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Abstract. The Minimum Cycle Basis (MCB) Problem is a classical problarnombina-
torial optimization. AnO(m?n + mn? log n)-algorithm for this problem is known. Much
faster heuristics have been examined in the context of akpeactical applications. These
heuristics restrain the solution space to strictly fundatalecycle bases, hereby facing a
significant loss in quality. We complement these experimesitidies by giving theoretical
evidencewhystrictly fundamental cycle bases (SFCB) in general mustbehmvorse than
general MCB.

Alon et al. (1995) provide the first non-trivial lower bourar the minimum SFCB prob-
lem, which in general is NP-hard. For unweighted planar szgjgad graphs they achieve
a lower bound of22nlog, n — O(n), where 22 ~ L.

Using a new recursive approach, we are able to establistssesuially better lower bound.
Our explicit method yields a lower bound of onﬁmlog2 n — O(n). In addition, we pro-
vide an exact way of counting a short SFCB that was presentédan et al. In particular,
we improve their upper bound froBm log, . + o(n log n) to only 3nlog, n — ©(n). We
thus reduce the optimality gap for the MSFCB problem on plagaare grids to a factor
of 16—compared to about900 being the former state-of-the-art.

As a consequence, we conclude that for unweighted planarsauid graphs the ratio of
the length of a minimum SFCB over a general MCBIflog n).

1 Introduction

The cycle space of an undirected graghs the vector space spanned by flte1}-incidence
vectors of the circuits ofs. Prominent—though specialized—cycle bases are the oatsith
induced by the chords of spanning trees. These particutde dases are called strictly funda-
mental cycle bases.

Typically, cycle bases serve as input for algorithms thatesearious practical applications.
These arise in the fields of chemistry ([3]), electrical eegring ([6]), or periodic schedul-
ing ([16]). More precisely, traffic light scheduling ([15]) and railway timetabling ([19]) are
prominent applications of periodic scheduling. In geneifa¢ computation time of the algo-
rithms for solving the above practical problems increas#is e length of the used cycle basis,
i.e. the sum over the weights of all the edges of the basiait&xdHence, one is seeking for min-
imum cycle bases as a preprocessing step for solving thgsmtamt real-world applications.

In 1987, Horton ([13]) presented the first polynomial altfom for the minimum cycle ba-
sis (MCB) problem. Its complexity ab(m?>n) has been reduced in a series of recent contribu-
tions ([4,7,11]). The presently fastest algorithm has hresented in 2004, and it tak@%m>n+
mn?logn) ([14]). Despite this improvement, there are real-world lmggpions for which the
computation time is still enormous. Therefore, severataesh groups seek for faster algo-
rithms. Recently a new exact algorithm has been present&{).(But it has worse asymptotic

* Partially supported by the DFG Research CentarMEON in Berlin and by the DFG Research Train-
ing Group GK-621 “Stochastic Modelling and Quantitativeafysis of Complex Systems in Engineer-
ing” (MAGSI).



complexity. Yet, in an empirical study it outperforms earkalgorithms, however, only on a very
specific class of graphs. Alternatively, heuristics wenesidered. Speed-ups from those heuris-
tics for the MCB problem would pay off, if the applicationslypiface a minor slow down when
fed with slightly worse cycle bases.

There are many heuristics for the MCB problem ([2,9,10,183t are much faster than
the best exact algorithm. However, each of them is limitedrty a subset of cycle bases of
undirected graphs. More precisely, these heuristics m®eaeakly fundamental cycle bases—
as they have been introduced by Whitney ([22]) in 1935—omnesteictly fundamental cycle
bases. The complete map of subclasses of cycle bases is idrflii.

There have been several empirical studies in which heesi$tir short cycle bases were
compared. It was observed that heuristics that are resdrict strictly fundamental cycle bases
perform much worse than heuristics that also consider wedakidamental cycle bases ([10]).
Similarly, in [2] it was observed that the gap between a minimweakly fundamental cycle
basis and the strictly fundamental cycle bases that werergted by different heuristics may
become very large. So far, in the context of MCB no theoretfdanation for these effects had
been given.

It was shown already in 1982 that it is NP-hard to compute damim strictly fundamen-
tal cycle basis (MSFCB) of an (unweighted) undirected grd8l). In 1995, Alon, Karp, Pe-
leg, and West ([1]) established that an MSFCB of the planaas®gridG on n vertices has
length2(nlogn). In more detail, its length is bounded from below by abgfitn log, n. Ini-
tially, the result of Alon et al. ([1]) has been obtained ie ttontext of a graph game in which
tree spanners are constructed. On the positive side, Alah ¢1]) introduce a family of span-
ning trees which induce short SFCB. They conjecture thaetlspanning trees are “essentially
optimal, with2n log, n + o(nlog n)” being their length.

Contribution. We present a new way of computing lower bounds on the lengéhMEFCB of
planar grids. With our recursive method we substantiallgriowe on the presently known lower
bound: fromyg==nlog, n — O(n) to only nlog, n + O(n).® Notice that in Section 3.1 of
this paper we conduct a concise analysis providing a lowenbaf -1 log, n + O(n), while

a better—though more technical—approach is the main is[sBecctilc?n 3.2.

Moreover, in Section 4 we perform an accurate counting fesgianning trees that have been
considered in [1]. We find out that the exact length of thesesnis;—‘n log, n—©(n), compared
to 2nlog, n+o(nlogn), which has been conjectured in [1] being “essentially optiftereby,
we cut the optimality gap from abo@900 to only 16.

Finally, comparing our results and [1] to the unique genmiaimal cycle basis of the planar
square grid—having lengiB (n)—there is a non-constant asymptotic gap. We conclude that th
bad quality experienced in approximating minimum cyclegsathrough the use of heuristics
focused on strictly fundamental cycle bases ([2,10]) ibeatdue to the structure of strictly
fundamental cycle bases than due to a fault of the partitidaristics.

2 Preliminaries

We consider cycle bases oReconnected simple undirected graph= (V, E). Definen = |V,

m = |E|, andv = m — n + 1, wherev is thecyclomatic numbepf G. Let C be a circuit
(cf. [20, Ch. 3]) inG and denote by« its {0, 1}-incidence vector. Theycle spac& of G is

the following vector subspace over &,

C := span{~¢ | C circuitin G}) .

® Note that the authors of [1] were not trying to optimize thestants.



A cycle basisB of GG is a set ofv circuits of G whose incidence vectors are a basi€offhe
length &(B) of a cycle basis of an unweighted graph is definedbéB) = > . 5 |C|. A
minimum cycle basi@MCB) of a graphG is a cycle basis of; of minimum length.

A set of circuits{C1, ..., C, } such that

Ci\(01U~-~UCZ-,1)7é(Z)7 Vi=2,...,v

is clearly a cycle basis. We call such a bageakly fundamentaNotice that these were already
considered by Whitney ([22]) in 1935.

Let 7" be some spanning tree 6f. Depending on the context, we either regdrdas a
subgraph ofG or as a set of edgeE C E. Fore € E \ T, we denote byC'r(e)—or C. for
short—thefundamental circuithate induces with respect t6, i.e. the unique circuit iU {e}.
To T are associated fundamental circuits. These form a cycle basis which isedadtrictly
fundamentalHere, we may writed(T") instead of?(B). A minimum strictly fundamental cycle
basis(MSFCB) has minimum length among the set of strictly fundatakcycle bases.

In general, strictly fundamental cycle bases are a profgesedwf weakly fundamental cycle
bases, which in turn are a proper subset of general cycle lohsmdirected graphs. Moreover,
in general none of the three corresponding minimizatiomlems coincide ([17]).

At the same time, given a spanning tréeof G and any edgg’ € 7', the graphl’y :=
T\ {f} is a forest comprising precisely two trees with vertex &tand?,» respectively. We
denote bys(Sy) the set of edges iy with precisely one end-vertex ifi;. This setd(Sy) is
called thefundamental cubf f with respect tdl'. ToT" are associated — 1 fundamental cuts.
These form a cut basis (or co-cycle basis) which is cadkeidtly fundamentalWe denote by
W(T) := > cr [6(S¢)| the length of this strictly fundamental cut basis.

With N € N, the planagrid graph Gy y is the graph ol = {1,... N} x {1,...,N}
with

E={{G7),0"5)} : li—d[+1i = J'1=1} = {{u, 0} : [lu—v|ls = 1}.

In a graphical representation, e.g. in an embeddingZAtahe first index of a vertex represents
its z-coordinate, the second index fiscoordinate. The grap&'y ny hasn = N? vertices and
containsm = 2- N - (N — 1) edges. Its cyclomatic numberis (N — 1)2. We collect some
well-known simple properties of the cycle space of suchgyrid

Proposition 1. The planar grid graph y y has a unique minimum cycle badis In B each
basic circuit contains precisely four edges, thBiSB) = 4v = ©(n). The basisB is weakly
fundamental. But fofv > 4 B is notstrictly fundamental.

Now, consider the dual of an embedded planar g@pkvhich we will denote byG*. For
a primal grid of dimensionV x N embedded int2, the graphG* is again the graph of a
square(N — 1) x (N — 1) grid plus a further vertex'>, which corresponds to the outer face
of the initial embedded planar graph. This vertex is adjatemll border-vertices of*. For
the corner verticeél, 1), (1, N — 1), (N —1,1), and(N — 1, N — 1) there exist two parallel
edges with the other endpoint beia®. Recall from [20, Ch. 3] that the edge set®fcan be
identified with the edge set af*.

Consider a spanning trgeof G, ; and its dual counterpart, that we denotelliy In fact,
T* can be understood as the complemerif'pés it contains the counterpart@i of each edge
in E(Gn,n)\T. The grapt™ is a spanning tree @, although it is not necessarily connected
when restricted ta-* \ {F'*°}.

The following key observation is well known (e.g. cf. [20, .G3]). There is a one-to-one
correspondence between fundamental circuits Wrin Gy y and fundamental cuts w.rit*



in G*. More precisely} C E(Gy ) is a fundamental circuit w.r.f" in Gy if and only if
F itself is a fundamental cut w.r* in G*. Therefore, bounding sizes of cuts in the dual is the
same as bounding sizes of circuits in the primal, in paricul

&(T) = 0(T*). @)

3 Lower bound

In this section we first show that every strictly fundameuwtadle basisB of the squareV x N
grid with n = N? vertices satisfied(B) > --nlog, n + O(n). Hereby, our direct approach
substantially improves the lower bound that has been oddaim[1, Thm. 6.6]—by a factor of
more thar245. In Sect. 3.2 we go one step further and establish a Iowerdnofnfgn logy n +
O(n).

In contrast to [1] we decided to tackle the lower bound probfeom the dual side. Here,
some structural coherences, e.g. as elaborated in Lemman2yec seen better. For sake of
convenience, we only consider grids of dimensién- 1 = 2% + 1, with k integer. Note that
this is the dual dimension, antf (G*)| = N? — 2N + 2. The corresponding primal grid is of
sizen = (2% + 2)2. With this particular definition ofV it is much easier to follow the recursive
approach that is to be explained.

The main ideas of our proof are as follows. We consider arirarigispanning treé&’ of the
primal grid Gy . Instead of counting the length of the strictly fundameutadle basis that it
induces, we look at the length(T™*) of the strictly fundamental cut basis of its dual tfEe In
several iterations—which will be organized in levels—wasider sub-paths df* that start at
certain specified vertices of the dual grid. Each edge ofetlpashs induces a fundamental cut.
Yet, we consider only those fundamental cuts that are intlbgespecific subsets of the edges of
these paths. We will denote these subsets as pseudo-pattmmd-such cut, Lemma 2 provides
us with a lower bound on its contribution (7). As pseudo-paths of different levels do in
general intersect, in Corollary 5 we finally identify valubat we may sum ovall levels.

As a first important tool we introduce pseudo-paths, the almgntioned subsets of paths.

Consider two vertices = (i, j) andv = (i, j') in G* \ { F*°} such that the unique, v-path P

in T* does not contaid™> andi < /. We now define a vertical and a horizonpsleudo-path
which exclusively consist of vertical and horizontal edgespectively, that “lead from to v”.
More precisely, to obtain the horizontal pseudo—pﬁ:ﬂjﬂv of P, we check whether = ¢/, in
which case we seva = (). Otherwise, starting fromx we traverse the patR until we reach
the first edgef with end-verticesv; = (41,71) andwy = (ig, j2) such that = iy, j1 = ja,
andliy — i'| = |iy — i'| — 1. Now we recursively defin@ := {f} U P . We define the
positionof an edgef’ in va as

o/ H . 17 If f/ = f’
poqf ﬂPu,v) - {poqf/,PJi’v) + ]_7 OtherWise, i.ef/ S PH

wo,v "

An equivalent procedure defines the vertical pseudo—ﬁ‘g};p Observe that in generﬁfw U
PY, #P.

As an example, consider the dual gréphin Fig. 1(a) and the black vertexin the center
of the grid. Letv be the penultimate vertex of the F'>°-path. With this,PTX , exactly consists
of the black edges, highlighted in Fig. 1(e).

Lemma 2. Letu = (i,5) € V(G*) \ {F*} be some vertex in the dual grid and letbe a
vertex on the (unique) path between: and F*° in T"*. Further, letP, , C P be a pseudo-path
between, andv. For the sizes of the fundamental cuts there holds

10(Sp)| = 2+ posf, Puw), Vf € Puo. ()



Proof: Without loss of generality, regar®, , as a horizontal pseudo-path, and assume
(7', 7") wherei’ =i + | P, ,|.

Consider some edgg¢ € P, , and the induced sef; C V(G*) such thatu € S; and
F> € Sy, where§(Sy) is the corresponding fundamental cut. As we consider a tiota
pseudo-path theg-coordinate of both vertices of is equal and their-coordinates aré +
podf, P.») — 1 andi + poqf, P, ,,), respectively. Remember th&, , is contained in the
uniquewu, F>°-path P of T*. Therefore, all vertices betweenand f are contained irb;. In
particular, for each integer with i < o < i + pogf, P, ,,), there exists a vertex ii; with «
asz-coordinate.

Out of those vertices iy with z-coordinatex consider the vertex™* (w™ir) with maxi-
mal (minimal)y-coordinate. Note that™** andw™™ may coincide. Now, ta™#* (w™") one
edge in the cub(Sy) can be assigned, because the dual vertex directly aboven(pekat the
latest/">>—is not included inS;. Hence, for each we get a contribution of two distinct edges
and therefore a lower bound 2f pog f, P, ,,) on|§(Sy)| in total. |

Note that in general (2) does not hold when choosing the xerseich that it ismotcontained
in the uniqueu, F*°-path in the dual tree. Furthermore, (2) does not hold eitffegn consid-
ering all the edges of aardinary path P instead of one of its two pseudo-paths. Moreover,
the estimate in (2) can be far from being tight. Consider o E{f) the vertex: having Carte-
sian coordinate§l6, 2). In a vertical pseudo-path that startsuethe first edge only contributes
with 2, although it induces a cut of lengtl3.

In order to employ this powerful tool for estimating sizescots, we introduce some more
definitions. An important concept for our approach is theatise between two dual vertices.
Let the grid-graphG* \ { F°°} be embedded if? in the straightforward way and let= (i, 5)
andv = (¢/,j’) be vertices of it. Then thdistanced,, ,, is defined asnax{|i — '|,|j — 5’|},
or [lu — v||. Itis a simple observation that for any two distinct versiegv that are connected
by a pathiril™\ { F>°} at least one of the two pseudo-paths frono v has precisely,, , edges.

Next, we a priori tag specific vertices which are organizediat we will call levels. In a
dual grid with(N —1)% = (2* + 1) - (2" + 1) vertices we establishdifferent levels of vertices
as follows. Thdevel k only contains the unique grid’s center vertex. The cenégtices of the
four quarters of the grid (which overlap on their borders)stdute levelk — 1. Recursively,
each of these four quarters is again subdivided into four epgsvters whose centers define the
next levels. Hence, levél < ¢ < k consists oft*~* vertices.

We next assign boxes to level-vertices. These boxes ardlyxhe quarters which were
used to define their center-vertices as belonging to a celdael—technically, for a vertex
of level ¢ with u = (i,5) € V(G*) \ {F*}, we define itsbox as the set of dual vertices
B, = {v: dy. < 271} Further, we call the seftv : d,,,, = 27!} theborderof B,,.

We illustrate the arrangement of the levels in Fig. 1(a).r€hthe64 = 4*~! level-1 vertices
are marked as small light-grey circles. With increasinglévdex the (every time fewer) level-
vertices are sketched with increasing intensity culmigatvith the one levelt vertex in the
grid’s center. In Fig. 1(b)-1(d), the boxes of the levelties are indicated as thin lines. In the
figures these are levels2 and3. In Fig. 1(e), the box of the levelvertex constitutes the whole
dual graph, except faF>.

We count along the following pseudo-paths. Every leveteser serves as the starting point
of one pseudo-path. We then consider the unique-path P in G*. Every such path has
to intersect with the border of the bax,. With v being the first such border vertex, for every
level-vertexu we denote byP, , the longer one of the two pseudo-paths frarto v. If v is a
level-£ vertex, ther| P, | = 21 = d, ,.



3.1 Asimplen log n lower bound

Lemma 2 suggests that we can count for every edgeP, ,, a contribution of2 - poge, P, ,,)

to the global lower bound. However, as pseudo-paths ofréiffielevels may intersect (cf. Fig-
ure 1(c)) this may over-estimate the lower bound. In faayreheven exist spanning trees such
that one edge is contained in a pseudo-patévefysingle level.

We solve this major inconvenience by voluntarily countiegd for every occurrence of an
edge on any pseudo-path. On the one hand, in a sense thetestirhamma 2 is tight, because
there exist spanning trees such that for every level thastsean edge for which we only need
to add two and our estimate emmeets the size of the actual cut, cf. Fig. 3(a). On the othed ha
with our reduced estimate we may eventually sum @eryoccurrence of an edge on some
pseudo-path. The following two lemmas are the key obsematio justify this approach.

Lemma 3. Let u # u' be two level-vertices of levelsand ¢/, respectively, such that their
pseudo-path®, , and P, ,» share some edge Then? # ¢'.

Proof: The claim follows from two facts: First, every pseudo-patiyaonsists of edges within
its box. Second, boxes of the same level only intersect antibeders. O

Lemma4. Letu # u' be two level-vertices of levelsand ¢/, respectively, such that their
pseudo-path$, , and P, ,» share some edge Assuming w.l.o.g. that < ¢ < ¢’ < k, there
holds

poge, Py ) > 2-pode, P, ). 3

Proof: Sinceu is a level# vertex, there holds p¢s, P, ,,) < 2=1 Hence, it suffices to show
that poge, P,/ /) > pose, P, ) + 271

By Lemma 3 we know that in fact < ¢'. Denote by(s, j) the coordinates ofi in the
dual grid. Without loss of generality we assurfg,, to be a horizontal pseudo-path leaving
its box B, at the eastern border, i.e. atcoordinate; + 2°~!. Then the endpoints of have
z-coordinates + poge, P, ,) — 1 and: + pode, P, ), respectively.

A simple but important observation is that theF">° and«’, F**°-paths coincide precisely
from their first common vertex on, at the latest from the etalgoof e on. In particular, they
traverse their common edges in the very same direction. @utosthe pseudo-paths. Hence,
P, is a horizontal pseudo-path leaving its By at its eastern border, too.

Ase € P,, N Py, and? > ¢ we obtainB, C B,.. On the one hand, by the definition
of P, , this path contains only edges withcoordinates at least as large as those of the center
vertexu of its box. On the other hand, because®f C B, the pseudo-patt¥,, ., contains
2/=1 edges with both of their-coordinates in the st —2¢~1, ... i}, thus not being contained
in P, ,. Hence, po&, P, /) > poge, P, ) + 2¢=1 which proves (3). O

Corollary 5. Lete be an edge which is contained in pseudo-pdths . . ., P of levels/y, . . ., /s,
wherel, = max{/y,...,{s}. There holds

s—1

poge, P**) > > " poge, P"). 4

i=1

Proof: The claim follows simply by applying Lemma 4 inductively. O
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Fig. 1.In (a) a dual tred™ is sketched. The edges that overhang the grid indicate thmections taF>°.

In (b)-(e) one can see which partsBf are used for bounding the according cut-lengths in each-leve
iteration. Those are depicted using black lines, whereagiéy parts stand for pseudo-paths of previous
levels. Note that the pseudo-paths do not necessarilyfetantthe vertex they belong to. In addition, the
boxes of the vertices of each iteration are illustrated firwe illustrate what a small part of the tree is
actually taken into consideration to obtain the desireceiomound.



Now, recall from Lemma 2 that for every edgéwice the position value in particular on the path
of the maximal level, thate occurs on is a valid lower bound for the length of the fundatalen
cuté(S.) induced bye. Finally, by Corollary 5 we are maintaining a valid lower lnauwhen
summing oveeverypseudo-pattP’: that the edge occurs on, but only its undoubled position
values poge, P%), i.e.

@ @S
16(S)| > 2 posle, P*) > > posle, P%). (5)

=1

Theorem 6. LetG y n be the planar grid graph witl = N2 = (2* + 2)? vertices. For every
spanning tre€” of G, there holds

d(T) > %nlogQ n+0(n). (6)

Proof: Let E(P) be the set of edges that appear on some pseudo-path codegptmthe dual
treeT* to T'. Then we can conclude

k
OT)=w(T*):= ) 16(S) = D 16S)l=> > > 16(S)
{=1

e€E c€E(P) Pu o€ Pu,y

w level-£ vertex £ max. level fore

5) &

>3 ) Y poge, Pu).
=1

Pu,v e€Py v
. level-£ vertex

Since on level there existt*~¢ pseudo-paths of lengttf—! each, we finally conclude

k 2¢—1 k
®(T) > 241«—@. ZZ _ Z4k—£. (% 4t +2£—2)

1 i=1 =1

1
WL RE 1 (4F —2F) = (V- 2)%log, (N — 2) + O(N?)

3.2 Arefined analysis

In this section we perform a refined analysis using our conaiepounting along pseudo-paths.
More precisely, we will show that

&(T) > %nlogn +O(n).

In order to obtain a simple asymptotic proof of théogn lower bound in Section 3.1 we
decided not to take the risk of over-estimating contrimgi@f edges. In fact, in this section
we will show that we do not have to abandon the facto? ¢¢f. Lemma 2) as we did before.
Of course, this requires a more detailed examination on ticercences of edges in different
pseudo-paths.

The following Lemma 7 quantifies how much the edges of a ps@adio of some level
vertexu can contribute to our objective function. This follows ditlg from the argumentation
in the previous section. We will denote this amounpl§). Thereafter, we introduce a correction
term ensuring that these very edges do not contribute afeatit level as well.



Lemma 7. For a vertexu of levell there exists a vertexand a pseudo-patR,, , = (f1, ..., fa)
of length2=1. Then, the sum of the sizes of the fundamental cuts inducte fggges of, .,

is at least
22—1

1 _
p(l) =" 2~pos(fi,Pu,v):1-4f+2f 1
=1

The crucial point in the refined analysis is now the quantificeof the correction term; in
detail, this will be discussed in Lemma 9. Consider the weunten levell. In order to count the
whole pseudo-path af as proposed in Lemma 7, i.e. without “loosing” the factoRafs in the
previous section we will show (Lemma 9) that it suffices totsatt

Zp(i) (7)

wherep(i) is exactly the contribution of an entire pseudo-path atllevidere, ‘suffices’ means
that by subtracting (7) we ensure that no edgeHyn, is charged with more than its actual
contribution. We have to take care of this, since edge3,qf may been considered and counted,
respectively, in previous levels befote

With this, Lemma 7 and term (7), we then deduce in the follgniray.

k —1
B(T)=W(T*) =Y [6(S)| = D [6(Se)| =) 4+ (p(é) - Zp(z‘)) (8)
=1

eclE e€E(P) i

i=1
k 2f-1 0—12771
>y 4kt (Z 2i-) Y Qi)
=1 i=1

=1 i=1

[
™=

1
gk—t <6 N 16)

—

AR k4 0(4b)

(N =2)%logy(N —2) + O(N?)

— —_
e Rl

= — n-logon+ 0O(n)

Thus, we strengthened the bound of Theorem 6.

Theorem 8. Let Gy v be the planar grid graph witm = N2 = (2% + 2)2 vertices. For every
spanning tre€” of Gy, there holds

d(T) > 1—12nlog2 n+ O(n).

Still, it remains to show that the term stated in Eq. (7) irdleas the desired property. In
particular, the second inequality in (8) has to be proven.



Lemma9. Let u be a vertex of levet. Further, let P, , be the pseudo-path of vertexof
length2‘~!, wherev denotes the border vertex of Then, when charging(¢) as the contribu-
tion of P, ,, and subtractinng:; p(i), no edge ofP, , is charged with more than its actual
contribution tow (7).

Proof: At first, we assume w.l.o.g. thadg?, , is a vertical pseudo-path that leaves its Bx
via its northern border. All other cases follow the very sargumentation with adjustments of
directions.

For providing a more accessible line of argumentation itafpful to introduce two new
definitions. First, letV H (u) define the “northern hemisphere” of the b&, of u = (i, ).
Thus,NH(u) = {v = (i',5") : duo <271, 5" > j}.

The second new definition now provides subsets of the neorthemisphereVH (u). Let
So = 0 and define setsS; fori = 1,...,¢ — 1 recursively as follows.

Sii=NHw) n |J NH(2)

zis
level— (£ —1)vertex,

¢S,

Geometrically, the5; can be seen as “stripes” withiM H (u) lying one upon the other each time
doubling their height, when decreasingy 1.
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Fig. 2. An illustration of the sets;, i = 1,...,4, within the northern hemispher€ H (u) of the level5
vertexu.

Now, we come back to the actual argumentation. Remembenex@asidering the pseudo-
path P, ,, of the level? vertexw. If no edge ofP, ,, has contributed before, we surely do not
overestimated the contribution of the edged™f, when even subtracting the correction term.
And, as stated before in Lemma 3, edge$’pf, cannot be contained in other pseudo-paths of
level /. So, we can assume that some edges were included in prewweudg@paths.

At this time, one has to observe the following.

Fact 10 Let f be an edge of, , that is contained in a previous pseudo-pd&h ThenP’ must
be a vertical pseudo-path, too.

Whereas Fact 10 simply states a trivial observation, tHeviihg Fact 11 follows directly
from the definition of pseudo-paths.

Fact 11 It holds that?, , C N H (). Furthermore, letf be an edge of, , that is contained
in a previous pseudo-path’ of vertexz’. Then,f € NH(Z').



We will now argue that according to its occurrence in one &f $etsS; we can bound
from above what an edgg of P, , may have contributed before. As already mentionegd,
contains2‘~! edges. By the definition of the northern hemispheres each;sista union of
northern hemispheres of vertices of previous levels. Wiithand Fact 11 it follows thagt must
lie within one of theS;, unlesos(f, P..,) = 1. In general, it is easy to notice the following.

Fact 12 Out of the2‘~! edges ofP, , exactly2~2 are contained inS;, 2°~3 edges inS,, . . .,
1 edge inS,_;. Moreover, it remaing edge—the first one oR, ,—that is not contained in any
of the S;.

What is still missing is the concrete relation between farteeelsj, 1 < j < /¢ —1, and
the setsS;. This is explained in the next fact which itself is a consemas of Fact 11 and the
definitions of the northern hemispheres and the levels ieigén

Fact 13 Let f be an edge of, , that is contained in the se&t; for somej € {1,...,¢ - 1}.
Then, the highest level in which the ed@gemay have contributed is levél- ;.

Because of Lemma 4 we need only be interested in the highestreace (w.r.t. the level
index) of eachf € P, , individually, since all other occurrences are dominatediy term.
Thus, we deduce from Facts 12 and 13 that @ly? edges out of the‘~! edges ofP, , may
have contributed within levefl— 1. Further, only2‘—2 of the remaining edges d¥, , may have
been counted within leveél— 2 and so on until we observe that there exists just one edgehwhic
has been counted within level It even remains one edge that cannot have been counte@befor
at all. More formally,2=7~! or less edges contributed within lewel- j. So, we can bound
from above the sum of the previous contributions of edge®,of from within all the levels
1 < j < ¢—1,orwithin S,_;, respectively. Finally, observe that all ta&/~! edges inS,_;
must have had a different position within their pseudo-pgtist because otherwise there would
exist “parallel” edges irP, ,,. Hence, it follows that from within each levgll < j < ¢—1, the
edges ofP, , may have contributed only(j) before. This completes the proof of Lemmar9.

4 Provably Good Spanning Trees

Recall thatin [8] it had been proven that the minimum styitihdamental cycle basis (MSFCB)
problem is NP-hard for general graphs. For planar grid gsdpé first family of spanning trees
that induce SFCB of lengtbn. log, n+ O(n) was published in [21]. Later, in [1, Sect. 6.1] other
spanning trees have been considered. We will recapitiiatedonstruction in this section. The
authors of [1] prove that the length of their correspondigigle bases is bounded from above
by 2nlog, n 4+ o(nlog, n). Moreover, they conjecture, that this is “essentially wyti’ ([1]).
Though, in the remainder we perform a careful counting o$é¢hgpanning trees and show that
the lengths of their cycle bases are in fact only

%n logyn — O(n). 9)

In combination with the results presented in Section 3 weckme that these spanning trees
miss the optimum only by a factor @6, compared to abou900 achieved by [1].

As mentioned before, also several heuristics for the MSF@BIpm on general graphs have
been proposed (see [2,8,9,10]). One of these approachasesd bn a very natural local search
neighborhood ([2]). Here, we establish that an algorithat tptimizes over this neighborhood

can end in local optima that miss the global optimum by a faat® (ﬁ)

logn



In [2], the following edge swap operation is defined: [Zebe some spanning tree 6fand
lete € T If f € E'\ T is contained in the fundamental cut inducedehyith respect tdl’, then
the treeT’ U {f} \ {e} is said to be obtained by auge swapThe neighborhood of a spanning
treeT is then simply the set of trees that can be derived by applyimgedge swap operation
toT.

Unfortunately, this simple neighborhood is not exact,there are local optima that do not
constitute a global optimum. We provide one such examplagn3{a). One can easily check
that no edge swap will ever decrease the length of the camnelipg strictly fundamental cycle
basis. In particular, folV odd the length of these strictly fundamental cycle bases is

= _. 1 13 .
( ZZQJ+2 Z(Qz+2))—§N3+2N2—?N+2—8(n2).

i=1 j=1 =

By (9) and Theorem 6 or, alternatively, with the asymptogisults in [1], we conclude that the
edge swap neighborhood could leave an optimality gap é%) on planar grids.

Now we will present the aforementioned concise countinghef $FCB that are induced
by the spanning trees proposed in [1]. Hereby, we improvaritial estimate of2n log, n +
o(nlogn)to only 4nlog, n—©O(n). Our notion of these trees is twofold: As they are recurgivel
defined, they are well structured. However, they do not eeastitute local optima with respect
to the edge swap neighborhood. Thus they might not be thectwsiguration coming into
mind—in particular when considering small dimensions.

The definition of the provably good spanning trees, as theg baen introduced in [1], is
somewhat similar to the approach that we followed in Sec8idn establish a lower bound on
the value of an MSFCB. Note that this time we find it more coiseito set the dimension of
the grid toN = 2%, wherek > 1 is an integer, and, instead of looking at the dual grid, wepkee
a primal perspective. Again, we assutig v to be embedded inté>.

For N = 2 the only edge that the spanning trBedoes not contain i$(1,1), (1,2)}. For
each integek > 2 and N = 2* we define the spanning trd&; recursively. Consider the four
sub- grldsGN N which partition the original grid’s vertex set. To defifig, we first adopt the
edges of the four copies GTN We have to add three more edges to connect these four cednect
components. We do so by placing the ti&einto the center of the grid: . . We refer to the
bottom-right vertex: of the copy ofT; as thebeacon vertexf this recursive step, and label it
with the grid’s levelk, BV (u) := k. Observe that a beacon vertexwvith label BV (u) = ¢ is
adjacent with a face whose dual vertex served as a leveitex in the previous section.

Fact 14 T is symmetric with respect to the central horizontal axisyihg height% when
consideringR?.

We partition the set of edges 6fy v into two subsets: those which have both endpoints in
the same@ X % subgrid, and those having the endpoints in different salsgithe fundamental
circuits that are induced by the former set of edges exalystonsist of edges of the particular
subgrid. Hence, to comput® T ) we may make use of the recursive structurd gf. To that
end, denote by, the set of edges = {u, v} for which v andv are contained in different
subgrids ofG v, v, i.e. the “middle cross” in Fig. 3(b). Withf(N) := .. [Cry(e)| there
holds

4, if N =2,and

P(Tn) = {4 L& (T%) + f(N), otherwise (i.eN = 2*, k > 2). (10)

For an edge: € E), we will partition its fundamental circui€r,, (e) into paths between
beacon vertices of adjacent levels. Due to space limitatiwa have to focus on presenting
properties ofC'r,, (e) rather than proving them in detail.
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Fig. 3. (a) The spanning trees that were investigated in [5] turnt@ute locally optimal with respect to
the edge swap neighborhood; (b) the representdtivef a family of trees that induce SFCB with length
4/3-nlogn+ O(n) as proposed in [1, Sect. 6.1]; (c) a detailed view on pari&ef The “northern parts”
of the fundamental circuit§'r,,, (e;) visit beacon vertices that have adjacent labels.

Fact 15 Let u, v be two beacon vertices witBV (u) = ¢ and BV (v) = £ + 1 such thatu is
contained in the subgrid that we associate with the vertéor the uniques, v-path P, ,, in T
there hold§ P, ,| = 2°.

For an edgec € E); we denote by™**(¢) the maximal value strictly smaller thansuch
that the fundamental circuir, (¢) contains some beacon vertexvith BV (u) = £™**(e). To
assess the value ¢f V) we start by considering the set, C F, of edges whose vertices both
havez-coordinates at mos¥, i.e. the “left arm” of £,,. We definef(N) := Yecr, [Cry(e)l

Fact 16 Lete = {(4,7), (4,5')} € E such thatj = j' + 1, i.e. the verteXi, j) is contained

in the “north-west” subgrid ofG x n, cf. Fig. 3(c). Letr be the sequence of beacon vertices
that are contained in the uniqug, j), (', 7/)-path P in T'y. There exists a subsequence=
(u1,us,...) ofr such that

i [ 1 GD (e G0 2 (e — 1 207 (e)
BV(u)| 1 GO () D 1 k

and the unique paths iy between subsequent beacon vertices partition the set of edges
of P that occur until the vertex,. jmax(.y—only the first edge of this subsetpossibly is not
covered by one of these paths, cf. the cir€uit, (e2) in Fig. 3(c).



Combining Facts 14, 15, and 16, we are in the position to céenine length of the funda-
mental circuitCr,, (e) induced by an edge € Er, simply in function of¢™#*(e).

Fact 17 For e € E;, we haveCr, (¢)| = 4 - (ZZZT(EH 25) +54£1< 2@+ g,

Fact 18 There are2‘~! nontree edges € E;, for which/™#(e) = ¢, wherel < /¢ < k.

Together, these two facts provide us with

k—1
. _ 2 10 2 10
— < =1 [ot+2 _ Ak ok AU 2 2
FIN) = >~ [Cry(e)] < (1;:12 (2 2)) +a= 4" 2" = NP N (1)

ecEy,

Now, observe that every circuit that is induced by an edgeE,, \ E;, can easily be associated
with a fundamental circuit that is induced by an edge FEy. It can be verified that for any
of the3 - % so-obtained pairs of circuits, their lengths differ by atsnone. In other words,

4- f(N) = f(N), or more precisely,

~ N -
v (Jn) - 5 —4) < s <4 ) (12
Plugging (11) and (12) into (10), fa¥ > 4 we obtain
8 40 8
B(Ty) §4-4’>(T%) + NN+ < 4~©(T%) + N2 +15.

Solving the recursion fob(T ) we conclude

8 5 4 5
< - — —N*—-5=— — —n—>5.
O(Tn) < 3N logy N 12N 5 3nlog2n 3" 5
Finally, observe that the errors that we make during ouryasmain Fact 17 and Equation (12)
do not affect the coefficient of thelog n term, in particula(T) > §N?log, N — 4N

Theorem 19. The spanning tree®y for the planar square grid graph with = N2 vertices
induce strictly fundamental cycle bases with lengthn log, n — ©(n).

5 Conclusions

We presented a new technique for computing lower bound$iéominimum strictly fundamen-
tal cycle basis (MSFCB) problem on planar square grids. lhee we performed an accurate
counting of the length of the SFCB that is induced by spantriees that have been introduced
in [1]. In total, we reduce the optimality gap for the MSFCBplem on planar square grids to
a factor of onlyl6—compared to aboui900 being the state-of-the-art so far. We suppose that
stronger lower bounds require case distinctions for dffietypes of spanning trees.

We concluded that approximating minimum cycle bases (M@B)ugh SFCB in general
has to leave a gap aR(logn). This might be critical for several practical applicaticigt
require a short cycle basis as their input.

Notice that in [2] compact representability has been idiedtias an additional feature of
SFCB, when comparing with MCB. However, it is a simple obaton that WFCB can be
represented much more compact than general cycle bases, too

Hence, to approximate MCB we strongly encourage the usewfdties that also take into
account weakly fundamental cycle bases (WFCB). Herebgpodering the complexity of the
minimum weakly fundamental cycle basis problem becomes ma@e important.
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