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Abstract

In this article, we present a new variant of Petri nets with markings called
�Petri nets with individual tokens�, together with rule-based transformation
following the double pushout approach. The most important change to former
Petri net transformation approaches is that the marking of a net is no longer
a �collective� set of tokens, but each each has an own identity leading to the
concept of Petri nets with individual tokens. This allows us to formulate
rules that can change the marking of a net arbitrarily without necessarily
manipulating the structure. As a �rst main result that depends on nets with
individual markings we show the equivalence of transition �ring steps and the
application of �ring-simulating rules.
We de�ne categories of low-level and of algebraic high-level nets with indi-

vidual tokens, called PTI nets and AHLI nets, respectively, and relate them
with each other and their collective counterparts by functors.
To be able to use the properties and analysis results of M-adhesive HLR

systems (formerly know as weak adhesive high-level replacement systems) we
show in further main results that both categories of PTI nets and AHLI nets
areM-adhesive categories. By showing how to construct initial pushouts we
also give necessary and su�cient conditions for the applicability of transfor-
mation rules in these categories, known as gluing condition in the literature.



CONTENTS 3

Contents

1. Introduction 4
1.1. The Notion of Individual Tokens . . . . . . . . . . . . . . . . . . . . . . . 5

2. Place/Transition Nets with Individual Tokens 6
2.1. De�nition and Firing Behavior . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Transformation of PTI Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3. Correspondence of Transition Firing and Rules . . . . . . . . . . . . . . . 13

3. Algebraic High-Level Nets with Individual Tokens 18
3.1. De�nition and Firing Behavior . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2. Transformation of AHLI Nets . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3. Correspondence of Transition Firing and Rules . . . . . . . . . . . . . . . 28

4. Functors for Individual Net Classes 35

5. Nets with Individual Tokens are M-adhesive Categories 41

6. Conclusion 43

7. Future Work 44

A. Appendix 49
A.1. Categorical Gluing Condition with Initial Pushouts . . . . . . . . . . . . . 49
A.2. Initial Pushouts in Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.3. Initial Pushouts in PTNets . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B. Proofs 63



4 1. INTRODUCTION

1. Introduction

Petri nets are one of the main formalisms to describe and analyze concurrent processes
[Rei85a]. To be able to utilize them in modeling of additional complex aspects, a lot of
work has been done so far to extend the classical Petri nets or to integrate them with
other formal techniques.

One of those challenging extensions is the manipulation of running processes, which
has been formulated under the notion of adaptive work�ows [vdABV+99]. In the past,
several approaches have been proposed that tried to deal with this aspect of process
modeling by using Petri nets that can change their �ring behavior, e.g. self-modifying
nets [Val78], mobile nets [AB09], recursive nets [HP00, HB08], and nets with dynamic
transition re�nement [KR07].

In this article, we concentrate on the approach to combine Petri nets with transforma-
tion rules based on graph transformation [EEPT06], which has been applied to adaptive
work�ows in [HME05, BDHM06]. This exploits the graph-like structure of Petri nets and
allows us to formulate rules to change the structure of a Petri net [EHP+08]. In general,
rule-based Petri net transformation can also be applied to Petri systems, i.e. Petri nets
with a marking, which is especially useful for manipulation of processes at runtime.

Petri nets have been shown in [EEPT06, EHP+08] to be de�ne a weak adhesive HLR
category for the classM of all injective net morphisms. This allows us to apply all the
results for adhesive HLR systems shown in [EEPT06] also for Petri net transformation
systems. In this paper, we use the short notion �M-adhesive category� for �weak ad-
hesive HLR category�. the concept of Petri systems leads to a category PTSys with
morphisms allowing to increase the number of tokens on corresponding places. Unfortu-
nately, (PTSys,Minj) with the classMinj of all injective morphisms is notM-adhesive
in contrast to (PTSys,Mstrict), whereMstrict is the class of injective morphisms where
the number of tokens on corresponding places is equal. This, however, is an unpleas-
ant restriction for the usability of the transformation approach, especially the �ring of
a transition cannot be simulated in a natural way by the application of a corresponding
�transition rule�.

To overcome this restriction we present a new Petri net formalism, called �Petri nets
with individual tokens�, together with a rule-based transformation approach that is al-
most equivalent to [EHP+08]1. The most important change is that a net's marking is no
longer a (�collective�) sum of a monoid but a set of individuals. This allows us to formu-
late rules that can change the marking of a net arbitrarily so that, as major advantage,
�ring of nets can be modeled by rule applications.

As a main result we will show that Petri nets with individual tokens areM-adhesive
systems with all their nice properties.

With individual tokens, the category of Petri systems is even closer to typed attributed
graphs, which opens an elegant way to simulate Petri net transformations with graph

1The approach in [EHP+08] follows the concept �Petri nets are monoids� [MM90] so that a net and its
marking are represented as sets and monoids over these sets, rather than e.g. with an explicit �ow
relation. This makes it easier to handle categories of Petri nets and systems.
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transformation tools [Syl09].

In Sect. 2, we introduce low-level Petri nets with individual tokens and de�ne rule-
based transformation. As a main result we show the equivalence of transition �ring steps
and the application of �ring-simulating rules.

In Sect. 3, we lift the de�nitions and results of Sect. 2 to high-level nets that have
data elements of an algebra [EM85] as tokens rather than low-level �black tokens�. The
�rst approach of inscripting Petri nets with algebraic terms was developed in [Rei91],
however, we use the approach of [EPR93], which allows us to use an arbitrary algebra,
as long as it complies to the given signature.2

Section 4 relates the Petri net classes of Sect. 2 and 3 with each other and with their
collective counterparts by functors and we show a compatibility result for these functors.

We de�neM-adhesive systems for both low and high-level Petri nets with individual
tokens in Sect. 5 and discuss the results and some �nal remarks in the last sections.

1.1. The Notion of Individual Tokens

The term of individual tokens has been used in two senses for Petri nets so far:

1. It was mentioned �rst in [Rei85b], where it was used to describe �tokens that can
be identi�ed as individual objects�. The main contribution of this article was to de�ne
markings as multisets of distinguished elements rather than amounts of indistinguishable
black tokens. In the end, individual tokens in this context is a synonym for what by now
is called high-level tokens. This is not our intended meaning of individuality, moreover
we will consider both low-level and high-level Petri nets with individual tokens.

2. The other notion of token individuality has been coined in [vGP95] 3 as �individual
token interpretation� of �ring steps, which entitles the de�nition of processes in [GR83].

In [vG05], the author investigates the collective-individual dichotomy of �ring steps,
where under the individual approach �ring sequences consider not only the number and
value of tokens (as in the collective approach) but also the history, i.e. the origin tran-
sition, of tokens. [BMMS99] introduces a category of Petri nets to be interpreted with a
functorial individual semantics.

Individual tokens in this article The Petri net approach we present in this article is
related to 2., but in contrast, we will already introduce individual tokens in the (syntac-
tical) de�nition of the Petri nets (and their category) themselves, so that we can exploit
the individuality of tokens in the transformation approach, independently of the �ring
rule. The individual �ring rule of [vG05] is very close to the one presented in the next
sections, but it is still an interpretation of �ring steps of a classic representation of Petri
nets.

2Both articles consider algebraic speci�cations with equations instead of signatures (which can be
understood as speci�cations without equations). In this article we take into account signatures only.

3Meanwhile, there is an updated version of this article: [vGP09].
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The main purpose of our notion of nets with individual tokens is the possibility of
formulating marking-changing rules for this kind of nets. We have demonstrated the
practicability of such a transformation approach with modeling case studies on applica-
tions to Communication Spaces [BEE+09, Mod10, MEE+10].

2. Place/Transition Nets with Individual Tokens

In this section we treat low-level Petri nets and equip them with markings of individual
tokens. After describing their �ring behavior and introducing rules for the transformation
of marked nets we show how special transformations correspond to transition �ring steps.

2.1. De�nition and Firing Behavior

With the de�nition of nets with individual tokens, we follow the concept �Petri nets are
monoids� from [MM90]:

De�nition 2.1 (Place/Transition Nets with Individual Tokens (PTI)).
We de�ne a marked P/T net with individual tokens, short PTI net, as

NI = (P, T, pre, post, I,m),

where

• N = (P, T, pre, post : T → P⊕) is a classical P/T net, where P⊕ is the free
commutative monoid over P ,

• I is the (possibly in�nite) set of individual tokens of NI , and

• m : I → P is the marking function, assigning the individual tokens to the places.

Further, we introduce some additional notations:

• the environment of a transition t ∈ T as ENV (t) = PRE(t)∪ POST (t) ⊆ P with

PRE (t) = {p ∈ P |pre(t)(p) 6= 0},
POST (t) = {p ∈ P |post(t)(p) 6= 0},

Example. Figure 1 on the facing page shows the graphical representation of a PTI net
with I = {x1, y1, x2, x3}, m(x1) = m(y1) = p1, m(x2) = p2, m(x3) = p3.

Now that we have marked Petri nets, also called Petri systems, we have to de�ne
their behavior as �ring steps. Because we have individual tokens, we have to consider a
possible �ring step in the context of a selection of tokens.

De�nition 2.2 (Firing of PTI Nets).
A transition t ∈ T in a PTI net

NI = (P, T, pre, post, I,m)

is enabled under a token selection (M,m,N, n), where
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Figure 1: Example PTI net

• M ⊆ I,

• m is the token mapping of NI ,

• N is a set with (I \M) ∩N = ∅,

• n : N → P is a function,

if it meets the following token selection condition:[∑
i∈M

m(i) = pre(t)

]
∧

[∑
i∈N

n(i) = post(t)

]

If an enabled t �res, the follower marking (I ′,m′) is given by

I ′ = (I \M) ∪N, m′ : I ′ → P with m′(x) =

{
m(x), x ∈ I \M
n(x), x ∈ N

leading to NI ′ = (P, T, pre, post, I ′,m′) as the new PTI net in the �ring step NI 〉−t→ NI ′

via (M,m,N, n).

Remark (Token Selection). The purpose of the token selection is to specify exactly which
tokens should be consumed and produced in the �ring step. Thus, M ⊆ I selects the
individual tokens to be consumed, and N contains the set of individual tokens to be
produced. Clearly, (I \ M) ∩ N = ∅ must hold because it is impossible to add an
individual token to a net that already contains this token. m and n relate the tokens to
their carrying places. It would be su�cient to consider only the restriction m|M here or
to infer it from the net but as a compromise on symmetry and readability we denote m
in the token selection.

For the next subsection we need a category of Petri systems.

De�nition 2.3 (PTI Net Morphisms and Category PTINets).
Given two PTI nets NI i = (Pi, Ti, prei, posti, Ii,mi), i ∈ {1, 2}, a PTI net morphism is
a triple of functions f = (fP : P1 → P2, fT : T1 → T2, fI : I1 → I2) : NI 1 → NI 2, such
that the following diagrams commute (componentwise for prei and posti):
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T1

fT

��

pre1 //

=

post1
// P⊕1

f⊕P
��

I1

fI

��

m1 //

=

P1

fP

��
T2

pre2 //
post2

// P⊕2 I2
m2 // P2

or, explicitly, that f⊕P ◦ pre1 = pre2 ◦ fT , f⊕P ◦ post1 = post2 ◦ fT , fP ◦m1 = m2 ◦ fI .
The category PTINets consists of all PTI nets as objects with all PTI net morphisms.

Remark. For a general PTI net morphism f we do not require that its token component
fI is injective in order to have pushouts, pullbacks, and aM-adhesive category. But later
we may require injectivity of fI for rule and match morphisms and to have morphisms
preserving �ring behavior.

Fact 2.4 (Construction of Pushouts in PTINets).
Pushouts in PTINets are constructed componentwise in PTNets and Sets. So, (1)
is a PO in PTINets i� (2) is a PO in PTNets and (3) is a PO in Sets with the
components of the PTINets morphisms, where m3 : I3 → P3 is induced by PO object
I3 in the commuting cube below (whose front is the PO of place sets).

NI 0
f1 //

f2

��
(1)

NI 1

g1

��
NI 2 g2

// NI 3

N0
f ′1 //

f ′2
��

(2)

N1

g′1
��

N2
g′2

// N3

I0
f1I //

f2I

��
(3)

I1

g1I

��
I2 g2I

// I3

I0
f1I //

f2I

��

m0

  

I1

g1I

��

m1

  
P0

f1P //

f2P

��

P1

g1P

��

I2 g2I

//

m2   

I3

m3

  
P2 g2P

// P3

If f1X , for X ∈ {P, T, I}, is injective then g2X is as well; analogously for components
of f2 and g1.

Example. Figure 2 on page 14 shows two pushouts in PTINets.

Fact 2.5 (Construction of Pullbacks in PTINets).
Pullbacks in PTINets along injective PTINets morphisms4 are constructed compo-
nentwise in PTNets and Sets.

Consider a commutative square (1) in PTINets with g1 having an injective net com-
ponent g′1. (1) is a PB in PTINets i� (2) is a PB in PTNets and (3) is a PB in Sets
with the components of the PTINets morphisms, where m0 : I0 → P0 is induced by PB
object P0 in the commuting cube below (whose front is the PB of place sets).

4We require morphisms that are injective in order to obtain componentwise pullbacks in PTINets.
See [EEPT06] for details.
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NI 0
f1 //

f2

��
(1)

NI 1

g1

��
NI 2 g2

// NI 3

N0
f ′1 //

f ′2
��

(2)

N1

g′1
��

N2
g′2

// N3

I0
f1I //

f2I

��
(3)

I1

g1I

��
I2 g2I

// I3

I0
f1I //

f2I

��

m0

  

I1

g1I

��

m1

  
P0

f1P //

f2P

��

P1

g1P

��

I2 g2I

//

m2   

I3

m3

  
P2 g2P

// P3

Example. The pushouts in Fig. 2 on page 14 are pullbacks, too.

2.2. Transformation of PTI Nets

This section is about rule-based transformation of PTI nets. We use the double pushout
approach, which has also been used in [EHP+08] and stems from [EEPT06]. We are
going to characterize the applicability of rules at some match by initial pushouts.

De�nition 2.6 (PTI Transformation Rules).
A PTI transformation rule is a span of injective PTINets morphisms

% = (L
l← K

r→ R).

Remark. In contrast to [EHP+08], rule morphisms for PTI rules are not required to be
marking-strict in order to obtain anM-adhesive category (see Sect. 5 on page 41). This
allows to arbitrarily change the marking of a PTI net by applying rules with correspond-
ing places and individual tokens in L and R.

De�nition 2.7 (PTI Transformation).

Given a PTI transformation rule % = (L
l← K

r→ R) and a PTI net NI 1 with a PTI net

morphism f : L→ NI 1, called the match, a direct PTI net transformation NI 1 =
%,f
=⇒ NI 2

from NI 1 to the PTI net NI 2 is given by the following double-pushout diagram (DPO)
diagram in the category PTINets:

L

f
��

(PO1)

K

(PO2)

loo

��

r // R

f∗

��
NI 1 NI0oo // NI 2

To be able to decide whether a rule is applicable at a certain match, we formulate a
gluing condition for PTI nets, such that there exists a pushout complement of the left
rule morphisms and the match if (and only if) they ful�ll the gluing condition. The
correctness of the gluing condition is shown via a proof on initial pushouts over matches,
according to [EEPT06].
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De�nition 2.8 (Gluing Condition in PTINets).
Given PTI nets K,L, and NI and PTI morphisms l : K → L and f : L→ NI . We de�ne
the set of identi�cation points5

IP = IPP ∪ IPT ∪ IP I

with

• IPP = {x ∈ PL | ∃x′ 6= x : fP (x) = fP (x′)},

• IPT = {x ∈ TL | ∃x′ 6= x : fT (x) = fT (x′)},

• IP I = {x ∈ IL | ∃x′ 6= x : fI(x) = fI(x′)},

the set of dangling points6

DP = DPT ∪DP I

with

• DPT = {p ∈ PL | ∃t ∈ TNI \ fT (TL) : fP (p) ∈ ENV (t)},

• DP I = {p ∈ PL | ∃i ∈ INI \ fI(IL) : fP (p) = mNI (i)},

and the set of gluing points7

GP = lP (PK) ∪ lT (TK) ∪ lI(IK)

We say that l and f satisfy the gluing condition if IP ∪ DP ⊆ GP . Given a PTI rule

% = (L
l← K

r→ R), we say % and f satisfy the gluing condition i� l and f satisfy the
gluing condition.

L

f
��

K
loo r // R

NI

In order to construct the initial pushout for a match f : L → NI , we de�ne the
boundary over the match f , which is the minimal subnet containing all places, transitions,
and individual tokens that must not be deleted by the application of a rule with left hand
side L such that there exists a pushout complement.

De�nition 2.9 (Boundary in PTINets).
Given a morphism f : L→ NI in PTINets. The boundary of f is a PTI net

B = (PB, TB, preB, postB, IB,mB)

with
5That is, all elements in L that are mapped non-injectively by f .
6That is, all places in L that would leave a dangling arc, if deleted.
7That is, all elements in L that have a preimage in K.
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• PB = DPT ∪DP I ∪ IPP ∪ PIPT
∪ PIPI

• PIPT
= {p ∈ PL | ∃t ∈ IPT : p ∈ ENV (t)}

• PIPI
= {p ∈ PL | ∃i ∈ IP I : p = mL(i)}

• TB = IPT

• preB(t) = preL(t)

• postB(t) = postL(t)

• IB = IP I

• mB(i) = mL(i)

together with an inclusion b : B → L.

Well-de�nedness.

preB, postB : TB → P⊕B :
The well-de�nedness follows from the well-de�nedness of De�nition A.9 and the
fact that B has the same set of transitions as the boundary in A.9 and the set of
places in De�nition A.9 is a subset of PB.

mB : IB → PB:
Let i ∈ IB. Then we have i ∈ IP I and hence

mB(i) = mL(i) ∈ PIPI
⊆ PB

b : B → L:
We obtain an inclusion morphism b : B → L from the fact that preB, postB and
mB are restrictions of the respective functions in L.

The following facts about the gluing condition and initial pushouts hold in all M-
adhesive categories (PTINets,M) whose morphism class M of monomorphisms con-
tains at least inclusions (for concrete instantiations see Sect. 5 on page 41). The next
fact completes the construction of initial pushouts for matches and shows that the con-
struction of the boundary in Def. 2.9 on the preceding page complies to the categorical
notion of boundaries in Def. A.1 on page 49.

Fact 2.10 (Initial Pushout in PTINets).
Given a morphism f : L→ NI in PTINets, the boundary B of f and the PTI net

C = (PC , TC , preC , postC , IC ,mC)

with
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• PC = (PNI \ fP (PL)) ∪ fP (bP (PB))

• TC = (TNI \ fT (TL)) ∪ fT (bT (TB))

• IC = (INI \ fI(IL)) ∪ fI(bI(IB))

• preC(t) = preNI (t)

• postC(t) = postNI (t)

• mC(i) = mNI (i)

Then diagram (1) where g := f |B is an initial pushout in PTINets.

B
b //

g

��

L

f
��

C c
//

(1)

NI

Proof. See section B.1 on page 63.

The following two facts show the correspondence between the gluing condition in
PTINets and the categorical gluing condition (see Def. A.2 on page 49), which is a
necessary and su�cient condition for the (unique) existence of pushout complements in
allM-adhesive categories.

Fact 2.11 (Characterization of Gluing Condition in PTINets).
Let l : K → L and f : L→ NI be morphisms in PTINets with l ∈M.
The morphisms l and f satisfy the gluing condition in PTINets if and only if they
satisfy the categorical gluing condition.

Proof. See section B.2 on page 67.

Fact 2.12 (Gluing Condition for PTI Transformation).

Given a PTI rule % = (L
l← K

r→ R) and a match f : L → NI into a PTI net
NI = (N, I,m : I → PNI ). The rule % is applicable on match f , i.e. there exists a
(unique) pushout complement NI 0 in the diagram below, i� % and f satisfy the gluing
condition in PTINets.

L

f
��

(PO)

K
loo

f ′

��

r // R

NI NI 0
oo

Proof. By Fact 2.11 % and f satisfy the gluing condition in PTINets if and only if % and
f satisfy the categorical gluing condition, which by Fact A.3 is a necessary and su�cient
condition for the (unique) existence of the pushout complement NI 0.
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2.3. Correspondence of Transition Firing and Rules

Now that we can manipulate a net's marking with rules, we have a look at rules that
simulate �ring steps for a certain transition under a token selection. We show that �ring
of a transition corresponds to a canonical application of a special rule construction, called
transition rules. With this correspondence we can easily show that token-injective PTI
morphisms preserve �ring steps.

De�nition 2.13 (PTI Transition Rules).
We de�ne the transition rule for a transition t ∈ T enabled under a token selection
S = (M,m,N, n) in a PTI net NI = (P, T, pre, post, I,m) as the rule

%(t, S) = (Lt
l← Kt

r→ Rt), with

• the common �xed net structure PN t = (Pt, {t}, pret, postt), where Pt = ENV (t),
pret(t) = pre(t) and postt(t) = post(t),

• Lt = (PN t,M,mt : M → Pt), with mt(x) = m(x),

• Kt = (PN t, ∅, ∅ : ∅ → Pt),

• Rt = (PN t, N, nt : N → Pt), with nt(x) = n(x),

• l, r being the obvious inclusions on the rule nets.

mt and nt are well-de�ned because t is enabled under S: The token selection condition
implies that ∀x ∈ M : m(x) ∈ PRE (t) and due to the construction of PN t we have
PRE (t) ⊆ ENV (t) = Pt. The argument for nt works analogously.
Note that t is enabled under S in Lt.

Example. Figure 2 shows a PTI transition rule %(t, S) = (L
l← K

r→ R) for transition t
in NI .

De�nition 2.14 (Canonical DPO Transformation of PTI Nets).

We call a direct transformation NI 1 =
%,f
=⇒ NI 2 by rule % = (L

l← K
r→ R) with l, r being

inclusions canonical if

• fI is injective,

• the morphisms in the span (NI 1 ← NI0 → NI 2) of the DPO transformation
diagram below are inclusions, and

• I2 = I0 ∪ (IR \ r(IK)).

L

f
��

(PO1)

K

(PO2)

loo

��

r // R

f∗

��
NI 1 NI0oo // NI 2
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Remark. For each rule % being applied to some PTI net NI at a token-injective match f ,
there exists a canonical transformation diagram, which is just the particular equivalent
DPO diagram with �as less isomorphic changes as possible�.
Because of the injectivity of the rule morphisms the lower span in the diagram is

already injective as well. To construct the canonical transformation diagram we �rst
regard the last condition on I2, which demands that (IR \ r(IK)) ∩ I0 = ∅ because of
pushout PO2. For this, it is su�cient to replace the set of tokens in R that are created
by the rule, i.e. IR \ r(IK), such that is disjoint to the tokens preserved by the rule, i.e.
(I1 \ f(IL)) ∪ f(l(IK)).8 With this we now can simply replace arbitrary NI 0 and NI 2,
being some pushout complement object of PO1 and pushout object of PO2, with nets
such that the lower span morphisms become inclusions.

Example. The diagram in Fig. 2 shows the two pushouts in PTINets resulting from

applying the PTI transition rule %(t, S) = (L
l← K

r→ R) to the net NI with identical
token morphism component. Moreover, this transformation is canonical.

t

p1 p2

p3

2

x1 y1 x2

L

f

��
(PO1)

t

p1 p2

p3

2

K

(PO2)

loo

��

r //
t

p1 p2

p3

2

x3 R

��

t

p1 p2

p3

2

x1 y1 x2z1 y2

y3 NI

t

p1 p2

p3

2

z1 y2

y3

oo //

t

p1 p2

p3

2

x3

z1 y2

y3

Figure 2: Canonical direct DPO-transformation in PTINets simulating a �ring step

Theorem 2.1 (Equivalence of Canonical Transformations and Firing of PTI Nets).

1. Each �ring step NI 〉−t→ NI ′ via a token selection S = (M,m,N, n) corresponds to a

canonical direct transformation NI =
%(t,S),f
====⇒ NI ′ via the transition rule %(t, S), matched

by the inclusion match f : L%(t,S) → NI .

8This modi�cation of the rule is passable since changing the tokens in R does not a�ect the �ring
behavior of NI2 (up to the token selections) nor the applicability of the rule.
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2. Each canonical direct transformation NI =
%(t,S),f
====⇒ NI 1, via some transition rule

%(t, S) = (L
l← K

r→ R) with t ∈ TNI and token selection S = (M,m,N, n), and a
token-injective match f : L → NI , implies that the transition fT (t) is enabled in NI

under
(
fI(M),

(
fP ◦m ◦ f−1

I

)
, N,

(
f∗P ◦m1 ◦ f∗−1

I

))
with �ring step NI 〉−fT (t)−−−→ NI 1.

Proof.

1. Given the �ring step NI 〉−t→ NI ′ via S = (M,m,N, n), the canonical direct transfor-

mation of the transition rule %(t, S) = (L
l← K

r→ R) is NI =
%(t,S),f
====⇒ NI 1 as in the DPO

diagram in Fig. 3. The match f , d, and d′ are inclusions.

L = (PN t,M,mt)

f

��
(PO1)

K = (PN t, ∅, ∅)

(PO2)

? _loo

��

� � r // R = (PN t, N, nt)

f∗

��
NI = (PN , I,m) NI 0 = (PN , I0,m0)? _

d
oo � �

d′
// NI 1 = (PN , I1,m1)

Figure 3: DPO diagram for canonical direct transformation of NI with %(t, S) in
PTINets

According to Fact 2.4 on page 8, we have I0 = I\M and I1 = I0∪(N \∅) as in the DPO
diagram of the Sets components in Fig. 4. The �ring step condition (I \M) ∩ N = ∅
grants us the last condition for canonical transformations I0 ∪ (N \ r(∅)) = I1.

M

fI
��

(PO1)

∅

(PO2)

? _oo

��

� � // N

f∗I
��

nt

''
I

m

++

I0 = (I \M)? _

dI
oo � �

d′I

//

m0=m◦dI

&&

I1 = (I \M) ∪N

m1
''

Pt

f∗P =fP
��

PPN
id

PPN

Figure 4: DPO diagram in Sets for the token components of the transformation in Fig. 3

For m1 as induced morphism for the pushout object I1 follows that

m1(x) =

{
m0(x) = m(x) for x ∈ I \M
nt(x) = n(x) for x ∈ N

hence I1 = I ′,m1 = m′ and NI 1 = NI ′, according to Def. 2.2 on page 6.

Remark. fI being injective is not only su�cient for the existence of (PO1), but also
necessary, because IK = ∅ (see Fact 2.12 on page 12).

2. Given a canonical direct transformation NI =
%(t,S),f
====⇒ NI 1 as in the DPO diagrams in

Figs. 3 and 4, fT (t) ∈ TNI is enabled under(
fI(M),

(
fP ◦m ◦ f−1

I

)
, N,

(
f∗P ◦m1 ◦ f∗−1

I

))
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if

1. fI(M) ⊆ I,

2.
(
f∗P ◦m1 ◦ f∗−1

I

)
: N → PPN ,

3. (I \ fI(M)) ∩N = ∅,

4.
∑

i∈fI(M)

(
fP ◦m ◦ f−1

I (i)
)

= preNI (fT (t))

5.
∑
i∈N

(
f∗P ◦m1 ◦ f∗−1

I (i)
)

= postNI (fT (t))

6. leading to the follower marking I ′ = (I \M) ∪N

with m′(x) =

{
m0(x) = m(x) for x ∈ I \M
m1(x) = n(x) for x ∈ N

By construction of the transition rule %(t, S) and its application to NI we have 1., 2.,
and for 6. that I ′ = I1,m

′ = m1. The canonical transformation property grants us 3.
It remains to show 4. and 5., i.e. that fI(M) and N represent the correct numbers of
tokens in the environment of fT (t) to enable it:∑

i∈fI(M)

fP ◦m ◦ f−1
I (i)

=
∑
i∈M

fP ◦m(i) (fI inj.)

= f⊕P

∑
i∈M

mt(i) (∀i ∈M : mt(i) = m(i), due to def. %(t, S))

= f⊕P ◦ prePN t(t) (t enabled in L)

= preNI ◦ fT (t) (f PTI morph.)

and analogously,∑
i∈N

f∗P ◦m1 ◦ f∗−1
I (i)

=
∑
i∈N

f∗P ◦m1(i) (f∗I (N) = N)

= f∗⊕P

∑
i∈N

nt(i) (∀i ∈ N : nt(i) = m1(i), due to constr. m1)

= f∗⊕P ◦ prePN t(t) (t enabled in L)

= postNI ◦ fT (t) (f PTI morph.)
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The second item of the previous theorem covers all possible canonical direct transfor-
mations by any transition rule %(t, S) in an arbitrary net NI , without aasuming that
t ∈ NI or M ⊆ INI . For the special case that a transition rule %(t, S) is applied on an
inclusion match, the second item reduces to the following corollary, which is more similar
to the theorem's �rst item.

Corollary 2.2 (Equivalence of Canonical Transformations and Firing of PTI Nets).

Given a canonical transformation NI =
%(t,S),f
====⇒ NI 1 such that the match f : L→ NI is an

inclusion, then t is enabled in NI under S with �ring step NI 〉−t→ NI 1.

This follows directly from 2. of Theorem 2.1.

Theorem 2.3 (Token-injective PTI Net Morphisms preserve Firing Steps).
For each PTI net morphism f : NI 1 → NI 2 with injective fI component and each �ring

step NI 1 〉−t→ NI ′1 there exists a �ring step NI 2 〉−fT (t)−−−→ NI ′2 and a PTI net morphism
f ′ : NI ′1 → NI ′2 (depicted in diagram (1) below).

NI 1
// t //

f

��
(1)

NI ′1

f ′

��
NI 2

//
fT (t)

// NI ′2

Proof. Given f : NI 1 → NI 2 and NI 1 〉−t→ NI ′1 via some S as above, we have by the
�rst part of Theorem 2.1 on page 14 the canonical direct transformation given by the

pushouts (1) and (2) with %(t, S) = (L
l← K

r→ R) in Fig. 5.

L

incL
��

(1)

K

(2)

loo

��

r // R

incR
��

NI 1

f

��
(3)

NID1

��

l′oo r′ //

(4)

NI ′1

f ′

��
NI 2 NID2

oo // NI ′2

Figure 5: DPO diagrams for canonical direct transformation of NI 1 and NI 2 with %(t, S)

Note that f : NI 1 → NI 2 satis�es the gluing condition w.r.t this rule and f , because
l′P = idP1 , l

′
T = idT1

9 and none of the individuals of NI 1 is an identi�cation point
(IP I = ∅) due to injectivity of fI . This allows to construct the canonical transformation

with extended rule NI 1
l′← NID1

r′→ NI ′1 along pushouts (3) and (4). Hence, also (1 + 3)
and (2 + 4) are pushouts of a canonical direct transformation via %(t, S). The second

part of Theorem 2.1 on page 14 implies NI 2 〉−
fT (t)−−−→ NI ′2.

9This means that all places and transitions of NI 1 are gluing points.
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Remark (Firing-preserving diagrams for t correspond to an extension diagram for %(t, S)).
The diagram in Fig. 5 on the previous page corresponds to an extension diagram for rule
%(t, S) and f (as depicted below) because (1)− (4) are pushouts.

NI 1
%(t,S),inc +3

f

��

NI ′1

f ′

��
NI 2

%(t,S),f◦inc +3 NI ′2

3. Algebraic High-Level Nets with Individual Tokens

In this section, we lift the results of the previous section to high-level nets whose tokens
represent values of an algebra to a signature [EM85]. The rule-based transformation
of collective algebraic high-level nets from [PER95] is the foundation for the approach
presented in the following.

3.1. De�nition and Firing Behavior

De�nition 3.1 (Algebraic High-Level Nets with Individual Tokens).
We de�ne a marked AHL net with individual tokens, short AHLI net, as

ANI = (Σ, P, T, pre, post, cond, type,A, I,m),

where

• AN = (Σ, P, T, pre, post, cond, type,A) is a classical AHL net with

� signature Σ = (S,OP , X) of sorts S, operation symbols OP and variables
X = (Xs)s∈S ,

� sets of places P and transitions T ,

� pre, post : T → (TOP (X) ⊗ P )⊕10, de�ning the transitions' pre- and postdo-
mains,

� cond : T → Pfin(Eqns(S,OP , X)) assigning a �nite set of Σ-equations (L,R,X)
as �ring conditions to each transition,

� type : P → S typing the places of the signature's sorts,

� a Σ-algebra A,

• I is the (possibly in�nite) set of individual tokens of ANI , and

• m : I → A⊗P is the marking function, assigning the individual tokens to the data
elements on the places. m(I) de�nes the actual set of data elements on the places
of ANI . m does not have to be injective.

Further, we introduce some additional notations:

10TOP (X)⊗ P = {(t, p) ∈ TOP (X)× P |t ∈ TOP,type(p)(X)}, i.e the pairs where term t is of sort type(p).
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• V ar(t) ⊆ X is the set of variables occurring in equations and on the environment
arcs of t,

• CP = (A⊗ P ) = {(a, p) ∈ A× P |a ∈ Atype(p)} as the set of consistent value/place
pairs,

• CT = {(t, asg) ∈ T × (V ar(t)→ A)|∀(L,R,X) ∈ cond(t) : asg(L) = asg(R)}
as the set of consistent transition assignments, i.e. all �ring conditions of t are valid
when evaluated with the variable assignment asg11,

• ENV (t) = PRE (t)∪POST (t) ⊆ (TOP (X)⊗P ) as the environment of a transition
t ∈ T where

PRE (t) = {(term, p) ∈ (TOP (X)⊗ P )|pre(t)(term, p) 6= 0}
POST (t) = {(term, p) ∈ (TOP (X)⊗ P )|post(t)(term, p) 6= 0}

• ENV P (t) = πP (ENV (t)) ⊆ P the place environment of t,

• preA, postA : CT → CP⊕, de�ned by

preA(t, asg) = (asg ⊗ idP )⊕ (pre(t)) ,

postA(t, asg) = (asg ⊗ idP )⊕ (post(t))

Similarly, we de�ne the sets12

PREA(t, asg) = {(a, p) ∈ (A⊗ P )|preA(t, asg)(a, p) 6= 0}
POSTA(t, asg) = {(a, p) ∈ (A⊗ P )|postA(t, asg)(a, p) 6= 0}

We can express e.g. the concrete required number of a token (a, p) for t to �re un-
der assignment asg with preA(t, asg)(a, p) by interpreting the monoid preA(t, asg)
as a function CP → N. Similarly, we get the produced number of (a, p) with
postA(t, asg)(a, p).

Remark (Individual tokens vs. classical algebraic data tokens). Each AHLI net with
individual token marking (I,m) can be interpreted as an AHL net with marking

M =
∑

(a,p)∈A⊗P

|m−1(a, p)|(a, p) =
∑
i∈I

m(i)

where |m−1(a, p)| denotes the cardinality of individual tokens in I that m maps to (a, p).
In AHL nets, the tokens are of the form (a, p), s.t. they have already a kind of

identity, depending on their data values. The main di�erence to AHLI nets is that we
can distinguish tokens of the same algebraic value on the same place. Moreover, the
individuals equip data tokens with identities. When �ring a transition, we now can
relate the input and output tokens so that a token's history can be traced along the
�ring steps.

11where asg : TOP (X)→ A is the evaluation of Σ-terms over variables in X to values in A. Technically,
asg = xeval(asg)A results from a free construction over asg.

12Obviously, these sets are the same as (asg ⊗ idP ) ◦ PRE(t) and (asg ⊗ idP ) ◦ POST (t), respectively.
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Example. Figure 6 shows the graphical representation of an AHLI net with

• signature Σ = ({s1, s2, s3}, {t11 :→ s1, t12 :→ s1, t2 :→ s2, t3 :→ s3}),

• algebra carrier sets As1 = {a1, b1, c1}, As2 = {a2, b2}, As3 = {a3, b3, c1}

• pre(t) = (t11, p1)⊕ (t12, p1)⊕ (t2, p2), post(t) = (t3, p3),

• type(p1) = s1, type(p2) = s2, type(p3) = s3,

• cond(t) = ∅,

• I = {x1, y1, x2, x3}, m(x1) = m(y1) = (a1, p1),m(x2) = (a2, p2),m(x3) = (a3, p3),

Note that the algebraic value of an individual token is given next to the dashed arc to
its carrying place. In the following, if a transition has an empty set of conditions we just
denote the transition name without an explicit ∅ below.

t

∅

p1:

s1

p2:

s2

p3:

s3

t11⊕t12

t2

t3

x1

y1

x2

x3

a1

a2

a1

a3

Figure 6: Example AHLI net

Similar as for low-level PTI nets, we now de�ne �ring steps for a transition and a token
selection. In addition, we have to take into account assignments evaluating the variables
on the arcs and in the transition conditions to algebra values.

De�nition 3.2 (Firing of AHLI nets).
A consistent transition assignment (t, asg) ∈ CT for an AHLI net

ANI = (Σ, P, T, pre, post, cond, type,A, I,m)

is enabled under a token selection (M,m,N, n), where

• M ⊆ I ,

• m is the token mapping of ANI ,

• N is a set with (I \M) ∩N = ∅,

• n : N → A⊗ P is a function,
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if it meets the following token selection condition:

∑
i∈M

m(i) = preA(t, asg) ∧
∑
i∈N

n(i) = postA(t, asg)

If such an asg-enabled t �res, the follower marking (I ′,m′) is given by

I ′ = (I \M) ∪N, m′ : I ′ → A⊗ P with m′(x) =

{
m(x), x ∈ I \M
n(x), x ∈ N

leading to ANI ′ = (AN, I ′,m′) as the new AHLI net in the �ring step ANI 〉−t,asg−−−→ ANI ′

via (M,m,N, n).

Remark (Token Selection). The purpose of the token selection is to specify exactly which
tokens should be consumed and produced in the �ring step. Thus, M ⊆ I selects the
individual tokens to be consumed, and N contains the set of individual tokens to be
produced. Clearly, (I \ M) ∩ N = ∅ must hold because it is impossible to add an
individual token to a net that already contains this token. m and n relate the tokens to
their place/value pairs. It would be su�cient to consider only the restriction m|M here
or to infer it from the net but as a compromise on symmetry and readability we denote
m in the token selection.

As a preparation for the transformation in the next subsection, we de�ne a category
of AHLI nets.

De�nition 3.3 (AHLI Net Morphisms and Category AHLINets).
Given two AHLI nets ANI i = (Σi, Pi, Ti, prei, posti, condi, typei, Ai, Ii,mi), i ∈ {1, 2},
an AHLI net morphism f : ANI 1 → ANI 2 is a pentuple

f = (fΣ : Σ1 → Σ2, fP : P1 → P2, fT : T1 → T2, fA : A1 → VfΣ
(A2), fI : I1 → I2)

such that the following diagrams commute (componentwise for prei and posti)
13:

13VfΣ is the forgetful functor induced by signature homomorphism fΣ, such that fA : A1 → VfΣ(A2) is
a generalized Σ1-homomorphism. f#

Σ is the extension of fΣ to terms and equations.
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Pfin(Eqns(Σ1))

Pfin(f#
Σ )

��

T1
cond1oo

fT

��

pre1 //
post1

// (TOP1(X1)⊗ P1)⊕

(f#
Σ ⊗fP )⊕

��
Pfin(Eqns(Σ2)) T2

cond2

oo
pre2 //
post2

// (TOP2(X2)⊗ P2)⊕

P1
type1 //

fP

��

S1

fΣ

��

I1

fI

��

m1 // A1 ⊗ P1

fA⊗fP

��
P2 type2

// S2 I2
m2 // A2 ⊗ P2

For a transition assignment (t, asg : X1 → A1) we call

asgf = fA ◦ asg ◦ f−1
Σ|V ar(t) : V ar(fT (t))→ A2

the translation of asg along f if fΣ is bijective on the variables in V ar(t). Actually, for
all transitions t ∈ T1 all fΣ|V ar(t) : V ar(t) → V ar(fT (t)) are already surjective because
of the commutativity of the diagrams above. So it is su�cient to demand injectivity for
fΣ|V ar(t) such that asgf is well-de�ned.

The category AHLINets consists of all AHLI nets as objects and all AHLI net mor-
phisms.

Remark (Generalized algebra morphisms). Because VfΣ
(A2) just forgets some carrier

sets of A2 if we considered them as a family of sets, we may use fA also with A2 as
codomain omitting the postponed family of identities (ιs : (VfΣ

(A2))s → A2,fΣ(s))s∈S .
Moreover, in the following constructions the algebra parts of the pushout cospan (and
the pullback span resp.) result from general constructions in the Grothendieck construct
with objects (Σ, A ∈ Alg(Σ)) and generalized algebra morphisms. See [EBO92, TBG91]
for amalgamation of algebras and limits/colimits in Grothendieck constructs and also
[EM85, EOP06] for details on the usage of free functors.

Fact 3.4 (Construction of Pushouts in AHLINets).
Pushouts in AHLINets are constructed componentwise in AHLNets and Sets. So,
(1) is a PO in AHLINets i� (2) is a PO in AHLNets and (3) is a PO in Sets with the
components of the AHLINets morphisms, where m3 : I3 → A3 ⊗ P3 is induced by PO
object I3 in the commutating cube below (whose front's place components let the front
commutate because of the PO in the net structure).
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ANI 0
f1 //

f2

��
(1)

ANI 1

g1

��
ANI 2 g2

// ANI 3

AN0
f ′1 //

f ′2
��

(2)

AN1

g′1
��

AN2
g′2

// AN3

I0
f1I //

f2I

��
(3)

I1

g1I

��
I2 g2I

// I3

I0
f1I //

f2I

��

m0

##

I1

g1I��

m1

##
A0 ⊗ P0

f1A⊗f1P //

f2A⊗f2P

��

A1 ⊗ P1

g1A⊗g1P

��

I2 g2I

//

m2 ##

I3

m3

##
A2 ⊗ P2 g2A⊗g2P

// A3 ⊗ P3

If f1X , for X ∈ {P, T, I}, is injective then g2X is as well and similar for components
of f2 and g1 and the other diagrams.
For the construction of pushouts in AHLNets we refer to [PER95].

Example. Figure 7 on page 30 shows two pushouts in AHLINets.

Fact 3.5 (Construction of Pullbacks in AHLINets).
Pullbacks in AHLINets along injective AHLNets morphisms14 are constructed com-
ponentwise in AHLNets and Sets.
Consider a commutative square (1) in AHLINets with g′1 being injective. (1) is a PB

in AHLINets i� (2) is a PB in AHLNets and (3) is a PB in Sets with the components
of the AHLINets morphisms, where m0 : I0 → A ⊗ P0 is induced by PB object P0 in
the commutating cube below (whose front's place components let the front commutate
because of the PB in the net structure).

ANI 0
f1 //

f2

��
(1)

ANI 1

g1

��
ANI 2 g2

// ANI 3

AN0
f ′1 //

f ′2
��

(2)

AN1

g′1
��

AN2
g′2

// AN3

I0
f1I //

f2I

��
(3)

I1

g1I

��
I2 g2I

// I3

I0
f1I //

f2I

��

m0

##

I1

g1I��

m1

##
A0 ⊗ P0

f1A⊗f1P //

f2A⊗f2P

��

A1 ⊗ P1

g1A⊗g1P

��

I2 g2I

//

m2 ##

I3

m3

##
A2 ⊗ P2 g2A⊗g2P

// A3 ⊗ P3

Example. The pushouts in Fig. 7 on page 30 are pullbacks, too.

3.2. Transformation of AHLI Nets

This section is about rule-based transformation of AHLI nets. For this, we use the
double pushout approach, which has also been used for collective AHL nets in [PER95]

14We require morphisms that are injective on the net structure in order to obtain componentwise pull-
backs in AHLNets. See [EEPT06] for details.
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and which has been investigated in the context ofM-adhesive systems in [EEPT06]. We
are going to characterize the applicability of rules at some match by initial pushouts.

De�nition 3.6 (AHLI Transformation Rules).
An AHLI transformation rule is a span of injective AHLINets morphisms

% = (L
l← K

r→ R).

Remark. AHLI Rule morphisms are not required to be marking-strict in order to obtain
anM-adhesive category (see Sect. 5 on page 41). This allows to arbitrarily change the
marking of an AHLI net by applying rules with corresponding places and individual
tokens in L and R.

De�nition 3.7 (AHLI Transformation).

Given an AHLI transformation rule % = (L
l← K

r→ R) and an AHLI net ANI 1 with a
AHLI net morphism m : L→ ANI 1, called the match, a direct AHLI net transformation
ANI 1 =

%,m
==⇒ ANI 2 from ANI 1 to the AHLI net ANI 2 is given by the following double-

pushout diagram (DPO) diagram in the category AHLINets:

L

m
��

(PO1)

K

(PO2)

loo

��

r // R

m∗

��
ANI 1 ANI0oo // ANI 2

To be able to decide whether a rule is applicable at a certain match, we formulate
a gluing condition for AHLI nets, such that there exists a pushout complement of the
left rule morphisms and the match if (and only if) they ful�ll the gluing condition. The
correctness of the gluing condition is shown via a proof on initial pushouts over matches,
according to [EEPT06].

De�nition 3.8 (Gluing Condition in AHLINets).
Given AHLI nets K,L, and ANI and AHLI morphisms l : K → L and f : L → ANI .
We de�ne the set of identi�cation points15

IP = IPP ∪ IPT ∪ IP I

with

• IPP = {x ∈ PL | ∃x′ 6= x : fP (x) = fP (x′)},

• IPT = {x ∈ TL | ∃x′ 6= x : fT (x) = fT (x′)},

• IP I = {x ∈ IL | ∃x′ 6= x : fI(x) = fI(x′)},

the set of dangling points16

DP = DPT ∪DP I

with
15That is, all elements in L that are mapped non-injectively by f .
16That is, all places in L that would leave a dangling arc, if deleted.
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• DPT = {p ∈ PL | ∃t ∈ TANI \ fT (TL) : fP (p) ∈ ENVP (t)},

• DP I = {p ∈ PL | ∃i ∈ IANI \ fI(IL) : fP (p) = πP (mANI (i))},

and the set of gluing points17

GP = lP (PK) ∪ lT (TK) ∪ lI(IK)

We say that l and f satisfy the gluing condition if IP ∪DP ⊆ GP . Given an AHLI rule

% = (L
l← K

r→ R), we say that % and f satisfy the gluing condition i� l and f satisfy
the gluing condition.

L

f
��

K
loo r // R

ANI

In order to construct the initial pushout for a match f : L → ANI , we de�ne the
boundary over the match f , which is the minimal subnet containing all places, transitions,
and individual tokens that must not be deleted by the application of a rule with left hand
side L such that there exists a pushout complement.

De�nition 3.9 (Boundary in AHLINets).
Given two AHLI nets

L = (ΣL, PL, TL, preL, postL, condL, typeL, AL, IL,mL),

ANI = (ΣANI , PANI , TANI , preANI , postANI , condANI , typeANI , AANI , IANI ,mANI )

and an AHLI morphism f : L→ ANI . The boundary of f is an AHLI net

B = (ΣB, PB, TB, preB, postB, condB, typeB, AB, IB,mB)

with

• ΣB = ΣL,

• PB = DPT ∪DP I ∪ IPP ∪ PIPT
∪ PIPI

• PIPT
= {p ∈ PL | ∃t ∈ IPT : p ∈ ENVP (t)}

• PIPI
= {p ∈ PL | ∃i ∈ IP I : p = πP (mL(i))}

• TB = IPT

• preB(t) = preL(t)

• postB(t) = postL(t)

17That is, all elements in L that have a preimage in K.
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• condB(t) = condL(t)

• typeB(p) = typeL(p)

• AB = AL

• IB = IP I

• mB(i) = mL(i)

together with b : B → L = (bΣ, bP , bT , bA, bI) where bΣ = idΣB
, bA = idAB

, and the
remaining parts are inclusions.

Well-de�nedness.

preB, postB : TB → (TOPB
(XB)⊗ PB)⊕:

Let t ∈ TB and let (term, p) ≤ preB(t). Then there is (term, p) ≤ preL(t) which
means that term ∈ TOPL

(XL) and p ∈ PL. Then from ΣB = ΣL follows that
term ∈ TOPB

(XB). Furthermore there is t ∈ IPT which by the fact that p ∈
ENVP (t) means that p ∈ PIPT

⊆ PB.
So preB is well-de�ned. The proof for postB works completely analogously.

condB : TB → Pfin(Eqns(ΣB)):
Let t ∈ TB. Then we have

condB(t) = condL(t) ∈ Pfin(Eqns(ΣL)) = Pfin(Eqns(ΣB))

typeB : PB → SB:
Let p ∈ PB. Then we have

typeB(p) = typeL(p) ∈ SL = SB

mB : IB → AB ⊗ PB:
Let i ∈ IB and let (a, p) = mB(i). Then there is (a, p) = mL(i) which means that
a ∈ AtypeL(p) = AtypeB(p). The fact that p ∈ PB follows from the fact that i ∈ IP I

and hence p ∈ PIPI
⊆ PB.

inclusion b : B → L:
We obtain an inclusion morphism b : B → L from the fact that preB,postB,condB,typeB,
and mB are restrictions of the respective functions in L.

The following facts about the gluing condition and initial pushouts hold in all M-
adhesive categories (AHLINets,M) whose morphism classM of monomorphisms con-
tains at least inclusions with identities for signature and algebra parts (for concrete
instantiations see Sect. 5 on page 41). The next fact completes the construction of initial
pushouts for matches and shows that the construction of the boundary in Def. 3.9 on the
previous page complies to the categorical notion of boundaries in Def. A.1 on page 49.
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Fact 3.10 (Initial Pushout in AHLINets).
Given a morphism f : L→ ANI in AHLINets, the boundary B of f and the AHLI net

C = (ΣC , PC , TC , preC , postC , condC , typeC , AC , IC ,mC)

with

• ΣC = ΣANI

• PC = (PANI \ fP (PL)) ∪ fP (bP (PB))

• TC = (TANI \ fT (TL)) ∪ fT (bT (TB))

• preC(t) = preANI (t)

• postC(t) = postANI (t)

• condC(t) = condANI (t)

• typeC(p) = typeANI (p)

• AC = AANI

• IC = (IANI \ fI(IL)) ∪ fI(bI(IB))

• mC(i) = mANI (i)

Then diagram (1) is an initial pushout in AHLINets, where g := f |B and c is an
inclusion with cΣ = idΣC

and cA = idAC
.

B
b //

g

��

L

f
��

C c
//

(1)

ANI

Proof. See section B.3.

The following two facts show the correspondence between the gluing condition in
AHLINets and the categorical gluing condition (see Def. A.2 on page 49), which is
a necessary and su�cient condition for the (unique) existence of pushout complements
inM-adhesive categories.

Fact 3.11 (Characterization of Gluing Condition in AHLINets).
Let l : K → L and f : L→ ANI be morphisms in AHLINets with l ∈M.
The morphisms l and f satisfy the gluing condition in AHLINets if and only if they
satisfy the categorical gluing condition.

Proof. See section B.4.
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Fact 3.12 (Gluing Condition for AHLI Transformation).

Given an AHLI rule % = (L
l← K

r→ R) and a match f : L → ANI into an AHLI net
ANI = (AN, I,m : I → PAN ). The rule % is applicable on match f , i.e. there exists a
(unique) pushout complement ANI 0 in the diagram below, i� % and f satisfy the gluing
condition in AHLINets.

L

f
��

(PO)

K
loo

f ′

��

r // R

ANI ANI 0
oo

Proof. By Fact 3.11 the rule % and match f satisfy the gluing condition in AHLINets
if and only if % and f satisfy the categorical gluing condition, which by Fact A.3 is a
su�cient and necessary condition for the existence of a (unique) pushout complement
ANI 0.

3.3. Correspondence of Transition Firing and Rules

Now that we can manipulate a net's marking with rules, we have a look at rules that
simulate �ring steps for a certain transition under a token selection. We show that �ring
of a transition corresponds to a canonical application of a special rule construction, called
transition rules. With this correspondence we can easily show that token-injective AHLI
morphisms preserve �ring steps.

De�nition 3.13 (AHLI Transition Rules).
Given an AHLI net

ANI = (Σ, P, T, pre, post, cond, type,A, I,m)

we de�ne the transition rule for a consistent transition assignment (t, asg) ∈ CTANI ,
enabled under the token selection S = (M,m,N, n), as the rule

%(t, S, asg) = (Lt
l← Kt

r→ Rt)

with

• the common �xed AHL net part AN t = (Σ, Pt, {t}, pret, postt, typet, A), where
Pt = ENV P (t), pret(t) = pre(t), postt(t) = post(t), typet(p) = type(p),

• Lt = (AN t,M,mt : M → A⊗ Pt), with mt(x) = m(x),

• Kt = (AN t, ∅, ∅ : ∅ → (A× Pt)),

• Rt = (AN t, N, nt : N → A⊗ Pt), with nt(x) = n(x),

• l, r being the obvious inclusions on the rule nets.
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mt and nt are well-de�ned because t is enabled under S: The token selection condition
implies that ∀x ∈M : m(x) ∈ PREA(t, asg) and due to the construction of AN t we have
PREA(t, asg) ⊆ (A⊗ ENV P (t)) = (A⊗ Pt). The argument for nt works analogously.

Note that (t, asg) is enabled under S in Lt.

Remark. The structure of a transition rule depends only on the transition and the token
selection, for which there may exist several enabled transition assignments. Therefore
di�erent consistent transition assignments may have the same correspondent transition
rule. Nevertheless, we denote an AHLI transition rule as %(t, S, asg) rather than %(t, S)
to remember the concrete assignment this rule is intended to simulate.

Example. Figure 7 shows an AHLI transition rule %(t, S, asg) = (L
l← K

r→ R).

De�nition 3.14 (Canonical DPO Transformation of AHLI Nets).

We call a direct transformation ANI 1 =
%,f
=⇒ ANI 2 by rule % = (L

l← K
r→ R) with l, r

being inclusions canonical if

• fI is injective,

• fΣ is injective on the set of variables of ΣANI 1
18

• the morphisms in the span (ANI 1 ← ANI0 → ANI 2) of the DPO transformation
diagram below are inclusions, and

• I2 = I0 ∪ (IR \ r(IK)).

L

f
��

(PO1)

K

(PO2)

loo

��

r // R

f∗

��
ANI 1 ANI0oo // ANI 2

Remark. For each rule % being applied to some AHLI net ANI at a token-injective match
f , there exists a canonical transformation diagram, which is just the particular equivalent
DPO diagram with �as less isomorphic changes as possible�.

Because of the injectivity of the rule morphisms the lower span in the diagram is
already injective as well. To construct the canonical transformation diagram we �rst
regard the last condition on I2, which demands that (IR \ r(IK)) ∩ I0 = ∅ because of
pushout PO2. For this, it is su�cient to replace the set of tokens in R that are created
by the rule, i.e. IR \ r(IK), such that it is disjoint to the tokens preserved by the rule,
i.e. (I1 \ f(IL)) ∪ f(l(IK)).19 With this we now can simply replace arbitrary ANI 0 and
ANI 2, being some pushout complement object of PO1 and pushout object of PO2, with
nets such that the lower span morphisms become inclusions.

18See the �Context Condition� in [EP97].
19This modi�cation of the rule is passable since changing the tokens in R does not a�ect the �ring

behavior of NI2 (up to the token selections) nor the applicability of the rule.
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Example. The following diagram shows the two pushouts in AHLINets resulting from

applying the AHL transition rule %(t, S, asg) = (L
l← K

r→ R) for

asg = {t11 7→ a1, t12 7→ b1, t2 7→ a2, t3 7→ a3}

to the net ANI . All nets in this diagram have the same signature and algebra as the
example net in Fig. 6 on page 20. Moreover, this transformation is canonical.

L

t

p1:

s1

p2:

s2

p3:

s3

t11⊕t12 t2

t3

x1

y1
x2

b1
a2a1

��
(PO1)

K

t

p1:

s1

p2:

s2

p3:

s3

t11⊕t12 t2

t3

(PO2)

loo

��

r //

R

t

p1:

s1

p2:

s2

p3:

s3

t11⊕t12 t2

t3

x3

a3

��

ANI

t

p1:

s1

p2:

s2

p3:

s3

t11⊕t12 t2

t3

x1

y1
x2

y3

b1
a2a1

b3

z1

c1

y2

b2

t

p1:

s1

p2:

s2

p3:

s3

t11⊕t12 t2

t3

y3

b3

z1

c1

y2

b2

oo //
t

p1:

s1

p2:

s2

p3:

s3

t11⊕t12 t2

t3

y3

b3

z1

c1

y2

x3

a3

b2

Figure 7: Canonical direct DPO-transformation in AHLINets simulating a �ring step

Theorem 3.1 (Equivalence of Canonical Transformations and Firing of AHLI Nets).

1. Each �ring step ANI 〉−t,asg−−−→ ANI ′ via token selection S = (M,m,N, n) corresponds to

a canonical direct transformation ANI =
%(t,S,asg),f
=======⇒ ANI ′ via the transition rule %(t, S, asg)

matched by the inclusion match f : L→ ANI .

2. Each canonical direct transformation ANI =
%(t,S,asg),f
=======⇒ ANI 1, via some transition rule

%(t, S, asg) = (L
l← K

r→ R) with t ∈ TANI and token selection S = (M,m,N, n),
and token-injective match f : L → ANI , implies the consistent transition assignment
(fT (t), asgf ) being enabled in ANI under(

fI(M),
(
(fA ⊗ fP ) ◦m ◦ f−1

I

)
, N,

(
(f∗A ⊗ f∗P ) ◦m1 ◦ f∗−1

I

))
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with �ring step ANI 〉−fT (t),asgf−−−−−−−→ ANI 1. With asgf we denote the translation of asg along
f , i.e. asgf = fA ◦ asg ◦ f−1

Σ|V ar(t).

Proof.

1. Given the �ring step ANI 〉−t,asg−−−→ ANI ′ via (M,m,N, n) = S, the canonical direct

transformation of the transition rule %(t, S, asg) is ANI =
%(t,asg),f
=====⇒ ANI 1 as in the DPO

diagram in Fig. 8. The match f , d, and d′ are inclusions.

L = (AN t,M,mt)

f
��

(PO1)

K = (AN t, ∅, ∅)

(PO2)

? _loo

��

� � r // R = (AN t, N, nt)

f∗

��
ANI = (AN , I,m) ANI 0 = (AN , I0,m0)? _

d
oo � �

d′
// ANI 1 = (AN , I1,m1)

Figure 8: DPO diagram for canonical direct transformation of ANI with %(t, S, asg) in
AHLINets

According to Fact 3.4 on page 22, we have I0 = I \M and I1 = I0 ∪ (N \ ∅) as in the
DPO diagram of the Sets components in Fig. 9. The �ring step condition (I\M)∩N = ∅
grants us the last condition for canonical transformations I0 ∪ (N \ r(∅)) = I1.

M

fI
��

(PO1)

∅

(PO2)

? _oo

��

� � // N

f∗I
��

nt

))
I

m
,,

I0 = (I \M)? _

dI
oo � �

d′I

//

m0=m◦dI

((

I1 = (I \M) ∪N

m1 ))

At ⊗ Pt

f∗A⊗f
∗
P =fA⊗fP

��
AAN ⊗ PAN

id
+3 AAN ⊗ PAN

Figure 9: DPO diagram in Sets for the token components of the transformation in Fig. 8

For m1 as induced morphism for the pushout object I1 follows that

m1(x) =

{
m0(x) = m(x) for x ∈ I \M
nt(x) = n(x) for x ∈ N

hence I1 = I ′,m1 = m′ and ANI 1 = ANI ′, according to Def. 3.2 on page 20.

Remark. fI being injective is not only su�cient for the existence of (PO1), but also
necessary, because IK = ∅ (see Fact 3.12 on page 28).

2. Consider a canonical direct transformation ANI =
%(t,S,asg),f
=======⇒ ANI 1 with

ANI = (Σ, P, T, pre, post, cond, type,A, I,m)

as in the DPO diagrams in Figs. 8 and 9. (fT (t), asgf ) ∈ CTANI is enabled under(
fI(M),

(
(fA ⊗ fP ) ◦m ◦ f−1

I

)
, N,

(
(f∗A ⊗ f∗P ) ◦m1 ◦ f∗−1

I

))
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if

1. fI(M) ⊆ I,

2. (fA ⊗ fP ) ◦m ◦ f−1
I : N → A⊗ P ,

3. (I \ fI(M)) ∩N = ∅,

4.
∑

i∈fI(M)

(
(fA ⊗ fP ) ◦m ◦ f−1

I (i)
)

= preA(fT (t), asgf )

5.
∑
i∈N

(
(f∗A ⊗ f∗P ) ◦m1 ◦ f∗−1

I (i)
)

= postA(fT (t), asgf )

6. leading to the follower marking I ′ = (I \M) ∪N

with m′(x) =

{
m0(x) = m(x) for x ∈ I \M
m1(x) = n(x) for x ∈ N

By construction of the transition rule %(t, S, asg) and its application to ANI we have 1.,
2., and for 6. that I ′ = I1,m

′ = m1. The canonical transformation property grants us
3. It remains to show 4. and 5., i.e. that fI(M) and N represent the correct numbers of
value/place pairs in the environment of fT (t) to enable it when evaluated with asgf :

∑
i∈fI(M)

(fA ⊗ fP ) ◦m ◦ f−1
I (i)

=
∑
i∈M

(fA ⊗ fP ) ◦m(i) (fI inj.)

= (fA ⊗ fP )⊕
∑
i∈M

mt(i) (∀i ∈M : mt(i) = m(i), due to def. p(t, S, asg))

= (fA ⊗ fP )⊕ ◦ (asg × idP )⊕ ◦ preAN t(t) ((t, asg) enabled in L)

= (asgf × idP )⊕ ◦ (f#
Σ ⊗ fP )⊕ ◦ preAN t(t) (Lemma 3.2)

= (asgf × idP )⊕ ◦ pre ◦ fT (t) (f AHLI morph.)

= preA(fT (t), asgf ) (def. preA)
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and analogously,∑
i∈N

(f∗A ⊗ f∗P ) ◦m1 ◦ f∗−1
I (i)

=
∑
i∈N

(f∗A ⊗ f∗P ) ◦m1(i) (f∗I (N) = N)

= (f∗A ⊗ f∗P )⊕
∑
i∈M

nt(i) (∀i ∈ N : nt(i) = m1(i), due to constr. m1)

= (f∗A ⊗ f∗P )⊕ ◦ (asg × idP )⊕ ◦ preAN t(t) ((t, asg) enabled in L)

= (asgf × idP )⊕ ◦ (f#
Σ ⊗ fP )⊕ ◦ postAN t(t) (Lemma 3.2)

= (asgf × idP )⊕ ◦ post ◦ fT (t) (f AHLI morph.)

= postA(fT (t), asgf ) (def. postA)

Lemma 3.2 (Translated Assignments).
Given two AHLI nets

ANI i = (Σi = (Si, OPi, Xi), Pi, Ti, prei, posti, condi, typei, Ai, Ii,mi), i ∈ {1, 2}

a transition assignment (t, asg : X1 → A1) ∈ CTANI1 , and an AHLI net morphism
f = (fΣ, fP , fT , fA, fI) : ANI 1 → ANI 2 with fΣ injective on the variables of V ar(t), it
holds for all terms term ∈ TOP1(V ar(t)) that

asgf ◦f#
Σ (term) = fA◦asg(term), where asgf = fA◦asg◦f−1

Σ|V ar(t) : V ar(fT (t))→ A2

Proof by structural induction over all Σ1 terms over variables of V ar(t). 20 First, note that
because (fΣ, fA) is a generalized algebra homomorphism we have for all constants c and
operations op in OP1

fA(cA1)
fA homomorph.

= cVfΣ
(A2)

def. VfΣ= (fΣ(c))A2 (1)

fA ◦ opA1

fA homomorph.
= opVfΣ

(A2) ◦ fA
def. VfΣ= (fΣ(op))A2 ◦ fA (2)

Case 1: t = x ∈ V ar(t)
fA ◦ asg(x) = fA ◦ asg(x) = fA ◦ asg ◦ f−1

Σ|V ar(t) ◦ f
#
Σ (x)

because fΣ|V ar(t) : V ar(t)→ V ar(fT (t)) is surjective due to f being a net morphism and
hence fΣ bijective on variables in V ar(t).

Case 2: t = (c :→ s) ∈ TOP1

fA ◦ asg(c) = fA(cA1)
(1)
= (fΣ(c))A2 = (f#

Σ (c))A2 = asgf ◦ f#
Σ (c)

The last equality holds because a constant c would be evaluated by the extension of just
any variable assignment to cA2 .

20A categorical proof using free constructions can be found in [EP97].
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Case 3: t = op(t1, . . . , tn) ∈ TOP1(V ar(t)) with t1, . . . , tn satisfying the property to be
proven.

fA ◦ asg(op(t1, . . . , tn)) = fA ◦ opA1(asg(t1), . . . , asg(tn))

(2)
=(fΣ(op))VfΣ

(A2)(fA ◦ asg(t1), . . . , fA ◦ asg(tn))

ind.assumpt.
= (fΣ(op))VfΣ

(A2)(asgf ◦ f
#
Σ (t1), . . . , asgf ◦ f#

Σ (tn))

=asgf

(
(fΣ(op)) (f#

Σ (t1), . . . , f#
Σ (tn))

)
=asgf ◦ f#

Σ (op(t1, . . . , tn))

The second item of the previous theorem covers all possible canonical direct transfor-
mations by any transition rule %(t, S, asg) in an arbitrary net ANI , without aasuming
that t ∈ ANI or M ⊆ INI . For the special case that a transition rule %(t, S, asg) is
applied on an inclusion match, the second item reduces to the following corollary, which
is more similar to the theorem's �rst item.

Corollary 3.3 (Equivalence of Canonical Transformations and Firing of AHLI Nets).

Given a canonical transformation ANI =
%(t,S,asg),f
=======⇒ ANI 1 such that the match

f : L→ ANI is an inclusion, then the consistent token assignment (t, asg) is enabled in

ANI under S with �ring step ANI 〉−t,asg−−−→ ANI 1.
This follows directly from 2. of Theorem 3.1.

Theorem 3.4 (Token-injective AHLI Net Morphisms preserve Firing Steps).
For each AHLI net morphism f : ANI 1 → ANI 2, such that fI is injective and fΣ is

injective on all sets V ar(t) for all t ∈ T1
21, and each �ring step ANI 1 〉−t,asg−−−→ ANI ′1 there

exists a �ring step ANI 2 〉−
fT (t),asgf−−−−−−−→ ANI ′2 and a AHLI net morphism f ′ : ANI ′1 → ANI ′2

(depicted in diagram (1) below).

ANI 1
// t,asg //

f

��
(1)

ANI ′1

f ′

��
ANI 2

//
fT (t),asgf

// ANI ′2

Proof. Given f : ANI 1 → ANI 2 and ANI 1 〉−t,asg−−−→ ANI ′1 via some S as above, we have
by the �rst part of Theorem 3.1 on page 30 the canonical direct transformation with

%(t, S, asg) = (L
l← K

r→ R) given by the pushouts (1) and (2) in Fig. 10 on the facing
page.
Note that f : ANI 1 → ANI 2 satis�es the gluing condition w.r.t l′, because

l′P = idP1 , l
′
T = idT1 and IP I = ∅ due to injectivity of fI . This allows to construct the

21See the �Context Condition� in [EP97].
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L

incL
��

(1)

K

(2)

loo

��

r // R

incR
��

ANI 1

f

��
(3)

ANID1

��

l′oo r′ //

(4)

ANI ′1

f ′

��
ANI 2 ANID2

oo // ANI ′2

Figure 10: Double pushout diagrams for canonical direct transformation of ANI 1 and
ANI 2 with %(t, S, asg)

canonical transformation with extended rule ANI 1
l′← ANID1

r′→ ANI ′1 along pushouts
(3) and (4). Hence, also (1 + 3) and (2 + 4) are pushouts, de�ning a canonical direct
transformation via %(t, S, asg). The second part of Theorem 3.1 on page 30 implies

ANI 2 〉−
fT (t),asgf−−−−−−−→ ANI ′2.

Remark (Firing-preserving diagrams for (t, asg) correspond to an extension diagram for
%(t, asg)). The diagram in Fig. 10 corresponds to an extension diagram for rule %(t, asg)
and f (as depicted below) because (1)− (4) are pushouts.

ANI 1
%(t,asg),inc +3

f

��

ANI ′1

f ′

��
ANI 2

%(t,asg),f◦inc +3 ANI ′2

4. Functors for Individual Net Classes

PTI and AHLI nets are still very close to their collective pendants. In this section, we
express this vicinity with functors. In addition we de�ne a �attening functor from AHLI
to PTI nets, similar to the �attening of AHL nets, that preserves enabling and �ring and
�nally show a compatibility result for these functors.

De�nition and Fact 4.1 (CollPT : PTINetsI → PTSys).
The following construction �attens a PTI net to a P/T net with collective marking and
forgets the individual token elements. We can translate nets with a �nite number of
tokens on each place, only:

CollPT (P, T, pre, post, I,m) =

(
P, T, pre, post,M =

∑
i∈I

m(i) ∈ P⊕
)
,

if ∀p ∈ P : |m−1(p)| ∈ N.
Now, we extend the construction to a functor CollPT : PTINetsI → PTSys. PTSys

is the category of P/T nets with a marking M ∈ P⊕, where P⊕ is the commutative
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monoid over the set of places. Morphisms in PTSys are pairs

(fP : P1 → P2, fT : T1 → T2) : N1 → N2

that are compatible to the nets' pre and post mappings (just as PTI morphisms) and
preserve markings placewise, i.e. ∀p ∈ P1 : MN1(p) ≤MN1(fP (p)).
Because markings of nets in PTSys can only describe �nitely many tokens on each

place of the net, we de�ne as domain of the functor the category PTINetsI of PTI
nets with �nitely many tokens on each place (such that ∀p ∈ P : |m−1(p)| ∈ N) and
token-injective PTI morphisms. For the morphisms, we just have to forget the individual
token component by de�ning

CollPT (f : NI 1 → NI 2) = (fP , fT ) : CollPT (NI 1)→ CollPT (NI 2).

Proof. Obviously, CollPT (f) is well-de�ned on the net structure parts of CollPT (NI 1)
and CollPT (NI 2). Furthermore, it holds that

∀p ∈ P1 : M1(p) = |m−1
1 (p)| ≤ |m−1

2 (fP (p))| = M2(fP (p)).

The inequality is valid because each token x on place p implies a unique image fI(x)
on fP (p) due to the PTI morphism properties and because fI being injective does not
merge token images in I2.
The compositionality follows directly from the componentwise composition of PTI net

morphisms.

Theorem 4.1 (CollPT preserves Enabling and Firing).
Given a PTI net

NI = (P, T, pre, post, I,m) ∈ PTINetsI ,

each valid token selection (M,m,N, n) enabling a �ring NI 〉−t→ NI ′ implies the �ring

CollPT (NI ) 〉−t→ CollPT (NI ′).

Proof.

1. t is enabled in CollPT (NI ):

pre(t)
t enabled

=
∑
i∈M

m(i)
M⊆I
≤
∑
i∈I

m(i)
def. CollPT= MCollPT (NI )

2. Firing of t results in CollPT (NI ′): Obviously, for the �ring step CollPT (NI ) 〉−t→ P̃N

the net structure parts of P̃N are the same as of CollPT (NI ′). It remains to show the
equality of their markings. We have

INI ′ = (I \M) ]N, m′ : INI ′ → P with m′(x) =

{
m(x), x ∈ I \M
n(x), x ∈ N
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which we use to show that

M
P̃N

= MCollPT (NI ) 	 pre(t)⊕ post(t)

=
∑
i∈I

m(i)	
∑
i∈M

m(i)⊕
∑
i∈N

n(i) (def. CollPT , t enabled)

=
∑

i∈I\M

m(i)⊕
∑
i∈N

n(i)

=
∑

i∈(I\M)]N

m′(i) (def. m′)

= MCollPT (NI ′) (defs. INI ′ , CollPT )

Remark. Because the only condition for t to be enabled in CollPT (NI ) is that

∀p ∈ P : pre(t)(p) ≤
(∑

i∈I
m(i)

)
(p), there are possibly many di�erent valid token

selections corresponding to the same �ring step of t in CollPT (NI ), depending only on
isomorphic N and n.

De�nition and Fact 4.2 (CollAHL : AHLINetsI → AHLSys).
The following construction �attens a AHLI net to a AHL net with collective marking
and forgets the individual token elements. We can translate nets with a �nite number of
each value/place pairs, only:

CollAHL(AN , I,m) =

(
AN ,M =

∑
i∈I

m(i) ∈ (A⊗ P )⊕

)
,

if ∀(a, p) ∈ A⊗ P : |m−1(a, p)| ∈ N.
Now, we extend the construction to a functor CollAHL : AHLINetsI → AHLSys.

AHLSys is the category of AHL nets with a marking M ∈ (A⊗P )⊕, where (A⊗P )⊕ is
the commutative monoid over pairs of values from the net's algebra and the net's places
of compatible type. Morphisms in AHLSys are tuples

(fΣ : Σ1 → Σ2, fP : P1 → P2, fT : T1 → T2, fA : A1 → A2) : AN 1 → AN 2

that comply to all compatibility properties of AHLI net morphisms (of course, ex-
cept the one regarding the individual token component) and that preserve markings
place/valuewise, i.e.

∀(a, p) ∈ A1 ⊗ P1 : MAN1 (a, p) ≤MAN2 (fA ⊗ fP (a, p)).

Because markings of nets in AHLSys can only describe �nitely many tokens on each
place of the net, we de�ne as domain of the functor the category AHLINetsI of AHLI
nets with �nitely many occurrences of each value/place pair, i.e.

∀(a, p) ∈ A⊗ P : |m−1(a, p)| ∈ N,
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and AHLI morphisms that are injective on tokens and variables22. For the morphisms,
we just have to forget the individual token component by de�ning

CollAHL(f : ANI 1 → ANI 2) = (fΣ, fP , fT , fA) : CollAHL(ANI 1)→ CollAHL(ANI 2).

Proof. Obviously, CollAHL(f) is well-de�ned on the net structure parts of CollAHL(ANI 1)
and CollAHL(ANI 2). All properties for AHL net morphisms are already valid for the cor-
respondent components of AHLI net morphisms.
The compositionality follows directly from the componentwise composition of AHLI

net morphisms.

Theorem 4.2 (CollAHL preserves Enabling and Firing).
Given an AHLI net

ANI = (Σ, P, T, pre, post, cond, type,A, I,m) ∈ AHLINetsI ,

each valid token selection (M,m,N, n) with �ring step ANI 〉−(t,asg)−−−−→ ANI ′ implies the

�ring CollAHL(ANI ) 〉−(t,asg)−−−−→ CollAHL(ANI ′).

Proof.

1. (t, asg) is enabled in CollAHL(ANI ) :

preA(t, asg)
(t,asg) enabled

=
∑
i∈M

m(i)
M⊆I
≤
∑
i∈I

m(i)
def. CollAHL= MCollAHL(ANI )

2. Firing of (t, asg) results in CollAHL(ANI ′): Obviously, for the �ring step

CollAHL(ANI ) 〉−(t,asg)−−−−→ ÃNI the net structure parts of ÃNI are the same as of CollAHL(ANI ′).
It remains to show the equality of their markings. We have

IANI ′ = (I \M) ]N, m′ : IANI ′ → A⊗ P with m′(x) =

{
m(x), x ∈ I \M
n(x), x ∈ N

which we use to show that

M
ÃNI

= MCollAHL(ANI ) 	 preA(t, asg)⊕ postA(t, asg)

=
∑
i∈I

m(i)	
∑
i∈M

m(i)⊕
∑
i∈N

n(i) (def. CollAHL, t enabled)

=
∑

i∈I\M

m(i)⊕
∑
i∈N

n(i)

=
∑

i∈(I\M)]N

m′(i) (def. m′)

= MCollAHL(ANI ′) (defs. IANI ′ , CollAHL)

22We need injectivity on variables of a signature for the �attening of AHLI morphisms.
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De�nition and Fact 4.3 (FlatI : AHLINetsI → PTINetsI).
The following construction �attens an AHLI net to a PTI net:

FlatI(AN , I,m) = (CP ,CT , preA, postA, I,m)

Note that (CP ,CT , preA, postA) = Flat(AN ) and m : I → (A⊗ P ) = CP .
To extend the construction to a functor FlatI : AHLINetsI → PTINetsI, we de�ne

for each

f = (fΣ, fP , fT , fA, fI) : ANI 1 → ANI 2

the �attening

FlatI(f) = (fA⊗ fP , fT ×
(
fA ◦_ ◦ f−1

Σ|V ar(t)

)
, fI) : FlatI(ANI 1)→ FlatI(ANI 2).

Proof. To prove that

FlatI(f : ANI 1 → ANI 2) : FlatI(ANI 1)→ FlatI(ANI 2)

is a valid PTI net morphism, we have to show the following equalities:

fI ◦m1 = m2 ◦ (fA ⊗ fP )

and

(fA ⊗ fP )⊕ ◦ preA1 = preA2 ◦
(
fT ×

(
fA ◦_ ◦ f−1

Σ|V ar(t)

))
,

analogously for postA. The �rst one follows directly from f being a AHLI morphism.
For the second one we have for all (t, asg) ∈ CT 1 that

preA2 ◦
(
fT ×

(
fA ◦_ ◦ f−1

Σ|V ar(t)

))
(t, asg)

= preA2

(
fT (t), fA ◦ asg ◦ f−1

Σ|V ar(t)

)
= preA2 (fT (t), asgf )

(
abbrev. asgf = fA ◦ asg ◦ f−1

Σ|V ar(t)

)
= (asgf , idP2)⊕ ◦ pre2 ◦ fT (t) (def. preA2)

= (asgf , idP2)⊕ ◦ (f#
Σ ⊗ fP )⊕ ◦ pre1(t) (f AHLI morph.)

=

n∑
i=1

(
asgf ◦ f#

Σ (termi), fP (pi)
)

for
n∑

i=1

(termi, pi) = pre1(t)

=
n∑

i=1

(fA ◦ asg(termi), fP (pi)) (Lemma 3.2)

= (fA ⊗ fP )⊕ ◦ (asg, idP1)⊕ ◦ pre1(t)

= (fA ⊗ fP )⊕ ◦ preA1(t, asg) (def. preA1)

and analogously for postA. The compositionality follows directly from the componentwise
composition of AHLI net morphisms.
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Theorem 4.3 (FlatI preserves and re�ects Enabling and Firing).
Given an AHLI net ANI = (AN , I,m) with FlatI(AN , I,m) = (CN , I,m) and a token
selection S = (M,m,N, n), the following holds:

1. (t, asg) ∈ CT is enabled under S in ANI , i� (t, asg) is enabled under S in FlatI(ANI ).

2. ANI 〉−(t,asg)−−−−→ (AN , I ′,m′) via S ⇔ (CN , I,m) 〉−(t,asg)−−−−→ (CN , I ′,m′) via S.

Proof.

1. (t, asg) ∈ CT is enabled under S in (AN , I,m)
⇔
∑
i∈M

m(i) = preA(t, asg) ∧
∑
i∈N

n(i) = postA(t, asg)

⇔ (t, asg) ∈ CT is enabled under S in FlatI(AN , I,m) = (CP ,CT , preA, postA, I,m)

2. (AN , I,m) 〉−(t,asg)−−−−→ (AN , I ′,m′) via S
⇔ (t, asg) enabled under S in both ANI and FlatI(ANI ),

and I ′ = (I \M) ]N, m′(x) =

{
m(x), x ∈ I \M
n(x), x ∈ N

⇔ FlatI(AN , I,m) = (CN , I,m) 〉−(t,asg)−−−−→ (CN , I ′,m′) = FlatI(AN , I ′,m′) via S

Theorem 4.4 (Compatibility of Collection and Flattening Functors).
The previously de�ned functors are compatible, i.e. CollPT ◦ FlatI = Flat ◦ CollAHL.

AHLINetsI
FlatI //

CollAHL

��
=

PTINetsI

CollPT

��
AHLSys

Flat // PTSys

Proof. Given an AHLI net ANI = (Σ, P, T, pre, post, cond, type,A, I,m) ∈ AHLINetsI ,
we have

CollPT ◦ FlatI(ANI )

= CollPT (CP ,CT , preA, postA, I,m) (def. FlatI)

=

(
CP ,CT , preA, postA,M =

∑
i∈I

m(i) ∈ (A⊗ P )⊕

)
(def. CollPT )

= Flat

(
Σ, P, T, pre, post, cond, type,A,M =

∑
i∈I

m(i)

)
(def. Flat)

= Flat ◦ CollAHL(ANI ) (def. CollAHL)

and for some AHL net morphism f = (fΣ, fP , fT , fA, fI) : ANI 1 → ANI 2 with injective
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fI we have

CollPT ◦ FlatI(f)

= CollPT (fA ⊗ fP , fT ×
(
fA ◦_ ◦ f−1

Σ|V ar(t)

)
, fI) (def. FlatI)

= (fA ⊗ fP , fT ×
(
fA ◦_ ◦ f−1

Σ|V ar(t)

)
) (def. CollPT )

= Flat(fΣ, fP , fT , fA) (def. Flat)

= Flat ◦ CollAHL(f) (def. CollAHL)

5. Nets with Individual Tokens are M-adhesive Categories

[Pra08] shows how to construct a marking category for collective Petri nets, which can
be used to prove the properties of M-adhesive categories, i.e. weak adhesive high-level
replacement systems in the sense of [EEPT06], for marked Petri nets. In this section we
present a similar construction for individual markings and show some instantiations of
M-adhesive categories for PTI and AHLI nets.

De�nition 5.1 (Individual Petri Systems).
Given a category Nets of nets, an individual system IS = (N, I,m) is given by a net
N ∈ Nets, a set of individuals I, and a functionm : I →M(N), whereM : Nets→ Sets
is a functor assigning a marking set to each net N .
For systems IS 1 = (N1, I1,m1) and IS 2 = (N2, I2,m2), an individual system morphism

fIS = (fN , fI) : IS 1 → IS 2 consists of a net morphisms fN : N1 → N2 and a function on
the individuals fI : I1 → I2 such that M(fN ) ◦m1 = m2 ◦ fI as depicted below.

I1
m1 //

fI
��

=

M(N1)

M(fN )
��

I2
m2 //M(N2)

All individual systems and system morphisms constitute the category ISystems(Nets,M).

Theorem 5.1 (ISystems(Nets,M) isM-adhesive).
Given an M-adhesive category (Nets,M) of nets with a marking set functor
M : Nets→ Sets that preserves pullbacks alongM-morphisms, then the category

(ISystems(Nets,M),M×Minj)

of individual systems over these nets is M-adhesive as well, where Minj is the class of
all injective functions.

Proof. Consider the comma category C = ComCat(IDSets,M, {m}), with objects
(I,N, opm : I → M(N)) and morphisms fC = (fI , fN ) ∈ MorSets × MorNets.
Obviously, C is isomorphic to ISystems(Nets,M).
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By applying Thm. 1.4 (Construction of [Weak] Adhesive HLR Categories) from [PEL08],
we can conclude that (C,M×Minj) isM-adhesive because

• (Nets,M) and (Sets,Minj) areM-adhesive categories,

• the functor IDSets preserves pushouts along injective functions, and

• the functor M : Nets→ Sets preserves pullbacks alongM-morphisms.

Hence, (ISystems(Nets,M),M×Minj) isM-adhesive as well.

Theorem 5.2 (PTINets isM-adhesive).
The category (PTINets,Minj) is anM-adhesive category where

Minj = {f ∈MorPTINets|fP , fT , fI injective}

Proof. We already know from [Pra08] that (PTNets,M′) isM-adhesive withM′ being
the class of all injective Petri net morphisms. Given the functor M : PTNets → Sets
with M(P, T, pre, post) = P , we have PTINets ∼ ISystems(PTNets,M).
M preserves pullbacks along M′-morphisms because pullbacks along injective mor-

phisms are constructed componentwise in PTNets, hence Thm. 5.1 states that
(PTINets,Minj) isM-adhesive.

For PTI net transformation systems we require rules with rule morphisms in M and
one of the following alternatives for matches:

1. general matches by PTI morphisms,

2. injective matches byM,

3. token-injective matches byM′ = {f ∈ PTINets|fI inj.}

For all three cases we have a suitable theory by DPO transformations with general,
M-matching resp. M′-matching inM-adhesive categories.

Theorem 5.3 (AHLINets(Σ) isM-adhesive).
For a �xed signature Σ the category (AHLINets(Σ),MI) is an M-adhesive category
where

• AHLINets(Σ) is the full subcategory of AHLINets containing all AHLI nets
with the signature Σ,

• MI = {f ∈MorAHLINets(Σ)|fΣ = idΣ, fA isomorphic, and fP , fT , fI injective}.

Proof. As shown in [Pra08], we already know that the category (AHLNets(SP),M′) of
AHL nets over a speci�cation SP isM-adhesive with

M′ = {f ∈MorAHLNets(SP)|fA isomorphic, and fP , fT injective}.
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Given the functor M : AHLNets(Σ, ∅)→ Sets with

M(P, T, pre, post, cond, type,A) = A⊗ P,

we have AHLINets(Σ) ∼ ISystems(AHLNets(Σ, ∅),M). M preserves pullbacks
alongM′-morphisms because pullbacks along injective morphisms are constructed com-
ponentwise in AHLNets(Σ, ∅) and we have only algebra isomorphisms in M′. Hence,
Thm. 5.1 states that (AHLINets(Σ),MI) isM-adhesive.

Theorem 5.4 (AHLINets isM-adhesive).
The category (AHLINets,MI) is aM-adhesive category where

MI = {f ∈MorAHLINets|fΣ injective , fA isomorphic, and fP , fT , fI injective}

Proof. As shown in [Pra08], we already know that the category of generalized AHL nets
(AHLNets,M′) isM-adhesive with

M′ = {f ∈MorAHLNets|fSP strict injective, fA isomorphic, and fP , fT injective}.

We consider its full subcategory (AHLNets∅,M′|AHLNets∅) of generalized AHL nets
with empty sets of speci�cation equations, which by Thm. 2.3(i) from [Pra08] is itself
M-adhesive. Note that all injective morphisms between speci�cations without equations
are strict.
Given the functor M : AHLNets∅ → Sets with

M(SP , P, T, pre, post, cond, type,A) = A⊗ P,

we have AHLINets ∼ ISystems(AHLNets∅,M). M preserves pullbacks along
M′|AHLNets∅-morphisms because pullbacks along injective morphisms are constructed
componentwise in AHLNets∅ and we have only algebra isomorphisms in M′. Hence,
Thm. 5.1 states that (AHLINets,MI) isM-adhesive.

6. Conclusion

In this article, we have introduced low- and high-level Petri nets with markings of indi-
vidual tokens. The Petri net approach we presented is related to [vGP95, BMMS99] but
in contrast the individual tokens in our framework are part of the syntactical de�nition
of the Petri nets.
With the individuals being part of a net's syntax, we can consider Petri nets with an

individual marking as objects of a category. Based on the double pushout transformation
approach, we are able to de�ne the rule based transformation for low- and high-level Petri
nets with individual tokens. Important results are a necessary and su�cient condition
that we give for the applicability of rules and other results that follow from the properties
ofM-adhesive categories, because we are able to show that our Petri net categories are
M-adhesive, which is a short notion for weak adhesive HLR categories in [EEPT06].
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The main advantage of the presented Petri net transformation approach over previous
existing double pushout approaches (with �collective� markings) is that the marking of
a net with individual tokens can be manipulated with rules, which is not possible in an
adequate way with the �collective token approach�. So, �ring steps of Petri nets with
individual tokens can be simulated with rules. Moreover, we proved a correspondence
between such transition productions and �ring steps.
We related the newly presented and existing net classes with functors and showed that

they preserve enabling and �ring.

7. Future Work

Although we have given someM-adhesive categories of Petri nets with individual tokens,
which allows us to use many interesting results for analysis of transformations, there
are several useful additional properties and recent developments that are worthwhile to
consider to examine if the presented categories comply to them.

Application Conditions In [EHL10], the results of [EEPT06] concerning parallel and
concurrent rules have been lifted to transformation systems with rules with nested ap-
plication conditions (see also [HP09]). The only additional property for M-adhesive
categories that is needed for these results is an E-M factorization (and binary coprod-
ucts which we already have by cocompleteness).

Morphism pair factorization There are several useful theorems as the Concurrency
Theorem and the Local Con�uence Theorem, for which we need an E ′-M′ pair factor-
ization. Unfortunately, for the M-adhesive categories in this article we can not simply
apply the construction Thm. 4 from [PEL08] because for the individual marking functor
M (cf. Def. 5.1 on page 41) establishing the constructed comma category does not in
general yield an isomorphism M(f) for a Petri net morphism f .

So for all these results, for transformation systems with or without application condi-
tions, it may be convenient to directly prove an epi-M factorization, which (with binary
coproducts) would directly constitute a E ′-M′ pair factorization with E ′ as the class of
jointly epimorphic morphisms.
Another possibility is to consider only nets with a �nite structure, i.e. the nets with

�nite sets of places, transitions, and individuals, which is the kind of nets mostly used in
practical cases. In anM-adhesive category as given above, �nite objects are the objects
with a �nite number ofM-subobjects, which in the case of nets are exactly the nets with
�nite structure. As shown in [BEGG10], the restriction of an M-adhesive category to
all its �nite objects allows already to give a general construction for E-M factorizations
and for initial pushouts.

Rule amalgamation Another powerful concept is the amalgamation of rules (with ap-
plication conditions) over a bundle of matches, which has been elaborated in [Gol10]. In
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order to instantiate the results in this article to our Petri net categories we need to show
that they have so-called e�ective pushouts.
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A. Appendix

A.1. Categorical Gluing Condition with Initial Pushouts

The following de�nitions, that can also be found in [EEPT06], provide notions to formu-
late an abstract categorical condition, the so-called gluing condition, which is necessary
and su�cient for the (unique) existence of pushout complements in M-adhesive cate-
gories. The gluing condition is used to show that the corresponding set-theoretical glu-
ing conditions in the categories PTNets (see Def. 2.8 on page 10) and AHLINets (see
Def. 3.8 on page 24) are necessary and su�cient conditions for the application of trans-

formation rules % = (L
l← K

r→ R) in suitable M-adhesive categories (PTINets,M)
(see Fact 2.11 on page 12) and (AHLINets,M) (see Fact 3.11 on page 27), respectively.

De�nition A.1 (Boundary, Initial Pushout).
Given a morphism f : L → G in an M-adhesive category, a morphism b : B → L with
b ∈ M is called the boundary over f if there is a pushout complement of f and b such
that (1) is a pushout which is initial over f . Initiality of (1) over f means, that for every
pushout (2) with b′ ∈M there exist unique morphisms b∗ : B → D and c∗ : C → E with
b∗, c∗ ∈ M such that b′ ◦ b∗ = b, c′ ◦ c∗ = c and (3) is a pushout. B is then called the
boundary object and c the context with respect to f .

B

��

b // L

f
��

C c
// G

(1)

B

��

b∗ //
b

))
D

��

b′ // L

f
��

C c∗ //

c

55E

(3)

c′ // G

(2)

De�nition A.2 (Categorical Gluing Condition).
Let l : K → L ∈ M and f : L → G be morphisms in a given M-adhesive category C
with initial pushouts.
We say that l and f satisfy the categorical gluing condition if for the initial pushout (1)
over f there exists a morphism b∗ : B → K such that l ◦ b∗ = b.

B

g

��

b
//
b∗

))
L

f
��

K
l

oo
r
// R

C c
// G

(1)

Given a production % = (L
l← K

r→ R), we say % and f satisfy the categorical gluing
condition, i� l and f satisfy the categorical gluing condition.

Fact A.3 (Categorical Gluing Condition).
Given an adhesive HLR category C with initial pushouts, a match f : L → G satis�es
the categorical gluing condition with respect to l : K → L ∈ M (or a production
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% = (L
l← K

r→ R), respectively) if and only if the context object D exists, i.e. there is
a pushout complement (2) of l and m:

B

g

��

b
//
b∗

))
L

f
��

K
l

oo

k
��

r
// R

C
c //

c∗

55G

(1)

D
doo

(2)

If it exists, the context object D is unique up to isomorphism.

Proof. See Theorem 6.4 in [EEPT06].

In order to show initiality of a pushout (1) over a morphism f : L → G with cor-
responding opposite morphism B → C in an M-adhesive category C (cf. Def. A.1 on
the preceding page), one has to show for every pushout (2) over f with correspond-
ing opposite morphism D → E, that there exist unique morphisms b∗ : B → D and
c∗ : C → E forming a pushout (cf. Def. A.1). The following Lemma states the fact, that
the existence of the required morphism c∗ induces the remaining requirements.

Lemma A.1 (Morphism-Pushout-Lemma).
Given pushouts (1) and (2) in anM-adhesive category C where b, d ∈M.
If there is a morphism c∗ : C → E with c = e ◦ c∗ then this c∗ is unique and c∗ ∈M and
there exists a unique b∗ : B → D ∈M with b = d ◦ b∗ such that (3) is pushout in C.

B
b //

g

��

L

f
��

D
doo

h
��

C
c //

c∗

55

(1)

G E
eoo

(2)

B

b
))

g

��

b∗
//

(3)

D

h
��

d
// L

f
��

C
c

55
c∗ // E

e //

(2)

G

Proof. We use in the following that also c, e ∈ M due to pushouts (1) and (2) and the
fact thatM-morphisms are closed under pushouts.

uniqueness of c∗:
Let c̄ : C → E with c = e ◦ c̄. Then there is

e ◦ c̄ = c = e ◦ c∗

which by the fact that e is a monomorphism implies that c̄ = c∗.

unique morphism b∗:
Since d ∈M the pushout (2) is also a pullback and since (1) is a pushout there is

f ◦ b = c ◦ g = e ◦ c∗ ◦ g
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from the pullback property follows that there is a unique morphism b∗ : B → D
with

c∗ ◦ g = h ◦ b∗ and b = d ◦ b∗

leading to commuting diagram (3).

B

b
))

g

��

b∗
//

(3)

D

h
��

d
// L

f
��

C
c

55
c∗ // E

e //

(2)

G

b∗, c∗ ∈M:
The morphisms b and c areM-morphisms. So the fact that

b = d ◦ b∗ and c = e ◦ c∗

together with the fact thatM-morphisms are closed under decomposition implies
that b∗, c∗ ∈M.

(3) is pushout :
Since c is anM-morphism andM-morphisms are closed under decomposition due
to the fact that c ◦ idC = c ∈M there is idC ∈M. Consider the following cube:

C
c∗ //

idC��

E
idE //

idE��

E

e

��

B

g
==

b∗ //

idB

��

D

h

<<

idD //

idD

��

D

h

<<

d

��

C
c∗ // E

e // G

B

g
==

b∗ // D

h

<<

d // L

f
<<

• The left face is a pullback,

• the right face is pullback (2),

• the front left and back left faces are pullbacks,

• the front right and back right faces are pullbacks because d, e ∈M,

• the bottom is the pushout (1),

• and the morphisms idC , d and e areM-morphisms.

So the cube is a weak Van Kampen cube implying that the top face (3) of the cube
is a pushout in C.
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In the following two lemmas we show, that the constructions (_]⊗_)⊕ and Pfin(_]),
which are used in the pre and post conditions, and conditions of AHLI nets, respectively,
are compositional. We need these properties for the proofs of Fact 3.10 on page 27 and
Fact 3.11 on page 27.

Lemma A.2 (Compositionality of (_] ⊗_)⊕).
Given three AHLI nets

ANi = (Σi, Pi, Ti, prei, posti, condi, typei, Ii, Ai) where (i ∈ {1, 2, 3})

together with signature morphisms fΣ : Σ1 → Σ2, gΣ : Σ2 → Σ3 and functions
fP : P1 → P2, gP : P2 → P3 with

type2 ◦ fP = fS ◦ type1

Then for all

n∑
i=1

(termi, pi) ∈ (TOP1(X1)⊗ P1)⊕

there is

(g]Σ⊗ gP )⊕((f ]Σ⊗ fP )⊕(
n∑

i=1

(termi, pi))) = ((gΣ ◦ fΣ)]⊗ (gP ◦ fP ))⊕(
n∑

i=1

(termi, pi))

Proof. Let

n∑
i=1

(termi, pi) ∈ (TOP1(X1)⊗ P1)⊕

Due to the freeness of TOP1(X1) there is

VfΣ
(g]Σ) ◦ f ]Σ = (fΣ ◦ gΣ)]
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So we have

(g]Σ ⊗ gP )⊕((f ]Σ ⊗ fP )⊕(
n∑

i=1

(termi, pi)))

= (g]Σ ⊗ gP )⊕(
n∑

i=1

((f ]Σ)type1(pi)(termi), fP (pi)))

=
n∑

i=1

((g]Σ)type2(fP (pi))((f
]
Σ)type1(pi)(termi)), gP (fP (pi)))

=
n∑

i=1

((g]Σ)fS(type1(pi))((f
]
Σ)type1(pi)(termi)), gP (fP (pi)))

=
n∑

i=1

(VfΣ
(g]Σ)type1(pi)((f

]
Σ)type1(pi)(termi)), gP (fP (pi)))

=
n∑

i=1

((VfΣ
(g]Σ) ◦ f ]Σ)type1(pi)(termi), gP (fP (pi)))

=
n∑

i=1

((gΣ ◦ fΣ)]type1(pi)
(termi), gP ◦ fP (pi))

= ((gΣ ◦ fΣ)] ⊗ (gP ◦ fP ))⊕(
n∑

i=1

(termi, pi))

Lemma A.3 (Compositionality of Pfin(_])).
Given three AHLI nets

ANi = (Σi, Pi, Ti, prei, posti, condi, typei, Ii, Ai) where (i ∈ {1, 2, 3})

together with signature morphisms fΣ : Σ1 → Σ2 and gΣ : Σ2 → Σ3.
Then for all E ∈ Pfin(Eqns(Σ1)) there is

Pfin(g]Σ)(Pfin(f ]Σ)(E)) = Pfin((gΣ ◦ fΣ)])(E)

Proof. Let E ∈ Pfin(Eqns(Σ1)). For e = (tl, tr) ∈ Eqns(Σ1) the extension f ]Σ of a
signature morphism fΣ : Σ1 → Σ2 to equations of Σ1 is de�ned by

f ]Σ(e) = ((f ]Σ)s(tl), (f
]
Σ)s(tr))

where s is the sort of terms tl and tr, i.e. tl, tr ∈ TOP1(X1)s. The function (f ]Σ)s on the
right hand side of the equation is the extension of fΣ to terms of type s, i.e.

(f ]Σ)s : TOP1(X1)s → VfΣ
(TOP2(X2))s
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Due to the de�nition of the forgetful functor VfΣ
there is

VfΣ
(TOP2(X2))s = TOP2(X2)fS(s)

and hence there is

(f ]Σ)s : TOP1(X1)s → TOP2(X2)fS(s)

So we have

Pfin(g]Σ)(Pfin(f ]Σ)(E)) = Pfin(g]Σ)(Pfin(f ]Σ)({e | e ∈ E}))
= Pfin(g]Σ)({((f ]Σ)s(tl), (f

]
Σ)s(tl)) | (tl, tr) ∈ E})

= {((g]Σ)fS(s)((f
]
Σ)s(tl)), (g

]
Σ)fS(s)((f

]
Σ)s(tr))) | (tl, tr) ∈ E}

= {(VfΣ
(g]Σ)s((f

]
Σ)s(tl)), VfΣ

(g]Σ)s((f
]
Σ)s(tr))) | (tl, tr) ∈ E}

= {((VfΣ
(g]Σ) ◦ f ]Σ)s(tl), (VfΣ

(g]Σ) ◦ f ]Σ)s(tr)) | (tl, tr) ∈ E}
= {((gΣ ◦ fΣ)]s(tl), (gΣ ◦ fΣ)]s(tr)) | (tl, tr) ∈ E}
= Pfin((gΣ ◦ fΣ)])(E)

In the following two lemmas we show, that the constructions _ ⊗ _ and _] preserve
monomorphisms, which is used in the proofs of Fact 3.10 on page 27 and Fact 3.11 on
page 27.

Lemma A.4 (_⊗_ preserves Monomorphisms).
Given two AHLI nets

ANi = (Σi, Pi, Ti, prei, posti, condi, typei, Ii, Ai) where (i ∈ {1, 2})

and a monomorphism f = (fP , fT , fΣ, fA, fI) : AN1 → AN2 in AHLINets.
Then fA ⊗ fP : A1 ⊗ P1 → A2 ⊗ P2 is a monomorphism in Sets.

Proof. Let (a1, p1), (a2, p2) ∈ A1 ⊗ P1 with

(fA ⊗ fP )(a1, p1) = (a, p) = (fA ⊗ fP )(a2, p2)

Then there is

(fA,type1(p1)(a1), fP (p1)) = (fA ⊗ fP )(a1, p1)

= (a, p)

= (fA ⊗ fP )(a2, p2)

= (fA,type1(p2)(a2), fP (p1))

which means that

fA,type1(p1)(a1) = a = fA,type1(p2)(a2)
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and

fP (p1) = p = fP (p2)

Since f is a monomorphism in AHLINets the function fP is injective implying that
p1 = p2. This means that

fA,type1(p2)(a1) = fA,type1(p1)(a1) = a = fA,type1(p2)(a2)

and since f is a monomorphism in AHLINets there is fA,type1(p2) injective implying
that a1 = a2. Hence there is (a1, p1) = (a2, p2) implying that fA ⊗ fP is injective, i.e. it
is a monomorphism in Sets.

Lemma A.5 (_] preserves Monomorphisms).
Given a signature morphism f : Σ1 → Σ2.
If f is a monomorphism in Sig then f ] : TOP1(X1)→ Vf (TOP2(X2)) is a monomorphism
in Alg(Σ1).

Proof. Since monomorphisms in Alg(Σ1) are exactly the injective homomorphisms it is
su�cient to show that f ] is injective. Let t1, t2 ∈ TOP1(X1)s with

f ]s(t1) = t = f ]s(t2)

The recursive de�nition of terms allows us to prove this property by a structural induction
over t ∈ Vf (TOP2(X2))s = TOP2(X2)fS(s).

Basis.

• t = x ∈ X2,fS(s)

This means that there are x1, x2 ∈ X1,s with

f ]s(x1) = x = f ]s(x2)

⇔ fX(x1) = x = fX(x2)

and since fX is injective this means t1 = x1 = x2 = t2.

• t = c with c :→ fS(s) ∈ OP2

This means that for i = 1, 2 there are ci :→ s ∈ OP1 with

f ]s(c1) = c = f ]s(c2)

⇔ fOP (c1) = c = fOP (c2)

and since fOP is injective this means t1 = c1 = c2 = t2.

Hypothesis. For ti ∈ Vf (TOP2(X2))si = TOP2(X2)fS(si) (i = 1, . . . , n) there is

f ]si(t1) = ti = f ]si(t2)⇒ t1 = t2
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Step. Let t = op(t1, . . . , tn) with op : fS(s1) . . . fS(sn) → fS(s) ∈ OP2 and
ti ∈ TOP2(X2)fS(si) (i = 1, . . . , n).

Then from f ]s(t1) = t = f ]s(t2) follows that there are opi : s1 . . . sn → s ∈ OP1

(i = 1, 2) such that

f ]s(t1) = t = f ]s(t2)

⇔ f ]s(op1(t11, . . . , t
n
1 )) = op(t1, . . . , tn) = f ]s(op2(t12, . . . , t

n
2 ))

⇔ fOP (op1)(f ]s1
(t11), . . . , f ]sn(tn1 )) = op(t1, . . . , tn) = fOP (op2)(f ]s1

(t12), . . . , f ]sn(tn2 ))

⇔ fOP (op1) = op = fOP (op2) ∧ ∀i ∈ {1, . . . , n} : f ]si(t
i
1) = ti = f ]si(t

i
2)

Due to the injectivity of fOP there is op1 = op2 and by the induction hypothesis
there is ti1 = ti2 for all i ∈ {1, . . . , n}. Hence we have t1 = t2.

A.2. Initial Pushouts in Sets

In this section we de�ne a gluing condition in the category Sets and show, that the
satisfaction of the condition for a suitableM-adhesive category (Sets,M) is equivalent to
the categorical gluing condition. This provides a necessary and su�cient condition for the
existence of (unique) pushout complements in Sets, which is used in the corresponding
facts of the set-based categories PTINets and AHLINets.

De�nition A.4 (Gluing Condition in Sets).
Let l : K → L and f : L→ G be morphisms in Sets with l ∈M.
We de�ne the set of identi�cation points

IP = {x ∈ L | ∃x′ 6= x : f(x) = f(x′)}

and the set of gluing points
GP = l(K)

We say that l and f satisfy the gluing condition if IP ⊆ GP .

The following lemma provides a set-theoretical construction of pushout complements
in Sets, whereas the category-theoretical construction of pushout complements is de�ned
via a pushout over the boundary (see Theorem 6.4 in [EEPT06]).

Lemma A.6 (Pushout Complement in Sets).
Let l : K → L and f : L→ G be morphisms in Sets.
There is a pushout complement C of l and f , if l and f satisfy the gluing condition.
If a pushout complement exists it can be computed by

C = (G \ f(L)) ∪ f(l(K))

together with inclusion c : C → G and a morphism g : K → C with g(x) = f(l(x)) for
every x ∈ K.
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L

f
��

K
loo

g

��
G Cc
oo

(1)

Proof. We de�ne C, c and g as above. We have to show that (1) is pushout in Sets.

commutativity of (1):
Let x ∈ L.

f(l(x)) = g(x) = c(g(x))

universal property :
Let H be a set together with morphisms c′ : C → H and f ′ : L→ H with

c′ ◦ g = f ′ ◦ l

We de�ne a morphism h : G→ H with

h(x) =

{
c′(x) , if x ∈ C;

f ′(x′) , for f(x′) = x otherwise.

For the well-de�nedness of h we have to check if for every x ∈ G with x /∈ C there
is a unique x′ ∈ L such that f(x′) = x.

x /∈ C def. C⇔ x /∈ (G \ f(L)) ∪ f(l(K))

⇔ ¬x ∈ (G \ f(L)) ∪ f(l(K))

⇔ ¬(x ∈ G \ f(L) ∨ x ∈ f(l(K)))

⇔ x /∈ G \ f(L) ∧ x /∈ f(l(K))

From the fact that x ∈ G and x /∈ G \ f(L) we have x ∈ f(L) which means that
there is x′ ∈ L with f(x′) = x.
Let us assume that x′ is not unique, i.e. there is x′′ ∈ L with x′ 6= x′′ and f(x′′) = x.
Then x′ is an identi�cation point which implies that x′ ∈ GP = f(l(K)) because l
and f satisfy the gluing condition. This is a contradiction and hence x′ is unique.

L

f
��f ′

��

K
loo

g

��
G

h
~~

(2)

(3)

Cc
oo

(1)

c′nnH
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Let x ∈ C. Then there is

h ◦ c(x) = h(x) = c′(x)

which means that diagram (2) commutes.
Let x ∈ L. Then we distinguish the following cases:

• Case 1: x ∈ l(K)
Then there is k ∈ K with l(k) = x and

h(f(x)) = h(f(l(k))) = h(c(g(k))) = c′(g(k)) = f ′(l(k)) = f ′(x)

• Case 2: x /∈ l(K)
Then there is f(x) /∈ C and therefore

h(f(x)) = f ′(x)

Hence diagram (3) commutes.
For the uniqueness of h let h′ : G→ H with h′ ◦ c = c′ and h′ ◦ f = f ′.
Let x ∈ G.

• Case 1: x ∈ C

h′(x) = h′(c(x)) = c′(x) = h(x)

• Case 2: x /∈ C
As we have shown above in this case there is a unique x′ ∈ L with f(x′) = x
and we obtain

h′(x) = h′(f(x′)) = f ′(x′) = h(x)

So we have for all x ∈ G that h′(x) = h(x) and hence h′ = h.

In the following de�nition and facts we de�ne the boundary and initial pushout over
a morphism f : L → G in Sets and show that the satisfaction of the gluing condition
in Sets is equivalent to the satisfaction of the categorical gluing condition in an M-
adhesive category (Sets,M) where the class of monomorphismsM contains inclusions.
A suitable classM is the class containing all monomorphisms in Sets, because Sets is
an adhesive category (see Theorem 4.6 in [EEPT06]).

De�nition A.5 (Boundary in Sets).
Given a morphism f : L → G in Sets. The boundary B of f is the set B = IP of
identi�cation points together with an inclusion b : B → L.
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Fact A.6 (Initial Pushout in Sets).
Given a morphism f : L→ G in Sets, the boundary B of f and the pushout complement
C of f and b, de�ned as

C = (G \ f(L)) ∪ f(l(K))

together with inclusion c : C → G and a morphism g : K → C with g(x) = f(l(x)) for
every x ∈ K.

Then diagram (1) is initial pushout in Sets.

B
b //

g

��

L

f
��

C c
//

(1)

G

Proof.

(1) is pushout :
The fact that (1) is pushout follows from Lemma A.6 by the fact that b and f
satisfy the gluing condition. It remains to show that (1) is initial.
Let (2) be a pushout in Sets with d ∈M.

B
b //

g

��

L

f
��

D
doo

h
��

C c
//

(1)

G Ee
oo

(2)

function c∗:
We de�ne a function c∗ : C → E with

c∗(x) = y with e(y) = c(x)

well-de�nedness of c∗:
For the well-de�nedness of c∗ we have to show that for every x ∈ C there is a
unique y ∈ E with e(y) = c(x).
We distinguish the following cases for x ∈ C:
• Case 1: x /∈ f(L)
There is c(x) = x ∈ G. Since (2) is pushout in Sets the functions f and e
are jointly surjective which by the fact that there is no y ∈ L with f(y) = x
implies that there is y ∈ E with e(y) = x = c(x).

• Case 2: x ∈ f(b(B))
Then there is z ∈ B with f(b(z)) = x. From z ∈ B = IP and the fact that E
is a pushout complement of d and f follows that z ∈ d(D), i.e. there is z′ ∈ D
with d(z′) = z. Let y = h(z′). Then we have

e(y) = e(h(z′)) = f(d(z′)) = f(z) = f(b(z)) = x = c(x)
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So for every x ∈ C there is a suitable element y ∈ E with e(y) = c(x). Since d ∈M
and pushouts in Sets are closed underM-morphisms there is also e ∈M, i.e. e is
injective which implies the uniqueness of y.
So c∗ is well-de�ned. The fact that e ◦ c∗ = c follows directly from the de�nition of
c∗.

uniqueness of c∗, existence of b∗ and pushout :
By Lemma A.1 the morphism c∗ is the unique morphism with c = e ◦ c∗ and there
is a unique morphism b∗ : B → D with b = d ◦ b∗ such that (3) is a pushout in
Sets.

B

b
))

g

��

b∗
//

(3)

D

h
��

d
// L

f
��

C
c

55
c∗ // E

e //

(2)

G

Hence diagram (1) is an initial pushout in Sets.

Fact A.7 (Characterization of Gluing Condition in Sets).
Let l : K → L and f : L→ G be morphisms in Sets with l ∈M.
The morphisms l and f satisfy the gluing condition in Sets if and only if they satisfy
the categorical gluing condition.

Proof.

If. Let l and f satisfy the categorical gluing condition, i.e. for initial pushout (1) there
is a function b∗ : B → K with l ◦ b∗ = b.

B

g

��

b
//
b∗

))
L

f
��

K
l

oo

C c
// G

(1)

Let x ∈ IP . Then there is x ∈ B and y = b∗(x) ∈ K with

l(y) = l(b∗(x)) = b(x) = x

which means that x ∈ l(K) = GP . Hence l and f satisfy the gluing condition in
Sets.

Only If. Let l and f satisfy the gluing condition in Sets, i.e. there is IP ⊆ GP = l(K).
We de�ne a function b∗ : B → K with

b∗(x) = l−1(x)
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For every x ∈ B there is x ∈ IP which by the fact that l and f satisfy the gluing
condition implies that x ∈ GP = l(K), i.e. there is a preimage of x with respect to
l. The preimage is unique since l is injective because l ∈M. Hence b is well-de�ned
and there is

l(b∗(x)) = l(l−1(x)) = x = b(x)

which means that l and f satisfy the categorical gluing condition.

A.3. Initial Pushouts in PTNets

The construction and proof of the gluing condition for PTI nets (see Fact 2.12 on page 12)
allows to derive the corresponding result for P/T nets as a special case where the set of
individual tokens is empty.

De�nition A.8 (Gluing Condition in PTNets).
Given P/T nets K,L and G and P/T morphisms l : K → L and f : L → G. We de�ne
the set of identi�cation points

IP = IPP ∪ IPT

with

• IPP = {x ∈ PL | ∃x′ 6= x : fP (x) = fP (x′)},

• IPT = {x ∈ TL | ∃x′ 6= x : fT (x) = fT (x′)},

the set of dangling points

DP = {p ∈ PL | ∃t ∈ TG \ fT (TL) : fP (p) ∈ ENV (t)}

and the set of gluing points
GP = lP (PK) ∪ lT (TK)

We say that l and f satisfy the gluing condition if IP ∪DP ⊆ GP .

De�nition A.9 (Boundary in PTNets).
Given a morphism f : L→ G in PTNets. The boundary of f is a P/T net

B = (PB, TB, preB, postB)

with

• PB = DPT ∪ IPP ∪ PIPT

• PIPT
= {p ∈ PL | ∃t ∈ IPT : p ∈ ENV (t)}

• TB = IPT
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• preB(t) = preL(t)

• postB(t) = postL(t)

together with an inclusion b : B → L.

Well-de�nedness.

preB, postB : TB → P⊕B :
Let t ∈ TB and let p ≤ preB(t). Then there is p ≤ preL(t) which means that
p ∈ PL. Then there is t ∈ IPT which, by the fact that p ∈ ENV (t), means that
p ∈ PIPT

⊆ PB.
So preB is well-de�ned. The proof for postB works completely analogously.

inclusion b : B → L:
We obtain an inclusion morphism b : B → L from the fact that preB and postB
are restrictions of the respective functions in L.

Fact A.10 (Initial Pushout in PTNets).
Given a morphism f : L → G in PTNets, the boundary B of f and the P/T net
C = (PC , TC , preC , postC) with

• PC = (PG \ fP (PL)) ∪ fP (bP (PB))

• TC = (TG \ fT (TL)) ∪ fT (bT (TB))

• preC(t) = preG(t)

• postC(t) = postG(t)

Then diagram (1) where g := f |B is initial pushout in PTNets.

B
b //

g

��

L

f
��

C c
//

(1)

G

Proof. Analogously to Fact 2.10 with I = ∅.

Fact A.11 (Characterization of Gluing Condition in PTNets).
Let l : K → L and f : L→ G be morphisms in PTNets with l ∈M.
The morphisms l and f satisfy the gluing condition in PTNets if and only if they satisfy
the categorical gluing condition.

Proof. Analogously to Fact 2.11 with I = ∅.
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B. Proofs

B.1. Proof of Fact 2.10

In this section we prove the well-de�nedness of the PTI net C de�ned in Fact 2.10 and
that the construction leads to an initial pushout in the category PTINets.

Proof.

well-de�nedness of C:

preC , postC : TC → P⊕C :
Follows from the well-de�nedness of C in Fact A.10 and the fact that we have
the same set of transitions, and the set of places in Fact A.10 is a subset of
PC .

mC : IC → PC :
Let i ∈ IC . Then there is i ∈ (INI \ fI(IL)) ∪ fI(bI(IB)).

Case 1: i /∈ fI(IL)

Case 1.1: ∃p ∈ PL : fP (p) = mNI (i)
This means that p ∈ DP and therefore p ∈ PB and fP (p) ∈ PC . So
we have

mC(i) = mNI (i) = fP (p) ∈ PC

Case 1.2: @p ∈ PL : fP (p) = mNI (i)
This means that mNI (i) /∈ fP (PL) and hence mC(i) = mNI (i) ∈ PC .

Case 2: i ∈ fI(bI(IB))
Then there exists j ∈ IB with fI(bI(j)) = i and we have for
mC(i) = mNI (i) that

mNI (i) = mNI (fI(bI(j))) = fP (mL(bI(j))) = fP (bP (mB(j)))

and since fP (bP (PB)) ⊆ PC there is mC(i) ∈ PC .

well-de�nedness of c:
We obtain an inclusion morphism c : C → NI from the fact that preC , postC and
mC are restrictions of the respective functions in NI .

well-de�nedness of g:
For J = {P, T, I} we obtain well-de�ned functions gJ : JB → JC because for j ∈ JB
there is

gJ(j) = fJ(j) = fJ(bJ(j)) ∈ JC

The morphism g preserves pre and post domains and markings because it is a
restriction of f which is a well-de�ned PTI morphism.
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(1) is pushout :
Due to Lemma A.6 the diagrams (2)-(4) are pushouts in Sets which implies that
(1) is pushout in PTINets because the pushout in PTINets can be constructed
componentwise.

PB
bP //

gP
��

PL

fP
��

PC cP
//

(2)

PNI

TB
bT //

gT
��

TL

fT
��

TC cT
//

(3)

TNI

IB
bI //

gI
��

IL

fI
��

IC cI
//

(4)

INI

initiality of (1):
Given pushout (5) in PTINets with d ∈M.

B
b //

g

��

L

f
��

D
doo

h
��

C c
//

(1)

NI Ee
oo

(5)

The sets TB and IB are exactly the boundaries of fT and fI , respectively, in Sets.
So pushouts (3) and (4) are initial and since pushouts in PTINets can be con-
structed componentwise in Sets there are pushouts (6) and (7) in Sets leading to
unique suitable functions b∗T , c

∗
T , b
∗
I , c
∗
I ∈MSets such that (8) and (9) are pushouts

in Sets.

TB

bT
**

gT
��

b∗T

//

(8)

TD

hT

��

dT
// TL

fT
��

TC
cT

44
c∗T // TE

eT //

(6)

NI T

IB

bI
**

gI
��

b∗I

//

(9)

ID

hI

��

dI
// IL

fI
��

IC
cI

44
c∗I // IE

eI //

(7)

NI I

We de�ne a function c∗P : PC → PE with

c∗P (x) = y with eP (y) = cP (x)

well-de�nedness of c∗P :
For the well-de�nedness of c∗P we have to show that for every x ∈ PC there is
a unique y ∈ PE with eP (y) = cP (x).
Let x ∈ PC . We use in the following the fact, that from pushout (5) in
PTINets follows that (10) is a pushout in Sets.

PD
dP //

hP

��

PL

fP
��

PC eP
//

(10)

PNI
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Case 1: x /∈ fP (PL)
Since (10) is pushout in Sets the functions fP and eP are jointly surjec-
tive. So x /∈ fP (PL) implies x ∈ eP (PE) and hence there exists y ∈ PE

with eP (y) = x.

Case 2: x ∈ fP (bP (PB))
Then there exists z ∈ PB with fP (bP (z)) = x.

Case 2.1: z ∈ IPP

Then from the fact that (10) is pushout in Sets together with Fact
A.7 follows that dP and fP satisfy the gluing condition which means
that z ∈ dP (PD), i.e. there exists z′ ∈ PD with dP (z′) = z. Let
y = hP (z′). Then we have

eP (y) = eP (hP (z′)) = fP (dP (z′)) = fP (z) = x

which means that y is a suitable element.

Case 2.2: z ∈ DPT

This means that there is t ∈ TG\fT (TL) with fP (z) ∈ ENVP (t). Since
(6) is pushout in Sets the functions fT and eT are jointly surjective
which by the fact that t /∈ fT (TL) implies that t ∈ eT (TE), i.e. there
exists t′ ∈ TE with eT (t′) = t.
Then there is y ∈ PE with y ∈ ENVP (t′) and eP (y) = fP (z) = x
because P/T morphisms preserve pre and post conditions.

Case 2.3: z ∈ DP I

Then there exists i ∈ INI \ fI(IL) with fP (z) = mNI (i). Since (7) is
pushout in Sets the functions fI and eI are jointly surjective which
due to the fact that i /∈ fI(IL) implies that there is i′ ∈ IE with
eI(i′) = i. Hence we have

x = fP (z) = mNI (i) = mNI (eI(i′)) = eP (mE(i′))

which means that y = mE(i′) is a suitable place.

Case 2.4: z ∈ PIPT

This means that there is t ∈ IPT with z ∈ ENVP (t). By Fact A.7
there is t ∈ dT (TD) because TE is a pushout complement of dT and
fT . So there is t′ ∈ TD with t = dT (t′). Then we have

e⊕P (preE(hT (t′))) = preG(eT (hT (t′)))

= preG(fT (dT (t′)))

= preG(fT (t))

= f⊕P (preL(t))

and analogously

e⊕P (postE(hT (t′))) = f⊕P (postL(t))
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which means that there is y ∈ ENVP (hT (t′)) ⊆ PE with

eP (y) = fP (z) = x

Case 2.5: z ∈ PIPI

Then there exists i ∈ IP I with z = mL(i) which by Fact A.7 implies
that there is i′ ∈ ID with dI(i′) = i because IE is a pushout comple-
ment of dI and fI .
Then we have

eP (mE(hI(i′))) = eP (hP (mD(i′))) = fP (dP (mD(i′)))

= fP (mL(dI(i′))) = fP (mL(i)) = fP (z) = x

and hence y = mE(hI(i′)) is a suitable place.

So for every x ∈ PC there is a suitable y ∈ PE with eP (y) = cP (x). Let us
assume that y is not unique, i.e. there is y′ ∈ PE with eP (y′) = cP (x). Since
d ∈M and pushouts preserveM-morphisms we also have that e ∈M which
means that eP is injective implying that y = y′. Hence cP is well-de�ned.

morphism c∗:
We de�ne a PTI morphism c∗ = (c∗P , c

∗
T , c
∗
I) : C → E. In order to show that

c∗ is a well-de�ned PTI morphism we have to show that it preserves pre and
post domains and markings.
Let t ∈ TC and let t′ ∈ TE with eT (t′) = cT (t), i.e. t′ = c∗T (t).
Then we have

c⊕P (preC(t)) = preNI (cT (t)) = preNI (eT (t′)) = e⊕P (preE(t′))

which means that for

preC(t) =

n∑
i=1

pi and preE(t′) =

m∑
i=1

p′i

there is n = m because cP and eP are injective and therefore also c⊕P and e⊕P
are injective.
So we have

n∑
i=1

cP (pi) = c⊕P (preC(t)) = e⊕P (preE(t′)) =
n∑

i=1

eP (p′i)

which by the de�nition of c∗P means that

c∗⊕P (preC(t)) = c∗⊕P (
n∑

i=1

pi) =
n∑

i=1

c∗P (pi)

=
n∑

i=1

p′i = preE(t′) = preE(c∗T (t))
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The proof that c∗ preserves post domains works analogously.
Let i ∈ IC and let i′ ∈ IE with eI(i′) = cI(i), i.e. i′ = c∗I(i).
Then we have

cP (mC(i)) = mNI (cI(i)) = mNI (eI(i′)) = eP (mE(i′))

which by de�nition of c∗P means that

c∗P (mC(i)) = mE(i′) = mE(c∗I(i))

Hence c∗ is a well-de�ned PTI morphism.
The fact that e ◦ c∗ = c follows directly from the de�nition of c∗P and the
initiality of (3) and (4).

uniqueness of c∗, existence of b∗ and pushout :
By Lemma A.1 the morphism c∗ is the unique morphism with c = e ◦ c∗ and
there is a unique morphism b∗ : B → D with b = d ◦ b∗ such that (11) is a
pushout in PTINets.

B

b
))

g

��

b∗
//

(11)

D

h
��

d
// L

f
��

C
c

55
c∗ // E

e //

(5)

NI

B.2. Proof of 2.11

In this section we prove the equivalence of the fact that PTI morphisms l and f satisfy
the gluing condition, and the fact that l and f satisfy the categorical gluing condition.

Proof.

If. Let l and f satisfy the categorical gluing condition, i.e. for initial pushout (1) there
is a morphism b∗ : B → K with l ◦ b∗ = b.

B

g

��

b
//
b∗

))
L

f
��

K
l

oo

C c
// NI

(1)

Let x ∈ IP ∪DP . We have to show that x ∈ GP = lP (PK) ∪ lT (TK) ∪ lI(IK).

Case 1: x ∈ IPP ∪ IP I ∪DP
Then there is x ∈ PB and y ∈ PK with b∗(x) = y and

l(y) = l(b∗(x)) = b(x) = x

which means that x ∈ lP (PK) ⊆ GP .



68 B. PROOFS

Case 2: x ∈ IPT

Then there is x ∈ TB and y ∈ TK with b∗(x) = y and

l(y) = l(b∗(x)) = b(x) = x

which means that x ∈ lT (TK) ⊆ GP .

Case 3: x ∈ IP I

Analogously to Case 2.

Hence l and f satisfy the gluing condition in PTINets.

Only If. Let l and f satisfy the gluing condition in PTINets, i.e. there is

IP ∪DP ⊆ GP .

This means that there is IPP ⊆ lP (PK), IPT ⊆ lT (TK) and IP I ⊆ lI(IK) implying
that lP , fP and lT , fT and lI , fI satisfy the gluing condition in Sets.
From Fact A.7 follows that there are functions b∗P : PB → PK with lP ◦ b∗P = bP ,
b∗T : TB → TK with lT ◦ b∗T = bT , and lI : IB → IK with lI ◦ b∗I = bI .
We de�ne a PTI morphism b∗ = (b∗P , b

∗
T , b
∗
I). For the well-de�nedness we have to

show that b∗ preserves pre and post domains as well as markings.
Let t ∈ TB. Then there is

l⊕P (b∗⊕P (preB(t))) = (lP ◦ b∗P )⊕(preB(t))

= b⊕P (preB(t))

= preL(bT (t))

= preL(lT (b∗T (t)))

= l⊕P (preK(b∗T (t)))

and since _⊕ preserves monomorphisms in Sets because monomorphisms in Sets
are exactly the coequalizers in Sets and _⊕ is a free functor, the morphism l⊕P is
a monomorphism implying that

b∗⊕P (preB(t)) = preK(b∗T (t))

The proof that b∗ preserves post domains works analogously.
Let i ∈ IB. Then there is

lP (b∗P (mB(i))) = bP (mB(i))

= mL(bI(i))

= mL(lI(b∗I(i)))

= lP (mK(b∗I(i)))

which by the fact that lP is a monomorphism implies that

b∗P (mB(i)) = mK(b∗I(i))

Hence b∗ is a well-de�ned PTI morphism which means that l and f satisfy the
categorical gluing condition.
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B.3. Proof of Fact 3.10

In this section we prove the well-de�nedness of the AHLI net C de�ned in Fact 3.10 and
that the construction leads to an initial pushout in the category AHLINets.

Proof.

well-de�nedness of C:

preC , postC : TC → (TOPC
(XC)⊗ PC)⊕:

Let t ∈ TC and let (term, p) ≤ preC(t). Then there is

term ∈ TOPANI
(XANI )typeANI (p) = TOPC

(XC)typeC(p).

It remains to show that p ∈ PC .
Due to the fact that t ∈ (TANI \ fT (TL))∪ fT (bT (TB)) we can distinguish the
following cases:

Case 1: t /∈ fT (TL)

Case 1.1: ∃p′ ∈ PL : fP (p′) = p
Then due to the fact that there is (term, p) ≤ preANI (t) there is
p′ ∈ DPT ⊆ PB which means that p = fP (bP (p′)) ∈ PC .

Case 1.2: @p′ ∈ PL : fP (p′) = p
This means that p ∈ PANI \ fP (PL) ⊆ PC .

Case 2: t ∈ fT (bT (TB))
Then there exists t′ ∈ TB with fT (bT (t′)) = t and since AHL morphisms
preserve pre conditions there is

preANI (t) = preANI (fT (bT (t′)))

= (f ]Σ ⊗ fP )⊕(preL(bT (t′)))

= (f ]Σ ⊗ fP )⊕((b]Σ ⊗ bP )⊕(preB(t′)))

By Lemma A.2 there is

preANI (t) = ((fΣ ◦ bΣ)] ⊗ (fP ◦ bP ))⊕(preB(t′))

which for (term, p) ≤ preANI (t) means that

(term, p) ≤ ((fΣ ◦ bΣ)] ⊗ (fP ◦ bP ))⊕(preB(t′))

and hence p ∈ fP (bP (PB)) ⊆ PC .

The proof for postC works analogously.

mC : IC → AC ⊗ PC :
Let i ∈ IC and let (a, p) = mC(i). Then there is

a ∈ AANI ,typeANI (p) = AC,typeC(p).
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It remains to show that p ∈ PC . Due to the fact that

i ∈ (IANI \ fI(IL)) ∪ fI(bI(IB))

we can distinguish the following cases:

Case 1: i /∈ fI(IL)

Case 1.1: ∃p′ ∈ PL : fP (p′) = p
This means that p′ ∈ DP and thus p′ ∈ PB and p = fP (bP (p′)) ∈ PC .

Case 1.2: @p′ ∈ PL : fP (p) = p
This means that p /∈ fP (PL), i.e. p ∈ ANI \fP (PL) and hence p ∈ PC .

Case 2: i ∈ fI(bI(IB))
Then there exists j ∈ IB with fI(bI(j)) = i and we have

mC(i) = mANI (i)

= mANI (fI(bI(j)))

= (fA ⊗ fP )(mL(bI(j)))

= (fA ⊗ fP )((bA ⊗ bP )(mB(j)))

which means that p ∈ fP (bP (PB)) and hence p ∈ PC .

well-de�nedness of c:
We obtain an inclusion morphism c : C → ANI from the fact that preC , postC ,
condC , typeC and mC are restrictions of the respective functions in ANI . Fur-
thermore there is cΣ = idΣC

and cA = idAC
which are well-de�ned signature and

algebra morphisms, respectively.

well-de�nedness of g:
For J = {P, T, I} we obtain well-de�ned functions gJ : JB → JC because for j ∈ JB
there is

gJ(j) = fJ(j) = fJ(bJ(j)) ∈ JC

The morphism g preserves pre and post domains, conditions, types and markings
because it is a restriction of f which is a well-de�ned AHLI morphism.
Furthermore there is gΣ = fΣ and gA = fA.

(1) is pushout :
Due to Lemma A.6 the diagrams (2)-(4) are pushouts in Sets.

PB
bP //

gP
��

PL

fP
��

PC cP
//

(2)

PANI

TB
bT //

gT
��

TL

fT
��

TC cT
//

(3)

TANI

IB
bI //

gI
��

IL

fI
��

IC cI
//

(4)

IANI
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Moreover diagram (5) is pushout in Sig and (6) is pushout in Algs.

ΣL

idΣL //

fΣ

��

ΣL

fΣ

��
ΣANI

idΣANI

//

(5)

ΣANI

(ΣL, AL)
id(ΣL,AL) //

(fΣ,fA)
��

(ΣL, AL)

(fΣ,fA)
��

(ΣANI , AANI )
id(ΣANI ,AANI )

//

(6)

(ΣANI , AANI )

The pushouts (2)-(6) imply that (1) is pushout in AHLINets because the pushout
in AHLINets can be constructed componentwise.

initiality of (1):
Given pushout (7) in AHLINets with d ∈M.

B
b //

g

��

L

f
��

D
doo

h
��

C c
//

(1)

ANI Ee
oo

(7)

The sets TB and IB are exactly the boundaries of fT and fI , respectively, in Sets.
So pushouts (3) and (4) are initial and since pushouts in AHLINets can be con-
structed componentwise in Sets there are pushouts (8) and (9) in Sets leading
to unique suitable functions b∗T , c

∗
T , b
∗
I , c
∗
I ∈ MSets such that (10) and (11) are

pushouts in Sets.

TB

bT
**

gT
��

b∗T

//

(10)

TD

hT

��

dT
// TL

fT
��

TC
cT

33
c∗T // TE

eT //

(8)

ANI T

IB

bI
**

gI
��

b∗I

//

(11)

ID

hI

��

dI
// IL

fI
��

IC
cI

33
c∗I // IE

eI //

(9)

ANI I

function c∗P :
We de�ne a function c∗P : PC → PE with

c∗P (x) = y with eP (y) = cP (x)

For the well-de�nedness of c∗P we have to show that for every x ∈ PC there is
a unique y ∈ PE with eP (y) = cP (x).
Let x ∈ PC . We need in the following that pushout (7) in AHLINets implies
pushout (12) in Sets.

PD
dP //

hP

��

PL

fP
��

PE eP
//

(12)

PANI
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Case 1: x /∈ fP (PL)
Since (12) is pushout in Sets the functions fP and eP are jointly surjec-
tive. So x /∈ fP (PL) implies x ∈ eP (PE) and hence there exists y ∈ PE

with eP (y) = x.

Case 2: x ∈ fP (bP (PB))
Then there exists z ∈ PB with fP (bP (z)) = x.

Case 2.1: z ∈ IPP

Then from the fact that (12) is pushout in Sets together with Fact
A.7 follows that d and f satisfy the gluing condition which means
that z ∈ dP (PD), i.e. there exists z′ ∈ PD with dP (z′) = z. Let
y = hP (z′). Then we have

eP (y) = eP (hP (z′)) = fP (dP (z′)) = fP (z) = x

which means that y is a suitable element.

Case 2.2: z ∈ DPT

This means that there is t ∈ TANI \ fT (TL) with fP (z) ∈ ENVP (t).
Since (8) is pushout in Sets the functions fT and eT are jointly sur-
jective which by the fact that t /∈ fT (TL) implies that t ∈ eT (TE), i.e.
there exists t′ ∈ TE with eT (t′) = t.
Then there is y ∈ PE with y ∈ ENVP (t′) and eP (y) = fP (z) = x
because AHLI morphisms preserve pre and post conditions.

Case 2.3: z ∈ DP I

Then there exists i ∈ IANI \ fI(IL) with fP (z) = πP (mANI (i)). Since
(9) is pushout in Sets the functions fI and eI are jointly surjective
which due to the fact that i /∈ fI(IL) implies that there is i′ ∈ IE with
eI(i′) = i. Hence we have

x = fP (z) = πP (mANI (i))

= πP (mANI (eI(i′)))

= πP ((eA ⊗ eP )(mE(i′)))

= eP (mE(i′))

which means that y = mE(i′) is a suitable place.

Case 2.4: z ∈ PIPT

This means that there is t ∈ IPT with z ∈ ENVP (t). By Fact A.7
there is t ∈ dT (TD) because TE is a pushout complement of dT and
fT . So there is t′ ∈ TD with t = dT (t′). Then we have

(e]Σ ⊗ eP )⊕(preE(hT (t′))) = preANI (eT (hT (t′)))

= preANI (fT (dT (t′)))

= preANI (fT (t))

= (f ]Σ ⊗ fP )⊕(preL(t))



B. PROOFS 73

and analogously

(e]Σ ⊗ eP )⊕(postE(hT (t′))) = (f ]Σ ⊗ fP )⊕(postL(t))

which means that there is y ∈ ENVP (hT (t′)) ⊆ PE with

eP (y) = fP (z) = x

Case 2.5: z ∈ PIPI

Then there exists i ∈ IP I with z = πP (mL(i)) which by Fact A.7
implies that there is i′ ∈ ID with dI(i′) = i because IE is a pushout
complement of dI and fI .
Then we have

(eA ⊗ eP )(mE(hI(i′))) = mANI (eI(hI(i′)))

= mANI (fI(dI(i′)))

= (fA ⊗ fP )(mL(i))

which means that there is y = πP (mE(hI(i′))) ⊆ PE with

eP (y) = fP (z) = x

So for every x ∈ PC there is a suitable y ∈ PE with eP (y) = cP (x). Let us
assume that y is not unique, i.e. there is y′ ∈ PE with eP (y′) = cP (x). Since
d ∈M and pushouts preserveM-morphisms there is also e ∈M which means
that eP is injective implying that y = y′. Hence cP is well-de�ned.

signature morphism c∗Σ:
Due to the fact that e ∈ M the signature morphism eΣ is an isomorphism.
We de�ne

c∗Σ = e−1
Σ

Since ΣC = ΣANI the morphism c∗Σ is well-de�ned.

algebra morphism c∗A:
Also the algebra morphism eA is an isomorphism because e ∈M. So we de�ne

c∗A = e−1
A

leading to a well-de�ned algebra morphism because AC = AANI .

morphism c∗:
We de�ne an AHLI morphism c∗ = (c∗Σ, c

∗
P , c
∗
T , c
∗
A, c
∗
I) : C → E. In order

to show that c∗ is a well-de�ned AHLI morphism we have to show that it
preserves pre and post conditions, conditions, types and markings.
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types:
Let p ∈ PC and let p′ ∈ PE with cP (p) = eP (p′), i.e. c∗P (p) = p′.
Furthermore let c∗Σ = (c∗S , c

∗
OP ) and eΣ = (eS , eOP ). Then we have

c∗S(typeC(p)) = e−1
S (typeC(p))

= e−1
S (typeANI (p))

= e−1
S (typeANI (cP (p)))

= e−1
S (typeANI (eP (p′)))

= e−1
S (eS(typeE(p′)))

= typeE(p′)

= typeE(c∗P (p))

pre and post conditions:
Let t ∈ TC .
Due to the de�nition of c∗P there is cP = eP ◦ c∗P . So we have

(e]Σ ⊗ eP )⊕((c∗]Σ ⊗ c
∗
P )⊕(preC(t)))

= (e]Σ ⊗ eP )⊕((c∗]Σ ⊗ c
∗
P )⊕(preC(t)))

Lemma A.2
= ((eΣ ◦ c∗Σ)] ⊗ (eP ◦ c∗P ))⊕(preC(t))

= ((eΣ ◦ e−1
Σ )] ⊗ cP )⊕(preC(t))

= ((idΣANI
)] ⊗ cP )⊕(preC(t))

= (c]Σ ⊗ cP )⊕(preC(t))

= preANI (cT (t))

= preANI (eT ◦ c∗T (t))

= (e]Σ ⊗ eP )⊕(preE(c∗T (t)))

Since e ∈ M is a monomorphism and _ ⊗ _,_] and _⊕ preserve monomor-
phisms, there is also (e]Σ ⊗ eP )⊕ a monomorphism. So the above equation
implies

(c∗]Σ ⊗ c
∗
P )⊕(preC(t)) = preE(c∗T (t))

The proof that c∗ preserves post conditions works analogously.

conditions:
Let t ∈ TC and let t′ ∈ TE with eT (t′) = cT (t), i.e. t′ = c∗T (t).
Due to the fact that cΣ = idΣC

there is

condC(t) = Pfin(c]Σ)(condC(t))

= condANI (cT (t))

= condANI (eT (t′))

= Pfin(e]Σ)(condE(t′))
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which by the de�nition of c∗Σ implies that

Pfin(c∗]Σ )(condC(t)) = Pfin(c∗]Σ )(Pfin(e]Σ)(condE(t′)))

Lemma A.3
= Pfin((c∗Σ ◦ eΣ)])(condE(t′))

= Pfin((e−1
Σ ◦ eΣ)])(condE(t′))

= Pfin(id]ΣE
)(condE(t′))

= Pfin(idTOPE
(XE))(condE(t′))

= condE(t′)

= condE(c∗T (t))

markings:
Let i ∈ IC and mC(i) = (a, p).
Then we have

(eA ⊗ eP )((c∗A ⊗ c∗P )(mC(i))) = (eA ⊗ eP )((c∗A ⊗ c∗P )(a, p))

= (eA ⊗ eP )(c∗A,typeC(p)(a), c∗P (p))

= (eA,typeE(c∗P (p))(c
∗
A,typeC(p)(a)), eP (c∗P (p)))

= (eA,c∗S(typeC(p))(c
∗
A,typeC(p)(a)), eP (c∗P (p)))

= (Vc∗Σ(eA)typeC(p)(c
∗
A,typeC(p)(a)), eP (c∗P (p)))

= (Vc∗Σ(eA)typeC(p)(e
−1
A,typeC(p)(a), cP (p)))

= ((Vc∗Σ(eA) ◦ e−1
A )typeC(p)(a), cP (p))

= (a, cP (p))

= (cA(a), cP (p))

= (cA ⊗ cP )(a, p)

= (cA ⊗ cP )(mC(i))

= mANI (cI(i))

= mANI (eI ◦ c∗I(i))

= (eA ⊗ eP )(mE(c∗I(i)))

and since e ∈ M is a monomorphism and _ ⊗ _ preserves monomorphisms,
there is also (eA ⊗ eP ) a monomorphism. So the equation above implies

(c∗A ⊗ c∗P )(mC(i)) = mE(c∗I(i))

Hence c∗ is a well-de�ned AHLI morphism.
The fact that e ◦ c∗ = c follows directly from the de�nitions of c∗P , c

∗
Σ and c∗A

and the initiality of (3) and (4).

uniqueness of c∗, existence of b∗ and pushout :
By Lemma A.1 the morphism c∗ is the unique morphism with c = e ◦ c∗ and
there is a unique morphism b∗ : B → D with b = d ◦ b∗ such that (13) is a
pushout in AHLINets.
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B

b
))

g

��

b∗
//

(13)

D

h
��

d
// L

f
��

C
c

44
c∗ // E

e //

(7)

ANI

B.4. Proof of Fact 3.11

In this section we prove that the fact that AHLI morphisms f and l satisfy the gluing
condition in AHLINets is equivalent to the fact that f and l satisfy the categorical
gluing condition.

Proof.

If. Let l and f satisfy the categorical gluing condition, i.e. for initial pushout (1) there
is a morphism b∗ : B → K with l ◦ b∗ = b.

B

g

��

b
//
b∗

**
L

f
��

K
l

oo

C c
// ANI

(1)

Let x ∈ IP ∪ DP . We have to show that x ∈ GP = lP (PK) ∪ lT (TK) ∪ lI(IK).
The proof works completely analogously to the proof in Fact 2.11. Hence l and f
satisfy the gluing condition in AHLINets.

Only If. Let l and f satisfy the gluing condition in AHLINets, i.e. there is

IP ∪DP ⊆ GP .

This means that there is IPP ⊆ lP (PK), IPT ⊆ lT (TK) and IP I ⊆ lI(IK) implying
that lP , fP and lT , fT and lI , fI satisfy the gluing condition in Sets.
From Fact A.7 follows that there are functions b∗P : PB → PK with lP ◦ b∗P = bP ,
b∗T : TB → TK with lT ◦ b∗T = bT , and lI : IB → IK with lI ◦ b∗I = bI .
We de�ne an AHLI morphism b∗ = (b∗P , b

∗
T , b
∗
Σ, b
∗
A, b
∗
I) with b∗Σ = l−1

Σ and b∗A = l−1
A .

The signature morphism l−1
Σ and algebra morphism l−1

A exist because l ∈ M and
hence lΣ and lA are isomorphisms.
For the well-de�nedness of b∗ it remains to show that b∗ preserves pre and post
conditions, conditions, types, and markings.

types:
Let p ∈ PB and let p′ ∈ PK with bP (p) = lP (p′), i.e. b∗P (p) = p′.
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Then we have

b∗S(typeC(p)) = b∗S(typeANI (p))

= b∗S(typeANI (cP (p)))

= b∗S(typeANI (eP (p′)))

= b∗S(eS(typeE(p′)))

= e−1
S (eS(typeE(p′)))

= typeE(p′)

= typeE(c∗P (p))

pre and post conditions:
Let t ∈ TB. Then there is

(l]Σ ⊗ lP )⊕((b∗]Σ ⊗ b
∗
P )⊕(preB(t)))

Lemma A.2
= ((lΣ ◦ b∗Σ)] ⊗ (lP ◦ b∗P ))⊕(preB(t))

= ((lΣ ◦ b∗Σ)] ⊗ (lP ◦ b∗P ))⊕(preB(t))

= ((lΣ ◦ l−1
Σ )] ⊗ (lP ◦ b∗P ))⊕(preB(t))

= (id]ΣL
⊗ bP )⊕(preB(t))

= (b]Σ ⊗ bP )⊕(preB(t))

= (preANI (bT (t)))

= (preANI (lT ◦ b∗T (t)))

= (l]Σ ⊗ lP )⊕(preK(b∗T (t)))

Since l ∈ M is a monomorphism and _ ⊗ _,_] and _⊕ preserve monomor-
phisms, there is also (l]Σ ⊗ lP )⊕ a monomorphism. So the above equation
implies

(b∗]Σ ⊗ b
∗
P )⊕(preB(t)) = preK(b∗T (t))

The proof for the post conditions works analogously.

conditions:
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Let t ∈ TB and let t′ ∈ TK with bT (t) = lT (t′), i.e. t′ = b∗T (t). Then we have

Pfin(b∗]Σ )(condB(t)) = Pfin(b∗]Σ )(condL(t))

= Pfin(b∗]Σ )(condL(bT (t)))

= Pfin(b∗]Σ )(condL(lT (t′)))

= Pfin(b∗]Σ )(Pfin(l]Σ)(condK(t′)))

Lemma A.3
= Pfin((b∗Σ ◦ lΣ)])(condK(t′))

= Pfin((l−1
Σ ◦ lΣ)])(condK(t′))

= Pfin(idΣK
)])(condK(t′))

= condK(t′)

= condK(b∗T (t))

markings:
Let i ∈ IB and mB(i) = (a, p).
Then we have

(lA ⊗ lP )((b∗A ⊗ b∗P )(mB(i))) = (lA ⊗ lP )((b∗A ⊗ b∗P )(a, p))

= (lA ⊗ lP )(b∗A,typeB(p)(a), b∗P (p))

= (lA,typeK(b∗P (p))(b
∗
A,typeB(p)(a)), lP (b∗P (p)))

= (lA,b∗S(typeB(p))(b
∗
A,typeB(p)(a)), lP (b∗P (p)))

= (Vb∗Σ(lA)typeB(p)(b
∗
A,typeB(p)(a)), lP (b∗P (p)))

= (Vb∗Σ(lA)typeB(p)(l
−1
A,typeB(p)(a), bP (p)))

= ((Vb∗Σ(lA) ◦ l−1
A )typeB(p)(a), bP (p))

= (a, bP (p))

= (bA(a), bP (p))

= (bA ⊗ bP )(a, p)

= (bA ⊗ bP )(mB(i))

= mANI (bI(i))

= mANI (lI ◦ b∗I(i))

= (lA ⊗ lP )(mK(b∗I(i)))

and since l ∈ M is a monomorphism and _ ⊗ _ preserves monomorphisms,
there is also (lA ⊗ lP ) a monomorphism. So the equation above implies

(b∗A ⊗ b∗P )(mB(i)) = mK(b∗I(i))

Hence b∗ is a well-de�ned AHLI morphism. The required commutativity follows
from the commutativity of its components. So l and f satisfy the categorical gluing
condition.
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