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A neural network model with incremental Hebbian learning of afferent and lateral synap­
tic couplings is proposed,which simulates the activity-dependent self-organization of grating 
cells in upper layers of striate cortex. These cells, found in areas VI and V2 of the visual 
cortex of monkeys, respond vigorously and exclusively to bar gratings of a preferred orienta­
tion and periodicity. Response behavior to varying contrast and to an increasing number of 
bars in the grating show threshold and saturation effects. Their location with respect to the 
underlying orientation map and their nonlinear response behavior are investigated. The 
number of emerging grating cells is controlled in the model by the range and strength of the 
lateral coupling structure.

Introduction

The primary visual cortex is an intensely studied 
information processing module of the brain. 
Extensive neurophysiological investigations have 
accumulated a considerable body of knowledge 
about the visual system of vertebrates (Kandel et 
al., 1996). Early stages of information processing 
extract simple features mainly from the visual in­
put patterns. Recently Von der Heydt et al. (1992), 
however, discovered a new type of cortical cells 
extracting complex features like oriented textures 
at an early stage already. These authors reported 
a new and rare type of orientation selective neu­
rons in areas VI (4%) and V2 (1.6%) of the visual 
cortex of monkeys which they named grating cells. 
Within area VI these cells were mostly found in 
upper layers II, III and IVb. They responded 
strongly to bar gratings, but weakly or not at all to 
single bars or edges. They also preferred spatial 
frequencies of about 9 cycles/degree on average 
with a tuning width of one octave roughly. Grating 
cells were narrowly tuned to orientation. Most im­
portantly, their response activity depended criti­
cally on the number of cycles of the gratings. They 
showed a strongly nonlinear response behaviour 
with a lower threshold of 4 grating cycles and 
reached saturation already with 8  grating cycles,

on average. Furthermore most of the grating cells 
showed contrast switching with rather low contrast 
thresholds. They were not activated by harmonic 
components, as the spatial frequency response 
curves to sine wave, square wave and line gratings 
were all similar. Additionally they gave unmodu­
lated responses to drifting gratings, were unselec- 
tive for direction of motion and showed length 
summation and even strong end-stopping. In sum­
mary, the main purpose of these cells seems to be 
a fast and reliable detection of periodic patterns. 
This is an essential task in the perception of tex­
tures and, possibly, in theperception of depth (Sa­
kai and Finkel, 1997). Hence, the preferences for 
single or multiple edges both seem important vari­
ables of feature extraction at early visual informa­
tion processing stages. The lateral grouping of 
these response properties in the superficial layers 
of striate cortex is certainly an important issue to 
be investigated further. Grating cells are found in 
the same cortical area as simple cells. However, it 
is yet unknown which cells provide input to grat­
ing cells.

As Blasdel and Obermayer (Blasdel and Ober- 
mayer, 1994) pointed out recently, pyramidal 
cells -  engaged in the full cortical circuitry includ­
ing inhibitory interneurons -  are responsible for 
the maps of orientation preference and they are
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also the cells most likely to use this information. 
If so the information flow processed by these cells 
must be highly constrained by the extent of their 
dendritic arbors amounting to 200-300 |im in di­
ameter. As information is only available locally, 
Blasdel and Obermayer hypothesized that cortical 
cells, in order to be good texture analysers, should 
group preferentially around pinwheel vortices of 
the underlying orientation map. While pyramidal 
cells within linear zones could only code about 
half of all orientations (due to their receptive field 
size of about 200-300 |im), neurons close to a ±1/
2  vortex are influenced by all orientations and thus 
might be better suited for perception of textures. 
But as cortical neurons of monkeys in the center 
of pinwheel vortices are only poorly orientation 
selective and close neurons around the vortices 
encode the whole range of orientation prefer­
ences, it is unclear, whether they can provide 
enough output for the activity-dependent self-or­
ganization of grating-cells, which in contrast show 
strong and narrowly tuned orientation prefer­
ences generally.

In a recent study (Brunner et al. 1998) we pur­
sued the hypothesis that grating cells form during 
development in an activity dependent fashion in 
the upper cortical layers receiving afferent input 
from cortical simple cells only. These simple cells 
show orientation preferences which change 
smoothly across the cortical surface. Hence within 
iso-orientation domains neighboring cells respond 
to closely similar oriented visual stimuli. Their out­
put activities may thus drive the emergence of 
grating cells during postnatal development. Due to 
their high specificity to spatially periodic stimulus 
patterns it seems plausible that a sufficient number 
of simple cells has to provide strong input to any 
target cell to drive the latter to become a grating 
cell proper. This condition is easily met by simple 
cells from iso-orientation domains all having about 
the same orientation specificity under stimulus 
conditions provided by periodic textures. The lat­
ter certainly form an important but infrequently 
occuring class of biological stimuli.

In this study we will extend our recently devel­
oped incremental Hebbian learning model 
(Burger and Lang, 1999; Bauer et al., 1998) with 
plastic afferent as well as intracortical synaptic 
couplings to simulate the activity-dependent self­
organization of periodic-pattern-selective cells

driven by spatially periodic visual stimuli with var­
ying orientation, phase and spatial frequency. Our 
main purpose is to study the necessary conditions 
for the emergence and maturation of only few 
model grating cells as well as their spatial organ­
ization relative to the underlying orientation map 
formed by cortical simple cells. Furthermore we 
are interested in the influence of additional lateral 
input onto the highly characteristic response prop­
erties of any single grating cell and, most impor­
tantly, on the way the range and strength of the 
lateral coupling structure will control the number 
and spatial layout of emerging grating cells. As 
most experimentally detected grating cells re­
ceived input from one eye only a monocular 
model architecture may suffice.

A Simulation Model of Grating Cells

According to the two-phase learning paradigm 
proposed recently (Brunner et al., 1998) we first 
have to consider the development of feature maps 
driven by random input stimuli. Following the 
seminal papers by Linsker (1986) and Miller et al. 
(1989) a rather simple incremental Hebbian learn­
ing model for the prenatal development of recep­
tive field structures, orientation preference and se­
lectivity of simple cortical cells has been proposed 
recently (Burger and Lang, 1999; Burger and 
Lang, 1997). It considers the activity dependent 
adaptation of afferent as well as lateral synaptic 
coupling strengths. It is used in this study to pro­
duce realistic receptive field structures and orien­
tation maps. During a second learning phase the 
activity-dependent development of periodic- 
pattern-selective cells in upper cortical layers is 
simulated.

According to our recently discussed supposition 
(Brunner et al., 1998) model grating cells receive 
their input from model cortical simple cells within 
iso-orientation domains of the model orientation 
map which code similar preferred stimulus orien­
tations. In this study we have shown that if a suffi­
cient number of these orientation specific simple 
cells show strong activity in response to a grating 
stimulus the resulting postsynaptic potential to­
gether with a threshold nonlinearity suffices to 
stimulate the emergence of periodic-pattern-selec- 
tive cells in subsequent cortical layers. The current 
investigation will pursue the hypothesis that the
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spatial self-organization of grating cells will be 
controlled by adaptable lateral synaptic couplings. 
The modification of the characteristic response 
properties by plastic lateral couplings between 
emergent grating cells will be investigated, too. In 
summary, we will explore the twofold hypothesis, 
that adaptive afferent synaptic couplings mainly 
control the emergence of grating cells and adap­
tive lateral synaptic couplings control their 
number and spatial layout with respect to the un­
derlying orientation map.

Virtually nothing is really known about anatom­
ical and developmental details of the functional 
architecture concerning grating cells. Even the 
question of which cells provide input to grating 
cells is a largely unresolved issue. From their con­
trast sensitivity Von der Heydt et al. (1992) argued 
that some of the grating cells receive input from 
the parvocellular stream, which in monkeys pro­
jects from layer IVc^ to the blob regions of layers 
II/III, whereas others receive input from the mag- 
nocellular stream. The latter projects from layer 
IVca to layer IVb and then to the interblob re­
gions of layers II/III (Kandel et al., 1996). Whereas 
cells in layer IVc of monkeys do not seem to show 
strong orientation specificity, those in layer IVb 
do.

In our investigation we will consider a rather 
more simplified model architecture consisting of 
four model layers comprising the early visual path-

Grating C e lls

orientation sp ec ific  
cortical ce lls

G anglion /L G N  ce lls

Photoreceptors

Fig. 1. Architecture of the neural network model. Visual 
stimuli are passed on from the photoreceptors via the 
ganglion/LGN layers to layer IV of the primary visual 
cortex. This layer serves as input layer for the emerging 
grating cells.

way. The model layers may loosely be associated 
with the photoreceptor layer as the input layer, 
model layer 2 which comprises separate ON and 
OFF layers with ganglion cell and LGN cell layers, 
model layer 3 with cortical layer IV and model 
layer 4 as layers II/III of the visual cortex.

Within model layer 4 a target cell at ra receives 
its afferent input from model layer 3 neurons at rs 
within a localized square receptive field (RF) of 
length rQ0. The circular arbor function AG (ra, rs) 
specifying the connection density of afferent axo­
nal arbors and the grating cell dendrites is approx­
imated simply by a step function with the same ra­
dius.

The output activities of model layer 3 neurons 
are transformed via a threshold nonlinearity with 
threshold 0  according to:

s&(rs)
0  for I s(rs) I <  ©

I s(rs) I for I s(rs) I >  0 . (1)

The postsynaptic potential h{ra, t) of a target cell at 
ra is then given by a weighted sum of normalized af­

ferent input activities sn(rs) = ------ ———-----of the
msLXs0(s0 (rs))

model layer 3 neurons within a square receptive 
field of length rQ0 and the lateral input of other 
model layer 4 at ra> within the lateral coupling ra­
dius r/0:

h(ra, t) = 2  A G(ra, rs) Q (?„ rs t) sn(rs t) +
rs

\rs-ra\<rQo

+ 2  l(ra,ra',d h ( fa-t),  (2)
ra'

I r a' - f a \ —r  io

where Q(ra, r„t) represents the afferent coupling 
strength between a model layer 3 neuron at rs and 
a model layer 4 target cell at ra and l(ra, ra',t) repre­
sents the sum of the excitatory and inhibitory lateral 
coupling strengths between two model layer 4 cells 
at ra and v ,  respectively.

The activity a(ra, t) of any target cell at time t is 
then obtained via a nonlinear transformation of the 
postsynaptic potential h(ra,t) according to a stepwise 
linear function T(h(ra,t)) with an activation thresh­
old hx <  p\ -N  and a saturation threshold h2 -  p -N  
with concomitant maximal cell activity amax(ra,t)
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and number N  of afferents converging to the 
target cell.

[ (P2~Pi) N for h>h2=p2'N
a(raj)  = T(h(fa,t)) = j h(fa,t)-pr N for hl<h(fa,t)<h2 (3)

I 0 for h<hx=p\-N.

The afferent synaptic weights from model layer 3 
cells to any target cell are now updated according 
to a Hebb-like learning rule according to

AQ(ra, rs, t - + t + 1 ) =
rjhebb,affa(ro,t) sn(rs t) -  t]^ecQ(ra, rs, t ^ t ) ,  (4)

with r\^ebbaff the learning step size and rf[ec the 
step size for a subtractive decay term which not 
only enables faster convergence but also sup­
presses the transformation to grating cells of all 
those model layer 4 cells which do not receive a 
strong enough input (i.e. h <  hx). Hence these 
cells remain cortical simple cells. The excitatory 
and inhibitory lateral couplings among the model 
layer 4 cells are updated by an anti-Hebbian and 
a Hebbian learning rule, respectively, using a con­
stant sum constraint.

Hence the updated lateral excitatory coupling at 
time t+1 between model layer 4 cells at ra and fa> 
is given by

1 ) — (5)

c l e x ( r a , r a ' , t )  -  V h e b b j a t a i r a ^ a i / a ' t )

2 [ l e x { r aS a ' J ) - V h e b b j a i a ( r a t ) a ( r a ’ t ) \
ra'

I ra' - ra\<r ex

whereas the inhibitory coupling can be written as

I J ja fa 'M  1) = (6)

l ir S ja - fa 'i  0  — V hebb,latß^Ja » 0 ^ ( ^ a ', 0

2  0 ~ V hebb.lafii/a,1) a(ra'*)\
fa'

\ra'-ra\Srj„

using

Cex= 2  IJjafa'Jo) (7)
ra'

I ra' -  ra\<r ex

and

Cin= S  lin(ra,ra',tQ) (8 )
ra'

I ra' — ra\—r in

as the initial excitatory and inhibitory lateral cou­
pling sums, respectively and rex and rin as the respec­
tive ranges of excitatory and inhibitory couplings. 
During learning all synaptic weights have been up­
dated synchronously. With these learning rules a pe- 
riodic-pattern-selective cell may form in an activity- 
dependent manner during development if the 
following conditions are met:
•  it receives strong enough input from orientation 

specific simple cells (s0 (rs) > 0 )
•  most of them are active at the same time respond­

ing strongly to optimal grating stimuli thus provid­
ing a large postsynaptic potential

•  most of the neighboring model layer four cells are 
active and modulate the postsynaptic potential via 
lateral couplings.
The learning rule reinforces those synapses Q(ra, 

rs, t) whose corresponding pre- and postsynaptic 
activities reach a certain threshold controlled by the 
parameters 0  and p x. If the presynaptic activity is 
below the activation threshold 0 , the corresponding 
synaptic coupling strength will decay. Also if the 
postsynaptic potential at the grating cell does not 
exceed the activation threshold hx -  p x -N  of the ac­
tivation function learning will not occur because the 
output activitiy is clamped to zero in this case.

For the afferent activity s0 (rs) to exceed the acti­
vation threshold 0  the driving stimulus has to be 
nearly optimal. In case of orientation specific corti­
cal simple cells the latter would be provided by an 
optimally oriented bar stimulus, for example. Any 
suboptimally oriented stimulus even of high con­
trast would yield 5 @(r5)<0 , thus will not result in a 
strengthening of the corresponding weights Q(rfl, rs, 
t). Yet, for learning to occur, also the total summed 
input (raX) to the target cell proper has to exceed 
the threshold h,. This will be possible only, if a suffi­
cient number of afferent activities, driven by near 
optimal stimuli with sufficient contrast, exceed the 
threshold 0 ,  too. This condition will neither be met 
with a single bar stimulus even of maximal contrast 
nor with any random input stimuli. If learning oc­
curs the synaptic couplings will grow exponentially. 
This is why all coupling strengths converging to a 
given target cell need to be constrained to the in- 
tervall Q(ra, rs, t) G [0,1]. At the end of the second 
learning phase, all afferent couplings to the target
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cell will either have reached their maximal value 
Q(ra, rs, t) = 1  or will be reduced to Q(ra,rs, t) = 0 

due to the decay term in Eqn. (4).The philosophy 
behind the anti-Hebbian vs Hebbian adaptation of 
the lateral couplings is the following. An anti-Heb­
bian adaptation of the excitatory couplings will, in 
the early stages of weight adaptation, provide addi­
tional input to any given target cell from neighbor­
ing output cells. This additional input will decay, 
however, in the course of development, hence will 
not force the emergence of large clusters of grating 
cells all encoding similar orientations. A Hebbian 
adaptation of the inhibitory couplings, instead, en­
hances the competition between the emerging grat­
ing cells and maximizes their mutual spatial dis­
tance. As an increasing inhibitory lateral input will 
reduce the total activity of any given grating cell, 
often the total postsynaptic potential will be sup­
pressed below threshold. As a result the related 
target cell will not transform into a grating cell 
proper during the learning phase. This will ensure 
that, during the simulation, within an emerging clus­
ter of potential grating cells only those with the 
strongest excitatory input should survive and en­
code the related preferred orientation of the grating 
stimuli. Hence different emerging grating cells will 
encode different orientations and they will be local­
ized over different parts of the underlying orienta­
tion map.

Simulated Response Behaviour of the 
Grating Cells

The emergence and the development of a single 
grating cell has been investigated recently (Brun­
ner et al., 1998) on the basis of suitable underlying 
orientation maps (16x16 and 32x32 neurons). 
The activity-dependent self-organization of these 
orienation maps was simulated under develop­
mental conditions with random, unoriented stimu­
lus patterns driving cortical receptive field forma­
tion with segregated ON/OFF subfields and 
orientation map formation with iso-orientation 
domains, linear zones, fracture lines and pinwheel 
vortices. No further maturation of these maps 
while presenting oriented visual stimuli has been 
considered for simplicity.

The activity-dependent self-organization of the 
spatial layout of such periodic-pattern-selective 
cells was the main focus of the current investiga­

tion. It has been simulated by adding a 4th layer to 
the network and keeping the couplings between 
model layer 2 and model layer 3 constant. Using 
circularly symmetric receptive fields for the model 
layer 4 cells and initialing the afferent as well as 
the lateral couplings randomly, training was ac­
complished by presenting variable contrast bar 
gratings or patches of natural images as visual 
stimuli. The corresponding length dimension of 
the bars has always been chosen larger than twice 
the receptive field size in order to exceed the latter 
considerably. The orientation and phase have each 
been varied from 0° to 180° in steps of 10°. Spatial 
frequency has been varied by changing the width 
of bars and related interbar distances from 1  to 1 0  

lattice units. The number of bars comprising the 
gratings ranged from 1 to 15. All weights pro­
jecting onto the target cell have been updated syn­
chronously after each stimulus presentation. Typi­
cally a total of about 1 0 0 0 0  weight updates 
proofed necessary.

With a square receptive field of length rw0 = 6  

and a circular arbor function with the same radius 
for systems of 32x32 cortical neurons, 113 afferent 
synaptic couplings from model layer 3 cells to any 
given target cell drive its development according 
to the learning rule given in Eqn. (4). Additionally, 
the lateral coupling radius was initialed with rex =
2.0 and rin = 5.0, respectively.

The lateral coupling sums for each grating cell 
were fixed to Cex = 0.025 and Cin = 0.36, respec­
tively. Because of the larger range of inhibitory 
couplings their total strength had to be larger in 
order to well balance the effect of the excitatory 
lateral interactions. The activation threshold was 
set to 0  = 0.7 and the lower and upper thresholds 
of the nonlinear transfer function were set to p } = 
0.2 and p2 = 0.5, for convenience. During recall

Fig. 2. Expanding the lateral excitatory radius from rex =
1.0 (left), to rex = 3.0 (middle) and rex = 5.0 (right) the 
number of emerging grating-cells increases because of 
additional lateral input to thepostsynaptic potential of 
the grating cells.
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the above mentioned 1800 different grating stimuli 
were presented randomly and all output activities 
were phase averaged.

First the influence of the various parameters on 
the total number of mature grating cells and their 
spatial layout in relation to the underlying orienta­
tion map will be considered. Generally all synaptic 
coupling strengths are initialed with small random 
values. Figure 2 demonstrates the effect of an 
increasing radius of the lateral excitatory cou­
plings with a constant but in any case larger inhibi­
tory coupling radius. Starting from very few iso­
lated grating cells expanding the range of 
excitatory lateral couplings leads to growing clus­
ters of grating cells. Within any cluster all grating 
cells encode roughly the same orientation of the 
periodic pattern stimulus. Also it seems that no 
new centers of grating cell clusters are born while 
increasing the excitatory coupling radius. Rather 
the clusters build around the few isolated grating 
cells present at the start. It is to be noted that due 
to the learning process excitatory lateral couplings 
will eventually die out with only the inhibitory lat­
eral couplings being left after convergence of the 
weight dynamics. Still their presence in the begin­
ning suffices to create new grating cells which later 
on cannot be erased by the growing inhibitory 
couplings and their diminishing influence on the 
overall grating cell activity.

Increasing, instead, the radius of the inhibitory 
lateral coupling with a constant but in any case 
smaller excitatory coupling radius reduces the 
number of mature grating cells quickly and leads 
to a considerable dilution over the orientation 
map (see Fig. 3).

i j i i s s ä ä i
IB R
l i l t e d -

ill
Fig. 3. An expansion of the lateral inhibitory coupling 
radius from rin = 4.0 (left) to rin -  5.0 (middle) and rin =
6.0 (right) leadsto a strongly decreasing number of grat­
ing cells.

atory coupling strength constant but small results 
in a strong dilution of the grating cell clusters and 
a concomittant reduction in the number of mature 
grating cells as can be seen from Fig. 4.

‘il ll

Fig. 4. Increasing the lateral inhibitory influce via the 
coupling strenght an according effect to an expansion of 
the inhibitory lateral coupling radius as shown in fig 3 
can be observed.left: C,„ = 0.42; middle: C,„ = 0.54; right:
C,„ = 0.66.

The effect is obviously similar to an increase in 
the range of inhibitory lateral couplings with their 
total strength held constant. Corresponding results 
are observed in the reverse situation, of course, as 
Fig. 5 demonstrates. Concerning suitable simula­
tion parameters, biologically relevant develop­
mental simulations of the self-organization of grat­
ing cells certainly have to respect a subtle balance 
between maximal robustness and minimal redun­
dancy of information encoding (see Fig. 2 -5 ).

PüiiiÜi
H i

ü  i !!

Fig. 5. A  corresponding effect to an expansion of the lat­
eral excitatory radius of the grating cells can be seen 
when increasing the total excitatory coupling strength 
from Cex -  0.12 (left) to Cex = 0.24 (middle) to Cex = 
0.36 (right).

Next the coupling radii of both the excitatory 
and the inhibitory couplings are fixed at a constant 
but equal range. Variation of the total inhibitory 
coupling strength while keeping the total excit­

Fig. 6. Orientation map with grating cells. The excitatory 
lateral coupling radius was fixed to rex = 2.0, the inhibi­
tory to rin = 5.0, respectively. The response properties of 
the neurons marked (07/10) and (18/26) will be exam­
ined in detail.
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Hence results displayed with the central graphs in 
figure 2 - 5  may most closely correspond to biolo­
gically relevant simulations.

Finally various characteristic response proper­
ties of the mature grating cells are investigated as 
concerns the modulation of their activity by addi­
tional lateral input.

In Fig. 6 a typical oriention map with grating 
cells is presented. The defining response proper­

ties of periodic-pattern-specific neurons (07/10) 
and (18/26) are exemplified now:

Orientation and spatial frequency tuning curves 
(see Brunner et al., 1998 for a description of their 
determination) are slightly altered (see Fig. 7) due 
to the reduced response amplitude resulting from 
additional inhibitory lateral couplings to any given 
grating cell. The effect is to reduce somewhat the 
HWHM of these curves, leaving the preferred ori-

20 40 60 80 100 120 140 160 180 
stimulus orientation

0 20 40 60 80 100 120 140 160 180 
stimtrius orientation [dag.]

width of bars (grid units]

Fig. 7. Orientation and spatial 
frequency tuning curves of the 
model grating cells (07/10) and 
(18/26).

10

D
j i 8
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1

6

« 4
J3
I 2
1

0

Neuron (07/10) with lat. coupl. 
Neuron (07/10) without lat. coupl.

6 8 10 12 14 16 
number of bars

Neuron (18/26) with lat coupl. 
Neuron (18/26) without lat coupl.

4 6 8 10 12 14 16 
Number of bars

40
35

Neuron (07/10) with lat. coupl. --------
Neuron (07/10) without lat. cotf>l. -------- 3

40
35

Neuron (18/26) with tat. coupl. --------
Neuron (18/26) wrthout lat coupl. -------- .

30 e 30 ------
25 j  -- 5 25 As---
20 /  A 1 20
15 / / » 15 /
10 // i 10 /
5 J J € 5 J
0 r. ......... • ................. 0 ..............  .............

0.1
Contrast

0.1
contrast

Fig. 8. Response functions to 
increasing number of bars and 
contrast of the model grating 
cells (07/10) and (18/26).
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entation and preferred spatial frequency unal­
tered, however.

Whereas the half width of spatial frequency tun­
ing curves, shown in Fig. 7, corresponds well to ex­
perimentally determined values (1-1.5 octaves), 
the corresponding quantities seem fairly large in 
case of the orientation tuning curves. This issue 
has been discussed at length in Brunner et al. 
(1998). It is to be noted, however, that the simu­
lated grating cells generally exhibit a considerably 
narrower orientation tuning than the correspond­
ing cortical simple cells providing input to the 
grating cell under consideration. While the tuning 
width of model cortical simple cells amounts to 
60°, model grating cells only show approximately 
35°, which corresponds to a reduction of 40% in 
agreement with experimental findings (cortex: 2 0 °, 
grating cell: 1 2 °).

Concerning the response selectivity -  quanti­
fied by the bar-grating index -  to an increasing 
number of bars comprising the square wave grat­
ing at the preferred orientation and spatial fre­
quency only slight alterations can be seen in Fig. 8  

due to a somewhat reduced response amplitude. It 
demonstrates a strongly nonlinear response with 
an onset for gratings with n° = 1 and a saturation 
reached already with n, -  4 bars, yielding an index 

n0 1
n = — = -  = 0.25, in accordance with experimental 

H] 4
values found by Von der Heydt et al. (1992). The 
additional inhibitory input slightly shifts the corre­
sponding bar-grating index to higher absolute val­
ues, but the latter are still within the experimen­
tally observed interval 0.08 < n <  0.50. Hence, the 
essential characteristic feature is almost unaltered 
and the typical stepwise linear response of real 
grating cells is well reproduced by our model grat­
ing cells.

As a new response characteristic the contrast 
switching, i.e. the almost constant response ampli­
tude to a varying contrast of the gratings down to 
very low contrast values has been simulated also. 
Contrast C has been defined by Von der Heydt as

C = Lf max̂ p — where Lmax and Lmin signify the
L 'm ax ^  min

maximum and minimum luminosity. Fig. 8  demon­
strates a rapid increase of the grating cell activity 
after exceeding a very low threshold (approx. 
l% -2 % ). Saturation is reached at about 3% -4% ,

whereby the lower and upper limits of the nonlin­
ear activation function (Eqn. (3)) determine the 
starting and saturation points of the contrast re­
sponse behavior. This steep rise is only slightly 
smeared out due to the additional inhibitory input, 
which also lowers the saturated response ampli­
tude. Still this defining response characteristic of 
grating cells remains almost unaltered in its gene­
ral appearance. Again these results, and particu­
larly the early response at very low contrast, corre­
spond to the experimental data, obtained by Von 
der Heydt (1992).

Discussion

We have shown recently that a simple neural 
network model with a biologically motivated ar­
chitecture can simulate some characteristics of the 
activity-dependent development of highly specific 
periodic-pattern-selective cells. The current inves­
tigation generalized this approach to a whole layer 
of grating cells and discussed the effect of plastic 
lateral synaptic couplings on the defining response 
properties of grating cells. Its main focus, however, 
concerned the activity-dependent spatial self-or­
ganization of emerging grating cells in relation to 
the underlying orientation map.

The model network consists of linear neurons 
up to model layer three, where the output neurons 
possess a semi-linear activation function with an 
activation threshold. It is in this layer, where ori­
entation specificity maps form. In model layer four 
nonlinear output neurons with a sigmoidal activa­
tion function and normalized afferent activities 
and synaptic couplings were considered. Adaptive 
excitatory as well as inhibitory lateral synaptic 
couplings have been added and the resulting ef­
fects been investigated. Learning proceeds in two 
phases with different learning rules proper.

In the simulations orientation specific cells first 
form and self-organize into realistic orientation 
maps. This process is driven by random stimulus 
patterns and proceeds according to an incremental 
Hebbian learning rule with explicit stimulus pre­
sentation instead of using artificial input activity 
correlation functions. Loosely speaking this phase 
may correspond to the prenatal development of 
edge detectors and orientation maps in the visual 
cortex of mammals. Cortical simple cells are essen­
tially linear analyzers of a part of a visual scene.
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As such, they basically extract information con­
tained in the second order statistics of the input 
patterns. Since bandpass filtered white noise 
should show similar second order statistics than 
bandpass filtered natural scenes, the former is suf­
ficient to drive their development.

During the second phase only the afferent excit­
atory synaptic couplings between orientation spe­
cific cells in model layer three and the output neu­
rons are adapted according to a thresholded 
Hebb-like learning rule. All other afferent cou­
plings in the layered network remain fixed. Output 
neurons received additional input from neighbor­
ing neurons through adaptable excitatory and in­
hibitory lateral synaptic couplings. During devel­
opment the latter are updated according to a 
constant sum learning rule, which fixes the total 
strength of the excitatory as well as the inhibitory 
lateral couplings separately. Thereby inhibitory 
and excitatory couplings have been updated ac­
cording to a Hebb- and an anti-Hebb-like rule, 
respectively. Hebbian adaptation of inhibitory 
couplings maximizes competition between emerg­
ing grating cells encoding similar texture charac­
teristics. On the other hand anti-Hebbian learning 
of excitatory couplings favours the formation of 
small clusters of nearly identical grating cells pro­
viding a robust encoding of the whole range of 
texture characteristics contained in the stimulus 
pattern set.

With the learning rules proposed periodic- 
pattern-selective cells do not form if only random 
stimuli are presented. Grating cells perform a 
highly nonlinear specialized task, signalling spa­
tially periodic patterns characterized by higher or­
der statistics. These higher order statistics can only 
be learned from structured visual stimulus pat­
terns. Following this idea square wave stimuli with 
varying orientation (0°-170°), phase (0°-180°), 
spatial frequency (bar widths have been varied 
from 1-15 lattice units with a corresponding in­
terbar distance) and number of bars (1-15) were 
used as training patterns.

Iso-orientation domains show a number of 
neighboring cortical neurons with similar orienta­
tion specificity. With the target cell receptive field 
centered there a grating pattern stimulus with 
proper orientation can evoke a sufficiently strong 
activity in all neurons within the receptive field. 
This strong afferent activity can drive any target

cell in superficial cortical layers above threshold 
and evoke a strong response, too. With the pro­
posed suitably thresholded Hebbian learning rule 
this target cell can develop into a periodic-pattern- 
selective cell in an activity-dependent manner.

The orientation and spatial frequency tuning, 
bar-grating specificity and contrast switching of 
the simulated model grating cells reproduce re­
lated aspects of the experimentally observed re­
sponse behaviour very well. A single bar stimulus 
as well as higher Fourier components of grating 
stimuli will stimulate a small number of simple 
cells only leading to subcritical postsynaptic po­
tentials. These stimuli do not contribute to learn­
ing, nor do they evoke any response in mature 
model grating cells due to high activation thresh­
olds. The latter also account for the low spontane­
ous activity of grating cells.

Except for a generally somewhat better perfor­
mance plastic lateral cortical couplings did not al­
ter these simulated response characteristics much. 
However, they were essential as regards the activ­
ity-dependent spatial self-organization of emerg­
ing grating cells in relation to the underlying ori­
entation map. Not surprisingly, grating cells 
formed whenever their receptive fields were cen­
tered over an iso-orientation domain of the related 
orientation map. This underlines that the emer­
gence of model grating cells is driven mainly by 
afferent activities. Depending on the parameters 
of the lateral coupling network, more or less ex­
tended clusters of grating cells were distributed 
over the various iso-orientation domains thereby 
avoiding overlap of their receptive fields with any 
pinwheel vortices of the orientation map. Clearly 
there has to be a balance between robustness and 
redundancy of information encoding (Field, 1994; 
Li and Atick, 1994). Few isolated grating cells re­
present a rather fragile situation as the eventual 
loss of any grating cell means the related oriented 
texture will not be encoded furthermore. Large 
clusters of grating cells all encoding roughly sim­
ilar oriented textures within any cluster represent 
a highly redundant information representation. In 
addition it seems plausibel that highly specialized 
feature detectors, which specialize on rather rare 
natural stimulus features, are expected to repre­
sent a rare type of cortical cells. The parameters 
chosen to study the various response characteris­
tics of the grating cells in the presence of lateral
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input correspond to only few percent (2% -4% ) 
of mature grating cells in accord with experimen­
tal findings.

The observation that receptive fields of model 
grating cells are centered mainly within iso-orien- 
tation domains of orientation maps has to be seen 
in relation to the recent proposal of Blasdel and 
Obermayer (1994) concerning scene segmentation 
strategies in cortex. They hypothezise that the re­
ceptive field centers of texture discriminating cor­
tical cells might group within 1 0 0  [im distance 
around pinwheel vortices in order to locally en­

code all texture orientations. With typical den­
dritic and local axonal arbors of 250 [xm each of 
these cells would indeed sample many different 
orientations. None of the simulated model grating 
cells had its receptive field centered at a pinwheel 
singularity. Rather the current model predicts that 
grating cells will avoid pinwheel singularities and 
group instead over iso-orientation domains. If one 
considers that periodic pattern selective cells may 
also serve a texture discriminating purpose then 
our model predictions are at odds with the Blas- 
del-Obermayer hypothesis.
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