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Changing and often class-dependent non-stationarities of signals are a big

challenge in the transfer of common findings in cognitive workload estimation using

Electroencephalography (EEG) from laboratory experiments to realistic scenarios or

other experiments. Additionally, it often remains an open question whether actual

cognitive workload reflected by brain signals was the main contribution to the estimation

or discriminative and class-dependent muscle and eye activity, which can be secondary

effects of changing workload levels. Within this study, we investigated a novel approach

to spatial filtering based on beamforming adapted to changing settings. We compare it to

no spatial filtering and Common Spatial Patterns (CSP). We used a realistic maneuvering

task, as well as an auditory n-back secondary task on a tugboat simulator as two

different conditions to induce workload changes on professional tugboat captains. Apart

from the typical within condition classification, we investigated the ability of the different

classification methods to transfer between the n-back condition and the maneuvering

task. The results show a clear advantage of the proposed approach over the others

in the challenging transfer setting. While no filtering leads to lowest within-condition

normalized classification loss on average in two scenarios (22 and 10%), our approach

using adaptive beamforming (30 and 18%) performs comparably to CSP (33 and 15%).

Importantly, in the transfer from one to another setting, no filtering and CSP lead to

performance around chance level (45 to 53%), while our approach in contrast is the only

one capable of classifying in all other scenarios (34 and 35%) with a significant difference

from chance level. The changing signal composition over the scenarios leads to a need

to adapt the spatial filtering in order to be transferable. With our approach, the transfer is

successful due to filtering being optimized for the extraction of neural components and

additional investigation of their scalp patterns revealed mainly neural origin. Interesting

findings are that rather the patterns slightly change between conditions. We conclude

that the approaches with low normalized loss depend on eye and muscle activity which

is successful for classification within conditions, but fail in the classifier transfer since

eye and muscle contributions are highly condition-specific.
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1. INTRODUCTION

The estimation of cognitive workload (Gevins et al., 1995;
Pope et al., 1995; Gevins and Smith, 2003) delivers various
application scenario that have been and are heavily researched.
In particular in stressful working environments, such as air-
traffic control (Brookings et al., 1996; Aricò et al., 2016; Borghini
et al., 2020), pilots and car drivers (Kohlmorgen et al., 2007;
Borghini et al., 2014), as well as ship captains (Miklody et al.,
2016) and other applications (Naumann et al., 2016; Kosti et al.,
2018; Tremmel et al., 2019), the assessment of current individual
workload level can help to detect dangerous situations, as well
as in training, interface design and the design of infrastructure,
such as airports, harbors, and bridges. In realistic situations,
individual post-hoc questionnaires and qualitative observations
often remain the tool of choice, as other methods such as artificial
secondary tasks affect the actual working situation and most bio-
physiological measurements are still impractical and unreliable
at the same time.

However, questionnaires and qualitative observations often
remain rather subjective and discrete in time, while a continuous
and objective estimation of current cognitive workload is
desirable. Thus, secondary tasks are often used, which a
participant has to solve while performing the actual task. The
current error rate in the secondary can then, e.g., be used to
indirectly estimate the actual workload of the primary task.
This distracts the participants on the one hand from the main
task and remains indirect on the other. Thus, bio-physiological
measurements using, e.g., skin resistance (SR), heart rate (HR),
eye tracking or EEG are expected to be less intrusive while
delivering real-time objective estimation of cognitive workload.
Except for eye tracking, most methods work in experimental
laboratory settings, while the transfer to other experimental or
more realistic settings mostly fails. Eye tracking in contrast has
reached a higher level of relevance through higher reliability
combined with ease of setup and is thus used, e.g., in drowsiness
detection systems in cars, etc.

In particular, the electrophysiological measurements like skin
resistance, electrocardiography (ECG) for heart rate and EEG
suffer from more intrusive technical details and a low signal-to-
noise ratio (SNR). Additionally, the signal components mostly
considered as noise or artifacts stemming from eye and body
movements are highly situation and individual subject (strategy)
dependent, rendering the development of a general workload
estimator challenging. However, for the estimation of cognitive
workload, EEG is one of the few widely applicable and non-
invasive system with direct access to neural activity. All other
mentioned methods measure the effect of cognitive workload on
the physiological stress level (SR, ECG, pupillometry through eye
tracking) or behavior (eyelid closure, etc.)

Cognitive workload is reflected in different components
of brain activity. Considering the present target application,
modulations of event-related potentials due to workload (Polich,
1987; Kramer, 1991; Kok, 1997) are not relevant, since there are
no controlled and continuously repeated stimuli. Therefore, we
concentrate on workload-induced modulations of spontaneous
brain activity.

The power of oscillatory brain activity in the theta frequency
range (4 to 7 Hz) in frontal brain regions have been found to
positively correlate with the level of workload, see, e.g., (Gevins
et al., 1998; Smith et al., 2001; Holm et al., 2009).

Regarding the more prominent alpha frequency band, most
studies report a negative correlation of cognitive workload and
alpha power at parito-occipital scalp locations, see, e.g., (Gevins
and Smith, 2003; Holm et al., 2009). However, these studies
used tasks in the visual modality to induce workload, such
that one can only derive the implication of alpha reduction for
workload in visual resources. In general, the functional role of
alpha band oscillations is not yet conclusive. For a memory task
in the auditory domain, Gundel and Wilson (1992) reports a
modulation of theta oscillations only, but no modulations of
the alpha rhythm. Some studies using auditory stimulation even
found an increase in alpha activity with increasing workload
(Legewie et al., 1969; Galin et al., 1978; Markand, 1990;
Kohlmorgen et al., 2007). A possible interpretation is provided
by the hypothesis of functional inhibition, which postulates that
strong alpha activity reflects active inhibition of task-irrelevant
processes (Klimesch et al., 1999): when the critical processing
load is in the non-visual, the visual areas are actively deactivated.

In a series of experiments, we found out, that the lowest
classification errors were mostly reached for uncleaned (and
thus artifact polluted) data while the transfer between different
settings did not work (Miklody et al., 2016). This lead to further
investigations, leaving a hint toward actually discriminative
artifacts within conditions that make a transfer from one to
another setting with different behavioral settings challenging.

In this study, we investigate a novel approach that used the
information from a head model to extract neural information
only. We employ beamformers suppressing other sources
measured in the data and use adaptation to account for changing
environments and tasks in different experimental conditions.

2. MATERIALS AND METHODS

The data used within this study stems from a study published
in Miklody et al. (2016) and is part of a realistic cognitive
workload experiment involving professional ship captains. The
experiment consisted of two conditions where the workload was
manipulated by the difficulty of the maneuvering task in one
and by a secondary n-back task (Kirchner, 1958) in the other
condition. The classification followed classical approaches for
spatial filtering of continuous EEG data. After band-pass filtering
separately to alpha and theta band, the data was spatially filtered
followed by calculation of the logarithm of variances for feature
linearization. This feature vector was then fed into a Linear
Discriminant Analysis (LDA) classifier that was trained on high
vs. low workload discrimination.

2.1. Participants
10 professional tugboat captains (all male, age 30–65 years)
working in the port of Rotterdam were acquired for an extensive
session of experiments in a professional ship simulator. They
collaborated voluntarily while being financially compensated for
their participation. Subject 8 had to be excluded from analysis as
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he got seasick during the first run and could not continue the
experiments. The study was approved by the committee of the
ethical department of Philips, the Netherlands, as we collaborated
with them on this project. An informed written consent was
obtained from all participants.

2.2. Experimental Setup
The EEG was recorded with BrainAmps from BrainProducts
on a sampling rate of 1 kHz with 64 channels (except for
subject 2 with 32 electrodes due to an instrumentation error).
The Ag/AgCl-gel electrodes were placed in a standard 10/10
system and impedance was reduced to below 5 kOhms before
the experiments and checked between sessions. The data was
recorded with a linked mastoid reference behind both ears. The
simulator was a professional ship simulator bridge optimized for
tugboat missions which can be observed in Figure 2. It consisted
of a 360◦ projected screen around a set of ordinary tugboat
controls. This included several additional screens for radar and
ship-parameters. It was built and is operated for realistic training
of professional captains by MARIN.

2.3. Experimental Paradigm
The experiment consisted of three phases of around 40 min
duration. Phase 1+3 were identical tasks with cognitive workload
alternated by the difficulty of the maneuvering task while phase 2
was low workload sailing with an auditory n-back secondary task
to induce two level of workload.

2.3.1. Maneuver
In the maneuver condition, cognitive workload was induced
by the changing difficulty of the maneuvering task itself. The
tug-boats had to connect to a large container-ship in the port
of Rotterdam and tow sailing backwards in a so-called bow-
to-bow setting. Additionally, the weather and sea conditions
were changed to difficult for the high workload level. The low
workload task was following the container-ship astern with calm
sea and clear visibility. The low workload blocks were 5 min at
the beginning of each run and 10 min of connecting and pulling
after moving to the bow of the container ship were used as high
workload tasks. This was repeated once, leading to a duration of
∼40 min.

2.3.2. n-back
The sailing task during the n-back condition was the same as the
low workload in the maneuver condition—a constant following
of the container ship. The n-back (Kirchner, 1958) was added as
a secondary task, with auditory playback of numbers 0–9. The
participant had to push a button for matching n-back numbers.
The low condition was a 0-back and the high condition a 2-
back. In the n-back, 4 min blocks of high/low workload were
constantly alternated for 5 repetitions of each leading to 10 runs
within 40 min.

2.4. Preprocessing
As reviewed in the introduction, changes in mental workload
were found to be linked with the modulation of α (8–13Hz) and
θ (4–7Hz) band activity. While a change in α activity is mostly
related to attention and/or idling in the corresponding cortices,

frontal θ activity seems to be related to working memory.
Additionally, these two bands are least affected by eye andmuscle
contributions. Therefore, we have limited our analysis to two
band-pass filtered signals for each channel in these frequency
bands. The raw signal was filtered with digital butterworth-type
band-pass filters of order 4 for each of the two bands (α 8–13Hz
and θ 4–7Hz).

After this, the data was cut into non-overlapping epochs of
60 s, which in a previous study on this data was found to be the
most stable length with the lowest errors in cognitive workload
classification (Miklody et al., 2016).

2.5. General Linear Model
Based on quasi-electrostatic assumptions for EEG (Sarvas, 1987),
the connection between source activities s(t) and the measured
signal x(t) is a linear combination of all sources. The common
model for EEG is thus assumed to be the mixture of sources
described by a mixing matrix A in combination with some often
undefined noise term η:

x = As+ η (1)

The noise term is generally a mixture of all signal contributors
that are not taken care of as sources within the model. If we now
look at continuous oscillatory activity within the EEG, we are
usually interested in the variances or covariances of the sources.
We can only measure the covariance of the data x, but we can use
this to estimate the activity of the underlying sources. If we take
Equation (1) and apply it to the covariance matrices, we get:

6x = A6sA
⊺
+ 6η (2)

2.6. Spatial Filtering
We can estimate the source activity s from x using an array of
spatial filtersW:

ŝ = W⊺x (3)

or in covariance matrices:

6ŝ = W⊺6xW (4)

These filters are spatial because the multi-variate time-series x(t)
consists of location dependent variables.

Combining Equations (1) and (4) implies that the spatial filters
in general, should also take care of eliminating the influence of
the noise:

6ŝ = W⊺6xW = W⊺
(

A6sA
⊺
+ 6η

)

W

This is the reason, why in general the spatial filters are not just
the inverse or pseudo-inverse of the patterns matrix A, as they
also (have to) depend on the noise in order to extract only the
source activity s (compare, e.g., Haufe et al., 2014). This has also
some implications on changing noise and signal statistics, e.g., for
different scenarios.

Mostly, also muscle and eye contributors (or artifacts) are not
directly modeled as sources but considered noise, so a changing
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contribution of these also implies a need to adopt the filters.
Additionally, depending on contact impedances of electrodes
the instrumentation noise can change, as well as the signal
levels of the neural sources. Nevertheless, also the neural sources
themselves are known to be non-stationary (Linkenkaer-Hansen
et al., 2001), which renders the transfer of spatial filters from one
experiment to another challenging.

If additionally the experimental paradigm changes, parts of
the filter might be over-fitted toward one special type of setting,
which poses the need to build filters, that extract meaningful and
general activity that is common in different environments.

The corresponding patterns to the filters are calculated by
(compare Haufe et al., 2014):

A = 6xW6−1
s (5)

We used either no filtering, Common Spatial Patterns (CSP) or
our own beamforming (BF) approach on the data.

2.6.1. Common Spatial Patterns
Common Spatial Patterns (CSP) is a data-driven spatial filter
that optimizes to separate the data in covariances between two
conditions or classes of data (Fukunaga, 1990; Koles, 1991;
Ramoser et al., 2000; Blanchard and Blankertz, 2004). It is among
the most-effective tools used in Brain-Computer-Interfacing,
frequently used in the classification of motor imagery data
(Blankertz et al., 2008) within experimental paradigms. It is
however prone to issues of over-fitting, in particular to singular
muscle and eye movements (Blankertz et al., 2008) but also to
anything that differs in the statistics between the conditions, as
well as spurious correlations.

The set of filters can be defined in several similar ways,
with the objective that the spatially filtered signals maximize the
variances for one class while minimizing it for the other class.
The mathematical optimization for a 2-class problem can be
formulated as:

w∗
= arg maxw

w⊺61w

w⊺ (61 + 62)w
(6)

where w∗ is the optimal filter being the arg max of a projection
using w of one class covariance matrix 61 in the nominator and
a sum of the covariances of both classes in the denominator.
(Note: This is equivalent to other formulations using only 62

or the difference 61 − 62 in the denominator but leads to
different eigenvalues). The optimization Equation (6) is solved
by generalized eigenvalue decomposition, which does not only
provide one solution vector w∗, but a matrix of Eigenvectors
W—which are spatial filters—as its columns.

Usually, a certain number of Eigenvectors is selected
depending on the Eigenvalues. Since spatial filters maximizing
and minimizing the objective function (Rayleigh quotient) are
both equally useful, Eigenvalues from both ends of the Eigenvalue
spectrum are selected. According to the literature, no more than
three plus three filters are needed in most EEG data sets. This was
also the strategy used in this paper.

2.6.2. Beamforming
Beamforming is an approach that is widely used in EEG to
reconstruct source activity from a Region Of Interest (ROI)
by employing the assumed mixing properties of the signal in
combination with measured signal statistics. It has the advantage
over CSP of delivering more generic components independent of
the current class differences, but only based on the forwardmodel
of a certain area and the measured sum of source activity and
noise. It can thus be optimized to filter out the activity of a certain
area for a certain noise. In some experiments, it has been shown
to obtain a comparable performance to CSP (Grosse-Wentrup
et al., 2009). We use it here for continuously adapting to potential
changes in the components themselves, noise, background or
other contributors’ activity.

In an approach similar to Grosse-Wentrup et al. (2009), we
use the optimization

w∗
= arg maxw

w⊺6ROIw

w⊺6xw
(7)

with

6ROI = A
⊺

ROI6sAROI (8)

and signal covariance matrix 6x. As for CSP, filters are
obtained by generalized eigenvalue decomposition. However,
here Eigenvectors that maximize the objective function do
not necessarily have a meaning for discriminating meaningful
components like with CSP. Hence, all components were used.

In general, the beamformers are used for reconstructing the
activity that comes from a certain region. For motor imagery
BCIs they have been used for the left and right motor cortices
for example and the results compare to CSP in performance. As
we realized in our previous study that in a complex scenario and
with changing tasks from auditory to visual we cannot find clear
centers of activity neither for the alpha nor for the theta band,
we decided on using the whole brain as a single ROI and let the
algorithm find the centers automatically that are discriminable
well from background activity. An ROI is generally defined by a
certain number of sources in vicinity to some cortex area, and
then the algorithm finds the mean signal from that area that is
well discriminable. Setting the whole brain as an ROI potentially
leads to unspecific patterns as combinations of many sources can
reproduce any arbitrary pattern, but the result are well adaptable
and separate filters that maximize correlated activity over noise.

2.6.3. Adaptation of Spatial Filters
Adaptation can be reached on several levels: the classifier and
the spatial filters can be adapted. Here, we only investigate the
adaptation of spatial filters. In Grosse-Wentrup et al. (2009),
the beamformers were estimated block-wise for each epoch,
which introduces a less stable estimation.We decided for another
approach using slower adaptation. The covariance matrix of the
data 6x can be continuously estimated, and this can serve as a
basis for adaptation of CSP and the beamformer. Note, that this
is an unsupervised adaptation.

For a sequence of windows of samples (or epochs) xi, we define

for M > 0 the covariance matrix 6
(M)
x which is updated with
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windows up to xM by

6(M)
x = (1− λ)6(M−1)

x + λ6xM (9)

where 6
(0)
x is an initial covariance matrix, e.g., estimated from

training data.

2.6.4. Overview Over Implemented Methods
• None: No spatial filtering was used.
• CSP: CSP was trained on one condition and directly applied to

the other.
• CSPa: CSP was trained on one condition and continuously

updated in an unsupervised fashion by recalculating it with a
new 61 + 62 in the denominator.

• BF: CSP was trained on one condition and directly applied to
the other.

• BFa: BF was trained on one condition and continuously
updated in an unsupervised fashion by recalculating it with a
new 6x in the denominator.

2.7. Feature Extraction and Classification
For classification, we used a linear classifier applied to the vector
of the logarithm of the variances of spatially filtered data. This
is a common approach in classifying continuous oscillatory EEG
data. The logarithm is applied to transform the variances which
are χ2 distributed, to achieve distributions that are well separable
using Linear Discriminant Analysis (LDA) (Fisher, 1936), i.e.,
Gaussian distributions (with equal covariance matrices in both
classes). Alternatively, one can use a non-linear classifier that
is derived as the optimal classifier for χ2 distributions. While
this approach is theoretically appealing, it was found to result
in higher error rates on real-world data because it is highly
dependent on the stationarity of the data (Miklody, 2020).

2.8. Validation
In order to properly estimate the validity of the data, several
special measures have to be taken into account for EEG
data. As the data is highly auto-correlated and so not i.i.d.,
random sampling for cross-validation leads to information-
leakage between test and training data. Therefore, chronological
block-wise sampling is done for a leave-one-block-out cross-
validation within conditions (Lemm et al., 2011). This problem
does not apply for the transfer of filters and classifiers from one
condition to another, as the data originates from separated time
intervals and even another setting.

Additionally, it is essential that spatial filters are optimized on
training data only. This is particularly important for CSP, since it
employs label information (Blankertz et al., 2008). The block-wise
sampling lead to 10-fold cross-validation in the n-back and 2-
fold in each of themaneuver condition. Together with the 1-min
time-windows this lead to 72 observations in training vs. 8 test for
n-back and 20 test/10 training formaneuver. Between conditions
refers to an external validation where a direct measurement of all
statistics is applicable without any additional sampling. This lead
to 80 observations for testing or training on the n-back condition
and 30 for themaneuver.

2.9. Statistical Measures
All classification results in the this study are given by a class-wise
normalized loss which delivers the advantage of having one clear
score per result but incorporating the loss in both classes. The
average per subject losses were tested using a Wilcoxon signed
rank test to see whether they deviate significantly from chance
level (50% for a two-class problem).

3. RESULTS

3.1. Classification
While the normalized losses were only very low within the n-
back condition, the transfer between conditions was possible with
the adapting BF approach in both directions. This is remarkably
regarding the very different tasks. For joining the results of the
maneuvering phases 1+3, the average normalized loss was used,
while preceding training and evaluation remained separately. In
Figure 1, we can see the normalized classification loss cross-
validated within sessions and for the transfer of the processing
and classification from one condition to another.

3.1.1. Within Condition
Within condition, no spatial filtering lead to the lowest average
normalized loss in both conditions—n-back (10%) andmaneuver
(22%). BF and CSP worked comparably within conditions, while
for the n-back, CSP seemed to have a slight advantage (15%) over
BF (18%). In the maneuvering condition normalized losses were,
in general, higher for all approaches (33% for CSP, 30% for BF).
All within condition results were significantly (α < 0.005) lower
than chance level (50%).

3.1.2. Transfer Between Conditions
The experimental paradigms differ strongly, and the transfer
is around chance level without spatial filter adaptation for all
approaches. Trained on the more controlled n-back condition
and applied to the maneuvering, CSP and BF with adaptation
classification results only differ significantly (CSP α < 0.05
and BF α < 0.005) from chance level, while BF leads to
lower average errors (34%) than CSP (42%). The pipeline
trained on the maneuvering task seems to generalize less well,
as the normalized losses are around chance level (no filtering
and BF without adaptation both 45%) except for BF with
adaptation (35%, α < 0.005).

3.2. Scalp Patterns
Scalp patterns have been calculated from the spatial filters by
Equation 5. Investigating them revealed where the components
might have come from. We investigated the most discriminative
patterns by cross-validation results for single component
classification in order to get insights onto which components
were important in which condition. For the patterns of BF with
adaptation, the filters at the end of the constant update are
displayed.

The patterns of most discriminative components measured
by single feature cross-validation within conditions contained a
lot of patterns that can be identified as most probably stemming
from eyes and muscles, as can be observed in Figure 2 on the top.
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FIGURE 1 | Within and between condition class-wise normalized losses for different spatial filtering approaches: Within conditions no spatial filtering leads to the

lowest errors, while for the transfer between conditions, the non-data-dependent patterns of beamforming in combination with a constant adaptation is the only

reliable approach. Dots show results for single subjects, while diamonds depict the average over subjects.

This was stronger for the maneuvering task, while also found in
the more controlled n-back task. Some patterns in the n-back task
could actually display either yaw muscle activity but could also
be related to temporal lobe originated oscillations. In the transfer
between conditions, the lowest errors were elicited by different
patterns that can be assumed to be mainly stemming from larger
neural activation patterns in more central areas.

4. CONCLUSIONS

Filter adaptation to new settings lead to the ability to transfer
classifiers between different experimental conditions for both
CSP and beamforming while within condition no spatial filtering
delivered the least errors. For CSP the adaptation was working
only in one direction, while for beamforming it worked in
both directions. The normalized losses were around 35% in
the other conditions which is acceptable respecting the very
different induction of workload using either a maneuvering
or an auditory secondary task. This could imply extraction
of generally meaningful components related to cognitive
workload as they transfer between different settings. The other
classifications seem over-fit to the experimental paradigm, as well
as arbitrary statistics of each condition. In generalizability, BF
with adaptation is the tool of choice.

The patterns are still not perfectly separable between neural
and other origin, and a further step to improve this would be
to use actual regions of interest (ROI) for the beamforming
approach. We decided for an approach using all sources of

the head model as a region of interest for the algorithm to
find out correlated patterns separable from the noise out of the
data. Putting more prior knowledge in the form of expected
sources as ROIs into the model could improve results but could
also lead to actually not detecting the meaningful information.
This has to be further investigated in another study with
narrowed ROIs. Problematic is, e.g., that the auditory nature
of the n-back makes classical occipital alpha as is commonly
related to cognitive workload often not a straightforward
property because it is rather linked to visual attention,
not auditory.

The eye- and muscle-based components in the patterns
could be related to individual strategies, as well as systematic
movements in certain maneuvering conditions. Patterns that can
be found by CSP can in general mean two things—artifacts in
single trials that occurred randomly more often in one class
(Blankertz et al., 2008), or discriminative artifacts that differ
systematically between both classes. As in the n-back condition
the control of the ship was exactly identically, while also the
n-back task did not differ in behavior only in the load of
the memory task, the interpretation that individual (probably
automatic) strategies in remembering the numbers was the only
discriminative factor is reasonable. In the maneuvering task, it is
more likely that certain viewing angles specific to different phases
(next to the ship vs. looking straight at the bow) and steering
movements make upmost of the discriminative artifacts. But also
here individual strategies or movement patterns related to high
workload could play their part. In a preliminary analysis, we have
compared the patterns between high and low workload and could
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FIGURE 2 | The most discriminative patterns in the different frequency bands for exemplary subject 5. On top the data was cross-validated while on the bottom the

respective transfer classes were trained on the other task and then applied with or without adaptation. For no filtering, the LDA classifier pattern is shown with the

overall normalized loss, while in the other cases the spatial patterns with the lowest normalized loss with the corresponding normalized loss in single component

classification. While No Filtering lead to the classifier picking a combination of different sources (brain, eyes, and muscles), CSP mainly sticked to eye artifacts for the

maneuvering while in the n-back the resulting patters could originate from yaw muscles or temporal cortices. Small changes in the patterns lead to lower losses for the

adapted BF. The non-adapted patterns stay similar to their original patterns, as the covariances do not change much (not shown). Here, mainly broad activation lead

to the lowest loss. Adaptation can also drastically change the pattern (see alpha in n-back) but mostly stays very similar (the flip in sign is meaningless).

see some patterns most likely related to neck muscle and eye
artifacts. Also participant observations show a clearly different
body pose and look direction in the different levels. This has to
be further investigated.

As these systematic artifacts (in the sense of classical EEG
interpretation) are highly specific to each of the conditions, they
do not transfer well. This is underlined by the fact that within
conditions the eye and muscle components lead to the lowest
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normalized loss, while in the transfer components stemming
most likely from neural origin have the lowest normalized losses.

On the other hand, preliminary investigations of patterns and
related filters revealed that the filters from one condition applied
to the other condition extract similar patterns which do not lead
to satisfactory normalized losses. Adapting the filters only slightly
changed those patterns and permitted a normalized loss level
significantly different from chance level. This could actuallymean
that it is not necessarily only the general artifact level that changes
but also the non-stationarity of the neural signals themselves.

One open question that is contrary to common findings in
controlled laboratory experiments is the high performance of
the no spatial filtering approach within conditions. There is
almost no transfer to other settings for no spatial filtering, so the
classifiers seem rather condition specific. This could be caused by
systematic contributions from eyes and muscles. As their sources
lie in the scalp surface in vicinity to the electrodes they are less
affected by spatial smearing due to volume conduction in the
head than currents from neural sources which have to pass the
low-conductive skull on their way. This makes them more local
and spatial filtering that usually helps drastically with brain-only
sources as in highly controlled experiments is not needed here for
source separation. Looking at the patterns in our results revealed
that indeedmainly channels on the circumference of the EEG cap
have the largest absolute values.

Limitations of this study are in the adaptation of the spatial
filters, as they are recalculated after every single trial. This could
in general lead to different patterns and filters after a certain
time. The classification is, however, not adapted and expects
similar feature distributions which can decrease performance.
Nevertheless, in our setting, a reasonable transferability with this
approach has been reached. A better adaptation of the spatial
filters, as well as a not yet investigated additional adaptation of
the classifier could thus further improve results.

An actual source localization could shed more light onto the
signals’ origin and is planned for the near future when our head
model that involves muscle and eye sources is finished.

No obvious difference could be found between the subject that
had only 32 electrodes recorded and the others. This gives a hint
toward that less electrodes could be sufficient for the analysis but
has to be further investigated.
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