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Zusammenfassung in deutscher Sprache

Die vorliegende Arbeit behandelt einige asymptotische Eigenschaften gewisser stochastischer
Flüsse auf Rd, deren Verteilungen meistens invariant gegenüber Rotationen des Zustandsraumes
sind. Im Detail sind dies zuerst die isotropen Brownschen Flüsse, deren Verteilungen zusätzlich
invariant gegenüber Translationen des Zustandsraumes sind und deren Studium bis auf Yag-
lom [60] oder Baxendale, Harris [5] und Le Jan [28] zurück geht. Desweiteren werden isotrope
Ornstein-Uhlenbeck-Flüsse behandelt, die seit Dimitroff [12] untersucht werden sowie repulsi-
ve isotrope Flüsse, die erst in dieser Arbeit eingeführt werden. Alle diese stochastischen Flüsse
werden durch eine gemeinsame stochastische Differentialgleichung verbunden, die durch Spezifika-
tionen eines reellen Parameters in die Gleichungen für die oben genannten Klassen stochastischer
Flüsse übergeht. Zunächst werden diese definiert und wesentliche Eigenschaften zitiert.
Danach wird in einem ersten Kurzkapitel zum Aufwärmen ein Lemma über das räumliche asym-
ptotische Verhalten isotroper Flüsse bewiesen, das später dazu dienen wird, den Nachweis dafür
zu erbringen, dass die durch stereographische Projektion gewonnene Kugelversion eines Ornstein-
Uhlenbeck Flusses nicht stetig differenzierbar ist und sich daher der Anwendung der bekannten
Ergebnisse von Ledrappier und Young [32], [33] entzieht.
Ein weiteres Kurzkapitel behandelt rudimentär die Frage, wann die n-Punkt Bewegung eines sto-
chastischen Flusses eine stetige oder sogar differenzierbare Dichte besitzt, die zudem abseits der
verallgemeinerten Diagonalen strikt positiv ist. Die Anwendbarkeit des gefundenen Kriteriums
auf eine große Teilklasse der hier behandelten Flüsse wird nachgewiesen.
Im darauf folgenden ersten Hauptkapitel wird die asymptotische Form der Menge aller von ei-
ner kompakten Menge besuchten Punkte untersucht und nachgewiesen, dass diese Form im Falle
eines planaren isotropen Brownschen Flussess in Wahrscheinlichkeit in einem gewissen Sinn de-
terministisch ist. Die Beweisführung folgt dabei teilweise Dolgopyat, Kaloshin und Koralov, die
ein ähnliches Resultat in einem anders gelagerten Fall untersucht haben ([13]). Der wesentliche
Schritt ist jedoch neu, weil die dort angewandte Argumentationsweise im betrachteten Fall nicht
anwendbar ist. Die in den hier betrachteten Fällen nicht gegebene räumliche Periodizität wird
dabei durch die Invarianz-Eigenschaften isotroper Brownscher Flüsse gegenüber Zeitumkehr er-
setzt.
Die sogenannte Margulis-Ruelle Ungleichung besagt, das die Entropie eines zufälligen dynami-
schen Systems nach oben durch die Summe seiner positiven Lyapunov-Exponenten abgeschätzt
werden kann. Diese Ungleichung wird auf den Fall des zufälligen dynamischen Systems, das auf
kanonische Weise aus einem isotropen Ornstein-Uhlenbeck Fluss erhalten werden kann, erweitert.
In den letzten beiden Hauptkapiteln wird die Frage nach dem asymptotischen Verhalten des Su-
premums der räumlichen Ableitungen eines stochastischen Flusses behandelt. Es wird nachgewie-
sen, dass dieses Supremum (genommen über eine kompakte Startmenge) mit der Zeit höchstens
exponentiell schnell wächst und eine Schranke für die Rate wird angegeben. Dieses Resultat ist
eine Vorstufe, die benötigt wird, um aus der Margulis-Ruelle Ungleichung die Pesinsche Formel
machen zu können, d.h. in dieser Gleichheit zu erreichen. Zunächst werden die ersten Ableitungen
eines isotropen Flusses betrachtet und danach wird das Resultat - allerdings mit i.A. schlechteren
Konstanten - auf eine sehr viel allgemeinere Klasse stochastischer Flüsse sowie Ableitungen be-
liebiger Ordnung verallgemeinert.
Zuletzt werden Möglichkeiten für weitere Untersuchungen und offene Fragen aufgezeigt.



iv

Abstract

The present work treats several asymptotic properties of stochastic flows on R
d, whose distribu-

tions are frequently assumed to be invariant under rotations of the state space. These stochastic
flows include the isotropic Brownian flows, which have been studied since Yaglom [60] or Bax-
endale, Harris [5] and Le Jan [28]. Furthermore isotropic Ornstein-Uhlenbeck Flows are treated,
which are considered since Dimitroff [12] as well as repulsive isotropic flows, which are about to
be introduced in this work. All these classes of stochastic flows are linked by a single stochastic
differential equation which passes to one of the named cases by the specification of one real pa-
rameter. First we define the classes of models and cite important facts from the literature.
Afterwards the spatial asymptotic behaviour of isotropic stochastic flows is treated in a short
warm up chapter. A lemma is proved that serves to show that the unit ball based random dy-
namical system coming from an isotropic Ornstein-Uhlenbeck flow is not sufficiently smooth to
apply well known results concerning Pesin’s formula from Ledrappier and Young [32], [33] and
hence to motivate the self contained study of this subject.
Another short chapter is concerned with the following question. When does the finite-point
motion of a given stochastic flow admit a continuous (or even smooth) density which is strictly
positive apart from the generalized diagonal? It is also shown that a large subclass of the isotropic
flows belongs to the scope of the obtained results.
The following first main chapter treats the asymptotic behaviour of the shape of the set of points
in Rd that has been visited up to some time. It is shown in the case of a planar isotropic Brownian
flow that this shape is deteministic in probability. Dolgopyat, Kaloshin and Koralov give a similar
result in a different setting ([13]). But since the core of their proof - the spatial periodicity of
their model - fails to hold for all isotropic flows it has to be replaced by a different feature of the
isotropic Brownian flows namely their invariance properties w.r.t. time reversion.
The so-called Margulis-Ruelle inequality asserts that the entropy of a random dynamical system
can be estimated from above through the sum of its positive Lyapunov exponents. This inequal-
ity is extended to the case of a random dynamical system coming from an isotropic Ornstein-
Uhlenbeck flow.
The last two main chapters are devoted to the asymptotic expansion of the spatial derivative of
a stochastic flow taking the supremum over a compact set of initial points in Rd. It is shown that
this expansion is at most exponentially fast in time and a deterministic bound on the expansion
speed is obtained. This result can be seen as a first step towards Pesin’s formula for isotropic
Ornstein-Uhlenbeck flows. First the case of first order derivatives of an isotropic flow is treated
and afterwards the result is generalized - with worse constants - to a much more general class of
stochastic flows and derivatives of arbitrary order.
Finally some open questions are listed and possible directions of further research are discussed.
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Introduction And Main Results

The name of this work is ”Some Asymptotic Properties Of Stochastic Flows“. A stochastic flow
is a random variable taking values in the groups of diffeomorphisms of the Euclidean space Rd.
It can be motivated by the following physical considerations. Suppose we have an infinite ocean
without any prefered streams. This means that we suppose the local movement in this ocean
to be equally likely to occur in any direction. On this ocean we now consider a set of specially
distinguished points. One may think of an oil spill floating on the surface. This leads to the model
of a so-called isotropic Brownian flow (IBF) which is specified by the invariance of its law unter
rigid motions of the state space. These flows can be rigorously defined by a stochastic differential
equation (SDE) of Kunita-type. These generically include an infinite-dimensional stochastic noise
and generalize the notion of Itô SDEs. Unfortunately the full distribution of say the shape of the
oil spill at some time T is too complex to be fully amenable for a detailed study. Hence we will
have to restrict ourselves to the study of some macroscopic properties.
More generally we will not only consider the case of a zero drift environment i.e. of an isotropic
ocean but also allow the motion to evolve in a quadratic potential. This potential may have
a global minimum at the origin leading to the model of an isotropic Ornstein-Uhlenbeck flow
(IOUF) or a maximum which yields the notion of a repulsive isotropic flow (RIF). These three
classes of stochastic flows IBFs, IOUFs and RIFs and their properties are the main subject of the
entire work. They are linked by the following SDE.

φs,t(x) = x+
∫ t

s
M(du, φs,u(x))− c

∫ t

s
φs,u(x)du.

Therein M = M(t, x) is an isotropic Brownian field and describes the infinitesimal random kick
that a particle located at x ∈ Rd experiences at time t ≥ 0. The specification of c ∈ R leads to the
different notions of stochastic flow which we already mentioned. The positive values for c yield
the IOUFs, c = 0 corresponds to the IBFs and the c < 0 lead to the RIFs. In all cases φs,t(x)
denotes the position of the particle at time t which was at position x at time s.

Chapter 1 is devoted to the precise definition of all the models and to the collection of important
results from the literature. We also further develop some of the infrastructure results which are
needed in the later chapters.

Afterwards Chapter 2 treats the question, how φ0t(x)−E[φ0t(x)]
x is behaved for large |x|. To be

precise we show that this quantity converges to zero as R → ∞ if we take the supremum over
R ≤ |x| ≤ R + 1. Although the scaling by x seems to be too large we stick to it because this

1
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is precisely the scaling we will need in Chapter 5. The convergence is proved by using the well-
known chaining technique which originates from [10] and which we explain in some detail.

Chapter 3 has a scope that is somewhat different from the one of the rest of the work. We ana-
lyze the question when the solution of a SDE admits a density that is strictly positive on some
predescribed set. To be precise we consider the SDEs for the finite-point motions and ask for
the necessary amount of differentiability of the driving vector fields that guarantees the existence
of a density. Afterwards we apply a criterion from [29] that allows us to show that the density
(provided it exists) is strictly positive apart from the generalized diagonal i.e. the set of points
in (Rd)n where no two of the n elements coincide. We also give a notion of positivity that can
be obtained with very elementary methods from isotropy properties of the flows we consider.
Nevertheless this notion is not sufficient for the applications we have in mind and so we show
that a large class of the isotropic flows considered here fall into the range of well-known results
concerning strict positivity.

The first main Chapter 4 deals with the diameter problem in the case of a two-dimensional IBF
Φ with a positive Lyapunov exponent. We show that there is a deterministic set B such that we
have for any deterministic bounded initial set γ ⊂ R

2 that consists of at least two different points
the following. If we put γt := Φt(γ) and Wt(γ) :=

⋃
0≤s≤t γs we have for any ε > 0 that

lim
T→∞

P [(1− ε)TB ⊂ WT (γ) ⊂ (1 + ε)TB] = 1.

It is also shown that the lower bound holds a.s. for sufficiently large T . The chapter is divided
into the proof of the lower bound and the proof of the upper one. The first part i.e. the lower
bound is shown with a combination of methods from [13] and [53]. We reprove the fact that the
diameter of a bounded set under the action of an IBF with a positive exponent grows linearly
in time and define the asymptotic expansion speed in terms of a stable norm. Afterwards it is
shown that a curve that reaches the R-neighbourhood of P ∈ R

2 will sweep this neighbourhood
within a rather short time with high probability.
The upper bound i.e. the fact that the lower expansion speed and the upper expansion speed
coincide relies on the fact, that the forward distribution of an IBF and its backward distribution
(i.e. the image measure obtained by time reversion) coincide. This fact is shown to imply the
following. Suppose one has two curves with diameter say 17 which have distance say 42 from
each other. Let both of the curves evolve under the action of two independent IBFs for some time
T > 0. Then the probability that the curves intersect each other after time T can be bounded
from below by a strictly positive constant p. This argument is also the main issue that neces-
sitates the restriction to d = 2. This fact surely cannot be expected to be easily proved in the
general d-dimensional case. This is also the point where the techniques from [13] turn out to be
inappropriate to cover the case of IBFs.

The motivating Chapter 5 shows that the random dynamical system (RDS) that can be obtained
by an IOUF via stereographic projection on the unit ball fails to be continuously differentiable.
Nevertheless this is necessary to be able to apply the standard results from the literature ob-
tained by Ledrappier and Young in their papers [32], [33] and [34]. The explicit computations
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performed in Chapter 5 show that it is completely hopeless to expect that these results in their
standard versions apply to the RDSs coming from an IOUF. Here the spatial regularity lemma
from Chaper 2 is used in the central step.

Hence we have to work on these sophisticated results on our own replacing the compactness as-
sumption of Ledrappier and Young by different features of our models. The first part of Pesin’s
formula asserting that the entropy of a C1+ε-RDS on a compact manifold equals the sum of
its positive Lyapunov exponents counted with their multiplicities is the subject of Chapter 6.
Therein we prove that the “≤“-part of this equality - also called Margulis-Ruelle inequality in the
literature - is true in the case of an IOUF. We prove this via the combination of the method from
Bahnmüller and Bogenschütz [3] with an exhaustion argument for the construction of a suitable
partition in the entropy estimation. One might argue that an inequality is not an asymptotic
statement but the Margulis-Ruelle inequality is an inequality between two asymptotic quantities.
The entropy links to the asymptotic number of guesses one needs to find the path of a particle
given the randomness and the Lyapunov exponents give the asymptotic exponential growth rate
of the singular values of the spatial derivative at a previously fixed point.

The main Chapter 7 treats the asymptotic growth of the spatial derivatives of an isotropic stochas-
tic flow. We show that for a compact Ξ ⊂ R

d we have for ψt(x) := log ||Dφt(x)|| that

lim sup
T→∞

(
sup

0≤t≤T
sup
x∈Ξ

1
T
|ψt(x)|

)
≤ K a.s.

where K depends on the box dimension of Ξ and on d. The proof of this fact relies on the chaining
growth theorem obtained by Scheutzow in [52] which was taylored to the case of the flow itself
but proves to be sufficient to cover the case of the spatial derivatives of an isotropic flow. This
theorem requires to have bounds on the growth of the one-point motion and to have bounds on
the two-point distances. While the first part i.e. the one point estimate can be obtained with
a straightforward computation the two-point estimate turns out to be very technical. It also
involves fourth order Taylor expansions of the covariance tensor b in the present form. This fact
seems to prevent the result from being easily generalized to a wider class of stochastic flows with
the applied method.

Chapter 8 treats the same problem as Chapter 7 in much more general setting. It extends the
result (exponential growth of derivatives) not only to a much more general class of stochastic
flows but also proves it for derivatives of arbitrary order. The proof relies on estimates from
Imkeller and Scheutzow [20] and is much shorter than the one given in Chapter 7. Nevertheless
the result is less explicit concerning the constants appearing and it does not cover the approach
of first-order derivatives to singularity because it uses ψt(x) := log(1 + ||Diφt(x)||).

The outline in Chapter 9 gives some more steps towards Pesin’s formula for IOUFs along the
lines of Liu and Qian [37]. The local Hölder continuity of the Oseledec’ splittings is shown.
In the final Chapter 10 we list some open problems and give some conjectures on their solution.
It indicates directions for further research.
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Chapter 1

Definition Of The Models

In this chapter we introduce the general notion of a stochastic flow and specify the conditions
leading to the models we treat in the sequel. This includes the notions of isotropic covariance
tensors, spatial semimartingales and stochastic differential equations driven by them. We also
review important infrastructural results e.g. diffuse behaviour of finite-dimensional projections,
support theorems and the expansion in terms of the reproducing kernel Hilbert spaces. The
chapter is divided into several sections. First we give a brief review on so called Kunita-integration
and the link between stochastic flows and stochastic differential equations (SDEs) of Kunita-type.
Then we explain how to obtain a random dynamical system (RDS) from a given stochastic flow.
In the later sections we are more specific to provide information on the particular models we use.
We give the definitions of isotropic Brownian flows (IBFs), isotropic Ornstein-Uhlenbeck flows
(IOUFs) and repulsive isotropic flows (RIFs) and note some of their important properties.

1.1 Stochastic Flows And Stochastic Differential Equations

All definitions and statements in this section originate from [27]. We will essentially follow [12]
in the first part of the exposition. As usual we always assume that we have an appropriate
probability space (Ω,F ,P) on which all the random variables are defined.

1.1.1 The Driving Fields And Their Characteristic

Let d, n ∈ N. For a domain D ⊂ R
d and a non-negative integer m denote by Cm(D : Rn) the

set of all functions f : D → R
n which are m-times continuously differentiable. If m = 0 then the

superscript may be omitted. As usual for a multi-index of non-negative integers α := (α1, . . . , αn)
we put |α| = α1 + · · ·+ αn and define the differential operator

Dα
x :=

∂|α|

(∂x1)α1 . . . (∂xn)αn
.

Let K ⊂ D be a compact set. Define the seminorms

‖f‖m:K := sup
x∈K

|f(x)|
1 + |x|

+
∑

1≤|α|≤m

sup
x∈K

|Dα
xf(x)| ,

5



6 Definition Of The Models

where | · | denotes the Euclidean distance in the corresponding space. We denote ‖ ·‖m:D by ‖ ·‖m.
The family of seminorms {‖ · ‖m:K : K ⊂ D is compact} turns Cm(D : Rn) into a Fréchet space
(metrizable locally convex topological vector space or equivalently locally convex topological
vector space, whose topology is generated by countably many seminorms). Further the set

Cm
b (D : Rn) := {f ∈ Cm(D : Rn) : ‖f‖m <∞}

equipped with the norm ‖ · ‖m is a Banach space.
For arbitrary δ ∈ [0, 1] let Cm,δ(D : Rn) be the set of all f ∈ Cm(D : Rn) such that all Dα

xf for
|α| = m are Hölder continuous with exponent δ ≥ 0. The set Cm,δ(D : Rn) with the seminorms

‖f‖m+δ:K := ‖f‖m:K +
∑
|α|=m

sup
y,z∈K, z 6=y

∣∣Dα
xf(y)−Dα

xf(z)
∣∣

|y − z|δ

is again a Fréchet space. ‖ · ‖m+δ:D will be denoted by ‖ · ‖m+δ.
A continuous function f(x, t) : D× R+ → R

n is said to belong to the class Cm,δ if

1. f(t) := f(·, t) ∈ Cm,δ for all t ∈ R+ and

2.
∫ T
0 ‖f(t)‖m+δ:K dt <∞ for all compact K ⊂ D and all T <∞.

Further f(x, t) is said to belong to the class Cm,δ
b if 2. is replaced by

2.′
∫ T
0 ‖f(t)‖m+δ:D dt =

∫ T
0 ‖f(t)‖m+δ dt <∞ for all T <∞.

and f(x, t) is said to belong to the class Cm,δ
ub if 2. is replaced by

2.′′ supt∈R+
‖f(t)‖m+δ:D = supt∈R+

‖f(t)‖m+δ <∞.

The notations Cm, Cm
b and Cm

ub are abbreviations for Cm,0, Cm,0
b and Cm,0

ub respectively.
Now we consider functions of the type g : D×D→ R

n. Let C̃m be the set of all functions g, which
are m-times continuously differentiable with respect to each variable x and y. For g ∈ C̃m define
the seminorms

‖g‖∼m:K := sup
x,y∈K

|g(x, y)|
(1 + |x|)(1 + |y|)

+
∑

1≤|α|≤m

sup
x,y∈K

|Dα
y Dα

xg(x, y)|

and for δ ∈ (0, 1)

‖g‖∼m+δ:K := ‖g‖∼m:K +
∑
|α|=m

‖Dα
xDα

y g‖∼δ:K ,

where

‖g‖∼δ:K := sup
{
|g(x, y)− g(x′, y)− g(x, y′) + g(x′, y′)|

|x− x′|δ|y − y′|δ
: x, y, x′, y′ ∈ K, x 6= x′, y 6= y′

}
.

Again if K = D then it is omitted from the subscript in the notation of the seminorms. We set

C̃m
b := {g ∈ C(D× D : Rn) : ‖g‖∼m <∞} and C̃m,δ

b := {g : D× D→ R
n : ‖g‖∼m+δ <∞} .

A continuous function g : D× D× [0, T ] → R
n is said to belong to the class C̃m,δ if
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1. g(t) := g(·, ·, t) ∈ C̃m,δ for all t ∈ [0, T ] and

2.
∫ T
0 ‖g(t)‖∼m+δ:K dt <∞ for all compact K ⊂ D and 0 < T <∞.

The classes C̃m,δ
b and C̃m,δ

ub are defined by replacing 2. in the same manner as above (of course
with ||.||∼· instead of ||.||· ). The definitions of the classes C̃m, C̃m

b and C̃m
ub are also obtained by

putting δ = 0 as before . Let now (Ω, (Ft)t≥0,F ,P) be a filtered probability space satisfying the
usual conditions (i.e. right-continuity and completeness). Consider a random field

F (t, x, ω) : R+ × D× Ω → R
n.

If F is m-times continuously differentiable with respect to x for any t almost surely, we can
regard it as a Cm-valued stochastic process. If it is continuous we call it a continuous Cm-valued
stochastic process. Analogously we can define Cm,δ-valued and continuous Cm,δ-valued stochastic
processes.
Let now

G(t, x, y, ω) : [0, T ]× D× D× Ω → R
n.

Similarly as above we say G is a C̃m-valued stochastic process if G is m-times continuously
differentiable with respect to both x and y almost surely for all t ∈ [0, T ]. Analogously we can
define continuous C̃m-valued, C̃m,δ-valued and continuous C̃m,δ-valued processes.
Assume now that M(t, x, ω) : R+×D×Ω → R

d is a family of continuous local martingales, indexed
by x ∈ D with M(0, x) ≡ 0 a.s.. The next theorem gives the connection between the regularity
with respect to the spatial variable of M and the one of 〈M(·, x),M(·, y)〉t.

Theorem 1.1.1 (continuous modifications).

1. Let M(t, x), x ∈ D be a family of continuous local martingales with M(0, x) ≡ 0 P-a.s.. If the
joint quadratic variation 〈M(·, x),M(·, y)〉t has a modification of a continuous C̃m,δ-process
for some m ≥ 1 and δ ∈ (0, 1] then M(x, t) has a modification of a continuous Cm,ε-process
for any ε < δ. Furthermore, for a multi-index α with |α| ≤ m, Dα

xM(t, x) is a family of
continuous local martingales with joint quadratic variation process Dα

xDα
y 〈M(·, x),M(·, y)〉t.

Such a family of continuous local martingales is called a continuous Cm,ε-local martingale.

2. Let M(t, x), x ∈ D and N(t, y), y ∈ D be continuous local martingales with values in
Cm,δ, where m ≥ 0 and δ > 0. Then the joint quadratic variation 〈M(·, x), N(·, y)〉t has
a modification of a continuous C̃m,ε-process for any ε < δ. Moreover, the modification
satisfies

Dα
xDβ

y 〈M(·, x), N(·, y)〉t = 〈Dα
xM(·, x),Dβ

yN(·, y)〉t .

Proof: [27, Theorem 3.1.2 and Theorem 3.1.3]. 2

Let F (t, x), x ∈ D be a family of continuous semimartingales decomposed as F (t, x) = M(t, x) +
V (t, x) where M(t, x) is a continuous local martingale for any x ∈ Rd and V (t, x) is a continuous
process of bounded variation for any x ∈ R

d. A family of continuous semimartingales F (t, x) is
called a Cm,δ-semimartingale if M(t, x) is a Cm,δ-local martingale and V (t, x) is a continuous
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Cm,δ-process, such that for any x ∈ R
d and |α| ≤ m the process t 7→ Dα

xV (t, x), is of bounded
variation. Assume that

〈M(·, x),M(·, y)〉t =
∫ t

0
a(x, y, s)ds and V (t, x) =

∫ t

0
b(x, s)ds

holds for functions a(x, y, s) = (aij(x, y, s))1≤i,j≤n and b(x, s) = bi(x, s)1≤i≤n. The pair of random
fields (a, b) is called the local characteristic of the semimartingale field F (t, x). [27] allows for a
and b to be densities w.r.t. a different measure but Lebesgue measure, but we do not make use
of that. The pair (a, b) is said to belong to the class (Bm,δ, Bm′,δ′) if

1. a(x, y, t) has a modification that is a predictable process with values in C̃m,δ.

2.
∫ T
0 ‖a(x, y, t)‖∼m+δ:Kdt <∞ P-almost surely for all compact K ⊂ D and all T <∞.

3. b(x, t) has a modification that is a predictable process with values in Cm′,δ′(D : R).

4.
∫ T
0 ‖b(x, t)‖m′+δ′:Kdt <∞ P-almost surely for all compact K ⊂ D and all T <∞.

Further, the pair (a, b) is said to belong to the class (Bm,δ
b , Bm′,δ′

b ) if 2. and 4. are replaced by

2.′
∫ T
0 a(t)dt :=

∫ T
0 ‖a(x, y, t)‖∼m+δ:D dt <∞ P-almost surely for all T <∞.

4.′
∫ T
0 b(t)dt :=

∫ T
0 ‖b(x, t)‖m′+δ′:Ddt <∞ P-almost surely for all T <∞.

(a, b) is said to belong to the class (Bm,δ
ub , Bm′,δ′

ub ) if 2. and 4. are replaced by the condition that
‖a(x, y, t)‖∼m+δ:D and ‖b(x, t)‖m′+δ′:D are uniformly bounded for all t ∈ R+ and ω ∈ Ω. If m = m′

and δ = δ′ we say that (a, b) belongs to the class Bm,δ (respectively Bm,δ
b and Bm,δ

ub ).

A continuous Cm,δ-valued process is called a Cm,δ-valued Brownian motion if for any partition
0 ≤ t0 ≤ t1 ≤ · · · ≤ tn the family of Cm,δ-valued random variables (F (ti+1, ·)− F (ti, ·))i=0,...,n−1

is independent.

1.1.2 Kunita-Type Integrals And Stochastic Flows

For a domain D ⊂ R
d, let F (t, x, ω) : R+ × D × Ω → R

n be a family of continuous real valued
semimartingales decomposed as F (t, x) = M(t, x)+V (t, x) where M(t, x) is a Cm,δ-local martin-
gale and V (t, x) is a continuous Cm,δ-process, such that Dα

xV (t, x), |α| ≤ m are all processes of
bounded variation. Assume again that the local characteristic (a, b) can be written as

〈M(·, x),M(·, y)〉t =
∫ t

0
a(x, y, s)ds and V (t, x) =

∫ t

0
b(x, s)ds

(with a(x, y, s) and b(x, s) as before) and belongs to the class B0,δ for some δ > 0.
Let {ft : t ≥ 0} be a predictable process with values in D, satisfying∫ T

0
a(fs, fs, s)ds <∞ and

∫ T

0
|b(fs, s)|ds <∞ P-a.s. for all T <∞. (1.1)
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The stochastic integral of f based on the semimartingale kernel F is defined for arbitrary t ≥ 0
by
∫ t
0 F (ds, fs) =

∫ t
0 M(ds, fs) +

∫ t
0 b(fs, s)ds , where the integral

∫ t
0 M(ds, fs) (and its Kunita-

Stratonovich or Kunita-Itô backward counterparts) is defined similarly to the well known classical
stochastic integrals in two steps.
1st Step: For simple predictable processes, i.e. processes of the form

ft =
n∑

k=0

ftk11(tk,tk+1](t) + f011{t=0} ,

satisfying (1.1) the stochastic integral of f based on the kernel M is defined via∫ t

0
M(ds, fs) :=

n∑
k=0

M(tk+1 ∧ t, ftk∧t)−M(tk ∧ t, ftk∧t) (Kunita-Itô version),

∫ t

0
M(◦ds, fs) :=

1
2

n∑
k=0

M(tk+1 ∧ t, ftk+1∧t) +M(tk+1 ∧ t, ftk∧t)−M(tk ∧ t, ftk+1∧t)

−M(tk ∧ t, ftk∧t) (Kunita-Stratonovich version),∫ t

0
M(d̂s, fs) :=

n∑
k=0

M(tk+1 ∨ 0, ftk+1∨0)−M(tk ∨ 0, ftk+1∨0) (Kunita-Itô backward version).

2nd Step: For general predictable processes fs satisfying (1.1) one determines an approximating
Cauchy sequence of simple processes fn, such that∫ T

0
(a(fn

s , f
n
s , s)− 2a(fn

s , f
m
s , s) + a(fm

s , f
m
s , s))ds −→

n,m→∞
0 .

Then it can be shown (see [27, page 82-83]) that the sequence
( ∫ ·

0 M(ds, fn
s )
)
n

converges in
probability, uniformly in t on compact subsets of R+. The limiting continuous local martingale is
defined to be the stochastic integral

∫ t
0 M(ds, fs). We omit the second step for the other notions

of stochastic integral indicated in the first step because it is perfectly similar to the Kunita-Itô
case (with the difference that the limits are no longer necessarily local martingales). Note that
one has to require the local characteristic to be of class (B2,δ, B1,0) for some δ > 0 to define
the Kunita-Stratonovich version of stochastic integral. The connection between the Itô and the
Stratonovich integrals is given by the following proposition.

Proposition 1.1.2 (Kunita-Itô and Kunita-Stratonovich integrals).
Assume that F (t, x) is a continuous C1-semimartingale with local characteristic belonging to the
class (B2,δ, B1,0) for some δ > 0 and that {ft : t ≥ 0} is a continuous semimartingale. Then the
Stratonovich integral is well defined and is related to the Itô integral by∫ t

0
F (◦ds , fs) =

∫ t

0
F (ds , fs) +

1
2

d∑
j=1

〈 ∫ ·

0

∂F

∂xj
(ds , fs), f j

·
〉
t
.

Proof: [27, Theorem 3.2.5] 2
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The choice of a certain type of stochastic integral describing a stochastic flow through an SDE
is a matter of taste (if both of them are defined) because both - the Kunita-Itô formulation
and the Kunita-Stratonovich formulation - have advantages and disadvantages: the Kunita-Itô
version preserves the ”local martingale-property“ of the inegrator and the Kunita-Stratonovich-
formulation yields better symmetry properties w.r.t. time reversion. A much more detailed
description of the stochastic calculus involving these types of integrals can be found in [27]. Note
that we will mostly use the Kunita-Itô version of Kunita-type stochastic integration. Let now
F (t, x, ω) : R+ × R

d × Ω → R
d be a continuous C(Rd : Rd)-valued semimartingale. Having the

notion of the Kunita integrals one can consider SDEs involving such integrals

φs,t(x) = x+
∫ t

s
F (du, φs,u(x)) for t ≥ s ≥ 0 , x ∈ Rd , (1.2)

which may be interpreted as the equations describing the movement of a passive tracer in the
random vector field F (t, x) starting at time s in the location x. With the help of the well known
Picard-iteration technique one can prove as in the classical case existence and pathwise uniqueness
results for solutions of (1.2).

Theorem 1.1.3 (existence of solution to SDEs).
Assume that F (t, x) is a continuous semimartingale with values in C(Rd : Rd) and local charac-
teristic belonging to the class B0,1

b . Then for each x ∈ Rd and s ≥ 0 the SDE (1.2) has a pathwise
unique solution.

Proof: [27, Theorem 3.4.1] 2

We now give a short introduction to stochastic flows and how they are to be considered as random
variables.

Definition 1.1.4 (stochastic flow, Brownian flow).
A mapping φs,t(x, ω) : R+ × R+ × R

d × Ω → R
d is called a stochastic flow of homeomorphisms if

for P-almost all ω ∈ Ω the following is true.

1. φs,t(ω) is continuous w.r.t. s, t and x.

2. φs,t(ω) = φu,t(ω) ◦ φs,u(ω) holds for all s, t, u ∈ R+.

3. φs,s(ω) = idRd for all s ∈ R+.

4. φs,t(ω) : Rd → R
d is a homeomorphism for all s, t ∈ R+.

If additionally φ satisfies also 4. it is called a stochastic flow of Ck-diffeomorphisms.

4. φs,t(ω) is k-times continuously differentiable with respect to x for all s, t ∈ R+.

A stochastic flow of homeomorphisms is called Brownian if it has independent increments, that
is for all n ∈ N and 0 ≤ t1 < · · · < tn the family of random mappings

(
φt1,t2 , . . . , φtn−1,tn

)
is

independent.
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Notation: Omitting an argument in the notation of φ means that we refer to φ as a function with
respect to this argument, i.e. φs,t denotes the random homeomorphism ω 7→

(
x 7→ φs,t(x, ω)

)
.

However, omitting the first time parameter means it is set to 0, i.e. φt(x) := φ0,t(x). Let G be
the set of all homeomorphisms on R

d. It has a group structure with respect to the composition
of maps. One can introduce a metric on G via

d(φ, ψ) = ρ(φ, ψ) + ρ(φ−1, ψ−1) ,

where

ρ(φ, ψ) :=
∞∑

N=1

sup|x|≤N |φ(x)− ψ(x)|
2N (1 + sup|x|≤N |φ(x)− ψ(x)|)

.

Then (G, d) is a complete separable topological group. A stochastic flow of homeomorphisms can
be viewed as a continuous random field with index set R+ × R+ and values in G. It is called a
continuous stochastic flow with values in G.
Let Gk ⊂ G be the subgroup of all Ck-diffeomorphisms. Define the metric

dk(φ, ψ) :=
∑
|α|≤k

ρ(Dαφ,Dαψ) +
∑
|α|≤k

ρ(Dαφ−1,Dαψ−1) .

Then (Gk, dk) is again a complete separable topological group. A stochastic flow of Ck-diffeomor-
phisms can be viewed as a continuous random field with index set R+ × R+ and values in Gk.
It is called a continuous stochastic flow with values in Gk or sometimes a continuous flow of
Ck-diffeomorphisms.
The main topic in [27] is the relation between stochastic flows and SDEs of the type (1.2). This
relation is also the main motivation for considering stochastic integrals of Kunita-type.
Assuming some regularity conditions, there is a one to one correspondence between the forward
stochastic semimartingale flows with values in G and the continuous semimartingales with values
in C through SDEs of type (1.2). Especially there are examples of very natural stochastic flows,
which cannot be generated via classical SDEs, driven by finitely many Brownian motions, e.g.
isotropic Brownian and isotropic Ornstein-Uhlenbeck flows (which both are of particular interest
for this work). This one to one correspondence is established in [27, Theorem 4.4.1 and Theorem
4.5.1]. Here we quote another theorem from the same source which maintains one of the directions
in the correspondence and also yields the smoothness of the solution of the SDE depending on
the smoothness of the driving semimartingale field.

Theorem 1.1.5 (flow property of solutions of SDEs, generator of a stochastic flow).
Assume that the local characteristic of the continuous C-semimartingale F (t, x) belongs to the
class Bk,δ

b for some k ≥ 1 and δ > 0. Then the solution of the SDE (1.2) has a modi-
fication (φs,t(x) : 0 ≤ s ≤ t, x ∈ D) which is a forward semimartingale stochastic flow of Ck-
diffeomorphisms, or a stochastic flow of Ck-diffeomorphisms. Further it is a Ck,ε-semimartingale
for any 0 < ε < δ. In this case F is called a forward Itô’s random infinitesimal generator of the
flow (φs,t(x) : 0 ≤ s ≤ t, x ∈ D).

Proof: [27, Theorem 4.6.5] 2
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Remark 1.1.6. Actually, the original statement of the above theorem is for a finite time horizon
only, i.e. for 0 ≤ s ≤ t ≤ T for some T < +∞. However a standard localizing argument
immediately generalizes the statement to arbitrary s ≤ t ∈ R+.

Occasionally we will use the notion of a forward and a backward stochastic flow meaning the
forward (s ≤ t) or the backward (s ≥ t) restriction of φs,t : R+ × R+ × Ω → G. The relation
between the forward flow and the backward flow and their generating fields respectively is given
by the following proposition.

Proposition 1.1.7 (link between forward flows and backward flows - general result).
Let (φs,t, 0 ≤ s ≤ t ≤ T ) be a forward Brownian flow of homeomorphisms with values in Gk for
k ≥ 1 satisfying the following conditions.

1. For each 0 ≤ s ≤ t <∞ and x, y ∈ Rd the random variable φs,t(x) is square integrable and
we have

lim
h→0

E [φt,t+h(x)− x]
h

=b(x, t) and

lim
h→0

E
[
(φt,t+h(x)− x)(φt,t+h(y)− y)t

]
h

=a(x, y, t)

wherein (a, b) is the local characteristic of a forward Itô’s random infinitesimal generator of
φ, again denoted by F .

2. There exists a positive constant K such that we have for any 0 ≤ s ≤ t ≤ T and x, y ∈ Rd

that

E [φs,t(x)− x] ≤K(1 + |x|)|t− s|,
E
[
(φs,t(x)− x)(φs,t(y)− y)t

]
≤K(1 + |x|)(1 + |y|)|t− s|.

3. We have for the local characteristic (a, b) that a(x, y, t) ∈ C̃k,δ
ub and b(x, t) ∈ Ck,δ

ub where k ≥ 2
and δ > 0.

Define the Ck−1-valued Brownian motion F̂ (x, t) = F (x, t) −
∫ t
0

∑d
j=1

∂a·,j

∂xj
(x, y, s)|y=xds. Then

the associated backward flow φt,s ≡ (φ−1
s,t , 0 ≤ s ≤ t ≤ T ) is governed by a Kunita-Itô backward

SDE based on F̂ , i.e. it satisfies for x ∈ Rd and 0 ≤ s ≤ t ≤ T that

φt,s(x) = x−
∫ t

s
F̂ (φt,r(x), d̂r).

Proof: [27, Theorem 4.2.10]. Observe that it is sufficient to require the limits in 1. to exist, because
if they exist, they equal the local characteristic of F (this is the way a and b are originally defined
in [27]). 2

Note that the correction to be applied when passing from the Kunita-Itô forward formulation of
the flow equation to the backward equation is just two times the correction that is to be applied
when passing from Kunita-Itô forward formulation to Kunita-Stratonovich forward formulation.
We end this section stating the Markov properties we have to use repeatedly in the following
lemma.
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Lemma 1.1.8 (Markov properties of stochastic flows).
Let φs,t(x, ω) : R+ × R+ × R

d × Ω → R
d be a forward Brownian flow of homeomorphisms (on

(Ω,F ,P)) and let Fs,t be the least sub-σ-field of F containing all the null sets and⋂
ε>0 {Φu,v : s− ε ≤ u, v ≤ t+ ε}. Then we have the following.

1. For n ∈ N and x(1), . . . , x(n) ∈ R
d the n-point-motion (φs,t(x(1)), . . . , φs,t(x(n))) has a

Markov property with transition probabilities

P
(n)
s,t ((x(1), . . . , x(n)), E) = P

[
(φs,t(x(1)), . . . , φs,t(x(n))) ∈ E

]
.

Therein the E′s are the Borel set of Rnd.

2. For a {Fs,t : t ∈ [s,∞)}-stopping-time τ we have

L [Φτ,r (Φs,τ (.)) : r ≥ τ | Fs,τ ] = Ls,τ [Φs,s+r−τ (.) : r ≥ τ ] .

Proof: [27, Theorem 4.2.1]. Note that the forward flow does not have R+×R+ as temporal index
set but only {(s, t) ∈ R2 : 0 ≤ s ≤ t}. We occasionally ignore this for ease of notation because we
can always add the backward flow to get the full temporal domain if necessary. 2

1.2 Stochastic Flows As Random Dynamical Systems

In this section we briefly describe how to get a random dynamical system (RDS) if one already
has a stochastic flow. This is necessary to be able to use concepts like stable manifolds or
characteristic exponents in a precise manner. Proofs adapted to our situation can be found in
some detail in [12] or more general in [1] and the references therein. We review the important
definitions and the central constructions involved (and closely follow [12]). Note that to be able to
view a stochastic flow as a RDS it is necessary for the flow to have stationary increments (which
is perfectly satisfied in the cases we are interested in). We omit most of the proofs because they
can be found in detail in [12] and [1].

1.2.1 Definitions Of The Basic Notions About RDS’

Let again (Ω,F ,P) be a probability space.

Definition 1.2.1 (two-parameter-filtration).
A two-parameter-filtration is a two-parameter-family (F t

s : s, t ∈ R, s ≤ t) of sub-σ-algebras of the
P-completion F̄ of F such that the following holds.

1. Fv
u ⊂ F t

s for s ≤ u ≤ v ≤ t.

2. F t
s = F t+

s :=
⋂

u>tFu
s and F t

s = F t
s− :=

⋂
u<sF t

u.

3. For any s ≤ t we have that F t
s contains all P-null set of F .

We also define F t
−∞ :=

∨
s≤tF t

s and F∞s :=
∨

t≥sF t
s.
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As usual we will omit the index sets for s and t if they are clear from the context. If one wants
to form a precise picture of the object F t

s one may think of F t
s := σ(φu,v : s ≤ u ≤ v ≤ t) after

augmentation (mod P) and replacement by the appropriate right- (w.r.t. t) and left- (w.r.t. s)
continuous versions. (see [21] for details). This means that F t

s contains all the information about
things taking place between time s and time t.

Definition 1.2.2 (measurable DS, MDS).
A triplet (Ω,F , (θt)t∈R) with a measurable space (Ω,F) and a family of mappings (θt : Ω → Ω :
t ∈ R) is called a measurable dynamical system iff the following holds.

1. The mapping (ω, t) 7→ θt(ω) is (F ⊗ B(R),F) measurable.

2. θ0 is the identity mapping of Ω.

3. θ has the flow-property i.e. for any s, t ∈ R we have θs+t = θs ◦ θt.

(Ω,F ,P, (θt)t∈R) is called a metric dynamical system (MDS) iff the following holds.

1. (Ω,F , (θt)t∈R) is a measurable dynamical system.

2. P is a θ-invariant probability on (Ω,F) i.e. for any t ∈ R we have P ◦ θ−1
t = P.

A MDS with a two-parameter-filtration F t
s in the sense of Definition 1.2.1 is called filtered if for

any s, t, u ∈ R with s ≤ t we have θ−1
u F t

s = F u+t
u+s .

Definition 1.2.3 (RDS).
Let (Ω,F ,P, (θt)t∈R) be a MDS. A mapping

ϕ : R× R
d × Ω → R

d

is called measurable random dynamical system (RDS) on (the measurable space) (Rd,B(Rd)) over
the MDS (Ω,F ,P, (θt)t∈R) with time R iff the following conditions hold.

1. ϕ is (B(R)⊗ B(Rd)⊗F ,B(Rd))-measurable.

2. ϕ satisfies the (perfect) cocycle property i.e. ϕ(0, ω) is the identity mapping of Rd for any
ω ∈ Ω and for all s, t ∈ R and ω ∈ Ω we have ϕ(t+ s, ·, ω) = ϕ(t, ·, θsω) ◦ ϕ(s, ·, ω).

The RDS is called continuous if the mapping (t, x) 7→ ϕ(t, x, ω) is continuous for any ω ∈ Ω.
It is called a smooth RDS of class Ck if the mapping x 7→ ϕ(t, x, ω) is k times continuously
differentiable for any t ∈ R and ω ∈ Ω and the derivatives are continuous w.r.t. (t, x). It is called
linear if the mapping x 7→ ϕ(t, x, ω) is linear for all t ∈ R and ω ∈ Ω.

Definition and Lemma 1.2.4 (skew-product, invariant measure).
Let ϕ be a RDS on (Rd,B(Rd)) over the MDS (Ω,F ,P, (θt)t∈R) with time R. The family of
mappings (τt : t ∈ R) defined by

τt : Ω× R
d → Ω× R

d, (ω, x) 7→ (θtω, ϕ(t, x, ω))

defines a measurable DS on (Ω × R
d,F × B(Rd)). It is called the skew-product of the metric DS

θ and the cocycle ϕ (omitting the other parts if they are clear from the context). An invariant
measure for the RDS ϕ is a probability measure µ on (Ω× R

d,F ⊗ B(Rd)) with
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1. For any t ∈ R we have µ ◦ τ−1
t = µ,

2. µ ◦ π−1
Ω = P where πΩ : Ω× R

d → Ω, (ω, x) 7→ ω is the projection on Ω.

If µ is an invariant measure for ϕ then (τt : t ∈ R) is a MDS on (Ω× R
d,F ⊗ B, µ).

Proof: [12, p. 37]. 2

We are now ready to state the multiplicative ergodic theorem in the linear case.

Theorem 1.2.5 (MET for linear RDS).
Let ϕ(t, x, ω) be a linear RDS on R

d over the MDS (Ω,F ,P, (θt)i∈R) such that we have that

sup
t∈[0,1]

log+ ‖ϕ(t, ·)‖ and sup
t∈[0,1]

log+
∥∥ϕ(t, ·)−1

∥∥
belong to L1(P) (wherein ||·|| denotes the operator norm w.r.t. x). Then there exists a θ-invariant
set Ω̃ ⊂ Ω with full P-measure such that for all ω ∈ Ω̃ there is a splitting

R
d = E1(ω)⊕ . . .⊕ Ep(ω)(ω)

of Rd into random subspaces Ei(ω) of dimension di(ω) for i ∈ {1, . . . , p(ω)} depending measurably
on ω such that

1. ϕ(t, ·, ω)Ei(ω) = Ei(θtω) and

2. limt→±∞
1
t log |ϕ(t, x, ω)| = λi(ω) ⇔ x ∈ Ei(ω) \ {0}.

Moreover the numbers λi(ω), p(ω) and di(ω) for i ∈ {1, . . . , p(ω)} are all θt-invariant for any
t ∈ R.

Proof: [12, Theorem 2.1.1] or [1, Chapters 3, 4 and 5]. 2

The numbers λi(ω) and di(ω) are called the Lyapunov characteristic numbers of φ and their
multiplicities respectively.

Definition 1.2.6 (measurable bundle).
A measurable bundle (Y,Ω, π) with typical fibre X consists of a measurable space (Y,Y), a mea-
surable space (Ω,F), whose one-point-sets are measurable, a measurable space (X,B), a measur-
able onto map π : Y → Ω and a global measurable trivialization i.e. a bimeasurable bijection
Ψ : Y → Ω×X such that πΩ ◦Ψ = π (πΩ is again the projection (ω, x) 7→ ω). In particular for
any ω ∈ Ω the mapping

ψ(ω) := Ψ |π−1({ω}): π
−1({ω}) → {ω} ×X

is a bimeasurable bijection w.r.t. the corresponding trace-σ-algebras.
A measurable bundle is called linear if the typical fibre X and all the fibres π−1({ω}) have the
structure of a d-dimensional (real) vector space and ψ is linear in the sense that πX ◦ ψ(ω) :
π−1({ω}) → X is linear for all ω ∈ Ω.
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Definition 1.2.7 (bundle RDS).
Let (Ω,F ,P, (θt)t∈R) be a MDS and let (Y,Ω, π) be a measurable bundle with typical fibre X. A
measurable bundle RDS over (Ω,F ,P, (θt)t∈R) is a measurable DS τ on (Y,Y) which preserves
fibres i.e.

π ◦ τt = θt ◦ π

The latter is equivalent to the statement that the fibre mappings

ϕ(t, ·, ω) : τt |π−1({ω}): π
−1({ω}) → π−1({θtω})

form a cocycle over θ i.e. ϕ(0, ·, ω) is the identity of π−1({ω}) and for t, s ∈ R we have ϕ(t +
s, ·, ω) = ϕ(t, ·, θsω) ◦ϕ(s, ·, ω). If the fibre mappings ϕ(t, ·, ω) are linear for any t ∈ R and ω ∈ Ω
then the bundle RDS is called linear.

Proposition 1.2.8 (differential as bundle RDS).
Let ϕ be a RDS of class C1 on a d-dimensional manifold M over the MDS (Ω,F ,P, (θt)t∈R) with
time R and invariant measure µ. Then

1. The differential Dϕ(t, ·, ω) : TM → TM, (x, v) 7→ (ϕ(t, x, ω), Dϕ(t, x, ω)v) is a continuous
cocycle where of course TM denotes the tangent bundle of M .

2. The family (T (t) : t ∈ R) defined by T (t) : Ω×TM → Ω×TM, (ω, (x, v)) 7→ (θtω,Dxϕ(t, ·, ω)v)
is a linear bundle RDS on Ω× TM over the skew-product MDS

τt : Ω× TM → Ω× TM with τt(ω, x) = (θtω, ϕ(t, x, ω)).

Proof: [12, Proposition 2.1.1]. Note that the proof does not depend on the fact that µ is a prob-
ability so we can use the proposition for σ-finite measures as invariant measures µ. 2

Theorem 1.2.9 (MET for linearized smooth cocycles).
Let ϕ(t, x, ω) be a RDS of class C1 on a d-dimensional manifold M over the MDS (Ω,F ,P, (θt)t∈R)
with invariant probability µ. Consider the linear bundle RDS T (see Proposition 1.2.8) on Ω×TM
over the MDS (Ω×M,F⊗B(M), µ, (τt)t∈R) with τt as defined in Proposition 1.2.8. Assume further
the following integrability conditions i.e. assume that

sup
t∈[0,1]

log+ ‖Dxϕ(t, ·, ω)(·)‖ and sup
t∈[0,1]

log+
∥∥Dxϕ(t, ·, ω)−1(·)

∥∥
belong to L1(µ) where ‖·‖ denotes the corresponding operator norms of the differential as a linear
mapping between the tangent spaces at the appropriate points in M . Then there exists a τ -
invariant set ∆ ⊂ Ω×M with full µ-measure such that for all (ω, x) ∈ ∆ there is a splitting

TxM = E1(ω, x)⊕ . . .⊕ Ep(ω,x)(ω)

of TxM into random subspaces Ei(ω, x) of dimension di(ω) for i ∈ {1, . . . , p(ω)} depending mea-
surably on ω such that for i ∈ {1, . . . , p(ω, x)} we have
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1. Dxϕ(t, ·, ω)Ei(ω, x) = Ei(τt(ω, x)) = Ei(θtω, ϕ(t, x, ω)),

2. limt→±∞
1
t log |Dxϕ(t, ·, ω)v| = λi(ω, x) ⇔ v ∈ Ei(ω, x) \ {0}.

Moreover the numbers λi(ω, x), p(ω, x) and di(ω, x) for i ∈ {1, . . . , p(ω, x)} are all θt-invariant
for any t ∈ R.

Proof: [1, Theorem 4.2.6]. A similar situation in the discrete time case is treated in [24, Theorem
3.1.1 and Theorem 5.1.1]. 2

1.2.2 Construction Of A RDS From A Stochastic Flow

We are now ready to indicate how one obtains a RDS from a stochastic flow. This has been done
in [2]. To be precise, we sketch the solution to the following problem.

Problem 1.2.10 (stochastic flows as RDS).
Given a stochastic flow (φs,t(·) : s, t ≥ 0) with stationary increments, find a MDS (Ω,F ,P, (θt)t∈R)
and a RDS ϕ over (Ω,F ,P, (θt)t∈R) such that

L
[
(ϕ(t− s, x, θs·) : s, t ≥ 0, x ∈ Rd)

]
= L

[
(φs,t(x, ·) : s, t ≥ 0, x ∈ Rd)

]
.

The solution is originally due to L. Arnold and M. Scheutzow (see [2]) with slightly different
assumptions. For their proof is perfectly valid in our setting (which has been noticed e.g. in [12])
we do not go into all the details but we nevertheless state the precise result.

Theorem 1.2.11 (stochastic flows as RDS).
Let (φs,t : s, t ≥ 0) be a stochastic flow of diffeomorphisms defined on a probability space (Ω,F ,P)
such that its forward component (φs,t : 0 ≤ s ≤ t) is generated by the semimartingale field
F (t, x, ω) : R+ × R

d × Ω → R
d via the Kunita-type Stratonovich SDE

φs,t(x) = x+
∫ t

s
F (◦du, φs,u(x)) for all 0 ≤ s ≤ t <∞ and x ∈ Rd.

Assume that F is a Ck,δ-semimartingale field with local characteristics (a, b) belonging to the class
(Bk+1,δ

b , Bk,δ
b ) for some k ≥ 1 and δ ≥ 0 such that

d∑
j=1

∂a·,j

∂xj
(x, y, t) |x=y

belongs to the class Bk,δ
b . Assume further that F has stationary increments. Then there exists

a filtered MDS (Ω̃, F̃ , (F̃ t
s : s ≤ t ∈ R), P̃, (θt)t∈R) and for 0 ≤ ε < δ a RDS of class Ck,ε called

ϕ : R×Rd×Ω̃ → R
d over (Ω̃, F̃ , P̃, (θt)t∈R) such that the distribution of (φs,t(x, ·) : s, t ≥ 0, x ∈ Rd)

coincides with the distribution of (ϕ(t− s, x, θs·) : s, t ≥ 0, x ∈ Rd).
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Sketch of proof: (a complete proof adapted to our situation can be found in [2] or adapted to the
case of an IOUF in [12]) The construction is as follows.
Let Ω̃ := {f : R → C(Rd,Rd) : f is continuous and f(0) = 0} wherein we take on C(Rd,Rd) and
on Ω̃ the topology of uniform convergence on compacts. Let F̃ := B(Ω̃) and define the probability
measure P̃ by fixing the finite-dimensional distributions as follows. For n ∈ N and t1 < . . . < tn
and A ∈ B(C(Rd,Rd))⊗n let

P̃ [(ω̃(tn)− ω̃(tn−1), . . . , ω̃(t2)− ω̃(t1)) ∈ A]

= P [F (tn − t1, ·)− F (tn−1 − t1, ·), . . . , F (t2 − t1, ·)− F (0, ·) ∈ A] .

After restricting P̃ to Ω̃ and defining the mappings θt : Ω̃ → Ω̃ for t ∈ R by

θtω̃(s) = ω̃(t+ s)− ω̃(t) (1.3)

as well as the two-parameter-filtration

F̃ t
s :=

⋂
ε>0

σ{ω̃(u)− ω̃(v) : s− ε ≤ u ≤ v ≤ t+ ε}

(and P̃-augmentation) we end up with a filtered MDS in the sense of Definition 1.2.2. Introducing
the semimartingale field F̃ (t, x, ω̃) := ω̃(t, x) one gets a stochastic flows of diffeomorphisms φ̃s,t

as the solution to the SDE

φ̃s,t(x)− x =

{∫ t
s F̃ (◦du, φ̃s,u(x)) : s ≤ t

−
∫ s
t F̃ (◦du, φ̃s,u(x)) : t ≤ s

.

Finally letting
ϕ : R× R

d × Ω̃ → R
d, (t, x, ω̃) 7→ φ̃0,t(x, ω̃)

one shows that this ϕ can be modified to satisfy all the needs (we again do not indicate the
modification in the notation). 2

Note that the difference between the Kunita-type Itô-SDE and the Kunita-type Stratonovich-
SDE does not play any role at all (since we might rewrite an SDE given in one type into the other
one and vice versa).

Proposition 1.2.12 (ergodicity of the RDS).
In the setting of Theorem 1.2.11 assume further that F has independent increments. Then the
filtered MDS (Ω̃, F̃ , (F̃ t

s : s ≤ t ∈ R), P̃, (θt)t∈R) is ergodic.

Proof: [12, Proposition 2.2.2]. 2

1.2.3 Time Discretization, Markov Chain Representations

The previous constructions have all been carried out for continuous time, but we will need discrete
time versions of them. Restricting (Ω̃, F̃ , (F̃ t

s : s ≤ t ∈ R), P̃, (θt)t∈R) and ϕ : R × R
d × Ω̃ → R

d

from Theorem 1.2.11 to (Ω̃, F̃ , (F̃ t
s : s ≤ t ∈ N), P̃, (θt)t∈N) and ϕ : N × R

d × Ω̃ → R
d we obtain
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the appropriate discretization we will be working with occasionally (especially in Chapter 6).
Note that all the previous results are still valid in discrete time (with the obvious modifications).
The analysis we will be developing applies to the composition of a sequence of i.i.d. random
transformations. To be precise we have the following generic Markov chain version of our setting.
Let µ be an arbitrary measure on R

d and let x ∈ R
d be distributed according to µ independent

of ϕ. Then Xt := ϕ(t, x) for t ∈ N defines a Markov chain in discrete time with state space Rd.

Remark 1.2.13 (Kifer’s setting).
Having the discrete time RDS ϕ : N × R

d × Ω̃ → R
d over (Ω̃, F̃ , P̃, (θt)t∈N) constructed from a

Brownian flow with stationary increments we get a sequence φ0,1, φ1,2, . . . of i.i.d. Diff(Rd)-valued
random variables defining φi,i+1(ω̃) := ϕ(1, ·, θiω̃) and the Markov chain mentioned above can be
written as Xt = (φt,t−1(ω̃)◦. . .◦φ0,1(ω̃))(x) which (in law) is nothing but the unitstep-discretization
of the one-point-motion of the flow we were starting with.

We are now ready to state the result on invariant measures we already announced.

Lemma 1.2.14 (different notions of invariant measures).
Let φ be a stochastic flow with stationary increments and ϕ be the associated RDS with the
notation of Theorem 1.2.11. The probability measure µ on R

d is invariant for the one-point-
motion of φ (in the sense of discrete time Markov chains) iff the measure µ ⊗ P̃ restricted to
discrete time is invariant for ϕ.

Proof: [42] or [24, Lemma 1.2.3]. 2

We will identify a stochastic flow with its associated RDS where possible, e.g. we will speak
about the entropy of φ or about its characteristic exponents.

1.3 Isotropic Brownian Flows

The transition from a general stochastic flow of homeomorphisms to an isotropic Brownian flow
(IBF) is performed by specifying its Itô’s random infinitesimal generator i.e. the semimartingale
field driving the flow which in this case turns out to be a martingale field. We briefly describe
the construction of this field in the sequel. See [28] or [5] for further details. One can obtain an
IBF by letting b(x, t) ≡ 0 and a(x, y, t) = tb(x − y) for a suitable function b : Rd → R

d×d. This
function ist the so-called isotropic covariance tensor, which we are about to define precisely. Do
not mix the covariance tensor b(x) of an IBF with the drift-part b(x, t) of the local characteristic
of a general stochastic flow (which in the IBF-case vanishes). We do not want to rename one of
the b’s because both notations are very established in the literature. IBFs have been considered
among others by [17], [5], [28], [9], [36], [45], [54], [12] and [56].

1.3.1 Covariance Tensors And Correlation Functions

Definition 1.3.1 (isotropic covariance tensor).
A function b : Rd → R

d×d is an isotropic covariance tensor if the following holds true.

1. x 7→ b(x) is C4 and all derivatives up to order four are bounded.
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2. b(0) = Ed (the d-dimensional identity matrix).

3. x 7→ b(x) is not constant.

4. b(x) = O∗b(Ox)O for any x ∈ Rd and any orthogonal matrix O ∈ O(d).

The assumptions on the differentiability of the generating tensor b are a bit restrictive, but we
do not want to mess with smoothness problems. Occasionally we may require b to be much more
than C4 if this seems to be a reasonable way to overcome technical difficulties, that do not have
anything to do with the ”real“ problem we work on.

Definition and Lemma 1.3.2 (correlation functions and covariance tensors).
Let b be an isotropic covariance tensor. The functions

BL(r) := bii(rei), r ≥ 0

and
BN (r) := bii(rej), r ≥ 0, i 6= j

are the longitudinal (and normal - respectively) correlation functions of b. Their definitions do
not depend on the specific choice of 1 ≤ i, j ≤ d and we have for arbitrary i, j ∈ {1, . . . , d} and
x ∈ Rd that

bij(x) =
{

(BL(|x|)−BN (|x|))xixj/|x|2 +BN (|x|)δij : x 6= 0
δij = δijBL(0) = δijBN (0) : x = 0

.

The following holds (notation as above).

βL := −B′′L(0) >0,
βN := −B′′N (0) >0,

BL(r) =1− 1
2
βLr

2 +O(r4) : (r → 0), (1.4)

BN (r) =1− 1
2
βNr

2 +O(r4) : (r → 0), (1.5)

‖BL‖∞ ∨ ‖BN‖∞ ≤1,
lim
|x|→∞

b(x) =0, (1.6)

∀ε > 0 : ∃r(ε) > 0 : ∀r > r(ε) : |BL(r)| ∨ |BN (r)| < 1− ε.

The partial derivatives of b at 0 satisfy ∂k∂lb
i,j (0) = 1

2(βN − βL)(δkiδlj + δkjδli) − βNδklδij and
of course ∂k∂lb

i,i (0) = (βN − βL)δkiδli − βNδkl.

Proof: [5, (2.5), (2.6), (2.8), (2.9), (2.18) and the discussion after (2.13)]. 2

Note that not all functions can be used as candidates for BN and BL (even if they have the
properties given above). In [60] one can find a parameterization of all isotropic covariance tensors
in terms of two finite measures on (0,∞) as integral transforms involving some Bessel functions.
If one wants to have a complete overview over the possible tensors one should start with these
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measures and obtain the correlation functions from them. Since we do not need this we do not
give more details. However observe that we implicitly made several normalizing assumptions for
the ease of notation which we explain in the sequel: First one can add a constant times the
identity to b without changing any of the properties appearing in the definition of ”isotropic
covariance tensor“. This corresponds to the addition of a rigid translation of the space by a
Brownian motion to the generated IBF. For the properties we are interested in do not depend on
this translation we assume it to be zero (so (1.6) is the normalizing assumption to ensure this).
The fact that BL(0) = BN (0) = 1 has to be seen in a similar way. Suppose we have a stochastic
flow written as (φt : t ≥ 0) which has some kind of invariance property (think of the invariance
properties of an IBF we give later). Then usually for K > 0 we have that (φKt : t ≥ 0) is also a
stochastic flow with the same invariance property. The choice BL(0) = BN (0) = 1 ensures that
the one-point-motion of an IBF is a standard Brownian motion (other choices lead to stochastic
processes that are constant multiples of Brownian motions). Basically one can put it this way: if
one wants to have a translation-free IBF on the standard time scale, then the isotropic covariance
tensors to consider are exactly the ones given above. We will always assume this when speaking
of an isotropic covariance tensor.
Remark: We also give the statements (1.4) and (1.5) in the following weaker forms:

∀ε > 0 : ∃r(ε) > 0 : ∀r < r(ε) :|1−BL(r)− 1
2
βLr

2| ∨ |1−BN (r)− 1
2
βNr

2| < εr3. (1.7)

∃0 ≤ r̄ ≤ 1, C > 0 : ∀|x| ≤ r̄ :|∂k∂lb
i,j (x)− ∂k∂lb

i,j (0) | ≤ C|x|2. (1.8)

1.3.2 Brownian Fields And Generated Flows

Now we can define the semimartingale field F which in fact coincides with its martingale part
M . More precisely it coincides with its local martingale part and this local martingale part is in
fact a true martingale field.

Definition 1.3.3 (isotropic Brownian field, IBF).
Let b be an isotropic covariance tensor. An Rd-valued random vector field

(
M(t, x) : t ≥ 0, x ∈ Rd

)
- defined on a probability space (Ω,F ,P) - is an isotropic Brownian field if the following holds.

1. (t, x) 7→M(t, x) is a centered Gaussian process.

2. cov(M(s, x),M(t, y)) = (s ∧ t)b(x− y).

3. (t, x) 7→M(t, x) is continuous for almost all ω.

The existence of such a field follows from Kolmogorov’s Existence Theorem and Theorem 1.1.1.
A stochastic flow, generated via (1.2) with F (t, x) = M(t, x) (i.e. V (t, x) ≡ 0) for an isotropic
Brownian field M(t, x) is called an isotropic Brownian flow (IBF).

We state some useful properties of isotropic Brownian fields.

Lemma 1.3.4 (properties of isotropic Brownian fields).
Isotropic Brownian fields fulfil the following.

1. t 7→M(t, x) is a d-dimensional standard Brownian motion.
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2. 〈M(., x),M(., y)〉t = b(x− y)t for x, y ∈ Rd and t ∈ [0,∞) as well as

〈
∂lM

i(·, x·), ∂kM
j(·, y·)

〉
t
= −

∫ t

0
∂l∂kb

i,j(xs − ys)ds. (1.9)

Let b be an isotropic covariance tensor. For an R
d-valued Gaussian field U =

(
U(x) : x ∈ Rd

)
with covariance cov(U(x+ y), U(y)) = b(x) the following holds.

3. U(x) has a differentiable modification.

4. βL = E

[
∂Ui
∂xi

]2
and βN = E

[
∂Ui
∂xj

]2
for i 6= j.

Proof: 1., 2. are direct consequences of Definition 1.3.3. 3.: [27, Theorem 1.4.1]. 4.: [5, (2.7)]. 2

Remark: The above especially applies to U(x) = M(1, x). In the following we list some proper-
ties of IBFs which follow more or less directly from the definitions and which give the reason why
the IBFs are the flow versions of Brownian motions in some sense. First we state some global
properties of their law (as G-valued random variables).

Lemma 1.3.5 (general properties of IBFs).
Let (Φs,t : 0 ≤ s, t <∞) be an IBF. Then it is a Brownian flow that satisfies the following.

1. It is temporally homogenous i.e. for C > 0 the laws of (Φs,t : 0 ≤ s, t <∞) and (Φs+C,t+C :
0 ≤ s, t <∞) coincide.

2. It is rotation invariant i.e. for any orthogonal matrix O we have that (OΦs,t(·) : 0 ≤ s, t <
∞) and (Φs,t(O·) : 0 ≤ s, t <∞) coincide in law.

3. It is spatially homogenous (or translation invariant) i.e. for any x ∈ R
d we have that

(Φs,t : 0 ≤ s, t <∞) and (Φs,t(·+ x) : 0 ≤ s, t <∞) coincide in law.

4. It has independent increments i.e. for 0 < t1 < . . . < tn < ∞ we have that the family of
random mappings (Φ0,t1 ,Φt1,t2 , . . . ,Φtn−1,tn) is independent.

Proof: [12, Section 1.2]. 2

The latter means roughly that sitting on a particle which is subject to an IBF one can neither
determine where one is nor the direction one is looking at by observation of the flow. This
property essentially implies quite a lot of structure for the finite-dimensional motions of an IBF
some of which we state in the following theorem. See [5] or [28] for more details.

Theorem 1.3.6 (finite-dimensional diffusions).
Let (Φs,t : 0 ≤ s, t <∞) be an IBF. The n-point-motion (x(1)

t , . . . , x
(n)
t ) := (Φt

(
x(1)

)
, . . . ,Φt

(
x(n)

)
)

has the following properties.

1. It is an R
nd-valued diffusion, with generator L(n) given for g ∈ C2

b by

L(n)g
(
x(1), . . . , x(n)

)
=

1
2

n∑
l,m=1

d∑
i,j=1

b
(
x(l) − x(m)

) ∂2g

∂x
(l)
i ∂x

(m)
j

(
x(1), . . . , x(n)

)
. (1.10)
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2. minl 6=m

∥∥x(l) − x(m)
∥∥→∞⇒ |L(n)g

(
x(1), . . . , x(n)

)
− 1

2∆g
(
x(1), . . . , x(n)

)
| → 0, where 1

2∆
is the generator of a nd-dimensional Brownian motion.

3. ρxy
t := ‖xt − yt‖ is a diffusion on (0,∞) with generator L̄ given for g ∈ C2

b by

L̄g(r) = (d− 1)
(

1−BN (r)
r

)
g′(r) + (1−BL(r))g′′(r). (1.11)

4. ρxy
t solves the SDE

dρxy
t = (d− 1)

(
1−BN (ρxy

t )
ρxy

t

)
dt+

√
2(1−BL(ρxy

t ))dWt (1.12)

with a standard Brownian motion (Wt)t≥0.

The spatial derivative DxΦ solves the SDE

DxΦ0,t(·) = idRd +
∫ t

0
DΦ0,u(·)M(du,Φ0,u(·))DxΦ0,u(·). (1.13)

Proof: [28, p. 617], [27, p.124], [28, p. 4] and [5, (3.11)]. 2

Remark: [28] uses a slightly different definition. Assume α = 1 there to get things into line with
the definitions above (see the discussion after Definition and Lemma 1.3.2). [45] considers the
mean square separation of (ρxy

t )2 and derives precise asymptotics for it. The previous theorem
shows, that for n = 2 we get that (xt, yt) coincides in law with the solution of the following SDE.

(
xt

yt

)
−
(
x
y

)
=
∫ t

0

(
Ed b (xs − ys)

b (xs − ys) Ed

)1/2

dWs =:
∫ t

0
b̄ (xs − ys) dWs. (1.14)

Therein (Wt)t≥0 is a 2d-dimensional standard Brownian motion. The following lemma states
some information about the eigenvalues of b and b̄ respectively.

Lemma 1.3.7 (eigenvalues of b and b̄).
For z ∈ Rd we have:

1. z is an eigenvector of b(z) to the eigenvalue BL (|z|).

2. Any vector 0 6= z⊥ perpendicular to z is an eigenvector of b(z) to the eigenvalue BN (|z|).

3. b̄ has the eigenvalues {1±BL(z), 1±BN (z)} with multiplicities 1 and d− 1 respectively.

Proof: Since 1. and 2. have also been shown in [25] (for general d) we only give their proof in
the two-dimensional case. The general one is perfectly similar. In the following computations we
omit the arguments of BL and BN (so BL means BL (|z|).)
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1.: For z = (z1, z2) we have (see Lemma 1.3.2) that

b(z)z =

 (BL−BN )z2
1

‖z‖2 +BN
(BL−BN )z1z2

‖z‖2
(BL−BN )z1z2

‖z‖2
(BL−BN )z2

2

‖z‖2 +BN

( z1
z2

)

=
1

‖z‖2

(
BLz

2
1 +BNz

2
2 (BL −BN ) z1z2

(BL −BN ) z1z2 BLz
2
2 +BNz

2
1

)(
z1
z2

)
=

1
‖z‖2

(
BLz

3
1 +BNz1z

2
2 +BLz1z

2
2 −BNz1z

2
2

BLz
2
1z2 −BNz

2
1z2 +BLz

3
2 +BNz

2
1z2

)
=BLz.

2.: W.l.o.g. we let z⊥ := (z2,−z1)T and conclude

b(z)z⊥ =
1

‖z‖2

(
BLz

2
1 +BNz

2
2 (BL −BN ) z1z2

(BL −BN ) z1z2 BLz
2
2 +BNz

2
1

)(
z2
−z1

)
=

1
‖z‖2

(
BLz

2
1z2 +BNz

3
2 −BLz

2
1z2 +BNz

2
1z2

BLz1z
2
2 −BNz1z

2
2 −BLz1z

2
2 −BNz

3
1

)
=BNz

⊥.

3. follows from 1. and 2. with the following simple computations (valid for general d).(
E2 b (z)
b (z) E2

)(
z
z

)
= (1 +BL)

(
z
z

)
,(

E2 b (z)
b (z) E2

)(
−z
z

)
= (1−BL)

(
−z
z

)
,(

E2 b (z)
b (z) E2

)(
z⊥

z⊥

)
= (1 +BN )

(
z⊥

z⊥

)
,(

E2 b (z)
b (z) E2

)(
z⊥

−z⊥
)

= (1−BN )
(

z⊥

−z⊥
)
.

2

Observe that the previous lemma ensures that b̄ is elliptic apart from the diagonal {x = y}.
The regularity of the finite-dimensional projections given above can also be used in terms of the
running maximum of a geometric Brownian motion.

Lemma 1.3.8 (Two-Point-Control - IBF version).
Let (Φs,t : 0 ≤ s ≤ t <∞) be an IBF. There are constants λ > 0 and σ̄ > 0 such that for x, y ∈ Rd

there is a standard Brownian motion (Wt)t≥0 such that we have for (xt, yt) := (Φt(x),Φt(y)) the
following.

1. We have a.s. for all t ≥ 0 that

|xt − yt| ≤ |x− y|eσ̄ sup0≤s≤t Ws+λt. (1.15)
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2. We have for each x, y ∈ Rd, T > 0 and q ≥ 1 that

E

[
sup

0≤t≤T
|xt − yt|q

]1/q

≤ 2|x− y|e(λ+ 1
2
qσ̄2)T . (1.16)

Proof: [52, Condition (H) and Lemma 4.1]. 2

Observe that we write E [X]q for (E [X])q which is different from E [Xq]. We will use this conven-
tion throughout the whole work.

1.3.3 Lyapunov Exponents

Lyapunov exponents are usually obtained for linear RDS from the multiplicative ergodic theorem
(Theorem 1.2.9) if the RDS has an invariant probability measure. So to define Lyapunov expo-
nents for an IBF we might try to find a RDS that naturally corresponds to the IBF, hope that
this RDS preserves some nice probability measure and apply the standard theory which we briefly
sketched in Section 1.2 and e.g. can be found in detail in [1]. The difficulties arising especially
from null sets in constructing the RDS have been overcome in [2] as already seen (see Theo-
rem 1.2.11) and we do not go into details here. Since RDS’ and stochastic flows with stationary
increments are essentially the same objects one indeed can find such an RDS which unfortunately
has no invariant probability but Lebesgue measure as invariant measure (which one should expect
in the first place according to the spatial invariance properties of IBFs). To overcome also this
issue one might center the flow around some trajectory i.e. pass to Φs,t(·)−Φs,t(x) + x for some
x ∈ R

d. In this way one gets a RDS with an invariant probability which essentially makes the
multiplicative ergodic theorem applicable to IBFs. The other possibility is to observe that for
any x ∈ Rd the spatial derivative DxΦ0,n(·) coincides in law with the law of the product of n i.i.d.
random variables each having the distribution of DxΦ0,1(·). This of course can be realised as a
linear RDS which delivers an approach that does not rely on any invariant probabilities. The
Lyapunov spectrum of an IBF has been computed in [5]. For a more detailed account on the
issues arising on the way to the following theorem see [12].

Theorem 1.3.9 (Lyapunov exponents for IBFs).
Let (Φs,t : 0 ≤ s, t <∞) be an IBF with covariance tensor b. Then for λ⊗ P-almost all (x, ω) ∈
R

d×Ω there is a measurable (i.e. random) family of linear vectorspaces Vd(x, ω) ⊂ . . . ⊂ V1(x, ω)
with dim(Vi) = d+ 1− i for i = 1, . . . , d such that

lim
n→∞

1
n

log |DxΦn(ω, x)v| = µi ⇔ v ∈ Vi(x, ω) \ Vi+1(x, ω)

wherein (µ1 > . . . > µd) are constants (neither depending on x nor on ω). The numbers µi are
called the Lyapunov exponents of Φ and fulfil (with βN and βL as before)

µi :=
1
2

[(d− i)βN − iβL] .

Proof: [5, (7.2) and (7.3)]. 2

Due to the rotational invariance of IBFs the laws of the Vi(x, ·) (i.e. the laws of suitable or-
thonormed bases) are just the uniform distribution on the unit ball i.e. the Haar measure of the
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topological group of rotations of Rd. The top Lyapunov exponent µ1 i.e. its sign crucially affects
the asymptotic behaviour of the flow, as shown in [9]. It gives the drift of |Φt(x)−Φt(y)| for very
small |x− y|.

1.3.4 Gaussian Measures And Reproducing Kernel Hilbert Spaces

As for any Gaussian measure the law of (M(t, x) : t ≥ 0, x ∈ R
d) naturally leads to a Hilbert

space the so-called reproducing kernel Hilbert space (RKHS) or the Cameron-Martin space. We
will give a brief introduction into this topic and quote a theorem that allows for the expansion
of M(t, x) in terms of complete orthonormal systems of this space. We finish with a support
theorem for IBFs and closely follow [12].
Let M(t, x) be the generating field of an isotropic Brownian flow. The random field U(x) :=
M(1, x) can be canonically realized as a Gaussian measure Ñ on the Borel σ-algebra on C(Rd : Rd).
The space C(Rd : Rd) equipped with the topology of the uniform convergence on compacts is a
locally convex topological vector space which is also metrizable via the metric

ρ̃(f, g) :=
∞∑

n=0

1
2k

ρ̃n(f, g)
1 + ρ̃n(f, g)

where ρ̃n(f, g) := max
i=1,...,d

sup
|x|≤n

|fi(x)− gi(x)|.

Remark:
Note that actually U(x) is smoother than just continuous, but since we are interested in the
RKHS associated with the distribution of U , [8, Lemma 3.2.2] tells us that the RKHS is the same
as long as the space of the ”smoother” functions is continuously and linearly embedded in the
bigger space. Consider the space C(Rd × {1, . . . , d} : R) defined as

C(Rd × {1, . . . , d} : R) := {f : Rd × {1, . . . , d} → R : f is continuous},

where Rd × {1, . . . , d} is understood with the product topology.
The space C(Rd × {1, . . . , d} : R), equipped with the topology of the uniform convergence on
compact sets is a locally convex set and is also metrizable via the metric

ρ(f, g) :=
∞∑

n=0

1
2n

ρn(f, g)
1 + ρn(f, g)

where ρn(f, g) := max
i=1,...,d

sup
|x|≤n

|f(x, i)− g(x, i)|.

It is easy to see that C2(Rd : Rd) and C2(Rd × {1, . . . , d} : R) can be identified through the
isomorphism I

I : C2(Rd : Rd) → C2(Rd × {1, . . . , d} : R)

with(
R

d 3 x f7→ (f1(x), . . . , fd(x))T ∈ Rd
)

I7→
(
R

d × {1, . . . , d} 3 (x, i)
If7→ I(f)(x, i) := fi(x) ∈ R

)
.

The distribution of U(x), as a C(Rd × {1, . . . , d} : R)-valued random variable is again centered
Gaussian and will be denoted by N . According to [12, Proposition D.3.1] its Cameron-Martin
space H(N ) (resp. reproducing kernel Hilbert space) is the range of the covariance operator of N
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(as a bilinear functional on the dual of C(Rd : Rd) ' C(Rd×{1, . . . , d} : R)) and hence generated
by the symmetric positive kernel

k(x, i, y, j) :
(
R

d × {1, . . . , d}
)
×
(
R

d × {1, . . . , d}
)
→ R

defined via

k(x, i, y, j) :=
∫

C
δ(x,i)(f)δ(y,j)(f)N (df) =

∫
C
f(x, i)f(y, j)N (df)

=
∫

C
fi(x)fj(y)N (df) = E

[
F i(x, 1)F j(y, 1)

]
= bi,j(x− y) ,

where δ(x,i) denotes the evaluation functional on C(Rd × {1, . . . , d} : R). Observe that it is a
continuous linear functional.

Proposition 1.3.10 (elements of the RKHS).
Let µ be a finite signed measure on (Rd×{1, . . . , d},B) having compact support. Then the function

h(x, i) :=
∫
Rd×{1,...,d}

bi,j(x− y)µ(dydj)

is an element of the RKHS, associated to the kernel k.
The linear subspace spanned by(

b·,j(x− ·) : j ∈ {1, . . . , d}, x ∈ Rd
)

is dense in this RKHS.

Proof: [12, D.3.1] or [8]. 2

Now we are ready to state the theorems mentioned before.

Theorem 1.3.11 (representation of M in terms of its RKHS).
For an isotropic Brownian field M = M(t, x) let (Vi : i ∈ N) be a complete orthonormal system
of its associated RKHS and

(
W i : i ∈ N

)
a sequence of independent standard Brownian motions.

Then we have

M(t, x) =
∞∑
i=1

Vi(x)W i
t .

The convergence mode is the a.s. uniform convergence of all derivatives up to order 2 on compacts,
i.e. we especially have for K ⊂⊂ R

d that

P

[
sup

0≤t≤T
sup
x∈K

∥∥∥∥∥
n∑

i=1

Vi(x)W i
t −M(t, x)

∥∥∥∥∥ n→∞−→ 0

]
= 1.

Proof: [8, Theorem 3.5.1] and [12, Appendix D]. 2

Finally we proceed to the support theorem.
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Theorem 1.3.12 (support theorem for IBFs).
Let M be an isotropic Brownian field. Due to Theorem 1.3.11 this can be written as M(t, x) =∑∞

i=1 Vi(x)W i
t (notation as before). Assume that V1 is four times continuously differentiable and

that all derivatives up to order four are bounded. Then for K ⊂⊂ R
d, T > 0 and δ > 0 there are

positive numbers ε and C such that

P

[
sup

0≤t≤T
sup
x∈K

∥∥∥x t
C
− ψt(x)

∥∥∥ < δ

]
> ε.

Therein ψ = ψt(x) is the solution of the deterministic control problem{
∂tψt(x) = V1(ψt(x))
ψ0(x) = x

.

Proof: [12, Theorem 6.2.3]. 2

1.3.5 Time Reverse And Markov-Properties

The various spatial invariance properties of IBFs also imply an invariance property w.r.t. time
change. Precisely if one takes T > 0 and considers the forward flow and the backward flow
induced by an IBF on time horizon [0, T ] then their laws coincide. Note that this fails to be true
if one replaces the deterministic T by a random time (it is in general even false for Fs,t-stopping
times).

Lemma 1.3.13 (time reverse for IBFs).
For arbitrary T > 0 we have:

L [(Φs,t(.) : 0 ≤ s ≤ t ≤ T )] = L [(ΦT−s,T−t(.) : 0 ≤ s ≤ t ≤ T )] (1.17)

Let Fs,t be as in Lemma 1.1.8. For any (Fs,t : s ∈ (−∞, t])-stopping-time τ we have

L [Φτ,t (Φr,τ (.)) : r ≤ τ | Fτ,t] = Lτ,t [Φt+r−τ,t(.) : r ≤ τ ] . (1.18)

Proof: Due to Proposition 1.1.7 the infinitesimal generator of the backward flow is the semimartin-
gale fieldM(t, x)−

∫ t
0

∑d
j=1

∂b·,j

∂xj
(x−y)|y=xds which by Lemma 1.3.2 is nothing butM(t, x). There-

fore the law of the forward flow and the law of the backward flow coincide. This proves (1.17).
The rest follows from this and Lemma 1.1.8. 2

1.4 Isotropic Ornstein-Uhlenbeck Flows

As we have already seen the IBFs are the class of stochastic flows that generically links to Lebesgue
measure for the following reasons.

1. Their laws are invariant under rigid motions just as Lebesgue measure itself. Both are
characterized by this property (up to some norming constants).
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2. Lebesgue measure is (modulo a multiplicative constant) the invariant measure for the RDS
associated to an IBF (if one neglects the fact that it is not a probability).

The idea behind the definition of the isotropic Ornstein-Uhlenbeck flows is to put a Gaussian
measure as reference measure instead of Lebesgue measure, because of its importance in proba-
bility theory. One then can hope for the RDS’ to have a nice invariant probability measure (i.e.
the Gaussian) and so to be able to apply the RDS theory in its full strength.
Another motivation for considering the IOUFs is the natural question of letting an isotropic Brow-
nian flow evolve in a localizing potential, i.e. for some field U : Rd → R of considering the IBF ΦU

enforced by the potential U , that is, ΦU is generated via an SDE driven by the semimartingale
field

V U (t, x, ω) = M(t, x, ω)−∇U(x)t .

The IOUFs correspond to a quadratic potential U = c
2 |x|

2. However, adding a drift typically will
destroy many of the nice properties of an IBF. Nevertheless the quadratic potential given above
turns out to be sufficiently nice to yield interesting properties without being totally intractable.
As one obtains an Ornstein-Uhlenbeck process from a Brownian motion by subjecting it to a
quadratic potential i.e. by passing from the classical Itô SDE

dXt = dWt, X0 = x0

for a Brownian motion (Wt)t≥0 to the classical Itô SDE

dXt = −cXtdt+ dWt, X0 = x0

with the same Brownian motion (Wt)t≥0 and some constant c > 0 one can obtain an isotropic
Ornstein-Uhlenbeck flow by subjecting an IBF to the quadratic potential given above i.e. by
passing from the Kunita-type SDE

Φs,t(x) =
∫ t

s
M(du,Φs,u(x)), Φs,s(x) = x

to the Kunita-type SDE

φs,t(x) =
∫ t

s
M(du, φs,u(x))− c

∫ t

s
φs,u(x)du, φs,s(x) = x

wherein M = M(t, x) denotes an isotropic Brownian field (in both cases) and c > 0 is a constant.
IOUFs have been defined first in [12] and further studied in [57], [54] and [55].

1.4.1 The Generating Field

As for IBFs we introduce the IOUFs by specifying the generator F (t, x).

Definition 1.4.1 (IOUF).
Let c > 0 and M(t, x, ω) be an isotropic Brownian field with a C4-isotropic covariance tensor
b. We define the semimartingale field F (t, x, ω) := M(t, x, ω) − cxt which corresponds to the
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choice V (x, t) = −cxt. An isotropic Ornstein-Uhlenbeck flow (IOUF) is defined to be the solution
φ = φs,t(x, ω) of the Kunita-type (SDE)

φs,t(x) = x+
∫ t

s
F (du, φs,u(x)) = x+

∫ t

s
M(du, φs,u(x))− c

∫ t

s
φs,u(x)du.

We call c the drift of φ and b the covariance tensor of φ.

Remark: IOUFs take values in C3,δ for arbitrary δ > 0. We may associate to φ an isotropic
Brownian flow Φ corresponding to the case c = 0. Note that we do not want IBFs to be special
IOUFs (which we ensured by c > 0). Care has to be taken concerning the name ”isotropic“
because IOUFs (or their laws respectively) are not isotropic at all: the law of an IOUF changes if
one applies a translation on the state space and the origin is distinguished by being the only zero
of the drift in the SDE. We stick to the name because the most important ingredient of an IOUF
is an isotropic covariance tensor. Nevertheless the IOUFs retain quite a lot of the nice properties
of IBFs e.g. the fact that lots of finite-dimensional projections can be given rather explicitly and
turn out to be diffusions. We summarize these kind of properties in the following lemma.

Lemma 1.4.2 (some finite dimensional marginals for IOUFs).
Let φ be an IOUF with drift c and covariance tensor b. Then we have the following.

1. φ is a Brownian Flow (i.e. it has independent increments) and its law is invariant under
orthogonal transformations.

2. The one-point motion is an Ornstein-Uhlenbeck diffusion with generator

L := −c
d∑

i=1

xi
∂

∂xi
+

1
2

d∑
i=1

∂2

∂x2
i

= −c
d∑

i=1

xi
∂

∂xi
+

1
2
∆. (1.19)

3. The difference process (φt(x)− φt(y) : t ∈ R+) is a diffusion with generator

Ld := −c
d∑

i=1

xi
∂

∂xi
+

d∑
i,j=1

(δij − bij(x))
∂2

∂xi∂xj
.

4. The spatial derivative Dxφ solves the SDE

Dxφ0,t(·) = idRd +
∫ t

0
Dφ0,u(·)F (du, φ0,u(·))Dxφ0,u(·) (1.20)

which reads in components for 1 ≤ i, j ≤ d

∂jφ
i
t (x) = δij +

∫ t

0

∑
k

∂jφ
k
s (x) ∂kM

i (ds, xs)− c

∫ t

0
∂jφ

i
t (x) ds.

5. The distance process (|φt(x)− φt(y)| : t ∈ R+) is a diffusion with generator

A := (1−BL(r))
d2

dr2
+
(
(d− 1)

1−BN (r)
r

− cr
) d
dr
. (1.21)
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Proof: [12, Proposition 7.1.1] or [57, Proposition 2.2]. [12] also includes a recurrence-transience
classification of the distance process. See also [54]. 2

The next lemma will be used to control the moments of the two-point distance in terms of a SDE.

Lemma 1.4.3 (Two-Point-Control IOUF version).
Let (φs,t : 0 ≤ s ≤ t <∞) be an IOUF. There are constants λ > 0 and σ̄ > 0 such that for x, y ∈
R

d there is a standard Brownian motion (Wt)t≥0 such that we have for (xt, yt) := (φt(x), φt(y))
the following.

1. We have a.s. for all t ≥ 0 that

|xt − yt| ≤ |x− y|eσ̄ sup0≤s≤t Ws+λt.

2. We have for each x, y ∈ Rd, T > 0 and q ≥ 1 that

E

[
sup

0≤t≤T
|xt − yt|q

]1/q

≤ 2|x− y|e(λ+ 1
2
qσ̄2)T .

Proof: [12, Corollary 7.1.1] or [57, Corollary 2.3] and [52, Condition (H)]. 2

Observe that this lemma holds for a very general class of stochastic flows. In addition IOUFs
also retain some of the global properties of IBFs which we summarize in the next lemma.

Lemma 1.4.4 (general properties of IOUFs).
Let (φs,t : 0 ≤ s, t <∞) be an IOUF. Then it is a Brownian flow that satisfies the following.

1. It is temporally homogenous i.e. for C > 0 the laws of (φs,t : 0 ≤ s, t <∞) and (φs+C,t+C :
0 ≤ s, t <∞) coincide.

2. It is rotation invariant i.e. for any orthogonal matrix O we have that (Oφs,t(·) : 0 ≤ s, t <
∞) and (φs,t(O·) : 0 ≤ s, t <∞) coincide in law.

3. It has independent increments i.e. for 0 < t1 < . . . < tn < ∞ we have that the random
mappings (φ0,t1 , φt1,t2 , . . . , φtn−1,tn) are independent.

4. The spatial derivative at x is spatially homogenous, i.e. for x, y ∈ Rd the laws of (Dφt (x) :
t ≥ 0) and (Dφt (y) : t ≥ 0) coincide.

Proof: 1.-3. follow directly from the properties of the driving field and 4. follows from (1.20). 2

1.4.2 Invariant Measures

For the application of Theorem 1.2.9 requires the existence of an invariant probability we will pay
some attention to the question of existence of invariant measures for IOUFs although the results
are well known.
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Proposition 1.4.5 (invariant measure for the one-point motion).
Let φ be an IOUF with covariance tensor b and drift c. Then we have that the measure µ :=

N (0, 2
c )
⊗d with density x = (x1, . . . , xd) 7→

(
c
π

) d
2 e−c|x|2 is an invariant measure in the sense of

Markov processes for the one-point motion of an IOUF i.e. we have for all t ≥ 0 that

µ = Ptµ

where Pt denotes the semigroup of the one-point motion of an IOUF (cf. [12, Remark 9.1]).

Proof: The proof relies on the fact that all the measures under consideration are locally finite
and hence it is sufficient to check that the generator L of the one-point motion (given by (1.19)
for different values of c) and the measure µ (suspected to be invariant) satisfy for any function
f ∈ C∞0 (cf. [12, Proposition B.2] and the references therein) the equality

∫
Rd Lf(x)µ(dx) = 0.

This can be checked by using integration by parts in the following manner (observe that we write∑
i for

∑d
i=1 i.e. we omit the summation set when it is clear from the context).∫

Rd

Lf(x)µ(dx) =
( c
π

)d/2
∫
Rd

[
−c
∑

i

xi∂if(x) +
1
2

∑
i

∂i∂if(x)

]
e−c|x|2dx

=
( c
π

)d/2
(∫

Rd

1
2

∑
i

e−c|x|2∂i∂if(x)dx− c

∫
Rd

∑
i

xie
−c|x|2∂if(x)dx

)

=
( c
π

)d/2
(
−
∫
Rd

1
2

∑
i

(
∂ie

−c|x|2
)
∂if(x)dx− c

∫
Rd

∑
i

xie
−c|x|2∂if(x)dx

)

=
( c
π

)d/2
(∫

Rd

1
2

∑
i

2cxie
−c|x|2∂if(x)dx− c

∫
Rd

∑
i

xie
−c|x|2∂if(x)dx

)
= 0.

2

The above shows that the one-point motion of an IOUF has an invariant measure in the sense
of Markov processes and to be accurate we have to check that the same measure is an invariant
measure in the sense of random dynamical systems (to be precise we have to take µ⊗ P̃).

1.4.3 Lyapunov Exponents

The Lyapunov spectrum for an IOUF can be computed from the Lyapunov spectrum of the IBF
that one gets by neglecting the drift c of the IOUF. This has been carried out in [57] and we only
state the result.

Lemma 1.4.6 (Lyapunov exponents for IOUFs).
Let (φs,t : 0 ≤ s, t <∞) be an IOUF with covariance tensor b and drift c. Then it has d different
Lyapunov exponents in the sense of Theorem 1.2.9, which are given by

λi := (d− i)
βN

2
− i

βL

2
− c.

In particular they all have simple multiplicities.

Proof: [57, Proposition 2.5]. 2
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1.5 Repulsive Isotropic Flows

We define the notion of repulsive isotropic flows (RIF) to cover the case of an IOUF SDE with
drift c < 0 where this can be done for free. Although it seems possible to derive quite a lot of
properties of RIFs using standard methods we limit ourselves to the extension of new results on
IOUFs to the case c < 0. Since the RIF are not of central importance for the following we keep
the following as short as possible.

Definition 1.5.1 (repulsive isotropic flow).
Let c < 0 and M(t, x, ω) be an isotropic Brownian field with a C4-isotropic covariance tensor b.
We define the semimartingale field F (t, x, ω) := M(t, x, ω)− cxt which (again) corresponds to the
choice V (t, x) = −cxt. A repulsive isotropic flow (RIF) is defined to be the solution φ = φs,t(x, ω)
of the Kunita-type (SDE)

φs,t(x) = x+
∫ t

s
F (du, φs,u(x)) = x+

∫ t

s
M(du, φs,u(x))− c

∫ t

s
φs,u(x)du.

We call c the drift of φ and b the covariance tensor of φ.

Remark: Unifying the notation we introduce a name for IOUFs IBFs and RIFs together and
speak isotropic flows. Since all the argueing about the names above applies we suggest that a
name like ”rotation invariant flows“ should be prefered. Nevertheless we call IBFs, IOUFs and
RIFs isotropic flows although it is not clear how the invariance under rotation links exactly to
the driving SDEs we consider.

Theorem 1.5.2 (general properties of RIFs).
Let φ be an RIF with drift c < 0 and covariance tensor b. Then we have the following.

1. All the assertions of Lemma 1.4.2 (except the claim that the generator of the one-point
motion belongs to an asymptotically stationary Ornstein-Uhlenbeck process) hold.

2. For any x ∈ Rd we have that φt(x)− x is distributed as N (0, 1
2c(1− e−2ct)).

3. The assertions of Lemma 1.4.3 hold.

Proof: For 1. it is enough to observe that the proof in [12] is valid for arbitrary c 6= 0. Note
that one can solve the SDE for the one-point motion and obtain 2. from this just as in the IOUF
case. The difference is that 2. excludes the possibility that the one-point motion might become
stationary because of the increasing variance. 3. follows from [52, Lemma 4.1]. 2
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Chapter 2

Spatial Regularity

In this chapter we prove a result concerning the macroscopic bevahiour of RIFs, IBFs and IOUFs
on a fixed time horizon. We show that their stochasticity is negligible far away from the origin if
compared to the distance to the origin. The asymptotic spatial behavior of stochastic flows and
their derivatives (of any order!) has been studied in [20] in a very general setting but nevertheless
with a slightly different scope. Since we only consider the special cases of IOUFs and IBFs we
can give a more specific result (which in this simplicity cannot be expected to hold in the case
of a general drift). It is somewhat clear that the obtained results are not sharp but since we
need them (for IOUFs) in Chapter 5 precisely in the form given below we do not care about
generalizations.

2.1 Preliminaries

The proof of the main theorem depends crucially on the chaining technique. We will use the
formulation from [10], where also a proof can be found.
Let (X, ρ) be a compact metric space and φ : X → R+ be a random continuous function i.e. a
random variable taking values in the set of continuous functions from X to R+. Given a sequence
of positive real numbers (δi)i≥0, such that

∑∞
i=0 δi < ∞ we determine a sequence (χi)

∞
i=0 of

discretizations (skeletons) of X, with the property that for all x ∈ X there is a point xi ∈ χi, such
that ρ(x, xi) ≤ δi. Assume that χ0 = {x0}, with ρ(x, x0) ≤ δ0 for all x ∈ X.

Proposition 2.1.1 (Chaining).
Let φ : X → R+ be an almost surely continuous random function with (δi)i≥0 and (χi)

∞
i=0 as

above. For arbitrary positive ε, z ≥ 0 and an arbitrary sequence of positive reals (εi)i≥0 such that
ε+

∑∞
i=0 εi = 1 we have

P
(
sup
x∈X

φ(x) > z
)
≤ P

(
φ(x0) > εz

)
+

∞∑
i=0

|χi+1| sup
ρ(x,y)≤δi

P
(
|φ(x)− φ(y)| > εiz

)
.

Proof: [10, Lemma 4.1]. 2

The following lemma simply states some well known facts about the running maximum of a
standard Brownian motion as well as a common estimate for the Gaussian tail. We will use them
frequently and therefore state them explicitly.

35
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Lemma 2.1.2 (Gaussian tails).
Let (Wt)t≥0 be a standard Brownian motion, and let W ?

t := sups≤tWs be its running maximum.
The distribution of W ?

t has density

11[0,∞)(x)

√
2
πt
e−

x2

2t

with respect to the Lebesgue measure. Moreover for arbitrary K > 0 the following bounds hold.

P(Wt ≥ K) ≤ 1
K

√
t

2π
e−

K2

2t and P(W ?
t ≥ K) ≤ 1

K

√
2t
π
e−

K2

2t .

Proof: One only has to observe that the running maximum and the modulus of a Brownian
motion have the same one-dimensional distributions. 2

2.2 Spatial Regularity Lemma

The one-point motion φt(x) of an IOUF is as already stated an Ornstein-Uhlenbeck process and
so if x is far away from the origin |φt(x)| will decrease roughly as |x|e−ct (which is the expected
decrease) because the variance of |φt(x)| is rather negligible for large |x|. We may expect the
IOUFs unitstep-discretization φ = φ0,1 to look like e−c times the identity on a large scale. For
a fixed x this is quite obvious but care has to be taken about the fact that we are dealing with
infinitely many random variables. The next lemma states that this is no problem at all. The
same is true for IBFs and RIFs (with the appropriate modifications).

Lemma 2.2.1 (spatial asymptotics for IBFs and IOUFs).
Let (φs,t : 0 ≤ s ≤ t < ∞) be an IOUF as in Definition 1.4.1 or a RIF as in Definition 1.5.1.
Then we have for any t > 0 a.s. the following (c 6= 0 denotes the drift in both cases).

1.

lim
R→∞

sup
|x|≥R

|φt(x)− e−ctx|
|x|

= 0. (2.1)

2.
lim

R→∞
sup
|x|≥R

|φt(x)|
|x|

= e−ct.

Let (Φs,t : 0 ≤ s ≤ t <∞) be an IBF as in Definition 1.3.3. Then we have for any t > 0 a.s. the
following.

3.
lim

R→∞
sup
|x|≥R

|Φt(x)− x|
|x|

= 0. (2.2)

4.

lim
R→∞

sup
|x|≥R

|Φt(x)|
|x|

= 1.
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Proof: Observe that in both cases the second formula is an easy consequence of the first one, so
we will only have to prove (2.1) and (2.2). Therefore it is sufficient to show

lim
R→∞

sup
R≤|x|≤R+1

|φt(x)− e−ctx|
|x|

= 0 and lim
R→∞

sup
R≤|x|≤R+1

|Φt(x)− x|
|x|

= 0 a.s..

Let AR := {x ∈ R
d : R ≤ |x| ≤ R + 1}. We want to apply the chaining technique (see

Proposition 2.1.1) and so we first observe that there is a constant c1 such that AR can be covered
by c1R

d3j−1 balls of radius δj = 3−j if j ≥ 1. Let χj consist of the centers of these balls and
εj = 2−j−2 as well as ε = 1

2 . Fixing ε̃ > 0 and an arbitrary x0 ∈ AR (with δ0 := 2(R + 1)) we
conclude

P

[
sup

x∈AR

|φt(x)− e−ctx|
|x|

> ε̃

]
≤ P

[
sup

x∈AR

|φt(x)− e−ctx| > ε̃R

]
≤ P

[
|φt(x0)− e−ctx0| >

ε̃R

2

]

+
∞∑

j=0

c1R
d3j sup

|x−y|≤3−j

P
[
||φt(x)− e−ctx| − |φt(y)− e−cty|| > 2−j−2ε̃R

]
as well as

P

[
sup

x∈AR

|Φt(x)− x|
|x|

> ε̃

]
≤ P

[
sup

x∈AR

|Φt(x)− x| > ε̃R

]
≤ P

[
|Φt(x0)− x0| >

ε̃R

2

]

+
∞∑

j=0

c1R
d3j sup

|x−y|≤3−j

P
[
||Φt(x)− x| − |Φt(y)− y|| > 2−j−2ε̃R

]
.

Using some standard estimates for the normal distribution (as stated in Lemma 2.1.2 for a
Brownian motion) we conclude that

P

[
|φt(x0)− e−tcx0| >

ε̃R

2

]
≤dP

[
|φ1

t (x0)− e−tcx1
0| >

ε̃R

2d

]
= 2dN

(
0,

1
2c

(1− e−2ct)
)(

(
ε̃R

2d
,∞)

)
≤2d2

ε̃R

√
1− e−2ct

πc
e
− 1

2
( ε̃R

2d
)2 2c

1−e−2ct ≤ c2e
−c3R2

as well as

P

[
|Φt(x0)− x0| >

ε̃R

2

]
≤dP

[
|Φ1

t (x0)− x1
0| >

ε̃R

2d

]
= 2dN (0, t)

(
(
ε̃R

2d
,∞)

)
≤2d2

ε̃R

√
2t
π
e−

1
2t

( ε̃R
2d

)2 ≤ c2e
−c3R2

where c2 and c3 are constants that only depend on c, d, ε̃ and t (but not on R). W.l.o.g. we now
assume that R ≥ 16e−ctε̃−1 ∨ 8ε̃−1. Using Lemmas 1.3.8, 1.4.3 and 2.1.2 as well as Theorem 1.5.2
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and the reversed triangle inequality we get for |x− y| ≤ 3−j that

P
[
||φt(x)− e−ctx| − |φt(y)− e−cty|| > 2−j−2ε̃R

]
≤P

[
||φt(x)− e−ctx| − |φt(y)− e−cty|| > 2−j−2ε̃R3j |x− y|

]
≤P

[
|φt(x)− e−ctx− φt(y) + e−cty| > 2−j−23j ε̃R|x− y|

]
≤P

[
|φt(x)− φt(y)| > 2−j−33j ε̃R|x− y|

]
+ P

[
e−ct|x− y| > 2−j−33j ε̃R|x− y|

]
≤P

[
W ∗

t ≥
log(2−3−j3j ε̃R)− λt

σ̄

]
and similarly

P
[
||Φt(x)− x| − |Φt(y)− y|| > 2−j−2ε̃R

]
≤P

[
|Φt(x)− Φt(y)| > 2−j−33j ε̃R|x− y|

]
+ P

[
|x− y| > 2−j−33j ε̃R|x− y|

]
≤P

[
W ∗

t ≥
log(2−3−j3j ε̃R)− λt

σ̄

]
where the Brownian motions and the constants λ and σ̄ come from Lemmas 1.4.3 and 1.3.8 as
well as Theorem 1.5.2 respectively. Of course assuming R ≥ e

8
ε̃
(λt+1) we have that

P

[
W ∗

t ≥
log(2−3−j3j ε̃R)− λt

σ̄

]
≤ σ̄

log(2−3−j3j ε̃R)− λt

√
2t
π
e−

(log(2−3−j3j ε̃R)−λt)2

2tσ̄2

≤ c4(2−j−33j ε̃R)−
log(2−3−j3j ε̃R)−2λt

2tσ̄2

where the constant c4 depends only on σ̄, λ and t. Combining all the above estimates we conclude
that for ε̃ > 0 we have that both P

[
supx∈AR

|φt(x)−e−ctx|
|x| > ε̃

]
and P

[
supx∈AR

|Φt(x)−x|
|x| > ε̃

]
can

be bounded from above by

c2e
−c3R2

+
∞∑

j=0

c1R
d3jc4(2−j−33j ε̃R)−

log(2−3−j3j ε̃R)−2λt

2tσ̄2

which can be summed up over R. Thus we get the desired conclusion via an application of the
first Borel-Cantelli Lemma. 2



Chapter 3

Densities For The Finite-Point
Motions

As we have already seen, the one-point motion of an IBF (IOUF) is a standard Brownian motion
(Ornstein-Uhlenbeck process) and so of course possesses a C∞-density. This chapter is devoted
to the question whether this is true for finite-dimensional diffusion of the considered flows. The
question of existence and smoothness of densities (w.r.t. Lebesgue measure) for the solution of
SDEs is usually investigated with techniques coming from Malliavin calculus (this is the target
the Malliavin calculus was originally developed for). Virtually all the literature assumes that the
driving vector fields of some Stratonovich SDE are smooth and that the Lie algebra generated by
them spans Rd at every point in Rd (Hörmander’s strong hypothesis) or at least at the initial value
of the SDE (Hörmander’s weak hypothesis). Under this assumption it is shown that the solution
possesses a smooth (i.e. C∞) density with bounded derivatives. This is known as Hörmander’s
theorem. See [18] for the original analytic proof and e.g. [38], [16], [41], [6], [59], [40] and [19]
for proofs using the Malliavin calculus and related works. The reason why it is hard to find
Ck-versions of Hörmander’s Theorem in the literature seems to be that Hörmander’s condition is
not well-defined if the vector fields are not smooth (the Lie bracket of two vector fields is a vector
field if their second partial derivatives commute). Nevertheless the contents of this section seems
to be well-known (but unstated in the literature) except for the (trivial) application to IBFs and
IOUFs.

3.1 Existence Of Densities

We start with the following key lemma.
Lemma 3.1.1 (Norris’ Lemma).
Let X be a R

d-valued random variable and n ≥ d + 1. Assume that for all multi-indices α with
|α| ≤ n and for any test function f ∈ Cn

b (Rd) we have

E [Dαf(X)] ≤ K||f ||∞ (3.1)

wherein K may depend on n but not on f . Then the distribution of X is absolutely continuous
w.r.t. Lebesgue measure on R

d and the density is n− d− 1 times continuously differentiable.

Proof: [40, Theorem 0.1]. 2

39
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Theorem 3.1.2 (existence result for densities).
Let k ≥ 1 be odd and let V0, . . . , Vn denote Ck+1 vector fields on R

d with bounded derivatives up
to order k + 1. Suppose that for x ∈ Rd the vectors{

Vi11
(x),

[
Vi21
, Vi22

]
, . . . ,

[
Vik1

,
[
Vik2

,
[
. . . , Vikk

]
. . .
]

: ijl ∈ {1, . . . , n}, 1 ≤ j ≤ l, 1 ≤ l ≤ k
}

(3.2)

i.e. the Lie brackets generated by {V1, . . . , Vn} of order at most k span Rd at x (one has to require
the vector field to be Ck+1 to ensure that the Lie-brackets up to order k are well-defined). Let Xt

be the solution to

Xt = x+
∫ t

0
V0(Xs)ds+

n∑
i=1

Vi(Xs) ◦ dW (i)
s

for a n-dimensional Brownian motion (Wt)t≥0. Then the distribution of Xt is absolutely con-
tinuous w.r.t. Lebesgue measure on R

d and if k + 1 ≥ 2d + 2 the density is k+1
2 − d − 1 times

continuously differentiable.

Proof: The case k = 1 also follows directly from [6, Theorem 4.9] so we can focus on the required
smoothness. We limit ourselves to a version of the proof which is somewhat sketchy. Consider
the Malliavin covariance matrix

σt := Z−1
t

[∫ t

0
ZsV (Xs)V ∗(Xs)ds

] [
Z−1

t

]∗
wherein V is the matrix V = (V1, . . . , Vn) and Zt is the solution to the SDE

Zs = En −
∫ s

0
ZuDV0(Xu)du−

n∑
i=1

∫ s

0
ZuDVi(Xu)d ◦W (i)

u .

Then [6, Theorem 4.9] tells us that we have to verify that σt is a.s. invertible for any t > 0. The
proof of [6, Theorem 6.4] shows this by proving that the vector fields apearing in (3.2) lie in the
range of σt for any t > 0. [6, Section 6.2] shows even more namely that σt ∈

⋂
1≤q<∞ Lq(P).

According to Lemma 3.1.1 we now have to show that (3.1) holds for n = k+1
2 . This is done in

some detail in the proof of [6, Theorem 4.10]. 2

At this point we are ready to derive some applications to IBFs and IOUFs as corollaries to
Theorem 3.1.2.

Corollary 3.1.3 (the two-point motion).
Let (xt, yt) be the two-point motion of a two-dimensional IBF or IOUF with a C6

b covariance
tensor b. Then (xt, yt) has a continuous density w.r.t. Lebesgue measure on R

4.

Proof: This is a trivial combination of Theorem 3.1.2 and Lemma 1.3.7 which in fact yields el-
lipticity and not only hypoellipticity. 2
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3.2 A-Little-Positivity Of Densities

This section is devoted to the question what can be said about the positivity of the density of
the 2-point-motion of an IBF or IOUF in R

d which exists as we already saw in Theorem 3.1.2.
We will make use of the following lemma.

Lemma 3.2.1 (support theorem for elliptic diffusions).
There is p = p (C4, C5, C6, δ, t) > 0, such that for any Rd-valued semimartingale St with martingale
part Mt, satisfying for t ≤ τ := inf {s : ‖Ss‖ ≥ δ} the following

1. S0 = 0,

2. The part of locally bounded variation is Lipschitz-continuous with constant C6,

3. C4 ‖z‖2 ≤ zT d〈M〉
dt z ≤ C5 ‖z‖2,

we have the estimate
P [τ > t] > p.

p can be chosen to be continuous in all variables, decreasing in C5, C6 and t as well as increasing
in δ and 0 < C4 ≤ C5.

Proof: [53, Lemma 2.4]. 2

Now we come to the definition of the notion of positivity that allows for the use of rather primitive
methods.

Definition 3.2.2 (a little positive).
We say that a function f on R

d is a little positive if there exists no open non-empty U ⊂ R
d such

that the restriction of f on U vanishes identically.

Theorem 3.2.3 (little positivity theorem).
Let (xs, ys)s≥0 be the two-point motion of a d-dimensional IBF or IOUF such that it admits a
density w.r.t. Lebesgue measure on R

2d. Then this density is a little positive.

Proof: Assume that this is wrong and let w.l.o.g. U be the interior of Kε(0) × Kε(0) for some
ε > 0. Let ps(x, y, x′, y′) denote the transition density of (xs, ys) at (x′, y′) such that ps(x, y, ·, ·)
vanishes on U .
Step 1: Assume now that x, x′ and y, y′ are disjoint and define the 2d-dimensional semimartingale

St :=
(
xst

yst

)
−
[
ts

(
x′

y′

)
+ (1− t)s

(
x
y

)]
Then Lemma 3.2.1 tells us that

P

[(
xs

ys

)
∈ U

]
≥ P

[
|x1 − x′| < ε; |y1 − y′| < ε

]
≥ p(C4, C5, s

∥∥∥∥(x− x′

y − y′

)∥∥∥∥ , ε, 1) > 0

for some constants C4 and C5 depending on mint∈[0,1] |tsx′ + (1 − t)sx − tsy′ − (1 − t)sy|. This
contradicts the definition of U .
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Step 2: For the general case x, x′ ∩ y, y′ 6= ∅ one just has to divide the action into two time steps
satisfying the assumptions of Step 1. 2

Remark: It is fairly natural to expect that this also holds for any finite-point diffusions of
IBFs and IOUFs. But since the property “a little positive“ turns out to be not very satisfying
in applications we will not give more details on that (observe that not even the flow property
prevents the density to be a little positive although the diffusion will never arrive at {x = y}).
The next section gives a sufficient condition for the density to be positive everywhere but on this
diagonal.

3.3 Positivity Of Densities

Let us again focus on the case of the two-point motion (xt, yt) of an d-dimensional IBF or IOUF
(x 6= y). The homeomorphic properties of the flow do not allow for xt = yt to hold at any time
except on a null set (remember that we decided to modify the flow in a way such that xt = yt is
impossible). One might expect the process (xt, yt) to posesses a density on the set
R

2d
× := R

2d \ {(x, y) ∈ R
2d : x = y}. If b is smooth this is in fact true as we shall see in the

following.

Theorem 3.3.1 (sufficient condition for positive density).
The two-point-motion (xt, yt) interpreted as a diffusion on R

2d
× posseses a strictly positive C∞-

density on R
2d
× provided that the covariance tensor b is C∞ and all its derivatives are bounded.

Proof: We restrict ourselves to t = 1 by scaling. First observe that our smoothness assumptions
on b now allow for the use of Hörmander’s Theorem [18]. See [41] for details and stochastic
interpretations. Since we already observed that the process satisfies the SDE (1.14) and since
Lemma 1.3.7 ensures that Hörmander’s strong condition is satisfied we can conclude that on R2d

×
a C∞-density exists. We now have to show that it is strictly positive there. We want to apply
the results of [29], so we have to consider the following control problem.

dzt(h) = b̄(zt(h))htdt

Therein h is a square-integrable, R2d-valued control function (in fact chosen to be continuously
differentiable). zt is a 2d-dimensional process to be thought of as a deterministic version of the
two-point motion. Fix (x, y) ∈ R2d

× . In order to show that (x1, y1) has positive transition density
for any x(1), y(1) ∈ R2d

× it is enough to establish the following Bismut Condition (see [7]).

Condition 3.3.2 (Bismut’s condition).
For any (x, y) = z ∈ R2d

× , (x
(1), y(1)) ∈ R2d

× there is an h ∈ L2 such that

z1(h) = (x(1), y(1)) (3.3)

and such that h 7→ (z1(h)) is a submersion in h. (we identify R
2d and R

d × R
d in the obvious

way).

Proof.: Step 1: Let us assume first that x, x(1) and y, y(1) are disjoint and that each of them
consists at least of two points. (x, y denoting the convex hull of x and y.) We construct a control
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satisfying (3.3) such that the stream lines of zt are exactly x, x(1) ∪ y, y(1) . This ensures that
b̄(zt(h)) is regular and its determinant is bounded away from zero for all t. The simplest way to

obtain the desired streamlines is to ensure b̄(zt(h))ht ≡
(
z(1) −

(
x
y

))
. We may hope to achieve

this by setting

h0 := b̄

((
x
y

))−1(
z(1) −

(
x
y

))
as well as

0 =
d

dt

[
b̄(zt(h))ht

]
⇔∀i = 1, . . . , 2d :

2d∑
k=1

[
d

dt
b̄i,k(zt(h))

]
hk,t + b̄i,k(zt(h))

dhk,t

dt
= 0

⇔∀i = 1, . . . , 2d :
2d∑

k,l=1

∂lb̄i,k(zt(h))
dzl,t(h)
dt

hk,t +
2d∑

k=1

b̄i,k(zt(h))
dhk,t

dt

⇔b̄(zt(h))
dht

dt
= −

[(〈
dzt(h)
dt

,∇
〉
b̄

)
(zt(h))

]
ht (3.4)

(∇ is the nabla operator). So we see that we can choose ht to be the projection on the first 2d
coordinates of the solution to the following 4d-dimensional initial value problem.

d

dt

(
ht

zt(h)

)
=

(
−b̄−1(zt(h))

[(〈
dzt(h)

dt ,∇
〉
b̄
)

(zt(h))
]
ht

b̄(zt(h))ht

)
,

(
h0

z0(h)

)
=

b̄
((

x
y

))−1(
z(1) −

(
x
y

))
x
y

 (3.5)

Existence and uniqueness of a solution to this initial value problem can be obtained from the
standard theorems because we ensured that the determinant of b̄ is bounded away from zero and
hence that the right-hand-side of (3.4) is continuously differentiable.
Step 2: For a general positions of x, x(1), y and y(1) observe that we can divide the action into
two parts i.e. timesteps of length 0.5 and choose the streamlines of x and y to be piecewise linear
and disjoint.
Step 3: Finally we have to note that by Theorems 1.1 (smoothness) and 1.10 (surjectivity) of [7]
we have a submersion in h. 2

We may hope that the n-point-motion of a d-dimensional IBF has a density on the set Rnd
× where

no two out of the n points coincide. It should be possible to prove this completely in the same
way as Theorem 3.3.1 because Rnd

× is connected and we can ensure that the streamlines do not
intersect each other in arbitrary dimensions. The only remaining task is the need to establish
the regularity of the diffusion matrix of the n-point motion (and of course to stipulate sufficient
differentiability).
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Remark: In this last part we returned to the assumption that b is smooth. There is no reason
why it should be impossible to relax this assumptions to require a certain number of derivatives
to exist. Nevertheless this would incorporate a lot of technical difficulties (and a lot of checking
in the literature) and hence we restrict ourselves to the smooth case here.
Remark: Nothing in this chapter excludes the possibility to apply the results to RIFs. Since
we did not state the prerequisites in detail for RIFs we just state that c > 0 can be replaced by
c < 0 without any changes in the assertions or in the proofs.



Chapter 4

A Weak Limit Shape Theorem For
Planar Isotropic Brownian Flows

It has been shown by various authors under different assumptions that the diameter of a bounded
non-trivial set γ under the action of a stochastic flow grows linearly in time. We show that
the asymptotic linear expansion speed if properly defined is deterministic in the case of planar
IBFs. This means that we show for a two-dimensional isotropic Brownian flow Φ with a positive
Lyapunov exponent that there exists a non-random set B such that we have for ε > 0, arbitrary
connected γ ⊂⊂ R

2 consisting of at least two different points and arbitrarily large times T that

(1− ε)TB ⊂
⋃

0≤t≤T

⋃
x∈γ

Φ0,t(x) ⊂ (1 + ε)TB.

The latter means precisely that for any t > 0 there is a T > t such that the inclusions above hold.

4.1 Introduction And Preliminaries

The evolution of the diameter of a bounded set under the action of a stochastic flow has been
investigated by various authors with different assumptions and scopes. See [10], [9], [35] and [36]
for example. The latter show that the diameter grows linearly in time provided the top Lyapunov
exponent is non-negative and also give upper and lower bounds on the expansion speed. Never-
theless these bounds turn out to be far from each other in some examples and there is little hope
to match these bounds with the methods from e.g. [9] or [36]. We will follow a different approach
which first appeared in [13], wherein a class of periodic stochastic flows on R2 (or stochastic flows
on the torus) is considered. [13] develops a similar limit theorem (even with a stronger assertion)
using the fact that their model essentially lives on a compact manifold. Although in the first
part we sometimes follow the lines of thought of [13], we will see that to get the assertion we
will have to replace the methods relying on the assumption of periodicity (which means perfect
dependence of particles which are far from each other) on R2 by different ones. This is done using
the invariance properties with respect to time reversal of IBFs. These properties are not shared
by the model of [13] and hence are a novelty in the present subject. The chapter is divided into

45
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several sections. First we briefly review the important prerequisites from the literature. After-
wards we give the proper definition of the asymptotic linear expansion speed and state the main
result, from which the fact, that the asymptotic expansion speed is constant, turns out to be a
corollary. We give the proofs of the main results in the last two sections. The first of these is
dedicated to the proof of the lower bound i.e. that the expansion is sufficiently fast. Here we also
identify the set B in terms of a stable norm (which is a concept from [13]). We finally finish the
proof in the last section by showing that the expansion is sufficiently slow, for which it will turn
out to be sufficient to show that the expansion speed is independent of the initial set. We will
work in general dimension d where possible. But since several important features of the proof
obviously fail in dimensions larger than two the reader might assume that d is always equal to 2.

4.1.1 Chasing Ball Property, LDP For Discrete Supermartingales

The first of the following lemmas states that the distance of a non-trivial set under the action
of the flow tends to approach another moving particle (arbitrary non-anticipating movement)
provided that the other particle does not move too fast. Therein we use the following definition.

Definition 4.1.1 (non-trivial set).
A subset of Rd is called non-trivial if it is bounded, connected and consists of at least two different
points.

Note that for IBFs the estimates of the local characteristic and the ellipticity bounds of [53]
hold. Therefore we may use the following lemma. For t ≥ 0 denote by Ft := F0,t the sigma-field
generated by the flow up to time t.

Lemma 4.1.2 (chasing ball lemma).
Let Φ be an IBF with generator M . Then there are functions G′ : [0,∞)×[0,∞)×[0,∞) → [0,∞)
and G′′ : [0,∞) × [0,∞) → [0,∞), such that there is r0 > 0 depending only on b such that we
have the following.

1. For all s ∈ [0,∞) the function G′(·, s, ·) is continuous, non-increasing with
limK→∞ limr→∞G′(K, s, r) = 0.

2. For all s ∈ [0,∞) G′′(s, ·) is continuous and r ∈ (0, r0) ⇒ G′′(s, r) > 0.

3. Let s > 0 and r < r0. Let τ be a finite stopping time for the flow and x, y, z Fτ -
measurable random points in R

d with ‖x− y‖ = r. Define r1 := ‖x− z‖ ∧ ‖y − z‖,
r2 := ‖Φτ,τ+s(x)− z‖ ∧ ‖Φτ,τ+s(y)− z‖. Then we have

E [r2 ∨ (r1 −K) |Fτ ] ≤ r1 +G′(K, s, r1)−G′′(s, r).

Proof: [53, Lemma 2.5]. Observe that K does not appear in the original result in [53] but can be
obtained by adding it in the proof of (15) on pages 2055 and 2056 of [53] to obtain instead of (15)
the estimate E

[
||xτ+s|| ∨ (x1 +K)

]
−x1 ≤ g(x1)+E [N ∨ (−K)] with limK→∞ E [N ∨ (−K)] = 0

and by proceeding as in [53] afterwards. 2

The next lemma is similar to a large deviation principle (LDP) for supermartingales and will be
used repeatedly during the proof of the lower bound.
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Lemma 4.1.3 (Markov martingale bound).
Let (ξj : j ∈ N) be a sequence of real-valued random variables with

1. E [ξj+1 |ξ1, . . . , ξj ] ≤ 0,

2. ∀m ∈ N : ∃Km ∈ R : ∀j ∈ N : E [|ξj |m] ≤ Km.

Then we have

∀ε > 0 : ∃κ(1)
m = κ(1)

m (ε, (Kn)n∈N) > 0 : ∀n ∈ N : P

 n∑
j=1

ξj ≥ εn

 ≤ κ(1)
m n−m.

Proof: [13, Lemma 2]. 2

4.1.2 Sub-Gaussian Tails And Sublinear Growth

Lemma 4.1.4. We have for any bounded subset γ of Rd the following.

1. There is a positive constant C2, such that we have P-a.s.

lim sup
T→∞

(
sup

t∈[0,T ]
sup
x∈γ

1
T
‖Φt(x)‖

)
≤ C2.

2. There is a C3 > 0 such that for any T > 0 we have

lim sup
n→∞

1
n2

logP

[(
sup

t∈[0,T ]
sup
x∈γ

‖Φt(x)‖ ≥ nT

)]
≤ − T

2C2
3

.

Proof: [35, Theorem 2.1 and Theorem 2.2]. 2

Remark: Some of the statements of this section are far more general in the literature than stated
here and there might be some checking of assumptions to get the shapes above. For nothing of
this is more than simple computations we do not give any details about it.

4.2 Statement Of The Main Results

Theorem 4.2.1 (limit shape theorem).
Let Φ be a planar IBF (i.e. an IBF with state space R2) such that the two-point motion has a
strictly positive density apart from the diagonal i.e. on R

4
× := R

4 \ {z ∈ R
4 : z1 = z3, z2 = z4}

(cf. 3.3.1). Assume further that the largest Lyapunov exponent 1
2 [βN − βL] is strictly positive.

For any bounded, connected γ ⊂ R
2 consisting of at least two different points we let γt := Φt(γ)

and Wt(γ) :=
⋃

0≤s≤t γs. Then there exists a deterministic set B such that we get for any ε > 0
the following.
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1. There is P-a.s. 0 < T (γ, ε) <∞, such that for any t > T (γ, ε) we have

(1− ε)tB ⊂ Wt(γ).

2. There is P-a.s. a sequence (tk : k ∈ N) ⊂ R+ with tk ↗∞ that fulfils

(1− ε)tkB ⊂ Wtk(γ) ⊂ (1 + ε)tkB.

3. We also have
lim

T→∞
P [(1− ε)TB ⊂ WT (γ) ⊂ (1 + ε)TB] = 1.

Proof: The proof will be given in Sections 4.3 and 4.4. 2

Corollary 4.2.2 (expansion speed).
If we define for γ as above the asymptotic linear expansion speed to be

lim inf
T→∞

1
T

diam(WT (γ))

then it is independent of γ and a.s. constant.

Proof: This follows directly from Theorem 4.2.1. 2

4.3 The Lower Bound

4.3.1 Hitting Time Of Far Away Balls

Sketch Of Proof

Assume that the original set γ ⊂ R
d is connected, compact and that it consists of at least two

different points (the assumption of compactness is made for simplicity and could be omitted).
Denote by γt := Φt(γ) the set γ at time t and by dt := diam(γt) its diameter. Further denote for
any R > 0 by τR(γ, P ) := inf {t > 0 : dist(γt, P ) ≤ R, dt ≥ 1} the time it takes for γ to reach an
R-neighbourhood of P ∈ R

d as a large set. In fact it will turn out that lim inft→∞ dt ≥ 1 a.s..
We call a subset of Rd large if it is bounded and has diameter at least 1. Due to the results of
[53] and [9] we may assume that γ is large (the following will prove that γ will become large a.s.
anyway). Note that we make the standing assumption that the top exponent is strictly positive
and that d ≥ 2.

Theorem 4.3.1 (hitting time theorem).
Let P ∈ Rd, assume that γ ⊂ R

d is large and define r̄ := 1∨dist(P, γ). There is a constant R > 0
(neither depending on γ nor on P ) such that for any m ∈ N there is κ(2)

m > 0 (neither depending
on γ, P nor on r̄) such that for β > 1 we have

P

[
τR(γ, P ) > κ(2)

m βr̄
]
≤ κ(2)

m β−mr̄−m.
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Figure 4.1: h′′ (fat) und h′ (regular) for different values of ε: 0.99; 0.5; 0.1 (times 0, 5(c11∧−c10))

The proof consists of several steps.

1. Construction of a strictly increasing C2-function f : [0,∞) → R with limr→∞ f(r) = ∞
such that f(ρxy

t ) is a submartingale for any x, y ∈ R
d. The drift of this submartingale has

to be bounded away from zero.

2. Estimate of the growth of dt on average.

3. Estimate of the probability of finding γt not being large after a long time i.e.
P [inf{s : ∀r > s : dr > 1} > t] is to be bounded from above for large t.

4. Establishing a negative upper bound for the ”drift“ of rt := dist(γt, P ) outside the ball
KR(P ) :=

{
x ∈ Rd : |x− P | < R

}
.

5. Estimation of the tails of τR(γ, P ).

Construction Of f

The first ingredient needed to construct f is the following lemma.

Lemma 4.3.2 (existence of h).
For any 0 < c8 < c9 <∞, δ > 0 and −∞ < c10 < 0 < c11 <∞ there is a decreasing C2-function
h : [c8, c9] → [h(c9), 0] with

1. h′(c8) = h′(c9) = 0,

2. h′′(c8) = c10, h′′(c9) = c11 and h′′ is increasing,

3. h(c8) = 0 and

4. supc8≤r≤c9{|h
′(r)|} ≤ δ.

Proof: For 0 < ε < 0, 5(c11 ∧ −c10) define h′′ε : [c8, c9] → [c10, c11] via

h′′ε (r) := 1[c8,c8,ε](r)(r − c8,ε)
c210

2ε(c9 − c8)
+ 1[c9,ε,c9](r)(r − c9,ε)

c211

2ε(c9 − c8)

with c8,ε := c8 − 2ε(c9−c8)
c10

and c9,ε := c9 − 2ε(c9−c8)
c11

(see Fig. 4.1). Defining



50 A Weak Limit Shape Theorem For Planar Isotropic Brownian Flows

h′ε(r) :=
∫ r

c8

h′′ε (s)ds

=1[c8,c8,ε](r)
[
(r − c8,ε)2 − (c8 − c8,ε)2

] c210

4ε(c9 − c8)
− 1]c8,ε,c9](r)ε(c9 − c8)

+ 1[c9,ε,c9](r)(r − c9,ε)2
c211

4ε(c9 − c8)

ensures 1.. We then also have h′ε ≤ 0. 4. follows from choosing ε ≤ δ
c9−c8

. Setting h(r) :=∫ r
c8
h′ε(s)ds for such an ε makes h decreasing, ensures 3. and finishes the proof of Lemma 4.3.2. 2

Lemma 4.3.3 (existence of f).
There is a strictly increasing C2-function f : (0,∞) → R with the following properties.

1. limr→∞ f(r) = ∞ and f(ρxy
t ) is a submartingale for any x 6= y ∈ Rd.

2. f(1) = 0.

3. Writing with Itô’s formula, (1.12) and Fubini’s theorem

E
[
f(ρxy

t+s)− f(ρxy
s )
]

=
∫ t+s

s
E

[
f ′(ρxy

r )
1−BN (ρxy

r )
ρxy

r
(d− 1) + f ′′(ρxy

r ) (1−BL(ρxy
r ))

]
dr

+ E

[∫ t+s

s
f ′(ρxy

r )
√

2(1−BL(ρxy
r ))dWr

]
=:
∫ t+s

s
E [g(ρxy

r )] dr + E

[∫ t+s

s
g̃(ρxy

r )dWr

]
we get that g̃ is bounded and that g(·)− 1

8(βN (d− 1)− βL) ≥ 0 on (c9,∞).

4. g : (0,∞) → [0,∞) (as above) is continuous and positive.

5. There is C8 > 0 and C9 > 0 such that

E [(f(dt+1)− f(dt)) ∧ C9 |Ft ] ≥ C8. (4.1)

Note that Ft denotes the σ-field generated by the flow up to time t.

Proof: We choose the following ansatz for f which uses a local linearization of (1.12) near the
origin (see Fig. 4.2).

f(r)− c1 :=


log r + c2 : 0 < r < c8
c3
√
r + h(r) : c8 ≤ r ≤ c9

c4r + c5 : c9 < r
.

Put

ε :=1 ∧ 1
8
βN (d− 1)− βL

d− 1
∧ 1

24
(βN (d− 1)− βL)

(
βL

βN (d− 1)

) 1
3

∧ 1
24

(βN (d− 1)− βL)
(
βN (d− 1)

βL

)− 4
3
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0 c8 c9 1

Figure 4.2: f (fat), f ′ (regular) and f ′′ (dashed)

and choose rε according to (1.7). Further set

c9 :=rε ∧ 1, c8 := c9

(
βN (d− 1)

βL

)− 2
3

,

δ :=
1
24

(βN (d− 1)− βL)
∥∥∥∥1−BN (.)

c8

∥∥∥∥−1

∞
(d− 1)−1,

c11 :=
1

2c9
√
c8c9

and c10 := − 1
2c28

.

Choosing h according to Lemma 4.3.2 and

c3 :=
2
√
c8
, c2 := 2− log(c8), c4 :=

c3
2
√
c9

+ h′(c9) =
1

√
c8c9

,

c5 :=
√
c9
c8

+ h(c9) and c1 := −c4 − c5

ensures the C2-property of f . We get for the derivatives of f that

f ′(r) :=


1
r : 0 < r < c8
c3

2
√

r
+ h′(r) : c8 ≤ r ≤ c9

c4 : c9 < r

,

f ′′(r) :=


− 1

r2 : 0 < r < c8
− c3

4r
√

r
+ h′′(r) : c8 ≤ r ≤ c9

0 : c9 < r

.

The submartingale property of f(dt) will follow if we can show that g is non-negative and that g̃
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is bounded. To check this let us give a version of f that only uses c8, c9 and δ.

f(r) +
√
c9
c8

+ h(c9) +
1

√
c8c9

=


log r + 2− log(c8) : 0 < r < c8

2√
c8

√
r + h(r) : c8 ≤ r ≤ c9

r√
c8c9

+
√

c9
c8

+ h(c9) : c9 < r

,

f ′(r) =


1
r : 0 < r < c8

1√
c8r + h′(r) : c8 ≤ r ≤ c9
1√
c8c9

: c9 < r
,

f ′′(r) =


− 1

r2 : 0 < r < c8
− 1

2r
√

c8r + h′′(r) : c8 ≤ r ≤ c9

0 : c9 < r

.

The computation for the boundedness of g̃ is rather simple.

|g̃(r)| =
∣∣∣f ′(r)√2(1−BL(r))

∣∣∣ = ∣∣∣f ′(r)√2(1−BL(r))
∣∣∣ (1{r≤c8} + 1{r>c8}

)
≤
∣∣∣∣1r√2(1−BL(r))

∣∣∣∣ 1{r≤c8} +
∣∣∣f ′(r)√2(1−BL(r))

∣∣∣ 1{r>c8}

≤

∣∣∣∣∣
√

2
r

√
1
2
βLr2 +

(
1−BL(r)− 1

2
βLr2

)∣∣∣∣∣ 1{r≤c8} +
∣∣f ′(c8)∣∣ ∥∥∥√2(1−BL(.))

∥∥∥
∞

≤
√
βL +

√
21{r≤c8}

√√√√r

∣∣∣∣∣1−BL(r)− 1
2βLr2

r3

∣∣∣∣∣︸ ︷︷ ︸
≤1

+
∣∣f ′(c8)∣∣ ∥∥∥√2(1−BL(.))

∥∥∥
∞

≤
√
βL +

√
2 +

∣∣f ′(c8)∣∣ ∥∥∥√2(1−BL(.))
∥∥∥
∞
<∞.

Now we can turn to the estimation of g(r). For r ≥ c9 we obviously have g(r) > 0 since f ′(r) > 0,
f ′′(r) = 0 and BN (r) < 1. For r ≤ c8 it is sufficient to consider

g(r) =
1
r2

[(1−BN (r))(d− 1)− (1−BL(r))]

=
1
2
(βN (d− 1)− βL) +

1
r2

[(
1−BN (r)− 1

2
βNr

2

)
(d− 1)−

(
1−BL(r)− 1

2
βLr

2

)]
≥1

2
(βN (d− 1)− βL)− 2 r︸︷︷︸

≤1

[∣∣∣∣∣1−BN (r)− 1
2βNr

2

r3

∣∣∣∣∣ (d− 1) ∨

∣∣∣∣∣1−BL(r)− 1
2βLr

2

r3

∣∣∣∣∣
]

︸ ︷︷ ︸
≤ 1

8
(βN (d−1)−βL)

≥1
4
(βN (d− 1)− βL) > 0.
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The remaining case c8 ≤ r ≤ c9 needs a little more attention.

g(r) =
[

1
√
c8r

+ h′(r)
]

1−BN (r)
r

(d− 1) +
[
− 1

2r
√
c8r

+ h′′(r)
]

(1−BL(r))

=
[

1
√
c8r

+ h′(r)
](

1
2
βNr(d− 1) +

1−BN (r)− 1
2βNr

2

r
(d− 1)

)

+
[
h′′(r)− 1

2r
√
c8r

] [
1
2
βLr

2 +
(

1−BL(r)− 1
2
βLr

2

)]
=

βNr

2
√
c8r

(d− 1)− βLr
2

2

(
1

2r
√
c8r

− h′′(r)
)

+
1

√
c8r

(
1−BN (r)− 1

2βNr
2

r
(d− 1)

)

+
(
h′′(r)− 1

2r
√
c8r

)(
1−BL(r)− 1

2
βLr

2

)
+ h′(r)

1−BN (r)
r

(d− 1)

≥ βNr

2
√
c8r

(d− 1)− βLr
2

2

(
1

2r
√
c8r

+
1

2c28

)
︸ ︷︷ ︸

=:I

− 1
√
c8r

∣∣∣∣∣1−BN (r)− 1
2βNr

2

r
(d− 1)

∣∣∣∣∣︸ ︷︷ ︸
=:II

−
∣∣∣∣h′′(r)− 1

2r
√
c8r

∣∣∣∣ ∣∣∣∣1−BL(r)− 1
2
βLr

2

∣∣∣∣︸ ︷︷ ︸
=:III

−
∣∣∣∣h′(r)1−BN (r)

r
(d− 1)

∣∣∣∣︸ ︷︷ ︸
=:IV

.

For we chose c8 := c9

(
βN (d−1)

βL

)− 2
3 and c9 := rε ∧ 1 we get

I =
βNr

2
√
c8r

(d− 1)− βLr
2

2

(
1

2r
√
c8r

+
1

2c28

)
=
√
r

2
√
c8

[
1
2
(βN (d− 1)− βL) +

1
2

(
βN (d− 1)− r

3
2 c
− 3

2
8 βL

)]
≥1

4
(βN (d− 1)− βL) +

1
4

√
r

c8

[
βN (d− 1)− c

3
2
9 c
− 3

2
8 βL

]
=

1
4
(βN (d− 1)− βL),

II ≤
r
√
rc9√
c8r

∣∣∣∣∣1−BN (r)− 1
2βNr

2

r3
(d− 1)

∣∣∣∣∣ ≤
√
c9
c8

∣∣∣∣∣1−BN (r)− 1
2βNr

2

r3
(d− 1)

∣∣∣∣∣
≤ 1

24
(βN (d− 1)− βL),

III =
∣∣∣∣h′′(r)− 1

2r
√
c8r

∣∣∣∣ ∣∣∣∣1−BL(r)− 1
2
βLr

2

∣∣∣∣ ≤ ∣∣∣∣ 1
2c28

+
1

2r
√
c8r

∣∣∣∣ r3
∣∣∣∣∣1−BL(r)− 1

2βLr
2

r3

∣∣∣∣∣
≤c

2
9

c28
r

∣∣∣∣∣1−BL(r)− 1
2βLr

2

r3

∣∣∣∣∣ ≤
(
βN (d− 1)

βL

) 4
3

∣∣∣∣∣1−BL(r)− 1
2βLr

2

r3

∣∣∣∣∣
≤ 1

24
(βN (d− 1)− βL).
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Finally since δ = 1
24(βN (d− 1)− βL)

∥∥∥1−BN (.)
c8

∥∥∥−1

∞
(d− 1)−1 we get

IV =
∣∣∣∣h′(r)1−BN (r)

r
(d− 1)

∣∣∣∣ ≤ 1
24

(βN (d− 1)− βL)

and

g(r) ≥ (βN (d− 1)− βL)
[
1
4
− 1

24
− 1

24
− 1

24

]
=

1
8
(βN (d− 1)− βL) > 0.

It remains to show (4.1). This is done in the following subsubsection.

Growth Of f(dt) On Average

There are two cases. If dt <
r(ε)

2 it is sufficient to consider the two-point motion. Due to
the Markov-property of the submartingale f(ρxy

t ) we get choosing (adaptedly) xt and yt with
|xt − yt| = dt and some constant C9 > 0 (to be specified later)

E

[
((f(dt+1)− f(dt)) ∧ C9) 1n

dt<
r(ε)

2

o ∣∣∣Ft

]
≥E

[
(f(ρxy

t+1)− f(ρxy
t )) ∧ C9 |Ft

]
1n

f(dt)<f
“

r(ε)

2

”o
=Ef(ρxy

t ) [(f(ρxy
1 )− f(ρxy

0 )) ∧ C9] 1n
f(dt)<f

“
r(ε)

2

”o
≥

[(
f
(
r(ε)
)
− f

(
r(ε)

2

))
∧ C9

]
Pf(ρxy

t )

[
sup

0≤s≤1
f(ρxy

s ) ≥ f(r(ε))
]
1n

f(dt)<f
“

r(ε)

2

”o
+
(

1
8
(βN (d− 1)− βL) ∧ C9

)
Pf(ρxy

t )

[
sup

0≤s≤1
f(ρxy

s ) < f(r(ε))
]
1n

f(dt)<f
“

r(ε)

2

”o

≥

([
f
(
r(ε)
)
− f

(
r(ε)

2

)]
∧ 1

8
(βN (d− 1)− βL) ∧ C9

)
1n

dt<
r(ε)

2

o.

In case dt ≥ r(ε)

2 first consider the growth of dt. We may assume G′′(1, r(ε)

10 ) =: c6
c4
> 0 (otherwise

we decrease r(ε), see Lemma 4.1.2). There are r̂ and C9 > 0 such that for any r ≥ r̂ we have
G′( C9

2c4
, 1, r) < c6

2c4
. Choose (adaptedly) x(1)

t , x
(2)
t , y

(1)
t , y

(2)
t ∈ γt with |x(1)

t −x(2)
t | = dt, |x(i)

t −y(i)
t | =

r(ε)

10 : i = 1, 2 and define

z(1) :=x(1)
t +

x
(1)
t − x

(2)
t

|x(1)
t − x

(2)
t |

r̂, z(2) := x
(2)
t +

x
(2)
t − x

(1)
t

|x(2)
t − x

(1)
t |

r̂,

r
(i)
1 :=|x(i)

t − z(i)| ∧ |y(i)
t − z(i)| = r̂ : i = 1, 2 and

r
(i)
2 :=|x(i)

t+1 − z(i)| ∧ |y(i)
t+1 − z(i)| : i = 1, 2

(see Fig. 4.3 for the geometry at time t). Lemma 4.1.2 provides for i = 1, 2 that we have
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z1 x1 y1 y2 x2 z2(1) (1) (1) (2) (2) z(2)

Figure 4.3: growth of dt on average

E

[
(c4(r

(i)
1 − r

(i)
2 )) ∧ C9

2

∣∣∣Ft

]
≥ G′′(1, r(ε)

10 )−G′
(

C9
2c4
, 1, r̂

)
≥ c6

2 > 0 and therefore

|z(1) − z(2)| =r(1)
1 + dt + r

(2)
1 and |z(1) − z(2)| ≤ r

(1)
2 + dt+1 + r

(2)
2 ⇒

(c4(dt+1 − dt)) ∧ C9 ≥(c4(r
(1)
1 − r

(1)
2 )) ∧ C9

2
+ (c4(r

(2)
1 − r

(2)
2 )) ∧ C9

2
⇒

E [(c4(dt+1 − dt)) ∧ C9 |Ft ] ≥E
[
(c4(r

(1)
1 − r

(1)
2 )) ∧ C9

2

∣∣∣∣Ft

]
+ E

[
(c4(r

(2)
1 − r

(2)
2 )) ∧ C9

2

∣∣∣∣Ft

]
≥ c6.

Now we turn this into an estimate for f(dt). Abbreviate ρt := ρx(1)x(2)

t and consider for K > 0

E

[
((f(dt+1)− f(dt)) ∧ C9) 1n

f
“

r(ε)

2

”
≤f(dt)≤K

o∣∣∣∣Ft

]
≥E

[
((f (ρt+1)− f (ρt)) ∧ C9) 1n

f
“

r(ε)

2

”
≤f(dt)≤K

o∣∣∣∣Ft

]
(4.2)

≥ inf
f
“

r(ε)

2

”
≤r≤K

Ef(ρ0)=r [(f(ρ1)− f(ρ0)) ∧ C9] 1n
f
“

r(ε)

2

”
≤f(dt)≤K

o =: 1n
f
“

r(ε)

2

”
≤f(dt)≤K

oc7 > 0.

The last inequality follows from the continuity and positivity (g(r) > 0 for r ≥ 0) of the mapping
r 7→ Ef(ρ0)=r [(f(ρ1)− f(ρ0)) ∧ C9]. (4.1) is now an easy consequence of the following proposition.

Proposition 4.3.4 (lower drift bound).
There is K ∈ N such that E

[
((f(dt+1)− f(dt)) ∧ C9) 1{f(dt)>K} |Ft

]
≥ c6

2 1{f(dt)>K}.

Proof of Proposition 4.3.4: Consider for F ∈ Ft and K ∈ N that

E
[
((f(dt+1)− f(dt)) ∧ C9) 1{f(dt)>K}1F

]
=E

[
((f(dt+1)− f(dt)) ∧ C9) 1{f(dt)>K}∩F∩{f(dt+1)≥0}

]
+ E

[
((f(dt+1)− f(dt)) ∧ C9) 1{f(dt)>K}∩F∩{f(dt+1)<0}

]
≥E

[
((c4(dt+1 − dt)) ∧ C9) 1{f(dt)>K}∩F∩{f(dt+1)≥0}

]
+ E

[
(f (ρt+1)− f (ρt)) 1{f(ρt+1)−f(ρt)<−K}1{f(dt)>K}∩F∩{f(dt+1)<0}

]
≥E

[
((c4(dt+1 − dt)) ∧ C9) 1{f(dt)>K}∩F

]
+ E

[
Ef(ρt)

[
(f (ρ1)− f (ρ0)) 1{f(ρ1)−f(ρ0)<−K}

]
1{f(dt)>K}∩F

]
≥E

[
E [(c4(dt+1 − dt)) ∧ C9 |Ft ] 1{f(dt)>K}∩F

]
− E

[
1{f(dt)>K}∩F

∞∑
n=K

nPf(ρt) [f (ρ1)− f (ρ0) < 1− n]

]
(4.3)

=:E
[
E [(c4(dt+1 − dt)) ∧ C9 |Ft ] 1{f(dt)>K}∩F

]
− I ≥ c6P [f(dt) > K;F ; f(dt+1) ≥ 0]− I.
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To get an estimatie on I the next lemma is useful.

Lemma 4.3.5 (tails for shrinking).
For x 6= y ∈ R2 and r ∈ R we have Pf(ρxy

t )=r [f(ρxy
0 )− f(ρxy

1 ) > n] ≤ ‖g̃‖∞
n
√

2π
exp

{
− n2

2‖g̃‖2∞

}
.

Proof of Lemma 4.3.5: Due to some standard results ([21, Proposition 5.2.18], [21, Theorem 4.6]
and [46, Chapter V, Theorem 1.7] e.g.) and due to df(ρxy

s ) = g̃(ρxy
s )︸ ︷︷ ︸

≤||g̃||∞

dWs + g(ρxy
s )︸ ︷︷ ︸

≥0

ds we see that

Pf(ρxy
t )=r [f(ρxy

0 )− f(ρxy
1 ) > n] ≤Pf(ρxy

t )=r

[∫ 1

0
g̃(ρxy

s )dWs < −n
]

= Pf(ρxy
t )=r

[
W〈R .

0 g̃(ρxy
s )dWs〉1

< −n
]
≤P

[
WR 1

0 ‖g̃‖
2
∞ds

< −n
]
≤ P [‖g̃‖∞W1 < −n]

= 1− FN (0,1)

(
n

‖g̃‖∞

)
≤
‖g̃‖∞
n
√

2π
exp

{
− n2

2 ‖g̃‖2
∞

}
. 2

The conclusion I ≤ E

[
1{f(dt)>K}∩F

∑∞
n=K

n‖g̃‖∞
(n−1)

√
2π

exp
{
− (n−1)2

2‖g̃‖2∞

}]
K→∞→ 0 implies for suffi-

ciently large K (uniformly in F ) that I ≤ c4c6
2 P [{f(dt) > K} ∩ F ∩ {f(dt+1) ≥ 0}], because

P [f(dt+1) ≥ 0 |f(dt) > K ] → 1 for K → ∞ which together with (4.3) completes the proof of
Proposition 4.3.4. 2

The proof of (4.1) is now straightforward. Choose K > 1 for which Proposition 4.3.4 holds,
c7 = c7(K) according to (4.2) and consider

E [(f(dt+1)− f(dt)) ∧ C9 |Ft ]

=E
[
((f(dt+1)− f(dt)) ∧ C9) 1n

f(dt)<f
“

r(ε)

2

”o ∣∣∣F t

]
+ E

[
((f(dt+1)− f(dt)) ∧ C9) 1n

f
“

r(ε)

2

”
≤f(dt)≤K

o ∣∣∣F t

]
+ E

[
((f(dt+1)− f(dt)) ∧ C9) 1{f(dt)>K} |Ft

]
≥
([
f(r(ε))− f(

rε
2

)
]
∧ 1

8
(βN (d− 1)− βL) ∧ C9

)
1n

f(dt)<
r(ε)

2

o
+ c71n r(ε)

2
≤f(dt)≤K

o +
c6
2
1{f(dt)>K}

≥

[
f
(
r(ε)
)
− f

(
r(ε)

2

)]
∧ 1

8
(βN (d− 1)− βL) ∧ C9 ∧ c7 ∧

c6
2

=: C8 > 0.

The proof of Lemma 4.3.3 is complete. 2

The estimate (on average) is about to be transformed into one of the probability of the event
that our original set is not large after a long time.
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Pathwise Growth Of f(dt)

We have E [f(dt+1) ∧ (f(dt) + C9) |Ft ] − f(dt) ≥ C8 > 0. So we can verify the assumptions of
Lemma 4.1.3 for ξi := f(di−1)−[f(di)∧(f(di−1)+C9)]+C8. We only have to prove E[|ξi|m] ≤ Km

for certain real Km.

E [|ξi|m] =E [|f(di−1)− [f(di) ∧ (f(di−1) + C9)] + C8|m]
≤2mCm

8 + 2m
E [|f(di−1)− [f(di) ∧ (f(di−1) + C9)]|m]

≤2mCm
8 + 2m

E
[
|f(di−1)− [f(di) ∧ (f(di−1) + C9)]|m 1{di<di−1}

]
+ 2m

E
[
|f(di−1)− [f(di) ∧ (f(di−1) + C9)]|m 1{di−1≤di}

]
≤2mCm

8 + 2mCm
9 P [di ≥ di−1] + 2m

E
[
(f(di−1)− f(di))

m
1{di−1>di}

]
≤2mCm

8 + 2mCm
9 + 2m

E
[
(f(di−1)− f(di))

m
1{di−1>di}

]︸ ︷︷ ︸
=:I

(4.4)

To estimate I we choose x and y (in an adapted way!) in γ such that ‖xi−1 − yi−1‖ = di−1. For
shrinking of dt implies decreasing of the distance of xt and yt we can further conclude

I =E
[
(f(di−1)− f(di))

m
1{di−1>di}

]
≤ E

[(
f(ρxy

i−1)− f(ρxy
i )
)m

1{ρxy
i−1>ρxy

i }
]

=E
[
E

[(
f(ρxy

i−1)− f(ρxy
i )
)m

1{f(ρxy
i−1)>f(ρxy

i )}
∣∣∣Fi−1

]]
≤E

[
Ef(ρxy

i−1)

[
(f(ρxy

0 )− f(ρxy
1 ))m

1{f(ρxy
0 )>f(ρxy

1 )}
]]

≤1 +
∞∑

n=1

(n+ 1)m sup
f(r)∈R+

Pf(r) [f(ρxy
0 )− f(ρxy

1 ) > n] . (4.5)

Combining (4.4), (4.5) and Lemma 4.3.5 yields

E [|ξi|m] ≤ 2m(Cm
8 + Cm

9 + 1) + 2m
∞∑

n=1

‖g̃‖∞ (n+ 1)m

n
√

2π
exp

{
− n2

2 ‖g̃‖2
∞

}
=: Km.

Concluding with Lemma 4.1.3 we have for m ∈ N the existence of κ(1)
m ∈ R, such that for

n ≥ 2
C8
|f(d0)| the following holds.

P [dn < 1] =P [f(dn) < 0] = P

[
n−1∑
i=0

(
f(di)− f(di+1) + C8

)
> f(d0) + C8n

]

≤P

[
n−1∑
i=0

(
f(di)− [f(di+1) ∧ (f(di) + C9)] + C8

)
≥ f(d0) + C8n

]

=P

[
n∑

i=1

ξi ≥ f(d0) + C8n

]
≤ P

[
n∑

i=1

ξi ≥
C8n

2

]
≤ κ(1)

m n−m. (4.6)

Increasing κ(1)
m if necessary ensures that this holds for all n (this is to be assumed).

Remark: The assumption of largeness of γ makes this correction uniform in γ.
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So we can estimate the probability of Fn := {∃i ∈ [b
√
nc ,∞] ∩ N : di < 1} via

P [Fn] ≤
∞∑

i=b√nc
P [di < 1] ≤

∞∑
i=b√nc

κ
(1)
2+2mi

−2−2m ≤

(
κ

(1)
2+2m

∞∑
i=1

i−2

)
︸ ︷︷ ︸

=:κ
(6)
m

n−m. (4.7)

A simple Borel-Cantelli argument shows that the flow cannot contract a non-trivial set to a point
i.e. dt a.s. does not converge to zero as t→∞.

Estimates On The Tails Of τR(γ, P )

First let rt := dist(γt, P ) and observe for n ∈ N that we have the estimate

P
[
τR(γ, P ) > n

]
≤ P

 n⋂
i=b√nc

({ri > R} ∪ {di < 1})

 ≤ P [Fn] + P

FC
n ,

n⋂
i=b√nc

{ri > R}


=: I + II . (4.8)

I is already treated, so only II is left. For arbitrary δ > 0 and n ≥ 4 ∨ 4(r0 − R)δ−1 we can
estimate

II ≤ P

 n⋂
i=bnc

{ri > R} ,
∞⋂

i=b√nc
{di ≥ 1}



=P

(rb√nc − r0) +
n∑

i=b√n+1c
(ri − ri−1) > R− r0︸ ︷︷ ︸

≥− δ
2
(n−

√
n)

,

n−1⋂
i=bnc

{ri > R} ,
∞⋂

i=b√nc
{di ≥ 1}



≤P

η(n) +
n∑

i=b√n+1c

[
(ri − ri−1)1{di−1≥1,ri−1>R} − δ1{di−1<1}∪{ri−1≤R} + δ

]
>
δ

2
(n−

⌊√
n
⌋
)︸ ︷︷ ︸

≥ δn
4


≤P

[
η(n) ≥ δn

8

]

+ P

 n∑
i=b√n+1c

[
(ri − ri−1)1{di−1≥1,ri−1>R} − δ1{di−1<1}∪{ri−1≤R} + δ

]
≥ δ

4
(n−

⌊√
n
⌋
)


=:III + IV . (4.9)
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Therein η(n) := rb√nc − r0 is used. The term III can be estimated by the growth of a Brownian
motion. Choose z ∈ γ with ‖z − P‖ = r0. Then we have

III ≤P
[∥∥∥zb√nc − z0

∥∥∥ ≥ δn

8

]
≤ P

[
∃1 ≤ i ≤ d :

∣∣∣zi
b√nc − zi

0

∣∣∣ ≥ δn

8d

]
≤dP

[
n

1
4

∣∣z1
1 − z1

0

∣∣ ≥ δn

8d

]
= d

∫ ∞

δ
8d

n
3
4

2√
2π
e−

t2

2 dt ≤ κ(3)
m n−m (4.10)

for suitable κ(3)
m ∈ R. The estimation of IV applies Lemma 4.1.3 again. For δ > 0 and n ≥

4 ∨ 4(r0 −R)δ−1 observe

IV ≤P

 n∑
i=b√n+1c

ξ
(C10,δ)
i ≥ (n−

⌊√
n
⌋
)
δ

4

 . (4.11)

Therein for C10 > 0 and i ∈ N set

ξ
(C10,δ)
i :=

[
(ri ∨ (ri−1 − C10)− ri−1) 1{di−1≥1,ri−1>R} − δ1{di−1<1}∪{ri−1≤R} + δ

]
.

The sequel aims at showing that (ξ(C10,δ)
i : i ∈ N) for suitable C10 and δ satisfies the assumptions

of Lemma 4.1.3. Afterwards this lemma and a treatment of the fact that there are some terms
ξ
(C10,δ)
i missing in the last sum which makes Lemma 4.1.3 not directly suitable for (4.11) will

complete the proof. Therefore we have to show E

[∣∣∣ξ(C10,δ)
i

∣∣∣m] ≤ Km < ∞ for any m and
uniformly in i.

E

[∣∣∣ξ(C10,δ)
i

∣∣∣m] ≤2mδm + 2m
E
[
|ri ∨ (ri−1 − C10)− ri−1|m 1{di−1≥1}

]
=2mδm + 2m

E
[
|ri ∨ (ri−1 − C10)− ri−1|m 1{di−1≥1,ri<ri−1}

]
+ 2m

E
[
|ri ∨ (ri−1 − C10)− ri−1|m 1{di−1≥1,ri>ri−1}

]
≤2mδm + 2mCm

10 + 2m
E
[
(ri − ri−1)

m
1{di−1≥1,ri>ri−1}

]︸ ︷︷ ︸
=:V

.

For γ cannot get away from P without having its nearest (w.r.t. P ) point doing so we can proceed
for the estimation of V as follows. Let z ∈ γ such that ‖zi−1 − P‖ = ri−1 and consider

V = E
[
(ri − ri−1)

m
1{di−1≥1,ri>ri−1}

]
≤ E [|zi − zi−1|m] = E

[∣∣∣N (0, 1)⊗d
∣∣∣m] .

Therefore we can choose Km = Km(C10, δ) := 2mδm + 2Cm
10 + 2m

E
[∣∣N (0, 1)⊗d

∣∣m] and it only

remains to show that there are C10 > 0 and δ > 0 such that E
[
ξ
(C10,δ)
i

∣∣∣ξ(C10,δ)
i−1 . . . ξ

(C10,δ)
1

]
is negative for i ∈ N. E

[∣∣N (0, 1)⊗d
∣∣m] here simply denotes the mth moment of the norm of

a d-dimensional standard normally distributed random variable. Therefore it is sufficient to
show E

[
ξ
(C10,δ)
i

∣∣∣Fi−1

]
≤ 0 for suitable C10 and δ. On {di−1 < 1} and on {ri−1 ≤ R} this is
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evident. On {di−1 ≥ 1, ri−1 > R} we use Lemma 4.1.2. Because of 2. there is 0.5 ≥ ρ > 0
with G′′(1, ρ) =: 2δ > 0. 1. yields the existence of C10 > 0 and r̂ > 0 such that we have for
r > r̂: G′(C10, 1, r) < δ. Now choose x, y ∈ γ with ‖xi−1 − P‖ = ri−1 and ‖yi−1 − xi−1‖ = ρ.
With 3. we conclude (τ ≡ i − 1 and z ≡ P ) that for l1 := ‖xi−1 − P‖ ∧ ‖yi−1 − P‖ and
l2 := ‖xi − P‖ ∧ ‖yi − P‖ we have

E
[
(ri ∨ (ri−1 − C10)− ri−1) 1{ri−1>R,di−1≥1} |Fi−1

]
≤E [(l2 ∨ (l1 − C10)− l1) |Fi−1 ] 1{ri−1>R,di−1≥1}

≤
(
G′ (C10, 1, ri−1)−G′′(1, ρ)

)
1{ri−1>R,di−1≥1} ≤ −δ1{ri−1>R,di−1≥1},

provided we choose R := r̂ (which we do). So we can apply Lemma 4.1.3 to (ξ(δ,C10)
i : i ∈ N) for

these C10 and δ. We will abbreviate ξ(C10,δ)
i as ξi. Fix C10 and δ such that the ξ(C10,δ)

i satisfy the
assumptions of Lemma 4.1.3 and conclude for n ≥ 4 ∨ 4(r0 − R)δ−1 ∨ (16C10 + 1)2 δ−2 that for
m ∈ N there is κ(4)

m ∈ R such that

IV ≤P

 n∑
i=b√n+1c

ξi ≥ (n−
⌊√

n
⌋
)
δ

4
,

n∑
i=1

ξi ≥
δn

16


+ P

 n∑
i=b√n+1c

ξi ≥ (n−
⌊√

n
⌋
)
δ

4
,

b√nc∑
i=1

ξi ≤ −δn
16


≤P

[
n∑

i=1

ξi ≥
δn

16

]
+ P

b
√

nc∑
i=1

ξi ≤ −δn
16

 ≤ κ(4)
m n−m. (4.12)

Observe that due to n > (16C10)
2 δ−2 ⇒

∑b√nc
i=1

ξi

b√nc ≥ −C10 > − δ
√

n
16 the last term vanishes.

Combining the equations (4.7), (4.8), (4.9), (4.10) and (4.12) yields for
n ≥ 4 ∨ 4(r0 −R)δ−1 ∨ (16C10 + 1)2 δ−2 that

P
[
τR(γ, P ) > n

]
≤κ(6)

m n−m + κ(3)
m n−m + κ(4)

m n−m =: κ(5)
m n−m,

which proves that for m ∈ N the choice

κ(2)
m :=

[
(κ(5)

m ∨ 1) sup
r>1

(
r

brc

)m][
4 ∨

(
16C10 + 1

δ

)2

∨ 4
δ

]
<∞
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is appropriate as the following computations show.

P

[
τR(γ, P ) > κ(2)

m βr̄
]

=P

[
τR(γ, P ) >

(
(κ(5)

m ∨ 1) sup
r>1

(
r

brc

)m)(
4 ∨

(
16C10 + 1

δ

)2

∨ 4
δ

)
βr̄

]

≤P

[
τR(γ, P ) >

⌊(
4 ∨

(
16C10 + 1

δ

)2

∨ 4
δ

)
βr̄

⌋]

≤κ(5)
m


(
4 ∨

(
16C10+1

δ

)2 ∨ 4
δ

)
βr̄⌊(

4 ∨
(

16C10+1
δ

)2 ∨ 4
δ

)
βr̄
⌋
m([

4 ∨
(

16C10 + 1
δ

)2

∨ 4
δ

]
βr̄

)−m

≤(κ(5)
m ∨ 1) sup

r>1

(
r

brc

)m

(βr̄)−m ≤ κ(2)
m β−mr̄−m.

The proof of Theorem 4.3.1 is complete. 2

4.3.2 Linear Expansion And Stable Norm

Implications Of Theorem 4.3.1

For collecting the following corollaries of Theorem 4.3.1 we need some notation.

Wt(γ) :=
⋃

0≤s≤t

γs,

WR
t (γ) :=

{
x ∈ Rd : dist (x,Wt(γ)) ≤ R

}
.

Corollary 4.3.6 (slow linear expansion).
There are positive constants C11 and R, such that P-a.s. we have for large t that

KC11t(0) ⊂ WR
t (γ).

Kr(x) denotes the closed r-Ball centered at x as before.

Proof: Cover KC11t(0) with balls of radius R. Due to Theorem 4.3.1 the probability, that a
prediscribed one of these balls has not been hit by γ up to time t, decays faster than any power
of t, if we choose C11 small enough and R large enough. For the number of balls needed to cover
KC11t(0) only grows like td the probability that any of these balls has not been hit up to time t
decays faster than any power of t provided R is sufficiently large and C11 sufficiently small. So
Corollary 4.3.6 follows for t ∈ N from the first Borel-Cantelli Lemma. Decreasing C11 a bit more
proves it for general t. 2

For the sequel fix R > 0 large enough for Theorem 4.3.1 and Corollary 4.3.6 to hold with this
R. Assuming that γ is large makes all the estimates of Theorem 4.3.1 uniform in γ ∈ CR with
CR := {γ : diam(γ) ≥ 1, γ ⊂ K2R(0)} (w.l.o.g. we assume R > 1). The following corollary is
immediate.
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Corollary 4.3.7 (uniform integrability).
The family of random variables

(
( τR(γ,tv)

t )k
)

t≥1,‖v‖=1,γ∈CR

is uniformly integrable for any k ∈ N.

Proof: For t ≥ 1, m ∈ N and 2k
√
n ≥ κ

(2)
m we have

P

[(
τR(γ, tv)

t

)k

> n

]
≤ P

[
τR(γ, tv) > κ(2)

m
2k
√
nt
]
≤ κ(2)

m ( 2k
√
nt)−m ≤ κ(2)

m n−
m
2k ,

which implies Corollary 4.3.7 for large m because κ(2)
m does depend neither on t ≥ 1, ‖v‖ = 1 nor

on γ ∈ CR. 2

The Stable Norm

Set |v|R := supγ∈CR
E
[
τR(γ, v)

]
which due to the isotropic properties of the flow does not depend

on the direction of v. We obviously have

E
[
τ2R (γ, (t1 + t2)v)

]
≤ E

[
τR (γ, t1v)

]
+ sup

γ̌∈CR

E
[
τR (γ̌, t2v)

]
. (4.13)

With Theorem 4.3.1 we get in addition

E
[
τR (γ, (t1 + t2)v)

]
≤ E

[
τ2R (γ, (t1 + t2)v)

]
+ C12 (4.14)

for some constant C12 > 0. We may choose e.g. C12 := infγ∈CR,|v|≤2R E
[
τR(γ, v)

]
. Combining

(4.13) and (4.14) yields the subadditivity of t 7→ |tv|R + C12. Using Feketes lemma we conclude
that

‖v‖R := lim
t→∞

|tv|R + C12

t
= lim

t→∞

|tv|R

t

is well-defined i.e. the limit exists and equals inft≥0(|tv|R + C12)t−1.
Since |v|R only depends on ‖v‖ and since it is increasing with respect to this argument we get
(again from the isotropy of the flow) that for 0 ≤ s ≤ 1 we have

‖sv1 + (1− s)v2‖R ≤ s ‖v1‖R + (1− s) ‖v2‖R .

Set B := {v ∈ R
d : ‖v‖R ≤ 1} and observe that B is a compact convex set (see Lemma 4.1.4).

Corollary 4.3.6 shows ‖v‖R 6= 0 provided v 6= 0. Of course the isotropic properties of the flow
imply that B is a ball centered at the origin. We will show later that its radius does not depend
on R. First we can prove the following lemma.

Lemma 4.3.8 (lower bound - weak version).
For any γ ∈ CR and ε > 0 there is P-a.s. T (γ, ε) > 0, such that we have for t > T (γ, ε) that

(1− ε)tB ⊂ WR
t (γ).



4.3 The Lower Bound 63

Figure 4.4: line: direction of v, fat: γ(i), regular: rest of ΦτR
i

(γ)

Proof: We need to show that for v with ‖v‖R ≤ 1 and m ∈ N there is κ(7)
m = κ

(7)
m (ε) > 0, such

that
P
[
τR(γ, tv) ≥ (1 + ε)t

]
≤ κ(7)

m t−m (4.15)

holds uniformly in γ ∈ CR and ‖v‖R ≤ 1. All the estimates we made so far are uniform in
‖v‖R = 1 because they do not depend on the direction of v. By definition of ‖.‖R there is t̃ > 0
with E

[
τR(γ, tv)

]
≤ (1 + ε

2)t for any t ≥ t̃ and γ ∈ CR. Define the stopping time τR
1 via

τR
1 := inf

{
t > 0, γt ∩KR(t̃v) 6= ∅,diam(γt) ≥ 1

}
.

Denote by γ(1) a large connected subset of γτR
1

which is contained in K2R(t̃v) and which has a
non-empty intersection with KR(t̃v). We can choose it to be FτR

1
-measurable which we do. Now

define an increasing sequence of stopping times
(
τ (i) : i ∈ N

)
recursively via

τR
i := inf

{
t > τR

i−1, diam
(
ΦτR

i−1,t

(
γ(i−1)

))
≥ 1,ΦτR

i−1,t

(
γ(i−1)

)
∩KR(it̃v) 6= ∅

}
,

γ(i) :=ΦτR
i−1,τR

i

(
γ(i−1)

)
∩K2R(t̃iv).

If necessary we choose a subset of γ(i) as γ(i) to ensure that it is connected and has a non-empty
intersection with KR(t̃iv). We have (putting τR

0 ≡ 0) that

τR(γ, nt̃v) ≤
n∑

j=1

(τR
j − τR

j−1). (4.16)

Due to the strong Markov-property, the isotropy of Φ and the definition of t̃ the following holds.

E

[
τR
j − τR

j−1

∣∣∣FτR
j−1

]
≤
(
1 +

ε

2

)
t̃.

Due to Theorem 4.3.1 we can define ξj :=
(
τR
j − τR

j−1 − (1 + ε
2)t̃
)

and obtain that the sequence
(ξj : j ∈ N) satisfies the assumptions of Lemma 4.1.3. So we conclude

P
[
τR(γ, nt̃v) ≥ (1 + ε)nt̃

]
≤P

 n∑
j=1

τR
j − τR

j−1 ≥ (1 + ε)nt̃


= P

 n∑
j=1

ξj ≥
ε

2
nt̃

 ≤ κ(1)
m n−m =κ(1)

m t̃m(nt̃)−m =: κ(7)
m

(
nt̃
)−m
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which implies that a.s. for any ε > 0 the inclusion (1− ε)nt̃B ⊂ WR
nt̃

(γ) fails to hold only a finite
number of times. Consider

t↓ :=
⌊
t

t̃

⌋
t̃⇒ lim

t→∞

t↓

t
= 1 ⇒ ∀ε > 0 : ∃ť > 0 : ∀t ≥ ť : t↓ ≥ 1− ε

1− 1
2ε
t.

Finally we get for t ≥ ť ∨max
{
n ∈ N : (1− ε

2)nt̃B * WR
nt̃

(γ)
}
t̃ that

(1− ε)tB ⊂
(
1− ε

2

)
t↓B ⊂ WR

t↓ ⊂ WR
t a.s.

and so the proof of Lemma 4.3.8 is complete. 2

4.3.3 Sweeping Lemma And A Sharp Lower Bound - The Two-Dimensional
Case

In this subsection assume d = 2. We can also assume that γ is a curve (which we could have
assumed before). In this case we have the following.

Theorem 4.3.9 (lower bound - complete version).
For any γ ∈ CR and ε > 0 there is P-a.s. T (γ, ε) > 0, such that for any t > T (γ, ε) the following
holds.

(1− ε)tB ⊂ Wt(γ).

This is 1. of Theorem 4.2.1.

Note that we do not distinguish between the T (γ, ε) here and the T (γ, ε) of Lemma 4.3.8 because
the two times are very close to each other as we will see in the sequel. The proof of Theorem 4.3.9
depends apart from Lemma 4.3.8 on the following sweeping lemma, which will be proved after
Theorem 4.3.9.

Lemma 4.3.10 (sweeping lemma).
Let γ be a curve with dist(γ, P ) ≤ R (for an R as defined before). Define

τ̃ = τ̃R(γ, P ) := τ̃(P ) := inf
t>0
{KR(P ) ⊂

⋃
0≤s≤t

γs}.

Then for m ∈ N there is κ(8)
m ∈ R such that P [τ̃ > t] ≤ κ

(8)
m t−m holds uniformly in γ.

Proof of Theorem 4.3.9: There is a positive integer k, such that for any n ∈ N the set (1−ε)nB can
be covered with n2k balls

{
KR (Pn

i ) : i = 1, . . . , n2k
}

of radius R. By (4.15) the probability, that
one of these balls has not been hit by the (at the hitting time large) curve γ up to time (1−0.5ε)n
decays faster than any power of n. Due to Lemma 4.3.10 P [τ̃ (Pn

i )− τR (γ, Pn
i ) ≥ 0, 5εn] decays

faster than any power of n, too. So the probability that there is one among the balls KR (Pn
i ) for

i ∈
{
1, . . . , n2k

}
that is not completely included inWn at time n decays faster than any power of t,

which proves Theorem 4.3.9 because we have for large t that (1−2ε)tB ⊂ (1−ε) btc B ⊂ Wbtc ⊂ Wt.
2
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Proof of Lemma 4.3.10: The proof consists of six steps. These are carried out similarly to a proof
in [13]. This means in detail:

1. localizing of Lemma 4.3.10

2. definition of a small square

3. reduction to the problem of sweeping this in a finite time interval w.p.p.

4. approaching the small square

5. reduction to a control problem

6. construction of a sweeping control

Localizing Of Lemma 4.3.10

Assume we can prove the following. For any Q ∈ KR(P ) there is an open superset UQ of Q, such
that for any τ̃Q := inft>0 {UQ ⊂ ∪0≤s≤tγs} the following holds. For m ∈ N there is κ(9)

m ∈ R, such
that

P [τ̃Q > t] ≤ κ(9)
m t−m (4.17)

holds uniformly for large curves γ which have a non-empty intersection with KR(P ). For the
covering of KR(P ) requires only a finite number of the UQ Lemma 4.3.10 holds because of
{τ̃ > t} ⊂ {τ̃Q > t for one of these Q}.

Definition Of A Small Square

Set (q1, q2) := Q ∈ KR(P ) and consider the following elements of the RKHS H of Φ.

V i
1 (.) :=

∫
bij(.− y)dδQ ⊗ δ1(y, j) = bi,1(.−Q) : i = 1, 2;

V i
2 (.) :=

∫
bij(.− y)dδQ ⊗ δ2(y, j) = bi,2(.−Q) : i = 1, 2.

We have w1 := V1(Q) = b.1(0) =
(

1
0

)
and w2 := V2(Q) = b.2(0) =

(
0
1

)
. Due to Lemma 1.3.2

the following holds for x̃ := x−Q.

(V1(x̃), V2(x̃)) = E2 +O
(
‖x̃‖2

)
: (x̃→ 0)

where the last equation is to be understood in components. So there are C13 > 0 and δ > 0 such
that we have for ‖x−Q‖ < δ that

‖V1(x)− w1‖ ∨ ‖V2(x)− w2‖ ≤ C13 ‖x−Q‖2 .

This implies that for n ∈ N there is ε > 0 such that for

Un,ε
Q := ]q1 − nε, q1 + nε[× ]q2 − nε, q2 + nε[
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we have that
Un,ε

Q ⊂
{
y ∈ R2 : ‖V1(y)− w1‖ ∨ ‖V2(y)− w2‖ ≤ ε

}
,

because for ε ≤ 2−0,5n−1δ ∧
(
2C13n

2
)−1 and x := (x1, x2) ∈ Un,ε

Q we get

‖V1(x)− w1‖ ∨ ‖V2(x)− w2‖ ≤ C13

[
(x1 − q1)2 + (x2 − q2)2

]
≤ 2C13n

2ε2 ≤ ε.

Note that this still holds if we decrease ε (for a fixed n). Define

Ũn
Q :=

]
q1 −

nε

2
, q1 +

nε

2

[
×
]
q2 −

nε

2
, q2 +

nε

2

[
and tnu :=

nε

2

 sup
z∈Un,ε

Q

(‖V1(z)‖ ∨ ‖V2(z)‖)

−1

> 0.

We may assume tnu ≥ 3−1nε as well as ε ≤ 102−1 (and otherwise choose a smaller ε). Denote by
ψ

(i)
st (x) for i = 1, 2 the deterministic flow defined to be the solution of the control problem

ψ
(i)
st (x) = x+

∫ t

s
Vi

(
ψ(i)

sr (x)
)
dr...

Proposition 4.3.11 (nice behavior of ψ).
For t ≤ tnu, z ∈ Ũn

Q and i = 1, 2 we have
∥∥∥ψ(i)

0,t(z)− z − twi

∥∥∥ ≤ εt.

Proof of Proposition 4.3.11: For z ∈ Ũn
Q and i = 1, 2 we have ‖Vi(z)‖ ≤ 0, 5nε (tnu)−1, which

implies for z ∈ Ũn
Q and i = 1, 2 that

inf
t>0

{∥∥∥ψ(i)
0t (z)− z

∥∥∥ > nε

2

}
≥ tnu ⇒ inf

t>0

{
ψ

(i)
0t (z) /∈ Un

Q

}
≥tnu,

which proves Proposition 4.3.11 because we have for z ∈ Ũn
Q that

∥∥∥ψ(i)
0t (z)− z − twi

∥∥∥ ≤ ∫ t

0

∥∥∥Vi

(
ψ

(i)
0s (z)

)
− wi

∥∥∥ ds ≤ εt.

2

Now we consider the coordinates Z := (Z1, Z2) : Ũ102
Q →] − 51, 51[ generated by the constant

vector fields (εwi : i = 1, 2) and choose UQ := Z−1
(
]− 1, 1[2

)
.

From Large To Positive Probability

As we will see it suffices to show that there is 0 < θ < 1 such that for a large curve with a
non-empty intersection with KR(P ) we have uniformly in Q ∈ KR(P ) that

P [τ̃Q < tj |τ̃Q > tj−1 ] ≥ θ. (4.18)

Therein for a T > 0 (to be specified later) let t0 := 0 and for j ∈ N

tj := inf {t ∈ R : t ≥ tj−1 + 1 + T : γt ∩KR(P ) 6= ∅, diam(γt) ≥ 1} .
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Following Theorem 4.3.1 there is C14 > 0 and for m ∈ N a κ(10)
m ∈ R, such that for j ∈ N we have

P [tj > C14j] ≤ κ
(10)
m j−m which implies

P [τ̃Q > t] ≤ P

[
tj t

C14

k > t

]
+ P

[
τ̃Q > tj t

C14

k]
≤ P

[
tj t

C14

k > C14

⌊
t

C14

⌋]
+ P

[
τ̃Q > tj t

C14

k ∣∣∣∣τ̃Q > tj t
C14

k
−1

]
P

[
τ̃Q > tj t

C14

k
−1

]
≤ P

[
tj t

C14

k > C14

⌊
t

C14

⌋]
+ (1− θ)P

[
τ̃Q > tj t

C14

k
−1

∣∣∣∣τ̃Q > tj t
C14

k
−2

]
P

[
τ̃Q > tj t

C14

k
−2

]
≤ P

[
tj t

C14

k > C14

⌊
t

C14

⌋]
+ . . . ≤ κ(10)

m

⌊
t

C14

⌋−m

+ (1− θ)
j

t
C14

k
≤ κ(9)

m t−m

for suitable κ(9)
m ∈ R. So we have only to prove (4.18). Therefore it is enough to show that for

γ (as before) there are T > 0 and θ > 0 (not depending on the chosen γ) such that we have
uniformly in Q ∈ KR(P ) that

P

UQ ⊂
⋃

0≤s≤T

γs

 ≥ θ.

Approaching The Small Square

Let ÛQ := Z−1
(
]− 7, 7[2

)
. Then we have obviously UQ ⊂ ÛQ. Choose x and y in γ with

‖x− P‖ ≤ R and ‖x− y‖ ≥ 0.5. Due to the Lemmas 1.3.7 and 1.3.2 the eigenvalues of the
matrix b̄2(z) := b̄∗(z)b̄(z) are bounded below by a positive constant C4 on {‖z‖ ≥ δ} for arbitrary
δ > 0. The boundedness of the correlation functions gives an upper bound C5. Therefore the
R

4-valued semimartingale ((
xt − (x+ 2t(Q− x))
yt − (y + 2t(Q− x))

)
: t ∈

[
0,

1
2

])
satisfies the assumptions of Lemma 3.2.1. So this lemma yields for t = 0.5 and δ = 0.5ε (C4, C5

and C6 can be chosen to be independent of x and y) that

P

[
x 1

2
∈ UQ, y 1

2
/∈ ÛQ

]
≥ p

where p > 0 does not depend on the special choice of γ, because ε ≤ (56
√

2)−1 implies that
diam(ÛQ) ≤ 0.25. Denote by ˆ̂γ the subcurve of γ, between x0.5 and y0.5 and by γ̂ a minimal
subcurve of ˆ̂γ, which is contained in ÛQ and which links ∂ÛQ to ∂UQ (minimal means that no
proper subcurve has these properties). Due to minimality of γ̂ the set γ̂ ∩ ∂ÛQ consists of a
single point which we will denote by z. ∂ÛQ consists of four pieces. Without loss of generality
assume z ∈ Z−1 ({−7} × [−7, 7]) (the other cases are similar). Let γ̃ be the minimal subcurve
of γ̂, linking z with Z−1({−1} × [−7, 7]) and ỹ := γ̃0.5 ∩ Z−1({−1} × [−7, 7]) the intersection
point (see Fig. 4.5). We have to show that there exist T > 0 and θ > 0 such that for any curve
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Figure 4.5: γ̃ (fat), rest of γ̂ (regular), the endpoints of γ̃ are z (left) and ỹ (right).

γ̃ ⊂ Z−1 ([−7, 7]× [−7, 7]) linking Z−1({−7}×[−7, 7]) to Z−1({−1}×[−7, 7]) the following holds.

P

UQ ⊂
⋃

0≤s≤T

γ̃s

 ≥ θ. (4.19)

Reduction To A Control Problem

Definition 4.3.12 (H-simple control).
Denote by H the RKHS of Φ. An H-simple control V is a mapping from [0, T ] to H, which is
piecewise constant.

For an H-simple control V denote by ψ(V )
s (x) the solution of the control problem{

∂tψ
(V )
t (x) = V

(
ψ

(V )
t (x)

)
ψ

(V )
0 (x) = x

.

Assume we can construct an H-simple control V with the following property. If Ψ(., .) is a
continuous mapping from [0, T ]× R

2 to R2 which satisfies∣∣∣Z (Ψ(s, x))− Z
(
ψ(V )

s (x)
)∣∣∣ < 1

2
(4.20)

for x ∈ γ̃ and s ∈ [0, T ], then we have

UQ ⊂
⋃
x∈γ̃

⋃
0≤s≤1

Ψ(s, x).
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Then Theorem 1.3.12 applied to the intervals of constance of V and the independence properties
of Brownian flows prove (4.19). Let γ̃ = (γ̃(u) : u ∈ [0, 1]) be a parametrization of γ̃ and set
ψ̃(s, u) := ψ

(V )
s (γ̃(u)) as well as Ψ̃(s, u) := Ψ(s, γ̃(u)). (ψ̄ and Ψ̄ are defined similarly with γ̃

replaced by γ̄, see its definition below.) We want to construct a H-simple control V that implies
for any Ψ fulfiling (4.20) that UQ ⊂ ∪ 7

17
T≤s≤T ∪0≤u≤1 Ψ̃(s, u). Set γ̄ := ∂

([
7
17T, T

]
× [0, 1]

)
. V

is supposed to yield for Q̃ ∈ UQ the following.

ind(Ψ̄, Q̃) = 1. (4.21)

Therein we denote by ind(Ψ̄, Q̃) the curving number of Ψ̄ around Q̃. To show (4.21) for all Ψ̃
with ∥∥∥Z(Ψ̃(., .))− Z(ψ̃(., .))

∥∥∥
∞
≤ 0.5 (4.22)

we construct V in a way, that provides for Q̃ ∈ UQ the following

ind(ψ̄, Q̃) = 1 and dist
(
Z
(
ψ̄
)
, Z(UQ)

)
≥ 1. (4.23)

Note that (4.23) implies that for any Ψ̃ satisfying (4.22) we indeed get (4.21). In fact ψ̃ sweeps
the entire set Z−1

(
[−2, 2]2

)
.

Construction Of A Sweeping Control

Consider the H-simple control V : [0, T ] := [0, 34ε] → H,

V (., t) :=


−V2(.) : t ∈ [0, 10ε[
V1(.) : t ∈ [10ε, 14ε[
V2(.) : t ∈ [14ε, 34ε]

.

This control satisfies all our wishes (see Fig. 4.6). Note that 34ε = 102
3 ε ≤ t102

u ensures the
suitability of Proposition 4.3.11 for t ≤ 34ε. So we get for t ≤ 34ε, z ∈ ÛQ and i = 1, 2 that∥∥∥Ψ(i)

0t (z)− z − twi

∥∥∥ ≤ 34ε2 ≤ ε

3
,

which gives the following estimates for x ∈ γ̃.

−7 ≤ Z1(x) ≤ −1; − 7 ≤Z2(x) ≤7 :t = 0,

−7− 1
3
≤ Z1(xt) ≤ −1 +

1
3
; − 17− 1

3
≤Z2(xt) ≤− 3 +

1
3

:t = 10ε,

−3− 2
3
≤ Z1(xt) ≤ 3 +

2
3
; − 17− 2

3
≤Z2(xt) ≤− 3 +

2
3

:t = 14ε,

−3− 1 ≤ Z1(xt) ≤ 3 + 1; 3− 1 ≤Z2(xt) ≤17 + 1 :t = 34ε.

Herein we used that elapsing of time through the intervals of constance of V changes any coordi-
nate as if Z was generated by εV with an error of at most 3−1.(see Fig. 4.6). A similar arguing
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Figure 4.6: γ (curve), ∂UQ and Z−1 ({−1} × [−7, 7]) (dashed) , Z−1([−2, 2]2) and ∂ÛQ (fat)

holds for z and ỹ.

Z1(z) = −7; Z1(ỹ) = −1 : t = 0,

−7− 1
3
≤ Z1(zt) ≤ −7 +

1
3
; −1− 1

3
≤ Z1(ỹt) ≤ −1 +

1
3

: t = 10ε,

−3− 2
3
≤ Z1(zt) ≤ −3 +

2
3
; 3− 2

3
≤ Z1(ỹt) ≤ 3 +

2
3

: t = 14ε,

−3− 1 ≤ Z1(zt) ≤ −3 + 1; 3− 1 ≤ Z1(ỹt) ≤ 3 + 1 : t = 34ε.

This means that for t ∈ [14ε, 34ε] zt is on the left and ỹt is on the right of Ǔ which implies (4.23)
and completes the proof of Lemma 4.3.10. 2

4.3.4 Dependence Of ‖v‖R On R

We will now get rid of the unnatural dependence of || · ||R on R.

Lemma 4.3.13 (R does not play any role).
If we define for R > 0, R̃ ≥ 1 and v ∈ Rd ‖v‖R

R̃
via

‖v‖R
R̃

:= lim
t→∞

supγ∈CR̃
E
[
τR(γ, tv)

]
t
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0 tR
�

t - R R + t-R
�

0

Figure 4.7: KR(−R̃v) (black), KR̃(0) (dashed), KR(tv) (black), candidate for a slow curve (fat)

then this limit exists and we have for arbitrary R1 > 0, R2 > 0 and R̃1 ≥ 1, R̃2 ≥ 1 that

‖·‖R1

R̃1
≡ ‖·‖R2

R̃2
,

i.e. especially ‖v‖R does not depend on R.

Proof: Define for t ≥ 0, R > 0 and R̃ ≥ 1 the function ḡ = ḡ(R, R̃, t) via

ḡ(R, R̃, t) := sup
γ∈CR̃

{
E
[
τR(γ, tv)

]}
.

Herein fix v ∈ Rd with ‖v‖ = 1. As already seen there is R > 0 such that

‖v‖R
R := lim

t→∞

g(R,R, t)
t

(4.24)

exists (the limit was named ‖v‖R). The rest of the proof consists of the application of the following
two propositions.

Proposition 4.3.14 (lower R).
Fix R ≥ 1 in a way that we have convergence in (4.24). Then we have for arbitrary R̃ ≥ 1 that
‖v‖R

R̃
= limt→∞

g(R,R̃,t)
t = ‖v‖R

R.

Proof:

1. If R̃ ≥ R then ḡ(R, R̃, t) ≥ ḡ(R,R, t) is obvious. The isotropy of the flow yields that
ḡ(R, R̃, t) ≤ ḡ(R,R, t+R̃) (see Fig. 4.7). For we have E

[
τR
(
γ, (t+ R̃)v

)]
≤ E

[
τR(γ, tv)

]
+

C15 for a C15 > 0 (uniformly chosen in γ) we get ḡ(R,R, t) ≤ ḡ(R, R̃, t) ≤ ḡ(R,R, t) + C15.

2. If R̃ < R we obtain similarly that ḡ(R, R̃, t) ≤ ḡ(R,R, t) ≤ ḡ(R, R̃, t−R) ≤ ḡ(R, R̃, t)+C15.

Sending t→∞ proves Proposition 4.3.14 from the last equations. 2
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Proposition 4.3.15 (upper R).
‖v‖R

1 exists for any R > 0 and we have ‖.‖R
1 ≡ ‖.‖R̃

1 .

Proof: Without loss of generality assume that R̃ > R. Then ḡ(R̃, 1, t) ≤ ḡ(R, 1, t) is obvious.
Additionally (in τR(γ, tv) one takes a subcurve if necessary)

E
[
τR(γ, tv)

]
≤ E

[
τ R̃(γ, tv)

]
+ sup

γ̌∈C1
E

[
τR(γ̌, R̃v)

]
︸ ︷︷ ︸

<∞ for R>0

,

so Proposition 4.3.15 follows via t→∞ from ḡ(R, 1, t) ≤ ḡ(R̃, 1, t) + C16 for some C16 > 0. 2

The proof of Lemma 4.3.13 is complete because of ‖.‖R1
R2

= ‖.‖R1
1 = ‖.‖R̃1

1 = ‖.‖R̃1

R̃2
. 2

4.4 The Upper Bound

4.4.1 The Speed Of A Slow Curve Asymptotically Has A Dirac Distribution
On The Proper Time Scale

Let R be as before and v ∈ Rd with ‖v‖R = 1. Choose for any t ∈ ]0,∞[ a curve γ(t) ∈ CR/2 such
that |E

[
τR(γ(t), tv)

]
− |tv|R|t−1 → 0. By the definition of ‖v‖R we already know that∣∣∣∣∣E

[
τR(γ(t), tv)

]
t

− ‖v‖R

∣∣∣∣∣ ≤
∣∣∣∣∣E
[
τR(γ(t), tv)

]
− |tv|R

t

∣∣∣∣∣︸ ︷︷ ︸
≤t−1e−t

+
∣∣∣∣ |tv|Rt − ‖v‖R

∣∣∣∣︸ ︷︷ ︸
→0

. (4.25)

We will investigate the asymptotic law of τR(γ(t), tv) with the following lemma.

Lemma 4.4.1 (Dirac distribution).
Let (Xt : t > 0) be a family of integrable random variables such that we have for any δ > 0 that

lim
t→∞

E [Xt − E [Xt] ;Xt − E [Xt] > δ] = 0.

Then we also have for δ > 0 that limt→∞ P [Xt − E [Xt] < −δ] = 0.

Proof: Denote Xt−E [Xt] by Yt and suppose that we can find δ > 0, ε > 0 and a sequence (tn)n∈N
such that for tn ↗∞ and any n we have P [Ytn < −δ] > ε. This immediately yields

0 = E [Ytn ] = E [Ytn ;Ytn ≤ −δ]︸ ︷︷ ︸
≤−εδ

+E

[
Ytn ;Ytn ∈ (−δ, εδ

2
)
]

︸ ︷︷ ︸
≤ εδ

2

+E

[
Ytn ;Ytn ≥

εδ

2

]
︸ ︷︷ ︸

→0

(4.26)

i.e. a contradiction for large n. 2
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Lemma 4.4.2 (expectation if τR is large).
Let R be as before and fix v with ‖v‖R = 1. Then for any δ > 0, n,m ∈ N there are K(n)

m (δ) ∈ R
and t̃(n)

m (δ) such that we have for all t ≥ 0 that

E

[(
τR(γ(t), tv)t−1

)n
; τR(γ(t), tv)t−1 > (1 + δ)

]
≤ K(n)

m (δ)t−m

and for t ≥ t̃
(n)
m (δ) that

E

[(
τR(γ(t), tv)t−1

)n
; τR(γ(t), tv)t−1 > E

[
τR(γ(t), tv)t−1

]
+ δ
]
≤ K(n)

m (δ)t−m.

Proof: The first inequality follows from straightforward estimates using (4.15) and the second
one is implied by the first one and (4.25). 2

The previous lemma implies that we can apply Lemma 4.4.1 to Xt := τR(γ(t), tv)t−1 to conclude
that Xt converges to 1 in probability.

4.4.2 Time Reverse - Comparison Of Fast And Slow Curves

We will have to assume d = 2 from now on (unless otherwise stated) for the following arguments
strongly depend on the topology of the plane.

Theorem 4.4.3 (uniform speed for all curves).
Let Γ := ∂KR(0). There are C20 > 0 and C17 > 0 and for m ∈ N κ

(11)
m ∈ R such that we have for

T ≥
√
t and any γ ∈ CR/2 that

κ(11)
m T−m + P

[
τR(γ, tv) ≤ T + C17

]
≥ C20P

[
τR(Γ, tv) ≤ T

]
.

The proof of Theorem 4.4.3 uses the following lemmas. Denote by C∗R the set of all large curves
γ with γ ∩ ∂KR(0) 6= ∅.

Lemma 4.4.4 (p1).
There is a constant C18 > 0 with infγ∈C∗R inft≥C18 P [γt ∩ ∂KR(0) 6= ∅; diam(γt) ≥ 1] =: p1 > 0.

Proof: Let for some δ > 0 Xt :=
⌊

dist(0,γt)
δ

⌋
and define the sequence of stopping times (τn : n ∈ N)

via τ0 := 0 and τn := inf{t ≥ τn : Xt 6= Xτn}. By the continuity of t 7→ dist(0,γt)
δ we get that

P
[
|Xτn+1 −Xτn | = 1 |τn+1 <∞

]
= 1. The results of Section 4.3 show that

P

[
lim sup

k→∞
Xτk

≤ 1
∣∣∣∣ τn = ∞ for some n

]
= 1

provided that the event {τn = ∞ for some n} has positive probability. The reasoning leading
to [53, (15)] shows that there exists N ∈ N such that for n ≥ N and k ∈ N we have for
F̌ := ∩n∈N{diamγn ≥ 1} that

1− P
[
Xτk+1

= n+ 1
∣∣Xτk

= n, F̌
]

= P
[
Xτk+1

= n− 1
∣∣Xτk

= n, F̌
]
≥ p̃1 >

1
2
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Hence on F̌ for any constant C18 ∈ N the distance process (dist(γn−0.5C18 , 0) : n ∈ N) of a
large curve from the origin is stochastically dominated by a stationary process (Yn : n ∈ N)
(unsymmetric random walk on N with finitely many changes in the transition matrix) there is
ε > 0 with

inf
γ∈C∗R

inf
N3t≥C18

P [γt ∩KR(0) 6= ∅] ≥ inf
γ∈C∗R

inf
N3t≥C18

P
[
γt ∩KR(0) 6= ∅

∣∣F̌ ]P [F̌ ]
≥ inf

γ∈C∗R
inf

N3t≥C18

P
[
Yt ≤ R

∣∣F̌ ] inf
γ∈C∗R

P
[
F̌
]
≥ ε.

Now choose C18 large enough for infγ∈C∗R inft≥C18 P [diam(γt) > 3R] ≥ 1− ε
2 to hold (this proba-

bility converges to one cf. (4.6)).
This implies infγ∈C∗R inft≥C18 P

[
γt ∩KR(0) 6= ∅; γt ∩KR(0)C 6= ∅; diam(γt) ≥ 1

]
≥ ε

2 . The passage
from C18 ≤ t ∈ N to C18 ≤ t ∈ R is obvious from the Markov Property of the flow and implies
p1 > 0. 2

Lemma 4.4.5 (p2).
There is C19 > 0 such that inf γ̄∈C∗R infγ∈CR/2

P [γ̄C19 ∩ γ 6= ∅] =: p2 > 0.

Proof: First write t = t1 + t2 for some non-negative t1, t2 and observe

P [γt ∩ γ̄ = ∅] =P [Φt1,t (Φ0,t1(γ)) ∩ γ̄ = ∅] = P [Φ0,t1 (γ) ∩ Φt,t1 (γ̄) = ∅]

= (P⊗ P) ◦ π−1
1 [Φ0,t1 (γ) ∩ Φt,t1 (γ̄) = ∅] = P⊗ P

[
Φ0,t1 (γ) ∩ Φ̃t,t1 (γ̄) = ∅

]
=P⊗ P

[
Φ0,t1 (γ) ∩ Φ̃t1,t (γ̄) = ∅

]
= P⊗ P

[
Φ0,t1 (γ) ∩ Φ̃0,t2 (γ̄) = ∅

]
.

Herein we denote by Φ̃ an independent copy of Φ (for example defined on (Ω× Ω,F ⊗ F ,P⊗ P)).
So we can (instead of having γ̄ running t) split t and let γ run one part of the time and γ̄ the rest
of it. We already know that for sufficiently large t1 γt1 is dense as much as

√
t1 in Kt0.9

1
(0) with

probability say at least 0.5 uniformly in γ (this probability converges to 1 as t1 → ∞ cf [53]).
In this case rename γt1 to be a connected subcurve of γt1 ∩ Kt0.9

1
(0) of diameter t0.8

1 that has
distance not more than

√
t1 from the origin. We may asume that the endpoints of the new γt1

have distance t0.8
1 from each other (which we do). Note that γt1 is contained in the intersection of

the t0.8
1 -balls around its endpoints (see Fig. 4.8). If we add two half-lines to γt1 then it separates

the plane into two parts - say the black part and the white part (cf. Fig 4.9). Now we fix a ball
K of radius of t0.6

1 centered on the perpendicular bisector of the endpoints of γt1 exactly one half
of which is black (measured with Lebesgue measure). The existence of such a ball follows from
a continuity argument and the fact that there are completely black and completely white balls
centered there. Fix t1 large enough for t0.9

1 À t0.8
1 À t0.7

1 À t0.6
1 À t0.5

1 À 1 to hold. Observe now
that any curve that links the black part and the white part of K without intersecting γt1 must
have diameter at least t0.7

1 . Of course all the choices above can be made Ft1-measurable.
Now it is γ̄’s turn to do the rest within time t2 = t3+1. Choose a point in γt1 that has distance at
least t0.5 to the complement of K such that at least one third of its 2R-neighbourhood is black and
white respectively. Fix t3 large enough that the probability of the event that Φ̃t3(γ̄) has distance
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Figure 4.8: Definition of γt1 via intersection of circles around its endpoints

Figure 4.9: Adding to half lines to γt1 divides R2 into black and white parts

to this point less or equal to R (and Φ̃t3(γ̄) is long) is at least ε uniformly in γ̄. So with probability
at least 0.5ε a point say x in Φ̃t3(γ̄) has an environment of diameter 3R at least one percent of
which is white and black respectively. Choose another point in Φ̃t3(γ̄) say y with distance 1 of
x such that the subcurve (denoted γ̌) of Φ̃t3(γ̄) linking x and y has diameter 1 and observe now
that the lemma follows from Theorem 3.3.1 because we can choose t1 large enough for γ̌ not to
reach KC within the remaining time 1 with sufficiently large probability. With C19 := t1 + t3 + 1
the proof is complete. 2

Lemma 4.4.6 (p3).
There is p3 > 0 such that P

[
τR(Γ, tv) ≤ T

]
≤ 1

p3
P
[
τR(Γ, tv) ≤ T ; diam(ΓT+C18) ≥ 1

]
.

Proof: This a direct consequence of the fact, that the diameter of long curves uniformly has a
chance to grow to infinity without being smaller than 1 after time C18. If necessary we increase
C18 (without changing notation). 2

Proof of Theorem 4.4.3: First we use Lemma 4.4.4 to estimate

P [ΓT+C18 ∩ ∂KR(tv) 6= ∅] ≥ P
[
τR(Γ, tv) ≤ T

]
· P
[
ΓT+C18 ∩ ∂KR(tv) 6= ∅

∣∣τR(Γ, tv) ≤ T
]
≥

P
[
τR(Γ, tv) ≤ T ; diam(ΓT+C18) ≥ 1

]
· P
[
diam(ΓT+C18) ≥ 1; ΓT+C18 ∩ ∂KR(tv) 6= ∅

∣∣τR(Γ, tv) ≤ T
]︸ ︷︷ ︸

≥p1

which implies with Lemma 4.4.6 that

P
[
τR(Γ, tv) ≤ T

]
≤ 1
p3
P
[
τR(Γ, tv) ≤ T ; diam(ΓT+C18) ≥ 1

]
≤ 1
p1p3

P [ΓT+C18 ∩ ∂KR(tv) 6= ∅]

≤ 1
p1p3

(P [ΓT+C18 ∩ ∂KR(tv) 6= ∅; diam(ΓT+C18) ≥ 1] + P [diam(ΓT+C18) < 1]) .
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Usage of Lemma 1.3.13 and symmetry yields now that the first term of the latter equals

1
p1p3

P [Γ ∩ ∂KR(tv)T+C18 6= ∅; diam(∂KR(tv)T+C18) ≥ 1]

≤ 1
p1p3

P [γ ∩ ∂KR(tv)T+C18+C19 6= ∅; Γ ∩ ∂KR(tv)T+C18 6= ∅]

/P [γ ∩ ∂KR(tv)T+C18+C19 6= ∅ |Γ ∩ ∂KR(tv)T+C18 6= ∅; diam(∂KR(tv)T+C18) ≥ 1]

≤ 1
p1p3

P [γ ∩ ∂KR(tv)T+C18+C19 6= ∅]

/P [γ ∩ ∂KR(tv)T+C18+C19 6= ∅ |Γ ∩ ∂KR(tv)T+C18 6= ∅; diam(∂KR(tv)T+C18) ≥ 1] .

Applying Lemma 4.4.5 conditioned on FT+C18 we obtain that this is less or equal than

1
p1p2p3

P [γ ∩ ∂KR(tv)T+C18+C19 6= ∅] =
1

p1p2p3
P [γT+C18+C19 ∩ ∂KR(tv) 6= ∅]

≤ 1
p1p2p3

(
P
[
τR(γ, tv) ≤ T + C18 + C19

]
+ P [diam(γT+C18+C19) < 1]

)
where again we used Lemma 1.3.13. The fact the we are only considering T ≥

√
t now shows

that for m ∈ N there is κ(11)
m ∈ R such that

P [diam(γT+C18+C19) < 1] ∨ P [diam(ΓT+C18) < 1] ≤ κ(11)
m T−m

which completes the proof (choosing C20 := p1p2p3 and C17 := C18 + C19). 2

If we consider now for t ≥ 2C17
δ

P
[
τR(Γ, tv) ≤ (1− δ)t

]
≤ 1
C20

P

[
τR(γ(t), tv) ≤ (1− δ)t+ C17

]
+
κ

(11)
m t−m

C20

≤ 1
C20

P

[
τR(γ(t), tv) ≤ (1− δ

2
)t
]

︸ ︷︷ ︸
→0 as t→∞

+
κ

(11)
m t−m

C20
→ 0

together with P
[
τR(Γ, tv) ≤ (1 + δ)t

]
≥ P

[
τR(γ(t), tv) ≤ (1 + δ)t

]
→ 1 we get that τR(Γ, tv)t−1

converges to 1 in probability. The diffeomorphic property of the flow of course implies that this
convergence holds uniformly in γ ∈ CR if we replace Γ by γ. Corollary 4.3.7 also shows that it
also holds in Lp for any p ≥ 1. We thus proved the following corollary.

Corollary 4.4.7 (convergence in probability).
We have for ε > 0 uniformly in γ ∈ CR that limt→∞ P

[∣∣∣ τR(γ,tv)
t − ‖v‖R

∣∣∣ > ε
]

= 0

as well as for any p > 0 that limt→∞ E

[∣∣∣ τR(γ,tv)
t − ‖v‖R

∣∣∣p] = 0.

Proof: There is nothing left to show since we ensured that the assertions above do not depend
on R. 2

We proceed by proving the following version of the upper bound which directly implies 3. of
Theorem 4.2.1.
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Lemma 4.4.8 (convergence of probability).
We have for any ε > 0 that limt→∞ P

[
WR

t (γ) ⊂ (1 + ε)tB
]

= 1.

Proof: We have equivalence with

∀ε > 0 : lim
t→∞

P
[
∃x ∈ WR

t (γ) : x /∈ (1 + ε)tB
]

= 0

⇐∀ε > 0 : lim
t→∞

P

[
∃x ∈ R2 : τR(γ, x) ≤ t;

x

t
/∈ (1 + ε)B

]
= 0

⇔∀ε > 0 : lim
t→∞

P

[
∃x ∈ R2 : τR(γ, x) ≤ t;

∥∥∥∥ x

t(1 + ε)

∥∥∥∥R

> 1

]
= 0

⇔∀ε > 0 : lim
t→∞

P

[
∃x ∈ R2 : τR(γ, (1 + ε)tx) ≤ t; ‖x‖R > 1

]
= 0

⇔∀ε > 0 : lim
t→∞

P

[
∃x ∈ R2 : τR(γ, tx) ≤ t

1 + ε
; ‖x‖R > 1

]
= 0.

So it is enough to show for ε > 0 that limt→∞ P

[
∃x ∈ R2 : τR(γ, tx) ≤ t

1+ε ; ‖x‖
R = 1

]
= 0.

Choose δ ¿ ε and a δ-net on ∂B denoted by {vj : j = 1, . . . , Nδ}. Then we can apply Corol-

lary 4.4.7 to obtain limt→∞ P

[
∃j ∈ {1, . . . , Nδ} : τR(γ,tvj)

t < 1
1+ ε

2

]
=: limt→∞ P [F1(t)] = 0. Due

to Theorem 4.3.1 and Lemma 4.3.10 (similarly to the proof of Theorem 4.3.9) we have for large
t (because for v ∈ R2 with ‖v‖R = 1 there is j with ‖v − vj‖ ≤ δ) that

P [F1(t) |F2(t) ] :=P
[
∃j ∈ {1, . . . , Nδ} :

τR(γ, tvj)
t

<
1

1 + ε
2

∣∣∣∣∃v ∈ ∂B :
τR(γ, tv)

t
<

1
1 + ε

]
≥ inf

γ∈CR
2

+tv,v∈∂B
P

[
τ̃ δt(γ, tv) <

(
1

1 + ε
2

− 1
1 + ε

)
t

]
= inf

γ∈CR
2

P

[
τ̃ δt(γ, 0) <

(
1

1 + ε
2

− 1
1 + ε

)
t

]
≥ 1− κ(12)

m t−m (4.27)

where κ(12)
m ∈ R exists for m ∈ N, provided δ = δ(ε) is chosen sufficiently small. This implies

lim sup
t→∞

P [F2(t)] ≤ lim sup
t→∞

P [F2(t) |F1(t) ]P [F1(t)]︸ ︷︷ ︸
→0

+P
[
F2(t);FC

1 (t)
]

≤ lim sup
t→∞

P
[
FC

1 (t) |F2(t)
]
P [F2(t)] ≤ lim sup

t→∞
κ(12)

m t−m = 0 (4.28)

and hence Lemma 4.4.8. 2

Corollary 4.4.9 (2. of Theorem 4.2.1).
There is P-a.s. for any ε > 0 a sequence (tk : k ∈ N) with tk ↗∞ that fulfils

Wtk(γ) ⊂ (1 + ε)tkB.

Proof: With Lemma 4.4.8 this is a direct consequence of the fact, that convergence in probability
implies a.s.-convergence of a subsequence. 2
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Chapter 5

Dreaming Of Pesin’s Formula

5.1 Introduction

Pesin’s formula (see [43] and [44]) asserts that the entropy of a (random) dynamical system equals
the sum of its positive Lyapunov characteristic numbers counted with their multiplicities. It has
been extended to cover the case of dynamical systems preserving a Borel probability measure
(see [15], [22] and [50]). The possible occurrence of zero characteristic exponents was finally
captured in the papers [61], [31], [32], [33] and transferred to the random case in [34]. All these
results as well as newer expositions of the topic e.g. [37] or [4] request the state space of the RDS
to be a compact Riemannian manifold which of course guarantees the existence of an invariant
probability (see e.g. [23, Theorem 1.4.3]). This existence is necessary to even define a notion of
entropy so we focus on IOUFs here and postpone the discussion of the problem in the case of an
IBF (or even in the case of an RIF). Since IOUFs possess nice smooth invariant probabilities we
are left with the problem that the state space of an IOUF is Rd which is not compact at all. One
straightforward approach is to throw the IOUF in R

d on the unit ball in R
d+1 via a Lyapunov

cohomology, apply the results given above and transfer them back to the original case. The aim of
this chapter is to indicate why this does not work. Since its purpose is essentially the motivation
of the treatment in Chapter 6 the reader may wish to omit it. We will not use it in the sequel.

5.2 Throwing An IOUF On A Ball - Stereographic Projection

We start with the definition of the Lyapunov cohomology we wish to consider.

Definition 5.2.1 (unit ball version of φ).
Let ψ be an IOUF with drift c and covariance tensor b. Denote by Kr(x) the closed r-ball centered
at x in R

d+1 and define

g : Rd ∪ {∞} → K1(0),

{
(x1, . . . , xd) 7→ (0, . . . , 0, 1) + 4

4+|x|2 (x1, . . . , xd,−2)
∞ 7→ (0, . . . , 0, 1)
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with the inverse

g−1 : K1(0) → R
d ∪ {∞},

{
(y1, . . . , yd+1) 7→ 2( y1

1−yd+1
, . . . , yd

1−yd+1
)

(0, . . . , 0, 1) 7→ ∞

as well as Ψ := g ◦ (1Rd · φt + 1{∞} · id{∞}) ◦ g−1 which means that if we let

Ψt(x) =
{
g ◦ φt ◦ g−1(x) : x 6= (0, . . . , 0, 1)
(0, . . . , 0, 1) : x = (0, . . . , 0, 1)

,

then Ψ = Ψt is the unit ball version of φ.

We will focus on the case t = 1 because one can see all the important issues and it simplifies
notation. Since we want to check whether Ψ is a diffeomorphism we have to consider an open
domain U in R

d and a smooth diffeomorphism (map) f from U to an open neighbourhood of
(0, . . . , 0, 1) and check if Ξ := f−1 ◦Ψ ◦ f is differentiable. We make the following choice.

f : {x ∈ Rd : |x| < 1} → {y ∈ K1(0) : yd+1 > 0}, (x1, . . . , xd) 7→ (x1, . . . , xd,
√

1− |x|2)

which yields

f−1 : {y ∈ K1(0) : yd+1 > 0} → {x ∈ Rd : |x| < 1}, (y1, . . . , yd+1) 7→ (y1, . . . , yd).

For we have Ξ = f−1 ◦Ψ ◦ f = f−1 ◦ g ◦ (1Rd · φ1 + 1{∞} · id{∞}) ◦ g−1 ◦ f we get Ξ(0) = 0 and
for x 6= 0 that

Ξ(x) =f−1 ◦ g ◦ (1Rd · φ1 + 1{∞} · id{∞}) ◦ g−1 ◦ f(x)

=f−1 ◦ g ◦ (1Rd · φ1 + 1{∞} · id{∞}) ◦ g−1
(
x1, . . . , xd,

√
1− |x|2

)
=f−1 ◦ g ◦ (1Rd · φ1 + 1{∞} · id{∞})

(
2x1

1−
√

1− |x|2
, . . . ,

2xd

1−
√

1− |x|2

)

=f−1 ◦ g

(
φ1

(
2x

1−
√

1− |x|2

))
= f−1

(
(0, . . . , 0, 1) +

4φ1(x̂(x))
4 + |φ1(x̂(x))|2

,−2
)

=
4

4 + |φ1(x̂(x))|2
φ1(x̂(x))

wherein we put x̂(x) := g−1 ◦ f(x). We fix some statements about x̂(x).

Proposition 5.2.2 (x and x̂(x)).
x̂(x) = g−1 ◦ f(x) satisfies the following.

1. x̂(x) = 2x

1−
√

1−|x|2
and x(x̂) = 4x̂

4+|x̂|2 .

2. ∂
∂xi
x̂k(x) = 2δik(1−

√
1−|x|2)

√
1−|x|2−2xixk

(1−
√

1−|x|2)2
√

1−|x|2
.

3. |x̂(x)| = 2|x|
1−
√

1−|x|2
.
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4. |x| → 0 ⇔ |x̂(x)| → ∞.

Proof: Since everything but 2. is clear, we only have to observe that

∂

∂xi
x̂k(x) =

2δik(1−
√

1− |x|2) + 2xk
∂

∂xi

√
1− |x|2

(1−
√

1− |x|2)2

2δik(1−
√

1− |x|2) + 2xk
−2xi

2
√

1−|x|2

(1−
√

1− |x|2)2
=

2δik(1−
√

1− |x|2)
√

1− |x|2 − 2xixk

(1−
√

1− |x|2)2
√

1− |x|2
.

2

We have to check Ξ for smoothness at 0.

Theorem 5.2.3 (smoothness problems).
The following holds.

1. Ξ is differentiable at 0 and we have D0Ξ = ecidRd.

2. The derivative of Ξ is not continuous at 0.

Proof: We start with the proof of 1. with the following observation for x ∈ Rd.

Ξ(x)− Ξ(0)− ecidRd(x)
|x|

=
1
|x|

(
4φ1(x̂(x))

4 + |φ1(x̂(x))|2
− ecx

)
=

1
|x|

(
4e−cx̂(x)

4 + e−2c|x̂(x)|2
− ecx+

4φ1(x̂(x))
4 + |φ1(x̂(x))|2

− 4e−cx̂(x)
4 + e−2c|x̂(x)|2

)
=

1
|x|

4e−cx̂(x)− (4 + e−2c|x̂(x)|2)ecx
4 + e−2c|x̂(x)|2

+
1
|x|

(
4φ1(x̂(x))

4 + |φ1(x̂(x))|2
− 4e−cx̂(x)

4 + e−2c|x̂(x)|2

)
=: I + II

Since we have using Proposition 5.2.2 that

I =
4 + |x̂(x)|2

4|x̂(x)|
4e−cx̂(x)− (4 + e−2c|x̂(x)|2)ec 4x̂(x)

4+|x̂(x)|2

4 + e−2c|x̂(x)|2

=
4 + |x̂(x)|2

4|x̂(x)|
4e−cx̂(x)− 16ecx̂(x)

4+|x̂(x)|2 − 4e−c |x̂(x)|2
4+|x̂(x)|2 x̂(x)

4 + e−2c|x̂(x)|2

=
4 + |x̂(x)|2

4|x̂(x)|2
|x̂(x)|16e−cx̂(x) + 4e−c|x̂(x)|2x̂(x)− 16ecx̂(x)− 4e−c|x̂(x)|2x̂(x)

(4 + e−2c|x̂(x)|2)(4 + |x̂(x)|2)
→ 0 as |x| → 0

as well as

II =
4 + |x̂(x)|2

4|x̂(x)|
(16 + 4e−2c|x̂(x)|2)φ1(x̂(x))− (16 + 4e−c|φ1(x̂(x))|2)e−cx̂(x)

(4 + |φ1(x̂(x))|2)(4 + e−2c|x̂(x)|2)

=
4 + |x̂(x)|2

4 + e−2c|x̂(x)|2
16(φ1(x̂(x))− e−cx̂(x)) + 4(e−2c|x̂(x)|2φ1(x̂(x))− e−c|φ1(x̂(x))|2x̂(x))

4|x̂(x)|(4 + |φ1(x̂(x))|2)

=
4 + |x̂(x)|2

4 + e−2c|x̂(x)|2

(
16(φ1(x̂(x))− e−cx̂(x))
4|x̂(x)|(4 + |φ1(x̂(x))|2)

+ e−2c |x̂(x)|(φ1(x̂(x))− e−cx̂(x))
4 + |φ1(x̂(x))|2

+
e−2c|x̂(x)|2 − |φ1(x̂(x))|2

4|x̂(x)|(4 + |φ1(x̂(x))|2)
e−cx̂(x)

)
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we get 1. by Lemma 2.2.1. To prove 2. we start by observing that Ξj(x) = 4φj
1(x̂(x))

4+|φ1(x̂(x))|2 implies
for 1 ≤ i, j ≤ d that

∂

∂xi
Ξj

=
4

4 + |φ1(x̂(x))|2
∂

∂xi

[
φj

1(x̂(x))
]

+
∂

∂xi

[
4

4 + |φ1(x̂(x))|2

]
φj

1(x̂(x))

=
4

4 + |φ1(x̂(x))|2
∂

∂xi

[
φj

1(x̂(x))
]
−

4 ∂
∂xi

[
|φ1(x̂(x))|2

]
(4 + |φ1(x̂(x))|2)2

φj
1(x̂(x))

=
4

4 + |φ1(x̂(x))|2

[
∂

∂xi

[
φj

1(x̂(x))
]
− 2φj

1(x̂(x))
4 + |φ(x̂(x))|2

∑
k

φk
1(x̂(x))

∂

∂xi
(φk

1(x̂(x)))

]

=
4

4 + |φ1(x̂(x))|2

[∑
l

∂lφ
j
1(x̂(x))

∂

∂xi
x̂l(x)−

2φj
1(x̂(x))

4 + |φ1(x̂(x))|2
∑

k

φk
1(x̂(x))

∑
l

∂lφ
k
1(x̂(x))

∂

∂xi
x̂l(x)

]

=
4

4 + |φ1(x̂(x))|2
∑

l

∂

∂xi
x̂l(x)

[
∂lφ

j
1(x̂(x))− 2φj

1(x̂(x))
∑

k

φk
1(x̂(x))∂lφ

k
1(x̂(x))

4 + |φ1(x̂(x))|2

]
.

By Proposition 5.2.2 this equals

4
4 + |φ1|2

∑
l

2δil(1−
√

1− |x|2)
√

1− |x|2 − 2xixl

(1−
√

1− |x|2)2
√

1− |x|2

[
∂lφ

j
1 − 2φj

∑
k

φk
1∂lφ

k
1

4 + |φ1|2

]

wherein we write φj
1 for φj

1(x̂(x)), ∂lφ
j
1 for ∂lφ

j
1(x̂(x)) etc.. Since we obviously have the Taylor-

expansions (as r → 0)

√
1− r2 ≈ 1− 1

2
r2 − 1

8
r4,

1−
√

1− r2 ≈ 1
2
r2 +

1
8
r4,

(1−
√

1− r2)
√

1− r2 ≈ 1
2
r2 − 1

8
r4,

(1−
√

1− r2)2
√

1− r2 ≈ 1
4
r4 − 1

64
r8,

(1−
√

1− r2)2 ≈ 1
4
r4 +

1
8
r6
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we get as x→ 0 for the special choice x = (r, 0, . . . , 0) and i = 1 that

2δil(1−
√

1− |x|2)
√

1− |x|2 − 2xixl

(1−
√

1− |x|2)2
√

1− |x|2
=

2δ1l(1−
√

1− r2)
√

1− r2 − 2r2δ1l

(1−
√

1− r2)2
√

1− r2

≈ δ1l
−1

4r
4 − r2

1
4r

4 − 1
64r

8
≈ −4δ1lr

−2

4
4 + |φ1|2

∼ 4
4 + e−2c|x̂(x)|2

=
4

4 + e−2c| 2r
1−
√

1−r2
|2

≈ 4
4 + e−2c 4r2

1
4
r4+ 1

8
r6

≈ 1
4
e2cr2

wherein we used Lemma 2.2.1 and Proposition 5.2.2. This altogether yields

∂

∂x1
Ξj ≈ −e2c

[
∂1φ

j
1 − 2φj

1

∑
k

φk
1∂1φ

k
1

4 + |φ1|2

]

which means that it is sufficient to show that ∂1φ
2
1−φ2

1

∑
k

φk
1∂1φk

1
4+|φ1|2 does not converge to 0 w.p.p. as

r → 0. Since we have φ2
1φk

1
4+|φ1|2 ∼ δk1δ21 = 0 we thus have to show that ∂1φ

2
1 does not converge to 0

w.p.p as x→ 0. Since we assumed (1.6) we get that spatial derivatives of φ become approximately
independent if taken in points far from each other and thus we see that ∂1φ

2
1 = ∂1φ

2
1(x̂(x)) =

∂1φ
2
1(

(r,0,...,0)

1−
√

1−r2
) does not converge with probability 1 because limr→0

∣∣∣ (r,0,...,0)

1−
√

1−r2

∣∣∣ = ∞.. 2

Hence we will have to work on our own to obtain results like Pesin’s formula in the situation of
an IOUF.
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Chapter 6

The Margulis-Ruelle Inequality for
IOUFs

As we saw in Chapter 5 we will have to prove the results indicated there in the case of an IOUF
on our own. We start with the ≤-part in Pesin’s formula.

6.1 Introduction

Ruelle’s inequality (sometimes also called Margulis-Ruelle inequality) asserts that the entropy of a
(random) dynamical system can be bounded from above by the sum of its positive Lyapunov char-
acteristic numbers counted with their multiplicities. It has been known for measure-preserving
C1-maps since the late 1970’s (see [49]) and was generalized to capture certain singularities in [22].
It was first formulated in the case of a sequence of i.i.d. random transformations in [24]. The fact
that this proof contained a gap lead to the two independent corrections namely [37] and [3]. The
latter generalized the inequality to the case of a RDS on a compact Riemannian manifold. This
compactness assumption makes the standard literature cited above not directly applicable to the
case of an IOUF because its state space Rd is not compact and it also fails to satisfy assumptions
on boundedness or uniform continuity. As a compactification via stereographic projection fails
to yield the C1-property, we need to work a bit to get the inequality. It turns out that most of
the ideas of [24] and of [3] can be transferred to the case of an IOUF. This shows that Ruelle’s
inequality can hold even in the non-compact case.

6.2 Basics From Entropy Theory

This section deals with basic entropy theory and its application to the case of an i.i.d. sequence
of random diffeomorphisms obtained from an IOUF. Although the concepts are quite elementary
we will go through the entire construction for completeness. Note that the state space Rd is not
compact so special care has to be taken concerning existence of invariant probabilities because the
classical Krylov-Bogoljubov result does not apply (cf. [58, Theorem 5.13] or [24, Lemma 2.2.2]).
This is exactly what we did in Proposition 1.4.5. In this whole chapter we will consider a sequence
φ0,1, φ1,2, . . . of i.i.d. smooth random diffeomorphisms with law m := L(φ0,1(·)) where φ is an
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IOUF as constructed in Definition 1.4.1. W.l.o.g. we will assume that the φi,i+1’s are defined
on (Ω,F ,P) := ((Diff(Rd))N,B(Diff(Rd))N,m⊗N) by φn−1,n(ω) = ω(n). We will also fix the shift
θ : Ω → Ω as

θ : Ω → Ω, (φ0,1, φ1,2, φ2,3, . . .) 7→ (φ1,2, φ2,3, . . .) i.e. θ(ω)n = ωn+1

as well as the skew-product shift τ : Ω× R
d → Ω× R

d as

τ(ω, z) := (θω, ω1(z)).

On Diff(Rd) we may choose any topology such that the mapping (f, x) 7→ f(x) is B(Diff(Rd) ⊗
B(Rd) − B(Rd) measurable. For instance we may take a localized C1-topology. Of course the
random variables φ0,1, φ1,2, . . . form an i.i.d. sequence with φi−1,i(θω) = φi,i+1(ω) i.e. we have
φi−1,i ◦ θ = φi,i+1. The concepts we introduce in the sequel are widely known, we follow [24] in
the exposition.

6.2.1 The Definition Of The Metric Entropy Of An IOUF

We start with the definition of the entropy of a partition.

Definition 6.2.1 (entropy of a partition).
Let ξ be a countable partition of the probability space (Ω,F ,P). Let G ⊂ F be a sub-σ-algebra of
F . The conditional entropy of ξ given G is the number

HP (ξ |G ) := −
∫

Ω

∑
A∈ξ

P [A |G ] logP [A |G ] dP.

The number
HP (ξ |{Ω, ∅}) := −

∑
A∈ξ

P [A] logP [A] ∈ [0,∞]

is called the entropy of ξ.

We let 0 log 0 = 0 and so the sums in the previous definition always make sense. Note that the
function ι : x 7→ x log x is strictly convex on [0,∞). We now state some basic properties of the
entropy. For two partitions ξ and η we denote their common refinement by ξ ∨ η. Note also that
σ(ξ) denotes the σ-algebra generated by the elements of ξ.

Lemma 6.2.2 (trivial entropy bound).
The entropy of a partition is at most the logarithm of its cardinality.

Proof: The infinite case is trivial and the finite case is proved to be an easy consequence of
Jensen’s inequality in [24, Corollary 2.1.1]. 2

Lemma 6.2.3 (properties of the entropy of a partition).
Let ξ and η be countable partitions of the probability space (Ω,F ,P). Let further G̃,G ⊂ F
be σ-algebras and f : (Ω,F ,P) → (Ω,F ,P) be an endomorphism i.e. a deterministic measure
preserving measurable map. Then the following holds true.
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1. HP (ξ |G ) ≥ 0.

2. HP (ξ ∨ η |G ) = HP (ξ |G ) +HP (η |σ(ξ) ∨ G ).

3. HP (ξ ∨ η) = HP (ξ) +HP (η |σ(ξ)).

4. ξ ≺ η ⇒ HP (ξ |G ) ≤ HP (η |G ).

5. ξ ≺ η ⇒ HP (ξ) ≤ HP (η).

6. G̃ ⊂ G ⇒ HP (ξ |G ) ≤ HP

(
η
∣∣∣G̃).

7. HP (ξ) ≥ HP (ξ |G ).

8. HP (ξ ∨ η |G ) ≤ HP (ξ |G ) +HP (η |G ).

9. HP (ξ ∨ η) ≤ HP (ξ) +HP (η).

10. HP

(
f−1ξ

∣∣f−1G
)

= HP (ξ |G ).

11. HP

(
f−1ξ

)
= HP (ξ).

Proof: [24, Remark 2.1.1 and Lemma 2.1.2]. Note that the fact that the results are stated only
for finite partitions there does not alter the proof at all. 2

Definition and Lemma 6.2.4 (standard definition of entropy).
Let f : (Ω,F ,P) → (Ω,F ,P) be an endomorphism and G ⊂ F be a σ-algebra such that f−1G ⊂ G.
Then for any countable partition ξ there exists the limit

hG
P

(ξ, f) := lim
n→∞

1
n
HP

(
n−1∨
i=0

f−iξ

∣∣∣∣∣G
)
.

This limit is called the entropy of f with respect to ξ given G. The limit is finite provided one of
the entries of the sequence is finite. Furthermore the numbers

hG
P
(f) := sup

ξ
hG
P

(ξ, f) and hP(f) := sup
ξ
h
{∅,Ω}
P

(ξ, f)

are called the entropy of f given G and the entropy of f respectively. The suprema can be taken
over all finite partitions, over all countable partitions with finite entropy or over all countable
partitions (all choices lead to the same result).

Proof: [24, Theorem 2.1.1] and [48, Paragraph 9]. 2

We state some properties of the entropy that do not depend on compactness assumptions on the
state space.

Lemma 6.2.5 (properties of the entropy of an endomorphism).
Suppose that ξ and η are countable partitions of Ω, that f : Ω → Ω is an endomorphism and that
G ⊂ F is a σ-algebra such that f−1G ⊂ G. Then the following holds.
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1. hG
P

(f, ξ) ≤ HP (ξ |G ) .

2. hG
P

(f, ξ ∨ η) ≤ hG
P

(f, ξ) + hG
P

(f, η).

3. ξ ≺ η ⇒ hG
P

(f, ξ) ≤ hG
P

(f, η).

4. hG
P

(f, ξ) ≤ hG
P

(f, ξ) +HP (ξ |σ(η) ∨ G ) ≤ hG
P

(f, ξ) +HP (ξ |σ(η)).

5. hG
P

(
f, f−1ξ

)
≤ hG

P
(f, ξ).

6. For n ∈ N we have hG
P

(f, ξ) = hG
P

(
f,
∨n−1

i=1 f
−iξ
)
.

7. For n ∈ N we have hG
P

(fn, ξ) = nhG
P

(f, ξ).

8. If ξ is an G-generator i.e. if σ
(
G ∨

∨∞
i=0 f

−iξ
)

= F mod P then hG
P

(f) = hG
P

(f, ξ).

9. If ξ1 ≺ ξ2 ≺ . . . is a sequence of partitions such that F = σ(G ∨
∨∞

i=1 ξ1) mod P then

hG
P

(f) = lim
n→∞

hG
P

(f, ξn) .

10. hG
P

(f, ξ) ≤ HP

(
f−1ξ |σ(ξ) ∨ G

)
.

Proof: [24, Lemmas 2.1.3, 2.1.4, 2.1.5 and 2.1.6 ] as well as [3, Lemma 2]. 2

Up to now we did not specify how we want to link the concept of entropy of a measure preserv-
ing transformation to an IOUF. The above yields three straightforward (but frequently useless)
choices. We will state them nevertheless because one of them can be rearranged to yield some
meaningful concept.

1. One could consider the space Rd×Ω with the skew-product transformation τ from Definition
and Lemma 1.2.4 (in the discrete time version) and the trivial σ-algebra.

2. We might also think of the state space Ω with the shift θ1 as measure-preserving transfor-
mation (cf. (1.3)).

3. The third options is to take (Rd)N and to consider the shift on the set of possible outcomes
of the unit step discretized one-point motion with the associated Markov measure.

Under certain assumptions (which are not satisfied for IOUFs and correspond to a certain fast
delocalization ) [24, Theorem 2.1.2] says that all the choices above yield a notion of entropy that
equals infinity. Though the assumptions of this theorem are not satisfied we strongly conjecture
that its assertion remains true and hence we need a more sophisticated notion of entropy.

Definition and Lemma 6.2.6 (metric entropy).
Let µ be an invariant probability for an IOUF (in the sense of Markov processes) and ξ be a
countable partition of Rd. Then there exists

hµ (φ, ξ) := lim
n→∞

1
n

∫
Hµ

(
n−1∨
i=0

φ0,i(·, ω)−1ξ

)
dP(ω).
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The number
hµ (φ) := sup

ξ
hµ (φ, ξ)

is called the metric entropy of φ. The supremum is taken over all finite partitions, all count-
able ones or equivalently over all measurable partitions (see [48] for the definition of measurable
partition).

Proof: [24, Theorem 2.1.3] and [48, Paragraph 9]. 2

One might ask why we introduce various types of entropy, when conjecturing them to equal
infinity. We now come to the answer to this question. The following theorem states that the
metric entropy of an IOUF can be viewed as a special case of one of the entropy concepts given
above (with a slight modification).

Theorem 6.2.7 (different versions of metric entropy).
Let µ be an invariant measure (in the sense of Markov processes) for the one-point motion of an
IOUF φ. Let further BΩ be the σ-algebra generated by elements of the form {ω ∈ Ω : φ0,1(ω) ∈
A1, . . . φn−1,n(ω) ∈ An} for n ∈ N and A1, . . . , An ∈ B(Diff(Rd)). Let Rd × BΩ := {Rd × A : A ∈
BΩ}. Consider the skew product transform τ : Ω×Rd → Ω×Rd from Definition and Lemma 1.2.4.
Then the following holds.

1. If ξ = {A1, . . . , An} and η = {B1, . . . , Bm} are finite measurable partitions of Rd and Ω
respectively, then

hµ (φ, ξ) = hR
d×BΩ

µ⊗P (τ, ξ × η)

where ξ × η := {Ai ×Bj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

2. hµ (φ) = hR
d×BΩ

µ⊗P (τ).

Proof: [24, Theorem 2.1.4]. 2

The short form of the above is: the entropy of an IOUF can be written as the conditional entropy
of the skew-product given the randomness.

Corollary 6.2.8 (properties of metric entropy).
Let µ be the invariant measure for the one-point motion of φ. Then we have the following.

1. For any n ∈ N we have
hµ (φ0,n) = nhµ (φ0,1) .

2. If ξ is a finite partition of Rd such that for P-a.e. ω σ
(∨∞

i=0 φ0,i(·, ω)−1ξ
)

coincides mod µ
with B(Rd) then

hµ (φ) = hµ (φ, ξ) .

3. If ξ1, ξ2, . . . is a sequence of countable partitions of finite entropy such that limn→∞ diam(ξn) =
0 wherein diam(ξn) = supC∈ξn

diam(C) then

hµ (φ) = lim
n→∞

hµ (φ, ξn) .

Proof: This follows from Lemma 6.2.5, [37, Theorem 0.4.7] and Theorem 6.2.7. 2

Remark: Since we also have for any t ≥ 0 that hµ (φ0,t) = thµ (φ0,1) we see that discretizing the
flow in unit steps is no restriction at all.
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6.3 The Margulis-Ruelle Inequality

6.3.1 Statement Of The Result

In this section we want to prove one half of Pesin’s formula i.e. the following theorem.

Theorem 6.3.1 (Margulis-Ruelle inequality).
Let φ be an IOUF with Lyapunov exponents λ1, . . . , λd. Then we have

hµ (φ) ≤
d∑

i=1

λ+
i =

d∑
i=1

(λi ∨ 0).

First we state a corollary to Lemma 6.2.5 which is taken from [3] where it is proven for the general
case of RDS’.

Corollary 6.3.2 (entropy estimate via special countable partitions).
Let ξ be a countable partition of Rd and µ be as above. Then we have

hµ (φ, ξ) ≤
∫

Ω
Hµ

(
φ−1

0,1(·, ω)ξ
∣∣∣ ξ) dP(ω).

Proof: Since in the case of a product measure the disintegration is (in fact can be chosen to be)
trivial we can simply apply [3, Corollary 1]. 2

We shall also need the following purely deterministic result from geometry. Therefore we let
Kε(X) := {y ∈ Rd : dist(y,X) ≤ ε} denote the closed ε-neighbourhood of X ⊂ R

d.

Lemma 6.3.3 (geometric estimate).
Let A : Rd → R

d be a linear mapping and let Rd be equipped with the usual Euclidean norm | · |.
Let further δ1(A) ≥ . . . ≥ δd(A) denote the singular values of A. Then there exists a constant
C(d) which only depends on d such that for any ε > 0 the number of disjoint balls with radius ε

2 ,
which can intersect K2ε(AKε(0)) does not exceed

C(d)
d∏

u=1

(δu(A) ∨ 1).

Proof: [30, Lemma II.2.3]. 2

Now we can turn to the proof of Theorem 6.3.1 which will be carried out in the following two
subsections.

6.3.2 Construction Of The Partitions

Fix n ∈ N. For k, l ∈ N we define Ωk,l to be the set of ω ∈ Ω on which we have the following. For
any ε < 1

k and x, y ∈ Kl(0) the inequality |x− y| < ε implies

|φn(x)− φn(y)−Dxφn(·)(y − x)| ≤ε

and for i ∈ {1, . . . , d} that
1
2
≤ δi(Dxφ(·)∨)1
δi(Dyφ(·)∨)1

≤2. (6.1)
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For k, l ∈ N we have the obvious inclusions Ωk,l+1 ⊂ Ωk,l ⊂ Ωk+1,l and for l ∈ N that Ω = ∪∞k=1Ωk,l.
We choose a maximal 1

k -separated set Ek,l = {x1, . . . , xm} in Kl(0) (wherein of course m depends
on k and l) and extend it to a maximal 1

k -separated set {x1, x2, . . .} in Rd. Herein a set is said to
be ε-separated if no two of its elements have distance less then ε and an ε-separated set is said
to be maximal if any proper superset fails to be ε-separated. Letting further ηi := {y ∈ Rd : ∀i 6=
j ∈ N : |y − xi| < |y − xj |} we can finally define the partitions ξk = {ξxi : i ∈ N} of Rd in the
following way

ξx1 = η1, ξxi+1 = ηi+1 \
i⋃

j=1

ηj for i ≥ 2.

The dependence of ξk on k is hidden in the definitions of the xi. We have for arbitrary i ∈ N that
ξxi ⊂ K 1

k
(xi) which means that diam(ξk) ≤ 1

k .

6.3.3 Entropy Estimates

For ξ1, ξ2, . . . is a suitable sequence of countable measurable partitions, we can conclude with
Corollary 6.2.8 and Corollary 6.3.2 that

nhµ (φ) = hµ (φn) = lim
k→∞

hµ (φn, ξk) ≤ lim
k→∞

∫
Ω
Hµ

(
φ−1

n ξk |ξk
)
dP.

For we have that

Hµ

(
φ−1

n ξk |ξk
)

= −
∞∑
i=1

µ(ξxi)
∞∑

j=1

µ(φ−1
n ξxj |ξxi) logµ(φ−1

n ξxj |ξxi)

we can estimate for arbitrary l = l(n)

nhµ (φ) ≤ lim
k→∞

∫
Ω
Hµ

(
φ−1

n ξk |ξk
)
dP

=− lim
k→∞

∫
Ωk,l

m∑
i=1

µ(ξxi)
∞∑

j=1

µ(φ−1
n ξxj |ξxi) logµ(φ−1

n ξxj |ξxi)dP

− lim
k→∞

∫
Ω

∞∑
i=m+1

µ(ξxi)
∞∑

j=1

µ(φ−1
n ξxj |ξxi) logµ(φ−1

n ξxj |ξxi)dP

− lim
k→∞

∫
Ω\Ωk,l

m∑
i=1

µ(ξxi)
∞∑

j=1

µ(φ−1
n ξxj |ξxi) logµ(φ−1

n ξxj |ξxi)dP

=:I + II + III.

(The following computations will show that the limits on the right hand side of the above exist
separately.) We will estimate the number of elements of ξk that can intersect φnξxi to estimate
I via Lemma 6.2.2. Since for i ≤ m and ω ∈ Ωk,l by (6.1) we have that

φnξi ⊂ φnK 1
k
(xi) ⊂ K 1

k

(
φn(xi) +DxiφnK 1

k
(0)
)

= φn(xi) +K 1
k

(
DxiφnK 1

k
(0)
)
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we have for i ≤ m, ω ∈ Ωk,l and j ∈ N that ξxj ∩ φnξxi 6= ∅ implies

K 1
2k

(xj) ∩ φn(xi) +K 2
k

(
DxiφnK 1

k
(0)
)
6= ∅.

Therefore we have for i ∈ {1, . . . ,m} and ω ∈ Ωk,l by Lemma 6.3.3 applied to A := Dxφn

#{j : ξxj ∩ φn(·, ω)ξxi 6= ∅} ≤ K(n, ω, xi) := C(d)
d∏

u=1

(δu(Dxiφn(·, ω)) ∨ 1)

which implies by Lemma 6.2.2

I =− lim
k→∞

∫
Ωk,l

m∑
i=1

µ(ξxi)
∞∑

j=1

µ(φ−1
n ξxj |ξxi) logµ(φ−1

n ξxj |ξxi)dP

≤ lim
k→∞

∫
Ωk,l

m∑
i=1

µ(ξxi) logK(n, ω, xi)dP(ω)

= lim
k→∞

∫
Ωk,l

m∑
i=1

∫
ξxi

logK(n, ω, xi)dµ(y)dP(ω).

But since for i ∈ {1, . . . ,m}, y ∈ ξxi and ω ∈ Ωk,l we have

logK(n, ω, xi) = logC(d) +
d∑

u=1

log+(δu(Dxφn))

≤ logC(d) + d log 2 +
d∑

u=1

log+(δu(Dyφn))

we get that

I ≤ lim
k→∞

∫
Ωk,l

m∑
i=1

∫
ξxi

logC(d) + d log 2 +
d∑

u=1

log+(δu(Dyφn))dµ(y)dP

≤ logC(d) + d log 2 +
∫

Ωk,l

∫
Rd

d∑
u=1

log+(δu(Dyφn))dµ(y)dP.

To handle the terms II and III we will again estimate the number of elements of ξk that can
intersect φnξxi . To do this we put

Lk(n, ω, i) := sup
z∈K 1

k
(xi)

||Dzφn|| ≥ sup
z∈ξxi

||Dzφn||

and observe that we have by the mean value theorem for x, y ∈ ξxi and arbitrary ω ∈ Ω

|φn(x, ω)− φn(y, ω)| ≤ Lk(n, ω, i)|x− y|
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which implies

φnξxi ⊂ φnK 1
k
(xi) ⊂ KLk(n,ω,i)

k

(φn(xi, ω)).

By Lemma 6.3.3 applied to A := Lk(n, ω, i)idRd we conclude

#{j : ξxj ∩ φn(·, ω)ξxi 6= ∅} ≤ C(d)(Lk(n, ω, i) ∨ 1)d (6.2)

which implies

II =− lim
k→∞

∫
Ω

∞∑
i=m+1

µ(ξxi)
∞∑

j=1

µ(φ−1
n ξxj |ξxi) logµ(φ−1

n ξxj |ξxi)dP

≤ lim
k→∞

∫
Ω

∞∑
i=m+1

µ(ξxi) log
(
C(d)(Lk(n, ω, i) ∨ 1)d

)
dP(ω)

= lim
k→∞

∞∑
i=m+1

µ(ξxi)
∫

Ω
logC(d) + d log+ Lk(n, ω, i)dP(ω)

= lim
k→∞

∞∑
i=m+1

µ(ξxi)
(

logC(d) + d

∫
Ω

log+ (Lk(n, ω, 1)) dP(ω)
)

≤ lim
k→∞

∞∑
i=m+1

µ(ξxi)
(

logC(d) + d

∫
Ω

log+ (L1(n, ω, 1)) dP(ω)
)

=µ(Rd \Kl(0))
(

logC(d) + d

∫
Ω

log+ (L1(n, ω, 1)) dP(ω)
)

since by the rotation invariance of φ and (1.20) the distribution of Lk(n, ·, i) does not depend on
i and Lk(n, ·, i) is decreasing in k. For the estimate (6.2) is valid for any i and ω we may also use
it to treat the term III.

III =− lim
k→∞

∫
Ω\Ωk,l

m∑
i=1

µ(ξxi)
∞∑

j=1

µ(φ−1
n ξxj |ξxi) logµ(φ−1

n ξxj |ξxi)dP

≤ lim
k→∞

m∑
i=1

µ(ξxi)
∫

Ω\Ωk,l

logC(d) + d log+ Lk(n, ω, i)dP(ω)

≤ lim
k→∞

(
µ(Kl(0))

(
logC(d) + d

∫
Ω\Ωk,l

log+ L1(n, ω, 1)dP(ω)

))
.
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Altogether we get that

nhµ (φ) ≤ logC(d) + d log 2 +
∫

Ωk,l

∫
Rd

d∑
u=1

log+(δu(Dyφn))dµ(y)dP

+ lim
k→∞

µ(Rd \Kl(0))
(

logC(d) + d

∫
Ω

log+ (L1(n, ω, 1)) dP(ω)
)

+ lim
k→∞

(
µ(Kl(0))

(
logC(d) + d

∫
Ω\Ωk,l

logL1(n, ω, 1)dP(ω)

))

≤2 logC(d) + d log 2 +
∫

Ω

∫
Rd

d∑
u=1

log+(δu(Dyφn))dµ(y)dP(ω)

+ d

∫
Ω

log+ (L1(n, ω, 1)) dP(ω) lim
k→∞

µ(Rd \Kl(0))

+ d lim
k→∞

∫
Ω\Ωk,l

logL1(n, ω, 1)dP(ω). (6.3)

Since
∫
Ω log+ (L1(n, ω, 1)) dP(ω) is finite which follows from [20, Theorem 2.2] the last term

vanishes. If now we choose l in a way such that µ(Rd \Kl(0))d
∫
Ω log+ L1(n, ω, 1)dP(ω) ≤ 42 we

may divide (6.3) by n to obtain

hµ (φ) ≤ lim
n→∞

1
n

∫
Ω

∫
Rd

d∑
u=1

log+(δu(Dyφn))dµ(y)dP(ω).

An application of Lemmas 6.4.1 and 6.4.2 (which we include in the next section for the convenience
of the reader) now yields

hµ (φ) ≤ lim
n→∞

1
n

∫
Ω

∫
Rd

|D̂yφn|dµ(y)dP(ω) =
n∑

i=1

λ+
i

since for an IOUF the Lyapunov exponents are constant in space. 2

6.4 Exterior Powers, Tensor Algebras And SVDs

This part contains some facts from (multi-)linear algebra concerning the construction of certain
algebras from a given finite-dimensional vector space and the formulation of how this is applied
to prove Ruelle’s inequality. We only give the definitions and statements for ease of reference and
omit the proofs. Let V be a finite-dimensional real vector space, n := dim(V ) and denote by

V ⊗ :=
∞⊕

k=0

k⊗
i=1

V ⊗i
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the associated (contravariant) tensor algebra. Let further I := I(v ⊗ v : v ∈ V ) be the ideal
generated by elements of the form v ⊗ v. The factor algebra

V ∧ := V ⊗/I

is the outer algebra of V and it can be easily shown to admitt the following decomposition.

V ∧ =
n⊕

k=0

V ∧k with V ∧k = V ⊗k ∩ V ∧ and dim(V ∧k) =
n!

k!(n− k)!

We now take a vector space endomorphism T : V → V and seek to define T∧k. One might consider
Hom(V ) as a vector space and perform the above for the vector T . This would immediatly lead
to T∧k = 0 and hence is not the right way to do this. For ”going from a vector space to its
tensor algebra“ is a covariant functor (as we will see) it has to transform the morphisms of V into
morphisms of the tensor algebra and hence (mod I) to morphisms of the exterior algebra. It turns
out that T can be extended to an algebra endomorphism T⊗ on V ⊗ in unique manner. Since
T⊗ preserves V ⊗k we can get T∧k as the restriction of T⊗ to V ∧k. Exterior powers T∧k play an
important role in the multiplicative ergodic theorem since their singular values link generically
to the Lyapunov exponents of the systems. Before stating the main results we introduce the
shorthand

T∧ : V ∧ → V ∧, T∧ := idR ⊕ T ⊕ T∧2 . . . T∧n.

Lemma 6.4.1. Let φ be an IOUF with corresponding Lyapunov exponents λ1, . . . , λd Then we
have

d∏
u=1

(1 ∨ δu(Dyφn)) ≤ log | ̂Dyφn(y, ω)|.

Proof: This is shown in a much more general context in [1, II.(2.6)]. 2

Lemma 6.4.2. Let φ be an IOUF with corresponding Lyapunov exponents λ1, . . . , λd.. Then we
have

lim
n→∞

1
n

∫
Ω

∫
Rd

log | ̂Dyφn(y, ω)|dµ(y)dP(ω) =
∫
Rd

d∑
i=1

λ+
i (y)dµ(y).

Proof: This lemma is valid in the context of RDS on manifolds as shown in [1, Proposition II.3.2].
See also [49]. 2
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Chapter 7

Asymptotic Growth Of Spatial
Derivatives Of Isotropic Flows

It is known from the multiplicative ergodic theorem (cf. Theorem 1.2.9) that the norm of the
derivative of certain stochastic flows at a previously fixed point grows exponentially fast in time
as the flows evolve. We prove that this is also true if one takes the supremum over a bounded
set of initial points. We give an explicit bound for the exponential growth rate which is far
different from the lower bound coming from the Multiplicative Ergodic Theorem. We start with
an introduction and recall some preliminary lemmas from the literature in the first section, give
the main result in the second one and devote the remaining part of the chapter to its proof. In
the whole chapter we will use φ to denote an IOUF or a RIF with covariance tensor b and drift
c or an IBF with covariance tensor b. Since the cases of IOUFs, RIFs and IBFs can be covered
with completely the same computations we do not need to distinguish between the three cases
here.

7.1 Introduction And Preliminaries

The evolution of the diameter of a bounded set under the evolution of a stochastic flow has been
studied since the 1990’s and we treated the special case of a two-dimensional IBF in Chapter 4.
Of course the considered diameter links to the supremum of |φt(x)| with x ranging over a subset
of Rd and hence this supremum also grows linearly in time. In the following we will consider
the case where the flow is replaced by its spatial derivative. We emphasize that we consider the
asymptotics in time (the spatial asymptotics for a fixed time horizon have been considered in [20]
in a very general setting and in [57] in the particular case treated here - cf. Chapter 2). If the
flow has a positive top exponent it is known that the growth is at least exponentially fast which
is then true even for a singleton (this follows directly from the multiplicative ergodic theorem).
We will show in the case of an isotropic flow that supx | log ‖Dφt (x)‖ | grows at most linearly in
time t where the supremum is taken over x in a bounded subset of Rd no matter what the top
Lyapunov exponent is. This shows that the growth of the norm of the derivative is indeed at most
exponentially fast but also gives some insight into the distance of Dφt (x) to singularity, which
might be of interest especially if the top exponent is negative. Exponential bounds on the growth

97
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of spatial derivatives play a role in the proof of Pesin’s formula for stochastic flows (see [37]).
We will also give a new proof of the fact that the diameter grows at most linearly in time from
this which is originally due to T. Lyons (but there are much simpler proofs known for this - see
the references given before). Despite the fact that we can come up with an upper bound for
the exponential growth rate we make no claims about its optimality (and we conjecture that our
bound is far from optimal). The first lemmas collect severals estimates we will have to use in the
sequel which are obtained from straightforward calculus and are stated for the ease of reference
and to make later computations more readable.

Lemma 7.1.1 (dirty estimates).
The following assertions hold.

1. For t > 0 the cumulative distribution function of the normal Φ satisfies 1− Φ(t) ≤ e−
1
2
t2.

2. Stirlings formula for the Gamma function Γ yields for t ≥ 1 that Γ
(

t+1
2

) 1
t ≤

√
2πe−

5
12
√
t+ 1.

3. For t ≥ 0 we have t ≤ e
t
e .

4. For t ≥ 0 we have
√
t ≤ t+ 1

4 .

5. For t ≥ 1 we have
√

log t ≤ t
1
2e .

Proof: One can derive these straightforward from undergraduate calculus. Note that the estimate
Γ(x) ≤

√
2πx1− 1

2 e
1

12x for x > 0 which can be found e.g. in [26, page 359] is useful. 2

Lemma 7.1.2 (a lemma on real functions).
Let f, g : [0,∞) → [0,∞) be increasing functions that are differentiable on (0,∞). Let further f
be convex and g be concave. If we have for some t > 0 that f(t) ≥ g(t) and f ′(t) ≥ g′(t) then we
have for all s ≥ t that f(s) ≥ g(s).

Proof: This is an elementary undergraduate exercise. 2

The following result is the main tool that allows for the estimation of suprema of the derivatives.

Theorem 7.1.3 (Chaining Growth Theorem).
Assume ψ : [0,∞)× R

d × Ω → R
d is a continuous random field with the following properties.

1. There exist A > 0 and B ≥ 0 such that for each k > 0 and each bounded set S ⊂ R
d we

have

lim sup
T→∞

1
T

log sup
x∈S

P

[
sup

0≤t≤T
|ψt(x)| > kT

]
≤ −

(k −B)2+
2A2

where r+ = r ∨ 0 denotes the positive part of r ∈ R.

2. There exist Λ ≥ 0, σ > 0, q0 ≥ 1 and c̄ > 0 such that for each x, y ∈ R
d, T > 0 and even

q ≥ q0 we have

E

[
sup

0≤t≤T
|ψt(x)− ψt(y)|q

]1/q

≤ c̄|x− y|e(Λ+ 1
2
qσ2)T .

c̄ may depend on q and d but neither on |x− y| nor on T .
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Let Ξ be a compact subset of Rd with box (or upper entropy dimension: see [52, page 19] for a
definition; just note that a closed ball in R

d has box dimension d) dimension ∆ > 0. Then

lim sup
T→∞

(
sup

0≤t≤T
sup
x∈Ξ

1
T
|ψt(x)|

)
≤ K a.s.

where

K :=

 B +A

√
2∆
(
Λ + σ2∆ +

√
σ4∆2 + 2∆Λσ2

)
: if Λ ≥ Λ0

B +A
√

2∆ d
d−∆

(
Λ + 1

2σ
2d
)

: otherwise

for

Λ0 :=
σ2d

∆

(
d

2
−∆

)
.

Proof: [52, Theorem 5.1]. Observe that the change of ”q ≥ 1“ to ”even q ≥ q0“ does not alter
the statement at all, because the assumptions above guarantee the assumptions for q ≥ 1 with
a change only in the value of c̄. The fact that we allow c̄ to depend on q does not play any role
because the proof in [52] is perfectly valid with q-depending c̄. 2

We finally recall the Burkholder-Davies-Gundy inequality because we will use the precise asymp-
totics for the constants appearing therein.

Lemma 7.1.4 (Burkholder-Davis-Gundy inequality).
For q ≥ 1 there exists a constant Cq such that for every continuous local martingale (Mt)t≥0 with
M0 = 0 we have

E

[
sup

0≤t≤T
M q

t

]
≤ CqE

[
〈M〉

q
2
T

]
.

In fact it is known that for even q the optimal C
1
q
q is the largest positive zero of the Hermite

polynomial of order 2q and can be estimated via C
1
q
q ≤ k

√
4q + 1 for some constant k > 0. If one

restricts oneself to large values of q one may choose k to be at most
√

2.

Proof: [11] for the optimality of the constant and [47] for the estimate (and also for a more precise
statement about the asymptotics of the maximal zeros of the Hermite polynomials). 2

7.2 The Main Result

We are now ready to state the main result.

Theorem 7.2.1 (exponential growth of spatial derivatives).
Let (φs,t : 0 ≤ s ≤ t <∞) be an IOUF as in Definition 1.4.1, an IBF as in Definition 1.3.3 or a
RIF as in Definition 1.5.1. In all cases we denote the drift by c and the covariance tensor by b
(notation as before). Let Ξ be a compact subset of Rd with box dimension ∆ > 0. Then

lim sup
T→∞

(
sup

0≤t≤T
sup
x∈Ξ

1
T
| log ‖Dφt (x)‖ |

)
≤ K a.s.
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where

K :=

 B +A

√
2∆
(
Λ + σ2∆ +

√
σ4∆2 + 2∆Λσ2

)
: if Λ ≥ Λ0

B +A
√

2∆ d
d−∆

(
Λ + 1

2σ
2d
)

: otherwise

for

Λ0 :=
σ2d

∆

(
d

2
−∆

)
, A :=

√
βL,

B :=0 ∨ (d− 1)βN + βL − 2c
2

∨ βL − (d− 1)βN + 2c
2

=
βL

2
+
|(d− 1)βN − 2c|

2
,

Λ :=Λ1 ∨ Λ2 ∨ Λ6, σ := σ1 ∨ σ2 ∨ σ6.

The Λi and σi are constants that depend on b and d and will be specified later.

Remark: The formula for the constant K above looks like the upper bound one can have for the
expansion speed of the flow itself (cf. [52]). This is due to the fact that Theorem 7.1.3 is taylored
to give good estimates in that case. The differences enter via different values for A, B, Λ and σ2.

Proof: This follows directly from Theorem 7.1.3 applied to

ψ : [0,∞)× R
d × Ω → R;ψt(x, ω) := log ‖Dφt (x)‖

if we can verify the following lemmas. In the entire chapter we will only use ψ in the meaning given
above from now on. Note that we choose the matrix norm be the Frobenius norm ||(ai,j)1≤i,j≤d|| :=(∑

i,j a
2
i,j

)1/2
for its computational simplicity although the special choice of a norm is irrelevant

because of their equivalence.

Lemma 7.2.2 (condition on the one-point motion).
We have for each bounded S ⊂ R

d that

lim sup
T→∞

1
T

log sup
x∈S

P

[
sup

0≤t≤T
|ψt(x)| > kT

]
≤ −

(k −B)2+
2A2

for A and B as given in Theorem 7.2.1.

Lemma 7.2.3 (condition on the two-point motion).
We have for each x, y ∈ Rd, T > 0 and even q ≥ q0 := 4

√
βL[2(d−1)βN−c−2βL]

128βL
∨ 3 that

E

[
sup

0≤t≤T
|ψt(x)− ψt(y)|q

]1/q

≤ c̄
√
qe(Λ+ 1

2
qσ2)T

for Λ and σ as given in Theorem 7.2.1 and c̄ := c̄1 + c̄2 + c̄6. The c̄i are constants that depend
on b and d and will be specified later.

The proofs of these lemmas will be given in the next sections. Observe that c̄ does not enter into
the constant K, so we do not need to pay attention to get a small value for it.
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7.3 Proof Of Lemma 7.2.2: The One-Point Condition

Before proving Lemma 7.2.2 we will need to establish some facts on ‖Dφt (x)‖2.

Lemma 7.3.1 (SDE for ‖Dφt (x)‖2).
Let x ∈ Rd and put

Mt := 2
∫ t

0

∑
i,j,k

∂kM
i (ds, xs)

∂jφ
k
s (x) ∂jφ

i
s (x)

‖Dφs (x)‖2 .

Then we have the following.

1. (Mt)t≥0 is a continuous local martingale that a.s. satifies for t ≥ 0 that

〈M〉t =2(βL − βN )t+ 2(βL + βN )
∫ t

0

∑
i,j,k,m

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

k
s (x) ∂mφ

i
s (x)

‖Dφs (x)‖4 ds ≤ 4βLt

and hence is a true martingale.

2. ‖Dφt (x)‖2 solves the SDE

‖Dφt (x)‖2 =d+ 2
∫ t

0

∑
i,j,k

∂kM
i (ds, xs) ∂jφ

k
s (x) ∂jφ

i
s (x)

+ [(d− 1)βN + βL − 2c]
∫ t

0
‖Dφs (x)‖2 ds

=d+
∫ t

0
‖Dφs (x)‖2 dMs + [(d− 1)βN + βL − 2c]

∫ t

0
‖Dφs (x)‖2 ds.

3. The quadratic variation
〈
‖Dφ· (x)‖2

〉
t
satisfies

〈
‖Dφ· (x)‖2

〉
t
=2(βL − βN )

∫ t

0
‖Dφs (x)‖4 ds

+ 2(βN + βL)
∫ t

0

∑
i,j,k,m

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

k
s (x) ∂mφ

i
s (x) ds.

4. ψt(x) = log ‖Dφt (x)‖ solves the SDE

ψt(x) =
1
2

log d+
1
2
Mt +

[
(d− 1)βN + βL

2
− c

]
t− 1

4
〈M〉t .

Proof: Since we have by Theorem 1.3.6 and Lemma 1.4.2 that

∂jφ
i
t (x) = δij +

∫ t

0

∑
k

∂jφ
k
s (x) ∂kM

i (ds, xs)− c

∫ t

0
∂jφ

i
t (x) ds
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we also get that Itô’s formula implies for ‖Dφt (x)‖2 =
∑

i,j(∂jφ
i
t (x))2 that

‖Dφt (x)‖2 = d+ 2
∑
i,j

∫ t

0
∂jφ

i
s (x) d∂jφ

i
s (x) +

∑
i,j

〈
∂jφ

i
· (x)

〉
t
.

By Theorem 1.3.6 and Lemma 1.4.2 this is equal to

d+ 2
∑
i,j,k

∫ t

0
∂jφ

i
s (x) ∂kM

i (ds, xs) ∂jφ
k
s (x)− 2c

∑
i,j

∫ t

0
(∂jφ

i
s (x))2ds

+
∑
i,j

∫ t

0

∑
k,l

∂jφ
l
s (x) ∂jφ

k
s (x) d

〈
∂lM

i (d·, x·) , ∂kM
i (d·, x·)

〉
s

=d+ 2
∑
i,j,k

∫ t

0
∂kM

i (ds, xs) ∂jφ
i
s (x) ∂jφ

k
s (x)− 2c

∫ t

0
‖Dφs (x)‖2 ds

−
∑
i,j,k,l

∫ t

0
∂jφ

l
s (x) ∂jφ

k
s (x) ∂k∂lb

i,i (0) ds. (7.1)

Since we have by Lemma 1.3.2∑
i,j,k,l

∫ t

0
∂jφ

l
s (x) ∂jφ

k
s (x) ∂k∂lb

i,i (0) ds

=
∫ t

0

∑
i,j,k,l

∂jφ
l
s (x) ∂jφ

k
s (x) [(βN − βL)δkiδli − βNδkl] ds

=
∫ t

0

∑
i,j

(βN − βL)(∂jφ
i
s (x))2ds− dβN

∫ t

0

∑
j,k

(∂jφ
k
s (x))2ds

=− [βL + (d− 1)βN ]
∫ t

0
‖Dφs (x)‖2 ds

we also get from (7.1) that ‖Dφt (x)‖2 equals

d+ 2
∑
i,j,k

∫ t

0
∂kM

i (ds, xs) ∂jφ
i
s (x) ∂jφ

k
s (x)

− 2c
∫ t

0
‖Dφs (x)‖2 ds+ [βL + (d− 1)βN ]

∫ t

0
‖Dφs (x)‖2 ds

=d+ 2
∑
i,j,k

∫ t

0
‖Dφs (x)‖2 ∂kM

i (ds, xs)
∂jφ

i
s (x) ∂jφ

k
s (x)

‖Dφs (x)‖2

+ [βL + (d− 1)βN − 2c]
∫ t

0
‖Dφs (x)‖2 ds

=d+ 2
∫ t

0
‖Dφs (x)‖2 dMs + [βL + (d− 1)βN − 2c]

∫ t

0
‖Dφs (x)‖2 ds.
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This proves assertion 2.. 4. follows from this and Itô’s formula since ψt(x) = 1
2 log

(
‖Dφt (x)‖2

)
.

To prove 1. and 3. we observe that by (1.9) and Lemma 1.3.2 we have

〈M〉t

=

〈
2
∫ ·

0

∑
i,j,k

∂kM
i (ds, xs)

∂jφ
k
s (x) ∂jφ

i
s (x)

‖Dφs (x)‖2 , 2
∫ ·

0

∑
l,m,n

∂nM
l (ds, xs)

∂mφ
n
s (x) ∂mφ

l
s (x)

‖Dφs (x)‖2

〉

=− 4
∑

i,j,k,l,m,n

∫ t

0

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

n
s (x) ∂mφ

l
s (x)

‖Dφs (x)‖4 ∂k∂nb
i,l (0) ds

=− 4
∑

i,j,k,l,m,n

∫ t

0

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

n
s (x) ∂mφ

l
s (x)

‖Dφs (x)‖4

[
1
2
(βN − βL)(δkiδnl + δklδni)− βNδknδil

]
ds

=2(βL − βN )
∫ t

0

∑
i,j,l,m

(∂jφ
i
s (x))2(∂mφ

l
s (x))2

‖Dφs (x)‖4 ds

+ 2(βL − βN )
∫ t

0

∑
i,j,k,m

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

i
s (x) ∂mφ

k
s (x)

‖Dφs (x)‖4 ds

+ 4βN

∫ t

0

∑
i,j,k,m

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

k
s (x) ∂mφ

i
s (x)

‖Dφs (x)‖4 ds

=2(βL − βN )t+ 2(βL + βN )
∫ t

0

∑
i,j,k,m

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

k
s (x) ∂mφ

i
s (x)

‖Dφs (x)‖4 ds.

This together with 2. proves 3. and 1. also follows from this and the next proposition. 2

Proposition 7.3.2 (a simple estimate).
We have

∣∣∣∑i,j,k,m
∂jφk

s (x)∂jφi
s(x)∂mφk

s (x)∂mφi
s(x)

‖Dφs(x)‖4

∣∣∣ ≤ 1.

Proof: Applying the triangle inequality and Schwarz’ inequality we get∣∣∣∣∣∣
∑

i,j,k,m

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

k
s (x) ∂mφ

i
s (x)

‖Dφs (x)‖4

∣∣∣∣∣∣ ≤
∑
i,k

∣∣∣∣∣∣
∑

j

∂jφ
k
s (x) ∂jφ

i
s (x)

‖Dφs (x)‖2

∣∣∣∣∣∣
∣∣∣∣∣∑

m

∂mφ
k
s (x) ∂mφ

i
s (x)

‖Dφs (x)‖2

∣∣∣∣∣
≤
∑
i,k

√√√√∑
j

(
∂jφk

s (x)
‖Dφs (x)‖

)2
√√√√∑

j

(
∂jφi

s (x)
‖Dφs (x)‖

)2
√√√√∑

m

(
∂mφk

s (x)
‖Dφs (x)‖

)2
√√√√∑

m

(
∂mφi

s (x)
‖Dφs (x)‖

)2

=
∑
i,k

∑
j

(
∂jφ

k
s (x)

‖Dφs (x)‖

)2∑
m

(
∂mφ

i
s (x)

‖Dφs (x)‖

)2

=
∑
j,k

(
∂jφ

k
s (x)

‖Dφs (x)‖

)2∑
i,m

(
∂mφ

i
s (x)

‖Dφs (x)‖

)2

= 1.

2

Now we can turn to the proof of Lemma 7.2.2.
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Since we can write Mt = W〈M〉t for a standard Brownian motion (Wt)t≥0 we get with Lemma 7.3.1

ψt(x) =
1
2

log d+
[
(d− 1)βN + βL

2
− c

]
t+

1
2

(
W〈M〉t −

1
2
〈M〉t

)
≤1

2
log d+

[
(d− 1)βN + βL

2
− c

]
t+

1
2

sup
0≤s≤4βLt

(
Ws −

1
2
s

)
=

1
2

log d+
[
(d− 1)βN + βL

2
− c

]
t+

1
2

sup
0≤s≤1

(
W4βLst −

4βLst

2

)
=

1
2

log d+
[
(d− 1)βN + βL

2
− c

]
t+

√
βLt sup

0≤s≤1

(
W4βLts

2
√
βLt

−
√
βLts

)
d=

1
2

log d+
[
(d− 1)βN + βL

2
− c

]
t+

√
βLt sup

0≤s≤1

(
Ws −

√
βLts

)
(7.2)

where the latter means equality in distribution. Therefore we get for any k > 0

P

[
sup

0≤t≤T
ψt(x) ≥ kT

]
(7.3)

≤P

[
log d

2
+ sup

0≤t≤T

{[
(d− 1)βN + βL

2
− c

]
t+

√
βLt sup

0≤s≤1

(
Ws −

√
βLts)

)}
≥ kT

]

≤P

[
sup

0≤t≤T

{[
(d− 1)βN + βL − 2c

2
√
βL

]
+

t+
√
t sup

0≤s≤1

(
Ws −

√
βLts)

)}
≥ k√

βL
T − log d

2
√
βL

]
=: I.

Here we distinguish between two cases to treat (7.3). If (d − 1)βN + βL − 2c ≤ 0 then we
immediately get

I ≤P
[√

T sup
0≤s≤1

Ws ≥
k√
βL
T − log d

2
√
βL

]
= P

[
sup

0≤s≤1
Ws ≥

k√
βL

√
T − log d

2
√
βLT

]

=2

[
1− Φ

(
k
√
T√
βL

− log d
2
√
βLT

)]
≤ 2e

− 1
2

„
k2T
βL

− k log d
βL

+
(log d)2

4βLT

«
(7.4)

which gives in this case lim supT→∞
1
T logP

[
sup0≤t≤T ψt(x) ≥ kT

]
≤ − 1

2βL
k2 = − 1

2βL
k2

+. Now
let [(d− 1)βN + βL]− 2c > 0 and observe

I ≤P

[
sup

0≤t≤T

{[
(d− 1)βN + βL − 2c

2
√
βL

]
t+

√
t sup

0≤s≤1
Ws

}
≥ k√

βL
T − log d

2
√
βL

]

=P
[

sup
0≤s≤1

Ws ≥
[

k√
βL

+
2c− (d− 1)βN − βL

2
√
βL

]√
T − log d

2
√
βLT

]
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which leads (as in (7.4)) to

lim sup
T→∞

1
T

logP

[
sup

0≤t≤T
ψt(x) ≥ kT

]
≤− 1

2

[
k√
βL

+
2c− (d− 1)βN − βL

2
√
βL

]2

≤− 1
2βL

[
k − (d− 1)βN + βL − 2c

2

]2

+

.

We now only have to exclude the possibility that the modulus of the logarithm in ψt(x) might
become large due to a very small ‖Dφt (x)‖. Observe, that (7.2) implies

ψt(x) =
1
2

log d+
[
(d− 1)βN + βL

2
− c

]
t+

1
2

(
W〈M〉t −

1
2
〈M〉t

)
≥
[
(d− 1)βN + βL

2
− c

]
t+

1
2
W〈M〉t − βLt =

[
(d− 1)βN − βL − 2c

2

]
t+

1
2
W〈M〉t . (7.5)

If (d− 1)βN − βL − 2c ≥ 0 we may thus estimate

P

[
inf

0≤t≤T
ψt(x) ≤ −kT

]
≤P

[
1
2

inf
0≤t≤4βLT

Wt ≤ −kT
]

= P

[
1
2

sup
0≤t≤4βLT

Wt ≥ kT

]
=P

[
sup

0≤t≤1
Wt ≥

k√
βL

√
T

]

which implies (see (7.4)) that lim supT→∞
1
T logP [inf0≤t≤T ψt(x) ≤ −kT ] ≤ − 1

2βL
k2

+. In the
remaining case (d− 1)βN − βL − 2c ≤ 0 we observe that (7.5) yields

P

[
inf

0≤t≤T
ψt(x) ≤ −kT

]
≤P

[
1
2

inf
0≤t≤4βLT

Wt ≤
[
−(d− 1)βN + βL + 2c

2
− k

]
T

]
=P

[
sup

0≤t≤1
Wt ≥

[
(d− 1)βN − βL − 2c

2
√
βL

+
k√
βL

]√
T

]

and so

lim sup
T→∞

1
T

logP
[

inf
0≤t≤T

ψt(x) ≤ −kT
]
≤− 1

2βL

[
(d− 1)βN − βL − 2c

2
+ k

]2

≤− 1
2βL

[
k − βL − (d− 1)βN + 2c

2

]2

+

.

This completes the proof of Lemma 7.2.2. 2
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7.4 Proof Of Lemma 7.2.3: The Two-Point Condition

7.4.1 General Estimates And Preparation

We now turn to the Proof of Lemma 7.2.3. Observe that we have by Lemma 7.3.1

ψt(x)− ψt(y) =
∫ t

0

∑
i,j,k

∂kM
i (ds, xs)

∂jφ
k
s (x) ∂jφ

i
s (x)

‖Dφs (x)‖2 − ∂kM
i (ds, ys)

∂jφ
k
s (y) ∂jφ

i
s (y)

‖Dφs (y)‖2

+
(βL + βN )

2

∫ t

0

∑
i,j,k,m

∂jφ
k
s (y) ∂jφ

i
s (y) ∂mφ

k
s (y) ∂mφ

i
s (y)

‖Dφs (y)‖4

− ∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

k
s (x) ∂mφ

i
s (x)

‖Dφs (x)‖4 ds

=:M̃t +At.

To further analyze the latter we first prove the following lemma.

Lemma 7.4.1 (general estimates for At and M̃t ).
With M̃t and At defined as above we have the following.

1. A.s. we have for all t ≥ 0 that At ≤ (βN + βL)t.

2. The quadratic variation satisfies

〈
M̃
〉

t

=
βL + βN

2

∫ t

0

∑
i,k

∑
j

∂jφ
i
s (x) ∂jφ

k
s (x)

‖Dφs (x)‖2 − ∂jφ
i
s (y) ∂jφ

k
s (y)

‖Dφs (y)‖2

2

ds

+ 2
∑

i,j,k,l,m,n

∫ t

0

∂jφ
i
s (x) ∂jφ

k
s (x) ∂mφ

l
s (y) ∂mφ

n
s (y)

‖Dφs (x)‖2 ‖Dφs (y)‖2

[
∂k∂nb

i,l (xs − ys)− ∂k∂nb
i,l (0)

]
ds.

3.
〈
M̃
〉

t
≤ c̃t for c̃ := 2βL + 2d6 maxi,l,k,n supz∈Rd ∂k∂nb

i,l (z).
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Proof: 1. is clear by definition of At and Proposition 7.3.2.〈
M̃
〉

t

=

〈∫ ·

0

∑
i,j,k

∂kM
i (ds, xs)

∂jφ
k
s (x) ∂jφ

i
s (x)

‖Dφs (x)‖2 − ∂kM
i (ds, ys)

∂jφ
k
s (y) ∂jφ

i
s (y)

‖Dφs (y)‖2 ,

∫ t

0

∑
l,m,n

∂nM
l (ds, xs)

∂mφ
n
s (x) ∂mφ

l
s (x)

‖Dφs (x)‖2 − ∂nM
l (ds, ys)

∂mφ
n
s (y) ∂mφ

l
s (y)

‖Dφs (y)‖2

〉
t

=−
∑

i,j,k,l,m,n

∫ t

0

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

n
s (x) ∂mφ

l
s (x)

‖Dφs (x)‖4 ∂k∂nb
i,l (0) ds

+
∑

i,j,k,l,m,n

∫ t

0

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

n
s (y) ∂mφ

l
s (y)

‖Dφs (x)‖2 ‖Dφs (y)‖2 ∂k∂nb
i,l (xs − ys) ds

+
∑

i,j,k,l,m,n

∫ t

0

∂jφ
k
s (y) ∂jφ

i
s (y) ∂mφ

n
s (x) ∂mφ

l
s (x)

‖Dφs (y)‖2 ‖Dφs (x)‖2 ∂k∂nb
i,l (ys − xs) ds

−
∑

i,j,k,l,m,n

∫ t

0

∂jφ
k
s (y) ∂jφ

i
s (y) ∂mφ

n
s (y) ∂mφ

l
s (y)

‖Dφs (y)‖4 ∂k∂nb
i,l (0) ds

=−
∑

i,j,k,l,m,n

∫ t

0

[
1
2
(βN − βL)(δkiδnl + δklδni)− βNδknδil

]
(
∂jφ

k
s (x) ∂jφ

i
s (x) ∂mφ

n
s (x) ∂mφ

l
s (x)

‖Dφs (x)‖4 +
∂jφ

k
s (y) ∂jφ

i
s (y) ∂mφ

n
s (y) ∂mφ

l
s (y)

‖Dφs (y)‖4

)
ds

+ 2
∑

i,j,k,l,m,n

∫ t

0

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

n
s (y) ∂mφ

l
s (y)

‖Dφs (x)‖2 ‖Dφs (y)‖2 ∂k∂nb
i,l (xs − ys) ds

=:II + III. (7.6)

Using

II

=
βL − βN

2

∫ t

0

∑
i,j,l,m

∂jφ
i
s (x) ∂jφ

i
s (x) ∂mφ

l
s (x) ∂mφ

l
s (x)

‖Dφs (x)‖4 +
∂jφ

i
s (y) ∂jφ

i
s (y) ∂mφ

l
s (y) ∂mφ

l
s (y)

‖Dφs (y)‖4 ds

+
βL − βN

2

∫ t

0

∑
i,j,k,m

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

i
s (x) ∂mφ

k
s (x)

‖Dφs (x)‖4 +
∂jφ

k
s (y) ∂jφ

i
s (y) ∂mφ

i
s (y) ∂mφ

k
s (y)

‖Dφs (y)‖4 ds

+ βN

∫ t

0

∑
i,j,k,m

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

k
s (x) ∂mφ

i
s (x)

‖Dφs (x)‖4 +
∂jφ

k
s (y) ∂jφ

i
s (y) ∂mφ

k
s (y) ∂mφ

i
s (y)

‖Dφs (y)‖4 ds

=(βL − βN )t

+
βL + βN

2

∫ t

0

∑
i,j,k,m

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

k
s (x) ∂mφ

i
s (x)

‖Dφs (x)‖4 +
∂jφ

k
s (y) ∂jφ

i
s (y) ∂mφ

k
s (y) ∂mφ

i
s (y)

‖Dφs (y)‖4 ds
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Proposition 7.3.2 now yields II ≤ (βL − βN )t+ (βN+βL)
2 2t = 2βLt.

Since III ≤ 2d6 maxi,l,k,n supz∈Rd ∂k∂nb
i,l (z) t is clear 3. follows. For the proof of 2. we only

have to rearrange (7.6) using the symmetry and isotropy of b.〈
M̃
〉

t
=−

∑
i,j,k,l,m,n

∫ t

0

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

n
s (x) ∂mφ

l
s (x)

‖Dφs (x)‖4 ∂k∂nb
i,l (0) ds

+
∑

i,j,k,l,m,n

∫ t

0

∂jφ
k
s (x) ∂jφ

i
s (x) ∂mφ

n
s (y) ∂mφ

l
s (y)

‖Dφs (x)‖2 ‖Dφs (y)‖2 ∂k∂nb
i,l (xs − ys) ds

+
∑

i,j,k,l,m,n

∫ t

0

∂jφ
k
s (y) ∂jφ

i
s (y) ∂mφ

n
s (x) ∂mφ

l
s (x)

‖Dφs (y)‖2 ‖Dφs (x)‖2 ∂k∂nb
i,l (ys − xs) ds

−
∑

i,j,k,l,m,n

∫ t

0

∂jφ
k
s (y) ∂jφ

i
s (y) ∂mφ

n
s (y) ∂mφ

l
s (y)

‖Dφs (y)‖4 ∂k∂nb
i,l (0) ds

=−
∑

i,j,k,l,m,n

∫ t

0

[
∂jφ

i
s (x) ∂jφ

k
s (x)

‖Dφs (x)‖2 − ∂jφ
i
s (y) ∂jφ

k
s (y)

‖Dφs (y)‖2

]
[
∂mφ

n
s (x) ∂mφ

l
s (x)

‖Dφs (x)‖2 − ∂mφ
n
s (y) ∂mφ

l
s (y)

‖Dφs (y)‖2

]
∂k∂nb

i,l (0) ds

+ 2
∑

i,j,k,l,m,n

∫ t

0

∂jφ
i
s (x) ∂jφ

k
s (x) ∂mφ

l
s (y) ∂mφ

n
s (y)

‖Dφs (x)‖2 ‖Dφs (y)‖2

[
∂k∂nb

i,l (xs − ys)− ∂k∂nb
i,l (0)

]
ds

=:V + V I.

Since (by Lemma 1.3.2) we have ∂k∂nb
i,l (0) = 1

2(βN − βL)(δkiδnl + δklδni)− βNδknδil we get

V =
βL − βN

2

∑
i,j,l,m

(
(∂jφ

i
s (x))2

‖Dφs (x)‖2 −
(∂jφ

i
s (y))2

‖Dφs (y)‖2

)(
(∂mφ

l
s (x))2

‖Dφs (x)‖2 −
(∂mφ

l
s (y))2

‖Dφs (y)‖2

)
ds

+
βL − βN

2

∑
i,j,k,m

∫ t

0

(
∂jφ

i
s (x) ∂jφ

k
s (x)

‖Dφs (x)‖2 − ∂jφ
i
s (y) ∂jφ

k
s (y)

‖Dφs (y)‖2

)
(
∂mφ

i
s (x) ∂mφ

k
s (x)

‖Dφs (x)‖2 − ∂mφ
i
s (y) ∂mφ

k
s (y)

‖Dφs (y)‖2

)
ds

+ βN

∑
i,j,k,m

∫ t

0

(
∂jφ

i
s (x) ∂jφ

k
s (x)

‖Dφs (x)‖2 − ∂jφ
i
s (y) ∂jφ

k
s (y)

‖Dφs (y)‖2

)
(
∂mφ

k
s (x) ∂mφ

i
s (x)

‖Dφs (x)‖2 − ∂mφ
k
s (y) ∂mφ

i
s (y)

‖Dφs (y)‖2

)
ds

=
βL + βN

2

∑
i,j,k,m

∫ t

0

(
∂jφ

i
s (x) ∂jφ

k
s (x)

‖Dφs (x)‖2 − ∂jφ
i
s (y) ∂jφ

k
s (y)

‖Dφs (y)‖2

)
(
∂mφ

i
s (x) ∂mφ

k
s (x)

‖Dφs (x)‖2 − ∂mφ
i
s (y) ∂mφ

k
s (y)

‖Dφs (y)‖2

)
ds
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=
βL + βN

2

∫ t

0

∑
i,k

∑
j

∂jφ
i
s (x) ∂jφ

k
s (x)

‖Dφs (x)‖2 − ∂jφ
i
s (y) ∂jφ

k
s (y)

‖Dφs (y)‖2

2

ds.

This completes the proof of Lemma 7.4.1. 2

This Lemma shows that it is necessary to control terms of the form ∂jφi
s(x)

‖Dφs(x)‖ −
∂jφi

s(y)
‖Dφs(y)‖ . We

postpone this until we will have derived the following estimate from Lemma 7.4.1.

Lemma 7.4.2 (a priori bounds for the ψ-estimation).

1. We have for each x, y ∈ Rd, T > 0 and q ≥ 1 that

E

[
sup

0≤t≤T
|ψt(x)− ψt(y)|q

]1/q

≤ (βN + βL)T + 2e−
5
12

√
2πc̃
√
q + 1

√
T .

2. We have for each x, y ∈ Rd, T > 0 and q ≥ 1 that

E

[
sup

0≤t≤T
|ψt(x)− ψt(y)|q

]1/q

≤ C̄1e
(Λ1+ 1

2
σ2
1q)T

with C̄1 := (βN + βL) + 2e
1
4e
− 5

12

√
2πc̃, Λ1 := 1

e and σ1 :=
√

2
e .

3. Let r > 0 be fixed. We have for any x, y ∈ Rd with |x− y| ≥ r, T > 0 and q ≥ 1 that

E

[
sup

0≤t≤T
|ψt(x)− ψt(y)|q

]1/q

≤ c̄1|x− y|e(Λ1+ 1
2
σ2
1)T

for c̄1 := 1
r

[
(βN + βL) + 2e−

5
12

√
2πc̃
]

and Λ1 and σ1 as before.

Proof: Once again observe that by the triangle inequality

E

[
sup

0≤t≤T
|ψt(x)− ψt(y)|q

]1/q

≤E

[
sup

0≤t≤T
Aq

t

]1/q

+ E

[
sup

0≤t≤T
M̃ q

t

]1/q

≤ (βN + βL)T + E

[
sup

0≤t≤T
M̃ q

t

]1/q

=:(βN + βL)T + IV.

Since we can write M̃t = W〈M̃〉
t

and
〈
M̃
〉

t
≤ c̃t a.s. we get using [14, (21.24.a)]

E

[
sup

0≤t≤T
M̃ q

t

]
≤ E

[
sup

0≤t≤c̃T
W q

t

]
= (c̃T )

q
2

√
2
π

Γ
(

q+1
2

)
2

2
q+1
2
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which implies with Lemma 7.1.1

IV ≤(2π)−
1
2q 2

q+1
2q Γ

(
q + 1

2

) 1
q √

c̃T ≤ 2e−
5
12

√
2πc̃
√
q + 1

√
T .

This proves 1.. For the proof of 2. it is sufficient to observe with Lemma 7.1.1

(βN + βL)T + 2e−
5
12

√
2πc̃
√
q + 1

√
T ≤(βN + βL)e

T
e + 2e−

5
12

√
2πc̃e

√
q+1

√
T

e

≤ (βN + βL)e
T
e + 2e−

5
12

√
2πc̃e1/e(1/4+(q+1)T ) ≤

[
(βN + βL) + 2e

1
4e
− 5

12

√
2πc̃
]
e

q+1
e

T .

This proofs 2. and 3. follows from this by using |x−y|
r ≤ 1. 2

Since we can now control the moments of ψt(x)−ψt(y) provided x and y are not too close to each
other we introduce the following stopping time. Let r̄ be chosen according to (1.8) and r̃ ≤ r̄ to
be specified later. Remember that we assumed r̄ ≤ 1. We now define

τ := inf
t>0
{|xt − yt| ≥ r̃}.

and will assume r < r̃ in the following (which ensures τ > 0 a.s.). The aim is to estimate(
E
[
sup0≤t≤T |ψt(x)− ψt(y)|q1{T≤τ}

])1/q for |x− y| < r.

7.4.2 Derivation Of Formula H

We now proceed to work on ∂jφi
s(x)

‖Dφs(x)‖ −
∂jφi

s(y)
‖Dφs(y)‖ by proving the following proposition on ∂jφi

s(x)
‖Dφs(x)‖ .

Proposition 7.4.3 (SDE for the direction of the derivative).
We have the SDE

∂jφ
i
s (x)

‖Dφs (x)‖

=
δij

√
d

+
∫ t

0

∑
k

∂kM
i (ds, xs)

∂jφ
k
s (x)

‖Dφs (x)‖
−
∫ t

0

∑
k,l,m

∂mM
k (ds, xs)

∂lφ
m
s (x) ∂lφ

k
s (x) ∂jφ

i
s (x)

‖Dφs (x)‖3

+
[(

1
4
− d

2

)
βN − 1

4
βL

] ∫ t

0

∂jφ
i
s (x)

‖Dφs (x)‖
ds− βN + βL

2

∫ t

0

∑
k,l

∂jφ
k
s (x) ∂lφ

i
s (x) ∂lφ

k
s (x)

‖Dφs (x)‖3 ds

+
3
4
(βN + βL)

∫ t

0

∑
k,l,m,n

∂lφ
k
s (x) ∂lφ

n
s (x) ∂mφ

k
s (x) ∂mφ

n
s (x) ∂jφ

i
s (x)

‖Dφs (x)‖5 ds.

Proof: Since by Itô’s formula

∂jφ
i
s (x)

‖Dφs (x)‖
=
δij

√
d

+
∫ t

0

d(∂jφ
i
· (x))s

‖Dφs (x)‖
− 1

2

∫ t

0

∂jφ
i
s (x)

‖Dφs (x)‖3d ‖Dφ· (x)‖
2
s

− 1
2

∫ t

0

d
〈
∂jφ

i
· (x) , ‖Dφ· (x)‖

2
〉

s

‖Dφs (x)‖3 +
3
8

∫ t

0

∂jφ
i
s (x)

‖Dφs (x)‖5d
〈
‖Dφ· (x)‖2

〉
s

(7.7)
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we only have to note that by Theorem 1.3.6, Lemma 1.4.2 and 7.3.1

〈
∂jφ

i
· (x) , ‖Dφ· (x)‖

2
〉

t

=

〈∫ ·

0

∑
k

∂kM
i (ds, xs) ∂jφ

k
s (x) , 2

∫ ·

0

∑
l,m,n

∂lM
n (ds, xs) ∂mφ

l
s (x) ∂mφ

n
s (x)

〉
t

=− 2
∫ t

0

∑
k,l,m,n

∂jφ
k
s (x) ∂mφ

l
s (x) ∂mφ

n
s (x)

[
1
2
(βN − βL)(δkiδln + δknδli)− βNδklδin

]
ds

=(βL − βN )
∫ t

0

∑
l,m

∂jφ
i
s (x) ∂mφ

l
s (x) ∂mφ

l
s (x) ds

+ (βL − βN )
∫ t

0

∑
k,m

∂jφ
k
s (x) ∂mφ

i
s (x) ∂mφ

k
s (x) ds+ 2βN

∫ t

0

∑
k,m

∂jφ
k
s (x) ∂mφ

k
s (x) ∂mφ

i
s (x) ds

=(βL − βN )
∫ t

0
∂jφ

i
s (x) ‖Dφs (x)‖2 ds+ (βL + βN )

∫ t

0

∑
k,m

∂jφ
k
s (x) ∂mφ

i
s (x) ∂mφ

k
s (x) ds

which combined with Theorem 1.3.6, Lemmas 1.4.2 and 7.3.1 and put into (7.7) yields

∂jφ
i
t (x)

‖Dφt (x)‖
=
δij

√
d

+
∫ t

0

∑
k

∂kM
i (ds, xs)

∂jφ
k
s (x)

‖Dφs (x)‖
− c

∫ t

0

∂jφ
i
s (x)

‖Dφs (x)‖
ds

−
∫ t

0

∑
k,l,m

∂mM
k (ds, xs)

∂lφ
m
s (x) ∂lφ

k
s (x) ∂jφ

i
s (x)

‖Dφs (x)‖3 − (d− 1)βN + βL − 2c
2

∫ t

0

∂jφ
i
s (x)

‖Dφs (x)‖
ds

+
βN − βL

2

∫ t

0

∂jφ
i
s (x)

‖Dφs (x)‖
ds− βN + βL

2

∫ t

0

∑
k,l

∂jφ
k
s (x) ∂lφ

i
s (x) ∂lφ

k
s (x)

‖Dφs (x)‖3 ds

+
3
4
(βL − βN )

∫ t

0

∂jφ
i
s (x)

‖Dφs (x)‖
ds

+
3
4
(βN + βL)

∫ t

0

∑
k,l,m,n

∂lφ
k
s (x) ∂lφ

n
s (x) ∂mφ

k
s (x) ∂mφ

n
s (x) ∂jφ

i
s (x)

‖Dφs (x)‖5 ds.

This proves Proposition 7.4.3. 2
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Of course the latter implies that ∂jφi
s(x)

‖Dφs(x)‖ −
∂jφi

s(y)
‖Dφs(y)‖ equals∫ t

0

∑
k

(
∂kM

i (ds, xs)
∂jφ

k
s (x)

‖Dφs (x)‖
− ∂kM

i (ds, ys)
∂jφ

k
s (y)

‖Dφs (y)‖

)

−
∫ t

0

∑
k,l,m

(
∂mM

k (ds, xs)
∂lφ

m
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂mM

k (ds, ys)
∂lφ

m
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)

+
[(

1
4
− d

2

)
βN −

1
4
βL

] ∫ t

0

(
∂jφ

i
s (x)

‖Dφs (x)‖
− ∂jφ

i
s (y)

‖Dφs (y)‖

)
ds

− βN + βL
2

∫ t

0

∑
k,l

(
∂jφ

k
s (x) ∂lφis (x) ∂lφks (x)
‖Dφs (x)‖3

− ∂jφ
k
s (y) ∂lφis (y) ∂lφks (y)
‖Dφs (y)‖3

)
ds

+
3
4
(βN + βL)

∫ t

0

∑
k,l,m,n

(
∂lφ

k
s (x) ∂lφns (x) ∂mφks (x) ∂mφns (x) ∂jφis (x)

‖Dφs (x)‖5

−∂lφ
k
s (y) ∂lφns (y) ∂mφks (y) ∂mφns (y) ∂jφis (y)

‖Dφs (y)‖5

)
ds. (7.8)

Letting V IIt :=
∫ t
0

∑
k

(
∂kM

i (ds, xs)
∂jφk

s (x)
‖Dφs(x)‖ − ∂kM

i (ds, ys)
∂jφk

s (y)
‖Dφs(y)‖

)
and

V IIIt :=
∫ t
0

∑
k,l,m

(
∂mM

k (ds, xs)
∂lφ

m
s (x)∂lφ

k
s (x)∂jφi

s(x)

‖Dφs(x)‖3 − ∂mM
k (ds, ys)

∂lφ
m
s (y)∂lφ

k
s (y)∂jφi

s(y)

‖Dφs(y)‖3

)
we

have to compute the cross variations since we want to apply Itô’s formula for powers to (7.8).

〈V II〉t

=
∑
k,l

〈∫ ·

0
∂kM

i (ds, xs)
∂jφ

k
s (x)

‖Dφs (x)‖
− ∂kM

i (ds, ys)
∂jφ

k
s (y)

‖Dφs (y)‖
,

∫ ·

0
∂lM

i (ds, xs)
∂jφ

l
s (x)

‖Dφs (x)‖
− ∂lM

i (ds, ys)
∂jφ

l
s (y)

‖Dφs (y)‖

〉
t

=−
∫ t

0

∑
k,l

(
∂jφ

k
s (x) ∂jφ

l
s (x)

‖Dφs (x)‖2 +
∂jφ

k
s (y) ∂jφ

l
s (y)

‖Dφs (y)‖2

)
∂k∂lb

i,i (0) ds

+
∫ t

0

∑
k,l

(
∂jφ

k
s (x) ∂jφ

l
s (y)

‖Dφs (x)‖ ‖Dφs (y)‖
+

∂jφ
k
s (y) ∂jφ

l
s (x)

‖Dφs (y)‖ ‖Dφs (x)‖

)
∂k∂lb

i,i (xs − ys) ds

=−
∑
k,l

∫ t

0

(
∂jφ

k
s (x)

‖Dφs (x)‖
− ∂jφ

k
s (y)

‖Dφs (y)‖

)(
∂jφ

l
s (x)

‖Dφs (x)‖
− ∂jφ

l
s (y)

‖Dφs (y)‖

)
[(βN − βL)δkiδli − βNδkl] ds

+ 2
∫ t

0

∑
k,l

∂jφ
k
s (x) ∂jφ

l
s (y)

‖Dφs (x)‖ ‖Dφs (y)‖
[
∂k∂lb

i,i (xs − ys)− ∂k∂lb
i,i (0)

]
ds

=(βL − βN )
∫ t

0

(
∂jφ

i
s (x)

‖Dφs (x)‖
− ∂jφ

i
s (y)

‖Dφs (y)‖

)2

ds+ βN

∫ t

0

∑
k

(
∂jφ

k
s (x)

‖Dφs (x)‖
− ∂jφ

k
s (y)

‖Dφs (y)‖

)2

ds

+ 2
∫ t

0

∑
k,l

∂jφ
k
s (x) ∂jφ

l
s (y)

‖Dφs (x)‖ ‖Dφs (y)‖
[
∂k∂lb

i,i (xs − ys)− ∂k∂lb
i,i (0)

]
ds (7.9)
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and similarly

〈V III〉t

=
∑

k,l,m,n,p,r

〈∫ ·

0

(
∂mM

k (ds, xs)
∂lφ

m
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂mM

k (ds, ys)
∂lφ

m
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)
,

∫ ·

0

(
∂rM

n (ds, xs)
∂pφ

r
s (x) ∂pφns (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂rM

n (ds, ys)
∂pφ

r
s (y) ∂pφns (y) ∂jφis (y)

‖Dφs (y)‖3

)〉
t

=−
∑

k,l,m,n,p,r

∫ t

0

(
∂lφ

m
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

m
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)
(
∂pφ

r
s (x) ∂pφns (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂pφ

r
s (y) ∂pφns (y) ∂jφis (y)

‖Dφs (y)‖3

)[
βN − βL

2
(δrkδmn + δrnδmk)− βNδrmδkn

]
ds

+ 2
∑

k,l,m,n,p,r

∫ t

0

∂lφ
m
s (x) ∂lφks (x) ∂jφis (x) ∂pφrs (y) ∂pφns (y) ∂jφis (y)

‖Dφs (x)‖3 ‖Dφs (y)‖3
[
∂r∂mb

k,n (xs − ys)− ∂r∂mb
k,n (0)

]
ds

=
βL − βN

2

∑
k,l,p,n

∫ t

0

(
∂lφ

n
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

n
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)
(
∂pφ

k
s (x) ∂pφns (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂pφ

k
s (y) ∂pφns (y) ∂jφis (y)

‖Dφs (y)‖3

)
ds

+
βL − βN

2

∑
k,l,n,p

∫ t

0

(
∂lφ

k
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

k
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)
(
∂pφ

n
s (x) ∂pφns (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂pφ

n
s (y) ∂pφns (y) ∂jφis (y)

‖Dφs (y)‖3

)
ds

+βN
∑

k,l,m,p

∫ t

0

(
∂lφ

m
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

m
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)
(
∂pφ

m
s (x) ∂pφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂pφ

m
s (y) ∂pφks (y) ∂jφis (y)

‖Dφs (y)‖3

)
ds

+ 2
∑

k,l,m,n,p,r

∫ t

0

∂lφ
m
s (x) ∂lφks (x) ∂jφis (x) ∂pφrs (y) ∂pφns (y) ∂jφis (y)

‖Dφs (x)‖3 ‖Dφs (y)‖3
[
∂r∂mb

k,n (xs − ys)− ∂r∂mb
k,n (0)

]
ds

=
βL + βN

2

∫ t

0

∑
k,n

(∑
l

∂lφ
n
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

n
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)2

ds

+
βL − βN

2

∫ t

0

(
∂jφ

i
s (x)

‖Dφs (x)‖
− ∂jφ

i
s (y)

‖Dφs (y)‖

)2

ds

+ 2
∑

k,l,m,n,p,r

∫ t

0

∂lφ
m
s (x) ∂lφks (x) ∂jφis (x) ∂pφrs (y) ∂pφns (y) ∂jφis (y)

‖Dφs (x)‖3 ‖Dφs (y)‖3
[
∂r∂mb

k,n (xs − ys)− ∂r∂mb
k,n (0)

]
ds

(7.10)
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as well as

〈V II·, V III·〉t

=
∑

k,l,m,n

〈∫ ·

0

∂kM
i (ds, xs)

∂jφ
k
s (x)

‖Dφs (x)‖
− ∂kM

i (ds, ys)
∂jφ

k
s (y)

‖Dφs (y)‖
,

∫ ·

0

(
∂nM

l (ds, xs)
∂mφ

n
s (x) ∂mφls (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂nM

l (ds, ys)
∂mφ

n
s (y) ∂mφls (y) ∂jφis (y)

‖Dφs (y)‖3

)〉
t

=−
∫ t

0

∑
k,l,m,n

(
∂jφ

k
s (x)

‖Dφs (x)‖
− ∂jφ

k
s (y)

‖Dφs (y)‖

)[
βN − βL

2
(δikδnl + δinδkl)− βNδilδkn

]
(
∂mφ

n
s (x) ∂mφls (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂mφ

n
s (y) ∂mφls (y) ∂jφis (y)

‖Dφs (y)‖3

)
ds

+
∑

k,l,m,n

∫ t

0

(
∂jφ

k
s (x) ∂mφns (y) ∂mφls (y) ∂jφis (y)
‖Dφs (x)‖ ‖Dφs (y)‖3

+
∂jφ

k
s (y) ∂mφns (x) ∂mφls (x) ∂jφis (x)

‖Dφs (y)‖ ‖Dφs (x)‖3

)
[
∂k∂nb

i,l (xs − ys)− ∂k∂nb
i,l (0)

]
ds

=
βL − βN

2

∑
l,m

∫ t

0

(
∂jφ

i
s (x)

‖Dφs (x)‖
− ∂jφ

i
s (y)

‖Dφs (y)‖

)(
∂mφ

l
s (x) ∂mφls (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂mφ

l
s (y) ∂mφls (y) ∂jφis (y)
‖Dφs (y)‖3

)
ds

+
βL − βN

2

∑
l,m

∫ t

0

(
∂jφ

l
s (x)

‖Dφs (x)‖
− ∂jφ

l
s (y)

‖Dφs (y)‖

)(
∂mφ

i
s (x) ∂mφls (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂mφ

i
s (y) ∂mφls (y) ∂jφis (y)
‖Dφs (y)‖3

)
ds

+ βN
∑
k,m

∫ t

0

(
∂jφ

k
s (x)

‖Dφs (x)‖
− ∂jφ

k
s (y)

‖Dφs (y)‖

)(
∂mφ

k
s (x) ∂mφis (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂mφ

k
s (y) ∂mφis (y) ∂jφis (y)

‖Dφs (y)‖3

)
ds

+
∑

k,l,m,n

∫ t

0

(
∂jφ

k
s (x) ∂mφns (y) ∂mφls (y) ∂jφis (y)
‖Dφs (x)‖ ‖Dφs (y)‖3

+
∂jφ

k
s (y) ∂mφns (x) ∂mφls (x) ∂jφis (x)

‖Dφs (y)‖ ‖Dφs (x)‖3

)
[
∂k∂nb

i,l (xs − ys)− ∂k∂nb
i,l (0)

]
ds

=
βL − βN

2

∫ t

0

(
∂jφ

i
s (x)

‖Dφs (x)‖
− ∂jφ

i
s (y)

‖Dφs (y)‖

)2

ds

+
βL + βN

2

∫ t

0

∑
k,l

(
∂jφ

k
s (x)

‖Dφs (x)‖
− ∂jφ

k
s (y)

‖Dφs (y)‖

)(
∂lφ

k
s (x) ∂lφis (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

k
s (y) ∂lφis (y) ∂jφis (y)

‖Dφs (y)‖3

)
ds

+
∑

k,l,m,n

∫ t

0

(
∂jφ

k
s (x) ∂mφns (y) ∂mφls (y) ∂jφis (y)
‖Dφs (x)‖ ‖Dφs (y)‖3

+
∂jφ

k
s (y) ∂mφns (x) ∂mφls (x) ∂jφis (x)

‖Dφs (y)‖ ‖Dφs (x)‖3

)
[
∂k∂nb

i,l (xs − ys)− ∂k∂nb
i,l (0)

]
ds.

(7.11)

The combination of (7.9), (7.10) and (7.11) with (7.8) and Itô’s formula now yields for
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X
(ij)
t := ∂jφ

i
t(x)

‖Dφt(x)‖ −
∂jφ

i
t(y)

‖Dφt(y)‖ the following (note that X(ij)q
t means

(
X

(ij)
t

)q
).

X
(ij)q
t

=q
∫ t

0

X(ij)q−1
s

∑
k

(
∂kM

i (ds, xs)
∂jφ

k
s (x)

‖Dφs (x)‖
− ∂kM

i (ds, ys)
∂jφ

k
s (y)

‖Dφs (y)‖

)

− q

∫ t

0

X(ij)q−1
s

∑
k,l,m

(
∂mM

k (ds, xs)
∂lφ

m
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3

−∂mMk (ds, ys)
∂lφ

m
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)
+ q

[(
1
4
− d

2

)
βN −

1
4
βL

] ∫ t

0

X(ij)q
s ds

− q
βN + βL

2

∫ t

0

X(ij)q−1
s

∑
k,l

(
∂jφ

k
s (x) ∂lφis (x) ∂lφks (x)
‖Dφs (x)‖3

− ∂jφ
k
s (y) ∂lφis (y) ∂lφks (y)
‖Dφs (y)‖3

)
ds

+
3
4
q(βN + βL)

∫ t

0

X(ij)q−1
s

∑
k,l,m,n

(
∂lφ

k
s (x) ∂lφns (x) ∂mφks (x) ∂mφns (x) ∂jφis (x)

‖Dφs (x)‖5

−∂lφ
k
s (y) ∂lφns (y) ∂mφks (y) ∂mφns (y) ∂jφis (y)

‖Dφs (y)‖5

)
ds

+
q(q − 1)

2
(βL − βN )

∫ t

0

X(ij)q
s ds+

q(q − 1)
2

βN

∫ t

0

X(ij)q−2
s

∑
k

X(kj)2
s ds

+ q(q − 1)
∫ t

0

X(ij)q−2
s

∑
k,l

∂jφ
k
s (x) ∂jφls (y)

‖Dφs (x)‖ ‖Dφs (y)‖
[
∂k∂lb

i,i (xs − ys)− ∂k∂lb
i,i (0)

]
ds

+ q(q − 1)
βN + βL

4

∫ t

0

X(ij)q−2
s

∑
k,n

(∑
l

∂lφ
n
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

n
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)2

ds

+ q(q − 1)
βL − βN

4

∫ t

0

X(ij)q
s ds

+ q(q − 1)
∫ t

0

X(ij)q−2
s

∑
k,l,m,n,p,r

∂lφ
m
s (x) ∂lφks (x) ∂jφis (x) ∂pφrs (y) ∂pφns (y) ∂jφis (y)

‖Dφs (x)‖3 ‖Dφs (y)‖3[
∂r∂mb

k,n (xs − ys)− ∂r∂mb
k,n (0)

]
ds

+ q(q − 1)
βN − βL

2

∫ t

0

X(ij)q
s ds

− q(q − 1)
βN + βL

2

∫ t

0

X(ij)q−2
s

∑
k,l

X(kj)
s

(
∂lφ

k
s (x) ∂lφis (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

k
s (y) ∂lφis (y) ∂jφis (y)

‖Dφs (y)‖3

)
ds

− q(q − 1)
∫ t

0

X(ij)q−2
s

∑
k,l,m,n

(
∂jφ

k
s (x) ∂mφns (y) ∂mφls (y) ∂jφis (y)
‖Dφs (x)‖ ‖Dφs (y)‖3

+
∂jφ

k
s (y) ∂mφns (x) ∂mφls (x) ∂jφis (x)

‖Dφs (y)‖ ‖Dφs (x)‖3

)[
∂k∂nb

i,l (xs − ys)− ∂k∂nb
i,l (0)

]
ds.

Rearranging terms we have thus proved the following proposition.
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Proposition 7.4.4 (Formula H).

X
(ij)q
t

=q
∫ t

0

X(ij)q−1
s

∑
k

(
∂kM

i (ds, xs)
∂jφ

k
s (x)

‖Dφs (x)‖
− ∂kM

i (ds, ys)
∂jφ

k
s (y)

‖Dφs (y)‖

)

− q

∫ t

0

X(ij)q−1
s

∑
k,l,m

(
∂mM

k (ds, xs)
∂lφ

m
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3

−∂mMk (ds, ys)
∂lφ

m
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)

+
[
βL − βN

4
q2 − d− 1

2
βNq −

1
2
βLq

] ∫ t

0

X(ij)q
s ds+

q(q − 1)
2

βN

∫ t

0

X(ij)q−2
s

∑
k

X(kj)2
s ds

− q
βN + βL

2

∫ t

0

X(ij)q−1
s

∑
k,l

(
∂jφ

k
s (x) ∂lφis (x) ∂lφks (x)
‖Dφs (x)‖3

− ∂jφ
k
s (y) ∂lφis (y) ∂lφks (y)
‖Dφs (y)‖3

)
ds

+ q(q − 1)
βN + βL

4

∫ t

0

X(ij)q−2
s

∑
k,n(∑

l

∂lφ
n
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

n
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)2

ds

− q(q − 1)
βN + βL

2

∫ t

0

X(ij)q−2
s

∑
k,l

X(kj)
s(

∂lφ
k
s (x) ∂lφis (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

k
s (y) ∂lφis (y) ∂jφis (y)

‖Dφs (y)‖3

)
ds

+
3
4
q(βN + βL)

∫ t

0

X(ij)q−1
s

∑
k,l,m,n

(
∂lφ

k
s (x) ∂lφns (x) ∂mφks (x) ∂mφns (x) ∂jφis (x)

‖Dφs (x)‖5

− ∂lφ
k
s (y) ∂lφns (y) ∂mφks (y) ∂mφns (y) ∂jφis (y)

‖Dφs (y)‖5

)
ds

+ q(q − 1)
∫ t

0

X(ij)q−2
s

∑
k,l

∂jφ
k
s (x) ∂jφls (y)

‖Dφs (x)‖ ‖Dφs (y)‖
[
∂k∂lb

i,i (xs − ys)− ∂k∂lb
i,i (0)

]
ds

− q(q − 1)
∫ t

0

X(ij)q−2
s

∑
k,l,m,n

(
∂jφ

k
s (x) ∂mφns (y) ∂mφls (y) ∂jφis (y)
‖Dφs (x)‖ ‖Dφs (y)‖3

+
∂jφ

k
s (y) ∂mφns (x) ∂mφls (x) ∂jφis (x)

‖Dφs (y)‖ ‖Dφs (x)‖3

)[
∂k∂nb

i,l (xs − ys)− ∂k∂nb
i,l (0)

]
ds

+ q(q − 1)
∫ t

0

X(ij)q−2
s

∑
k,l,m,n,p,r

∂lφ
m
s (x) ∂lφks (x) ∂jφis (x) ∂pφrs (y) ∂pφns (y) ∂jφis (y)

‖Dφs (x)‖3 ‖Dφs (y)‖3[
∂r∂mb

k,n (xs − ys)− ∂r∂mb
k,n (0)

]
ds. (7.12)

Proof: There is nothing left to show. 2
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Proposition 7.4.4 will be useful to estimate the expectation in Lemma 7.2.3 on the event {T ≤ τ}
but since this requires some additional preparations we will first consider the reversed case in the
following intermezzo.

7.4.3 Treating Small |x− y| And Large T

Since we obviously have from Schwarz’ inequality that

E

[
sup

0≤t≤T
|ψt(x)− ψt(y)|q1{T≥τ}

] 1
q

≤ E

[
sup

0≤t≤T
|ψt(x)− ψt(y)|2q

] 1
2q

P [T ≥ τ ]
1
2q (7.13)

it seems reasonable to compute some useful estimate for the tails of τ . We will also immediately
specify conditions on r and r̃. Assume first with Lemma 1.3.2 that r̃ < r̄ is small enough to ensure
for any r ≤ r̃ that we have

√
2 [1−BL(r)] ≤ 2

√
βLr and

[
(d− 1)

1−BN (r)
r

− cr

]
≤ [2(d− 1)βN − c] r. (7.14)

Lemma 7.4.5 (tails of τ).
We have the following estimates for P [T ≥ τ ] and q ≥ 4

√
βL[2(d−1)βN−c−2βL]

128βL
∨ 1.

1. If 2(d− 1)βN − 2βL − c ≤ 0 and T ≤
log r̃

|x−y|
16βLq

then we have P [T ≥ τ ] ≤ 2
r̃2q |x− y|2q.

2. If 2(d − 1)βN − 2βL − c ≥ 0 and T ≤
log r̃

|x−y|
128βLq

∧
log r̃

|x−y|
4
√
βL[2(d−1)βN−c−2βL]

=
log r̃

|x−y|
128βLq

then we have

P [T ≥ τ ] ≤ 2
r̃2q |x− y|2q ∧ 2

r̃4q |x− y|4q. Of course the latter estimate is also valid in the other case
i.e. if 2(d− 1)βN − 2βL − c ≤ 0.

Proof: Let (Xt)t≥0 be the solution to Xt = |x− y|+
∫ t
0

2
√
βLXsdWs+

∫ t
0

[2(d− 1)βN − c]Xsds i.e. let
Xt := |x − y| exp

{
2
√
βLWs + [2(d− 1)βN − c− 2βL] t

}
for a BM (Wt)t≥0. Then we may start with

(see (1.12) or (1.21) respectively and (7.14))

P [T ≥ τ ] =P
[

sup
0≤t≤T

|xt − yt| ≥ r̃

]
≤ P

[
sup

0≤t≤T
Xt ≥ r̃

]
≤P

[
sup

0≤t≤T
Wt ≥

1
2
√
βL

(
log

r̃

|x− y|
− [2(d− 1)βN − 2βL − c]+ T

)]
=P

[
sup

0≤t≤1
Wt ≥

log r̃
|x−y|

2
√
βLT

− [2(d− 1)βN − 2βL − c]+
√
T

]
=: IX.

Let first 2(d− 1)βN − 2βL − c ≤ 0. Then we have using Lemma 7.1.1

IX ≤2

[
1− Φ

(
log r̃

|x−y|

2
√
βLT

)]
≤ 2e−

1
8
(log r̃

|x−y| )
2

βLT = 2
(
|x− y|
r̃

) 1
8βLT log r̃

|x−y|

≤ 2
r̃2q

|x− y|2q
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for T ≤
log r̃

|x−y|
16βLq

(remember |x− y| < r < r̃ ). Let now 2(d− 1)βN − 2βL − c > 0. In this case we can

use for T ≤
log r̃

|x−y|
4
√
βL[2(d−1)βN−c−2βL]

∧
log r̃

|x−y|
128βLq

that

IX =P

[
sup

0≤t≤1
Wt ≥

log r̃
|x−y|

2
√
βLT

− [2(d− 1)βN − 2βL − c]
√
T

]

≤P

[
sup

0≤t≤1
Wt ≥

log r̃
|x−y|

4
√
βLT

]
= 2

[
1− Φ

(
log r̃

|x−y|

4
√
βLT

)]

≤2 exp

{
−1

2
1

16βLT

(
log

r̃

|x− y|

)2
}

= 2
(
|x− y|
r̃

) log r̃
|x−y|

32βLT

≤ 2
|x− y|2q

r̃2q
∧ 2

|x− y|4q

r̃4q
.

The proof is complete. 2

Lemma 7.4.6 (estimate for T after τ).
For |x − y| ≤ r ≤ e−1r̃ and arbitrary q ≥ 4

√
βL[2(d−1)βN−c−2βL]

128βL
∨ 1 and T > 0 we have the estimate

E
[
sup0≤t≤T |ψt(x)− ψt(y)|q1{T≥τ}

]1/q ≤ c̄2|x−y|2e(Λ2+
1
2 qσ

2
2)T for Λ2 := Λ1∨1, σ2 :=

√
2σ1∨2

√
128βL∨2

and c̄2 :=
√

2C̄1
r̃ ∨ 1

r̃

[
βN+βL

128βL
+

√
2πc̃e−

5
12√

16βL

]
∨ 2(βL+βN )

r̃ ∨ 2e−
5
12
√

256c̃πβL

r̃ .

Proof: If T ≤
log r̃

|x−y|
128βLq

∧
log r̃

|x−y|
4
√
βL[2(d−1)βN−c−2βL]

=
log r̃

|x−y|
128βLq

then we just have to combine Lemmas 7.4.2
and 7.4.5 with (7.13) to obtain

E

[
sup

0≤t≤T
|ψt(x)− ψt(y)|q1{T≥τ}

]1/q
≤ |x− y| C̄1

r̃
2

1
2q e(Λ1+

1
2σ

2
12q)T

which means we only have to consider the case T ≥
log r̃

|x−y|
128βLq

. By Lemma 7.4.2 we first observe for

T0 :=
log r̃

|x−y|
128βLq

that

E

[
sup

0≤t≤T0

|ψt(x)− ψt(y)|q
]1/q

≤(βN + βL)
log r̃

|x−y|

128βLq

+ 2e−
5
12
√

2πc̃
√
q + 1

√
log r̃

|x−y|

128βLq
≤

[
βN + βL
128βL

+
√

2πc̃e−
5
12

√
16βL

]
r̃

|x− y|

≤

[
βN + βL
128βL

+
√

2πc̃e−
5
12

√
16βL

](
r̃

|x− y|

)Λ2+ 1
2 σ2

2q

128βLq −1

=
1
r̃

[
βN + βL
128βL

+
√

2πc̃e−
5
12

√
16βL

]
|x− y|e

Λ2+ 1
2 σ2

2q

128βLq log r̃
|x−y| ≤ c̄2|x− y|e(Λ2+

1
2 qσ

2
2)T0 .

Since f : T 7→ c̄2|x−y|e(Λ2+
1
2 qσ

2
2)T is a convex function and g : T 7→ (βN+βL)T+2e−

5
12
√

2πc̃
√
q + 1

√
T

is concave one we may just check that f ′(T0) ≥ g′(T0). First let us fix

g′(T ) = βN + βL +
e−

5
12
√

2πc̃
√
q + 1√

T
and f ′(T ) = c̄2|x− y|(Λ2 +

1
2
qσ2

2)e(Λ2+
1
2 qσ

2
2)T .
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So we can compute

g′(T0) =(βN + βL) + e−
5
12
√

256πc̃βL
√
q(q + 1)

1
log r̃

|x−y|

≤ c̄2r̃
2

(Λ2 +
1
2
qσ2

2)
(

r̃

|x− y|

)Λ2+ 1
2 σ2

2q

128βL
−1

+
c̄2r̃

2
(Λ2 +

1
2
qσ2

2)
(

r̃

|x− y|

)Λ2+ 1
2 σ2

2q

128βL
−1

=c̄2(Λ2 +
1
2
qσ2

2)
(

r̃

|x− y|

)Λ2+ 1
2 σ2

2q

128βL

|x− y| = f ′(T0).

Thus the proof of Lemma 7.4.6 is complete. 2

To treat (7.12) we finally need the following proposition.

Proposition 7.4.7 (expectation of zero-mean-martingales on rare events).
Let for i, j ∈ {1, . . . , d}

M̌t = M̌
(ij)
t :=

∫ t

0

X(ij)q−1
s dV IIt −

∫ t

0

X(ij)q−1
s dV IIIt.

Then we have the following.

1. M̌t is a zero-mean-martingale and we have for any t ≥ 0 that
〈
M̌
〉
t
≤ čt a.s. wherein we define the

constant č := 4(d2 + 2d4 + d6) maxk,l,m,n supz∈Rd ∂k∂lb
m,n (z).

2. For all 0 ≤ t ≤ T and q ≥ 4
√
βL[2(d−1)βN−c−2βL]

128βL
∨ 1 we have

∣∣E [M̌t1{T≤τ}
]∣∣ ≤ |x− y|2q c̄3

r̃2q
e(Λ3+

1
2σ

2
3q+σ

2
4q

2)T =: f(T )

for c̄3 :=
√

2č ∨
√

č
128βL

∨ 1, Λ3 := 1
2e , σ3 :=

√
64βL

e ∨ (128βLč)
1
4 and σ4 :=

√
256βL.

Proof: 1. is clear from the definition of M̌ except for the value of č. This value follows from (7.9),
(7.10) and (7.11) since

〈
M̌
〉
t
≤ 〈V II〉i + 〈V III〉t + 2| 〈V II, V III〉t |. For the proof of 2. first assume

T ≤
log r̃

|x−y|
128βLq

. From Lemma 7.4.5 we know that P [T > τ ] ≤ |x − y|4q 2
r̃4q . This combined with

Schwarz’ inequality and 1. yields

∣∣E [M̌t1{T≤τ}
]∣∣ = ∣∣E [M̌t1{T>τ}

]∣∣ ≤√E [〈M̌〉
T

]√
P [T > τ ] ≤

√
2čT

|x− y|2q

r̃2q
≤
√

2č
|x− y|2q

r̃2q
e

T
2e

which proves Proposition 7.4.7 in this case. We always have as above that∣∣E [M̌t1{T≤τ}
]∣∣ ≤ √

čT =: g(T ) and so we can conclude for the same T0 as before

g(T0) =
√

č

128βL

√
log

r̃

|x− y|
≤
√

č

128βL

(
r̃

|x− y|

) 1
2e

≤ c̄3

(
r̃

|x− y|

) σ2
3

128βL

≤c̄3
(

r̃

|x− y|

)Λ3+ σ2
3q+σ2

4q2

128βLq
(
|x− y|
r̃

)2q

= |x− y|2q c̄3
r̃2q

e(Λ3+
1
2σ

2
3q+σ

2
4q

2)T0 =: f(T0).
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So now (with Lemma 7.1.2) we only have to establish the inequality g′(T0) ≤ f ′(T0) to complete
the proof of Proposition 7.4.7.

g′(T0) =
1
2

√
128βLqč
log r̃

|x−y|
≤ 1

2

√
128βLqč ≤

(
|x− y|
r̃

)2q (
Λ3 +

1
2
σ2

3q + σ2
4q

2

)(
r̃

|x− y|

)Λ3+ 1
2 σ2

3q+σ2
4q2

128βL

= f ′(T0).

The proof is complete. 2

7.4.4 Evaluation Of Formula H

Now we are prepared to prove the following key result

Lemma 7.4.8 (first estimate for τ after T ).
We have for even q ≥ q0 if we assume r̃ ≤ 1√

2
the following.

1. For h(t) := E

[
(maxi,j X

(ij)q
t ∨ |xt − yt|q)1{t≤τ}

]
the estimate

h(t) ≤ |x− y|q 2c̄3d2q

r̃2q
e(Λ3+(λ∨ 1

2σ
2
3)q+( 1

2 σ̄
2∨σ2

4)q2+d2κq)t

Λ3 + (λ ∨ 1
2σ

2
3)q + ( 1

2 σ̄
2 ∨ σ2

4)q2 + d2κq

holds wherein κq behaves like a polynomial of degree 2 (w.r.t. growths of its modulus) in q and equals∣∣∣βL−βN

4 q2 − d−1
2 βNq − 1

2βLq
∣∣∣+ {Cd6 +

[
9
4 (βN + βL) + 2C

]
d4 +

[
3
2 (βN + βL) + C

]
d2 + βN

2 d
}
q2

−
{
Cd6 +

[
2C − 3

2 (βN + βL)
]
d4 + Cd2 + 1

2βNd
}
q.

2. We have

E

[
max
i,j

X
(ij)q
t 1{T≤τ}

]
≤ h(t) ≤ c̄5r̃

−2q|x− y|qe(Λ5q+σ
2
5q

2)t

for c̄5 := supq≥3

{
2c̄3d

2q
Λ3+(λ∨ 1

2σ
2
3)q+( 1

2 σ̄
2∨σ2

4)q2+d2κq

}
,

Λ5 :=
(
Λ3 + λ ∨ 1

2σ
2
3 −

{
Cd8 +

[
2C − 3

2 (βN + βL)
]
d6 + Cd4 − |βN−βL|

2 d2
})

+
and

σ2
5 := 1

2 σ̄
2 ∨ σ2

4 +
{
Cd8 +

[
9
4 (βN + βL) + 2C

]
d6 +

[
3
2 (βN + βL) + C

]
d4 + βN

2 d
3 + |βL−βN |

4 d2
}
.

Proof: 2. follows obviously from 1. so we only have to prove this. First observe that we have by
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Proposition 7.4.4 that

X
(ij)q
t 1{t≤τ}

=q1{t≤τ}

∫ t

0

X(ij)q−1
s

∑
k

(
∂kM

i (ds, xs)
∂jφ

k
s (x)

‖Dφs (x)‖
− ∂kM

i (ds, ys)
∂jφ

k
s (y)

‖Dφs (y)‖

)

− q1{t≤τ}

∫ t

0

X(ij)q−1
s

∑
k,l,m

(
∂mM

k (ds, xs)
∂lφ

m
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3

−∂mMk (ds, ys)
∂lφ

m
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)

+
[
βL − βN

4
q2 − d− 1

2
βNq −

1
2
βLq

] ∫ t

0

X(ij)q
s 1{t≤τ}ds

+
q(q − 1)

2
βN

∫ t

0

X(ij)q−2
s

∑
k

X(kj)2
s 1{t≤τ}ds

− q
βN + βL

2

∫ t

0

X(ij)q−1
s

∑
k,l

(
∂jφ

k
s (x) ∂lφis (x) ∂lφks (x)
‖Dφs (x)‖3

− ∂jφ
k
s (y) ∂lφis (y) ∂lφks (y)
‖Dφs (y)‖3

)
1{t≤τ}ds

+ q(q − 1)
βN + βL

4

∫ t

0

X(ij)q−2
s

∑
k,n

(∑
l

∂lφ
n
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3

−∂lφ
n
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)2

1{t≤τ}ds

− q(q − 1)
βN + βL

2

∫ t

0

X(ij)q−2
s

∑
k,l

X(kj)
s

(
∂lφ

k
s (x) ∂lφis (x) ∂jφis (x)

‖Dφs (x)‖3

−∂lφ
k
s (y) ∂lφis (y) ∂jφis (y)

‖Dφs (y)‖3

)
1{t≤τ}ds

+
3
4
q(βN + βL)

∫ t

0

X(ij)q−1
s

∑
k,l,m,n

(
∂lφ

k
s (x) ∂lφns (x) ∂mφks (x) ∂mφns (x) ∂jφis (x)

‖Dφs (x)‖5

− ∂lφ
k
s (y) ∂lφns (y) ∂mφks (y) ∂mφns (y) ∂jφis (y)

‖Dφs (y)‖5

)
1{t≤τ}ds

+ q(q − 1)
∫ t

0

X(ij)q−2
s

∑
k,l

∂jφ
k
s (x) ∂jφls (y)

‖Dφs (x)‖ ‖Dφs (y)‖
[
∂k∂lb

i,i (xs − ys)− ∂k∂lb
i,i (0)

]
1{t≤τ}ds

− q(q − 1)
∫ t

0

X(ij)q−2
s

∑
k,l,m,n

(
∂jφ

k
s (x) ∂mφns (y) ∂mφls (y) ∂jφis (y)
‖Dφs (x)‖ ‖Dφs (y)‖3

+
∂jφ

k
s (y) ∂mφns (x) ∂mφls (x) ∂jφis (x)

‖Dφs (y)‖ ‖Dφs (x)‖3

)[
∂k∂nb

i,l (xs − ys)− ∂k∂nb
i,l (0)

]
1{t≤τ}ds

+ q(q − 1)
∫ t

0

X(ij)q−2
s

∑
k,l,m,n,p,r

∂lφ
m
s (x) ∂lφks (x) ∂jφis (x) ∂pφrs (y) ∂pφns (y) ∂jφis (y)

‖Dφs (x)‖3 ‖Dφs (y)‖3[
∂r∂mb

k,n (xs − ys)− ∂r∂mb
k,n (0)

]
1{t≤τ}ds.
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Taking expectations and applying Fubini’s theorem we get

E

[
X

(ij)q
t 1{t≤τ}

]
=qE

[
1{t≤τ}M̌

(ij)
t

]
+
[
βL − βN

4
q2 − d− 1

2
βNq −

1
2
βLq

] ∫ t

0

E

[
X(ij)q
s 1{t≤τ}

]
ds

+
q(q − 1)

2
βN

∫ t

0

E

[
X(ij)q−2
s

∑
k

X(kj)2
s 1{t≤τ}

]
ds

− q
βN + βL

2

∫ t

0

E

X(ij)q−1
s

∑
k,l

(
∂jφ

k
s (x) ∂lφis (x) ∂lφks (x)
‖Dφs (x)‖3

− ∂jφ
k
s (y) ∂lφis (y) ∂lφks (y)
‖Dφs (y)‖3

)
1{t≤τ}

 ds
+ q(q − 1)

βN + βL
4

∫ t

0

E

X(ij)q−2
s

∑
k,n(∑

l

∂lφ
n
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

n
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)2

1{t≤τ}

 ds
− q(q − 1)

βN + βL
2

∫ t

0

E

X(ij)q−2
s

∑
k,l

X(kj)
s

(
∂lφ

k
s (x) ∂lφis (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

k
s (y) ∂lφis (y) ∂jφis (y)

‖Dφs (y)‖3

)
1{t≤τ}

]
ds

+
3
4
q(βN + βL)

∫ t

0

E

X(ij)q−1
s

∑
k,l,m,n

(
∂lφ

k
s (x) ∂lφns (x) ∂mφks (x) ∂mφns (x) ∂jφis (x)

‖Dφs (x)‖5

− ∂lφ
k
s (y) ∂lφns (y) ∂mφks (y) ∂mφns (y) ∂jφis (y)

‖Dφs (y)‖5

)
1{t≤τ}

]
ds

+ q(q − 1)
∫ t

0

E

X(ij)q−2
s

∑
k,l

∂jφ
k
s (x) ∂jφls (y)

‖Dφs (x)‖ ‖Dφs (y)‖
[
∂k∂lb

i,i (xs − ys)− ∂k∂lb
i,i (0)

]
1{t≤τ}

 ds
− q(q − 1)

∫ t

0

E

X(ij)q−2
s

∑
k,l,m,n

(
∂jφ

k
s (x) ∂mφns (y) ∂mφls (y) ∂jφis (y)
‖Dφs (x)‖ ‖Dφs (y)‖3

+
∂jφ

k
s (y) ∂mφns (x) ∂mφls (x) ∂jφis (x)

‖Dφs (y)‖ ‖Dφs (x)‖3

)[
∂k∂nb

i,l (xs − ys)− ∂k∂nb
i,l (0)

]
1{t≤τ}

]
ds

+ q(q − 1)
∫ t

0

E

X(ij)q−2
s

∑
k,l,m,n,p,r

∂lφ
m
s (x) ∂lφks (x) ∂jφis (x) ∂pφrs (y) ∂pφns (y) ∂jφis (y)

‖Dφs (x)‖3 ‖Dφs (y)‖3[
∂r∂mb

k,n (xs − ys)− ∂r∂mb
k,n (0)

]
1{t≤τ}

]
ds.
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Inserting some moduli and using Lemma 1.3.2 we get

E

[
X

(ij)q
t 1{t≤τ}

]
≤qE

[
1{t≤τ}M̌

(ij)
t

]
+
∣∣∣∣βL − βN

4
q2 − d− 1

2
βNq −

1
2
βLq

∣∣∣∣ ∫ t

0

E

[
X(ij)q
s 1{t≤τ}

]
ds

+
q(q − 1)

2
βN

∫ t

0

E

[
X(ij)q−2
s

∑
k

X(kj)2
s 1{t≤τ}

]
ds

+ q
βN + βL

2

∫ t

0

E

∣∣∣X(ij)q−1
s

∣∣∣∑
k,l

∣∣∣∣∣∂jφks (x) ∂lφis (x) ∂lφks (x)
‖Dφs (x)‖3

− ∂jφ
k
s (y) ∂lφis (y) ∂lφks (y)
‖Dφs (y)‖3

∣∣∣∣∣ 1{t≤τ}
 ds

+ q(q − 1)
βN + βL

4

∫ t

0

E

X(ij)q−2
s

∑
k,n(∑

l

∂lφ
n
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

n
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)2

1{t≤τ}

 ds
+ q(q − 1)

βN + βL
2

∫ t

0

E

X(ij)q−2
s

∑
k,l∣∣∣X(kj)

s

∣∣∣ ∣∣∣∣∣∂lφks (x) ∂lφis (x) ∂jφis (x)
‖Dφs (x)‖3

− ∂lφ
k
s (y) ∂lφis (y) ∂jφis (y)

‖Dφs (y)‖3

∣∣∣∣∣ 1{t≤τ}
]
ds

+
3
4
q(βN + βL)

∫ t

0

E

∣∣∣X(ij)q−1
s

∣∣∣ ∑
k,l,m,n

∣∣∣∣∣∂lφks (x) ∂lφns (x) ∂mφks (x) ∂mφns (x) ∂jφis (x)
‖Dφs (x)‖5

− ∂lφ
k
s (y) ∂lφns (y) ∂mφks (y) ∂mφns (y) ∂jφis (y)

‖Dφs (y)‖5

∣∣∣∣∣ 1{t≤τ}
]
ds

+ q(q − 1)
∫ t

0

E

X(ij)q−2
s

∑
k,l

∣∣∣∣ ∂jφ
k
s (x) ∂jφls (y)

‖Dφs (x)‖ ‖Dφs (y)‖

∣∣∣∣ ∣∣∂k∂lbi,i (xs − ys)− ∂k∂lb
i,i (0)

∣∣ 1{t≤τ}
 ds

+ q(q − 1)
∫ t

0

E

X(ij)q−2
s

∑
k,l,m,n

∣∣∣∣∣∂jφks (x) ∂mφns (y) ∂mφls (y) ∂jφis (y)
‖Dφs (x)‖ ‖Dφs (y)‖3

+
∂jφ

k
s (y) ∂mφns (x) ∂mφls (x) ∂jφis (x)

‖Dφs (y)‖ ‖Dφs (x)‖3

∣∣∣∣∣ ∣∣∂k∂nbi,l (xs − ys)− ∂k∂nb
i,l (0)

]
1{t≤τ}

∣∣∣∣∣ ds
+ q(q − 1)

∫ t

0

E

X(ij)q−2
s

∑
k,l,m,n,p,r

∣∣∣∣∣∂lφms (x) ∂lφks (x) ∂jφis (x) ∂pφrs (y) ∂pφns (y) ∂jφis (y)
‖Dφs (x)‖3 ‖Dφs (y)‖3

∣∣∣∣∣∣∣∂r∂mbk,n (xs − ys)− ∂r∂mb
k,n (0)

∣∣ 1{t≤τ}] ds
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≤qE
[
1{t≤τ}M̌

(ij)
t

]
+
∣∣∣∣βL − βN

4
q2 − d− 1

2
βNq −

1
2
βLq

∣∣∣∣ ∫ t

0

E

[
X(ij)q
s 1{t≤τ}

]
ds

+
q(q − 1)

2
βN

∫ t

0

E

[
X(ij)q−2
s

∑
k

X(kj)2
s 1{t≤τ}

]
ds

+ q
βN + βL

2

∫ t

0

E

∣∣∣X(ij)q−1
s

∣∣∣∑
k,l

∣∣∣∣∣∂jφks (x) ∂lφis (x) ∂lφks (x)
‖Dφs (x)‖3

− ∂jφ
k
s (y) ∂lφis (y) ∂lφks (y)
‖Dφs (y)‖3

∣∣∣∣∣ 1{t≤τ}
 ds

+ q(q − 1)
βN + βL

4

∫ t

0

E

X(ij)q−2
s

∑
k,n(∑

l

∂lφ
n
s (x) ∂lφks (x) ∂jφis (x)

‖Dφs (x)‖3
− ∂lφ

n
s (y) ∂lφks (y) ∂jφis (y)

‖Dφs (y)‖3

)2

1{t≤τ}

 ds
+ q(q − 1)

βN + βL
2

∫ t

0

E

X(ij)q−2
s

∑
k,l∣∣∣X(kj)

s

∣∣∣ ∣∣∣∣∣∂lφks (x) ∂lφis (x) ∂jφis (x)
‖Dφs (x)‖3

− ∂lφ
k
s (y) ∂lφis (y) ∂jφis (y)

‖Dφs (y)‖3

∣∣∣∣∣ 1{t≤τ}
]
ds

+
3
4
q(βN + βL)

∫ t

0

E

∣∣∣X(ij)q−1
s

∣∣∣ ∑
k,l,m,n

∣∣∣∣∣∂lφks (x) ∂lφns (x) ∂mφks (x) ∂mφns (x) ∂jφis (x)
‖Dφs (x)‖5

− ∂lφ
k
s (y) ∂lφns (y) ∂mφks (y) ∂mφns (y) ∂jφis (y)

‖Dφs (y)‖5

∣∣∣∣∣ 1{t≤τ}
]
ds

+ q(q − 1)C
∫ t

0

E

X(ij)q−2
s

∑
k,l

∣∣∣∣ ∂jφ
k
s (x) ∂jφls (y)

‖Dφs (x)‖ ‖Dφs (y)‖

∣∣∣∣ |xs − ys|21{t≤τ}

 ds
+ q(q − 1)C

∫ t

0

E

X(ij)q−2
s

∑
k,l,m,n

∣∣∣∣∣∂jφks (x) ∂mφns (y) ∂mφls (y) ∂jφis (y)
‖Dφs (x)‖ ‖Dφs (y)‖3

+
∂jφ

k
s (y) ∂mφns (x) ∂mφls (x) ∂jφis (x)

‖Dφs (y)‖ ‖Dφs (x)‖3

∣∣∣∣∣ |xs − ys|21{t≤τ}

]
ds

+ q(q − 1)C
∫ t

0

E

X(ij)q−2
s

∑
k,l,m,n,p,r

∣∣∣∣∣∂lφms (x) ∂lφks (x) ∂jφis (x) ∂pφrs (y) ∂pφns (y) ∂jφis (y)
‖Dφs (x)‖3 ‖Dφs (y)‖3

∣∣∣∣∣
|xs − ys|21{t≤τ}

]
ds.

Recall the inequality
∏
ai−

∏
bi ≤

∑
i |ai− bi| ≤ dmaxi |ai− bi| (that is valid for numbers ai, bi with

|ai| ∨ |bi| ≤ 1) and use that the expectation of a positive random variable on an event is growing
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in the event and conclude that the latter is less or equal to

qE
[
1{t≤τ}M̌

(ij)
t

]
+
∣∣∣∣βL − βN

4
q2 − d− 1

2
βNq −

1
2
βLq

∣∣∣∣ ∫ t

0

E

[
max
i,j

X(ij)q
s 1{t≤τ} ∨ |xs − ys|q1{t≤τ}

]
ds

+
q(q − 1)

2
βNd

∫ t

0

E

[
max
i,j

X(ij)q
s 1{t≤τ} ∨ |xs − ys|q1{t≤τ}

]
ds

+ q
βN + βL

2
3d2

∫ t

0

E

[
max
i,j

X(ij)q
s 1{t≤τ} ∨ |xs − ys|q1{t≤τ}

]
ds

+ q(q − 1)
βN + βL

4
9d4

∫ t

0

E

[
max
i,j

X(ij)q
s 1{t≤τ} ∨ |xs − ys|q1{t≤τ}

]
ds

+ q(q − 1)
βN + βL

2
3d2

∫ t

0

E

[
max
i,j

X(ij)q
s 1{t≤τ} ∨ |xs − ys|q1{t≤τ}

]
ds

+
3
4
q(βN + βL)5d4

∫ t

0

E

[
max
i,j

X(ij)q
s 1{t≤τ} ∨ |xs − ys|q1{t≤τ}

]
ds

+ q(q − 1)(d2 + 2d4 + d6)C
∫ t

0

E

[
max
i,j

X(ij)q
s 1{t≤τ} ∨ |xs − ys|q1{t≤τ}

]
ds

≤qE
[
1{t≤τ}M̌

(ij)
t

]
+
∣∣∣∣βL − βN

4
q2 − d− 1

2
βNq −

1
2
βLq

∣∣∣∣ ∫ t

0

E

[(
max
i,j

X(ij)q
s ∨ |xs − ys|q

)
1{s≤τ}

]
ds

+
q(q − 1)

2
βNd

∫ t

0

E

[(
max
i,j

X(ij)q
s ∨ |xs − ys|q

)
1{s≤τ}

]
ds

+ q
βN + βL

2
3d2

∫ t

0

E

[(
max
i,j

X(ij)q
s ∨ |xs − ys|q

)
1{s≤τ}

]
ds

+ q(q − 1)
βN + βL

4
9d4

∫ t

0

E

[(
max
i,j

X(ij)q
s ∨ |xs − ys|q

)
1{s≤τ}

]
ds

+ q(q − 1)
βN + βL

2
3d2

∫ t

0

E

[(
max
i,j

X(ij)q
s ∨ |xs − ys|q

)
1{s≤τ}

]
ds

+
3
4
q(βN + βL)5d4

∫ t

0

E

[(
max
i,j

X(ij)q
s ∨ |xs − ys|q

)
1{s≤τ}

]
ds

+ q(q − 1)(d2 + 2d4 + d6)C
∫ t

0

E

[(
max
i,j

X(ij)q
s ∨ |xs − ys|q

)
1{s≤τ}

]
ds

=qE
[
1{t≤τ}M̌

(ij)
t

]
+ κq

∫ t

0

E

[(
max
i,j

X(ij)q
s ∨ |xs − ys|q

)
1{s≤τ}

]
ds.

This enables us to conclude with Proposition 7.4.7 and Lemmas 1.3.8 and 1.4.3 in the following
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way.

E

[
max
i,j

X
(ij)q
t 1{t≤τ} ∨ |xt − yt|q1{t≤τ}

]
≤
∑
i,j

E

[
X

(ij)q
t 1{t≤τ}1{t≤τ}

]
+ E [|xt − yt|q] ≤ E [|xt − yt|q]

+ d2q
∑
i,j

E

[
1{t≤τ}M̌

(ij)
t

]
+ d2κq

∫ t

0

E

[(
max
i,j

X(ij)q
s ∨ |xs − ys|q

)
1{s≤τ}

]
ds

≤d2q|x− y|2q c̄3
r̃2q

e(Λ3+
1
2σ

2
3q+σ

2
4q

2)t + 2q|x− y|qe(λq+ 1
2 q

2σ̄2)t

+ d2κq

∫ t

0

E

[(
max
i,j

X(ij)q
s ∨ |xs − ys|q

)
1{s≤τ}

]
ds

≤d2κq

∫ t

0

E

[(
max
i,j

X(ij)q
s ∨ |xs − ys|q

)
1{s≤τ}

]
ds+ |x− y|q

(
2c̄3d2q

r̃2q

)
e(Λ3+(λ∨ 1

2σ
2
3)q+( 1

2 σ̄
2∨σ2

4)q2)t

since we assumed r̃ ≤ 2−1/2. This now implies via Grönwall’s inequality (see [51, I.§2.1] for an
appropriate version)

h(t) ≤|x− y|q2 c̄3d
2q

r̃2q
e(Λ3+(λ∨ 1

2σ
2
3)q+( 1

2 σ̄
2∨σ2

4)q2+d2κq)t

Λ3 + (λ ∨ 1
2σ

2
3)q + ( 1

2 σ̄
2 ∨ σ2

4)q2 + d2κq
.

The proof is complete. 2

The next lemma will be the last ingredient to the proof of Lemma 7.2.3.

Lemma 7.4.9 (second estimate for τ after T ).
We have for even q ≥ 4

√
βL[2(d−1)βN−c−2βL]

128βL
∨ 3 that

E

[
sup

0≤t≤T
|ψt(x)− ψt(y)|q1{T≤τ}

] 1
q

≤ c̄6
√
q|x− y|e(Λ6+

1
2σ

2
2q)T

with c̄6 = supq≥3

(
c̄

1
q
5
r̃2

√
2d2C

1
q

q

√
βL+βN+

√
Cd3C

1
q

q

√
2+2d4(βN+βL)

(Λ5q+σ2
5q

2)
1
q
√
q

)
, Λ6 = Λ5 + 1

e and σ6 :=
√

2σ5. Remark:

Observe that by Lemma 7.1.4 c6 is indeed finite.
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Proof: By the triangle inequality and Lemmas 7.1.4 and 7.4.1 we have

E

[
sup

0≤t≤T
|ψt(x)− ψt(y)|q1{T≤τ}

] 1
q

≤ E

[
sup

0≤t≤T
M̃q
t 1{T≤τ}

] 1
q

+ E

[
sup

0≤t≤T
Aqt1{T≤τ}

] 1
q

≤E
[

sup
0≤t≤T

M̃q
t∧τ1{T≤τ}

] 1
q

+ E

[
sup

0≤t≤T
Aqt∧τ

] 1
q

≤ C
1
q
q E

[
〈M〉

q
2
T∧τ

] 1
q

+ E [AqT∧τ ]
1
q

≤C
1
q
q E
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)2
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2
 1

q
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2
E

[(
4d4
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0
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X
(ij)
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By Jensen’s inequality this is less or equal to

2d2C
1
q
q

√
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2
E
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q
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2
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.

Another application of Fubini’s theorem and the Lemmas 7.1.1 and 7.4.8 now yields that the
latter is less or equal to (remember that we chose even q ≥ 3)
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1
q

5

r̃2
|x− y|

(√
2d2C

1
q
q

√
βL + βN +

√
Cd3C

1
q
q

√
2 + 2d4(βN + βL)

)
e

T
e

(
e(Λ5q+σ

2
5q

2)T − 1
Λ5q + σ2

5q
2

) 1
q

≤ c̄
1
q

5

r̃2
|x− y|

(√
2d2C

1
q
q

√
βL + βN +

√
Cd3C

1
q
q

√
2 + 2d4(βN + βL)

)
e

T
e

e(Λ5+σ
2
5q)T

(Λ5q + σ2
5q

2)
1
q

≤
(√

2d2C
1
q
q

√
βL + βN +

√
Cd3C

1
q
q

√
2 + 2d4(βN + βL)

)
c̄

1
q

5 |x− y|e(Λ5+
1
e +σ2

5q)T

(Λ5q + σ2
5q

2)
1
q r̃2

.

The proof is complete. 2

We fix now r̃ ≤ r̄ ∧ 2−1/2 subject to (7.14), r ≤ e−1r̃ and conclude that since we have that
sup0≤t≤T |ψt(x)−ψt(y)|q is the sum of the two terms sup0≤t≤T |ψt(x)−ψt(y)|q1{T≤τ} and sup0≤t≤T |ψt(x)−
ψt(y)|q1{T>τ} another application of the triangle inequality together with Lemmas 7.4.2, 7.4.6
and 7.4.9 completes the proof of Lemma 7.2.3. 2
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7.5 A New Proof For Linear Expansion

We include a short proof for the fact that exponential growth of the first order derivative of a
stochastic flows implies linear growth of the diameter (with suprema taken over compact sets in
both cases as before). The idea of the proof is originally due to T. Lyons and was communicated
by M. Scheutzow. Nevertheless all remaining mistakes are mine.

Lemma 7.5.1 (exponential growth and linear growth).
Let φ be a stochastic flow such that the one-point motions xt = φt(x) satisfy for R > 0 that

max
|x|≤R

P

[
max

0≤t≤T
|xt| ≥ CT − 1

]
≤ e−f(C)T with lim

C→∞
f(C) = ∞.

Assume further that there exists a constant K ≥ 0 such that for any R > 0 we have

lim sup
t→∞

1
t

sup
|x|≤R

log ‖Dφt (x)‖ ≤ K a.s..

Then there exists C > 0 such that we have for any R > 0 that

lim sup
t→∞

1
t

sup
|x|≤R

|φt(x)| ≤ C a.s..

Proof: The covering of KR(x) with balls of radius e−rT centered in x(1), . . . , x(N) can be done
with at most N := cerdT balls for some constant c. Hence we may conclude with the mean value
theorem

{ 1
T

sup
|x|≤R

|φT (x)| ≥ C} ⊂{|x(i)
T ≥ CT − 1 for some i ∈ {1, . . . , N}}

∪ {diam(Ke−rT (x(i)
T )) ≥ 1 for some i ∈ {1, . . . , N}}

⊂{|x(i)
T | ≥ CT − 1 for some i ∈ {1, . . . , N}} ∪ { sup

|x|≤R
log ‖DφT (x)‖ > rT}

:= F1(T ) ∪ F2(T ).

Since

P [F1(T )] = P

[
|x(i)
T | ≥ CT − 1 for some i ∈ {1, . . . , N}

]
≤cerdT max

|x|≤R
P [|xT | ≥ CT − 1] ≤ cerdT e−f(C)T

we get for sufficiently large C that F1(T ) occurs only at finitely many T ∈ N by the first lemma
of Borel and Cantelli. If we increase C a bit more then this holds also for general T ∈ R. Hence
there is a.s. a T > 0 such that for t ≥ T have that Ω \ ∩t≥TF1(t) occurs. Since by assumption the
same is true for F2(t) we get that if we choose r > K the proof is complete. 2

Remark: IBFs and IOUFs satisfy the condition on the one-point motion given in the lemma.
RIFs do not.
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Chapter 8

Asymptotic Growth Of Spatial
Derivatives: General Case

We generalize the results from Chapter 7 to a much more general framework. Again the cen-
tral tool for the proof is Theorem 7.1.3. Nevertheless we need different methods to verify its
assumptions than those used in Chapter 7. This chapter is joint work with M. Scheutzow.

8.1 The Main Result

The main result looks roughly like the one of Chapter 7 except that we have to specify the
conditions on the local characteristics a and b and the fact that we use log(1 + ·) instead of log(·).
Note that we leave the scope of isotropic flows so b will denote the drift part of the general
flow SDE and not an isotropic covariance tensor. Let us recall the setup from Chapter 1. Let
(φs,t : 0 ≤ s ≤ t < ∞) be a stochastic flow on R

d obtained as the solution of (1.2). We recall that
for some m we have the decomposition F (t, x) = M(t, x) + V (t, x) where M(t, x) is a Cm,δ-local
martingale and V (t, x) is a continuous Cm,δ-process, such that Dα

xV (t, x), |α| ≤ m are all processes
of bounded variation. Assume again that the local characteristic (a, b) can be written as

〈M(·, x),M(·, y)〉t =
∫ t

0

a(x, y, s)ds and V (t, x) =
∫ t

0

b(x, s)ds

wherein a(x, y, s) = (aij(x, y, s))1≤i,j≤d and b(x, s) = bi(x, s)1≤i≤d are as in Chapter 1. We will use α,
β, γ and δ to denote multi-indices in this chapter. With these notations we can state the following
theorem. Note that IOUFs, IBFs and RIFs are covered by it.

Theorem 8.1.1 (exponential growth of spatial derivatives).
Assume (a, b) ∈ Bn,1ub , let Ξ be a compact subset of Rd with box dimension ∆ > 0 and let α be a multi-index
with |α| ≤ n. Then

lim sup
T→∞

(
sup

0≤t≤T
sup
x∈Ξ

1
T

log(1 + |Dαφt(x)|)
)
≤ K a.s.

where we put

K :=

{
Bn + 2Anσn∆ : if 0 ≥ Λ0

Bn +Andσn

√
∆
d−∆ : otherwise and Λ0 :=

σ2
nd

∆
(
d

2
−∆)
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for constants An, Bn and σn that depend only on n, d, (a, b).

The proof of this theorem relies on two lemmas as before. These allow us to apply Theorem 7.1.3
to ψt(x) := log(1 + |Dαφjt (x) |). 2

Lemma 8.1.2 (condition on the one-point motion).
Assume that (a, b) ∈ Bn,1ub . We have for each bounded S ⊂ R

d that

lim sup
T→∞

1
T

log sup
x∈S

P

 sup
0≤t≤T

∑
1≤|α|≤n,j

log(1 + |Dαφjt (x) |) > kT

 ≤ −
(k −Bn)2+

2A2
n

.

Therein An and Bn are constants that depend only on n, d and (a, b) as in Theorem 8.1.1.

Remark: In fact we will show that we can take the supremum over Rd instead of over bounded
S.

Lemma 8.1.3 (condition on the two-point motion).
Assume that (a, b) ∈ Bn,1ub . We have for each x, y ∈ Rd, T > 0 and p ≥ 1 that

E

[
sup

0≤t≤T
| log(1 + |Dαφjx (t) |)− log(1 + |Dαφjy (t) |)|p

]1/p
≤ c̄|x− y|e 1

2pσ
2
nT

for σn as in Theorem 7.2.1 (i.e. we specify them later).

8.2 Proof Of Lemma 8.1.2: The One-Point Condition

First recall from [20, (18)] that we have for x ∈ Rd, arbitrary α with 1 ≤ |α| ≤ n and 1 ≤ j ≤ d that

Dαφjt (x) = ηα,j +
∑
i

∫ t

0

Dαφis (x) ∂iF j(ds, xs) +
∑

2≤|β|≤|α|

∫ t

0

Pβ,x,j(s)DβF j(ds, xs) (8.1)

where ηα,j = 1 if |α| = 1 and αj = 1 and ηα,j = 0 otherwise, and where Pβ,x,j (s) is a finite sum of
products of the form

∏r
i=1D

γiφji0s(x) with 1 ≤ |γi| ≤ |α| and
∑r
i=1 |γi| = α. Observe that the last

sum in (8.1) is empty if |α| = 1. (8.1) yields with Itô’s formula

(Dαφjt (x))2

=ηα,j + 2
∑
i

∫ t

0

Dαφjs (x)Dαφis (x) ∂iM j (ds, xs) + 2
∑

2≤|β|≤|α|

∫ t

0

Dαφjs (x)Pβ,x,j (s)DβM j (ds, xs)

+
∑
i,k

∫ t

0

Dαφis (x)Dαφks (x)Di
1D

k
2a
jj(xs, xs, s)ds+

∑
2≤|β|,|γ|≤|α|

Pβ,x,j (s)Pγ,x,j (s)Dβ
1D

γ
2a

jj(xs, xs, s)ds

+ 2
∑

2≤|β|≤|α|,i

∫ t

0

Dαφis (x)Pβ,x,j (s)Di
1D

β
2 a

jj(xs, xs, s)ds

+ 2
∑
i

∫ t

0

Dαφjs (x)Dαφis (x)Dibj(xs, s)ds+ 2
∑

2≤|β|≤|α|

∫ t

0

Dαφjs (x)Pβ,x,j (s)Dβbi(xs, s)ds
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and hence summing over α and j that

ψ
(n)
t (x) :=

∑
1≤|α|≤n,j

(Dαφjt (x))2

=d+ 2
∑

1≤|α|≤n,i,j

∫ t

0

Dαφjs (x)Dαφis (x) ∂iM j (ds, xs) + 2
∑

2≤|β|≤|α|≤n,j

∫ t

0

Dαφjs (x)Pβ,x,j (s)DβM j (ds, xs)

+
∑

1≤|α|≤n,i,j,k

∫ t

0

Dαφis (x)Dαφks (x)Di
1D

k
2a
jj(xs, xs, s)ds

+
∑

2≤|β|,|γ|≤|α|≤n,j

∫ t

0

Pβ,x,j (s)Pγ,x,j (s)Dβ
1D

γ
2a

jj(xs, xs, s)ds

+ 2
∑

2≤|β|≤|α|≤n,i,j

∫ t

0

Dαφis (x)Pβ,x,j (s)Di
1D

β
2 a

jj(xs, xs, s)ds

+ 2
∑

1≤|α|≤n,i,j

∫ t

0

Dαφjs (x)Dαφis (x)Dibj(xs, s)ds+ 2
∑

2≤|β|≤|α|≤n,j

∫ t

0

Dαφjs (x)Pβ,x,j (s)Dβbi(xs, s)ds.

Note that
∑

2≤|β|≤|α|≤n,j means that the sum is taken over j ∈ {1, . . . , d} and all multi-indices
α and β with 1 ≤ |β| ≤ |α| ≤ n. Applying the shifted logarithm log(1 + ·) we get with another
application of Itô’s formula that

log
(
1 + ψ

(n)
t (x)

)
= log(1 + d) + 2

∑
1≤|α|≤n,i,j

∫ t

0

Dαφjs (x)Dαφis (x)

1 + ψ
(n)
s

∂iM
j (ds, xs)

+ 2
∑

2≤|β|≤|α|≤n,j

∫ t

0

Dαφjs (x)Pβ,x,j (s)

1 + ψ
(n)
s

DβM j (ds, xs)

+
∑

1≤|α|≤n,i,j,k

∫ t

0

Dαφis (x)Dαφks (x)

1 + ψ
(n)
s

Di
1D

k
2a
jj(xs, xs, s)ds

+
∑

2≤|β|,|γ|≤|α|≤n,j

∫ t

0

Pβ,x,j (s)Pγ,x,j (s)

1 + ψ
(n)
s

Dβ
1D

γ
2a

jj(xs, xs, s)ds

+ 2
∑

2≤|β|≤|α|≤n,i,j

∫ t

0

Dαφis (x)Pβ,x,j (s)

1 + ψ
(n)
s

Di
1D

β
2 a

jj(xs, xs, s)ds

+ 2
∑

1≤|α|≤n,i,j

∫ t

0

Dαφjs (x)Dαφis (x)

1 + ψ
(n)
s

Dibj(xs, s)ds+ 2
∑

2≤|β|≤|α|≤n,j

∫ t

0

Dαφjs (x)Pβ,x,j (s)

1 + ψ
(n)
s

Dβbi(xs, s)ds

− 4
∑

1≤|α|,|δ|≤n,i,j,k,l

Dαφjs (x)Dαφis (x)Dδφls (x)Dδφks (x)

(1 + ψ
(n)
s )2

Di
1D

k
2a
jl(xs, xs, s)ds

− 4
∑

2≤|β|≤|α|≤n,2≤|γ|≤|δ|≤n,i,j

∫ t

0

Dαφjs (x)Pβ,x,j (s)Dδφis (x)Pγ,x,i (s)

(1 + ψ
(n)
s )2

Dβ
1D

γ
2a

ji(xs, xs, s)ds

− 8
∑

1≤|δ|≤n,2≤|β|≤|α|≤n,i,j,k

∫ t

0

Dδφis (x)Dδφjs (x)Dαφks (x)Pβ,x,k (s)

(1 + ψ
(n)
s )2

Di
1D

β
2 a

jk(xs, xs, s)ds

=: log(1 + d) + It + IIt + IIIt + IVt + Vt + V It + V IIt + V IIIt + IXt +Xt. (8.2)
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Hence for n ≤ 2 putting Nt := It + IIt and using the assumptions on (a, b) we get that there are
constants An and Bn such that we have the following. We get IIIt + + . . .+Xt ≤ Bnt and hence

log
(
1 + ψ

(n)
t (x)

)
≤ log(1 + d) +Nt +Bnt (8.3)

wherein Nt is a continuous martingale starting in 0 which satisfies 〈N〉t ≤ Ant a.s. for any t ≥ 0.
Thus we get using the Dambis-Dubins-Schwarz’ Theorem that there exists a Brownian motion
(Wt)t≥0 such that sup0≤t≤T

∑
1≤|α|≤n,j |Dαφjt (x) | ≤ (d + 1)eAn sup0≤t≤T Wt+BnT . Using estimates for

the geometric Brownian motion as in Chaper 7 shows that for |α| ≤ 2 we have that

lim sup
T→∞

1
T

logP
[
|Dαφjt (x) | ≥ kT

]
≤ −

(k −Bn)2+
2A2

n

.

To conclude for |α| > 2 we make the following observations. The only issue is that the appearence
of Pβ,x,j (s) in (8.2) does not allow for the straight conclusion to (8.3). This is overcome in the
following way. We only explain the argument because it involves a lot of cumbersome notations
and very lengthy formulas that do not make the proof any clearer. Observe that (for some N)
the function f : RN → R, (x1, . . . , xN ) 7→

∏r
j=1 xij satisfies for l, n ∈ {1, . . . , N} that ∂lf(x1, . . . , xN ) =∑r

k=1

∏r
k 6=j=1 xijδl,ij and ∂n∂lf(x1, . . . , xN ) =

∑r
k=1

∑r
k 6=m=1

∏r
{k,m}3j=1 xijδl,ijδn,im . Hence if we let

enter any finite product of the form
∏r
i=1D

γiφji0s(x) with 1 ≤ |γi| ≤ n and
∑r
i=1 |γi| = α squared

into the sum in the definition of ψ(n)
t (x) then we may apply log(1 + ·) and end up with (8.3) as

before. This completes the proof for general α. 2

Remark: In this new approach the dimension d enters into An and Bn so we cannot hope to be able
to improve the constants obtained for isotropic flows in Chapter 7 in general. The improvement
is the much wider scope of the result.

8.3 Proof Of Lemma 8.1.3: The Two-Point Condition

Let us state a general version of Lemma 1.3.8 and 1.4.3.
Lemma 8.3.1 (two-point control general version).
There are constants λ ≥ 0 and σ > 0 such that for any x, y ∈ Rd there is a Brownian motion (Wt)t≥0 such
that we have a.s. that |xt − yt| ≤ 2eσ sup0≤s≤t Ws+λt.

Proof: We assumed more than necessary to apply [52, Lemma 4.1]. 2

8.3.1 One-Point Mean Estimates

We will need the following lemma concerning the means of the one-point motion of the spatial
derivatives.
Lemma 8.3.2 (mean estimate for the one-point motions).
Assume that (a, b) ∈ Bn,1ub . Then there is k̄ > 0 and kn ≥ 0 such that we have for 1 ≤ |α| ≤ n, i ∈ {1, . . . , d},
p ≥ 1 and x ∈ Rd that

E

[
sup

0≤t≤T
|Dαφit (x) |p

]
≤ k̄eknTp

2
.

Proof: This follows directly from (8.3). 2
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8.3.2 Two-Point Estimates

Now we come the the proof of Lemma 8.1.3. Let us recall from [20, Proposition 2.3] that for any
T > 0 there is a constant C = C(T ) > 0 such that for x, y ∈ Rd, j ∈ {1, . . . , d} and p ≥ 1 we have

E

[
sup

0≤t≤T
|Dαφjt (x)−Dαφjt (y) |p

]
≤ eCp

2
(|x− y|p ∧ 1).

Define

Cn(T ) := inf
C>0

{∀x, y ∈ Rd, 1 ≤ |α| ≤ n, 1 ≤ j ≤ d : E
[

sup
0≤t≤T

|Dαφjt (x)−Dαφjt (y) |p
]
≤ eCp

2
(|x− y|p ∧ 1)}

and observe for α = β + (0, . . . , 0, 1, 0, . . . , 0) (with the 1 at position number l) and T ≤ t ≤ 2T as
before

|Dαφjt (x)−Dαφjt (y) |p = |DlDβφjT t (xT )−DlDβφjT t (yT ) |p

=|
∑
k

∂lD
βφkTt (xT )DkφjT (x)−

∑
k

∂lD
βφkTt (yT )DkφjT (y) |p

=|
∑
k

∂lD
βφkTt (xT )

[
DkφjT (x)−DkφjT (y)

]
+
∑
k

[
∂lD

βφkTt (xT )− ∂lD
βφkTt (yT )

]
DkφjT (y) |p

≤(2d)p
∑
k

sup
T≤t≤2T

|∂lDβφkTt (xT ) |p sup
0≤t≤T

|Dkφjt (x)−Dkφjt (y) |p

+ (2d)p
∑
k

sup
T≤t≤2T

|∂lDβφkTt (xT )− ∂lD
βφkTt (yT ) |p sup

0≤t≤T
|Dkφjt (y) |p

which yields via integration

E

[
sup

0≤t≤2T
|Dαφjt (x)−Dαφjt (y) |p

]
≤(2d)p

∑
k

E

[
sup

T≤t≤2T
|∂lDβφkTt (xT ) |p sup

0≤t≤T
|Dkφjt (x)−Dkφjt (y) |p

]
+ (2d)p

∑
k

E

[
sup

T≤t≤2T
|∂lDβφkTt (xT )− ∂lD

βφkTt (yT ) |p sup
0≤t≤T

|Dkφjt (y) |p
]

=(2d)p
∑
k

E

[
E

[
sup

T≤t≤2T
|∂lDβφkTt (xT ) |p sup

0≤t≤T
|Dkφjt (x)−Dkφjt (y) |p

∣∣∣∣FT]]
+ (2d)p

∑
k

E

[
E

[
sup

T≤t≤2T
|∂lDβφkTt (xT )− ∂lD

βφkTt (yT ) |p sup
0≤t≤T

|Dkφjt (y) |p
∣∣∣∣FT]]

=(2d)p
∑
k

E

[
E

[
sup

T≤t≤2T
|∂lDβφkTt (xT ) |p

∣∣∣∣FT] sup
0≤t≤T

|Dkφjt (x)−Dkφjt (y) |p
]

+ (2d)p
∑
k

E

[
E

[
sup

T≤t≤2T
|∂lDβφkTt (xT )− ∂lD

βφkTt (yT ) |p
∣∣∣∣FT] sup

0≤t≤T
|Dkφjt (y) |p

]
.
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Applying Lemma 8.3.2 we get that the latter is less or equal to

(2d)p
∑
k

E

[
k̄eknTp

2
sup

0≤t≤T
|Dkφjt (x)−Dkφjt (y) |p

]
+ (2d)p

∑
k

E

[
eCn(T )p2(|xT − yT |p ∧ 1) sup

0≤t≤T
|Dkφjt (y) |p

]
≤(2d)pdk̄eknTp

2
eC1(T )p2(|x− y|p ∧ 1) + (2d)p

∑
k

eCn(T )p2
E

[
(|xT − yT |p ∧ 1) sup

0≤t≤T
|Dkφjt (y) |p

]
. (8.4)

Since we have by Schwarz’ inequality and Lemmas 8.3.1, 8.3.2 that

E

[
(|xT − yT |p ∧ 1) sup

0≤t≤T
|Dkφjt (y) |p

]
≤

√
E [(|xT − yT |p ∧ 1)2]E

[
sup

0≤t≤T
|Dkφjt (y) |2p

]
≤
√
E [(|xT − yT |2p)] ∧ 1

√
k̄e4knTp2

≤((|x− y|pe 1
2 (λp+σ̄2p2)T ∧ 1)

√
k̄e2knTp

2

≤(|x− y|p ∧ 1)
√
k̄e

1
2 (λp+σ̄2p2+4knp

2)T .

Inserting this into (8.4) we get

E

[
sup

0≤t≤2T
|Dαφjt (x)−Dαφjt (y) |p

]
≤2pdp+1eCn(T )p2

[
k̄eknTp

2
+
√
k̄e

1
2 (λp+σ̄2p2+4knp

2)T
]
(|x− y|p ∧ 1)

≤2pdp+1(k̄ +
√
k̄)e[Cn(T )+ 1

2 (λ/p+σ̄2+4kn)]p2T (|x− y|p ∧ 1)

and hence for T ≥ 1 and p ≥ 1 that

Cn(2T )
2T

≤ 2
log(2d) + log(k̄ +

√
k̄)

2T
+

1
2
(
λ+ σ̄2 + 4kn

)
+
Cn(T )

2T
.

Assuming w.l.o.g. that Cn(1) ≥ 2 log(2d) + 2 log(k̄+
√
k̄) +λ+ σ̄2 + 4kn we get by induction that for

any m ∈ N we have Cn(2m)
2m ≤ Cn(1)

1 . Letting 1 ≤ ε ≤ 2 we observe for m ∈ N that

Cn(2mε)
2mε

≤ log(2d) + (k̄ +
√
k̄)

2m−1ε
+

1
2
(
λ+ σ̄2 + 4kn

)
+
Cn(2m−1ε)

2mε

≤ log(2d) + (k̄ +
√
k̄)

2m−1
+

1
2
(
λ+ σ̄2 + 4kn

)
+
Cn(2m)

2m

≤ log(2d) + (k̄ +
√
k̄)

2m−1
+

1
2
(
λ+ σ̄2 + 4kn

)
+
Cn(1)

1
.

Hence Cn(·)
(·) is bounded on [1,∞). Inserting the constant c̄ completes the proof because for s, t ≥ 0

we have | log(1 + t)− log(1 + s)| ≤ |t− s| which follows from the mean value theorem. 2

Remark: The assumption (a, b) ∈ Bn,1ub enters into the proofs via citation of the results of [20].



Chapter 9

Further Steps To Pesin’s Formula

This chapter is devoted to an outlook on further research to be done if one wants to prove Pesin’s
formula for IOUF’s along the lines of [37]. Since assertions concerning uniform continuity cannot
be expected to be true in the case of an IOUF we have to replace them by localized versions. If
these are not sufficient to yield Pesin’s formula, then it is very unlikely that it can be shown in
the intended way. Similar considerations apply to uniform Lipschitz continuity etc..
The next thing to do is to spend some time on stable manifolds because they are essential for
the partitions constructed to prove the reverse inequality to Theorem 6.3.1. We start with the
verification of the following result which is essentially taken from [50]. The continuous-time case
has been treated in [39] which we will also use occasionally. Note that using the identification of
a stochastic flow and its associated RDS we will use ϕt−s(x, θsω) and φs,t(x, ω) to denote the same
object (cf. 1.2.11). In the whole chapter we restrict the attention to the IOUF case since both
the IBFs and the RIFs do not posses invariant probabilities.

9.1 Local Stable Manifolds

Theorem 9.1.1 (local stable manifolds for IOUFs).
Let µ be the invariant measure for ϕ and assume that λ < 0 is not one of the Lyapunov exponents of ϕ. Put
ρ := P⊗µ which is a probability on ((Diff(Rd))Z×Rd,B(Diff(Rd))Z⊗B(Rd)) such that τ : Ω×Rd → Ω×Rd
defined by τ((ωn)n∈Z, x) = ((ωn+1)n∈Z, ϕ1(x)) is ρ-invariant (cf. Definition and Lemma 1.2.4 as well as
Lemma 1.2.14). Then there exists a set Γ ⊂ Ω × R

d with ρ(Γ) = 1 and B(Diff(Rd))Z ⊗ B(Rd)-measurable
real functions β > α > 0 and γ > 1 such that we have for (ω, z) ∈ Γ the following.

1. νλ(ω,z) := {x ∈ Kα(ω,z)(0) : ∀n ≥ 0 : ‖ϕn(z + x, ω)− ϕn(z, ω)‖ ≤ β(ω, z)eλn} is a C2,1-submanifold
of Kα(ω,z)(0) tangent to ⊕λi<λEi(ω, z). Therein Ei(ω, z) is as in the multiplicative ergodic theorem.

2. If λ′ < λ is chosen such that [λ′, λ] does not contain any Lyapunov exponents of ϕ then there is
γ′(ω, z) such that we have for x, y ∈ νλ(ω,z) that

‖ϕn(z + x, ω)− ϕn(z + y, ω)‖ ≤ γ′(ω, z) ‖x− y‖ eλ
′n.

Proof: This is Theorem (5.1) of [50] applied to

• F : Ω× R
d → C2,1(Rd,Rd), (ω, z) 7→ F(ω,z) = ϕ1(z + ·, ω)− ϕ1(z, ω),
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• T(ω,z) := Dzϕ1(·, ω),

• Fn(ω,z) := Fτn−1(ω,z) ◦ . . . ◦ Fτ(ω,z) ◦ F(ω,z) = ϕn(z + ·, ω)− ϕn(z, ω) for n ∈ N,

• Tn(ω,z) := Tτn−1(ω,z) ◦ . . . ◦ Tτ(ω,z) ◦ T(ω,z) = Dzϕn(·, ω) for n ∈ N,

• τn(ω, z) = (ϕn(ω, z), θnω).

The identities for Fn(ω,z), T
n
(ω,z) and τn(ω, z) are obtained via an easy induction (which we postpone

to a more general case in the sequel), so we only have to note that ϕ is in fact C2,1 and that
from [57, (2.5)] and [20, (17)] that

∫
Rd×Ω

log+(‖ϕ1(z + ·, ω)− ϕ1(ω, z)‖2,1)dρ(ω, z) <∞. 2

In fact the proof in [50] also shows the following proposition.

Proposition 9.1.2 (existence of h).
Locally νλ(ω,z) can be written as the graph of a C2-function from ⊕λi<λEi(ω, z) to (⊕λi<λEi(ω, z))

⊥. In
detail this means the following. For any (ω, z) ∈ Γ there is a function
h(ω,z) : Kα(ω,z)(0) ⊂ ⊕λi<λEi(ω, z) → (⊕λi<λEi(ω, z))

⊥ with h(ω,z)(0) = 0 such that exp−1
z νλ(ω,z) is the

graph of h(ω,z).

Proof: There is nothing left to show. The construction of νλ(ω,z) relies on the Arzéla-Ascoli theorem
yielding directly the assertion of the above proposition. 2

We will need the following versions of stable manifolds. Let E0(ω, z) := ⊕λi<λEi(ω, z), H0(ω, z) :=
E0(ω, z)⊥ as well as En(ω, z) := Dzϕn(·, ω)E0(ω, z) and Hn(ω, z) := Dzϕn(·, ω)H0(ω, z). We will
also need the notations T ln(ω, z) := Dϕn(z,ω)ϕn+l(·, θnω), Sln(ω, z) := T ln(ω, z)|En(ω,z) , U ln(ω, z) :=
T ln(ω, z)|Hn(ω,z). Now we can formulate the following generalization of Theorem 9.1.1.

Theorem 9.1.3 (more local stable manifolds).
Let µ, λ and ρ be as in Theorem 9.1.1. Then there exists a set Γ ⊂ Ω × R

d with ρ(Γ) = 1 and for n ∈ N
there are B(Diff(Rd))Z ⊗ B(Rd)-measurable real functions βn > αn > 0 and γn > 1 such that we have for
(ω, z) ∈ Γ and n ∈ N the following.

1. νλ(ω,z),n := {x ∈ Kαn(ω,z)(0) : ∀m ≥ 0 : ‖ϕm(ϕn(z, ω) + x, θnω)− ϕm(ϕn(z, ω), θnω)‖ ≤ βn(ω, z)eλm}
is a C2,1-submanifold of Kαn(ω,z)(0) tangent to En(ω, z).

2. If λ′ < λ is chosen such that [λ′, λ] does not contain any Lyapunov exponents of ϕ then there is
γ′n(ω, z) > 1 such that we have for x, y ∈ νλ(ω,z),n that

‖ϕm(ϕn(z, ω) + x, θnω)− ϕm(ϕn(z, ω) + y, θnω)‖ ≤ γ′n(ω, z) ‖x− y‖ eλ
′m.

3. For any (ω, z) ∈ Γ there is a function h(ω,z),n : Kαn(ω,z)(0) ⊂ En(ω, z) → Hn(ω, z) with h(ω,z),n(0) =
0 such that exp−1

ϕn(z,ω) ν
λ
(ω,z),n is the graph of h(ω,z),n. Note that the exponential map is of course

rather trivial in R
d but we like to keep the notation close to the manifold case.

4. We have (in fact we may and will choose to have) that

αn(τ(ω, z)) ≥ αn(ω, z)eλ as well as βn(τ(ω, z)) ≥ βn(ω, z)eλ. (9.1)

5. For x ∈ νλ(ω,z),n we have

ϕ1(ϕn(z, ω) + x, θnω)− ϕn+1(z, ω) ∈ νλτ(ω,z),n+1. (9.2)
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6. For n ∈ N we have

lim sup
m→∞

1
m

log
(

sup
{
|ϕm(ϕn(z, ω) + x, θnω)− ϕm(ϕn(z, ω) + y, θnω)|

|x− y|
: x 6= y ∈ νλ(z,ω),n

})
≤ λ̃

(9.3)
wherein λ̃ denotes the largest Lyapunov exponent smaller than λ.

7. If dν denotes the distance along νλ(ω,z),m for m ∈ N then we have for arbitrary x, y ∈ νλ(ω,z),n that

dν (ϕm(ϕn(z, ω) + x, θnω), ϕm(ϕn(z, ω) + y, θnω)) ≤ γ′n(ω, z)dν(x, y)e
λm. (9.4)

Remark: If one decreases βn(ω, z) then one of course obtains the same statement (possibly with
a smaller αn(ω, z) and a smaller γn(ω, z)) ending up with a subset of νλ(ω,z),n.

Definition 9.1.4 (local stable manifolds).
The set νλ(ω,z),n from Theorem 9.1.3 will be refered to as the nth local stable manifold at z.

Proof of Theorem 9.1.3: The first three assertions are obtained from [50, Theorem (5.1)] applied
to

• F : Ω× R
d → C2,1(Rd,Rd), (ω, z) 7→ F(ω,z) = ϕ1(ϕn(z, ω) + ·, θnω)− ϕ1(ϕn(z, ω), θnω),

• T(ω,z) := Dϕn(z,ω)ϕ1(·, θnω),

• Fm(ω,z) := Fτm−1
n (ω,z) ◦ . . . ◦ Fτn(ω,z) ◦ F(ω,z) = ϕm(ϕn(z, ω) + ·, θnω)− ϕm(ϕn(z, ω), θnω) for m ∈ N,

• Tm(ω,z) := Tτm−1
n (ω,z) ◦ . . . ◦ Tτn(ω,z) ◦ T(ω,z) = Dϕn(z,ω)ϕm(·, θnω) for m ∈ N,

• τm(ω, z) = (ϕm(ω, z), θmω).

We will now show the identity for Fm(ω,z). The one for Tm(ω,z) follows from this as well as the
remainder of Theorem 9.1.1 (put n = 0 and rename m to be n). The formula for m = 1 is clear
by definition so it suffices to observe that

Fm(ω,z) =Fτm−1(ω,z) ◦ Fm−1
(ω,z) (x)

=F(θm−1ω,ϕm−1(z,ω)) (ϕm−1(ϕn(z, ω) + x, θnω)− ϕm−1(ϕn(z, ω), θnω))

=ϕ1

(
ϕn(ϕm−1(z, ω), θm−1ω) + ϕm−1(ϕn(z, ω) + x, θnω)− ϕm−1(ϕn(z, ω), θnω), θm−1θnω

)
− ϕ1

(
ϕn(ϕm−1(z, ω), θm−1ω), θnθm−1ω

)
=ϕm(ϕn(z, ω) + x, θnω)− ϕm(ϕn(z, ω), θnω).

The fourth assertion is now seen to be [39, (3.29)]. The proof of (9.2) is as follows. Since we
wrote exp−1

ϕn(z,ω) ν
λ
(ω,n),z as the graph of h(ω,z),n we get{

(ξ, h(ω,z),n(ξ)) : ξ ∈ Kαn(ω,z)(0) ∩ En(ω, z)
}

= exp−1
ϕn(z,ω) ν

λ
(ω,n),z

= exp−1
ϕn(z,ω)

{
x ∈ Kα(ω,z)(ϕn(z, ω)) : ∀m ≥ 0: ‖ϕm(ϕn(z, ω) + x, θnω)− ϕm(ϕn(z, ω), θnω)‖ ≤ βn(ω, z)eλm

}
=
{
y ∈ Kα(ω,z)(0) : ∀m ≥ 0: ‖ϕm(y, θnω)− ϕm(ϕn(z, ω), θnω)‖ ≤ βn(ω, z)eλm

}
.
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This by the way proves that for any ξ ∈ Kαn(ω,z)(0)∩En(ω, z) there is a unique η ∈ En(ω, z)⊥ such
that for all m ∈ N we have

‖ϕm(ϕn(z + ξ + η), ω), θnω)− ϕm(ϕn(z, ω), θnω)‖ ≤ βn(ω, z)eλm.

This is an analogue to [37, III.(3.3)]. Observe now for x ∈ νλ(ω,z),n that∥∥ϕm(ϕn+1(z, ω) + ϕ1(ϕn(z, ω) + x, θnω)− ϕn+1(z, ω), θn+1ω)− ϕm(ϕn+1(z, ω), θn+1ω)
∥∥

=
∥∥ϕm (ϕ1(ϕn(z, ω) + x, θnω), θn+1ω

)
− ϕm(ϕn(ϕ1(z, ω), θω), θnω)

∥∥
=
∥∥ϕm (ϕ1(ϕn(z, ω) + x, θnω), θn+1ω

)
− ϕm(ϕ1(ϕn(z, ω), θnω), θn+1ω)

∥∥
= ‖ϕm+1 (ϕn(z, ω) + x, θnω))− ϕm+1 (ϕn(z, ω), θnω))‖
≤βn(ω, z)eλ(m+1) ≤ βn(τ(ω, z))eλm

by (9.1). This proofs (9.2). (9.3) is a direct consequence of [39, Theorem 3.1 (b)]. (9.4) now follows
from this and the mean value theorem via integration. 2

9.2 Global Stable Manifolds

The local stable manifolds νλ(ω,z),n consist of points in the neighbourhood of z ∈ R
d approaching

the trajectory of z exponentially fast. The set of points with the latter property is seen to be a
manifold which we call the nth global stable manifold of z. It of course is a random manifold.

Definition 9.2.1 (global stable manifolds).
Let λ be as in Theorems 9.1.1 and 9.1.3. The set

νλ,g(ω,z),n := {x ∈ Rd : lim
m→∞

1
m

log ‖ϕm(ϕn(z, ω) + x, θnω)− ϕm(ϕn(z, ω), θnω)‖ ≤ λ}

is called the nth global stable manifold of z. The 0th global stable manifold of z will just be refered to as
the global stable manifold of z.

We have the following theorem about the global stable manifolds.

Theorem 9.2.2 (properties of global stable manifolds).
Let νλ,g(ω,z),n be as in Definition 9.2.1 and νλ(ω,z),n be as in Theorem 9.1.3. Then the following holds true.

1. For any m ∈ N we have (ϕm(ϕn(z, ω) + ·, θnω)− ϕm(ϕn(z, ω), θnω)) νλ,g(ω,z),n = νλ,g(ω,z),n+m

2. Suppose we are working in the natural extension of our RDS (which we do without change of notation
by just assuming that ϕk(·, ·) makes sense for negative k ∈ Z). Then defining the increasing family
of random sets (νλ,m(ω,z),n)m∈N as νλ,0(ω,z),n = νλτm(ω,z),n and

νλ,m(ω,z),n :=
(
ϕ−m(z + ·, θm+nω)νλ(θmω,z),n − ϕ−m(z, θm+nω)

)
νλ(θmω,z),n if

νλ,m−1
(ω,z),n ⊂

(
ϕ−m(z + ·, θm+nω)νλ(θmω,z),n − ϕ−m(z, θm+nω)

)
and νλ,m(ω,z),n := νλ,m−1

(ω,z),n otherwise

we have P⊗ ρ-a.s. that

νλ,g(ω,z),n =
∞⋃
m=0

νλ,m(ω,z),n. (9.5)
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Proof: Despite the fact that similar proofs can be found in [12] and [39] we give some details.
The first assertion can be shown in the following manner.

(ϕm(ϕn(z, ω) + ·, θnω)− ϕn+m(z, ω)) νλ,g(ω,z),n

=
{
ϕm(ϕn(z, ω) + x, θnω)− ϕn+m(z, ω) : lim sup

k→∞

1
k

log ‖ϕk(ϕn(z, ω) + x, θnω)− ϕn+k(z, ω)‖ ≤ λ

}
=
{
y : lim sup

k→∞

1
k

log
∥∥ϕk(ϕn(z, ω) + ϕ−1

m (y + ϕm+n(z, ω), θnω)− ϕn(z, ω)) , θnω)− ϕn+k(z, ω)
∥∥ ≤ λ

}
=
{
y : lim sup

k→∞

1
k

log
∥∥ϕk(ϕ−1

m (y + ϕm+n(z, ω), θnω) , θnω)− ϕn+k(z, ω)
∥∥ ≤ λ

}
=
{
y : lim sup

k→∞

1
k

log
∥∥ϕk(ϕ−m (y + ϕm+n(z, ω), θn+mω

)
, θnω)− ϕn+k(z, ω)

∥∥ ≤ λ

}
=
{
y : lim sup

k→∞

1
k

log
∥∥ϕk−m (y + ϕm+n(z, ω), θn+mω

)
− ϕn+k(z, ω)

∥∥ ≤ λ

}
=
{
y : lim sup

k→∞

1
k +m

log
∥∥ϕk (y + ϕm+n(z, ω), θn+mω

)
− ϕn+m+k(z, ω)

∥∥ ≤ λ

}
=
{
y : lim sup

k→∞

1
k

log
∥∥ϕk (y + ϕm+n(z, ω), θn+mω

)
− ϕn+m+k(z, ω)

∥∥ ≤ λ

}
=νλ,g(ω,z),n+m.

The proof of (9.5) is similar to the proof of [39, (3.38)] and we omit the details. See also [12,
Lemma 3.2.2] for the case z = 0 is a fixed point. 2

9.3 Local Hölder Continuity Of Oseledec’ Splittings

We now start to discuss the dependence of E0(ω, z) and H0(ω, z) on z ∈ Rd. First we recall some
facts from [37] which are stated in the compact manifold setting but with proofs that perfectly
cover our case. In this whole subsection let λ be as before and let [λ, λ̄] ⊂ (∞, 0] be a compact
interval that does not contain any Lyapunov exponents of ϕ. We fix 0 < ε ≤ (λ̄− λ)/200.

Lemma 9.3.1 (definition of l(n, ω, x)).
There exists a measurable function l : Γ × N → (0,∞) such that we have for (ω, z) ∈ Γ and n, l ∈ N the
following.

∀ξ ∈ En(ω, z) : |Sln(ω, z)ξ| ≤ l(ω, z, n)e(λ+ε)l|ξ|,

∀η ∈ Hn(ω, z) : |U ln(ω, z)η| ≥ l(ω, z, n)−1e(λ̄−ε)l|ξ|,

γ(En+l(ω, z), Hn+l(ω, z) ≥ l(ω, z, n)−1e−εl

wherein γ denotes the angle between two vector spaces.

l(ω, z, n+ l) ≤ l(ω, z, n)eεl

Proof: Since an IOUF is ergodic this is just [37, Lemma III.1.1] because the Lyapunov spectrum
is constant. 2

Let l′ ∈ R be a number such that the set Γl
′

ε := {(ω, z) ∈ Γ: l(ω, z, 0) ≤ l′} 6= ∅. We then have the
following lemma concerning the continuity of E0(ω, z) and H0(ω, z).
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Lemma 9.3.2 (continuity of E0(ω, z)).
E0(ω, z) and H0(ω, z) depend continuously on (ω, z) ∈ Γl

′

ε .

Proof: Although this is [37, Lemma III.1.2] we have to comment on its meaning. The topology
on the Grassmanian manifold consisting of k-dimensional subspaces of Rd can be assumed to
be canonical (in special cases it is just a suitable projective space) and the topology on R

d is of
course clear, but it is not really common to have the probability space equipped with a topological
structure to study the continuity of random variables. The topology that is used on Ω in [37] is
the countable product of the C2-topology which is not suitable for IOUFs since their C2-norms are
a.s. infinite. The assertion of the above lemma may nevertheless be used as the statement that for
almost all ω ∈ Ω the mapping R

d 3 z 7→ E0(ω, z) or H0(ω, z) respectively is continuous. A serious
inspection of the proof also shows the following. The above convergence i.e. the proof of [37] also
holds if one replaces the C2-topology on Diff(Rd) by the topology of uniform C2-convergence on
compacts. This can be seen in the following way. Let (ω, x)n → (ω, x). Using the compactness
of the Grassmannian manifold we get that E0((ω, x)n) contains a convergent subsequence with
a limit E (we pass to the subsequence without changing notation). Since manifolds are metric
spaces it is sufficient to show that E = E0(ω, x)). In view of Lemma 9.3.1 it is sufficient to show
that for any l ∈ N and ξ ∈ E we have

|Sl0(ω, x)ξ| ≤ Ke(λ+ε)l

for a suitable constant K (independent of l). To see this it is sufficient to observe for any sequence
E0((ω, x)n) 3 ξn → ξ ∈ E that

|Sl0(ω, x)ξ| ≤|Sl0(ω, x)(ξ − ξn)|+ |(Sl0(ω, x)− Sl0((ω, x)n))ξn|+ |Sl0((ω, x)n)ξn|
≤
∥∥Sl0(ω, x)∥∥ |ξ − ξn|+

∥∥(Sl0(ω, x)− Sl0((ω, x)n))
∥∥ |ξn|+ l(ωn, xn, 0)e(λ+ε)l|ξn|

≤
∥∥Sl0(ω, x)∥∥ |ξ − ξn|+

∥∥(Sl0(ω, x)− Sl0((ω, x)n))
∥∥ |ξn|+ l′e(λ+ε)l|ξn|.

Since {ξn : n ∈ N} is compact we have that the first two terms vanish as n→∞ and the proof is
complete. 2

The following proposition will be used to show even a bit more than continuity of E0(ω, x) and
H0(ω, x). We first have to define the notion of Hölder continuity for subspaces of Rd.

Definition 9.3.3 (local Hölder continuity).
Let X be a metric space and (Ex : x ∈ X) be a family of subspaces of the Hilbert space H. The fam-
ily (Ex : x ∈ X) is said to be Hölder continuous with exponent α > 0 and constant C > 0 if we
have for any x, y ∈ X that d(Ex, Ey) := Ap(Ex, Ey) ∨ Ap(Ey, Ex) ≤ Cd(x, y)α. Therein Ap(E, Ẽ) :=
supξ∈E,||ξ||=1 infη∈Ẽ ||ξ − η|| is the aperture between E and Ẽ.

Proposition 9.3.4 (sufficient conditions for Hölder continuity).
Let (X, d) be a metric space with diameter at most 1. Let H be a Hilbert space and (Ti(x) : x ∈ X, i ∈ N)
be a family of bounded linear operators Ti(x) : H → H. Write T 0(x) = id and Tn(x) := Tn(x)◦ . . .◦T1(x).
For numbers Ĉ ≥ 1, â < b̂ let ∆â,b̂,Ĉ the (maybe empty) set of points x ∈ X for which there exist splittings
H = Ex ⊕ E⊥x such that for any n ∈ N the following holds.

||Tn(x)ξ|| ≤ Ĉeân||ξ||, ξ ∈ Ex and ||Tn(x)η|| ≥ Ĉ−1eb̂n||η||, ξ ∈ E⊥x .
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Suppose there are numbers ĉ > â and β > 0 such that for x, y ∈ X and n ∈ N we have

||Tn(x)− Tn(y)|| ≤ eĉnd(x, y)β .

Then the family (Ex : x ∈ ∆â,b̂,Ĉ) is Hölder continuous with exponent â−b̂
â−ĉβ and constant 3Ĉ3eb̂−â.

Proof: [37, Proposition III.4.1]. 2

The application of Proposition 9.3.4 now yields the following theorem.

Theorem 9.3.5 (local Hölder continuity).
Then the family (E0(ω, x) : (ω, x) ∈ Γl

′

ε ) is a.s. locally Hölder continuous w.r.t. x ∈ R
d. This means in

detail for (ω, x) ∈ Γl
′

ε that there exists α ≥ λ + ε such that the family
(
E0(ω, y) : y ∈ K1(x) ∩ (Γl

′

ε )ω
)

is

Hölder-continuous with constant 3l′2eλ̄−λ−2ε and exponent λ̄−λ−2ε
α−λ−ε .

Proof: The proof follows from Lemma 9.3.1 and Proposition 9.3.4 applied to H = R
d, X = K1(x),

Ex = E0(ω, x), Tn(x) = Dϕn−1(x,ω)ϕ1(x, θn−1ω) and ∆â,b̂,Ĉ = Γl
′

ε since we have the following. For all
x ∈ Rd there is an a.s. finite random number α = α(ω) such that for all n ∈ N and |x − y| ≤ 1 we
have

‖Dxφn(·)−Dyφn(·)‖ ≤ eαn|x− y|.

This follows from Theorem 8.1.1 since the local characteristics of IOUFs allow for the application
to the second order derivatives. 2

Remark: To further proceed with the proof of Pesin’s formula along the lines of [37] one might
wish to start at [37, p. 84, III.5 ].
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Chapter 10

Some Open Problems

In this chapter we name some questions as possible directions of further research. We order them
by the chapter they arise although there is almost no reference to these questions in the text
before. We conjecture that the difficulty of these problems varies from an advanced graduate
exercise level to a quite difficult level, that cannot be captured without a significant amount of
work.

10.1 Open Problems arising from Chapter 2

In Chapter 2 we gave a spatial regularity lemma which suggests to ask for the following refine-
ments.

Problem 10.1.1 (precise spatial asymptotics).
Given an IBF, IOUF or a RIF with convariance tensor b and drift c (c = 0 for the IBF case) find the
right order of magnitude of sup|x|≥R(|φt(x)− e−ctx|) i.e. find a function f such that

lim
R→∞

sup
|x|≥R

|φt(x)− e−ctx|
f(|x|)

exists in a non-trivial way.

Therein ”non-trivial“ means that the limit is strictly positive and finite w.p.p..

Problem 10.1.2 (precise spatial asymptotics 2).
Find a solution to Problem 10.1.1 that is valid for a larger class of stochstic flows or at least prove
Lemma 2.2.1 in this context.

These problems seem to be rather feasible but we confined ourselves to the treatment given in
the text because it is sufficient for the application in Chapter 5.

10.2 Open Problems arising from Chapter 3

The question of positivity of densities for the n-point motion seems to be still not completely
solved. It is possible that quite standard methods lead to a solution to the following problems.

Problem 10.2.1 (positivity of densities).
Find more reasonable conditions on the covariance tensor b such that the two-point motion of the associated
IBF (or IOUF or RIF) possesses a strictly positive density on R

d
×.
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Problem 10.2.2 (positivity of densities 2).
Solve Problem 10.2.1 for the n-point motion with the obvious analogue for Rd×. Observe that it is necessary
to ensure the existence of a density by investigation of the hypoellipticity of the diffusion matrix.

Since both these problems do not play a central role in the later chapters we did not pay attention
to them.

10.3 Open Problems arising from Chapter 4

The following problems seem to be quite hard to tackle.

Problem 10.3.1 (a.s. convergence in the limit shape theorem).
Prove (or disprove) that in the limit shape theorem one has a.s. convergence instead of convergence in
probability yielding that the limit shape property holds for all sufficiently large times T .

Problem 10.3.2 (general limit shape theorem).
Find the limiting behaviour as in the limit shape theorem for IOUFs (with sub-linear scaling) or RIF (with
exponential scaling).

Remark: In both cases we conjecture the limiting behaviour to be random.

Problem 10.3.3 (general limit shape theorem 2).
Find the limiting behavior in higher dimension or for a more general class of stochastic flows. Does the
expansion speed depend on the codimension of the initial set? Is it still well-defined in some sense?

10.4 Open Problems arising from Chapter 5

We indicated that it is not straightforward to find a Lyapunov cohomology between the RDS
coming from an IOUF and a C2-RDS on the d+1-dimensional unit ball and we strongly conjecture
that it is impossible to find one. Nevertheless one might ask the following.

Problem 10.4.1 (Lyapunov cohomology).
Prove that there is no Lyapunov cohomology between the RDS coming from an IOUF and any C2-RDS
living on a compact Riemannian manifold or find one.

10.5 Open Problems arising from Chapter 6 and Chapter 9

The following problems directly arise from the fact that we did not need so much IOUF structure
in Chapter 6.

Problem 10.5.1 (Ruelle’s inequality).
Generalize Theorem 6.3.1 to the case of a general stochastic flow with one-point motions that have invariant
probabilities.

Problem 10.5.2 (Ruelle’s inequality).
Find a reasonable notion of entropy for IBFs (or even RIFs) and generalize Theorem 6.3.1 accordingly.

Problem 10.5.3 (Pesin’s formula).
Prove equality in Theorem 6.3.1 or even in one of the settings of Problems 10.5.1 or 10.5.2.
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10.6 Open Problems arising from Chapter 7 and Chapter 8

Except from the improvement of the constants given as upper bounds there is just one problem
left

Problem 10.6.1 (lower bound).
Find a lower bound for the exponential expansion rate of the derivative in any of the treated cases of
stochastic flows.



148 Some Open Problems



Bibliography

[1] Ludwig Arnold. Random dynamical systems. Springer Monographs in Mathematics. Springer,
Berlin, 1998.

[2] Ludwig Arnold and Michael Scheutzow. Perfect cocycles through stochastic differential equa-
tions. Probab. Theory Relat. Fields, 101(1):65–88, 1995.
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Notes In Mathematics. R. M. Dudley, H. Kunita, F. Ledrappier: École d’Été de Probabilité
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Index Of Notation and Abbreviations

(·)+ := (·) ∨ 0 - the positive part of (·)
| · | Euclidean norm
‖f‖m:K := supx∈K

|f(x)|
1+|x| +

∑
1≤|α|≤m supx∈K |Dα

xf(x)|
‖g‖∼m:K := supx∈K

|g(x,y)|
(1+|x|)(1+|y|) +

∑
1≤|α|≤m supx,y∈K |Dα

yDα
xg(x, y)|

‖g‖∼m+δ:K := ‖g‖∼m:K +
∑
|α|=m ‖D

α
xDα

y g‖∼δ:K
‖g‖∼m+δ := ‖g‖∼m+δ:D

〈·〉, 〈·, ·〉 cross variation bracket
|| · ||∞ supremum norm
|| · || operator norm coming from | · |
∇ the nabla operator
x, y convex hull of x and y

I, II, III, . . ., It, IIt, . . . terms to be estimated
|v|R := supγ∈CR

E
[
τR(γ, v)

]
‖v‖R := limt→∞

|tv|R+C12
t - stable norm

‖v‖RR̃ := limt→∞
supγ∈C

R̃
E[τR(γ,tv)]
t

⊂⊂ relatively compact subset
a(x, y, s) = (aij(x, y, s))1≤i,j≤n cross variation part of local characteristic
A element of ∈ B(C(Rd,Rd))⊗n

A := (1−BL(r)) d
2

dr2 +
(
(d− 1) 1−BN (r)

r − cr
)
d
dr

a.s. almost sure(ly)
A1, . . . , An Borel subsets of Diff(Rd)
A1, . . . , An Borel subsets of Rd

A linear mapping from R
d to R

d

A, An constant
At process of locally bounded variation
ai numbers smaller than 1
Ap(E, Ẽ) aperture between E and Ẽ

â real number ≥ b̂

b(x, s) = bi(x, s)1≤i≤n drift part of local characteristic
(Bm,δ, Bm

′,δ′) function class see page 8
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(Bm,δb , Bm
′,δ′

b ) function class see page 8
(Bm,δub , Bm

′,δ′

ub ) function class see page 8
Bm,δ function class see page 8
Bm

′,δ′

b function class see page 8
Bm,δub function class see page 8
B(·) Borel σ-field
b = b(x) isotropic covariance tensor
BL longitundinal correlation function
BN normal correlation function
b̄ diffusion matrix of (xt, yt)
BΩ σ-algebra in Ω
B1, . . . , Bm partition of Ω
B(·) subset of R2 - limit shape
B, Bn constant
bi numbers smaller than 1
b̂ real number ≥ â

Cm(D : Rn) m times continuously differentiable functions from D to R
m

Cmb (D : Rn) := {f ∈ Cm(D : Rn) : ‖f‖m <∞}
Cm,δ(D : Rn) := {f ∈ Cm(D : Rn) : Dα

xf is δ −Hölder continuous}
Cm,δ function class - see page 6
Cm,δb function class - see page 6
Cm,δub function class - see page 6
Cm function class - see page 6
Cmb function class - see page 6
Cmub function class - see page 6
C̃m(D : Rn) Cm functions from D× D to R

m

C̃mb := {g : D× D→ R
n : ‖g‖∼m <∞}

C̃m,δb := {g : D× D→ R
n : ‖g‖∼m+δ <∞}

C̃m,δ function class - see page 7
C̃m,δb function class - see page 7
C̃m,δub function class - see page 7
C̃m function class - see page 7
C̃mb function class - see page 7
C̃mub function class - see page 7
Cm,δ-local martingale see Theorem 1.1.1
Cm,δ-semimartingale see Theorem 1.1.1
Cm,δ-valued Brownian motion see page 8
C generic notation for a constant
C2
b continuous functions with bounded derivatives up to order 2
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C∞0 smooth functions with compact support
c1, c2, . . . generic notation for constants - new numbering per chapter
C1, C2, . . . generic notation for constants - new numbering per chapter
C(Rd × {1, . . . , d} : R) := {f : Rd × {1, . . . , d} → R : f is continuous}
c positive constant - drift of an IOUF
cf. confer, see also
C(d) d-depending constant
CR := {γ : diam(γ) ≥ 1, γ ⊂ K2R(0)}
C∗R set of all large curves γ with γ ∩ ∂KR(0) 6= ∅
Cq constant in the Burkholder-Davies-Gundy inequality
c̄, c̄1, c̄2, . . . constants
C̄1, C̄2, . . . constants
c̃ := 2βL + 2d6 maxi,l,k,n supz∈Rd ∂k∂nb

i,l (z)
Ĉ real number ≥ 1
d natural number, dimension of the state space
D domain in R

d

Dα
x spatial differential operator coming from the multi-index α

d(φ, ψ) := ρ(φ, ψ) + ρ(φ−1, ψ−1)
dk(φ, ψ) :=

∑
|α|≤k ρ(D

αφ,Dαψ) +
∑
|α|≤k ρ(D

αφ−1,Dαψ−1)
DS dynamical system
di(ω) multiplicity of ith Lyapunov exponent
dt := diam(γt)
dν distance along νλ(ω,z),m for m ∈ N
e Euler’s number
E [·] expectation operator
E Borel subset of Rnd

E1(ω), . . . , Ep(ω)(ω) splitting in the MET for linear RDS
Ei(ω, x)) Oseledec splitting in the MET
En n× n unity matrix
e.g. exempli gratia, for example
a.e. almost every
Kr(0) closed r-ball centered at x ∈ Rd

Ek,l maximal 1
k -separated set in Kl(0)

E0(ω, z) := ⊕λi<λEi(ω, z)
En(ω, z) := Dzϕn(·, ω)E0(ω, z)
E, Ẽ vector space
F generic notation for a σ-field
F̄ P-completion of F
f generic notation for an R

n-valued function
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F = F (t, x, ω) generic notation for a semimartingale field
F̂ = F̂ (t, x, ω) backward version of F (t, x, ω)
{ft : t ≥ 0} predictable process with values in D

fnt approximating sequence to get the stochastic integral
{F ts : s, t ∈ R, s ≤ t} generic notation for a two-parameter filtration
F t−∞ :=

∨
s≤t F ts

F̂∞s :=
∨
t≥s F ts

F̃ σ-field
{F̃ ts : s, t ∈ R, s ≤ t} two-parameter filtration
f endomorphism of a probability space
F1(t), F2(t) events in Ω
Fn := {∃i ∈ [b

√
nc ,∞] ∩ N : di < 1}

F event in Ω
F : Ω× R

d → C2,1(Rd,Rd): (ω, z) 7→ F(ω,z) = ϕ1(z + ·, ω)− ϕ1(z, ω)
Fn(ω,z) := Fτn−1(ω,z) ◦ . . . ◦ Fτ(ω,z) ◦ F(ω,z) = ϕn(z + ·, ω)− ϕn(z, ω) for n ∈ N
g generic notation for a R

n-valued function
G(t, x, y, ω) function : [0, T ]× D× D× Ω → R

n

G group of homeomorphisms of Rd

Gk group of Ck-diffeomorphisms of Rd

G sub-σ-algebra of F
G̃ sub-σ-algebra of F
G′, G′′ functions in the chasing balls lemma
ḡ(R, R̃, t) := supγ∈CR̃

{
E
[
τR(γ, tv)

]}
h generic notation for a R

n-valued function
h(x, i) element of the RKHS
HP (ξ |G ) conditional entropy of ξ given G
hG
P

(ξ, f) entropy of f with respect to ξ given G
hG
P
(f) entropy of f given G

hP(f) entropy of f
hµ (φ, ξ) := limn→∞

1
n

∫
Hµ

(∨n−1
i=0 φ0,i(·, ω)−1ξ

)
dP(ω)

hµ (φ) metric entropy of φ
h L2-control function
g̃ diffusion term in SDE
H RKHS of Φ
h(ω,z) function Kα(ω,z)(0) ⊂ ⊕λi<λEi(ω, z) → (⊕λi<λEi(ω, z))

⊥

H0(ω, z) := E0(ω, z)⊥

Hn(ω, z) := Dzϕn(·, ω)H0(ω, z)
H Hilbert space
i natural number
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iff if and only if
IBF isotropic Brownian flow
IOUF isotropic Ornstein-Uhlenbeck flow
I isomorphism
i.i.d independend, identically distributed
i.e. this is
I symmetric ideal in V ⊗

j natural number
K compact subset of Rn

k natural number
K generic notation for a constant
K expansion speed for the derivatives
k1, k2, . . . generic notation for constants - new numbering per chapter
K1,K2, . . . generic notation for constants - new numbering per chapter
k(x, i, y, j) kernel of the covariance operator of N
Kε(X) := {y ∈ Rd : dist(y,X) ≤ ε} closed ε-neighbourhood of X
Kr(x) := {y ∈ Rd : dist(y, x) ≤ r} closed r-ball centered at x
l fuction from N to N

k real constant
l natural number
L law of a random variable
L(n) generator of (Φt

(
x(1)

)
, . . . ,Φt

(
x(n)

)
)

L̄ generator of ρxyt
L := −c

∑d
i=1 xi

∂
∂xi

+ 1
2∆.

Ld := −c
∑d
i=1 xi

∂
∂xi

+
∑d
i,j=1(δij − bij(x)) ∂2

∂xi∂xj

Lk(n, ω, i) := supz∈K 1
k

(xi) ||Dzφn||

l(n, ω, x) measurable function l : Γ× N→ (0,∞)
l′ real number
m natural number
M = M(t, x, ω) generic notation for the local martingale part of F (t, x, ω)
MDS metric dynamical system
MET multiplicative ergodic theorem
M manifold
m := L(φ0,1(·)) law of unit step discretization of an IOUF
Mt := 2

∫ t
0

∑
i,j,k ∂kM

i (ds, xs)
∂jφ

k
s (x)∂jφ

i
s(x)

‖Dφs(x)‖2

M̃t special continuous martingale
M̌t = M̌

(ij)
t :=

∫ t
0
X

(ij)q−1
s dV IIt −

∫ t
0
X

(ij)q−1
s dV IIIt

N the set of natural numbers starting with 1
n natural number
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N = N(t, x, ω) martingale field
Ñ Gaussian measure
N (·, ·) normal distribution
N Gaussian measure
Nδ natural number depending on δ

O orthogonal matrix
O(d) group of orthogonal d× d matrices
O∗ adjoint of O
P probability measure
P

(n)
s,t (·, ·) Markov semigroup
p(ω) number of Lyapunov exponents
P̃ probability measure
Pt Markov semigroup
p, p1, . . . , p3 reals in (0, 1), strictly positive probabilities
P point in R

d far away from the origin
Pβ,x,j (s) finite sum of products of drivatives of φs(x)
q real number ≥ 1
Q = (q1, q2) point in KR(P ) ⊂ R

2

Q̃ point in UQ
R the real numbers
r real number
RDS random dynamical system
r(ε) positive constant
r̄ positive constant
RKHS reproducing kernel Hilbert space
R

2d
× := R

2d \ {z ∈ R2d : zi = zd+i∀i = 1, . . . , d}
ri, i = 1, 2 random distances in the ball chasing lemma
R, R̃ positive real numbers, radii of certain balls in R

d

rt := dist(γt, P )
s real number - time
SDE stochastic differential equation
Sln(ω, z) := T ln(ω, z)|En(ω,z)

t real number - time
T real number - time horizon
T (t) linear bundle RDS coming from the differential as RDS
TxM tangent space at x to M

TM tangent bundle of M
T endomorphism of V
T∧k kth exteriour power of T
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T∧ : V ∧ → V ∧, T∧ := idR ⊕ T ⊕ T∧2 . . . T∧n

(tk)k∈N sequence of random times
T (γ, ε) > 0 random time

tnu := nε
2

(
supz∈Un,ε

Q
(‖V1(z)‖ ∨ ‖V2(z)‖)

)−1

tj := inf {t ∈ R : t ≥ tj−1 + 1 + T : γt ∩KR(P ) 6= ∅,diam(γt) ≥ 1}
t̃
(n)
m (δ) positive constant
T(ω,z) := Dzϕ1(·, ω)
Tn(ω,z) := Tτn−1(ω,z) ◦ . . . ◦ Tτ(ω,z) ◦ T(ω,z) = Dzϕn(·, ω) for n ∈ N
T ln(ω, z) := Dϕn(z,ω)ϕn+l(·, θnω)
(Ti(x) : x ∈ X, i ∈ N) be a family of bounded linear operators Ti(x) : H → H

u real number - time
U = U(x) isotropic Brownian field
UQ open superset of {Q}
Un,εQ := ]q1 − nε, q1 + nε[× ]q2 − nε, q2 + nε[
ŨnQ :=

]
q1 − nε

2 , q1 + nε
2

[
×
]
q2 − nε

2 , q2 + nε
2

[
ÛQ := Z−1

(
]− 7, 7[2

)
U ln(ω, z) := T ln(ω, z)|Hn(ω,z)

U ln(ω, z) := T ln(ω, z)|Hn(ω,z)

V = V (t, x, ω) generic notation for the bounded variation part of F (t, x, ω)
v vector in R

d

Vi(x, ω) Oseledec splitting for IBFs
Vi(x) orthonormal Hilbert base for the RKHS
V U isotropic Brownian field with potential U
V finite-dimensional vector space
V ⊗ tensor algebra over V
V ∧ outer algebra over V
V ∧k := V ⊗k ∩ V ∧

V i1 (.) :=
∫
bij(.− y)dδQ ⊗ δ1(y, j) = bi,1(.−Q) : i = 1, 2

V i2 (.) :=
∫
bij(.− y)dδQ ⊗ δ2(y, j) = bi,2(.−Q) : i = 1, 2

V H-simple control
(Wt : t ≥ 0) generic notation for a Brownian motion
(W i

t : t ≥ 0), i = 1, 2 Brownian motions
(W ∗

t : t ≥ 0) running maximum for Brownian motion
Wt(γ) :=

⋃
0≤s≤t γs

WR
t (γ) :=

{
x ∈ Rd : dist (x,Wt(γ)) ≤ R

}
w1 := V1(Q) = b.1(0) =

(
1
0

)

w2 := V2(Q) = b.2(0) =

(
0
1

)
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w.r.t. with respect to, with reference to
w.l.o.g. without loss of generality
w.p.p. with positive probability
x point in R

d

x(1), x(2), . . . points in R
d

(Xt : t ≥ 0) stochastic process - solution to an SDE
(Xt)t=1,2,... discrete time Markov chain on R

d

X compact metric space
x̂(x) := g−1 ◦ f(x)
x(1) point in R

d

(Xt : t > 0) family of integrable random variables
X

(ij)
t := ∂jφ

i
t(x)

‖Dφt(x)‖ −
∂jφ

i
t(y)

‖Dφt(y)‖

X
(ij)q
t :=

(
X

(ij)
t

)q
(X, d) metric space
y point in R

d

(Y,Y) measurable space
y(1) point in R

d

ỹ point in R
2

Yt := Xt − E [Xt]
z point in R

d

z real number
z1, z2 components of z ∈ R2

zt(h) solution of control problem driven by h

Z := (Z1, Z2) : Ũ102
Q →]− 51, 51[ coordinate system

α = (α1, . . . , αn) multi-index
α = α(ω, z) real function on Diff(Rd)Z × R

d

α = α(ω) random variable
βL := −B′′L(0)
βN := −B′′N (0)
β real number > 1
β = β(ω, z) real function on Diff(Rd)Z × R

d

β > 0 Hölder exponent
β multi-index
γ original set for the limit shape theorem
γt := Φt(γ)
γ̌, γ̂, ˆ̂γ, γ̄, γ(t) large subsets of Rd

Γ boundary of the unit ball in R
2

γ(i) random large subsets at τRi
γ = γ(ω, z), γ′ = γ′(ω, z) real functions on Diff(Rd)Z × R

d
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Γ set of full measure
γ angle between two vector spaces
Γl
′

ε := {(ω, z) ∈ Γ: l(ω, z, 0) ≤ l′}
γ multi-index
δ positive real number - sometimes Hölder exponent
∆ a.s. event in the MET for smooth cocycles
∆ Laplacian
δij Kronecker’s delta
δ(x,i) evaluation functional
δ1, δ2, . . . sumable real sequence
δ1(A), . . . , δd(A) singular values of A
∆ upper entropy dimension of Ξ
∆â,b̂,Ĉ set in X

δ multi-index
ε positive real number
ε1, ε2, . . . sequence of positive reals
ε̃ positive real number
η countable partition of Ω
η element of En(ω, z)⊥

θt shift-mapping in a DS, MDS or RDS
θ positive constant in (0, 1)
ι function on [0,∞) given by ι : x 7→ x log x
(κ(i)
m )m∈N : i = 1, 2, . . . tail constants

κq q-depending constant
λ, λ′ constant
λi Lyapunov exponents of an IOUF
Λ, Λ0, Λ1, . . . constants
λ̃ largest Lyapunov exponent smaller than λ.
µi Lyapunov exponents of an IBF
µ invariant measure for a RDS
νλ(ω,z) := {x ∈ Kα(ω,z)(0) : ∀n ≥ 0 : ‖ϕn(z + x, ω)− ϕn(z, ω)‖ ≤ β(ω, z)eλn}
νλ(ω,z),n := {x ∈ Kαn(ω,z)(0) :

∀m ≥ 0 : ‖ϕm(ϕn(z, ω) + x, θnω)− ϕm(ϕn(z, ω), θnω)‖ ≤ βn(ω, z)eλm}
dν distance along νλ(ω,z),m for m ∈ N
νλ,g(ω,z),n := {x ∈ Rd : limm→∞

1
m log ‖ϕm(ϕn(z, ω) + x, θnω)− ϕm(ϕn(z, ω), θnω)‖ ≤ λ}

ξ countable partition of Ω
(ξi)i∈N sequence of measurable partitions of Ω
ξx element of the partition ξ that contains x
Ξ := f−1 ◦Ψ ◦ f
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ξj , j ∈ N discrete time supermartingale
ξ
(C10,δ)
j special choice for ξj

Ξ bounded subset of Rd

ξ generic element of Kαn(ω,z)(0) ∩ En(ω, z)
ξn sequence in E0((ω, x)n)
π projection
π π = 3.141 . . .

ρ(φ, ψ) :=
∑∞
N=1

sup|x|≤N |φ(x)−ψ(x)|
2N (1+sup|x|≤N |φ(x)−ψ(x)|)

ρxyt := ‖xt − yt‖
ρ(f, g) :=

∑∞
n=0

1
2n

ρn(f,g)
1+ρn(f,g)

ρn(f, g) := maxi=1,...,d sup|x|≤n |f(x, i)− g(x, i)|
ρ metric on X

ρ positive constant in the chasing ball lemma
ρ := P⊗ µ

σ̄ positive constant
σ, σ1, σ2, . . . constants
τt skew product shift of RDS
τR(γ, P ) := inf {t > 0 : dist(γt, P ) ≤ R, dt ≥ 1}
τRi , i = 1, 2, . . . sequence of stopping times
τ̃ = τ̃R(γ, P ) := τ̃(P ) := inft>0

{
KR(P ) ⊂

⋃
0≤s≤t γs

}
sweeping time

τ̃Q := inft>0 {UQ ⊂ ∪0≤s≤tγs}
τ stopping time
φs,t(x, ω) stochastic flow
Φs,t(x, ω) IBF
φs,t(x, ω) IOUF
φs,t(x, ω) IBF or IOUF
φ random function on X

Φ̃s,t(x, ω) independent copy of Φ
ϕ random dynamical system
χi skeleton in X

Ψ global measurable trivialization
ψ = ψt(x) solution to a control problem
Ψ unit ball version of IOUF
ψ

(V )
t (x) solution to the control problem driven by V

Ψ(., .) a continuous mapping from [0, T ]× R
2 to R

2

ψ̃(s, u) := ψ
(V )
s (γ̃(u))

Ψ̃(s, u) := Ψ(s, γ̃(u))
ψ̄(s, u) := ψ

(V )
s (γ̄(u))

Ψ̄(s, u) := Ψ(s, γ̄(u))
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ψt(x) := log ‖Dφt (x)‖
Ω base set of the generic probability space
ω element of Ω
Ω̃ sure subset of Ω
Ω̃ base set of a probability space
ω̃ element of Ω̃
Ωk,l subset of Ω



164 Index of Notation



Erklärung
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