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Abstract

This dissertation is dedicated to the Vehicle Positioning Problem (VPP),

a classical combinatorial optimization problem in public transport in which

vehicles should be assigned to parking positions in a depot in such a way

that shunting moves are minimized. We investigate several models and solu-

tion methods to solve the VPP and the VPPP , a multi-periodic extension

of the problem which was not previously studied.

In the first part of the thesis, the basic version of the problem is introduced

and several formulations, theoretical properties, and concepts are investi-

gated. In particular, we propose a mixed integer quadratic constrained

formulation of the VPP whose QP relaxation produces the first known non-

trivial lower bound on the number of shunting moves.

The second part of our work describes two advanced solution methods. In

the first approach, a set partitioning formulation is solved by a branch-and-

price framework. We present efficient algorithms for the pricing problem

and in order to improve the performance of the framework, we introduce

heuristics and discuss strategies to reduce symmetry. The second approach

consists of an iterative technique in which we try to optimize an ILP by

solving some of its projections, which are smaller and therefore easier to

compute. Both techniques are able to produce satisfactory solutions for

large-scale instances of the VPPP .

In the third part, advanced aspects of the problem are investigated. We

propose and analyze several solution methods for the VPP+ and for the

VPPP
+, which are extended and more challenging versions of the VPP and

of the VPPP , respectively. Finally, the role of uncertainty in the problem

is discussed. In particular, we introduce a new criteria to evaluate the

robustness of assignment plans, a formulation based on this concept, and a

new online algorithm for the VPP.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit dem Vehicle Positioning Problem (VPP),

ein klassisches Problem der Kombinatorischen Optimierung, das sich mit den opti-

malen Zuweisungen von Fahrzeugen öffentlicher Verkehrsunternehmen zu Umläufe

und zu Stellplätzen befasst. Wenn ein nicht zielorientierter Plan verwendet wird,

sind häufig Umpositionierungen von Fahrzeugen erforderlich. Ziel des Optimie-

rungsansatzes ist es, diese zu minimieren. In dieser Arbeit werden mehrere Mo-

delle und Methoden vorgestellt, um das VPP und das Multi-Periodic Vehicle

Positioning Problem (VPPP ), eine bisher nicht untersuchte multiperiodische

Erweiterung des VPP, zu lösen.

Im ersten Teil der Arbeit werden das Problem aufgeführt sowie mehrere Formulie-

rungen, theoretische Eigenschaften und Konzepte untersucht. Es wird eine gemischt-

ganzzahlige quadratische Formulierung des Problems vorgestellt, deren QP Rela-

xierung nicht-triviale untere Schranken für das VPP erzeugen kann.

Der zweite Teil der Arbeit beschreibt zwei spezielle Verfahren. In dem ersten An-

satz wird eine Set Partitioning Formulierung mit einem Branch-and-Price Verfahren

gelöst. Für die Pricing Probleme werden effiziente Algorithmen beschrieben. Um die

Leistung des Verfahrens zu verbessern, wurden Heuristiken entwickelt und Strategi-

en zur Reduktion der Symmetrie des Problems analysiert. Der zweite Ansatz ist eine

iterative Technik, die ein gemischt-ganzzahliges Problem durch die Lösung einiger

ihrer Projektionen optimiert. Beide Techniken sind in der Lage, Lösungen für große

Instanzen vom VPPP zu erzeugen, die wenige Umpositionierungen benötigen.

Im dritten Teil werden vertiefende Aspekte des Problems untersucht. Vorgestellt

werden die Analyse verschiedener Lösungswege für das VPP+ und für das VPPP
+,

die erweiterte und schwierigere Versionen des VPP bzw. VPPP sind. Abschließend

wird ein neues Konzept diskutiert, mit dem die Robustheit eines Planes ausge-

wertet wird. Es werden eine auf diesem Konzept basierende robuste Formulierung

vorgestellt, und zuletzt ein neuer Online-Algorithmus für das VPP.
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Dũng for so many good moments. My life in Germany would have been much

harder without you.

It was nice to stay in touch with some good old friends as well, like Marcel, Marcelo,
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Chapter 1

Introduction

The Vehicle Positioning Problem (VPP) is about the assignment of vehicles of

a transport company to parking positions in a depot. The problem is nontrivial be-

cause the parking lots used by these companies usually have rigid space constraints

and because they have to deal with vehicles of different types. If bad assignment

decisions are taken, a vehicle may be blocked by other units at the moment it is

supposed to depart. Rearrangements are necessary to solve such issues, but these

operations are costly and should be avoided. The designation of decent parking

positions to vehicles is a central problem in depot management and a key to the

smooth operation of a public transport or railway company (see Eisenberg & Prigge

(2002) [32]).

The problem appears in different contexts. While bus positioning is basically about

the order of vehicles in parking rows, tram and train positioning deal with rail-

bound traffic, where operations with units are more restricted. Moreover, tram

and train positioning may consider compositions of more than one vehicle, which

might be split up or put together. There are several further aspects that can play

a role in the Vehicle Positioning Problem, and as a consequence, the number

of different scenarios is considerable. In his PhD thesis, Hansmann (2010) [54]

presents an extensive classification of problems related to the VPP and claims that

there are at least 100 different versions of real-world applications.

The Vehicle Positioning Problem can be seen as a subclass of the Stack Man-

agement Problem, in which a buffer consisting of a set of stacks receives and

redistributes items, possibly subject to additional operational constraints. Other in-

teresting problems of this type are railway and airline delay management, container

stowage in harbors and ships, and high rack warehouse operation (see Günther &

Kim (2005) [50] and Froyland et al. (2006) [38]).

It is interesting to observe that the Vehicle Positioning Problem has been

studied almost exclusively by research groups in Europe (especially Germany, Hol-

land, and Italy, while Canada is one of the few exceptions). This fact suggests that

the problem does not receive similar attention in other locations. In particular, we

can mention the cases of USA, where the public transport system in most cities

4



1.1 The Basic Problem 5

Figure 1: Depot in Zoologischer Garten, Berlin

is not as well-developed as in Europe, and of Latin America, where quality of ser-

vice, good equipment, good planning, and good management are features that can

hardly be found simultaneously.

1.1 The Basic Problem

We present now a more detailed description of the Vehicle Positioning Prob-

lem for buses, which is the main object of study of this thesis.

A bus company must have units of different types in order to provide satisfactory

services for its list of scheduled trips. Single-deck vehicles, for example, are usually

acceptable for less popular routes. Conversely, for itineraries with a large number of

passengers, articulated buses may be more appropriate. Double-decker vehicles are

also suitable for highly demanded trips, but their “cult status” may make their use

in touristic routes commercially more interesting. In Figure 1, it is possible to see

buses of different types parked in a depot close to the Zoologischer Garten Station,

in Berlin. Because transport companies usually have several units of each type, the

assignment of vehicles to itineraries is one of the tasks of a depot manager.

The vehicles of a transport company do not work uninterruptedly. Typically, in

certain intervals of time (usually at night), there is no trip to be serviced, and dur-

ing these periods the buses stay parked in the depot. Therefore, a depot manager

must also assign vehicles to parking positions as soon as they complete their previ-
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Figure 2: Parking lot for buses in Stockholm, Sweden

ously assigned itineraries. If the number of vehicles is small and/or if the depot is

sufficiently big, the depot can work like a parking lot for cars, i.e., the arrival and

the departure of one bus is not affected by the arrivals and the departures of the

others. Figure 2 shows that such scenarios can be found in the real world.

If space restrictions make this trivial organization of the depot impossible, though,

the problem becomes significantly more challenging. In these cases, parking posi-

tions usually form rows that can only be accessed at one of their two ends. Moreover,

the space between two rows is so limited that it does not allow a bus to pass others

parked in front of it. As a consequence, the assignment of vehicles to parking posi-

tions has a strong influence on the assignment of vehicles to trips in such scenarios.

In particular, bad parkings may lead to situations where units must be rearranged.

This happens if we have the situation depicted in Figure 3 at the moment that

the red single-deck bus should depart, for example. In these cases, we say that a

shunting move is necessary, which is an undesired operation whose number should

be minimized.

While such severe space restrictions of bus depots may seem surprising, this situ-

ation is clearly unavoidable in rail-bound traffic, where the parking rows are track

segments that must be operated as one or two-sided stacks or queues (see Figure 4

for an example of train depot).

A theoretical idealization of the problem is described in Figure 5, where we can

see a sequence of six arriving buses, two tracks containing three parking positions

each, and a sequence of six itineraries. Finally, the types of vehicles are represented
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(a) Red bus has to depart (b) Yellow buses are blocking both

paths

Figure 3: Situation where a vehicle is blocked

Figure 4: Train depot in Panierai, Lithuania
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256 147 324 X83 100 200

Figure 5: Example of theoretical idealization of the problem

Parking Positions 3 2 1

(a) Assignment of buses to parking positions

256 147 324 X83 100 200

(b) Assignment of buses to trips

Figure 6: Feasible solution

by the colors. If we assume that the sequences are ordered from the left to the

right, i.e., both the last arrival and the last departure are of type red, and that the

vehicles arrive at the rightmost positions and depart from the leftmost ones, then

the assignments depicted in Figure 6 represent a feasible solution for this instance.

The final product of a decision support software for depot management is an assign-

ment plan similar to the one presented in Figure 7. Each line of the table represents

a track, and each cell contains three informations (from top to bottom): the arrival

time (in our example, the vehicles arrived in the previous day), the departure time,

and the type of the vehicle parked in this position.

1.2 Formal Aspects

Based on discussions with PSI Trans, a German software company which is in-

terested in the development of computational solutions for depot management,

we identified the most important practical aspects of the Vehicle Positioning

Problem. We present now a brief overview of these features in a more formal way.

Technical Details of the Basic Problem. In certain scenarios, there are

itineraries that can be serviced by several types of vehicles. As we mentioned in

the last section, for example, both articulated and double-decker vehicles may be
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Figure 7: Planned assignment

suitable for trips with a high number of passengers. However, in the basic version

of the problem, we will assume that each trip can only be serviced by one type of

vehicle.

There are works in the literature that do not incorporate some important real-

world restrictions, as limitations on the number and on the size of tracks. Such

simplifications lead to new problems with slightly different purposes. For example,

the objective may be the minimization of the number of tracks used to park all the

vehicles. Problems of this nature are interesting if one wants to plan the topology

of a depot, but we assume here that the physical layout already exists and must be

respected. Therefore, the depots have a limited numbers of tracks and all the tracks

have the same (finite) size in every version of the problem that we investigate in

this thesis.

Our goal is the minimization of the number of shunting moves, which is an esti-

mation of the volume of work that has to be performed in a depot. Shuntings

are traditionally evaluated as the number of pairs of vehicles parked in the same

track that must have their relative order switched. We say that there is a crossing

involving a pair of units in this situation. This estimation is reasonable, but we

remark that it is not always completely accurate, as one change of positions be-

tween two vehicles may require as much work as several changes in the same track.

For example, if we have the situation described in Figure 3, the articulated bus is

the next to leave, and the vehicles are not allowed to go backwards in the track,

then all the buses of the track will have to be moved in the shunting operation.

Therefore, it may be more interesting to consider only crossings of vehicles parked

in consecutive positions. We will refer to such events as first crossings.

Another important parameter is the operation policy of the tracks. A track is LIFO

(or stack) if vehicles can only arrive and leave from the same (and typically unique)

entrance, and it is FIFO (or queue) if vehicles arrive at one entrance and leave
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from the other. It is possible to say that a shunting will occur in a given track if its

policy is not followed. We assume in this text that all the tracks are FIFOs. Other

policies are discussed by Hansmann (2010) [54].

We also assume that buses are independent atomic units, i.e., that they can be

neither composed nor decomposed, and that the assignment of vehicles to trips is

not fixed.

A combinatorial description of the basic problem is presented below:

Definition 1.1. The basic version of the Vehicle Positioning Problem, to

which we refer as the VPP, is defined as follows:

Input: We are given a sequence A = {a1, a2, . . . , an} of arrival times (n ∈ N),

a sequence D = {d1, d2, . . . , dn} of departure times, a set T = {T1, T2, . . . , Tt} of

vehicle types (t ∈ N), a function τ : {A ∪ D} → T , and a set S = {s1, s2, . . . , sm}
of tracks (m ∈ N), where each track represents a queue of β parking positions

(β ∈ N, n = mβ). Sequence A (D) is such that ai ≤ aj (di ≤ dj) if and only if

i ≤ j.

Task: Determine a set M of triples (a, s, d) ∈ A × S × D such that each ele-

ment of A and D appears exactly once; each element of S appears exactly β times;

(ai, sj , dk) belongs to M only if τ(ai) = τ(dk); and the number of pairs of elements

(ai, sj , dk), (ap, sj , dr) in M such that i < p and k > r is minimized.

The practical objective of the problem is to find solutions without crossings, which

is the trivial lower bound valid for every instance of the VPP, as they represent

plans that do not require shuntings and, therefore, are operationally easier and

cheaper to be implemented. The following fact is known about the computational

complexity of the decision version of the VPP:

Theorem 1.2 (Winter (1998) [91]). It is NP-complete to decide if there is a

solution for an instance of the VPP with at most k crossings for any fixed k.

In order to prove this result, Winter reduced the Three-Dimensional Matching

Problem, a classical combinatorial problem, to the VPP.

In this work, we investigate different models and approaches to the VPP and

compare them from a theoretical and from a computational point of view. Our

results show that it is not possible to obtain satisfactory solutions for large-scale

instances of the problem just by formulating them as mixed integer programs and

by solving them with generic commercial software unless an unacceptable amount

of computation time is dedicate to these tasks. We also remark that we were able to

design a mixed integer quadratic constrained program whose continuous relaxation

always delivers non-trivial lower bounds for instances which require shuntings.

Finally, we will also consider a version of the Vehicle Positioning Problem

where first crossings are to be minimized as VPP. In the cases where the distinction

between these two versions is relevant, the correct interpretation is clearly indicated

by the context.
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Multiperiodiocity. A transport company usually has a schedule that describes

the departure time of each trip and the type of vehicle it requires. Moreover, it is

possible to assign groups of itineraries to periods, which are defined according to the

weekday (Monday until Sunday) and to the shift (typically morning or afternoon)

when they have to be serviced .

After servicing a trip in some period, a vehicle returns to the depot, where it is

assigned to a parking position and to an itinerary of the next period. Therefore,

based on the arrival times of period p, on the description of the depot, and on the

departure times of period p + 1, we can define an instance of the VPP associated

with period p + 1. Finally, because the schedule is usually repeated every week,

what we actually have is a cyclic sequence of periods of activities.

On the weekends, the number of timetabled itineraries is smaller, and in these

situations the transport companies usually partition their fleet in two groups. The

first one contains the vehicles that will service trips during the weekend periods,

and the second contains buses that will stay parked until the first weekday period of

the next week. This division is defined in the last weekday period, and as it affects

the assignments that will be made on the next week, a decomposition strategy may

produce unsatisfactory plans.

As far as we know, this multi-periodic version of the problem was not yet explicitly

defined and investigated in the literature. Therefore, we present below a combina-

torial description of the problem.

Definition 1.3. The basic version of the Multi-Periodic Vehicle Positioning

Problem, to which we will refer as the VPPP , is defined as follows:

Input: We are given a sequence of P = p+w instances of the VPP (P, p, w ∈ N),

where the first p periods are weekday periods and the last w periods are week-

end periods; a sequence Ah = {a1, a2, . . . , an} of arrival times, a sequence Dh =

{d1, d2, . . . , dn} of departure times, and a set Sh = {s1, s2, . . . , sm} of tracks for 1 ≤
h ≤ p (h, n,m ∈ N); a sequence Ah = {a1, a2, . . . , ae} of arrival times, a sequence

Dh = {d1, d2, . . . , de} of departure times, and a set Sh = {s1, s2, . . . , sb} of tracks

for p+ 1 ≤ h ≤ P, e ≤ n, and b ≤ m (h, e, b ∈ N); and a set T = {T1, T2, . . . , Tt} of

vehicle types and a function τ : {Ah∪Dh} → T (1 ≤ h ≤ P ). Each track represents

a queue of β parking positions (β ∈ N). For every h, 1 ≤ h ≤ P , sequence Ah (Dh)

is such that ai ≤ aj (di ≤ dj) if and only if i ≤ j.

Task: Determine a set M of triples in A×S ×D, where A =
⋃P
h Ah, S =

⋃P
h Sh,

and D =
⋃P
h Dh, such that: each element of A and D appears exactly once; each

element of S appears exactly β times; (ai, sj , dk) belongs to M only if τ(ai) = τ(dk)

and if either ai belongs to the last weekday period and dk and sj belong to the first

weekday period or if ai, sj, and dk belong to the same period; and the number

of pairs of elements (ai, sj , dk), (ap, sj , dr) in M such that i < p and k > r is

minimized.

We will also refer to the version of the VPPP where first crossings are to be min-
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imized (instead of crossings) as the VPPP , and again, eventual ambiguities are

eliminated by the context.

The VPPP can only be addressed by advanced solution methods. In this thesis, we

present two approaches. The first is a branch-and-price algorithm, whose pricing

problem can be solved in polynomial time if we want to minimize first crossings

and all the vehicles have the same size. We also present heuristics (one based on

simulated annealing), inequalities, and symmetry-breaking techniques to speed up

the procedure. Our second approach, called progressive method, implements an

iterative way to solve ILPs with certain characteristics. In this method, variables

and constraints are progressively incorporated into the problem, making the com-

putation of feasible solutions easier and faster. With both techniques, we were able

to obtain satisfactory solutions for large-scale scenarios of the problem.

Disruptions. One aspect that plays an important role in real-world instances

of the VPP and of the VPPP is the occurrence of disruptions. More precisely,

there are many uncontrollable events that can retard the journey of the vehicles

and eventually change the order of their arrival in the depot. When such modifi-

cations happen, unexpected crossings might happen if the original assignments are

maintained. Methods to avoid such events and to react to them play a crucial role

in real-world applications of the Vehicle Positioning Problem.

We introduce in this text a new online version of the VPP, present a competitive

analysis, and suggest an algorithm for the problem. We also define a new criterion

to evaluate the robustness of solutions for the VPP and present an ILP formulation

based on this concept.

Additional Aspects. Some extra conditions should be considered if one is

interested in a more realistic description of certain applications of the VPP.

When the difference between the departure times of two trips is too small, it may

be hard or even physically impossible to dispatch two vehicles leaving from the

same track to service them. In this situation, it is interesting to assume that the

minimum headway between the times of departure of any pair of units assigned to

the same track is given by a parameter ∆.

It is typically assumed that each vehicle can be assigned to any track in a depot,

but this is not always the case. Restrictions on the assignment of vehicles of cer-

tain types to tracks occur mostly due to physical limitations. Tall units can not

be assigned to tracks where the ceiling is too low, for example. Conversely, as we

already mentioned, in some cases, certain trips can be serviced by vehicles of dif-

ferent types. These generalizations make the problem more challenging, especially

when we consider multi-periodic scenarios.

The single-periodic version of the Vehicle Positioning Problem with these

extra features can be described as follows:
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Definition 1.4. The extended version of the Vehicle Positioning Problem, to

which we refer as the VPP+, is defined as follows:

Input: We are given a sequence A = {a1, a2, . . . , an} of arrival times (n ∈ N),

a sequence D = {d1, d2, . . . , dn} of departure times, a set T = {T1, T2, . . . , Tt} of

vehicle types (t ∈ N), a set T (di) ⊆ T for each di ∈ D, a function τ : A → T ,

a set S = {s1, s2, . . . , sm} of tracks (m ∈ N), where each track represents a queue

of β parking positions (β ∈ N, n = mβ), and a set T (si) ⊆ T for each track si.

Sequence A (D) is such that ai ≤ aj (di ≤ dj) if and only if i ≤ j.

Task: Determine a set M of triples (a, s, d) ∈ A×S×D such that each element of A
and D appears exactly once; each element of S appears exactly β times; (ai, sj , dk)

belongs to M only if τ(ai) ∈ T (sj) ∩ T (dk); and the number of pairs of elements

(ai, sj , dk), (ap, sj , dr) in M such that i < p and k > r is minimized.

Below we present the combinatorial description of the multi-periodic version of the

problem.

Definition 1.5. The extended version of the Multi-Periodic Vehicle Posi-

tioning Problem, to which we will refer as the VPPP
+, is defined as follows:

Input: We are given a sequence of P = p+w instances of the VPP+ (P, p, w ∈ N),

where the first p periods are weekday periods and the last w periods are week-

end periods; a sequence Ah = {a1, a2, . . . , an} of arrival times, a sequence Dh =

{d1, d2, . . . , dn} of departure times, and a set Sh = {s1, s2, . . . , sm} of tracks for

1 ≤ h ≤ p (h, n,m ∈ N); a sequence Ah = {a1, a2, . . . , ae} of arrival times, a se-

quence Dh = {d1, d2, . . . , de} of departure times, and a set Sh = {s1, s2, . . . , sb} of

tracks for p+ 1 ≤ h ≤ P, e ≤ n, and b ≤ m (h, e, b ∈ N); a set T = {T1, T2, . . . , Tt}
of vehicle types (t ∈ N); ti units of vehicles of type Ti (1 ≤ i ≤ t, ti ∈ N); a set

T (ai) ⊆ T for each ai ∈ A, where A =
⋃P
h Ah; a set T (di) ⊆ T for each di ∈ D,

where D =
⋃P
h Dh; and a set T (s) ⊆ T for each s ∈ S, where S =

⋃P
h Sh. Each

track represents a queue of β parking positions (β ∈ N). For every h, 1 ≤ h ≤ P ,

sequence Ah (Dh) is such that ai ≤ aj (di ≤ dj) if and only if i ≤ j.

Task: Determine a set M of triples in A×S×D such that: each element of A and

D appears exactly once; each element of S appears exactly β times; each vehicle

type Ti is associated to ti arrivals and departures, 1 ≤ i ≤ t; (ai, sj , dk) belongs to

M only if T (ai) ∩ T (sj) ∩ T (dk) 6= ∅ and if either ai belongs to the last weekday

period and dk and sj belong to the first weekday period or if ai, sj, and dk belong

to the same period; and the number of pairs of elements (ai, sj , dk), (ap, sj , dr) in

M such that i < p and k > r is minimized.

These extensions are more challenging then the basic versions of the problems, but

our results show that it is possible to compute satisfactory solutions for them if we

use an algorithm based on the progressive method.
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1.3 Brief Literature Overview

The Vehicle Positioning Problem has become a “hot topic” over the last

decade, but Hansmann (2010) [54] identified articles from the middle of the 19th

century which investigate solution methods for early versions of the VPP. Heuristic

approaches were considered adequate in that period, and the situation remained

like this until the 1980s. However, due to the significant growth of the number

of vehicles and trips employed by transport companies over the last decades, such

approaches became unsatisfactory for modern scenarios. As a consequence, several

articles describing more sophisticated strategies to solve the problem appeared in

the last years.

Winter (1998) [91] introduced the first mixed-integer quadratic programming and

the first mixed-integer linear programming formulations for the problem. For com-

putational purposes, though, only the linear models were analyzed. The author

used heuristics to obtain warm start solutions for the ILPs, and these solutions

could only be improved by exact solutions methods after long periods of computa-

tion. Winter also investigated online and real-time versions of the problem.

Gallo & Di Miele (2001) [39] presented a model for the Bus Dispatching Prob-

lem and used some advanced techniques to solve it, like Lagrangean Relaxation,

Bundle Method, and a decomposition method. As a result, the authors were able

to compute solutions for small- to medium-sized instances, i.e., for scenarios with

less than fifty vehicles.

Hamdouni et al. (2004) [51] also deal with the Bus Dispatching Problem. They

presented the first discussion regarding robustness of solutions for the VPP and

introduced the important concept of uniform tracks, i.e., tracks whose assigned

vehicles belong to the same type. The authors managed to solve medium-scale

scenarios, but their assumptions and their cost functions are slightly different from

the ones employed in this thesis.

Two successful methodologies for the Train Unit Shunting Problem were pro-

posed by Lentink (2006) [72], but in both cases optimality was sacrificed. The

first strategy consists of a decomposition of the problem in two parts. Initially, the

assignments of arrivals to departures are defined, and after this the resulting units

are assigned to the tracks. The problem of the first step is modeled (and solved) as

a mixed-integer linear program, while a column generation approach is employed

in the second step. In the other strategy, the author computes both assignments

in an integrated way, but it is assumed that the solutions must contain at least a

certain (fixed) number of uniform tracks. This hypothesis simplifies the problems,

but typically it does not correspond to a realistic operational constraint. As we

will show, the integrated approach has the best performance of all the solutions

proposed in the literature.

A branch-and-cut approach is proposed by Føns (2006) [37] based on the work of

Di Stefano & Koči (2004) [29], but the author reports a very poor computational
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performance of this method.

Jacob (2007) [58] investigates a version of the problem for trains where shunting

moves have a different interpretation. In these scenarios, a vehicle composed of n

units arrives at the depot (also organized in tracks), has its elements rearranged,

and departs. A shunting is an operation where all the units parked in one of the

tracks are pushed to another area of the depot, called hump. From the hump,

the units can be redistributed to the tracks or redirected to the area where the

new train is being composed. A robust approach to this problem is presented by

Cicerone et al. (2007) [20] and by Cicerone et al. (2009) [21], which are based on

the work of Liebchen et al. (2007) [73] on recoverable robustness.

More detailed overviews of these early works are provided by Winter (1998) [91] and

Føns (2006) [37], while references to more recent results are presented by Hansmann

(2010) [54] in his Ph.D. thesis.

1.4 Outline of the Thesis

The thesis is organized as follows. In Chapter 2, we give an overview of the VPP

and present the concepts that will be used in this text. Initially, we recall some

classic models and introduce new formulations based on aspects that, to the best

of our knowledge, were not explored in the literature. We define first crossings and

sequential matchings, two concepts that are used in several parts of this text and

that can be considered as important as uniform tracks for the study of the VPP.

We also introduce generic families of inequalities, discuss possible solutions for some

symmetry issues, and analyze the computational complexity of the VPPP and of

some special cases of the VPP. Finally, the computational results presented in this

chapter show that large-scale scenarios can only be solved by advanced methods.

Significant advances have been made in Mixed Integer Quadratic Constrained Pro-

gramming, and nowadays there are satisfactory tools to solve these problems. For

this reason, we present in Chapter 3 nonlinear approaches to the VPP. We re-

visit the first model for the VPP, proposed by Winter (1998) [91], introduce new

formulations, and apply a convexification technique to some of them. With the

incorporation of penalties for inconsistent assignments, the QP relaxation of one of

these models is able to produce nontrivial lower bounds for all the instances of the

problem that require crossings. There is no linear model with this theoretical prop-

erty, and it is also important to notice that this technique seems to be applicable

in other contexts.

In Chapter 4, we introduce a set partitioning formulation of the VPP and of

the VPPP . Basically, arrivals and departures are the elements to be partitioned,

while configurations of tracks are the sets. These models have a large number of

variables, so we apply branch-and-price approaches to solve them. For the min-

imization of first crossings, we present a pricing algorithm that runs in polyno-
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mial time if all the vehicles have the same size. Heuristics for the generation of

columns and symmetry breaking techniques are suggested for the improvement of

the computational performance. With these formulations, it is possible to pro-

duce high-quality solutions for medium and large-scale scenarios of the VPP and

of the VPPP . We also investigate several families of clique inequalities for our

models.

A generic iterative methodology to deal with mixed-integer linear programs is in-

troduced in Chapter 5. Basically, we eliminate several variables of an ILP and

optimize the resulting program. If the solution is not optimal for the original prob-

lem, then we re-incorporate some of the variables and repeat the procedure using

the computed solution as a warm start. The method stops as soon as an optimal

solution for the original program is obtained. We propose algorithms for the VPP

and for the VPPP based on this technique and show that they are able to compute

optimal solutions for large-scale scenarios after less than one hour of consumption.

In Chapter 6, we present formulations of the VPP+ and exact and heuristic solu-

tions methods for the VPPP
+. These extensions incorporate aspects that have not

been considered before in the literature. Both the VPP+ and the VPPP
+ are more

challenging from a computational point of view, but with an algorithm based on

the methodology described in Chapter 5 we were able to obtain very satisfactory

solutions for large-scale instances of the VPPP
+.

In Chapter 7, we analyze how disruptions in the arrival sequence affect pre-determined

plans for instances of the Vehicle Positioning Problem and investigate strate-

gies to avoid and to react to such events. Initially, we describe an online algorithm

used to modify a solution in response to changes in the input data. In order to pro-

duce solutions which are less sensitive to disruptions, we introduce a novel criterion

to evaluate the robustness of feasible matchings and suggest an ILP formulation

based on this concept.

We believe that the solution method described in Chapter 5, the strategies proposed

in Chapter 7 to deal with uncertainty, and the algorithms suggested in Chapter 6 for

more complex scenarios compose a satisfactory theoretical framework for decision-

support software dedicated to real-world scenarios of the Vehicle Positioning

Problem.



Chapter 2

The Vehicle Positioning

Problem

In this chapter, we give an introduction to the Vehicle Positioning Problem

(VPP). Some early models are recalled and new formulations based on aspects that

were not explored in the literature are presented. We define first crossings and

sequential matchings - two concepts that play an important role in this thesis - and

investigate the similarities between the VPP and the 3-Dimensional Matching

Problem. We also analyze the computational complexity of the Multi-Periodic

Vehicle Positioning Problem (VPPP ) and of some special cases of the VPP,

introduce families of valid inequalities, and discuss strategies to deal with certain

symmetry issues.

The chapter is organized as follows. Section 2.1 gives a brief overview of the relevant

theoretical framework used in this thesis and introduces IP models for the VPP

and for the VPPP . In Section 2.2 we present several formulations and analyze

them from a theoretical and from a computational point of view. Section 2.3

contains models for the minimization of first crossings. Finally, we investigate

some theoretical aspects of the problem in Section 2.4.

2.1 Background

In this dissertation, our main idea is to employ mixed integer programming and

combinatorial optimization methods in order to solve some versions of the Vehicle

Positioning Problem.

Optimization problems play a very important role in Mathematics. In these prob-

lems we are given a set S and a computable function f : S → R, and the objective

is to determine an element s in S such that f(s) is maximum (or minimum). If s

is such an element, we say that it is an optimal solution for the problem. If S is a

finite set, we say that this is a Combinatorial Optimization problem.

17
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In many cases the set S, although finite, is extremely large. Thus, computing

the value of f for each of its elements would consume an unacceptable amount of

time. The main goal of research in this area is to develop efficient algorithms to

find optimal solutions. Efficiency is usually measured according to the required

resources, considering the size of the input as the parameter for such analyses.

Generally, efficient algorithms evaluate the function f explicitly for a small subset

of elements of S, discarding the other ones by implicit but rigorous arguments.

Combinatorial optimization problems have been studied since the 18th century, but

only in the 50’s, after the development and establishment of linear and integer pro-

gramming, a unifying theory emerged. The history of combinatorial optimization

in its early years is described by Aardal, Nemhauser & Weismantel (2005) [1, chap-

ter 1]. In the 60’s, important contributions were given by Edmonds (1965) [31],

and in the 70’s the articles of Cook (1971) [22] and Karp (1972) [65] introduced

the foundations of Computational Complexity, an area that provides frameworks to

analyze the hardness of problems from a theoretical point of view. However, we

remark that it is possible nowadays to produce software systems which are able to

compute optimal solutions with acceptable consumption of time and memory for

many problems that are considered theoretically intractable.

As we already mentioned, Linear Programming plays a prominent role in the field

of optimization. We can say that the area was properly founded with the works of

Kantorovich (1960) [61] and Dantzig (1951) [26]. Dantzig introduced the simplex

method and was inspired by the work of von Neumann (1947) [90]. Khachiyan

(1979) [67] presented the Ellipsoid Algorithm, showing that linear programs can be

solved in polynomial time, and Karmarkar (1984) [64] introduced the Interior Point

Method. Grötschel (1991) [44] shows how the developments in linear programming

increased significantly the applicability of combinatorial optimization.

The Vehicle Positioning Problem is a Discrete Optimization problem. For

many problems of this nature, the best framework is provided by Graph Theory.

The first article of this area was written in 1736 by Euler (1741) [33]. Also important

is Mixed Integer Programming, introduced by Gomory (1958) [41]. Mixed integer

programs are systems of linear equations with integrality constraints for some or

all their variables.

Uncertainty and imprecision in data are some of the biggest challenges for the prac-

tical application of theoretical models. Problems of this nature are addressed by

Stochastic Optimization, Robust Optimization, and (Combinatorial) Online Opti-

mization. Dantzig (1955) [27] presented the first discussion on the use of linear

programming to deal with uncertainty.

Good texts about linear and integer programming are the books of Schrijver (1986)

[82], Wolsey (1998) [94], and Chvátal (1983) [19]. Some of the best references for

combinatorial optimization are the collection of Schrijver (2003) [83], the book of

Grötschel, Lovász & Schrijver (1988) [45], and the collection of Grötschel, Graham

& Lovász (1995) [46]. For computational complexity, we refer to the book of Garey



2.1 Background 19

& Johnson (1979) [40]. For graph theory, the classical reference is the book of

Bondy & Murty (1976) [15]. Finally, we give a more detailed literature overview of

combinatorial online optimization, stochastic optimization, and robust optimization

in Chapter 7.

2.1.1 Notation

We present here concepts and some notation that will be used in this text. It

is assumed that undefined elements follow the definitions which are already well-

established in the literature.

For the different types of families of optimization problems, we use the following

abbreviations: LP is a linear program; ILP is an integer linear program; MINLP

is a mixed integer nonlinear program; and MIQCP is a mixed integer quadratic-

constrained program.

For any program or model M , we denote its optimal objective value by V (M).

If M is an ILP, the optimal objective value of its LP relaxation is VLP (M). If M

is an MIQCP, VQP (M) is the optimal objective value of its fractional quadratic

programming relaxation. PLP (M) denotes the polytope associated with the LP

relaxation of formulation M . We say that two models M and M ′ are equivalent

if, for every solution of M , there is a solution of M ′ with the same objective value

and vice-versa.

2.1.2 The Vehicle Positioning Problem

The first and simplest version of the Vehicle Positioning Problem (VPP)

was introduced by Winter (1998) [91], who originally referred to it as the Tram

Dispatching Problem. We keep our notation as similar to Winter’s as possible.

Moreover, several elements have been already introduced in Chapter 1, but we will

repeat their description here in order to make this overview complete and self-

contained.

Some number n of vehicles arrive in a sequence A = {a1, . . . , an}. They must

be assigned to µ parking positions P = {p1, . . . , pµ} in some number m ≤ n of

tracks S = {s1, . . . , sm} in a depot; from these parking positions, the vehicles

depart to service a sequence of timetabled trips D = {d1, . . . , dn}. We refer to an

element a ∈ A as an arrival and to an element d ∈ D as a departure. A unit is a

pair in A × D. We denote by s(p) the track to which position p belongs. Given

arrivals ai and aj (departures di and dj), we say that ai < aj (di < dj) if i < j,

i.e., to indicate that ai (di) comes (starts) before aj (dj).

We denote by (a, p, d) or by (a, s, d) the assignment of arrival a to parking po-

sition p or track s and to departure d. Note that the parking positions can be

implicitly determined by the assignments involving the preceding vehicle arrivals.
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Consequently, we will use (a, s, d) more frequently than (a, p, d). We also say that

an arrival a is assigned to a departure d, that an arrival a is assigned to a tracks s

(or to a position p), or that a departure d is assigned to a tracks s (or to a posi-

tion p) if the third element of the assignment (the track or the parking position, the

departing trip, and the arriving vehicle, respectively) is irrelevant in the context.

Assignments are restricted by a number of constraints. We consider t vehicle types

T = {T1, . . . , Tt} and assume that there are ti elements of type Ti, i = 1, . . . , t, and

that
∑t
i=1 ti = n. Each arriving vehicle a is of type τ(a) and each departing trip d

can only be serviced by vehicles of type τ(d). An assignment (a, s, d) is feasible if

τ(a) = τ(d); we will denote the set of feasible assignments by F , i.e., (a, s, d) ∈ F
if and only if (a, s, d) ∈ A × S × D and τ(a) = τ(d). We denote by Ai (Di)
the subsequence of arrivals in A (departures in D) which contains all the arriving

vehicles (departing trips) of type Ti. Clearly, |Ai| = |Di|, 1 ≤ i ≤ t.

Each arriving vehicle a also has a size (or length) l(a) and each track s ∈ S has

size β > 1 (if β = 1, the problem is trivial). We assume that there is enough space

to park all vehicles. Note that in the basic version of the problem, the tracks are

all identical. If all vehicle types have the same size, which is also the case in the

basic version, we have l(a) = 1 for all a ∈ A and mβ ≥ n, i.e., β is the number of

parking positions in each track. We assume that mβ = n = µ.

We assume that the first departure starts after the last arrival and that each track is

operated as a FIFO queue, i.e., vehicles enter the track at one end and leave at the

other. The mathematical treatment of the problem does not change if the tracks

are supposed to operate as a LIFO stack, i.e., if vehicles enter and leave at the

same end. Namely, we can use exactly the same models in order to solve instances

where all the tracks are LIFOs (stacks) if we invert the order of the elements in

the departure sequence. Adjustments for scenarios where different tracks may have

different policies are also straightforward.

Consider assignments (a, s, d) ((a, p, d)) and (a′, s′, d′) ((a′, p′, d′)); if either a < a′

and d > d′ or d < d′ and a > a′, we say that these assignments are in conflict and

that a semi-crossing occurs between (a, s, d) ((a, p, d)) and (a′, s′, d′) ((a′, p′, d′)) (or

simply between (a, d) and (a′, d′)). If (a, s, d) ((a, p, d)) and (a′, s′, d′) ((a′, p′, d′))

are in conflict and s = s′ (s(p) = s(p′)), then we say that there is a crossing

between these assignments. Crossings are denoted by: (a, s, d) † (a′, s, d′) or by

(a, p, d)†(a′, p′, d′) for assignments; (a, d)†(a′, d′) for units; (a, p)†(a′, p′) for arrivals

and positions belonging to the same track; and (d, p) † (d′, p′) for departures and

positions belonging to the same track. Finally, if (a, s, d) † (a′, s, d′) and there is no

assignment (a′′, s, d′′) such that a < a′′ < a′, or if (a, p, d) † (a′, p′, d′) and p = p+ 1,

i.e., if a and a′′ are parked in consecutive positions in the same track and are

involved in a crossing, then we say that these assignments are also involved in a

first crossing .

A configuration q is a set of assignments (a, s, d) describing the arrivals and depar-

tures assigned to a given track s. We denote by q(A) (q(D)) the set of arriving
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vehicles (departing trips) of configuration q. Given two configurations q and q′, we

denote by q ∩ q′ their set of common elements (both arrivals and departures). A

pair of configurations q and q′ such that |q ∩ q′| > 0 is said to be intersecting. We

say that a configuration (or a track) is uniform if all the vehicles that it contains

(or which are assigned to it) are of the same type.

A matching is a set of configurations qs, one for each track s ∈ S, such that each

arriving vehicle and each departing trip is assigned to a parking position in exactly

one track (or configuration). The objective of the Vehicle Positioning Problem

is to find a matching that minimizes the total number of shuntings, which can refer

to the number of crossings or to the number of first crossings. Note that a matching

without crossings is also free of first crossings and vice versa.

2.1.3 The Multi-Periodic Vehicle Positioning Problem

The Multi-Periodic Vehicle Positioning Problem (VPPP ) involves a cyclic

sequence of p weekday and w weekend single period instances of VPP, where P =

p + w. Denote the arrival sequence for period h by Ah = {ah1 , . . . , ahn′} and the

departure sequence by Dh = {dh1 , . . . , dhn′}, 1 ≤ h ≤ P . Departures in Dh have

an expected return time to the depot, and the return times of the trips define the

arrival sequence A(h+1). There is a function sync : Dh → Ah+1 for each period h

that describes which arrival aj in A(h+1) is associated with departure di in Dh.

Finally, Sh is the set of tracks available in period h, and A =
⋃
hAh, S =

⋃
h Sh,

and D =
⋃
hDh if the distinction of periods is not relevant.

Typically, the number e of timetabled trips on weekend periods is smaller than

the number n of trips on regular (weekday) periods. These trips must be serviced

by a reduced number of vehicles (also equal to e), and these vehicles can only be

assigned to b ≤ m tracks of the depot. The idle n − e vehicles stay parked in the

remaining m − b tracks during the weekend periods and can only be assigned to

departures when the next weekday period starts, i.e., after the end of the cycle

(which usually represents a week). We denote the set of configurations for a track s

in period h by Qhs .

The VPPP has not been considered in the literature before. For this reason, in

this chapter we only consider formulations for the VPP. Finally, we leave the

introduction of some special aspects and generalizations of both problems to the

chapters where they are investigated.

2.1.3.1 Generation of Instances

In order to perform computational experiments for our models and algorithms,

we generated random instances. The schemes of generation employed in different

chapters vary according to the specifications of the problems that were being solved,

but all of them follow the guidelines that we describe below.
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Let n, m, and t (denoting the number of vehicles, the number of tracks, and the

number of types, respectively) be the parameters of the instance I of the VPP that

we want to generate, and let random(a, b) be a procedure that chooses uniformly

a random integer between a and b (inclusively). Initially, we generate a random

arrival sequence. For this, we select uniformly at random a type Ti for each arrival a,

i.e., τ(a) = Ti with probability 1
t , a ∈ A and 1 ≤ i ≤ t.

The departure sequence D of I can be seen as a permutation of the arrival se-

quence A. Consequently, we use an algorithm that receives a vector v as input and

returns a random permutation of v. Algorithm 1, also known as Fisher-Yates shuf-

fle (see Fisher (1948) [36]), presented by Cormen et al. (2001) [23], performs this

task. Procedure swap(a, b) indicates that a and b exchange their positions in D.

Algorithm 1 Randomize Sequence

D := A
n := size(A)

for i := 1 to n do

swap(D[i],D[random(i, n)])

end for

The sequence D generated by Algorithm 1 is a uniformly random permutations

of A (see, e.g., Cormen et al. (2001) [23] for a proof).

For the VPPP , we also have to determine a bijection between departures of period h

and arrivals of period h+ 1. More precisely, we have to define the function sync :

Dh → Ah+1 for each period h. Using the same idea of Algorithm 1, we suggest

Algorithm 2, which generates a mapping of Dh to Ah+1 uniformly at random.

Algorithm 2 Randomize Synchronization

n := size(Ah)

for i := 1 to n do

sync(dhi ) = ah+1
i

end for

for i := 1 to n do

swap(sync(dhi ), sync(dhrandom(i,n)))

end for

2.2 Models for the VPP

In this section, we recall classic models for the VPP and their most important

properties. We also introduce new inequalities to count crossings and discuss the

similarities between the VPP and the 3-Dimensional Matching Problem.
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For the sake of clarity, the computational comparisons are presented initially in

a ”local” way, that is, models which are closely related are directly compared.

”Global” comparisons will involve only the formulations with the best performances.

2.2.1 The First Models

We classify the models here according to the number of elements of the tuples used

to index the variables of the formulations.

2.2.1.1 Two-index Model

The first model for the VPP was proposed by Winter & Zimmermann (2000) [93]

and consists of the following quadratic integer programming formulation for the

Tram Dispatching Problem:

(W) min
∑

(a,p)†(a′,q)

xa,pxa′,q+
∑

(d,p)†(d′,q)

yd,pyd′,q

(i)
∑
a∈A

xa,p = 1 p ∈ P

(ii)
∑
p∈P

xa,p = 1 a ∈ A

(iii)
∑
d∈D

yd,p = 1 p ∈ P

(iv)
∑
p∈P

yd,p = 1 d ∈ D

(v) xa,p + yd,p ≤ 1 (a, p, d) ∈ A× P ×D, τ(a) 6= τ(d)

xa,p, yd,p ∈ {0, 1} a ∈ A, d ∈ D, p ∈ P.

The model uses binary variables xa,p, with a ∈ A and p ∈ P, and yd,p, with

d ∈ D and p ∈ P. If xa,p = 1 (yd,p = 1), arrival a (departure d) is assigned to

parking position p. Equations (W)(i)-(W)(iv) define the assignment constraints

and Inequalities (W)(v) enforce the coherence of these assignments by allowing

only arrivals and departures of the same type to be assigned to a given parking

position. Finally, the quadratic cost function calculates the number of crossings.

In his work, Winter did not solve the quadratic program directly. Instead, he tried

several linearization methods on (W). The best resulting formulation is reproduced

below and is based on the technique of Kaufmann & Broeckx (1978) [66]:
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(LW) min
∑
(a,p)

wa,p +
∑
(d,p)

ud,p

(i)
∑
a

xa,p = 1 p ∈ P

(ii)
∑
p

xa,p = 1 a ∈ A

(iii)
∑
d

yd,p = 1 p ∈ P

(iv)
∑
p

yd,p = 1 d ∈ D

(v) xa,p + yd,p ≤ 1 (a,p,d)∈A×P×D
τ(a)6=τ(d)

(vi) dxa,pxa,p − wa,p +
∑

(a,p)†(a′,q)
xa′,q ≤ dxa,p p ∈ P, a ∈ A

(vii) dyd,pyd,p − ud,p +
∑

(d,p)†(d′,q)
yd′,q ≤ dyd,p p ∈ P, d ∈ D

xa,p, yd,p ∈ {0, 1} a ∈ A, d ∈ D, p ∈ P
wa,p, ud,p ∈ N a ∈ A, d ∈ D, p ∈ P.

In this model, the integer variables wa,p and ud,p count the number of crossings

involving the assignments (a, p) and (d, p) in Inequalities (LW)(vi) and (LW)(vii),

respectively. Constants dxa,p and dyd,p are upper bounds for wa,p and ud,p, respec-

tively, and are computed a priori.

The following facts are known about these models:

Remark 2.1. Model (W) has 2n2 variables and O(n3) constraints.

Remark 2.2. Model (LW) has 4n2 variables and O(n3) constraints.

Theorem 2.3 (Winter (1998) [91]). For each feasible solution of (W), there is

a feasible solution for (LW) with the same objective value.

Theorem 2.4 (Winter (1998) [91]). The linear relaxation of model (LW) always

has optimal objective value equal to zero, i.e., VLP (LW) = 0.

Table 1 gives the results of a computational comparison between models (W)

and (LW) on a test set containing ten artificial instances of small and medium

sizes. These computational experiments were performed on an Intel(R) Core 2

Quad 2660 MHz with 4GB RAM, running under openSUSE 11.1 (64 bits). We

used CPLEX 11.2 (ILOG (2010) [57]) to solve linear programs, SCIP 1.0 (Achterberg

(2007) [2]) to solve integer programs, SNIP 1.0 (Vigerske (2009) [88]) to solve integer

non-linear programs, and ZIMPL (Koch (2004) [68]) to generate these models.

The first column in this table gives the name t-m-β of the instance. Following

our notation, t is the number of vehicle types, n is the number of tracks, and β is

the number of parking positions per track. Based on these parameters, the arrival

sequences A were randomly generated (i.e., the type of each vehicle was uniformly

chosen among the t possibilities), while their respective departure sequences D were

obtained by the application of Algorithm 1 in A. The columns labeled Row, Col,
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(LW) (W)

Name Row Col NZ Nod T Row Col NZ Nod T

3-6-4 10465 2305 43741 1343 58 9325 1165 21889 215 142

4-6-4 11617 2305 46045 12849 265 10477 1165 24193 816 214

5-6-4 12289 2305 47389 32870 654 11149 1165 25537 1010 237

3-7-3 7141 1765 25257 234 18 6273 897 14995 590 58

4-7-3 7897 1765 26769 17220 15 7029 897 16507 523 52

5-7-3 8359 1765 27693 114 19 7491 897 17431 651 64

3-7-4 16297 3137 68391 17220 124 14743 1583 33937 480 121

4-7-4 18145 3137 72087 7393 574 16591 1583 37633 1609 251

5-7-4 19209 3137 74215 60590 2171 17655 1583 39761 113997 11845

3-7-5 31151 4901 152125 59992 3251 28715 2465 64471 6612 76685

Table 1: Comparing models (LW) and (W).

and NZ give the number of constraints, variables, and non-zeros of the respective

program. Columns Nod give the number of nodes in the search tree generated by

the corresponding solver and columns T give the running time in seconds. The

objective value is equal to zero for all the instances.

As expected, the performance of the linear model is better than the perfor-

mance of the quadratic formulation, especially when we consider larger in-

stances. Winter (1998) [91] proposed some inequalities to strengthen (LW),

but his computational results showed that they were not able to make (LW)

suitable to solve large-scale scenarios.

2.2.1.2 Three-Index Models

Gallo & Di Miele (2001) [39] improved Winter’s model by noting that assign-

ments (a, s) and (s, d) implicitly determine the assignment of arrivals and

departures to parking positions. For the Train Unit Shunting Problem,

which can be seen as an extension of the VPP where vehicles can be com-

posed and decomposed, Kroon, Lentink & Schrijver (2006) [70] proposed a

model which explores the same idea and uses triples of A×S ×D as indices

for the decision variables. Based on this approach, we suggest the following
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new formulation of the VPP:

(LU) min
∑

(a,s,d)

ra,s,d

(i)
∑
(s,d)

xa,s,d = 1 a ∈ A

(ii)
∑
(a,s)

xa,s,d = 1 d ∈ D

(iii)
∑

(a,d)

xa,s,d = β s ∈ S

(iv)
∑
a′<a

xa′,s,d +
∑
d′≤d

xa,s,d′ − ra,s,d ≤ 1 (a, s, d) ∈ A× S ×D

xa,s,d ∈ {0, 1} (a, s, d) ∈ F
ra,s,d ∈ {0, 1} (a, s, d) ∈ A× S ×D.

This model uses binary variables xa,s,d, with a ∈ A, s ∈ S, d ∈ D, and τ(a) =

τ(d), where xa,s,d = 1 if and only if arrival a is assigned to departure d and

to track s. Equalities (LU)(i) and (LU)(ii) are assignment constraints for

arrivals and departures, while Equalities (LU)(iii) are capacity restrictions

for each track in S. Inequalities (LU)(iv) count crossings using binary

variables ra,s,d. More precisely, ra,s,d = 1 if and only if xa,s,d′ = 1, xa′,s,d = 1,

a′ < a, d′ ≤ d, and (a, s, d′) † (a′, s, d).

In any feasible solution of (LU), n variables xa,s,d are equal to one, while the

others are equal to zero. Each arrival and departure belongs to the index

of exactly one of these variables, while each track appears exactly β times.

It is clear that every solution of (LU) can be represented as a solution of

(W), but the opposite does not hold. This happens because (LU) can only

represent solutions where the units are distributed in the tracks according

to their arrival times, i.e., as we are assuming that all tracks are queues,

if ai and aj are assigned to the same track and ai < aj , then ai is parked

in front of aj (and the trip assigned to ai ideally starts earlier than the

trip assigned to aj). But Winter (1998) [91] showed that there is always

an optimal matching for the problem such that each configuration has this

property, so we can conclude that (LU) describes and optimizes the same

problem as (W).

This formulation has the following property:

Remark 2.5. Model (LU) has O(mn2) variables and O(mn2) constraints.

One of the most important differences between (LU) and (LW) is the neces-

sity of constraints (LW)(v). Namely, a triple (a, s, d) ∈ A×S×D composes

the index of a variable in (LU) if and only if τ(a) = τ(d). Consequently, as-

signments (a, s, d) with τ(a) 6= τ(d) can be removed from the model, which
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makes (LU) stronger than (LW). However, as the following theorem shows,

the linear relaxation of (LU) remains weak from the practical point of view.

Theorem 2.6. The linear relaxation of (LU) always has optimal objective

value equal to zero for instances with more than one track, i.e., VLP (LU) = 0

if m > 1.

Proof. Let M be any feasible assignment of A to D. We construct a solu-

tion x for (LU) as follows:

xa,s,d =

{
1
m , if (a, d) ∈M
0, else

, ra,s,d = 0.

Constraints (LU)(i) and (LU)(ii) are clearly satisfied by x, as

∑
s

xa,s,d =
∑
s

1

m
= 1

for each a ∈ A and d ∈ D. Moreover, as |M | = n,

∑
(a,d)

xa,s,d = n
1

m
= β

for each s ∈ S, satisfying (LU)(iii). Finally, because each arrival is assigned

to only one departure, we have

∑
a′<a

xa′,s,d +
∑
d′≤d

xa,s,d′ ≤
2

m
≤ 1,

and consequently, Constraints (LU)(iv) hold with ra,s,d = 0 for each (a, s, d)

in A × S × D. We conclude that (x, r) is a feasible solution of PLP (LU)

with cost zero.

It is possible to define conflict graphs for formulations of the VPP such

that each vertex represents an assignment and each edge connects a pair of

vertices representing assignments which can not appear simultaneously in a

feasible solution. Therefore, we refer to clique inequalities for models of the

VPP based on this definition of conflict graphs.

Balas & Saltzman (1989) [5] presented four families of clique inequalities for

a model for the 3-Dimensional Matching Problem. We can adapt one

of them for the (LU) as follows:
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Proposition 2.7. Let e be an element of A or D of type Tk. Let M e be the

set containing all triples (a, s, d) in F such that e = a or e = d if e ∈ A or

e ∈ D, respectively. Then∑
(a,s,d)∈Me

xa,s,d ≤ 1

is a maximal clique inequality for (LU) and |M e| = mtk.

Proof. Let e be be an arrival a of A of type Tk. From the set of triples

Ma ∈ A × S × D containing a, exactly one of its elements appears in a

feasible solution of VPP. We conclude that∑
(s,d)

xa,s,d ≤ 1,

which is implied by (LU)(i). The cardinality of Ma is equal to the number tk
of departures of type Tk multiplied by the number of tracks, i.e., |Ma| =

mtk = O(mn).

For any triple (a′, s, d), a 6= a′, if m ≥ 2 and if tk ≥ 2, then there is at least

one triple (a, s′, d′) in Ma such that s′ 6= s and d′ 6= d, i.e., (a′, s, d) and

(a, s′, d′) can belong simultaneously to a solution of VPP. Consequently,

a clique inequality containing variables representing the triples of Ma ∪
{(a′, s, d)} is not valid for (LU).

Finally, the same argument holds for each departure d.

Table 2 gives the results of a computational test of (LU) on the same ma-

chine and on the same dataset used in Subsection 2.2.1.1 plus three addi-

tional instance, whose optimal objective values are also equal to zero and

which could not be solved with (W) after many hours of computation. The

comparison shows a clear superiority of the three-index model.

2.2.2 Alternative Inequality to Count Crossings

As we have seen in Theorem 2.4 and in Theorem 2.6, the optimal objective

values of the linear relaxation of the models presented so far are always

equal to zero. Because deciding if an instance of the VPP needs crossings

is NP-complete (Theorem 1.2), it is probably impossible to create an ILP

formulation with polynomial dimensions whose linear relaxation is always

able to yield non-trivial lower bounds.
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Name Row Col NZ Nod T

3-6-4 3511 4609 38017 1 1

4-6-4 3511 4321 30241 1 0

5-6-4 3511 4153 25675 59 15

3-7-3 3137 4117 30871 12 8

4-7-3 3137 3865 24816 1 1

5-7-3 3137 3711 21274 54 6

3-7-4 5552 7323 67803 1 1

4-7-4 5552 6861 53509 41 29

5-7-4 5552 6595 45389 1 1

3-7-5 8653 11439 126099 1 4

4-7-5 8653 10725 98582 59 44

5-7-5 8653 10291 82321 26 38

6-7-6 12440 14407 117307 227 200

Table 2: Solving the VPP using (LU).

However, each Inequality (LU)(iv) considers just one potential crossing be-

tween units containing a given arrival and a given departure, i.e., ra,s,d ∈
{0, 1} for every (a, s, d) ∈ A×S ×D. Conversely, all the crossings involving

an arriving vehicle (a departing trip) and a parking position are considered

simultaneously in Inequalities (LW)(vi) ((LW)(vii)). It is natural to sup-

pose that an inequality considering several potential crossings can be more

“sensitive” and, consequently, more capable to produce non-trivial lower

bounds if the integrality constraints are relaxed.

For this reason, we modify (LU) by replacing Inequalities (LU)(iv) with

inequalities that count all the crossings involving each assignment (a, s, d),
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obtaining the model below.

(LUE) min
∑

(a,s,d)

ra,s,d/2

(i)
∑
(s,d)

xa,s,d = 1 a ∈ A

(ii)
∑
(a,s)

xa,s,d = 1 d ∈ D

(iii)
∑
(a,d)

xa,s,d = β s ∈ S

(iv)
∑

(a,d)†(a′,d′)

xa′,s,d′ ≤ β(1− xa,s,d) + ra,s,d (a, s, d) ∈ A× S ×D

xa,s,d ∈ {0, 1} (a, s, d) ∈ F
ra,s,d ∈ R (a, s, d) ∈ A× S ×D.

Because (LUE)(iv) counts all the crossings involving an assignment (a, s, d),

variables ra,s,d can not be binary. The amount of crossings is always integer,

but as all the other terms of (LUE)(iv) are integer, we can allow vari-

ables ra,s,d to be real. Besides, each crossing involving assignments (a, s, d)

and (a′, s′, d′) is computed twice, and this the reason why the cost function

of (LUE) is divided by two.

The following remark shows that the programs generated from (LUE) and

(LU) have similar sizes.

Remark 2.8. Model (LUE) has O(mn2) variables and O(mn2) constraints.

The following proposition shows that Inequalities (LUE)(iv) bring improve-

ments from a theoretical point of view.

Proposition 2.9. The linear relaxation of (LUE) provides non-trivial lower

bounds for some instances of VPP.

Proof. We present a family of instances I of VPP for which VLP (LUE) > 0.

Let us assume that each instance of I is such that the first arrival a1 can

only be assigned to the last departure dn. In this case, an optimal solution

of such an instance contains at least β − 1 crossings.

Let s be any track such that xa1,s,dn = p > 0. In this case, we know that∑
(a′,d′) 6=(a1,dn)

xa′,s,d′ = β − p.
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As a consequence, Inequality (LUE)(iv) for (a1, s, dn) is as follows:

∑
(a′,d′)†(a1,dn)

xa′,s,d′ ≤ β(1− xa1,s,dn) + ra1,s,dn =⇒

β − p ≤ β(1− p) + ra1,s,dn =⇒
−p ≤ −pβ + ra1,s,dn =⇒

p(β − 1) ≤ ra1,s,dn .

As p > 0 and β > 1, we have a non-trivial lower bound for ra1,s,dn and,

consequently, for the cost function of each instance of I.

We did some computational experiments with (LUE) and the performance

of the solvers was extremely unsatisfactory, as they spent a prohibitive

amount of time to generate poor feasible solutions and to close the opti-

mality gaps even for small instances.

2.2.3 A 3-Dimensional Matching Model

Winter’s model considers the assignment of arrivals to parking positions and

to departures. In other words, the problem consists of a search for n triples

in A × P × D, |A| = |P| = |D|, such that each element of the three sets

belongs to exactly one of these triples. This is exactly the definition of the

3-Dimensional Matching Problem (3DMP), a classical combinatorial

optimization problem which is known to beNP-complete (Karp (1972) [65]).

Winter (1998) [91] explored this similarity in order to show that the VPP

is NP-complete. For a comprehensive overview of the 3DMP and other

assignment problems, we refer to Burkard, Dell’Amico & Martello (2009)

[18].

The similarities between these two problems bring us to the following model

for the VPP, which is based on a similar well-known formulation of the 3DMP
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(see, e.g., Burkard, Dell’Amico & Martello (2009) [18]).

(3DM1) min
∑

(a,s,d)

ra,s,d

(i)
∑
(p,d)

xa,p,d = 1 a ∈ A

(ii)
∑
(a,p)

xa,p,d = 1 d ∈ D

(iii)
∑
(a,d)

xa,p,d = 1 p ∈ P

(iv)
∑
a′<a
s(p)=s

xa′,p,d +
∑
d′≤d
s(p)=s

xa,p,d′ − ra,s(p),d ≤ 1 (a, p, d) ∈ A× P ×D

xa,p,d ∈ {0, 1} (a,p,d)∈A×P×D
τ(a)=τ(d)

ra,s,d ∈ {0, 1} (a, s, d) ∈ A× S ×D.

This model employs binary variables xa,p,d, with a ∈ A, p ∈ P, d ∈ D,

and τ(a) = τ(d), where xa,p,d = 1 if and only if arriving vehicle a is as-

signed to departing trip d and parked in position p. Equations (3DM1)(i),

(3DM1)(ii), and (3DM1)(iii) are assignment constraints for arrivals, de-

partures, and parking positions, respectively, while Inequalities (3DM1)(iv)

count crossings using binary variables ra,s,d.

Model (3DM1) is basically a mixture of model (LU), as it is a three-index

model, with model (W), as arrivals and departures are assigned to parking

positions, and not to tracks. This model has the following property:

Remark 2.10. Model (3DM1) has O(n3) variables and O(mn2) constraints.

The following corollary shows that Inequalities (3DM1)(iv) bring the same

weakness to (3DM1) that they bring to (LU):

Corollary 2.11. The linear relaxation of (3DM1) always has optimal value

equal to zero for instances with more than one track, i.e., VLP (3DM1) =

0 if m > 1.

Proof. Let M be any set of feasible assignment of A to D where each element

appears exactly once. If we set xa,p,d = 1
µ for every p ∈ P, the same

arguments employed in the proof of Theorem 2.6 show that it is always

possible to build a fractional solution of cost zero for any instance of the

VPP containing at least two tracks.

Finally, the idea proposed in Subsection 2.2.2 leads to the following model

for the VPP:
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(3DM2) min
∑

(a,s,d)

ra,s,d

(i)
∑
(p,d)

xa,p,d = 1 a ∈ A

(ii)
∑
(a,p)

xa,p,d = 1 d ∈ D

(iii)
∑
(a,d)

xa,p,d = 1 p ∈ P

(iv)
∑

(a,d)†(a′,d′)
s(p)=s

xa′,p,d′ ≤ β − β
∑

s(p)=s

xa,p,d + ra,s(p),d (a, s, d) ∈ A× S ×D

xa,p,d ∈ {0, 1} (a,p,d)∈A×P×D
τ(a)=τ(d)

ra,s,d ∈ R (a, s, d) ∈ A× S ×D.

This model uses real variables ra,s,d that count all the crossings involving the

assignment of an arrival a to a departure d in a track s. Consequently, these

variables can not be binary, as they can assume any integer value between 0

and β.

Remark 2.12. Model (3DM2) has O(n3) variables and O(mn2) constraints.

Finally, as expected, (3DM2) is stronger than (3DM1):

Corollary 2.13. The linear relaxation of (3DM2) provides non-trivial lower

bounds for some instances of VPP.

Proof. The same family of instances presented in the proof of Proposition 2.9

always produces non-trivial lower bounds when solved with (3DM2).

From the families of inequalities proposed by Balas & Saltzman (1989) [5]

for the 3DMP, two can be adapted to (3DM1) and (3DM2).

Proposition 2.14. Let e be an element of A,P, or D. Let M e be the set

containing all triples (a, p, d) in A × P × D, τ(a) = τ(d), such that e = a,

e = p, or e = d if e ∈ A, e ∈ P, or e ∈ D, respectively. Then∑
(a,p,d)∈Me

xa,p,d ≤ 1

is a maximal clique inequality for (3DM1) and (3DM2) for any triple

(a′, p′, d′) in A×P ×D \M e and |M e| = O(n2).

Proof. Similar to the proof of Proposition 2.7.
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Proposition 2.15. For every triple (a, p, d) ∈ A× P ×D, let

T (a, p, d) = {(a′, p′, d′) : (a = a′ ∧ p = p′ ∧ d 6= d′) ∨
(a = a′ ∧ p 6= p′ ∧ d = d′) ∨
(a 6= a′ ∧ p = p′ ∧ d = d′)}.

Then ∑
(a,p,d)∈{(a,p,d)}∪T (a,p,d)

xa,p,d ≤ 1

is a maximal clique inequality for (3DM1) and (3DM2) for any triple

(a′, p′, d′) in A×P×D\{(a, p, d)}∪T (a, p, d) and |{(a, p, d)}∪T (a, p, d)| =
O(n).

Proof. It follows directly from the Pigeonhole Principle that any pair of

triples in T (a, p, d) ∪ {(a, p, d)} contains at least one element in common.

Let (a′, p′, d′) be a triple in A × P × D \ T (a, p, d) ∪ {(a, p, d)}. If it has

one element in common with (a, p, d) (let us assume w.l.o.g. that a is this

element) and if there are at least 2 arrivals of type τ(a), then there is an

element (a′′, p, d) in T (a, p, d) ∪ {(a, p, d)} such that a′′ 6= a, p′ 6= p, and

d′ 6= d. Consequently, a clique inequality containing variables representing

the triples of T (a, p, d) ∪ {(a, p, d)} ∪ {(a′, p′, d′)} is not valid for (3DM1)

and (3DM2).

Finally, there are O(n) triples sharing two elements with (a, p, d). Because

there are 3 such pairs, |{(a, p, d)} ∪ T (a, p, d)| = O(n).

Some preliminary computational experiments show that (3DM2) is useless

for practical applications. Formulation (3DM1) is better than (LUE) and

(3DM2), but we saw that it would take us a prohibitively large amount of

time to optimize even small-scale scenarios of the problem with this model.

For this reason, we did not present computational results in this section.

2.3 Minimization of First Crossings

Traditionally, shunting movements are computed as the number of cross-

ings in a solution for the VPP. However, this should not be considered the

ultimate criterion of evaluation. For example, if the rearrangement of ve-

hicles must be performed only when all the units are parked (i.e., after the

last arrival and before the first departure) and two buses parked in the last
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a8a7a6a5a4a3a2a1

d8d7d6d5d4d3d2d1

Figure 1: Example with 8 arrivals and departures

positions of some track are involved in a crossing, then all the vehicles as-

signed to this track will be involved in the shunting operation. Therefore, in

this case, changing the position of the last two buses may require the same

amount of work as changing the positions of all the units in this track.

Winter (1998) [91] showed that any solution containing crossings also con-

tains first crossings (the second concept was neither explicitly defined nor

explored by the author, though). This fact is clear, as every first crossing is

also a crossing. Also clear is the following remark:

Remark 2.16. The minimum number of first crossings is a lower bound for

the minimum number of crossings for any instance of VPP.

These facts suggest that the minimization of first crossings and the mini-

mization of crossings are closely related. However, the following result shows

that these two minimization problems do not necessarily share optimal so-

lutions.

Proposition 2.17. A solution that minimizes the number of crossings does

not necessarily minimize the number of first crossings and vice-versa.

Proof. Consider the following family of instances of VPP; the set T contains

three types (say, T1, T2, and T3), sequence A is such that

τ(ai) =


T1, if i = 1 or 3

T2, if i = 2 or 4,

T3, if 5 ≤ i ≤ n,

sequence D is such that

τ(di) =


T1, if i = n− 2 or n

T2, if i = n− 3 or n− 1,

T3, if 1 ≤ i ≤ n− 4,

and β = 4. The instance of this family for n = 8 (and, consequently, m = 2)

is presented in Figure 1.
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a4a3a2a1

d8d7d6d5

Figure 2: Minimizing crossings
a4a3a2a1

d8d7d6d5

Figure 3: Minimizing first-crossings

Clearly, there is semi-crossing involving any unit of type T1 or T2 and all

the units of type T3. Consequently, a solution minimizing first crossings or

crossings has all the vehicles of types T1 and T2 assigned to the same track.

As we can see in Figures 2 and 3, the solution that minimizes the number

of first crossings is not the same as the one that minimizes the amount of

crossings and vice-versa.

In the following subsections, we modify some of the models we presented on

the last sections in order to obtain formulations that minimize the number

of first crossings.

2.3.1 Two-index Model

Because the parking positions appear explicitly in the model, we just need

to make a simple modification in the cost function of (W) in order to obtain

a quadratic integer programming formulation that minimizes first crossings:
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(WF) min
∑

(a,p)†(a′,q)
p=q+1
s(p)=s(q)

xa,pxa′,q +
∑

(d,p)†(d′,q)
p=q+1
s(p)=s(q)

yd,pyd′,q

(i)
∑
a

xa,p = 1 p ∈ P

(ii)
∑
p

xa,p = 1 a ∈ A

(iii)
∑
d

yd,p = 1 p ∈ P

(iv)
∑
p

yd,p = 1 d ∈ D

(v) xa,p + yd,p ≤ 1 (a,p,d)∈A×P×D
τ(a)6=τ(d)

xa,p, yd,p ∈ {0, 1} a ∈ A, d ∈ D, p ∈ P.

In the cost function of (WF), p and q are consecutive positions that belong

to the same track. As we saw already, the quadratic model is not very

efficient from a computational point of view. Consequently, an adaptation

of the linear model (LW) is more interesting. For this, we can modify

inequalities (LW)(vi) and (LW)(vii) in order to obtain the following linear

model for VPP:

(LWF) min
∑
(a,p)

wa,p +
∑
(d,p)

ud,p

(i)
∑
a

xa,p = 1 p ∈ P

(ii)
∑
p

xa,p = 1 a ∈ A

(iii)
∑
d

yd,p = 1 p ∈ P

(iv)
∑
p

yd,p = 1 d ∈ D

(v) xa,p + yd,p ≤ 1 (a,p,d)∈A×P×D
τ(a)6=τ(d)

(vi) xa,p − wa,p +
∑

(a,p)†(a′,q)
q=p−1
s(p)=s(q)

xa′,q ≤ 1 p ∈ P, a ∈ A

(vii) yd,p − ud,p +
∑

(d,p)†(d′,q)
q=p−1
s(p)=s(q)

yd′,q ≤ 1 p ∈ P, d ∈ D

xa,p, yd,p, wa,p, ud,p ∈ {0, 1} a ∈ A, d ∈ D, p ∈ P.

Inequalities (LWF)(vi) and (LWF)(vii) are similar to (LW)(vi) and to

(LW)(vii), respectively. The difference lies in the fact that we only count
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crossings of consecutive parking positions. Because there is at most one

possible crossing involving each pair of positions p and p − 1, the integer

constants dxa,p (dyd,p) are always equal to one, and consequently, both wa,p
and ud,p are binary variables.

Models (WF) and (LWF) are also similar to (W) and (LW), respectively,

when we consider their dimensions and the properties of their linear relax-

ations.

Remark 2.18. Model (WF) has 2n2 variables and O(n3) constraints.

Remark 2.19. Model (LWF) has 4n2 variables and O(n3) constraints.

Corollary 2.20. For each feasible solution of (WF), there is a feasible

solution for (LWF) with the same objective value.

Proof. Similar to the proof presented in Winter (1998) [91] for Theorem 2.3.

Corollary 2.21. The linear relaxation of (LWF) always has optimal solu-

tion equal to zero, i.e., VLP (LWF) = 0.

Proof. The same family of instances used in 2.4 to prove that VLP (LW) = 0

can be used to show that VLP (LWF) = 0.

2.3.2 Three-index Model

Similarly to (W) and (LW), (LU) is meant to be used for the version

of VPP where crossings should be minimized. However, in this case, mod-

ifications are harder, as parking positions are considered implicitly in the

formulations.

The following formulation shows how one can adapt (LU) in order to pe-

nalize only first crossings:
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(LUF) min
∑

(a,s,d,a′)

ra,s,d,a′

(i)
∑
(s,d)

xa,s,d = 1 a ∈ A

(ii)
∑
(a,s)

xa,s,d = 1 d ∈ D

(iii)
∑

(a,d)

xa,s,d = β s ∈ S

(iv) xa,s,d +
∑
d′≤d

xa′,s,d′ ≤

1 + ra,s,d,a′ +
∑
d′′

a<a′′

a′′<a′

xa′′,s,d′′
(a,s,d,a′)∈A×S×D×A

a<a′

xa,s,d ∈ {0, 1} (a, s, d) ∈ F
ra,s,d,a′ ∈ {0, 1} (a,s,d,a′)∈A×S×D×A

a<a′
.

For every tuple (a, s, d, a′) ∈ A × S × D ×A, a < a′, Inequality (LUF)(iv)

checks if there is a crossing involving (a, s, d) and some assignment (a′, s, d′),

d′ ≤ d. This crossing is a first crossing (and, consequently, is penalized

in (LUF)(iv)) if there is no vehicle a′′, a < a′′ < a′, assigned to s. As each

vehicle and trip can be involved in at most one first crossing, it is clear that

variables ra,s,d,a′ are binary.

Remark 2.22. Model (LUF) has O(mn3) variables and O(mn3) constraints.

A comparison between Remark 2.5 and Remark 2.22 shows that (LUF) is

bigger and potentially harder than (LU).

Similarly to (LU), the linear relaxation of (LUF) always yields a trivial

lower bound.

Proposition 2.23. The linear relaxation of (LUF) always has optimal ob-

jective value equal to zero for instances with more than one track, i.e.,

VLP (LUF) = 0 if m > 1.

Proof. Similar to Proposition 2.6.

2.3.3 Computational Results

We compare (LUF) and (LWF) from a computational point of view. Ta-

ble 3 gives the results obtained from the computation of five instances on
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(LWF) (LUF)

Name Row Col NZ Sol T Row Col NZ Sol T

20-4-3 8140 1200 21440 0 2 5792 6364 297884 0 36

49-7-5 175714 7203 414344 12 * 83622 87080 13974331 7 *

56-8-6 262416 9408 616448 12 * 137616 142536 29129120 8 *

70-10-6 512750 14700 1198400 - * 291830 300000 81657130 12 *

96-12-7 1542432 27648 3521088 - * - - - - -

Table 3: Comparing models (LUF) and (LWF).

an Intel Core2 Quad 2.83GHz processor and 16GB RAM using CPLEX 12.2

as solver.

The first column in this table gives the name n-m-t of the problem. Fol-

lowing our notation, n is the number of arrivals (and departures), m is the

number of tracks, and t is the number of vehicle types. Based on these

parameters, the arrival sequences A were randomly generated (i.e., the type

of each vehicle was uniformly chosen among the t possibilities), while their

respective departure sequences D were obtained after the application of Al-

gorithm 1 in A. The columns labeled Row, Col, NZ, and T give the number

of constraints, variables, non-zeros, and the time consumed in seconds by

the respective model. Each program had a time limit of 10800 seconds.

Models that could not obtain an optimal solution in the time limit have ∗
in their column T.

As we can see, (LUF) is superior to (LWF), but actually both models

have poor performances. Moreover, for the largest scenario, it was not

possible to obtain a feasible solution with (LUF), while the ILPs generated

from (LWF) exceeded the limit of memory of our computer.

We conclude that the minimization of first crossings is harder than the min-

imization of crossings when we consider non-advanced solution approaches.

That is, it is easier from the computational point of view to minimize cross-

ings than first crossings if we just model these problems as ILPs and try to

optimize them using generic solvers. However, in Chapter 4, we introduce a

set partitioning approach to the problem and show that this formulation is

easier to solve if we minimize first crossings, which shows the usefulness of

this concept for the VPP.
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2.4 Theoretical Aspects

The first theoretical results related to the VPP were presented by Winter

(1998) [91] and Blasum et al. (1999) [12]. Some further aspects were covered

by Lentink (2006) [72]. For a comprehensive survey, we refer to the work of

Hansmann (2010) [54].

In this section, we present some theoretical aspects of the VPP which were

not explored in the literature. Namely, we investigate families of inequalities,

symmetry issues, and the computational complexity of some special versions

of the problem.

2.4.1 Inequalities

Typically, practical instances of the VPP admit crossing-free solutions.

However, when this is not the case, the LP/ILP solvers usually need a

considerable amount of time to find nontrivial lower bounds and to close

optimality gaps. For this reason, we address families of valid inequalities

that might be useful in this matter. We formulate inequalities for (LU),

but most of the results can be adapted and employed in other models as

well.

2.4.1.1 Sequential Matchings

A sequential matching of subsequences A′ ⊆ A and D′ ⊆ D is the assignment

of the i-th arrival in A′ of type Tk to the i-th departure in D′ of type Tk for

every valid i and k. It is clear that the sequential matching of A′ and D′

is well-defined if and only if |A′i| = |D′i|, 1 ≤ i ≤ t. Finally, the sequential

matching of A and D is called complete sequential matching .

Lemma 2.24. Given subsequences A′ ⊆ A and D′ ⊆ D of size β such that

|A′i| = |D′i|, 1 ≤ i ≤ t, the sequential matching produces a configuration

with a minimum number of crossings.

Proof. Let q be a configuration such that q(A) = A′ and q(D) = D′ and

assume that q does not describe a sequential matching. In this case, there is

a crossing involving pairs (a, d) and (a′, d′) such that τ(a) = τ(a′). This sit-

uation is represented in Figure 4, where a2, a4, d2, and d4 represent individ-

ual elements, with τ(a2) = τ(a4) = τ(d2) = τ(d4), and A1, A3, A5, D1, D3,

and D5 represent (possibly empty) sequences of arrivals and departures.
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A5a4A3a2A1

D5d4D3d2D1

Figure 4: Assignment that does not describe a sequential matching

a9a8a7a6a5a4a3a2a1

d9d8d7d6d5d4d3d2d1

Figure 5: Example with 9 elements and 3 tracks

If we substitute for the assignments (a2, d4) and (a4, d2) the assignments

(a2, d2) and (a4, d4), we obtain a configuration q′ whose number of crossings

is smaller than the number of crossings of q, as we are eliminating the

crossings involving units (a2, d4) and (a4, d2) and units whose arrivals is

in A3 and whose departures is in D3. We remark that the other original

crossings remain and that no extra crossing appears after this substitution.

If we apply this substitution to every pair of crossing assignments of the

same type, we will obtain a new configuration with less crossings. It follows

directly that the sequential matching of the elements of sets A′ and D′

provides the configuration with the minimum number of crossings.

Corollary 2.25. A solution using the complete sequential matching mini-

mizes the number of semi-crossings.

However, the complete sequential matching does not yield an optimal so-

lution for every instance of VPP. In Figure 5, we show an example with

nine arrivals and departures and three tracks for which the complete sequen-

tial matching leads to a scenario where crossings are unavoidable, while the

optimal solution (whose assignments are indicated in the figure) does not

contain crossings.

Model (LU) counts the number of crossings by penalizing pairs (a, d) ∈
A×D that belong to assignments (a, s, d′) and (a′, s, d) such that (a, s, d′)†
(a′, s, d). We use Lemma 2.24 in order to show that a relaxation of (LU)

can be considered instead.

Proposition 2.26. If we remove Inequalities (LU)(iv) for triples (a, s, d) ∈
A×S×D such that τ(a) = τ(d), it is still possible to find an optimal solution

for the original problem with the same objective value from this relaxation.
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Proof. It is clear that the value of an optimal solution of the relaxed model

is smaller than or equal to the optimal value of the complete model, as

every feasible solution for the last is also a feasible solution for the first and

potentially “more penalized”, as it considers crossings ignored in the relaxed

model. We show that we can build a solution for the complete model with

the same cost value out of every solution of the relaxed model.

Let x be an optimal solution for the relaxed model. This solution might

contain crossings involving pairs (a, d) and (a′, d′) such that τ(a) = τ(a′).

However, from Lemma 2.24, if we substitute for the assignments q(A) →
q(D) of each configuration q the sequential matching of q(A) and q(D), we

will have a solution x′ where such crossings do not happen. Finally, it follows

from the optimality of x and from Lemma 2.24 that the value of x in the

relaxed model is equal to the value of x′ in the complete model.

2.4.1.2 Global Lower Bound

For every instance of the VPP, we can define a VPP-graph G whose vertices

represent feasible assignments (a, d) ∈ A × D and whose edges indicate a

semi-crossing between the units represented by its incident vertices. If we

select a set of vertices of G such that each arrival and each departure appears

exactly once, then these vertices represent a matching A → D.

Cliques induced by subsets of vertices of G represent sets of assignments

which cannot be assigned to the same track without crossings. We use this

idea in order to derive a valid inequality for the VPP.

Proposition 2.27. If c is the minimum size of a maximum clique of the

subgraph of the VPP-graph G induced by some set of vertices representing

a matching, then

∑
a,s,d

ra,s,d ≥
1

2

⌊ c
m

⌋
(c+ (c mod m)−m)

is a valid inequality for VPP.

Proof. This fact follows directly from the Pigeonhole Principle. If c = am+b,

a, b ≥ 0, and the crossing assignments can be distributed among the tracks in

the best way to avoid crossings, there will be b tracks with at least a(a+1)/2
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a15a14a13a12a11a10a09a08a07a06a05a04a03a02a01

d15d14d13d12d11d10d09d08d07d06d05d04d03d02d01

Figure 6: Clique of size 4 in the sequential matching

a15a14a13a12a11a10a09a08a07a06a05a04a03a02a01

d15d14d13d12d11d10d09d08d07d06d05d04d03d02d01

Figure 7: Crossing-free assignment of units to 3 tracks

crossings and m− b tracks with at least a(a− 1)/2 crossings. It follows that

∑
a,s,d

ra,s,d ≥
ba(a+ 1)

2
+

(m− b)a(a− 1)

2
=
a

2
(b(a+ 1) + (m− b)(a− 1))

=
a

2
(b+ma−m+ b) =

a

2
(c−m+ b)

=
1

2

⌊ c
m

⌋
(c+ (c mod m)−m)

is a valid inequality for (LU).

We observe that 1
2

⌊
c
m

⌋
(c+ (c mod m)−m) ≤ 0 if c+ (c mod m) ≤ m.

Based on Corollary 2.25, one can ”intuitively” conclude that the complete

sequential matching contains the smallest maximum clique of size c. How-

ever, in Figure 6, we present an example with fifteen units whose sequential

matching contains a clique of size four, and in Figure 7 we show that it is

possible to construct a crossing-free solution with three tracks for the same

instance.

2.4.1.3 Induced Crossings

The following proposition shows that, in some cases, it is possible to conclude

that if a unit (a, d) is used, there will be crossings in the solution.

Proposition 2.28. Let (a, d) ∈ A ×D be a feasible assignment. If there is

no set of units which can compose a crossing-free configuration with (a, d),

then any matching containing (a, d) requires at least one crossing.

Proof. If there is no crossing-free configuration containing unit (a, d), then

it is clear that any matching that assigns a to d will require crossings, even

if they do not involve (a, d) directly.
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a′a

d′dd′′

Figure 8: Departure d is involved in semi-crossings with (a, d′) and (a′, d′′)

We say that the (a, d)-adjusted complete sequential matching is the matching

composed by (a, d) and by the units of the sequential matching of A \ {a}
and D \ {d}. Let C ′(a, d) be the set of assignments of the (a, d)-adjusted

complete sequential matching which do not cross with (a, d), and let c′(a, d)

be the minimum number of crossings between any subset of β − 1 elements

of C ′(a, d).

Proposition 2.28 gives a direct lower bound for the cost function. Moreover,

because each arrival is assigned to exactly one pair in an integer solution,

we can consider all the lower bounds for units sharing the same arrival

simultaneously, obtaining∑
a′,s′,d′

ra′,s′,d′ ≥
∑
s′,d′

c(a,d′)>0 or
|C′(a,d′)|<β−1

xa,s′,d′ a ∈ A. (1)

Analogously,∑
a′,s′,d′

ra′,s′,d′ ≥
∑
a′,s′

c(a′,d)>0 or
|C′(a′,d)|<β−1

xa′,s′,d d ∈ D. (2)

2.4.1.4 Inequalities With Variables ra,s,d

Consider arrivals a and a′, with a < a′, a track s, and a departure d. If a

is assigned to a departure d′, d′ > d, and a′ is assigned to a departure d′′,

d′′ < d, there will be a crossing involving assignments (a, s, d′) and (a′, s, d′′),

and as a consequence, if departing trip d is also assigned to track s, then it

will certainly be involved in a crossing as well. A graphic representation of

this situation is given in Figure 8.

These observations can be translated into the following inequalities for (LU):∑
d′≥d

xa,s,d′ +
∑
d′′≤d

xa′,s,d′′ −
∑
a∗
s′ 6=s

xa∗,s′,d ≤ 1 +
∑
a∗
ra∗,s,d

for arrivals a, a′ ∈ A, a < a′, track s ∈ S and departure d ∈ D. We can
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assume that τ(a) 6= τ(a′). Analogously,∑
a′≥a

xa′,s,d +
∑
a′′≤a

xa′′,s,d′ −
∑
d∗
s′ 6=s

xa,s′,d∗ ≤ 1 +
∑
d∗
ra,s,d∗ ;

for departures d, d′ ∈ D, d < d′, track s ∈ S and arrival a ∈ A. Again, we

assume that τ(d) 6= τ(d′).

2.4.2 Symmetry

One of the biggest challenges for most models of the VPP is their symme-

try. In this section we investigate some sources of symmetry and propose

strategies to attenuate and eventually to eliminate their effects.

2.4.2.1 Track Symmetry

Let x be a solution of an instance of VPP, and let s and s′ be two tracks

of this instance. Let x∗ be a solution derived from x by exchanging the

assignments of s with the assignments of s′, i.e.,

• x∗a,s′,d = xa,s,d;

• x∗a,s,d = xa,s′,d;

• x∗a,s′′,d = xa,s′′,d for s′′ 6= s and s′′ 6= s′.

It is clear that x∗ is similar to x, as the only difference between them lies

in the labeling of tracks s and s′. We can apply further exchanges of this

nature in order to generate other solutions identical to x. More precisely,

every matching can be represented in m! different ways if the tracks are all

equal but their labels are not ignored.

One simple strategy employed in assignment problems to avoid this issue

consists of fixing some of the assignments in a way that not every optimal

solution of the original problem is removed from the new reduced version.

For the VPP, if we fix the assignment of some arrival ai of type T1 to

track s1, we can remove the t1(m− 1) variables representing the assignment

of ai to other tracks. As a result, the number of feasible solutions is divided

by (m)!, and, more important, at least one optimal solution for the original

version clearly remains in the reduced problem.

After fixing the first arrival ai, we can apply the same idea in order to

eliminate other variables. For any aj 6= ai, we typically do not know in
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advance if ai and aj belong to the same configuration in every optimal

solution, but we can assume w.l.o.g. that aj can only be parked in s1 or in

s2. Thus we can not fix the assignment of aj , but we still can remove from

the formulation all variables indexed by triples (aj , sk, d) such that sk > 2.

With this, we also divide the number of feasible solutions by (m− 1)!.

The idea can be naturally extended and applied to up to m arrivals. Because

the amount of variables which are removed after fixing an arrival of type Tj
is proportional to tj , it is more interesting to apply this procedure to arrivals

whose types contain the biggest number of available units.

These ideas are summarized in Algorithm 3, where we describe a routine to

avoid track symmetry in model (LU).

Algorithm 3 Reduction of Track Symmetry

Relabel types T1, T2, . . . , Tt in a way that ti ≥ ti+1, 1 ≤ i < t

add := 0

i := 1

while add < |S| do

flag := false

for a := 1 to n do

if τ(a) = Ti and a was not fixed then

flag := true

for d := 1 to n do

if τ(a) = τ(d) then

for s := i+ 1 to |S| do

Remove xa,s,d from the model

end for

end if

end for

end if

end for

if flag = true then

add := add+ 1

else

i := i+ 1

end if

end while
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2.4.2.2 Uniform Consecutive Subsequences

We say that A′ ⊆ A (D′ ⊆ D) is a uniform consecutive subsequence if all its

elements appear consecutively in A (D) and belong to the same type. The

following proposition shows that uniform consecutive subsequences can be

sources of symmetry if crossings involving units of the same type are ignored

(which can be done according to Proposition 2.26).

Proposition 2.29. Let A′ be a uniform consecutive subsequence. Let M be

a matching and M ′ its subset containing only the assignments with arrivals

of A′. Let D′ be the subset of D covered by M ′. If we keep the assignment

of D to S and if we exchange M ′ by any of the other |A′|! − 1 possible

assignments of vehicles of A′ to trips in D′, we obtain in each case a new

solution with the same number of crossings involving vehicles of different

types.

Proof. Let (a2, d4) and (a4, d2) be two different assignments in M ′. We refer

again to Figure 4 and recall that a substitution of these two assignments

for (a2, d2) and (a4, d4) changes the number of crossings among vehicles of

different types if and only if there are assignments from elements of A3 to

elements of D3 whose types are different from τ(a2). Because each arrival

in A3 is of type τ(a2), the number of such crossings does not change with

this substitution.

Briefly, if the assignments of departures to arrivals of a uniform consecutive

subsequence are exchanged and only crossings involving units of different

types are considered, the cost value of the resulting matching will be equal

to the cost value of the original one.

It is clear that the same argument holds for uniform consecutive subse-

quences of departures.

Corollary 2.30. Let D′ be a uniform consecutive subsequence. Let M be a

complete matching and M ′ its subset containing only the assignments with

departures of D′. Let A′ be the subset of A covered by M ′. If we keep the

assignment of A to S and if we exchange M ′ by any of the other |D′|! − 1

possible assignments of departures of D′ to vehicles in A′, we obtain a new

solution with the same number of crossings involving vehicles of different

types.

In order to avoid these symmetry problems, we can use the following in-
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equality for each uniform consecutive subsequence A′:∑
s,d′<d

xai+1,s,d′ ≤ 1−
∑
s

xai,s,d ai, ai+1 ∈ A′, d ∈ D. (3)

Similarly, if D′ is a uniform consecutive subsequence:∑
s,a′<a

xa′,s,di+1
≤ 1−

∑
s

xa,s,di di, di+1 ∈ D′, a ∈ A. (4)

If these inequalities are used, this type of symmetry is removed completely.

While the families of valid inequalities above reduce the number of valid

solutions for an instance of VPP, the following proposition shows that, in

some cases, it is also possible to eliminate assignment variables from the

models.

Proposition 2.31. Let A′ = {a′1, a′2, . . . , a′k} and D′ = {d′1, d′2, . . . , d′k} be

maximal uniform consecutive subsequences. We can eliminate the variables

representing assignments of pairs (a, d) ∈ A′ ×D′ that do not belong to the

sequential matching of A′ and D′ without losing all the optimal solutions for

the original program.

Proof. We show that if the variables representing assignments of pairs (a, d) ∈
A′ ×D′ that do not belong to the sequential matching of A′ and D′ are re-

moved, at least one optimal solution from the original problem remains in

the reduced version.

Let x be an optimal solution of the original (complete) model. If all the

arrivals in A′ are assigned to the departures in D′ in x, we just have to sub-

stitute for these assignments the ones that belong to the sequential matching

of A′ to D′ in order to obtain a solution x∗ with the same number of cross-

ings. Also trivial is the case where there is no arrival in A′ assigned to

departures in D′.

Let us assume that at least one arrival aj in A′ is assigned to a trip di in

D′ in x and that (ai, di) and (aj , dj) belong to the the sequential matching

of A′ and D′. We can suppose w.l.o.g. that both ai and dj are assigned to

dk /∈ D′ and al /∈ A′, respectively. If this is not the case (say, because a′l
belongs to A′), then we consider the arrival am assigned to dl. If am /∈ A′, we

found the element we wanted, and if not, we continue with this search until

we reach an arrival which does not belong to A′. The same idea applies

if dk ∈ D′. We denote the chain of arrivals by C(A′) and the chain of

departures by C(D′).
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aiajal

dkdidj

alajai

djdidk

Figure 9: Using assignments from the sequential matching

It follows from our construction that there is exactly one element al in C(A′)
which does not belong to A′ and exactly one element dk in C(D′) which does

not belong to D′. We will substitute the assignments involving C(A′) and

C(D′) in order to obtain a solution x′ with the property we want, and the

substitution is done according to one of the following four possible situations:

1. al is the first arrival of C(A′) and dk is the first departure of C(D′):
We assign dk to the first arrival of C(A′)\{al}, al to the first departure

of C(D′)\{dk}, and the remaining elements of C(A′) to the remaining

elements of C(D′) according to the sequential matching.

2. al is the last arrival of C(A′) and dk is the last departure of C(D′): We

assign dk to the last arrival of C(A′) \ {al}, al to the last departure of

C(D′) \ {dk}, and the remaining elements of C(A′) to the remaining

elements of C(D′) according to the sequential matching.

3. al is the first arrival of C(A′) and dk is the last departure of C(D′): We

assign dk to the first arrival of C(A′)\{al}, al to the first departure of

C(D′) \ {dk}, and the remaining elements of C(A′) to the remaining

elements of C(D′) according to the sequential matching.

4. al is the last arrival of C(A′) and dk is the first departure of C(D′):
We assign dk to the last arrival of C(A′)\{al}, al to the last departure

of C(D′)\{dk}, and the remaining elements of C(A′) to the remaining

elements of C(D′) according to the sequential matching.

The last two cases are presented in Figure 9. If follows from a similar argu-

ment used in the proof of Proposition 2.29 that, with these transformations,

we obtain a new solution x′ with the same number of crossings involving

units of different types.

We conclude that we can keep only the variables representing the assign-

ments of the sequential matching of A′ to D′ without losing all the feasible

optimal solutions.

These results suggest that it is not necessary to distinguish elements in

a uniform consecutive subsequence. For each type Ti ∈ T , we can define a

multi-graph H i = (V,E) where each vertex represents a uniform consecutive



2.4 Theoretical Aspects 51

a9a8a7a6a5a3a2a1

d9d8d7d6d4d3d2d1

Figure 10: Original problem: 64 possible assignments

a2a1

d2d1

Figure 11: Graph H i: 14 possible assignments

subsequence (of arrivals or departures) of type Ti. An edge of H i represents

a possible assignment of a vertex a representing a sequence of arrivals to

a vertex d representing a sequence of departures. If we denote the size

of these sequences by |a| and |d|, there will be e(a, d) = min(|a|, |d|) edges

connecting a to d. Figures 10 and 11 present an example of this construction.

The first figure shows the parts of the original sequences A and D containing

elements of type Ti, and the second shows how the respective graph H i looks

like.

It is possible to use graphs H i, 1 ≤ i ≤ t, in order to construct a new ILP for-

mulation for the VPP. For each pair (a, d), we have variables x1
a,d, x

2
a,d, . . . ,

x
e(a,d)
a,d representing the assignments of arrivals in a to departures in d.

Clearly, if there is no sequence of consecutive units, the problem remains

the same.

An integral solution can describe the assignment of k′ < e(a, d) elements

of a to d in
(e(a,d)

k′

)
different ways, which brings more symmetry to the

problem. In order to avoid this problem, we can use the following family of

inequalities:

xj+1
a,d ≤ x

j
a,d a, d ∈ V (H i), 1 ≤ j < e(a, d), 1 ≤ i ≤ t. (5)

Moreover, this technique also makes the the linearization of the cost function

more challenging. The formulation used in (LU) is valid because each a and

each d is assigned to exactly one d and a, respectively, and as a consequence,

the sum on the left term is not greater than 2. However, because a variable

in the new model represents a sequence, the number of assignments involving

a pair (a, d) lies between 0 and min(|a|, |d|), so the sums
∑

a′<a xa′,s,d and∑
d′≤d xa,s,d′ can be greater than one.

For this reason, we have to use the following constraints in this problem,
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which are based on the set of inequalities proposed in Section 2.2.2:∑
(a′,d′)†(a,d)
1≤j≤e(a′,d′)

xja′,s,d′ ≤ β(1− xia,s,d) + ra,s,d,i
(a,s,d)∈A×S×D

1≤i≤e(a,d) .

We remark that variables ra,s,d,i are positive and integer. Unfortunately,

as we saw in Section 2.2.2, these inequalities are very challenging from a

computational point of view.

Due to several symmetry issues appearing in this formulation, this model

does not seem to be a competitive option for the VPP.

2.4.2.3 General Consecutive Subsequences

Let x be a solution of an instance of VPP. Let us suppose that (ai, dj) is the

u-th unit assigned to track sm and that (ak, dl) is the v-th unit assigned to

track sn in x. In some cases, it is possible to modify x by assigning (ai, dj)

to sn and (ak, dl) to sm, obtaining a solution x′ with the same number of

crossings as x. Therefore, x and x′ are basically equal, so it is interesting to

remove one of these possible scenarios from the space of feasible solutions.

For the minimization of crossings, there seems to be no easy way to for-

mulate inequalities that avoid such scenarios. For the minimization of

first crossings, though, the situation is more simple. Let c(M) be the

number of crossings involving units of a set M ⊆ A × D. Suppose that

M1 = {(ai, dj), (ak, dl), (am, dn)} contains units assigned to track s1 in con-

secutive positions, that M2 = {(ao, dp), (aq, dr), (as, dt)} contains units as-

signed to track s2 in consecutive positions, and that ai, ao < ak, aq < am, as.

We have the situation described in the first paragraph of this section if

c(M1)+c(M2) = c({(ai, dj), (aq, dr), (am, dn)})+c({(ao, dp), (ak, dl), (as, dt)}).

It is possible to create families of inequalities to eliminate such scenarios,

but they are clearly too numerous and too weak to make their incorporation

to any ILP formulation worthy. However, we will see in Chapter 4 that

this idea can be incorporated to a branch-and-price algorithm, bringing a

significative improvement in its performance.

2.4.2.4 Applicability

The symmetry breaking techniques presented in this section do not yield

significative gains in performance if directly applied and/or implemented in
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the formulation of the VPP presented in this chapter. For example, we

applied Algorithm 3 to remove the track symmetry from some instances

of the VPP and noticed that the resulting programs were slower than the

original ones.

However, as we will see in future chapters (specially Chapter 4), these obser-

vations are useful if we want to enhance the performance of more advanced

”tailor-made” techniques for the VPP.

2.4.3 Computational Complexity

In this section, we explore some aspects of the computational complexity of

the VPP which were not addressed in the literature so far to the best of our

knowledge.

2.4.3.1 Hardness of VPPP

The VPPP is an extension of the VPP, which is known to be a hard prob-

lem (Winter (1998) [91]). The following results show that the VPPP , not

surprisingly, is also hard.

Proposition 2.32. It is NP-complete to decide if an instance of the VPPP

needs shuntings.

Proof. Let I be an instance of VPP with arrival sequence A, departure

sequence D, and m tracks. Based on I, we can construct an instance I ′ of

VPPP with k > 1 periods. The first period is such that A1 = A, D1 = D,

and the number of tracks is also equal to m. In other words, the first period

of I ′ is equal to I. The other periods are such that both the arrival and the

departure sequences are equal to A. We are assuming that all the periods

have the same number of scheduled trips, i.e., e = n. Figure 12 shows an

example of this reduction where k = 3, n = 6, and m = 2.

It is clear that there are crossing-free solutions for the periods k such that

Ak = Dk = A. Conversely, the first period, which is similar to I, is non-

trivial. Consequently, we are able to obtain an optimal solution for I ′ if

and only if we are able to obtain an optimal solution for I. Moreover, both

solutions will have the same objective value. Therefore, as we know that the

VPP is NP-complete, it follows that the VPPP is also NP-complete.

Corollary 2.33. The VPPP is NP-hard.
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Figure 12: Reducing an instance of VPP to an instance of VPPP
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Figure 13: Original VPP instance
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Figure 14: Resulting digraph

Proof. It follows from Proposition 2.32.

Positive results regarding special scenarios of the VPP also hold for the

VPPP .

Corollary 2.34. It can be decided in polynomial time if the VPPP needs

shuntings when all tracks have size two and the assignments of vehicles to

trips are fixed.

Proof. The problem can be reduced to the Maximum Matching Problem

(as in Winter (1998) [91]), where each unit is represented by a vertex and

each edge represents a crossing-free configuration composed by the units

associated to the vertices. In Figures 13 and 14, we show how this reduction

works for an instance of VPP.

Initially, we notice that almost every period can be solved independently

of the others, and in these cases, it is clear that there is a crossing-free

assignment if and only if there is a perfect matching in the graph described

above. The only exception involves the first weekday period and the first

weekend period. Some departures of the first period (more precisely, exactly

n−e of them) must be serviced by arrivals of the second period. Fortunately,

the only implication of this fact is that the assignment of both periods must

be considered simultaneously, so it is also clear in this case that there is a

crossing-free assignment if and only if there is a perfect matching.

Each graph in this construction has O(n) vertices, and it is a well-known fact

that it is possible to decide in polynomial time if a graph admits a perfect

matching (see Edmonds (1965) [31]). As a consequence, we conclude that it

is possible to decide in polynomial time if the VPPP needs shuntings when

all tracks have size two and the assignment of vehicles to trips is fixed.
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2.4.3.2 Fixed Number of Types and Non-uniform Tracks

Hamdouni, Soumis & Desaulniers (2005) [52] investigated the Bus Dis-

patching Problem, and in order to define and compute robust solutions,

they introduced the concept of uniform tracks. If a track is uniform, it

clearly does not contain crossings. Kroon, Lentink & Schrijver (2006) [70]

explored this idea in the context of the Train Unit Shunting Problem

and obtained integer programs which are smaller and significatively easier

from a computational point of view. These works were the first to show the

importance of uniform tracks for the VPP.

The following results show that the VPP is easier from a theoretical point of

view if the number t of vehicle types and the number of non-uniform tracks

are fixed.

Theorem 2.35. It is possible to decide in polynomial time if an instance of

the VPP needs crossings if t is constant and if only solutions containing at

most one non-uniform track are allowed.

Proof. Initially, we observe that
∑t

i=1 (ti mod β) is a multiple of β. If ti
mod β = 0 for every type Ti, 1 ≤ i ≤ t, then it is possible to assign all the

vehicles to uniform tracks and the problem is trivial. If
∑t

i=1 (ti mod β) >

β, then more than one non-uniform track is necessary. Consequently, we

can assume that
∑t

i=1 (ti mod β) = β.

If only one non-uniform track is allowed, then the decision problem can be

reduced to the identification of a crossing-free configuration containing ti
mod β vehicles of each type Ti, 1 ≤ i ≤ t. Let a and d be strings of charac-

ters representing sequences A and D, respectively, where character ai (di)

represents type τ(ai) (τ(di)). The identification of a crossing-free configura-

tion in A and D covering ti mod β vehicles of each type Ti is similar to the

identification of a common subsequence of a and d containing ti mod β

symbols representing type Ti, 1 ≤ i ≤ t. This problem is similar to the

Longest Common Subsequence Problem, which is known to be solv-

able in polynomial time (Cormen et al. (2001) [23]). We give a direct proof

that this variant can be solved efficiently with a dynamic program.

The state space of our dynamic program is the following:

S := {0, . . . , n}2 × {0, . . . , β}t.

The first two coordinates represent the position on strings a and d, respec-
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tively, while the other t positions represent how many of the ti mod β units

of type Ti still have to be inserted in the common subsequence.

The algorithm has to check which states are accessible and bookkeep the

sequence by saving an antecessor for each state. Initially, the only reachable

state is (0, 0, t1 mod β, t2 mod β, . . . , tt mod β). If tuple (i, j, t′1, t
′
2, . . . , t

′
t)

is reached, then, for every k ≥ i and l ≥ j, the same holds for (k, l, t′1, t
′
2, . . . , t

′
t).

In addition to that, if τ(ai) = τ(dj) and t′τ(ai)
> 0, the pair (ai, dj) can be

added to the current configuration, and state (i+ 1, j + 1, t′1, t
′
2, . . . , t

′
τ(ai)
−

1, . . . , t′t) is marked as reached.

Each state might be reached several times, but only one of the predecessors

needs to be saved. Moreover, we just have to examine the successors of a

given reached state once. Finally, the iteration of the algorithm follows the

order of the indices, i.e., the more external loop iterates on the indices for

arrivals, the next on the indices for departures and so on.

Finally, there is a configuration which contains all the ti mod β elements,

1 ≤ i ≤ t, if and only if the state (n, n, 0, 0, . . . , 0) is reached by the end of

the algorithm.

Because each possible state will be analyzed at most once, t is constant, and

there are |{0, ..., n}×{0, ..., n}× t1× t2× . . .× tt| = O(n2βt) different states,

the algorithm consumes polynomial time.

2.4.3.3 Fixed Assignment A → D

It is possible to identify in the literature versions of the VPP where the

authors assume that the assignments of arrivals to departures are already

fixed, i.e., that ti = 1 for each vehicle type Ti, 1 ≤ i ≤ t.

Cornelsen & Di Stefano (2007) [24] present a theoretical investigation of

some versions of the VPP with this characteristic. Lentink (2006) [72] pro-

poses a two-step method to solve the Train Unit Dispatching Problem

where all the assignments A → D are determined in the first phase, which

makes the second phase (the assignments of units to tracks) easier.

It is possible to make an intuitive graphical description of the VPP-graph

G = (V,E) for such scenarios. If we draw the arrivals and departures in

two parallel lines according to the order in which they appear in A and D
and draw lines between elements composing a unit, each line will represent

a vertex in V , and for each pair of crossing lines, there will be an edge in E.
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We refer to this representation as the AD-drawing of G. In Figures 15

and 16, we give an example of an AD-drawing of an instance of the VPP

and its VPP-graph, respectively. Graphs admitting this representation are

called permutation graphs.

There is a connection between the number of crossings in this special case

of the VPP and the crossing number of the associated AD-drawings. The

crossing number of a graph G denotes the lower bound for the number of

edge crossings for every planar drawing of G. In our case, the drawing is

fixed (it is the AD-drawing) and two edges cross if and only if there is a

semi-crossing involving the associated units.

Proposition 2.36. Given an instance I of the VPP with fixed assignment

A → D, if the crossing number of its AD-drawing is smaller than the number

of tracks, then I admits a crossing-free matching.

Proof. We prove by induction that it is possible to assign the set C of

conflicting units to tracks in such a way that crossings are avoided. If m = 1,

the problem is trivial, and if m = 2, we have at most one crossing. In this

case, we just have to assign each one of the involved units in a track and we

are done.

Suppose that m > 2. Let u be the unit involved in the largest number of

semi-crossings. If we assign u to the first track together with all the units

of C which are not in conflict with u, we just have to assign the elements

involved in at most m− 2 crossings in the remaining m− 1 tracks, which is

possible from the induction hypothesis.

The proposition above provides an interesting result, but its application is

limited, as instances of the VPP whose AD-drawings have small crossing

number are not common. Moreover, we remark that a crossing-free assign-

ment may be possible even for instances whose associated crossing number

is large.

Proposition 2.37. There are instances of the VPP with fixed assignment

A → D which admit crossing-free matchings and whose associated AD-

drawing have n(n−β)
2 = n(m−1)β

2 crossings.

Proof. Consider the family of instances of the VPP such that the i-th arrival

is assigned to the j-th departure for j = (m − di/βe + 1)β + i mod β. In

other words, if A is divided into m subsequences Ui of size β and the order

of appearance of these subsequences is inverted, we obtain the description

of D.
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Figure 15: Example of AD-drawing
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Figure 16: Permutation graph

It is clear that instances of this family admit a crossing-free matching, as

we just have to assign units belonging to the same subsequence Ui to the

same track. It is also clear that if unit u belongs to the subsequence Ui,

then u is involved in a semi-crossing with every unit belonging to any other

subsequence Uj , j 6= i. Therefore, each unit is involved in (n−β) = (m−1)β

crossings and the crossing number of the AD-drawing is equal to n(n−β)
2 =

n(m−1)β
2 .

Deciding if there is an assignment of units to tracks without crossings is

similar to deciding if it is possible to partition the set of vertices V into m

independent sets of size β. This problem was introduced in the literature by

Bodlaender & Jansen (1995) [13] and it is known as the Partition into

Bounded Independent Sets Problem, which is defined for every type

of graph. Another correlated problem is the Scheduling with Incom-

patible Jobs Problem, which was investigated by Bodlaender, Jansen &

Woeginger (1992) [14].

The Partition into Bounded Cliques Problem is NP-complete (Bod-

laender & Jansen (1995) [13]) for cographs (or P4-free graphs), and the

following result is a corollary of this fact.

Corollary 2.38. The VPP is NP-complete even if the assignment A → D
is fixed.

Proof. Since the complement of a cograph is also a cograph, the Partition

into Bounded Independent Sets Problem is also NP-complete. As
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cographs constitute a subclass of permutation graphs, we can conclude that

the Partition into Bounded Independent Sets Problem for permu-

tation graphs, which is equivalent to the VPP with fixed assignmentA → D,

is NP-complete.

Some results suggest that fixing additional parameters can make the VPP

easier from a theoretical point of view. For example, Bodlaender & Jansen

(1995) [13] show that the Partition into Bounded Independent Sets

Problem can be solved in polynomial time for cographs if one of the param-

eters (i.e., the size of the sets or the number of sets) is fixed. Also interesting

is the result from Grohe (2004) [43], which says that it is possible to decide

in polynomial time whether a given graph has crossing number at most k

for every fixed k > 0.

For the VPP, if the number of tracks is fixed, then so should be the number

of independent sets in the associated permutation graph. The following

proposition shows that, in this case, the VPP can be solved in polynomial

time.

Proposition 2.39. It is possible to decide in polynomial time if an instance

of VPP requires crossings if m is constant and the assignment A → D is

fixed.

Proof. We present a dynamic program to solve this problem whose state

space is the following:

S := {{0, . . . , n} × {0, . . . , β}}m.

Each state represents the number of vehicles parked in each track and the last

unit assigned to it, which gives us a total of O((nβ)m) different possibilities.

With these informations, it is possible to know the next unit that will be

assigned and if a first crossing will occur if we insert it in any track.

In this dynamic program, each state is visited at most once. We start with

the “empty space”, which represents the scenario where all the tracks are still

empty. In the i-th iteration, we have to insert unit ui (the order of the units

is defined by the order of theirs arrivals) in some track whose last assigned

unit does not cross with ui. Because there might be many possibilities in

each step and we do not know in advance which track should be chosen, we

have to consider each state that was reached after the insertion of unit ui−1

and try to assign ui to each track. The resulting crossing-free states are

marked and we proceed with the next units. The procedure stops when the
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last unit is parked or when we identify a vehicle ui that can not be assigned

to a track without crossing.

It is clear that the last unit can be assigned to some track in the last iteration

if and only if the instance of VPP does not require shuntings. Finally,

the time consumption is O(n4m), so it is possible to decide in polynomial

time if an instance of VPP such that A → D and m are fixed requires

shuntings.

Corollary 2.40. It is possible to find in polynomial-time a solution for an

instance of the VPP with the minimum number of first crossings if m is

constant and the assignment A → D is fixed.

Proof. We can use an algorithm similar to the one employed in the proof

of Proposition 2.39 to compute an optimal solution for such an instance of

the VPP.

For each state c in {{0, . . . , n} × {0, . . . , β}}m, we bookkeep a preceding

state ant(c′) that minimizes the number f(c) of first crossings necessary to

reach c, which is computed based on f(c′) as follows:

f(c) =

{
f(c′) if ui is not involved in a first crossing;

f(c′) + 1 else.

The algorithm has n iterations. In the i-th iteration, we take each of the

states representing scenarios where the first i − 1 units were assigned to

parking positions and generate the states where ui is inserted in each possible

track. After the completion of the i-th step, we will have a pool of states

that will be visited in the next iteration, and for each of these states c we

can use the predecessors determined so far in order to determine a feasible

set of (incomplete) configurations with f(c) first crossings.

After the last iteration, we clearly have an optimal solution for the problem.

The time consumption is also bounded by O(n4m), which gives us a poly-

nomial time algorithm to find a solution for an instance of VPP such that

A → D and m are fixed with the minimum number of first crossings.

We remark that the previous results are interesting only from a theoretical

point of view, as the state space and the time consumptions are way too

large for practical applications.

If β and A → D are fixed, the VPP becomes equivalent to the Mutual

Exclusion Problem (MES) restricted to permutation graphs. The MES
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is a classical scheduling problem, which is basically the minimum coloring of

vertices in a graph such that each color is used at most k times for fixed k.

For permutation graphs, deciding MES for k = 3 is similar to deciding if a

sequence of 3n distinct positive integers can be partitioned into n increasing

subsequences of size 3. If k = 2, we have a matching problem that can

be solved in polynomial time. Jansen (2003) [59] shows that the MES is

NP-complete if k is a fixed constant bigger or equal to 6, which implies the

following corollary.

Corollary 2.41. The VPP is NP-complete if β ≥ 6 and the assignments

A → D are fixed.

The problem remains open for k between 3 and 5.

2.4.3.4 Enlarging the Depot

We have assumed so far that the number of parking positions is equal to

the number of vehicles, i.e., µ = n. However, there are scenarios in the real

world where depots can still have free positions after the arrival of all the

vehicles.

Winter (1998) [91] shows how to modify (W) and (LW) in order to consider

scenarios where µ > n. Basically, Equalities (W)(i), (W)(iii), (LW)(i), and

(LW)(iii) just have to become inequalities. Clearly, the same procedure can

be applied to Equality (LU)(iii) in order to adjust (LU).

There is a number of interesting questions arising when we consider possible

expansions of the depot. The following proposition shows that the addition

of one parking position to one of the tracks of the depot can reduce the

number of crossings and first crossings in an optimal solution for an instance

of the VPP.

Proposition 2.42. There are instances of the VPP for which the addition

of one parking position to one of the tracks leads to a new instance that

admits solutions with less crossings and less first crossings.

Proof. We present a family of instances of the VPP for which the addition

of a parking position to one of the tracks eliminates β crossings and 1 first

crossing from the optimal solution. Assume that the first β arrivals belong

to pairwise different types, and that the remaining n − β arriving vehicles

belong to type τ(aβ). Assume that the first n−β+ 1 departures are of type
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a8a7a6a5a4a3a2a1

d8d7d6d5d4d3d2d1

Figure 17: Example with 8 arrivals and departures and β = 4

a12a11a10a9a8a7a6a5a4a3a2a1

d12d11d10d9d8d7d6d5d4d3d2d1

Figure 18: Example with 12 arrivals and departures and β = 4

τ(aβ), while τ(dn−k+1) = τ(ak), 1 ≤ k ≤ β. Figure 17 shows an example for

β = 4 and n = 8.

If n = µ, an optimal solution for both cases is composed of n−β
β uniform

tracks of type τ(aβ) and one non-uniform track containing the remaining

units. This solution has
(
β
2

)
crossings and β first crossings.

If a parking position is added to one of the tracks, arrival aβ can be assigned

to a uniform track, i.e., the track with β+1 parking positions will be uniform

with units of τ(aβ). This modification leads to a solution with
(
β
2

)
− β

crossings and β − 1 first crossings.

Conversely, the following proposition shows that the expansion of existent

tracks may not help to reduce the number of crossings or first crossings.

Proposition 2.43. There are instances of the VPP for which the addition

of an arbitrary number of parking positions to the existing tracks leads to

new instances whose optimal solutions require the same number of crossings

and first crossings.

Proof. We present a family of instances of VPP for which the addition of

parking positions does not reduce the number of crossings or first crossings.

Let t = m − 1 + β. Assume that the first β arrivals belong to pairwise

different types (say, types T1, . . . , Tβ) and that τ(ai) = Tβ+bi/βc, β + 1 ≤
i ≤ n. The last β departures will be such that τ(dn−β+i) = τ(aβ−i+1) and

τ(di) = Tm+β−1−bi/βc, 1 ≤ i ≤ n−β. Figure 18 shows an example for β = 4

and n = 12.

If n = µ, an optimal solution is composed of m− 1 uniform tracks, one for

each type Ti, i > β, and one non-uniform track containing the remaining

units. This solution has
(
β
2

)
crossings and β first crossings.
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If one or more vehicles of the non-uniform track are moved to one of the

uniform tracks, the number of crossings and first crossings do not decrease.

The same holds if we assign units from the uniform tracks to other tracks.

Consequently, the addition of parking positions to the existing tracks does

not lead to instances that admit solutions with less crossings or first cross-

ings.

The addition of tracks is more powerful. With an additional track, we can

always reduce the number of crossings and the number of first crossings.

For example, if we add a track to the instances of the family described in

the proof of Proposition 2.43, then it is possible to reduce the number of

first crossings to β − 1 and the number of crossings to
(bβ/2c

2

)
+
(dβ/2e

2

)
by

distributing the units assigned to the non-uniform track in two tracks, one

containing bβ/2c vehicles and the other dβ/2e.

One natural question that arises is: How many tracks should be added to a

depot in order to make an instance of the problem trivial? In other words,

how many tracks should we add to the problem in order to make solutions

without crossings possible?

Clearly, if we add n − m tracks to the depot, each vehicle can be parked

in its own track, which makes the depot similar to a parking lot for cars,

trivializing the problem. As the following proposition shows, this bound is

the best we can have in the general case.

Proposition 2.44. There are instances of the VPP that can only be trivi-

alized with the addition of n−m tracks.

Proof. Consider the family of instances of VPP that contain no pair of

arrivals (departures) of the same type and such that τ(ai) = τ(dn−i+1),

1 ≤ i ≤ n. Because there is a semi-crossing involving each pair of units (a, d)

and (a′, d′), a crossing-free solution can only be obtained if each vehicle is

assigned to a track where it stays alone. In other words, these instances can

only be trivialized if we add n−m tracks to the depot.

The family of instances presented in the proof of Proposition 2.44 represents

the worst case scenario for the VPP, which can be considered unrealistic.

Therefore, we generalize this result in the following proposition, obtaining a

more reasonable instance-independent bound.
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Lemma 2.45. Let T ′ be the subset of T containing types Ti such that

ti mod β 6= 0, 1 ≤ i ≤ t. If

t∑
i=1

⌊
ti
β

⌋
+ |T ′| −m

tracks are added to the depot, then it is possible to obtain a crossing-free

solution for the problem.

Proof. Initially, we show the sufficiency. A solution for an instance of VPP

which contains only uniform tracks does not have crossings, and such a

solution is feasible if there are

m =
t∑
i=1

⌈
ti
β

⌉
=

t∑
i=1

⌊
ti
β

⌋
+ |T ′|

tracks in the depot;
∑t

i=1

⌊
ti
β

⌋
tracks will be completely filled, and for each

type Ti ⊆ T ′ there will be a track containing its ti mod β ”remaining”

units. Therefore, if we add
∑t

i=1

⌊
ti
β

⌋
+ |T ′| −m tracks to the depot, there

will be a crossing-free solution for the problem.

Now we show that this bound is tight. Consider the family of instances

of VPP such that the arrivals of the same type are contiguous in A, i.e., the

first t1 arrivals are of type T1, the next t2 are of type T2 and so on, and D is

the inversion of A, i.e., the last t1 departures are of type T1, preceeded by t2
departures of type T2 and so on. In this scenario, the assignment of units of

different types to the same track results in crossings. Consequently, crossing-

free solutions can only be obtained with the addition of
∑t

i=1

⌊
ti
β

⌋
+ |T ′|−m

tracks to the depot.

Again, the bounds given by Propositions 2.44 and 2.45 are tight but conser-

vative, as they are enforced by worst-case scenarios. It is possible to obtain

better results if we explore the structure of the instances. The following

proposition is based on Remark 2.16, that is, on the fact that the mini-

mum number of first crossings is a non-trivial lower bound for the number

of crossings for any instance of the VPP.

Proposition 2.46. If the minimum number of first crossings is k, then it

is sufficient to add k tracks in order to obtain a crossing-free solution.

Proof. Consider an optimal solution of some instance I of VPP with k first

crossings. Let (a, d) and (a′, d′) be crossing pairs assigned to consecutive
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positions p and q of track s with p < q. If we keep the assignments of the

first p positions of s to this track and assign the remaining pairs (starting

from (a′, d′)) to a new track, we obtain a new solution x′ with k-1 first

crossings. If we do this sequentially for every first crossing, after k steps there

will be no first crossings (and, consequently, no crossing) in the solution. It

follows that the instance derived from I with k additional tracks admits a

crossing-free solution.



Chapter 3

A Binary Quadratic Pro-

gramming Approach

The Vehicle Positioning Problem (VPP) has a natural formulation as

a mixed integer quadratically constrained program. This MIQCP is closely

related to the Quadratic Assignment Problem and, as far as we know,

has not received any attention yet. We show in this chapter that such a

formulation has interesting theoretical properties. Its QP relaxation pro-

duces, in particular, the first known nontrivial lower bound on the number

of crossings. In our experiments, it also outperformed the integer linear

models computationally. The strengthening technique that raises the lower

bound might also be useful for other combinatorial optimization problems.

3.1 Introduction

The first models for the VPP were introduced by Winter (1998) [91] and

Winter & Zimmermann (2000) [93], who modeled the VPP as a Quadratic

Assignment Problem and used linearization techniques to solve it as an

integer linear program.

Although the VPP was originally modeled as a binary quadratic program,

this formulation was explored neither theoretically nor computationally. All

research efforts that we are aware of concentrated on integer linear mod-

els that used more and more indices in order to produce tighter lineariza-

tions. Recent progress in Mixed Integer Nonlinear Programming (MINLP)

and, in particular, in Mixed Integer Quadratically Constrained Program-

ming (MIQCP) methods (Nowak (2005) [77]), however, has increased the

attractivity of the original quadratic model. Besides the compactness of the

formulations, quadratic programming models also yield potentially superior

67



3.2 Two-Index Models 68

lower bounds from fractional quadratic programming relaxations. In fact,

the LP relaxations of all known integer linear models for the VPP are not

able to yield non-trivial lower bounds for every instance requiring crossings.

We investigate in this chapter binary quadratic programming formulations

for the VPP. Our main result is that the QP relaxation of one of these

models yields a nontrivial lower bound on the number of crossings, that

is, the fractional QP lower bound is nonzero whenever shunting is required.

Specially interesting is the penalization of inconsistent assignments employed

in this formulation, a technique that appears to be easily applicable to other

problems and which was very useful here. This model also had the best

computational performance in our tests, even though it is not convex. We

also tried to apply the convexification techniques of Hammer & Rubin (1970)

[53], but the results were mixed. Convexification helped, but only when the

smallest eigenvalue of the objective function was not too negative.

The chapter is organized as follows. Section 3.2 discusses integer linear and

integer quadratic two-index models, i.e., we revisit the original formulation of

Winter. In Section 3.3 we present integer linear and integer quadratic three-

index models. One of them produces the already mentioned non-trivial QP

bound.

All our computational experiments were done on an Intel(R) Core 2 Quad

2660 MHz with 4Gb RAM, running under openSUSE 11.1 (64 bits). We

used CPLEX 11.2 (ILOG (2010) [57]) to solve linear programs, SCIP 1.0 for

integer programs (Achterberg (2007) [2]), and SNIP 1.0 for integer non-linear

programs (Vigerske (2009) [88]).

We thank Stefan Vigerske for his advice with respect to the formulation of

quadratic integer programs and SNIP support.

3.2 Two-Index Models

The first formulation of the VPP was proposed by Winter & Zimmermann

(2000) [93] and consists of a quadratic integer programming formulation for

the problem. The model and its relevant details were presented in Sub-

section 2.2.1.1, so we just recall the formulation and its basic description

here:
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(W) min
∑

(a,p)†(a′,q)

xa,pxa′,q+
∑

(d,p)†(d′,q)

yd,pyd′,q

(i)
∑
a

xa,p = 1 p ∈ P

(ii)
∑
p

xa,p = 1 a ∈ A

(iii)
∑
d

yd,p = 1 p ∈ P

(iv)
∑
p

yd,p = 1 d ∈ D

(v) xa,p + yd,p ≤ 1 (a, p, d) ∈ A× P ×D, τ(a) 6= τ(d)

xa,p, yd,p ∈ {0, 1} a ∈ A, d ∈ D, p ∈ P.

The model uses binary variables xa,p, with a ∈ A and p ∈ P, and yd,p, with

d ∈ D and p ∈ P. If xa,p = 1 (yd,p = 1), arriving vehicle a (departing trip d)

is assigned to parking position p. Equations (W)(i)-(W)(iv) define the

matching constraints and Inequalities (W)(v) enforce the coherence of these

assignments by allowing only arrivals and departures of the same type to be

assigned to a given parking position. Finally, the quadratic cost function

calculates the number of crossings.

In order to solve the problem, Winter presented a linearization of (W) whose

relaxation always yields a trivial lower bound (see Theorem 2.4). It is not

difficult to modify Winter’s proof in order to get a similar result for the QP

relaxation of (W):

Theorem 3.1. VQP (W ) = 0 if m > 1.

Proof. Let M be the set of assignments in A → D where each ai is assigned

to di (i.e., first arrival to first departure, second arrival to second departure,

and so on) and where the assignment of the units (ai, di) to the parking

positions is made according to the following scheme, where each column

represents a track:

(an−m, dn−m) (an−m+1, dn−m+1) . . . (an, dn)
...

...
...

...

(am+1, dm+1) (am+2, dm+2) . . . (a2m, d2m)

(a1, d1) (a2, d2) . . . (am, dm)

Namely, pair (ai, di) is assigned to track s(i−1) mod m, 1 ≤ i ≤ n.
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Such an assignment has no crossings. However, it is not always feasible

for (W) because of type mismatches (cf. the coherence Equations (W)(v)).

If the integrality of the variables is relaxed, though, and each pair (ai, di)

is assigned to the same relative position in each track, Equations (W)(v)

can be satisfied. More precisely, if a pair (ai, di) is assigned to the second

position of some track, i.e., if b(i− 1)/mc = 1, we fix xai,p = ydi,p = 1/m

for each position p ∈ P which is the second position in some track, i.e., for

each p such that b(p− 1)/mc = 1. If m > 1, we have xa,p+yd,p = 2
m ≤ 1, i.e.,

Equations (W)(v) are satisfied. Since there are no crossings, the objective

value is zero.

One of the main challenges for (W) to be solved directly is that its objec-

tive function is not convex. This obstacle can be overcome using the fol-

lowing technique of Hammer & Rubin (1970) [53]. Initially, we observe that∑
(a,p)†(a′,q) xa,pxa′,q can be written as xTAx, where A ∈ {0, 1}n2 × {0, 1}n2

is the symmetric incidence matrix of all crossings involving pairs (a, p)

and (a′, p′) in A×P. If α is the minimum eigenvalue of A, we have

xTAx = xT (A− αI)x+ αxTx. (1)

As x is binary, this equation can be rewritten as

xTAx = xT (A− αI)x+ α
∑
i

xi. (2)

Finally, in our case, we have
∑

i xi = n for every feasible solution, that is,

xTAx = xT (A− αI)x+ αn. (3)

As A− αI is positive semidefinite, the function on the right is convex. The

same idea works for the symmetric incidence matrix of all crossings involving

pairs (d, p) and (d′, p′) in D×P, i.e.,
∑

(d,p)†(d,q′) yd,pyd,q′ = yTA′y. Moreover,

A′ = A. Then, the objective can be written as

xTA′x− α
∑
(a,p)

(x2
a,p − xa,p) + yTA′y − α

∑
(d,p)

(y2
d,p − yd,p). (4)
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Applying this substitution to (W), we obtain:

(CW) min xTA′x− α
∑

(a,p)

(x2
a,p − xa,p)+ yTA′y − α

∑
(d,p)

(y2
d,p − yd,p)

(i)
∑
a

xa,p = 1 p ∈ P

(ii)
∑
p

xa,p = 1 a ∈ A

(iii)
∑
d

yd,p = 1 p ∈ P

(iv)
∑
p

yd,p = 1 d ∈ D

(v) xa,p + yd,p ≤ 1 (a,p,d)∈A×P×D
τ(a) 6=τ(d)

xa,p, yd,p ∈ {0, 1} a ∈ A, d ∈ D, p ∈ P.

Table 4 gives the results of a computational comparison among models (W),

(LW), and (CW) on a test set of ten instances of small and medium sizes.

The first column in these tables give the name t-m-β of the problem. Fol-

lowing our notation, t is the number of vehicle types, m is the number of

tracks, and β is the number of parking positions per track. Based on these

parameters, the arrival sequences A were randomly generated (i.e., the type

of each vehicle was uniformly chosen among the t possibilities), while their

respective departure sequences D were obtained after the application of Al-

gorithm 1 in A. The columns labeled Row, Col, and NZ give the number of

constraints, variables, and non-zeros of the respective model. The numbers

of rows and columns for the problems of model (CW) are the same as the

ones for model (W). Columns Nod give the number of nodes in the search

tree generated by the respective solver (SCIP with LP solver CPLEX for (LW)

and SNIP for (W) and (CW)) and columns T give the computation time in

seconds.

Comparisons of the computational performances of (CW) and (W) show

that convexification led to an improvement, but not enough to outperform

the linearized model (LW), in particular not on the larger instances.

3.3 Three-Index Models

In order to discuss some quadratic three-index models for the VPP, we

present again the formulation (LU). For more details, we refer to Sec-

tion 2.2.1.2.
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(LW) (W)/(CW) (W) (CW)

Name Row Col NZ Nod T Row Col NZ Nod T NZ Nod T

3-6-4 10465 2305 43741 1343 58 9325 1165 21889 215 142 21913 1543 116

4-6-4 11617 2305 46045 12849 265 10477 1165 24193 816 214 29977 24217 690

5-6-4 12289 2305 47389 32870 654 11149 1165 25537 1010 237 25561 586 96

3-7-3 7141 1765 25257 234 18 6273 897 14995 590 58 15023 245 29

4-7-3 7897 1765 26769 17220 15 7029 897 16507 523 52 16535 324 32

5-7-3 8359 1765 27693 114 19 7491 897 17431 651 64 17459 858 42

3-7-4 16297 3137 68391 17220 124 14743 1583 33937 480 121 33965 2122 176

4-7-4 18145 3137 72087 7393 574 16591 1583 37633 1609 251 37661 1526 242

5-7-4 19209 3137 74215 60590 2171 17655 1583 39761 113997 11845 39789 1320 1544

3-7-5 31151 4901 152125 59992 3251 28715 2465 64471 6612 76685 64499 627 40145

Table 4: Comparing models (LW), (W), and (CW).

(LU) min
∑

(a,s,d)

ra,s,d

(i)
∑
(s,d)

xa,s,d = 1 a ∈ A

(ii)
∑
(a,s)

xa,s,d = 1 d ∈ D

(iii)
∑

(a,d)

xa,s,d = β s ∈ S

(iv)
∑
a′<a

xa′,s,d +
∑
d′≤d

xa,s,d′ − ra,s,d ≤ 1 (a, s, d) ∈ A× S ×D

xa,s,d ∈ {0, 1} (a, s, d) ∈ F
ra,s,d ∈ {0, 1} (a, s, d) ∈ A× S ×D.

This model uses binary variables xa,s,d, with a ∈ A, s ∈ S, d ∈ D, and

τ(a) = τ(d), where xa,s,d = 1 if and only if arriving vehicle a is assigned

to departing trip d and to track s. Equalities (LU)(i) and (LU)(ii) are

matching constraints for arrivals and departures, while Equalities (LU)(iii)

are knapsack restrictions for tracks. Inequalities (LU)(iv) count crossings

using binary variables ra,s,d.

As we saw in Chapter 2, model (LU) has the best performance for the VPP.

However, it contains several inequalities of type (LU)(iv), which are clearly

the hardest ones in this formulation.

In this section, we propose a new approach, where the shunting constraints

are eliminated and the crossings are counted directly by a quadratic cost

function. This results in the following integer quadratic 3-index formulation
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for the problem:

(U) min
∑
s

(a,d)†(a′,d′)

xa,s,dxa′,s,d′

(i)
∑
(s,d)

xa,s,d = 1 a ∈ A

(ii)
∑
(a,s)

xa,s,d = 1 d ∈ D

(iii)
∑

(a,d)

xa,s,d = β s ∈ S

xa,s,d ∈ {0, 1} (a, s, d) ∈ F .

The matching and knapsack constraints are the same that appear in (LU),

and because the number of crossings is directly computed in the cost func-

tion, variables ra,s,d and Inequalities (LU)(iv) can be eliminated.

Model (U) has the following property:

Remark 3.2. Model (U) has O(mn2) variables and O(n+m) constraints.

Our key observation is that (U) can be strengthened by penalizing not

only crossings, but also inconsistent assignments. The following model is an

extension of (U) that takes this aspect into account:

(UI) min
∑
s

(a,d)†(a′,d′)

xa,s,dxa′,s,d′ +
∑
a

(s,d) 6=(s′,d′)

xa,s,dxa,s′,d′

(i)
∑
(s,d)

xa,s,d = 1 a ∈ A

(ii)
∑
(a,s)

xa,s,d = 1 d ∈ D

(iii)
∑

(a,d)

xa,s,d = β s ∈ S

xa,s,d ∈ {0, 1} (a, s, d) ∈ F .

The objective function of (UI) contains an additional penalty term∑
a

(s,d)6=(s′,d′)

xa,s,dxa,s′,d′

for inconsistent assignments of arrivals, i.e., if an arrival is assigned to more

than one track and/or more than one trip, the value of the product of the

variables representing such an inconsistent assignment is added. The penalty

term is zero for every feasible integer solution, but it increases the objective

value of the QP relaxation.
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The same effect is obtained if we use the following penalty sum:∑
d

(a,s)6=(a′,s′)

xa,s,dxa′,s′,d.

However, using both sums does not yield gains from a computational point

of view. The following theorem shows how useful these penalty terms can

be from a theoretical point of view:

Theorem 3.3. VQP (UI ) > 0 if V (UI ) > 0.

Proof. If V (UI) > 0, each feasible solution of the problem contains a cross-

ing. Let x∗ be an optimal solution of the QP relaxation of (UI). Con-

sider the vector dx∗e. If dx∗e contains an integer solution, i.e., a feasible

matching, there is a pair of assignments (a, s, d) and (a′, s, d′) such that

(a, s, d) † (a′, s, d′), dx∗a,s,de = 1, and dx∗a′,s,d′e = 1. It follows that

∑
s

(a,d)†(a′,d′)

dx∗a,s,dedx∗a′,s,d′e ≥ 1,

and because the cost function of (UI) is also able to identify this crossing,

we have that∑
s

(a,d)†(a′,d′)

x∗a,s,dx
∗
a′,s,d′ > 0.

If dx∗e does not contain an integer solution, there is an inconsistent assign-

ment involving some arrival a ∈ A, i.e., there are two pairs (s, d) and (s′, d′),

(s, d) 6= (s′, d′), such that x∗a,s,d > 0 and x∗a,s′,d′ > 0. Therefore

∑
a

(s,d)6=(s′,d′)

x∗a,s,dx
∗
a,s′,d′ > 0.

It follows that any possible solution x∗ is somehow penalized and has cost

function greater than zero. As a consequence, we conclude that the QP

relaxation of (UI) always yields a non-trivial lower bound if the instance

does not admit a crossing-free solution.

As far as we know, VQP (UI) is the first nontrivial lower bound for the VPP.

The linear relaxation of some linear models are also able to produce nonzero

lower bounds, but not for all cases. As deciding if an instance of VPP
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(LU) (U)

Name Row Col NZ Nod T/s Row Col NZ Nod T/s

3-6-4 3511 4609 38017 1 1 61 1159 4621 28 4

4-6-4 3511 4321 30241 1 0 61 871 3463 69 3

5-6-4 3511 4153 25675 59 15 61 703 2797 16 2

3-7-3 3137 4117 30871 12 8 57 1037 4124 16 3

4-7-3 3137 3865 24816 1 1 57 785 3123 20 2

5-7-3 3137 3711 21274 54 6 57 631 2507 27 28

3-7-4 5552 7323 67803 1 1 71 1842 7351 22 10

4-7-4 5552 6861 53509 41 29 71 1380 5503 33 7

5-7-4 5552 6595 45389 1 1 71 1114 4432 21 4

3-7-5 8653 11439 126099 1 4 85 2871 11467 17 34

4-7-5 8653 10725 98582 59 44 85 2157 8604 22 21

5-7-5 8653 10291 82321 26 38 85 1723 6875 31 12

6-7-6 12440 14407 117307 227 200 99 2066 8240 27 32

Table 5: Comparing models (LU) and (U).

requires shuntings or not is NP-complete, probably there is no linear model

with this property.

Table 5 gives the results of a computational comparison between (U) and

(LU) on the same set of test problems as in Section 3.2 plus some additional

instances that could not be solved neither by (CW) nor by (W). Model (UI)

could not be properly tested due to numerical problem.

The comparison between the results for (CW) and (W) from Section 3.2

and those for (LU) and (U) shows a clear superiority of the three-index

models over the two-index models. Among the three-index models, (U)

outperformed (LU). An instance 7-8-7, however, could not be solved using

any of these formulations even after several hours of computation. We have

also tried to apply the convexification technique of Hammer & Rubin (1970)

[53] to (U), but this time it did not bring any performance gain. A possible

explanation for this behavior is that the spectra of the objectives of the (U)

instances have negative eigenvalues of much larger magnitude than those

in the (W) instances. We remark that more sophisticated convexification

techniques might improve the results (Billionnet & Elloumi (2007) [11]).



Chapter 4

A Set Partitioning Approach

We propose in this chapter a novel set partitioning model and an associated

branch-and-price algorithm for the VPP and for the VPPP . The formu-

lations provide tight linear descriptions of the problems and can produce

non-trivial lower bounds. The pricing problem, and hence the LP relax-

ation itself, can be solved in polynomial, respectively, pseudo-polynomial

time if the number of first crossings should be minimized. In order to im-

prove the performance of the algorithm, we introduce heuristics and discuss

how to reduce symmetry. With these new formulations, it was possible to

obtain good computational results for large-scale instances.

4.1 Introduction

The results presented in the previous chapters show that it is not possible

to solve real-world scenarios of the VPP (and, consequently, of the VPPP

as well) just by modeling its instances as mixed integer programs and trying

to solve them using standard solvers. One of the challenges lies in the

weakness of the theoretical properties of the existing models. Namely, the

optimal value of the linear relaxation of most of these formulations is equal

to zero and rounding typically does not lead to good integer solutions. Also

critical are the consumptions of time and memory, as they make large-scale

scenarios intractable for this approach.

We propose in this chapter novel set partitioning models for the VPP and

for the VPPP and a branch-and-price solution approach to solve them.

We show that the pricing problems, and hence the entire LP relaxations,

can be solved in polynomial, respectively, pseudo-polynomial time if first

crossings are to be minimized. Our computational results show that the

linear relaxations yield non-trivial lower bounds for some scenarios. Finally,

76
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we also introduce heuristics, symmetry breaking techniques, and families of

valid inequalities.

This chapter is organized as follows. In Section 4.2 we introduce our set par-

titioning models and discuss their theoretical properties. Branch-and-price

approaches and their algorithmic aspects are investigated in Section 4.3, and

computational results are reported in Section 4.4.

A similar technique was used by Diepen, van den Akker & Hoogeveen (2009)

[30] in the context of airport gate and bus assignments, where aircrafts have

to be assigned to gates and buses have to be assigned to itineraries con-

necting different flights. Their approach is slightly different, though, as the

authors employed a formulation that demands pricing algorithms for two

different types of columns (one for each assignment sub-problem), while our

method solves the VPP using just one type of variables. A set partition-

ing approach to the assignment of units to tracks is part of a decompo-

sition method employed by Lentink (2006) [72] to solve the Train Unit

Dispatching Problem. Ribeiro & Soumis (1994) [78] propose a column

generation approach applied to the Multiple-depot Vehicle Schedul-

ing Problem. Finally, regarding the column generation method, we refer

to Lübbecke & Desrosiers (2005) [76] for an introduction, to Lübbecke &

Desrosiers (2005) [75] for a general survey, and to Villeneuve et al. (2005)

[89] for some applications of this technique to integer programs.

4.1.1 Configurations

In this chapter, the concept of configuration plays an important role. For

this reason, we recall and expand the description presented in Chapter 2.

A configuration q is a sequence of assignments (ai, s, dk) to some track s

such that the parking positions in s are filled consecutively according to the

order of arrival of vehicles. We say that a ∈ q, d ∈ q, s ∈ q, or (a, d) ∈ q
if (a, s, d) ∈ q, and we denote the number of assignments involving track s

by |q|. Typically, |q| = β, and if we do not assume that all vehicles have

size 1, then we assume that
∑|q|

j=1 l(aj) ≤ β for every configuration q. In

resume, a configuration indicates the units assigned to a track. We denote

by q(A) (q(D)) the set of arriving vehicles (departures) of configuration q.

Given two configurations q and q′, we denote by q ∩ q′ their set of common

elements (both arrivals and departures). A pair of configurations q and q′

such that |q∩q′| > 0 are said to be intersecting . Let Qs denote the set of all

configurations for track s, i.e., s ∈ q if and only if q ∈ Qs. For the VPPP ,
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we refer to the set of configurations for period h as Qh. Let Q =
⋃
sQs

and Q =
⋃
h,sQhs denote the set of all configurations of an instance of VPP

and VPPP , respectively. Finally, we say that a configuration is uniform if

all its vehicles belong to the same vehicle type.

4.2 Set Partitioning Model

In a solution for the VPP, each arriving vehicle and each departing trip is

assigned to exactly one track. We can describe the VPP as a Set Parti-

tioning Problem if we interpret tracks as sets and arrivals and departures

as the elements that must be partitioned.

We propose the following set partitioning model for the VPP:

(X) min
∑
q

cqxq

(i)
∑
a∈q

xq = 1 a ∈ A

(ii)
∑
d∈q

xq = 1 d ∈ D

(iii)
∑
s∈q

xq = 1 s ∈ S

xq ∈ {0, 1} ∀q ∈ Q.

This model employs binary variables xq, q ∈ Q, to indicate the use of track

configurations. Equations (X)(i) assert that each arriving vehicle a is as-

signed to exactly one configuration, (X)(ii) is analogous for departing trips d,

and (X)(iii) allows exactly one configuration (which can be empty) for each

track. Cost function c assigns penalties to the configurations. For us, they

may contain the number of crossings or the number of first crossings.

We are considering here the version of the VPP with identical tracks. We

can therefore improve model (X) by working with generic configurations,

which do not depend on a particular track. This allows us to replace (X) (iii)

by the single inequality

(iii′)
∑
q

xq ≤ m,
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which leads to the following equivalent formulation (X′):

(X) min
∑
q

cqxq

(i)
∑
a∈q

xq = 1 a ∈ A

(ii)
∑
d∈q

xq = 1 d ∈ D

(iii′)
∑
q

xq ≤ m

xq ∈ {0, 1} ∀q ∈ Q.

With this substitution, we remove a significant amount of symmetry from

the model. As we already discussed in Section 2.4.2, symmetry is one of

the biggest challenges in the VPP and one of the reasons why the hitherto

proposed models do not work well computationally.

Recall also that if we assume that all vehicles have size 1, then at most β

of them can be assigned to a single track. In this case, there are (at

most) O(n2β) different sets of arrivals and departures that can be assigned to

a track, and from each set it is possible to generate O(β!) different arrival and

departure sequences. Consequently, there are O(mn2ββ!) = O(nn2βββ) =

O(n3β+1) possible stack configurations.

Proposition 4.1. If all vehicles have unit size, model (X) has O(n) con-

straints and O(n3β+1) variables.

From Lemma 2.24, we know that it suffices to consider the sequential match-

ing of two subsequencesA′ andD′, as the other possible assignments produce

configurations with a larger number of crossings. If this fact is taken into

account, it is possible to reduce model (X) substantially.

Proposition 4.2. If all vehicles have unit size and all configurations de-

scribe sequential matchings, model (X) has O(n) constraints and O(n2β+1)

variables.

From now on, we assume that all the models and formulations contain only

configurations describing sequential matchings.

Formulation (X) has appealing theoretical properties. Interpreting the VPP

as a partitioning problem for configurations, i.e., as a combinatorial packing

problem, see Borndörfer (2004) [16], it follows:

Theorem 4.3. (Borndörfer (2004) [16]) The intersection graph associated

with formulation (X) for a VPP on two tracks is perfect.
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This means that the 2-track case of formulation (X) can be solved by a

cutting plane algorithm separating only clique constraints.

For the VPPP , we propose the following similar set partitioning model :

(Xp) min
∑
q

cqx
h
q

(i)
∑
ah∈q

xhq = 1 h, ah ∈ Ah

(ii)
∑
dh∈q

xhq = 1 h, dh ∈ Dh

(iii)
∑
sh∈q

xhq = 1 h, sh ∈ Sh

xhq ∈ {0, 1} h, q ∈ Qh.

The main difference between (X) and (Xp) is the addition of index h to

the binary variables, indicating the period to which the configuration be-

longs. Model (Xp) allows the same use of generic configurations as (X).

Furthermore, the configuration variables for the weekend parking tracks can

be identified. This means that we can replace the inequalities (Xp) (iii) by

the following inequalities

(iiia)
∑
q

xhq ≤ m weekday period h;

(iiib)
∑
q

xhq ≤ b weekend period h,

in order to obtain the following equivalent formulation (Xp ′):

(Xp) min
∑
q

cqx
h
q

(i)
∑
ah∈q

xhq = 1 h, ah ∈ Ah

(ii)
∑
dh∈q

xhq = 1 h, dh ∈ Dh

(iii)a
∑
q

xhq ≤ m weekday period h

(iii)b
∑
q

xhq ≤ b weekend period h

xhq ∈ {0, 1} h, q ∈ Qh.

Again, this technique removes symmetry from the model, improving the

computational performance.

The number of valid configurations can be calculated independently for each

period, but vehicles that were parked after the last weekday period come
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back into use on the first weekday period. We therefore have O(n2β) pos-

sible configurations on all periods except the first weekday period and the

first weekend period, which should be considered simultaneously and have

O((2n)2β) possibilities.

Proposition 4.4. If all vehicles have unit size, model (Xp) has O((p+w)n)

constraints and O((p+ w − 2)n2β + (2n)2β) variables.

We now compare the strengths of the linear relaxations of models (LU)

and (X). Formulation (LU), presented in Chapter 2.2.1.2, is the most suc-

cessful model for the VPP described in the literature so far. From Theo-

rem 2.6, we know that VLP (LU) = 0 if m > 1. The following two theorems

show that (X) is a tighter formulation for VPP than (L).

Theorem 4.5. For every element of PLP (X), there is one element with the

same objective value in PLP (LU).

Proof. Let (xq)q∈Q be an element of PLP (X). We set the values of (xa,s,d, ra,s,d)

for each (a, s, d) ∈ A× S ×D as follows:

xa,s,d =
∑

(a,s,d)∈q

x∗q ;

ra,s,d =
∑

(a,d′),(a′,d)∈q
(a,d′)†(a′,d)

s∈q

x∗q .
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We show that (xa,s,d, ra,s,d) belongs to PLP (LU):

(i)
∑
(s,d)

xa,s,d =
∑
(s,d)

∑
(a,s,d)∈q

x∗q =
∑
a∈q

x∗q = 1 a ∈ A

(ii)
∑
(a,s)

xa,s,d =
∑
(a,s)

∑
(a,s,d)∈q

x∗q =
∑
d∈q

x∗q = 1 d ∈ D

(iii)
∑
(a,d)

xa,s,d =
∑
s∈q

x∗q |q| ≤
∑
s∈q

x∗qβ ≤ β s ∈ S

(iv)
∑
a′<a

xa′,s,d +
∑
d′≤d

xa,s,d′ − 1 ≤

∑
(a′,d),(a,d′)∈q
a′<a,d′≤d

s∈q

2x∗q +
∑

(a′,d)∨(a,d′)∈q
a′<a,d′≤d

s∈q

x∗q − 1 =

2
∑

(a′,d),(a,d′)∈q
a′<a,d′≤d

s∈q

x∗q −
∑

(a′,d),(a,d′)∈q
a′<a,d′≤d

s∈q

x∗q =

∑
(a′,d),(a,d′)∈q
a′<a,d′≤d

s∈q

x∗q = ra,s,d (a, s, d) ∈ A× S ×D

The inequalities above show that the pair (xa,s,d, ra,s,d) is an element of

PLP (L), and as∑
a,d

ra,s,d =
∑

(a,d′),(a′,d)∈q
(a,d′)†(a′,d)

q∈Qs

xq =
∑
q∈Qs

cqxq,

it follows that (xq)q∈Q and (xa,s,d, ra,s,d) have the same cost value.

Now we show that (X) provides nontrivial lower bounds for some instances

of VPP.

Theorem 4.6. VLP (X ) > 0 for some instances of VPP that require shunt-

ings.

Proof. We construct a family of instances of VPP containing a unit which

belongs to every matching and which can only belong to configurations q

such that cq > 0. Let A and D be such that τ(a1) = τ(dn) = Tk, with

tk = 1, and such that l(a) = 1 for every a ∈ A. Assume that the depot
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has n parking positions, i.e., feasible solutions contain only configurations

with β units.

In every instance of this family, a1 must be assigned to dn and cq > 0 for

every configuration q such that (a1, dn) ∈ q. As
∑

a1∈q xq =
∑

dn∈q xq = 1,

it is clear that for every feasible solution of the linear relaxation of (X),

at least one of the configurations q containing a1 (and, consequently, dn as

well) will be present, i.e., xq > 0. Consequently, the objective value of this

solution is greater or equal than cqxq > 0, yielding a non-trivial lower bound

for the original mixed integer program.

From Theorems 4.5 and 4.6, we conclude that (X) is stronger than (LU)

from a theoretical point of view. A similar proof yields the following corol-

lary regarding VPPP :

Corollary 4.7. VLP (Xp ) > 0 for some instances of VPPP that require

shuntings.

Theorem 4.6 and Corollary 4.7 show that the linear relaxations of X and Xp

can produce non-trivial lower bounds for some instances of both problems.

The design of formulations whose linear relaxation are always able to yield

non-trivial lower bounds does not seem to be a reasonable goal. With such

models, one would be able to decide the necessity of shuntings by solving

a linear program, and this would prove P = NP. Both zero and non-zero

lower bounds will come up in our computations.

4.3 Branch-and-Price Framework

We propose to solve (X) and (Xp) using a branch-and-price algorithm. For

the pricing subproblem, we developed a heuristic and an efficient exact al-

gorithm for the minimization of first crossings. In order to speed up the

computational performance of the framework, we investigated: heuristics to

generate initial solutions and to compute matchings containing some fixed

columns (typically the ones generated by the pricing algorithms); pruning

strategies to remove redundant nodes from the solution tree; and families of

inequalities to increase the quality of the linear relaxations.
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4.3.1 Pricing Algorithms

A pricing algorithm is employed to check if the optimal solution obtained

with the current pool of columns is optimal for the original relaxed pro-

gram. If this is not the case, the algorithm identifies columns that can be

incorporated into the model in order to improve the solution. In our case, a

configuration whose associated reduced cost is negative is the index of such

a variable.

The idea is to use a dynamic program that records in each state the last arriv-

ing vehicle and the last departing trip assigned to the current configuration.

One problem with this approach is that book-keeping becomes necessary if

crossings should be minimized. Namely, when we are deciding if we want

to add (a, d) to the current configuration, we want to know exactly how

many units in A×D that were assigned previously to the configuration are

involved in a crossing with (a, d) (just knowing about the relation between

(a, d) and the last added element is not enough). Moreover, this technique

is not able to verify if a given arrival or departure appeared already, and

therefore it may produce invalid configurations.

These problems can be addressed as follows. First, Winter (1998) [91] has

shown that considering only configurations where the arriving vehicles do

not produce crossings, i.e., with ascending arrival times, does not change

the minimal number of crossings. The following proposition shows that this

result can be adapted to scenarios where first crossings have to be minimized,

and for this reason we will assume that sets Q and Qp contain only such

configurations:

Proposition 4.8. For every instance of the VPP, there is a solution that

minimizes the number of first crossings where each configuration has its units

ordered according to the arrival times.

Proof. We prove this fact using the same strategy employed by Winter

(1998) [91]. This claim clearly holds for crossing-free configurations, so we

will concentrate on configurations containing at least one first crossing.

Let q be a configuration such that the units are not ordered in the parking

positions according to the arrival times. We claim that the configuration

q′ composed by the same units as q whose distribution in the track follows

the order of q′(A) is such that cq ≥ cq′ , i.e., q′ will not contain more first

crossings than q.

Suppose that this assertion does not hold. Let (ai, dl) and (aj , dk) be a pair
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A5ajA3aiA1

ps pt

D5dlD3dkD1

Figure 1: Configuration with units not ordered by arrival time

of units assigned to positions s and t in q, respectively, with t = s+ 1. This

scenario is presented in Figure 1.

Assume that unit (a, d) is parked in position t + 1. If we reorganize the

parking positions s, t and t+ 1 in such a way that the units (ai, dl), (aj , dk),

and (a, d) are ordered according to their time of arrival, direct verification

shows that if (a, d) ∈ {A5×D3}∪ {A1×D3}∪ {A1×D1}, then the number

of first crossings involving these vehicles will decrease, and if not, they will

remain the same.

Similarly, if (a, d) is assigned to parking position s−1 and we make the same

reorganization, if (a, d) ∈ {A3×D3} ∪ {A3×D5} ∪ {A5×D3} ∪ {A5×D5},
the number of first crossings will decrease, and if not, they will remain the

same.

Therefore, we conclude that if we reorder the units of q according to the

times of arrival of its vehicles, we will obtain a configuration q′ such that

cq′ ≤ cq.

Another relevant fact is that allowing several assignments to cover a depar-

ture is not problematic. It slows down the convergence of the algorithm,

but, as we will see, it makes the pricing problem easier. We therefore con-

sider relaxations (X′′) and (Xp′′) of the formulations (X′) and (Xp′) which

extend Q and Qp to sets Q′′ and Qp′′ that include such configurations, and

which relax constraints (X′) (ii) and (Xp′) (ii) to

(ii′)
∑
d∈q

xq ≥ 1 d ∈ D; and

(ii′)
∑
d∈q′′

xph ≥ 1 h, d ∈ D,

respectively. This construction has a similar gist as the so-called q-path

relaxation, which is popular in vehicle routing (see Baldacci, Toth & Vigo

(2007) [6]).
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Proposition 4.9. 0 ≤ VLP (X′′) ≤ VLP (X) and 0 ≤ VLP (Xp ′′) ≤ VLP (Xp).

Theorem 4.10. The pricing problem for the LP relaxation of model (X)

can be solved in pseudo-polynomial time O(mn4β) if first crossings are min-

imized.

Proof. The pricing problem can be solved by dynamic programming. For a

fixed track s, consider a state space H indexed by tuples in A×D × [0, β].

Let C be a matrix indexed by elements of H such that entry c[a][d][k] holds

the minimum reduced cost of a configuration of size k whose last assigned

unit is (a, d). Let us denote the dual variables associated with constraints

(X′′) (i), (ii′), and (iii′) by σa, ωd, and πs, respectively. Then the recurrence

for the entries of C is as follows:

c[a′][d′][k′] = mina<a′,d 6=d′,k=k′−l(a)

{
c[a][d][k]− σa′ − ωd′ + αd,d′

}
,

where αd,d′ = 1 if d > d′, and 0 else. Finally, if k = 0, then c[a][d][k] :=

−(σa + ωd + πs). Matrix C can be determined in time O(n4β), and if we

compute it for each track s, the pricing algorithm consumes time O(mn4β).

Corollary 4.11. The pricing problem for the LP relaxation of Xp ′′ can be

solved in pseudo-polynomial time O(Pmn4β) if first crossings are minimized.

Proof. The pricing problem for the VPPP is similar to the pricing problem

for the VPP. Basically, the dynamic program in the proof of Theorem 4.10

must be applied to each period, but in addition to that, we also have to

consider configurations containing arrivals of the first weekend period and

departures of the first weekday period. Consequently, we execute the pricing

routine P + 1 times in each iteration, which leads to an O(Pmn4β) pseudo-

polynomial time algorithm.

Theorem 4.12. The pricing problem for the LP relaxation of (X) can be

solved in pseudo-polynomial time O(mn2β) if first crossings are minimized

and the assignments A×D are fixed.

Proof. The pricing routine for this special case can also be solved by dynamic

programming. Let U ⊂ A×D be the set of fixed units, and denote by u(a)

and u(d) the arrival and the departure composing unit u, respectively. For

a fixed track s, consider a state space H indexed by tuples in U × [0, β].

Let C be a matrix indexed by H such that entry c[u][k] holds the minimum

reduced cost of a configuration of size k whose last assigned unit is u. Let

us denote the dual variables associated with constraints (X′′) (i), (ii′), and
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(iii′) by σa, ωd, and πs, respectively. Then the recurrence for the entries of

C is as follows:

c[u′][k′] = min u(a)<u′(a)
k=k′−l(u′(a))

{
c[u][k]− σu′(a) − ωu′(d) + αu,u′

}
,

where αu,u′ = 1 if u(d) > u′(d), and 0 else. The initialization is c[u][0] :=

−(σu′(a) + ωu′(d) + πs). Matrix C can be determined in time O(n2β), and

if we compute it for each track s, the pricing algorithm consumes time

O(mn2β).

Corollary 4.13. The pricing problem for the LP relaxation of Xp ′′ can be

solved in pseudo-polynomial time O(Pmn2β) if first crossings are minimized

and the assignments A×D are fixed.

Proof. Using the same proof strategy employed in Corollary 4.11, this results

follows directly from Theorem 4.12.

Recall that if vehicles have unit size, then n = mβ. Therefore:

Corollary 4.14. The pricing problem for the LP relaxation of (X′′) can be

solved in polynomial time O(n5) if first crossings are minimized and vehicles

have unit size.

Corollary 4.15. The pricing problem for the LP relaxation of (Xp ′′) can

be solved in polynomial time O(Pn5) if first crossings are minimized and

vehicles have unit size.

Corollary 4.16. The pricing problem for the LP relaxation of (X′′) can be

solved in polynomial time O(n3) if first crossings are minimized, vehicles

have unit size, and the assignments A×D are fixed.

Corollary 4.17. The pricing problem for the LP relaxation of (Xp′′) can be

solved in polynomial time O(Pn3) if first crossings are minimized, vehicles

have unit size, and the assignments A×D are fixed.

4.3.2 Heuristics for the Generation of Columns

In a column generation approach, it is important to initialize the column

pool with a promising set of configurations. Moreover, in order to speed

up the convergence of the algorithm, usually it is interesting to incorporate

into the model, in each iteration, a set of columns that compose a complete

solution together with the variable(s) with negative reduced cost selected by

the pricing routine.
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We investigate now algorithms that can be used to generate valid matchings

for the VPP. The procedures described here can be directly employed in

the root node of the branch-and-price tree, but we remark that they can be

easily adapted to scenarios where there are fixed assignments and/or fixed

configurations.

4.3.2.1 Uniform-Tracks Heuristic

We introduce a greedy procedure based on the concept of uniform tracks in

order to construct a set of configurations with a potentially small number

of crossings.

The following proposition presents a lower bound for the number of non-

uniform tracks in a feasible solution for an instance of the VPP (or for one

period in an instance of the VPPP ).

Proposition 4.18. If all tracks have the same size, there must be at least

BNU :=

t∑
i=1

ti mod β

β

non-uniform tracks in any solution of the VPP.

Proof. In any feasible solution of the VPP containing as many uniform

tracks as possible, at least ti mod β units of type Ti will be assigned to

non-uniform tracks. Therefore, any feasible solution contains at least BNU
non-uniform tracks.

Based on this lower bound, we developed an algorithm that assigns ti mod β

arrivals and departures of type Ti, 1 ≤ i ≤ t, to BNU tracks. If the remaining

arrivals and departures are arranged in order to compose m−BNU uniform

tracks, we obtain a feasible matching for one period. As the following theo-

rem shows, this procedure does not always produce optimal solutions.

Theorem 4.19. There are instances of the VPP for which there is no op-

timal solution that uses only BNU non-uniform tracks.

Proof. We construct a family of instances of the VPP for which any optimal

solution contains BNU + 1 non-uniform tracks. Let t = 2, with t1 = β − 1

and t2 = β + 1, n = 6 + 2k, k ∈ N. It is clear that BNU = 1. Assume

that an, dn−2, dn−3, an−5, arrivals a2i such that 1 ≤ 2i ≤ n − 6, i ∈ N, and
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a8a7a6a5a4a3a2a1

d8d7d6d5d4d3d2d1

Figure 2: Example of instance which requires non-uniform tracks for

crossing-free solutions.

departures d2i+1 such that 1 ≤ 2i + 1 ≤ n − 6 are of type T1, while the

remaining elements are of type T2. Figure 2 shows an example for β = 4,

where the blue (light-colored) elements are of type T1 and the red (dark-

colored) elements are of type T2.

Every unit of type T2 is involved in at least one crossing with a unit of

type T1. Therefore, any solution containing just one non-uniform track will

contain at least one crossing. Conversely, if we assign arrivals a2i, 1 ≤ 2i ≤
n − 6, an−5, an−4, and an−3 and departures d2i+1, 1 ≤ 2i + 1 ≤ n − 6,

dn−5, dn−4, and dn−3 to one track and the remaining to the others and

if we use the sequential assignment for both configurations, we will obtain

two non-uniform tracks composed of units of type T1 and type T2 which are

crossing-free for each instance of this family.

We build the configurations of the non-uniform tracks in two phases. In the

first phase, we try to insert the ti mod β remaining units of type Ti, 1 ≤
i ≤ t, in BNU crossing-free tracks. We do it greedily and in a sequential way.

More specifically, we check for each arrival a (following the order defined in

A) if we still have to insert elements of type τ(a) to the non-uniform tracks

and if there is any unassigned departing trip d in D such that unit (a, d)

can be assigned to one of the current configurations without producing a

first crossing. If this is the case, we add the unit to a configuration. If there

is more than one trip satisfying these conditions, we pick the one which

departs first.Finally, if a can (or should) not be assigned, we proceed to the

next arrival, leaving it unassigned.

If all BNU configurations have β units in the end of the first phase, we are

done. If this is not the case, we complete the configurations in a second

phase. In this step, the assignment of arrivals and departures follow the

sequential matching and first crossings are allowed.

In both phases, when there are several track candidates to which we can

assign a given unit, we choose the one which has the smallest number of

assigned elements. If there are still several options, we choose one randomly

among the suitable candidates.
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Finally, for each unit u, it is possible to determine the maximum number of

vehicles that will arrive after u and that can compose with it a crossing-free

configuration. This idea has further applications in the framework and will

be discussed in details in Section 4.3.3.2, but we remark that the results of

the heuristic can be improved if we also perform this check in the first phase.

4.3.2.2 Simulated Annealing

Based on the algorithm proposed by Czech (1999) [25] for the Set Parti-

tioning Problem, we developed the subroutine described in Algorithm 4.

The method keeps a current solution x, and in each iteration, two units

assigned to different tracks exchange positions, yielding a new matching y.

Let ∆ denote the difference between the number of first crossings of x and

the number of first crossings of y. If ∆ < 0, y becomes the current solution.

If not, we generate a random number in the interval (0, 1) and verify if it is

smaller than T/(T + n∆
2 ), where T is a global parameter which is reduced

in each outer iteration. If this is the case, y becomes the current solution.

The parameter T is decreased in each iteration, which makes transitions to

matchings with more crossings less likely to occur in later iterations.

Algorithm 4 Simulated Annealing for the VPP

Fix all the assignments A → D
Create an initial solution x

for i := 0 to outSteps do

T := T ∗ α
for j := 0 to inSteps do

Create solution y after switching the positions of 2 random units

∆ = c(x)− c(y)

if ∆ < 0 or random(0, 1) < T/(T + n∆
2 ) then

x = y

end if

end for

end for

Local search heuristic methods are useful when it is possible to improve a

solution with a few local modifications. Unfortunately, this is not always

the case for the VPP.

Proposition 4.20. There are instances of the VPP which admit pairs of

solutions x and y such that x contains one crossing, y is crossing-free, and

x and y do not have any configuration in common.
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Proof. Consider the family I of instances of the VPP such that β = m;

the arrival sequence is A = {1, 2, 3, ..., n}, where each number represents a

vehicle type (therefore, τ(ai) 6= τ(ak) for 1 ≤ i 6= k ≤ n); and the departing

sequence D is as follows:

D = { n−m+ 1, n−m+ 2, . . . , n− 3, n− 2, n, n− 1,

n− 2m+ 1, n− 2m+ 2, . . . , n−m,
...

1, 2, . . . ,m};

that is, if we partition A into m subsequences of size β = m, invert the order

of these subsequences, and exchange the departing order of trips of type n

and n− 1, we obtain D.

If each arrival ai is assigned to the track sd(i)/me, the resulting solution x

contains one crossing (which involves the units of type n− 1 and n).

If each arrival ai is assigned to the track s((i−1) mod m)+1, we will obtain a

crossing-free solution y. Finally, if follows from the construction that x and

y do not have configurations in common.

The previous proposition shows that an almost optimal solution may not

be transformed into an optimal one with just a few modifications of the

matching. This fact suggests that local search methods may not be a good

strategy for the VPP. In addition to that, it is also clear that approaches

based on random sampling are not likely to produce good matchings if not

executed for long periods of time.

4.3.3 Exact Solution

The column generation approach is a complete solution method for linear

programs. Namely, columns are added to the restricted master problem in

each iteration, and the method stops if no variable with negative (or positive

if we have a maximization problem) reduced cost is identified by an exact

pricing subroutine, which proves the optimality of the current best solution.

However, if we have a mixed integer linear program, it is not possible to

know if the set of variables generated during the solution of the relaxed

master problem also contains an optimal integer solution for the original

master problem. Therefore, we can only have an exact solution method

for the VPP based on the formulation X if a branch-and-price strategy is

implemented.
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4.3.3.1 Branching Criteria

In order to construct a solution tree for the branch-and-price algorithm,

we use a criterion based on the method proposed by Ryan & Foster (1981)

[79] for the Set Partitioning Problem and on the strategies suggested

by Savelsbergh (1997) [81] for the Generalized Assignment Problem.

Basically, for every node belonging to the i-th level of the solution tree,

each vehicle aj , 1 ≤ j ≤ i, has its assignments to a trip fixD(aj) and to a

track fixS(aj) fixed. The level of the root node is zero, and the level of the

remaining nodes is equal to the level of its parent plus one.

If all the tracks are similar, their labels can be ignored. However, in order

to assert that an integer solution will eventually be produced, it is also

necessary to indicate in each node which units can be parked in the same

track and which can not. Therefore, assignments A → S also have to be

fixed in this case. Consequently, for each node u belonging to the the i-th

level, a configuration containing vehicles aj and ak, 1 ≤ j, k ≤ i, will belong

to u’s LP only if fixS(aj) = fixS(ak). We call this strategy sequential

fixing criterion.

An alternative criterion consists of choosing any non-fixed element in A to

have its assignments determined in the i-th step, and not necessarily the i-th

vehicle. This scheme gives more freedom of choice, but it makes the pricing

problem much harder to solve. Namely, if we know that vehicles ai and aj ,

ai < aj , are assigned to the same track s, it may be impossible to know in

advance how many vehicles assigned to s will be positioned before ai, after

aj , or after ai and before aj . Therefore, an exact pricing subroutine would

have to test all the possibilities. Conversely, if the sequential fixing criterion

is used, then we know that the k units assigned to track s will certainly

occupy its first k parking positions, and this situation can be easily handled

after simple modifications of the pricing routines presented in Section 4.3.1.

The same holds for the heuristics presented in Section 4.3.2.

There are other criterion to fix the variables which can also be easily incor-

porated by the pricing algorithms. For example, we could initially fix all the

assignments A → D, and only after this we would start to fix the assign-

ments A → S. It is not clear from a theoretical point of view which strategy

is better, but preliminary computational tests showed that the sequential

fixing criterion has a more satisfactory performance.
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Solution Tree The solution tree of our framework was implemented as

a red-black tree. This data structure was chosen because it is a balanced

binary tree and its insertion and deletion operations consume time O(lgN),

where N is the number of nodes which currently belong to the tree. For

further details, we refer to Cormen et al. (2001) [23].

The key of the nodes (i.e., the number assigned to them used in the orga-

nization of the tree) contains the lower bound obtained from the parents.

If there is a draw, we choose the node with the highest level. Nodes whose

fixed assignments contain longer uniform sequences, i.e., sequences of units

of the same type assigned to consecutive positions in a track, and nodes

with a larger number of occupied tracks also have preference. After solving

a node from the i-th level, we generate its “offspring”, i.e., one node for

each possible assignment involving the (i + 1)-th arrival, and add them to

the tree.

Integer solutions are obtained after the execution of the heuristics and after

the solution of some LPs. The investigation of the nodes finishes when

the tree becomes empty or when an integer solution whose cost equals the

current global lower bound is found.

4.3.3.2 Pruning Strategies

The complete solution tree of our branch-and-price framework has exponen-

tial size. Consequently, the method can only be executed until its completion

under reasonable time and memory constraints if we identify some pruning

strategies that will help to eliminate nodes from the tree.

Proposition 4.21. For every node v of the tree, if U is the number of

crossings of the best integer solution found so far, then we do not need to

investigate the descendents of v if the optimal value lb of its linear relaxation

is such that dlbe ≥ U .

Proof. The optimal value lb computed for the relaxation of the current node

v yields a lower bound for each of its descendents. Moreover, it is clear that

every feasible solution of X is integer. Therefore, if lb is not integer, then

any feasible integer solution for the problem that takes the fixed assignments

described in v into account will contain at least dlbe first crossings. Conse-

quently, if U ≥ dlbe, the investigation of the descendents of v is irrelevant

and should not be conducted.
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For each unit (a, d), let M(a, d) be any set {(a′, d′) : a′ > a} ∪ {(a, d)} such

that (ai, dj), (ak, dl) ∈ M(a, d) only if (ai, dj) and (ak, dl) are noncrossing.

The cardinality m(a, d) of the largest set M(a, d) for all the units (a, d) can

be computed in O(n4) by Algorithm 5. Function ok : A×D → {true, false}
indicates if arrival a can be assigned to departure d and function ok2 :

A×A → {true, false} indicates if arrivals ai and aj can be assigned to the

same track. We present the algorithm for the case where all tracks are equal,

but it is easy to modify it in order to compute m for each track individually.

Algorithm 5 Computation of m(a, d)

for a1 := 1 to n do

for d1 := 1 to n do

if ok(a1, d1) = false then

continue

end if

for a2 := a1 − 1 down to 1 do

for d2 := d1 − 1 down to 1 do

if ok(a2, d2) = false or ok2(a1, a2) = false then

continue

end if

if m(a2, d2) < m(a1, d1) + 1 then

m(a2, d2) = m(a1, d1) + 1

end if

end for

end for

end for

end for

Let c be the number of crossings involving the fixed elements of the current

node. If ai will be assigned to dj and m(ai, dj) = k, where m is computed

taking into account the fixed assignments for the node, then any solution

containing (ai, dj) assigned to some track s with less than β − k elements

will clearly contain at least c+ 1 crossings. As a consequence, if c+ 1 ≥ U ,

we can avoid the insertion of nodes containing these fixed assignments to

the solution tree.

Some of the symmetry breaking techniques presented in Section 2.4.2 can be

used in the present context as pruning strategies. For example, it is possible

to avoid the insertion of a node in the tree if there is another one which

was already added and which is equal if its tracks are properly relabeled.

Based on this, if the assignments of the i-th vehicle are going to be fixed and
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there are several empty tracks, we will only generate the node containing

the assignment of ai to the first empty track and the nodes describing the

assignment of ai to the non-empty tracks.

With this strategy, it is clear that, for each node, if ai and aj are the first

vehicles assigned to the tracks sk and sl, respectively, and if ai < aj , then

k < l. Any node containing ai as the first arrival assigned to sl and aj as

the first arrival assigned to sk will not be added to the solution tree.

Therefore, in a situation where all the tracks are equal, if {ai1 , ai2 , . . . , aik}
have been assigned to the first position of their respective tracks, only one

out of the k! (≤ m!) possible distributions of the (incomplete) configurations

will appear in the tree.

It is possible to use the same idea in a more general scenario. Let qi and qj be

two partial configurations (i.e., configurations to which may add other units

without violating the size restrictions of the tracks) containing k elements

each (1 ≤ k ≤ β). Let (aw, dx) and (ay, dz) be the k-th elements assigned to

qi and qj , respectively. Let qi′ (qj′) be the configuration originated from qi
(qj) after the removal of (aw, dx) ((ay, dz)) and insertion of (ay, dz) ((aw, dx)).

If the k-th arrivals of qi′ and q′j′ are ay and aw, respectively, and if the sum of

the number of first crossings of qi′ and qj′ is equal to the sum of the number

of first crossings of qi and qj , then we say that qi and qj are interchangeable

configurations.

Interchangeable configurations are a source of symmetry, but this situation

can be avoided in the same way we avoid track symmetry. Namely, in the

y-th level of the tree (when we define the assignments of arrival ay), before

creating a node where the assignment (ay, si, dz) is fixed and (ay, dz) is the

k-th unit of the track, we can verify if the resulting partial configuration is

interchangeable with the partial configuration of some track sj which also

contains k elements and such that j > i. If this is the case, we do not have

to add this node, as the last unit assigned to sj (say, (aw, dx)) was also

assigned to track si in a previous iteration and a descendent z of this node

will have exactly the same situation described in the node that we avoided,

i.e., z contains the same set of partial configurations, but with unit (ay, dz)

assigned to the k-th position of track sj and with unit (aw, dx) assigned to

the k-th position of track si.
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4.3.4 Cuts

We investigate now families of clique inequalities for (X) and (Xp) based on

the work of Balas & Saltzman (1989) [5] on the Three-index Assignment

Problem.

4.3.4.1 Intersection Graph.

In order to describe families of clique inequalities in this section, we will use

the intersection graph GQ of sets Q, defined as follows. Each vertex of GQ

represents a configuration in Q, so here we will overcharge the notation and

use q in order to refer both to a configuration in Q and to its representing

vertex in GQ. There is an edge connecting a pair of vertices q, q′ of GQ if

and only if |q ∩ q′| > 0, i.e., if the configurations have at least one element

(an arrival or a departure) in common.

From (X)(i) and (X)(ii), it follows that it is not possible to have in the

same matching two or more configurations belonging to a clique in GQ. As

a consequence, it is possible to define the following valid clique inequality

for (X) for each clique C in GQ:∑
q∈C

xq ≤ 1.

Instances With Two Tracks. If m = 2 and if (X) contains only con-

figurations describing sequential matchings, each configuration q can only

compose a matching with the (unique) configuration q′ such that |q′∩q| = 0.

Therefore,∑
|q′∩q|=0

xq′ = 2(1− xq) q ∈ Q.

and

xq = x′q q, q′ ∈ Q, |q ∩ q′| = 0.

are valid inequalities which clearly imply any other family of equalities

and/or inequalities for this special case of the problem.

Types with Two Elements For every type Ti such that ti = 2, there

are only two possible and self-excluding assignments involving its elements.
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For example, if Ai = {aj , ak} and Di = {dl, dm}, aj is assigned to dl (dm) if

and only if ak is assigned to dm (dl). Therefore, equalities∑
(aj ,dl)

xq =
∑

(ak,dm)

xq; and

∑
(aj ,dm)

xq =
∑

(ak,dl)

xq

hold for these types of vehicle.

4.3.4.2 Fixed Sets of Arrivals and Departures

Initially, we consider the families of cliques that can be obtained if we fix

sets of arrivals and departures.

Remark 4.22. For every arrival a in A, the set of configurations

C1(a) = {q ∈ Q : a ∈ q}

induces a clique in GQ.

Remark 4.23. For every departure d in D, the set of configurations

C1(d) = {q ∈ Q : d ∈ q}

induces a clique in GQ.

Clique inequalities defined by classes C1(a) and C1(d) are implied by Con-

straints (X)(i) and (X)(ii), respectively.

Remark 4.24. There are 2n cliques of classes C1(a) and C1(d), each con-

taining O(n2β−1) elements.

Remark 4.25. For every pair of subsequences A′ ⊆ A and D′ ⊆ D, the set

C1(A′,D′) = {q ∈ Q : A′ ⊆ q(A) and D′ ⊆ q(D)}

induces a clique in GQ such that C1(A′,D′) ⊆ C1(a) for every a ∈ A′ and

such that C1(A′,D′) ⊆ C1(d) for every d ∈ D′.

Lemma 4.26. Let A′ be a subsequence of A containing 3 ≤ 2k−1 ≤ 2β−1

arrivals.The set of configurations

C2(A′) = {q ∈ Q : |q(A) ∩ A′| ≥ k}

induces a maximal clique in GQ.
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Proof. Each configuration in C2(A′) contains at least k elements from a set

of size 2k − 1. Consequently, it follows from the Pigeonhole Principle that

each pair of elements of C2(A′) has at least one element in common, i.e.,

C2(A′) is a clique.

Set C2(A′) is maximal because for every configuration q such that |A′ ∩
q(A)| < k, there is at least one configuration q′ in C2(A′) such that q(A) ∩
q′(A) = ∅ and q(D)∩q′(D) = ∅. Consequently, {q}∪C2(A′) does not induce

a clique in GQ.

Clearly, a similar claim holds for subsets D′ of D.

Lemma 4.27. Let D′ be a subsequence of D containing 3 ≤ 2k−1 ≤ 2β−1

departures. The set of configurations

C2(D′) = {q ∈ Q : |q(D) ∩ D′| ≥ k}

induces a maximal clique in GQ.

Remark 4.28. There are
∑β

k=2

(
n

2k−1

)
different sets C2(A′) (C2(D′)) in GQ,

and each of these sets has O
(∑j≤2k−1

j=k

(
2k−1
j

)(
n−2k+1
β−j

)(
n
β

))
elements.

Proof. It is possible to construct
(

n
2k−1

)
subsets A′ of A (D′ of D) of cardi-

nality 2k − 1, 2 ≤ k ≤ β.

The number of configurations containing j arrivals in A′ (departures in D′),
k ≤ j ≤ 2k− 1, is bounded by

(
2k−1
j

)(
n−2k+1
β−j

)(
n
β

)
, as there are

(
2k−1
j

)
differ-

ent choices for the j arrivals (departures) that belong to A′ (D′),
(
n−2k+1
β−j

)
different choices for the other β−j arrivals (departures), and O

((
n
β

))
choices

for the departures (arrivals) complementing the configuration.

Theorem 4.29. Let A′ and D′ be subsequences of A and D, respectively,

such that |A′|+ |D′| = 2k−1, 3 ≤ 2k−1 ≤ 2β−1. The set of configurations

C2(A′,D′) = {q ∈ Q : |q(A) ∩ A′|+ |q(D) ∩ D′| ≥ k}

induces a maximal clique in GQ.

Proof. Similar to the proofs of Lemmas 4.26 and 4.27.

Remark 4.30. There are
∑β

k=2

∑2k−1
a=0

(
n
a

)(
n

2k−1−a
)

different sets C2(A′,D′)
in GQ, and each of these sets has O

(∑2k−1
j=k

∑|A′|
a=0

(|A′|
a

)(n−|A′|
β−a

)(|D′|
j−a
)(n−|D′|
β−j+a

))
elements.
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Proof. From the 2k− 1 elements of A′∪D′, there are
(
n
a

)
possible selections

of A′ and
(

n
2k−1−a

)
possible selections of D′, 0 ≤ a ≤ 2k − 1 and 2 ≤ k ≤ β.

Configurations with j elements of A′∪D′ have a elements from A′ and j−a
elements from D′. These configurations must cover β − a arrivals out of

n−|A′| elements of A\A′ and β− j+a departures out of n−|D′| elements

of D \ D′.

Theorem 4.31. Let A′ and D′ be subsequences of A and D, respectively,

such that |A′|+ |D′| = 2k − 1, 2β + 1 ≤ 2k − 1 ≤ 4β − 3, and such that one

of the following conditions holds:

• 1 ≤ |A′|, |D′| < 2β; or

• if |A′| = 2β + α, α ≥ 0, then |D′| ≥ α+ 1; or

• if |D′| = 2β + α, α ≥ 0, then |A′| ≥ α+ 1.

For such subsequences A′ and D′, the set of configurations

C∗2 (A′,D′) = {q ∈ Q : |q(A) ∩ A′|+ |q(D) ∩ D′| ≥ k}

induces a maximal clique in GQ.

Proof. Initially, we show that C∗2 (A′,D′) is not defined if none of the car-

dinality constraints indicated in the hypothesis holds. If |D′| = 0 then

|A′| = 2k − 1 ≥ 2β + 1, and as there is no configuration q in Q such that

|q(A) ∩ A′|+ |q(D) ∩ D′| = |q(A) ∩ A′| ≥ k = β + 1, C∗2 (A′,D′) is empty in

this case. The same proof shows that we have a similar situation if |A′| = 0.

If |A′| = 2β + α, α ≥ 0, any configuration in C∗2 (A′,D′) should contain at

least α
2 + |D′|

2 + 1
2 elements of |D′|. Therefore,

|D′| ≥ α

2
+
|D′|
2

+
1

2
2|D′| ≥ α+ |D′|+ 1

|D′| ≥ α+ 1.

A similar argument shows that if |D′| = 2β + α, α ≥ 0, then C∗2 (A′,D′) is

non-empty if and only if |A′| ≥ α+ 1.

If the set C∗2 (A′,D′) is defined (and non-empty), each of its configurations

contains at least k elements in common with A′∪D′. As |A′|∪ |D′| = 2k−1,

it follows from the Pigeonhole Principle that each pair of configurations in

C∗2 (A′,D′) have at least one element in common.
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Finally, given any configuration q′ such that |q′(A) ∩ A′|+ |q′(D) ∩ D′| < k

(which holds for every configuration that does not belong to C∗2 (A′,D′)),
there is at least one configuration q in C∗2 (A′,D′) such that |q ∩ q′| = 0.

Therefore, C∗2 (A′,D′) can not be extended to larger clique in GQ, which

shows that it is indeed maximal.

4.3.4.3 Fixed Configuration

Let q be a configuration. We denote the family of sets containing β elements

of q(A) ∪ q(D) by I(q). For each set S in I(q), there is exactly one set S′

in I(q) such that S ∩S′ = ∅. We say that S and S′ are complementing sets.

If we take a subfamily I ′ ⊆ I(q) containing exactly one member of each pair

of complementing sets, the set of configurations

Cβ(q, I ′) = {q′ ∈ Q : |q′ ∩ q| = β and ∃S ∈ I ′ s.t. q′ ⊇ S}

induces a clique in GQ. We say that I ′ is a maximal crossing subfamily

of I(q).

Remark 4.32. For each q, there are 2(2ββ )/2 different maximal crossing sub-

families I ′. Consequently, there are 2(2ββ )/2 different sets Cβ(q, I ′) for ev-

ery q, each containing O
((

2n−2β
β

)(
2β
β

))
elements.

Proof. There are
(

2β
β

)
elements in I(q) (and, therefore,

(
2β
β

)
/2 pairs of com-

plementing sets) and we have to choose one element out of each pair of

complementing sets in order to obtain a set I ′, which gives us 2(2ββ )/2 possi-

bilities. Finally, each of the
(

2β
β

)
/2 sets S of I ′ is contained in q(A) ∪ q(D)

for O(
(

2n−2β
β

)
) configurations q of Q.

The cliques induced by sets Cβ(q, I ′) are not maximal, but they will be

useful in some of the followings results.

Proposition 4.33. Let q be a configuration in Q and I ′ be a maximal cross-

ing subfamily of I(q). The set

C3(q, I ′) = {q′ ∈ Q : |q ∩ q′| ≥ β + 1} ∪ Cβ(q, I ′)

induces a maximal clique in GQ.

Proof. Let q1 and q2 be two configurations in C3(q, I ′). If |q1 ∩ q| ≥ β + 1

and |q2∩q| ≥ β, then it follows from the Pigeonhole Principle that |q1∩q2| >
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0. If |q1 ∩ q| = |q2 ∩ q| = β, q1 ∈ Cβ(q, I ′) and q2 ∈ Cβ(q, I ′). In this case,

it follows from the definition of Cβ(q, I ′) that |q1 ∩ q2| > 0. Therefore, if

q1, q2 ∈ C3(q, I ′), then |q1 ∩ q2| > 0.

For every configuration q′ such that |q′∩q| = β′ < β, it is possible to identify

at least one configuration q′′ such that |q′′∩q′| = 0 and |q′′∩q| = 2β−β′ > β,

i.e., q′′ belongs to C3(q, I ′) and is not adjacent to q′ in GQ. This observation

allows us to infer that C3(q, I ′) is maximal clique in GQ.

Remark 4.34. For every configuration q, there are 2(2ββ )/2 sets C3(q, I ′),

and each of these sets has O
((

2β
β+1

)(
2n−β−1
β−1

)
+
(

2β
β

)(
2n−2β
β

))
elements.

Proof. The number of families C3(q, I ′) for a given q is equal to the number

of choices of I ′, which is 2(2ββ )/2 (see Remark 4.32).

There are O
((

2β
β+1

)(
2n−β−1
β−1

))
configurations that share at least β + 1 ele-

ments with q, and from Remark 4.32 we know that each set Cβ(q, I ′) con-

tains O
((

2β
β

)(
2n−2β
β

))
configurations. Consequently, family C3(q, I ′) con-

tains O
((

2β
β+1

)(
2n−β−1
β−1

)
+
(

2β
β

)(
2n−2β
β

))
elements.

It is possible to employ this idea in order to construct other families of in-

equalities if we consider intersections involving either only arrivals or only

departures. Assume that β is even. For a given configuration q, we de-

fine IA(q) (ID(q)) as the family of sets containing β/2 arrivals (departures)

of q. For each set S in IA(q) (ID(q)), there is exactly one set S′ in IA(q)

(ID(q)) such that S∩S′ = ∅. We say that S and S′ are complementing sets.

If we take a subfamily I ′ ⊆ IA(q) (ID(q)) containing exactly one member of

each pair of complementing sets, then the sets of configurations

CA(q, I ′) = {q′ ∈ Q : ∃S ∈ I ′ s.t. |q′(A) ∩ S| = |q′(A) ∩ q(A)| = β/2}

and

CD(q, I ′) = {q′ ∈ Q : ∃S ∈ I ′ s.t. |q′(D) ∩ S| = |q′(D) ∩ q(D)| = β/2}

induce cliques in GQ. We will overcharge the notation and also refer to

family I ′ as a maximal crossing subfamily of IA(q) or ID(q).

If β is odd, we assume that families IA(q) and ID(q) (and, consequently,

sets CA(q, I ′) and CD(q, I ′)) are empty.

Remark 4.35. For each configuration q, there are 2( β
β/2)/2 different fami-

lies I ′ in IA(q) and in ID(q), and consequently, 2( β
β/2)/2 different sets CA(q, I ′)

and CD(q, I ′), each with cardinality O
(( β

β/2

)(n−β
β/2

)(
n
β

))
.
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Similarly to Cβ(q, I ′), sets CA(q, I ′) and CD(q, I ′) do not induce maximal

cliques in GQ, but they are useful in the definition of the families of inequal-

ities discussed below.

Proposition 4.36. Let q be a configuration in Q and I ′ be a maximal cross-

ing subfamily of IA(q). The set

CA4 (q, I ′) = {q′ ∈ Q : q(A) ∩ q′(A) ≥ bβ/2c+ 1} ∪ CA(q, I ′)

induces a maximal clique in the graph GQ.

Proposition 4.37. Let q be a configuration in Q and I ′ be a maximal cross-

ing subfamily of ID(q). The set

CD4 (q, I ′) = {q′ ∈ Q : q(D) ∩ q′(D) ≥ bβ/2c+ 1} ∪ CD(q, I ′)

induces a maximal clique in the graph GQ.

Remark 4.38. If β is odd, there is only one set CA4 (q, I ′) for each q, and

|CA4 (q, I ′)| = O

 β∑
j=bβ/2c+1

(
β

j

)(
n− β
β − j

)(
n

β

) .

If β is even, for each configuration q there are 2( β
β/2)/2 sets CA4 (q, I ′) and

|CA4 (q, I ′)| = O

 β∑
j=β/2+1

(
β

j

)(
n− β
β − j

)(
n

β

)
+

(
β

β/2

)(
n− β
β/2

)(
n

β

) .

The same observations hold for CD4 (q, I ′).

The proofs of Propositions 4.36 and 4.37 are similar to the proof of Propo-

sition 4.33, and the proof of Remark 4.38 is similar to the proof of Re-

mark 4.34.

4.3.4.4 Fixed Pairs of Configurations

The following families of cliques in GQ are obtained from pairs of configu-

rations which do not have elements in common.

Proposition 4.39. Let q, q′ ∈ Q be a pair of configurations such that |q ∩
q′| = 0 and let I ′ be a maximal crossing subfamily of IA(q). Assume that

C
′A(q, q′, I ′) = {q′′ ∈ CA(q′, I ′) : |q′′ ∩ q| ≥ 1}
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and that

C
′′A(q, q′, I ′) = {q′′ ∈ Q : |q′′(A)∩ q′(A)| ≥ bβ/2c+ 1 and |q′′ ∩ q| ≥ 1}.

The set

CA5 (q, q′, I ′) = {q} ∪ C ′′A(q, q′, I ′) ∪ C ′A(q, q′, I ′)

induces a maximal clique in GQ.

Proof. It is clear that q intersects with each element of CA5 (q, q′, I ′). Us-

ing the Pigeonhole Principle, we can verify that the configurations of set

C
′′A(q, q′, I ′) are pairwise intersecting. Because each element of C

′A(q, q′, I ′)

belong to some set CA(q′, I ′), its members are also intersecting. Finally, if

C
′A(q, q′, I ′) 6= ∅ (i.e., if β is even), because each q1 ∈ C

′A(q, q′, I ′) con-

tains β/2 arrivals of q′(A) and because each q2(A) in C
′′A(q, q′, I ′) contains

at least β/2 + 1 arrivals of q′(A), |q1 ∩ q2| > 0. Therefore, we conclude that

CA5 (q, q′, I ′) induces a clique in GQ.

Suppose q′′ extends the clique CA5 (q, q′, I ′). Because q is a clique, it is

clear that q′′ must be such that |q′′ ∩ q| ≥ 1, and as q′′ does not belong

to CA5 (q, q′, I ′), we can also assume that |q′′(A) ∩ q′(A)| < bβ/2c. For any

such configuration, it is possible to identify at least one configuration q∗

such that |q∗(A) ∩ q′(A)| > bβ/2c, |q∗ ∩ q| = 1, and |q∗ ∩ q′′| = 0, i.e., q∗

belongs to CA5 (q, q′, I ′) and is not adjacent to q′′ in GQ. This observation

allows us to infer that CA5 (q, q′, I ′) induces a maximal clique in GQ.

The same holds if we consider D instead of A.

Proposition 4.40. Let q, q′ ∈ Q be a pair of configurations such that |q ∩
q′| = 0 and let I ′ be a maximal crossing subfamily of ID(q). Assume that

C
′D(q, q′, I ′) = {q′′ ∈ CD(q′, I ′) : |q′′ ∩ q| ≥ 1}

and that

C
′′D(q, q′, I ′) = {q′′ ∈ Q : |q′′(D)∩ q′(D)| ≥ bβ/2c+ 1 and |q′′ ∩ q| ≥ 1}.

The set

CD5 (q, q′, I ′) = {q} ∪ C ′′D(q, q′, I ′) ∪ C ′D(q, q′, I ′)

induces a maximal clique in GQ.
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Remark 4.41. If β is odd, there is only one set CA5 (q, q′, I ′) and

|CA5 (q, q′, I ′)| = O

((
β

bβ/2c+ 1

)(
2β

1

)(
n− bβ/2c − 1

β − bβ/2c − 1

)(
n

β

))
.

If β is even, there are O
(

2( β
β/2)/2

)
sets CA5 (q, q′, I ′) and

|CA5 (q, q′, I ′)| = O

(
2β

(
n

β

)((
β

β/2

)(
n− β
β/2

)
+

(
β

β/2 + 1

)(
n− β/2− 1

β − β/2− 1

)))
.

Proof. Similar to the proof of Remark 4.34. The estimate of |CA5 (q, q′, I ′)|
is not tight, as it does not consider the intersection involving q and config-

urations in CA5 (q, q′, I ′).

There are as many cliques of family CD5 (q, q′, I ′) as there are cliques of

family CA5 (q, q′, I ′), and the analysis of their cardinalities is similar to the

one presented in Remark 4.41.

Finally, we can consider intersections with both sets A and D.

Proposition 4.42. Let q, q′ ∈ Q be a pair of configurations such that |q ∩
q′| = 0 and let I ′ be a maximal crossing subfamily of I(q). Assume that

C
′
(q, q′, I ′) = {q′′ ∈ Cβ(q′, I ′) : |q′′ ∩ q| ≥ 1}

and that

C
′′
(q, q′, I ′) = {q′′ ∈ Q : |q′′ ∩ q′| ≥ β + 1 and |q′′ ∩ q| ≥ 1}.

The set

C5(q, q′, I ′) = {q} ∪ C ′′(q, q′, I ′) ∪ C ′(q, q′, I ′)

induces a maximal clique in GQ.

Proof. Similar to the proof of Proposition 4.39.

Remark 4.43. If β is odd, there is only one set C5(q, q′, I ′) and

|C5(q, q′, I ′)| = O

((
2β

β + 1

)(
2β

1

)(
2n− β − 2

β − 2

))
.

If β is even, there are O
(

2(2ββ )/2
)

sets C5(q, q′, I ′) and

|C5(q, q′, I ′)| = O

(
2β

((
2n− 2β − 1

β − 1

)(
2β

β

)
+

(
2β

β + 1

)(
2n− β − 2

β − 2

)))
.
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Proof. If q′′ is an element of C”(q, q′, I ′), we know that from the 2β elements

covered by q′′, at least β+1 belong to q′′ and that at least one is also covered

by q. Its remaining β−2 elements belong to the other 2n−β−2 elements ofA
and D. From this analysis, if follows that there are O

((
2β
β+1

)(
2β
1

)(
2n−β−2
β−2

))
configurations q′′.

Finally, if β is even, some configurations that have β/2 elements in common

with q′ also belong to C5(q, q′, I ′). For such configurations, there are
(

2β
β

)
/2

possible choices for the elements belonging to the intersection,
(

2β
1

)
choices

for the common element with q, and O
((

2n−2β
β

))
possibilities to complete

the configurations (again, this is not a tight estimate).

4.4 Computational Results

This section presents the results of a computational evaluation of our set

partitioning approach. All computations were done on a 64-bit Intel(R)

Core(TM)2 Quad with 2.83 GHz, 8 GB of RAM memory, running openSuse

Linux 11.2. Our code is implemented in C++ and was compiled using g++

4.4.1. We used the callable library of CPLEX 12.1.0 ILOG (2010) [57] to

solve the LPs.

Our code solves formulations (X ′′) and (Xp ′′) to minimize first crossings

using the branch-and-price algorithm described in Section 4.3.3. For each

node of the solution tree, we use the heuristics presented in Section 4.3.2 in

order to generate a set of columns composing a feasible solution that respects

all the fixed assignments. After this, we start with the column generation

algorithm. In each step, we try to obtain a configuration with negative

reduced cost using the routine described in 4.12, assuming that the non-

fixed assignments follow the sequential matchings (see Section 2.4.1.1). If it

fails, then we solve the exact recurrence described in 4.10. After computing

a configuration q with minimal reduced cost, we employ the heuristics again

(adapted to the fixed assignments) in order to generate matchings containing

q. The configurations of these matchings are added to the problem and the

resulting LP is resolved. This procedure is repeated until no more improving

configuration exists, i.e., until the LP is solved to optimality. For Algorithm

4, we used T = n2, α = 0.97, outSteps = 20, and inSteps = 1000 as

parameters.

We tested some of the cuts presented in Section 4.3.4, but preliminary results

showed that their inclusion make the algorithm slower. Therefore, we did
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not used them in our final programs.

For both problems, two groups of instances were generated. The first con-

tains relatively “few” vehicle types, while the second contains “many”. From

a practical point of view, the first group is more relevant, as public trans-

portation companies usually do not have a large number of different vehicle

types. The second group is interesting from a theoretical point of view, as

it shows that (X′′) and (Xp′′) are able to yield non-trivial lower bounds for

some scenarios of the problems.

Table 6 reports computational results for instances of the VPP which were

created as follows. Each sequence A was uniformly generated at random

and the respective sequence D was obtained from A after the application of

Algorithm 1 (i.e., D is a random permutation of A). The names n−m− t of

the instances indicate the number n of arrivals and departures, the number

m of tracks, and the number t of vehicle types. All the vehicle types have

the same size, i.e., l(a) = 1, a ∈ A. The columns list the number Row

of rows, the number Col of configurations generated by the branch-and-

price algorithm, the number NZ of non-zeros of the final reduced master

problem, the value VLP of the LP relaxation, the value VIP of the best

integer solution obtained during the computation, the lower bound LB for

the minimum number of first crossings of any optimal integer solution, and

the time to solve the instance in CPU seconds. Instances of the first group

were solved exactly, and instances of the second group were given a time

limit of three hours (or at least the time required for the solution of the root

node).

Table 7 reports computational results for the VPPP . The instances were

generated in the same way as the ones we used for the VPP. The name

p − w − n −m − e − t of the instances indicates the number p of weekday

periods, the number w of weekend periods, the number n of arrivals on

weekday periods, the number m of tracks, the number e of weekend periods,

and the number t of vehicle types. The columns show the same informations

as in Table 7. We remark that the numbers of rows, columns, and non-zeros

are the sum of the values of all the periods. Note that the number of periods

for a real-world instance would be 14, with a morning and evening period for

every day of the week. In other words, the instances named 10-4-*-*-*-*

correspond to a typical “standard week”. For every instance, we gave a time

limit of thirty minutes (or at least the time required for the solution of the

root node) for every period to be solved.

The performance of the algorithms for the “realistic” groups of instances
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Instance Row Col NZ VLP VIP LB Time

20-4-12 40 149 1679 2 2 2 1

40-5-15 80 127297 2163556 0.2 2 2 9705

63-7-8 126 135849 2581245 0 0 0 10063

64-8-12 128 79598 1353233 0 0 0 3701

96-12-7 192 24 600 0 0 0 1

150-15-6 300 30 930 0 0 0 1

160-20-10 320 40 1000 0 0 0 1

200-20-10 400 40 1240 0 0 0 1

40-2-4 80 6787 269854 0.781522 3 1 10800

57-3-10 114 21794 843788 0.899608 8 1 10800

80-4-32 160 34340 1405094 4.086957 13 5 10800

81-9-81 162 127143 2415678 1 1 1 9263

90-6-37 180 50925 1577724 1.391626 12 2 10800

120-6-25 240 43037 1762543 0.277460 14 1 10800

160-10-80 320 57624 1901436 0.662060 19 1 10800

Table 6: Solving the VPP using X′′.

can be considered satisfactory. It is interesting to notice that the instances

of the multi-periodic scenarios are more challenging than their single-period

counterparts and that the heuristics had a good performance.

The results also show that the instances of the second groups are very chal-

lenging. We remark that, for these cases, we solved directly the recurrence

described in Theorem 4.10, as the use of the pricing routine described in

Theorem 4.12 made the programs much slower. These instances require

crossings, and we were able to prove this fact with the results of the linear

relaxations.
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Instance Row Col NZ VLP VIP LB Time

4-2-20-4-15-5 210 996 11151 1 1 1 5

5-2-36-6-24-5 432 17246 224611 0 0 0 116

6-3-30-5-18-5 444 23296 303069 1 3 3 324

10-3-64-8-48-6 1536 113026 1922842 0 2 0 3147

10-4-80-10-56-8 2000 394759 6712449 0 8 0 12376

10-4-150-15-100-10 3700 218620 4594080 0 9 0 7214

10-4-120-12-90-8 3060 500433 10510547 0 13 0 18058

10-4-150-15-110-9 3800 153239 3221435 0 5 0 7155

5-2-36-6-24-15 432 73172 951249 6.0909 9 7 2205

6-3-30-5-18-20 444 37778 491341 7.4755 12 12 186

10-3-64-8-48-17 1536 621668 10415856 1.2 33 4 20254

10-4-80-10-56-20 2000 737861 12544639 1 35 2 9780

10-4-150-15-100-46 3700 777113 16321498 5.8132 99 8 23487

10-4-120-12-90-40 3060 756737 15892603 2.3333 105 10 23403

10-4-150-15-110-45 3801 775479 16287302 1 92 1 23480

Table 7: Solving the VPPP using Xp′′



Chapter 5

The Progressive Approach

In this chapter, we introduce the Progressive Approach, a method that can

be used to produce feasible solutions for certain ILPs quickly. We present

exact algorithms for the VPP and for the VPPP based on this technique and

show through computational experiments that they have very satisfactory

performances for large-scale scenarios of both problems.

5.1 Introduction

One of the main challenges faced by the formulations proposed for the VPP

and for the VPPP is the large number of valid assignments and, conse-

quently, the large number of feasible solutions. This makes large-scale sce-

narios of these problems virtually intractable. It is somehow clear, though,

that some assignments are more likely to appear in optimal solutions than

others, and this fact was not explored previously. We propose in this chapter

a methodology to solve ILP formulations of problems for which it is possible

to estimate, for each pair of variables, which one is more likely to appear

in an optimal solution, and show how it can be applied to the VPP and

to the VPPP . Our computational results show that it is possible to obtain

exact solutions for large-scale scenarios of both problem in less than one

hour of computation with algorithms based on our Progressive Approach.

The chapter is organized as follows. Initially, we present a generic and

problem-independent description of the method in Section 5.2. In Sec-

tions 5.3 and 5.4 we apply the Progressive Approach to model (LU) and

to a new model that explores the concept of uniform tracks, respectively.

Finally, our computational experiments are reported in Section 5.5.

109
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5.2 The Progressive Approach

The Progressive Approach is described in Algorithm 6:

Algorithm 6 The Progressive Approach

r(M ′) := ∅
v(M ′) := ∅
while M ′ 6= M do

add rows from r(M) \ r(M ′) to r(M ′)

add columns from v(M) \ v(M ′) to v(M ′)

x := solve(M ′)

if c(x) = LB(M) then

break

end if

end while

The term LB(M) represents a known lower bound for M , solve(M ′) returns

an optimal solution of M ′, and c(x) is the objective value of x ∈ P (M ′). For

every ILP Model M , let r(M) and v(M) denote its sets of rows and columns,

respectively. Model M ′ is always a “sub-model” of M , that is, r(M ′) ⊆ r(M)

and v(M ′) ⊆ v(M) are invariants of the algorithm. In addition to that, we

want r(M ′) and v(M ′) to be such that if x is a feasible solution of M ′, then

x is the projection of some element x′ of M such that c(x) = c(x′). As a

consequence, the addition of variables and constrains to M ′ can not be done

in an arbitrary way.

In each step, Algorithm 6 computes an optimal solution x for M ′ and verifies

if c(x) = LB(M). If this is the case, the algorithm stops, as we found already

a projection of an optimal solution for M . If not, some variables from

v(M) − v(M ′) and some constraints from r(M) − r(M ′) are added to M ′,

and the algorithm proceeds to the next iteration using the best solution

found so far as a warm start. Algorithm 6 stops when M ′ becomes M , so

this method is exact if executed until its completion.

We remark that the Progressive Approach has similarities with column gen-

eration approaches (and also with sifting), where variables are added and

the optimality of the current solution is verified with the help of a pricing

algorithm. This comparison helps us to identify the main weakness and the

main strength of Algorithm 6. A pricing algorithm gives a formal criterion to

add interesting variables and typically helps to prove the optimality and to

stop the algorithm before all the variables have been added to the problem.
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Apparently, it is not an easy task to develop a generic rigorous procedure

with the same capabilities for Algorithm 6. Conversely, a column generation

approach can only be applied to a restricted family of formulations, while

the method described here has a wider scope of application.

Finally, we remark that an algorithm based on the Progressive Approach

can be trivially transformed into a heuristic if its execution is interrupted

when c(x) is still less than LB(M).

5.3 Progressive Approach Applied to (LU)

In Section 2.4.1, we investigated some aspects of the VPP in order to obtain

valid inequalities, and our analysis showed that the concepts of sequential

matching and complete sequential matching play an important role in the

problem. For instance, Lemma 2.24 proves that sequential matchings al-

ways provide the best assignments involving a set of arrivals and a set of

departures. Moreover, pairs involved in a large number of semi-crossings

hardly belong to optimal solutions. These observations give us directions to

establish a hierarchy of elements of A×D.

Let dist : A × D → N denote the absolute difference between the position

of a in Aτ(a) and the position of d in Dτ(a) for each pair (a, d) ∈ A × D.

For example, if a is the first arrival in Aτ(a) and d is the third departure

in Dτ(a), then dist(a, d) = 2. If τ(a) 6= τ(d), we assume that dist(a, d) =∞.

Algorithm 7 Progressive Approach Applied to (LU)

for (a, s, d) ∈ F do

add ra,s,d to v(M ′)

end for

r(M ′) := r(M)

count := 0

while c(solve(M ′)) > LB(M) and count < n do

for (a, s, d) ∈ A× S ×D do

if dist(a, d) = count then

add xa,s,d to v(M ′)

end if

end for

count := count+ 1

end while
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Algorithm 7 is a procedure based on the Progressive Approach and on (LU)

to solve the VPP. The algorithm keeps a current model M ′, which is a

projection of M . In each iteration, new assignments (i.e., new variables)

from r(M)\ r(M ′) are added to M ′ according to the function d. In the k-th

iteration, M ′ will contain the assignment (a, d) if and only if dist(a, d) ≤ k.

In particular, in the first iteration only assignments of the complete sequen-

tial matching belong to M ′. Algorithm 7 stops after at most max1≤i≤tti
steps, when M ′ becomes equal to M . Nontrivial values for LB(M) can be

obtained, e.g., from Inequalities 1 and 2.

Finally, if x is a solution of one of the models M ′ generated by Algorithm 7,

then the solution x′, given by

x′i =

{
xi if i ∈ v(M ′),

0 if i ∈ v(M) \ v(M ′),

is a solution for M such that c(x) = c(x′). Therefore, the procedure can

stop after the computation of any vector x such that c(x) = LB(M).

The following proposition shows that, in some cases, Algorithm 7 will only

stop when M ′ becomes M .

Proposition 5.1. For some instances of VPP, Algorithm 7 can only find

an optimal solution when M ′ becomes M .

Proof. Consider the family of instances of VPP such that m = t−1, ti = m

for each type Ti (and therefore β = m + 1), and the first β arrivals belong

to different types (say, τ(ai) = Ti for 1 ≤ i ≤ t). Furthermore, the types of

the remaining vehicles are such that:

τ(ai) =

{
τ(a((i−1) mod β)+1) if β < i ≤ β(m− 1),

τ(a(β−1−((i−1) mod β))+1) if i > β(m− 1).

The types of the departures are such that:

τ(di) =

{
τ(d(β−1−((i−1) mod β))+1 if i ≤ β,
τ(d((i−1) mod β)+1 else.

Figure 1 shows the instance of this family with t = 4.

Instances of this family admit a crossing-free solution, but such a matching

can only be obtained if the last arrival is assigned to the first departure

of each type. As a consequence, Algorithm 7 will be able to produce an



5.4 A New Model for the VPP 113

a12a11a10a9a8a7a6a5a4a3a2a1

d12d11d10d9d8d7d6d5d4d3d2d1

Figure 1: Example with four vehicle types

optimal solution only after the inclusion of the variables describing these

assignments, which happens only in its last iteration.

5.4 A New Model for the VPP

Kroon, Lentink & Schrijver (2006) [70] explored the concept of uniform

tracks, i.e., tracks containing only vehicles of one type, in order to elimi-

nate variables and inequalities from their formulations by fixing the number

of uniform (and non-uniform) tracks. Based on this idea, we present the

following “uniform-track-oriented” model:

(LF) min
∑

(a,s,d)

ra,s,d

(i)
∑
(s,d)

xa,s,d ≤ 1 a ∈ A

(ii)
∑
(a,s)

xa,s,d ≤ 1 d ∈ D

(iii)
∑
(a,d)

xa,s,d = β s ∈ Z

(iv)
∑

(a,s,d)

xa,s,d − uiβ = mi Ti ∈ T

(v)
∑
a′<a

xa′,s,d +
∑
d′≤d

xa,s,d′ − ra,s,d ≤ 1 (a, s, d) ∈ A× Z ×D

xa,s,d ∈ {0, 1} (a,s,d)∈A×Z×D
τ(a)=τ(d)

ra,s,d ∈ {0, 1} (a, s, d) ∈ A× Z ×D
ui ∈ N 0 ≤ i < t.

The set Z ⊆ S contains tracks that may contain non-uniform configura-

tions. For each type Ti, mi = ti mod β. Model (LF) employs binary

variables xa,s,d, with a ∈ A, s ∈ Z, d ∈ D, and τ(a) = τ(d), where xa,s,d = 1

whenever arriving vehicle a is assigned to track s and to departing trip d,

τ(a) = τ(d). Binary variables ra,s,d indicate if there is a crossing involving

arrival a and departure d in track s. Integer variables ui count the number

of uniform tracks containing units of type Ti that can be transformed in
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non-uniform tracks. Equations (LF)(i) and (LF)(ii) assert that each arriv-

ing vehicle and departing trip is assigned to at most one non-uniform track,

respectively. We remark that (LF)(i) and (LF)(ii) can not be equalities

because assignments involving the |S| − |Z| uniform tracks do not have to

be explicitly represented in a feasible solution of (LF). Equalities (LF)(iii)

indicate that exactly β vehicles are parked in each track of Z; (LF)(iv) de-

fines the amount of vehicles of each type that can be assigned to non-uniform

tracks; and (LF)(v) counts the number of crossings (which can only occur

in non-uniform tracks).

The main idea of the formulation is that, for each vehicle type Ti, if we assign

φi units to |Z| (possibly non-uniform) tracks, mi ≤ φi ≤ uiβ +mi ≤ ti, the

remaining ti − φi vehicles can be trivially parked in uniform tracks. Kroon,

Lentink & Schrijver (2006) [70] assumed in their models that |S \Z| is fixed

and greater than zero, but we can only be certain that (LF) will deliver an

optimal solution if Z = S. In this case, (LF) can be seen as an expansion of

(LU) where the number of non-uniform tracks is explicitly represented by

variables ui, 1 ≤ i ≤ t.

It is clear that it is not interesting to solve the VPP directly using (LF), as

(LU) is clearly easier. Instead, we developed Algorithm 8, a procedure based

on the Progressive Approach in which |Z| is increased in each iteration. In

the first step, |Z| =
∑
Ti∈T m

i/β, as this is the lower bound on the number

of non-uniform tracks (Proposition 4.18). In each iteration, a new track is

added to Z, i.e., a track which was previously uniform becomes available for

the composition of non-uniform configurations. Finally, similarly to what

we had in Algorithm 7, assignment variables are also progressively added

to the current sub-problem according to the function dist : A → D. The

algorithm stops when Z becomes S or when it formally concludes that the

best solution found so far is optimal for the original problem.

It is reasonable to expect good solutions after few iterations of Algorithm 8.

However, worst-case scenarios can also appear, as the following proposition

shows:

Proposition 5.2. For some instances of VPP, Algorithm 8 can only find

an optimal solution in its last possible step.

Proof. Consider the family of instances whose first (m − 1)β arrivals and

departures are of type T1 and the remaining β units are of pairwise different

types, with τ(a(m−1)β+i) = τ(dmβ−i+1), 1 ≤ i ≤ β. Figure 2 shows an

example with 9 elements and 3 tracks.
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Algorithm 8 Progressive Approach applied to (LF)

select Z ⊆ S such that |SS| = (
∑

t∈T mt/β)− 1

for (a, s, d) ∈ A× Z ×D do

add ra,s,d to v(M ′)

end for

for i = 0 to t− 1 do

add ui to v(M ′)

end for

r(M ′) := r(M)

while Z 6= S do

select track s in S \ Z
Z := {s} ∪ Z
for (a, d) ∈ A×D such that τ(a) = τ(d) do

add ra,s,d to v(M ′)

end for

for count = 0 to n do

for (a, d) ∈ A×D do

if dist(a, d) = count then

add xa,s,d to v(M ′)

end if

end for

if c(solve(M ′)) = LB(M) then

stop algorithm

end if

end for

end while

a9a8a7a6a5a4a3a2a1

d9d8d7d6d5d4d3d2d1

Figure 2: Example with nine units and three tracks
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The configurations composing the optimal solutions instances of this family

are as follows: the first β− 1 units belong to type T1 and the last contains a

vehicle ai such that i > (m−1)β. Consequently, an optimal solution can only

be found if we allow all the tracks to be non-uniform, so Algorithm 8 will

yield an optimal solution for instances of this family only when Z becomes

S, i.e., in its last iteration.

5.5 Computational Results

This section contains the results of a computational evaluation of the al-

gorithms presented in this chapter. Our tests were conducted on a 64-bit

Intel(R) Core(TM)2 Quad with 2.83 GHz, 8 GB of RAM memory, running

openSuse Linux 11.2. Our code is implemented in C++ and was compiled

using g++ 4.4.1 and with the callable library of CPLEX 12.1.0 (ILOG (2010)

[57]).

Tables 8 and 9 show the results of computations of Algorithms 7 and 8

with instances of the VPP, respectively. In the case of the Algorithm 8,

we also use the global lower bound equations presented in Section 2.4.1 for

each pair (a, d) in A × D in order to improve the running time. The first

column of these tables contains the name n-m-t of the instances. Following

our notation, n is the number of arrivals, m is the number of tracks, and t

is the number of types. Based on these parameters, the arrival sequences A
were randomly generated (i.e., the type of each vehicle was uniformly chosen

among the t possibilities), while their respective departure sequences D were

obtained after the application of Algorithm 1 inA. Columns Iterations, First

Solution, VIP , and Time indicate the number of iterations, the cost value

of the solution obtained in the first iteration, the optimal value, and the

time consumed for the computation of an optimal solution for the respective

instance. With both algorithms, we were able to obtain very quickly optimal

solutions for all the cases in less than 30 minutes.

Comparing these two tables, we can see that Algorithm 8 does not need

many iterations, which can also be seen as a strong reason to explore uni-

formity of tracks to solve the VPP. However, even with more iterations,

Algorithm 7 presented a better performance, specially on the harder and

larger instances, and a smaller consumption of memory. For these reasons,

we chose model (LU) in order to formulate and solve VPPP .

Our results involving Algorithm 7 adapted to the VPPP are presented in
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Instance Iterations First Solution VIP Time

20-4-12 6 4 4 1

40-5-15 8 5 1 830

63-7-8 1 0 0 1

64-8-12 1 0 0 1

96-12-7 1 0 0 5

150-15-6 1 0 0 27

150-15-15 1 0 0 34

160-20-10 1 0 0 59

160-20-40 1 0 0 698

200-20-10 1 0 0 185

Table 8: Solving the VPP using (LU)

Table 10. We generated the instances using Algorithm 1 and Algorithm 2

following the scheme described in Chapter 2. The names p-w-n-m-e-t of the

instances indicate the number p of weekday periods, the number w of week-

end periods, the number n of arrivals on weekday periods, the number m of

tracks, the number e of trips on weekend periods, and the number t of vehi-

cle types. In order to solve these instances, we compute the optimal solution

for the first and the last weekday period simultaneously, while the other pe-

riods were solved independently. So, the number of iterations indicated in

the second column of Table 8 is the sum of the number of iterations used on

the computation of all the periods. Finally, Columns VIP and Time indicate

the solution obtained by the algorithm and its running time, respectively.

All these solution are optimal and could be computed with modest time

consumption.
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Instance Iterations First Solution VIP Time

20-4-12 2 5 4 0

40-5-15 1 1 1 45

63-7-8 1 0 0 3

64-8-12 1 0 0 3

96-12-7 1 0 0 4

150-15-6 1 0 0 3

150-15-15 1 0 0 391

160-20-10 1 0 0 28

160-20-40 1 0 0 1358

200-20-10 1 0 0 202

Table 9: Solving the VPP using (LF)

Instance Iterations VIP Time

4-2-20-4-15-5 11 2 1

5-2-36-6-24-5 10 0 1

6-3-30-5-18-5 25 3 9

10-3-64-8-48-6 13 0 11

10-4-80-10-56-8 14 0 28

10-4-120-12-90-8 14 0 146

10-4-150-15-110-9 14 0 487

10-4-150-15-100-10 14 0 452

Table 10: Solving the VPPP using (LU)



Chapter 6

Extensions of the Vehicle Po-

sitioning Problem

In this chapter, we investigate two important extensions of the Vehicle

Positioning Problem: the VPP+ and the VPPP
+. We introduce formu-

lations of the VPP+, which are classified according to the way assignment

decisions are decomposed, and compare them from a theoretical and from a

computational point of view. We discuss exact and heuristic solution meth-

ods for the VPPP
+ and present the results of our computational experiments

with the most satisfactory one, which is based on the Progressive Approach.

6.1 Introduction

Previously, we presented the basic versions of the VPP and of the VPPP and

efficient methods to solve them. For certain real-world scenarios, though,

additional aspects must be taken into account, and some modifications may

lead to significant changes in these problems. Therefore, new solution meth-

ods should be developed.

In this chapter, we investigate the VPP+ and the VPPP
+, which are im-

portant extensions of the VPP and of the VPPP , respectively. Several

formulations and solution approaches are suggested and their performances

and properties are theoretically and computationally compared. The most

important result is an algorithm for the VPPP
+ based on the Progressive

Approach, which is able to produce satisfactory solutions for large-scale sce-

narios of the problem.

This chapter is divided as follows. In Section 6.2 we introduce the new

aspects addressed by the VPP+ and by the VPPP
+. In Section 6.3 we intro-

duce exact ILP models for the VPP+ and compare them from a theoretical

119
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and from a computational point of view. Our results show that the strength

of these formulations is proportional to the number of elements that com-

pose the indices of the variables representing assignment decisions. Finally,

in Section 6.4, we present exact and heuristic methods for the VPPP
+ and

discuss their applicability in practical scenarios.

6.2 Additional Aspects

In the previous chapters, we assumed that each trip could only be assigned

to one type of vehicle. However, some transportation companies have more

flexible policies and let each departure d be serviced by any vehicle whose

type belongs to the set T (d) ⊆ T . Conversely, due to infrastructure con-

straints, a track s may only be used by a vehicle if its type belongs to the

set T (s) ⊆ T . We say that T (d) and T (s) are nontrivial if |T (d)| > 1

and T (s) 6= T , respectively.

For the VPP, these new aspects do not substantially change the problem.

Namely, it is possible to adapt the models presented in the previous chap-

ters in order to include and exclude assignment variables according to the

contents of all sets T (d) and T (s).

In contrast, the VPPP becomes more challenging with nontrivial sets T (d)

or T (s). Recall that the relation between departures in period h and arrivals

in period h+1 is given by the function sync : D → A. If |T (d)| = 1, we know

the type of arriving vehicle sync(d), but if T (d) is nontrivial, arrival sync(d)

can be of any type in T (sync(d)) = T (d). Moreover, if sync(d) is assigned

to d′, we must ensure that d and d′ are assigned to the same vehicle type.

Therefore, solutions for scenarios with nontrivial sets T (d) require the syn-

chronization of consecutive periods. The most important consequence of this

fact is the necessity to consider the assignment of vehicle types to arrivals

and to departures in the ILP formulations.

A careful selection of the e vehicles that will service trips during the weekend

periods is essential when there are nontrivial sets T (d) and T (s). As we will

see, bad choices can lead to infeasible scenarios.

Another additional aspect that will be considered is the ∆ restriction, which

refers to the difference of time ∆ that must pass between any two depar-

tures assigned to the same track. This constraint is important in real-world

scenarios and, to the best of our knowledge, it was not considered in any

previous work.
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We denote by VPP+ and VPPP
+ the extensions of VPP and VPPP , re-

spectively, that incorporate these new aspects.

6.3 Models for the VPP+

In this section, we present ILP formulations for the VPP+. We classify the

models according to the number of elements that compose the indices of the

variables and compare them from a theoretical and from a computational

point of view.

Our goal is to identify a suitable base model for the VPPP
+. For this reason,

our formulations will compute assignments D → T and A → T , i.e., we will

not assume that the types of the arrivals are known in advance.

6.3.1 Quad-Index Model

Formulation (QI) can be seen as a natural extension of (LU), as each feasible

assignment in A × S × D × T is represented by one variable. This model

employs binary variables xa,s,d,t and ra,s,d. Variable xa,s,d,t represents the

assignment of arriving vehicle a to track s, to departing trip d, and to vehicle

type Tt; it belongs to the program if and only if Tt ∈ T (a), Tt ∈ T (s),

and Tt ∈ T (d). Variable ra,s,d indicates if there is a crossing involving

arrival a and departure d on track s. Equalities (QI)(i) and (QI)(ii) are the

assignment constraints for arriving vehicles and departing trips, respectively.

Equalities (QI)(iii) indicate how many vehicles of each type are available,

while the capacities of the tracks are controlled in (QI)(iv). The number of

crossings is calculated in (QI)(v), which is similar to (LU)(iv), and (QI)(vi)

is the formulation of the ∆ restrictions.
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(QI) min
∑

(a,s,d)

ra,s,d

(i)
∑

(s,d,t)

xa,s,d,t = 1 a ∈ A

(ii)
∑

(a,s,t)

xa,s,d,t = 1 d ∈ D

(iii)
∑

(a,s,d)

xa,s,d,t = tt Tt ∈ T

(iv)
∑

(a,d,t)

xa,s,d,t = β s ∈ S

(v)
∑
a′<a

xa′,s,d,t +
∑
d′<d

xa,s,d′,t ≤ 1 + ra,s,d (a, s, d) ∈ A× S ×D

(vi)
∑

(a,d′,t)
|d′−d|<∆

xa,s,d′,t ≤ 1 (s, d) ∈ S × D

xa,s,d,t ∈ {0, 1} (a,s,d,t)∈A×S×D×T
t∈T (a)∩T (d)∩T (s)

ra,s,d ∈ {0, 1} (a, s, d) ∈ A× S ×D.

Proposition 2.26 shows that one can omit variable ra,s,d (and its respective

inequality) from (LU) if τ(a) = τ(d). We remark that this simplification is

not applicable to (QI) if T (a) or T (d) is nontrivial, as we do not know in

advance the type of a or d.

6.3.2 Triple-Index Models

In Formulation (TI), assignment decisions are decomposed into two classes

of variables. The model employs binary variables xa,s,d, ya,s,t, and ra,s,d.

Variable xa,s,d represents the assignment of arriving vehicle a to track s and

to departing trip d; it belongs to the formulation if and only if T (a)∩T (d)∩
T (s) 6= ∅. Variable ya,s,t models the assignment of arrival a to track s and

to vehicle type Tt; it belongs to the formulation if and only if Tt ∈ T (a)

and Tt ∈ T (s). Finally, variable ra,s,d indicates if there is a crossing involv-

ing arriving vehicle a and departing trip d on track s. Equalities (TI)(i),

(TI)(ii), and (TI)(iii) are the assignment constraints for arrivals and depar-

tures. The number of vehicles of each type and the capacity of the tracks are

controlled in (TI)(iv) and (TI)(v), respectively. The coherence among vari-

ables xa,s,d and ya,s,t is modeled in (TI)(vi) and (TI)(vii). Finally, crossings

are counted in (TI)(viii) and the ∆ restrictions are formulated in (TI)(ix).

Similarly to (QI), Proposition 2.26 also does not help to reduce the number

of variables ra,s,d and Inequalities (TI)(viii) if T (a) or T (d) is nontrivial.
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(TI) min
∑

(a,s,d)

ra,s,d

(i)
∑
(s,d)

xa,s,d = 1 a ∈ A

(ii)
∑
(a,s)

xa,s,d = 1 d ∈ D

(iii)
∑
(s,t)

ya,s,t = 1 a ∈ A

(iv)
∑
(a,s)

ya,s,t = tt Tt ∈ T

(v)
∑
(a,t)

ya,s,t = β s ∈ S

(vi) ya,s,t +
∑
d

t/∈T (d)

xa,s,d ≤ 1 (a, s, t) ∈ A× S × T

(vii) xa,s,d +
∑
t

t/∈T (d)

ya,s,t ≤ 1 (a, s, d) ∈ A× S ×D

(viii)
∑
a′<a

xa′,s,d +
∑
d′<d

xa,s,d′ ≤ 1 + ra,s,d (a, s, d) ∈ A× S ×D

(ix)
∑

(a,d′)
|d′−d|<∆

xa,s,d′ ≤ 1 (s, d) ∈ S × D

xa,s,d ∈ {0, 1} (a,s,d)∈A×S×D
T (a)∩T (s)∩T (d)6=∅

ra,s,d ∈ {0, 1} (a, s, d) ∈ A× S ×D
ya,s,t ∈ {0, 1} (a,s,t)∈A×S×T

t∈T (a)∩T (s) .

Formulation (TI2) also makes a decomposition of the assignments in two

groups of variables. The model employs binary variables xa,s,d, za,t,d, and

ra,s,d. Variable xa,s,d represents the assignment of arriving vehicle a to

track s and to departing trip d; it belongs to the formulation if and only if

T (a) ∩ T (d) ∩ T (s) 6= ∅. Variable za,t,d denotes the assignment of arrival a

to vehicle type Tt and to departure d; it belongs to the formulation if and

only if Tt ∈ T (a) and Tt ∈ T (d). Finally, variable ra,s,d indicates if there

is a crossing involving arriving vehicle a and departing trip d on track s.

Equalities (TI2)(i), (TI2)(ii), (TI2)(iii), and (TI2)(iv) are the assignment

constraints for arrivals and departures. The number of vehicles of each type

and the capacity of the tracks are controlled in (TI2)(v) and (TI2)(vi),

respectively. The coherence among variables xa,s,d and ya,s,t is modeled

in (TI2)(vii). Finally, the crossings are counted in (TI2)(viii) and the ∆

restrictions are formulated in (TI2)(ix). Again, the reductions proposed in

Proposition 2.26 cannot be always applied in (TI2).
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(TI2) min
∑

(a,s,d)

ra,s,d

(i)
∑
(s,d)

xa,s,d = 1 a ∈ A

(ii)
∑
(a,s)

xa,s,d = 1 d ∈ D

(iii)
∑
(t,d)

za,t,d = 1 a ∈ A

(iv)
∑
(a,t)

za,t,d = 1 d ∈ D

(v)
∑
(a,d)

za,t,d = tt Tt ∈ T

(vi)
∑
(a,d)

xa,s,d = β s ∈ S

(vii)
∑
s

xa,s,d =
∑
t

za,t,d (a, d) ∈ A×D

(viii)
∑
a′<a

xa′,s,d +
∑
d′<d

xa,s,d′ ≤ 1 + ra,s,d (a, s, d) ∈ A× S ×D

(ix)
∑

(a,d′)
|d′−d|<∆

xa,s,d′ ≤ 1 (s, d) ∈ S × D

xa,s,d ∈ {0, 1} (a,s,d)∈A×S×D
T (a)∩T (s)∩T (d) 6=∅

ra,s,d ∈ {0, 1} (a, s, d) ∈ A× S ×D
za,t,d ∈ {0, 1} (a,t,d)∈A×T ×D

t∈T (a)∩T (d) .

6.3.3 Theoretical Aspects

The following result shows that the VPP+ is difficult from the theoretical

point of view.

Corollary 6.1. The VPP+ is NP-complete.

Proof. This claim follows from the fact that each instance of the VPP is an

instance of the VPP+ where |T (d)| = 1 for every departure d, T (s) = T
for every track s, and ∆ = 0, i.e., the ∆ restrictions are trivially satisfied by

any feasible assignment. As the VPP is NP-complete (Winter (1998) [91]),

we conclude that the VPP+ is also NP-complete.

The following remarks describe the size of the programs generated by the

models that we presented for the VPP+:
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Remark 6.2. Model (TI) uses O(mn2) variables and O(mn2) constraints.

Remark 6.3. Model (TI2) uses O(mn2 + tn2) variables and O(mn2) con-

straints.

Remark 6.4. Model (QI) uses O(mtn2) variables and O(mn2) constraints.

Memory consumption plays an important role in the solution of the VPPP
+.

Regarding this aspect, Remarks 6.2, 6.3, and 6.4 suggest that (TI) and (TI2)

are more interesting than (QI). However, as the following results show, the

use of coherence constraints by the three-index models has important theo-

retical consequences.

Proposition 6.5. For every solution (x, r) in PLP (QI), there is a solution

(xt, y, r) in PLP (TI).

Proof. Let (x, r) be an element of PLP (QI). We define a pair (xt, y) as

follows:

xta,s,d =
∑
t

xa,s,d,t;

ya,s,t =
∑
d

xa,s,d,t.

We show that (xt, y) is a feasible solution of (TI):

(i)
∑

(s,d)

xta,s,d =
∑

(s,d,t)

xa,s,d,t = 1 a ∈ A

(ii)
∑

(a,s)

xta,s,d =
∑

(a,s,t)

xa,s,d,t = 1 d ∈ D

(iii)
∑
(s,t)

ya,s,t =
∑

(d,s,t)

xa,s,d,t = 1 a ∈ A

(iv)
∑

(a,s)

ya,s,t =
∑

(a,s,d)

xa,s,d,t = tt Tt ∈ T

(v)
∑

(a,t)

ya,s,t =
∑

(a,d,t)

xa,s,d,t = β s ∈ S

(ix)
∑

(a,d′)
|d′−d|<∆

xta,s,d′ =
∑

(t,a,d′)
|d′−d|≤∆

xa,s,d′,t ≤ 1 (s, d) ∈ S × D

Because there is no incoherence in x, if
∑
d

t∈T (d)

xa,s,d,t = k, then
∑
d

t/∈T (d)

xa,s,d,t ≤

1 − k for every (a, s, t) in A × S × T , which implies (TI)(vi). A similar

argument shows that (xt, y) also satisfies (TI)(vii).
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Finally, for all (a, s, d) ∈ A× S ×D, we have∑
a′<a

xta′,s,d +
∑
d′<d

xta,s,d′ =
∑
t

a′<a

xa′,s,d,t +
∑
t

d′<d

xa,s,d′,t ≤ 1 + ra,s,d,

which shows that (xt, y, r) belongs to PLP (TI).

Theorem 6.6. There are elements (x, y) of PLP (TI) representing solutions

of the VPP+ which are not associated with elements of PLP (QI).

Proof. We present an instance for which there is an element of PLP (TI) de-

scribing a solution that can not be represented by any element of PLP (QI).

It has four vehicle types, with t1 = 2 and ti = 1, 2 ≤ i ≤ 4. For each

arrival a in A, we have T (a) = T . We assume that m = 1, so the track

can be neglected. Departures in {d1, d2, d3} can only be serviced by vehicles

of type T1 and T2, while departures in {d4, d5} are restricted to types T3

and T4. Finally, we assume that the departing times are such that Inequali-

ties (TI)(ix) are trivially satisfied, i.e., for any pair of departures di and dj ,

|di − dj | ≥ ∆.

For each (ai, dj , tk) in A×D × T , we assign values to xai,s,dj and to yai,s,tk
according to the scheme presented in Figures 1 and 2, i.e., xai,s,dj is equal

to the value that appears in the arc with tail ai and head dj , and yai,s,tk is

equal to the value that appear in arc with tail Tk and head ai. If an arc is

not represented, its respective value is zero.

Constraints (TI)(i)− (TI)(v) are clearly satisfied. For triples in A×S ×T ,

ya,s,t +
∑
d

t/∈T (d)

xa,s,d ≤ 0.5 + 0.4 < 1

if t represents T1 or T2, and

ya,s,t +
∑
d

t/∈T (d)

xa,s,d ≤ 0.2 + 0.6 < 1

if t represents T3 or T4. Consequently, (TI)(vi) is satisfied.

For (TI)(vii), we have

xa,s,d +
∑
t

t/∈T (d)

ya,s,t ≤ 0.2 + 0.7 < 1,

so (TI)(vii) is also satisfied. Therefore, (x, y) belongs to PLP (TI).
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Figure 1: Incoherent assignments involving arrival a1

Figure 1 shows a synchronization problem involving arrival a1. If we look

at the assignments as a flow, we have only 0.4 units coming from T1 and T2,

while 0.6 units are assigned to d1, d2, and d3. Assignments with these

characterizations can not be represented by any element of PLP (QI), so we

conclude that there are elements in PLP (TI) describing solutions which can

not be represented by any element of PLP (QI).

The previous results show that the space of feasible solutions of PLP (QI)

is more compact than the space of PLP (TI). A similar analysis shows that

PLP (QI) is also stronger than PLP (TI2).

Proposition 6.7. For every solution (x, r) in PLP (QI), there is a solution

(xt, z, r) in PLP (TI2).

Proof. Let (x, r) be an element of PLP (QI). We define a pair (xt, z) as

follows:

xta,s,d =
∑
t

xa,s,d,t,

za,t,d =
∑
s

xa,s,d,t.

For the constraints of (TI2), we have the following:
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(a) Assignments of type T1
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(d) Assignments of type T4

Figure 2: Complete Assignment
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(i)
∑

(s,d)

xta,s,d =
∑

(s,d,t)

xa,s,d,t = 1 a ∈ A

(ii)
∑

(a,s)

xta,s,d =
∑

(a,s,t)

xa,s,d,t = 1 d ∈ D

(iii)
∑

(t,d)

za,t,d =
∑

(d,s,t)

xa,s,d,t = 1 a ∈ A

(iv)
∑

(a,t)

za,t,d =
∑

(a,s,t)

xa,s,d,t = 1 d ∈ D

(v)
∑

(a,d)

za,t,d =
∑

(a,s,d)

xa,s,d,t = tt Tt ∈ T

(vi)
∑

(a,d)

xta,s,d =
∑

(a,d,t)

xa,s,d,t = β s ∈ S

(vii)
∑
s
xta,s,d =

∑
(s,t)

xa,s,d,t =
∑
t
za,t,d (a, d) ∈ A×D

(ix)
∑

(a′,d′)
|d′−d|<∆

xta′,s,d′ =
∑

(t,a′,d′)
|d′−d|<∆

xa′,s,d′,t ≤ 1 (s, d) ∈ S × D

Finally, for all (a, s, d) ∈ A× S ×D, we have∑
a′<a

xta′,s,d +
∑
d′<d

xta,s,d′ =
∑
t

a′<a

xa′,s,d,t +
∑
t

d′<d

xa,s,d′,t ≤ 1 + ra,s,d,

which shows that (xt, z, r) belongs to PLP (TI2).

Theorem 6.8. There are elements (x, z, r) of PLP (TI2) associated with

solutions of VPP+ which are not associated with elements of PLP (QI).

Proof. We can adapt the example used to prove Theorem 6.6 in order to

show this claim. For each a in A and d in D, T (a) = T (d) = T , with

t1 = 2 and ti = 1, 2 ≤ i ≤ 4. We assume that m = 5 (and, consequently,

β = 1), that tracks in {s1, s2, s3} can only be assigned to vehicles of type T1

and T2, and that tracks in {s4, s5} can only be assigned to vehicles of type T3

and T4. Finally, departing times are such that the ∆ restrictions are trivially

satisfied, i.e., for any pair of departures di and dj , |di − dj | ≥ ∆.

We can define x and z according to the solution illustrated in Figures 1 and

2 by assuming that the departures are interpreted as the tracks and that

the arrivals are interpreted as units (a, d), i.e., (x, z) describe an integer

assignment of arrivals to departures. As a consequence, we have that∑
s

xa,s,d =
∑
t

za,t,d = 1, (1)
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which shows that Equalities (TI2)(vii) are satisfied by (x, y). Clearly, as

in Theorem 6.6, this is also the case for Constraints (TI2)(i) − (TI2)(vi).

Finally, as β = 1, we can take a vector r containing only zeros in order to

compose an element (x, z, r) of PLP (TI2), which is incoherent and can not

be represented by any element of PLP (QI).

Models (QI), (TI), and (TI2) compute the number of crossings similarly

to (LU). We saw in Proposition 2.6 that the linear relaxation of (LU) is

always equal to zero. Using a family of instances similar to the one employed

in this proposition, we can show that weaker results hold for (QI), (TI), and

(TI2).

Proposition 6.9. If the ∆ restrictions are trivially satisfied (or ignored)

and m ≥ 2, then VLP (QI) = 0.

Proof. Let M be any feasible matching of A to D and to T . Let xa,s,d,t = 1
m

if (a, d, t) ∈ M , and xa,s,d,t = 0 otherwise. For clarity reasons, we denote

the i-th element of M by (ai, di, ti), where the order is defined according to

the arrival sequence (i.e., ai = ai, 1 ≤ i ≤ n).

The following expressions show that the matching constraints of (QI) are

satisfied by x:

(i)
∑

(s,d,t)

xa,s,d,t =
∑
s,i
xai,s,di,ti = m 1

m = 1 a ∈ A;

(ii)
∑

(a,s,t)

xa,s,d,t =
∑
s,i
xai,s,di,ti = m 1

m = 1 d ∈ D;

(iii)
∑

(a,s,d)

xa,s,d,t =
∑
(s,i)
ti=Tt

xai,s,di,ti = ttm
1
m = tt Tt ∈ T .

As
∑

(a,s,d,t)

xa,s,d,t = mβ, it is clear that

∑
(a,d,t)

xa,s,d,t =
1

m

∑
i

xai,s,di,ti = β s ∈ S.

Finally, regarding the crossing constraints, we have

∑
a′<a

xa′,s,d,t +
∑
d′<d

xa,s,d′,t =
2

m
≤ 1 (a, s, d) ∈ A× S ×D,
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which shows that (QI)(v) is satisfied by the solution (x, r) with ra,s,d = 0,

(a, s, d) ∈ A × S × D, if m ≥ 2. Therefore, we conclude that (x, 0) is

in PLP (QI) and that VLP (QI) = 0 if m ≥ 2.

Corollary 6.10. If the ∆ restrictions are trivially satisfied (or ignored) and

m ≥ 2, then VLP (TI) = VLP (TI2) = 0.

Proof. It follows from Proposition 6.9 and from the fact that every element

in PLP (QI) can be represented as an element of PLP (TI) and of PLP (TI2)

with the same objective value.

The following proposition shows that the relaxed versions of the three models

can yield nontrivial lower bounds for a certain family of instances of the

VPP+.

Proposition 6.11. There are instances of VPP+ for which the linear re-

laxations of (QI), (TI), and (TI2) yield nontrivial lower bounds.

Proof. Let I be the family of instances of VPP+ such that t = n (and,

therefore, ti = 1 for every type Ti), |T (di)| = 1 for every departure di ∈ D,

|T (ai)| = 1 for every arrival ai ∈ A, m = 2, A is the inverse of D (i.e., there

is a crossing involving each pair of elements of A×D), and each trip di can

not be assigned to the same track as trips di−1 (when it exists) and di+1

(when it exists) due to the ∆ restrictions.

Suppose that the linear relaxation of any of the models produces a solution

x in PLP (QI) whose objective value is equal to zero. Let x′d,s be the sum

of the assignments involving d to s. In this case, x′di,s1 + x′di+2,s1
≤ 1 and

x′di,s2 + x′di+2,s2
≤ 1. As x′di,s1 + x′di+2,s1

+ x′di,s2 + x′di+2,s2
= 2, we have

that x′di,s1 + x′di+2,s1
= 1 and x′di,s2 + x′di+2,s2

= 1. However, due to the ∆

restrictions, we have that x′di,s1 + x′di+1,s1
+ x′di+2,s1

≤ 1 → x′di+1,s1
= 0 and

that x′di,s2 + x′di+1,s2
+ x′di+2,s2

≤ 1 → x′di+1,s2
= 0, which shows that x is

not a valid solution. A similar argument shows that the same fact holds for

PLP (TI) and PLP (TI2).

We conclude this section showing that (TI2) becomes stronger if T (s) = T
for each track s in S.

Theorem 6.12. If T (s) = T for each track in the depot, then there is an

element (xq, r) in PLP (QI) for every (xt, z, r) in PLP (TI2).

Proof. Let (xt, z, r) be an element of PLP (TI2). Let xta,s,d denote the de-

mand of consumer (a, s, d) that has to be supplied with resources coming
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from suppliers za,t,d, where Tt ∈ T (a) ∩ T (d). Using this interpretation, we

obtain a description of a vector xq such that the amount of commodities

sent from za,t,d to xta,s,d is described by xqa,s,d,t.

Vector xq can be greedily computed as follows. Given a consumer xta,s,d,

we assign resources from some supplier za,t,d to it until the demand of the

consumer is satisfied or until the resources of the supplier are exhausted.

After this, we proceed to the next xta,s′,d and/or to the next za,t′,d, and

this operation is repeated until all the assignments have been made. The

existence of such a distribution follows from the fact that (xt, z) satisfies

Equation (TI2)(vii).

We claim that (xq, r) belongs to PLP (QI). The sum of the supplies involving

each a and each d is clearly equal to one, so (QI)(i) and (QI)(ii) are sat-

isfied. There is no “oversupply”, so the accumulation of resources received

by consumers involving each track s sums up to β, while the amount of

supplies coming from all the suppliers of type Ti sums up to ti. With this,

we have Equations (QI)(iii) and (QI)(iv) satisfied. Finally, the validity of

Equations (QI)(v) and (QI)(vi) for (xq, r) follows from the fact that each

pair (a, d) is assigned to a track s with the same value in (xt, z) and in xq.

We conclude that (xq, r) belongs to PLP (QI).

Finally, we remark that it is also possible to readapt formulation (TI) if

we substitute variables ya,s,t for variables yd,s,t, which represents the as-

signment of departure d to track s and to vehicle type Tt. The resulting

formulation (TI’) has the same theoretical and computational properties

as (TI).

6.3.4 Computational Results

Here we compare Models (QI), (TI), and (TI2) from a computational point

of view. Table 11 gives the results obtained from the computation of 7

instances in a PC with an Intel Core2 Quad 2.83GHz processor and 16GB

RAM using solver CPLEX 12.2. The first column in this table gives the name

n-m-t of the problem. Following the notation we have been using in this

text, n is the number of vehicle, m is the number of tracks, and t is the

number of vehicle types. Given these parameters, an arrival sequence A
containing vehicles with only one allowed type is randomly built, and using

Algorithm 1 we generate a sequence D with the same property. Finally, the

first bt1/βc tracks will allow only vehicles of type T1. If t1 mod β 6= 0,
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(QI) (TI) (TI2)

Name Row Col NZ Sol T Row Col NZ Sol T Row Col NZ Sol T

30-5-4 4569 10420 200132 0 3 8548 8449 128116 0 2 5457 9780 131587 0 5

49-7-15 16927 65390 2493457 0 331 34929 34760 923713 0 159 19407 43476 893493 30 *

56-7-4 22075 43276 1314161 0 123 37749 37570 921985 0 114 25037 41922 939333 0 7951

63-9-8 35864 1013844374641 0 647 69026 68820 2146676 0 726 39861 78295 2146675 32 *

77-11-20 65404 29260918344203 6 * 1351561348945545809 0 7073 71483 1629685333351 110 10442

77-11-7 65391 1626547845515 0 1677 1227091224604539523 0 1723 71268 1351644552909 121 *

81-9-5 59225 1242775481373 0 1788 1032211029643624219 3 * 65269 1124813633545 194 *

Table 11: Comparing models (QI), (TI), and (TI2)

track sbt1/βc+1 will allow (at least) types T1 and T2. Then we repeat this

step for the t2 units of T2, starting from track sbt1/βc+1, and we follow this

procedure until all the units have been distributed in the depot. At this

point, it is clear that the instance already admits a feasible solution. We

complete the description of sets T (s), T (d), and T (a) by adding the other

types (each type is added with probability 0.5). The columns labeled Row,

Col, NZ, Sol, and T give the number of constraints, the number of variables,

the number of non-zeros, the solution, and the running time in seconds of

the respective model. The solutions presented were computed within 10800

seconds. Programs that exceeded this limit were interrupted and have ∗
substituting their running times.

Formulation (TI) performs better with smaller instances, but Model (QI)

has a better performance when we consider instances which are more similar

to real-world scenarios (i.e., with more vehicles and not so many different

types of vehicles). Finally, Model (TI2) has a very poor performance.

6.4 Solution Methods for the VPPP
+

In this section, we present an exact integrated ILP formulation and propose

an exact and a heuristic solution approach for the VPPP
+.

6.4.1 An Exact Model for VPPP
+

We present an integer programming model for the VPPP
+ based on (QI):
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(QP) min
∑

(a,s,d)

ra,s,d

(i)
∑

(s,d,t)

xa,s,d,t = 1 a ∈ A

(ii)
∑

(a,s,t)

xa,s,d,t = 1 d ∈ D

(iii)
∑

(a,s,d)

xa,s,d,t = tt Tt ∈ T

(iv)
∑

(a,d,t)

xa,s,d,t = β s ∈ S

(v)
∑
a′<a

xa′,s,d,t +
∑
d′<d

xa,s,d′,t ≤ 1 + ra,s,d (a, s, d) ∈ A× S ×D

(vi)
∑

(a,d′,t)
|d′−d|<∆

xa,s,d′,t ≤ 1 (s, d) ∈ S × D

(vii)
∑
a,s

xa,s,d,t =
∑
d′,s

xsync(d),s,d′,t (d, t) ∈ D × T

xa,s,d,t ∈ {0, 1} (a,s,d,t)∈A×S×D×T
t∈T (a)∩T (s)∩T (d)

ra,s,d ∈ {0, 1} (a, s, d) ∈ A× S ×D.

The description of model (QP) is similar to the one provided for (QI). The

only difference is the additional set of equations (QP)(vii), which asserts

that each arrival sync(d) is assigned to the same vehicle type as departure d.

Corollary 6.13. The VPPP
+ is NP-complete.

Proof. The same technique applied in the proof of Corollary 6.1 can be

applied in order to reduce the VPPP to the the VPPP
+. Therefore, as

the VPPP is NP-complete (see Proposition 2.32), we conclude that the

VPPP
+ is also NP-complete.

Similarly to the VPPP , special attention must be dedicated to the weekend

periods if e < n. The active vehicles are parked in b = e/β tracks of the

depot, and the inactive ones stay in the remaining m−b tracks (these tracks

will always accept every type of vehicle). The n−e vehicles that stay inactive

during the weekend periods will service trips of the first weekday period, so

the positions of these elements must be bookkept. In the previous chapters,

we dealt with this issue by computing the assignments of elements of the first

and of the last weekday periods simultaneously, but here we adopt a different

strategy. Namely, we introduce dummy arrivals ahi , p+ 1 ≤ h ≤ p+ w + 1,

e + 1 ≤ i ≤ n, and dummy departures dhi , p ≤ h ≤ p + w, e + 1 ≤ i ≤ n,

such that dhi = ah+1
i , p+ 1 ≤ h ≤ p+w, e+ 1 ≤ i ≤ n, that indicate parking

during the weekend. Periods compose a cyclic order, so period p + w + 1

represents the first weekday period of the next cycle (week). The insertion
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n t e m b p w Time

4 4 2 2 1 10 2 1

9 9 6 3 2 10 2 323

16 16 12 4 3 10 2 193755

16 16 12 4 3 11 4 2986

25 25 20 5 4 11 4 311791

25 25 20 5 4 10 2 -

Table 12: Solving the VPPP
+ using (QP)

of auxiliary artificial elements was also employed by Winter (1998) [91].

Table 12 presents the results of computational evaluations of (QP) with

randomly generated instances that admit crossing-free solutions. Columns

n, t, e, m, b, p, and w describe the parameters of the examples according

to the notation we are using in this text, and Time denotes the running

time in seconds of the computations, which were performed in a Sun Galaxy

4600 M2 with AMD Opteron 2,6 GHz with 16 kernels and 256 GB of RAM

running CPLEX 11.0 under Linux SuSe 9.

As we can see, the programs generated from model (QP) are computation-

ally very challenging. For the last instance, which contains only 25 vehicles

and 12 periods, it was not possible to obtain a feasible solution after weeks of

computation. The results show that this approach is not suitable for practi-

cal applications, so we investigate alternative methodologies in the following

sections.

6.4.2 Sequential Approach

In the sequential approach, each period is solved separately without taking

into account information and details about the whole problem, i.e., instances

are decomposed and each part is solved almost independently from the oth-

ers. Algorithm 9 describes this solution method.

Periods are sequentially enumerated in this procedure and the counting

starts from the second weekend period. T (a) and T (d) denote the vehicle

type assigned to a and d, respectively, and sync−1(a) is the inverse function

of sync, i.e., sync−1(a) = d if and only if sync(a) = d.

Basically, Algorithm 9 solves each period h taking into account only the

assignments that were previously made, thus avoiding coherence problems

between matchings. In the first step, there is no fixed assignment, so the
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Algorithm 9 Sequential Approach for VPPP
+

Solve period 0

for k := 1 to p+ w − 2 do

for d ∈ Dk−1 do

T (sync(d)) := T (d)

end for

Solve period k

end for

for d ∈ Dp+w−2 do

T (sync(d)) := T (d)

end for

for a ∈ A0 do

d := sync−1(a)

T (d) := T (a)

end for

Solve period p+ w − 1

second weekend period is solved as an independent instance of the VPP+.

Conversely, because the periods compose a cyclic sequence, period p+w−1 is

computed when the assignments Ap+w−1 → T and Dp+w−1 → T are already

fixed. Any other period h, 1 ≤ h ≤ p + w − 2, has its assignment Ah → T
determined according to Dh−1 → T . Finally, the parking of inactive vehicles

during weekend periods is modeled with dummy arrivals and departures.

6.4.2.1 Weekend Periods and Infeasibility

The sequential approach described in Algorithm 9 takes “local decisions”,

as sets T (d) for d in Dh′ , h′ 6= h − 1, are not taken into account when

period h is solved. It is clear that such a myopic strategy may not be able

to deliver optimal solutions, and the following proposition shows that the

consequences can be even more drastic for instances with more than two

weekend periods.

Proposition 6.14. If w > 2, the sequential approach can produce infeasible

solutions for the VPPP
+.

Proof. Let I be an instance of the VPPP
+ such that w > 2; e = n/2;

t1 = t2 = e; T (d) = T if d belongs to the first two weekend periods;

and T (d) = {T1} if d belongs to the remaining weekend periods.
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Let pp+w−1, p0, and p1 be periods of I, with p0 representing the first weekend

period. The assignments Dp+w−1 → T , A0 → T , D0 → T , and A1 → T
are determined in the first step of Algorithm 9. Therefore, the number of

vehicles of each type that will stay active during the weekend periods is also

fixed.

If Algorithm 9 chooses any element of type T2 to service trips from period p0,

it will be impossible to assign vehicles to every trip of the last w−2 weekend

periods. Therefore, the sequential approach may not be able to produce a

feasible solution for I.

This infeasibility issue does not happen when the algorithm chooses a set

of active vehicles containing twi elements of type Ti, 1 ≤ i ≤ t, such that∑t
i=1 t

w
i = e and which is able to service all the trips of all the weekend

periods. We refer to the identification of such a set as the Weekend Trips

Cover Problem (WTCP). The instance of the WTCP associated with

a certain scenario of the VPPP
+ is defined by the description of all the

departures of its weekend periods, i.e., their arrival times and their sets T (d);

set T (s) for each of the b tracks used by active vehicles; values ti, 1 ≤
i ≤ t. The following proposition shows that the WTCP is hard from the

theoretical point of view.

Proposition 6.15. The WTCP is NP-complete.

Proof. We reduce the 3DM to the WTCP in order to prove our claim.

Let I be an instance of the 3DM with a set of triples T ∈ X × Y × Z

such that |X| = |Y | = |Z|. We transform I in an instance I ′ of WTCP as

follows. Sets X, Y , and Z describe the trips of three weekend periods, and

therefore e = |X| = |Y | = |Z|. The order of the elements of X, Y , and Z

can be ignored, and we assume that the ∆ restrictions are trivially satisfied.

For each triple {x, y, z} in T , there is a type of vehicle Ti, with ti = 1, which

can only be assigned to x in X, to y in Y , and to z in Z. Because T = O(n),

this reduction can be made in polynomial time.

It is clear that we have a set of e triples in T covering each element of X,

Y , and Z from instance I if and only if there is a set of vehicles that can

service all the weekend trips of instance I ′. As a consequence, we conclude

that the WTCP is NP-complete.
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The following model is an ILP formulation that decides the WTCP.

(FT)

(i)
∑
(t,s)

xd,t,s = 1 d ∈ D

(ii)
∑

(d,s)∈Di×S

xd,t,s ≤ tt Tt ∈ T , p ≤ i ≤ p+ w − 1

(iii)
∑

(d,s)∈Di×S

xd,t,s =
∑

(d,s)∈Di+1×S

xd,t,s Tt ∈ T , p ≤ i < p+ w − 1

(iv)
∑

(d,t)∈Dp×T

xd,t,s = β s ∈ S

(v)
∑
(d′,t)

|d−d′|<∆

xd,t,s ≤ 1 (s, d) ∈ S × D

xd,t,s ∈ {0, 1} (d,t,s)∈D×T ×S
t∈T (d)∩T (s) .

Model (FT) uses binary variables xd,t,s to represent the assignment of vehicle

type Tt to departure d and to tracks s; it belongs to the model if and only if

Tt ∈ T (d) and Tt ∈ T (s). Equalities (FT)(i) guarantee that each departing

trip is assigned to exactly one type and one track. Inequalities (FT)(ii)

assert that twi ≤ ti, 1 ≤ i ≤ t. Inequalities (FT)(iii) certify that the

same number twi of elements of type Ti, 1 ≤ i ≤ t, is used in each weekend

period. Finally, (FT)(iv) guarantees that the chosen elements can be parked

in the b tracks available on the weekend periods, and (FT)(v) formulates

the ∆ restrictions.

If x is a solution produced by (FT), values of twi , 1 ≤ i ≤ t, can be obtained

in the following way:

twi =
∑
(d,s)

xd,i,s 1 ≤ i ≤ t.

It is possible to adjust Algorithm 9 in order to fix the number of vehicles of

each type according to a solution {tw1 , t2,w , . . . , twt } obtained for the respec-

tive WTCP. With this adjustment, the sequential approach is always able

to deliver a feasible solution.

6.4.2.2 Integrated Periods

In the decomposition method applied to the VPPP , the first and the last

weekday periods are solved in an integrated way. We investigate now the

applicability of this technique in the context of the VPPP
+. Assuming that
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periods 1 and p are the first and the last weekday periods, respectively, we

propose the following model to solve this integrated scenario:

(FL) min
∑

(a,s,d)

ra,s,d

(i)
∑

(s,d,t)

xa,s,d,t = 1 a ∈ A

(ii)
∑

(a,s,t)

xa,s,d,t = 1 d ∈ D

(iii)
∑

(a,s,d)∈A×S×D1

xa,s,d,t = tt Tt ∈ T

(iv)
∑

(a,s,d)∈Ap×S×D

xa,s,d,t = tt Tt ∈ T

(v)
∑

(a,s,d)∈A×S×Dp

xa,s,d,t = twt Tt ∈ T

(vi)
∑

(a,d,t)

xa,s,d,t = β s ∈ S

(vii)
∑
a′<a

xa′,s,d,t +
∑
d′<d

xa,s,d′,t ≤ 1 + ra,s,d (a, s, d) ∈ A× S ×D

(viii)
∑

(a,d′,t)
|d′−d|<∆

xa,s,d′,t ≤ 1 (s, d) ∈ S × D

xa,s,d,t ∈ {0, 1} (a,s,d,t)∈A×S×D×T
t∈T (a)∩T (s)∩T (d)

ra,s,d ∈ {0, 1} (a, s, d) ∈ A× S ×D.

Model (FL) is almost similar to Formulation (QP). The main difference lies

in the criterion of inclusion of variables. Namely, variables xa,s,d,t and ra,s,d
belong to (FL) if and only if:

• a ∈ Ap, s ∈ Sp, and d ∈ Dp; or

• a ∈ Ap, s ∈ S1, and d ∈ D1; or

• a ∈ A1, s ∈ S1, and d ∈ D1.

Besides, (FL) contains only variables xa,s,d,t such that Tt ∈ T (a), Tt ∈ T (s),

and Tt ∈ T (d). Equalities (FL)(iii), (FL)(iv), and (FL)(v) control the num-

ber of vehicles used in the weekday and in the weekend periods, respectively,

with the last using a pre-computed vector (tw1 , t
w
2 , . . . , t

w
t ) generated from a

solution of the WTCP associated with the instance.

6.4.2.3 Performance of the Sequential Approach

We tested an implementation of the sequential approach described in Algo-

rithm 9 using (FT) to fix the number of active elements of each type during
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n t e m b p w Time

20 3 16 5 4 4 2 3

30 5 20 6 4 5 2 10

36 5 24 6 4 6 2 651

48 6 36 8 6 6 2 680

64 7 40 8 5 6 2 665

72 7 56 9 7 6 2 7150

Table 13: Computational results of (FL)

the weekend periods and (FL) to solve the first weekend period and the first

weekday period in an integrated way. Table 13 shows the results of or com-

putational tests in a PC with an Intel Core2 Quad 2.83GHz processor and

8GB RAM using CPLEX 12.2.0.2. The descriptions of the table and of the

scheme of generation of the instances are similar to the ones we presented

in Section 6.4.3.

All the solutions obtained are crossing-free and the time consumption for

small- to medium-scale scenarios can be considered satisfactory. However,

there are two serious barriers for the application of the sequential approach

in practical scenarios. The first is the time consumption for large-scale

scenarios. As our results show, the largest instance of our database is very

challenging. We tested the method with an instance containing 100 vehicles,

and it was not possible to obtain a solution after a week of computation.

The second issue is presented in a formal way in the following proposition.

Proposition 6.16. The sequential approach can produce arbitrarily bad so-

lutions for the VPPP
+.

Proof. We present a family of instances of the VPPP
+ for which Algorithm 9

can produce arbitrarily bad solutions. Each instance of our family is such

that t = n, e = n, b = m, T (s) = T for each track s, and p+w = 3k for some

positive integer k. We enumerate the periods from 0 to 3k − 1. Periods h

with (h mod 3) ≤ 1 are called free periods and are such that T (d) = T for

every d in Dh. Periods h with (h mod 3) = 2 are called fixed periods and

are such that |T (d)| = 1 for every d in Dh, i.e., Dh can be interpreted as an

ordering of T . All the fixed periods have the same departure sequence Dh =

{T1, T2, . . . , Tn}. Finally, we assume that sync(dhi ) = ah+1
i , 0 ≤ h ≤ 3k − 1

and 1 ≤ i ≤ n, i.e., all the trips have the same duration and their respective

vehicles arrive in the depot on period h + 1 in the same order they left on

period h.
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n t e m b p w Crossings

4 4 2 2 1 10 2 6

9 9 6 3 2 10 2 10

16 16 12 4 3 10 2 67

25 25 20 5 4 10 2 113

Table 14: Solving the VPPP
+ using the Sequential Assignment

Any feasible solution for the free periods is crossing-free, but bad choices

regarding assignments Dh → T , (h mod 3) = 1, may lead to an arrival

sequence Ah+1 for which solutions with crossings are unavoidable. Namely,

if Dh+1 = {T1, T2, . . . , Tn} and Ah+1 = {Tn, Tn−1, . . . , T1}, each pair of units

is involved in a semi-crossing. As a result, any feasible plan will require

mβ(β − 1)/2 crossings. Conversely, crossing-free solutions can be obtained

if the i-th arrival is assigned to the i-th departure, 1 ≤ i ≤ n.

We created some instances of the family described in Proposition 6.16 and

used the basic version of Algorithm 9 to solve them. The results are pre-

sented in Table 14, and they show that the sequential approach does produce

poor solutions in these cases.

We conclude that the sequential approach may produce good results if the

improvements suggested in this section are incorporated to the problem,

but very poor solutions can also be generated, which makes the method

unreliable.

6.4.3 The Progressive Method Applied to (QP)

Algorithm 10 contains a solution method for the (QP) with two levels of

iterations based on the Progressive Approach. M represents the original

(QP) program, LB(M) is a lower bound for M , T (a)′ and T (d)′ are subsets

of T (a) and T (d), respectively, and M ′ is the projection of M which is being

solved in the current iteration.

In the first level (or in the extern iteration), at step iter, we choose a type

T iter(d) ∈ T (d) \ T (d)′ to be added to T (d)′ and to T (sync(a))′ for each

departure d. Arrivals a and departures d of period k such that T iter(d) =

T iter(a) = Tj compose the sequences Aj,iterk and Dj,iterk , respectively. We

remark that |T (d)′| = min(iter, |T (d)|) is an invariant of this algorithm.

When iter = 1, |T (d)′| = 1 for each trip d, and in order to assert the

existence of a feasible solution, these sets are chosen in a way that each Ti
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Algorithm 10 Progressive Approach applied to (QP)

for (a, s, d) ∈ A× S ×D do

add ra,s,d to v(M ′)

end for

for a ∈ A and d ∈ D do

T (a)′ := ∅ and T (d)′ := ∅
end for

r(M ′) := r(M)

iter := 0

while iter < t do

iter := iter + 1

for d ∈ D do

T iter(d) := Ti ∈ T (d) \ T (d)′

T (d)′ := T (d)′ ∪ T iter(d)

T (sync(d))′ := T (sync(d))′ ∪ T iter(d)

end for

iter2 := 0

while iter2 < n do

for (a, s, d, k) ∈ A×S ×D×T such that k ∈ T (a)∩T (s)∩T (d) do

if T iter(a) = Tk and T iter(d) = Tk and diter(a, d) = iter2 then

add xa,s,d,k to v(M ′)

end if

end for

if c(solve(M ′)) = LB(M) then

stop algorithm

end if

iter2 := iter2 + 1

end while

end while
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belong to exactly ti sets T (d)′. When iter > 1, types T iter(d) are chosen

randomly, so |Aj,iterk | may be different from |Dj,iterk | for some values of iter.

In the second level (or in the inner iteration), we use the same idea of

Algorithm 7. In each step of the inner loop, some variables of M are chosen

to be incorporated to M ′, which is initially empty. For each iteration iter, we

define the function diter : A×D → N, which denotes the absolute difference

between the position of a in Aj,iterk and the position of d in Dj,iterk . If a /∈
Aj,iterk or d /∈ Dj,iterk , then diter(a, d) =∞. We add variable xa,s,d,t to M ′ in

the current step if and only if diter(a, d) = iter2 and T iter(d) = T iter(a) = Tt.

Algorithm 10 is an exact method, and therefore delivers an optimal solution

if executed until its termination. We applied it to a small-scale instance,

containing 4 weekday periods, 2 weekend periods, 20 trips per weekday

periods, 15 per weekend period, 4 tracks, and 5 vehicle types. After 160000

seconds, we had already a matching containing only one crossing, but the

optimality of this solution could not be proved. Besides, the time needed

by the algorithm to close optimality gaps increased drastically at each step.

We interrupted the execution of the algorithm after noticing that the whole

computation could take at least two months.

However, a solution for the same instance requiring three crossings was ob-

tained after the optimization of the fourth reduced model, and this was

accomplished in five seconds. For this reason, we decided to sacrifice the

optimality and modify Algorithm 10 in order to obtain a heuristic proce-

dure that computes feasible solutions quickly. The program is described in

Algorithm 11.

The main differences between the two algorithms are concentrated on the

criterion to stop the iterations of the second level. Because solutions for the

problem typically describe matchings which are not very different from the

sequential assignment, the inner iteration stops when iter2 = 3. Moreover, if

the optimal solution of the current M ′ has the same cost as the best match-

ing computed so far, the inner iteration is interrupted and Algorithm 11

proceeds to the next step of the first level. The idea of this procedure is to

reduce the number of iterations and also the size of the last programs it has

to solve.

Tables 15 shows the results of computational experiments of Algorithm 11

with artificial instances of the VPPP
+. Our tests were conducted on a 64-bits

Intel(R) Core(TM)2 Quad with 2.83 GHz, 8 GB of RAM memory, running

openSuse Linux 11.2. Our code is implemented in C++ and was compiled
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Algorithm 11 Heuristic for (QP)

lastSolution :=∞
for (a, s, d) ∈ A× S ×D do

add ra,s,d to v(M ′)

end for

for a ∈ A and d ∈ D do

T (a)′ := ∅ and T (d)′ := ∅
end for

r(M ′) := r(M)

iter := 0

while iter < t do

iter := iter + 1

for d ∈ D do

T iter(d) := Ti ∈ T (d)

T (d)′ := T (d)′ ∪ T iter(d)

T (sync(d))′ := T (sync(d))′ ∪ T iter(d)

end for

iter2 := 0

while iter2 < 3 do

for (a, s, d, k) ∈ A×S ×D×T such that k ∈ T (a)∩T (s)∩T (d) do

if T iter(a) = Tk and T iter(d) = Tk and diter(a, d) = iter2 then

add xa,s,d,k to v(M ′)

end if

end for

if c(solve(M ′)) = LB(M) then

stop algorithm

end if

if solution = lastSolution then

break

end if

iter2 := iter2 + 1

lastSolution := solution

end while

end while
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n t e m b p w Time Sol

20 5 15 4 3 4 2 30 3

25 5 20 5 4 5 3 75 7

36 5 30 6 5 7 2 181 0

48 7 36 8 6 5 2 6683 4

64 7 40 8 5 10 2 10581 0

81 6 63 9 7 10 2 1213 0

100 7 70 10 7 10 4 4282 0

126 7 90 14 10 10 4 15954 0

Table 15: Solving the VPPP
+ using Algorithm 11

using g++ 4.4.1 and with the callable library of CPLEX 12.1.0 ILOG (2010)

[57]. Columns n, t, e, m, b, p, and w describe the parameters of the examples

according to the notation we are using in this text. Given these parameters,

an arrival sequence A containing vehicles with only one allowed vehicle type

is randomly built, and departure sequence D is obtained with Algorithm 1.

Finally, the first bt1/βc tracks will allow only vehicles of type T1. If t1
mod β 6= 0, track sbt1/βc+1 will allow (at least) types T1 and T2. Then we

repeat this step for the t2 units of T2, starting from track sbt1/βc+1, and we

follow this procedure until all the units have been distributed in the depot.

At this point, it is clear that the current instance admits a feasible solu-

tion. We complete the description of sets T (s), T (d), and T (a) by adding

the other types (each type is added with probability 0.5). Column Time

describes the time consumption and column Sol the number of crossings of

the solution obtained for the respective instance.

The results show that the VPPP
+ is tractable for large-scale scenarios with

Algorithm 11. It is also interesting to observe that some results for large-

scale scenarios were better than results for medium-sized instances. It is

clear that the dimension of the problem plays a very significative role, but

these results suggest that the difficulty of the problem is strongly correlated

to the ratio β/m.

Finally, we conclude that Algorithm 11 describes a satisfactory approach to

the VPPP
+. It solves the problem in an integrated way, thus avoiding the

arbitrarily bad solutions that can be produced by the sequential approach.

Moreover, its computational performance is satisfactory for practical appli-

cations.



Chapter 7

Uncertainty in the Vehicle

Positioning Problem

In this chapter, we give an overview of uncertainty in different situations and

investigate it in the context of the VPP. We introduce an online version of

the VPP, present a generic competitive analysis of the problem, and sug-

gest an online procedure to solve it. A criterion to evaluate robustness and

a model able to produce matchings which are less sensitive to disruptions

are introduced as well. Our computational experiments show that a soft-

ware implementing the techniques presented here is suitable for real-world

applications.

7.1 Introduction

One aspect that plays a significant role in many real-world scenarios of

the VPP is uncertainty in the input data. Namely, uncontrollable events

like extreme climatic conditions, traffic accidents, and erratic behavior of

passengers and pedestrians can cause delays of vehicles. Therefore, the

expected arrival order may suffer some modifications. Such changes are

potentially harmful to originally good (and even to optimal) solutions, as

unpredicted crossings may occur if the initial plan is maintained.

Our objective in this chapter is to characterize and to compute solutions

which are not so sensitive to disruptions and to propose an online algorithm

that can adjust a matching when modifications in the arrival order take

place.

This chapter is organized as follows. In Section 7.2 we discuss how uncer-

tainty appears in different contexts, giving special attention to combinatorial

146
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online optimization and to robust optimization. In Section 7.3 we investi-

gate an online version of the VPP. Namely, we propose an online algorithm

and present a generic competitive analysis of the problem. In Section 7.4

we suggest a criterion to evaluate the robustness of solutions and suggest an

ILP formulation for the generation of robust plans. Finally, computational

results are reported in Section 7.5.

7.2 The Different Forms of Uncertainty

Typically, it is assumed that the input data for a problem is precisely known

in advance. However, in many cases, theoretical formulations that do not

take uncertainty into account are too unrealistic, and therefore unsatisfac-

tory for practical application. We can classify problems of this nature in

three (non-mutually exclusive) groups.

The first group contains problems for which the acquisition of data is hard

and/or imprecise. For instance, a work that analyzes the changes of tem-

peratures in Antarctica during the pre-instrumental era (i.e., before 1900)

is based on a series of measurements whose values are not 100% reliable

due to the (im)precision of the materials that were used and due to human

failures. Eventually, there is even absence of data for some periods. In this

problem, untrustworthy values can be indirectly estimated with the help of

”proxies” like the water stable isotopes content of ice-cores retrieved in the

investigated region (for more details, we refer to the article of Fernandoy

et al. (2010) [34]). Scenarios like this can be found in every field of the

so-called physical sciences, and each area has its own specific tools to deal

with these obstacles. This group of problems is certainly important, but we

will not consider it in this text.

The other groups contain online and robust problems. We investigate in

this chapter how these aspects appear in the context of the VPP, so we

introduce them in a more detailed way.

7.2.1 Online Combinatorial Optimization

In many contexts, the complete input data can not be determined a priori,

as it is produced in real-time. A classical example is the ADAC Prob-

lem, which is about the support given by the German automobile club

ADAC to its members when they have problems with their cars on the
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road. Basically, service requests come from unpredictable places in Ger-

many at unpredictable moments, and dispatchers have to assign units to

service them almost instantly (for more details, we refer to Grötschel, Hiller

& Tuchscherer (2007) [49]). Problems of this nature require methods with

the capacity to yield solutions in a very short period of time which are not

only satisfactory, but also flexible enough to allow for possible modifications

that might be necessary after the arrival of new input data.

The ADAC Problem is a typical example of an Online Combinatorial

Problem. Comprehensive overviews of this topic are given by Borodin & El-

Yaniv (1998) [17] and Fiat & Woeginger (1998) [35], and some recent surveys

are presented by Winter & Zimmermann (1998) [92] and by Hiller (2010)

[55]. The work of Ascheuer et al. (1998) [4] and the book of Grötschel,

Krumke & Rambau (2001) [47] show practical applications of combinatorial

online optimization, as do many recent Ph.D. Theses (Ascheuer (1995) [3];

Hiller (2010) [55]; Kamin (1998) [60]; Winter (1998) [91]).

There is a strong connection between online combinatorial optimization and

combinatorial approximation algorithms. For example, the first approxima-

tion algorithm, developed by Graham (1966) [42], can be seem as an online

algorithm, as it has to take decisions based on the current input without in-

formations about future incoming data. For an overview of approximation

algorithms, we refer to Vazirani (2003) [87].

The most important method used to evaluate online algorithms is the com-

petitive analysis. This technique was initially proposed by Sleator & Tar-

jan (1985) [84] and analyzed in other works (see Karlin et al. (1988) [63]

and Karlin (1998) [62]). In a competitive analysis, given an arbitrary in-

stance of the problem, we want to calculate an upper bound for the ratio

between the value of the solution produced by an online algorithm and the

value of an optimal solution. This upper bound must be valid for every in-

stance of the problem, so worst-case scenarios are used in the estimate. As

a consequence, the superiority of algorithms which perform well in practice

towards others which are typically unsatisfactory may not be theoretically

certified by the competitive analysis. This phenomena happens with the

Online Bin-Coloring Problem, for example (see Krumke et al. (2001)

[71]).

The weakness of the competitive analysis is the main motivation for recent

works proposing alternative evaluation methods of online algorithms. These

new techniques try to obtain better results by considering weaker adver-

sary algorithms, well-behaved inputs, etc. For example, a new method for
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probabilistic analysis of online algorithms using the concept of stochastic

dominance was proposed recently by Hiller & Vredeveld (2008) [56].

7.2.2 Robust Optimization

For many problems, some of the parameters are not associated with fixed

numbers, but with sets or intervals containing the values that they can

assume. When probability distributions describing the behavior of the un-

certain parameters are known, we have a Stochastic Programming Problem.

If this is not the case, we have a Robust Optimization Problem.

The first works that investigated uncertainty in mathematical models intro-

duce the fundamentals of Stochastic Programming. It is not easy to apply

Stochastic Programming to real-world scenarios, as models for such prob-

lems are very challenging from a computational point of view and knowledge

about the probability distributions followed by uncertain parameters is typ-

ically limited in practical situations. For further information, we refer to

the Stochastic Programming Bibliography (van der Vlerk (1996-2007) [86])

and to the Stochastic Integer Programming Bibliography (van der Vlerk

(1996-2007) [85]).

Similarly to Stochastic Programming, Robust Programming is also about

the optimization of problems with uncertainty in the parameters, but in

this case, the probability distributions of the parameters are unknown. The

ultimate objective in Robust Programming is to find a satisfactory solution

which is feasible not only for the expected input, but also for all its possible

variations (or eventually only for the ones which are more likely to occur).

Optimality is obviously desired, but it traditionally must be sacrificed in

exchange for robustness.

Initially, Robust Programming was investigated in the context of convex

constrained optimization (Ben-Tal & Nemirovski (2002) [7]). The methods

proposed for problems of this nature can not be directly applied to discrete

optimization scenarios, though, so many recent works have been dedicated to

close this gap, as the article of Bertsimas & Sim (2003) [9], the monograph

of Kouvelis & Yu (1997) [69], and the Ph.D. Thesis of Salazar-Neumann

(2009) [80]. Especially interesting for the VPP is the concept of limited

recovery from infeasibilities, proposed in some recent articles (Ben-Tal, Boyd

& Nemirovski (2006) [8]; Liebchen et al. (2007) [73]). For a survey on Robust

Optimization, we refer to the article of Beyer & Sendhoff (2007) [10].
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7.3 Online Approach to the VPP

The first investigations involving online versions of the VPP were presented

by Winter (1998) [91] and by Winter & Zimmermann (2000) [93]. In these

works, the authors introduced the concept of (c, d)-competitiveness, which

is reproduced below:

Definition 7.1. An online algorithm ALG is said to be (c,d)-competitive if

and only if the following inequalities hold for all problem instances I:

costALG(I) ≤

{
c.costOPT(I) if costOPT(I) 6= 0;

d if costOPT(I) = 0,

where costALG(I) denotes the cost of the solution produced by ALG for the

instance I and costOPT(I) denotes the optimal cost computed by an optimal

algorithm OPT knowing the complete instance I in advance, i.e., OPT can

be any optimal offline algorithm.

This generalization of the traditional definition of competitive ratio (see,

e.g., Karlin (1998) [62]) is necessary because some instances of the VPP

have optimal solutions whose cost is zero, and in this case costALG(I)
costOPT(I) is not

defined. Based on this fact, Winter and Zimmermann proposed to partition

the instances of the VPP in parts I0 and I1, where:

I0 = {I ∈ I : costOPT(I) = 0}; and

I1 = {I ∈ I : costOPT(I) 6= 0}.

We say that there is no competitive algorithm for an online optimization

problem P if there is no constant c and no online algorithm ALG such that

costALG(I) ≤ c.costOPT(I)

for every instance I of P . For the VPP, an algorithm ALG is said to be non-

competitive if there is no pair (c, d) of constants such that algorithm ALG

is (c, d)-competitive.

Winter (1998) [91] investigates two real-time versions of the problem. In

both cases, the dispatcher controlling the assignments in the depot is sure

only about which element ai+j will be the next to arrive. Moreover, he knows

that ai+j belongs to the sequence A′ = (ai+1, ai+2, . . . , ai+∆) describing

the ∆ vehicles which are supposed to come next. In one case, it is assumed

thatA′ should be substituted by (ai+j , ai, ai+1, . . . , ai+j−1, ai+j+1, . . . , ai+∆),

i.e., ai+j moves to the front of the sequence, while the other elements do not
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have their order changed. In the second case, the expected sequence is sub-

stituted by (ai+j , ai+j−1, ai+j−2, . . . , ai, ai+j+1 . . . , ai+∆), i.e., the first i+ j

arrivals of A′ have their order inverted. An initial plan is elaborated based

on the original expected data, and a new solution is computed whenever

modifications in A are confirmed using the current plan as warm start. The

time-limit for the operation is 5 minutes, which is a challenging constraint

for real-world instances. Finally, Winter also examines some theoretical

aspects of an online version of the VPP.

Demange, Di Stefano & Leroy-Beaulieu (2006) [28] analyze scenarios where

all the assignments A → D are fixed and the objective is to determine

the assignments A → S in a way that the number of tracks employed in

the solution is minimized. For these cases, they show that the problem is

similar to the online bounded coloring of a permutation graph if the last

arrival occurs before the first departure and present an algorithm with the

best possible competitive ratio.

Cornelsen & Di Stefano (2007) [24] assume that the assignments A → D
are fixed and that the tracks have infinite size. In another variation, their

objective is to obtain cyclic timetables, i.e., to compute plans that can be

applied to all the periods. The authors propose algorithms for offline and

online scenarios of these problems, also based on coloring algorithms for

some specific families of graphs.

7.3.1 An Online Algorithm for the VPP

The online extension of the VPP investigated in this chapter is defined as

follows:

Definition 7.2. The VPPO (the online VPP) is the version of the VPP

where the arrival sequence is given a priori, but it may undergo modifica-

tions. An algorithm ALG for the VPPO always has a current plan, which

is based on the current expected sequence A = {ai, ai+1, . . . , aj , . . . , an}.
If ALG is informed about the next incoming arrival and it happens to be aj
instead of ai, A is substituted by {aj , ai, ai+1, . . . , aj−1, aj+1, . . . , an} and

the algorithm can modify the current solution by changing the assignments

involving vehicles that have not been parked yet.

Basically, VPPO is similar to the first real-time problem investigated in Win-

ter (1998) [91]. However, differently from Winter, we do not assume that

the next incoming vehicle is one of the next ∆ expected arrivals for some
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fixed value of ∆.

We propose the following online algorithm for the VPPO.

Algorithm 12 REPLAN

x := solve(A)

for i := 1 to n do

a := next arriving vehicle

if a comes unexpectedly and a significant change takes place then

update(x)

end if

end for

An unexpected arrival causes significant changes in A if it leads to one of

the following situations:

• if the current plan is maintained, an unexpected crossing will occur;

• if the current plan is modified, an expected crossing can be avoided.

In the first step of REPLAN, an optimal solution x is computed based on the

original arrival sequence A. In order to update x after the occurrence of a

significant change, we need a fast algorithm that does not modify irreversible

assignments.

For the initial optimal solution, both the branch-and-price algorithm pro-

posed in Chapter 4 and the Progressive Method proposed in Chapter 5 are

satisfactory. For the updates, though, we consider the Progressive Method

as more appropriate, as it has better computational performance.

7.3.2 Nonexistence of Competitive Algorithms for the VPPO

The following description of the Online Scheduling Problem, presented

by Grötschel et al. (2001) [48], shows that this problem is very similar to

the online versions of the VPP.

In scheduling, one is concerned with the distribution of jobs (ac-

tivities) to a number of machines (the resources). In our exam-

ple, one is given m identical machines and is faced with the task

of scheduling independent jobs on these machines. The jobs be-

come available at their release dates, specifying their processing

times. An online algorithm learns the existence of a job only

at its release date. Once a job has been started on a machine
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the job may not be preempted and has to run until completion.

However, jobs that have been scheduled but not yet started may

be rescheduled. The objective is to minimize the average flow

time of a job, where the flow time of a job is defined to be the

difference between the completion time of the job and its release

date

The Online Scheduling Problem is very challenging from the theoretical

point of view. Namely, there is no competitive algorithm for it even when

restricted to instances containing only one machine (see Fiat & Woeginger

(1998) [35]). Consequently, the nonexistence of competitive algorithms for

the original online versions of the VPP, proved by Winter (1998) [91], can

not be considered surprising.

In his proofs, Winter uses families of instances containing tracks of different

sizes. We show that there is no competitive algorithms for the problem even

if all the tracks have the same size.

Theorem 7.3. There is a family of instances of I0 for which any online

algorithm for the VPPO produces solutions with O(
√
n) crossings.

Proof. Let us assume that β = m and that τ(aj) = τ(dj) = T0, 0 ≤ j < m.

Departure di is of type Ti−m for m ≤ i < n′ = n−m. Therefore, sequence D
can be described as follows:

D = {0, 0, ..., 0, 1, 2, 3, ..., n′}.

If the first m arrivals are assigned to different tracks, i.e., if there is no

pair of arrivals of type T0 assigned to the same track, we use the arrival

sequence A1, whose last n′ elements are such that τ(aqm+l) = τ(d(m−q)m+l),

0 ≤ l < m and 1 ≤ q < m. In other words, if we partition the last n′

departures of D into m − 1 subsequences of size m and invert the order

of the sequences, we obtain the description of the last n′ elements of A1.

Therefore, A1 is as follows:

A1 = { 0, 0, . . . , 0,

n′ −m+ 1, n′ −m+ 2, . . . , n′,

n′ − 2m+ 1, n′ − 2m+ 2, . . . , n′ −m,
...

1, 2, . . . ,m}.

Clearly, there is a semi-crossing involving each pair of units belonging to

different subsequences. A solution without crossings can be obtained if each
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arrival aj is assigned to track sdj/me, 1 ≤ j ≤ n. Conversely, if an online

algorithm assigns the first m arrivals to different tracks, it will produce a

solution where each of the last m−1 subsequences contains an element that

will be assigned to a track containing an element of another subsequence,

as not all the elements of a subsequence can be assigned to the same track.

Consequently, these solutions contain O(m) crossings.

Suppose now that at least two of the first m arrivals are assigned to the same

track. In this case, we will use the arrival sequence A2 whose last n′ elements

are such that τ(am+q(m−1)+l) = τ(dm+(m−q−1)(m−1)+l)), 0 ≤ l < m− 1 and

0 ≤ q < m. In this case, the last n′ departures of D are divided in m

subsequences of size m − 1, and similarly to A1, we invert the order of the

subsequences in order to obtain A2. Therefore, A2 is as follows:

A2 = { 0, 0, . . . , 0,

n′ − (m− 1) + 1, n′ − (m− 1) + 2, . . . , n′,

n′ − 2(m− 1) + 1, n′ − 2(m− 1) + 2, . . . , n′ − (m− 1),
...

1, 2, . . . ,m− 1}.

Again, there is a semi-crossing involving each pair of vehicles belonging to

different subsequences, and a solution without crossings can be obtained if

each arrival aj is assigned to track s(j mod m)+1, 0 ≤ j < n. Conversely, we

remark that there will be at least one track which will remain empty after

the assignment of the first m arrivals, and this track will contain elements

of at least two of the m subsequences. As a consequence, it is clear that a

solution provided by any online algorithm will contain O(m) crossings.

We conclude that every online algorithm produces solutions requiringO(m) =

O(
√
n) crossings for instances where crossings are not necessary, i.e., there

is no competitive online algorithm for instances I0 of VPPO.

For instances I1, Winter also shows that there is no competitive online

algorithm using a family of instances containing tracks of different sizes. It

is possible to make a small modification of his proof in order to show that

this claim is also valid if all the tracks have the same size.

Corollary 7.4. There is a family of instances of I1 whose optimal solutions

require one crossing and for which any online algorithm for the VPPO

produces solutions with O(n) crossings.

Proof. Winter (1998) [91] constructed a family I of instances of I1 whose

optimal solutions have one crossings and for which online algorithms will al-
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ways produce matchings that require O(n) crossings. Instances of I contain

two tracks, one with l parking positions and the other with l+ 1. There are

three vehicle types, with t1 = t2 = l and t3 = 1. The departure sequence

used in the proof is as follows:

τ(di) =


T1 if l + 2 ≤ i ≤ n;

T2 if 1 ≤ i ≤ l;
T3 if i = l + 1.

Sequences A1 = {a1
1, a

1
2, . . . , a

1
n} and A2 = {a2

1, a
2
2, . . . , a

2
n} are such that

τ(a1
i ) =


T1 if i = 1 ≤ i ≤ l;
T2 if l + 1 ≤ i ≤ n− 2 ∨ i = n;

T3 if i = n− 1,

and

τ(a2
i ) =


T1 if i = 1 ∨ 3 ≤ i ≤ l + 1;

T2 if l + 2 ≤ i ≤ n;

T3 if i = 2.

Winter proved his theorem for LIFO tracks. In order to adapt his proof to

ours, we inverted his original sequences A1 and A2, as we are assuming that

the tracks are FIFOs.

Both A1 and A2 admit optimal assignments to D and to S containing only

one crossing, but Winter shows that online algorithms will produce solu-

tions with O(n) crossings if the arrival sequence is correctly chosen after

the assignment of the first arrival. Namely, we choose A1 if the first arrival

is assigned to the track with l + 1 positions and A2 if the first arrival is

assigned to the track with l positions.

Based on I, we construct a family I ′ of instances of the VPPO as follows.

There are two tracks, both with l + 1 parking positions. There are four ve-

hicle types, with t1 = t2 = l and t3 = t4 = 1. The arrival and the departure

of type T4 are added to the beginning of their respective sequences, while

the other elements appear in the sequences in the same order described in

the original proof. After the assignment of the unit of type T4 to one of the

tracks, we have the same scenario described by Winter. Consequently, both

his examples and analyses hold in this case, which allows us to conclude

that any online algorithm for the VPPO will produce solutions with O(
√
n)

crossings for instances in I1 whose optimal solutions require just one cross-

ing.
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It follows from these results that REPLAN is not competitive for the VPPO,

but it is important to reinforce that competitive analysis is based on the per-

formance of online algorithms in worst-case scenarios that may be unlikely

to happen in real-world scenarios.

7.4 The Robust Vehicle Positioning Problem

Roughly speaking, a robust solution for an optimization problem is a solution

which remains feasible even if some parameters suffer limited and predictable

modifications. This description is purposely inaccurate, as robustness may

have different meanings when applied to different scenarios.

Hamdouni et al. (2004) [51] and Hamdouni, Soumis & Desaulniers (2005)

[52] presented the first investigations of robustness in the context of the VPP.

In these works, the authors observed that configurations containing vehicles

of several types are typically more sensitive to disruptions. Based on this

fact, they introduced the concept of uniform tracks and proposed formula-

tions for the problem that limit the number of different vehicle types that

can be assigned to each track. Kroon, Lentink & Schrijver (2006) [70] sug-

gested a model whose solutions must have a certain number of uniform

tracks. Because uniform tracks do not contain crossings, several constraints

and variables can be removed from the formulation, making the resulting

ILPs more compact and easier to solve. The formulations proposed by Ham-

douni et al. and Kroon, Lentink, and Schrijver have good computational

performances, but it is clear that the solutions produced by them are not

necessarily optimal for the original problem.

There are some articles dedicated to robustness in the context of the Shunt-

ing Problem Over a Hump (see Cicerone et al. (2007) [20] and Cicerone

et al. (2009) [21]). These works employ the recoverable robustness methodol-

ogy, proposed by Liebchen et al. (2007) [73] (see also Liebchen et al. (2009)

[74]). The main idea of this technique is to adjust a solution that became

infeasible after modifications in the input. Ideally, polynomial-time algo-

rithms are employed in these operations, but this goal usually can only be

achieved if the changes in data are limited.

In our opinion, neither of these approaches is completely satisfactory for

the VPP. Restricting the number of different vehicle types assigned to tracks

is an artificial constraint that may interfere with the quality of the solutions,

and the recoverable robustness methodology is also not suitable, as disrup-
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tions never lead to infeasibility in our case.

7.4.1 A Robust Model for the VPP

In the previous chapters, crossings were equally penalized and based on the

expected arrival sequence A. In real-world scenarios of the VPP, though,

changes in A may happen, and these modifications usually do not have a

completely erratic and unpredictable behavior. Typically, we know that

some crossings are more likely to appear (and, in some cases, to dissappear)

than others.

Our idea is not only to minimize the problems caused by disruptions in A,

but also to eventually benefit from them if they happen. Namely, if a vehi-

cle a is not involved in crossings, then it is undesirable to assign it to a track

where other vehicles which are very likely to change their relative arrival

order with a will be parked, as this would increase the probability of unex-

pected crossings. Conversely, if crossings are unavoidable, then it would be

better if the existing ones involved pairs of arrivals which are more likely to

have their relative arrival order exchanged, as the original plan would im-

prove if these modifications happen. A penalization system able to prioritize

matchings with the characteristics above seems to be more appropriate and

satisfactory for scenarios where disruptions are expected.

Let p : A×A → R+ be a penalty function. The following model of the VPP

is a variation of (LU) that uses p in the crossing inequalities:

(RU) min
∑

(a,s,d)

ra,s,d

(i)
∑
(s,d)

xa,s,d = 1 a ∈ A

(ii)
∑
(a,s)

xa,s,d = 1 d ∈ D

(iii)
∑

(a,d)

xa,s,d = β s ∈ S

(iv)
∑
a′ 6=a

p(a′, a)xa′,s,d +
∑
d′≤d

xa,s,d′ ≤ 1 + ra,s,d (a, s, d) ∈ A× S ×D

xa,s,d ∈ {0, 1} (a, s, d) ∈ F
ra,s,d ∈ R+ (a, s, d) ∈ A× S ×D.

This model uses binary variables xa,s,d, with a ∈ A, s ∈ S, d ∈ D, and

τ(a) = τ(d), where xa,s,d = 1 if and only if arrival a is assigned to depar-

ture d and to track s. Equalities (RU)(i) and (RU)(ii) are assignment con-

straints for arrivals and departures, respectively, while Equalities (RU)(iii)
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are capacity restrictions for each track in S. Formulations (LU) and (RU)

differ in their crossing constraints, i.e., Inequalities (LU)(iv) and (RU)(iv),

respectively. If sums
∑
a′<a

xa′,s,d are substituted for sums
∑
a′ 6=a

p(a, a′)xa′,s,d,

given a vehicle a, it is possible to penalize crossings involving vehicles a′,

a′ > a, and to reduce the penalties involving vehicles a′′, a′′ < a, in or-

der to consider eventual changes in the relative arrival order of a, a′, and

a′′. Moreover, because the image of penalty function p is R+, the crossings

variables ra,s,d also belong to R+, and not to {0, 1} as in (LU).

Let x be a solution of an instance of VPP and p be a penalty function. We

will denote the robustness of x according to p by

R(p, x) =
∑
a′,a

f(x, p, a′, a),

where

f(x, p, a′, a) =


0 if a′ = a;

0 if a′ and a are not in the same track in x;

p(a′, a) else.

Typically, one is interested in a penalty function p such that p(ai, aj) ≥
p(ak, al) if and only if the probability with which ai arrives before aj is

greater than the probability with which ak arrives before al for ai, aj , ak, al ∈
A. We say that a function p with this property is a satisfactory penalty

function.

7.4.2 Defining Function p

Initially, we defined p as a function in A ×A → R+. However, as our idea

is to employ (RU) to solve the problem, we can restrict p to the set of

functions in A×A → [0, 1]. Namely, if (x, r) is an integer solution of (RU),

(a∗, a) is a pair of arrivals, s is the track assigned to a∗ in x, and p(a∗, a) > 1,

we would have the following situation:

ra,s,d ≥
∑
a′ 6=a

p(a′, a)xa′,s,d +
∑
d′≤d

xa,s,d′ − 1

≥ p(a∗, a)xa∗,s,d +
∑
a′ 6=a
a′ 6=a∗

xa′,s,d +
∑
d′≤d

xa,s,d′ − 1

≥ p(a∗, a)xa∗,s,d − 1

> 0.
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Basically, if a∗ is assigned to d, ra,s,d will be bigger than zero even if a is not

assigned to track s. In this case we will penalize a crossing that does not

occur, which is clearly unnecessary. For this reason, we will assume from

now on that p(a′, a) = P (a′ < a), where P (a′ < a) is the probability with

which a′ will arrive before a.

Ideally, the value of P (a′ < a) for every pair of vehicles a, a′ in A is de-

termined with the help of a representative dataset describing the historical

events, i.e., the real arrival sequences in several past situations. However,

information of this nature are not always available. Besides, an analysis

focused on a specific scenario would probably lead to results that lack gen-

erality. Therefore, we will make the following assumption regarding the

probability function P : given arrivals ai, aj , and ak, if ai < aj < ak, then

P (ak < ai) < P (aj < ak). It is clear that this estimate is not 100% accurate

(this claim may be false in the cases where ai frequently has long delays

while aj and ak are almost always punctual, for example), but it is suitable

for a generic approach.

We will say that a solution describes a perfectly robust matching if each

arrival ai is assigned to the same track as arrivals ai−m and ai+m, and if

i−m < 0 (i+m > n), then ai is the first (last) vehicle assigned to its track.

Proposition 7.5. A solution describing a perfectly robust matching may

produce an arbitrarily bad solution for an instance of the VPP which admits

a crossing-free solution.

Proof. Consider the family of instances with n vehicles, t = n, m = β,

arrival sequence

A = { n−m+ 1, n−m+ 2, . . . , n,

n− 2m+ 1, n− 2m+ 2, . . . , n−m,
...

1, 2, . . . ,m},

and departure sequence

D = {1, 2, . . . , n}.

Instances of this family belong to I0. Namely, if we assign each arrival ai
to track sd(i−1)/me, 1 ≤ i ≤ m, we will obtain a crossing-free solution. This

solution is very sensitive to disruptions, though. If ai < aj but aj comes

before ai and b(i− 1)/mc = b(j− 1)/mc, an unexpected crossing will occur.
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Conversely, a perfectly robust matching requires the assignment of each

arrival ai to the (((i − 1) mod m) + 1)-th position of some track. With

this distribution, each pair of vehicles assigned to the same track is involved

in a crossing, which shows that the perfect robust matching produces an

arbitrarily bad solution.

Finally, we recall the robustness criterion of Hamdouni et al. (2004) [51] and

remember that if a and a′ are assigned to the same track and τ(a) = τ(a′),

then we do not have to worry about crossings involving them. Consequently,

having two vehicles of same type with very close arriving times assigned to

the same track does not reduce the robustness of a matching.

We define the following penalty function p′ based on these observations:

p′(a′, a) =


0 if τ(a) = τ(a′),

2a−a
′−1 if a < a′,

1− 2a
′−a−1 if a > a′.

It is clear that p′ is a satisfactory penalty function. Moreover, it explicitly

favors uniform tracks. Namely, a solution x describing a matching containing

only uniform configurations is such that R(p′, x) = 0.

As |a−a′| increases, though, the value of p′(a′, a) converges exponentially to

zero if a < a′ and to one if a > a′. As such small values may bring numerical

difficulties to the resulting ILPs, we propose the following function p∗:

p∗(a′, a) =



0 if τ(a) = τ(a′),

2a−a
′−1 if 0 < a′ − a < γ(m+ 1),

0 if a′ − a ≥ γ(m+ 1),

1− 2a
′−a−1 if 0 < a− a′ < α(m+ 1),

1 if a− a′ ≥ α(m+ 1).

Numbers α and γ are robustness factors that should be calibrated and tested

by the user. In our computational results, only values of α and γ bigger than

zero and smaller then or equal to one were considered.

For every solution x of (RU), it is clear thatR(p∗, x) ≤ R(p′, x). We remark

that, with this penalty function, if x describes a perfectly robust matching,

then R(p∗, x) = 0.
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7.5 Computational Results

We present now some computational results involving model (RU). Our

tests were conducted on a 64-bits Intel(R) Core(TM)2 Quad with 2.83 GHz,

8 GB of RAM memory, running openSuse Linux 11.2. Our code is imple-

mented in C++ and was compiled using g++ 4.4.1 and with the callable library

of CPLEX 12.2.0.2 ILOG (2010) [57].

Tables 16 and 17 show the results of computations using an algorithm based

on the Exact Heuristic Method applied to the (RU) similar to Algorithm 7

(described in Chapter 5) for the VPP+ and for the VPPP
+, respectively. We

used the function p∗ to penalize crossings.

The first column of Table 16 contains the name n-m-t of the instances. Fol-

lowing our notation, n is the number of arrivals, m is the number of tracks,

and t is the number of types. In Table 17, the names p-w-n-m-e-t of the in-

stances indicate the number p of weekday periods, the number w of weekend

periods, the number n of departures on weekday periods, the number m of

tracks, the number e of trips on weekend periods, and the number t of vehicle

types. Based on these parameters, the arrival sequences A were randomly

generated (i.e., the type of each vehicle was uniformly chosen among the t

possibilities), while their respective departure sequences D were obtained

after the application of Algorithm 1 in A. For instances of VPPP , we used

the scheme described in Chapter 2, i.e., using Algorithm 2. Finally, columns

Iterations, VIP , α, γ, and Time indicate the number of iterations, the cost

value of the best solution obtained, the robustness factors α and γ, and the

time consumed for the computation.

For each instance, we chose the biggest values of α and γ which gener-

ated a model that could be solved in few hours. Typically, the running

time increases together with both robustness factors, but γ is clearly the

most challenging parameter. In our tests, good solutions could be quickly

obtained for α = 1 and γ = 0.35. It is important to remark that good

matchings could be obtained both for the VPP and for the VPPP after few

minutes of computation even when larger values of α and γ were employed.

Finally, we also simulated some disruptions in these scenarios in order to

test the online algorithm REPLAN. Basically, based on an original plan,

we considered modifications of the arrival sequence that would result in the

occurrence of unexpected crossings and computed a new plan using Algo-

rithm 7. It is obviously hard to evaluate the applicability of REPLAN based
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Instance Iterations VIP Crossings α γ Time

20-4-12 6 4.875 4 1.0 1.0 15

63-7-8 2 0 0 0.5 0.5 9

64-8-12 1 0 0 0.5 0.5 4

96-12-7 1 0 0 0.5 0.5 5

150-15-6 1 0 0 0.5 0.5 39

150-15-15 1 0 0 0.5 0.5 312

160-20-10 1 0 0 0.5 0.5 75

200-20-10 1 0 0 0.5 0.5 172

Table 16: Solving the VPP using (RU)

Instance Iterations VIP Crossings α γ Time

4-2-20-4-15-5 31 3.5625 3 0.5 0.5 28271

5-2-36-6-24-5 21 0.875 1 1.0 0.35 210

6-3-30-5-18-5 26 4.875 4 1.0 0.35 130

10-3-64-8-48-6 14 0 0 1.0 0.35 78

10-4-80-10-56-8 14 0 0 1.0 0.25 948

10-4-120-12-90-8 14 0 0 1.0 0.35 323

10-4-150-15-100-10 14 0 0 1.0 0.35 2223

Table 17: Solving the VPPP using (RU)
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on these random tests, but we believe that this algorithm has a very good

potential when combined with the Progressive Method, as it was frequently

able to compute new matchings that avoided crossings very quickly.
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v(M), 110

w, 21

(c,d)-competitive, 150

VPP-graph, 43

VPP+, 121

VPPP , 21

VPPP
+, 121

3DMP, 31

WTCP, 137

arrival, 19

assignment, 19

conflict, 20

cograph, 59

complementing sets, 100

configuration, 20, 77

intersecting, 77

uniform, 78
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crossing, 20

semi-crossing, 20

departure, 19

first crossing, 20

interchangeable configurations, 95

intersection graph, 96

Longest Common Subsequence Prob-

lem, 56

matching, 21

model

CW, 71

3DM1, 32

FT, 138

LU, 26

LUE, 30

LUF, 39

LW, 24

LWF, 37

RU, 157

TI, 123

TI2, 124

U, 73

UI, 73

W, 23, 69

WF, 37

3DM2, 33

FL, 139

QI, 122

QP, 134

X, 78, 79

Xp, 80

LF, 113

perfectly robust matching, 159

permutation graph, 58

satisfactory penalty function, 158

sequential matching

complete, 41

sequential fixing criterion, 92

sequential matching, 41

uniform, 21

uniform consecutive subsequenc3, 48

unit, 19
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