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ABSTRACT
Monte Carlo simulations in the isothermal-isobaric ensemble are used to investigate the formation
of an ordered, biaxial nematic phase in a binary mixture of thermotropic liquid crystals. The orien-
tational dependence of the interaction between molecules of each pure component is the same as
in the well-known Maier-Saupe model; each pure component of the mixture is therefore capable of
forming a uniaxial nematic phase. For the interaction between molecules of different components,
weuse the sameMaier-Saupemodel but change the signof the coupling constant. As a consequence
a T-shaped arrangement of these molecules is energetically favoured. The formation of the biaxial
phase occurs in two steps. At higher temperatures T, one of the components forms auniaxial nematic
phase whereas the other is in a quasi two-dimensional restricted isotropic liquid state. We develop
a simple theoretical model to understand the high degree of (ostensible) nematic order in the lat-
ter. At lower T, the second component becomes nematic and then the entire mixture of the two
compounds has biaxial symmetry. The biaxial nematic phase does not demix into domains rich in
molecules of one or the other species.
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1. Introduction

Liquid crystals are a particularly intriguing realisation of
what is commonly referred to as ‘complex fluids’ [1,2].
The fascinating aspect and also the complexity of liquid
crystals is reflected by the fact that themesogens are capa-
ble of forming a host of differently ordered phases that

CONTACT Robert A. Skutnik robert.skutnik@campus.tu-berlin.de Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische
Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany

have no counterpart in ordinary liquids [3]. The simplest
one of these is the nematic phase, first reported by
Reinitzer [4] and shortly after this by Lehmann [5] about
130 years ago. In the nematic phase, the molecules of the
liquid crystal align with a preferred direction described
by the so-called nematic director. The nematic director
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and the degree of nematic order (expressed in terms of
a suitably defined order parameter) are experimentally
accessible quantities [6].

Because of the alignment of the mesogens, nematic
phases usually exhibit uniaxial symmetry. Biaxial nema-
tic phases were first hypothesised by Freiser [7] in 1970.
In a biaxial nematic phase, a second symmetry axis exists
besides the nematic director. The existence of biaxial
nematic phases remained controversial for many years at
least as far as thermotropic liquid crystals are concerned.
For example, in a review paper from 2001, Luckhurst
[8] states that: ‘At present, then, thermotropic biaxial
nematics would appear to be fiction but there is every
expectation that they will become fact in the near future’.
Three years later, Luckhurst [9] reached the conclusion
that unambiguous evidence for the existence of a biax-
ial nematic phase was provided by NMR experiments
carried out byMadsen et al. [10] (see also below).Accord-
ing to Luckhurst, NMR is best suited for the detection
of biaxial nematic phases, whereas optical techniques are
often misleading [9].

In fact, the experimental confirmation of biaxial
nematics has remained quite murky and to some extent
controversial. For example, to realise thermotropic liq-
uid crystals of biaxial symmetry experimentally, one can
‘glue’ together rod- and disc-like molecules as demon-
strated by Hunt et al. [11]. At the end of their paper,
these authors claim that ‘[ . . . ] the combination of rod
and disc units in a single molecular entity has created a
highly biaxial molecule. This approach could well pro-
vide an example of a low-molecular mass, thermotropic
biaxial nematic’. Referring to the paper by Hunt et al.
[11], Madsen et al. [10] emphasise that ‘Even extrava-
gant molecular architectures [ . . . ] have failed to exibit
the [biaxial nematic] phase ’. Madsen et al. [10] used 2H
NMR to provide evidence for a biaxial phase in a liquid
crystal in which the mesogens have a boomerang-shaped
oxadiazole unit. In other cases smectic phases of biaxial
symmetry have also been observed [12].

The experimental situation is much clearer for
lyotropic liquid crystals. For example, as early as 1980 Yu
and Saupe [13] established a biaxial nematic phase in the
ternary mixture of potassium laureate-1-decanol-water.
Another ternary mixture of potassium laurate, decylam-
monium chloride and water also allows for the formation
of stable biaxial nematic phases [14]; again, the liquid
crystal is lyotropic in this latter case.

As far as thermotropic biaxial nematics are concerned,
two major roads have been explored in theoretical and
computational work. As in the experimental studies,
pure liquid crystals composed of biaxially symmetric
mesogens have been considered. For example, Berardi
and Zannoni [15] examined a biaxial variant of the

well-known Gay-Berne model for which they observe
a stable biaxial nematic phase. Even in the absence of
intermolecular attractions, an ordered phase with biax-
ial symmetry can be exhibited by the system. This was
demonstrated by Camp and Allen [16] for a liquid crys-
tal of hard biaxial ellipsoids. Biaxial nematic phases have
also been observed for pure systems and binary mixtures
of board-like hard particles by Vanakaras et al. [17]. In
their Monte Carlo (MC) simulations, the mesogens are,
however, fully aligned with each other which may be a
bit too restrictive.

The second route involves binary mixtures in which
both compounds consist of mesogens of uniaxial sym-
metry. The most frequently examined model in this case
is a mixture of rod- and disc-like particles. For this type
of mixture, Alben [18] was the first to conjecture that
a stable biaxial nematic phase could exist. He based his
investigation on a mean-field lattice model. A bit later,
Stroobants and Lekkerkerker [19] employed the second-
virial theory of Onsager and found a stable biaxial phase
in a binary mixture of very flat discs and thin rod-
like mesogens. However, the model considered by these
authors is that of a lyotropic rather than a thermotropic
liquid crystal. Again using Onsager’s theory, Wensink
et al. [20] observed a first-order phase transition to a biax-
ial nematic. However, as in the earlier study by Stroobants
and Lekkerkerker [19], the liquid crystal considered by
Wensink et al. [20] is also athermal and lyotropic in
nature. Sharma et al. [21] used theMaier-Saupe theory to
investigate whether a biaxial nematic is thermodynami-
cally stable. They could demonstrate that this is indeed
the case if the unlike interaction between the different
species deviates slightly from the usual geometric-mean
(Berthelot) mixing rule [22] so as to suppress the ten-
dency of the mixture to demix into two fluid phases.

However, there are also studies of mixtures of rod-
and disc-like mesogens that deny the existence of a ther-
modynamically stable biaxial nematic phase [23,24]. In
both of these studies, it is surmised that the reason
for the absence of a stable biaxial nematic phase could
be the improperly chosen isotropic interaction poten-
tial between the different components that stabilises a
mixed state insufficiently. This is concluded because a
competition between the demixing of themixture and the
formation of a biaxial nematic phase has been observed.
Such a competition has also been found experimentally
in binary mixtures of rod- and disc-shaped mesogens
[25].

Moreover, it has been noted that enhanced attraction
between rod- and disc-shaped mesogens can be used
to stablise the biaxial nematic phase [26]. Based upon
this observation, we employ a simple model mixture for
which the interactions have been tuned to deliberately
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suppress any tendency to demix. The advantage of this
philosophy is that the molecular nature of the formation
of a biaxial nematic phase in a thermotropic liquid crystal
can then be studied without the superimposed demix-
ing that has blurred the formation of the biaxial phase in
some of the earlier studies.

In our model, the orientational dependence of the
anisotropic interactions is taken to be that of the well-
known Maier-Saupe model [27] but with a negative
coupling constant for the anisotropic unlike interac-
tions between mesogens of different species. As a con-
sequence, these mesogens prefer a T-shaped arrange-
ment rather than being aligned in parallel. Thus, our
model is very much akin to that proposed by Cuetos et
al. [28]. Under favourable thermodynamic conditions,
we observe a sequence of isotropic to uniaxial nematic
and uniaxial to biaxial nematic phases. This sequence is
qualitatively in line with earlier findings by Rabin et al.
[29].

The remainder of the manuscript is organised as fol-
lows. In Section 2, we introduce our model system.
Section 3 is devoted to the properties upon which our
analysis rests. Results of our study are presented in
Section 4, and summarised and discussed in the conclud-
ing Section 5. In the Appendix, we provide the derivation
of rotation tensors required for the analysis of two-
dimensional orientation distribution functions (odf).

2. Model mixture

To mimic a binary thermotropic liquid-crystal mixture,
we employ a minimalistic model that allows for the
formation of a uniaxially symmetric nematic phase in
both pure components under suitable thermodynamic
conditions. However, in the binary mixture, a T-shaped
arrangement of a pair of unlike mesogens is taken to be
energeticallymost favourable.More specifically, ourmix-
ture comprisesN = Na + NbmesogenswhereNa = xaN
andNb = xbN = (1 − xa)N denote the number ofmeso-
gens of components a and b, respectively, and xα (α = a,
b) is the mole fraction of component α. In our work,
we consider only equimolar mixtures characterised by
xa = xb = 0.50.

Consider now a pair of mesogens in which mesogen 1
pertains to component α and mesogen 2 to component
β (α,β = a, b). In general, the interaction between this
mesogenic pair can be decomposed according to

uαβ (r12,ω1,ω2) = uiso (r12) + u(αβ)
aniso (r12,ω1,ω2) ,

α,β = a, b, (1)

where r12 = |r12| = |r1 − r2| is the distance between the
centres of mass of mesogens 1 and 2 located at r1 and r2,

respectively; ωi (i=1,2) is a set of Euler angles allowing
us to specify the orientations of a mesogen in a space-
fixed frame of reference. Assuming that all of the meso-
gens have uniaxial symmetry, ωi = (φi,ϑi) where φi and
ϑi are azimuthal and polar angles, respectively.

The interaction between the isotropic cores of the
mesogens is described by the well-known Lennard-Jones
potential

uiso (r12) = 4ε

[(
σ

r12

)12
−
(

σ

r12

)6
]

= urep (r12) + uatt (r12) , (2)

where r12 = σ is defined through the relation uiso(σ ) =
0, and ε corresponds to the depth of the attractive well
and thus determines the strength of the interaction; urep
and uatt are repulsive and attractive contributions to uiso,
respectively. Throughout our work, we take ε and σ to be
the same regardless of the interacting pair of mesogens in
the mixture the parameters pertain to.

For the anisotropic interactions, we adopt [30]

u(αβ)
aniso (r12,ω1,ω2)

= (4π)3/2√
5

εαβuatt (r12)
220 (ω1,ω2,ω) , (3)

where εαβ is a dimensionless coupling constant and


l1l2l (ω1,ω2,ω) =
∑

m1m2m
C (l1l2l;m1m2m)

× Yl1m1 (ω1)Yl2m2 (ω2)Y∗
lm (ω)

(4)

is a rotational invariant [31],C is a Clebsch-Gordan coef-
ficient, Yl′m′ is a spherical harmonic, and the asterisk
denotes the complex conjugate. Integers l′ (i.e., l1, l2, or l)
are positive semidefinite and corresponding pairs l′ and
m′ are related such thatm′ ∈ [−l′, l′]. Thus, for each l′,m′
assumes 2l′ + 1 values. The last argument of
l1l2l (i.e.,ω)
specifies the orientation of r̂12 = r12/r12 in a space-fixed
reference frame. Here and below we employ the caret
to indicate a unit vector. However, as the last index of

220 is zero and because of the relation between l andm,
Y∗
lm = Y00 = 1/

√
4π in Equation (4). Therefore, u(αβ)

aniso
only depends on r12. In other words, for fixed orienta-
tions ω1 and ω2 the interaction potential u(αβ)

aniso is, in fact,
isotropic.

Because for the present model l=m=0, it follows
from the selection rule of Clebsch-Gordan coefficients
[see Equation (A.130) of Ref. [31]] thatm1 = −m2. One
can therefore invoke the addition theorem for spheri-
cal harmonics [see Equation (A.33) of Ref. [31]] which
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allows us to rewrite Equation (3) as [30]

u(αβ)
aniso (r12, γ12) = εαβuatt (r12) P2 (cos γ12) , (5)

where P2(x) = 1
2 (3x

2 − 1) is the second Legendre poly-
nomial; cos γ12 = û(ω1) · û(ω2) is the cosine of the angle
γ12 between the orientations

û (ωi) =
⎛⎝uxiuyi
uzi

⎞⎠ =
⎛⎝sinϑi cosφi
sinϑi sinφi

cosϑi

⎞⎠ , i = 1, 2 (6)

of the mesogenic pair in spherical coordinates (i.e., on
the unit sphere). Hence, the orientation dependence of
the interaction potential between two mesogens is that
adopted earlier by Maier and Saupe to describe the for-
mation of uniaxial nematic phases in single-component
liquid-crystalline materials [27].

From Equations (1), (2), and (5), it is apparent that for
any two mesogens i and j the total interaction potential
can be recast as

uαβ (r12, γ12)

= urep (r12) + uatt (r12)
[
1 + εαβP2 (cos γ12)

]
. (7)

The energetics of the pair interactions for our binarymix-
ture are illustrated in Figure 1. From the plots, it is evident
that a parallel alignment for a pair of like particles is ener-
getically favoured [see Figure 1(a)] whereas the negative
sign of the coupling constant εαβ causes a preferential T-
shape perpendicular arrangement if the mesogenic pair
consists of unlike particles [see Figure 1(b)]. Throughout
our current work, we consider εaa = 0.250, εbb = 0.375,
and εab = −0.750 so that the mixture does not demix
(see Section 4.2 below).

Finally, we note that the orientation dependence of the
anisotropic interactions in our model is very much akin
to that used for the interactions in a binary mixture of
rod- and disc-like particles byCuetos et al. [28].However,
these authors take uiso to be a discontinuous square-well
potential.

3. Properties

The focus of our work is primarily on the structure of
binary mixtures of two liquid-crystalline materials. In
order to quantify the degree of nematic order in the
system as a whole and the directionwith which themeso-
gens align in the nematic phase we follow Eppenga and
Frenkel [32] and introduce the instantaneous alignment

tensor [33]

Q = 1
2N

N∑
i=1

[
3û (ωi) ⊗ û (ωi) − 1

]
, (8)

where ⊗ denotes the tensor product and 1 is the unit
tensor. Thus, Q can be represented by a real, symmetric,
traceless 3 × 3 matrix. From Equation (8), it is immedi-
ately clear that

Q = xaQa + xbQb, (9)

whereQα (α = a, b) denotes the alignment tensor of one
of the two components in the mixture. The definition of
Qα is very similar to that ofQ in Equation (8) except that
N in the prefactor of the summation is replaced by Nα

and the summation extends only over the Nα mesogens
of component α.

The tensorQ satisfies the eigenvalue equation

Qn̂±,0 = λ±,0n̂±,0, (10)

where λ±,0 is shorthand notation for the three eigen-
values λ− ≤ λ0 ≤ λ+ and n̂±,0 are the associated eigen-
vectors in the same shorthand notation. The alignment
tensor can be diagonalised [34] on the basis of its three
eigenvectors such that [3]

diagQ =
⎛⎝λ− 0 0

0 λ0 0
0 0 λ+

⎞⎠ . (11)

Because Q is traceless, diagQ is traceless as well.
We can therefore link the molecular representation in
Equation (11) to the macroscopic level [3] (see also
Ref. [35]) through the relations

〈λ−〉 = −S + η

2
(12)

〈λ0〉 = −S − η

2
(13)

〈λ+〉 = S, (14)

where S is the global nematic-order parameter and η is
the biaxiality order parameter of the mixture as a whole;
〈. . .〉 denotes an average in the appropiate ensemble (in
this work we employ the isothermal-isobaric ensemble).
Because of the relation given in Equation (14), we take as
the instantaneous nematic director the eigenvector n̂ ≡
n̂+ associated with the instantaneous eigenvalue λ+.

The partial tensors Qα for the two components of
the mixture share their properties with Q. In particular,
they satisfy eigenvalue equations such as the one given
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Figure 1. The intermolecular potential uαβ as a function of the distance r12 between the centres of mass of a pair of mesogens for
fixed orientations indicated by the arrows for (a) parallel and (b) perpendicular relative orientations. The double-headed arrows indicate
head-tail symmetry of the mesogens, that is the fact that uαβ is invariant with respect to the transformation r̂(ωi) → r̂′(ωi) = −r̂(ωi);
mesogens of component a are representend as cylinders, whereas mesogens of component b are shown as discs; ( ) and ( ) refer
to uaa and ubb, respectively, whereas ( ) represents uab. The curves in both parts of the figure have been generated for εaa = 0.250,
εbb = 0.375, εab = −0.750 [see Equation (7)].

in Equation (10). However, the sets of eigenvalues λ
(α)
±,0

and eigenvectors n̂(α)
±,0 are generally different depending

on whether α = a or α = b; they also differ from the sets
λ±,0 and n̂±,0. Nevertheless, it is useful to introduce the
nematic-order parameter of component α through the
relationship

Sα =
〈
λ

(α)
+
〉
= 〈λα〉 , (15)

by analogy with Equation (14). Also by analogy, we
take n̂α ≡ n̂(α)

+ as the instantaneous nematic director for
component α.

Another quantity of interest is the odf which is com-
puted as a two-dimensional histogram of the polar and
azimuthal angles ϑ and φ between the orientation of a
mesogen of component α and n̂α . This coordinate system
is spanned by the vectors êTx = (1, 0, 0), êTy = (0, 1, 0),
and êTz = (0, 0, 1) as its standard basis; the superscript T
denotes the transpose. In the standard basis and using
spherical coordinates [see Equation (6)] the mesogenic
orientations are then distributed on the surface of a unit
sphere. The poles of this sphere are at points (0, 0,±1)
and its equator is the circumference in the x–y plane at
z=0.

In order to compute the odf as a two-dimensional his-
togram of bins, the widths δθ and δϕ of these bins have to
be reasonably small to get a good resolution for the odf.
Clearly, for a given fixed bin size δθ × δϕ , the number of
bins is largest along the equator of the unit sphere and
smallest near the poles. Therefore, to get a good resolu-
tion of the odf, it is advantageous to make sure that the
preferred orientation of the mesogens described by n̂α is
always lying in the equatorial plane of the unit sphere.
Clearly, this will normally not be the case.

Besides the resolution of the odf, there is an addi-
tional finite-size effect that necessitates a rotation of the

eigensystem n̂±,0 of the alignment tensor between subse-
quent configurations of the mesogens. In any system of
finite size, n̂±,0 is not stationary but may change over the
course of a simulation. On account of this motion (which
is more pronounced for smaller sizes), the odf would be
more or less smeared out and would be more difficult to
analyse. By consistently rotating the eigensystem of Q as
described below one avoids blurring the odf and its finer
structures can be visualised more clearly.

For each configuration of the mesogens, we know the
orthonormal set of eigenvectors {n̂(α)

±,0}. Thus, one can
rotate each instantaneous n̂(α)

+ such that it always coin-
cides with, say, êx following the procedure outlined in the
Appendix. It is then apparent that after this rotation of
n̂(α)

+ has been carried out the remaining two eigenvectors
n̂(α)

− and n̂(α)
0 do not necessarily coincide with the other

two vectors of the standard basis.
This alignment can, however, be accomplished by a

subsequent rotation of n̂(α)
0 such that it now coincides

with êy. Finally, by carrying out the same two rota-
tions with the individualmesogenic orientations, one can
also optimise the resolution with which the odf can be
obtained based upon the now properly rotated orienta-
tions of the mesogens.

Specifically, the following operations have to be car-
ried out. To accomplish the first rotation

â = n̂(α)
+ (16a)

b̂ = êx (16b)

in Equation (A2). This gives us the axis of rotation k̂
′
α and

the associated angle of rotation φ′ from Equation (A5).
Thus, from Equation (A10) one can compute Rα for the
first rotation. To effect the second rotation one replaces
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Figure 2. Sketch of the two consecutive rotations turning the
orthonormal basis of instantaneous eigenvectors n̂(α)

+ , n̂(α)
0 , and

n̂(α)
− into the standard basis formed by êx, êy, and êz; (a) rotation

of n̂(α)
+ by the angle φ′ around the axis k̂

′
, (b) rotation of n̂(α)

0 by

the angle φ′′ around the axis k̂
′′
now coinciding with êx. After the

second rotation n̂(α)
+ , n̂(α)

0 , and n̂(α)
− coincide with the vectors of

the standard basis.

Equations (A6) by

â = n̂(α)
0 (17a)

b̂ = êy (17b)

such that k̂
′′
α , φ′′, and Rα are obtained from Equa-

tions (A2), (A5), and (A10) as before. Noticing also that
both rotations can be carried out simultaneously by the
joint rotation tensor

Rα = Rα(k̂
′′
α ,φ

′′)Rα(k̂
′
α ,φ

′) (18)

one obtains the properly rotated orientations of themeso-
gens from

û (ω̃i) = Rαû (ωi) , i = 1, . . . ,Nα . (19)

The two consecutive rotations are illustrated by the
sketch in Figure 2.

With these rotated mesogenic orientations, one can
now compute the odf defined as

Pα (ω)

=

Nα∑
i=1

〈[
δ (ω − ω̃i) + δ

(
ω − ω̃′

i
)]〉

∫ 2π

0

∫ π

0
sin θ dθ dϕ

Nα∑
i=1

〈[
δ (ω − ω̃i) + δ

(
ω − ω̃′

i
)]〉 ,
(20)

where δ denotes the Dirac δ-function. The ensemble
averages in Equation (20) are defined through the expres-
sion

〈δ (ω − ω̃i)〉

= 1
ZN

∫
drN

∫
dω̃N δ (ω − ω̃i) exp

[−βU
(
rN , ω̃N)]

= 1
ZN

∫
dω̃1 . . . dω̃i−1dω̃i+1 . . . dω̃N

× exp
[−βU

(
rN , ω̃1, . . . ω̃i−1,ω, ω̃i+1, . . . , ω̃N

)]
.
(21)

In Equation (21),

ZN =
∫

drN
∫

dωN exp
[−βU

(
rN , ω̃N)] (22)

denotes the configuration integral, rN = {r1, r2, . . . , rN}
and ω̃N = {ω̃1, ω̃2, . . . , ω̃N} represent the sets of centre-
of-mass positions and orientations of the N meso-
gens, respectively, β = 1/kBT (kB is Boltzmann’s con-
stant and T is temperature), and U is the total con-
figurational potential energy. Because of the definition
given in Equation (20), Pα is properly normalised,
i.e.,

∫
dω Pa(ω) = ∫ 2π0

∫ π

0 sin θ dθ dϕPα(θ ,ϕ) = 1. In
Equation (20), δ(ω − ω̃i) represents δ(θ − θ̃i)δ(ϕ −
ϕ̃i)/ sin θ and ω̃′

i = −ω̃i = (π − θ̃i,π + ϕ̃i) to account
for the head-tail symmetry (i.e., the equivalence of
molecular orientations described by û and −û). More-
over, it is important to notice that if component α is
perfectly ordered, Pα = δ(ϕ)δ(θ − π/2) on account of
the rotation of the orientations of the mesogens which
clearly satisfies the normalisation condition given above.

4. Results

4.1. Numerical details

In our current work, we employ MC simulations in the
isothermal-isobaric ensemble. The thermodynamic state
of the system is therefore characterised by N, the com-
position xa = 1 − xb of the binary mixture, the pres-
sure P, and the temperature T. Under these macroscopic
constraints, the distribution of microstates in configura-
tion space at equilibrium is proportional to exp[−β(U +
PV − Nβ−1 lnV)] where U is the total configurational
potential energy and V is the (instantaneous) volume of
the system.

We generate a Markov chain of these configurations
according to the following protocol which is a properly
modified version ofMetropolis’ original algorithm for the
canonical ensemble [36]. First, it is decided with equal
probability whether to displace or rotate a mesogen irre-
spective of themixture component thismesogen pertains
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to. If a displacement is attempted, a small cube of side
length δ is centred on the centre of mass of a mesogen
which is then displaced randomly within the cube. The
displacement is accepted (or rejected) according to the
standard Metropolis criterion [36].

If instead a mesogen is to be rotated, one of the three
Cartesian axes is chosen at random as the axis of rotation.
Once the mesogen is rotated by a small angle incre-
ment the Metropolis criterion is again invoked to decide
whether or not the rotation is accepted. Both the size
of the displacement cube and the angle increment are
adjusted during the course of a simulation such that about
40 – 60% of all attempts are accepted on average.

Once all mesogens have been selected sequentially
and attempts have been made to displace or rotate them,
one attempt is made to change the volume of the sys-
tem by a small amount. A modified Metropolis crite-
rion is invoked to decide whether or not this volume
change is to be accepted or not [36]. Volume changes
are attempted less frequently than displacement/rotation
attempts because a change in volume requires in principle
a recalculation of all the N(N − 1)/2 pair contributions
to U whereas during displacement/rotation events only
N such interactions need to be re-evaluated.

To save as much computer time as possible, we cut off
the interaction potential if the distance between the cen-
tres of mass of a pair of mesogens exceeds 3.0σ . To speed
up the simulations even furtherwe employ a combination
of a Verlet and linked neighbour list [37]. We consider a
mesogen to be a neighbour of a referencemesogen if their
centres of mass are separated by a distance of less than or
equal to 3.5σ .

Henceforth, we shall express all physical quantities in
terms of the customary dimensionless (i.e., ‘reduced’)
units. We express length in units of the diameter σ of
the spherically symmetric core of the mesogens and tem-
perature in units of ε/kB for the isotropic part of the
interaction.

4.2. Nematic phases of biaxial symmetry

We begin the presentation of our results by displaying
in Figure 3 plots of the nematic order parameters Sα for
bothmixture components (α = a, b) as functions of tem-
perature T; a plot of the biaxiality order parameter η is
also shown in that figure. At sufficiently high T, Sa �
Sb � 0, such that the binary mixture is globally isotropic
as expected (region I). Notice, that the nematic-order
parameters are not exactly zero but scale withN(−1/2) on
account of a finite-size effect that is well understood in
pure liquid crystals [32,38,39].

Upon lowering T, Sa and Sb remain small up to T �
1.48 when suddenly both begin to increase. This increase

Figure 3. Plots of the nematic-order parameters Sα as functions
of temperature T for an equimolar mixture (xa = xb = 0.50); the
coupling strengths of the anisotropic interactions are given by
εaa = 0.050, εbb = 0.075, and εab = −0.150 [see Equation (5)].
The system comprises N= 5000 mesogens and the simulations
have been performed for a pressure P= 1.00; ( ) Sa, ( ) Sb. In
addition, the biaxiality order parameter η ( ) is also shown. The
dashed vertical lines demarcate zones I – III (see text); ( ) Sa = 1

4
(see Section 4.3).

is stronger in the case of α = b compared with α = a
(region II). As one can see, Sb increases rather strongly
over a small T interval and quickly assumes a relatively
high value. This indicates that component b of the mix-
ture has formed a nematic phase. The variation of Sb with
T appears rather rounded despite the first-order charac-
ter of the isotropic-nematic phase transition. This, again,
is a finite-size effect rather typical for the present class of
model systems [39].

A somewhat peculiar feature is seen in the variation of
Sa with T. This quantity assumes a relatively small value
of about 0.20 – 0.30 and increases weakly with decreas-
ing T up to T � 1.08 whereupon it rises rather steeply
and reaches values that signal the formation of a nematic
phase of component a at lower T (region III).

Compared with pure systems composed of mesogens
of either component a or b the isotropic-nematic phase
transition of the latter occurs at about the sameT � 1.48;
the isotropic-nematic phase transition of pure compo-
nent a happens at a slightly higher T � 1.13 compared
with T � 1.08 in the binary mixture (see Figure 3).

The biaxiality order parameter η is almost zero and
independent of T down to T � 1.10 indicating that the
partially ordered mixture is still uniaxial. For lower T, η
increases steadily. This reflects that for T � 1.10 a biaxial
nematic is forming; the biaxiality is a consequence of the
increasing nematic order in component a in this range of
temperatures.

That the formation of a biaxial nematic proceeds in
the two-step mechanism is corroborated from ‘snap-
shots’ of individual configurations obtained for two ther-
modynamic state points pertaining to zones II and III,
respectively. An inspection of Figure 4(a) indicates that
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(a)

(b)

Figure 4. ‘Snapshots’ of individual configurations of the binary
mixture (cf., Figure 3) in (a) region II (T = 1.20) and (b) in region
III (T = 0.80), respectively. Ellipsoids of revolution pertain to com-
ponent a, whereas platelets are mesogens of component b. The
shape of the mesogens is exaggerated arbitrarily to improve the
visibility of the orientational order in the mixture.

mesogens of component b are predominantly aligned
with the line of vision. Mesogens of component a are ori-
ented in the plane orthogonal to the line of visionwithout
any specific orientation. Hence, we refer to this situation
as a restricted isotropic liquid component a. The normal
of this plane is approximately given by the unit vector n̂b
of the already ordered component b. In a binary mixture
of rod- and disc-like mesogens such a restricted isotropic
liquid was already proposed in the work by Vanakaras
et al. [26].

However, the ‘snapshot’ shown in Figure 4(b) clearly
illustrates the biaxially symmetric nature of themixture at
the lower temperature.Mesogens of component b are still
alignedwith some specific direction but nowmesogens of
component a exhibit a preferred orientation in the plane
orthogonal to that direction. It is important to note that
in neither case does the binarymixture exhibit a tendency
to demix.

To make sure that under the present conditions the
mixture does not decompose into a- and b-rich domains
we consider the local mole fractions defined as [40]

xαα (r12) = Nαα (r12)
Nαα (r12) + Nαβ (r12)

,

α,β = a, b ∧ α �= β , (23)

Figure 5. Plots of the radial pair correlation functions gαβ as
functions of the centre-of-mass distance r12 at a temperature
T = 1.00 (see Figure 3); ( ) α = β = a, ( ) α = a and β = b,
( ) α = β = b. The inset is an enlargement around the first
peak of gαβ(r12).

where

Nαβ (r12) = 4πxβρ

∫ r12

0
d̃r12 r̃212 gαβ (̃r12) . (24)

In Equation (24), gαβ is the radial distribution function of
the centres of mass which is computed as a histogram in
the usual fashion [36,37]. Plots of gαβ in Figure 5 reveal a
couple of important features.

First, except for the first peak, all three radial pair cor-
relation functions are nearly identical for r12 � 1.50. In
the first coordination shell of a reference mesogen (i.e.,
for r12 � 1.50), gab exceeds the other two curves indicat-
ing a slightly enhanced tendency of the binary mixture to
blend. Because all three radial pair correlation functions
of the binary mixture are nearly the same, Naa ≈ Nab ≈
Nbb and therefore xaa and xbb match the global composi-
tion xa = xb = 0.5 except in the first coordination shell
around a reference mesogen.

Second, the structure of all three radial pair correlation
functions reveals the absence of long-range positional
correlations as expected for a nematic phase regardless
of whether it is uniaxial or biaxial. More quantitatively,
we compute a correlation length ξ ≈ 3.0 from the curves
presented in Figure 5. This number is estimated by plot-
ting the logarithm of successive maxima of gαβ versus the
peak positions; by fitting a straight line to these data, ξ is
the slope of this linear fit.

4.3. Restricted isotropic liquid

Cogitating about the data for the temperature variation
of Sa and η in Figure 3 a couple of important questions
arise:

(1) Does the increase of Sa in region II signal a weakly
ordered structure of component a?
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Figure 6. As Figure 3, but for εaa = 0.

(2) If Sa > 0 in region II reflects a weak orientational
order, why is η � 0 in regions I and II for T � 1.10?

(3) If the order reflected by the nonzero value of Sa in
region II is only ostensible, what is the orientational
structure of component a in region II?

To address these questions, we further simplify our
mixture by setting εaa = 0. Even though this situation is
physically somewhat artificial, the toymodel helps to elu-
cidate the formation of biaxially ordered nematic phases
in binary mixtures. In other words, interactions between
a pair of mesogens of component a are purely isotropic
but yet there is a certain degree of anisotropic cou-
pling between mesogens of components a and b because
εab �= 0.

In this case, we see from plots in Figure 6 that com-
ponent b undergoes an isotropic-nematic phase transi-
tion at about the same temperature T � 1.45 observed
in Figure 3 for the fully interacting system. However,
this time Sa increases at about this same T but then
assumes a plateau value of Sa � 0.25. No further increase
of Sa is observed indicating that in the idealised sys-
tem component a does not form a nematic phase in
line with one’s physical intuition. As we have verified,
in the toy model η = 0 irrespective of T. Thus, we
surmise that Sa � 0.25 is most likely not indicative of
a (weakly) ordered structure formed by mesogens of
component a.

To rationalise these observations let us remind the
reader that εab < 0 suggests that from a purely energetic
perspective T-shaped arrangements of mesogens of com-
ponents a and b are preferred. This also implies that if
component b becomes ordered in a direction given by n̂b
themajority ofmesogens of component awill try to avoid
being oriented parallel to n̂b. In fact, themolecular orien-
tations of mesogens of component a lie in a plane whose
normal is more or less parallel to n̂b.

To further analyse the physical nature of the phases
formed by components a and b, we present plots of Pα in

Figure 7. Plots of the orientation distribution function Pα(ω) as
functions of polar and azimuthal angles θ and ϕ. The magni-
tude of Pα is given by the colour bars attached to each pair of
plots. Parts (a) and (c) refer to α = a, whereas parts (b) and (d)
of the figure pertain to α = b; lower panel T = 1.00, upper panel
T = 1.20. The higher temperature pertains to region II, whereas
the lower one refers to a state point in region III in Figure 3). The
azimuthal angle ϕ = ϕ′ + π so that ϕ ∈ [0, 2π ] according to its
standard definition. The results in all four parts of the figure are
based on simulations with N= 20,000 mesogens (xa = 0.5).

Figure 7 for two thermodynamic state points in zones II
and III, respectively. At T=1.20, where the correspond-
ing plot of Sb in Figure 3 indicates that component b is
already in the nematic phase, the plot of Pb in Figure 7(b)
indicates that the odf is centred on the angles θ = π/2
and ϕ′ = 0 where it has its maximum. The odf is radi-
ally symmetric and decreases fairly rapidly as a function
of the ‘distance’ from its centre. The latter reflects a high
degree of order in component b in agreement with the
plot of Sb in Figure 3.

The corresponding plot of Pa in Figure 7(a) appears
to be a relatively broad band centred on θ = π/2; the
band is nearly homogeneous along the ϕ′ axis at con-
stant θ . Thus, Pa characterises a nearly isotropic phase
that is restricted more or less to a two-dimensional plane
centred on the equator of the unit sphere mentioned in
Section 3.

At T=1.00 plots in Figure 3 indicate that now the
order in both components of the binary mixture is fairly
substantial suggesting that now components a and b
are nematic. This notion is corroborated by the plots in
Figure 7(c,d). These two parts of the figure reveal that
Pa and Pb are both centred on θ = π/2 and ϕ′ = 0. The
maximum of Pb exceeds the one of Pa which is consistent
with the inequality Sb > Sa that can be verified from the
plots in Figure 3. Interestingly, Pa and Pb are no longer
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spherically symmetric with respect to their maxima but
are elliptically deformed.

The ellipses representing Pa and Pb in Figure 7 are a
consequence of the interaction potential between com-
ponents a and b that favours a T-shaped alignment of
mesogens of these two components. Hence, Figure 7(c,
d) are direct evidence of the biaxiality of the globally
nematic phase in region III (see Figure 3).

Therefore, the elliptic form of the odf in region III
(see Figure 7) can be viewed as the analogue of the for-
mation of the restricted isotropic phase of component a
for thermodynamic states for which only component b is
nematic. As mesogens of component a do not have any
specific orientation in the restricted isotropic liquid, the
odf of component b can still assume a spherical symme-
try centred on the points ϕ′ = 0 and θ = π/2 as the plots
in Figure 7(a,b) clearly show.

However, it seems noteworthy that the odf in the
restricted isotropic phase of component a exhibits a sub-
stantial finite-size effect. The system-size dependence of
the odf is illustrated by plots in Figure 8 for various
system sizes represented by the number of mesogens of
component a of the mixture [at fixed composition and
for the same thermodynamic state as the one for which
data are shown in Figure 7(a)]. The plots in Figure 8 show
that if Na is small, the odf exhibits an elliptic shape very
similar to cases in which both components of the binary
mixture are truly nematic [see Figure 7(c,d)]. The ellipse
becomes less well defined the larger the system becomes;
it vanishes completely if Na becomes sufficiently large as
illustrated in Figure 7(a). In the thermodynamic limit,
that is in the limit limN→∞(λ

(a)
+ /λ

(a)
0 ) = 1 (at fixed xa);

in any system of finite size these two eigenvalues will
never be the same and the associated eigenvectorswill not
be degenerate.

For completeness we demonstrate in Figure 9 that Sa
does not exhibit a strong finite-size effect for N � 5000
[corresponding to the odf plotted in Figure 8(c)]. Noting
that Sa is related to an integral involving the odf, it turns
out that forN � 5000 a relatively small part of the odf, in
which a finite-size effect is already weak, contributes to
the value of Sa. Consequently, for these system sizes one
anticipates a rather weak finite-size effect for Sa.

4.4. Theoretical analysis of the restricted isotropic
liquid

To gain more detailed insight into the nature of the
nonzero value of the nematic-order parameter of com-
ponent a in the restricted isotropic liquid, we develop a
simple theoretical model. Let us assume that component
b is already nematic and that we take the coordinate sys-
tem such that n̂b coincides with the z axis. According to

Figure 8. As Figure 7(a), but for various system sizes indicated by
the different values of Na.

our above reasoning mesogens of component a will then
prefer to organise themselves in the x–y plane orthog-
onal to the z axis. For the nematic-order parameter of
component a, we adopt the alternative expression [32]

Sa = 1
2Na

〈 Na∑
i=1

(
3 cos2 γi − 1

)〉
, (25)

where

cos γi = û (ωi) · n̂a. (26)

The computation of Sa from Equation (25) is com-
pletely equivalent to the procedure based uponQa as was
demonstrated by Eppenga and Frenkel [32]. However,
the use of Equation (25) tacitly assumes that n̂a is both
known (which is not normally the case a prior [32]) and
that n̂ �= 0. Here, we simply assume that both provisos are
met.

Because of Equation (19), n̂a = êx. We may then
rewrite the previous equation more explicitly as

cos γi = uxi = sinϑi cosφi, (27)

using also Equation (6). It is now convenient to adopt
a geographical rather than the more commonly used
spherical coordinate system. Accordingly, we transform
coordinates such that φi → φ′

i = φi and ϑi → ϑ ′
i =

ϑi − π
2 such that φ′

i ∈ [0, 2π) and ϑ ′
i ∈ [−π

2 ,
π
2 ] specify

the longitude and latitude on the unit sphere, respec-
tively. Because of this transformation we can rewrite
Equation (26) as

cos γi = sin
(
ϑ ′
i + π/2

)
cosφ′

i = cosϑ ′
i cosφ

′
i , (28)

where we employed one of the well-known addition the-
orems for trigonometric functions.
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Figure 9. (a) Plots of the nematic-order parameter Sa of compo-
nent a in the fully interacting system as functions of the total
number of mesogens N; T = 1.20 ( ), T = 1.40 ( ). (b) as (a),
but in a double-logarithmic representation. The straight lines
are obtained from fits assuming that Sa − S∞a =∝ Nβeff where
βeff ≈ − 1

2 . The analysis is based upon assuming that Seffa can be
read off part (a) of the figure for N= 10000.

Inserting the previous expression now into Equation
(25), the latter becomes

Sa = 1
2Na

〈 Na∑
i=1

(
3 cos2 ϑ ′

i cos
2 φ′

i − 1
)〉

= 1
2Na

〈 Na∑
i=1

{
3
4
[
1 + cos

(
2ϑ ′

i
)]

× [
1 + cos

(
2φ′

i
)]− 1

}〉
, (29)

where we have used yet another addition theorem. At this
point, we introduce two new parameters, namely

Sϑ ≡ 1
Na

〈 Na∑
i=1

cos
(
2ϑ ′

i
)〉

(30)

Sφ ≡ 1
Na

〈 Na∑
i=1

cos
(
2φ′

i
)〉

. (31)

In terms of these two parameters, Equation (29) can then
be cast as

Sa = 3
8
(
Sϑ + Sφ

)+ 3
8Na

〈 Na∑
i=1

cos
(
2φ′

i
)
cos
(
2ϑ ′

i
)〉− 1

8

≈ 3
8
(
Sϑ + Sφ + SϑSφ

)− 1
8
, (32)

where the expression on the last line is based on the
assumption that

∑Na
i=1 cos(2ϑ

′
i ) and

∑Na
i=1 cos(2φ

′
i) are

uncorrelated.
To test the robustness of this hypothesis, we introduce

the covariance

χ = 1
Na

〈 Na∑
i=1

cos
(
2φ′

i
)
cos
(
2ϑ ′

i
)〉

− 1
N2
a

〈 Na∑
i=1

cos
(
2ϑ ′

i
)〉 〈 Na∑

i=1
cos
(
2φ′

i
)〉

, (33)

where the ensemble averages are computed from the
expression

1
Na

〈 Na∑
i=1

⎧⎨⎩
cos
(
2φ′

i
)
cos
(
2ϑ ′

i
)

cos
(
2ϑ ′

i
)

cos
(
2φ′

i
)

〉

=
∫ 2π

0

∫ π/2

−π/2

cos
(
2φ′) cos (2ϑ ′)
cos
(
2ϑ ′)

cos
(
2φ′)

⎫⎬⎭ Pa
(
ϑ ′,φ′)

× cosϑ ′dϑ ′ dφ′. (34)

Here, cosϑ ′ is the Jacobian determinant for the trans-
formation from Cartesian to geographical coordinates.
In the above expressions, Pa is taken from MC simula-
tions for the fully interacting system. It is apparent from
Figure 10 that indeed χ is a very small quantity indi-
cating that the correlation between

∑Na
i=1 cos(2ϑ

′
i ) and∑Na

i=1 cos(2φ
′
i) is very small. Figure 10 also shows that

the approximation becomes even better for larger sys-
tem sizes but is already very good for the smallest ones
considered.

Let us now assume that the orientations of mesogens
of component a are completely restricted to the x–y plane.
In other words, ϑi is zero irrespective of i and therefore
Sϑ = 1 [see Equation (30)]. In this case, Equation (32)
reduces to the expression

Sa = 1
4

+ 3
4
Sφ , (35)

where now Sφ is the two-dimensional nematic-order
parameter evaluated by Frenkel and Eppenga [41]. If this
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Figure 10. Double logarithmic plot of the covariance defined in
Equation (33) as a function of the number of particles of compo-
nent a. Data are shown for T = 1.40 pertaining to region II (see
Figure 3). The symbols represent MC results and the continuous
line is a fit to these data intended to guide the eye.

two-dimensional system is isotropic, Pa = 1/2πδ(ϑ ′)
such that

Sφ =
∫ 2π

0

∫ π/2

−π/2
cos
(
2φ′) cosϑ ′Pa

(
ϑ ′,φ′) dϑ ′ dφ′

= 1
2π

∫ 2π

0
cos
(
2φ′) dφ′ = 0 (36)

and the expression in Equation (35) reduces to a constant
Sa = 1

4 . For the toy model, it is clear from the plot of Sa
in Figure 6 that the threshold value of 1

4 is appoached at
sufficiently lowT in region II. Similarly, Sa = 1

4 is reached
at T � 1.32 in the fully interacting system as the relevant
plot in Figure 3 illustrates.

But why does Sa approach the threshold value of 1
4

from below for both the toy and fully interactingmodels?
Based upon the plot in Figure 7(a) one realises that the
assumption of a strictly two-dimensional arrangement
of mesogens of component a is too strong. Apparently,
some molecules have orientations that are characterised
by angles ϑ ′ slightly smaller or larger than π/2 (corre-
sponding to ϑ ′ slightly smaller or larger than zero). In
turn, Sϑ < 1.

To account for this reduction in a bit more quantita-
tive fashion, we introduce Sϑ = 1 − ε where ε is a small,
temperature dependent quantity. A lucid interpretation
of ε is that of the variance of Pa at constant φ′ and vari-
able ϑ ′ [see Figure 7(a)]. It is therefore plausible to expect
ε → 0 with decreasing T. This is because as T decreases,
mesogens of component a are suffering an increasing loss
in kinetic energy. This prevents them to an increasing
degree from overcoming the energy penalty associated
with aligning more with the z axis.

We are therefore in a postion to replace Sϑ on the
second line of Equation (29) by 1 − ε which yields

Sa = 1
4

+
(
3
4

− 3
8
ε (T)

)
Sφ − 3

8
ε (T) . (37)

If we now assume that the distribution of the {φ′
i}

is isotropic Equation (37) reduces to Sa = 1
4 − 3

8ε ≤ 1
4

which indicates that if component a is not completely
restricted to the x–y plane there will be a negative devia-
tion of Sa from the ideal two-dimensional threshold value
and this is the reason for why the threshold value of
Sa = 1

4 in Figure 6; the deviation becomes smaller as T
decreases.

The situation is a bit different for the fully interacting
system because the relevant plot in Figure 3 reveals that
for sufficiently low T, Sa can also exceed the theoretical
threshold value of 1

4 . This can be explained as follows.
Because in the fully interacting system the mesogens

can align in principle, Sφ is not necessarily zero every-
where in region II and increases further with decreasing
T. This notion is supported by the plot of Sφ in Figure 11.
However, it is conceivable that for sufficiently high T in
region II, Sφ is still small enough so that the third term
on the righthand side of Equation (37) outweighs the sec-
ond one. Consequently, Sa < 1

4 in this temperature range.
Because ε decreases but Sφ increases (see Figure 11) with
decreasing T, one can envision that at T � 1.32 the two
terms cancel exactly such that Sa = 1

4 . For even lower T
the second term is always more significant energetically
such that Sa > 1

4 until eventually component aundergoes
an isotropic nematic phase transition.

The plot of Sϑ in Figure 11 indicates that this quan-
tity is about 1

3 for temperatures where both components
are isotropic. This value is easy to understand because
in the completely isotropic phase (region I), Sϑ can be
calculated analytically from the expression

Sϑ =
∫ 2π

0

∫ π/2

−π/2
cos
(
2ϑ ′)Pa (ϑ ′,φ′) cosϑ ′dϑ ′ dφ′

= 1
2

∫ π/2

−π/2
cos
(
2ϑ ′) cosϑ ′dϑ ′ = 1

3
, (38)

where we employed the fact that in the isotropic phase in
region I,Pa = 1/4π . However, in any systemof finite size,
Sϑ exceeds the value of 1

3 slightly. At T � 1.48, Sϑ rises
steeply. This is the same temperature atwhich component
b becomes nematic (see Figure 3). This is not surprising
either because an increase in Sϑ signals the onset of the
formation of the restricted isotropic liquid component a.

In Figure 11 we show two sets of data for each of
the three quantities plotted. We computed Sϑ and Sϕ

from Equations (30), (31), and (34); Sa is computed from
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Figure 11. As Fig. 3, but for Sφ ( ) and ( ), and for Sϑ
( ) and ( ). Dashed vertical lines are estimates of the
temperatures for the phase transitions from isotropic to
uniaxial nematic (T � 1.48) and from uniaxial to biax-
ial nematic phases (T � 1.08). The horizontal dashed line
( ) corresponds to the threshold value Sa = 1

4 , while
( ) refers to Sϑ = 1

3 [see Equation 38]. Data for Sa ( ) and
( ) are shown for comparison. Open and filled symbols refer to
cooling and heating runs, respectively (see text). In all cases, data
are obtained for systems comprising N= 5000 mesogens (cf.,
Figure 9).

Equation (32). Both sets in Fig 11 are obtained from
restart runs in which T between successive restarts is
lowered (cooling sequence) or raised (heating sequence).
No significant difference between cooling and heating is
detected. Thus, because of the absence of hysteresis in the
plots of Figure 11, the formation of a uniaxial and a biax-
ial nematic phase appears to be a continuous rather than
a first-order phase transitions.

However, for this class of models of nematic liquid
crystals it has been established that the isotropic-nematic
phase transition is very weakly first-order and that it
follows a true discontinuous phase transition. This was
demonstrated by Greschek [35] and by Greschek and
Schoen a while ago who used concepts of finite-size
scaling [39]; it was also demonstrated in a more recent
density-functional study of a pure nematic liquid crystal
also pertaining to the present class ofmodel systems [30].
The reason for this very weak first-order phase transition
is perhaps the spherically symmetric isotropic core of the
mesogens.

5. Discussion and conclusion

In our work, we focus on binary mixtures of two
liquid-crystalline compounds that are capable of forming
nematic phases under favourable thermodynamic condi-
tions. For each separate pure component, the orientation
dependence of the anisotropic interactions is that of the

well-known Maier-Saupe model. That is, for a fixed rel-
ative orientation of a pair of mesogens, the potential
is isotropic and hence does not depend on the orien-
tation of the distance vector connecting the centres of
mass of the mesogens. If the coupling constant govern-
ing the anisotropic interactions is positive, a side-by-side
arrangement of the mesogens (i.e., an angle of 0 or π

between the unit vectors describing the orientations of
the mesogens) is energetically the most favourable. Thus,
if the pure components become nematic, these nematic
phases have uniaxial symmetry.

For the interaction between the different components
of the mixture, we maintain the Maier-Saupe orientation
dependence but with a negative instead of a positive cou-
pling constant. This way the different mesogens of the
mixture prefer aT-shaped relative orientation. If themag-
nitude of the coupling constant is not made too small
the demixing of the mixture into larger domains, in
which mostly mesogens of one or the other component
are found, is suppressed. This is advantageous because
it enables us to study the formation of biaxial phases
without having to deal with an accompanying demixing
process that would be superimposed on the formation of
a biaxially ordered phase and blur it.

For suitably chosen coupling constants εaa < εbb
(εaa > 0) and εab < 0 the formation of a biaxially
ordered nematic phase is found to be a two-step pro-
cess. Under these conditions and for a sufficiently low
T, component b first forms a nematic structure of uni-
axial symmetry. When this happens, the nematic-order
parameter Sa of component a increases by a fair amount
which may seem puzzling because the value assumed
Sa � 0.25 is hardly large enough to indicate the forma-
tion of a nematic phase in component a as well. Even
more puzzling is the fact that the biaxiality of the entire
liquid crystal is close to zero indicating that no biaxially
ordered phase has formed.

To understand these seemingly enigmatic observa-
tions, we analyse an idealised (toy) system in which
mesogens of component a can be oriented but remain
disordered because we set εaa = 0. Because there can-
not be any correlation between orientations of mesogens
of component a in our toy model, one can completely
neglect the correlations between the orientations of the
different mesogens of component a. However, a perfect
restriction of these orientations to two dimensions will
not happen in reality on account of thermal fluctuations.
Within the framework of a simple theoretical approach,
we are able to rationalise the threshold value of Sa =
1
4 , which is approached from below in the toy model,
because of these thermal fluctuations.

In the fully interacting system, Sa can be smaller or
larger than the threshold value of 1

4 . This is because
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there are two contributions that counterbalance each
other. The first is the nematic order parameter Sφ of the
quasi-two-dimensional restricted phase and the variance
of the odf at fixed azimuthal and variable out-of-plane
(i.e., polar) angle. Whereas the first parameter tends to
increase asT goes down, the variance of the odf decreases
as the mesogens loose kinetic energy.

It should, however, be borne in mind that the nonzero
value of Sa is a consequence of the restriction of an
isotropic liquid to a two-dimensional plane; neither does
it indicate any nematic order nor does it reflect biaxiality
in the sense of S and η which are defined for the mix-
ture as a whole. In this sense, Sa and ηa reflect only that
the original, three-dimensional isotropic liquid formed
by component a (region I, see Figures 3 and 6) is suddenly
forced to become quasi two-dimensional but remains
isotropic while component b undergoes an isotropic-
nematic transition.

Another quantity that we analyse in depth is a two-
dimensional odf. To compute this odf with sufficient
resolution and accuracy, it is advantageous to rotate the
instantaneous eigensystem of Qα such that the eigenvec-
tor corresponding to the nematic order parameter (i.e.,
the largest one) always coincides with the x axis, say.
Using such an instantaneous coordinate system rather
than a space-fixed one is particularly benefitial in smaller
systems in which the nematic director can exhibit a
slow but permanent reorientation over the course of a
simulation.

The odf gives clear evidence of the two-step pro-
cess during which a globally nematic phase of biaxial
symmetry forms and of the existence of an intermittent
restricted isotropic liquid phase of component a. When
this restricted isotropic liquid is stable but component b
is already in the uniaxially symmetric nematic phase the
odf of component a turns out to be a strip-like ‘cloud’
centred on the polar angle θ = π/2 and independent
of the azimuthal angle ϕ′; because phase b is embed-
ded in this restricted isotropic liquid its odf is spherically
symmetric and rather peaked at the angles θ = π/2 and
ϕ′ = 0.

If this novel restricted isotropic liquid phase finally
becomes ordered as well (and when the global symme-
try of the liquid crystal mixture is biaxial) the odf of
both components is elliptically deformed. This is a con-
sequence of the interaction potential because orienta-
tions of mesogens that are favourable for mesogens of
one component are unfavourable for the other one and
vice versa. It is this feature of our model that is ulti-
mately responsible for the elliptic deformation of the
odf of both components when a biaxially symmetric
phase forms.
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Appendix. Construction of the rotation tensor

To determine the orientation distribution function, we argue
in Section 3 that the orientation of the mesogens is best anal-
ysed in a frame of reference spanned by the eigenvectors ofQα .
Because the orientations of the mesogens {ûi} are given in a
space-fixed frame of reference that remains the same through-
out the simulation, the analysis in the eigenvector frame of
reference requires a rotation of the individual orientations of
the mesogens between successive configurations.

In general and guided by the principles of linear algebra, a
transformation of a (unit) vector â given in one frame of ref-
erence to its counterpart b̂ in another such frame is effected by
the equation

b̂ = R(k̂,φ)â, (A1)
where φ is the angle of rotation about an axis k̂ defined by

k̂ = â × b̂
‖â × b̂‖

, (A2)

and ‖. . .‖ is the vector norm. The rotation tensor R in
Equation (A1) satisfies RT = R−1 such that RRT = 1. In addi-
tion, detR = 1 where ‘det’ indicates the determinant. Because

we are working in three-dimensional space, R is a second-rank
tensor that can be represented by a 3 × 3 matrix.

An alternative version of Equation (A1) is given by the so-
called Euler-Rodrigues equation [42] which states that

b̂ = â + 2q0q × â + 2q × (q × â
)
, (A3)

where (q0, q) is a four-dimensional vector known as a quater-
nion first introduced into classicalmechanics byHamilton [43];
the scalar q0 and the vector qT = (q1, q2, q3) are given by the
expressions

q0 = cos
(

φ

2

)
(A4a)

q = k̂ sin
(

φ

2

)
. (A4b)

The angle of rotation is obtained from the expression

cosφ = â · b̂. (A5)

Inserting Equations (A4a) and (A4b) into Equation (A3) allows
us to rewrite the latter as

b̂ = â + 2 cos
(

φ

2

)
sin
(

φ

2

)
k̂ × â

+ 2 sin2
(

φ

2

)
k̂ ×

(
k̂ × â

)
= [1 + K sinφ + K2 (1 − cosφ)

]
â, (A6)

where we used the well-known textbook expressions for
trigonometric functions of half-angle arguments andK is given
by the traceless skew-symmetric tensor

K =
⎛⎝ 0 −k3 k2

k3 0 −k1
−k2 k1 0

⎞⎠ (A7)

of components of k̂. Because of this form of K and because
‖k̂‖ = 1, it follows that

K2 = −1 + k̂ ⊗ k̂. (A8)

With this expression, it is easy to see that Equation (A6) can be
recast as

b̂ = (K sinφ + 1 cosφ + k̂ ⊗ k̂)â

= (K sinφ + 1 cosφ)â + (k̂ · â)k̂
= (K sinφ + 1 cosφ) â, (A9)

where we have used the identity (k̂ ⊗ k̂)â = (k̂ · â)k̂ that is also
easy to prove. The last line of the previous expression follows
because k̂ · â = 0. This is clear from Equation (A2) because
the rotation axis is always orthogonal to the vector â. Thus, by
comparison with Equation (A1), one realises that

R(k̂,φ) = K sinφ + 1 cosφ. (A10)

As a brief demonstration of the validity of Equation (A10), let
us consider two special cases. In the first of these, we take φ = 0
and therefore R = 1. From Equation (A10), we readily obtain
b̂ = â, that is the ‘rotation’ leaves the vector â unchanged. In
the second case, we take the angle of rotation to be given by
φ = π . Again, from Equation (A10), it is easy to see that now
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R = −1 and therefore b̂ = −â. Thus, in this case the vector
â suffers its inversion by the application of the tensor R as it
should. Notice, that in both cases, the specific axis of rotation
does not matter because sinφ = 0 in Equation (A10). In fact,
k̂ is even undefined because â × râ = 0 in Equation (A2) for

any number r ∈ R and therefore the norm in the denominator
of the expression on the righthand side of Equation (A2) would
vanish as well. Another interpretation of this observation is that
an infinite manifold of axes k̂ exists that can be employed to
invert a vector by rotation.
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