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Abstract

We present a new discrete Adomian decomposition method to approximate the
theoretical solution of discrete nonlinear Schrödinger equations. The method is
examined for plane waves and for single soliton waves in case of continuous, semi–
discrete and fully discrete Schrödinger equations. Several illustrative examples and
Mathematica program codes are presented.
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1 Introduction

In this work we want to describe a discrete version of the well–known Adomian
decomposition method (ADM) applied to nonlinear Schrödinger equations. The
ADM was introduced by Adomian [5], [6] in the early 1980s to solve nonlin-
ear ordinary and partial differential equation. This method avoids artificial
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boundary conditions, linearization and yields an efficient numerical solution
with high accuracy.

The nonlinear cubic Schrödinger equation (NLS) [12,34] is a typical dispersive
nonlinear partial differential equation that plays a key role in a variety of
areas in mathematical physics. It describes the spatio–temporal evolution of
the complex field u = u(x, t) ∈ C and has the general form

i∂tu + ∂2
xu + q|u|2u = 0, x ∈ R, t > 0, (1a)

u(x, 0) = f(x), (1b)

where the parameter q ∈ R corresponds to a focusing (q > 0) or defocusing
(q < 0) effect of the nonlinearity.

The NLS equation (1a) describes many problems in physics. The fields of
application varies from optics [27], propagation of the electric field in optical
fibers [23], self–focusing and collapse of Langmuir waves in plasma physics [42]
to modelling deep water waves and freak waves (so–called rogue waves) in the
ocean [30].

The theoretical solution for the NLS equation (1a) has been given among
others [38–40]. Moreover, the NLS equation (1a) is completely S–integrable
(in the sense of Calogero [11]) with the inverse scattering method (ISM) [3,7,41]
and a single soliton solution is given by

u(x, t) =
(

2a

q

)1/2

exp
[

i
( c

2
x − θt

)]

sech
[

a1/2(x − ct)
]

, (2)

with θ = c2/4 − a. For fixed t the function u in (2) decays exponentially as
|x| → ∞. It travels with the envelope speed c and its amplitude is governed
by the parameter a ∈ R.

An N–soliton solution for q 6= 0 is given by the function [31]

u(x, t) =
(

2a

q

)1/2 N∑

p=1

exp
[

i
(cp

2
xp − θpt

)]

sech
[

a1/2(xp − cpt)
]

, (3)

with θp = c2
p/4 − a, the position xp of the p–soliton and cp its velocity.

Finally a particular simple form of solutions to the Schrödinger equation (1a)
are the plane wave solutions

u(x, t) = exp
[

i
(

κx − ωt
)]

, x ∈ R, t > 0, (4)

where κ is the wave number and ω denotes the frequency. Substituting the
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ansatz (4) into the NLS (1a) yields the dispersion relation

κ2 − ω = q. (5)

Since (1a) is S–integrable it is a Hamiltonian system with an infinite number
of conserved quantities, cf. [36,37]. Here we will only present the two most
important quantities. First the L2-norm (mass, number of particles) is con-
served:

N =
2

q

∫
∞

−∞

|u(x, t)|2 dx = const . (6)

Note that this conservation property (6) has an important meaning in physical
applications. It can be interpreted as the conservation of the power of the
beam in nonlinear optics and in Bose–Einstein condensation it denotes the
conservation of the number of atoms in the condensate.

Another conserved quantity is the Hamiltonian

H =
∫

∞

−∞

[

|∂xu(x, t)|2 +
q

2
|u(x, t)|4

]

dx = const . (7)

with i∂tu = ∂u∗H = {H,u}, where the standard Poisson brackets have been
used and ∗ denotes complex conjugation. For more details on nonlinear Schrö-
dinger equations and their conserved quantities we refer the reader to [12,34].

To the authors’ knowledge, the Adomian decomposition method was regarded
only for the continuous equation, cf. the articles [18,20,26] for the application
of the ADM to the NLS (1). In this paper we will first review the basic ideas
of the ADM for the NLS and show afterwards how a symbolic package like
Mathematica can help using the ADM. Secondly, we will turn to the solution
of spatially discrete Schrödinger–type equations by a discrete ADM. Finally,
we end with the consideration of the fully discrete case.

2 The Adomian Decomposition Method

In this Section we shall sketch the ADM for partial differential equations
applied to the cubic NLS (1). To this end, we consider (1a) written in operator
form as

Ltu = i∂2
xu + iqF (u), x ∈ R, t > 0, (8)

with the notation Lt = ∂t and the cubic nonlinear term F (u) = |u|2u. Then
the inverse operator of Lt is defined by the indefinite integral

[L−1
t v](t) =

∫ t

0
v(τ) dτ, t > 0. (9)
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Now applying formally the inverse operator L−1
t to (8) yields with the initial

condition (1b) the formal solution to (1)

u(x, t) = f(x) + iL−1
t ∂2

xu + iqL−1
t F (u), x ∈ R, t > 0. (10)

The Adomian decomposition method [6] assumes a solution of the series form
u(x, t) =

∑
∞

l=0 ul(x, t), where the components ul(x, t) are going to be deter-
mined recurrently. The nonlinear term F (u) in (10) is decomposed into an
infinite series of polynomials of the form F (u) =

∑
∞

l=0 Al(u), where the Al are
the so–called Adomian polynomials. Substituting these decomposition series
into (10) gives

∞∑

l=0

ul(x, t) = f(x) + i
∞∑

l=0

L−1
t ∂2

xul(x, t) + iq
∞∑

l=0

L−1
t Al. (11)

According to Adomian, u0(x, t) is identified with the initial data f(x) and the
following recurrence is proposed:

u0(x, t) = f(x), (12a)

ul+1(x, t) = iL−1
t ∂2

xul(x, t) + iqL−1
t Al, l = 0, 1, 2, . . . . (12b)

It remains to determine the Adomian polynomials Al. They are defined by

Al =
1

l!

dl

dλl

[

F
( ∞∑

p=0

λpup

)]

λ=0
, for l = 0, 1, 2, . . . (13)

and constructed for all classes of nonlinearity according to algorithms given
either by Adomian [6] or alternatively by Wazwaz [37]. To do so, we set F (u) =
u2ū and obtain in a straight forward calculation

A0 = u2
0ū0, (14a)

A1 = 2u0u1ū0 + u2
0ū1, (14b)

A2 = 2u0u2ū0 + u2
1ū0 + 2u0u1ū1 + u2

0ū2, (14c)

A3 = 2(u0u3ū0 + u1u2ū0 + u0u2ū1 + u0u1ū2) + u2
1ū1 + u2

0ū3, (14d)

. . . .

The polynomials Al, l ≥ 4 can be computed in a similar manner.

Let us finally note that the convergence of this method was established in
[13], [14] using a fixed point theorem. Since in practice not all terms (12)
of the series u(x, t) =

∑
∞

l=0 ul(x, t) can be calculated we use a finite sum
UL(x, t) =

∑L
l=0 ul(x, t) to approximate the solution.

Remark 1 There also exists the modified decomposition technique by Wazwaz
[36] that accelerates the rapid convergence of the series solution without any

4



need to use Adomian polynomials. The recursive relation reads

u0(x, t) = f̃(x), (15a)

ul+1(x, t) = f̂(x) + iL−1
t ∂2

xul(x, t) + iqL−1
t F (ul(x, t)), l = 0, 1, 2, . . . , (15b)

where the function f(x) is properly decomposed (mainly on trial basis) as

f(x) = f̃(x) + f̂(x).

3 The computation for the cubic Schrödinger equation

In this section we want to clarify the ADM approach using the Adomian
polynomials (14) by two examples.

Example 2 First we consider the simple example of a plane wave solution
(4). We obtain by the Adomian decomposition technique (12):

u0(x, t) = f(x) = eiκx, (16a)

u1(x, t) = iL−1
t ∂2

xu0(x, t) + iqL−1
t A0

= iL−1
t ∂2

xe
iκx + iqL−1

t [u2
0ū0]

= −iκ2teiκx + iqteiκx = −i(κ2 − q)teiκx, (16b)

u2(x, t) = iL−1
t ∂2

xu1(x, t) + iqL−1
t A1

= iL−1
t ∂2

x[−i(κ2 − q)teiκx] + iqL−1
t [2u0u1ū0 + u2

0ū1]

= −1

2
κ2(κ2 − q)t2eiκx +

1

2
q(κ2 − q)t2eiκx

= −1

2
(κ2 − q)2t2eiκx, (16c)

u3(x, t) = iL−1
t ∂2

xu2(x, t) + iqL−1
t A2

= iL−1
t ∂2

x[−
1

2
(κ2 − q)2t2eiκx]

+ iqL−1
t [2u0u2ū0 + u2

1ū0 + 2u0u1ū1 + u2
0ū2]

=
i

6
(κ2 − q)3t3eiκx. (16d)

Now summing up these components yields

u(x, t) =
∞∑

l=0

ul(x, t)

= eiκx
{

1 − i(κ2 − q)t − 1

2
(κ2 − q)2t2 +

i

6
(κ2 − q)3t3 + . . .

}

= eiκxe−iωt = ei(κx−ωt),
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with ω = κ2 − q already given in (5), i.e. the method converges to the exact
solution.

Example 3 Secondly, we consider the special case of a x–independent solu-
tion u(t) = f exp(iq|f |2t), where f denotes the constant initial value. We get
by the ADM (12):

u0(t) = f, (17a)

u1(t) = iqL−1
t A0 = iqL−1

t [u2
0ū0] = iq|f |2ft, (17b)

u2(t) = iqL−1
t A1 = iqL−1

t [2u0u1ū0 + u2
0ū1] = −q2|f |4f t2

2
, (17c)

u3(t) = iqL−1
t A2 = iqL−1

t [2u0u2ū0 + u2
1ū0 + 2u0u1ū1 + u2

0ū2]

= −iq3|f |6f t3

6
. (17d)

Again, summing up these components yields obviously the exact solution.

Example 4 In the third example we turn to the soliton solution (2). Following
the above we get for the terms ul(x, t); l = 1, 2, 3

u0(x, t) = f(x) =

√

2a

q
e

i

2
c x sech

(√
a x

)

, (18a)

u1(x, t) =
1

4

√

2a

q
e

i

2
c x t c1 sech2

(√
a x

)

, (18b)

where
c1 = i

(

4 a − c2
)

cosh(
√

a x) + 4
√

a c sinh(
√

a x),

u2(x, t) = − 1

26

√

2a

q
e

i

2
c x t2 c2 sech3(

√
a x), (18c)

where

c2 = 16 a2 + 40 a c2 + c4 +
(

16 a2 − 24 a c2 + c4
)

cosh(2
√

a x)

− (8 i)
√

a c
(

4 a − c2
)

sinh(2
√

a x),

u3(x, t) =
1

3 · 29

√

2a

q
e

i

2
c x t3 c3 sech4(

√
a x), (18d)

where

c3 = −3 i cosh(
√

a x)
(

64 a3 + 272a2c2 − 68 a c4 − c6
)

− i cosh(3
√

a x)
(

64 a3 − 240 a2 c2 + 60 a c4 − c6
)

− 8
√

a c d3 sinh(
√

a x),

with

d3 = 48 a2 + 152 a c2 + 3 c4 +
(

48 a2 − 40 a c2 + 3 c4
)

cosh(2
√

a x).
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This tedious calculation above was performed using the symbolic computing
package Mathematica. The code can be downloaded from the authors’ home-
pages. Using the code the complicated u4(x, t) can be evaluated.

Mathematica–Program 1 The Mathematica code

Clear["@"]

u[x , t ]:=(2a/q)∧(1/2) Exp[I(1/2cx − (c∧2/4 − a)t)] ∗ Sech[a∧(1/2)(x − ct)]

u[x, t]/.Complex[0, n ]-> − Complex[0,n]

f [x ] = u[x,0];

g[x ] = Simplify[D[u[x, t], t]/.t → 0];

u0[x , t ] = f [x]

A0[x ] = Simplify[u0[x, t]∧2 ∗ (u0[x, t]/.Complex[0, n ]-> − Complex[0,n])];

u1[x , t ] =Simplify[
Expand[I ∗ (q ∗ Integrate[A0[x], {t,0, t}] + Integrate[D[u0[x, t], {x,2}], {t,0, t}])]]

A1[x ] = Simplify[2u0[x, t] ∗ u1[x, t] ∗ (u0[x, t]/.Complex[0, n ]-> − Complex[0,n])+
u0[x, t]∧2 ∗ (u1[x, t]/.Complex[0, n ]-> − Complex[0,n])]

u2[x , t ] =
Simplify[I ∗ (q ∗ Integrate[A1[x], {t,0, t}] + Integrate[D[u1[x, t], {x,2}], {t,0, t}])]

A2[x ] = Simplify[2u0[x, t] ∗ u2[x, t] ∗ (u0[x, t]/.Complex[0, n ]-> − Complex[0,n])+
u1[x, t]∧2 ∗ (u0[x, t]/.Complex[0, n ]-> − Complex[0,n])+
2 ∗ u0[x, t] ∗ u1[x, t] ∗ (u1[x, t]/.Complex[0, n ]-> − Complex[0,n])+
u0[x, t]∧2 ∗ (u2[x, t]/.Complex[0, n ]-> − Complex[0,n])]

u3[x , t ] =
Simplify[I ∗ (q ∗ Integrate[A2[x], {t,0, t}] + Integrate[D[u2[x, t], {x,2}], {t,0, t}])]

A3[x ] = Simplify[2u0[x, t] ∗ u3[x, t] ∗ (u0[x, t]/.Complex[0, n ]-> − Complex[0,n])+
2u1[x, t] ∗ u2[x, t] ∗ (u0[x, t]/.Complex[0, n ]-> − Complex[0,n])+
2u0[x, t] ∗ u2[x, t] ∗ (u1[x, t]/.Complex[0, n ]-> − Complex[0,n])+
u1[x, t]∧2 ∗ (u1[x, t]/.Complex[0, n ]-> − Complex[0,n])+
2 ∗ u0[x, t] ∗ u1[x, t] ∗ (u2[x, t]/.Complex[0, n ]-> − Complex[0,n])+
u0[x, t]∧2 ∗ (u3[x, t]/.Complex[0, n ]-> − Complex[0,n])]

u4[x , t ] =
Simplify[I ∗ (q ∗ Integrate[A3[x], {t,0, t}] + Integrate[D[u3[x, t], {x,2}], {t,0, t}])]
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solu[x , t ] = u0[x, t] + u1[x, t] + u2[x, t] + u3[x, t] + u4[x, t];

Now using the Adomian decomposition method a solution to the NLS (1) is
approximated by the following expansion

u(x, t) ≈ U3(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + u4(x, t). (19)

The approximating Adomian decomposition method was tested to the NLS
equation (1) for the single soliton wave to the problems proposed by Bratsos
[9], [10] with the homogeneous boundaries at L0 = −80 and L1 = 100, and the
theoretical solution given by (2).

In Figure 1, the modulus z = |u| of the theoretical solution of NLS (1) with
q = 1, a = 0.01 and velocity c = 0.1 for t ∈ [0, 108] is presented. Whereas
in Figure 2 the corresponding approximative solution Z = |U3| can be seen.
Finally, in Figure 3 the corresponding error curve is plotted.

Fig. 1. The surface shows the solution z = |u| for the NLS with q = 1, a = 0.01 and
velocity c = 0.1 from t = 0 to t = 108.
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Fig. 2. The surface shows the solution Z = |U3| for the NLS with q = 1, a = 0.01
and velocity c = 0.1 from t = 0 to t = 108.

Fig. 3. The figure shows the error curve |Z − z| for the NLS with q = 1, a = 0.01
and velocity c = 0.1 from t = 0 to t = 108.
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4 Discrete nonlinear Schrödinger equations

Discrete nonlinear Schrödinger equations are omnipresent [25] in applied sci-
ences, e.g. describing the propagation of electromagnetic waves in glass fibers,
one–dimensional arrays of coupled optical waveguides [17] and light–induced
photonic crystal lattices [16]. Moreover, they are used to describe Bose–Einstein
condensates in optical lattices [35] and they are an established model for op-
tical pulse propagation in various doped fibers [21], [22].

In this section we will consider the two most common discrete versions of the
cubic NLS equation (1a) that arise from different spatial discretizations. These
discrete nonlinear Schrödinger equations (DNLS) are also called lattice NLS
equations and we refer the reader to [33, Chapter 5.2.2] for a concise discussion
on this topic.

4.1 The standard discrete NLS

If one applies the standard spatial discretization to (1a) and replaces F (u) =
|u|2u with a diagonal discretization FD(uj) = |uj|2uj , we obtain the usual
DNLS equation:

i∂tuj + D2
huj + q|uj|2uj = 0, j ∈ Z, t > 0, (20a)

uj(0) = fj , j ∈ Z, (20b)

with uj = uj(t), h = ∆x and D2
huj = (uj+1 − 2uj + uj−1)/h

2 denotes the
standard second order difference quotient. The parameter ε := h−2 is called
(discrete) dispersion and the parameter q is called anharmonicity, since equa-
tion (20a) with ε = 0 describes a set of uncoupled anharmonic oscillators.

The DNLS equation (20a) has a discrete conserved number (mass, total exci-
tation norm, power in nonlinear optics)

ND =
2

q

∑

j∈Z

|uj|2 (21)

and the discrete Hamiltonian

HD = −
∑

j∈Z

[

u∗

j(uj+1 + uj−1) − 2|uj|2 +
q

2
|uj |4

]

, (22)

where ∗ denotes the complex conjugate.

However, the standard DNLS equation (20a) is not an exactly integrable DNLS
(if the spatial grid consists of more than 2 points) and thus less amenable

10



to mathematical analysis. We can only give particular discrete plane wave
solutions to the DNLS equation (20a) of the form

uj(t) = exp
[

i
(

jκh − ωt
)]

, j ∈ Z, t > 0. (23)

Inserting (23) into the DNLS (20a) yields the discrete dispersion relation

4

h2
sin2

(
κh

2

)

− ω = q, (24)

which is obviously consistent with the continuous relation (5). Hence we will
turn in the sequel to an integrable discrete NLS equation.

4.2 The Ablowitz–Ladik equation

After a discretization in space by replacing the cubic nonlinearity F (u) = |u|2u
in (1a) with an off–diagonal discretization FAL(uj) = |uj|2(uj+1 + uj−1)/2
and keeping the time variable continuous we obtain the Ablowitz–Ladik (AL)
equation [1], [2]:

i∂tuj + D2
huj + q|uj|2

uj+1 + uj−1

2
= 0, j ∈ Z, t > 0, (25a)

uj(0) = fj, j ∈ Z. (25b)

Note that one term in (25a) can be removed through the transformation

uj(t) = vj(t) exp(−i2t), t > 0,

and equation (25a) reduces to the normalized form

i∂tvj +
vj+1 + vj−1

h2
+ q|vj|2

vj+1 + vj−1

2
= 0, j ∈ Z, t > 0. (26)

The AL equation has a conserved number

NAL =
2

q

∑

j∈Z

log
(

1 +
q

2
|uj |2

)

(27)

and the Hamiltonian

HAL = −
∑

j∈Z

[

u∗

j(uj+1 + uj−1) −
4

q
log

(

1 +
q

2
|uj|2

)]

. (28)

The nonlinear differential–difference equation (25a) is the most famous inte-
grable DNLS equation. As the AL equation (25a) is integrable it is possible
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to give exact travelling–wave solutions on the real line j ∈ Z, including (cf.
[4], [32], [33])

vj(t) = A exp
[

i(ωt + αj + v0)
]

cn
[

β(j − vt); k
]

, t > 0, (29)

where cn[·; k] is a Jacobi elliptic function of modulus k. For the case h = 1,
q = 2 the parameters in (29) can be written as

A =
k sn[β; k]

dn[β; k]
, ω =

2 cn[β; k] cos α

dn2[β; k]
, v =

2 sn[β; k] sin α

β dn[β; k]
,

where −π ≤ α ≤ π, β > 0, 0 < k < 1 are free parameters. In the limiting case
k → 1 (hyperbolic limit) we get for the Jacobi elliptic (sn, cn, dn) functions
[28]:

lim
k→1

sn[β; k] = tanh β, lim
k→1

cn[β; k] = lim
k→1

dn[β; k] = sechβ,

and obtain the discrete soliton solution of (26)

vj(t) = sinh β exp
[

−i(ωt + αj + v0)
]

sech
[

β(j − vt)
]

, t > 0, (30)

with

ω = −2 coshβ cosα, v = − 2

β
sinh β sinα,

that can travel at any velocity. It can be easily seen that the discrete soliton
(30) is a fairly obvious discrete version of the continuous soliton solution (2).

There exist discrete plane wave solutions to the Ablowitz–Ladik equation
(25a) of the form (23). Inserting (23) into the AL equation (25a) gives the
discrete dispersion relation

4

h2
sin2

(
κh

2

)

− ω = q cos(κh). (31)

Remark 5 Let us remark that there also exists an explicit solution to the AL
equation (25a) on a periodic interval [8].

The main interest in the AL equation arises from mathematics (in contrast to
the standard DNLS equation); only a few physical models [29] can be described
by an AL–type equation.

Remark 6 We note that there also exists another integrable DNLS equation,
namely the Izergin–Korepin (IK) equation [24] that shares an important prop-
erty with the continuous NLS: it has the same r–matrix [19]. However, the
IK equation is a quite complicated system and no applications are known yet.
Thus we will skip it here.
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5 The semi–discrete Adomian Decomposition Method

The analogue discrete steps to the continuous ADM of §2 are simply the formal
solution to the DNLS equation (20) or the AL equation (25):

uj(t) = fj + iL−1
t D2

huj + iqL−1
t FD,AL(uj), j ∈ Z, t > 0, (32)

and the assumption that there exists a solution of the series form uj(t) =
∑

∞

l=0 uj,l(t). The nonlinear term FD,AL(uj) in (32) is decomposed into an infi-
nite series of discrete Adomian polynomials FD,AL(uj) =

∑
∞

l=0 Al(uj). Substi-
tuting these decompositions into (32) gives

∞∑

l=0

uj,l(t) = fj + i
∞∑

l=0

L−1
t D2

huj(t) + iq
∞∑

l=0

L−1
t Al. (33)

Again, uj,0(t) is identified with the initial data fj and the following recurrence
is proposed to determine the solution components uj,l(t):

uj,0(t) = fj, (34a)

uj,l+1(t) = iL−1
t D2

huj,l(t) + iqL−1
t Al, l = 0, 1, 2, . . . (34b)

For the standard DNLS equation the Adomian polynomials are the same as
(14), but for the AL equation we write FAL(uj) = |uj |2(uj+1 + uj−1)/2 and
obtain analogously to (14)

A0 = uj,0
uj+1,0 + uj−1,0

2
ūj,0, (35a)

A1 =
[

uj,0
uj+1,1 + uj−1,1

2
+

uj+1,0 + uj−1,0

2
uj,1

]

ūj,0 + uj,0
uj+1,0 + uj−1,0

2
ūj,1,

(35b)

A2 =
[

uj,0
uj+1,2 + uj−1,2

2
+

uj+1,0 + uj−1,0

2
uj,2

]

ūj,0 + uj,1
uj+1,1 + uj−1,1

2
ūj,0

+
[

uj,0
uj+1,1 + uj−1,1

2
+

uj+1,0 + uj−1,0

2
uj,1

]

ūj,1 + uj,0
uj+1,0 + uj−1,0

2
ūj,2,

(35c)

A3 =
[

uj,0
uj+1,3 + uj−1,3

2
+

uj+1,0 + uj−1,0

2
uj,3

]

ūj,0

+
[

uj,1
uj+1,2 + uj−1,2

2
+

uj+1,1 + uj−1,1

2
uj,2

]

ūj,0

+
[

uj,0
uj+1,2 + uj−1,2

2
+

uj+1,0 + uj−1,0

2
uj,2

]

ūj,1

+
[

uj,0
uj+1,1 + uj−1,1

2
+

uj+1,0 + uj−1,0

2
uj,1

]

ūj,2

+ uj,1
uj+1,1 + uj−1,1

2
ūj,1 + uj,0

uj+1,0 + uj−1,0

2
ūj,3, (35d)

. . . .
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The polynomials Al, l ≥ 4 can be computed analogously in a tedious calcula-
tion. The calculation to obtain the Adomian polynomials for the AL equation
(35) was performed using the following Mathematica code.

Mathematica–Program 2 We define the functions:

F[l ]:=1

2
Expand[

∑
l

k=0
u[k, t, j]

∑
l

k=0
ū[k, t, j]

(
∑

l

k=0
u[k, t, j + 1] +

∑
l

k=0
u[k, t, j − 1]

)]

ū[k , t , l ]:=u[k, t, j]/.Complex[0, n ]-> − Complex[0,n]

A[0]:=F[0]

A[l ]:=Expand
[

F[l] − ∑
l−1

k=0
A[k]

]

Using the functions defined we can easily furnish the desired Adomian poly-
nomials, e.g.

A[2] =

1
2
u[0, t, j]2u[2, t,−1 + j] + u[0, t, j]u[1, t, j]u[2, t,−1 + j] +

1
2
u[1, t, j]2u[2, t,−1 + j] + u[0, t,−1 + j]u[0, t, j]u[2, t, j] +

u[0, t, j]u[0, t, 1 + j]u[2, t, j] + u[0, t, j]u[1, t,−1 + j]u[2, t, j] +
u[0, t,−1 + j]u[1, t, j]u[2, t, j] + u[0, t, 1 + j]u[1, t, j]u[2, t, j] +
u[1, t,−1 + j]u[1, t, j]u[2, t, j] + u[0, t, j]u[1, t, 1 + j]u[2, t, j] +
u[1, t, j]u[1, t, 1 + j]u[2, t, j] + u[0, t, j]u[2, t,−1 + j]u[2, t, j] +
u[1, t, j]u[2, t,−1 + j]u[2, t, j] + 1

2
u[0, t,−1 + j]u[2, t, j]2 +

1
2
u[0, t, 1 + j]u[2, t, j]2 + 1

2
u[1, t,−1 + j]u[2, t, j]2 +

1
2
u[1, t, 1 + j]u[2, t, j]2 + 1

2
u[2, t,−1 + j]u[2, t, j]2 +

1
2
u[0, t, j]2u[2, t, 1 + j] + u[0, t, j]u[1, t, j]u[2, t, 1 + j] +

1
2
u[1, t, j]2u[2, t, 1 + j] + u[0, t, j]u[2, t, j]u[2, t, 1 + j] +

u[1, t, j]u[2, t, j]u[2, t, 1 + j] + 1
2
u[2, t, j]2u[2, t, 1 + j]

A[3] =

1
2
u[0, j]u[3,−1 + j]ū[0, j] + 1

2
u[1, j]u[3,−1 + j]ū[0, j] +

1
2
u[2, j]u[3,−1 + j]ū[0, j] + 1

2
u[0,−1 + j]u[3, j]ū[0, j] +

1
2
u[0, 1 + j]u[3, j]ū[0, j] + 1

2
u[1,−1 + j]u[3, j]ū[0, j] +

1
2
u[1, 1 + j]u[3, j]ū[0, j] + 1

2
u[2,−1 + j]u[3, j]ū[0, j] +

1
2
u[2, 1 + j]u[3, j]ū[0, j] + 1

2
u[3,−1 + j]u[3, j]ū[0, j] +

1
2
u[0, j]u[3, 1 + j]ū[0, j] + 1

2
u[1, j]u[3, 1 + j]ū[0, j] +

1
2
u[2, j]u[3, 1 + j]ū[0, j] + 1

2
u[3, j]u[3, 1 + j]ū[0, j] +

1
2
u[0, j]u[3,−1 + j]ū[1, j] + 1

2
u[1, j]u[3,−1 + j]ū[1, j] +

1
2
u[2, j]u[3,−1 + j]ū[1, j] + 1

2
u[0,−1 + j]u[3, j]ū[1, j] +

14



1
2
u[0, 1 + j]u[3, j]ū[1, j] + 1

2
u[1,−1 + j]u[3, j]ū[1, j] +

1
2
u[1, 1 + j]u[3, j]ū[1, j] + 1

2
u[2,−1 + j]u[3, j]ū[1, j] +

1
2
u[2, 1 + j]u[3, j]ū[1, j] + 1

2
u[3,−1 + j]u[3, j]ū[1, j] +

1
2
u[0, j]u[3, 1 + j]ū[1, j] + 1

2
u[1, j]u[3, 1 + j]ū[1, j] +

1
2
u[2, j]u[3, 1 + j]ū[1, j] + 1

2
u[3, j]u[3, 1 + j]ū[1, j] +

1
2
u[0, j]u[3,−1 + j]ū[2, j] + 1

2
u[1, j]u[3,−1 + j]ū[2, j] +

1
2
u[2, j]u[3,−1 + j]ū[2, j] + 1

2
u[0,−1 + j]u[3, j]ū[2, j] +

1
2
u[0, 1 + j]u[3, j]ū[2, j] + 1

2
u[1,−1 + j]u[3, j]ū[2, j] +

1
2
u[1, 1 + j]u[3, j]ū[2, j] + 1

2
u[2,−1 + j]u[3, j]ū[2, j] +

1
2
u[2, 1 + j]u[3, j]ū[2, j] + 1

2
u[3,−1 + j]u[3, j]ū[2, j] +

1
2
u[0, j]u[3, 1 + j]ū[2, j] + 1

2
u[1, j]u[3, 1 + j]ū[2, j] +

1
2
u[2, j]u[3, 1 + j]ū[2, j] + 1

2
u[3, j]u[3, 1 + j]ū[2, j] +

1
2
u[0,−1 + j]u[0, j]ū[3, j] + 1

2
u[0, j]u[0, 1 + j]ū[3, j] +

1
2
u[0, j]u[1,−1 + j]ū[3, j] + 1

2
u[0,−1 + j]u[1, j]ū[3, j] +

1
2
u[0, 1 + j]u[1, j]ū[3, j] + 1

2
u[1,−1 + j]u[1, j]ū[3, j] +

1
2
u[0, j]u[1, 1 + j]ū[3, j] + 1

2
u[1, j]u[1, 1 + j]ū[3, j] +

1
2
u[0, j]u[2,−1 + j]ū[3, j] + 1

2
u[1, j]u[2,−1 + j]ū[3, j] +

1
2
u[0,−1 + j]u[2, j]ū[3, j] + 1

2
u[0, 1 + j]u[2, j]ū[3, j] +

1
2
u[1,−1 + j]u[2, j]ū[3, j] + 1

2
u[1, 1 + j]u[2, j]ū[3, j] +

1
2
u[2,−1 + j]u[2, j]ū[3, j] + 1

2
u[0, j]u[2, 1 + j]ū[3, j] +

1
2
u[1, j]u[2, 1 + j]ū[3, j] + 1

2
u[2, j]u[2, 1 + j]ū[3, j] +

1
2
u[0, j]u[3,−1 + j]ū[3, j] + 1

2
u[1, j]u[3,−1 + j]ū[3, j] +

1
2
u[2, j]u[3,−1 + j]ū[3, j] + 1

2
u[0,−1 + j]u[3, j]ū[3, j] +

1
2
u[0, 1 + j]u[3, j]ū[3, j] + 1

2
u[1,−1 + j]u[3, j]ū[3, j] +

1
2
u[1, 1 + j]u[3, j]ū[3, j] + 1

2
u[2,−1 + j]u[3, j]ū[3, j] +

1
2
u[2, 1 + j]u[3, j]ū[3, j] + 1

2
u[3,−1 + j]u[3, j]ū[3, j] +

1
2
u[0, j]u[3, 1 + j]ū[3, j] + 1

2
u[1, j]u[3, 1 + j]ū[3, j] +

1
2
u[2, j]u[3, 1 + j]ū[3, j] + 1

2
u[3, j]u[3, 1 + j]ū[3, j]

Example 7 First we consider the simple example of a plane wave solution
(23) to the DNLS equation (20a). We obtain by the Adomian decomposition
technique (34) with the Adomian polynomials (14) and the semi–discrete dis-
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persion relation ω = (4/h2) sin2
(

κh/2
)

− q given in (24):

uj,0(t) = fj = eijκh, (36a)

uj,1(t) = iL−1
t D2

huj,0(t) + iqL−1
t A0 = iL−1

t D2
he

ijκh + iqL−1
t [u2

j,0ūj,0]

= −i
4

h2
sin2

(
κh

2

)

teijκh + iqteijκh = −iωteijκh, (36b)

uj,2(t) = iL−1
t D2

huj,1(t) + iqL−1
t A1

= iL−1
t D2

h[−iωteijκh] + iqL−1
t [2uj,0uj,1ūj,0 + u2

j,0ūj,1]

= −1

2
ω

4

h2
sin2

(
κh

2

)

t2eijκh +
1

2
qωt2eiκx = −1

2
ω2t2eiκx, (36c)

uj,3(t) = iL−1
t D2

huj,2(t) + iqL−1
t A2

= iL−1
t D2

h[−
1

2
ω2t2eijκh]

+ iqL−1
t [2uj,0uj,2ūj,0 + u2

j,1ūj,0 + 2uj,0uj,1ūj,1 + u2
j,0ūj,2]

=
i

6
ω3t3eijκh. (36d)

Finally summing up the iterates yields

uj(t) =
∞∑

l=0

uj,l(t) = eijκh
{

1 − iωt − 1

2
ω2t2 +

i

6
ω3t3 + . . .

}

= eijκhe−iωt = ei(jκh−ωt).

Example 8 Secondly, we want to compute the x–independent solution uj(t) =
f exp(iq|f |2t) (cf. Example 3). In this special case the DNLS equation (20) and
the AL equation (25) coincide and it is fairly easy to see that the ADM yields
exactly the desired solution.

Example 9 Now we consider the AL equation (25a) and a plane wave solu-
tion (23). We get using the Adomian decomposition technique (34) and the

16



Adomian polynomials (35):

uj,0(t) = fj = eijκh, (37a)

uj,1(t) = iL−1
t D2

huj,0(t) + iqL−1
t A0

= iL−1
t D2

he
ijκh + iqL−1

t [uj,0
uj+1,0 + uj−1,0

2
ūj,0]

= −i
4

h2
sin2

(
κh

2

)

teijκh + iqt cos(κh) = −iωteijκh, (37b)

uj,2(t) = iL−1
t D2

huj,1(t) + iqL−1
t A1

= iL−1
t D2

h[−iωteijκh] + iqL−1
t

[

uj,0
uj+1,0 + uj−1,0

2
ūj,1

+
[

uj,0
uj+1,1 + uj−1,1

2
+

uj+1,0 + uj−1,0

2
uj,1

]

ūj,0

]

= −1

2
ω

4

h2
sin2

(
κh

2

)

t2eijκh +
1

2
q cos(κh)ωt2eiκx = −1

2
ω2t2eiκx, (37c)

uj,3(t) = iL−1
t D2

huj,2(t) + iqL−1
t A2

= iL−1
t D2

h[−
1

2
ω2t2eijκh] + iqL−1

t

[

uj,1
uj+1,1 + uj−1,1

2
ūj,0 (37d)

+
[

uj,0
uj+1,2 + uj−1,2

2
+

uj+1,0 + uj−1,0

2
uj,2

]

ūj,0

+
[

uj,0
uj+1,1 + uj−1,1

2
+

uj+1,0 + uj−1,0

2
uj,1

]

ūj,1

+ uj,0
uj+1,0 + uj−1,0

2
ūj,2

]

=
i

6
ω3t3eijκh, (37e)

where ω = (4/h2) sin2
(

κh/2
)

−q cos(κh) is given in (31). Finally summing up
the iterates yields again the exact plane wave solution

uj(t) =
∞∑

l=0

uj,l(t) = eijκhe−iωt = ei(jκh−ωt).

6 Fully discrete nonlinear Schrödinger equations

In this section we consider equations with a discrete time variable, i.e. fully
discrete NLS equations.

A fully discrete NLS is the implicit Durán–Sanz-Serna finite difference scheme
[15] which is a modification of the usual Crank–Nicolson scheme. This scheme
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is very well designed for computing soliton solutions [15]. It is given by

iD+
τ un

j + D2
hu

n+ 1

2

j + q
∣
∣
∣u

n+ 1

2

j

∣
∣
∣

2
u

n+ 1

2

j = 0, j ∈ Z, n ∈ N0, (38a)

u0
j = fj, j ∈ Z, (38b)

with un
j ∼ u(jh, nτ), τ = ∆t, where D+

τ un
j = (un+1

j − un
j )/τ denotes the

standard forward–in–time difference quotient and we used in (38a) the time

average in u
n+ 1

2

j = (un+1
j + un

j )/2. The cubic nonlinearity is discretized by

FDSS(u
n+ 1

2

j ) =
∣
∣
∣u

n+ 1

2

j

∣
∣
∣

2
u

n+ 1

2

j .

Since (38a) is not integrable we can only give particular discrete plane wave
solutions to the DSS–scheme (38) of the form

un
j = exp

[

i
(

jκh − nωτ
)]

, j ∈ Z, n ∈ N. (39)

Inserting the solution ansatz (39) into (38a) yields

i
e−iωτ − 1

τ
− 2

h2
(e−iωτ + 1) sin2

(
κh

2

)

+ q
|e−iωτ + 1|2

4

e−iωτ + 1

2
= 0,

i.e. we obtain the discrete dispersion relation

4

h2
sin2

(
κh

2

)

− 2

τ
tan

(
ωτ

2

)

= q
|e−iωτ + 1|2

4
. (40)

Finally, using the series representation of the tan function in (40) we get

4

h2
sin2

(
κh

2

)

− 2

τ

(
ωτ

2
+

(ωτ)3

24
+ . . .

)

= q
(

1 − (ωτ)2

4
+

(ωτ)4

48
+ . . .

)

, (41)

which is consistent with the semi–discrete relation (24) of the DNLS equation.

7 The fully discrete Adomian Decomposition Method

Finally we adopt the steps of the semi–discrete ADM of §5 to solve fully
discrete equations. To do so, we assume a formal solution to the Durán–Sanz-
Serna scheme (38):

un
j = fj + i(D+

τ )−1D2
hu

n+ 1

2

j + iq(D+
τ )−1FDSS(u

n+ 1

2

j ), j ∈ Z, n ∈ N0, (42)

where the inverse discrete operator is given by

(D+
τ )−1vn = τ

n−1∑

m=0

vm, n ∈ N0. (43)
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Note that using this definition (43) we get

(D+
τ )−1D+

τ un
j = un

j − u0
j .

We assume that there exists a solution of the series form un
j =

∑
∞

l=0 un
j,l,

where the components un
j,l are going to be determined recurrently. Again,

the nonlinear term FDSS(u
n+ 1

2

j ) in (42) is decomposed into an infinite series
of discrete Adomian polynomials FDSS(uj) =

∑
∞

l=0 Al(uj). Substituting these
decompositions into (42) gives

∞∑

l=0

un
j,l = fj + i

∞∑

l=0

(D+
τ )−1D2

hu
n+ 1

2

j + iq
∞∑

l=0

(D+
τ )−1Al. (44)

Again, un
j,0 is identified with the initial data fj and the following recurrence is

proposed to determine the solution components u
n+ 1

2

j,l :

un
j,0 = fj, (45a)

un
j,l+1 = i(D+

τ )−1D2
hu

n+ 1

2

j,l + iq(D+
τ )−1Al, l = 0, 1, 2, . . . (45b)

Note that the Adomian polynomials for the DSS–scheme are the same as (14)
and for the DNLS equation.

Example 10 We consider the example of a plane wave solution (39) to the
Durán–Sanz-Serna equation (38). We obtain by the Adomian decomposition
technique (45) with the Adomian polynomials (14) and the discrete dispersion
relation (41) rewritten in the form (τ = ∆t):

4

h2
sin2

(
κh

2

)

− q = w
(

1 +
(ωτ)2

12
+ . . .

)

− q
(ωτ)2

4

(

1 − (ωτ)2

12
+ . . .

)

︸ ︷︷ ︸

=:ω(κ)

,
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un
j,0 = fj = eijκh, (46a)

un
j,1 = i(D+

τ )−1D2
he

ijκh + iq(D+
τ )−1

[(

u
n+ 1

2

j,0

)2
ū

n+ 1

2

j,0

]

= −i
4

h2
sin2

(
κh

2

)

tneijκh + iqtne
ijκh

= −itn

[
4

h2
sin2

(
κh

2

)

− q
]

eijκh, (46b)

un
j,2 = i(D+

τ )−1D2
hu

n+ 1

2

j,1 + iq(D+
τ )−1A1

= (D+
τ )−1D2

h

[

tn+ 1

2

ω(κ)eijκh
]

+ iq(D+
τ )−1

[

2u
n+ 1

2

j,0 u
n+ 1

2

j,1 ū
n+ 1

2

j,0 +
(

u
n+ 1

2

j,0

)2
ū

n+ 1

2

j,1

]

= −t2n
2

ω(κ)
4

h2
sin2

(
κh

2

)

eijκh +
t2n
2

qω(κ)eiκx = −t2n
2

ω(κ)2eiκx, (46c)

un
j,3 = i(D+

τ )−1D2
hu

n+ 1

2

j,2 + iq(D+
τ )−1A2

= i(D+
τ )−1D2

h[−
t2n
2

ω(κ)2eijκh] + iq(D+
τ )−1

[

2u
n+ 1

2

j,0 u
n+ 1

2

j,2 ū
n+ 1

2

j,0

+
(

u
n+ 1

2

j,1

)2

ū
n+ 1

2

j,0 + 2u
n+ 1

2

j,0 u
n+ 1

2

j,1 ū
n+ 1

2

j,1 +
(

u
n+ 1

2

j,0

)2

ū
n+ 1

2

j,2

]

= i
n(n2 + 1

2
)

6
τ 3ω(κ)3eijκh = i

1

6
(t3n + tnτ

2) ω(κ)3eijκh. (46d)

For the discrete time integration in (46) we used well–known formulas for
finite sums like

∑n
m=1(2m− 1) = n2,

∑n
m=1 m2 = n(n+1)(2n+1)/6, etc. The

results in (46) look similar to the semi–discrete ones of Example 7. However,
there is a small error of order tnτ 2 introduced in un

j,3.

Conclusions

In this work we have shown how the well–known Adomian decomposition
technique can be adapted to use for (semi)–discrete equations. We applied our
findings to continuous, (semi)–discrete and fully discrete nonlinear Schrödinger
equations and presented some illustrative examples including two Mathematica
program codes.
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