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Abstract
If life exists on Mars, it would face several challenges including the pres-
ence of perchlorates, which destabilize biomacromolecules by inducing
chaotropic stress. However, little is known about perchlorate toxicity for
microorganisms on the cellular level. Here, we present the first proteomic
investigation on the perchlorate-specific stress responses of the halotolerant
yeast Debaryomyces hansenii and compare these to generally known salt
stress adaptations. We found that the responses to NaCl and NaClO4-
induced stresses share many common metabolic features, for example, sig-
nalling pathways, elevated energy metabolism, or osmolyte biosynthesis.
Nevertheless, several new perchlorate-specific stress responses could be
identified, such as protein glycosylation and cell wall remodulations, pre-
sumably in order to stabilize protein structures and the cell envelope. These
stress responses would also be relevant for putative life on Mars, which—
given the environmental conditions—likely developed chaotropic defence
strategies such as stabilized confirmations of biomacromolecules or the for-
mation of cell clusters.

INTRODUCTION

Life as we know it requires energy and access to
CHNOPS (carbon, hydrogen, nitrogen, oxygen, phos-
phorus, sulfur), trace elements, and liquid water. On
Mars, energy would be provided to putative life chemi-
cally or via sunlight, carbon is accessible through the
thin but CO2-rich atmosphere, and other essential ele-
ments are abundant in the regolith (Clark et al., 2021).

Availability of liquid water, however, is strongly
restricted due to the low atmospheric pressure of
approximately 6 mbar and mostly subzero tempera-
tures on Mars (Martínez & Renno, 2013). One of the
few possibilities to generate liquid water in the Martian
near surface is the formation of temporarily stable
brines via deliquescence, a process in which a hygro-
scopic salt absorbs water from the atmosphere and dis-
solves within that water (Hallsworth, 2020). It has been
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shown that deliquescent water is sufficient to drive the
metabolism of halotolerant methanogenic archaea
(Maus et al., 2020). Intriguingly, several hygroscopic
salts have been detected on Mars (Davila et al., 2010).
Among those are very deliquescent and freezing point
depressing perchlorates (ClO4

�), which are widely dis-
tributed on the Martian surface (Clark &
Kounaves, 2016) but appear in natural environments
on Earth only occasionally in hyperarid deserts (Catling
et al., 2010; Kounaves et al., 2010).

Brines formed via deliquescence provide diverse
challenges for microbial life. High salt concentrations
lead to osmotic stress and reduced water activity,
which is a measure for the amount of unbound water
molecules in a solution available for biological pro-
cesses (Hallsworth et al., 2021). Furthermore, salts can
induce ion-specific stresses like interferences with the
cell’s metabolism or changes in cell permeability
through variations in ionic hydration shells (Waajen
et al., 2020). Some anions like perchlorate additionally
evoke chaotropic stress, that is, they destabilize bioma-
cromolecules like proteins (Ball & Hallsworth, 2015),
presumably through nonlocalized attractive dispersion
forces (Hyde et al., 2017). In Pseudomonas putida, it
has been shown that chaotropic solute-induced water
stress mainly leads to upregulation of proteins involved
in stabilization of biological macromolecules and mem-
brane structure (Hallsworth et al., 2003). Furthermore,
it has been demonstrated that chaotropic effects can
be neutralized to some extent by the presence or bio-
production of kosmotropes or compatible solutes
(Bhaganna et al., 2010; Cray et al., 2015). However,
detailed research on proteomic responses to chaotropic
stress induced by perchlorate is still lacking.

Here, we present a proteomic study investigating
the perchlorate-specific stress response of Debaryo-
myces hansenii to evaluate the physiological adapta-
tions required for microorganisms to thrive in the
Martian near surface. The halotolerant yeast
D. hansenii has been chosen as a model organism as it
has been described earlier to tolerate the highest per-
chlorate concentrations reported to date (Heinz
et al., 2020, 2021). This yeast provides a large meta-
bolic toolset to counteract salt stress, such as the high-
osmolarity glycerol (HOG) pathway, which enables
stress signalling and concomitant biosynthesis of glyc-
erol (Prista et al., 2016), which acts as compatible sol-
ute and antagonizes osmotic as well as chaotropic
stress (Bhaganna et al., 2016). Its close relation to the
intensively studied bakery yeast Saccharomyces cere-
visiae greatly facilitates the annotation of proteins and
thus prediction of their functions.

It has been found previously that the eukaryotic
species thus far investigated showed a higher perchlo-
rate tolerance than prokaryotes (Heinz et al., 2020).
Even though an evolutionary development of eukary-
otes on Mars might be considered unlikely due to the

relatively short habitable window of Mars, it can be
assumed that Martian microorganism—if they exist—
would have adapted over longer time scales to the
increasing aridity, salinity, and perchlorate concentra-
tions (Davila & Schulze-Makuch, 2016) and developed
defence strategies at least as efficiently and complex
as observed in D. hansenii, which is not even exposed
to high perchlorate concentrations in its natural
environment.

For the investigation of the proteome of D. hansenii,
we choose a recently developed proteomics protocol
called Sample Preparation by Easy Extraction and
Digestion (SPEED) which enables sample-type inde-
pendent deep proteome profiling with high quantitative
accuracy and precision (Doellinger, Blumenscheit,
et al., 2020; Doellinger, Schneider, et al., 2020).

This is the first study investigating perchlorate-
specific stress responses with an untargeted proteomic
approach to provide novel and fundamental under-
standing of the required cellular adaptation mecha-
nisms for life in perchlorate-rich, chaotropic habitats on
Earth, Mars, and beyond.

EXPERIMENTAL PROCEDURES

Microbial cultures

The halotolerant yeast D. hansenii (DSM 3428) was
obtained from the Leibniz Institute DSMZ—German
Collection of Microorganisms and Cell Cultures. A stock
culture was grown aerobically without shaking at 25�C
(optimum growth temperature) in liquid DMSZ growth
medium #90 (3% (w/v) malt extract, 0.3% (w/v) soya
peptone) and was frequently re-inoculated. Addition-
ally, four different salt-containing liquid growth media
(DSMZ #90) were prepared having a molal (mol/kg) salt
concentration of either 1.5 mol/kg NaClO4, 2.4 mol/kg
NaCl, 2.4 mol/kg NaClO4, or 3.9 mol/kg NaCl. The latter
two concentrations (2.4 mol/kg NaClO4 and 3.9 mol/kg
NaCl) represent the almost highest concentrations of
the respective salt enabling growth of D. hansenii. The
maximum growth-enabling concentrations reported to
date are 2.5 mol/kg NaClO4 and 4.0 mol/kg NaCl
(Heinz et al., 2021). We choose slightly lower concen-
trations to guarantee reproducible growth of the cul-
tures and to generate sufficient biomass for protein
extraction. The other two salt concentrations (1.5 mol/
kg NaClO4 and 2.4 mol/kg NaCl) represent moderate
salt concentrations of the respective salt (i.e. approx.
62 mol% of the respective maximum salt concentra-
tions enabling growth). The availability of two treat-
ments with the same molal salt concentrations (2.4 mol/
kg NaCl and 2.4 mol/kg NaClO4) allowed for an addi-
tional comparison of cellular stress responses to the
two different salt species at the same osmolality. The
growth media were prepared by mixing the media
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components, the respective salt and water, followed by
pH adjustment (pH � 5.6) and sterile filtration. All treat-
ments (no salt, 1.5 mol/kg NaClO4, 2.4 mol/kg NaCl,
2.4 mol/kg NaClO4, and 3.9 mol/kg NaCl) were inocu-
lated as biological triplicates, that is, for each treatment
three different samples were inoculated. The salt-free
treatment and the samples containing 1.5 mol/kg
NaClO4 and 2.4 mol/kg NaCl were inoculated with the
salt-free stock culture. Hence, the two saline treatments
with moderate salt concentrations (1.5 mol/kg NaClO4

and 2.4 mol/kg NaCl) experienced a salt shock after
inoculation. Since the respective salt shock would be
too intense in 2.4 mol/kg NaClO4 and 3.9 mol/kg NaCl
treatments to enable growth, these samples were inoc-
ulated with long-term adapted cultures already grown
at the respective salt concentration (Figure 1A).

Sample preparation for proteomics

Protein extraction was conducted using the recently
developed filter-aided Sample Preparation by Easy
Extraction and Digestion (fa-SPEED) protocol
(Doellinger, Schneider, et al., 2020). Cells were centri-
fuged for 3 min at 5.000 � g after reaching late expo-
nential growth phase, which is approximately 1 day for
salt-free treatments, 3 days for 1.5 mol/kg NaClO4 and
2.4 mol/kg NaCl, 6 days for 2.4 mol/kg NaClO4, and
7 days for 3.9 mol/kg NaCl (Figure 1B). Cell pelleting in
3.9 mol/kg NaCl samples was incomplete (turbid super-
natant) but sufficient for further protein extraction. The
reason for incomplete pelleting is presumably an
electrostatic repulsion of cells because dilution of addi-
tional test samples with water did not result in larger
pellets but gently stirring with a grounded metal rod
before centrifugation did. The cell pellets were washed
three times with phosphate buffer saline (PBS) followed
by cell lysing with 50 μl trifluoroacetic acid (TFA) for
3 min at 70�C. Afterwards, samples were neutralized
with 500 μl 2 M tris(hydroxymethyl)aminomethane
(TRIS) solution. After adding 55 μl reduction/alkylation
buffer (100 mM tris(2-carboxyethyl)phosphine/400 mM
2-Chloracetamid), the samples were incubated at 95�C
for 5 min.

Protein concentrations were determined by turbidity
measurements at 360 nm using GENESYS™ 10S UV–
Vis spectrophotometer (Thermo Fisher Scientific). The
50 μg of proteins was diluted to 40 μl using a 10:1 (v/v)
mixture of 2 M TrisBase and TFA, mixed with 160 μl
acetone and incubated for 2 min at RT. For samples
containing less than 50 μg proteins per 40 μl sample,
the volumes of sample and acetone were increased at
constant sample/acetone ratio until 50 μg protein/
sample were reached. Afterwards, proteins were cap-
tured on Ultrafree®-MC (0.5 ml) centrifugal devices,
0.2 μm, PTFE (Merck) at 5000 � g for 2 min. The sam-
ples were washed successively with 200 μl 80% (v/v)

acetone, 200 μl 100% acetone and 200 μl n-pentane at
5000 � g for 2 min each.

Subsequently, 40 μl of digestion buffer (50 mM
ammonium bicarbonate) containing trypsin (1:25
[enzyme-to-protein ratio] Trypsin Gold, Mass Spectrom-
etry Grade [Promega]) was added to the filter contain-
ing the proteins followed by incubation at 37�C for 20 h.
The sample solution containing the digested proteins
was centrifuged at 5.000 � g for 2 min and the filter
was washed subsequently with 40 μl digestion buffer

F I GURE 1 Workflow of the inoculation procedure and
corresponding growth curves. (A) A salt-free stock culture of
D. hansenii was frequently re-inoculated into fresh growth medium.
An aliquot of this culture was used to inoculate growth media with
moderate salt concentrations (2.4 mol/kg NaCl and 1.5 mol/kg
NaClO4). To obtain cell growth at even higher salt concentrations, a
stepwise concentration increase was needed for each inoculation
step. The maximum salt concentrations used in this study were
3.9 mol/kg NaCl and 2.4 mol/kg NaClO4. (B) Growth curves of all
samples used in this study (n = 3). Cells were harvested for protein
extraction in the late exponential growth phase of the respective
treatments (label with ‘X’).
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containing 0.1% (v/v) TFA. The 10% (v/v) TFA solution
was added until the pH of the samples reached approx-
imately 2. Peptides were desalted using the Pierce™
Peptide Desalting Spin Columns (Thermo Scientific)
according to the manufacture’s protocol no. 2162704.
The desalted samples were dried in a vacuum concen-
trator. The dried peptides were dissolved in 0.1% (v/v)
formic acid and quantified by measuring the absor-
bance at 280 nm using an Implen NP80 spectropho-
tometer (Implen, Munich, Germany).

Liquid chromatography and mass
spectrometry

Peptides were analysed on an EASY-nanoLC 1200
(Thermo Fisher Scientific, Bremen, Germany) coupled
online to a Q Exactive™ HF mass spectrometer
(Thermo Fisher Scientific). One microgram of peptides
was separated on a PepSep column (15 cm length,
75 μm i.d., 1.9 μm C18 beads, PepSep, Denmark)
using a stepped 30 min gradient of 80% (v/v) acetoni-
trile (Solvent B) in 0.1% (v/v) formic acid (Solvent A) at
300 nl/min flow rate: 5%–11% (v/v) B in 2:49 min,
11%–29% (v/v) B in 18:04 min, 29%–33% (v/v) B in
3:03 min, 33%–39% (v/v) B in 2:04 min, 39%–95%
(v/v) B in 0:10 min, 95% (v/v) B for 2:50 min, 95%–0%
(v/v) B in 0:10 min and 0% (v/v) B for 0:50 min. Column
temperature was kept at 50�C using a butterfly heater
(Phoenix S&T, Chester, PA, USA). The Q Exactive™
HF was operated in a data-independent (DIA) manner
in the m/z range of 345–1650. Full scan spectra were
recorded with a resolution of 120,000 using an auto-
matic gain control (AGC) target value of 3 � 106 with a
maximum injection time of 100 ms. The full scans were
followed by 62 DIA scans of dynamic window widths
using an overlap of 0.5 Th (Doellinger, Blumenscheit,
et al., 2020). DIA spectra were recorded at a resolution
of 30,000 using an AGC target value of 3 � 106 with a
maximum injection time of 55 ms and a first fixed mass
of 200 Th. Normalized collision energy (NCE) was set
to 27% and default charge state was set to 3. Peptides
were ionized using electrospray with a stainless-steel
emitter, I.D. 30 μm (PepSep, Denmark) at a spray volt-
age of 2.1 kV and a heated capillary temperature
of 275�C.

Data analysis and statistical information

Protein sequences of Debaryomyces hansenii
(UP000000599, downloaded 16/10/20), were obtained
from UniProt (UniProt Consortium, 2019). A spectral
library was predicted for all possible peptides with strict
trypsin specificity (KR not P) in the m/z range of 350–
1150 with charge states of 2–4 and allowing up to one
missed cleavage site using Prosit (Gessulat

et al., 2019). Input files for library prediction were gen-
erated using EncyclopeDIA (Version 0.9.5) (Searle
et al., 2018). The data were analysed using the pre-
dicted library with fixed mass tolerances of 10 ppm for
MS1 and 20 ppm for MS2 spectra using the ‘robust LC
(high accuracy)’ quantification strategy. The false dis-
covery rate was set to 0.01 for precursor identifications
and proteins were grouped according to their respec-
tive genes. The resulting pg_matrix.tsv file was used
for further analysis in Perseus (Version 1.6.5.0)
(Tyanova et al., 2016).

The same programme was used to z-normalize pro-
tein abundances followed by ANOVA (FDR = 0.01)
and post hoc testing (FDR = 0.05). Subsequently, the
abundances of biological triplicates were median aver-
aged, and the relative log2-fold changes of the salt-
containing (saline) treatments compared to the salt-free
control were calculated. The results were filtered for
significant pairs of the salt-free samples and at least
one of the saline treatments and were then plotted into
a hierarchical clustered heatmap. Additionally, volcano
plots have been generated with the same software after
t-test of the z-normalized protein abundances. Protein
groups of interest were annotated and analysed with
the STRING database (https://string-db.org/)
(Szklarczyk et al., 2021) regarding enriched metabolic
pathways and the formation of functional protein
clusters.

RESULTS

In order to distinguish the perchlorate-specific stress
response of D. hansenii to the stress caused by NaCl,
proteomes of cell cultures containing either NaClO4,
NaCl or no additional salts in growth medium DSMZ
#90 were analysed. Two different salt concentration
regimes were investigated (Figure 1A). At moderate
salt concentrations (1.5 mol/kg NaClO4 and 2.4 mol/kg
NaCl), growth was obtained by inoculation with a salt-
free culture to provoke a salt shock response. How-
ever, the highest salt concentrations used in this study
(2.4 mol/kg NaClO4 and 3.9 mol/kg NaCl) only enabled
growth when cells were long-term adapted to stepwise
increasing salt concentrations (Figure 1A). All samples
were prepared as biological triplicates and cells were
harvested in the late exponential growth phase in order
to obtain sufficient biomass for protein extraction
(Figure 1B). It should be noted that while 2.4 mol/kg
NaClO4 is already close to the growth-limiting NaClO4

concentration (similar growth rate to 3.9 mol/kg NaCl),
2.4 mol/kg NaCl represents a readily feasible NaCl con-
centration with a growth rate similar to 1.5 mol/kg
NaClO4.

In total, 2713 proteins were detected representing a
bulk coding sequence coverage of approximately 43%.
Through analysis of variance (ANOVA, FDR ≤ 0.01) of
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the z-normalized protein abundances, the expression
of 1099 proteins was found to be significantly different
between the five different treatment types (one salt-free
control and four salt-exposed treatments). The salt con-
centration (moderate vs. high) had a stronger impact on
the intensity of protein expression than the type of
anion as can be seen from the comparison of protein
abundances of all replicates, which show similar protein
expressions for the same salt concentration regimes
(Figure 2A). This is confirmed by the principal compo-
nent analysis (PCA), which revealed a clear clustering
of the replicates of each treatment in dependence on
salt concentration and type of anions (Figure 2B). While

the physiological response to different salt concentra-
tions clustered along principal component 1 and
explains 55% of the observed differences, the salt spe-
cies had a lower impact on the variability (15%), as
treatments exposed to chloride or perchlorate spread
along the principal component 2.

Post hoc testing (FDR ≤ 0.05) revealed 1068 pro-
teins to be significantly regulated in at least one of the
salt-exposed samples compared to the salt-free treat-
ment. The log2-fold changes of these proteins in the
saline treatments compared to the salt-free control
were plotted in a heatmap with upregulated proteins
coloured red and downregulated protein shown in

F I GURE 2 Results of the proteomic analyses. (A) Abundances of upregulated (upper plot) and downregulated (lower plot) proteins
expressed in all investigated samples (three replicates for each treatment as indicated in the space between the two plots). (B) Principal
component analysis (PCA) demonstrating clear clustering of all biological triplicates in dependence of salt concentration and type of anion.
(C) Heat map including all proteins passing ANOVA (FDR ≤ 0.01) and post hoc test (FDR ≤ 0.05) generated by the Perseus software after
hierarchical clustering. Upregulated proteins (compared to the salt-free treatment) are coloured red and downregulated proteins are shown in
green. Two exemplarily perchlorate-specific clusters are highlighted in pink for upregulated and in cyan for downregulated proteins. (D) Volcano
plot visualizing perchlorate-specific regulated proteins with a high (FDR ≤ 0.012) and a lower significance (0.012 ≤ FDR ≤ 0.05). Significantly
regulated metabolic pathways were analysed with the STRING database.

PERCHLORATE-SPECIFIC MICROBIAL STRESS RESPONSES 5055



green (Figure 2C). The heatmap revealed two major
clusters, one containing the proteins predominantly
upregulated in all saline treatments compared to the
salt-free control, and a second cluster with downregu-
lated proteins. This indicates that the overall stress
response is relatively similar in all treatments. However,
both main clusters also contain proteins that are sub-
stantially more regulated in the 2.4 mol/kg NaClO4

sample than in all other treatments. The two largest
subclusters containing proteins of this category are
highlighted in pink (for upregulated proteins) and cyan
(for downregulated proteins) in Figure 2C. Proteins in
these subclusters represent the perchlorate-specific
stress response, which apparently manifests only after
long-term adaptation to high perchlorate concentra-
tions, as protein expression patterns in the 1.5 mol/kg
NaClO4 treatment are coinciding more with the NaCl
than with the 2.4 mol/kg NaClO4 treatment.

This enables the possibility to investigate the signifi-
cance of perchlorate-specific protein expression pat-
terns by a volcano plot that presents the differences of
the z-normalized protein abundances in the 2.4 mol/kg
NaClO4 treatment and the control samples (salt-free
and 3.9 mol/kg NaCl) versus the logarithmic p value
after a t-test (Figure 2D). The resulting perchlorate-
specific regulated proteins include the ones from the
heatmap subclusters (marked pink and cyan in
Figure 2C) and additional proteins from smaller sub-
clusters. Proteins were fed into the STRING database
(Szklarczyk et al., 2021) which predicts physical and
functional protein–protein interactions and identifies
significantly enriched (FDR ≤ 0.05) metabolic pathways
that assort into protein clusters (Figure 3A, and
Table S1). The physiological interpretation of the
perchlorate-specific enriched pathways is summarized
in Figure 3B and discussed in detail below.

In order to better evaluate the specificity of
perchlorate-induced stresses, they should be com-
pared to non-perchlorate-specific stress responses,
which are equally expressed in NaCl- and NaClO4-
stressed cultures (i.e. protein expression depends pre-
dominantly on the concentration of the respective salt,
but not on the type of salt). For this purpose, proteins
that show significant expression (FDR ≤ 0.05) in all
salt-exposed treatments compared to the salt-free con-
trol have been analysed with the STRING database.
The results of this approach are discussed below and
summarized in Figure 4 and Table S1.

DISCUSSION

Salt stress response shared by NaCl and
NaClO4

The stress responses shared equally by all saline treat-
ments (i.e. non-perchlorate-specific responses) encom-
passed several metabolic stress response pathways,

previously well described for D. hansenii and its close
relative, the intensively investigated yeast S. cerevisiae
(Hohmann, 2002; Prista et al., 2016). Only the most
prominent pathways detected in this study are
described below. Any form of environmental stress in
yeasts is usually communicated from the cell envelope
to the nucleus via signalling pathways such as
mitogen-activated protein kinase (MAPK) pathways
(Sharma et al., 2005) accompanied by a rearrangement
of cytoskeletal arrays (Samaj et al., 2004). Several pro-
teins involved in these signalling pathways were found
to be upregulated in all saline treatments (see Figure 4
and Table S1). For example, the upregulated serine/
threonine-protein kinase CLA4 (DEHA2B12430p) mod-
ulates the expression of biosynthesis of glycerol
(Joshua & Höfken, 2019), an important osmoprotectant
in D. hansenii (Prista et al., 2016), which can decrease
the intracellular water activity more efficiently than other
compatible solutes (de Lima Alves et al., 2015).

As a consequence of the received signal, the cell’s
energy metabolism is upregulated to induce certain
stress responses. In our experiments, several energy-
releasing pathways were upregulated equally in NaCl-
and NaClO4-stressed samples, such as the TCA cycle.
Furthermore, processes in the peroxisomes showed
upregulation including the energy-releasing beta-
oxidation of fatty acids indicated by upregulation of the
multifunctional beta-oxidation protein DEHA2A08646p,
the acyl-coenzyme A oxidase POX1 (DEHA2D17248p),
and the peroxisomal long-chain fatty acid import protein
DEHA2B08646p. In yeasts, also the glyoxylate cycle, a
variation of the TCA cycle (Duntze et al., 1969), takes
place in the peroxisomes as well as in the cytoplasm,
and correspondingly the two key enzymes, that is,
malate synthase (DEHA2E13530p) and isocitrate lyase
(ICL1 DEHA2D12936p), were upregulated.

The energy released from these processes is pre-
sumably needed to guarantee survival under enhanced
osmotic cell stress. For example, the amount of bio-
synthesized glycerol is increased as can be observed
by the upregulation of the glycerol lipid metabolism,
which includes proteins that participate in the formation
of glycerol, for example, several significantly enriched
glycerol-3-phosphate dehydrogenase complex pro-
teins. In addition to the accumulation of glycerol,
osmotic stress in D. hansenii can also be antagonized
through ion transmembrane transporters (Breuer &
Harms, 2006). Even though not being incorporated in a
significant enrichment, we found several ion transporter
proteins to be upregulated, such as the ATPase-
coupled cation transmembrane transporters
DEHA2G09108p and DEHA2C02552p (Table S1).
These two cation transporters showed the highest sig-
nificance upon all proteins upregulated in the saline
treatments (see volcano plot in Figure 4). The provision
of sufficient ATP required for the functioning of these
transporters constitutes to the enhanced cellular energy
demand.
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F I GURE 3 Perchlorate-specific stress responses. (A) STRING database calculated interactions of all downregulated (left) and upregulated
(right) proteins involved in the perchlorate-specific stress response according to the volcano plot (Figure 2D, all proteins with FDR ≤ 0.05).
Coloured proteins indicate significantly enriched metabolic pathways (FDR ≤ 0.05) and are annotated in Table S1. The most prominent
pathways are encircled. (B) A mother cell and a budding daughter cell of Debaryomyces hansenii displaying the most relevant metabolic
pathways with perchlorate-specific upregulations (red) and downregulations (green) as explained in the main text. Created with BioRender.com
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Osmotic stress usually induces oxidative stress to a
some extent, for example, by production of reactive
oxygen species (ROS) in the mitochondria
(Petrovic, 2006). Hence, it is expected that proteins
involved in oxidative stress responses are regulated
under salt stress conditions as well. Indeed, we found
antioxidant activity and glutathione metabolic pro-
cesses to be upregulated equally in NaCl- and NaClO4-
stressed samples, including the enzymes catalase
(DEHA2F10582g) and peroxidase (DEHA2A02310p)
enabling cell protection against oxidative stress.

The significantly enriched pathway forming the most
pronounced and condensed upregulated protein cluster
contains proteins involved in modification-dependent
protein catabolic processes and ubiquitin-mediated pro-
teolysis (Figure 4). Osmotic and induced oxidative
stresses can cause protein misfolding (Schnitzer
et al., 2022). Proteins, which cannot be refolded by
chaperones, are degraded by the proteosome of the
cell (Jackson & Hewitt, 2016). The so generated amino
acids can then be reused for cellular amino acid metab-
olism, which forms a protein subcluster interwoven with
the TCA cycle (Figure 4), indicating that the amino
acids liberated by proteolysis feed the energy metabo-
lism. Additionally, the recycling of amino acids via pro-
teolysis conserves energy as compared to amino acid
de novo biosynthesis.

Most of the stress responses described above
require protein transport, for example, for post-
translational modifications in the ER or the Golgi appa-
ratus, for the transfer of proteins to their place of activ-
ity, or for the excretion of cell wall proteins.
Consistently, many of the proteins upregulated similarly

in response to NaCl- and NaClO4-induced stress are
involved in protein transport mechanisms.

More than half of the proteins non-perchlorate-
specifically downregulated (i.e. similarly downregulated
in NaCl- and NaClO4-stressed samples) are structural
ribosomal constituents and have translation factor
activity or are involved in the cytosolic (pre)ribosome
biogenesis and related pathways such as the nucleo-
tide metabolism (Figure 4). Ribosome biogenesis is a
complex and very energy-demanding process (Albert
et al., 2019). Consequently, for saving energy, ribo-
some biogenesis is downregulated under various
stress conditions (Shore et al., 2021). A transient
reduction in ribosome biogenesis and translation
together with the accumulation of glycerol has also
been detected in Candida albicans upon salt stress
(Jacobsen et al., 2018). While ribosome biogenesis
was generally downregulated in our experiments, we
consistently observed upregulation of the ribosome-
recycling factor RRF1 (DEHA2F14630g) which allows
the ribosome to unbind from mRNA after the release of
the generated polypeptide and to be reused for new
translation processes instead of the energy-consuming
de novo biosynthesis of ribosomes (Kiel et al., 2007).

Upregulation of ribosome synthesis occurs only in
response to favourable growth conditions and enables
the cell to grow faster (Mayer & Grummt, 2006), while
downregulation of translation via depletion of the ribo-
somal population is known to prolong the lifespan of
cells (Steffen et al., 2008). Consistently, we found that
the downregulation of ribosome biosynthesis and con-
comitant translational processes coincided with slower
cell growth under salt stress conditions (Figure 1B).

F I GURE 4 Stress response shared by all salt-exposed samples. Volcano plot (at the centre) of proteins significantly up- (red) or
downregulated (green) in all salt-exposed samples compared to the salt-free control, and STRING database analyses of up- (right) and
downregulated (left) pathways. A selection of significantly (FDR ≤ 0.05) regulated pathways is colour-coded and the most prominent protein
clusters are encircled and labelled. All other (less prominent) enrichments as well as the annotation of the colour codes are provided in Table S1.
In the volcano plot, the two ATPase-coupled cation transmembrane transporters DEHA2G09108p and DEHA2C02552p are labelled, which have
the highest significance upon all upregulated proteins.

5058 HEINZ ET AL.



The only other significantly enriched downregulated
pathway forming a protein cluster that is physiologically
not directly connected to the ribosome assembly and
translational processes is the biosynthesis of ergosterol
(Figure 4), a component of fungal cell membranes
(Jord�a & Puig, 2020). In S. cerevisiae, the downregula-
tion of the ergosterol biosynthesis has already been
described earlier as response to hyperosmotic stress
(Montañés et al., 2011). It has been hypothesized that
it results from increased uptake of Na+ and/or a
decreased Na+ extrusion in a plasma membrane envi-
ronment with elevated levels of ergosterol (Montañés
et al., 2011). Furthermore, sterol biosynthesis is a
highly energy-consuming process (Hu et al., 2017), and
its downregulation might constitute, similar to the down-
regulation of the ribosome biogenesis, an energy-
saving approach.

Perchlorate-specific stress response

In a previous study, we demonstrated that D. hansenii
has the highest microbial perchlorate tolerance
reported to date (Heinz et al., 2020). However, subse-
quent experiments revealed that the tolerance towards
NaClO4 (2.5 mol/kg) was still more than one third lower
than towards NaCl (4.0 mol/kg), even though the water
activity was substantially higher in the NaClO4-
containing growth medium (0.926) than in the NaCl-rich
medium (0.854) (Heinz et al., 2021). Differences in salt
tolerances were interpreted by the authors to account
from the chaotropic stress exerted by the perchlorate
anion. This interpretation is strongly supported by our
proteomic investigations as explained below.

As a chaotropic ion, perchlorate is destabilizing bio-
macromolecules such as proteins (Salvi et al., 2005) or
glycan (i.e. polysaccharide) macromolecules
(Williams & Hallsworth, 2009). The fungal cell wall of
D. hansenii’s close relative, S. cerevisiae, consists of
approximately 85% glycans (incl. 1%–2% chitin) and
15% cell wall proteins (Lesage & Bussey, 2006).
Hence, it can be expected that the presence of chaotro-
pic perchlorate induces cell wall stress in addition to
the stresses caused by NaCl. Our results suggest that
yeast cells counteract this chaotropic stress to a certain
extent by increasing the bioproduction rate of cell wall
components.

For example, chitin metabolic processes (incl. the
synthesis of its amino sugar precursors) were found to
be significantly upregulated under perchlorate stress
conditions (Figure 3) and show a higher significance for
the perchlorate-specific stress response than other
metabolic pathways (Figure 2D). Although being a
minor component of fungal cells wall, chitin provides
important structural stability (Brown et al., 2020). Chitin
is produced by chitin synthases, such as the upregu-
lated DEHA2D03916p, to a lesser degree directly in the

lateral cell wall and to a higher extent in the primary
septum during cell budding (Lesage & Bussey, 2006),
presumably to protect the emerging nascent cell
(Brown et al., 2020). This highlights the importance of
enriched chitin synthesis already during budding under
perchlorate stress which otherwise might chaotropically
destabilize the nascent cell envelope. This also
explains the upregulation of septin proteins (Figure 3),
which provide structural support during cell division at
the septum (Douglas et al., 2005).

Another metabolic pathway upregulated under
perchlorate-specific stress conditions is the glycosyla-
tion of proteins. Studies have shown that N-
glycosylation is stabilizing proteins (Shental-Bechor &
Levy, 2008) also with respect to chaotropic denatur-
ation (Kern et al., 1992). The glycosylation-induced
increase in protein stability affects both intracellular pro-
teins as well as cell wall proteins. However, in contrast
to intracellular proteins which are usually N-
glycosylated in the ER with only 9–13 glycan residues,
cell wall proteins experience an extensive additional
glycosylation (including O-glycosylation) in the Golgi
apparatus resulting in a highly branched structure con-
taining as many as 200 glycan residues (Lesage &
Bussey, 2006). We found that one of the most pro-
nounced and densest perchlorate-specific upregulated
protein clusters contained proteins involved in the ER
to Golgi vesicle mediated transport (Figure 3A). This
suggests that a large part of the upregulated glycosyla-
tion processes is applied to cell wall proteins in the
Golgi. Furthermore, three of the upregulated proteins
involved in protein glycosylation are O-
mannosyltransferases involved in O-glycosylation,
which is essential for cell wall rigidity (Gentzsch &
Tanner, 1997) and also upregulated upon heat stress
(Hamiel et al., 2009).

The glycosylated cell wall proteins are transported
from the Golgi apparatus via vesicle-mediated transport
to the cell wall. A protein that needs to be highlighted in
this context is the upregulated Chs5-Arf1p-binding pro-
tein DEHA2G07832p whose homologue in
S. cerevisiae mediates export of chitin synthase 3 from
the Golgi apparatus and the transport to the plasma
membrane in the bud neck region (Trautwein
et al., 2006) confirming the importance of cell wall chitin
metabolic processes under perchlorate stress. Mis-
folded proteins or proteins chaotropically denatured
despite stabilizing glycosylation might be autophagi-
cally degraded explaining the upregulation of proteins
involved in autophagy (Figure 3).

Among the perchlorate-specific upregulated pro-
teins are several proteins that are involved in cell wall
biogenesis and remodulation. Apart from the chitin
synthases, these are, for example, the two glycosi-
dases DEHA2G21604p (glycoside hydrolase family
16, CRH1 homologue in S. cerevisiae) and
DEHA2G18766p (Glucan 1,3-beta-glucosidase BGL2)

PERCHLORATE-SPECIFIC MICROBIAL STRESS RESPONSES 5059



responsible for glucan cross-linking and chain elonga-
tion in the cell wall (Cabib et al., 2007; Taff et al., 2012).
Stronger cross-linking of cell wall components and con-
comitant disability to separate cells after cell division
might explain the formation of cell chains of Hydroge-
nothermus marinus (Beblo-Vranesevic et al., 2017) and
of large cell aggregates of Planococcus halocryophilus
(Heinz et al., 2019) when exposed to perchlorate
stress.

In comparison to the upregulated cell wall biosyn-
thesis and organization as well as the protein glycosyl-
ation, all downregulated perchlorate-specific processes
have a lower significance (Figure 2D, with the excep-
tion of the Uniprot keywords ‘magnesium’ and ‘potas-
sium’, which are very general assignments that do not
provide profound information on underlying stress
responses). The most pronounced downregulated pro-
tein subcluster contains proteins involved in mitochon-
drial translation and is physiologically linked to the
simultaneously downregulated amino acid biosynthe-
sis, the tRNA aminoacylation for protein translation,
and the translation initiation (Figure 3A). Apart from
energy-saving aspects similar to the above described
downregulation of cytosolic translation observed under
shared NaCl- and NaClO4 stress conditions, it has
been observed that changes in mitochondrial transla-
tion accuracy modulate cytoplasmic protein quality con-
trol (Suhm et al., 2018). For example, it has been found
that decreasing mitochondrial translation output coin-
cides with cytoplasmic protein folding (Andréasson
et al., 2019), which seems plausible under chaotropic
stress conditions that promote destabilization of protein
tertiary and quaternary structures.

Therefore, it might be surprising at first, that the
machinery for protein folding via heat shock proteins
(often acting as chaperons) is downregulated under
perchlorate stress conditions (Figure 3). However, pro-
tein folding is regulated by two major folding pathways.
The general pathway is mostly mediated by 70-kDa
heat shock proteins (Hsp70), while the second path-
way, called the calnexin cycle, is dedicated for N-
glycosylated proteins and requires, among others, the
action of the proteins calnexin (or its homologue calreti-
culin) and disulfide isomerase (Kozlov &
Gehring, 2020). Since we observed a high degree of
protein glycosylation in the perchlorate-specific stress
response, it seems likely that not the heat shock protein
mediated folding pathway is upregulated under perchlo-
rate stress, but rather the calnexin cycle. Indeed, we
detected perchlorate-specific upregulations of the disul-
fide isomerase DEHA2E23628p, and the calnexin
homologue DEHA2E03146p as part of the of the pro-
tein processing in the ER cluster (Figure 3A, Table S1).

The reduced mitochondrial translation might also be
explained by the prevention of proteotoxic stress within
the mitochondria as mitochondrial encoded proteins
cannot be stabilized by glycosylation which takes place
exclusively in the ER and Golgi apparatus

(intramitochondrial glycosylation is under debate; Guo
et al., 2021; however, this process has not yet been
described for yeast cells), and therefore might be dena-
tured more easily under perchlorate stress. Following
this argumentation, the mitochondrial translation might
be downregulated to the minimal required performance
to avoid accumulation of denatured proteins within the
mitochondria.

The role of perchlorate-induced oxidative
stress

Due to the high oxidation state (+7) of the chlorine
atom in the centre of the perchlorate anion, it is
expected that perchlorate exhibits a stronger oxidation
stress response than observed in the NaCl-containing
samples. Indeed, there is evidence that several genes
in microorganisms from sediments of hypersaline
ponds increase both the resistance to perchlorate and
to oxidative stress induced by hydrogen peroxide
(Díaz-Rullo et al., 2021). Furthermore, increased levels
of lipid peroxidation after growth of different species of
cyanobacteria in perchlorate-containing growth media
were interpreted as results of oxidative stress (Rzymski
et al., 2022). However, the authors did not investigate
whether the oxidative stress is perchlorate-specific or
would by observed to a similar extent by other salts
(e.g. NaCl) as well.

From all proteins potentially involved in oxidative
stress response (e.g. superoxide dismutase, catalase,
glutathione reductase, glutathione peroxidase, glutare-
doxin, glyoxalase, or thioredoxin), in our experiments
only the glutathione reductase GLR1 (DEHA2E13442p)
was observed to be perchlorate-specifically upregu-
lated with a low significance (FDR > 0.012; Table S1).
GLR1 is involved in a multiplicity of cellular functions
including besides the protection of cells from oxidative
damage also amino acid transport as well as DNA and
protein synthesis (Collinson & Dawes, 1995). This indi-
cates that in our experiments the oxidative stress
response is not substantially upregulated under per-
chlorate stress compared to NaCl-induced stress, even
though earlier studies indicated that chaotropic-induced
stress induces oxidative damage more strongly than
does osmotic stress (Cray et al., 2015; Hallsworth
et al., 2003).

The above-mentioned reduction of the mitochon-
drial translation activity might also be interpreted as an
attempt of the cell to minimize ROS production during
aerobic respiration. Indeed, previous studies indicated
that perchlorate induces oxidative stress to mitochon-
dria by enhanced ROS production (Zhao et al., 2011;
Zhao et al., 2014). Yet, the missing comparisons with
NaCl or other solutes made it impossible for the authors
of these studies to proof that the increased ROS levels
resulted from perchlorate-specific reactions and would
not by provoked by other salts as well. If the reduced
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mitochondrial translation activity observed in our exper-
iments would be a result of an enhanced oxidative
stress, a concomitant downregulation of respiratory
chain proteins would be expected to occur. However,
we did not observe a conclusive downregulation of
these kinds of proteins. For example, while the cyto-
chrome c oxidase (COX) assembly mitochondrial pro-
tein DEHA2C13244p was downregulated, the COX
subunit 9 was upregulated under perchlorate-specific
stress conditions.

In summary, the proteomic data suggest that antiox-
idant activity is important for survival under salt stress
conditions (to a similar extent in NaCl- and NaClO4-
stressed cells), but the oxidative stress induced specifi-
cally by perchlorate seems to play only a minor role
compared to the chaotropic stress. This is in accor-
dance with previous experiments demonstrating that
the more oxidatively reactive (but less chaotropic) chlo-
rate anion (ClO3

�) can be better tolerated by
D. hansenii than perchlorate, which indicates the oxida-
tive character alone cannot account significantly to the
additional stress exhibited by NaClO4 compared to
NaCl (Heinz et al., 2021). A possible explanation for
this phenomenon is that perchlorate is astonishingly
stable in solution under ambient temperatures
(Urbansky, 1998) due to the reduction rate-limiting oxy-
gen atom transfer (Ren & Liu, 2021). These additional
stressors (chaotropicity, and potentially to a minor
degree also oxidative stress) presumably require differ-
ent or more distinct stress signalling, which likely
explains the upregulation of proteins involved in signal-
ling and the actin cytoskeleton organization pathways
(Figure 3) in addition to the signal transduction proteins
expressed similarly in NaCl- and NaClO4-stressed cell
cultures (Figure 4).

The most relevant of the above-described
perchlorate-induced chaotropic stress responses are
graphically summarized in Figure 3B. In particular, cell
wall genesis is a very energy-consuming process (Hu
et al., 2021), but also intensive protein glycosylation
required for protein stability under perchlorate stress
costs additional energy compared to non-chaotropic
conditions. While in the non-chaotropic NaCl-stressed
samples, most of the energy provided by the stress-
adapted cell metabolism can be used to counteract
osmotic and induced oxidative stresses, in perchlorate-
containing samples a substantial part of the cellular
energy demand is required for counteracting chaotropic
stress resulting in a lower NaClO4 tolerance of
D. hansenii compared to NaCl.

Consequences for microbial habitability of
perchlorate-rich environments on Mars

This study provides new insights for putative life on
Mars if it exists in perchlorate-rich regions, which have

been identified during the exploration of Mars (Clark &
Kounaves, 2016; Hecht et al., 2009; Lauro et al., 2021).
Protein-stabilizing glycosylation and cell wall reorgani-
zation are major stress responses emerging only after
long-term adaptions to high perchlorate concentrations,
while being not significantly expressed after
perchlorate-shock at moderate salt concentrations.
Hence, it is likely that biomacromolecules and cell
envelops of putative Martian microorganisms exposed
to perchlorate-rich brines would evolve stable confirma-
tions and, hence, prefer covalent bounds and cross-
linking over looser electrostatic interactions, hydrogen
bonding or hydrophobic effects. Additionally, cell com-
ponents susceptible to chaotropic stress might be stabi-
lized by the attachment of polymers similar to
stabilization effects via protein glycosylation as
observed in our experiments.

Furthermore, previous microscopic observations
(Beblo-Vranesevic et al., 2017; Heinz et al., 2019) indi-
cated that larger cell aggregates are more likely to
occur (possibly due to cell wall rearrangements and
cross-linking) under perchlorate stress than single cells.
Consequently, cell clusters or biofilms might be consid-
ered as potential macroscopic visible biosignatures on
Mars; however, metabolomic changes under perchlo-
rate stress should be investigated in upcoming experi-
ments as well in order to identify potential perchlorate-
specific biomarkers on the molecular level.

The presented results are also important for in situ
resource utilization (ISRU) technologies to support a
human outpost on Mars (Billi et al., 2021). Oxygen and
food production by phototrophic microorganisms and
the recycling of waste material in perchlorate-rich Mar-
tian soil might be conducted by ‘chaotolerant’ (Zajc
et al., 2014) organisms, because they would likely pos-
sess a metabolic toolset for stabilization of biomacro-
molecules similar to D. hansenii. Alternatively, genes
responsible for increased biomacromolecular stability
might be used in synthetic biology to create perchlorate
resistance strains that can thrive in perchlorate-rich
Martian soil without the necessity for perchlorate reme-
diation (Díaz-Rullo et al., 2021).

The presence of perchlorates might be even benefi-
cial for enzymatic activities at the low temperatures pre-
vailing on Mars due to a reduced enthalpy of activation
owing to chaotropic effects of perchlorate salts (Gault
et al., 2021). Furthermore, the chaotropicity of perchlo-
rate might also extend the temperature window for
activity of microorganisms to subzero temperatures, as
chaotropes enable flexibility of cellular macromole-
cules, which is crucial for growth under frigid conditions
(Chin et al., 2010).

Our data indicate that perchlorate-induced oxidative
stress is not substantially higher than for other salts like
NaCl. However, this might be only true for the Martian
subsurface, because close to the surface, cosmic radi-
ation penetrates the soil, usually within 0.7–0.9 m soil
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depth depending on the type of regolith (Röstel
et al., 2020). UV radiation, on the other hand, is effec-
tively shielded by a few microns of dust (Mancinelli &
Klovstad, 2000). The cosmic radiation can decompose
perchlorates present in the Martian regolith to far more
reactive oxychlorine species such as hypochlorite
which exhibit a strong oxidative stress to cells (Quinn
et al., 2013). While these components might not be
able to infiltrate dormant lifeforms in the absence of liq-
uid water (Hallsworth, 2021), they become an active
oxidizing stressor for cells as soon as liquid water is
provided, for example, by deliquescence. Therefore,
we conclude that microbial cells close to the Martian
surface, which are exposed to perchlorate salts and
cosmic radiation require cellular adaptation against
cosmic radiation, low water activities, chaotropicity and
oxidative stress, while at soil depths deep enough to
shield cosmic radiation perchlorate-exposed organisms
have to struggle neither with cosmic radiation nor with
oxidative stress induced by perchlorate decomposition
products (because perchlorate itself is not exposing a
significant oxidative stress to cells according to our
results).

CONCLUSIONS

The results of this study revealed perchlorate-specific
microbial stress responses never described in this con-
text before. Even though NaCl- and NaClO4-induced
stress responses in D. hansenii share several meta-
bolic features, we identified enhanced protein glycosyl-
ation, folding via calnexin cycle and cell wall
biosynthesis or remodulation as a counteractive mea-
sure to perchlorate-induced chaotropic stress, which
generally destabilizes biomacromolecules. At the same
time, mitochondrial translation processes are downre-
gulated under perchlorate-specific stress. When apply-
ing these physiological adaptations, cells can increase
their perchlorate tolerance substantially compared to
perchlorate shock exposure. These findings make it
likely that putative microorganisms on Mars could draw
on similar adaptation mechanisms enabling survival in
subsurface perchlorate-rich brines.
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