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Abstract

We present a widely applicable construction recipe for closed-loop feedback controllers

of nonlinear dynamical systems. Its basic idea consists in approximately solving certain

instantaneous optimization problems for the discrete-in-time dynamical system. Easy

incorporation of control constraints is one key feature of the recipe. The instationary

Navier-Stokes equations serve as model application.

In the first part of the work, we introduce the basic construction recipes and present

numerical results for several closed-loop feedback control laws derived with the recipe.

The stability analysis is contained in the second part of the work.

Keywords: Instantaneous control, Closed loop control, Navier-Stokes equations, control con-
straints.

1 Introduction

This research is devoted to the construction, numerical validation and stability analysis of
nonlinear feedback control policies for the instationary Navier-Stokes system. The governing
equations in the primitive setting are given by

(P)






yt − ν∆y + (y · ∇)y + ∇p = Bu in (0, T )× Ω,

−div y = 0 in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,

y(0) = φ in Ω.

The control target is to match the given desired state z in the L2-sense by adjusting the
body force Bu. In this context B denotes an abstract control extension operator and Ω ⊂ R

2

denotes a bounded domain.
In the first part of this work we present a recipe for the construction of nonlinear feedback

control laws of the form
Bu = K(y)

and numerically illustrate their performance. The second part of the work is devoted to the
stability analysis of the controlled systems.

The construction principle works as follows. The uncontrolled Navier-Stokes system is
discretized with respect to time. Then, at selected time instances an appropriate cost func-
tional is approximately minimized with respect to a stationary quasi-(Navier-)Stokes system,
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whose structure depends on the chosen time discretization method. The obtained control is
used to steer the system to the next time instance, where the procedure is repeated. We note
that this approach is related to model prediction control techniques, see [6].
Main result: Given a sufficiently smooth desired state z, and a time discretization scheme
for the Navier-Stokes system, the above described construction process can be regarded as
time discretization of a closed loop feedback policyK, i.e. with S denoting the Stokes operator
and b(y) the nonlinearity of the Navier-Stokes equations we get the controlled system

yt + νSy + b(y) = K(y).

Under certain assumptions on the initial states the controller K steers the Navier-Stokes
system exponentially fast to z. To be more precise, the solution of this system satisfies
|y(t) − z(t)|H1 ≤ ce−κt with some positive constants c and κ.

It turns out that instantaneous control [9, 12] is a special case of our approach. For
applications of instantaneous control we refer to [1, 2, 3, 8, 11, 16, 17, 20], stability analysis
of the method is presented in [9, 10, 12]. Further contributions to closed loop control of
the Navier-Stokes system can be found in [7], where linear body force feedback control was
applied to control the system. The analysis of special case of modelpredictive control of the
Navier-Stokes equations can be found in [14, 15].

The paper is organized as follows. Section 2 contains the analytical preliminaries. In
Section 3 we introduce the basic construction recipe which lead to certain discretized closed-
loop control laws. These are related to continuous closed-loop control laws, whose stability
properties are stated in Section 4. Finally, in Section 5 numerical examples are presented,
which illustrate the theoretical results.

Throughout this work c and C denote global generic constants whose dependencies are
mentioned when necessary.

2 Analytical preliminaries and time discretization

For given T > 0 let Q = (0, T ) × Ω, where Ω ⊂ R
2 is a bounded domain. We set V = {v ∈

H1
0 (Ω)2, div v = 0}, H = closL2(Ω)2{v ∈ C∞

0 (Ω)2, div v = 0} and identify the Hilbert space
H with its dual H ′. The dual space of V is defined to get a Gelfand-triple V →֒ H →֒ V ′.
On H the common inner product is used, and V is endowed with the inner product

(ϕ, ψ)V = (ϕ′, ψ′)H for ϕ, ψ ∈ V.

Moreover, with Z denoting a Hilbert space, Lp(Z) (1 ≤ p ≤ ∞) denotes the space of mea-
surable abstract functions ϕ : (0, T ) → Z, which are p-integrable (1 ≤ p <∞), or essentially
bounded on (0, T ) (p = ∞), respectively.

As control space L2(U) is taken, where U denotes the Hilbert space of abstract controls.
The space U also is identified with its dual. Furthermore,

(1) B : U → V ′

denotes the control extension operator which is assumed to be bounded. The set of admissible
controls is denoted by Uad ⊆ U and is required to be closed, convex and bounded. In order
to formulate the weak form of the instationary Navier-Stokes equations let

W := W (V ) = {ϕ ∈ L2(V ) : ϕt ∈ L2(V ′)}

supplied with the common inner product. Further, we define

H2,1(Q) := {ϕ ∈ L2(V ∩H2(Ω)), ϕt ∈ L2(H)}.

For convenience we introduce the tri-linear form

b(u, v, w) :=

∫

Ω

(u · ∇)v w dx.

2



Controller design 3

Now, for y ∈ L2(V ) the function b(y) defined by

(2) 〈b(y), v〉V ′,V := −b(y, y, v) for all v ∈ V

is an element of V ′ for almost all t ∈ (0, T ) and b(y) ∈ L1(V ) [18, Lemma 3.1]. If in addition
y ∈ L∞(H) holds then b(y) is an element of L2(V ′). This statement is true especially for
functions y ∈ W , since W is continuously imbedded in L∞(H), confer [5].

For controls u ∈ L2(U) the solenoidal form of the Navier-Stokes equations reads: Find the
state y ∈W such that

(3a)

d

dt
(y(t), ϕ)H + ν(y(t), ϕ)V

= 〈b(y) + Bu(t), ϕ〉V ′,V for all ϕ ∈ V and a.e. t ∈ [0, T ]

and

(3b) (y(0), χ)H = (φ, χ)H for all χ ∈ H.

With Re denoting the Reynolds number, 1/Re=: ν > 0 is the viscosity parameter. The proof
of the following well-known existence theorem can be found in [18].

Theorem 2.1. For any φ ∈ H and for every control u ∈ L2(U) equations (3) admit a unique
weak solution y ∈ W .

2.1 Time discretization

For notational purposes let P : L2(Ω)2 → H denote the Leray projector [4, Remark 1.10].
Then, the Stokes operator S is given by

S : D(S) ⊂ H → H, S := −P∆, D(S) = H2(Ω)2 ∩ V.

Now define
A := νS.

In this setting the Navier-Stokes equations (3) for u = 0 in variational formulation may be
rewritten as Burgers equation in the space V ′,

yt +Ay = b(y),

y(0) = φ,

where the nonlinearity b(y) is defined in (2). For m ∈ N an equidistant discretization of the
time interval (0, T ) is defined by h = T

m
and tk = kh, k = 0, 1, . . . ,m. Now let z ∈ H2,1(Q)

the desired state. We define

Jk : V × U → R, (y, u) 7→
1

2
|y − zk|

2

H +
γ

2
|u|2U ,

where

(4) zk =
1

h

∫ tk+ h
2

tk−
h
2

z(s, ·) ds

and z(t, ·) = 0 for t > T . Finally, for k = 1, . . . ,m and i = 1, 2 introduce the operators
ek

i : V × U → V ′ by

ek
1(y, u) = (I + hA)y − hb(yk−1) − yk−1 − Bu,
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and
ek
2(y, u) = (I + hA)y − hb(y) − yk−1 − Bu

and where yk−1 denotes the state at the previous time slice.
The instantaneous optimal control problem for the semi-implicit time integration is given

by

(Pk ) minimize Jk(y, u) subject to ek
1(y, u) = 0 in V ′, u ∈ Uad,

where y0 = φ. The initial value φ now is required to be an element of the space V . For given
yk−1 a pair (yk, uk) satisfies the subsidiary condition ek

1(y, u) = 0 in V ′ if and only if

(5) (yk, v)H + νh (yk, v)V = (yk−1, v)H + 〈Buk + hb(yk−1), v〉)V ′,V ∀ v ∈ V.

Since φ ∈ V holds, the right-hand side in this linear equation defines a bounded linear
functional on V . Thus, for every uk ∈ U Eq. (5) admits a unique solution yk ∈ V which
satisfies the a-priori estimate

|yk|V ≤
C

νh

(
|yk−1|H + h|yk−1|2V + |uk|U

)
.

Since Jk is quadratic, ek
1 is linear and Uad is closed and convex every problem (Pk ), k =

1, . . . ,m, admits a unique solution (yk
∗ , u

k
∗) ∈ V ×U . Furthermore, the unique Lagrange mul-

tiplier λk
∗ ∈ V together with the solution (yk

∗ , u
k
∗) satisfies the first-order necessary optimality

conditions (note that A is selfadjoint)

(I + hA)y = Bu+ yk−1 + hb(yk−1),(6a)

(I + hA)λ = −(y − zk),(6b)

(γu− B⋆λ, v − u) ≥ 0 for all v ∈ Uad,(6c)

where we have set (y, u, λ) = (yk
∗ , u

k
∗ , λ

k
∗). Furthermore, the second-order sufficient optimality

condition holds on the whole space V × U × V . Hence, the solution (yk
∗ , u

k
∗) of (6) is the

minimum for (Pk ).
The optimal control problem (Pk ) is equivalent with respect to existence to the control-

constrained minimization of the functional

(7) Ĵk(u) = Jk(y(u), u)

over Uad, where for a control u ∈ U the state y(u) ∈ V is given as the unique solution to (5)
(indexes dropped). The gradient of Ĵk at u is given by

∇Ĵk(u) = γu − B⋆λ,

where for given u the function λ is obtained by first solving the linear quasi-Stokes problem
(6a) for the state y, and then solving (6b) for λ.

From now onwards let B := (I + hA)−1 denote the solution operator of the time-discrete
equation (6a), i.e. ek

1(y, u) = 0 implies y = B(yk−1 + hb(yk−1) + Bu).

Remark 2.1. If one would use implicit time integration in problem (Pk ), i.e. in the subsidiary
condition the operator ek

1 is replaced by ek
2 , the adjoint equation (6b) alters to

(8) (I + hA)λ− b′(y)⋆λ = −(y − zk).

Thus, in this case the gradient ∇Ĵk(u) at a control u depends on the observation yk − zk,
which occurs as right-hand side in the adjoint equation for the computation of the auxiliary
variable λ, and also on the whole state yk in terms of the coefficient b′(yk)⋆ which enters
into the adjoint equation for λ. This structure remains valid even in the case of boundary
observation, where the observation enters as boundary condition into the adjoint equation, but
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the whole state yk again as a coefficient function. As a consequence, in this case computation
of gradient information for Ĵk can not be based on observations alone.

On the other hand the adjoint equation (6b) only depends on the observation yk − zk.
Therefore, gradient information for the functional Ĵk is available utilizing the observations
only. In the particular case of boundary observation no information of the state in the whole
computational domain is needed at all.

We will now apply the instantaneous control strategy to derive a feedback controller.

3 The closed-loop feedback recipe

The feedback recipe is formulated in terms of a pseudo-algorithm. The particular form of
the feedback strategy depends on the oracle RECIPE called in step 2.) of the following
algorithm.

Algorithm 1. Feedback recipe.

1.) Set y0 = φ, k = 0 and t0 = 0.

2.) Given an initial control uk
0 , set

uk+1 = RECIPE(uk
0 , y

k, zk, tk)

3.) Solve
(I + hA)yk+1 = yk + hb(yk) + Buk+1.

4.) Set tk+1 = tk + h, k = k + 1. If tk < T goto 2.

Next we discuss the RECIPEs which are investigated in the present work. We use the
instantaneous control problem (P) to define the first feedback law. For a given initial control
uk

0 one can use a gradient step in direction −∇Ĵ(uk
0) given by (7). Then one gets the following

recipe, already investigated in [9].

RECIPE 1. (Instantaneous control)
For the instantaneous control strategy [9] the oracle RECIPE is defined by

u = RECIPE(v, yk, z, t)

iff

• Solve (I + hA)y = yk + hb(yk) + Bv,

• solve (I + hA)λ = −(y − z),

• set d = γv − B⋆λ.

• determine ρ > 0,

• set RECIPE = v − ρd.

The choice of the stepsize ρ in RECIPE 1 is crucial. Since (Pk ) is quadratic with linear
constraints, the optimal choice ρ∗ can be computed exactly by utilizing only the solution of
one additional auxiliary problem. To see this decompose the function y(u+ ρd), see (5), into
its affine part y(u) and its homogeneous part y(d), i.e. , write y(u + ρd) = y(u)+ ρy(d) and
set

h(ρ) = J(y(u + ρd), u+ ρd).
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Then h is a quadratic polynomial in ρ which takes its minimum value at

(9) ρ∗ = −
(y(u) − z, y(d))H + γ(u, d)U

|y(d)|
2
H + γ |d|

2
U

.

The computation of ρ∗ requires only the additional computation of the auxiliary function
y(d).

Let us a further look at the previous RECIPE. In [9] the following interpretation of
RECIPE 1 is given.

Theorem 3.1. For uk
0 = 0 RECIPE 1 is equivalent to the semi-implicit time discretization

with discretization step size h

(10) (I + hA)yk+1 = yk + hb(yk) − ρBB(yk − zk) − hρBB(b(yk) −Azk), yk = φ,

of the dynamical system

(11) ẏ +Ay = b(y) −
ρ

h
BB(y − z) − ρBB(b(y) −Az), y(0) = φ.

Due to Theorem 3.1 the term

(12) Ky = −
ρ

h
BB(y − z) − ρBB(b(y) −Az)

in (11) can be interpreted as a non-linear closed-loop control policy for the Navier-Stokes
equations. It is important to note that the discretization step-size h and the descent parameter
ρ of RECIPE 1 in the continuous case (11) may now be regarded as parameters defining the
controller.

In order to further improve the controller derived in Theorem 3.1, supposeK steers y to
z, eq. (11) necessarily implies that the desired state z would have to satisfy

zt +Az − b(z) = −ρBB(b(z) −Az), z(0) = φ.

This suggests to generalize the control law (12) to

(13) Ky = −
ρ

h
BB(y − z) − ρBB(b(y) − b(z)) + zt +Az − b(z).

With this control law the controlled Navier-Stokes equations become the form

(14) yt +Ay − b(y) = Ky in L2(V ′) and y(0) = φ.

This system has the desired stabilizing property. The controller (13) can be derived from
Algorithm (1) with a particular choice of the initial control uk

0 .

Lemma 3.1. Choosing the initial control uk
0 in Algorithm 1 with RECIPE 1 as solution of

(
I −

ρ

1 − ργ
BB

)
uk

0 =
1

1 − ργ

(
zk+1 − zk +Azk+1 − b(zk) + ρBB(b(zk) −Azk)

)

in Theorem 3.1 one would end up with control law (13) instead of control law (12). The
analogon to (10) with w = y − z is given by
(15)
(I + hA)wj+1 = wj + h

(
b(yj) − b(zj)

)
− ρBBwj − ρhBB

(
b(yj) − b(zj)

)
, w0 = φ− z(0).

The related discrete controller is given by

(16) KDyj = −
ρ

h
BB(yj − zj) − ρBB(b(yj) − b(zj)) +

zj+1 − zj

h
+Azj+1 − b(zj),

6
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The stability analysis of RECIPE 1 is given in [9], for the result see also the next section.
The RECIPE 1 is easy to adapt to the constrained optimization problem where u ∈ Uad

is required.

RECIPE 2. (Constrained instantaneous control)
For the instantaneous control strategy [9] with control constraints of the form u ∈ Uad the
oracle RECIPE is defined by

u = RECIPE(v, yk, z, t)

iff

• Solve (I + hA)y = yk + hb(yk) + Bv,

• solve (I + hA)λ = −(y − z),

• set d = γv − B⋆λ.

• determine ρ > 0,

• set RECIPE = PUad
(v − ρd).

Here PUad
denotes the projection onto the admissible set of controls, Uad.

We now construct a recipe which applied in Algorithm 1 realizes a full optimization step
for problem (Pk ). For this purpose first let U = L2(Ω)2. Then the operator B is defined by

〈Bu, v〉V ′,V = (u, v).

We choose the control uk to be the solution of (Pk ) for the unconstrained case, i.e. Uad = U .
Then uk solves the optimality system, compare (6),

(17)

(I + hA)yk+1 = yk + hb(yk) + uk

(I + hA)λk = zk − yk+1

γuk − λk = 0.

It is easy to see that

uk = −(BB + γI)−1B(B(yk + hb(yk)) − zk)

holds. Now let

(18) S = γ(BB + γI)−1BB,

which defines a continuous linear operator in L(H,H). Further properties of S are investigated
in [13]. Exploiting the relation Bzk = BB(zk + hAzk) we get

(19) (I + hA)yk+1 = yk + hb(yk) −
1

γ
S(yk − zk + hb(yk) − hAzk), y0 = φ,

which suggest to define a feedback recipe that realizes the term − 1
γ
S(yk−zk+hb(yk)−hAzk).

RECIPE 3. (Suboptimal controll or (δt, 1) model predictive control)
For suboptimal control the oracle RECIPE is defined by

u = RECIPE(v, yk, z, t)

iff

• Solve the optimality system for u

(I + hA)y = yk + hb(yk) + u

(I + hA)λ = z − y

γu− λ = 0.

7
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• set RECIPE = u

In each step of Algorithm 1 with for RECIPE 3, a optimization problem has to be solved. If
the solution form the previous time-step is used as initial guess, the method can be efficiently
implemented. Similar arguments as those leading to Theorem 3.1 yield that equation (19) in
y is the semidiscretization with stepsize h of the dynamical system

(20) yt +Ay − b(y) = −
1

γh
S(y − z + hb(y) − hAz), y(0) = φ.

In order to further improve this control law we argue as in the case of RECIPE 1. Suppose
that y → z for t→ ∞ in (20). Then the desired state z by necessity has to satisfy

zt +Az − b(z) = −
1

γh
S(b(z) −Az).

This suggest to modify (20) to

(21) yt +Ay − b(y) = −
1

γh
S(y − z + hb(y) − hb(z)) + zt +Az − b(z), y(0) = φ.

This system now for arbitrary (but smooth enough) desired states z is consistent with respect
to convergence of y → z for t → ∞. In section 4 we state the stabilizing properties of this
equation. Its semidiscretization is given by

(I + hA)yk+1 = yk + hb(yk) −
1

γ
S(yk − zk) −

h

γ
S(b(yk) − b(zk))

+zk+1 − zk + hAzk − hb(zk).

(22)

If we define the feedback control operator K by

(23) u = K(y) = −
1

γh
S(y − z + hb(y) − hb(z)) + zt +Az − b(z)

we end up with a closed loop control interpretation of Algorithm 1 with RECIPE 3.
Let us note that one would obtain the feedback operator K in (23) also by investigating

the optimal control problem

(P̃k ) min J(vk) =
1

2

∫

Ω

|wk+1| +
γ

2
|vk|2,

subject to
(I + hA)wk+1 = wk + hb(wk + zk) − hb(zk) + vk.

Here w = y − z denotes the difference of the state and the desired state. This point of view
is useful to derive controllers for constraint control, see the exposition below. It further leads
us to the following definition

RECIPE 4. (Suboptimal control 2)
We define the extended oracle RECIPE by

u = RECIPE(v, yk, zk, zk+1, t)

iff

• Solve the optimality system for u

(I + hA)y = yk − zk + hb(yk) − hb(zk) + (I + hA)zk+1 + u

(I + hA)λ = zk+1 − y

γu− λ = 0.

8
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• set RECIPE = u

Now let us also impose constraints on the controls in RECIPEs 3 and 4, i.e. we now require
u ∈ Uad for the optimization problem (Pk ), where Uad is non-empty, convex, bounded and
closed. If, for given yk, zk we denote the solution operator of this optimal control problem by
S, we have uk = S(yk + hb(yk), zk) and similar arguments as those leading to (23) now yield
the dynamical system

(24) yt +Ay − b(y) = S(y + hb(y), z), y(0) = φ.

If instead we take uk to be the solution of (P̃k ) subject to the constraint u ∈ Uad, we end up
with a controlled system similar to (21).

To anticipate parts of the discussion contained in part II of this work let us note concerning
existence of solutions of (24) that the right hand side is Lipschitz with respect to y. However,
concerning stability we cannot expect further stability properties of controlled system without
further assumptions on Uad. In fact, if we choose Uad = {0} the system is uncontrolled.

So far, we have assumed that observations can be obtained in the whole domain and also,
that control can be applied in the whole of Ω. In the following we derive feedback control
policies in the presence of control and observation operators. More precisely we investigate
the case where observation and control act only on subdomains of Ω. For this purpose denote
by Ωo the domain where the state can be observed, and by Ωc the control domain. For the
derivation of the control policies we now proceed as in the case Ωo = Ωc = Ω. At time
instance tk we the consider control problem

(25) min J(uk) =
1

2
|yk+1 − zk|2L2(Ωo) +

γ

2
|uk|2L2(Ωc)

subject to

(26) (I + hA)yk+1 = yk + hb(yk) + C∗uk.

The control uk is an element of U = L2(Ωc) and the operator C∗ : L2(Ωc) 7→ L2(Ω) defined
by

(C∗u)(x) =

{
u(x) x ∈ Ωc

0 x ∈ Ω \ Ωc.

is an extension operator. Its dual therefore is the truncation operator C : L2(Ω) 7→ L2(Ωc).
Observe that CC∗ = IdL2(Ωc). Similarly we define the operators D : L2(Ω) 7→ L2(Ωo) and
D∗ : L2(Ωo) 7→ L2(Ω). Then we can write the functional J in (25) as

(27) min J(uk) =
1

2
|D∗(Dyk+1 − zk)|2L2(Ω) +

γ

2
|C∗uk|2L2(Ω).

Let u denote the solution of (26),(27). Then it solves the optimality system

(28)

(I + hA)yk+1 = yk + hb(yk) + C∗u

(I + hA)λk = −D∗(DD∗)(Dyk+1 − zk)

γ(CC∗)u− Cλk = 0.

Now let us define the control uk according to Algorithm 1 with RECIPE 1 and uk
0 = 0,

i.e. we obtain uk by applying one gradient step to approximately solve (26),(27). This results
in

uk = −ρ∇J(0) = −ρCBD∗DB
(
yk −D∗zk + hb(yk) − hAD∗zk

)
,

were we utilized the identity zk = DB(I + hA)D∗zk. Re-arranging all identities in a suitable
manner we arrive at the discrete controlled system

(I + hA)yk+1 = yk + hb(yk) − ρC∗CBD∗DB
(
yk −D∗zk + hb(yk) − hAD∗zk

)
,

9
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which in turn is the semidiscretization of

yt +Ay − b(y) = −
ρ

h
C∗CBD∗DB (y −D∗z + hb(y) − hAD∗z) , y(0) = φ.

However, since in general Ωo 6= Ωc we cannot apply the arguments which lead to the control
law (13). But instead we can use the ideas related to the modified control problem (P̃k )
which resulted in RECIPE 4. To begin with denote by wk = yk −D∗zk the difference of the
state and the extended desired state at time tk. Consider now the control problem

(29) min J(vk) =
1

2
|Dwk+1|L2(Ω) +

γ

2
|C∗vk|2L2(Ω),

subject to
(I + hA)wk+1 = wk + hb(wk +D∗zk) − hb(D∗zk) + C∗vk.

The latter equation is equivalent to

(I + hA)yk+1 = yk + hb(yk) −D∗zk − hb(D∗zk) + (I + hA)D∗zk+1 + C∗vk.

Since the term −D∗zk − hb(D∗zk) + (I + hA)D∗zk+1 should serve as a control it has to be
restricted to Ωc. This can be accomplished by inserting the operator C∗C, i.e.

(I + hA)yk+1 = yk + hb(yk) − C∗C
(
D∗zk + hb(D∗zk) − (I + hA)D∗zk+1

)
+ C∗vk.

Now let us insert

vk := −ρCBD∗DB
(
yk −D∗zk + hb(yk) − hAD∗zk

)

which would be obtained after application of one gradient step with uk
0 = 0 to the numerical

solution of the control problem above. Finally we end up with the linear system

(I + hA)yk+1 = yk + hb(yk) − ρC∗CBD∗DB
(
yk −D∗zk + hb(yk) − hAD∗zk

)

− C∗C
(
D∗zk + hb(D∗zk) − (I + hA)D∗zk+1

)
, y0 = φ,

(30)

and its continuous equivalent

yt +Ay − b(y) = − ρC∗CBD∗DB (y −D∗z + hb(y) − hAD∗z)

+ C∗C
(
(D∗zk)t +AD∗z − hb(D∗z)

)
, y(0) = φ,

(31)

Here we observe that we need information of the state y in the whole domain to compute
the controller which acts only on smaller subdomain. In practical applications this would
require appropriate state estimations from state observations. However our numerical re-
sults indicate good stabilizing properties for several combinations of control domains Ωc and
observation domains Ωo.

If Ω = Ωo = Ωc holds then we have C = C∗ = D = D∗ = IdL2(Ω)2 , and the controlled
systems (30), (31) and (21), (22) are equal.

4 Existence and stability results

The stability results stated in this section for the control law (13) are proven in [9]. A proof
of stability for the suboptimal controllers obtained by RECIPEs 3 and 4 will be presented
in part II of this work, see [13]. We begin with stating the result for (13). For this purpose
define the constant ρ0 by

ρ0 =
ν2

8ν2 + 4|φ|2H
,

and the parameter ρ implicitly by the condition

(32) 0 < ρ ≤ ρ1 := min


ρ0,

ν2

2ν2 + e
4+ρ

ν
|z|2

L2(V ) |φ|2H + |z|2
L∞(H)


 .

10
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Theorem 4.1. Let φ ∈ H be a given initial state and z ∈W the desired state. The parameter

h > 0 is fixed. Then for every 0 < ρ ≤ ρ1 with ρ1 given by (32) the system

yt +Ay − b(y) = − ρ

h
BB(y − z) − ρBB(b(y) − b(z)) + zt +Az − b(z),

y(0) = φ.

has a unique solution y ∈ W . In particular for the difference w = y − z the following decay

estimates are fulfilled:

|w(t)|2H ≤ Ce−
ρ
h

t,

where C is a positive constant.

For a proof see [9, Theorem 6.1] where also a-priori estimates for the decay of the V-norm
|y − z|V are proven under further assumptions on ρ, and z ∈ H2,1(Q), z(0) − φ ∈ V .

The stability results for system (21) are slightly different. Here we have to impose a
condition on the size of the regularization parameter γ.

Theorem 4.2. Given initial state φ ∈ H and desired state z ∈ W . Define γ implicitly by

(33) γ > max

(
4

ν2

(
e

2γ+1
νγ

|z|2
L2(V ) |w(0)|2H + |z|2L∞(H)

)
,

9

2ν2
|w(0)|2H

)
.

Then the controlled system

(34)
yt +Ay − b(y) = − 1

γh
S(y − z + hb(y) − hb(z)) + zt +Az − b(z),

y(0) = φ

admits a unique solution y ∈W . For the difference w = y − z we obtain the decay

|w(t)|2H ≤ C e−
α(γ)

h
t|w(0)|2H ∀t ∈ [0, T ],

where α(γ) is defined by

α(γ) =
γ

(1 + γ)2

and C is a generic positive constant.

The condition given by (33) requires either a large value of the regularizing parameter γ
or a large viscosity ν. However, the numerical results show good stabilizing properties of the
controlled system also for small values of γ. Even for γ = 0 exponential decay was observed.

This was our starting point to investigating the operator S for γ tending to zero. Passing
formally to the limit γ → 0, we obtain

1

γ
S = (BB + γI)−1BB

γ→0
−→ I.

The controlled system (21) for γ → 0 then transforms into

(35)
yt +Ay = − 1

h
(y − z) + zt +Az

y(0) = φ,

which is in fact linear. The following theorem now is easy to establish:

Theorem 4.3. Given initial state φ ∈ H and desired state z ∈ W . Then the controlled

system (35) admits a unique solution y ∈ W . Furthermore, for the difference w = y − z we

now have the decay estimate

|w(t)|2H ≤ C e−
2
h

t|w(0)|2H ∀t ∈ [0, T ],

where C is a generic positive constant.

11
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5 Numerical results

In this section, we numerically investigate the stabilizing properties of Algorithm 1 with
RECIPEs 1, 2, 4. Further numerical results for RECIPE 1 can be found in [9].

In the control problem considered here we intend to track a desired time dependent state
z in the L2-sense, i.e. our instantaneous cost functional has the form

J(y, u) =
1

2

∫ T

0

∫

Ωo

|y(x, t) − z(x, t)|2dxdt+
γ

2

∫ T

0

∫

Ωc

|u(x, t)|2dxdt,

where Ωo denotes the observation domain, and Ωc the control domain, respectively. State
and control are coupled by the instationary Navier-Stokes system (P). We realize the control
u by the feedback control laws derived in the RECIPEs 1, 2 and 4.
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Figure 1: Desired flow at T = 1 and T = 2

Let us specify the problem setting. The computation domain is the unit square Ω = [0, 1]2.
The initial value is chosen as

y(x, 0) = φ(x) = e

(
(cos 2πx1 − 1) sin 2πx2

−(cos 2πx2 − 1) sin 2πx1

)
,

where e is the Euler number, and the desired flow is time-dependent and defined by

z(t, x) =

(
ψx2(t, x1, x2)

−ψx1(t, x1, x2)

)
,

where ψ is given through the stream function

ψ(t, x1, x2) = θ(t, x1)θ(t, x2)

with
θ(t, y) = (1 − y)2(1 − cos 2πyt).

The Reynolds number is set to 10, which results in a viscosity coefficient of ν = 1/10. The
final time is chosen as T = 2. For the discretization in time a equidistant grid with stepsize
δt = 0.01 is used, whereas for the spatial discretization the Taylor-Hood finite element is
applied on a grid containing 1024 triangles with 2113 velocity and 545 pressure nodes.

The time discretization of the continuous controlled systems is always chosen in such a
way that the related discrete-in-time controlled systems are obtained, i.e. the discretization
of (14) gives (15). We note that this discretization leads to exponential stable discrete-in-
time controlled systems. This can be shown utilizing the techniques of [9], where exponential
stability of the discrete-in-time controlled system is proven for Algorithm 1 with RECIPE 1.

12
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Control in the whole domain

At first, we compare the results of the RECIPEs 1 and 2. The step-size of the gradient iteration
was set to ρ = 0.1. The evolution of the costs is shown in Figure 2 for the unconstrained
and the box-constrained case, where |u(x, t)| ≤ 1e− 3 is required. As one could expect, both
controllers give the same output if the control constraint is not active.
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Figure 2: Evolution of |y(t) − z(t)|2H and of |u(t)|2L2(Ω) for unconstrained and constrained
control
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Figure 3: Flow at T = 1 for RECIPEs 1 and 2

Since the desired state becomes more and more dynamic, the constraint controller can not
adapt to this situation, and the distance between state and desired state grows for t ≥ 1.4. On
the other hand, the control costs per time step remain constant, see the right-hand diagram
in Fig. 2. This fact is also illustrated by the Figures 3 and 4.

Secondly, we present some results for the feedback controller given by RECIPE 4. In Fig.
5 the evolution of the L2-Cost |y(t) − z(t)|H is shown for different values of γ. Exponential
decay for both large and small values of the regularization parameter is observed numerically,
although the theory is only satisfying for large values. In each application of the control
RECIPE 4, an optimization problem has to be solved. It turns out, that with the solution
from the previous time-step as initial guess in the cg-method, very few conjugate gradient
steps are needed. The optimization process is stopped if either the relative residual norm is
less than 1e− 4 or the absolute residual norm is less than 1e− 8.
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Figure 4: Flow at T = 2 for RECIPEs 1 and 2
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Figure 5: Evolution of |y(t) − ȳ(t)|2H for different values of γ

Subdomain controller

Finally, we present numerical results for the controllers (30), (31). They apply for the case
where observation and control domain are strict subdomains of the computational domain
Ω. We consider rectangular domains Ωo = [x1,1, x1,2] × [x2,1, x2,2] and Ωc analogously. The
desired state is linearly transformed into the observation domain by

z̄(x1, x2, t) = z

(
x1 − x1,1

x1,2 − x1,1
,
x2 − x2,1

x2,2 − x2,1
, t

)
.

The results for the following configurations are shown in Figure 6. In the two first examples
Ωc and Ωo are equal, whereas in Example 3 and 4 the domains have a non-empty difference.

Example 1. Ωc = Ωo = [0, 0.5]2.

Example 2. Ωc = Ωo = [0, 0.8]2.

Example 3. Ωc = [0, 1] × [0.5, 1] and Ωo = [0, 0.5]× [0, 1].

Example 4. Ωc = [0.5, 0.9]2 and Ωo = [0.2, 0.7]2.

The results are similar to the results obtained for constraint control. We observe expo-
nential decay of |y(t) − z(t)|L2(Ωo) in all 4 cases for t < 0.2. For later times t the norm
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Figure 6: Evolution of |y(t) − z(t)|2
L2(Ωo)

of |z(t)|L2(Ωo) becomes larger, and the disturbing effects of the flow outside the observation
domain can not be compensated by the controller, so that the distance between the state of
the system and the desired state increases.

We also run tests with a stationary desired state. To compare these with the previous
results the desired state is chosen as a snapshot of z̄ at time t = 0.4, i.e. z̃(x, t) = z̄(x, 0.4). In
Figure 7 the distance of state and desired state is plotted for the configurations of Examples
1–4. The resulting values at time T = 2 are very similar to the distances at time t = 0.4
plotted in Fig. 6.
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Figure 7: Evolution of |y(t) − z(t)|2
L2(Ωo)

We should note that the computational time required for the application of the recipe
discussed in this research is in the range of 2.5 to 5 times the computational time required
for one forward solve of the uncontrolled time dependent Navier-Stokes system, which in fact
is fast compared to optimal control, see [10].
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