that we have to send everything, which can force us to
send some flow along very long detours — this is similar to what occurs in [50]. For this
reason it is not a good idea to pay the price of orientation in time alone.

Theorem 8.5. There are undirected networks over time N = (G, u, b, 7,T) with either a
single source or a single sink in which B units of flow can be sent within a time horizon

135

8 Orientations and Flows over Time

of T, but it takes a time horizon of at least (n —1)/4-T to send B units of flow in any

orientation]—V? of N. This bound also holds if G is a tree with multiple sources and sinks.
Proof. We define a family of undirected networks over time Ny by

V(Nk) := {s0,v0, g, tp y U {si, ti,vi,w; | i=1,...,k—1},
E(Ng) == {{s0,v0}, {vr—1, vk}, {ve, te }}
U{{si,wi}, {ti,wi} , {wi,vi} , {vi,vima} [i=1,... 0k —1}.

We define capacities, transit times and balances for this network by

(nT)=' e = {w;,t;}, T e={vi,vi1},
u@ = 7'6 =
0 else,

o0 else,

(nT)’ v =5,
b= - SEA T v =t,

0 else.

Figure depicts such a network Nj. It is possible to fulfill all supplies and demands in

—=T @)

Figure 8.5: An undirected network with a single sink where every orientation requires a
time horizon that is larger by a factor of at least (n — 1)/4 compared to the
undirected setting. Not specified transit times and balances are 0 and not
specified capacities are infinite.

time 7'+ 1 in the undirected network, if we route the supply of source s; through v;, v;11,
wit+1 and t;41 to t. However, this requires using the {v;, w; }-edges in both directions. If
we orient a {v;, w;} edge as (v;, w;), we can only route the supply of s; via w; and ¢; to t,
which requires nT" time units, due to the supply of s; and the capacity of {w;,t;}. If we
orient all {v;, w;} edges as (w;,v;), we have to route the supply from sg via vg, v1,. .., vg
and t; to ¢, which requires kT time units. By construction of the network, we have
k = (n —1)/4, which proves the claimed factor.

136

8.1 The Price of Orientation

A similar construction can be employed in networks with a single source and multiple
sinks (see Figure . If we want to show the result for graphs G that are trees, we can
remove t and shift the demand to the nodes t;, i = 1,...,k and give node t; a demand
of —(nT)" 1. [

@ =T N __T_=__T__

b= —(nT)°

Figure 8.6: An undirected network with a single source where every orientation requires
a time horizon that is larger by a factor of at least (n — 1)/4 compared to
the undirected setting. Not specified transit times and balances are 0 and
not specified capacities are infinite.

8.1.3 Price in Terms of Flow and Time Horizon

We have seen now that the price of orientation is 3 with regard to the flow value, and
Q(n) with regard to the time horizon. We can improve on these bounds if we allow
to pay the price of orientation partly in terms of flow value and partly in terms of the
time horizon. This is possible by combining the reduction to maximum flows over time
from Theorem with the concept of temporally averaged flows (see, e.g., Fleischer
and Skutella [32]).

Theorem 8.6. Let N = (G, u,b,7,T) be an undirected network over time, in which B
units of flow can be sent within the time horizonT'. Then there exists an orientation ﬁ of
N in which at least B/2 units of flow can be sent within time horizon 2T. The orientation
and a transshipment over time with this property can be obtained in polynomial time.

Proof. In order to prove this claim, we will create a modified network with a larger time
horizon in which we can send a temporally repeated flow which uses each edge in only
one direction. This gives us then an orientation with the desired properties. Consider

137

8 Orientations and Flows over Time

the network N’ = (G',u/,b',7/,2T) defined by

V(G =V(Q)U{s,t}, E(G):=EG)U{{s,v}| b,>0}uU{{v,t}| b, <0},
b e ={s,v}, v e V(G),

<

r € E(G) 0
I —by r._)Te € ’ /o
Ue = T €= {Uat}a Te -= {0 else, bv T B v =S,
ue else, —-B v=t.

An illustration can be found in Figure We know that there is a transshipment over

Figure 8.7: The modified network consisting of the original network (white) and the
newly introduced nodes (black) and auxiliary edges (dashed).

time f that sends B flow units within time 7" in N. We can decompose this transshipment
into flow along a family of paths P with 7p < T for all P € P and interpret f as sending
flow into paths P € P at a rate of fp(f) at time 6. Now consider a transshipment over
time f’ that is defined by sending flow into the same paths as f, but at an averaged rate
of fp(6) = %fOT fr(&) d¢ for a path P and a time 6 € [0,T"). Since all paths P € P
have 7p < T, f’ sends its flow within a time horizon of 2T. f’ sends B flow units as
well, since we just averaged flow rates and the averaging guarantees that the capacities
of the edges e € E(G') \ E(G) are not violated. We conclude that a maximum flow over
time in N” := (G',u/, 7', s,¢,2T) has a value of at least B.

Now we compute a maximum flow over time in N” using the Ford-Fulkerson algorithm
[39]. This algorithm computes a temporally repeated maximum flow over time f” which
uses each edge in only one direction. We can transform f” into a transshipment over time
f* for N by cutting off the edges of E(G’)\ E(G). Due to u’{svv} =b,/T, uf{w} = —b,/T
and the time horizon of 27, the resulting flow over time f* satisfies supplies and demands
b" with 0 < o) < 2b, for v € V(G) with b, > 0 and 0 > b)) > 2b, for v € V(G)
with b, < 0. Thus, 1/2f* sends at least B/2 flow units in 27 time and uses each
edge in only one direction without violating the balances b. Furthermore, this can be
done in polynomial time, since the transformation and the Ford-Fulkerson algorithm are
polynomial. This concludes the proof. O

8.1.4 Price in Trees

We have seen that in general networks there is always a price of orientation to be paid.
This raises the question whether there are families of networks where we do not have to
pay a price of orientation — i.e., networks where the price of orientation is 1. However,

138

8.1 The Price of Orientation

as the next example shows, even very simple families of networks like trees have prices
of orientation greater than 1.

Theorem 8.7. There are undirected networks over time N in which B units of flow
can be sent within the time horizon T and the underlying graph G is a tree but any
orientation ﬁ of N can send at most B/2 units of flow within time horizon T.

Proof. Consider the instance depicted in Figure with a time horizon of T+ 1. In the
undirected network, we can send flow from b to d and e to a within the time horizon
by using {b, c} in both directions. In any orientation, we either send only 1 flow unit or

we require a larger time horizon, as we have to route flow from e to d if we want to use
both sinks. O

Figure 8.8: A tree network where the value price of orientation is 2.

Notice that we can use the construction in Figure[8.6to show a time price of orientation
of Q(n) for trees, as we can remove the super-source from the network and shift the
supplies away from the super-source.

8.1.5 Price for Earliest Arrival Flows

We now have tight bounds for the flow and time price of orientation for maximum
or quickest flows over time. However, for application in evacuations, it would be nice
if we could analyze the price of orientation for earliest arrival flows as well, as they
provide guarantees for flow being sent at all points in time. Unfortunately, we can
create instances where not even approximate earliest arrival contraflows exist, because
the trade-off between different orientations becomes too high.

Theorem 8.8. There are undirected networks over time N = (G,u,b,T) for which an
earliest arrival flow exists, but that do not allow for an earliest arrival contraflow. This
also holds for a-time- and [-value-approximative earliest arrival contraflows for o < T' /4
and B < U/2, where T and U are the largest transit time and capacity in the network,
respectively.

Proof. Consider the network depicted in Figure We can orient the edge {vi,v2} as
(v, v1) and have flow arriving with a rate of U starting at time 7. However, we have no
flow arriving before time 7/2+ 1 using this orientation. If we use the orientation (vy,v2)
instead, we can have flow arrive at time 2, but at a rate of 1 instead of U, and the flow

139

8 Orientations and Flows over Time

Figure 8.9: An undirected network with source s and sink ¢ and capacities and transit
times as specified.

rate can increase to not more than 2 after time 7'/2+41. For U > T, this trade-off makes
it impossible to find an earliest arrival contraflow.

For a-time-approximative earliest arrival flows, we can choose U = 2(T?+T)+2. This
yields an instance where no o < T'/4-approximation is possible. Using the orientation
(v1,v2), we cannot send U flow units before time 72+ T. However, using the orientation
(vg,v1), we could have sent them by time 7"+ 1. Sending flow at a rate of U using
the orientation (ve,v1) results in no flow units being sent until time 7'/2 + 1, but flow
could have been sent as early as time 2 using the other orientation. This yields the
non-approximability result for a-time-approximations.

For §-value-approximations, we need to use the orientation (v1,v2) to have some flow
arrive starting at time 2. However, using the other orientation allows us to send flow at
a rate of U, yielding a ratio that converges to U compared to a rate of 2 for the (vy,v2)
orientation, which concludes the proof. O

8.1.6 Price for Multi-commodity Flows

Another interesting setting is to consider the price of orientation in multi-commodity
flows. In the case of multi-commodity flows we will usually not be able to send as much
flow in an oriented network as we can in the unoriented one, as the following theorem
shows.

Theorem 8.9. There are undirected networks over time N = (G,u,b,7,T) with mul-
tiple commodities for which B flow units can be sent within a time horizon T but any
orientation N of N cannot send B flow units even with infinite time.

Proof. Consider the instance depicted in Figure We can orient {v,w} as either
(v,w) or (w,v) and in each case we lose all the flow of one of the two commodities. In
the undirected network they can use {v,w} one after the other but this is not possible
in any orientation. O

Thus, we have to expect that we will lose flow from some commodities in an orientation.
In fact, we may lose all flow of an specific commodity (as we have seen in Figure[8.10)), so

140

8.2 Complexity

bi=1b=-1(v———(w)by=—1,by =1

Figure 8.10: An undirected network with two commodities where no orientation can send
both commodities.

the price of orientation for the concurrent multi-commodity flow problem is unbounded.
On the other hand, we can bound the price of orientation for the (maximum) multi-
commodity flow problem by picking the commodity with the most supplies, discard
all other commodities and solve the single commodity version of the problem for the
remaining commodity. By Theorem this guarantees a price of orientation of 3k,
where k is the number of commodities. The next theorem gives a lower bound on the
flow price of orientation for this problem.

Theorem 8.10. There are undirected networks over time N = (G, u,b,7,T) with mul-
tiple commodities for which B flow units can be sent within a time horizon T but any
orientation N of N can send at most B/(3k) flow units within time T .

8.2 Complexity

In this final section, we study the computational complexity of various contraflow prob-
lems. We begin with the quickest contraflow problem, where time-approximations better
than 2 are not possible, unless P = NP.

Theorem 8.11. The quickest contraflow problem cannot be time-approximated better
than a factor of 2, unless P = NP,

Proof. Rebennack et al. [96] showed the NP-hardness of this problem. Their reduction
technique can also be used to show a non-approximability result, if we modify the transit
times used in their reduction. We give a brief sketch of their reduction technique, which
is based on the SAT problem. We construct an instance for the quickest contraflow
problem from an instance for the 3SAT problem with ¢ clauses ¢, ..., cs over k variables
r1,...,x; as follows.

e For each clause ¢;, we create a source c{r and a sink ¢; with a supply and demand
of 1 and —1, respectively.

e For each variable z;, we create four nodes: z} and z? for its unnegated literal,
a’:zl and 57312 for its negated literal. These nodes get neither supplies nor demands.
Furthermore, we create a source s; and a sink ¢; with a supply and demand of 1,
respectively. Finally, we create edges {x},xf}, {:Ell,a’:f}, {si,m%}, {si,i’?} with a
transit time of 0 and edges {ti, :L'Zl}, {ti, :Ezl} with a transit time of 1.

1

3

with a transit time of 1 and edges {ci_,:vgl} , {ci_,xzzz} , {ci_,a_cgs} with a transit

time of 0.

e v + .1 + .1 + =
e For each clause ¢; = x;, V z;, V Z;, We create edges {ci ,xil} , {ci 7371'2} , {ci , T

All capacities are infinite. Figure depicts such a construction.

141

8 Orientations and Flows over Time

Figure 8.11: A quickest contraflow instance derived from a SAT instance. Edges with a
transit time of 1 are dashed, edges with a transit time of 0 are solid. s and
to and several clause-edges are not shown.

YES-Instance — Routable in time 1. We derive an orientation from an assignment
for the SAT problem that fulfills all clauses. If variable x; is set to 1 in the assignment,
we orient {x},2?} as (z},27) and {z},z?} as (z7,z}). Otherwise, we orient {z},z?} as
(22, 2}) and {z}, 77} as (z},77). All other edges are oriented away from the sources or
towards the sinks, respectively. A clause source c;r with a fulfilled literal x; can send 1
flow unit along cf — x} — 22 — ¢, and each variable source s; can send 1 flow unit to
its sink via s; — xf — xll —t;if z; =0 and s; — :EZQ — 3?11 — t; otherwise. This takes 1
time unit.

NO-Instance — Not routable in time < 2. If we want to send everything in a time
< 2, we can only use paths containing at most one edge with a transit time of 1. It
follows that supply from the clause sources needs to go to a clause sink, via an (z}, z?)
or (Z},7?) edge. Similar, each variable sink ¢; needs to get its flow from a variable source
and requires an (22, z}) or (z7,7}) oriented edge, if we want to be faster than 2. Having
both edges oriented as (z?,z}) and (z?,z}) does not help more than having only one of
them oriented that way — we will now assume without loss of generality, that only one
of the edges is oriented that way. We can derive an assignment from the orientation of
these edges. If we have (m?,le) in our orientation, we set z; = 0 and z; = 1 otherwise.
However, no assignment fulfills all clauses, therefore we have to send clause supplies to
variable demands, which takes 2 time units.

Thus, if we are able to time-approximate the quickest contraflow problem within a

factor of 2, we can distinguish between YES and NO instances of the 3SAT problem. [

142

8.2 Complexity

Figure 8.12: An instance of the maximum contraflow over time problem, derived from a
PARTITION instance. All capacities are one, transit times are as specified
on the edges.

We can show a similar result for the maximum contraflow over time problem. Here,
we use a reduction from PARTITION similar to the reduction used by Klinz and Woeg-
inger [71] for minimum cost flows over time.

Theorem 8.12. The maximum contraflow over time problem cannot be approrimated
by value better than a factor of 2, unless P = NP.

Proof. The following reduction is inspired by Klinz and Woeginger [71]. Consider an
instance of the PARTITION problem, given by integers a1, ..., a, with > ; a; = 2L
for some integer L > 0. We create an instance for the maximum contraflow over time
problem as follows:

e We create n+1 nodes vy, ..., vn+1, two sources si, sg and two terminals ¢, 5. The
sources have each a supply of 1, the sinks each a demand of —1.

e We create 2n edges e¢; = {v;,viy1}, €, = {vi,vi41} for i = 1,...,n with a transit
time of a; for e; and a transit time of 0 for e}, edges {s1,v1}, {t2, v1} with a transit
times of L + 1 and edges {s2, vn+1}, {t1,Vnt2} with a transit times of 0. All edges
have unit capacities.

e We set the time horizon to 2L + 2.

The resulting instance is depicted in Figure|3.12

YES-Instance — total flow value of 2. If the PARTITION instance is a YES-instance,
there exists a subset of indices I C {1,...,n} such that), ; A; = L. Thus, we can
orient the edges so that two disjoint v1-vy,41- and v,41-vi-paths with a length of L are
created, which gives us two disjoint paths from s; to ¢; and s to to with transit time
2L + 1, respectively, that are sufficient to send all supplies within the time horizon of
2L 4 2.

NO-Instance — total flow value of 1. Notice that we cannot send any flow from s;
to to within the time horizon of 2L + 2. If the PARTITION instance is a NO-instance,
then we cannot get a v1-v,41- and a vy, 1-vi-path with a length L, so only the demands
of one of the two demands can be fulfilled. O

143

8 Orientations and Flows over Time

Clearly, the results of Theorem and carry over to case of multiple commodities
as well. However, for multiple commodities, we can show even stronger results for some
problems. We begin with the maximum multi-commodity concurrent contraflow over

time problem, where we can show that it is not approximable by time or value, unless
P = NP.

Theorem 8.13. The mazimum multi-commodity concurrent contraflow over time prob-
lem cannot be approrimated by time or value, unless P = NP. This holds even in the
case with zero transit times.

Proof. Consider an instance of 3SAT, given by a set of ¢ clauses C = {ci1,...,¢/} on
k variables x1,...,xp. We create a corresponding instance of the maximum multi-
commodity concurrent contraflow over time problem as follows:

e For each clause ¢; we create a node c¢;,

1

: 1 .2 =1 =2 ,.— = J— +
e for each variable x;, create nodes z;, z7, T;, Tj,x; ,; , d; , d; and d; .

1

e For a clause ¢; = z;, V x4, V T;; we create edges {ci, x}l }, {ci, z;, and {ci,f}B ,

e for each variable x;, create edges {d;r,x%}, {d;rj?}, {x},d;}, {fl d; }, {x?,m;},

79
{77}, {al o} and {7}, 77}
e Capacities are set to ¢ for each edge and transit times to 0.

e There is a commodity for each variable x;, with a supply of 2 at dj and demands of

—latd;, Ei_ . Furthermore, there is a commodity for each clause ¢; = z;, Va;, VTi,,
with a supply of 3 at the clause node ¢; and a demand of —1 at z; , z;, and T_.

Notice that the resulting network — an example of which is depicted in Figure — has
£ + 9k nodes and 3¢ + 8k edges, which is polynomial in the size of the 3-SAT instance.

YES-Instance — i-concurrent flow value. If the 3SAT instance is a YES-instance,

3
then there is a variable assignment z; € {0,1}, i = 1,..., k fulfilling all clauses. We use
this assignment to define an orientation of the edges in our network. If a variable x; is

assigned a value of 0, we orient the edge {x},x?} as (22, z}) and {E},@Q} as (z},77); if

x; is assigned the value 1, we orient edge {f},fg} as (72,7}) and {le,m?} as (x},z?).

All other edges are oriented away from sources and towards sinks. Notice that:

e Each clause commodity of a clause ¢; = x;, V z;, V T;, can send flow to the nodes

1 .1 =1
Ti s Xiys Tiy -

e Each clause is satisfied by our assignment, so there is a literal in each clause that
is true.

e For this literal x;, there is an edge directed from xll to :U? (or @1 to @2, respectively).

144

8.2 Complexity

- ngfl\/fg\/xk)— Cp= ...

B =i TN
9009 0009 000

: Variable x; : : Variable x5 : : Variable x,
2 2 2
N \2/ NG
* * * * *

Figure 8.13: A maximum multi-commodity concurrent contraflow over time problem in-
stance derived from a 3SAT instance. The dashed edges are important for
encoding SAT assignments.

e By construction of the instance, there is a demand for this clause commodity in

x; , which can be reached from z? (or Z; and 72, respectively).

7
Therefore we can fulfill as much demand of a clause commodity as it has satisfied literals
in our assignment, which is at least 1. Thus, we have a concurrent flow value of %
for these commodities. Now we need to consider the variable commodities. Since our
assignment can only set ; to either 1 or 0, one of the edges {x},27} and {z;,Z7} has
been oriented as (z?,z}) or (F?,7}), respectively, in each variable block. This creates a
path to send one flow unit of each variable commodity, giving us a concurrent flow value
of % for them, yielding a total concurrent flow value of %

Positive concurrent flow value — YES-Instance. In order to have a positive concur-
rent flow value, at least one of the edges {a:zl, x?} and {@1,@2} needs to be oriented as
(z2,x}) or (z2,7}) in each variable block — otherwise there is no way to route any flow
from the variable commodity. Thus, we can define an assignment by setting x; = 0 if
{x},x%} has been oriented as (3312,3:21) and x; = 1 otherwise. Notice that if {x},x?} is
oriented as (z7,x}), there is no flow reaching x; (the edges adjacent to d;r cannot be
used to reach z; , or no flow of the variable commodity could be sent). But since we have
a positive concurrent flow value, there is flow from every clause commodity reaching one
of its sinks. Such flow has — by construction of the network — to travel through the
block of one of the variables contained in the clause. More specifically, it has to traverse
the (x},2?) or (z},7?) edge, depending on whether the variable appears negated in the
clause or not. Thus, this flow travels through an edge representing an fulfilled literal of
its clause in the assignment derived from the edge orientation. Therefore, the instance

has a satisfying assignment, making it a YES-instance.

145

8 Orientations and Flows over Time

Thus, NO-instances have a concurrent flow value of 0, whereas YES-instances have
a concurrent flow value of 1/3, proving that value-approximations are not possible.
Since our argumentation holds for arbitrarily large time horizons, it follows that time-
approximation is not possible either. O

We can use a similar construction to show a non-approximability result for the quickest
multi-commodity contraflow problem.

Theorem 8.14. The quickest multi-commodity contraflow problem cannot be approxi-
mated by time with a factor better than @(\/ﬁ) with U being the largest capacity, unless
P = NP. This holds even in the case of zero transit times.

Proof. Consider an instance of 3SAT, given by a set of ¢ clauses C' = {c1,...,¢/} on k
variables z1, ..., z;. We create a corresponding instance of the quickest multi-commodity
contraflow problem as follows:

e We create a super-sink ¢~ and for each clause ¢; we create a node ¢;,

e for each variable x;, we create nodes l‘il, x?, fil, T?, d:, d; , d;-'r and df.

e For each clause ¢; = x;, Vx;, VT;, we create edges {Ci, x}l }, {ci, :EZlQ} and {ci,f}g ,

e for each variable z;, we create edges {dj,x?}, {dj,f?}, {a:il,dl-_}, Eil,di ,
{af.c} (a2 e}, {aha?}, {2l w2}, {df . } and {df d; .

e Capacities are set to C? for edges leaving dj, to C for the other edges completely
inside a variable block, to 1 for edges incident to the source of a clause commodity
and ¢ for all other edges.

e For each clause ¢;, there is a commodity with supply of 1 at node ¢; and a demand
of —1 at ¢~. For each variable z;, there is a commodity with a supply of C' at d;r,

a supply of C? at d;, and a demand of —3(C*+C) at d; and d; .

Notice that the resulting network — an example of which is depicted in Figure — has
£+ 8k +1 nodes and 3¢+ 10k edges, which is polynomial in the size of the 3SAT instance.

YES-Instance — 1 time unit required. If the 3SAT instance is a YES-instance, then
there is a variable assignment x; € {0,1}, ¢ = 1,...,k fulfilling all clauses. We use

this assignment to define an orientation of the edges in our network. If a variable x; is
assigned a value of 0, we orient the edge {x},x?} as (22, z}) and {fll,ff} as (z},77); if
z; is assigned the value 1, we orient edge {z},7?} as (z7,7;) and {a},27} as (z},2?).
All other edges are oriented away from sources and towards sinks. Notice that:

e Each clause commodity of a clause ¢; = x;, V z;, V T;, can send flow to the nodes

1 .1 =1
Ti s iy Tiy -

146

8.2 Complexity

L= 1 1
,,,,, =) c2 =71 VT2V g Co = ...
u=C
u=C2 c1 =71 Vx2VTg
—l@*+ro) -3(€*+0) —1c?+o0) -3€*+0) -1@?2+0) -3i*+0)
D' @
CZ
Variable x1 Variable xy,
C C
(@) (a)
L NGV

Figure 8.14: An instance of the quickest multi-commodity concurrent flow problem de-
rived from a 3SAT instance. Supplies and demands are zero unless specified
otherwise, capacities are encoded by edge type.

e Each clause is satisfied by our assignment, so there is a literal in each clause that
is true.

e For this literal x;, there is an edge directed from :1:11 to 3:% (or @1 to @2, respectively).

e By construction of the instance, there is a demand for this clause commodity in
¢~, which can be reached from z7 / 72.

Therefore we can fulfill the demand of a clause commodity if it has satisfied literals in
our assignment, which it does. Now we need to consider the variable commodities. Since
our assignment can only set x; to either 1 or 0, one of the edges {xll,x?} and {511,522}
has been oriented as (z2, x}) or (F?,7}), respectively, in each variable block. This creates
a path to send C flow units from dj to one of its sinks, and the remaining demands can
be covered by supply from a?:r Since the transit times are zero, all of this can be done

in 1 time unit.

NO-instance — O(C)) time units required. Any orientation that orients {z},z?} as
(z},27) and {z},77} as (z7,7}) or {a},2?} as (27, 2}) and {T},7}} as (T;,77) can be
interpreted as a variable assignment (see above). However, in a NO-instance, there is no
variable assignment that satisfies all clauses. Thus, if all clause commodities could be

fulfilled in such an orientation, there would have to be a clause ¢; with a literal x;, such

that the edge {@1,@2} is used to get to the clause sink. If we do this, we need to switch

either the direction of one of the outgoing edges of cZ;“ in order to get to {f},fi} from
the entry point of the clause commodity into the variable block. However, this causes
1/2C?% — 1/2C units of flow from the variable commodity to be send through edges with

capacities of at most C, which requires at least ©(C) time units.

147

8 Orientations and Flows over Time

If we orient both {x},x?} as (x?,x}) and {Tzl,f?} as (@2,@1), we cannot use the

corresponding variable block to route flow from clause commodities, which does not
help us at all.

The only option left would be to orient both {5511,3:12} as (z},2?) and {@1,@2} as
(z},7?). However, this means that we have to route the C units of supply from d; over
¢~ and back to the variable block through a clause source, which requires at least C'
time units because of the capacities.

Thus, we have a gap of C between YES- and NO-instances, which proves the claim. [

148

Bibliography

1]

[10]

[11]

A. Agapi, S. Soudan, M. Pasin, P. V.-B. Primet, and T. Kielmann. Optimizing
deadline-driven bulk data transfers in overlay networks. In Proceedings of 18th

Internatonal Conference on Computer Communications and Networks (ICCCN
'09), pages 1-8, 2009.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

G. Andreatta, L. De Giovanni, and G. Salamaso. Fleet quickest routing on grids:
A polynomial algorithm. International Journal of Pure and Applied Mathematics,
62:419-432, 2010.

J. E. Aronson. A survey of dynamic network flows. Annals of Operations Research,
20:1-66, 1989.

J. E. Aronson and B. D. Chen. A forward network simplex algorithm for solving
multiperiod network flow problems. Naval Research Logistics Quarterly, 33:445—
467, 1986.

S. Arora and B. Barak. Computational Complezity: A Modern Approach. Cam-
bridge University Press, New York, 2009.

A. Arulselvan, M. Grof3, and M. Skutella. The price of orientation: On the effects
of directing a network on flows over time. Unpublished.

H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger, C. Harrelson, V. Raychev, and
F. Viger. Fast routing in very large public transportation networks using transfer

patterns. In Proceedings of the 18th European Symposium on Algorithms (ESA
’10), pages 290-301. Springer, 2010.

H. Bast and S. Storandt. Frequency data compression for public transportation
network algorithms. In Proceedings of the 6th Symposium on Combinatorial Search
(SoCS ’13), 2013.

N. Baumann and E. Kohler. Approximating earliest arrival flows with flow-depen-
dent transit times. Discrete Applied Mathematics, 155:161-171, 2007.

N. Baumann and M. Skutella. Earliest arrival flows with multiple sources. Math-
ematics of Operations Research, 34:499-512, 2009.

149

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

150

R. E. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87-90,
1958.

G. N. Berlin. The use of directed routes for assessing escape potential. Fire Tech-
nology, 14:126-135, 1978.

K. Beygang, S. O. Krumke, and C. Zeck. Generalized max flow in series-parallel
graphs. Report in Wirtschaftsmathematik 125, TU Kaiserslautern, 2010.

D. R. Bish, E. P. Chamberlayne, and H. A. Rakha. Optimizing network flows with
congestion-based flow reductions. Networks and Spatial Economics, pages 1-24,
2012.

M. Braun and S. Winter. Ad-hoc solution of the multicommodity-flow-over-time
problem. IEEE Transactions on Intelligent Transportation Systems, 10:658-667,
2009.

L. E. J. Brouwer. Uber Abbildung von Mannigfaltigkeiten. Mathematische An-
nalen, 71:97-115, 1911.

R. E. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem. Zeitschrift
fiir Operations Research — Methods and Models of Operations Research, 37:31-58,
1993.

R. E. Burkard, K. Feldbacher, B. Klinz, and G. J. Woeginger. Minimum-cost
strong network orientation problems: Classification, complexity, and algorithms.
Networks, 33:57-70, 1999.

L. G. Chalmet, R. L. Francis, and P. B. Saunders. Network models for building
evacuation. Management Science, 28:86—105, 1982.

B. Cho and I. Gupta. New algorithms for planning bulk transfer via internet
and shipping networks. In Proceedings of the 30th International Conference on
Distributed Computing Systems (ICDCS ’10), pages 305-314, 2010.

W. Choi, H. W. Hamacher, and S. Tufekci. Modeling of building evacuation prob-
lems by network flows with side constraints. Furopean Journal of Operational
Research, 35:98-110, 1988.

G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,
1963.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269-271, 1959.

Y. Disser and M. Skutella. In defense of the simplex algorithm’s worst-case be-
havior. ArXiv e-prints, November 2013.

[26]

BIBLIOGRAPHY

D. Dressler, G. Flotterod, G. Lammel, K. Nagel, and M. Skutella. Optimal evac-
uation solutions for large-scale scenarios. In B. Hu, K. Morasch, S. Pickl, and
M. Siegle, editors, Operations Research Proceedings 2010, Operations Research
Proceedings, pages 239-244. Springer Berlin Heidelberg, 2011.

D. Dressler, M. Grof3, J.-P. Kappmeier, T. Kelter, J. Kulbatzki, D. Pliimpe,
G. Schlechter, M. Schmidt, M. Skutella, and S. Temme. On the use of network
flow techniques for assigning evacuees to exits. Procedia Engineering, 3:205—-215,
2010.

D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. In M. J.
Atallah, editor, Algorithms and Theory of Computation Handbook, chapter 8. CRC
Press, 1999.

F. Fischer and C. Helmberg. Dynamic graph generation for the shortest path
problem in time expanded networks. Mathematical Programming, pages 1-41,
2012.

L. Fleischer and M. Skutella. The quickest multicommodity flow problem. In
W. J. Cook and A. S. Schulz, editors, Proceedings of the 9th Conference on Integer
Programming and Combinatorial Optimization (IPCO ’02), volume 2337 of Lecture
Notes in Computer Science, pages 36-53. Springer, 2002.

L. Fleischer and M. Skutella. Minimum cost flows over time without intermediate
storage. In Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms
(SODA ’03), pages 66-75, Baltimore, 2003.

L. Fleischer and M. Skutella. Quickest flows over time. SIAM Journal on Com-
puting, 36:1600-1630, 2007.

L. Fleischer and E. Tardos. Efficient continuous-time dynamic network flow algo-
rithms. Operations Research Letters, 23:71-80, 1998.

L. K. Fleischer. Faster algorithms for the quickest transshipment problem. SIAM
Journal on Optimization, 12:18-35, 2001.

L. K. Fleischer and K. D. Wayne. Fast and simple approximation schemes for
generalized flow. Mathematical Programming, 91:215-238, 2002.

M. Fonoberova. Algorithms for finding optimal flows in dynamic networks. In
S. Rebennack, P. M. Pardalos, M. V. F. Pereira, and N. A. Iliadis, editors, Hand-
book of Power Systems II, Energy Systems, pages 31-54. Springer, 2010.

L. R. Ford. Network flow theory. Paper P-923, The Rand Corporation, 1956.

L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows from static
flows. Operations Research, 6:419-433, 1958.

151

BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

[44]

[45]

152

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
1962.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34:596-615, 1987.

D. Gale. Transient flows in networks. The Michigan Mathematical Journal, 6:59—
63, 1959.

T. Gallai. Maximum-minimum Séatze iiber Graphen. Acta Mathematica Academiae
Scientiarum Hungaricae, 9:395-434, 1958.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

R. J. Gaskins and J. M. A. Tanchoco. Flow path design for automated guided
vehicle systems. International Journal of Production Research, 25:667-676, 1987.

M. X. Goemans. Minimum bounded degree spanning trees. In Proceedings of the
47th IEEE Symposium on Foundations of Computer Science (FOCS ’06), pages
273-282, 2006.

A. V. Goldberg, S. A. Plotkin, and E. Tardos. Combinatorial algorithms for the
generalized circulation problem. Mathematics of Operations Research, 16:351-379,
1991.

D. Goldfarb and Z. Jin. A faster combinatorial algorithm for the generalized
circulation problem. Mathematics of Operations Research, 21:529-539, 1996.

D. Goldfarb, Z. Jin, and J. B. Orlin. Polynomial-time highest-gain augmenting
path algorithms for the generalized circulation problem. Mathematics of Opera-
tions Research, 22:793-802, 1997.

M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, New York, 1984.

M. Gro8, J.-P. W. Kappmeier, D. R. Schmidt, and M. Schmidt. Approximating
earliest arrival flows in arbitrary networks. In L. Epstein and P. Ferragina, editors,
Algorithms — ESA 2012, volume 7501 of Lecture Notes in Computer Science, pages
551-562. Springer Berlin Heidelberg, 2012.

M. Grofl and M. Skutella. Generalized maximum flows over time. In P. Persiano
and R. Solis-Oba, editors, Proceedings of the 9th Workshop on Approximation
and Online Algorithms (WAOA ’11), volume 7164 of Lecture Notes in Computer
Science, pages 247-260. Springer, 2012.

M. Grofl and M. Skutella. Maximum multicommodity flows over time without
intermediate storage. In L. Epstein and P. Ferragina, editors, Algorithms — ESA
2012, volume 7501 of Lecture Notes in Computer Science, pages 539-550. Springer
Berlin Heidelberg, 2012.

[53]

[54]

[55]

BIBLIOGRAPHY

M. Grotschel, L. Lovéasz, and A. Schrijver. Geometric Algorithms and Combina-
torial Optimization, volume 2 of Algorithms and Combinatorics. Springer, second
corrected edition edition, 1993.

B. Hajek and R. G. Ogier. Optimal dynamic routing in communication networks
with continuous traffic. Networks, 14:457-487, 1984.

A. Hall, S. Hippler, and M. Skutella. Multicommodity flows over time: Efficient
algorithms and complexity. Theoretical Computer Science, 379:387-404, 2007.

H. W. Hamacher and S. A. Tjandra. Mathematical modelling of evacuation prob-
lems — a state of the art. In M. Schreckenberg and S. D. Sharma, editors, Pedestrian
and Fvacuation Dynamics, pages 227-266, Berlin, 2002. Springer.

Y. Han, X. Guan, and L. Shi. Optimization based method for supply location se-
lection and routing in large-scale emergency material delivery. IEEE Transactions
on Automation Science and Engineering, 8:683—-693, 2011.

G. Y. Handler and I. Zang. A dual algorithm for the constrained shortest path
problem. Networks, 10:293—-309, 1980.

T. Harks, F. G. Konig, J. Matuschke, A. Richter, and J. Schulz. An integrated
approach to tactical logistics network optimization. Preprint 034, Technische Uni-
versitat Berlin, Institut fiir Mathematik, 2012.

T. Hasuike, H. Katagiri, H. Tsubaki, and H. Tsuda. Tour planning for sightsee-
ing with time-dependent satisfactions of activities and traveling times. American
Journal of Operations Research, 3:369-379, 2013.

M. Hausknecht, T.-C. Au, P. Stone, D. Fajardo, and T. Waller. Dynamic lane re-
versal in traffic management. In 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC ’11), pages 1929-1934, 2011.

S. Hernandez, S. Peeta, and G. Kalafatas. A less-than-truckload carrier collabo-
ration planning problem under dynamic capacities. Transportation Research Part
E: Logistics and Transportation Review, 47:933-946, 2011.

M. D. Hirsch, C. H. Papadimitriou, and S. A. Vavasis. Exponential lower bounds
for finding Brouwer fix points. Journal of Complexity, 5:379-416, 1989.

D. S. Hochbaum, editor. Approzimation Algorithms for NP-hard Problems. PWS
Publishing Co., Boston, 1997.

B. Hoppe. Efficient Dynamic Network Flow Algorithms. PhD thesis, Cornell
University, 1995.

B. Hoppe and E. Tardos. Polynomial time algorithms for some evacuation prob-
lems. In Proceedings of the 5th ACM-SIAM Symposium on Discrete Algorithms
(SODA ’94), pages 433-441, 1994.

153

BIBLIOGRAPHY

[67]

[68]

[69]

[70]

154

B. Hoppe and E. Tardos. The quickest transshipment problem. Mathematics of
Operations Research, 25:36—62, 2000.

L. V. Kantorovich. Mathematical methods of organizing and planning produc-
tion. Technical report, Publication House of the Leningrad State University, 1939.
Translated in Management Science, 6:366-422, 1960.

S. Kim and S. Shekhar. Contraflow network reconfiguration for evaluation plan-
ning: A summary of results. In Proceedings of the 13th Annual ACM International
Workshop on Geographic Information Systems (GIS '05), pages 250-259, 2005.

B. Klinz and G. J. Woeginger. Minimum cost dynamic flows: The series-parallel
case. In Proceedings of the 4th Conference on Integer Programming and Combina-
toral Optimization (IPCO ’95), pages 329-343, 1995.

B. Klinz and G. J. Woeginger. Minimum cost dynamic flows: The series parallel
case. Networks, 43:153-162, 2004.

E. Koéhler, K. Langkau, and M. Skutella. Time-expanded graphs for flow-dependent
transit times. In Proceedings of the 10th European Symposium on Algorithms (ESA
’02), pages 599-611. Springer, 2002.

E. Kohler and M. Strehler. Traffic signal optimization using cyclically expanded
networks. In T. Erlebach and M. Liibbecke, editors, Proceedings of the 10th Work-
shop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS ’10), volume 14, pages 114-129, 2010.

E. Kéhler and M. Strehler. Combining static and dynamic models for traffic signal
optimization inherent load-dependent travel times in a cyclically time-expanded
network model. Procedia — Social and Behavioral Sciences, 54:1125-1134, 2012.

B. Korte and J. Vygen. Combinatorial Optimization — Theory and Algorithms.
Springer, 2012.

M. Lahmar, T. Assavapokee, and S. A. Ardekani. A dynamic transportation plan-
ning support system for hurricane evacuation. In Proceedings of the 9th IEEE
Intelligent Transportation Systems Conference (ITSC ’06), pages 612—617, 2006.

N. Megiddo. Combinatorial optimization with rational objective functions. Math-
ematics of Operations Research, 4:414-424, 1979.

E. Minieka. Maximal, lexicographic, and dynamic network flows. Operations Re-
search, 21:517-527, 1973.

E. F. Moore. The shortest path through a maze. In Proceedings of an International
Symposium on the Theory of Switching, pages 285—292. Harvard University Press,
1959.

[80]

[81]

[82]

BIBLIOGRAPHY

C. St. J. A. Nash-Williams. Well-balanced orientations of finite graphs and un-
obtrusive odd-vertex-pairings. In Proceedings of the 3rd Waterloo Conference on
Combinatorics (WCC ’69), pages 133-149. Academic Press, New York, 1969.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience, New York, 1988.

K. Onaga. Dynamic programming of optimum flows in lossy communication nets.
IEEE Transactions on Circuit Theory, 13:282-287, 1966.

K. Onaga. Optimal flows in general communication networks. Journal of the
Franklin Institute, 283:308-327, 1967.

J. B. Orlin. Minimum convex cost dynamic network flows. Mathematics of Oper-
ations Research, 9:190-207, 1984.

J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
Research, 41:338-350, 1993.

J. B. Orlin. A faster strongly polynomial time algorithm for submodular function
minimization. Mathematical Programming, 118:237-251, 2009.

J. B. Orlin. Max flows in O(nm) time or better. In Proceedings of the 45th ACM
Symposium on the Theory of Computing (STOC ’13), pages 765774, 2013.

M. S. Osman, B. Ram, J. Bhadury, P. Stanfield, L. Davis, and F. Samanlioglu.
Optimization model for distributed routing for disaster area logistics. In Proceed-
ings of the 5th IEEE International Conference on Service Operations, Logistics
and Informatics (SOLI '09), pages 278-283, 2009.

C. H. Papadimitriou. On the complexity of the parity argument and other ineffi-
cient proofs of existence. Journal of Computer and System Sciences, 48:498-532,
1994.

B. Peis and A. Wiese. Universal packet routing with arbitrary bandwidths and
transit times. In O. Glnlik and G. J. Woeginger, editors, Proceedings of the 14th
Conference on Integer Programming and Combinatoral Optimization (IPCO ’10),
volume 6655 of Lecture Notes in Computer Science, pages 362-375. Springer, 2011.

A. B. Philpott. Continuous-time flows in networks. Mathematics of Operations
Research, 15:640-661, 1990.

W. B. Powell, P. Jaillet, and A. Odoni. Stochastic and dynamic networks and rout-
ing. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors,
Network Routing, volume 8 of Handbooks in Operations Research and Management
Science, pages 141-295. Elsevier, 1995.

155

BIBLIOGRAPHY

[93]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

156

M. Raayatpanah, H. Ghasvari, and A. Ebrahimnejad. Generalized water supply
management over time. Middle-Fast Journal of Scientific Research, 15:383-388,
2013.

T. Radzik. Faster algorithms for the generalized network flow problem. Mathe-
matics of Operations Research, 23:69-100, 1998.

T. Radzik. Improving time bounds on maximum generalised flow computations
by contracting the network. Theoretical Computer Science, 312:75-94, 2004.

S. Rebennack, A. Arulselvan, L. Elefteriadou, and P. M. Pardalos. Complexity
analysis for maximum flow problems with arc reversals. Journal of Combinatorial
Optimization, 19:200-216, 2010.

M. Restrepo and D. P. Williamson. A simple gap-canceling algorithm for the
generalized maximum flow problem. Mathematical Programming, 118:47-74, 2009.

H. E. Robbins. A theorem on graphs, with an application to a problem of traffic
control. The American Mathematical Monthly, 46:281-283, 1939.

K. Roy and C. J. Tomlin. Solving the aircraft routing problem using network flow
algorithms. In Proceedings of the 2007 American Control Conference (ACC °07),
pages 3330-3335, 2007.

S. Ruzika, H. Sperber, and M. Steiner. Earliest arrival flows on series-parallel
graphs. Networks, 57:169-173, 2011.

M. Schmidt and M. Skutella. Earliest arrival flows in networks with multiple sinks.
Discrete Applied Mathematics, 164:320 — 327, 2014.

A. Schrijver. Combinatorial Optimization — Polyhedra and Efficiency. Springer,
2003.

M. Singh and L. C. Lau. Approximating minimum bounded degree spanning trees
to within one of optimal. In Proceedings of the 39th ACM Symposium on Theory
of Computing (STOC ’07), pages 661-670, 2007.

M. Skutella. An introduction to network flows over time. In Research Trends in
Combinatorial Optimization, pages 451-482. Springer, 2009.

S. Soudan and P. V.-B. Primet. Mixing malleable and rigid bandwidth requests
for optimizing network provisioning. In Proceedings of the 21st International Tele-
traffic Congress (ITC '09), pages 1-8, 2009.

S. Stiller and A. Wiese. Increasing speed scheduling and flow scheduling. In
O. Cheong, K.-Y. Chwa, and K. Park, editors, Algorithms and Computation, vol-
ume 6507 of Lecture Notes in Computer Science, pages 279-290. Springer, 2010.

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

BIBLIOGRAPHY

S. Su, Y. Wang, S. Jiang, K. Shuang, and P. Xu. Efficient algorithms for scheduling
multiple bulk data transfers in inter-datacenter networks. International Journal
of Communication Systems, 2013.

E. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.
Operations Research, 34:250-256, 1986.

S. A. Tjandra. Earliest arrival flow with time dependent capacity approach to
the evacuation problems. Report in Wirtschaftsmathematik (WIMA Report) 75,
Technical University of Kaiserslautern, 2001.

S. A. Tjandra. Dynamic network optimization with application to the evacuation
problem. PhD thesis, Technical University of Kaiserslautern, 2003.

K. Truemper. On max flows with gains and pure min-cost flows. SIAM Journal
on Applied Mathematics, 32:450-456, 1977.

H. Tuydes and A. Ziliaskopoulos. Network re-design to optimize evacuation con-
traflow. In Proceedings of the 83rd Annual Meeting of the Transportation Research
Board, Washington, DC, 2004.

H. Tuydes and A. Ziliaskopoulos. Tabu-based heuristic approach for optimization
of network evacuation contraflow. Transportation Research Record: Journal of the
Transportation Research Board, 1964:157-168, 2006.

V. V. Vazirani. Approzximation Algorithms. Springer, 2004.

M. A. Venkataramanan and K. A. Wilson. A branch-and-bound algorithm for
flow-path design of automated guided vehicle systems. Nawval Research Logistics,
38:431-445, 1991.

K. D. Wayne. Generalized Mazximum Flow Algorithms. PhD thesis, Cornell Uni-
versity, 1999.

K. D. Wayne. A polynomial combinatorial algorithm for generalized minimum cost
flow. Mathematics of Operations Research, 27:445-459, 2002.

W. L. Wilkinson. An algorithm for universal maximal dynamic flows in a network.
Operations Research, 19:1602-1612, 1971.

D. P. Williamson and D. B. Shmoys. The Design of Approzimation Algorithms.
Cambridge University Press, 2011.

B. Wolshon. One-way-out: Contraflow freeway operation for hurricane evacuation.
Natural Hazards Review, 2:105-112, 2001.

B. Wolshon, E. Urbina, and M. Levitan. National review of hurricane evacua-
tion plans and policies. Technical report, LSU Hurricane Center, Louisiana State
University, Baton Rouge, Louisiana, 2002.

157

BIBLIOGRAPHY

[122] N. Zadeh. A bad network problem for the simplex method and other minimum
cost flow algorithms. Mathematical Programming, 5:255-266, 1973.

158

Symbol Index

[flo

| fleonc
fa(0)
fo

number of occurrences of ¢ in S

set of reverse arcs of A(G)

reverse arc of a

a contained in S

arc set of G

sum of all supplies of commodity %

sum of all demands of commodity ¢

supply or demand at node v from commodity &
sum of all supplies

sum of all demands

cost of f

cost of x

cost of a

set, of outgoing arcs of v in G

set of incoming arcs of v in G

set of incident arcs of v in GG

edge set of G

flow value of f

flow value of f until time 6

concurrent flow value of f

flow rate of commodity i into arc a at time 0

flow rate function of the auxiliary edge of v

159

BIBLIOGRAPHY

(G,u,,...) graph G with capacities u, transit times 7, etc.

Ya

é

NT/A

P5
by

yuel

S[= (a, k)]
S[— 1]

7
4

160

gain of a

orientation of GG

[0, T — 75—t — 1]-copies of G

subnetwork of G? created by removing nodes and arcs not on s’-t’-paths

time-condensed network

time-expanded network of G with time horizon T
residual network of G and x

the maximum gain of a v-w-path

commodity set

number of commodities

number of arcs or edges

number of nodes

time-condensed network

short for pg if G can be inferred from the context
path with delays

arrival pattern of f

earliest arrival pattern of G

i_yli

set of all s"-t"*-sequences for all i € K

subsequence of S from the beginning up to but not including the k-th oc-
currence of a in §

subsequence of S from the beginning up to but not including the i-th element
of S

source set of commodity
sink set of commodity
source set of all commodities

sink set of all commodities

BIBLIOGRAPHY

Ta transit time of a
T time horizon
To—sw the length of a shortest v-w-path (with respect to transit times)

0,0'1G [0, 0']-copies of G

[0,60)x the maximum gain of a v-w-path
0G f-copy of G

Ox f-flow of x

Ugq capacity of a

Uy residual capacities of a flow x
ves v is incident to arc or edge in S
V(G) node set of G

|| flow value of

|| cone concurrent flow value of z

T 0,7 — 155t — 1]z

i

Lg

flow value of commodity 7 on a

161

Index

approximation algorithm, [37]
bicriteria,
flow, [37]
time, [38]

arc, [1§]
end node,

holdover, [68|
incident,
incoming, [I§|
long, [T00]
outgoing, [I§|
parallel,
reverse, [32]
short,

start node,
arrival pattern,

balances, see supply
benefit of storage,

bi-cycle,

capacity, 2]
bottleneck,
residual,
circulation,
commodity,
conservative, 23]
constraint
capacity, [25] 4]
flow conservation,
non-negativity, [25] [34]
strict flow conservation,
contraflow,
cost, 22]
cycle
v, IE
flow-absorbing,

flow-generating, [23]

negative cost, 23]

unit gain, 23]
cycle-path, [2]]

decomposition

path-cycle-,
demand,

earliest arrival flow,

a-,
/B_a

earliest arrival pattern,
edge, see arc
auxiliary, [130]

flow
amplified,
arc-based,
concurrent value, [25]
cost, [25]
decomposition,
dynamic, see flow over time
generalized,
generalized multi-commodity,
multi-commodity, [25]
path-based,
rate, [34]
scaled,
single commodity,
smoothed,
value, 25]

flow over time,
concurrent value,
cost, [35]
generalized,
generalized multi-commodity,

163

INDEX

multi-commodity,

single commodity,

value,

without storage, [35]
FPTAS, BS]

gain, 22]
lossy, [22]
proportional,
unit, [25]

graph
directed,
residual, [32]
time-expanded,
undirected,

holdover, [35]

loop,
loss, see gain

LP
sequence-rounded,
split-sequence, 104

multiple deadline flow,

network, see graph
L-condensed, [07]
condensed time-expanded, [83]
geometrically condensed, [07]
time-condensed,

node,
adjacent,
intermediate,

orientation, [I9]

path
v-w-, 19
with delays,
path-cycle,
price of orientation, [63]
flow,

time, [63]
PTAS, BY]

164

sequence
v-w-, [I9]
long, [T00]
nice, [I0]]
short,
simple, [19]
sequence condensation,
sink, 22]
source, 22]
storage, [39]
subgraph,
induced,
super-sink,
super-source, [42]
super-terminal, [42]

supply,

[0, 0']-copies, [115
[0,0']-flow,
Q'COPY7
6-flow,
terminal,
time expansion, [6§]
time horizon,
time model
continuous, [37]
discrete,
time-expanded network, [68]
transit time, [2]]

universal maximal flow,

	Contents
	Introduction
	Preliminaries
	Graphs
	Definitions
	Subgraphs: Sequences, paths, cycles and more
	Attributes of arcs, edges and nodes

	Static Flows
	Definitions
	Flow Decompositions and Path-based Flows
	Residual Graphs

	Flows over Time
	Definitions
	Continuous and Discrete Time Models

	Approximating Flows over Time

	Flow over Time Problems
	Single Commodity Problems without Costs or Gains
	Maximum Flows over Time
	Quickest Flows and Transshipments
	Summary

	Multiple Commodity Problems without Costs or Gains
	Multi-commodity Maximum Flows over Time
	Multi-commodity Quickest Flows over Time
	Maximum Concurrent Flows over Time
	The Importance of Storage
	Summary

	Minimum Cost Flows over Time
	Generalized Flows over Time
	Earliest Arrival Flows
	Orientations and Flows over Time

	Time Expansion
	Introduction
	Definitions
	Flows over Time and Static Flows in the Time Expansion
	Extensions
	Discussion

	Iterative Time Expansion

	Time Condensation
	Time Condensation
	Time Condensation with Arbitrary Transit Times
	An FPTAS for Generalized Maximum Flows over Time

	Geometric Time Condensation
	Sequence Condensation
	The Dual Separation Problem
	The Maximum Multi-Commodity Flow over Time Problem
	Extensions

	Temporal Repetition
	Generalized Maximum Flows over Time with Proportional Losses
	A Variant of the Successive Shortest Path Algorithm
	Turning the Algorithm into an FPTAS

	Complexity
	Generalized Maximum Flows over Time
	Arbitrary and Lossy Gains
	Lossy and Proportional Gains

	Orientations and Flows over Time
	The Price of Orientation
	Price in Terms of Flow Value
	Price in Terms of the Time Horizon
	Price in Terms of Flow and Time Horizon
	Price in Trees
	Price for Earliest Arrival Flows
	Price for Multi-commodity Flows

	Complexity

	Bibliography
	Index

