
 

 

Wasserstoff in nominell wasserfreien 

Mineralen 

 

vorgelegt von 

Diplom-Mineralogin Sylvia-Monique Thomas 

aus Freiberg 

 

von der Fakultät VI - Planen Bauen Umwelt 

der Technischen Universität Berlin 

 

zur Erlangung des akademischen Grades 

Doktorin der Naturwissenschaften 

– Dr. rer. nat. – 

genehmigte Dissertation 

 

Promotionsausschuss:  

Vorsitzender:  Prof. Dr. G. Franz 

Berichterin:  Prof. Dr. M. Koch-Müller 

Berichter:  Prof. Dr. W. Heinrich 

Berichter:  Prof. Dr. E. Libowitzky 

 

Tag der wissenschaftlichen Aussprache: 28. 03. 2008 

 

Berlin 2008 

D 83



  Inhaltsverzeichnis 

 

Inhaltsverzeichnis 

 
Zusammenfassung............................................................................................................1 

Summary .............................................................................................................................3 

 

Einführung ..........................................................................................................................5 

Referenzen...........................................................................................................................16 

 

Kapitel 1.............................................................................................................................24 

"Protonation in germanium equivalents of ringwoodite, anhydrous phase B 
and superhydrous phase B” .........................................................................................24 

Abstract................................................................................................................................25 

Introduction ..........................................................................................................................26 

Experimental Methods..........................................................................................................27 

Syntheses.................................................................................................................27 
Electron probe microanalysis ....................................................................................28 
Transmission electron microscopy ............................................................................29 
X-ray diffraction.........................................................................................................29 
Raman spectroscopy ................................................................................................30 
Infrared spectroscopy ...............................................................................................30 

Results .................................................................................................................................32 

EPMA and TEM analyses .........................................................................................32 
X-ray diffraction.........................................................................................................33 
Raman spectroscopy ................................................................................................37 
Infrared spectroscopy ...............................................................................................39 
OH distribution and quantification .............................................................................43 

Discussion............................................................................................................................44 

Ringwoodite ..............................................................................................................44 
Ge-anhydrous phase B .............................................................................................48 
Ge-superhydrous phase B ........................................................................................52 

Acknowledgements ..............................................................................................................53 

References...........................................................................................................................53 

Appendix ..............................................................................................................................58 

 

Kapitel 2.............................................................................................................................66 

"Application of Raman spectroscopy to quantify trace water concentrations in glasses 

and garnets" .......................................................................................................................67 

Abstract................................................................................................................................67 

Introduction ..........................................................................................................................68 



  Inhaltsverzeichnis 

 

Analytical Techniques ..........................................................................................................69 

Samples ...................................................................................................................69 
Raman spectroscopy ................................................................................................69 
Proton-Proton-scattering...........................................................................................71 
IR spectroscopy ........................................................................................................73 

Results .................................................................................................................................74 

Raman spectroscopy ................................................................................................74 
Raman spectroscopy vs. Independent quantification methods ..................................81 

Discussion............................................................................................................................85 

Acknowledgements ..............................................................................................................87 

References...........................................................................................................................87 

 

Kapitel 3.............................................................................................................................89 

"IR calibrations for water determination in olivine and SiO2 polymorphs".........90 

Abstract................................................................................................................................90 

Introduction ..........................................................................................................................91 

Experimental and Analytical techniques ...............................................................................95 

Syntheses and Samples ...........................................................................................95 
Transmission electron microscopy (TEM) .................................................................96 
IR spectroscopy ........................................................................................................97 
Raman spectroscopy ................................................................................................98 
Unoriented statistical measurements ........................................................................99 
Polarized measurements ..........................................................................................99 
Spectra treatment and quantification procedure......................................................100 
Proton-Proton-scattering.........................................................................................101 
Secondary ion mass spectrometry ..........................................................................102 

Results ...............................................................................................................................104 

Infrared spectroscopy .............................................................................................105 
Raman spectroscopy ..............................................................................................110 
Water contents .......................................................................................................111 
Absorption coefficients............................................................................................115 

Discussion..........................................................................................................................117 

Water contents .......................................................................................................117 
Absorption coefficients............................................................................................118 

Acknowledgements ............................................................................................................128 

References.........................................................................................................................128 

 

Eidesstattliche Erklärung ............................................................................................135 

 
Danksagung....................................................................................................................136 

 



  Zusammenfassung 

 1 

Zusammenfassung 

 

Die vorgelegte Dissertation beschäftigt sich mit (1) der Verwendung von Germanaten als 

Hochdruckmodelle für den Wassereinbau in wasserhaltige und nominell wasserfreie 

Erdmantelminerale, (2) der Anwendbarkeit der konfokalen Ramanspektroskopie für den 

Nachweis von Wassergehalten im ppm-Bereich für amorphe Gläser sowie für isotrope 

Granate, und (3) mit der Entwicklung von mineralspezifischen Extinktionskoeffizienten für  

die Quantifizierung von Spurenwassergehalten in nominell wasserfreien Phasen mit 

Infrarot(IR)-Spektroskopie. 

 

(1) Germanium-Äquivalente von Ringwoodit, Anhydrous Phase B und Superhydrous Phase 

B wurden bei 2 GPa und 950-1000°C unter Wasserüberschuss synthetisiert und mit 

verschiedenen spektroskopischen und analytischen Methoden charakterisiert. Die 

Ergebnisse verdeutlichen, dass wasserhaltige Germanate offenbar gute Hochdruckmodelle 

für Mantelsilikate sind, in denen der Wasserstoffeinbau von der Stöchiometrie gesteuert wird. 

Im Gegensatz dazu wird gezeigt, dass für nominell wasserfreie Phasen, Germanate, als 

Silikatäquivalente, für Studien zu Wassereinbau und zur –löslichkeit nur bedingt eingesetzt 

werden können. In den entsprechenden Germanatphasen unterscheidet sich der OH-Einbau 

qualitativ und quantitativ von dem der Hochdrucksilikate; die OH-Löslichkeit wird von 

anderen Faktoren, wie zum Beispiel der Wasserfugazität und intrisischen Defekten, gelenkt.  

 

(2) Eine Quantifizierungsroutine für die Bestimmung von Spurenwassergehalten in 

Festkörpern wird präsentiert, die die konfokale Ramanspektroskopie mit der sogenannten 

„Komparator-Technik“ verknüpft. Eine Serie von Gläsern und Granate mit unterschiedlichen 

chemischen Zusammensetzungen wurden ramanspektroskopisch untersucht. Die Wasser-

gehalte der Proben wurden des Weiteren unabhängig mit Proton-Proton-Streuung und IR-

Spektroskopie bestimmt. Die Anwendbarkeit der „Komparator-Technik“ für die 
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Quantifizierung von Wassergehalten von 40 Gew.-ppm bis zu 40 Gew.-%, sowohl in 

natürlichen und synthetischen Gläsern, als auch in Granatproben, konnte nachgewiesen 

werden. Des Weiteren wurde ein materialspezifischer Extinktionskoeffizient für Quarzglas 

bestimmt, εitot = 72000 ± 12000 lmol

� 

H2O

!1 cm-2, der zur Quantifizierung von Wassergehalten mit 

IR-Spektroskopie benutzt werden kann.   

 

(3) Es ist bekannt, dass allgemein gültige IR-Kalibrierungen für die quantitative Bestimmung 

von Wassergehalten in Festkörpern nicht für nominell wasserfreie Minerale verwendbar sind 

und mineralspezifische Extinktionskoeffizienten benötigt werden (Rossman 2006). In dieser 

Arbeit wurden Olivin und SiO2-Polymorphe mit isoliert eingebauten OH-Punktdefekten 

synthetisiert, z. B. Quarz, Coesit und Stishovit mit B3+ + H+ = Si4+ und/oder Al3+ + H+ = Si4+ 

Substitutionen. Die Wassergehalte der Syntheseprodukte sowie natürlicher Proben wurden 

unter Anwendung von Proton-Proton Streuung, konfokaler Ramanspektroskopie und 

Sekundärionenmassenspektrometrie bestimmt und zur Berechnung neuer mineral-

spezifischer Extinktionskoeffizienten für die IR-Spektroskopie genutzt. Die Abhängigkeit des 

Extinktionskoeffizienten von spezifischen OH-Defekten wurde untersucht. Unsere 

Ergebnisse bestätigen, dass es unerlässlich ist, mineralspezifische Kaibrierungen für die 

Wasserbestimmung in nominell wasserfreien Mineralen zu benutzen. Nur so können 

absolute Wasserlöslichkeiten bestimmt werden, die für eine Modellierung eines inneren 

Erdwasserkreislaufs benötigt werden. Des Weiteren wird eine Quantifizierungsroutine 

präsentiert, die die Anwendbarkeit konfokaler Ramanspektroskopie für die Bestimmung von 

Spurenwassergehalten in anisotropen nominell wasserfreien Mineralen bestätigt.   
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Summary 

 

This PhD thesis is focused on (1) the utility of germanate analogues as high-pressure models 

of hydrous and nominally anhydrous mantle silicates, (2) the demonstration of the feasibility 

of confocal Raman spectroscopy for the determination of very low (ppm-level) water 

concentrations in glasses and garnets, and (3) with the establishment of mineral-specific 

absorption coefficients for a routine quantification of trace water contents in nominally 

anhydrous minerals with infrared(IR) spectroscopy.  

 

(1) Ge-analogue material of ringwoodite, anhydrous phase B and superhydrous phase B was 

synthesized at 2 GPa and 950-1000°C with water in excess. The run products were 

characterized utilizing a variety of analytical and spectroscopic techniques. Our results show, 

that germanates are indeed good low-pressure analogues for hydrous mantle silicates in 

which protonation is controlled by stoichiometry. In contrast, we demonstrate that it is not to 

be recommended to use germanates as high-pressure models for nominally anhydrous 

minerals in water-related studies. In these Ge-bearing phases, which are usually synthesized 

at much lower pressures, i.e. lower water fugacities, OH incorporation differs from the high-

pressure silicon equivalents qualitatively and quantitatively, as hydroxyl solubility is governed 

by other factors like the water fugacity and intrinsic defects.  

 

(2) We present a technique for the quantification of water in glasses down to the ppm level, 

combining confocal microRaman spectroscopy with the recently developed “Comparator 

Technique”. To test this method we used a suite of glasses and gemstone-quality garnets 

with varying chemical compositions. Water contents were independently determined with 

proton-proton (pp) scattering and IR spectroscopy. In this work we demonstrate the 

usefulness of Raman spectroscopy for quantifying water concentrations in natural and 

synthetic glasses and garnets, and verify its adaptability for concentrations from 40 wt ppm 
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up to 40 wt % H2O. Furthermore, we propose an integrated molar absorption coefficient for 

water in quartz glass, εitot = 72000 ± 12000 lmol

� 

H2O

!1 cm-2, for quantitative IR spectroscopy.  

 

(3) It has been observed that frequently used calibrations for quantitative water analyses in 

solids cannot be adopted to nominally anhydrous minerals (Rossman 2006). In this work we 

synthesized olivine and SiO2 polymorphs with specific isolated hydroxyl point defects, e.g., 

quartz, coesite and stishovite with B3+ + H+ = Si4+ and/or Al3+ + H+ = Si4+ substitutions. We 

quantified sample water contents of both natural samples and our run products by applying 

pp-scattering, confocal microRaman spectroscopy and secondary ion mass spectrometry. 

Water concentrations were used to calculate new mineral-specific absorption coefficients. 

The dependency of the absorption coefficients obtained on specific OH point defects is 

discussed in this study. Our results confirm that not using mineral-specific calibrations for the 

water determination in nominally anhydrous minerals leads to misinterpretation of sample 

water concentrations, that are required for modelling the earth’s deep water cycle. Moreover, 

we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy 

combined with the “Comparator Technique”.  
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Einführung  

Wasserstoff ist das häufigste Element unseres Solarsystems und bildet gebunden an 

Sauerstoffatome H2O-Moleküle, OH--Gruppen und seltener H3O+, H3O2
-, H5O2

+ oder NH4
+-

Verbindungen (Hawthorne 1992; Prewitt & Parise 2000; Libowitzky & Beran 2006). Minerale 

können Wasser in verschiedenen Formen enthalten. Mehrere Gew.-% Wasser können 

stöchiometrisch im Kristallgitter gebunden sein, als H2O-Moleküle, wie z. B. im Gips, CaSO4 

x 2 H2O, oder als Hydroxylgruppe (OH-), z. B. im Malachit Cu2[(OH)2/CO3] oder Kaolinit 

Al4[(OH)8/SiO4O10]. Bedeutende Konzentrationen können aber auch in nichtstöchiö-

metrischen Verhältnissen in Hohlräumen oder auf Zwischengitterplätzen einiger wirtschaftlich 

relevanter Phasen vorhanden sein, wie z. B. in Zeolithen. Wasser kann, neben den 

genannten Mechanismen, in Form von Flüssigkeitseinschlüssen, als Adsorptionswasser oder 

in Versetzungsstrukturen an Minerale gebunden werden, wie es z. B. für Quarz bekannt ist 

(Kronenberg 1994). Spurenwassergehalte können aber ebenfalls als Hydroxyl-Punktdefekt1 

in nominell wasserfreien Mineralen gespeichert werden, die laut ihrer Formel kein Wasser 

enthalten. Während die Stabilitätsbereiche der Mehrheit nominell wasserhaltiger Minerale auf 

die Erdkruste und den oberen Erdmantel beschränkt sind, sind nominell wasserfreie Minerale 

auch darüber hinaus in der Übergangszone und im unteren Erdmantel stabil. Die 

experimentelle Untersuchung dieser Phasen ist daher eine wichtige Grundlage für das 

Verständnis der Wasserspeicherkapazität des Erdmantels. Pionierstudien von Kats & Haven 

(1960), Brunner et al. (1961) und Kats (1962) berichteten von bedeutenden OH-

Defektkonzentrationen in synthetischem Quarz. Heute ist bekannt, dass auch natürlicher 

Quarz typischerweise bis zu 40 Gew.-ppm H2O in Form von OH-Defekten einbaut und bis zu 

8000 Gew.-ppm H2O in Form von Flüssigkeitseinschlüssen enthalten kann (Kronenberg & 

Wolf 1990). In den letzten Jahrzehnten konnten durch zahlreichen Studien signifikante 

Wasserstoffgehalte (von einigen Gew.-ppm bis zu mehreren Gew.-% ) in nahezu allen 

wichtigen nominell wasserfreien Mineralen der Erdkruste (z. B. Feldspat, Granat) und des 

Erdmantels (z. B. Olivin, Pyroxen, Wadsleyit, Ringwoodit) nachgewiesen werden (z. B. Aines 
                                                
1 Im Bezug auf Hydroxyl-Punktdefekte in nominell wasserfreien Mineralen werden im Folgenden häufig der 
allgemeine Terminus „Wasser“ oder Gew.-% bzw. Gew.-ppm H2O verwendet.  
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& Rossman 1984; Skogby et al. 1990; Johnson & Rossman 2004; Smyth et al. 2003; 

Jacobsen et al. 2005; Koch-Müller et al. 2006). So enthalten wichtigen Mantelminerale wie 

Olivin bis zu 400 Gew.-ppm H2O (Beran & Libowitzky 2006), Granate können bis zu 2200 

Gew.-ppm H2O einbauen und an Pyroxenen wurden bis zu 600 Gew.-ppm H2O 

nachgewiesen (Johnson 2006), um nur einige Beispiele für Studien natürlicher Proben zu 

nennen. In experimentellen Untersuchungen zur Löslichkeit von Wasser in Mineralen in 

Abhängigkeit von Druck, Temperatur und der Zusammensetzung wurden im Allgemeinen 

höhere Konzentrationen für den Grossteil der wichtigen Erdmantelminerale bestimmt. Es 

wurde z. B. nachgewiesen, dass synthetischer Olivin bis zu 0.9 Gew.-%  H2O und Wadsleyit 

und Ringwoodit bis zu 3.1 Gew.-% H2O speichern können (z. B. Inoue et al. 1995; Kohlstedt 

et al. 1996; Smyth et al. 2006). Experimentelle Studien der Hochdruckforschung implizieren 

somit, dass nominell wasserfreie Minerale ein Vielfaches des Wassergehalts der 

Hydrosphäre speichern könnten. Es wird postuliert, dass Minerale des Erdmantels das 

grösste Wasserreservoir der Erde beinhalten könnten (Ringwood 1966; Martin & Donnay 

1972; Smyth 1987, 2006; Bell & Rossman 1992; Beran 1999; Ohtani 2005). Im Allgemeinen 

geht man davon aus, dass Wasser über wasserhaltige Minerale in Subduktionszonen ins 

Erdinnere geführt, von nominell wasserfreien Mineralen absorbiert und transportiert wird, um 

schliesslich über frische ozeanische Kruste wieder freigesetzt zu werden (Ito et al. 1983; Lu 

& Keppler 1997; Rüpke et al. 2004; Smyth 2006). Ferner wird auch der Beitrag von 

advektivem Fluss im Mantelkeil zum Recycling des Wassers diskutiert (Keppler & Bolfan-

Casanova 2006; Frost 2006).  

Eine Diskussion über die Rolle nominell wasserfreier Minerale für die Aufrechterhaltung des 

Wasserkreislauf der Erde setzt die Kenntnis ihrer grundlegenden strukturellen 

Hydratationsmechanismen voraus, welche im Folgenden kurz erläutert werden sollen. In 

nominell wasserfreie Minerale wird Wasserstoff hauptsächlich in Form von OH-

Punktdefekten eingebaut. Eine Möglichkeit des Wassereinbaus sind Leerstellen im 

Kristallgitter: die Vakanz der Kationenposition wird durch die zusätzliche positive Ladung des 

Wasserstoffatoms kompensiert. Dabei ist die verbreiteteste Art die Hydrogranatsubstitution 
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Si4+ + 4O2- = (4)[ ] + 4OH-, bei der es sich um 4 ladungskompensierende Protonen gekoppelt 

an die Sauerstoffatome einer Si4+-Leerstelle handelt. Diese Art der Substitution, die auch als 

Cluster einzelner OH-Defekte betrachtet werden kann, ist für eine Vielzahl von Mineralen 

bekannt, so z. B. für Granat (Lager et al. 1989; Rossman & Aines 1991; Wright et al. 1994; 

Lager et al. 2005), Coesit (Koch-Müller et al. 2001), Olivin (Libowitzky & Beran 1995), 

Perowskit (Beran et al. 1996) oder auch Ringwoodit (z. B. Blanchard et al. 2005a, b). 

Weiterhin kann der strukturelle Einbau von OH-Defekten über gekoppelte Substitutionen 

erfolgen, wie z. B. der Reduktion von dreiwertigem Eisen zu zweiwertigem Eisen (z. B. 

Kudoh et al. 1996), wobei der Einbau des Wasserstoffs durch die reduzierte Ladung des 

Eisens ausgeglichen wird. Eine andere weitverbreitete Art der Hydratation ist der Ersatz von 

Kationen auf Tetraeder- oder Oktaederplätzen, wie z. B. die Substitution von Si4+ durch Al3+ 

oder B3+ und der damit verbundenene Ladungsausgleich durch H+ (z. B. Kats 1962; Smyth et 

al. 1995).  

Durch den Wassereinbau werden die Mineralstrukturen modifiziert, es entstehen 

Defektstrukturen, die Änderungen der Mineraleigenschaften zur Folge haben. Schon die 

Anwesenheit von Spurenwassergehalten in Erdmantelmineralen führt zu Änderungen ihrer 

chemischen und physikalischen Eigenschaften und hat somit einen grossen Einfluss auf die 

Rheologie, die Seismik sowie die Phasengleichgewichte und das Schmelzverhalten. Es ist 

weithin anerkannt, dass die Anwesenheit von Wasser Rheologie und Schmelzverhalten von 

Festkörpern beeinflusst und somit magmatische Prozesse (Hirth & Kohlstedt 1996) 

kontrolliert. So ist das sogenannte „hydrolytic weakening“ erstmals in den 60iger Jahren an 

Quarz beobachtet worden (z. B. Griggs 1967; Kekulawala et al. 1981; Kronenberg et al. 

1986; Kronenberg & Wolf 1990). Später wurde dieses Phänomen auch an weiteren 

Mineralphasen des Erdmantels nachgewiesen (z. B. Dimanov et al. 1999, 2003; Rybacki & 

Dresen 2000, 2004; Hirth & Kohlstedt 2003; Hier-Majumder et al. 2005) und wird unter 

anderem als Ursache für Erdbeben diskutiert (z. B. Dobson et al. 2002). Verschiedene 

Studien zeigen, dass Wasser Schmelztemperaturen reduziert und die Magmenbildung 

initiiert (Hirth & Kohlstedt 1996; Asimow et al. 2004; Hirschmann 2006). Spurengehalte von 
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Wasserstoff haben enorme Auswirkungen auf einige physikalische Mineraleigenschaften wie 

das Deformationsverhalten (Kavner 2003; Kohlstedt 2006), Viskosität (Karato et al. 1986), 

Wärme- sowie elektrische Leitfähigkeit (Mackwell et al. 1985; Karato 1990; Huang et al. 

2005; Wang et al. 2006). Solch geringe Konzentrationen beeinflussen weiterhin das 

Diffussionsverhalten (Kohlstedt & Mackwell 1998; Demouchy 2004; Kurka 2005; Lathe et al. 

2005; Ingrin & Blanchard 2006; Peslier & Luhr 2006) und Phasentransformationen (Wood 

1995; Kohlstedt & Mackwell 1998; Smyth and Frost 2002) und können sowohl 

Strahlungsschäden als auch den metamikten Zustand einiger Minerale (Hawthorne et al. 

1991; Aines & Rossman 1986) stabilisieren. Wasser in Mineralen verändert 

Kompressibilitäten (Smyth et al. 2003; 2004), Laufzeitgeschwindigkeiten seismischer Wellen 

und die elastischen Konstanten von Mineralen (z. B. Jacobsen et al. 2005, 2006). Jacobsen 

et al. (2004) zeigen beispielsweise, dass ein Wassergehalt von ca. 1 Gew.-% in Ringwoodit 

denselben Effekt auf die P- und S-Wellengeschwindigkeiten hat, wie eine 

Temperaturerhöhung um 600 bis 1000 °C, das heisst, mit einer erheblichen Reduktion der 

Wellengeschwindigkeiten verbunden ist. Der Wassereinbau in Minerale hat also einen 

grösseren Effekt auf seismische Wellengeschwindigkeiten als bisher angenommen und die 

Auswertung tomographischer Bilder der Übergangszone muss überdacht werden. 

Weitere Studien beschäftigen sich mit der Speicherkapazität des Erdmantels (Bolfan-

Casanova et al. 2000; Huang et al. 2005; Hirschmann et al. 2005; Hirschmann 2006) und mit 

dem Ursprung des Wassers auf der Erde. Diskutiert wird beispielsweise, ob die an 

natürlichen Mantelmineralen bestimmten Wassergehalte über geologische Zeiträume 

konstant waren und damit Aufschluss über anfängliche Bedingungen geben oder, ob sie 

durch Transport an die Erdoberfläche verändert wurden (z. B. Thompson 1992; Ingrin & 

Skogby 2000; Peslier & Luhr 2006; Jacobsen & van der Lee 2006). Auf diese Weise wird 

versucht, Fragen zur chemischen Evolution und zu inneren Prozessen der Erdentwicklung zu 

beantworten.  

Für das Verständnis der Änderungen von Mineraleigenschaften und ihrer Auswirkungen auf 

Mantelprozesse ist es erforderlich, deren Abhängigkeiten von variierenden Wassergehalten 
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zu erforschen. Die zentralen Fragen dabei lauten: „Wieviel Wasser kann in solchen 

Mineralen gespeichert werden?“, „Welche Parameter kontrollieren die H-Konzentration?“ und 

„Welche Hydratations- und Dehydrationsmechanismen sind verantwortlich?“.  

Als geeignete Methode zur Wasserstoffbestimmung im Spurenbereich hat sich die IR-

Spektroskopie bewährt. Bei dieser Methode wird elektromagnetische Strahlung im IR-

Bereich auf eine Probe gestrahlt und regt Molekülschwingungen an, indem ein Teil des 

eingestrahlten Lichts von den Probemolekülen absorbiert wird. Diese Schwingungen 

verursachen charakteristische Absorptionsbanden im IR-Spektrum. Die IR-Spektroskopie 

ermöglicht die Charakterisierung der H-Brückenbindungen, der räumlichen Orientierung der 

OH-Vektoren, eine Lokalisierung des Protons sowie eine Konzentrationsbestimmung. Die 

Konzentration der jeweiligen Spezies, kann unter Benutzung des Lambert-Beer’schen 

Gesetzes bestimmt werden (A = c x d x ε), welches besagt, dass die gemessene Absorption 

(A) einer Spezies direkt proportional zur Konzentration dieser Spezies (c) und der Dicke der 

Probe (d) ist. Der Proportionalitätsfaktor wird Extinktionskoeffizient (ε) genannt. Zur 

Quantifizierung ist daher eine Kalibrierung erforderlich. Seit einigen Jahren werden zur 

Wasserbestimmung in Mineralen Kalibrierungen verwendet (Paterson 1982; Libowitzky & 

Rossman 1997), die hauptsächlich an wasserführenden Mineralen und Gläsern erstellt 

wurden. Studien an nominell wasserfreien Mineralen sprechen jedoch gegen eine 

Anwendbarkeit dieser bestehenden Kalibrierungen für derartige Minerale, die Wasser nur in 

Spuren enthalten. Die ermittelten Werte weichen teilweise bis zu einem Faktor von 4 von den 

Kalibrierkurven ab (Koch-Müller et al. 2001; Pawley et al. 1993). Die Ermittlung der absoluten 

Wassergehalte erfordert folglich für jedes nominell wasserfreie Mineral eine eigene 

mineralspezifische Kalibrierung, die mit Hilfe einer unabhängigen Absolutmethode erstellt 

werden kann. Solche mineralspezifischen Kalibrierungen wurden in den letzten Jahren für 

ausgewählte Mineralgruppen entwickelt. Für die IR-Spektroskopie benötigte 

Extinktionskoeffizienten wurden so z. B. für Quarz (z. B. Brunner et al. 1961; Kats 1962; 

Chakaborty & Lehmann 1976, Paterson 1982), Coesit (Koch-Müller et al. 2001), Pyroxen 

(Bell et al. 1995), Olivin (Bell et al. 2003), Feldspat (Johnson and Rossman 2003), Granat 
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(Maldener et al. 2001; Rossman 1988; Rossman and Aines 1991) und Stishovit (Pawley et 

al. 1993) bestimmt. Als Quantifizierungsmethoden zur Bestimmung unabhängiger Daten für 

nominell wasserfreie Minerale dienten in der Vergangenheit z. B. Wasserstoffmanometrie 

(Bell et al. 1995), Kernreaktionsanalyse (Bell et al. 2003, 2004; Hammer et al. 1996; 

Maldener et al. 2001; Rossman et al. 1988) und 1H-Kernresonanz (Keppler and Rauch 

2000, Cho and Rossman 1993, Johnson and Rossman 2003; Kohn 1996), wobei alle 

genannten Techniken durch, mehr oder minder grosse, Probleme infolge spezieller 

Anforderungen an Probenpräparation und –quantität geprägt sind. Die Wasserstoff-

manometrie ist eine Extraktionsmethode bei der das Probenwasser durch Erhitzen unter 

Vakuum ausgetrieben und zu Wasserstoff reduziert wird, welcher dann in einer 

Kalbrierkammer quantifiziert wird. Der Nachteil dieser Methode ist, dass bei geringen 

Wasserkonzentrationen im Zehner-Gew.-ppm-Bereich mehrere Gramm an homogenem 

Probenmaterial benötigt werden. Die Kernreaktionsanalyse basiert auf charakteristischen 

Kernreaktionen des einfallenden Ions mit den Ionen der Probe. Für die Wasserstoffanalyse 

wurde in der Vergangenheit die 15N-Methode am häufigsten verwendet. Bei dieser Methode 

wird eine Wechselwirkung von 15N Ionen und den Wasserstoffionen der Probe induziert. Es 

entsteht ein 16O-Kern, der durch α-Zerfall in den angeregten Endkern 12C zerfällt, welcher 

wiederum beim Übergang in den Grundzustand γ-Strahlung aussendet, die direkt 

proportional zur absoluten Wasserstoffkonzentration der Probe ist. Die 1H-Kernresonanz-

spektrometrie beruht auf der Wechselwirkung der magnetischen Momente der Atomkerne 

mit elektromagnetischer Strahlung. Die rotierende elektrische Ladung des H-Atomkerns 

erzeugt ein schwaches Magnetfeld. Die Kernpolarisation des positiv geladenen Atomkerns 

des Wasserstoffatoms wird durch die Einstrahlung eines äusseren Magnetfeldes verändert, 

das schwache Magnetfeld des Kerns richtet sich parallel oder senkrecht zum äusseren 

Magnetfeld aus. Entspricht die Energieänderung zwischen beiden Zuständen der 

Senderfrequenz einer Hochfrequenzspule, tritt Resonanzabsorption auf. Die 

Resonanzfrequenz hat für ein gegebenes Magnetfeld für jeden Kern in einer bestimmten 

chemischen Umgebung einen charakteristischen Wert. Für die Wasserstoffanalyse wird 
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zumeist das sogenannte „magic-angle-spinning“ eingesetzt, bei dem der Probenhalter um 

seine eigene Achse in einem Winkel von 54°44’ zum externen statischen Magnetfeld schnell 

rotiert wird, um ein hochaufgelöstes Probenspektrum zu erzeugen. Ein Vorteil ist die 

mögliche Separierung verschiedener Spezies und die Charakterisierung ihrer direkten 

chemischen Umgebung. Nachteile dieser Methode sind jedoch die benötigte Probenmenge 

(mg - g) und die Verwendung von Pulverproben. So wird diskutiert, ob polykristallines 

Material repräsentative Ergebnisse für äquivalente Einkristalle liefert oder, ob die 

nachgewiesenen Wassergehalte möglicherweise durch Wasser an Korngrenzen oder 

submikroskopische Einschlüsse in grossem Masse verfälscht werden (z. B. Keppler & Rauch 

2000). Ferner ist die Anwendung auf Minerale mit möglichst geringen Gehalten an 

paramagnetischen Ionen beschränkt. Analytische Herausforderungen im Bezug auf den 

Nachweis von Spurenwasserstoffgehalten in geologischem Material bieten auch weitere 

Methoden, wie die Sekundärionenmassenspektrometrie (z. B. Rhede and Wiedenbeck 

2006). Bei letzterer Technik wird ein Strahl beschleunigter Primärionen (meist O-, Cs+) auf 

die zu untersuchende Probe fokussiert und trägt diese sukzessive ab, indem die Primärionen 

Sekundärionen aus der Probe herausschiessen, welche massenspektrometrisch analysiert 

werden. Zur Quantifizierung werden geeignete Eichproben mit definierten Wassergehalten 

benötigt. Grundlegende Vorteile, wie die Insensitivität gegenüber der Probenorientierung und 

eine hervorragende lokale Auflösung (Yurimoto et al. 1989; Kurosawa et al. 1992; Deloule et 

al. 1995; Koga et al. 2003; Hauri et al. 2002; Aubaud et al. 2007) werden durch Faktoren, wie 

z. B. den Einfluss der Matrixzusammensetzung (Hervig 1987; Koga et al. 2003, Aubaud et al. 

2007), dem „Channeling“-Effekt, einer hohen Vakuumqualität zur Bewältigung störender 

Wasserstoffsignale im Untergrund, einer Mindestgrösse der Proben, einer zeitaufwendigen 

Präparation und der lokalen Zerstörung der Proben, in den Schatten gestellt. Andere 

Techniken, wie elastische Rückstreudetektionsanalyse (Sweeney et al. 1997) und 

Proton-Proton-Streuung (Wegden et al. 2005; Reichart et al. 2004) befinden sich in 

Entwicklung. Die elastische Rückstreudetektionsanalyse basiert auf der Rutherford-

Streuung. Ein hochenergetischer 4He+-Ionenstrahl wird auf die Probe fokussiert und führt zur 
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Streuung der Protonen. Das rückgestreute Probenatom wird an einem Siliziumdetektor direkt 

nachgewiesen. Zusätzlich erhält man Tiefeninformationen durch Energieverluste, die die 

gestreuten Probenatome auf dem Weg durch die Probe erfahren. Bei der Verwendung von 

Projektil-Ionen wie Helium limitiert jedoch die Strahlenschädigung die Nachweisgrenze auf 

einige hundert Gew.-ppm H und die Tiefeninformation auf einige µm. Bei der Proton-

Proton-Streuung werden keine He-Ionen sondern ein hochenergetischer Protonenstrahl auf 

die Probe fokussiert. Durch die Wechselwirkung der eingestrahlten Protonen mit den 

Probenwasserstoffatomen werden signifikante Streuereignisse induziert. Reaktionsprodukte 

sind zwei elastisch gestreute Protonen, die die Probe in Transmission durchqueren und von 

zwei gegenüberliegenden Siliziumdetektoren in Koinzidenz registriert werden, an denen sie 

zur selben Zeit in einem definierten Winkel eintreffen. Die Koinzidenzmessung wird benutzt, 

um die Proton-Proton-Ereignisse von anderen Streuereignissen zu filtern und man erhält ein 

nahezu untergrundfreies Wasserstoffsignal. Aus der Anzahl der Protonenereignisse und dem 

für Wasserstoff bekannten Streuquerschnitt erhält man direkt die absolute 

Wasserstoffkonzentration der Probe. Aus Energieverlustanalysen können gleichzeitig 

Tiefenprofile erzeugt werden. Analog zur elastischen Rückstreudetektionsanalyse ist es so 

möglich, Oberflächenwasser vom eigentlichen Wassergehalt der Probe zu separieren. 

Letztere Methode, obwohl bisher nur selten in den Geowissenschaften genutzt, ist 

vielversprechend für die Quantifizierung von Spurenwasserstoffgehalten, zieht man 

angestrebte Empfindlichkeiten im sub-ppm Bereich bei sub-µm Auflösungen in Betracht.  

Die am häufigsten genutzte Methode zur Wasserquantifizierung bleibt jedoch die IR-

Spektroskopie, die sich unter anderem durch eine hohe Empfindlichkeit, durch eine 

verhältnismässig einfache Handhabung und eine breite Verfügbarkeit auszeichnet. Für 

nominell wasserfreie Minerale wird trotz methodischer Fortschritte und Einführung neuer 

Extinktionskoeffizienten zumeist die Kalibrierung von Paterson (1982) angewandt (z. B. 

Mosenfelder 2000; Bolfan-Casanova et al. 2000; Katayama & Nakashima 2002). So 

gewonnene Werte können daher nur als erste Schätzungen betrachtet werden. Grundlagen 

für die Interpretation geophysikalischer Daten und somit für eine Modellierung dynamischer 
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Prozesse in Erdkruste und –mantel bilden jedoch absolute Wasserkonzentrationen. Die 

Kenntnis diskreter Veränderungen chemischer und physikalischer Mineraleigenschaften als 

Funktion des absoluten Wassergehaltes ist notwendig, um einen dynamischen inneren 

Wasserkreislauf zu beschreiben. 

Es wäre wünschenswert und bleibt zu hoffen, dass es in nicht allzu ferner Zukunft möglich 

sein sollte, die Geschichte des Wassers auf der Erde, von seiner Bildung bis heute, zu 

kennen, um einen der wichtigsten, aber bisher leider am wenigsten verstandenen Prozesse 

der Erde, den globalen Wasserkreislauf, besser nachvollziehen zu können.  

 

Einen Beitrag zur aktuellen Forschung auf diesem Gebiet soll die vorliegende Dissertation 

leisten. Die Aufgabenstellung dieser Arbeit beinhaltet die Synthese nominell wasserfreier 

Minerale, die Untersuchung verantwortlicher Hydratationsmechanismen und die 

Quantifizierung der Wassergehalte mit Hilfe unabhängiger Methoden, um schliesslich neue 

mineralspezifische Extinktionskoeffizienten für die IR-Spektroskopie zu bestimmen. Im 

Rahmen dieses Projektes wurden unter anderem Quarz, Coesit, Stishovit, Olivin, 

Ringwoodit, Germanate, Granat und Staurolith untersucht. Die vorliegende Arbeit ist in drei 

Teile untergliedert. Jeder Teil stellt dabei eine Einzelpublikation dar, die jeweils zur 

Veröffentlichung in internationalen Fachzeitschriften eingereicht wurden (Kapitel 1 und 2) 

oder werden (Kapitel 3). Die englischsprachigen Manuskripte wurden in Zusammenarbeit mit 

kollaborierenden Wissenschaftlern verfasst. Im Folgenden werden kurze Einführungen in die 

drei Einzelpublikationen gegeben:    

 

Der erste Teil (Kapitel 1) beschäftigt sich mit der Verwendung von Germanat-

Hochdruckmodellen zur Untersuchung des Wasserstoffeinbaus in Erdmantelsilikate. In 

zahlreichen experimentellen Studien wurden bedeutende Wassergehalte in nominell wasser-

freien Mantelmineralen, wie z. B. Ringwoodit, nachgewiesen (z. B. Kohlstedt et al. 1996). 

Spezifische Einbaumechanismen und die Löslichkeiten von Wasser in nominell wasserfreien 

Mineralen sowie auch in nominell wasserhaltigen Mantelphasen, wie z. B. Superhydrous 
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Phase B, sind von besonderem Interesse, um deren Rolle für die Aufrechterhaltung des 

Wasserkreislaufs der Erde zu definieren. Zur Untersuchung von Hochdruckphasen werden 

häufig Germanium-Analoga verwendet. Germanate benötigen geringere Drucke für Phasen-

übergänge und eignen sich daher als Hochdruckmodelle für Silikate (z. B. Ringwood 1975). 

Zahlreiche Studien von Germanaten lieferten so in der Vergangenheit wichtige Informationen 

zu Kristallchemie, Struktur, Stabilitätsbereichen und Phasentransformationen wichtiger 

Erdmantelminerale (z.B. Ohtani et al. 2001). Die Wassereinbaumechanismen sind jedoch 

weitgehend unerforscht. Basierend auf atomistischen Modellierungen von OH-Defekten in 

Ge-Ringwoodit befürworteten Blanchard et al. (2005a, b) die Benutzung von Germanat-

modellen für die Untersuchung der Hydratationsmechanismen in nominell wasserfreien 

Mineralen. Es existiert bis dato jedoch nur eine experimentelle Modellstudie für Ge-

Ringwoodit mit 5-10 Gew.-ppm H2O (Hertweck & Ingrin 2005).  

Ziel dieser Arbeit ist es, die Anwendbarkeit von Germanatmodellen für Aussagen über den 

qualitativen und quantitativen Wassereinbau in Mantelsilikate zu untersuchen. Für diesen 

Zweck wurden Ge-Analoga von Ringwoodit, Anhydrous Phase B und Superhydrous Phase B 

synthetisiert und mit verschiedenen analytischen und spektroskopischen Methoden 

charakterisiert. Basierend auf Röntgenverfeinerungsdaten und IR-Spektren werden 

Hydratationsmechanismen für Ge-Ringwoodit und Ge-Anhydrous Phase B vorgeschlagen. 

Die Ergebnisse für die Germaniumphasen werden mit Literaturdaten ihrer Silikatäquivalente 

verglichen, um abschliessend die Anwendung von Germanaten als Hochdruckmodelle zu 

diskutieren.  

 

Der zweite Teil (Kapitel 2) beschäftigt sich mit der Bestimmung von Wassergehalten in 

amorphen und isotropen Materialien, wie Gläsern und Granaten unter Benutzung der  

konfokalen Ramanspektroskopie. Letztere Methode hat sich in Verbindung mit einer 

externen Kalibrierung, der sogenannten „Komparator-Technik“, für die Bestimmung von 

Wassergehalten von 0.1 bis 40 Gew.-% in natürlichen und synthetischen Gläsern bewährt (z. 

B. Thomas & Davidson 2006). Die untere Nachweisgrenze ist jedoch unerforscht.  
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Ziel dieser Arbeit ist es, die Anwendbarkeit konfokaler Ramanspektroskopie für die 

Bestimmung von Wassergehalten im ppm-Bereich zu untersuchen. Ferner soll die Eignung 

dieser Quantifizierungstechnik für isotrope Minerale geprüft werden.   

 

Im dritten Teil (Kapitel 3) werden verschiedene unabhängige Quantifizierungsmethoden 

verwendet, um mineralspezifische IR-Extinktionskoeffizienten für die Wasserstoffbestimmung 

in nominell wasserfreien Mineralen zu berechnen, da bekannt ist, dass allgemein gültige IR-

Kalibrierungen für die Wasserbestimmung in Festkörpern nicht für nominell wasserfreie 

Minerale geeignet sind (z. B. Rossman 2006). In dieser Arbeit wurden Olivin und SiO2-

Polymorphe mit isoliert eingebauten OH-Punktdefekten synthetisiert, z. B. Quarz, Coesit und 

Stishovit mit B3+ + H+ = Si4+ und/oder Al3+ + H+ = Si4+ Substitutionen. Die Wassergehalte der 

Syntheseprodukte sowie einzelner natürlicher Proben wurden unter Anwendung von pp-

Streuung, konfokaler Ramanspektroskopie und SIMS quantifiziert. Die resultierenden Daten 

wurden für die Berechnung neuer mineralspezifischer Extinktionskoeffizienten für die IR-

Spektroskopie genutzt, um abschliessend deren Abhängigkeiten von spezifischen OH-

Defekten zu diskutieren. 

 

Im Rahmen dieser Einführung konnten viele Aspekte dieses Forschungszweigs nur kurz 

angesprochen werden. Detaillierte Informationen kann der Leser in der jeweilig angegebenen 

Literatur finden. Des Weiteren empfiehlt es sich, kürzlich erschienene Überblicksbände wie z. 

B. Libowitzky & Beran (2004), Keppler & Smyth (2006) oder Jacobsen & van der Lee (2006) 

zu studieren. 
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Abstract 

To gain insight into hydroxyl solubilities and possible hydration mechanisms of mantle silicates, as well as to test 

the utility of germanium analogue models in studies of water-related defects, our present work is focused on the 

protonation of germanium analogues of silicates.  

For this purpose Ge-analogues of ringwoodite, anhydrous phase B (anhB), and for the first time, superhydrous 

phase B (shyB), were synthesized in a piston cylinder device at 2 GPa and 950-1000°C under water-excess 

conditions. Electron probe microanalysis (EPMA), Transmission electron microscopy (TEM), and X-ray diffraction 

as well as Raman and infrared (IR) spectroscopy were used to characterize the experimental products.  

Ge-ringwoodite incorporates from 900 to 2200 ppm H2O by weight, which is much less than Smyth et al. (2003) 

observed for the Si-equivalent synthesized at 22 GPa and 1500 °C, but up to 200 times more than published for γ-

Mg2GeO4 by Hertweck and Ingrin (2005). In addition to this discrepancy, the incorporation mechanism of H in Ge-

ringwoodite also differs from that of Si-ringwoodite.  

Ge-anhB, which is currently believed to be anhydrous in the Si-system, contains from 2400 to 5300 ppm water by 

weight. A hydration model for germanate anhB was constructed based on single-crystal X-ray diffraction analysis 

and IR spectroscopy, in which OH is incorporated via the hydrogarnet substitution [VGe·4(OH)O]x and via vacant 

Mg sites [VMg·2(OH)O]x.  

For Ge-shyB the water concentration and incorporation mechanism obtained in this study are identical to results 

reported for the silicate phase synthesized at 22 GPa and 1200 °C (Koch-Müller et al. 2005). Thus, germanates 

are good low-pressure analogues for hydrous mantle silicates in which protonation is controlled by stoichiometry. 

However, for nominally anhydrous minerals we cannot recommend the use of germanates as high-pressure 

models in water-related studies. In these Ge-analogues, which are usually synthesized at much lower pressures, 

i.e., lower water fugacities, OH incorporation seems to differ from the high-pressure silicate equivalents 

qualitatively and quantitatively, as hydroxyl solubility is governed by other factors such as water fugacity and 

intrinsic defects.  

 

Keywords: germanates, ringwoodite, nominally anhydrous minerals, FTIR, anhydrous phase B, superhydrous 
phase B 
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Introduction 

A significant number of high-pressure and high-temperature experiments have been carried 

out in the past to characterize phase relations in the system MgO-SiO2-H2O (MSH). 

Numerous investigations have established that major mantle constituents, e.g., olivine and its 

two dense polymorphs, are able to dissolve several wt% water, although their formulas 

indicate that they are nominally anhydrous minerals (NAMs) (e.g., Kohlstedt et al. 1996, 

Smyth 1987; Smyth et al. 1997; Kudoh et al. 2000; Bolfan-Casanova et al. 2000; Kleppe et 

al. 2002; Kohn et al. 2002). Cubic ringwoodite [γ-(Mg,Fe)2SiO4] with the space group Fd 3m 

is one of the most abundant minerals in the Earth’s transition zone from about 525 to 660 km 

depth. Therefore, the ability to store hydroxyl in its structure is of particular interest. With the 

same motivation a large variety of dense hydrous magnesium silicates, first discovered by 

Ringwood and Major (1967), have been recognized, that are stable at very high pressure and 

temperature and cover a wide range of water and silica contents (e.g., phase D, phase E; 

e.g., Yamamoto and Akimoto 1974; Akaogi and Akimoto 1986; Kato and Kumazawa 1985; 

Kanzaki 1991; Gasparik 1993; Luth 1993; Cynn et al. 1996; Frost 1999; Ohtani et al. 2001, 

Ganguly and Frost 2006). One of these phases is anhB (Mg14Si5O24) with an atomic Mg/Si 

ratio of 2.8. It was first synthesized at 2380 °C and 16.5 GPa by Herzberg and Gasparik 

(1989). Another phase in the MSH system is shyB [Mg10Si3O14(OH)4], a nominally hydrous 

phase with an atomic Mg/Si ratio of 3.3, and 5.8 wt% of stoichiometrically incorporated water. 

It was first synthesized at 19 GPa and 1450 °C and described by Gasparik (1993). According 

to their PT-stabilities these dense hydrous magnesium silicates are potential hosts for water 

in cold subduction zones. However, whether they really exist in nature is still under debate, if 

so, their dehydration at hotter parts of the lower mantle could have, among other effects, 

implications for as yet poorly understood deep-focus earthquakes (Silver et al. 1995). Such 

examples suggest the geological importance of studying the protonation of compounds in the 

MSH system, qualitatively and quantitatively, as water dissolved in these minerals may 
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change their chemical and physical properties, and might have an unforeseen impact on 

mantle processes.  

To investigate such mantle silicates, germanates have been extensively used as analogues. 

In contrast to silicates, germanates require much lower pressures for specific phase 

transitions, because at zero pressure tetravalent Ge inherently has a slightly larger atomic 

radius than tetravalent Si. As shown by Ringwood (1975) phase transformations are 

controlled by critical effective radius ratios.  

In recent studies, Blanchard et al. (2005a, b) modeled OH defects in germanate ringwoodite 

and suggested using germanium analogues to study the protonation of NAMs. However, only 

dry Ge-anhB (e.g., von Dreele et al. 1970) and Ge-ringwoodite, containing 5 to 10 wt ppm 

water (Hertweck and Ingrin 2005), have previously been synthesized as high-pressure 

models. The data obtained provided useful constraints on structure, crystal chemistry, phase 

transformations and PT-stabilities. However, the hydrogen incorporation mode in those 

phases is still largely unknown. The aim of this work is to test the utility of germanium 

analogue models in studies of water-related defects, and to do this we synthesized the Ge-

analogues of ringwoodite, anhB and Ge-shyB. On the basis of X-ray refinements and IR 

spectra we developed new hydrogen incorporation models for Ge-ringwoodite and Ge-anhB. 

Furthermore, we compare our results with the associated silicon equivalents and discuss the 

application of germanates as low-pressure analogues. 

 

Experimental Methods 

Syntheses 

Starting materials were made up from MgO, Mg(OH)2 and GeO2 to give compositions with 

different MgO-GeO2 ratios. The starting powders were loaded in 10 mm long gold capsules 

with an outer diameter of 6 mm and a wall thickness of 0.5 mm and were sealed by cold 

welding to avoid water loss. All experiments were carried out in an end-loaded piston-cylinder 

apparatus (Boyd and England 1960) at 2 GPa and 950 °C or 1000 °C with up to 23 wt% 
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water. Starting mixtures, experimental conditions and compositions of the run products are 

summarized in Table 1. After quenching, the recovered capsule was opened and checked for 

the presence of excess water, which could be observed in all runs. 

 
Table 1. Starting compositions, experimental conditions, electron probe microanalyses (wt%) and structural 
formulae. 
 
Sample Starting composition (wt %) p (GPa) T (°C) Run duration (h) Characteristics 
 MgO GeO2 H2O     

Ge-anhB 43.51 37.06 19.43 2 1000* 10 
clear crystals, up to 
200 µm, no 
coexisting phase 

Ge-
Ringwoodite 43.51 46.77 9.72 2   950 24 

 
clear crystals with 
nearly ideal cubic 
sections, up to 400 
µm in size, no 
coexisting phase 

Ge-shyB 51.88 24.95 23.17 2 1000 16 

 
clear crystals of Ge-
shyB, up to 50 µm in 
size, coexisting 
phases: periclase, 
brucite 

Sample No. anal. MgO GeO2 Total Formula  

Ge-anhB 
Ge-shyB 

28 
12 

51.18(16) 
51.33(24) 

48.34(47) 
40.43(25) 

99.52(51) 
91.77(32) 

Mg13.89(6)Ge5.06(3)O24 
Mg9.96(3)Ge3.02(2)O14(OH)4 

 

Notes:    Numbers in parantheses give 1 σ standard deviation in terms of the preceding figure. 
*   – Temperature between 1000 and 1100 °C. 

 
 

Electron probe microanalysis  

For chemical analyses several grains of Ge-anhB and Ge-shyB were mounted, polished and 

coated with carbon. Compositions were measured with a Cameca SX-50 electron microprobe 

using wavelength-dispersive spectrometers with a PAP correction procedure. The 

microprobe was operated at 15 kV with a beam current of 20 nA and a spot size of 2 µm. 

Counting times were 60 s on peaks (Mg, Ge) and 30 s on backgrounds (left and right side of 

the peaks). Ge-ringwoodite synthesized in this study was used as the standard. This was 

justified by single-crystal X-ray refinement of this sample (see below).  
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Transmission electron microscopy  

To characterize microstructures, sample homogeneities and compositions by TEM, specific 

foils were prepared from single crystals mounted in crystal-bond, using the focused-ion-beam 

technique (Wirth 2004), and a FEI FIB200 focused ion beam device with a Ga-ion source 

operated with an acceleration voltage of 30 kV. Final foils of 15

� 

!10

� 

!0.2 µm in size were 

removed from the sample using an optical microscope and placed onto a perforated TEM 

carbon grid. No further carbon coating was required. TEM analyses of Ge-anhB and Ge-

ringwoodite were performed in a Philips CM200 electron microscope operating at 200 kV with 

a LaB6 electron source. Ge-shyB was analyzed with a FEI TecnaiTMG2 F20 X-Twin at 200 kV 

equipped with a FEG electron source. Both microscopes are provided with a Gatan imaging 

filter for the acquisition of energy-filtered images and high-resolution electron micrographs, 

and an energy-dispersive X-ray spectroscopy system for analytical electron microscopy. 

Electron diffraction was used to determine the orientation of the samples.  

 

X-ray diffraction 

The samples were identified by polarized light microscopy and X-ray diffraction. Table 1 lists 

the run products with their characteristics. X-ray powder measurements on Ge-shyB were 

done with a fully automated STOE Stadi P diffractometer, equipped with a curved Ge (111) 

primary monochromator, a 7°-wide position sensitive detector (PSD) and CuKα-radiation. 

The X-ray tube was operated at 40 kV and 40 mA, using a take-off angle of 6°. Intensities 

were recorded in the range of 5 - 125° with a detector step size of 0.1° and a resolution of 

0.02°. Unit cell dimensions and lattice parameters were determined using the GSAS software 

package for Rietveld refinement (Larson and von Dreele 1987). 

In addition, small platy specimens of Ge-anhB and Ge-Ringwoodite were measured on a 

Stoe IPDS-II imaging plate diffractometer at the Mineralogical Institute of the University of 

Innsbruck, Austria. Parameters pertaining to the data collection and the subsequent structure 

refinements are summarized in Table 2. All data were numerically corrected for absorption by 



  Kapitel 1 

 30 

use of indexed crystal faces. Further data reduction including Lorentz and polarization 

corrections was performed with the STOE program package X-RED (XRED, 1996). 

 

Raman spectroscopy 

Raman spectra of several sample grains were taken using a Dilor XY Laser Triple 800 mm 

spectrometer (1800 lines/mm gratings), equipped with a Peltier cooled CCD detector (1024 

elements), a Coherent water-cooled Argon Laser, an Olympus optical microscope and a long 

working distance 80

� 

!  objective (ULWD MSPlan80). The slit width was 100 µm at a 

corresponding spectral resolution of about 1 cm-1. Other spectra were acquired with a 

LabRAM HR800 UV-VIS spectrometer with a motorized XY-stage and a long working 

distance 100x objective (LWD VIS, NA = 0.80, WD = 3.4 mm). The 488 nm line of an Ar+ 

Laser (Model Innova 70-3) was generally used for sample excitation, at 450 mW and 500 

mW laser power and thus 65.7 mW and 73 mW power on the specimen, respectively. 

However, the excitation source of some measurements was the 514 nm line of an air-cooled 

Melles Griot Ar+ Laser at 30 mW laser power and a power of 6.5 mW on the sample. The 

confocal hole of the LabRAM HR800 spectrometer was chosen according to requirements 

(100 to 300 µm). All spectra were recorded in two frequency ranges, high-frequencies 

between 2800 and 4000 cm-1 and low-frequencies between 200 and 1400 cm-1. Spectra 

acquisition time varied from 3

� 

!10 s to 3

� 

!50 s for each window. 

 

Infrared spectroscopy 

For the Fourier-transform infrared (FTIR) measurements optically clear single-crystals with 

smooth crystal faces were selected, and dried for 18 hours at 170 °C (SMT501, SMT507) or 

400 °C (SMT502) in a muffle type furnace. The sample thickness was determined under an 

optical microscope using the eyepiece reticule and a stage micrometer scale for calibration. 

The final thickness ranged from 45 µm to 90 µm; errors are estimated as ± 5 µm.  

Unpolarized IR spectra of Ge-anhB and Ge-Ringwoodite were recorded from room 
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temperature down to - 180 °C with a Bruker IFS 66v FTIR spectrometer and a Hyperion 

microscope, an InSb detector, a KBr beamsplitter, a globar and a Linkam FTIR600 

heating/cooling stage. The spot size used in the measurements ranged from 50 

� 

!  50 µm to 

100 

� 

!  100 µm, and up to 1024 scans were taken with a resolution of 2 cm-1. To avoid 

detector saturation due to a strong OH absorbance, IR studies on Ge-shyB were carried out 

on a thin aggregate of randomly oriented sample particles, produced by crushing a crystal in 

a Megabar-type diamond anvil cell (DAC) (Mao and Hemley 1998) without a gasket. In-situ 

IR spectra as a function of pressure were taken in the DAC with type II diamonds (culet sizes 

of 800 µm) and a stainless steel gasket. The sample was placed in a 300 µm-gasket hole 

with KBr as pressure medium and ruby grains. For each spectrum 1024 scans were 

accumulated in the range of 400-4000 cm-1 with a KBr beam splitter, a MCT detector and 2 

cm-1 resolution. The pressure was determined using the pressure-dependent energy shift of 

the R1 ruby fluorescence line (Mao et al. 1986). High-pressure spectra for the other two 

samples were collected on single-crystals under the same conditions, but in the 1850 – 4000 

cm-1 range.  

Polarized IR spectra of single-crystals of Ge-anhB were obtained under the above-mentioned 

conditions, and in addition with synchrotron radiation at the Infrared beamline at BESSY II 

using a Nicolet 870 FTIR spectrometer equipped with a Continuµm microscope. The 

orientation of the samples was determined using electron diffraction patterns from TEM 

analyses (see results). For the polarized spectra 512 scans were collected at 4 cm-1 

resolution. The absorbance of the oriented single-crystals was measured in extinction 

position, with the electric vector (E) parallel to each optical indicatrix axis. The integrated 

intensity, and area-weighted average (Libowitzky and Rossman 1997) of the peak positions 

were obtained using the PeakFit software by Jandel Scientific. Due to the lack of specific 

absorption coefficients for Ge-anhB and Ge-Ringwoodite we used the calibration of 

Libowitzky and Rossman (1997) to quantify the hydrogen content. For Ge-anhB total 

absorbances were used, i.e., the sum of the fitted integrated intensities measured parallel to 

the three crystallographic axes. For the unpolarized spectra of γ-Mg2GeO4 total absorbances 
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have been calculated by multiplying the integrated absorbance by three. Synchrotron FTIR 

was used to study the OH distribution in the samples. Due to the high brilliance of the 

synchrotron beam the spatial resolution is much higher compared to a conventional light 

source. It was possible to obtain area maps of the OH distribution in the spectral region 

2700-3800 cm-1 for Ge-anhB and Ge-Ringwoodite with a local resolution of 10

� 

!10 µm and 

12

� 

!12 µm, respectively.  

 

Results 

EPMA and TEM analyses 

Our syntheses resulted in clear single-crystals of Ge-ringwoodite, Ge-anhB and Ge-shyB up 

to several 100 µm in size (Fig. 1, Table 1). EPM analyses yielded the chemical formulae 

Mg13.89Ge5.06O24 for Ge-anhB and Mg9.97Ge3.01O14(OH)4 for Ge-shyB. Results are summarized 

in Table 1.  

 

 

Figure 1. Images of (a) Ge-ringwoodite, (b) Ge-anhB and (c) Ge-shy B crystals synthesized in this study. Black 
spots reflect surface contamination.  
 
 
 
TEM studies allowed us to check the run products for impurities. Figure 2 is the lattice fringe 

image of Ge-anhB, which shows no inclusions of foreign phases, and demonstrates the 

nearly perfect crystal structure that could be observed in all samples in this study. From the 

electron diffraction pattern of Ge-anhB we were able to determine the crystal orientation (Fig. 

2) and used this information for the collection of polarized single-crystal IR spectra. 
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Figure 2. High-resolution transmission electron microscopy image and corresponding electron diffraction pattern 
of Ge-anhB. Lattice fringes reveal the homogeneous nature of the sample.  

 

 
X-ray diffraction 

Ge-Ringwoodite. Given that there was some controversy about the cation distribution in Ge-

ringwoodite in the early 1960’s, the crystal structure was refined by von Dreele et al. (1977) 

using powder neutron diffraction. The space group was confirmed as Fd 3m with no 

detectable disorder on the cation sites. Hence, Ge-ringwoodite, isostructural with γ-Mg2SiO4, 

has a true spinel structure. Each oxygen atom is bonded to one Ge and three Mg atoms. The 

structure consists of two alternately stacked layers, OT (MgO6 octahedra and GeO4 

tetrahedra) and O (MgO6 octahedra). The results of the single-crystal X-ray refinement for 

Ge-ringwoodite of this study are shown in Table 2. Unfortunately, no indication for site 

occupation of hydrogen can be extracted from the structure refinement. Atomic coordinates, 

equivalent isotropic and anisotropic displacement parameters, selected bond distances and 

angles are available as deposit items (Tables D1-D3) on the MSA website at 

http://www.minsocam.org. 
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Table 2. Crystal structure data and statistic parameters for Ge-ringwoodite and Ge-
anhB at room temperature from single-crystal refinements. Numbers in parantheses 
give 2σ standard deviation in terms of the preceding figure. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Ge-anhydrous phase B and Ge-superhydrous phase B. The crystal structures of the 

members of the phase B series are closely related (Finger et al. 1991). They consist of an 

ordered intergrowth of three layers, double OT layers (MgO6 octahedra and TO4 tetrahedra) 

alternate along the crystallographic b-axis with O layers (MgO6 and TO6). The members of 

the phase B series all contain both tetrahedral and octahedral coordinated silicon atoms, 

which in turn are strictly segregated into distinct structural elements (Pacalo and Parise 

1992). Finger et al. (1991) demonstrated that the structure of anhB is in space group Pmcb. 

 Ge-ringwoodite Ge-anhB 

Empirical formula γ-Mg2GeO4 Mg14Ge5O24 

Temperature 293(2) K 293(2) K 

Wavelength 0.71069 Å 0.71069 Å 

Crystal system cubic orthorhombic 

Space group Fd 3 m Pbam 

a = 8.246(2) Å α= 90° a = 14.52(2) Å α= 90° 
Unit cell dimensions 

b = 8.246(2) Å β= 90° b = 10.231(16) Å β= 90° 

 c = 8.246(2) Å γ= 90° c = 5.947(8) Å γ= 90° 

Volume 560.7(6) Å3 884(2) Å3 

Z 8 2 

Density (calculated) 4.388 Mg/m3 4.095 Mg/m3 

Absorption coefficient 11.186 mm-1 9.053 mm-1 

Theta range for data 
collection 4.28 to 28.55° 2.43 to 29.27° 

Index ranges -11<=h<=11, -10=k<=11,    
-11<=l<=11 

-19<=h<=19, -14<=k<=14,  
-8<=l<=8 

Reflections collected 1189 7977 
 

Independent reflections 50 [R(int) = 0.0629] 1307 [R(int) = 0.0521] 

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2 

Data / restraints / 
parameters 

50 / 0 / 8 1307 / 0 / 125 

Goodness-of-fit on F2 1.442 1.185 

Final R indices 
[I>2sigma(I)] 

R1 = 0.0397, wR2 = 0.1436 R1 = 0.0354, wR2 = 0.0669 

R indices (all data) R1 = 0.0401, wR2 = 0.1457 R1 = 0.0516, wR2 = 0.0710 

Extinction coefficient 0.07(2) 0.0008(4) 
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The diffraction symmetry of the crystal investigated in this study was consistent with Laue 

group mmm. An analysis of the systematic absences indicated the diffraction symbol 

mmmPba-. The structure could be solved in the centrosymmetric space group Pbam (Table 

2) using the program SIR97 (Altomare et al. 1999). Least-squares refinements were 

performed with the program SHELXL-97 (Sheldrick 1997). Neutral atomic scattering factors 

and anomalous-dispersion corrections were taken from the International Tables for X-ray 

crystallography (Ibers and Hamilton 1974). Final calculations using anisotropic displacement 

parameters for all atoms converged at R1 = 0.0354. The largest shift in the last cycle for 

these refinements was < 0.001. The atomic positions obtained correspond well with those 

reported by von Dreele et al. (1970) for Ge-anhB, so, for better comparison, all positions 

were re-labeled in accordance with the earlier study. However, all lattice parameters are 

slighty larger than those given in Finger et al. (1991) due to substitution of Si4+ by Ge4+ 

(Table 3). Results of the refinement are given in Table 2. The final atomic coordinates, 

equivalent isotropic and anisotropic displacement parameters, as well as selected bond 

distances and angles can be found as supplementary Tables D1 and D4-D6 on the MSA 

website at http://www.minoscam.org. Crystal structure refinements showed no significant 

deviation from full occupancy for the Ge sites. However, for the Mg2-Mg6 sites inclusive, an 

occupancy slightly less than one may indicate the possible presence of vacancies (13.88 Mg 

per formula unit instead of 14.00), which moreover is in conformity with the formula deduced 

from EPMA (Table 1). In contrast, occupancy slightly more than one was observed for the 

Mg1 site which could indicate the incorporation of Ge (supplementary Table D1). Difference 

Fourier synthesis identified as potential hydrogen position (0.2963 0.0003 0.0000), 

associated to O3. That would imply a vacant Ge2 site although not identified in the structure 

refinement.  
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Table 3. Lattice parameters of Si-anhB compared to Ge-anhB.  
 

Lattice parameters Si-anhydrous phase B [Å] 
(Finger et al. 1991) 

Ge-anhydrous phase B [Å] 
(von Dreele et al. 1970) 

Ge-anhydrous phase B [Å] 
(this study) 

a 5.868(1)* 5.944(1) 5.947(8) 

b 14.178(1) 14.512(2) 14.52(2) 

c 10.048(1) 10.219(2) 10.231(16) 

Notes:  
* Numbers in parantheses are the estimated standard deviation in the preceding figure.  

 

Pacalo and Parise (1992) refined the crystal structure of shyB, and assigned it to the 

orthorhombic centrosymmetric space group Pnnm, with H in just one general position 

(multiplicity 8) – consistent with the proposed formula (Z = 2). Koch-Müller et al. (2005) 

showed that shyB exists in at least two modifications: a disordered high-temperature 

polymorph which crystallizes in the centrosymmetric space group Pnnm, and an ordered low-

temperature polymorph which crystallizes in the acentric space group Pnn2. In the low-

temperature polymorph there are two different H positions (multiplicity 4) – consistent with 

the proposed formula (Z = 2) and the results from IR and Raman spectroscopy. Whereas the 

centrosymmetric phase exhibits one OH band (IR and Raman) and 9 lattice modes in the 

Raman spectra, the acentric phase reveals two OH bands (IR and Raman) and 22 lattice 

modes in the Raman spectra (Koch-Müller et al. 2005). 

First attempts to investigate single-crystals of Ge-shyB by X-ray diffraction failed due to 

strong twinning of the crystals, which has also been observed for the Si-analogue (Koch-

Müller et al. 2005). To resolve this problem we used X-ray powder diffraction and Rietveld 

refinement, and as the basis for the crystal structure refinement for Ge-shyB we took the 

structure data of the LT polymorph of shyB according to Koch-Müller et al. (2005), i.e., the 

space group Pnn2. This was justified by the presence of two OH bands in the IR spectra (see 

above). From the X-ray diffraction perspective the distinction between space group Pnnm 

and Pnn2 cannot be made from powder diffraction data. However, taking into account 

vibrational data of our sample (2 OH bands and 23 lattice modes), we refined the structure in 

analogy to the silicate equivalent, also in the space group Pnn2. Otherwise the existence of 

the two OH bands and the high number of lattice bands in our Raman spectra (cf. Raman 

section) cannot be explained. Results of the refinement are given in supplementary Tables 
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D7 and D8.  

 
Raman spectroscopy 

Room temperature and pressure single-phase Raman spectra of Ge-ringwoodite, Ge-anhB 

and Ge-shyB are given in Figure 3. A comparison of lattice vibrations of germanates studied 

herein, with those previously reported for the silicate equivalents is compiled in Table 4. For 

the germanates a significant band shift to lower frequencies (Table 4) can be noted, caused 

by the substitution of tetravalent silicon by tetravalent germanium. 

 

 

Figure 3. Single-crystal Raman spectra of γ-Mg2GeO4 (a, b) Ge-anhB (c,d) and Ge-shyB (e, f). (a) High-frequency 
range of γ-Mg2GeO4 showing modes caused by OH stretching vibrations. (b) The Raman spectrum of γ-Mg2GeO4 
reveals five lattice modes. In the upper spectrum the low-energy modes are plotted at ten-times magnification. (c, 
d) High- and low-frequency range of Ge-anhB. (e) OH bands and (f) lattice modes of Ge-shyB. 
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For pure endmember γ-Mg2SiO4 (McMillan and Akaogi 1987; Chopelas et al. 1994) modes at 

302, 372, 600, 796 and 835 cm-1 have been reported. From the site group analysis of γ-

Mg2SiO4 the five Raman bands are due to antisymmetric and symmetric stretching vibrations 

of the isolated SiO4 tetrahedron (Chopelas et al. 1994). However, previous studies also 

suggest that the lowest-frequency mode may be associated with octahedral cation motions 

(McMillan and Akaogi 1987; Chopelas et al. 1994). In analogy, the Raman spectrum of Ge-

Ringwoodite consists of five Raman modes at 213, 342, 521, 671 and 779 cm-1 (Fig. 3b). 

These bands show excellent correspondence with those of previous workers (e.g., Ross and 

Navrotsky 1987). According to earlier studies the bands at 520, 669 and 777 cm-1 derive from 

bending and stretching motions of the GeO4 tetrahedron (Jeanloz 1980; Guyot et al. 1986; 

Ross and Navrotsky 1987). For the two low-frequency bands no unique mode specification 

currently exists, however, in analogy to Si-Ringwoodite MgO6 octahedral modes are highly 

probable (e.g., Ross and Navrotsky 1987).  

In the OH stretching region Ge-ringwoodite reveals sharp features at 3747, 3677 and 3550 

cm-1 and a broad band with the maximum at ~ 3210 cm-1 which may be related to OH 

stretching vibrations in the crystal structure (Fig. 3a).  

Raman modes attributed to lattice vibrations in Ge-anhB are shown in Figure 3d. In the high-

frequency range (Fig. 3c) Raman modes caused by OH stretching vibrations at 3369, 3415, 

3498 and 3591 cm-1 can be detected. This is surprising, as, thus far, Si-anhB has not been 

considered to store traces of hydrogen (e.g., Ohtani et al. 2001; Smyth 2006). Our spectrum 

suggests that incorporation of water in Ge-anhB is much higher than previously reported for 

the Si phase.  

In the Raman spectrum of Ge-shyB we observe 23 lattice vibrations in the low-frequency 

range (Fig. 3f). In the Si analogue peaks between 645 and 730 cm-1 have previously been 

assigned to bending of Si octahedra, and bands between 800 and 1000 cm-1 to Si-O 

stretching vibrations of the SiO4 tetrahedra (Cynn et al. 1996). The high-frequency Raman 

spectrum of Ge-shyB is characterized by two OH stretching vibrations at 3406 and 3351 cm-1 
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(Fig. 3e). This is in agreement with earlier vibrational studies of the low-temperature 

polymorph of Si-shyB (Cynn et al. 1996; Ohtani et al. 2001; Koch-Müller et al. 2005), which 

exhibits OH bands at 3414 cm-1 and 3353 cm-1.  

 
Table 4. Raman peak positions for lattice vibrations prominent in silicates and their Ge-analogues. All frequencies 
are given in cm-1; “sh” indicates shoulder; “w” indicates weak.  
 

 

 

Infrared spectroscopy  

Ge-Ringwoodite. The unpolarized single-crystal IR spectrum of  γ-Mg2GeO4 (Fig. 4a) at 

ambient conditions consists of several OH bands, probably due to different hydroxyl groups 

in the structure (cf. discussion). In the region from 3800 to 3000 cm-1 we observe at least 5 

OH bands: four at relatively high wavenumbers 3742, 3688, 3650, 3548 cm-1 and one much 

broader band at 3207 cm-1. Whereas the normalized absorbances of the high-frequency 

γ-Mg2SiO4 
(McMillan and 
Akaogi 1987; 
Chopelas et 
al. 1994) 

γ-Mg2GeO4 
(Ross and 
Navrotsky 
1987) 

γ-Mg2GeO4 

This study 
Si-anhB  
(Ohtani et al. 
2001) 

Ge-anhB  
This study 

Si-shyB 
(Hofmeister et 
al. 1999) 

Si-shyB  
(Ohtani et al. 
2001) 

Ge-shyB  
This study 

835 777 779 1025 853 1096 847sh 780 

796 669 671 953 797 832 834 735 

600 520 521 898 767  755 717 

372 341 342 876 738 682 684 648 

302 213 213 846 730sh 603 606 553 

   824 720 589 590w 514 

   724 680 577 555 494 

   687 530w 534 537 477 

   647 520w 495 504 459 

   617 506w 455 481w 433 

   593 469 432 434 416 

   523 432 405 406w 377w 

   477 423sh 365 368w 360 

   465 404 337 344 347 

   443 386 329  338 

   410 366 309  328 

   393 349 288  307 

   366  276 279 302sh 

   348  259  273 

   336   231 250 

   310  222  213w 

   255  212  186 

   219    171w 



  Kapitel 1 

 40 

bands are more or less equal from grain to grain, those of the broad band at 3207 cm-1 with a 

full width at half maximum (FWHM) of 230 cm-1 are highly variable (Fig. 4). Additional weak 

bands are indicated by small shoulders at 3531 cm-1 and 3345 cm-1. Low-temperature IR 

spectra down to - 180°C (Fig. 4b) show that with decreasing temperature the OH band at 

3742 cm-1 shifts 16 cm-1 to higher energies (3758 cm-1) (Fig. 4b, supplementary Table D10) 

whereas the band at 3688 cm-1 is almost insensitive (+ 3 cm-1). Bands that are obscured 

under ambient conditions are separated upon cooling. Additional OH bands could be ob-

served in the spectral region around 3540 cm-1. Furthermore, low-temperature spectra (Fig. 

4b, Table D11) imply that the band with the center at 3207 cm-1 is composed of at least 2 

single OH bands (3240 and 3170 cm-1); a third band is indicated by a shoulder at 3345 cm-1. 

 

 

Figure 4. a) Unpolarized IR spectrum of a 53 µm thick single-crystal of Ge-ringwoodite and (b) of a 73 µm thick 
single-crystal, as a function of temperature. The spectra are offset for clarity.  
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Ge-anhydrous phase B. Single-crystal IR spectra (Fig. 5, 6) of Ge-anhB confirm the 

presence of OH groups in the structure. IR spectra show absorption bands due to funda-

mental OH stretching vibrations in the region from 3650 to 3200 cm-1: ν1 (3621 cm-1), ν2 

(3592 cm-1), ν3 (3582 cm-1), ν4 (3497 cm-1), ν5 (3418 cm-1), ν6 (3368 cm-1). In addition, two 

weak bands at 3613 cm-1 and 3450 cm-1 are observed in the spectra.  

 

 

Figure 5. Polarized IR spectra of Ge-anhB recorded with synchrotron radiation with E parallel to a, b and c 
demonstrating the strong pleochroism of the OH bands. The spectra are offset for clarity. 

 

 

All crystals studied show uniform features but with varying intensities. For the majority of the 

crystals the integral absorbance of the bands ν5 and ν6 make up ~ 50 % of the observed 

total IR absorbance (Fig. 6, 7). However in exceptional cases those bands constitute only a 

minor component (Fig. 5), although the reason for this is unclear. Polarized IR spectra show 

a strong pleochroic behavior of the OH bands (Fig. 5), e.g., ν1 reveals the strongest intensity 

with E parallel to the crystallographic a-axis. Low-temperature IR spectra show neither band 

splitting nor band sharpening, but distinctive small mode shifts (up to 4 cm-1) of the bands ν1 

- ν3, ν5 and ν6 to higher energies (Fig. 6) can be observed. OH stretching band ν4 exhibits a 

positive band displacement of + 11 cm-1 (Table D11). Upon compression all previously ob-

served OH stretching vibrations, apart from the weak bands at 3613 cm-1 and 3450 cm-1, are 

resolvable (Fig. 7). We observe a negative mode shift of all vibrations, and a slight 

broadening of the bands with increasing pressure (Fig. 7, supplementary Table D12). The 
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highest peak position displacements are displayed by ν2 and ν6, with - 27 cm-1 and - 39 cm-1, 

respectively.  

 

Figure 6. Unpolarized low-temperature IR spectra of Ge-anhB down to -180°C. The spectra are offset for clarity. 

 

 

Figure 7. Pressure-dependent IR spectra of Ge-anhB determined in a DAC. The spectra are offset for clarity. 

 

Ge-superhydrous phase B. The IR spectrum of Ge-shyB (Fig. 8) shows two OH stretching 

bands at 3404 cm-1 (ν1) and 3353 cm-1(ν2). With increasing pressure a shift of ν2 to lower 

energies (- 16 cm-1) and a minor increase in FWHM of ~ 3 cm-1 can be observed in the 

spectra. In contrast, ν1 position and FWHM do not change significantly with increasing 

pressure (Fig. 8). Both bands have been reported in previous studies for Si-shyB (Cynn et al. 

1996; Koch-Müller et al. 2005).  
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Figure 8. Pressure-dependent IR spectra of Ge-shyB recorded in a DAC. The lower ambient pressure spectrum 
has been recorded after pressure release. The spectra are offset for clarity. 

 

 

OH distribution and quantification  

Unpolarized IR maps of Ge-ringwoodite and Ge-anhB of regions of equal thickness confirm 

the assumption that hydroxyl groups are homogenously distributed in the crystal structure. 

However, as previously mentioned the defect concentration may vary from crystal to crystal. 

Table 5 lists the total integrated absorbances of the hydroxyl bands obtained by fitting the 

unpolarized (Ge-ringwoodite) and polarized IR spectra (Ge-anhB). Water contents of Ge-

ringwoodite and Ge-anhB range from 900 to 2200 wt ppm H2O and from 2400 to 5300 wt 

ppm H2O, respectively (Table 5), depending on the proportions of low-frequency OH bands 

in the spectra. In contrast to the above-mentioned samples Ge-shyB is a hydrous phase in 

which H is incorporated by stoichiometry. According to its chemical formula Mg10Ge3O14(OH)4 

it contains 4.8 wt% water. Simply taking the difference from 100 % in the microprobe 

analyses totals as wt% H2O would indicate a higher amount of water (Table 1), however, 

higher water concentrations would require additional H positions, and there is no indication of 

such a deviation from stoichiometry, neither from IR-spectroscopy nor from the X-ray 

refinement. Moreover, the difference from 100% in microprobe analysis reflects water 

concentration plus total experimental error, so will be affected by other errors in the sample 

preparation or measurement procedure. However, despite the low total sum obtained by 

EPMA the chemical formula could be calculated correctly on the basis of 14 O2- and 4 OH-. 
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Therefore, we assume the water content of Ge-shyB to be analogous to the Si-phase at least 

to the same order of magnitude.  

 
Table 5. Estimated water contents from IR spectra of Ge-anhB and Ge-ringwoodite.  

 
 Water content (wt ppm H2O) 

 Sample no. of IR 
measurements ε 

Libowitzky and Rossman (1997) 
Ai,tot (mm-1) Density 

(g/cm3) 
Peak position 

(cm-1) 

Ge-anhB 4 40689 5313 4918 4.10 3588* 

  63130 2433 3494 4.10 3497 

  69889 3336 5304 4.10 3470 

  70557 3710 5955 4.10 3467 

Ge-ringwoodite 6 47962 2049 2402 4.39 3559 

  82581 1579 3187 4.39 3418 

  33538 1727 1416 4.39 3617# 

  65433 1926 3081 4.39 3488 

  34771 2195 1866 4.39 3612# 

  56225 904 1242 4.39 3525 

Notes:  
*   – ν5 und ν6 not observed in IR spectra. 
†   – The area-weighted average of the peak positions is used as suggested by Libowitzky and  
      Rossman (1997). The standard deviation of the peak position resembles grain-to-grain  
                     intensity differences of the broad band at ~ 3200 cm-1.  
#   – Peak position resembles minor contributions of the broad band at ~ 3200 cm-1. 

 
 

Discussion 

Ringwoodite  

Hertweck and Ingrin (2005) report much lower water contents (5 - 10 wt ppm) for γ-Mg2GeO4, 

than those observed in this study, although those authors conducted their synthesis under 

similar PT-conditions. Their IR spectra are also quite different from those of this study, as 

they consist of only one band at 3531 cm-1, with a shoulder at 3502 cm-1. A possible 

explanation for the significant differences in the water concentration, and incorporation 

mechanism, between the two samples would be that the experiment by Hertweck and Ingrin 

(2005) was water-undersaturated. Compared to pure γ-Mg2SiO4, storing up to ~ 2.2 wt% H2O 

(e.g., Inoue et al. 1998), Ge-ringwoodite samples synthesized at much lower pressures in 

this study show a much lower water concentration and different hydration mechanisms. 

The main feature in the IR spectrum of pure γ-Mg2SiO4, synthesized at 22 GPa and 1500 °C, 

is a broad band (FWHM ~ 530 cm-1) at 3105 cm-1 (e.g., Smyth et al. 2003). However, 
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additional weaker bands at about 3645 cm-1 (Kohlstedt et al. 1996), 3668 cm-1 (Chamorro-

Perez et al. 2006) or 3685 cm-1 (Kudoh et al. 2000) have been reported for hydrous 

magnesian ringwoodite, synthesized under lower pressures and temperatures (19 - 19.55 

GPa and 1100-1300 °C).  

Both, Mg- and Si-vacancies were proposed for the incorporation of hydroxyl groups in the 

ringwoodite structure (Kohlstedt et al. 1996; Kudoh et al. 2000; Smyth et al. 2003, 2004; 

Hertweck and Ingrin 2005; Blanchard et al. 2005a,b; Chamorro-Perez et al. 2006). From 

single-crystal X-ray studies Smyth et al. (2003) suggest the protonation of an octahedral site 

for pure γ-Mg2SiO4. However, they also state that the absorption feature at ~ 3105 cm-1 

would correlate with short O-O distances of a tetrahedral site. Kohlstedt et al. (1996) and 

Kudoh et al. (2000) propose a small amount of cation disorder (partial occupancy of the 

tetrahedral site by Mg) and protonation of both tetrahedral and octahedral sites, since they 

observe additional OH stretching bands at about 3645 cm-1 (Kohlstedt et al. 1996) and 3685 

cm-1 (Kudoh et al. 2000), whose frequencies correlate with protonation of octahedral sites. 

Blanchard et al. (2005a, b) calculated similar defect energies for γ-Mg2SiO4 and its low-

pressure analogue γ-Mg2GeO4 using classical atomistic computer simulations, and thus imply 

that both compounds follow the same protonation trends. According to their models, the most 

favorable hydration mechanism for γ-Mg2SiO4 is associated with tetrahedral vacancies, 

namely the hydrogarnet substitution. However, in a more recent recalculation of their data 

(Blanchard and Wright 2006), applying density functional theory, and in consideration of 

mantle pressures, they now suggest hydroxyl groups prefer Mg vacancies, when entering the 

spinel structure. This is consistent with proposed protonation sites by Ross et al. (2003) 

located by studying the properties of the electron density distribution in γ-Mg2SiO4. 

The spinel structure in the space group Fd 3m contains only one oxygen position, which 

must be the bonding site for hydrogen. There are 4 O...O distances relevant in discussing the 

OH direction and band position. Due to the cubic symmetry we cannot determine the OH 

direction from polarized IR measurements, the only evidence on which to assign OH bands 
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to OH groups are the band positions, and the band temperatures and pressure 

dependences. For cubic γ-Mg2SiO4 the O…O distance within a tetrahedral site is 2.7137 Å. 

The octahedra show two different O…O distances 2.8546 and 2.9922 Å. Another very long 

O…O distance is a line between an oxygen atom of a Si tetrahedron and an oxygen atom of 

a Mg octahedron with 3.9387 Å. From the Libowitzky (1999) model it would be convincing to 

assign the low-energy band to vacant tetrahedral sites, and the high-energy band to a vacant 

octahedral site, since the O-H…O distances correlate well with the band positions. However, 

it has been proposed (e.g., Lager et al. 1987, 1989) that a vacant tetrahedron will expand 

locally with the magnitude of the expansion depending on the host. Hence, given a very large 

expansion, the tetrahedral edge will be longer than the octahedral edge (e.g., Lager et al. 

1987, 1989). For this reason an OH band assignment to distinct sites is even more complex.  

Hertweck and Ingrin (2005) propose the hydrogarnet substitution for their Ge-ringwoodite, 

e.g., OH incorporation coupled with a vacant tetrahedral site. They propose that the band 

position correlates with the GeO4 tetrahedra edge length of ~ 2.9 (1) Å. However, Hertweck 

and Ingrin (2005) also point out that a proton position assignment in Ge-ringwoodite is very 

difficult due to the fact that, unlike the silicate compound, tetrahedral and octahedral edge 

lengths have nearly equivalent values of ~ 2.9 Å (von Dreele et al. 1970). The IR spectra of 

the Ge-ringwoodite in our study indicate at least five different OH groups. The O…O 

distances within a tetrahedral site are 2.923 Å, within an octahedral site 2.895 Å and 2.909 Å, 

and the very long distance is 4.104 Å. From the relationship suggested by Libowitzky (1999) 

these distances are rather long, and would correlate with high-energy band positions. From 

the same model, the origin of the low-energy band in the Ge-analogue cannot be explained. 

A possible cause could be that a vacant tetrahedral Ge site is much smaller than an occupied 

site. However, this would be opposite to that observed for silicates (Armbruster and Gnos 

2000). Another option would be to interpret this broad absorption feature as molecular water, 

discussed by Smyth et al. (2003, 2004) for γ-Mg2SiO4, but excluded by reason of a high 

reproducibility of the absorption signal from grain to grain and its strong correlation with unit 
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cell volume. In the case of Ge-ringwoodite the incorporation of molecular water would explain 

the low-energy of the band, and the fact that the integrated area was not highly reproducible 

from grain to grain. Moreover, band splitting was observed in the low-temperature IR spectra, 

as reported for IR spectra of ice. However, γ-Mg2GeO4 in this study showed no stretch-bend 

combination mode in the 5200 cm-1 region. Moreover, contrary to the generally strong mode 

shifts of ~ 200 cm-1 reported for the water-ice transition, in our sample only a small negative 

total band shift was found. Hence, we suggest that this band is due to a range of O-H…O 

distances rather than molecular water. The very large FWHM of the low-energy band in Si-

ringwoodite spectra could be explained as statistical distribution of the protons among three 

possible H symmetry sites (1, m or 3m) due to the 3m-site symmetry of the oxygen atom 

(Kudoh et al. 2000). The latter specification would be consistent with our low-temperature 

spectra of γ-Mg2GeO4 in which the low-energy band splits into at least two bands with 

decreasing temperature (cf. IR section). Our data give no evidence that the broad band in 

Ge-ringwoodite is equivalent to the broad absorption signal found in γ-Mg2SiO4. For example, 

Bolfan-Casanova et al. (2000) observe no significant change of the appearance of the broad 

band upon cooling to – 50 °C in Si-ringwoodite. Moreover, our broad band has a smaller 

FWHM of 230 cm-1, and, in contrast to the silicate, is only modestly reproducible from crystal 

to crystal. In the γ-Mg2GeO4 spectra from this study the high-frequency bands are the 

dominant features, whereas the broad band at ~ 3100 cm-1 is the main feature in γ-Mg2SiO4. 

The single band at the highest energy of 3742 cm-1 has not previously been reported for γ-

Mg2SiO4. Based on its shift to even higher frequencies upon cooling, it would be a good 

candidate for the very long bond distance (4.104 Å), moreover, it is indicative of a very strong 

OH dipole, with no hydrogen bonding. The band shift to even higher energies during cooling 

supports the latter suggestion, as the OH dipole gets even stronger. The band at 3688 cm-1 

could be due to vibration of an OH dipole occupying a vacant octahedron, pointing in the 

direction of the octahedral O…O distances (2.895 and/or 2.909 Å). In conclusion, compared 
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to γ-Mg2SiO4, Ge-ringwoodite synthesized in this study contains much less ”water”, and 

based on our observations, seems to incorporate “water” in a different way to the Si-

analogue.  

 
Ge-anhydrous phase B 

In contrast to previous data on anhB (e.g., Ohtani et al. 2001) our spectra of its germanium 

equivalent reveal the presence of OH groups in the structure. We have developed a 

hydration model for Ge-anhB on the basis of X-ray structure refinements and polarized IR 

spectra on oriented crystals. We propose two OH defects, the first defect (Fig. 9a, b) based 

on the results of X-ray structure refinement, corresponds to the hydrogarnet substitution: a 

vacant GeO4 tetrahedron where four charge-compensating protons combine with the oxygen 

atoms to four OH groups. These OH groups give rise to four OH stretching vibrations ν1, ν2, 

ν3a and ν3b. The difference Fourier synthesis showed a potential hydrogen position H1 

close to O3 (see results), which would imply a vacant Ge2 site. In contrast to models for 

coesite (Koch-Müller et al. 2003) or garnet (e.g., Lager et al. 1987, 1989; Libowitzky and 

Beran 2006) where OH dipoles involved in these defects are located outside the tetrahedron, 

the O3-H1 dipole suggested here points inwards. Taking into account that a Ge tetrahedron 

is much larger than a Si tetrahedron, and that a vacant tetrahedron may expand locally (e.g., 

Lager et al. 1987, 1989), such a dipole pointing inwards does not lead to unrealistic short 

H…O distances. The atomic position of the potential hydrogen position from the difference 

map would result in an O3-H1 distance of only 0.65 Å. However, again we have to take into 

account that the oxygen positions are averaged over the structure, and that real oxygen 

positions for the vacant tetrahedron are different. The proposed final atom position for H1 

(Table 6) therefore deviates slightly from the position taken from the Fourier synthesis, 

resulting in a more realistic O3-H1 distance of 0.918 Å. Vibrations of the proposed O3-H1 

dipole give rise to the ν1 OH band, which is in good agreement with the polarized spectra. 
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From the pleochroic behavior, and the positions of bands ν2, ν3a and ν3b, we propose two 

additional protons labeled as H2 and H3 (Figs. 9a and 9b; Table 6).  

 
Figure 9. Projection of a vacant GeO4 tetrahedron in Ge-anhB (a) parallel 

to (100) and (b) parallel to (010) showing defect 1. (c) Projection of atoms 

involved in defect 2 in Ge-anhB parallel to (010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second defect (Fig. 9c) is most probably associated with the substitution of Mg1 by Ge4+, 

where two charge-balancing OH groups at the adjacent vacant Ge2 tetrahedron cause 

vibrations ν1 and ν4. This assignment is based on the refined site occupancy of the Mg1 

site, which is slightly larger than 1 (supplementary Table D1), indicating the incorporation of 

Ge. Thus, the OH bands in Ge-anhB, ν1, ν2, ν3a, ν3b and ν4 can be explained by the 

vibration of dipoles O3-H1, O1-H2, O8-H3 and O8-H4, respectively (Figs. 5 and 7; Table 6). 
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The proposed H positions and associated O-H distances were estimated from the polarized 

IR measurements, and the observed band positions, taking into account the correlation of O-

H-stretching frequencies and O-H...O distances given in Libowitzky (1999). However, note 

the atomic positions and associated O-H distances are only estimates, and should not be 

taken as absolute values. O3-H1 (ν1) dipoles are involved in both defects, reflecting the high 

intensity of the associated OH band in the IR spectra, and explains the fact that only one 

hydrogen position was refined by X-ray diffraction.  

 
   Table 6. Structure data of the proposed protons in Ge-anhB at ambient conditions.  
 

Dipole corresponding 
OH-band 

Atomic positions of protons 
x, y, z * 

O-H distance 
[Å]* 

Band position 
[cm-1] 

FWHM† 
[cm-1] 

O3-H1 
ν1 

0.815 
0.500 
0.000 

0.918 
 
3622 
 

5.1 

O1-H2 
ν2 

0.590 
0.162 
0.155 

0.926 
 
3592 
 

4.4 

O8-H3 
ν3a 

0.586 
0.823 
0.249 

0.980 
 
3582 
 

7.2 
 

O8-H3 
ν3b 

0.586 
0.823 
0.752 

0.980 
 
3582 
 

7.2 
 

O8-H4 
ν4 

0.390 
0.081 
0.080 

1.063 
 
3497 
 

14.8 

Notes:     
*   – Atomic positions and therewith the calculated O-H distances are only 
   rough estimates and should not be taken as absolute values. They  
                  match the dipole direction determined from the polarized measurements 
   and the band position which decreases with increasing OH distance.  
                  Other atomic coordinates are given in Table D1 of supplementary online 
   material.  
†   – FWHM calculated using peak fit software (Jandel scientific).  

 
 

Analyses of axial compressibilities by Crichton et al. (1999) in anhB reveal that the c-axis is 

most compressible, the b-axis is least compressible, and the a-axis is intermediate. The 

authors conclude that the compression of the a- and c-axes is controlled by edge-sharing 

octahedra in the O layer (MgO6 and TO6 octahedra), which promote the rigidity. Chains of 

edge-sharing octahedra in the OT layer (MgO6 octahedra and TO4 tetrahedra) are, in turn, 

responsible for the rigidity of the b-axis. Our pressure-dependent IR spectra of Ge-anhB (Fig. 

7, supplementary Table D12) reveal that with increasing pressure there is a strong negative 
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shift for vibrations ν2 and ν6, and a moderate negative shift for vibrations ν1, ν3, ν4 and ν5. 

A strong negative shift of OH bands indicates stronger compression in the direction of the 

corresponding OH dipole. The dipole involved in the ν2 vibration should point towards the ac-

plane, based on the strong response upon compression and our polarized IR spectra (Figs. 5 

and 7), where ν2 shows the highest intensity parallel to the c-axis and a less intense 

contribution parallel to the a-axis. This is consistent with the structure model suggested 

herein. Agreement of pressure data and polarized IR spectra is also obtained in the case of 

vibrations ν1 and ν4. Their moderate compressibility and polarization behavior (Fig. 5) 

suggests the OH dipoles point in the ac-direction, with ν1 having a stronger a-component 

than ν4. According to the pleochroism observed for ν3 the corresponding dipole is placed 

along the b-axis. Under the terms of Crichton et al. (1999) the b-axis is least compressible, 

which explains the intermediate response of ν3 upon compression. The slightly higher 

displacement value of ν3 compared to ν1 and ν4 can be explained by the fact that latter 

vibrations both have a component along a and c, which should lead to average total shifts. A 

comparison of the compressibility model with IR measurements for ν6 is made difficult by the 

fact that this vibration exhibits very weak intensities in the polarized spectra. 

The OH bands ν5 and ν6 and the weaker bands not labeled are most probably connected 

with Mg vacancies, since X-ray refinement indicates vacancies at the Mg2 to Mg5 sites. 

Applying the results of Crichton et al. (1999) vibrations ν5 and ν6 would point in the a/c or c 

direction, respectively and therefore might be coupled to MgO6 octahedra of the O layer. A 

potential additional hydration site in Ge-anhB could be the O4 oxygen, as was previously 

proposed for anhB by Smyth (2006). This non-silicate oxygen has the lowest electrostatic 

potential in the structure. Combining all this information, we propose that ν5 is most probably 

associated with a vacancy on the Mg5 site, and a charge-balancing proton bound to the 

coordinating O4 or O5 oxygen, whose O…O bond distance is 2.769 Å. Since the charge-

balancing of an octahedral Mg-vacancy requires two protons, we suggest the second proton 

is bound to either the O4 or O8 oxygen, whose O…O bond distance is 2.81 Å, giving rise to 
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vibration ν6. The estimated hydrogen positions are in good agreement with the observed 

low-energy band positions of ν5 and ν6. However, we suggest that to gain further 

understanding of structural details of Ge-anhB, and to fully explain the IR spectra more work 

will be required.  

We note a different trend in temperature-dependent spectra. All bands but ν4 remain more or 

less at the same position, while ν4 shifts to higher wavenumbers with decreasing 

temperature.  

In conclusion, Ge-anhydrous phase B incorporates “water” differently than its silicate 

equivalent. Based on our data Ge-anhB is either an unsuitable analogue material for the 

equivalent mantle silicate, or the ability of anhB to incorporate significant amounts of “water” 

has simply been overlooked in the past.  

 

Ge-superhydrous phase B 

In analogy to the Si-phase and based on its vibrational spectra Ge-shyB has been refined in 

the acentric space group Pnn2 (Koch-Müller et al. 2005), which is supported by the 

symmetry analysis of the vibrational spectra. Infrared spectra of low-temperature Si-shyB as 

well as Ge-shyB show the presence of two OH bands. Based on its composition this can only 

be explained in an acentric space group. Correspondence of Ge-shyB with the silicate 

equivalent is also indicated by their vibrational signatures as a function of pressure. As 

observed by Koch-Müller et al. (2005) both OH bands in the Si-phase are very insensitive to 

changes in pressure, which is quite unusual for OH bands with band positions around 3350 

cm-1. For example OH band ν3 (3360 cm-1) in coesite, in the same pressure range, exhibits a 

shift of - 68 cm-1. Such a behavior cannot be observed for Ge-shyB. The stretching mode ν1 

(total shift - 0.6 cm-1) is almost insensitive to pressure, the OH stretching mode ν2 displays a 

slight negative shift (- 16 cm-1) as function of pressure, which is reversible upon 

decompression, and indicates a small pressure-induced increase of the hydrogen bonding. 
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The proposed atomic positions are chosen in analogy to the silicate (see supplementary 

Table D 8 and Koch-Müller et al. 2005). 

 

Our data are interpreted as evidence that germanates are good low-pressure analogues for 

hydrous silicates with stoichiometrically incorporated water, since we observe an identical 

water concentrations and incorporation mechanism for Ge-superhydrous phase B. The most 

important implication of this study is that germanates, though conveniently applicable as 

analogues for hydrous magnesium silicates, do not necessarily behave as strict analogue 

material for hydrogen defect studies of nominally anhydrous mantle silicates, as the 

concentration of “water” and the incorporation mechanism of “water” in nominally anhydrous 

phases depend on water fugacity and also on pressure and other intrinsic defects. A second 

point is the surprisingly high hydroxyl solubility observed in Ge-anhB. Following our study 

there is a possibility that anhB is able to store a significant amount of water, if present in the 

Earth’s mantle as proposed by Ganguly and Frost (2006). 
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Appendix  

Table D1. Atomic coordinates (x104) and equivalent isotropic displacement parameters (Å2 x 103) for Ge-
ringwoodite and Ge-anhB. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. Atomic 
positions of protons in Ge-anhB are given in Table 6.  
 

 
 

 

 
 
 
 
 
 
 
 
 

 x y z U (eq) 

Ge-ringwoodite     

Ge 1250 1250 6250 20(2) 

Mg 0 0 0 21(2) 

O 2(6) 2(6) 7498(6) 22(2) 

Ge-anhydrous phase B     

Ge(1) 0 0 0 4(1) 

Ge(2) 1256(1) 5016(1) 0 4(1) 

Ge(3) 1863(1) 3250(1) 5000 6(1) 

Mg(1)* 0 5000 5000 6(1) 

Mg(2)* 0 0 5000 5(1) 

Mg(3)* 1757(1) 1781(2) 0 6(1) 

Mg(4)* 3260(1) 1463(2) 5000 6(1) 

Mg(5)* -44(1) 2517(1) 2423(2) 5(1) 

Mg(6)* 3316(1) 4190(1) 2461(2) 6(1) 

O(1) 836(3) 3380(4) 0 6(1) 

O(2) 4218(3) 3481(4) 0 4(1) 

O(3) 2518(3) 31(4) 0 7(1) 

O(4) 686(3) 3299(4) 5000 5(1) 

O(5) 4131(3) 3314(4) 5000 7(1) 

O(6) 2565(3) -220(4) 5000 6(1) 

O(7) 756(2) 774(3) 2235(5) 5(1) 

O(8) 4145(2) 812(3) 2485(5) 5(1) 

O(9) 2427(2) 2509(3) 2723(5) 6(1) 
Notes:  
* 
 

 
refined occupancies: Mg(1) 1.02(2); Mg(2) 0.99(2); Mg(3) 0.99(1); Mg(4) 0.98(1); Mg(5) 0.99(1); 
Mg(6) 0.99(1). 
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Table D2. Bond lengths [Å] and angles [°] for Ge-Ringwoodite.  
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table D3. Anisotropic displacement parameters (Å2x 103) for γ-Mg2GeO4. The anisotropic 
displacement factor exponent takes the form: -2p2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. 
 

 

 

 

Ge-O(1) 1.782(9) 

Ge-O 1.782(9) 

Ge-O(2) 1.782(9) 

Ge-O(3) 1.782(9) 

Mg-O(4) 2.063(5) 

Mg-O 2.063(5) 

Mg-O(5) 2.063(5) 

Mg-O(6) 2.063(5) 

Mg-O(7) 2.063(5) 

Mg-O(8) 2.063(5) 

O(1)-Ge-O 109.5 

O(1)-Ge-O(2) 109.5 

O-Ge-O(2) 109.5 

O(1)-Ge-O(3) 109.5 

O-Ge-O(3) 109.5 

O(2)-Ge-O(3) 109.5 

O(4)-Mg-O 89.9(3) 

O(4)-Mg-O(5) 180.0 

O-Mg-O(5) 90.1(3) 

O(4)-Mg-O(6) 90.1(3) 

O-Mg-O(6) 89.9(3) 

O(5)-Mg-O(6) 89.9(3) 

O(4)-Mg-O(7) 89.9(3) 

O-Mg-O(7) 90.1(3) 

O(5)-Mg-O(7) 90.1(3) 

O(6)-Mg-O(7) 180.0 

O(4)-Mg-O(8) 90.1(3) 

O-Mg-O(8) 180.0 

O(5)-Mg-O(8) 89.9(3) 

O(6)-Mg-O(8) 90.1(3) 

O(7)-Mg-O(8) 89.9(3) 

 U11 U22 U33 U23 U13 U12 

Ge 20(2)  20(2) 20(2)  0 0  0 

Mg 21(2) 21(2) 21(2) -1(1) -1(1) -1(1) 

O 22(2) 22(2) 22(2) -2(2) -2(2) 2(2) 
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Table D4. Selected bond lengths [Å] for Ge-anhB. 
 

 

 

 

 

 

 

 

 

 

 

 

Ge(1)-O(7) 1.897(3)  Mg(3) -O(9) 2.030(4) 

Ge(1)-O(7) 1.897(3) Mg(3) -O(9) 2.030(4) 

Ge(1)-O(7) 1.897(3) Mg(3) -O(3) 2.104(5) 

Ge(1)-O(7) 1.897(3) Mg(3) -O(1) 2.113(5) 

Ge(1)-O(2) 1.925(5) Mg(3) -O(7) 2.223(4) 

Ge(1)-O(2) 1.925(5) Mg(3) -O(7) 2.223(4) 

Ge(2)-O(3) 1.780(5) Mg(4) -O(6) 1.995(5) 

Ge(2)-O(1) 1.782(5) Mg(4) -O(8) 2.082(4) 

Ge(2)-(8) 1.784(3) Mg(4) –O(8) 2.082(4) 

Ge(2)-(8) 1.784(3) Mg(4) -O(9) 2.108(4) 

Ge(3)-(4) 1.710(5) Mg(4) -O(9) 2.108(4) 

Ge(3)-O(9) 1.754(3) Mg(4) -O(5) 2.278(5) 

Ge(3)-O(9) 1.754(3) Mg(5) -O(4) 2.028(3) 

Ge(3)-O(6) 1.772(5) Mg(5) -O(2) 2.066(4) 

Mg(1)-O(4) 2.006(5) Mg(5) -O(8) 2.077(4) 

Mg(1)-O(4) 2.006(5) Mg(5) -O(1) 2.119(4) 

Mg(1)-O(8) 2.114(4) Mg(5) -O(5) 2.123(4) 

Mg(1)-O(8) 2.114(4) Mg(5) -O(7) 2.131(4) 

Mg(1)-O(8) 2.114(4) Mg(6) -O(6) 2.069(4) 

Mg(1)-O(8) 2.114(4) Mg(6) -O(3) 2.086(4) 

Mg(2)-O(7) 2.130(4) Mg(6) -O(2) 2.094(4) 

Mg(2)-O(7) 2.130(4) Mg(6) -O(7) 2.112(4) 

Mg(2)-O(5) 2.138(5) Mg(6) -O(5) 2.117(4) 

Mg(2)-O(5) 2.138(5) Mg(6) -O(9) 2.156(4) 
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Table D5. Selected angles [°] for Ge-anhB. 
 

 
 
 
 
 
 
 
 
 
 

O(7) Ge(1) O(7) 91.0(2) O(8) Mg(1) O(8) 90.08(19) O(6) Mg(4) O(8) 92.07(15) 

O(7) Ge(1) O(7) 89.0(2) O(8) Mg(1) O(8) 89.92(19) O(8) Mg(4) O(8) 91.9(2) 

O(7) Ge(1) O(7) 180.0(2) O(4) Mg(1) O(8) 87.19(13) O(6) Mg(4) O(9) 98.51(16) 

O(7) Ge(1) O(2) 90.27(14) O(8) Mg(1) O(8) 89.92(19) O(8) Mg(4) O(9) 168.10(14) 

O(7) Ge(1) O(2) 89.73(14) O(8) Mg(1) O(8) 90.08(19) O(8) Mg(4) O(9) 93.17(15) 

O(2) Ge(1) O(2) 180.0(2) O(8) Mg(1) O(8) 180.0 O(6) Mg(4) O(9) 98.51(16) 

O(7) Ge(1) Mg(5) 46.08(9) O(7) Mg(2) O(7) 180.0 O(9) Mg(4) O(9) 80.0(2) 

O(3) Ge(2) O(1) 110.5(2) O(7) Mg(2) O(7) 101.07(18) O(6) Mg(4) O(5) 176.6(2) 

O(3) Ge(2) O(8) 108.80(12) O(7) Mg(2) O(7) 78.93(18) O(8) Mg(4) O(5) 85.59(14) 

O(1) Ge(2) O(8) 108.48(13) O(7) Mg(2) O(7) 180.00(12) O(9) Mg(4) O(5) 84.06(15) 

O(8) Ge(2) O(8) 111.8(2) O(7) Mg(2) O(5) 90.25(12) O(4) Mg(5) O(2) 173.36(16) 

O(4) Ge(3) O(9) 118.60(13) O(7) Mg(2) O(5) 89.75(12) O(4) Mg(5) O(8) 87.63(17) 

O(9) Ge(3) O(9) 101.0(2) O(5) Mg(2) O(5) 180.0 O(2) Mg(5) O(8) 97.17(17) 

O(4) Ge(3) O(6) 116.3(2) O(9) Mg(3) O(9) 105.8(2) O(4) Mg(5) O(1) 91.96(16) 

O(9) Ge(3) O(6) 99.40(14) O(9) Mg(3) O(3) 93.48(14) O(2) Mg(5) O(1) 92.56(16) 

O(4) Mg(1) O(4) 180.0 O(9) Mg(3) O(1) 91.10(14) O(8) Mg(5) O(1) 90.64(17) 

O(4) Mg(1) O(8) 87.19(13) O(3) Mg(3) O(1) 172.40(19) O(4) Mg(5) O(5) 84.71(16) 

O(4) Mg(1) O(8) 92.81(13) O(9) Mg(3) O(7) 163.74(13) O(2) Mg(5) O(5) 90.71(15) 

O(4) Mg(1) O(8) 87.19(13) O(9) Mg(3) O(7) 90.36(15) O(8) Mg(5) O(5) 89.81(17) 

O(8) Mg(1) O(8) 180.00(13) O(3) Mg(3) O(7) 87.07(16) O(1) Mg(5) O(5) 176.62(13) 

O(4) Mg(1) O(8) 92.81(13) O(1) Mg(3) O(7) 86.84(16) O(4) Mg(5) O(7) 94.86(17) 

O(7) Mg(3) O(7) 73.43(19) O(9) Mg(3) O(7) 90.36(15) O(2) Mg(5) O(7) 80.36(16) 

O(9) Mg(4) O(5) 84.06(15) O(3) Mg(6) O(9) 91.84(17) O(8) Mg(5) O(7) 177.50(13) 

O(7) Mg(6) O(5) 90.77(17) O(2) Mg(6) O(9) 98.57(16) O(1) Mg(5) O(7) 89.09(17) 

O(6) Mg(6) O(9) 79.06(16) O(3) Mg(6) O(7) 90.52(17) O(5) Mg(5) O(7) 90.60(17) 

O(3) Mg(6) O(5) 178.47(16) O(2) Mg(6) O(7) 79.74(16) O(6) Mg(6) O(3) 91.87(16) 

O(2) Mg(6) O(5) 90.13(15) O(6) Mg(6) O(5) 87.06(16) O(6) Mg(6) O(2) 176.41(16) 
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Table D6. Anisotropic displacement parameters (Å2x 103) for Ge-anhB. The anisotropic 
displacement factor exponent takes the form: -2p2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. 
 

 
 
 
 
Table D7. Rietveld results for Ge-shyB. Quality of refinement resembles trace amount of unidentified accessory 
phase.  
 

phase a (2σ) [Å] b (2σ) [Å] c (2σ) [Å] V (2σ) [Å] Wt (2σ) fraction WRp Durbin-Watson X2 

Ge-shyB 14.202(1) 5.1676(2) 8.8756(4) 651.3(1) 0.80(0) 0.085 0.749 2.04 

periclase 4.211(1) 4.211(1) 4.211(1) 74.70(2) 0.10(1)    

brucite 3.146(1) 3.146(1) 4.769(2) 40.87(2) 0.09(1)    

 
 
 
 
 
 
 

 U11 U22 U33 U23 U13 U12 

Ge(1) 5(1)  3(1) 5(1)  0 0  0(1) 

Ge(2) 4(1)  4(1) 5(1)  0 0  0(1) 

Ge(3) 6(1)  6(1) 6(1)  0 0  1(1) 

Mg(1) 9(1)  3(1) 6(1)  0 0  2(1) 

Mg(2) 6(2)  7(1) 3(1)  0 0  1(1) 

Mg(3) 5(1)  6(1) 7(1)  0 0  -1(1) 

Mg(4) 5(1)  4(1) 8(1)  0 0  1(1) 

Mg(5) 6(1)  5(1) 4(1)  0(1) 0(1)  0(1) 

Mg(6) 5(1)  7(1) 6(1)  1(1) 1(1)  0(1) 

O(1) 9(2)  4(2) 6(2)  0 0  -1(1) 

O(2) 5(2)  3(2) 5(2)  0 0  -1(1) 

O(3) 9(2)  5(2) 7(2)  0 0  1(2) 

O(4) 5(2)  5(2) 5(2)  0 0  -2(1) 

O(5) 5(2)  8(2) 9(2)  0 0  0(2) 

O(6) 5(2)  5(2) 9(2)  0 0  -1(1) 

O(7) 6(1)  5(1) 4(1)  1(1) -1(1)  0(1) 

O(8) 6(1)  7(1) 3(1)  -3(1) -1(1)  -2(1) 

O(9) 6(1)  7(1) 6(1)  0(1) 1(1)  0(1) 
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Table D8. Atomic coordinates for Ge-shyB. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 x y z 

Ge1 0.000 0.000 -0.096(6) 

Ge2 0.377(1) 0.012(2) -0.092(6) 

H1 0.300 0.600 0.100 

H2 0.270 0.180 0.310 

Mg(1) 0.174(2) 0.332(4) -0.086(6) 

Mg(2A) 0.174(3) 0.862(9) 0.086(6) 

Mg(2B) 0.323(3) 0.334(9) 0.234(6) 

Mg(3A) 0.000 0.500 0.732(8) 

Mg(3B) 0.000 0.500 0.089(8) 

Mg(4A) 0.000 0.000 0.567(9) 

Mg(4B) 0.000 0.000 0.234(9) 

O(1) 0.413(3) 0.680(8) 0.893(11) 

O(2) 0.085(4) 0.685(8) -0.113(9) 

O(6) 0.253(3) 0.019(14) -0.078(10) 

O(3A) 0.257(4) 0.006(20) 0.244(10) 

O(3B) 0.263(4) 0.506(18) 0.057(9) 

O(4A) 0.067(5) 0.142(15) 0.068(9) 

O(4B) 0.419(5) 0.647(16) 0.268(9) 

O(5A) 0.408(4) 0.163(14) 0.069(9) 

O(5B) 0.077(4) 0.695(14) 0.234(9) 
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Table D9. Selected bond lengths [Å] for Ge-shyB. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table D10. Band positions in the IR spectrum of Ge-ringwoodite as function of temperature.  
 

Temperature [°C] Band position [cm-1] 

25 3742 3688                            3207 

-100 3751 3689 3350 3240 3150 

-180 3758 3691 3345 3227 3138 

Total shift 25 to -180 [cm-1] +16 +3 -5 -13 -12 

 

 

Ge(1)-O(4B) 1.824(13) 

Ge(1)-O(4A) 1.894(13) 

Ge(1)-O(2) 2.031(7) 

Ge(2)-O(5A) 1.689(12) 

Ge(2)-O(5B) 1.919(12) 

Ge(2)-O(6) 1.780(6) 

Ge(2)-O(1) 1.796(7) 

Mg(1)-O(6) 1.971(11) 

Mg(1)-O(3A) 2.009(17) 

Mg(1)-O(3B) 1.999(15) 

Mg(1)-O(4B) 2.076(15) 

Mg(2A)-O(3A) 1.965(16) 

Mg(2A)-O(6) 1.994(13) 

Mg(2A)-O(5B) 1.965(16) 

Mg(2B)-O(3A) 1.959(17) 

Mg(2B)-O(3B) 1.991(14) 

Mg(3B)-O(5B) 1.980(14) 

Mg(4A)-O(1) 2.180(15) 

Mg(4A)-O(5A) 2.173(11) 

Mg(4B)-O(5B) 1.924(11) 

Mg(4B)-O(4A) 1.976(15) 

Mg(4B)-O(1) 2.030(14) 

O(3A)-H(2) 1.086(17) 

O(3B)-H(1) 0.811(12) 
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Table D11. Band positions in the IR spectrum of Ge-anhB as function of pressure.  
 

Pressure [GPa] Band position [cm-1] 

 ν1 ν2 ν3 ν4 ν5 ν6 

0.0 3621 3592 3582 3497 3418 3371 

0.3 3620 3591 3581 3497 3417 3369 

2.1 3618 3583 3577 3497 3417 3359 

4.1 3618 3578 3563 3497 3416 3355 

6.3 3614 3498 3411 3345 

7.9 3612 3490 3411 3339 

10.3 3612 

3569 

3568 

3565 3486 3411 3332 

Total shift [cm-1] -9 -27 -17 -11 -7 -39 
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Abstract 

We present a new technique for the quantification of water in glasses down to the ppm level, using confocal 

microRaman spectroscopy with the recently developed “Comparator Technique”. To test this method we used a 
suite of glasses and gemstone-quality garnets with varying chemical compositions. Water contents were 

independently determined with proton-proton(pp)-scattering and infrared(IR) spectroscopy. Moreover, water 
concentrations obtained for the garnets were compared to data of a study of Maldener et al. (2003) using nuclear 

reaction analysis (NRA). For each sample we recorded Raman spectra in the frequency range from 3100 to 3750 
cm-1 and standardized them using an independently well-characterized glass. In this paper we demonstrate the 

usefulness of this technique for quantifying water concentrations in natural and synthetic glass samples and 
garnets, and verify its adaptability for concentrations from 40 wt ppm up to 40 wt % H2O. However, in case of 

absorbing material (e.g., Fe-bearing samples) the suggested method needs to be modified to overcome problems 
due to heating and melting of those phases. Furthermore, we propose an integrated molar absorption coefficient 

for water in quartz glass εitot = 72000 ± 12000 lmol

� 

H2O

!1 cm-2 for quantitative IR spectroscopy, which is higher than a 

prior reported value of Paterson (1982) or the datum predicted by the general calibration trend determined by 

Libowitzky & Rossman (1997). 
 

Keywords: Raman spectroscopy, glasses, garnet, water determination, proton-proton scattering, FTIR 
spectroscopy 
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Introduction 

Confocal microRaman spectroscopy has proven useful for the accurate and rapid 

determination of the total water content (H2OT) of natural and synthetic glasses with widely 

variable compositions (Thomas 2000 and 2002; Thomas et al. 2006; Thomas and Davidson 

2006 and 2007), for concentrations from 0.1 to over 40 wt%, with high precision (< 10% 

relative error) and high spatial resolution (about 1 µm). Using the “Comparator Technique” 

(see, e.g., Thomas and Davidson 2006) the water content of a sample can be determined by 

simple comparison with a known standard, and consequently a calibration curve is 

unnecessary. This method was confirmed by an independent study of Di Muro et al. (2006), 

in which furthermore advantages and disadvantages of external vs. internal calibrations as 

well as composition, reproducibility, preparation and spectra treatment issues were 

extensively discussed. Based on our experience, internal standardization (Thomas 2000; 

Chabiron et al. 2004; Zajacz et al. 2005; Behrens et al. 2006; Di Muro et al. 2006) employing 

normalization of the total water band (H2OT) to either the T-O-T (T: tetrahedrally coordinated 

cations) bending band near 500 cm-1, or the T-O stretching band near 1000 cm-1 is unsuitable 

for concentrations < 0.1 wt% because of potential high errors due to, e.g., the strong 

influence of variable glass compositions, interference peaks from the embedding medium, or 

the host matrix, on the internal reference intensity. Using an external reference material 

permits an independent selection and adoption of suitable measurement conditions 

according to specific requirements, which is particularly important for the measurement of 

very small amounts of H2OT in geological samples. Since the Raman signal in the frequency 

range of 2800 to 4000 cm-1 is directly proportional to the H2OT concentration, and the 

integrated intensity increases linearly with the concentration, the determination of water is 

dramatically simplified by adopting an external calibration combined with a well-characterized 

reference glass. However, until now the lower detection limit remains un-explored. The object 

of this paper is to verify the utility of this Raman method for the determination of water 



  Kapitel 2 
 

 69 

concentrations at the ppm level, using well-characterized samples with water contents < 0.1 

wt% independently quantified by NRA, pp-scattering and IR spectroscopy.  

 

Analytical Techniques 

Samples 

The samples in this study were polished sections of a set of natural and synthetic silicate 

glasses with basaltic to rhyolitic compositions (see also Thomas and Davidson 2007), 2 

synthetic quartz glasses and 4 gem-quality garnet crystals HESS1, MALI, PYRALTAN2 and 

SPESSOR (see Maldener et al. 2003; Rhede and Wiedenbeck 2006). The garnets, prior 

quantified with NRA by Maldener et al. (2003), and the synthetic quartz glasses were 

selected to provide samples with low water contents < 1000 wt ppm. The optical isotropic 

nature of cubic garnet allows unpolarized spectra acquisition and a comparison with glass 

samples. IR line scans as well as randomly chosen spots for Raman measurements of our 

samples did not reveal significant heterogeneities in the sample water distribution (see 

Tables 1 and 2).  

 

Raman spectroscopy 

All measurements were performed using a LabRam HR800 UV-VIS spectrometer (grating: 

1800 grooves/mm) equipped with a motorized XY-stage, an Olympus optical microscope and 

a long working distance 100x objective (LWD VIS, NA = 0.80, WD = 3.4 mm). The spectra of 

glasses and garnets were collected with a Peltier-cooled CCD detector. The 488-nm line of a 

Coherent Ar+ Laser Model Innova 70-3 at 300 mW was used for sample excitation 

(corresponding to 44 mW on the sample). To obtain well-resolved spectra for selected 

samples containing water concentrations at the ppm level (PYRALTAN and SPESSOR) and 

to detect a potential temperature dependency of recorded spectral intensities (KG) an even 

                                                
2 PYRALTAN, according to text in Maldener et al. 2003; corresponds to the sample PYALTAN referred to Table 1 
of Maldener et al. (2003) or the article of Rhede and Wiedenbeck (2006). 
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higher laser power of 1000 mW was employed. For all measurements a confocal pinhole of 

100 µm was used at a corresponding spectral resolution of about 1 cm-1. The spectra were 

taken in the frequency range of 2800 to 3980 cm-1. To get a whole Raman spectrum in the 

latter spectral range we used the multi-window accumulation mode (multi-window acquisition) 

of the Labspec Software. For a grating of 1800 groves/mm three spectral windows are 

required. The laser beam was focused on the top of the sample surface using the 100x 

objective and then lowered by 4 µm before starting the measurement to avoid errors due to 

sample surface heterogeneities. To maintain consistency, this procedure was repeated for 

each Raman measurement throughout this study. Before and after each sample 

measurement a standard spectrum, in this case of the rhyolitic SD-6.53% glass (Table 1) 

with 6.53 wt% water, was recorded. The integrated intensity obtained in the frequency range 

3100 to 3750 cm-1 served as intensity reference, and to monitor the device stability (laser 

power). All subsequent spectra taken under the same conditions were normalized using this 

standard. Measuring conditions are listed in Tables 1 and 2. Spectra acquisition times varied 

from generally 100 seconds for glasses with > 1 wt % H2OT to 600 s or even 1000 s for 

samples containing water concentrations at the ppm-level. All calculated correlation 

coefficients are based on intensity data standardized on counts per second (cps). We 

adopted a linear background correction to all our spectra in the integration interval between 

3100 and 3750 cm-1. For glasses with a narrow compositional range with densities ~ 2.2 

g/cm3, such as analyzed throughout this study, this method has proven to be matrix-

independent (Thomas and Davidson 2006). Therefore, a density correction of measured 

Raman intensities is unnecessary. However, since we excite a different sample mass in a 

constant sampling volume in the denser garnets, we corrected our integrated intensity 

obtained from garnet Raman spectra for density variations between reference material (ρref = 

2.26 g/cm3) and sample (ρPYRALTAN = 3.76 g/cm3, ρSPESSOR = 4.13 g/cm3, ρMALI = 3.65 g/cm3, 

ρHESS1 = 3.62 g/cm3) prior to calculating corresponding water concentrations. Effective 

sampling volume in turn is a function of laser focusing, sample dimension, sample 
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transparency, reflections, refractions and roughness of the sample surface. Thus, given a 

constant focusing and the density correction applied herein, an additional reflectance 

correction should be considered for our garnets. According to the Snell’s law and the Fresnel 

equations measured intensities are underestimated and should be corrected for a 

reflectance/refraction error of 8% for garnet that in turn is defined by the differences of 

refractive indices between reference material (nref = 1.5) and sample (ngarnet = 1.8; mean value 

according to Maldener et al. 2003). Moreover, we conducted up to 5 single analyses on 

garnet HESS1 by rotating the crystal plate by 45° with respect to the microscope axis before 

subsequent spectrum acquisition. This was done to account for potential dependencies of the 

measured intensities on the crystal orientation (Kolesov and Geiger 1997). As Raman 

spectroscopy measures the molar concentration of the activated species the water 

concentration in mol/l was calculated using following equation: cH2O(mol/l) = Iicorrsample !  

cH2Oref(mol/l) / Iiref, where Ii are the integrated density-corrected intensities of sample and 

reference and c is the water concentration of the reference glass given in mol/l (8,21 mol/l). 

The water concentration in wt% can be recalculated using the equation cH2O (wt%) = cH2O 

(mol/l) !  1.8 / ρsample (g/cm3). 

 

Proton-Proton-scattering  

For hydrogen analysis by the pp-scattering method the scattering geometry requires thin 

unsupported samples and hence these were ground and polished until they had a final 

thickness < 200 µm (HESS1 172 µm, PYRALTAN 155 µm, KG 83 µm). Samples were 

typically sections 3 mm × 4 mm in size. Pp-scattering analysis was performed at the Munich 

tandem accelerator lab using a 13 MeV and a 25 MeV proton beam for the thin KG sample 

and the thicker samples, respectively. This technique enables sensitive hydrogen depth 

profiling, or even 3D microscopy at hydrogen concentrations < 0.1 at ppm (Reichart et al. 

2004). This method is sensitive to all hydrogen atoms in the sample, and it is self-calibrating, 

i.e. does not need any reference standards. This is because protons from the beam hitting a 
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hydrogen atom in the sample give significant elastic scattering reactions where the scattering 

cross section (i.e., the scattering probability) is well known for the incident proton energy, and 

not dependent on the chemical and structural environment of the impacted hydrogen atom. 

The reaction products are two indistinguishable elastically scattered protons that leave the 

reaction point at an angle of 90° to each other. This is used to separate these reactions from 

all other scattering events by a fast coincidence filtering detector setup, and results in a 

nearly background-free energy spectrum of all detected proton pairs. The energy information 

of the coincidence pairs is then used to generate a depth scale for the detected hydrogen 

atoms, as shown, e.g., in Figure 1. 

 

 

Figure 1. Depth profile of the hydrogen concentration (measured as H atoms per total atoms) in synthetic quartz 
glass KG derived from pp-scattering. The depth scale is approximately calculated from the energy loss of the 
coincident proton pairs. Note the log on the y-scale and that the background is not constant due to depth-
dependent efficiency correction and background tail (to less depth). The depth resolution varies with depth as 
noted. Therefore the narrow surface hydrogen distribution is broadened and appears as two peaks in the front 
and back of the sample respectively (7.3 and 5.5 × 1016 H atoms/cm2, 20% uncertainty). The spectrum 
demonstrates that it is possible to convincingly separate surface water from internal bulk hydrogen, and gives a 
background-corrected value of 83 at ppm H corresponding to 37 wt ppm H2O. 

 

 
The depth resolution depends on the depth, and ranges from about 3 % at the front of the 

sample, up to 10 % of the total thickness. This is sufficient to separate the surface hydrogen 

and identify clearly the bulk hydrogen with high sensitivity. The quantitative analysis of the 

(unprepared) sample surfaces gives a hydrogen surface density of more than 1016 – 1017 H 

atoms/cm2. The depth resolution is not sufficient to reveal the thickness of the hydrogen 
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contaminated surface layer. As a rough guess, if this amount of hydrogen atoms is spreaded 

into say the first 10 nm of a garnet sample (8 x1022 atoms/cm3), it gives a concentration of 10 

- 100 at%, corresponding to 3-35 wt% H2O. A garnet sample with 100 µm thickness has an 

total atomic areal density of 8x1020 atoms/cm2 and, if not separated from the bulk, the surface 

hydrogen would result in a hydrogen signal of 10-100 at ppm or corresponding 3-35 wt ppm 

H2O. Hence the depth profiling ability is essential for hydrogen analysis of minerals at the 

ppm level. 

The detector efficiency depends on the scattering depth, and is calibrated on samples with 

well-constrained hydrogen contents (Mylar, Polycarbonate, Diaspore). The thickness of the 

samples is verified by proton energy loss measurements, which are accurate to within a few 

µm. Therefore, the measured hydrogen content within a certain thickness given in absolute 

units (H atoms/cm2) is converted into H atoms per total atoms using the thickness and atomic 

density of the samples (KG: 7.98·1022 atoms/cm3, HESS1: 7.88·1022 atoms/cm3, PYRALTAN: 

9.01·1022 atoms/cm3). 

Due to unavailability of the SNAKE microbeam setup at that time, we used a millimeter-

focused beam and a spare detector setup with two 40 mm × 60 mm large semiconductor 

silicon strip detector pads (7 strips each) at scattering angles of 40°-50°, which filters for 

coincidence events in opposite sectors within a timing window of about 2-3 ns. The beam 

was averaged on an area of about 1 mm2 diameter. The hydrogen content could be 

quantified with a hydrogen detection limit corresponding to about 0.6 wt ppm for KG and 2 wt 

ppm for HESS1 and PYRALTAN, that is worse than previously achieved (Reichart et al. 

2004) due to the temporary spare detector setup. 

 

IR spectroscopy 

Unpolarized IR spectra of the synthetic quartz glasses KG and KOG (Korth Kristalle GmbH) 

and two garnet specimens PYRALTAN and HESS1 (for sample description see Maldener et 

al. 2003) were recorded at ambient conditions with a Bruker ISF 66v FTIR spectrometer 
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equipped with a Hyperion microscope, an InSb detector, a KBr beamsplitter and a globar 

light source. The spot size used in the measurements ranged from 30 × 30 µm to 100 × 100 

µm, and up to 1024 scans were taken with a resolution of 2 cm-1. Sample thickness was 

determined using a micrometer to be 1 mm (KG, KOG), 2 mm (PYRALTAN) and 172 µm 

(HESS1); errors are estimated as ± 5 µm. The spectra were fitted using the PeakFit software 

by Jandel Scientific. To quantify the water concentration of the quartz glass KOG we utilized 

a new integrated molar absorption coefficient for quartz glass (see results and discussion), 

which was calculated according to the equation ει = (1.8 !  Aitot) (cH2Owt% !  t !  ρ), using the 

water content (c) independently determined by pp-scattering, the total integrated absorbance 

(Aitot) derived from IR spectra, the thickness (t) and the density of the sample (ρ). 

 

 
Results 

Raman spectroscopy 

To show that the method suggested by Thomas and Davidson (2007) is also applicable to 

concentrations down to the ppm level, we carefully measured Raman spectra of several 

albitic to rhyolitic glass standards and garnets relative to a well-characterized glass. In this 

study we used the rhyolitic SD-6.53% glass with 6.53 wt% water (Fig. 2, Table 1), determined 

with Karl Fischer titration (see Thomas 2000). Over several months we obtained 13652.60 ± 

527.00 cps as the mean of the integrated intensity for the reference glass with the standard 

deviation of 3.9 % (relative error) indicating good spectral reproducibility.  
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SD-6.53%

 

Figure 2. Raman spectrum of the rhyolitic reference glass SD-6.53% containing 6.53 wt% H2O, previously 
quantified by Karl-Fischer titration (see Thomas 2000). The asymmetric OH stretching band with the peak at 3550 
cm-1 reflects contributions from both molecular water and OH groups (cf., e.g., Chabiron et al. 2004).  
 

The results of our test study are listed in Tables 1 and 2 and plotted in Figure 3.  

 

Figure 3. Correlation between the H2O concentration in glasses and garnets, and the integrated intensity in the 
frequency range between 3100 and 3750 cm-1, which demonstrates a linear relationship for water concentrations 
from 0 to 40 wt% for glasses and garnets of different compositions. Water concentrations of the samples were 
independently determined using Karl Fischer titration (see Thomas 2000), NRA (Maldener et al. 2003), pp-
scattering or IR spectroscopy. The inset shows the correlation at the ppm level from 0 to 0.1 wt% for the samples 
KG, KOG, HESS1, MALI, SPESSOR and PYRALTAN (see Table 2). 
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Table 1. Raman spectroscopic analyses of H2O concentrations in different synthetic glasses.  
 

Glass 
 

I(cps) 
 

1σ  
 

n 
 

 
H2O (wt ppm) 

 

 
Time (s) 

 

 
Accumulations 

 

H2O estimated 
using the SD-6.53% glass (wt 

ppm)† 
Westrich PCD     355.40 13.80  5     1700 600 41      1700 + 120 

Westrich 1N   1923.50 122.5  5     9200 100 11        9200 + 560 

Westrich 2N 4223.30 n.d.  1   20200   50   6     20200 + 790‡ 

SD-4.0%   8362.80 414.35  5   40000 100   6        40000 + 2060 

SD-5.51% 11519.80 806.40  5   55100 100   6        55100 + 3600 

SD-6.53% 13652.60 527.00 14   65300* 100 21        65300 + 2550 

SD-8.48% 17729.20 878.40  5   84800 100   6       84800 + 4360 

SD-8.96% 18732.70 952.60  5   89600 100   6        89600 + 4880 

SD-11.71% 24482.20 1052.70  5 117100 100   6      117100 + 5530 

SD-11.95% 24984.00 n.d.  1 119500 100   6      119500 + 4770‡ 

Notes: 
Glass – glasses used in this study see Thomas, 2002; Thomas et al., 2006, and Thomas and Davidson, 2007. Information on the 

                    reference glass (SD-6.53%) used to determine sample water concentrations at the ppm-level is given in bold letters.  
I(cps)    – integrated intensity in the 3100-3750 cm-1 frequency range. 
1σ    – standard deviation (1 sigma). 
n    – number of measurements. 
H2O (wt ppm)                  – determined with Karl Fischer titration. 
Time (s)                   – Acquisition time for 1 window out of 3 in the 2800 to 3980 cm-1 frequency range. 
Accumulations                   – number of accumulations of each window. 
n.d.                   – not determined. 
*   – equals 8,21 mol/l, which was used for calculating the garnet water concentrations. 
†   – relative mean error using SD-6.53% glass = 3.9% and measured standard deviations listed in the 3rd column of this table. 
‡   – error estimated using the standard deviation of the SD-6.53% glass. 
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       Table 2. Comparison of H2O concentrations in different glasses and garnets. 

 
Independently determined H2O 

(wt ppm) 
Sample I(cps) 1σ  Accumulations n Time (s) 

wt ppm H2O 
estimated 

using the SD-
6.53% glass 

pp-
scattering* NRA‡ IR§§ 

KG†† 10.00 1.00 42  5 600 48 + 5 37 + 8   

KG† 9.74 0.75 42 5 1000 47 ± 4 37 ± 8   

KOG†† 69.40 3.84  21  5 500 332 + 20   395 ± 68 

HESS1(garnet) 

†† 
438.26 

(274.28) 42.31 6 5 100 892 ± 80 800 ± 240 870 ± 90  

MALI(garnet) †† 103.37 
(64.13) 3.19 6 2 300 207 ± 20  170 ± 20  

SPESSOR 
(garnet)† 

18.33 
(10.05) n. d.  31 1 600 22#  25 ± 5  

PYRALTAN 
(garnet)† 

0.76 
(0.59) 0.19 23 13 1000 < 3§# < 2 17 ± 4  

Notes:  
I(cps) – integrated intensity in the 3100-3750 cm-1 frequency range. Data in parentheses represent 

   density-corrected intensities used for the quantification of sample water contents. For calculation of garnet data H2O     
contents in mol/l were used.  

1s    – standard deviation (1 sigma). 
n    – number of measurements. 
Time (s)   – acquisition time for 1 window out of 3 in the 2800 to 3980 cm-1 frequency range. 
Accumulations   – number of accumulations of each window. 
n.d.   – not determined. 
*   – pp-scattering (this paper), wt ppm H2O values from measured at ppm H values. 
†   – measured at 1000 mW, ISD = 17628.25 cps. 
††   – measured at 300 mW. 
‡   – see Maldener et al. 2003. 
§   – estimated value according to 2 sigma of calculated value. 
§§   – determined by IR spectroscopy using εitot = 72000 ± 12000 lmol

� 

H2O

!1 cm-2, error is sd of e. 
#   – high systematic errors > 100 % may be caused by very low signal/noise ratios of the Raman spectra. 
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From a plot combining all samples (n = 34) given in Thomas and Davidson (2007), and the 

data given in Table 1, we obtain the following linear regression: 

 
H2O (wt %) = I × 0.00051 - 0.13577  r2 = 0.99 

 
The regression value indicates a very good correlation between the total water concentration 

(H2OT) from 0 to 40 wt% for glassed with different compositions and the integrated intensity 

of the asymmetric OH stretching band at 3550 cm-1, which reflects vibrational contributions 

from both, molecular water and hydroxyl groups (e.g., Chabiron et al. 2004). Hence, using 

one well-characterized reference glass from Table 1 should allow us to determine any 

unknown sample water concentration.  

 

To test if such a method is also applicable on samples containing less than 0.1 wt % H2O, 

and in order to establish the lower detection limit, we recorded Raman spectra of 2 quartz 

glass samples (KG, KOG) and 4 gem-quality garnet specimens (HESS1, MALI, PYRALTAN 

and SPESSOR) and standardized them using the SD-6.53% glass (see Table 1). Results are 

summarized in Table 2. Figure 4 represents unpolarized Raman spectra of the studied quartz 

glasses (KG and KOG) that reveal a characteristic asymmetric OH stretching band with the 

area-weighted average of the peak positions at 3642 and 3645 cm-1, respectively. 

Furthermore, they demonstrate that it is possible to detect and quantify even low water 

concentrations < 0.1 wt % with a high signal/noise ratio. For KG and KOG we determined a 

water content of 48 wt ppm and 332 wt ppm H2O, respectively (Table 2). To study a potential 

temperature dependence of the recorded Raman spectra due to the employment of large 

beam energies in our study, the quartz glass KG was measured at 1000 mW, in addition to 

the generally used 300 mW laser energy. The results for KG obtained with the high beam 

energy show no significant difference compared to that derived at 300 mW (Table 2) and 

thus verify the assumption that a potential temperature dependence of our measurements is 

negligible.  
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Figure 4. Raman spectra of KOG and KG recorded at 300 mW laser energy showing an asymmetric OH 
stretching band with the area-weighted average of the peak position at 3645 cm-1 and 3642 cm-1, respectively. 
Quantification using the integrated intensity of the band in KG resulted in a water concentration of 48 ± 5 wt ppm 
(c/f 37 ± 8 wt ppm H2O obtained by pp-scattering), which demonstrates the applicability of the “Comparator 
Technique” to ppm-level H2O concentrations.  
 

 
In case of the garnets HESS1, MALI, SPESSOR and PYRALTAN (Table 2, Figs. 5 and 6) we 

calculated concentrations of 892 wt ppm, 207 wt ppm, 22 wt ppm and < 3 wt ppm H2O, 

respectively. Raman measurements of the garnets SPESSOR and PYRALTAN (Fig. 6) were 

undertaken to explore the lower detection limit. Appropriate Raman spectra show that higher 

technical complexity (in this case 1000 mW laser power and 600 or 1000 s measuring time) 

permits determination of amounts < 40 wt ppm H2O. The lower signal/noise ratio in the 

Raman spectrum of SPESSOR compared to the spectrum of PYRALTAN can be explained 

by the lower spectra acquisition time of the SPESSOR spectrum, and the fact that this 

spectrum represents only one measurement, in contrast to 13 single measurements in the 

case of PYRALTAN.  
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Figure 5. Raman spectra of the garnets HESS1 and MALI (corresponding IR spectrum is given in Maldener et al. 
2003) showing several OH bands in the high-frequency range due to various OH defects in the crystal structure.  
 

SPESSOR
22 wt ppm H2O

PYRALTAN
< 3 wt ppm H2O

 

Figure 6. Raman spectrum of the garnet SPESSOR recorded at 1000 mW and 600 s acquisition time, showing 
OH bands in the high-frequency range due to OH defects in the crystal structure (for the corresponding IR 
spectrum see Maldener et al. 2003). Raman sum spectrum of the garnet PYRALTAN recorded at 1000 mW laser 
power and 1000 s acquisition time during 13 separate measurements. As a function of time the intensity of the 
OH stretching band at 3550 cm-1 (arrow) decreases due to local amorphization of the sample due to the very high 
laser power (1000 mW) and the long exposure time. In contrast the intensity of the 3650 cm-1 band remains 
constant. Due to melting and the high background noise high systematic errors (> 100%) may be produced. 
Hence, a quantification of the water content in both garnets by our method is not recommended.  
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The Raman spectrum of the PYRALTAN crystal, which has a deep red color and the highest 

Fe-content of the garnets studied herein (cf. Maldener et al. 2003), reveals two bands at 

3550 cm-1 and 3650 cm-1 (Fig. 6). As a function of time a slow decrease of the intensity of the 

3550 cm-1 band was observed, that might be a result of local amorphization and water loss of 

the sample. Water loss or even sample melting may be initiated by the very high beam power 

(1000 mW) and the long exposure time, particularly in specimens with strong light 

absorption, e.g., Fe-bearing phases (e.g., Behrens et al. 2006). The estimated water 

concentration for PYRALTAN is < 3 ppm H2O (at 2 sigma of the calculated value) using our 

reference glass, and the integrated intensity of both OH bands in the Raman spectrum of the 

garnet. However, it should be noted that quantification of such low water contents as 

detected for SPESSOR and PYRALTAN is not to be recommended without further statistical 

enhancement, since low background/noise ratios may produce high systematic errors           

(> 100%).  

 

Raman spectroscopy vs. Independent quantification methods  

Water concentrations derived from Raman spectroscopy (Table 2) were compared to 

hydrogen contents independently determined by the coincident pp-scattering method 

(Reichart et al. 2007), IR spectroscopy and NRA (Maldener et al. 2003). Figures 1, 7 and 8 

show resulting depth profiles for KG, HESS1 and PYRALTAN derived from pp-scattering.  

 

Figure 7. Depth profile of the hydrogen concentration in garnet HESS1 derived from pp-scattering. The bulk 
hydrogen content was derived from the marked region in order to avoid contribution from the surface, and gives a 
background-corrected value of (2300±600) at ppm H that corresponds to (800±240) wt ppm H2O.  
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Figure 8. Depth profile of the hydrogen concentration in garnet PYRALTAN derived from pp-scattering. In the 
marked bulk region the background-corrected hydrogen content is in agreement with zero, with an upper limit of 
about 5 at ppm H that corresponds to about 2 wt ppm H2O. The surface peaks give a content of about 6 × 1016 H 
atoms/cm2 each and the tail of the right peak causes the main background. 

 

 
Note that the surface peaks appear broader than the actual width of the hydrogen distribution 

(probably few nm) due to limited depth resolution. Note also the log scale for KG and 

PYRALTAN that emphasizes the background over the large surface peaks. The background 

is not constant due to depth-dependent efficiency correction, and furthermore is caused 

partly by accidental coincidences, and partly a surface peak tail to the left, respectively. For 

KG, the background-corrected analysis of the detected hydrogen events gives a bulk 

hydrogen content corresponding to (37±8) wt ppm H2O, assuming all detected hydrogen is 

bound in water and hydroxyl groups. For HESS1 we obtained (800±240) wt ppm H2O and for 

PYRALTAN we are able to give an upper limit of about 2 wt ppm H2O. Corresponding 

unpolarized IR spectra (Fig. 9: HESS1 and PYRALTAN) show OH bands caused by different 

hydroxyl groups in the sample structure.  
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Figure 9. Unpolarized single-crystal IR spectra of the garnets HESS1 and PYRALTAN revealing several OH 
stretching bands at high frequencies with the area-weighted average of the peak position at 3643 cm-1 and 3549 
cm-1, respectively (see also Maldener et al. 2003). In the lower spectrum a small contribution of an OH stretching 
feature is indicated around 3650 cm-1 (see also Maldener et al. 2003).  
 

IR spectra of MALI and SPESSOR are shown in Maldener et al. (2003). All recorded IR 

spectra are in good agreement with the obtained Raman spectra, except in the case of 

PYRALTAN. The IR spectrum of PYRALTAN is characterized by a broad OH band centered 

at 3550 cm-1 and a small contribution of an OH stretching vibration around 3650 cm-1 (Fig. 9). 

In contrast, the Raman spectrum (Fig. 6) is dominated by the 3650 cm-1 band (see above), 

which may be caused by water loss due to the sample melting observed and would explain 

deviating spectra obtained with both methods. 

Using a combination of integrated IR absorption intensities, with water contents 

independently determined by pp-scattering (KG, see Table 2) we calculated an IR molar 

integrated absorption coefficient for water in quartz glass εitot = 72000 ± 12000 lmol

� 

H2O

!1 cm-2, 

which is higher than prior proposed values. Based on literature and own IR data Paterson 
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(1982) estimated for quartz glass with a narrow band peaked at ~ 3660 cm-1 an ε-value of 

37600 lmol

� 

H2O

!1 cm-2. The general calibration trend of Libowitzky and Rossman (1997) predicts 

an ε-value of ~ 27000 lmol

� 

H2O

!1 cm-2. By using our IR data and adopting the εitot determined 

herein for the quartz glass KOG we obtained a water concentration of 395 wt ppm H2O (see 

Table 2), with the latter value in excellent agreement with the value determined from Raman 

spectroscopy.  

Sample water contents derived from Raman spectroscopy are in very good agreement with 

those from independent quantification methods (see Table 2). However, the errors of the 

water concentrations obtained by the different techniques may be influenced by multiple 

factors, as errors in thickness determination (IR analyses), low statistics, errors due to 

polarization effects (Kolesov and Geiger 1997), vibrational spectra treatment (baseline, fits) 

(cf., e.g., Di Muro et al. 2006, Zajacs et al. 2005), statistical deviations within a certain 

sample suite or technical errors due to the quality of polarizing and analyzing material used 

for the spectroscopic methods. Moreover, errors may be introduced into the calculations due 

to the fact that the techniques compared herein as FTIR, Raman, NRA and pp-scattering 

probe different sample volumes. However, high surface water contaminations can be 

excluded from this discussion as such would be evident in FTIR analyses as broad 

background feature, pp-scattering clearly makes a separation of surface water and inside H 

contents possible, and in the Raman procedure employed herein we avoid probing the 

sample surface by focusing into the sample. Additional problems could be due to the fact that 

Karl Fischer Titration underestimates sample concentrations, as ~ 1000 wt ppm H2O could 

remain unextracted in the sample investigated (Behrens 1995). However, such a value would 

translate into a systematical error that is well within the standard deviations in our 

measurements.  
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Discussion 

The analytical method applied herein enabled us to determine very low water contents (< 40 

wt ppm H2O), which have been demonstrated on the studied quartz glasses and garnets. As 

verified, H2O concentrations derived from independent methods such as pp-scattering are in 

good agreement with those from the Raman measurements, and thus validate the 

“Comparator Technique” for very low H2O concentrations. Furthermore, our results show that 

in case of the garnets investigated it was sufficient to use a well-characterized glass as 

reference, and to adopt a density and a reflectance correction (see Analytical techniques) to 

account for matrix effects. This is contrary to observations of an earlier approach by 

Arredondo and Rossman (2002) who aimed to test the feasiblity of Raman spectroscopy for 

trace water determination in garnets. The authors concluded that the latter technique is not 

generally suitable to determine trace OH concentrations in those minerals, as they could not 

observe a consistent correlation of OH/Si ratio with sample water concentrations. However, 

Arredondo and Rossman (2002) utilized an internal calibration employing the ratio of the 

integrated area of depolarized Raman bands in the ~ 3600 cm-1 stretching region to Si-O 

stretching bands in the 800 - 900 cm-1 region, that may be subject of, e.g., compositional 

differences (cf. Introduction). Furthermore, surface heterogeneities may have influenced their 

results as they did not focus into their samples. Moreover, differences in detector efficiencies 

between the low- and the high-frequency range might have also affected intensities recorded.  

 
The commonly used IR calibrations (Paterson 1982; Libowitzky and Rossman 1997) are not 

necessarily correct for low water concentrations in minerals and glasses, though they are 

widely used in research on water-bearing geological material (Rossman 2006). Since the 

calibrations have been established on different minerals and glasses the correlations may be 

affected by varying chemical compositions or structures. Hence, applying quantitative IR 

spectroscopy requires material-specific calibrations by means of an independent method, 

such as used in this study. Such calibrations have already been performed for garnets e.g. 
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by Rossman and Aines (1991), Bell et al. (1995) or Maldener et al. (2003). That the usage of 

material-specific integrated IR absorption coefficients is strongly recommended can be 

shown on the example of the KOG quartz glass measured in our study (Table 2). Using the 

new mineral-specific IR calibration coefficient for quartz glass from independent pp-

scattering, we obtain comparable water concentrations using Raman and IR spectroscopy, 

whereas the use of general calibration trends (e.g., Paterson 1982; Libowitzky and Rossman 

1997) would result in much higher values. This moreover confirms that not using mineral-

specific integrated absorption coefficients for minerals leads to significant errors in 

quantification results.  

This study demonstrates that the “Comparator technique” has major advantages for the 

determination of water over the concentration range from 40 wt ppm up to 40 wt%. The non-

destructive nature, minimal sample preparation, simplicity, high precision as well as high 

lateral resolution makes confocal microRaman spectroscopy in combination with the 

“Comparator Technique” a useful tool for quantitative analysis of water concentrations in 

natural and synthetic glasses. In prior studies the detection limit has been estimated to be ~ 

1000 wt ppm H2O. The main issue causing that relatively high value was the presence of 

significant background noise producing high quantification errors. In contrast our results 

show that the actual detection limit is well within the range of tens of wt ppm H2O, that can be 

seen in the sufficiently low background/noise ratio recorded for synthetic quartz glasses and 

garnets, whereby 40 wt ppm H2O are demonstrated. However, for Fe-bearing and thus light 

absorbing material, e.g., Fe-rich basaltic glasses or Fe-bearing garnets, the quantification of 

water contents < 40 wt ppm is not possible without an increase of the statistics or a 

modification of the analysis procedure, as problems occur due to local heating of the sample 

by the high laser power. With respect to this problem, Thomas et al. (2008) show that the 

heating effect is cumulative and decreases after excitation. Hence, a precise determination of 

the water content in such glasses indeed is possible using the “Comparator Technique” and 

an extrapolation of the measured integral intensity to the “zero-state”. Eventually, confocal 
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micro Raman spectroscopy is a very convenient supplement to enhance in-house IR 

spectroscopic water quantification that is lacking in mineral-specific IR molar absorption 

coefficients. Moreover, the very high spatial resolution (~ 1 µm) compared to IR spectroscopy 

(~ 30 x 30 µm) makes it a powerful tool for analyzing generally small sample sizes of OH-

bearing nominally anhydrous high-pressure syntheses products (cf. Thomas et al. 

submitted). 

 

Acknowledgements 

We are grateful for constructive reviews of the editor E. Libowitzky, A. Di Muro and G. 

Rossman that improved the manuscript. We thank A. Hösch for providing the garnet crystals.  

 

References 

Arredondo, E.H. and Rossman, G.R. (2002) Feasibility of determining the quantitative OH content of garnets with 

Raman spectroscopy. American Mineralogist, 87, 307-311. 

Behrens, H. (1995) Determination of water solubilities in high-viscosity melts: An experimental study on NaAlSi3O8 

and KAlSi3O8 melts. European Journal of Mineralogy, 7, 905-920.  

Behrens, H., Roux, J., Neuville, D.R., and Siemann, M. (2006) Quantification of dissolved H2O in silicate glasses 

using confocal microRaman spectroscopy. Chemical Geology, 229, 96-112. 
 

Bell, D.R., Ihinger, P.D., and Rossman, G.R. (1995) Quantitative analysis of trace OH in garnet and pyroxene. 

American Mineralogist, 80, 465-474. 
 

Chabiron, A., Pironon, J., and Massare, D. (2004) Characterization of water in synthetic rhyolitic glasses and 
natural melt inclusions by Raman spectroscopy. Contributions to Mineralogy and Petrology, 146, 485-492. 

Di Muro, A., Villemant, B., Montagnac, G., Scaillet, B., and Reynard, B. (2006) Quantification of water content and 
speciation in natural silicic glasses (phonolites, dacites, rhyolites) by confocal microRaman spectrometry. 

Geochimica et Cosmochimica Acta, 70, 2868-2884. 
 

Kolesov, B.A. and Geiger, C.A. (1997) Raman scattering in silicate garnets: an investigation of their resonance 
intensities. Journal of Raman spectroscopy, 28, 659-662. 

 
Libowitzky, E. and Rossman, G.R. (1997) An IR absorption calibration for water in minerals. American 

Mineralogist, 82, 1111 – 1115. 



  Kapitel 2 

 88 

 

Maldener, J., Hösch, A., Langer, K., and Rauch, F. (2003) Hydrogen in some natural garnets studied by nuclear 
reaction analysis and vibrational spectroscopy. Physics and Chemistry of Minerals, 30, 337-344. 

 

Paterson, M. S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar 
materials. Bulletin de Minéralogie, 105, 20-29. 

 
Reichart, P., Bergmaier, A., and Dollinger, G. (2006) Hydrogen Analysis of Minerals from the Earth Mantle. MLL 

Annual Report 2006, 62, available online: www.bl.physik.uni-muenchen.de/mll-jb.html. 
 

Reichart, P., Datzmann, G., Hauptner, A., Hertenberger, R., Wild, C., and Dollinger, G. (2004) Three-Dimensional 
Hydrogen Microscopy in Diamond. Science, 306, 1537-1540. 

 
Rhede, D. and Wiedenbeck, M. (2006) SIMS quantification of very low hydrogen contents. Applied Surface 

Science, 252, 7152-7154.  
 

Rossman, G.R. (2006) Analytical methods for measuring water in nominally anhydrous minerals. In H. Keppler 

and J.R. Smyth, Eds., Water in nominally anhydrous minerals, 1-28, Mineralogical Society of America, Chantilly. 

Rossman, G.R. and Aines, R.D. (1991) The hydrous component in garnets: grossular-hydrogrossular. American 

Mineralogist, 76, 1153-1164. 
 

Thomas, R. (2000) Determination of water contents of granite melt inclusions by confocal laser Raman 
microprobe spectroscopy. American Mineralogist, 85, 868 – 872. 

 
Thomas, R. and Davidson, P. (2006) Progress in the determination of water in glasses and melt inclusions with 

Raman spectroscopy: A short review. Z. geol. Wiss., Berlin, 34, 159-163. 
 

Thomas, R. and Davidson, P. (2007) Progress in the determination of water in glasses and melt inclusions with 
Raman spectroscopy: A short review. Acta Petrologica Sinica, 22, no. 12, 15-20. 

 

Thomas, R., Kamenetsky, V.S., and Davidson P. (2006) Laser Raman spectroscopic measurements of water in 
unexposed glass inclusions. American Mineralogist, 91, 467-470. 

 
Thomas, R., Metrich, N., Scaillet, B., Kamenetsky, V.S., and Davidson, P. (2008) Determination of water in Fe-

rich basalt glasses with confocal micro-Raman spectroscopy. Zeitschrift für geologische Wissenschaften, 36, in 
print.  

 
Zajacz, Z., Halter, W., Malfait, W.J., Bachmann, O., Bodnar, R.J., Hirschmann, M.M., Mandeville, C.W., Morizet, 

Y., Muntener, O., Ulmer, P., and Webster, J.D. (2005) A composition-independent quantitative determination of 
the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy. Contributions 

to Mineralogy and Petrology, 150, 631-642. 
 



 

 89 

 

 

 

 

Kapitel 3 

 

 

 

 

“IR calibrations for water determination in  

olivine and SiO2 polymorphs” 

 

 

 

 



  Kapitel 3 
 

 90 

IR calibrations for water determination in 
olivine and SiO2 polymorphs 

 

Sylvia-Monique Thomas1, Monika Koch-Müller1, Patrick Reichart2, Dieter Rhede1, Rainer 

Thomas1, and Richard Wirth1 

 
1 GeoForschungsZentrum Potsdam (GFZ), Telegrafenberg, 14473 Potsdam, Germany. Section 4.1 

E-mail: smthomas@gfz-potsdam.de 

2 Universität der Bundeswehr München, LRT 2, 85577 Neubiberg, Germany. 
 
Abstract 

Most frequently applied infrared(IR) calibrations (Paterson 1982; Libowitzky and Rossman 1997) for quantitative 

water analyses in solids are based on a negative correlation between the IR molar absorption coefficient (ε) for 

water and the mean wavenumber of the corresponding OH pattern. The calibrations have been primarily acquired 

on hydrous minerals and glasses with several wt% water. However, e.g., Rossman (2006) stated, that they 

cannot be adopted to nominally anhydrous minerals (NAMs) but mineral-specific calibrations are needed.  

In the present work we provide ε−values for synthetic and natural olivine and SiO2 polymorphs. We were able to 

synthesize these minerals with specific isolated OH point defects, e.g., quartz with either B3++H+=Si4+ or 

Al3++H+=Si4+ substitutions. The IR spectra of, e.g., Al- or B-doped quartz display separated OH bands at different 

wavenumbers and hence allow to study the frequency dependence of ε. Water contents of both natural samples 

and our run products were determined using independent techniques as proton-proton(pp)-scattering (Reichart et 

al. 2004), confocal microRaman spectroscopy (Thomas et al. 2006) and secondary ion mass spectrometry 

(SIMS). Obtained data provided the basis to calculate new mineral-specific IR absorption constants. Moreover, 

we present a routine to detect OH traces in isotropic and anisotropic minerals using Raman spectroscopy 

combined with the “Comparator Technique”.  

For olivine with the mean wavenumber of 3517 cm-1 an ε-value of 38000 ± 4000 lmol

� 

H2O

!1 cm-2 was determined. 

For another olivine (mean wavenumber of 3548 cm-1) we obtained an ε−value of 47000 ± 5000 lmol

� 

H2O

!1 cm-2. 

Taking into account previous studies (Bell et al. 2003; Koch-Müller et al. 2006) we will discuss here the frequency 

dependence of ε for olivine. In case of the SiO2 system it turns out that the magnitude of ε for one structure is 

independent of the type of OH point defect and therewith the peak position, but varies as a function of structure. 

One single mean ε of 67000 ± 8000 lmol

� 

H2O

!1 cm-2 was determined for a suite of quartz crystals with different OH 

point defects. For the high-pressure polymorph coesite a higher ε of 214000 ± 14000 lmol

� 

H2O

!1 cm-2 was calculated, 

that is in good agreement with earlier established data (Koch-Müller et al. 2001). For stishovite an even larger 

value of ε = 461000 ± 68000 lmol

� 

H2O

!1 cm-2 was derived, similar to that determined by Pawley et al. (1993). 

Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification 

in NAMs leads to inaccurate estimations of OH concentrations, that constitute the basis for modelling the earth’s 

deep water cycle. 

 

Key words: absorption coefficients, IR spectroscopy, Raman spectroscopy, pp-scattering, SIMS, nominally 
anhydrous minerals, quartz, coesite, stishovite, olivine 
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Introduction 

Major earth’s crust and mantle constituents, so-called nominally anhydrous minerals (NAMs), 

are able to incorporate traces of hydrogen in form of hydroxyl point defects in their structures 

(further on expressed as wt ppm H2O or with the general term water). Even such low water 

amounts may have enormous effects on geodynamical processes, as they can change 

physical mineral properties, e.g., electrical conductivity and deformation strength (Mackwell 

et al. 1985; Karato 1990; Huang et al. 2005; Wang et al. 2006; Kohlstedt 2006). To evaluate 

implications of water contents in NAMs on a potential earth deep water cycle it is necessary 

to know their absolute water concentrations. For measuring and quantifying even traces of 

hydrous compounds (H2O and OH) in geological material IR spectroscopy has been 

extensively used in the past and is regarded as advantageous technique by means of its high 

sensitivity and relatively simple performance (Rossman 2006). According to the Beer-

Lambert law the absorption intensity (Ai) of a species in the measured sample is directly 

proportional to the concentration of the species (c) and the thickness (t) of the sample: Ai = c 

� 

!  t 

� 

!  εi , with εi as the integrated molar absorption coefficient. Since IR spectroscopy is not 

self calibrating, several calibrations (Paterson 1982; Libowitzky and Rossman 1997) for 

quantitative water analyses in solids have been established in the past and are commonly 

used now. They mainly rely on hydrous minerals and glasses holding several % water by 

weight. These calibrations are based on a negative correlation between the IR molar 

absorption coefficient (ε) for water and the mean wavenumber of the corresponding OH 

pattern. The correlation reflects the dependence of the OH band position on the O-H…O 

distances in the structure and thereby also on the magnitude of the dipole moment which is 

proportional to the band intensity (e.g., Libowitzky 1999). However, it has been observed that 

these calibrations cannot be applied on NAMs (Rossman 2006) that contain hydrogen in 

ppm-level amounts incorporated mainly via OH point defects. Independently determined ε-

values deviate significantly from the general linear wavenumber-dependent calibration 
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trends, e.g., Bell et al. (1995) determined for olivine with OH absorptions in the high-

frequency range from 3650-3450 cm-1 an absorption coefficient, that is 2.3 times smaller than 

the value indicated by the Paterson (1982) calibration line. Moreover, Johnson and Rossman 

(2003) suggest a uniform ε-value for the feldspar group contrary to separate frequency-

dependent values predicted by the general calibrations (e.g., Paterson, 1982: 174000 

lmol

� 

H2O

!1 cm-2 for 3200 cm-1; 84000 lmol

� 

H2O

!1 cm-2 for 3500 cm-1). Due to the lack of mineral-

specific absorption coefficients commonly used calibrations allow only to determine relative 

water concentrations within one mineral group. To provide absolute data appropriate mineral-

specific calibrations for each NAM are required by means of an independent absolute 

method (Rossman 2006). Such mineral-specific calibrations have been already performed for 

several mineral groups using independent quantification methods. Hence, integrated 

absorption coefficients for IR have been proposed, e.g., for olivine (Bell et al. 2003, Koch-

Müller et al. 2006), feldspars (Johnson and Rossman 2003), pyroxenes (Bell et al. 1995) and 

garnets (Maldener et al. 2003; Rossman and Aines 1991; Rossman 1988). Quantitative 

methods to establish such independent data for NAMs include, e.g., hydrogen manometry 

(e.g., Bell et al. 1995), nuclear reaction analysis (NRA; Bell et al. 2003, 2004; Hammer et al. 

1996; Maldener et al. 2001; Rossman et al. 1988) and nuclear magnetic resonance (NMR; 

Keppler and Rauch 2000, Cho and Rossman 1993, Johnson and Rossman 2003; Kohn 

1996). However, all of them inhibit minor or major problems by means of special demands on 

sample preparation or minimum sample quantity. Further analytical techniques are SIMS and 

nuclear methods as elastic recoil detection analysis (ERDA) and pp-scattering. SIMS exhibits 

a challenge if intended to be used to detect water amounts < 1000 wt ppm in NAMs (e.g. 

Rhede and Wiedenbeck 2006) due to intractable factors as, e.g., the influence of matrix 

composition (e.g., Hervig 1987; Koga et al. 2003, Aubaud et al. 2007), high vacuum quality to 

reduce background hydrogen signals, problems due to too small crystal dimensions, a time 

consuming preparation and sample destruction. Nevertheless, SIMS also has basic 

advantages as insensitivity for sample orientation and a fine scale spatial resolution 
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(Yurimoto et al. 1989; Deloule et al. 1995; Koga et al. 2003; Kurosawa et al. 1992; Hauri et 

al. 2002; Aubaud et al. 2007) and was previously used to estimate absorption coefficients, 

e.g. for coesite (Koch-Müller et al. 2001) and stishovite (Pawley et al. 1993). However, 

considering the above-mentioned problems the ε-values obtained need an evaluation. SIMS 

as well as ERDA (e.g., Sweeney et al. 1997) and pp-scattering are under development to be 

improved for the applicability at low hydrogen detection limits. In particular, pp-scattering, 

rarely used in geosciences (Wegden et al. 2005; Reichart et al. 2004) so far, holds 

considerable promise for the hydrogen detection by means of sub-ppm sensitivities as well 

as sub-µm spatial resolutions. A highly informative review on analytical techniques including 

advantages, disadvantages and potential future developments can be found in Rossman 

(2006). Another method, though yet hardly considered for quantification of OH contents in 

anisotropic minerals, is the confocal microRaman spectroscopy. Raman spectroscopy is 

generally used to investigate molecular vibrations in a light scattering experiment. As 

consequence of the interaction of the energy of an incident light beam (in our study an Ar+ 

laser) with the induced vibrational modes in a sample, the incident energy is raised or 

lowered by inelastic scattering of the photons, with the frequency shift giving characteristic 

information about the phonons (i.e. the vibrational species) involved. According to Moritz 

(1999) the following linear relationship exists between the measured intensity of the inelastic 

scattered light and the concentration of the activated species: Ii=
!"
!#

$
%&

'
()
ci

Mi

NAVΩobsF-1CIo, 

where 
!"

!#
 is the differential scattering cross section, ci is the concentration of the species i, 

M is the molar mass of the species i, NA is the Avogadro constant, V is the excited volume, 

Ωobs is the angle of observation, F is the projection screen of the detector entrance on the 

observed volume, C is the detector efficiency constant and I0 is the intensity of the laser 

excitation. Peak intensities are affected by various factors as laser power density and 

effective sampling volume. Laser power density in turn depends on the laser power itself, on 
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the beam diameter and on the angle of incidence onto the sample. Effective sampling volume 

is a function of laser focusing, sample dimension, sample transparency, reflections, 

refractions and roughness of sample surface. The Raman peak intensity moreover depends 

on the polarizability of the molecule vibration, the intensity of the source, and the 

concentration of the activated species (Skoog and Leary 1992). Given no significant light 

absorption by the sample occurs, intensity increases with the fourth power of the frequency 

of the source and is usually directly proportional to the concentration of the activated species 

(Kohlrausch 1943; Skoog and Leary 1992; Thomas 2000; Schabel 2005). By using a 

reference and given constant experimental factors and excited sampling volume the second 

part of the equation after Moritz (1999) is canceled and permits to obtain quantitative data by 

the simple and direct comparison of the reference with an unknown sample. However, 

remaining factors that should be considered are differences in refraction, molar mass and 

density.  

Two different water quantification procedures using Raman spectroscopy have previously 

been suggested, the internal calibration and the external calibration (Chabiron et al. 2004; 

Behrens et al. 2006; Di Muro et al. 2006a, b; Thomas 2000, 2002; Thomas et al. 2000, 2003, 

and 2006; Zajacz et al. 2005; Severs et al. 2007). The internal calibration utilizes the 

normalization of the total water band (H2OT) to either the T-O-T (T: tetrahedrally coordinated 

cations) bending band at ~ 500 cm-1, or the T-O stretching band near 1000 cm-1. However, 

the feasibility of this technique to low concentrations < 0.1 wt% has been controversially 

discussed in the past, because of potential high errors due to, e.g., the strong influence of 

variable matrix compositions on the relative band intensities and positions. Moreover, 

differences in detector efficiencies between the low- and the high-frequency range might also 

affect recorded intensities. As previous Raman spectroscopic studies primarily focused on 

the water determination in glasses and melt-inclusions, its application to trace and quantify 

low concentrations of OH in minerals has been scarcely considered to date. Subsequent to 

endeavors to adapt Raman spectroscopy for the water determination in cubic garnets 
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Arredondo and Rossman (2002) suggested that the latter technique is not generally suitable 

to determine trace OH concentrations in those minerals, as they could not observe a 

consistent correlation of OH/Si ratio with sample water concentrations. However, they utilized 

the internal calibration using the ratio of the integrated area of depolarized Raman bands in 

the ~ 3600 cm-1 stretching region to Si-O stretching bands in the 800-900 cm-1 region. A 

technical progress results from the introduction of the “Comparator Technique” (Thomas and 

Davidson 2006, 2007; Thomas et al. submitted). Recently, the latter technique has proven 

advantageous in particular for tracing water in natural and synthetic glasses, even down to 

very low H2O concentrations (e.g. Thomas and Davidson 2006; Thomas et al. submitted), 

with the use of one single well-characterized reference material being sufficient and making a 

calibration curve unnecessary. The latter work (Thomas et al. submitted) also reports the 

applicability of the “Comparator Technique” for gem-quality garnets holding ppm-level water 

contents. The approach of the present project is to test if Raman spectroscopy could also be 

applied for the quantification of OH contents in anisotropic single-crystals such as quartz, 

coesite, stishovite and olivine. Further aims of this paper are to provide mineral-specific 

absorption coefficients to enable routine OH quantification with IR spectroscopy and to study 

their frequency dependence using IR-spectroscopy combined with independent methods as 

Raman spectroscopy, pp-scattering and SIMS. 

 

Experimental and Analytical techniques 

Syntheses and Samples 

To study the potential dependence of ε on the OH band position in IR spectra we synthesized 

olivine and SiO2 polymorphs with specific isolated hydroxyl point defects, e.g. quartz, coesite 

and stishovite with B3+ + H+ = Si4+ and/or Al3+ + H+ = Si4+ substitutions. The starting materials 

for the synthesis experiments were pure oxide mixtures to that H2O was added as either 

Al(OH)3, H3BO3 or as pure bidistilled H2O. Starting compositions and experimental conditions 

are listed in Table 1. The starting powders were loaded either in gold capsules (10 mm long 
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gold capsules with an outer diameter of 6 mm and a wall thickness of 0.5 mm) for piston 

cylinder experiments or in Pt capsules for multi-anvil runs that were sealed by cold welding to 

avoid water loss during the run. Experiments were carried out with water in excess in an end-

loaded piston-cylinder apparatus (Boyd and England 1960) and in a multi-anvil press. After 

quenching, the recovered capsule was opened and checked for the presence of excess 

water, which could be observed in all cases. Recovered single crystals were used for 

analysis. To provide a series of reference material with varying water concentrations we 

selected in additon to synthetic products various crack free, homogeneous natural samples: 

natural quartz (HQV), olivines (Ud29 and San Carlos olivine: SCO) and dry synthetic quartz 

from Japan (SQT).  

 

    Table 1. Starting compositions and experimental conditions. 
 

Run no. Assembly§§ Starting composition (wt%) P(GPa) T (°C) Time (h) 

Run 

products 

  MgO SiO2 H2O     

Piston cylinder apparatus 

SMT503 - - 99.0 1.0* 3.0 950 132 quartz 

SMT504 - - 99.0 1.0† 3.0 950 60 quartz 

SMT508 - - 99.0 1.0* 3.0 950 72 quartz  

Multi-anvil apparatus 

WIM04# 18/11 - 97.0 3 7.5 1100 2 coesite 

MA009 18/11 - 99.0 1.0* 7.5 930 3 coesite 

MA061 14/08 - 98.0 2.0†† 8.0 1000 20-24 coesite  

MA117 14/08 - 98.0 2.0* 5.9 1400 1.5 coesite 

MA020 18/11 47.6 35.4 17 5.9 1100§ 3 forsterite 

MA118 14/08 - 96.0 4.0† 12.3 1240 6.1 stishovite 

MA034 18/11 - 99.0 1.0 8.0 800 24 stishovite 

Notes:  
*   – H2O as H3BO3. 
†   – H2O as Al(OH)3. 
††   – 1 wt% H2O as Al(OH)3 and 1 wt% B. 
#   – synhesized at ETH Zurich by W. van Westrenen. 
§   – temperature estimated using power due to break of thermocouple. 
      Uncertainty of given value is within ±100° C.  
§§   – octahedron edge length/truncation edge length (mm). 

 
 
Transmission electron microscopy (TEM) 

To characterize microstructures, sample homogeneities and compositions of the quartz 
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samples SMT503 and SMT504 by TEM, specific foils were prepared from single crystals 

mounted in crystal-bond using the focused-ion-beam technique (Wirth 2004) and a FEI 

FIB200 focused ion beam device with a Ga-ion source operated with an acceleration voltage 

of 30 kV. Final foils of 15

� 

!10

� 

!0.2 µm in size were removed from the sample using an optical 

microscope and placed onto a perforated TEM carbon grid. No further carbon coating is 

required. TEM analyses were performed in a Philips CM200 electron microscope operating at 

200 kV with a LaB6 electron source, a Gatan imaging filter for the acquisition of energy-

filtered images and high-resolution electron micrographs and an energy-dispersive X-ray 

spectroscopy system for analytical electron microscopy.  

 
IR spectroscopy 

For IR spectroscopy single-crystals were ground and doubly polished using diamond spray 

with 0.25 µm in the last step. Moreover, parallelepipeds were prepared for olivine Ud29 and 

natural quartz HQV. For analysis the crystals were placed on a KBr plate or over steel 

pinhole apertures (in case of large natural samples). Koch-Müller et al. (2001) conclude that, 

in the special case of coesite, quantitative measurements of single-crystals may be obtained 

on randomly oriented sections using an unpolarized spectrum and calculating the total 

absorption by multiplying obtained absorbance values by three. Therefore, unpolarized IR 

spectra of synthetic coesite were recorded from 3000 to 4000 cm-1 at ambient conditions with 

a Bruker IFS 66v FTIR spectrometer equipped with a Hyperion microscope, an InSb detector, 

a KBr beamsplitter and a globar. The spot size used in the measurements ranged from 30 × 

30 µm to 100 × 100 µm, according to varying sample dimensions, and up to 1024 scans were 

taken with a resolution of 2 cm-1. The sample thickness was determined either using a 

micrometer (large natural samples) or using the eyepiece reticule and stage micrometer 

scale of an optical microscope. The final thickness ranged from 50 µm for synthetic samples 

to 3 mm for SCO. For single-crystals of synthetic and natural quartz, stishovite and olivine, 

polarized IR spectra were recorded. The absorbance of the oriented single-crystals was 
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measured in extinction position with the electric vector (E) parallel to the optical indicatrix 

axes. Orientations were either estimated from morphology, from lattice vibrations (by 

comparison with oriented reference samples) or oriented sections were prepared using 

single-crystal X-ray diffraction (natural quartz HQV). The integrated absorbances and area-

weighted average (Libowitzky and Rossman 1997) of the peak positions were determined 

using the PeakFit software by Jandel Scientific. Total absorbances were calculated either by 

Aitot = 2 !  Ai !  c + 1 !  Ai II c in the case of quartz and stishovite or by Aitot = Aix + Aiy + Aiz in 

the case of olivine. To study the OH distribution in our samples synchrotron IR 

measurements were performed at the Infrared beamline at BESSY II using a Nicolet 870 

FTIR spectrometer equipped with a Continuµm microscope. Line scans and area maps of the 

spectral region 2700-3800 cm-1 were recorded for quartz and coesite with a local resolution 

of 10

� 

!10 µm or 15

� 

!15 µm.  

 

Raman spectroscopy 

Single-crystals used in previous IR studies were characterized with confocal microRaman 

spectroscopy. No additional sample preparation was required. Great care was taken to 

record Raman spectra on crystal faces identical to that used for IR measurements. All 

analyses were performed in backscattering geometry using a LabRam HR800 UV-VIS 

spectrometer (grating: 1800 grooves/mm) equipped with a motorized XY-stage, an Olympus 

optical microscope and a long working distance 100x objective (LWD VIS, NA = 0.80, WD = 

3.4 mm). Spectra were collected with a Peltier-cooled CCD detector. The 488-nm line of a 

Coherent Ar+ Laser Model Innova 70-3 at 300 mW or 450 mW was used for sample 

excitation. For all measurements a confocal pinhole of 100 µm was used, corresponding to a 

spectral resolution of about 1 cm-1. For sample characterization spectra were acquired in the 

low-frequency region 200 to 1200 cm-1. To probe the OH region spectra were taken in the 

high-frequency range from 2800 to 3980 cm-1 corresponding to 3 spectral windows. Raman 

intensities may be affected by the quality of the sample surface. Therefore, to avoid 
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measurement errors due to sample surface heterogeneities, the laser beam was focused on 

the top of the sample surface using the 100x objective and then lowered by 4 µm before 

starting the measurement. To maintain consistency, this procedure was repeated for each 

Raman measurement throughout this study. Dimensions of the focusing tube were calculated 

using the formulas according to Everall (2000) to be about (0.7 x 3.1) µm during our 

measurements. However, the latter value should be taken as an approximation, since factors 

like light refraction can have an influence on these dimensions depending on excited 

material.  

Before and after each sample measurement a reference spectrum, in this case of the rhyolitic 

SD-6.53% glass (Table 1) with 6.53 % water by weight was recorded. The integrated 

intensity obtained in the frequency range 3100 to 3750 cm-1 served as intensity reference, 

and to monitor the device stability. All subsequent spectra taken under the same conditions 

were normalized using this standard. Measuring conditions are listed in Tables 2 and 3. To 

provide adequate signal to noise ratios spectra acquisition times varied from generally 100 

seconds for synthetic quartz or coesite to 600 s for samples containing very low water 

concentrations (HQV, Ud29, MA118, MA034). For further calculations integrated intensity 

data were standardized to counts per second (cps).  

 
Unoriented statistical measurements. We performed statistical measurements (Table 2) 

on randomly oriented grains of our syntheses products. We conducted up to 17 single 

analyses on each polished crystal plate by rotating the plate by several degrees with respect 

to the microscope axis before subsequent spectrum acquisition.3 This was done to take into 

account the anisotropic behavior of our samples. Mean values of the integrated intensities 

obtained were used for further calculations (Table 2).  

 
Polarized measurements. To check for a difference to statistical measurements and to 

avoid high errors due to the high anisotropy of the OH signature we additionally recorded 

                                                
3Parallelepipeds of olivine were additionally turned by 90 ° and thereafter analyzed as per the defined procedure.  



  Kapitel 3 
 

 100 

polarized Raman spectra from Ud29, stishovite and B-doped quartz. A polarizator was 

placed in the optical path of our instrument behind the spectrometer entrance and a 

polarization foil behind the notch filter in front of the detector entrance. To test the quality of 

the polarization, we analyzed one staurolite crystal of Pizzo Forno. Raman spectra of the OH 

region (Fig. 1) were in excellent agreement with polarized IR spectra reported by Koch-Müller 

and Langer (1998). Hence, the accuracy of our polarization assembly could be confirmed. 

Polarized Raman spectra of quartz, stishovite and olivine were obtained as described for IR 

spectroscopy.  

 

staurolite
(010) plate

E II a

E II c

 

Figure 1. Polarized Raman spectra of a (010) plate of natural staurolite with E II c and E II a. The OH band 
pattern displays the strong pleochroism of the respective dipoles and moreover, compares well with IR data of 
Koch-Müller and Langer (1998).  
 

Spectra treatment and quantification procedure  

When possible we adopted to all our spectra a constant linear baseline correction in the 

integration limits between 3100 and 3750 cm-1. For Ud29 and Al-doped quartz polynomial fits 

of higher order were required to define the spectral background. Spectra were fitted using the 

LabSpec software. Total integrated intensities were calculated analogue to the method of 

Libowitzky and Rossman (1996) with ! tot = 2 !  !  !  c + 1 !  !  II c in the case of uniaxial 

stishovite and quartz and by Itot = Ix + Iy + Iz in the case of orthorhombic olivine adopting 

the measurement of integrated intensities along the three orthogonal crystallographic axes 

(Table 3).  
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For glasses resembling a narrow compositional range with densities ~ 2.2 g/cm3, such as 

analyzed throughout this study, this method has proven to be matrix-independent (Thomas 

and Davidson, 2006; Thomas et al. in prep.). Therefore, a density correction of measured 

Raman intensities is unnecessary for the glasses. However, since we excite in the denser 

silicates a different mass in a constant volume, we corrected in a first step our integrated 

intensity fitted from Raman spectra for density variations between reference material (ρ = 

2.26 g/cm3) and sample (ρquartz = 2.65 g/cm3, ρcoesite  = 2.93 g/cm3, ρstishovite = 4.3 g/cm3, ρolivine = 

3.27 g/cm3) with Ii,sample,corr = Ii,sample,meas !  ρref /ρsample (g/cm3). As Raman spectroscopy 

measures the molar concentration of the activated species, the water concentration in mol/l 

was then calculated using following equation: cH2O(mol/l) = Ii,sample,corr !  cH2Oref(mol/l) / Iiref, where Ii 

are the integrated density-corrected intensities of sample and reference (second step). 

According to Snell’s law and the Fresnel equations measured intensities are underestimated 

and have to be corrected for following reflectance/refraction errors (third step): quartz 1%, 

coesite 2%, stishovite 8%, olivine 4%. These errors are provoked by light refraction 

discrepancies due to differences of refractive indices between reference material (nref = 1.50) 

and sample (nquartz = 1.55; ncoesite = 1.6; nstishovite = 1.8; nolivine = 1.66). We used mean refraction 

values given in Tröger (1956). In the fourth step the water concentration in wt% can be 

recalculated using the equation cH2O (wt%) = cH2O (mol/l) !  1.8 / ρsample (g/cm3). Finally, a 

calculation of specific integrated molar absorption coefficients according to the equation εi = 

(1.8 !  Aitot) (cH2Owt% !  t !  ρ) is possible, using Aitot fitted from IR spectra, the thickness (t) 

and the density of the sample (ρ). 

 

Proton-Proton-scattering  

For hydrogen analysis using pp-scattering (3 !  4) mm sized samples were ground and 

doubly polished until they had a final thickness < 200 µm (SQT 102 µm, HQV 127 µm, SCO 

111 µm, Ud29 122 µm). Pp-scattering analysis was performed at the Munich tandem 
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accelerator lab using a 13 MeV and a 25 MeV proton beam. Basic information about this 

technique is given in Reichart et al. (2004) and in Thomas et al. (submitted). The measured 

hydrogen content within a certain thickness given in absolute units (H atoms/cm2) is 

converted in H atoms per total atoms using the thickness and atomic density of the samples. 

Due to unavailability of the SNAKE microbeam setup at that time, we used a millimeter 

focused beam and a spare detector setup with two 40 mm × 60 mm large semiconductor 

silicon strip detector pads (7 strips each) at scattering angles of 40°-50°, which filters for 

coincidence events in opposite sectors within a timing window of about 2-3 ns. The beam 

was averaged on an area of about 1 mm2 diameter.  

 

Secondary ion mass spectrometry 

SIMS measurements of H in selected samples (WIM04_C1, MA009_a, SMT503_Z7, 

SMT504_a, MA061, MA034_8, HQV and SQT) were performed on the Cameca IMS 6f ion 

microprobe. We used an epoxy-free sample mounting technique similar to that reported by 

Koga et al. (2003) and Aubaud et al. (2007). Samples and standards were mounted in one 

Al-disk, prior filled with 2-8 mm indium spheres (Merck no. 12196), that were molten by 

placing the metal disk on a hot plate at > 160 °C. The crystals, prior doubly polished (see 

above IR spectroscopy section), were pushed by hand into the air-cooled indium metal using 

a glass slide. The whole assembly was pressed carefully with 4.9 t in a hydraulic press (Carl 

Zeiss Jena) to obtain a flat surface as well as to avoid distracting cavities between indium 

and crystals. A polish with alumina suspension, as described in Aubaud et al. (2007), was 

not adopted to prevent a possible placement of aluminum impurities into the crystals that 

would lead to errors in the measurement of that trace element. Finished sample mounts were 

stored for 12 hours at 70° C under low vacuum, coated with a ~ 30 nm gold layer and were 

put into the airlock chamber at pressure < 2.5 E-07 Pa (Wiedenbeck et al. 2004) to outgas for 

at least 72 hours before starting the measurement. Our analytical setup employed a 10 kV, 2 

nA Cs+ beam. The total vacuum pressure in the sample chamber during the measurement 
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was < 5E-08 Pa. In addition the LN2 trap was used to freeze remnants of water in the 

assembly. The primary ion beam was rastered over a (25 x 25) µm area. Only ions 

originating from the central area (approx. 10 µm) were counted, by utilizing a 100 µm field 

aperture. Measurements employed an elevated mass resolving power of M/ΔM ≈ 3000, the 

energy window was set to 50 eV and no offset voltage was applied to the sample high 

voltage. A number of single-crystals of one sample suite were analyzed; up to 2 

measurements were performed on each crystal. One analysis consisted of 150 cycles with 

counting times per peak stepping sequence of 10 s for 1H and 2 s for 30Si. Negatively 

charged secondary ions were extracted from the sample using -7.5 kV potential with charge 

compensation provided by normal incidence electron flooding. The 1H/30Si ratios used to 

establish the working curve were calculated by averaging the final 8 cycles from each 

analysis. Finally the curves were standardized using our natural quartz samples HQV and 

SQT, prior well characterized by pp-scattering. 

For semi-quantitative SIMS measurements of boron traces two B-doped quartz- and 8 

coesite single-crystals were embedded in epoxy resin in a glass mount and polished. The 

sample mount was then cleaned with high purity ethanol and stored at 70° C under low 

vacuum before coating with ~ 30 nm gold. Our analytical setup employed a primary 12.5 kV, 

5 nA 16O- beam focused to a ~ 20 µm diameter spot. The sample surface was cleaned prior 

to each spot analysis by pre-sputtering for 3 minutes. Measurements employed a low mass 

resolution of M/ΔM ≈ 300, the energy window was set to 50 eV and a -75 V offset voltage 

was applied to the sample high voltage of 10 kV. Two sample spots were analyzed on each 

single-crystal. The single measurement consisted of 50 cycles of the peak stepping 

sequence with counting times of 10 s for 11B and 2 s for 30Si. Secondary ion count rates were 

restricted by a 750 µm field aperture combined to a 50 µm contrast aperture. Measured 

11B/30Si ratios were calibrated using the NIST SRM glasses 610 and 612 as reference 

material.  
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Results 

Run products of the high-pressure experiments were identified and characterized using 

Raman spectroscopy and TEM. Our syntheses resulted in clear single-crystals of B-doped 

quartz, Al-doped quartz, B-doped and B-free coesite, Al-doped and Al-free stishovite and 

forsterite (cf. Table 1). To choose a set of homogeneous samples for our study we omitted 

specimens with large-scale heterogeneities of the hydrogen content from our sample list, 

e.g., quartz QKM (Fig. 2) that contains a high quantity of fluid inclusions. TEM of B-doped 

quartz samples SMT503 and SMT504, IR line scans (globar light source), IR area maps 

(synchrotron light source) as well as randomly chosen spots for Raman measurements of 

natural and synthetic samples used in this study did not reveal significant heterogeneities of 

the OH distribution. No molecular water or nanometer-sized inclusions of additional phases 

were detected in the samples.  

 

Integrated absorbance  

Figure 2. Measuring points (upper section) and corresponding area map (lower section) of the OH distribution in 
the natural quartz sample QKM (measured sample area: 50 !  90 µm), recorded with a local resolution of 15 !  
15 µm. The map resembles the integrated spectral intensity of the measured spectral region from 3700 to 3000 
cm-1 for each sample point. The final area map (step size 5 !  10 µm) reveals an inclusion and therewith the 
heterogeneity of the sample OH distribution. As we require homogeneous material for our present study, such 
substances were omitted from our sample list.  
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Infrared spectroscopy 

Quartz 

Synthetic quartz crystals are typically up to 150 µm in size. Single-crystal IR spectra 

demonstrate that we successfully managed to separate generally complex OH band patterns 

as, e.g., observed in our natural quartz HQV (Fig. 3) by incorporating specific OH defects. IR 

spectra of natural but also synthetic quartz are characterized by numerous OH bands that 

arise due to the incorporation of H+ associated with the coupled substitution of a variety of 

trace impurities as Li+, Al3+, Fe3+, Na+, K+, Cu+, Ag+ (e.g., Kats 1962, Kats et al. 1962, 

Johnson 2006; Kronenberg 1994; Rovetta et al. 1989). Here studied natural quartz (HQV) 

reveals bands at 3200, 3313 (Al3+), 3378 (Al3+), 3430 (Al3+), 3470 (H+)4, 3486 (H+)4, 3511 (Li+) 

and a shoulder at 3400 cm-1 (Fig. 3); band assignments were done according to above cited 

literature. The OH features at 3200 and 3400 cm-1 have been reported in prior studies, but 

could not be assigned to distinct point defects (Kronenberg 1994) so far. The spectrum of 

synthetic B-doped quartz (Fig. 3) consists of a sharp OH band at 3595 cm-1 with a FWHM of 

~ 7cm-1. B-doped quartz SMT508 reveals in contrast to B-doped quartz SMT503 additionally 

two weak shoulders at 3585 and 3610 cm-1 that are reported to be possibly due to impurities 

of Al3+ (Kats1962). The B-coupled OH defect shows a strong anisotropy with the highest 

absorption intensity observed parallel to the c-axis. The OH band at 3595 cm-1 has been 

observed for the first time at 77 K, only in the spectra of synthetic quartz (Staats and Kopp 

1974). The authors proposed its origin coupled to boron impurities. However, they could not 

confirm its prominence in natural quartz. More recently, the full width at half maximum 

(FWHM) of the associated 3595 cm-1 band was used to distinguish, e.g., natural from 

synthetic amethyst (Karampelas et al. 2005). B-contents derived from SIMS are in the range 

of 60 ± 6 ppm B for SMT508 (333 B/106 Si atoms) and of 400 ± 40 ppm B (2220 B /106 Si 

atoms) for crystals of sample SMT503. A comparison of the boron concentrations with the 

                                                
4 Hyrogen interstitials; unambiguous defect association is uncertain to date (cf. Kronenberg et al. 1994). 
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OH band intensity shows that these bands must be associated with the boron incorporation 

to OH defects in the sample structures.  

 

 

Figure 3. Comparison of the unpolarized IR spectra of natural quartz (HQV, lowermost spectrum) with spectra of 
Al-doped (middle) and B-doped quartz (upper). Natural quartz display a very complex OH band pattern, whereas 
our synthetic samples show separated OH bands due to isolated OH point defects.  
 

Al-doped quartz (SMT504) has a more complex OH signature with the area-weighted 

average of the peak positions of 3400 cm-1. From the IR spectrum following OH bands are 

distinguishable: 3312 (Al3+), 3378 (Al3+), 3430 (Al3+) and 3584 cm-1. The prominence of the 

band at 3584 cm-1 confirms the assumption to be caused by Al3+ in B-doped quartz. The Al-

doped quartz shows a very weak pleochroism. In contrast to natural quartz specimens (e.g., 

Kronenberg 1994) all bands but 3430 cm-1 display the highest absorption intensity parallel to 

the c-axis, whereas the OH band at 3430 cm-1 seems to be nearly isotrope.  

 

Coesite 

Dimensions of coesites are typically (200 x 200 x 50) µm. IR spectra of coesite crystals used 

in this study are shown in Figure 4. Samples WIM04, MA061 and MA009 reveal a similar OH 

band pattern with features at 3576, 3520, 3459 cm-1 (v1, v2, v3) and two very weak bands at 

3300 and 3210 cm-1 (v4 and v5). All the bands have been observed previously in coesite (Li 

et al. 1997; Mosenfelder 2000; Koch-Müller et al. 2001, 2003) and have been assigned by 
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Koch-Müller et al. (2001) to be due to the hydrogarnet substitution type 1 and Al-based 

defects, respectively. Coesite single-crystals of samples WIM04 and MA117 show minor 

proportions of OH bands at 3460 (ν7), 3422 (ν8), 3407 (ν9), 3379 (ν10) that were prior 

reported for coesites synthesized at 8.5 GPa and 1200 °C and are assigned to the 

hydrogarnet substitution type 2 (Koch-Müller et al. 2003). We studied besides coesites 

incorporating OH via the hydrogarnet substitution (Fig. 4), also coesite crystals (MA117) that 

incorporate hydrogen primarily via the B-based defect (Fig. 4: lowermost spectrum). The 

FTIR spectra of such coesites is characterized by sharp OH signals at 3535 and 3500 cm-1, 

which were earlier assigned by Koch-Müller et al. (2001) to B-based point defects (ν6a and 

ν6b). Details on B-coesite can be found in Deon et al. (submitted). The latter assignment to 

boron defects can additionally be confirmed due to the fact that the two bands are also 

prominent in the samples MA061 and MA009, whereas they are only present as shoulders in 

WIM04. This is consistent with the addition of boron acid to the starting materials of MA009, 

MA061 and MA117 (see Table 1). In addition the trace element analyses of boron result in 

10 ± 1 wt ppm B (56 B/106 Si atoms) for WIM04 and in 40 ± 4 wt ppm B (222 B/106 Si atoms) 

for MA061, 49 wt ± 5 ppm B (272 B/106 Si atoms) for MA009 and 290 ± 30 wt ppm B (1600 

B/106 Si atoms) for MA117 (see also Deon et al. submitted). 

 

Figure 4. Comparison of unpolarized spectra of the OH region in coesite crystals studied herein. Band 
assignments were done according to Koch-Müller et al. (2001 and 2003).  
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Stishovite 

Stishovite samples consist of very fine-grained crystals with a maximum size of (50 x 50 x 

100) µm. Al-bearing stishovite reveals a broad OH band at 3122 cm-1. This feature is 

consistent with previous data and was assigned to be associated with the coupled 

substitution of Al3+ and H+ on the octahedral Si4+ site (Pawley et al. 1993; Smyth et al. 1995; 

Panero et al. 2003; Gibbs et al. 2004; Bromiley et. al 2006; Litasov et al. 2007). According to 

Bromiley et al. (2006) the broad assymetric OH feature clearly comprises two OH bands, the 

main band at 3111-3134 cm-1 and a weaker shoulder at 3158-3167 cm-1, where the latter 

component increases as function of the Al concentration. The latter description compares 

well with our IR spectra that display a small shoulder on the main OH band at 3122 cm-1. 

 

 

Figure 5. Polarized IR spectra of Al-free stishovite revealing a broad anisotropic OH band at 3125 cm-1. A weak 
shoulder is indicated in the region 3200-3150 cm-1 as well as a very weak OH feature at 3350 cm-1.  
 

Polarized IR spectra of Al-free stishovite are presented in Figure 5. Al-free stishovite MA034 

displays a similar spectrum compared to Al-bearing stishovite, though no Al was added to the 

starting powder. It consists of a broad OH band centered at 3125 cm-1 and a very weak OH 

feature at 3350 cm-1. Al-free stishovite normally displays three separate OH bands at 3311, 

3238 and 3111 cm-1 that are suggested to be caused by H incorporated at different structural 

sites (Bromiley et al. 2006). However, it has been reported that the band at 3111-3134 cm-1 is 

prominent in IR spectra of both Al-free and Al-bearing stishovite (Bromiley et al. 2006; 
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Litasov et al. 2007). Polarized spectra of our stishovite crystals are consistent with prior 

studies, i.e., they reveal a strong pleochroism with the OH feature having the highest 

intensity perpendicular to the crystallographic c-axis.  

 

Olivine 

Olivine crystals of this study (Fig. 6) are characterized by very complex OH band patterns in 

the IR spectra. Figure 6 shows IR spectra of MA020 (unpolarized) and SCO [polarized with E 

parallel to (100)].  

 

Figure 6. Comparison of the a) unpolarized IR spectrum of synthetic forsterite MA020 with the b) polarized IR 
spectrum of SCO recorded parallel to the a-axis. Both spectra consist of a complex OH band pattern, in which 
group I bands are dominating (e.g., Bai and Kohlstedt 1993; Beran and Libowitzky 2006).  
 

The IR spectra for kimberlitic olivine Ud29 used in this study can be found in Koch-Müller et 

al. (2006). Two groups of OH bands are distinguishable in all IR spectra: group I from 3650 to 

3450 cm-1 in the high-energy and group II from 3450 to 3200 cm-1 in the low-energy region 

(groups according to Bai and Kohlstedt 1993). Group one is dominant with respect to the 

band intensity. With respect to the polarization behavior the strongest absorption is 
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prominent with E parallel to (100). This is in good agreement to what is known from prior 

vibrational studies for olivine (e.g., Beran and Libowitzky 2006; Koch-Müller et al. 2006).  

 
Raman spectroscopy 

All sample spectra show useful Raman signals in the OH stretching region. Raman data for 

the OH region are summarized in Tables 2 and 3. The high-energy Raman spectrum of the 

reference glass SD-6.53% can be found in Thomas et al. (submitted). OH signatures 

observed in unpolarized as well as in polarized Raman spectra of the samples are consistent 

with the OH features from the IR measurements (cf. Figs. 7 and 8).  

 

 

Figure 7. Polarized Raman spectra of the OH region in B-doped quartz. The strong pleochroic OH band displays 
the highest intensity parallel to the c-axis.  
 

 

 

Figure 8. Unpolarized Raman spectrum of coesite (MA 009_a) that demonstrates the sufficient spectral resolution 
to use integral intensities for quantitative OH analyses. Moreover, all OH bands prior observed in IR spectra are 
present also in the Raman spectrum.  
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Water contents 

The water contents of both natural samples and our run products were determined by 

applying either pp-scattering and/or confocal microRaman spectroscopy and/or SIMS (Tables 

2 and 3). Depth profiles for HQV, SQT, SCO and Ud29 obtained using pp-scattering are 

shown in Figures 9 to 12. They confirm the feasibility of pp-scattering to separate surface 

hydrogen from inside hydrogen of a sample. For HQV with a hydrogen detection limit 

corresponding to 0.6 wt ppm H2O, the detected inside hydrogen is corresponding to a value 

of 32 ± 8 wt ppm H2O assuming all detected hydrogen bound in water and hydroxyl groups 

(error includes statistic and systematic uncertainties). For SQT a mean value of 2 analyses 

runs at 13 and 25 GeV was used. The calculated water content is 1.2 ± 0.8 ppm H2O by 

weight. SCO holds < 0.8 wt ppm H2O and for Ud29 a value of 98 ± 40 wt ppm H2O was 

determined. A comparison of resulting water contents from the different quantification 

techniques is given in the Tables 2 and 3 and Figure 13.  

 

 

Figure 9. Depth profile of the hydrogen concentration (measured as H atoms per total atoms) in synthetic quartz 
SQT derived from pp-scattering. The depth scale is approximately calculated from the energy loss of the 
coincident proton pairs. Note the log on the y-scale and that the background is not constant due to depth-
dependent efficiency correction and background tail. The depth resolution varies with depth as noted. Therefore 
the narrow surface hydrogen distribution is broadened and appears as two peaks in the front and back of the 
sample respectively (20% uncertainty). The spectrum demonstrates that it is possible to convincingly separate 
surface water from internal bulk hydrogen, and gives a background-corrected value of (2.7 ± 1.8) at ppm H 
corresponding to (1.2 ± 0.8) wt ppm H2O). 
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Table 2. Raman and IR spectroscopic data for unpolarized H2O analyses and comparison with independently determined H2O concentrations (acquisition time 100 s / 5 
accumulations). 
 

Sample Ii(cps) 1σ  (cps)  Icorr(cps) n Aitot (IR) Mean wavenumber 
(cm-1)†† H2O (wt ppm)† 

Absorption coefficient 
(lmol

� 

H2O

!1 cm-2)§ 
Independently determined H2O (wt ppm) 

         pp-scattering SIMS‡ 
quartz:           
SQT n. d. - - - - - - - 1.2 (0.8) - 

HQV* 10.80  9.32 6 36 3375 38 64,000 32 (8) - 

SMT503_e 56.56 22.75 48.79 12 202 3595 199 (79) 69,000   
SMT503_d 55.20 24.73 47.62 7 150 3595 194 (88) 53,000   
SMT503_Z7 69.72 17.75 60.14 10 223 3595 246 (62) 62,000  429 (129) 
SMT508_a 16.84 3.53 14.53 11 61 3595 59 (12) 70,000   
SMT508_b 20.20 2.96 17.42 11 85 3595 71 (11) 81,000   
SMT504_a 25.10 7.84 21.65 11 123 3400 88 (27) 62,000  57 (17) 

coesite:           
WIM04_C1 42.52 7.64 33.51 10 422 3487 124 (22) 209,000  182 (55) 

WIM04_C3 39.93 4.53 31.46 10 400 3439 116 (13) 234,000   

MA009_a 46.36 19.81 36.54 10 441 3463 135 (56) 201,000  207 (62) 

MA061 53.63 7.65 42.27 12 520 3466 156 (04) 205,000  147 (44) 

MA117 46.02 18.48 36.27 17 483 3512 134 (53) 221,000   

olivine:            
SCO n.d. - - - 7.4(2) - - - < 0.8 1.2 – 1.6# 

Ud29* 38.53 10.39 27.78 8 85 3548 92 (24) 51,000 98 (40)## 162(16)§§ 

MA020 187.95 123.99 135.49 10 309 3517 448 (283) 38,000   

Notes:  
Ii (cps)    – integrated intensity in the 3100-3750 cm-1 frequency range. 
1σ (cps)   – 1 σ standard deviation of measured intensities. 
Icorr(cps)   – density (quartz : 2.65 g /cm3; coesite 2.93 g /cm3, stishovite 4.30 g/cm3, olivine 3.27 g/cm3) and reflectance corrected integrated intensity. 
n   – number of measurements. 
H2O (wt ppm)  – water content calculated using the SD-6-53% glass (8,21 mol/l H2O; ISD = 13652.60 cps). 
*   – acquisition time 600 s and 25 accumulations (HQV) or 22 accumulations (Ud29). 
†   – error gives 1 sigma standard deviation. 
††   – mean wavenumber gives are area-weighted average, calculated using the procedure according to Libowitzky & Rossman (1997). 
‡   – error estimated as 30 %. 
§   – absorption coefficient deduced from Raman and IR spectroscopy (rounded values).  
§§   – data from SIMS according to Koch-Müller et al. (2006). 
#   – water concentration derived from IR spectroscopy using the calibration of Bell et al. (2003).  
n.d.   – not determined. 
##   – corresponding ε-value = 46,000 lmol

� 

H2O

!1

cm-2. 
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Table 3. Raman and IR spectroscopic data for polarized H2O analyses in quartz, stishovite and olivine.  
 
 
 
Sample 

 
 

Itot(cps) 

 
 

Icorr(cps) 

 
 

ISD(cps)  

 
 

n 
 

Time (s) 
 

Accumulations 
 

 
 

Aitot (IR) 

 
Mean wavenumber 

(cm-1) †† 

 
 

H2O (wt 
ppm) 

 
Absorption coefficient 

(lmol

� 

H2O

!1 cm-2)# 

quartz:           
SMT503_e 81.53 68.28 19381.59 4 100 5 202 3595 200  69,000 
stishovite:           
MA118_c 68.49 39.18 20253.99 4 300 5 676 3122 61  425,000 
MA034_10 212.61 121.62 19508.25 4 300 5 2200 3125 187 415,000 
MA034_8 - - - - - - 773 3125 60## 539,000## 
olivine:           
Ud29 61.38 44.25 19714.61 3 600 25 85 3548 97 48,000* 
Notes:  
Itot(cps)    – total integrated intensity in the 3100-3750 cm-1 frequency range. 
Icorr(cps)   – density (quartz: 2.65 g/cm3; stishovite 4.3 g/cm3; olivine 3.27 g/cm3) and reflectance corrected integrated intensity. 
ISD (cps)    – integrated intensity of the standard glass SD-6-53%. 
n    – number of measurements. 
Time (s)    – measuring time for one spectral window of 3 in the 2800 to 3980 cm-1 frequency range. 
Accumulations   – number of accumulations of each spectral window. 
H2O (wt ppm)  – water content estimated using the SD-6-53% glass (8,21 mol/l H2O). 
#    – absorption coefficient deduced from Raman and IR spectroscopy (rounded values). 
##   – deduced from SIMS data.  
††   – mean wavenumber gives area-weighted average, calculated using the procedure according to Libowitzky & Rossman (1997). 
*   – this value and ε-value derived from pp-scattering (46,000 lmol

� 

H2O

!1

cm-2) lead to mean value of 47,000 lmol

� 

H2O

!1

cm-2 used for the discussion of our results. 
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Figure 10. Depth profile of the hydrogen concentration in natural quartz HQV derived from pp-scattering. The bulk 
hydrogen content was derived from the marked region in order to avoid contribution from the surface, and gives a 
background-corrected value of (70 ± 17) at ppm H that corresponds to (32 ± 8) wt ppm H2O.  
 

 
 
Figure 11. Depth profile of the hydrogen concentration in kimberlitic olivine Ud29 derived from pp-scattering. The 
bulk hydrogen content was derived from the marked region in order to avoid contribution from the surface, and 
gives a background-corrected value of (225 ± 92) at ppm H that corresponds to (98 ± 40) wt ppm H2O.  
 

 
Figure 12. Depth profile of the hydrogen concentration in natural olivine SCO derived from pp-scattering. The bulk 
hydrogen content was derived from the marked region in order to avoid contribution from the surface, and gives a 
background-corrected value of < 2 at ppm H that corresponds < 0.8 wt ppm H2O.  
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Figure 13. Comparison of all quantitative data from this study and in addition of garnets and quartz glass (taken 
from Thomas et al. submitted) deduced from Raman spectroscopy and 3 independent methods (cf. Tables 2 and 
3; NRA data according to Maldener et al. 2003). The good linear correlation demonstrates the feasibility of Raman 
spectroscopy for the detection and quantification of trace water amounts in NAMs.  
 

Absorption coefficients 

Resulting water concentrations were used to calculate new mineral specific absorption 

coefficients. For olivine MA020 with the mean wavenumber of 3517 cm-1 we determined an ε-

value of 38000 ± 5000 lmol

� 

H2O

!1 cm-2 (Fig. 14 inset; Table 2). Quantification of olivine Ud29 with 

the mean wavenumber of 3548 cm-1 in contrast resulted in a ε-value of 47000 ± 1000 

lmol

� 

H2O

!1 cm-2, which is the mean ε-value deduced by averaging the data from pp-scattering 

and polarized Raman measurements (cf. Table 3). Data of SCO was not used to calculate an 

absorption coefficient, due to the potential high errors by quantification of IR spectra near to 

the detection limit with a low signal to noise ratio (cf. Fig. 6, Table 2). In case of the SiO2 

system it turns out that the magnitude of ε within one structure type is independent of the 

liable OH point defect and therewith the wavenumber of the observed band position. 

Consequently, one universal mean ε of 67000 ± 8000 lmol

� 

H2O

!1 cm-2 could be determined for a 

suite of quartz samples with varying OH point defects (Fig. 14). In contrast, the absorption 

coefficient ε varies with the structure itself. For polymorphic coesite we calculated a different 
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ε-value of 214000 ± 14000 lmol

� 

H2O

!1 cm-2 (Fig. 14). Quantification data of stishovite resulted in 

an even higher mean value of ε = 461000 ± 68000 lmol

� 

H2O

!1 cm-2 (Fig. 14).  

The relative error of absorption coefficients is mainly determined by the error of the water 

concentration from all analyses performed in this study. The error of the water concentration 

in turn is influenced by multiple factors, as errors in thickness determination (IR analyses), 

small number of analyses (SIMS) or in general by errors of the crystal orientation, surface 

quality of the sample, vibrational spectra treatment (baseline, fits), statistical deviations within 

a certain sample suite or technical errors due to the quality of used polarizing and analyzing 

material for the spectroscopic methods used.  

 

 

Figure 14. Comparison of mineral-specific absorption coefficients calculated in the context of the present study 
with those given in literature. 1) B-doped quartz, 2) Al-doped quartz, 3) natural quartz HQV, 4) synthetic quartz 
glass KG (Thomas et al. submitted), 5) feldpar data according to Johnson and Rossman (2003), 6) synthetic 
coesites (this study), 7) coesite (Koch-Müller et al. 2001), 8) synthetic stishovite (this study), 9) stishovite (Pawley 
et al. 1993). The inset gives a magnified section of the region 3600 to 3500 cm-1 with: 10) olivine (Bell et al. 1995), 
11) olivine (Koch-Müller et al. 2006), 12) Ud29 (this study), 13) MA020 (this study). Differences in errors given are 
due to different analytical techniques and/or low statistics (e.g., 12 or 8; cf. text).  
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Discussion 

Water contents 

Water contents determined with three independent methods are in good agreement (cf. Fig. 

13, Tables 2 and 3) and thus verify the usage of Raman spectroscopy with the “Comparator 

Technique” also for anisotropic single-crystals as well as for ppm-level water ranges. In 

general, SIMS values are slightly higher than values derived from pp-scattering and Raman 

analyses. Reasons for that may be errors (estimated as 30 %) due to the small number of 

analyses points, limitations by tiny crystal sizes or due to surface hydrogen that is brought 

into the sampling volume. However, major errors due to matrix differences can be excluded 

in our study as we used quartz crystals as standards.  

Water contents determined for our natural quartz are consistent with prior reported values, 

typically ranging from 0 up to some tens of wt ppm H2O in natural specimens to even 8000 wt 

ppm H2O as fluid inclusions (Johnson 2006). In contrast, water contents in synthetic quartz, 

mainly charge-balanced by various trace elements, are in the order of some hundreds of ppm 

H2O by weight and may indicate that water solubility increases with pressure. This may imply 

that also natural quartz, when transported to high-pressure regions, e.g., subduction zones, 

might incorporate a higher quantity of water. Water contents in synthetic coesite studied 

here are in excellent agreement to prior data (Koch-Müller et al. 2001). First evidence for 

water in natural coesite gave a study by Koch-Müller et al. (2003). The latter authors reported 

~ 135 ppm H2O by weight in coesite inclusions in a diamond. The amount of water in 

stishovite is predominantly related to the Al-content. The water concentration in synthetic 

stishovite to date has been reported to range between 3 ppm by weight for Al-free stishovite 

(Bolfan-Casanova et al. 2000; Bromiley et al. 2006; Litasov et al. 2007) to about 3000 wt 

ppm H2O in Al-stishovite (Litasov et al. 2007). As the latter data is primarily based on the 

calibration of Paterson (1982) it is not comparable with our results. Bromiley et al. (2006) 

noted that the concentration of Al in their samples is 4 to 8 times higher than the H 

concentration, which could be explained by the presence of oxygen vacancies to provide 
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charge-balance. Kimberlitic olivine contains according to literature the highest water 

contents of about 400 wt ppm, whereas olivine from basaltic flows such as SCO is very dry 

(Miller et al. 1987; Bai and Kohlstedt 1993; Beran and Libowitzky 2006). All that is in good 

agreement with our data. Kimberlitic olivine Ud29 holds higher amounts of water than SCO. 

However, the calculated absolute concentration for Ud29 is slightly smaller than previously 

determined by SIMS analyses (Koch-Müller et al. 2006). This fact may be due to systematical 

errors in SIMS analyses, e.g., due to matrix differences between olivine and garnets that 

were used as standards for the latter study. The value for olivine SCO determined from IR 

measurements in combination with the calibration of Bell et al. (2003) results in very low 

contents of 1.2 to 1.6 wt ppm H2O and thus is in good agreement with the data obtained by 

pp-scattering (< 0.8 wt ppm H2O). Slightly higher values for SCO from IR spectra may be 

explained by potential high errors by low background to noise ratios considering very low 

water concentrations (near the detection limit) and possible surface water contaminations. 

However, our data are also consistent with data for SCO of 0.2 – 0.7 wt ppm H2O (Miller et 

al. 1987) and 0.2 wt ppm H2O (Mackwell et al. 1985), when we consider that both studies 

used the calibration of Paterson (1982) which is known to give a 4 times lower concentration 

compared to our results. 

 

Absorption coefficients  

The approach of this work is to investigate isolated OH defects within one mineral group to 

study the frequency dependence of the absorption coefficient. Results on a series of quartz 

demonstrate that ε is independent of or rather less susceptible to the responsible OH point 

defect within one structure. Johnson and Rossman (2003) reported similar results for a suite 

of natural plagioclase (mean OH band frequency 3200 cm-1) and feldspar samples (mean OH 

band frequency 3500 cm-1). Based on IR studies and 1H MAS NMR the latter authors derived 

a unique absorption coefficient of 107000 ± 5000 lmol

� 

H2O

!1 cm-2. Brunner and co-authors  

(1961) predicted the first ε-value for natural quartz (see below), followed by Kats (1962), who 
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reported a value for synthetic quartz with OH bands at 3315, 3370 and 3436 cm-1. However, 

according to Paterson (1982) the early quartz calibrations are based on unpolarized spectra 

and lack in accurate spectral fitting. Therefore, high errors may be expected, as Libowitzky 

and Rossman (1997) state, that in case of anisotropic crystals it is necessary to use 

polarized measurements taken parallel to each crystallographic axis to determine correct 

total absorbance values as basis for water quantification. Paterson (1982) reviewed the 

calibrations of Brunner et al. (1961) and Kats (1962) and predicts 90000 lmol

� 

H2O

!1 cm-2 and 

84000 lmol

� 

H2O

!1 cm-2 as respective ε-values, which are higher than our ε-value (67000 

lmol

� 

H2O

!1 cm-2). Since we determined our absorption coefficient with independent methods as 

pp-scattering and Raman spectroscopy and considered the anisotropic orientation of the 

absorbers (OH), we suggest the new absorption coefficient to be more precise for future 

quantitative IR studies of quartz. The structural water content in synthetic and natural quartz 

can now be determined with polarized IR measurements using  ε = 67000 ± 8000 lmol

� 

H2O

!1 cm-2 

without the need for independent quantification methods.  

Compared to quartz the absorption coefficients for the denser polymorphs coesite and 

stishovite are much higher. The ε-value derived for coesite studied here (214000 lmol

� 

H2O

!1 cm-

2) is in excellent agreement with an earlier predicted absorption coefficient of 190000 ± 

30000 lmol

� 

H2O

!1 cm-2 (Koch-Müller et al. 2001). Pawley et al. (1993) estimated for stishovite an 

absorption coefficient of 652000 ± 240000 lmol

� 

H2O

!1 cm-2 (the value of the authors was 

multiplied by two to give the latter unit), which is 4 times higher than the value predicted by 

the general calibrations trend of Paterson (1982). The ε-value given in Pawley et al. (1993) is 

slightly higher but still rather similar to our value (461000 lmol

� 

H2O

!1 cm-2 ± 68000 lmol

� 

H2O

!1 cm-2). 

Yet, the latter authors used unpolarized IR spectra and an orientation factor of 2 as 

suggested by Paterson (1982). Moreover, their absorption coefficient for H-stishovite is 

based on SIMS analyses conducted on a D-stishovite, which is debatable, as, e.g., Koch-

Müller et al. (2003) obtain for D-coesite (154000 ± 20000 lmol

� 

H2O

!1 cm-2) a smaller absorption 
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coefficient than for H coesite. Therefore, we consider our new value (461000 ± 68000 

lmol

� 

H2O

!1 cm-2) more reliable, as it is based exclusively on polarized measurements and is 

moreover cross-referenced by our SIMS data of OH in stishovite. 

Bell et al. (2003) determined for olivine with the mean wavenumber of 3570 cm-1 an ε-value 

of 28450 ± 1830 lmol

� 

H2O

!1 cm-2. A slightly higher value of 37500 ± 5000 lmol

� 

H2O

!1 cm-2 has been 

suggested for olivine with the mean wavenumber of 3548 cm-1 by Koch-Müller et al. (2006). 

Both absorption coefficients derived from our study for two different mean OH band 

frequencies (3517 cm-1: 38000 ± 5000 lmol

� 

H2O

!1 cm and 3548 cm-1: 47000 ± 1000 lmol

� 

H2O

!1 cm-2) 

are higher than the predicted value of Bell et al. (2003) but similar to the absorption 

coefficient given in Koch-Müller et al. (2006).  

 

In conclusion, we present examples for NAMs where the negative correlation between 

absorption coefficient and OH band position does not hold. Deviations off the linear 

calibration trends proposed by Paterson (1982) and Libowitzky and Rossman (1997) were 

also noted by, e.g., Bell et al. (1995), Hösch (1999) and Libowitzky and Rossman (1997) for 

garnets and by Maldener et al. (2001) for rutile and cassiterite. Our results for the SiO2 

polymorphs are consistent with prior studies of Koch-Müller et al. (2003) and Pawley et al. 

(1993). They clearly imply that the structure might have a major influence on the absorption 

coefficient and therewith on the intensity of the IR absorption. Libowitzky and Rossman 

(1997) supposed that spectroscopic properties of OH defects in NAMs might differ from 

those of stoichiometric components in hydrous minerals. However, the exact reason for the 

discrepancies is still unknown. It is difficult to explain the observed differences as the 

magnitude of ε is strongly dependent on the strength of the dipole moment and the hydrogen 

bond. But both are not known for NAMs as the exact geometry of the responsible defects 

remains unknown. In general, substitution or vacancy would lead to deformation (e.g., 

expansion or compression) of the involved polyhedron, whether tetrahedron or octahedron 

(e.g., Smyth et al. 1995; Lager et al. 1989). As a consequence, the O...O distances would 
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increase too. Hence, we do not know the exact O...O distances, neither for stishovite nor 

coesite or quartz. Promising methods to trace such hydrogen sites are, e.g., neutron-

diffraction or computational modeling. 

For a successive discussion of our results, it is necessary to recall the basis of the common 

IR calibrations for hydrous compounds, which is a negative correlation between the molar 

absorption coefficient (ε) and the mean wavenumber of the corresponding OH band pattern. 

The OH band position depends on the magnitude of the corresponding O1-H...O2 distances 

and herewith on the hydrogen bond (H...O2) which is primarily defined by the attractive force 

of the acceptor oxygem atom (O2) on the proton, which somewhat pulls it away from the 

donor (O1) (Libowitzky and Beran, 2004). The OH stretching wavenumbers are observed at 

3700-3200 cm-1 for weak H bonds, at 3200-1600 cm-1 for strong H bonds, and at 1600 to 700 

cm-1 for very strong H bonds (Libowitzky 1999). However, according to Kubicki et al. (1993) 

the dominant factor affecting OH band position is the dipole (O1-H), which in turn is 

controlled by H-bonding if the H...O2 distance is smaller than 2 Å (< 3750 cm-1). He also 

pointed out that multiple factors may influence the OH band position. Given the next nearest 

structure environment around a vibrating OH group, A-M-O1-H...O2, not only O…O distances 

but also O…O angles, multiple hydrogen bonds and ionic substitutions at the metal cation 

(M) or anion positions (A) can have an effect. The band intensity in the IR spectrum is 

directly proportional to the concentration of the excited species in the sample and further 

depends on the magnitude and change of the dipole moment during the vibration (e.g., 

Wilson et a. 1955; Libowitzky 1999). The magnitude of the dipole moment depends on the 

distances and charge differences of the two ions (e.g., O2-, H+) involved. It increases with 

rising distances of the ions. As a result, band intensity and therewith also the absorption 

coefficient ε depend on changing atomic distances and charges during the vibration. In 

general, at a constant OH concentration, band intensity increases (ε increases) with 

decreasing band frequency. Given the observed OH features obtained in this study O1-H and 

H...O2 distances should influence our band positions and intensities. If intending to 
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understand our results, we have to separately look at the structures and at the literature 

available on hydration mechanisms suggested for them. 

 

Quartz, coesite and stishovite 

In the α-quartz structure SiO4 tetrahedra form trigonal helices. The SiO4 tetrahedra are not 

regular. The structure has neither mirror planes nor centers of symmetry. The point symmetry 

2 of Si leads to two different Si-O bond distances, 1.6104 Å and 1.6074 Å with the four 

oxygens coordinating Si being pairwise equivalent. The O-O bond distances are 2.6148, 

2.6307, 2.6422 Å (2x) (Le Page and Donnay 1976).  

Hydrogen incorporation in quartz has been studied since the middle of the 20th century. The 

sharp absorption bands in the OH region around 3400 cm-1 in the IR spectra of quartz have 

been assigned to hydrogen incorporation associated with the coupled substitution of trivalent 

Al by tetravalent Si, which is believed to be the dominating intrinsic hydration mechanism 

(e.g., Kats 1962). Pankrath (1991) showed that H may be bound to O(1), O(2), O(4) or O(5), 

where the first two oxygens are related to the shorter Si-O distance and the latter two 

oxygens to the longer ones (see above). The author further demonstrated, that the OH bands 

at 3380, 3365 and 3305 cm-1 are directly correlated with a non-uniform substitution of 

tetravalent Si by trivalent Al on the three symmetrically equivalent Si sites in the quartz 

structure. However, a definite assignation to distinct defects has not been possible so far.  

We expect the same incorporation mechanisms dominating in our natural and Al-doped 

quartz samples, where charge-balancing protons form different OH groups and cause 

therewith several OH vibrations, giving rise to a number of OH bands covering a broad 

frequency range. However, for B-doped quartz there exists no incorporation model yet. We 

observe for our Al-doped quartz the OH band pattern at a smaller mean wavenumber (3400 

cm-1) than for B-doped quartz (3600 cm-1). Boron has a higher electronegativity (2.04) than Al 

(1.61), and taking into account electronegativity/band position correlations (e.g., Strens 1974) 

the dipole should be weaker than that of Al (cf. Libowitzky and Beran 2004; Koch-Müller et al. 
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1997). However, this is not the case and might be explained by the smaller mass and ionic 

radius of B (0.23 Å) compared to Al (0.57 Å), that leads to the smaller attraction of boron as 

donor coupled with a small effect on the dipole strength, compared to Al as donor atom, 

which weakens the dipole to a higher degree. From the OH band position according to 

Libowitzky (1999) one expects a stronger OH dipole in B-doped quartz compared to Al-

doped quartz. However, both defects show the same ε-value, i.e., the change of the dipole 

moment during the vibration should be more or less the same. That is surprising, as the 

absorption intensity depends on the magnitude of the dipole moment change (see above). 

Possibly, O-H...O angles have a stronger influence in these special cases. Optionally, 

bifurcated H bonds might play a role in case of the Al-based defect, where the attractive 

influence of the H bond acceptor is attenuated if the H...O distance in a bent H bond is longer 

(as a consequence of the bent geometry) than in a straight H bond (Kubicki et al. 1993; 

Libowitzky and Beran 2004). However, the observation of similar properties of B-doped and 

Al-doped quartz may further be an implication that H incorporation mechanism coupled to the 

B-based defect is analogue to that of the Al-based defect. 

 

The coesite structure is monoclinic with five distinct oxygen sites in the structure. It contains 

rings of SiO4 tetrahedra that form chains in the b-direction and a second set of chains in the 

c-direction. There are two distinct Si atoms. The Si(1)-O bond distance is 1.6014 Å and the 

Si(2)-O distance is 1.6124 Å. The oxygen atoms are bonded to two Si atoms. O-O distances 

associated with Si(1) are 2.6133 Å, 2.6327 Å and 2.6342 Å. O-O distances associated with 

Si(2) are 2.6226 Å and 2.6287 Å and 2.6369 Å (values according to Gibbs et al. 1977).  

Koch-Müller et al. (2001, 2003) report the hydrogarnet substitution associated with the Si(1) 

to be the dominant protonation mechanism in coesite besides minor contributions of B or Al 

substitutions. From their data Koch-Müller et al. (2001, 2003) predict incorporation models 

where the oxygens O2, O3, O4 and O5 are involved in the hydrogarnet defect, associated 

with a vacant Si (1) tetrahedron. Deon et al. (submitted) report that, as pressure and 
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temperature increase, the coesite structure prefers to incorporate H via the B based defect, 

which might be energetically favorable, as the latter defect requires a smaller volume than 

the hydrogarnet substitution (see below). The authors propose a model for the hydrogen 

incorporation via the B-based defect and suggest O1, O4, and O5 as possible proton donor 

sites.  

In our study we obtain for coesite more or less the same ε-value for both, the hydrogarnet- 

and the boron based defect. However, as mean band positions caused by both incorporation 

mechanisms are quite similar, we cannot deduce from our results if there exists a unique ε-

value over a broader frequency range for coesite, as observed for quartz. Quite surprising is, 

that such different kinds of defects lead to a nearly equivalent ε-value. Consequently, 

subsequent studies of coesite should include the study of isolated hydrogarnet type 2 defects 

and its effects on ε-value to evaluate the frequency dependency of ε for a broader frequency 

range.  

The increase of ε from quartz (67000 lmol

� 

H2O

!1 cm-2) to coesite (214000 lmol

� 

H2O

!1 cm-2) might be 

explained with the increasing density of the structure that leads to smaller mean O-O 

distances comparing quartz (2.6325 Å) with coesite (O...O distances associated with Si(1) 

involved in hydration: 2.6267 Å), therewith simultaneously to an strengthening of the H bond 

associated with weakening of the OH dipole bonding and eventually to an increase of the 

absorption coefiicient ε. However, O...O distances differences are rather small in the pure 

structures of the both minerals. Hence, for a demonstration of the latter argument exact H 

positions and O...O distances for the defect structures are required.  

 

The stishovite structure is tetragonal with all Si cations in octahedral coordination by 

oxygens. Each oxygen atom is threefoldly coordinated by Si atoms. The structure consists of 

bands of edge-sharing octahedra in the c-direction. All oxygens in the structure are 

equivalent. The Si-O bond distances in pure stishovite are 1.7572 Å (equatorial) and 1.8087 
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Å (axial). The O-O distances are 2.5217 Å, 2.6655 Å and 2.2903 Å, with the latter bond 

distance belonging to the edge-sharing octahedra and beeing unusual short (Hill et al. 1983). 

The amount of hydrogen in stishovite is generally related to the Al content, with H dominantly 

incorporated via the substitution of Si4+ by Al3+. Gibbs et al. (2004) showed that the 

substitution of Si by Al is consistent with increasing the cell volume about ~ 10 % and 

distortion of the octahedra. This is exactly what is known for H-bearing aluminous stishovite 

(Smyth et al. 1995). According to models for stishovite (Smyth et al. 1995; Gibbs et al. 2004) 

H is located close to one of the shared O-O edges of the SiO6 octahedra. With respect to the 

strong pleochroism observed in the IR spectra it should be located perpendicular to the 

crystallographic c-axis. Smyth et al. (1995) suggest H at the (0.42, 0.5, 0) position what 

implies protonation close to the unusual short O-O distance in the structure. In contrast, 

Gibbs et al. (2004) predict from computational modeling (0.44, 0.12, 0) as H site. Again, the 

exact protonation mechanism and thus the H positions are uncertain.  

According to studies of Bromiley et al. (2006) and Litasov et al. (2007) the reason for the 

occurrence of the band at 3111-3134 cm-1 in both, Al-free and Al-stishovite might be related 

to H associated with an octahedral vacancy without charge balancing by Al3+, namely an 

isolated proton. Another explanation would be that very low concentrations of water in 

stishovite (typical for Al-free stishovite) are charge-balanced even by impurities of Al3+ in the 

starting reagents, as reported by Bromiley et al. (2006) based on the purity of their SiO2 

starting oxide that contained 8.2 wt ppm Al.  

We observe similar OH bands in both our Al-free and Al-bearing stishovite, which is in good 

agreement with prior studies (see above). The OH band positions are consistent with 

moderate to strong H bonding (Libowitzky 1999). According to our results Al-free and Al-

doped stishovite have similar ε-values. That might indicate an uniform H incorporation 

mechanism. Nevertheless, to make a more general conclusion with respect to the ε-value for 

the stishovite structure, potential effects due to the substitution of other trivalent ions on the 

absorption coefficient should be considered in subsequent studies. Moreover, the ε-value for 
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stishovite studied here is larger by a factor of 2.15 compared to that obtained for coesite and 

by a factor of 6.9 compared to quartz. The cause of this may be linked to the structure. The 

structure of stishovite is much denser compared to coesite, accompanied by a change from 

fourfold to sixfold coordination of the Si atom. The mean O-O distance in stishovite inhibits 

the smallest value of the three polymorphs (2.4925 Å) studied. The here observed structure 

dependence of the absorption coefficient might be explained by the change from tetrahedral 

to octahedral Si-coordination. Mean O...O distances significantly decrease from coesite 

(2.6267 Å) to stishovite (2.4925 Å) which, as H bonding increases, might explain the 

decrease of the wavenumber of the OH bands. Moreover, as the intensity is proportional to 

the dipole moment change (distances and charges) the shorter O...O distances should 

strengthen the hydrogen bond, weaken the dipole and thus should lead to an increase of the 

band intensity. Furthermore, the presence of a stronger H bond affects the dipole moment of 

the OH group in a different way, as H atom electron density can be distributed between the 

two involved oxygen atoms and charges of both oxygens and hydrogen change (see Kubicki 

et al. 1993). This may be an explanation for the increase of the magnitude of the absorption 

coefficient of coesite compared to stishovite.  

Generally, for NAMs further factors as O-H...O angles should be taken into account in 

subsequent discussions. Moreover, effects of chemical composition on the OH frequencies 

cannot be ruled out, as compositional changes are not completely isolated from structural 

effects (e.g., Kubicki et al. 1993). For example we obtained for GeO2 (in prep.) crystallizing in 

the rutile structure (r-GeO2) with the mean OH band position at 3208 cm-1 a mean ε−value of 

141000 ± 25000 lmol

� 

H2O

!1 cm-2, plotting in between both prior suggested calibration lines 

(Libowitzky and Rossman 1997; Paterson 1982). Though holding the same tetragonal 

structure the O...O bond distances (2.862, 2.670 Å, Ge-O 1.905 and 1.870 Å) are larger than 

those known for stishovite (see above), which can be explained by the larger ionic radius of 

Ge as metal cation compared with the smaller Si. Based on the correlation between O...O 

distances and OH band frequency this should lead to a slightly higher mean wavenumber, 
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and this is exactly what we observe comparing the mean band position of stishovite (3124 

cm-1) and GeO2 (3208 cm-1). A smaller ε-value for r-GeO2 compared to stishovite 

commensurates with a smaller magnitude of the dipole moment and its change during the 

OH vibration, which correlates with the large O...O distances in r-GeO2 compared to 

stishovite.  

 

Olivine 

For orthorhombic olivine, band assignments to given OH point defects, whether Si- and/or 

M1, M2 vacancies, are still under debate (cf. Beran and Libowitzky 2006). Koch-Müller et al. 

(2006) suggest that their absorption bands due to group I bands are associated with vacant 

Si and M1 sites. They propose two possible incorporation mechanisms that involve either H1 

bound to O1 and bifurcated hydrogen bonding to the O2 or O3 oxygen or H2 bound to O2 

with bifurcated hydrogen bonding to O1 and O3. B- or Al-substitutions are not discussed in 

the majority of the literature, as they seem to play only a minor role in olivines (Sykes et al. 

1994). Besides the latter defects, it is known that olivine may contain inclusions of hydrous 

minerals that lead to OH bands in the OH region (Beran and Libowitzky 2006).  

All olivines studied here show similar OH band patterns (group I), hence, similar defects 

should be involved as causes for the OH vibrations (M1 and Si vacancies). We obtain quite 

similar ε-values for both olivines studied (38000 lmol

� 

H2O

!1 cm-2 and 47000 lmol

� 

H2O

!1 cm-2), 

although both display a different mean OH band position. Taking into account previous 

studies (Bell et al. 1995; Koch-Müller et al. 2006) it seems unlikely to suggest a linear 

wavenumber dependent correlation for olivine, where ε increases with decreasing 

wavenumber. Within given errors a unique absorption coefficient for olivine is indicated 

analogue to our observations for quartz (cf. Fig. 14). However, from our results and 

considering potential errors due to low statistics no clear trend can be evaluated. As we used 

for our study only the mean wavenumber covering a very broad region, we cannot 

unambiguously tell if there is a frequency dependence of ε or not. Subsequent studies of 
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olivine, preferentially displaying OH bands at lower frequencies around 3200 cm-1, could help 

to address this issue and are in preparation.  

 

Our results confirm suggestions, that using a mineral-specific calibration prevents the 

misinterpretation of water concentrations and absorption coefficients, especially in the case 

of dense high-pressure silicates, what in turn becomes important to model the earth’s deep 

water cycle. Increase of ε from quartz to coesite to stishovite might be explained by the 

decreasing O...O distances. Moreover, we present a routine to quantify water contents in 

anisotropic minerals with Raman spectroscopy. This technique has major advantages in 

terms of non-destructive analysis of small-sized synthesis products or also thin- or thick 

sections of minerals. 
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