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ABSTRACT 
A fundamental understanding of the sizing process is a key element for sizing affordable, reliable, and sustainable 
nano/micro-off-grid systems. Nevertheless, the openness and transparency of modeling approaches are still low 
and open-source tools are scarce in this field. In this study, an open-source modeling tool for the optimization of 
renewable nano/micro-off-grid power supply systems is developed. System component models based on 
datasheets consider dynamic and time-dependent influencing factors. The modeling tool uses a multi-objective 
optimization based on the Non-Sorting-Genetic-Algorithm-II aiming at minimizing costs and load outage. For a 
better understanding of the sizing process, the influence of temporal resolution, simulation period, and location 
on the Pareto-optimal fronts is analyzed. The system location and by that irradiance, ambient temperature, and 
wind speed shows to be the strongest influence factor, which leads up to 2-5 times higher costs for achieving the 
same security of energy supply. While a higher temporal resolution increases the costs and load outages due to 
a more realistic illustration of energy production and demand, a shorter simulation period shows an increase in 
the system costs but a reduction of load outages because of the non-observance of component replacement, its 
cost reduction, and degradation. 

  



1. INTRODUCTION 
Nowadays, approximately 789 million people still lack access to electrical energy. The majority of these people 
live in rural areas apart from electricity supply grids [1]. They rely on the usage of non-electric light sources as 
well as car batteries or small petrol generators as a mobile energy supply. These energy sources are both high in 
energy costs and cause massive damage to health and the environment. However, an affordable, reliable, and 
sustainable energy supply is a key factor to prosperity and to ensuring the people’s economic participation by 
increasing the local added value [2]. For the reasons cited above, off-grid power supply systems in combination 
with renewable energy conversion technologies provide a suitable alternative for these people in question. 
According to the Renewable 2019 Global Status Report, a total of 150 million people across Africa and Asia gain 
access to electricity through solar-based off-grid systems. In 2018 the sales volume increased by 45 % compared 
to the previous year and lead to a total installed capacity of 58.8 MW [3]. 

It is widely accepted that the term “off-grid” defines systems that operate independently from the main grid and 
include a local power generation. A number of standards developed by the International Electrotechnical 
Commission (IEC) regarding microgrids for decentralized rural electrification purposes distinguish between 
individual electrification systems and collective electrification systems [4]. The International Renewable Energy 
Agency (IRENA) follows these standards by defining stand-alone systems and mini-grid systems, which are further 
classified into Pico- (0-1 kW), Nano- (0-5 kW), and Micro-off-grid systems (5-100 kW) according to their size, as 
well as their system capability and complexity [5]. 

Due to an uncertain load and fluctuating energy sources, sizing off-grid systems with integrated renewable 
energy sources is a complex task. Therefore, research in the field of off-grid power supply system modeling and 
optimization has been done extensively. Many studies were conducted regarding hybrid systems with renewable 
and fossil energy sources. Cai et al. present a novel framework for optimal sizing and location identification of a 
photovoltaic-battery-diesel system and state the need for appropriate sizing methods [6]. Different optimization 
methods are compared but the mathematical system model is comparatively simple. Rodríguez-Gallegos et al. 
propose a multi-objective optimization method for the integration of photovoltaic and battery components in 
diesel-driven off-grid systems using a genetic algorithm [7]. This is pursued in [8] and a diesel replacement 
strategy for off-grid systems with the progressive integration of photovoltaic and batteries is described. Both 
studies are based on a simple battery model approach. Jaszczu et al. conduct a genetic multi-objective 
optimization of a micro-grid hybrid power system focusing on the applied objective functions but lacking a 
detailed description of the mathematical system model [9]. Both before mentioned studies use state-of-the-art 
optimization methods based on evolutionary algorithms. Zitzler et al. conduct a comparative study of multi-
objective evolutionary algorithms and map the algorithm performance according to the distribution of found 
solutions, the extent of the obtained Pareto-front and the distance of the found optimal set to the real Pareto-
front [10]. 

The battery is one of the most significant components in off-grid power supply systems and affects in case of an 
inappropriate design, system reliability and costs. Integrating appropriate battery models reflecting real-life 
behavior is therefore crucial for off-grid system sizing [11]. Bordin et al. developed a methodology to analyze the 
optimal cost-effective battery operation of photovoltaic diesel off-grid systems. It includes the battery 
degradation process inside a linear programming optimization model [12]. Other studies highlight the 
importance of battery degradation integration into optimal sizing methods of renewable off-grid power supply 
systems (e.g. in [13], [14]). 

Regarding photovoltaic-battery pico/nano/micro-off-grid power supply systems, Khatib et al. provide an 
overview of studies and highlight that accurate modeling of all subsystems is required for an appropriate system 
sizing. Common sizing techniques are classified into intuitive, numerical, and analytical approaches. Intuitive 
sizing methods are most commonly applied as they are very simple and reduce time and cost of engineering and 
software licenses [15]. This is especially the case in the practical field and results in system configurations that 
are not adapted to the specific use case. Poorly sized systems have a higher risk of failure and increase the overall 
system costs. Ringkjøb et al. present a review of recent modeling tools for electricity systems with a large share 
of renewables [16]. Only a small part of these tools is open-source, with insight into the model structure, the 
possibility of code adaption, and free of charge. The authors further state a need for openness and transparency 
in modeling studies. Among the reviewed simulation tools, no open-source model specifically developed for 
renewable nano/micro-off-grid power supply system is listed, which represents the lack of such tools. 



Khatib et al. state as well that new sizing methods and a better understanding of influencing factors are required 
to achieve accurate results with less computing time [15]. Studies which aim for a better understanding of the 
sizing process, focus mainly on the temporal resolution of load profiles and energy sources. Tjaden et al. and 
Wrigh et al. state that lower temporal resolution of load curves results in too optimistic matches of load and 
power generation [17], [18]. Stenzel et al. evaluate the impact of temporal resolution of supply and demand 
profiles of a photovoltaic battery grid-tied system and state that the accuracy of the simulation results increase 
with increasing temporal resolution [19]. Beck et al. analyze a comparable system configuration for Germany but 
state that for optimal sizing of the photovoltaic and battery capacity a resolution of 60 min is sufficient [20]. 
Burgio et al. evaluate the impact of data averaging and temporal resolution on grid-tied hybrid photovoltaic-
battery systems and state that the temporal resolution has no particular relevance in the optimal sizing of the 
system to guarantee a 100 % self-generation rate but they analyze only a simulation period of one year [21]. Tang 
et al. give an overview of the temporal resolution applied in photovoltaic battery optimization studies and state 
that mainly a relatively low resolution is used. They further identify that for their cost optimization hourly 
temporal resolution could lead to underestimations [22]. Studies regarding the influence of the simulation period 
and system location on the sizing process could not be identified. 

This paper proposes an open-source modeling tool for the simulation and optimization of photovoltaic-battery 
nano/micro-off-grid power supply systems. All system component models can be parametrized by open-access 
or datasheet data. This shall gap the lack of open-source numerical sizing approaches and increase the 
transparency of developed mathematical system models. The practical application of the developed tool is 
presented through a multi-objective optimization to identify optimum trade-offs between two conflicting 
objectives which are the minimal costs (Levelized Costs of Electricity) and the load outages (Loss of Load 
Probability) of the system. Therewith, the work brings the following major contributions for the numerical sizing 
process of photovoltaic-battery nano/micro-off-grid power supply systems: 

• An innovative battery model with a new energy-based Depth of Discharge (DoD) model to meet the 
needs for accurate battery representation.  

• Contribution towards a better understanding of the sizing process through an influencing factor analysis. 
Detailed analysis of the sizing process regarding the influence of the temporal resolution and simulation 
period for the used load profiles and weather data which changes with the system’s location. 

The system studied, developed mathematical component models, and methods applied are introduced in 
chapter 2. In chapter 3 the main findings of the influencing factor analysis are presented and discussed. We finish 
the paper with conclusions on the numerical sizing process and an outlook of future work. 

2. METHODS 
A system simulation for a multi-objective optimization and sizing procedure needs to describe all energy flows 
inside the system. Additionally, it is necessary to describe the dynamic behavior inside the chosen temporal 
resolution and the aging processes which occur during the simulated period. Further requirements for a general 
model include the following: 

• Easy model parametrization based on datasheets, measurements or online-databases 
• Interconnection between sub-models must be unambiguous to support a model exchange or extension 
• Models must be sufficiently flexible concerning the design variables 
• The computational effort must be small due to the high temporal resolution, high number of 

parameters, and iteration steps which are caused by the optimization procedure 

Besides the mentioned requirements, the developed simulation model follows a power flow approach. For the 
reason of simplicity and simulation computing time, only the component’s power flows are considered without 
modeling individual current and voltage levels. 



2.1. System description 
In Figure 1 the analyzed nano/micro-off-grid power supply system is schematically depicted. It consists of a 
photovoltaic (PV) array, a Maximum Power Point Tracker (MPPT), a Lithium-Iron Phosphate (LFP) battery with an 

active Battery Management System (BMS), and an AC-DC power inverter. 
Arrows represent the modeled power flows between the system 
components. The arrow direction indicates the sign rule in the simulation 
though not necessarily the direction of energy flow. The direction of power 
flow 4 and 5 is reversible in the case of battery discharge. The battery charge 
power is positive and the discharge power is negative, contrary to the 
ISO12405-1-norm [23]. 

Further connection and safety components are neglected in the technical 
model and estimated by a rough rule of thumb values of the literature in the 
economic model. The energetic losses of operations control and monitoring 
components are integrated into the charge-controller and inverter models. 

 

2.2. Mathematical model 
This section provides a detailed description of the developed mathematical models of all technical system 
components and the used simulation input data.  

2.2.1. Photovoltaic model 
For long-term system simulations, constant efficiency models are most commonly used, although most models 
in the literature are based on electrical circuit models (ECM) to model the U-I-curve of the photovoltaic module 
[24]. However, it is not necessary to model the whole U-I-curve since only systems with MPPT are considered. 
Therefore, it can be assumed that the photovoltaic module runs mostly at its maximum power point if the load 
side is not restricted otherwise, e.g. by full batteries and insufficient load. Furthermore, the lowest simulation 
time step of 1 minute is high enough to neglect the energy losses due to the search algorithm of the MPPT and 
by that the effect of suboptimal voltage and current operation points of the photovoltaic module. 

Therefore, the simple photovoltaic model from [25] is applied: 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀,𝑃𝑃𝑃𝑃 =  
𝐺𝐺
𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟

∙ 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀,𝑟𝑟𝑟𝑟𝑟𝑟 ∙ γ0 ∙ (𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟) (1) 

The PMPP,ref describes the output power at the maximum power point and Standard Test Conditions (STC) with 
Tref = 298.15 K and Gref = 1000 W∙m - 2 and γ0 the power-dependent temperature coefficient (assumed to be 
γ0 =- 0.5 W∙K – 1), TC the variable cell temperature and G the effective irradiation respectively. The accuracy of this 
model which was tested by [25] in a practical one-year study with mono-crystalline panels and MPPT is similar, 
sometimes even exceeding that of the more sophisticated models. 

To calculate the cell temperature the semi-empiric approach of [26] is used in this study. The first term describes 
the temperature of the photovoltaic module with the effective irradiation G, the wind speed vwind, the ambient 
temperature Ta and the empirical parameter a and b which describe the mounting system and module 
technology. The cell temperature can be calculated by using an empirical temperature difference ∆T and the 
effective irradiation. The empiric parameters used here refer to a glass/cell/polymer sheet module type with an 
open rack mounting system [26]. 

𝑇𝑇𝑐𝑐 = (𝐺𝐺 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎+𝑏𝑏∙𝑣𝑣𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 + 𝑇𝑇𝑎𝑎) + 𝛥𝛥𝛥𝛥 ∙
𝐺𝐺

1000 (2) 

To include the proceeding degradation of a photovoltaic module, an annual degradation rate of the peak-power 
of 0.5 % is assumed here, corresponding to [27]. All relevant parameters and constants used in the photovoltaic 
model can be found in Table A. 1. 

2.2.2. Battery model 
Batteries are strongly non-linear, electro-chemical systems. According to [28] the main internal influencing 
factors are DoD/State of Charge (SoC), State of Health (SoH), internal resistance, self-discharge, design 

Figure 1 System diagram. 



parameters, etc. The main external factors are temperature, C-rate, and operating history (e.g. cycles or rest 
period). 

The aging of the battery leads to loss of capacity primarily due to loss of active material and reduction of power 
performance due to rising internal resistance [29]. The aging is mainly dominated by the charging/discharging 
cycles (cycle aging) and the rest periods (calendrical aging) [30]. 

A large variety of models for Lithium-based battery cells can 
be found in the literature. They vary strongly in the 
influencing factors included and their field of application. 
Most models used in energy and electricity system 
simulations are structured as seen in Figure 2, which is based 
on [31]. 

In this study, the above-mentioned topology is adapted. The 
central state model calculates the energy dissipation during 
the charging and discharging process (reflected by Ploss the 
battery power loss due to energy dissipation, which is the 
difference between the terminal power PTerminal and the 
battery power PBatt), usable battery capacity with charging 
and discharging limits and SoC for every simulation step. The 

thermal model determines the temperature of the battery cell. The aging model defines the battery capacity 
over the simulation period by determining the loss of capacity per time step (the SoH-dependent battery capacity 
is represented by Cact).  

2.2.2.1. State model 
The state model is essentially influenced by the cell temperature, C-rate, SoC, self-discharge, and battery 
capacity. At a temporal resolution of one minute, it can be assumed that the electrical short-term dynamics of 
battery cells, which in equivalent circuit models (ECM) are usually be described as resistor-capacitor circuits, can 
be neglected. 

The parametrization of the state model is based on the open-access datasheet of the Thunder Sky Winston LFP-
cell WB-LYP40AHA [32]. The charge and discharge curves show the terminal voltage VT of the battery over the 
SoC at different C-rates (0.5 C, 1.0 C, 2.0 C, 3.0 C) and temperatures (55 °C, 25 °C, 0 °C, -25 °C, -45 °C). For the 
mathematical formulation, the data is fitted with the following equation as used in [33]. Thereby, a to f are the 
fitting parameters. 

𝑉𝑉𝑇𝑇(𝑆𝑆𝑆𝑆𝑆𝑆) = −𝑎𝑎 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑏𝑏 + 𝑐𝑐 ∙ �
1

𝑓𝑓 + 𝑆𝑆𝑆𝑆𝑆𝑆� − 𝑑𝑑 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒−𝑒𝑒∗(1−𝑆𝑆𝑆𝑆𝑆𝑆) (3) 

Due to the different existing definitions, for the fitting of charge and discharge curves, the SoC of 0 % is defined 
as the minimal value at the cut-off voltage (2.8 V) and the nominal C-rate (0.5 C) and temperature (25 °C). In 
addition, discharge curves are restricted to the cut-off voltage (4.0 V). 

The battery state model describes the energy dissipation during the charge and discharge process considering 
the influencing factors battery temperature and C-rate. Therefore, a simple equivalent circuit is used as described 
in [31]. It is assumed that the power-dependent losses only occur at the internal resistance Rint. Nonetheless, a 
distinction is made between charging and discharging. To represent the temperature-dependent energy 
dissipation, an additional resistance is added in series to the circuit. Since an energy-based simulation is 
conducted, the ECM should be understood as a combination of energy losses rather than electrical resistances. 

The internal resistance can be determined by the terminal voltages at two different currents I1 and I2. Applying 
the Ohmic law, the power-dependent energy dissipation during charge and discharge can be defined through 
the battery efficiency: 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑉𝑉𝑇𝑇(𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼1) − 𝑉𝑉𝑇𝑇(𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼2)

𝐼𝐼1 − 𝐼𝐼2
 (4) 

Figure 2 High-level battery model block diagram. 



ɳ 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑃𝑃𝑇𝑇 − (𝐼𝐼2 ∙ 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖)

𝑃𝑃𝑇𝑇
 (5) 

The determined resistance for the different charge/discharge curves shows no clear SoC-dependent trend. Also, 
the charging strategies make the analysis of this SoC-dependent behavior unfeasible. For this reason, only the 
SoC-independent mean values of the resistances are used, compare Table 1. 

Table 1 Modeled mean internal resistance of the battery cell and their standard deviation. 

 Unit Charging Discharging 
Mean internal resistance [Ω] 0.0019 0.0025 
Abs. standard deviation [Ω] ± 0.0009 ± 0.0014 
Rel. standard deviation [-] ± 0.461 ± 0.535 

 

With the assumption of mean internal resistance values and the parametrized charge and discharge curves at 
different C-rates, linear correlations for the C-rate dependent battery charge and discharge efficiency can be 
determined. Inside the battery model, the C-rate is defined as 𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑃𝑃𝑇𝑇 ∙ 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛−1 with the battery nominal 
capacity Cnom. 

ɳ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 1 − 0.02803 ∙ 𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (6) 

ɳ𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 1 − 0.02115 ∙ 𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (7) 

To determine the thermally induced energy dissipation a relative voltage drop ΔV per temperature deviation ΔT 
from the reference temperature Tref = 25 °C is defined. This is in accordance with the determination of the 
internal resistance. 

𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥 =

𝑉𝑉(𝑇𝑇1) − 𝑉𝑉(𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟)
𝑇𝑇1 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

 (8) 

Analog to the C-rate calculation a temperature-dependent efficiency is determined with mean values of these 
relative voltage drops at nominal current flows and the temperature difference. The mathematical correlation 
derives as follows. It is important to note that the temperature unit used is °C and that the model only shows 
reasonable characteristics in the interpolated region between the used data points (-45 °C to +55 °C). 

ɳ(𝑇𝑇) = 1 − �
𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

3,6 � ∙ (−1.260 ∙ 10−7 ∙ 𝑇𝑇3 − 1.315 ∙ 10−6 ∙ 𝑇𝑇2 − 3.748 ∙ 10−4 ∙ 𝑇𝑇 − 6.209 ∙ 10−3 (9) 

The total energy dissipation during charge/discharge processes derives from a simple multiplication of these two 
losses. 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑃𝑃𝑇𝑇 ∙ ɳ(𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ∙ ɳ(𝑇𝑇) (10) 

Furthermore, the battery state model determines the actual SoC in every simulation step by a simple energy 
balance using an off-line book-keeping method. The charging and discharging terminal power PT, power and 
temperature-dependent power losses Ploss,total, self-discharge rate Pself-discharge, and the current battery capacity 
Eactual depending on the SoH and the SoC of the previous time step are taken into account. 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡 − 1) +  
(𝑃𝑃𝑇𝑇 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) ∙ 𝛥𝛥𝛥𝛥

𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 (11) 

Most energy-based simulations of power supply systems define a constant maximum DoD. For the sake of 
simplicity, this is an acceptable approach, however, this does not reflect the real-life battery (control) behavior. 
The BMS usually defines a maximum discharge and charge voltage, at which the charging/discharging is stopped. 
The DoD-voltage correlation is dependent at least on the cell temperature, terminal power, and SoH. To integrate 
this dynamic factor into energy-based simulations (and not only in electrical) a new, flexible and energy-based 
DoD-model is proposed. 

The end-of-charge (SoCcut off, CH) and end-of-discharge SoCs (SoCcut off, DCH) are extracted from the respective fitted 
charge and discharge curves for different C-rates and temperatures. On this basis, the following correlations can 
be generated. Since no temperature-dependent data is provided by the used battery datasheet for the charge 



case, it is neglected in this study but can be integrated into the model for other batteries if datasheet values are 
available. It is further assumed that for the temperature-dependent discharge boundary the BMS can adapt the 
end-of-discharge voltage for low temperatures (especially under 0 °C) below the nominal value of 2.8 V. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶𝐶𝐶(𝑃𝑃𝑇𝑇) = 1.1410 − 0.000225 ∙ 𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (12) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃𝑇𝑇) = −0.0210 + 0.000352 ∙ 𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (13) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷(𝑇𝑇) = −0.2536 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒0.153657∙(80+𝑇𝑇) + 0.7318 (14) 

To consider both influencing factors (temperature and C-rate) at the discharging process, they need to be 
normalized to the reference point (here: 25 °C and 0.5 C). By this, they can be added up, as shown in the following 
equation. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃𝑇𝑇 ,𝑇𝑇) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷(0.5𝐶𝐶, 25°𝐶𝐶) +
𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃𝑇𝑇)

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷(0.5𝐶𝐶, 25°𝐶𝐶) +
𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷(𝑇𝑇)

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷(0.5𝐶𝐶, 25°𝐶𝐶) (15) 

2.2.2.2. Thermal model 
Many thermal battery models are based on the heat balance equation of [34]. This consists of the Ohmic losses, 
reaction enthalpy, reaction heat of side reactions, and mixing enthalpy. Due to [35] the reaction enthalpy, due 
to [36] the reaction heat of side reactions, and due to [37] the mixing enthalpy are negligible for long-term energy 
system simulations of several months or years. This simplifies the equation to the ohmic losses. 

In addition, the convective heat exchange is included in the model. Hereby, the battery temperature of every 
time step is defined through the following equation by the battery’s convective heat transfer coefficient h, 
surface A, mass mbattery and average heat capacity cp,battery. 

𝑇𝑇(𝑡𝑡 + 1) =  
𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − ℎ ∙ 𝐴𝐴 ∙ �𝑇𝑇(𝑡𝑡) − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)� ∙ 𝑑𝑑𝑑𝑑

𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝑐𝑐𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
+ 𝑇𝑇(𝑡𝑡) (16) 

2.2.2.3. Aging model 
The aging during the rest periods is mainly influenced by the rest time, the square root of the temperature, and 
the SoC [30], [38]. However, the cycle aging is primarily influenced by the current, charge throughput, and 
average temperature [30], [39]. In this model, both aging effects and their impact on the loss of capacity are 
considered.  

The generalized model by Wang et al. for LFP-battery-cells is used to determine the capacity loss by cycle aging 
[40]. It calculates the relative capacity loss in dependency of the C-rate, temperature, and charge throughput in 
Ah. The empiric correlation is shown below with the empiric factor B, the universal gas constant R, and the 
battery temperature T. 

𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑑𝑑𝑑𝑑 = 𝐵𝐵 ∙
31700 + 370.3 ∙ 𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅 ∙ 𝑇𝑇 ∙ 𝐴𝐴ℎ0.55 (17) 

For a dynamic and time-discrete simulation, further adaptions are necessary. The charge throughput Ah by Wang 
et al. describes the number of half-cycles which is defined as a relative value and is adopted through the product 
of battery C-rate and length of the timestep. The defined empiric factor B is dependent on the C-rate, though in 
[40] only exemplary values for certain C-rates are specified. Therefore, the values for factor B are fitted to a 3rd-
order-polynomic correlation depending on the C-rate. 

𝐵𝐵 = −47,84 ∙ 𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟3 + 1215 ∙ 𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 9419 ∙ 𝐶𝐶⎼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 36040 (18) 

The relative capacity is then integrated into the aging model to determine the capacity loss and current battery 
capacity at every time step. Further details are provided in [40]. 

Many aging models for calendrical aging of lithium battery cells are based on experiments with constant stress 
factors (e.g. in [41]) and are therefore not feasible for dynamic conditions. However, Grolleau et al. developed 
and tested a model, which includes changing storage conditions [38]. This model is adopted here, for which the 
correlation of the relative capacity loss is shown in the following equation with battery temperature T and the 
nominal battery capacity Cnom. 



𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑑𝑑𝑑𝑑 = 𝑘𝑘(𝑇𝑇, 𝑆𝑆𝑆𝑆𝑆𝑆) ∙ �1 ∙
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)
𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛

�
−𝛼𝛼(𝑇𝑇)

 (19) 

The empiric factor α is dependent on the battery temperature, even though in [38] only exemplary values are 
specified. Therefore, the proposed values are fitted by the following equation. 

𝛼𝛼(𝑇𝑇) = 𝑒𝑒−(0.2∙60−log(4))+(𝑇𝑇∙0,2) + 3 (20) 

The term Qloss(t)/Cnom is the fractional capacity loss at time t, while the kinetic term k(T,SoC) is further defined 
in [38]. All relevant parameters and constants used in the battery model can be found in Table A. 2. 

2.2.3. Electronic model 
In literature, two different approaches are commonly used to model power electronics, ECM (e.g. in [42]) and 
numerical models. A 2nd-order-polynomial seems appropriate for modeling the power losses as a function of 
input or output power, as described in [43]. The attempt is made to achieve a manufacturer datasheet 
parametrization. It should thereby be noted that these data differ greatly from manufacturer to manufacturer, 
although the provided data is in general insufficient for modeling the energy losses properly. 

In the following, a mathematical model based on a 2nd-order-polynomial by [43] is used. The energetic efficiency 
ɳ based on the output power can be calculated as follows. 

ɳ =
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 + (𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∙ 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∙ 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜)
 (21) 

The second term of the dividend refers to the power loss whereby pself refers to the non-performance-related 
self-consumption, vloss to the voltage losses over diodes and transistors, and rloss to the ohmic losses due to the 
current flow. The used parameters and nominal efficiencies for the electronic components are shown in 
Table A 3. These values either refer to literature or are based on numerical fittings from the manufacturer’s 
datasheets. In terms of numerical fitting, negative identified parameters are possible due to the least square 
method used. In this work, no gradual aging effects are considered for power electronics. This matches common 
practice in literature (e.g. in [44], [45]). Analogous to these works, the total lifetime for the inverters and charge 
controllers is estimated at ten years, and five years for the battery management system. The same model is used 
for all power electronics considered in this study. 

2.2.4. Load Profile 
The load profile is a crucial part of energy-based economic analyses (cf. [46]), in particular for systems with 
fluctuating power generation and demand as they have to be balanced by an energy storage system. 
Nevertheless, creating a representative load profile is by no means trivial. For off-grid power supply systems, the 
data basis is especially weak [47]. The aggregated, normalized German household load curve of [17] with a 1-
minute resolution was used in this study. This data has also been tested for plausibility. It must be noted that the 
local socio-economic situation (and with this the load profile) of households varies greatly between regions with 
poor energy connection to the electrical grid and the situation in Germany. Nonetheless, it serves as a general 
point of comparison. However, it is accommodated that most households in off-grid regions have lower yearly 
energy demands compared to Germany. For this reason, this load profile is scaled down to 2,154 kWh∙a – 1, which 
corresponds to the yearly electric energy demand of a household in Pakistan [48], lies in the same order of 
magnitude as that of Uganda [49] and the Tier 4 of the Multi-Tier-Framework of The World Bank [50]. 

2.2.5. Meteorological data 
Another main influencing factor which was analyzed for this research is that of system location, which is 
concomitant with prevailing weather conditions. The following exemplary locations have been analyzed to 
compare different climates: 

• Temperate climate: Berlin, Germany (52.589 °, 13.271 °) 
• Tropical climate: near Lake-Victoria Kenya (-0.641 °, 34.099 °) 
• Arid climate: near Isfahan, Iran (32.342 °, 52.012 °) 
• Mediterranean climate: Lykia, Turkey (36.484 °, 29.131 °) 
• Continental climate: near Achamayli, Usbekistan (43.000 °, 59.000 °) 



To follow the open-source approach of this work, the 1-minute temporal resolution data of MINES ParisTech and 
Transvalor Dpt SoDa was used, which is validated in [51]. The data for the period of 1.2.2004 – 31.12.2005 is 
available on their homepage and free of charge [52]. Data on ambient air temperature, humidity, and wind speed 
is based on the MERRA database provided by the NASA Goddard Space Flight Center [53]. An overview of the 
climate data for the considered locations is presented in Table A. 4. 

2.3. Economic model 
The investment costs have the main share of the overall costs of renewable power supply systems. However, 
these differ greatly depending on the location, system size, or type of usage [54]. This uncertainty is especially 
large in the off-grid sector. In several regions, the prices can be up to 12-times as high as in others [55]. In respect 
to the generic approach, general economic assumptions for the investment costs (cc) of the system components, 
operation and maintenance (omc), and balance of system costs are made according to literature references. The 
economic assumptions are summarized in Table A. 5. Data on LFP battery investment cost scenarios were lacking 
in general, although more readily available within the mobility sector. For this reason, pricing data was used from 
the latter. The time-dependent investment cost function is estimated by a curve fit based on the data provided 
by [56]–[60], where t is the time in years. 

𝑐𝑐𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) = 240 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.24562∙𝑡𝑡+500) (22) 

2.4. Simulation 
The modeling tool is written in the high-level language 
Python™ 3.6. (Anaconda® 4.3.1) and published under the 
open-source license LGPL-3.0 on Github1. 

The developed simulation follows a time-discrete, 
deterministic, and, apart from the cost functions of the 
single components, likewise time-invariant approach. 
Figure 3 presents the simulation flowchart. The procedure 
starts with the initialization of technical parameters and 
the input of timeseries data. Consequently, the 
component models are calculated for every simulation 
timestep. This includes especially the battery charging and 
discharging process after determining the power flow Pdiff 
(the difference between P2 and P3) at the central power 
knot of the system (see Figure 1). Dependent on a positive 
or negative value of Pdiff the battery is charged or 
discharged, respectively. Therefore, the battery charge 
and discharged boundaries are determined to examine if 
the battery can handle the requested power flow. Finally, 
the State of Destruction (SoD) of all components is 
analyzed and in case of reaching the end of life criteria 
components are replaced. After the iteration process, the 
objective functions are calculated. The power flow 
numbering follows the denotation introduced in Figure 1. 

For the sizing process, technical and economical objective 
functions are used. The common key figure Levelized Costs of Electricity (LCoE) is used for economic 
quantification. As shown in the following equation the LCoE is calculated by the ratio of the Annual Levelized 
Cost Flows (ATLCC) to the used amount of electric energy Etotal according to [15]. The ATLCC are calculated by the 
annuity method including the annuity of investment costs (Acc,k), operation and maintenance costs (Aomc,k), 
replacement costs (Arc,k), and residual costs (Arv,k) of all components k according to [61]. The residual costs are 
the replacement costs multiplied with (1-SoD), which is one for new components and zero for end-of-life 
components. 

                                                            
1 The corresponding repository can be found at https://github.com/josch-a/energysimulation 

Figure 3 Simulation flowchart. Pself,BMS indicates the BMS 
energy self-consumption and Ploss,BMS the BMS power loss 
due to energy dissipation. 

https://github.com/josch-a/energysimulation


𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

=
∑  𝐴𝐴𝑐𝑐𝑐𝑐,𝑘𝑘  +  𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜,𝑘𝑘 + 𝐴𝐴𝑟𝑟𝑟𝑟,𝑘𝑘  +  𝐴𝐴𝑟𝑟𝑟𝑟,𝑘𝑘𝑘𝑘

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (23) 

The security of power supply is a major parameter for describing the efficiency and performance of an off-grid 
power supply system in a technical sense. Thereby, the required security has a strong influence on economics 
[62]. Nevertheless, there is no generally accepted performance figure, [63]. In [15] different quantification figures 
are discussed. Due to the generic approach of this research and the concomitant low focus on special user 
behavior or socio-economic factors, the rather simple Loss of Load Probability (LLP) method is used here. It is 
based on the amount of energy not supplied, which is the balance of demand and the supplied load in the period 
under review [15]. Thereby, PLoad demand(t) and Pload supplied(t) are the average loads of the corresponding simulation 
step. To convert this absolute value into a relative one it is normalized by the load demand of the simulation 
period τ. 

𝐿𝐿𝐿𝐿𝐿𝐿 =
∑ �𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� ∙ 𝛥𝛥𝛥𝛥𝜏𝜏
𝑡𝑡=1

∑ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∙ 𝛥𝛥𝛥𝛥𝜏𝜏
𝑡𝑡=1

 (24) 

2.5. Optimization 
Multi-objective optimization aims to identify the optimal solution for a multidimensional problem with often 
conflicting objective functions. In the case of system sizing, the optimization seeks to identify optimal system 
configurations and capacities of the components for a given use-case. The set of Pareto-optimal solutions 
consists of the non-dominated system configurations inside the objective space (Pareto-front). Decision variables 
inside the decision space define the system configuration. The Pareto-front will give the designer of such 
nano/micro-off-grid power supply system the capability to choose the system sizes regarding the requirements 
of the use case.  

Here, a multi-objective optimization is conducted to generate the Pareto-optimal set of solutions considering the 
economic objective function Levelized Cost of Energy and the technical objective function Loss of Load Probability 
as defined previously. The decision variables are the installed photovoltaic peak power, battery capacity, and 
nominal inverter power. The Non-Sorting-Genetic-Algorithm-II (NSGA-II), a frequently used algorithm [10], is 
implemented according to Deb et al. [64]. The good performance of the used NSGA-II is validated in [64]. The 
algorithm follows the basic procedure of evolutionary algorithms and selects the preferred options according to 
the rank of the non-dominated front and the crowding distance. Standard values according to [64] are used for 
the generator, selector, and variator. The set-up values for parameterizing the NSGA-II algorithm can be found 
in Table A. 6. 

3. RESULTS 
This section presents the application of the developed modeling tool for the multi-objective optimization of a 
nano/micro-off-grid power supply system. Influencing factors on the set of Pareto-optimal solutions (Pareto-
front) with the performance in the objective functions LCoE and LLP are analyzed and presented in the figures. 
The absolute numbers of decision variables are not considered. 

The general shape of all Pareto-fronts meets the author's expectation and is comparable to sets presented in the 
literature (e.g. in [9]). The obtained fronts in this research show a good solution distribution and extent of the 
Pareto-front according to [10]. Nevertheless, a detailed analysis of the optimization algorithm performance is 
not the objective of the presented study. 



3.1. Influence of location 
In Figure 4 the optimization results are shown for the different considered locations. The general run of the 
Pareto-fronts is similar and the curves are well distinguishable from each other. It appears that the systems in 

the temperate climate are the most 
expensive ones, while the results for the 
other regions are more related to one 
another. The temperate climate location 
has 2 to 5 times higher costs for the same 
LLP of 1 % to 12 % compared to the 
tropical climate, which shows the lowest 
LCoEs. The cost difference decreases with 
an increase of the LLP for all considered 
climates. When evaluating the common 
values of two Pareto-fronts, a linear 
correlation between the temperate 
climate and all other considered locations 
can be identified. 

The fact that the results for different 
locations are well distinguishable from 
one another shows that the ratio of 

energy input and demand has a distinct impact on the objective functions since the latter stays constant in this 
simulation and just the energy input distinctively differs between the different locations. In comparison to 
irradiation, the temperature has a minor influence on the results. This can be explained by the fact that the 
results of different locations can be ordered by increasing irradiation, however not by decreasing temperatures 
(see Table A. 4). This is as well supported by other data sources like the Global Solar Atlas [65]. However, the 
results do not correlate in direct proportion to the irradiation, which reflects the minor influence of temperature. 

3.2. Influence of temporal resolution 
The optimization results of simulations with a temporal resolution of one minute and one hour for the different 
considered locations are shown in Figure 5. This reveals that the general run of the Pareto curves is similar 
regardless of the simulation temporal resolution, although the Pareto-fronts for the hourly resolution 

optimization are shifted towards lower 
LCoEs at a constant LLP. The LCoEs for 
hourly optimization are in the range of 
5 % to 15 % under the optimization based 
on a temporal resolution of one minute at 
a common LLP for all considered 
locations. For LLPs above 1 %, the mean 
LCoE deviation is quite constant between 
6 % and 9 %  

The expectations of the authors and the 
literature in [17]–[19] and [22] regarding 
a strong influence of the temporal 
simulation resolution on the evaluation of 
photovoltaic systems, as well as the fact 
that lower temporal resolution leads to 
overly optimistic expectations, are 
supported by these results. 

Figure 4 Comparison of the Pareto-optimal optimization results of 1-year 
simulation with a temporal resolution of one minute for the considered 
locations. 

Figure 5 Comparison of the Pareto-optimal optimization results of 1-year 
simulation of the considered locations for a temporal resolution of one 
minute and one hour. 



3.3. Influence of simulation period  
The influence of the simulation period is studied by comparing 1-year and 20-year simulations with a temporal 
resolution of one minute. Single points of a 1-year Pareto-front for the continental climate have been used to 
conduct a 20-year simulation. The decision variables of the pair of objective function results (LCoE 0.44 €∙kWh - 1; 
LLP 15 %), (LCoE 0.58 €∙kWh – 1; LLP 6 %) and (LCoE 0.90 €∙kWh - 1; LLP 1 %) are chosen exemplarily, as shown in 

Figure 6. The results for the LLP and 
LCoE for a 20-years simulation are 
shown for all three considered designs. 
The LLP for long-term simulations is 9-
31 % higher than for the short-term 
simulations. The relative difference 
increases for smaller systems with 
higher LLPs. Despite the higher LLP, the 
results of long-term simulations 
consistently show a lower LCoE, hence 
the lower amount of supplied energy 
has no significant influence on the 
relative costs. The LCoE deviation 
between short-term and long-term lies 
within the range of 22-27 % for the 
chosen system configurations.  

The higher LLP observed for long-term simulations in comparison to the short-term meets the expectations, 
because the influence of degradation of single components is much larger for long-term simulations. This is based 
on the dissimilar non-linear aging processes of the different system components over the analyzed simulation 
period. Thus, the real usable power and capacity are distinctly lower and the loss of load probability increases, 
accordingly. This result highlights the need to integrate the component degradation and replacement costs, 
especially for batteries, inside the simulation model [12]–[14]. 

The quite constant decrease in costs for long-term simulations is contrary to the technical influences which are 
mainly represented by the LLP. Because of that, the reason for it is assumed to lie within the economic model, 
which integrates decreasing replacement investment costs of the components that must be replaced during the 
simulation period. In particular, the assumption of significantly decreasing investment costs of the battery 
corresponding to the prospects in literature must be considered. The influence of the simulation period on the 
annuity calculation has been balanced through a theoretical residual cost function which correlates exactly with 
the SoD. This leads to equal annuities of short-time and long-time simulation horizons unless no replacement 
investment takes place. 

In general, it can be stated that the 1-year simulation leads to significantly more pessimistic results regarding 
economics and delivers more optimistic results in terms of the security of supply than the 20-year simulation. 
Nevertheless, a 20-year simulation seems to be the more suitable approach, because it assumes the reduction 
of the investment costs and includes the degradation of the components which is more realistic for a real-life 
application in the field. 

4. CONCLUSION 
In the scope of this work, an open-source modeling tool for the simulation and optimization of renewable 
nano/micro-off-grid power supply system was developed. The modeling approach follows key requirements for 
a general and adaptive model structure to make the tool generic and adaptable to various use cases and 
applications. It integrates relevant dynamic behavior, which occurs in the chosen temporal resolution and aging 
effects.  

Using the two-objective-optimization algorithm NSGA-II and the objective functions LLP and LCoE the influence 
of the following factors on the set of Pareto-optimal solutions is examined and the practical application of the 
modeling tool is presented.  

Figure 6 Comparison of 1-year and 20-year simulation for the continental 
climate. 



• System location by comparing the result for simulations with weather data of five representative 
locations shows the difficulty of designing generic system sizes for multiple target markets. 

• Temporal resolution of input data (weather and load profile) by comparing a resolution of one minute 
and one hour for the different considered locations, lower temporal resolution leads to overly optimistic 
results. 

• Simulation period by comparing 1-year and 20-year simulations with a temporal resolution of one 
minute at continental climate, shorter simulation periods lead to overly pessimistic results. 

Finally, we conclude with the following key findings: 

• A distinct influence on the Pareto-front could be identified for all analyzed factors. 
• The system location dictates the technical and economic performance through climate conditions. 
• The influence of the temporal resolution and the simulation period on the LCoE and LLP is significant 

and should be considered in the design process of such nano/micro-off-grid power supply system 
regarding the computation time needed. 

Due to the generic approach of this work and the wide range of compared input data, it is limited in its 
significance for specific detailed real-life systems, but a relative comparison of the reasonable range of the 
examined influencing factors can be done. This makes it also difficult to benchmark it to existing work in a 
quantitative manner. However, it is shown that the influence of the analyzed factors is distinct, and the literature 
review above has shown that it is nevertheless neglected in most of the research articles to date. This shows the 
qualitative significance of these results. Because this work intentionally only uses datasheet and open-access 
data, it is limited in the variability of input data sources. Besides, it is only focusing on AC connected photovoltaic-
battery systems, even though the strong influence of the climate on costs and reliability shows the need to 
include further sources of energy. 

Future work with the developed open-source tool comprises the advancement of the battery model with other 
battery technologies as lead-acid and its application for decision support of optimal design and technology choice 
for Solar Home Systems as an example of pico-off-grid systems. In the long-term, the tool shall be enhanced with 
other renewable electricity generation and storage technologies for the modeling of self-sufficient energy 
systems. Also, the comparison with real-life system data based on different design approaches should be 
considered to underline the need for long-term and high temporal resolution simulations for the system design.  
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6. APPENDIX 
Table A. 1 Parameter for the photovoltaic model. 

Parameter Description Unit Value Source 
γ0  Power model: Temperature coefficient W∙K-1 -0.5 - 
Gref Power model: Effective irradiation under STC W∙m-2 1000 - 
a Thermal model: Empirical coefficient - -3.56 [26] 
b Thermal model: Empirical coefficient - -0.075 [26] 
∆T Thermal model: Empirical coefficient °C 3 [26] 

 

Table A. 2 Parameter for battery model. 

Parameter Description Unit Value Source 
Pself-discharge Self-discharge rate %∙s-1 9.04∙10-7 [32] 
kA Chemical rate constant A - 4.39∙10-5 [38] 
kB Chemical rate constant B - 1.01∙10-3 [38] 
EaA Activation energy A kJ∙mol-1 182.0 [38] 
EaB Activation energy B kJ∙mol-1 52.1 [38] 
R Universal gas constant J∙mol-1∙K-1 8.314 [40] 

 

Table A. 3 Model parameter of electronic components. 

Component pself vloss rloss ɳnominal Source 
Inverter 0.0072 0.0000 0.0375 0.9800 [25] 
MPPT  4.08∙10−3 6.07∙10−3 0.0228 0.9750 [66] 
BMS 9.93∙10−5 -0.0025∙10−16 0.0310 0.9720 -2 

 

Table A. 4 Climate data of considered locations (own calculations based on [52], [53]). 

Parameter Unit Temperate 
climate 

Tropical 
climate 

Arid 
climate 

Alpine 
climate 

Mediterranean 
climate 

Continental 
climate 

Tmax K 306 307 314 299 307 320 
Tmin K 262 289 266 246 275 249 
Tmean K 282 297 289 275 291 286 
TStd. deviation K 9 3 11 10 7 15 
Gmax Wh m-2 921 1140 1091 1128 1040 977 
Gannual kWh m-2 a-1 1064 2317 2065 1616 1713 1574 
GStd. deviation Wh m-2 203 356 323 259 303 271 

 

Table A. 5 Assumptions for the economic model. 

Parameter Description Unit Value Source 
ccPV Photovoltaic panel investment costs €∙Wp-1 1.1 [54] 
ccBat Battery investment costs €∙Wh-1 equation (22) [56]–[60] 
ccInv Inverter investment costs €∙W-1 0.225 [54] 
ccMPPT MPPT investment costs €∙Wp-1 0.06∙ccPV [67] 
ccBMS BMS investment costs €∙Wh-1 0.0275∙ccBat [68] 
ccSystem System installation costs €∙Wp-1 0.1∙ccPV [48] 
ccBoS,total Balance-of-System costs €∙Wp-1∙a-1 0.6∙ccPV [67] 
omcSystem System operation and maintenance costs €∙Wp-1∙a-1 0.02∙ccPV [48] 
ieffective Annual percentage rate - 0.05 - 
rnominal,omc Cost increase rate - 0.005 - 

                                                            
2 Based on the internal data of the betteries AMPS GmbH of an active balancing BMS system. 



Table A. 6 NSGA-II set-up values, according to [64]. 

Parameter Value 
Population size 100 
Number of generations 1300 
Mutation probability  1.0 
Mutation distribution 20.0 
Crossover probability 1.0 
Crossover distribution 15.0 

REFERENCES 
[1] IEA, IRENA, UNSD, World Bank, and WHO, ‘Tracking SDG 7: The Energy Progress Report’, Washington DC, 

2019. 
[2] World Bank, State of electricity access report 2017. 2017. 
[3] REN21 Members, ‘Renewables 2019 global status report’, 2019. 
[4] International Electrotechnical Commission, ‘Technical IEC Specification Ts 62325-502’, Recomm. small 

Renew. energy hybrid Syst. Rural Electrif. Part 9-2 Micro-grids - Tech. IEC Specif. Ts 62325-502, 2006. 
[5] Ruud Kempener, Olivier Lavagne d’Ortigue, Deger Saygin, Jeffrey Skeer, Salvatore Vinci, and Dolf Gielen, 

‘Off-grid Renewable Energy Systems: Status and Methodological Issues’, 2015. 
[6] W. Cai et al., ‘Optimal sizing and location based on economic parameters for an off-grid application of a 

hybrid system with photovoltaic, battery and diesel technology’, Energy, vol. 201, p. 117480, 2020. 
[7] C. D. Rodríguez-Gallegos, D. Yang, O. Gandhi, M. Bieri, T. Reindl, and S. K. Panda, ‘A multi-objective and 

robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully 
operated by diesel generators: An Indonesian case study’, Energy, vol. 160, pp. 410–429, 2018. 

[8] C. D. Rodríguez-Gallegos, O. Gandhi, M. Bieri, T. Reindl, and S. K. Panda, ‘A diesel replacement strategy 
for off-grid systems based on progressive introduction of PV and batteries: An Indonesian case study’, 
Appl. Energy, vol. 229, no. August, pp. 1218–1232, 2018. 

[9] M. Jaszczur, Q. Hassan, P. Palej, and J. Abdulateef, ‘Multi-Objective optimisation of a micro-grid hybrid 
power system for household application’, Energy, vol. 202, p. 117738, 2020. 

[10] E. Zitzler and L. Thiele, ‘Multiobjective optimization using evolutionary algorithms — A comparative case 
study’, Parallel Problem Solving from Nature, pp. 292-301, Springer Berlin Heidelberg, 2006. 

[11] M. Moncecchi, C. Brivio, S. Mandelli, and M. Merlo, ‘Battery energy storage systems in microgrids: 
Modeling and design criteria’, Energies, vol. 13, no. 8, pp. 1–18, 2020. 

[12] C. Bordin, H. Oghenetejiri, A. Crossland, I. Lascurain, C. J. Dent, and D. Vigo, ‘A linear programming 
approach for battery degradation analysis and optimization in offgrid power systems with solar energy 
integration’, Renew. Energy, vol. 101, pp. 417–430, 2017. 

[13] B. Zhao, X. Zhang, J. Chen, C. Wang, S. Member, and L. Guo, ‘Operation Optimization of Standalone 
Microgrids Considering Lifetime Characteristics of Battery Energy Storage System’, IEEE Trans. Sustain. 
Energy, vol. 4, no. 4, pp. 934–943, 2013. 

[14] M. Sufyan, N. Abd Rahim, C. Tan, M. Muniar Azam, and R. Siti Rohani, ‘Optimal sizing and energy 
scheduling of isolated microgrid considering the battery lifetime degradation’, PLoS One, vol. 14, pp. 1–
28, 2019. 

[15] T. Khatib, I. A. Ibrahim, and A. Mohamed, ‘A review on sizing methodologies of photovoltaic array and 
storage battery in a standalone photovoltaic system’, Energy Convers. Manag., vol. 120, pp. 430–448, 
Jul. 2016. 

[16] H. Ringkjøb, P. M. Haugan, I. M. Solbrekke, E. T. H. Zürich, and S. Pfenninger, ‘A review of modelling tools 
for energy and electricity systems with large shares of variable renewables’, Renew. Sustain. Energy Rev., 
vol. 96, no. August, pp. 440–459, 2018. 

[17] T. Tjaden, B. Joseph, J. Weniger, and V. Quaschning, ‘Repräsentative elektrische Lastprofile für 
Wohngebäude in Deutschland auf 1-sekündiger Datenbasis’, HTW Berlin, 2015. 

[18] A. J. Wright and Firth S.K., ‘The nature of domestic electricity-loads and effects of time averaging on 
statistics and on-site generation calculations’, Appl. Energy, vol. 84, no. 4, pp. 389–403, 2007. 

[19] P. Stenzel, J. Linssen, J. Fleer, and F. Busch, ‘Impact of temporal resolution of supply and demand profiles 
on the design of photovoltaic battery systems for increased self-consumption’, 2016 IEEE Int. Energy 
Conf., pp. 1–6, 2016. 

[20] T. Beck, H. Kondziella, and T. Bruckner, ‘Assessing the influence of the temporal resolution of electrical 
load and PV generation profiles on self-consumption and sizing of PV-battery systems’, Appl. Energy, vol. 



173, no. September 2017, pp. 331–342, 2016. 
[21] A. Burgio, D. Menniti, N. Sorrentino, A. Pinnarelli, and Z. Leonowicz, ‘Influence and impact of data 

averaging and temporal resolution on the assessment of energetic, economic and technical issues of 
hybrid photovoltaic-battery systems’, Energies, vol. 13, no. 2, pp. 1–26, 2020. 

[22] R. Tang, K. Abdulla, P. H. W. Leong, A. Vassallo, and J. Dore, ‘Impacts of Temporal Resolution and System 
Efficiency on PV Battery System Optimisation’, 2017 Asia-Pacific Sol. Res. Conf., 2017. 

[23] Norm ISO 12405-1, ‘Electrically propelled road vehicles - Test specification for lithium-ion traction battery 
systems - Part 1: High power applications’, 2009. 

[24] T. Khatib and W. Elmenreich, Modeling of Photovoltaic Systems Using MATLAB® - Simplified Green Codes. 
Hoboken, New Jersey: John Wiley & Sons, Inc., 2016. 

[25] G. Notton, V. Lazarov, and L. Stoyanov, ‘Optimal sizing of a grid-connected PV system for various PV 
module technologies and inclinations, inverter efficiency characteristics and locations’, Renew. Energy, 
vol. 35, no. 2, pp. 541–554, 2010. 

[26] D. L. King, W. E. Boyson, and J. A. Kratochvill, ‘Photovoltaic Array Performance Model’, Albuquerque, New 
Mexico, 2004. 

[27] J. Linssen, P. Stenzel, and J. Fleer, ‘Techno-economic analysis of photovoltaic battery systems and the 
influence of different consumer load profiles’, Appl. Energy, vol. 185, pp. 2019–2025, 2015. 

[28] A. Jossen, ‘Fundamentals of battery dynamics’, J. Power Sources, vol. 154, no. 2, pp. 530–538, 2006. 
[29] C. R. Birkl, M. R. Roberts, E. McTurk, P. G. Bruce, and D. A. Howey, ‘Degradation diagnostics for lithium 

ion cells’, J. Power Sources, vol. 341, pp. 373–386, 2017. 
[30] J. Vetter et al., ‘Ageing mechanisms in lithium-ion batteries’, J. Power Sources, vol. 147, no. 1–2, pp. 269–

281, 2005. 
[31] J. V. Barreras, E. Schaltz, S. J. Andreasen, and T. Minko, ‘Datasheet-based modeling of Li-Ion batteries’, 

2012 IEEE Veh. Power Propuls. Conf. VPPC 2012, no. May 2015, pp. 830–835, 2012. 
[32] ‘Shenzhen Smart Lion Power Battery Limited’, Thunder Sky Winston Rare Earth Lithium Ion Battery 

Specification - WB-LYP40AHA. [Online]. Available: en.winston-battery.com/index.php/products/power-
battery/item/wb-lyp40aha. [Accessed: 02.09.2020]. 

[33] O. Tremblay, L. Dessaint, and A. Dekkiche, ‘A Generic Battery Model for the Dynamic Simulation of Hybrid 
Electric Vehicles’, IEEE, pp. 284–289, 2007. 

[34] D. Bernardi, E. Pawlikowski, and J. Newman, ‘A General Energy Balance for Battery Systems’, J. 
Electrochem. Soc., vol. 132, no. 1, p. 5, 1985. 

[35] L. Gao, S. Liu, R. A. R. A. Dougal, Lijun Gao, Shengyi Liu, and R. A. R. A. Dougal, ‘Dynamic lithium-ion 
battery model for system simulation’, IEEE Trans. Components Packag. Technol., vol. 25, no. 3, pp. 495–
505, Sep. 2002. 

[36] R. Spotnitz and J. Franklin, ‘Abuse behavior of high-power, lithium-ion cells’, J. Power Sources, vol. 113, 
no. 1, pp. 81–100, 2003. 

[37] E. V Thomas, H. L. Case, D. H. Doughty, R. G. Jungst, G. Nagasubramanian, and E. P. Roth, ‘Accelerated 
power degradation of Li-ion cells’, J. Power Sources, vol. 124, pp. 254–260, 2003. 

[38] S. Grolleau et al., ‘Calendar aging of commercial graphite/LiFePO4 cell - Predicting capacity fade under 
time dependent storage conditions’, J. Power Sources, vol. 255, pp. 450–458, 2014. 

[39] M. Broussely et al., ‘Main aging mechanisms in Li ion batteries’, J. Power Sources, vol. 146, no. 1–2, pp. 
90–96, 2005. 

[40] J. Wang et al., ‘Cycle-life model for graphite-LiFePO4 cells’, J. Power Sources, vol. 196, no. 8, pp. 3942–
3948, Apr. 2011. 

[41] K. Amine, J. Liu, and I. Belharouak, ‘High-temperature storage and cycling of C-LiFePO4/graphite Li-ion 
cells’, Electrochem. commun., vol. 7, no. 7, pp. 669–673, 2005. 

[42] G. A. Rampinelli, A. Krenzinger, and F. Chenlo Romero, ‘Mathematical models for efficiency of inverters 
used in grid connected photovoltaic systems’, Renew. Sustain. Energy Rev., vol. 34, pp. 578–587, 2014. 

[43] D. U. Sauer and H. Schmidt, ‘Praxisgerechte Modellierung und Abschätzung von Wechselrichter-
Wirkungsgraden’, in 9. Internationales Sonnenforum - Tagungsband I, 1994, pp. 550–557. 

[44] F. J. Ardakani, G. Riahy, and M. Abedi, ‘Optimal sizing of a grid-connected hybrid system for north-west 
of Iran-case study’, in 2010 9th International Conference on Environment and Electrical Engineering, 
2010, pp. 29–32. 

[45] K. Branker, M. J. M. Pathak, and J. M. Pearce, ‘A review of solar photovoltaic levelized cost of electricity’, 
Renew. Sustain. Energy Rev., vol. 15, no. 9, pp. 4470–4482, 2011. 

[46] S. Mandelli, M. Merlo, E. Colombo, M. Moncecchi, and F. Riva, ‘Novel procedure to formulate load 
profiles for off-grid rural areas - the Load Pro Gen software’, in Energy for Sustainable Development, 
2016, vol. 31, pp. 1–8. 



[47] M. Ikhsan, A. Purwadi, N. Hariyanto, N. Heryana, and Y. Haroen, ‘Study of Renewable Energy Sources 
Capacity and Loading Using Data Logger for Sizing of Solar-wind Hybrid Power System’, Procedia Technol., 
vol. 11, pp. 1048–1053, 2013. 

[48] A. Ghafoor and A. Munir, ‘Design and economics analysis of an off-grid PV system for household 
electrification’, Renew. Sustain. Energy Rev., vol. 42, pp. 496–502, 2015. 

[49] F. Sprei, ‘Characterization of power system loads in rural Uganda’, Lund University, Sweden, 2002. 
[50] M. Bhatia and N. Angelou, ‘Beyond Connections - Energy Access Redefined’, Washington DC, 2015. 
[51] P. Ineichen, Long term HelioClim-3 global, beam and diffuse irradiance validation. University of Geneva, 

2016. 
[52] ‘HelioClim-3 version 5 time series data’. [Online]. Available: http://www.soda-pro.com/web-

services/radiation/helioclim-3-archives-for-free. [Accessed: 02.09.2020]. 
[53] Global Modeling and Assimilation Office (GMAO), ‘MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-

Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4’, 2015. . 
[54] International Energy Agency, ‘Trends in photovoltaic applications’, 2019. 
[55] IEA, Trends 2017 in Photovoltaic Applications - Survey Report of Selected IEA Countries between 1992 and 

2014, 20th ed. IEA PVPS - International Energy Agency Photovoltaic Power Systems Program, 2017. 
[56] P.A. Nelson, K.G. Gallagher, I. Bloom, and D.W. Dees, ‘Modeling the Performance and Cost of Lithium-Ion 

Batteries for Electric-Drive Vehicles’, Chem. Sci. Eng. Div. - About Argonne Natl. Lab., 2011. 
[57] Zweiter Bericht der Nationalen Plattform Elektromobilität. Berlin: Gemeinsame Geschäftsstelle 

Elektromobilität der Bundesregierung (GGEMO), 2011. 
[58] P. Plötz, T. Gnann, A. Kühn, and M. Wietschel, ‘Markthochlaufszenarien für Elektrofahrzeuge’, 2013. 
[59] J. Richter and Dietmar Lindenberger, Potenziale der Elektromobilität bis 2050 - Eine szenarienbasierte 

Analyse der Wirtschaftlichkeit, Umweltauswirkungen und Systemintegration, Endbericht. Köln: 
Energiewirtschaftliches Institut an der Universität zu Köln (EWI), 2010. 

[60] Celine Cluzel and Craig Douglas, Cost and performance of EV batteries, Final repo. Cambridge: Element 
Energy Limited, 2012. 

[61] A. Bejan, G. Tsatsaronis, and M. J. Moran, Thermal design and optimization. Wiley, 1996. 
[62] H. Louie and P. Dauenhauer, ‘Effects of load estimation error on small-scale off-grid photovoltaic system 

design, cost and reliability’, Energy Sustain. Dev., vol. 34, pp. 30–43, 2016. 
[63] T. Khatib and W. Elmenreich, ‘Optimum Availability of Standalone Photovoltaic Power’, Int. J. 

Photoenergy, vol. Article ID, p. 5 pages, 2014. 
[64] K. Deb, A. Member, A. Pratap, S. Agarwal, and T. Meyarivan, ‘A fast and elitist multi-objective genetic 

algorithm: NSGAII’, IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002. 
[65] World Bank Group and ESMAP, ‘Global Solar Atlas’. [Online]. Available: 

https://globalsolaratlas.info/map. [Accessed: 02.09.2020]. 
[66] ACOPOWER, ‘HY-MPPT Series MPPT Solar Charge Controller - User Manual’, 2018. [Online]. Available: 

https://images-na.ssl-images-amazon.com/images/I/B1F0uiO8QaS.pdf. [Accessed: 02.09.2020]. 
[67] S. Doig and S. Newman, ‘Achieving Low-Cost Solar PV ’:, no. September, 2010. 
[68] M. Lowe, S. Tokuoka, T. Tali, and G. Gereffi, ‘Lithium-ion Batteries for Hybrid and All-Electric Vehicles: 

the U.S. Value Chain’, Cent. Glob. Gov. Compet., vol. 1, no. October, pp. 1–77, 2010. 
 


	Keywords
	Highlights
	Abstract
	1. Introduction
	2. Methods
	2.1. System description
	2.2. Mathematical model
	2.2.1. Photovoltaic model
	2.2.2. Battery model
	2.2.2.1. State model
	2.2.2.2. Thermal model
	2.2.2.3. Aging model
	2.2.3. Electronic model
	2.2.4. Load Profile
	2.2.5. Meteorological data
	2.3. Economic model
	2.4. Simulation
	2.5. Optimization

	3. Results
	3.1. Influence of location
	3.2. Influence of temporal resolution
	3.3. Influence of simulation period

	4. Conclusion
	5. Acknowledgements
	6. Appendix
	References



