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Zusammenfassung

Diese Arbeit befasst sich mit der Ressourcenzuweisung und Luftschnittstellenauswahl in draht-

losen, heterogenen Mehrzellsystemen. Sie spiegelt dabei ein Geschäftsmodel wider, in dem

ein Betreiber mehrere Mobilfunknetze mit überlappender Netzabdeckung steuert und die Frei-

heit besitzt Nutzer einem System seiner Wahl zuzuweisen. Last-basierte Auswahlstrategien nut-

zen diesen Freiheitsgrad um Überlastungssituationen in einer Luftschnittstelle auszugleichen,

falls in einem überlappenden System noch genügend Ressourcen zur Verfügung stehen. Diese

Ansätze sind weit verbreitet, jedoch vernachlässigen die meisten wichtige Diversitätsquellen:

Unterschiedliche Übertragungstechnologien, Trägerfrequenzen, Kodierungs- und Modulations-

verfahren führen dazu, dass Systeme Nutzer mit unterschiedlicher Effizienz unterstützen. Die-

se wird dabei maßgeblich von der angefragten Dienstklasse und den Kanaleigenschaften der

Nutzer beeinflusst und ist meißt unabhängig von der Systemlast. Hauptziel der Arbeit ist die

Analyse, wie solche Effekte optimal für die Ressourcenallokation ausgenutzt werden können

und welche Gewinne sich hierdurch erreichen lassen.

Im ersten Teil werden unter Anwendung der Dualitätstheorie ein analytisches Modell sowie

Regeln zur optimalen Ressourcenzuweisung in langsam veränderlichen Szenarien hergeleitet.

Die Untersuchungen sind hierbei auf interferenzbegrenzte Systeme und solche mit orthogona-

ler Ressourcenzuweisung wie z.B. UMTS und GSM beschränkt. Weiterhin werden dezentral

operierende Algorithmen entwickelt. Diese sind an den nur eingeschränkt möglichen Signali-

sierungsaustausch zwischen Nutzern und Basisstationen angepasst und maximieren die Anzahl

unterstützbarer Nutzer oder allgemeine Nutzenfunktionen.

Danach erfolgt die Erweiterung des Ansatzes für Systeme die sich als parallele Übertragungs-

kanäle modellieren lassen, wie z.B. OFDM. Eine neue Klasse von Nutzenfunktionen wird abge-

leitet, die es erlaubt das im allgemeinen nicht konvexe Optimierungsproblem der Nutzenfunk-

tionsmaximierung konvex darzustellen. Die neue Klasse schließt hierbei eine bereits bekannte,

Log-konvexe, Nutzenklasse mit ein.

Im letzten Abschnitt werden der Einfluss von sich schnell verändernden Kanälen und die

Unkenntnis ihrer Wahrscheinlichkeitsdichtefunktionen auf die optimale Nutzerallokation un-

tersucht. Unter der Annahme, dass alle Luftschnittstellen über Warteschlangenpuffer verfügen

und dass Nutzenfunktionen in Abhängigkeit von Erwartungswerten formuliert sind, werden Al-

gorithmen entwickelt, die die Nutzenfunktionen eines heterogenen Systems maximieren. Aus-

schlaggebend ist hierbei die geschickte Dimensionierung der Flusskontrolle der Datenpakete.
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Sie ist so gestaltet, dass sich die Puffer wie duale Parameter einer stochastischen Subgradienten-

methode verhalten und dass durch geeignete Parameterwahl die Paketverzögerung der Nutzer

eingestellt werden kann.



Abstract

In this thesis, resource allocation as well as air interface selection in heterogeneous wireless

multi-cell scenarios are covered. These scenarios correspond to the business case where an

operator is in charge of multiple wireless systems with overlapping coverage and, presuming

that service requests can be supported in several underlying radio access networks, has the free-

dom to assign users to an air interface of its choice. Load balancing schemes, which are widely

used, exploit this freedom in order to prevent overload situations in one technology in case suffi-

cient resources are available in an alternative one. However, most of them neglect an important

source of diversity: air interface specific technologies, carrier frequencies, modulation and cod-

ing schemes provoke that some radio access networks are better suited to support users with

certain channel characteristics and service requests than others, often independent of network

loads. This work analyzes how these effects can be exploited in an optimum way and which

gains can be achieved.

In the first part of the thesis, an analytic model and close to optimum assignment rules for

slowly varying environments are derived based on duality theory. It covers interference limited

air interfaces and those with orthogonal resources such as UMTS and GSM. Decentralized

close to optimum algorithms which are adapted to the limited information exchange between

different technologies and which maximize performance measures such as the weighted number

of assignable users or general system utilities are developed.

The analysis is then extended to radio air interfaces which can be described as parallel

broadcast channels such as OFDM. There, a new class of utility functions is proposed which

guarantees existence of a convex representation of the generally non-convex utility maximiza-

tion problem. The new utility class thereby encloses a known log-convexity class.

In the last chapter the influence of quickly changing environments and ignorance of the

channels’ probability density functions is investigated. There, assuming that the heterogeneous

system’s underlying air interfaces are equipped with queues and that the performance metric is

formulated with respect to time averages, algorithms that maximize the scenario’s sum utility

are derived. Hereby, a flow control is designed which causes the queues to evolve similarly

to dual parameters of a stochastic subgradient procedure and, using a special parameterization,

allows to individually balance users’ delays.
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Chapter 1

Introduction

Today’s wireless communication infrastructure is characterized by a heterogeneous compila-

tion of different Radio Access Technologies (RATs), each designed according to state-of-the-

art transmission concepts and tailored to actual business models at the time of establishment.

Although operators are continuously introducing new technologies to the market, there is still a

strong interest in exploiting legacy systems efficiently, not only to increase the return on invest

but also to allow for gradual employment of new wireless systems. Accompanied by multi-

standard capabilities of modern terminals this opens up the way for exploiting a new degree

of diversity for resource assignment: operators have now the freedom to support users by a

radio access technology of their choice presuming that users are within the coverage of mul-

tiple wireless accesses all supporting the requested service. The optimum exploitation of this

characteristic, denoted air interface diversity in the following, will be investigated in this thesis.

1.1 Related Work

Heterogeneous resource management appears in versatile forms in the literature and is closely

related to resource allocation problems of individual radio access technologies and cross-layer

optimization [SRK03]. A wide variety of strategies and rich mathematical theory, includ-

ing convex [Ber95a], stochastic [KY03] and global optimization [HT93], dynamic program-

ming [Ber95b] and game theory [FT91] has been applied to tackle similar resource assignment

problems. In addition, classic engineering approaches exist, which are tailored to the necessities

of specific technologies and scenarios.

An early, practical example allowing exploitation of air interface diversity is given by the

Third Generation Partnership Project (3GPP) standard for the second and third generation of

wireless communication systems, i.e. Global System for Mobile Communications (GSM)/Enhanced

Data Rates for GSM Evolution (EDGE) and the Universal Mobile Telecommunications System

(UMTS)/High Speed Downlink Packet Access (HSDPA) [Net], [3GP08]. This standard pro-

vides mechanisms to exchange load information and allows for Inter-system Hand-overs (ISHOs)

1



2 Chapter 1. Introduction

between the two heterogeneous air interfaces. In the literature these mechanisms are commonly

used to avoid overload situations in a wireless technology, generated by asymmetric requests

or system capacities, by initiating ISHOs or directing call setup requests to alternative radio

access technologies where still sufficient resources are available. Many versions of these load

balancing and heterogeneous resource management strategies for services with fixed rate re-

quirements such as voice and/or elastic data traffic exist, among those [PDJMT04], [Hil05],

[PDKS06], [PRSA07]. The latter aim at achieving balanced exploitation of resources thereby

reducing blocking, dropping or outage probabilities. However, they neglect the fact that the sum

load in a heterogeneous scenario may depend on the compilation of user assignments in indi-

vidual RATs and that the network selection should depend on the traffic characteristics, radio

link quality and user preferences [ZM04].

One of the first attempts to extend pure load balancing to a strategy considering these effects

for the RAT selection is presented in [FZ05]. There, the authors observe that RATs support

service classes with different efficiencies and that, for maximizing the total number of assignable

users at a predetermined service compilation, optimum service mixes exist for each technology.

A similar observation is exploited in [HPZ05] for maximizing a heterogeneous networks’s sum

utility. Linear programming is applied there to formulate an analytic model and an algorithmic

solution based on average service costs in each technology. On the contrary, the fact that the

suitability of air interfaces may depend on the channel gain and therefore on users’ positions

is exploited in [PRSA06] and a service independent path loss threshold for the air interface

selection in a heterogeneous UMTS/GSM scenario is proposed. However, none of the works

mentioned above considers both, channel and service class, for the Radio Access Network

(RAN) selection; a drawback which is managed in this thesis.

While the latter approaches focus on static scenarios, a greedy policy including service and

channel dependent costs is presented in [CC06] for the RAT selection in dynamic settings us-

ing graph theory. Dynamic programming represents a promising framework for integrating the

stochastic nature of the channel, mobility and the request situation into the RAT selection pro-

cess as presented in the works [SNLW08] and [FL07]. It additionally allows the incorporation

of ISHO costs in the problem formulation. Solving dynamic problems, however, is expensive

in terms of computational cost and thus better suited for offline calculations. Especially, in case

the channel state is considered in the optimization, the state space quickly becomes extremely

large and requires efficient clustering for its management [BW09].

Game theory, used e.g. in [HEBJ08], represents an attractive methodology when distributed

operation is an algorithms’ key requirement and if only limited signaling information can be

exchanged between air interfaces. Nevertheless, often only convergence to equilibria which are

not optimal from a network perspective is achieved.

Since heterogeneous access selection embeds the resource allocation of underlying air inter-

faces, the literature on resource assignment strategies of the comprised technologies is closely

related to it. Results on network utility maximization in static, interference limited air-interfaces



1.2. Outline of the Thesis 3

are presented in [SWB06], [Chi05a]. There, prerequisites, which are loosened for the subclass

of Parallel Broadcast Channels (PBCs) in this thesis, for the convexity of sum utility regions

and distributed algorithms for the resource assignment are derived. Those strategies heavily ex-

ploit convex reparameterizations of the underlying problem and duality theory [PC06]. Based

on super-modular game theory, similar findings as in [SWB06] are also presented in [HBH06].

Resource assignment in air interfaces with orthogonal resources such as Time Division Multi-

ple Access (TDMA), Frequency Division Multiple Access (FDMA) or Orthogonal Frequency

Division Multiplex (OFDM) can often be formulated or approximated as convex optimization

problems [SL05a], [SMC06]. Related work on load balancing and cell-selection algorithms in

multi-cell Wireless Local Area Network (WLAN) networks using convex optimization theory

can be found in [CRdV06].

Likewise, works on utility maximization in time variant scenarios where the optimization

metrics are formulated as time averages as in [ES07], [NML08] and [KW04], constitute a valu-

able basis for this thesis. The former two papers suggest queue based scheduling and flow

control policies and prove close to optimality of the resource allocation by Lyapunov tech-

niques. The latter applies stochastic optimization theory in a setup without queues to achieve

proportional fair assignments; both models are combined in the thesis allowing to tune the

users’ delays in addition to maximizing the sum utility in a heterogeneous scenario as will be

explained in more detail in the following section.

1.2 Outline of the Thesis

Using the literature cited in the precedent section as point of origin, this thesis covers the de-

sign and analysis of resource allocation strategies for wireless scenarios consisting of multiple,

heterogeneous radio access technologies. All RANs are assumed to operate orthogonal to each

other, have (partly) overlapping coverage and terminals to support all technologies. Throughout

the work a top down approach is chosen: starting from a practically relevant problem for-

mulation it is aimed to derive general, analytic and practically feasible solutions based on a

mathematically sound framework.

The thesis is divided into three main chapters. Following the introduction, Chapter 2 deals

with the problem of RAT and cell selection as well as resource allocation in heterogeneous

scenarios consisting of air-interfaces with orthogonal and interference limited resources in

slowly varying environments. Algorithms are derived for service requests with fixed Quality

of Service (QoS) requirements for maximizing either the total number of assignable users at a

given service mix or the weighted number of assignable users in multi-RAN networks. Hereby,

convex optimization and continuous relaxation techniques are applied; for the latter bounds on

the maximum degradation from the optimum are deduced. The algorithmic framework is then

further extended to include services with flexible data rates such as Best Effort (BE) data traffic

by introducing a general utility concept. The proposed algorithm’s completely decentralized
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operation, low signaling efforts between the RANs’ Base Stations (BSs) and users in addition

to close to optimum operation make it a promising strategy for practical applications. The

performance of the derived algorithms is evaluated in simulations for a heterogeneous UMTS

GSM/EDGE scenario.

Chapter 3 focuses on the resource allocation in PBCs. PBCs are suitable for either modeling

heterogeneous scenarios with potentially coupled resource constraints between different tech-

nologies; they may also serve as general descriptions of underlying radio access technologies

such as OFDM, where each channel represents a subcarrier. In the first part of the chapter the

square-root utility class is derived. It allows the formulation of a convex reparametrization of

the in general non-convex utility maximization as well as the dual sum power minimization

problem in PBCs and represents an extension of the log-convex class in [SWB06] which is a

strict subset of the former. For utility functions of the square-root class algorithmic solutions

in the non-convex domain are presented which are shown to converge to the global optimum in

polynomial time. The second part presents a more practically oriented assignment procedure in

heterogeneous scenarios including OFDM based technologies thereby extending the approach

in [SMC06]: confining assignments to those with no more than one user per subcarrier, good

approximations for the modified problem exist for arbitrary concave and strictly increasing util-

ities. Aside, the effect of constraining each user’s activity to one air interface at a time on the

performance is discussed.

The influence of the time variant nature of the channel on the heterogeneous resource al-

location and air interface diversity in quickly changing environments is covered in Chapter 4.

There, the question of optimum flow control and resource allocation of packet based traffic is

studied in RANs which are equipped with queues and employ scheduling protocols. Instead of

instantaneous utilities, optimized in Chapters 2 and 3, sum utilities depending on average data

rates are covered. An algorithmic concept for utility maximization which learns the ergodic

rate regions over time and bases its decisions for flow control and resource allocation solely

on the instantaneously assigned rates and buffer states is presented. Its optimality is proven by

showing that buffers evolve similarly to dual parameters in an equivalent stochastic optimiza-

tion problem, thereby identifying the queue based procedures proposed in [ES07] and [NML08]

as stochastic subgradient methods with constant step size. Exploiting this observation, queue

based algorithms that mimic stochastic subgradient procedures with adaptable step size and

perform better compared to those with constant step size are designed. In addition, the new

algorithms allow to balance the packets’ delays by basing flow control and scheduling on func-

tions of the buffer states. Thereby, out-of-sequence problems are prevented which may arise if

a user’s packets are routed through different RANs.
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1.3 Notation

Vectors and matrices are denoted by bold letters. Hereby, a vector a is understood as column

vector a = (a1, . . . , aN), N ∈ N and N the set of natural numbers; a matrix A has the form:

A =





A1,1 . . . A1,M

...
. . .

...

AI,1 . . . AI,M





The hermitian transpose of a vector or matrix is indicated by (·)H. For vector norms the follow-

ing defintion is introduced:

‖x‖l =




∑

n

|xn|l




1/l

, l ∈ N (1.1)

A vector with all entries equal to one is given by 1 with appropriate size corresponding to

the context. Calligraphic letters M denote sets with cardinality |M| = M and conv(M) their

convex hull. The operator [·]b
a is equivalent to max(min(·, b), a) and the expectation of a random

variable is denoted by E[·]. For x ∈ R y = ⌈x⌉ (y = ⌊x⌋) is the smallest (largest) integer

y ∈ N which is larger (smaller) than or equal to x. The summation over sets is defined as

X = ∑

nXn = {x : x =
∑

n xn, xn ∈ Xn}. a◦b signifies the Hadamard product and a ≻ (�) ≺ (�)b

element-wise greater (equal) smaller (equal). For the above defined matrix A with real entries

A � 0 is equivalent to A ∈ RI×M
+ and A ≻ 0 has the same meaning as A ∈ RI×M

++ for R the set

of real numbers. a−1 = (a−1
1
, . . . , a−1

N ) represents a vector with inverse entries. The composition

of functions is defined by (g ◦ f )(x) := g( f (x)) and for the inverse g−1(x) of function g(x) holds

g(g−1(x)) = x. If not stated differently, log(·) is the natural logarithm and rank(A) the rank of

matrix A.





Chapter 2

Heterogeneous Access Management in

Slowly Varying Environments

This chapter deals with RAT selection and resource allocation in heterogeneous scenarios con-

sisting of air interfaces with interference limited and orthogonal resource assignment. After in-

troducing the system model in Section 2.1 an algorithm for finding the optimum service mixes

in individual cells, which maximize the total supportable arrival rate of calls with fixed QoS

requirements at a given service mix, is derived in Section 2.2. In Section 2.3 the assignments

are improved by considering users’ channel gains in addition to the requested service type for

the resource allocation in order to maximize the weighted sum of assignable users. An opti-

mization framework which includes also services with flexible QoS requirements and operates

in a completely distributed way is then presented in Section 2.4. More detailed introductions

are presented at the beginning of each section which follow after the definition of the general

system model.

2.1 System Model

In this Section a general system model for heterogeneous multi-RAN, multi-service scenarios

is defined which is valid throughout this chapter if not stated differently.

The downlink direction of a wireless scenario where a single operator is in charge of multiple

radio access networks or air interfaces with at least partly overlapping coverage is considered. A

RAN or air interface is defined as the part of the infrastructure in a communication system which

lies between mobile terminals and the core network and implements a RAT. Interchangeably

with term RAT/RAN, originating from the European Telecommunications Standards Institute

(ETSI) [ETS06], the term air interface which is the prevalent term outside of Europe such as in

the Telecommunication Industry Association (TIA) is used. The set of air interfaces is denoted

byA and each air interface may consist of a set of cells or BSsMa, a ∈ A. For ease of notation

the set of all BSs in the heterogeneous scenario is defined byM := ∪a∈AMa independently of

7
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the underlying technology.

Commercial wireless systems usually operate on individual frequency bands. Thus, orthog-

onality between signals of different air interfaces is a valid assumption and inter-system interfer-

ence can be precluded. However, users may be affected by intra-cell and inter-cell interference

within one radio technology. Assignable resources such as power budgets, subcarriers or time

slots cannot be shared between different BSs. To allow for the coordination of the heterogeneous

user assignment it is assumed that some form of information exchange exists between differ-

ent radio access networks. The latter can be realized by Multiple Radio Management (MRM)

protocols as introduced in [SBEW09]. It is addressed directly in the sections if considered.

The system model is further characterized by defining an area called playground which

lies in the coverage area of at least one air interface of the heterogeneous scenario. Inside the

playground users i ∈ I request services si ∈ S not specifying a desired radio access technology.

Without loss of generality it is assumed that the users are equipped with multi-mode terminals

supporting all radio access technologies a ∈ A and also that each RAN offers all services

s ∈ S. The latter gives operators the freedom to assign users to air interfaces of their choice

in case sufficient resources and coverage is available. The performance gain that is based on

exploiting this freedom is denoted as air interface diversity. Throughout Chapter 2 users may be

assigned to no more than one technology at a time, a characteristic that arises from the separated

infrastructure of different RANs. Nevertheless, multi-RAN operation may be beneficial from a

theoretic perspective, which is shown in Chapters 3 and 4. An exemplary heterogeneous multi-

cell scenario for a GSM/EDGE and UMTS air interface used in most simulations is depicted in

Figure 2.1. More details on the air interfaces are given in Section 2.1.4.

2.1.1 Fixed Versus Time Variant System Model

The characteristics of wireless scenarios, such as channel, user positioning, mobility and re-

quest situation, are usually varying over time. Depending on the frequency and relevance of

these effects a probabilistic system description may be advantageous for close-to-reality mod-

eling. Since analyzing such a probabilistic model often becomes very complex, two different

approaches are used in this chapter: the snapshot model and the probabilistic model. In the

former model it is assumed that the scenario’s variation over time is negligable compared to the

operation time of a policy and validity of a performance measure under investigation, thus jus-

tifying the assumption of fixed channel gains and request situation for analytical modeling. On

the contrary, the probabilistic model is based on a spacial birth and death process of the requests

over time. More precisely, requests of service class s ∈ S emerge corresponding to a Poisson

process with mean measure rs in the scenario. Their duration is assumed to be exponentially

distributed with mean ds and probability density function

f (x) =
1

ds

e−
x

ds . (2.1)
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Investigation area Movement area

Colocated directional GSM/UMTS BS

Main transmission direction

Figure 2.1: Playground containing 42 GSM and 42 UMTS BSs with directional transceivers

(left). Each red triangle marks the position of each technology’s three directional BSs which

are colocated; the arrows point in the main transmission directions. The hexagons indicate the

theoretic separation into cells, whereby only service requests from users assigned to the yellow

ones are considered for the simulation results. The black rectangle limits the area in which users

move and request services. An exemplary cell with one BS of each technology is shown on the

right.

For this model it is noted that if all requests are accepted the number of users Is in the system

follows a Poisson distribution with probability mass function

P(Is = k) = e−rsds
(rsds)

k

k!
. (2.2)

The initial position of emerging users is drawn from a uniform distribution over the area of the

playground. It also characterizes the mean of users’ associated channel processes for static re-

quests. Although mobility is not modeled analytically it is considered in simulations in Section

2.2.6 and 2.4.6.

2.1.2 Air Interfaces

The set of air interfaces under consideration is assumed to belong to two subclasses, RANs with

orthogonal resource assignment modes a ∈ Aorth, such as TDMA or FDMA, and interference

limited air interfaces a ∈ Ain f e.g. Code Division Multiple Access (CDMA) based.
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Orthogonal RANs

For the class of orthogonal systems a fixed transmission power per BS is assumed. The band-

width, i.e. time or frequency slots, is the resource distributable between users. In this class of

systems constant inter-cell interference is considered which is supported by the fact that com-

mercial TDMA systems like GSM/EDGE usually have low frequency reuse; i.e. neighboring

BSs operate on different frequency bands. Thus, inter-cell interference originates only from

further distant BSs and the influence of the users positions within the cell of interest on the

inter-cell interference can be neglected. The Signal to Interference and Noise Ratio (SINR)

between user i ∈ I and a BS m ∈ Ma, a ∈ Aorth of this class

βi,m =
gi,mP̄m

ηorth

∀m ∈ Ma, a ∈ Aorth

thus depends on the channel gain gi,m, the BS power P̄m and the sum of the constant inter-cell

interference and the thermal noise variance ηorth, but is independent of the assigned resource.

The amount of bandwidth assigned to user i by BS m is denoted by ti,m. It is limited by the total

distributable bandwidth per BS T̄m and the constraint

∑

i∈I
ti,m = tm ≤ T̄m ∀m ∈ Ma, a ∈ Aorth. (2.3)

Due to the orthogonality of users’ signals and the fact that the bandwidth is the distributable

resource the relation between a user’s data rate Ri,m and the assigned resource is linear for this

class of RANs:

Ri,m = R̄i,mti,m ∀i,m ∈ I,Ma, a ∈ Aorth (2.4)

Here, R̄i,m := fa(βi,m), m ∈ Ma denotes the feasible link rate per time or frequency slot between

user i and BS m. The function fa(·) represents a positive, non-decreasing SINR-rate mapping

curve corresponding to the coding, modulation and transmission technology of RAN a ∈ Aorth,

which is usually obtained from measurements. The rate should therefore not be confused with

the information theoretic rate but rather be understood as a practical measure which may toler-

ate a certain probability of error. From an information theoretic point of view one could also

substitute the Shannon capacity, which represents an upper bound on the error free transmis-

sion rate, instead. However, the noise plus interference must then follow a Gaussian circularly

symmetric distribution in order to obtain reasonable results.

Interference Limited RANs

In interference limited air interfaces it is assumed that all users share the same bandwidth and

that resources are distributed by means of BSs’ m ∈ Mb, b ∈ Ain f power assignment. The latter
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is limited by a sum power constraint

∑

i∈I
pi,m = Pm ≤ P̄m ∀m ∈ Mb, b ∈ Ain f , (2.5)

where pi,m is the non negative power that BS m assigns to user i ∈ I. Users are sensitive to

intra-cell and inter-cell interference in interference limited systems and the SINR between BS

m and user i ∈ I is defined by:

βi,m =
gi,m pi,m

ρgi,m

∑

j,i p j,m +
∑

n,m gi,nPn + ηin f

m, n ∈ Mb, b ∈ Ain f , i, j ∈ I (2.6)

In (2.6) ηin f is the thermal noise variance and 0 ≤ ρ ≤ 1 denotes a non-orthogonality factor.

It may be used to model reduced inter-cell interference if users are separated through carefully

designed spreading sequences as e.g. in CDMA. A user’s data rate is given as a function of its

SINR in this class of systems:

Ri,m = fb(βi,m), i,m ∈ I,Mb, b ∈ Ain f

Like in Section 2.2.5, fb(·) depends on the transmission technology and is usually obtained from

measurements.

Although the spreading sequences used in the CDMA based UMTS downlink are orthogonal

Walsh codes, their orthogonality is often lost in real world scenarios through time dispersive

channels [PM02]. Based on this fact (2.6) represents a well accepted model also for CDMA

based RANs and is used to model UMTS in this thesis.

2.1.3 Service Requests

All services s ∈ S considered in this chapter can be divided into two classes: those with fixed

QoS constraints and those with elastic requirements. For the former class the QoS constraint

can be mapped to a minimum data rate which has to be guaranteed with fixed probability of

error in the scenario. This class refers to circuit switched services, such as voice traffic, where

a fixed minimum data rate is required and higher data rates do not improve the service quality.

Elastic BE services, on the other hand, are assumed to operate within a range of data rates,

including streaming or data services. Delay and jitter, which are also commonly used in the

definition of QoS measures, are not considered.

2.1.4 Simulation Setup

The simulations in this chapter are restricted to heterogeneous scenarios consisting of one inter-

ference limited air interface UMTS and one orthogonal GSM/EDGE system. All multi-cell sim-

ulations are performed using an event driven Multiple Radio Resource Management (MRRM)
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Table 2.1: Standard parameters used in the MRRM Simulator.

Max. power UMTS: P̄m = 20W

Max. power GSM: P̄m = 15W

Time-slots GSM: T̄m = 21

Antenna pattern: Sector 90◦ [TR101]

Path loss GSM [dB], (r distance in [m]): gdb = 132.8 + 38 lg(r − 3) [ETS99]

Path loss UMTS [dB]: gdb = 128.1 + 37.6 lg(r − 3) [TR101]

SINR-rate mapping UMTS: Cb = 1.14e9, Db = 8.7e − 4

Thermal noise GSM: −105 dBm

Thermal noise UMTS: −100 dBm

Inter-cell interference GSM: −105 dBm

Orthogonality factor UMTS: ρ = 0.4

Simulator for heterogeneous access management. The C++ based environment was developed

in cooperation with Alcatel-Lucent and supports cellular UMTS/HSDPA, GSM/EDGE air in-

terfaces, a Worldwide Interoperability for Microwave Access (WiMAX) hot-spot and different

service classes such as Voice over Internet Protocol (VoIP), streaming, circuit switched voice

and BE data services. The layout of the simulation scenario consisting of 42 colocated UMTS

and GSM/EDGE cells is shown in Figure 2.1, where on each site, marked by the red triangles,

3 BSs with directional antennas of both RANs are positioned. The distance between the sites

is 2400 m. All RAN specific parameters are listed in Table 2.1. For the UMTS network the

SINR-rate mapping curve from the MRRM Simulator specification [KSB+08] is used. It is

based on link level simulations from [Agi99] and, motivated by the SINR-rate approximations

for adaptive modulation schemes in [Gol05], can be fitted to the analytic expression

fb(β) = Cb log2(1 + Dbβ), (2.7)

which is used in Section 2.4.2. Since for the GSM/EDGE rate mapping no analytic fitting

is needed, in the following analysis the curves from [KSB+08], originating from link level

simulations, are used. Mappings for both air interfaces are depicted in Figure 2.2. In UMTS the

SINR-rate mapping is independent of the service type and limited by a maximum transmission

rate of 384kbit/s. Its observable almost linear shape is exploited in Section 2.4. The data

rate R̄ in Figure 2.2 (right) denotes the rate per standardized time slot in the GSM/EDGE air

interface. Due to the standard [ETS99] no sharing of time slots is possible in these systems

for users requesting circuit switched voice services. Thus, the maximum rate per slot is limited

by 12.2kbit/s for these services which is reflected by the green curve in the same figure. The

application of advanced coding and modulation techniques for data services as well as time

slot sharing between multiple data users results in the blue curve. One may expect that non

differential SINR rate mappings, either discrete or shaped as step function, better model real

world scenarios because only a fixed set of modulation constellations and codes exists in GSM

and UMTS systems. This is, however, not always the case, since these mappings neglect the
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Figure 2.2: SINR-rate mapping curves for UMTS (left) GSM/EDGE (right) BSs.

influence of forward error correction schemes which usually smoothen out the curves, at the

same time warranting the practical relevance of the continuous mappings in Figure 2.2. In the

simulation results only data originating from the investigation area, depicted in Figure 2.1, is

considered thus avoiding distractions caused by the border cells. Service requests are modeled

by the probabilistic model defined in Section 2.1.1 and users’ mobility, which is restricted to

the movement area, is implemented corresponding to [TR101].

2.2 Optimal Service Allocation at Fixed Service Mixes

In this section the problem of user allocation in a heterogeneous multi-RAN, multi-service

scenario is covered, aiming at maximizing the total number of assignable users at a given service

mix. This problem represents the following business case: an operator knows the user capacity

region of the cells of individual air interfaces and possesses information about the compilation

of the system wide requested services, denoted as service mix. A user capacity region, formally

introduced in Section 2.2.5, is defined by the set of all arrival rates which can be supported at

a desired level of QoS in dependence of the service compilation. Based on this information

it is intended to find a simple user assignment strategy which maximizes the total number of

assignable users for an expected service mix.

A similar problem is addressed in [FZ05] for a heterogeneous scenario. There, the authors

observe that optimal service mixes which maximize the total number of assignable users under

a total service mix requirement exist for each air interface. They also propose an algorithmic

solution which, however, does not exploit convexity arguments and relies on constructing the

aggregate capacity region of the heterogeneous system point by point. A close to optimum so-

lution is then obtained by a global search through a table which maps all points on the boundary

of the system capacity region to service mixes of the individual RANs.

Contrary to the approach in [FZ05], convexity arguments are used in this section to solve a

similar problem. The latter can be formulated as a convex max-min problem for which efficient
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algorithms exploiting Lagrangian duality are derived. Furthermore, the formulation provides

general insights into the structure of heterogeneous assignment problems.

After the introduction of problem specific definitions of system model in Section 2.2.1 the

formal optimization problem and an algorithmic solution for arbitrary convex user capacity

regions are presented in Sections 2.2.2, 2.2.3 and 2.2.4. The formal definition of interference

limited and orthogonal air interfaces’ user capacity regions follows in Section 2.2.5. In the

latter also a simplex like shape of the regions is revealed and its implications for the optimum

resource allocation are analyzed. The performance of the algorithm and a simplified version

thereof are then investigated in Section 2.2.6.

2.2.1 System Model and Definitions

A heterogeneous scenario consisting of multiple, possibly cellular, air interface is considered,

where users’ requests for different services emerge corresponding to a spacial birth and death

process, defined in the probabilistic system model in Section 2.1.1, with expected arrival rates

r = (r1, . . . , rs, . . . , rS ).

These requests are partitioned by appropriate call assignment procedures between BSs of all

RANs with arrival rates

rm = (rm,1, . . . , rm,s, . . . , rm,S ), ∀m ∈ M

and rs =
∑

m∈M rm,s, ∀s ∈ S∗; in analogy the sum arrival rate of all services at BS m is defined by

rm =
∑

s∈S rm,s, ∀m ∈ M. The service mix for a specific BS m is represented by the normalized

arrival vector

αm = (αm,1, . . . , αm,s, . . . , αm,S ) =

(

rm,1

rm

, . . . ,
rm,s

rm

, . . . ,
rm,S

rm

)

. (2.8)

Similarly, the system service mix is denoted by

α = (α1, . . . , αs, . . . , αS ) =

(

r1
∑

s rs

, . . . ,
rs

∑

s rs

, . . . ,
rS

∑

s rs

)

. (2.9)

Without specifying the scenario’s underlying radio access technologies, all feasible service ar-

rival rates define the user capacity region Cm. The corresponding rate assignments violate the

BSs’ resource constraints with a probability Pout,m that is smaller than a maximum outage prob-

ability threshold P̄out in order to meet all users’ minimum QoS requirements. This definition

is formalized in (2.34) and (2.35) for BS of interference limited and orthogonal RANs, respec-

tively. Independent of the specific shape of the regions, which are assumed to be convex, the

∗It is noted that the setM covers all combinations of single/multi- cell/RAT scenarios.
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user capacity region of the whole heterogeneous system is obtained by the summation over the

individual sets

C =
∑

m∈M
Cm, (2.10)

which is also a convex set. For heterogeneous single-cell scenarios (2.10) follows directly from

the assumption that there is no inter-RAN interference and that resources cannot be shared

between different air interfaces. The same holds for orthogonal RANs based on the constant

inter-cell interference assumption in Section 2.1.2 in multi-cell setups. For interference limited

air interfaces it is assumed that all BS m ∈ Mb, b ∈ Ain f are fully loaded and that they therefore

transmit with close to maximum power P̄m on average to reach the aggregate region’s bound-

ary. Then, the inter-cell interference is almost constant which renders the capacity region Cm

independent of neighboring cells n , m ∈ Mb, b ∈ Ain f and (2.10) follows.

2.2.2 Optimization Problem and Dual Representation

Based on the definitions above the formal formulation to the problem introduced at the begin-

ning of this section can be stated:

max ‖r‖1 (2.11)

subj. to r ∈ C
rs

∑

s∈S rs

= ᾱs ∀s ∈ S,

with ᾱ the desired/expected overall service mix. The constraint on the service mix can equiva-

lently be integrated in the form of a max-min representation:

max min
s
ᾱ−1

s rs (2.12)

subj. to r ∈ C

Both problem formulations are convex and can be solved with standard tools from convex opti-

mization [Ber95a], [BV04]. However, to gain better insights into the structure of the solution the

attention is restricted to the max-min formulation (2.12) and an algorithmic framework based

on duality is developed below. In order to achieve this goal an auxiliary constraint is added to

(2.12), which results in an equivalent problem:

max u (2.13)

subj. to r ∈ C
ᾱ−1

s rs ≥ u ∀s ∈ S



16 Chapter 2. Heterogeneous Access Management in Slowly Varying Environments

The Lagrangian function [Ber95a], which belongs to the latter representation and merges the

problem’s objective and service mix constraints in one equation, results in the following expres-

sion by keeping the feasibility constraints r ∈ C explicit:

L(u, r,µ) = u +
∑

s∈S
µs(ᾱ

−1
s rs − u) (2.14)

= u



1 −
∑

s∈S
µs



 +
∑

s∈S
µsᾱ

−1
s rs

Hereby, µ = (µ1, . . . , µS ) � 0 are dual parameters, which can be interpreted as penalty weights

in case a constraint is violated in (2.14). Based on (2.14) the Lagrangian dual function is defined

as:

g(µ) = sup
u,r∈C

L(u, r,µ) (2.15)

A direct consequence of the dual parameters’ non-negativity is the fact that the dual function

(2.15) represents an upper bound to the solution of (2.13). Furthermore, it follows, in connec-

tion with convexity of (2.13) and since Slater’s condition holds that the solution of the primal

problem (2.12) and the minimum of the dual function are equal. Slater’s constraint qualifica-

tions is fulfilled if a feasible rate allocation which is strictly within non-trivial capacity regions

exists [Ber95a], [BV04]:

‖r∗‖1 = min
µ�0

g(µ) = g(µ∗) (2.16)

For any reasonable solution of (2.16) the dual (2.15) has to be bounded above, a prerequisite

which only holds for†
∑

s∈S
µs = 1. (2.17)

Thus, (2.17) represents an additional optimality constraint, and by substitution into the dual

function transforms the evaluation of the latter to a weighted sum rate maximization problem

g(µ) = max
r∈C

∑

s∈S
µsᾱ

−1
s rs, (2.18)

where ᾱ−1
s µs, s ∈ S represent the weights. Due to the independence of Cm of the resource

allocation in other cells Cn, n , m ∈ M (2.18) decouples into individual weighted sum rate

maximization problems for each BS

g(µ) =
∑

m∈M
max
rm∈Cm

∑

s∈S
µsᾱ

−1
s rs,m, (2.19)

which can be solved distributedly by using standard tools from convex optimization if the rate

regions Cm, m ∈ M are known.

†Otherwise u→ ±∞ would attain the supremum of (2.15).
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Figure 2.3: Exemplary capacity region for 2 services and 2 RANs/BSs: (left) construction of

rate the allocation that solves (2.19) for weights µ ◦ ᾱ−1 = (1, 1). (right) construction of the

solution to (2.16) which results in ᾱ = (0.5, 0.5): The optimum is achieved if µ∗ is used for

the weighted rate maximization in (2.19). This results in optimum services α∗
1
, α∗

2
for RAN

1 and RAN 2 and ᾱ in total. The sum rate that would be achieved with equal service mixes

α1 = α2 = ᾱ in all RANs is marked by the rectangle and results in a rate much lower than ‖r∗‖1.

An example of user capacity regions, service mixes, maximum weighted sum rate points

and the solution of (2.11) is shown in Figure 2.3 for M = S = 2. In the figure one observes

that the maximum weighted sum rate points of the individual Cm and C are boundary points

of the corresponding regions which are characterized by the fact that the normal vectors of

the supporting hyperplanes are equal to the normalized weight vector µ ◦ ᾱ−1. However, the

corresponding service mixes are generally different αm , αn , ᾱ.

2.2.3 Minimizing the Dual Function Using Subgradients

Under the assumption that an algorithmic solution to maximize the weighted sum rate problem

(2.19) for individual BSs exists, one has still to find an efficient procedure to minimize the

dual function. Since the definition of g(·) includes a maximum operation, differentiability of

the dual function cannot be guaranteed. Thus, a gradient ∂g(µ)/∂µ may not exist and gradient

based descent methods cannot be applied in general. For non-differentiable functions that are

continuous and convex a subgradient always exists, for which similar descent procedures are

known. A subgradient is equivalent to the gradient for all µ+ where g(·) is differentiable. There,

it defines the unique supporting hyperplane of g(·) at a given µ+. At any µ+ for which g(·) is

not differentiable, such as corner points, multiple supporting hyperplanes may exist. Here, any

vector ν ∈ RS is a subgradient of the convex function g(·) at point µ+ if the following condition

holds [Ber95a]:

g(µ) ≥ g(µ+) + (µ − µ+)Hν, ∀µ � 0, ‖µ‖1 = 1 (2.20)
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Next, a subgradient is derived for the dual function (2.15). It is assume that

r+ = arg max
r∈C

∑

s∈S
µ+s ᾱ

−1
s rs (2.21)

for given weights µ+. Then, for the dual the following holds:

g(µ) ≥ L(r+,µ) =
∑

s∈S
µsᾱ

−1
s r+s (2.22)

=
∑

s∈S
µ+s ᾱ

−1
s r+s +

∑

s∈S
(µs − µ+s )ᾱ−1

s r+s

= g(µ+) +
∑

s∈S
(µs − µ+s )ᾱ−1

s r+s

Thus, [ν]s = ᾱ−1
s r+s represents the sth element of a subgradient by (2.20) and the following

update procedure is known to provably converge to the minimum of the dual function [Ber95a]:

µ(n+1) = P‖µ‖1=1[µ(n) − s(n)(α−1 ◦ r+(µ(n)))] (2.23)

In (2.23) P‖µ‖1=1[·] represents the projection operation on the constraint (2.17) and s(n) is the

step size at the nth iteration. It is selected corresponding to the Armijo rule [Ber95a]:

s(n) = θdn (2.24)

with dn being the smallest integer for which

g(µ(n)) − g(µ(n+1)) ≥ ζ θdn ‖ α−1 ◦ r+(µ(n)) ‖22 (2.25)

holds, with constants 0 < θ, ζ < 1. The optimum weights and rates µ∗, r∗ are attained in case
∑

s∈S(µs − µ∗s)ᾱ−1
s r∗m ≥ 0 ∀µ � 0, ‖µ‖1 = 1.

The update procedure of the weights (2.23) allows for a geometrical interpretation: due to

convexity of C one observes in Figure 2.3 that by decreasing a service’s weight µs also the

corresponding rate rs decreases and vice versa. This property is exploited in (2.23) as well: if a

service’s current weight results in a too large (small) weighted rate ᾱ−1
s rs regarding the desired

service mix, the weight µs is decreased (increased) in the next iteration and thus leads to a sum

rate vector which has a service mix which is closer to the desired ᾱ provided the step size is not

too large.

Following the idea of [LJ06] it is noted that the projection operation in (2.23) becomes

obsolete in case (2.17) is directly integrated in (2.22), which reduces the dimensionality of the
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subgradient to S − 1:

g(µ) ≥ g(µ+) +
∑

s∈S\{1}
(µs − µ+s )(ᾱ−1

s r+s − ᾱ−1
1 r1) (2.26)

= g(µ+) + (−µ+\{1})
(

(α−1
\{1} ◦ r+\{1}) − 1ᾱ−1

1 r+1

)

Here, x\{1} denotes the vector x without its first element and

ν\{1} = (ᾱ−1
\{1} ◦ r+\{1}) − 1ᾱ−1

1 r+1 (2.27)

the corresponding subgradient with ν\{1} ∈ RS−1.

2.2.4 Ellipsoid Method

In this section a subgradient procedure for the minimization of the dual function is presented

which solves the user assignment problem (2.11) in Section 2.2.2. An intuitive update procedure

for the minimization has already been presented in (2.23). As an alternative algorithm, the

ellipsoid method for which faster convergence in the simulations is observed is introduced here.

The ellipsoid method represents a generalization of the bisection method to multiple dimensions

and relies on isolating the optimum solution in ellipsoids with shrinking volume. The procedure

is presented in Algorithm 1 and explained next: at the beginning the algorithm is initiated by

generating an S − 1 dimensional ellipsoid covering the feasible weight space µ\{1} :
∑S

s=2 µs ≤
1, µs ≥ 0. In each iteration the dual function g(·) is then evaluated for the weight vector µ+ which

represents the center of the current ellipsoid. One half-space of the latter can be ruled out from

the set of possible optimal weight vectors based on the corresponding subgradient ν\{1}(r+(µ+\{1}))

and (2.20). The smallest ellipsoid covering the remaining half space is calculated next and

represents the updated ellipsoid for the following iteration. The procedure is terminated if

the largest distance from the center to the boundary of the ellipsoid, i.e. the spectral radius

ρ(E), is smaller than a threshold ǫ. Further details on the ellipsoid method including analytical

formulations for its convergence speed can be found in [FR], [Boy06].

Although Algorithm 1 converges to the optimum weights µ∗ the corresponding rate vectors

r(µ∗) and service mixes may not be unique if not all user capacity regions Cm,m ∈ M are strictly

convex. In this case the optimum allocation, which complies with the service mix constraint

can be calculated by solving a set of linear equations, corresponding to (2.56) in Section 2.2.5.

2.2.5 User Capacity Regions

While the derivations in Section 2.2.3 and Algorithm 1 hold for arbitrary convex sets, the prob-

lem of maximizing the weighted sum rate over individual user capacity regions (2.19) has not

been addressed so far. The latter, in addition to analyzing basic properties thereof, is investi-

gated in this paragraph for interference limited and orthogonal RANs defined in Section 2.1.2.
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Algorithm 1 Ellipsoid Method

initialize n = 0,E(n) = (1 − 1
S

)IS−1, µ
+
s =

1
S
∀s ∈ S

while max ρ(E(n)) > ǫ do

(1) calculate
∑

m r+m(µ+) according to (2.21) (or (2.55) for simplex capacity regions)

(2) calculate and normalize subgradient based on (2.27)

ν̃ =
ν\{1}

√

νH
\{1}E

(n)ν\{1}

(2.28)

(3) update ellipsoid

µ
(n+1)

\{1} =µ
(n)

\{1} −
1

S
E(n)ν̃,

µ1 =1 −
S−1∑

s=1

µ(n+1)
s

E(n+1) =
(S − 1)2

(S − 1)2 − 1
(E(n) − 2

S
E(n)ν̃ν̃HE(n))

(2.29)

(4) n = n + 1

end while

Thereby, it is shown that the corresponding regions can be approximated by convex simplexes.

This greatly simplifies solving the maximization problem. Furthermore, the relation between

outage and blocking probability is established.

Interference Limited RANs

For interference limited air interfaces it is assumed that the QoS measure of a service class

s ∈ S is characterized by a minimum SINR requirement γs and the feasibility constraint βi,m ≥
γs ∀i, s,m ∈ Is,m,S,M, with Is,m being the set of users which request service s and are assigned

to BS m. Since the inter-cell interference is independent of the resource allocation the SINR

equation (2.6) simplifies to

βi,m =
gi,m pi,m

ρgi,m

∑

j,i p j,m + η̃i,m

m ∈ Mb, b ∈ Ain f , i, j ∈ I, (2.30)

with

η̃i,m = ηin f +
∑

n,m

gi,nP̄n. (2.31)

Then, assuming fixed channel gains and that users i ∈ Im request service in BS m, feasibility of

a static request situation can be determined by evaluating the required powers of the individual

users and checking the sum power constraint of the corresponding BS. Solving (2.30) for pi,m
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causes the implicit equation

pi,m =
γi,m

1 + ργi,m





∑

i∈Im

pi,m +
η̃i,m

gi,m




∀i,m ∈ Im,Mb, b ∈ Ain f . (2.32)

Summing both sides of (2.32) over i ∈ Im, then solving for the sum power Psum,m =
∑

i∈Im
pi,m∀m ∈

Mb, b ∈ Ain f and substituting the latter into the power constraint (2.5) results in a feasibility

condition which is independent of the powers:

0 ≤ Psum,m =
1

1 −∑

i∈I ργi,m

∑

i∈Im

γi,m

1 + ργi,m

η̃i,m

gi,m

≤ P̄m ∀m ∈ Mb, b ∈ Ain f (2.33)

Equation (2.33) reveals the interference limitation of the model: only requests with ρ
∑

i∈Im
γi,m ≤

1 lead to a positive sum power and can be supported even in case no sum power limitation exists.

For this reason the feasibility constraint (2.33) is restricted to non-negativity.

Next, the probabilistic system model from Section 2.1.1 is investigated and, without loss

of generality, it is assumed that the average service duration is equal to one for all users. For

this model the number of users assigned to a BS is Poisson distributed with an average number

equal to the arrival rate rs,m ∀s ∈ S, supposing that all requests are accepted. Channel gains are

also random. Consequently, the sum power (2.33) that is needed to support all service requests

is a random variable. Based on the sum power’s PDF ΠPsum,m
(rm, x) the user capacity region

of BS m ∈ Mb, b ∈ Ain f is defined by all average service arrival rates rm where the outage

probability Pout,m(rm), i.e. the probability of violating the power constraint, is smaller than a

maximum outage probability P̄out:

Cm = {rm � 0 : Pout,m(rm) ≤ P̄out} (2.34)

with

Pout,m(rm) = 1 −
∫ P̄m

0

ΠPsum,m
(rm, x)dx ∀m ∈ Mb, b ∈ Ain f (2.35)

Calculating ΠPsum,m
(rm, x) analytically is difficult. However, under the assumption that the chan-

nel gains are IID and independent of the spacial birth and death process of the service requests

the expectation of the sum power can be approximated by the following expression:

E[Psum,m] = E





1

1 −∑

s∈S ργsIs,m

∑

s∈S

γs,Is,m

1 + ργs



E

[

η̃i,m

gi,m

]

(2.36)

≈ E
[

xm

1 − ρxm

]

E

[

η̃i,m

gi,m

]

≈ E [xm]

1 − ρE [xm]
E

[

η̃i,m

gi,m

]
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Here,

xm :=
∑

s∈S
γsIs,m (2.37)

is a Poisson process with

E [xm] =
∑

s∈S
γsrs,m. (2.38)

In (2.36) the first approximation assumes that ργs ≪ 1 and the second one represents the first

order Taylor expansion about E[xm], which is tight in case Var[xm] is small. From (2.36) and

(2.38) above one observes that all arrival rates which result in the same expected sum power lie

approximately on a hyperplane. Thus, the capacity region is a simplex in case it is defined by

all arrival rates that meet the power constraint on average.

To extend this result to the more general definition of capacity regions (2.34) the variance

of the sum power is investigated next. Based on (2.33) and assuming ργs ≪ 1 the sum power

can be written as

Psum,m = zmym (2.39)

with

zm =
1

1 − ρxm

(2.40)

ym =
∑

s∈S
γs

Is,m∑

i=1

η̃i,m

gi,m

(2.41)

and

E[zm] ≈ 1

1 − ρE[xm]
(2.42)

E[ym] = E

[

ηi,m

gi,m

]
∑

s∈S
γsrs. (2.43)

For the variances it follows by approximating zm by the second oder Taylor expansion about

E[xm] that

Var[zm] ≈ ρ2
∑

s γ
2
srs

(1 − ρ∑

s γsrs)4
(2.44)

and from [Fel68] that

Var[ym] =
∑

s∈S
γ2

sE[Is,m]Var

[

η̃i,m

gi,m

]

+ γ2
sVar[Is,m]E

[

η̃i,m

gi,m

]2

(2.45)

=
∑

s∈S
γ2

s



E

[

η̃i,m

gi,m

]2

+ Var

[

η̃i,m

gi,m

]



︸                           ︷︷                           ︸

δs,m

rs,m

holds. Furthermore, supposing that the correlation between zm and ym can be neglected the sum
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power’s variance results in:

Var[Psum,m] ≈ E[zm]2Var[ym] + E[ym]2Var[zm] (2.46)

Using the approximations of the expectation and variance of the sum power and assuming that

power is dominated by a sum of IID variables now the central limit theorem can be applied to

approximate the outage probability, which leads to:

Pout,m = 1 −
∫ P̄m

0

ΠPsum,m
(rm, xm)dx

≈ 1 +
1

2



erf





−E[Psum,m]
√

2Var[Psum,m]



 − erf





P̄m − E[Psum,m]
√

2Var[Psum,m]







 (2.47)

The representation above does not reveal whether the relation between arrival rate vectors which

result in the same outage probability, is linear. Simulations of (2.47) suggest, however, that

equal outage probabilities are achieved for arrival rates that lie close to a hyperplane. This

characteristic as well as the quality of the approximation are shown in the left plot of Figure 2.4

for a two service scenario. The real capacity region simulations in the figure result from Monte

Carlo simulations with Is,m being Poisson distributed and average rs,m as well as
ηi,m

gi,m
drawn from

an exponential distribution. The approximate regions base upon (2.47). As can be observed,

the approximate and real regions are linear and lie close together, thus justifying the assumption

that the capacity region Cm of an interference limited BS m can be approximated by a simplex

based on (2.34).

Orthogonal RANs

Similar to the interference limited RANs one can also approximate the user capacity regions

of air interfaces with orthogonal resource assignment strategies by simplexes. Assuming that

the QoS constraints of services in the corresponding RAN are represented by minimum rate

requirements Ri,m ≥ ζs∀i ∈ Is,m the feasibility of a static request situation can be checked by the

resource constraint (2.3) for BSs m ∈ Ma, a ∈ Aorth. Substituting (2.4) with Ri,m = ζs∀i ∈ Is,m

into the latter leads to a resource constraint in the following form:

Tsum,m =
∑

s∈S

∑

i∈Is,m

ζs

R̄i,m

≤ T̄m ∀m ∈ Ma, a ∈ Aorth. (2.48)

Tsum,m is a random variable with PDF ΠTsum,m
(rm, x) for the probabilistic system model. Its PDF

depends on the service arrival rates and allows the definition of the outage probability in analogy

with (2.35):

Pout,m(r) = 1 −
∫ T̄m

0

ΠTsum,m
(rm, x)dx ∀m ∈ Ma, a ∈ Aorth (2.49)
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Figure 2.4: Monte Carlo simulation and approximation of service arrival rates that result in

equal outage probabilities for two services. Each line corresponds to a constant outage prob-

ability of 5% for interference limited (left) and orthogonal air interfaces (right) with P̄m = 20

and T̄ = 21.

For the user capacity regions (2.34) holds. The expectation and the variance of the sum re-

sources can we written as

E[Tsum,m] =
∑

s∈S
ζsrs,mE

[

1

R̄s,m

]

(2.50)

Var[Tsum,m] =
∑

s∈S
rsζ

2
s



var

[

1

R̄s,m

]

+ E

[

1

R̄s,m

]2


and have a similar structure like interference limited BS in (2.36) and (2.46). Thus, by approx-

imation the outage probability of orthogonal BSs results in (2.47) if E[Tsum,m] and Var[Tsum,m]

are substituted for E[Psum,m] and Var[Psum,m] and the central limit theorem is applied. Arrival

rates that result in equal outage probabilities and therefore characterize the capacity regions of

BSs m ∈ Ma, a ∈ Aorth based on Monte Carlo simulations as well as on (2.47) with (2.50) are

shown in Figure 2.4 (right) for a two service scenario. Here, R̄−1
s,m is assumed to be exponentially

distributed. The curves are also close to linear justifying the approximation of the user capacity

regions as simplexes for BSs of orthogonal RATs. In the simulations different values E[R̄−1
s,m] are

used for the two services to reflect that service dependent coding and modulation schemes may

be used in systems like GSM/EDGE. This results in different slopes of the regions compared to

interference limited BSs although γ1/γ2 = ζ1/ζ2 holds for both RANs in the example.
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Outage Versus Blocking Probability

The outage probability, defined in (2.35) and (2.49) for interference limited and orthogonal

RANs, respectively, is a system theoretic measure of high relevance. Nevertheless, it should

not be confused with the blocking probability often available in system simulations. The major

differences are investigated below.

For interference limited BSs the free process of the sum power is defined by Pt
sum over

time t (index m will be omitted in the following) and restricted to the state space P ∈ R;

Pt
sum is further assumed to be a Markov process which changes its state at any user arrival or

departure corresponding to the Poission birth and death process introduced in Section 2.1.1.

The outage probability is defined by the process’s probability to be outside the feasible state

space P f eas := {Psum : Psum ∈ R+, Psum ≤ P̄}

Pout = 1 − Π
(

P f eas

)

, (2.51)

with Π(X) :=
∫

x∈XΠ(x)dx denoting the sum probability of all states x ∈ X corresponding to the

stationary distribution Π(x).

Contrary to the free process, the sum power is restricted to P f eas in real communication

systems. In case a user’s arrival would lead to an infeasible power assignment the request is

rejected, which corresponds to a blocking event, and the process stays in its current state. This

observation reflects the major difference between the blocking and outage probability. However,

a relation between both measures exists:

The constrained process can be described by a truncated Markov process P̃t
sum. Following

Lemma A.3 of [BBK05] the latter has a stationary distribution Π̃(x) for the defined spacial birth

and death process which is completely characterized by the stationary distribution of the free

process:

Π̃(x) =
Π

(

x ∩ P f eas

)

Π(P f eas)
(2.52)

In this case the blocking probability of the truncated process is given by Corollary A.7 of

[BBK05]

Pb =
Π

(

Pt
sum ∈ P f eas, P

t+1
sum < P f eas

)

Π(Pt
sum ∈ P f eas)

(2.53)

and is therefore closely related to the outage probability.

The results presented above neglect the influence of channel’s fading processes and user

mobility. More elaborate models including these effects can be found in [BK07], [BPH06] for

single service CDMA scenarios.
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Characteristics of Simplex Capacity Regions

Based on the analysis at the beginning of this section, it is assumed that the user capacity regions

Cm can be described by simplexes of the form

Cm =





rm :

∑

s∈S
rs,mcs,m ≤ 1, rs,m ≥ 0





∀m ∈ M, (2.54)

where cs,m represents a service and BS/RAN dependent resource cost parameter. As observed

before these shapes often represent good approximations of user capacity regions for interfer-

ence limited and orthogonal RANs. Similar results are obtained for static scenarios without

considering the probabilistic birth and death process of requests in [FZ05], [SMH97]. Corre-

sponding to (2.19), the rate vector r+m, which maximizes the weighted sum rate over a simplex

region Cm for given weights µ, results for these shapes in:

r+s,m =






1

cs,m

, if s = arg max
s∈S

µs

cs,mαs

0, else

(2.55)

The optimum rate vector thereby corresponds to assigning only users of one service class to

a BS/RAN as long as the arg max operation in (2.55) has a unique solution. In case it is not

unique any linear combination of rates

rm :
∑

s∈Smax,m

rs,m

cs,m

= 1, rs.,m ≥ 0 (2.56)

maximizes the weighted sum rate with Smax,m = {s ∈ S : s = arg maxs∈S
µs

cs,mαs
}, ∀m ∈ M.

2.2.6 Simulation Results

In the first part of this section the performance of Algorithm 1 is evaluated for an exemplary

scenario consisting of 5 RANs and 3 services with simplex capacity regions. In the second part

the capacity regions of UMTS and GSM/EDGE BSs are simulated for a two service scenario

according to the specifications in Section 2.1. In addition, a simple procedure which is used

instead of Algorithm 1 for the RAN selection in the investigated setup is analyzed.

Performance of Algorithm 1

Algorithm 1 represents an efficient procedure for calculating the optimum service mixes in het-

erogeneous scenarios with many service classes and air-interfaces. In consideration of the latter

the performance of Algorithm 1 is evaluated for an exemplary scenario consisting of 5 RANs

and S = 3 services classes. Hereby, random 3-dimensional simplexes serve as capacity regions

for the individual RANs and an overall service mix α = 1 is requested for the heterogeneous
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Figure 2.5: Exemplary sum capacity region (left) and convergence speed (right) of Algorithm 1

for a 5 RAN 3 service scenario.

setup. The resulting sum capacity region, the optimum individual service mixes for each RAN

as well as the overall service mix are shown in Figure 2.5 (left). Convergence to the optimum

weights is achieved in few iterations as shown in Figure 2.5 (right).

Capacity Regions and Simplified Assignment

Next, the capacity regions of a single UMTS and GSM/EDGE BS are evaluated using the

MRRM Simulator and specifications given in Section 2.1.4. The regions reflect a two ser-

vice scenario supporting a voice service class which requires a fixed minimum data rate of

ζ1 = 12.2kbit/s at all time instances and a streaming service where a rate ζ2 = 22.4kbit/s,

averaged over a time window of 5 seconds, is requested by users. Users are generated corre-

sponding to the stochastic system model in the movement area and request service for 120s on

average. Users are immobile. It is noted that the outage probability as defined in (2.47) cannot

be measured by the MRRM Simulator and the service denial probability, defined by the prob-

ability that a user is either blocked or dropped, serves as feasibility measure instead. Hereby,

all service arrival rates which result in a service denial probability of less than 5% represent the

capacity region. In the simulator a blocking event occurs if an emerging service request cannot

be assigned to any BS of all RANs in its neighborhood without violating the BS’s resource

constraint. In this case the user is blocked from entering the system and the request is erased.

Similarly, a user is dropped in case the current request situation cannot be supported without

violating a BS’s resource constraint anymore. This usually happens if the channel gains or the

interference situation changes. Then, users which are assigned the most resources in the cor-

responding BS are dropped from the system until the resource constraints are met again. The

individual average capacity regions of an UMTS (green) and GSM/EDGE (black) cell in the

heterogeneous multi-cell scenario are shown in Figure 2.6. Both have the shape of simplexes as

expected from the approximations in Section 2.2.5. The asymmetry of the GSM/EDGE region

reflects the low efficiency of voice traffic in GSM, resulting from the fact that time slots cannot
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Figure 2.6: Simulated capacity regions for individual UMTS, GSM/EDGE BSs Cm for voice

services with minimum required rate of 12.2kbit/s and streaming data services with 24.4kbit/s

and maximum service denial probability of 5%. The sum region C resulting from equal service

mixes in both BSs (red) is a strict subset of the C resulting from optimal mixes (blue).

be shared between users of this class. Figure 2.6 also shows the achievable sum region if equal

(red) or optimal (blue) service mixes are assigned in individual BSs. Depending on the service

mix gains of up to 30% can be achieved.

Instead of using Algorithm 1 optimum service based user assignments can also be obtained

by using the following, slightly modified load balancing strategy for the presented two service

two RAN scenario: it assigns all streaming users to the BS with the best channel gain of the

GSM/EDGE air interface and voice users to the corresponding cell in the UMTS network by

default. In case the default BS cannot support the request the superimposed one of the alter-

native RAN, i.e. the colocated BS with equal antenna direction, is checked. If both requests

fail the procedure is repeated for the BS with the second best channel gain in the default RAN

and so on until either a feasible assignment is found or all neighboring cells have been checked

in both underlying radio networks. The performance of the modified strategy is evaluated in

Figure 2.7 for equal overall request rates for both services and compared to a standard load

balancing strategy. The latter acts in a similar way like the modified concept except that the

default RAT is chosen randomly for each request. As can be observed in the left graph, the

simple modification allows to increase the arrival rates by approximately 15% for the accepted

service denial probability of 5% and leads to an increase of the system throughput within the

same magnitude (right). The decrease of the sum throughput at high arrival rates reflects the

effect that voice users have a higher priority than streaming users in the MRRM Simulator, and

thus, the overall service mix changes with increasing dropping probability.
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Figure 2.7: Modified and standard load balancing strategies for a heterogeneous multi-

cellUMTS, GSM/EDGE scenario with 2 services and system wide service mix ᾱ = (1, 1):

service denial probability (left), sum cell throughput (right).

2.3 Cost Based User Assignment for Services with Minimum

QoS Requirements

In the last section the problem of maximizing the total number of users at a given service mix

was covered in a heterogeneous multi-RAT scenario. Based on the observation that each RAT

supports services with different efficiencies, algorithmic solutions that calculate the optimum

service mixes for each technology were derived. Although these strategies allow for a more

efficient exploitation of wireless resources as well as achieve considerable gains compared to

pure load aware access selection procedures, they still neglect an important fact: the efficiency

at which a RAN can support service requests not only depends on the service class but also

on users’ individual request situations. Different carrier frequencies, BS positioning and an-

tenna configurations lead to RAT dependent channel characteristics. In connection with air

interface-specific coding and modulation schemes, resource partitioning, interference situations

and sensitivity to it, basing access selection upon users’ individual characteristics has a strong

impact on the performance of heterogeneous networks, even in case all users request the same

service. These additional influences, which represent exploitable sources of diversity, have

often been neglected for heterogeneous access selection, as reflected in the 3GPP standard’s

purely load based inter-RAN signaling [Net]. Although the importance of considering the path

loss for the cell selection in single-RAN multi-cell scenarios is well understood, i.e. assigning

users to a BS close to the user may be beneficial compared to choosing a further distant one,

the authors of [PRSA06] were one of first to suggest a path loss threshold as RAN selection

criteria in heterogeneous GSM/UMTS networks. The proposed threshold and selection policy,

however, is established by simulations, and the performance improvement explained by the fact

that strong interference at the cell border of the UMTS system is avoided by assigning users at

the cell border to GSM.
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In this section the problem of cell and RAN selection as well as resource allocation in het-

erogeneous scenarios, consisting of interference limited and orthogonal RANs is investigated

aiming to maximize the weighted number of assignable users. Contrary to Section 2.2 a static

scenario is considered, which is characterized by a fixed service request situation with minimum

data rate requirements and constant channel gains. To check the feasibility of an assignment,

cost parameters which constitute measures on how many resources are needed to support a

request in a specific BS are derived for each user and cell. These scalar costs thereby inte-

grate all RAN, service and user specific characteristics such as channel gains, interference and

granularity of resources.

Under the assumption that users’ service requests cannot be split between multiple BSs/RATs

and that assignments where the QoS requirement is only partly met are not possible, the problem

of maximizing the weighted number of assignable users is equivalent to the General Assignment

Problem (GAP) which is known to be Non Polynomial (NP)-complete [FGMS06], i.e. no so-

lution in polynomial time is known. To circumvent the exponentially growing complexity of

directly solving the GAP by global optimization tools, an algorithm based on continuous relax-

ation is presented, which solves the problem approximately. The latter is a linear program for

which convergence is guaranteed in polynomial time. Furthermore, to evaluate the quality of

the proposed algorithm, an upper and lower bound on the optimal solution and thus on the per-

formance loss of the suboptimal algorithm are derived using Lagrangian duality. The presented

algorithm assigns at most M users less than the optimum one, making the lower bound with M

BSs, I users and M ≪ I astonishingly tight as shown below.

2.3.1 Cost and Feasibility Regions

The cost parameters are defined as the ratio of the needed resources to support a user’s minimum

rate requirement ζi and the total amount of resources that can be assigned to users for the specific

models of interference limited and orthogonal RANs of Section 2.1.

In interference limited air interfaces users’ minimum rates relate directly to required target

SINR values γi,m = f −1
a (ζi) ∀m ∈ a ∈ Ain f . The corresponding powers, which meet the target

SINR values with equality, can be calculated independently for each user and are only coupled

through a BS’s sum transmission power, assuming that the inter-cell interference is constant, as

justified in Section 2.2.1. By rearranging terms in the SINR equation (2.30) one obtains (2.32),

which is repeated here for convenience:

pi,m =
γi,m

1 + ργi,m





∑

i∈I
pi,m +

η̃i,m

gi,m



 ∀i,m ∈ I,Ma, a ∈ Ain f

The costs in interference limited RANs can therefore be defined as

pi,m

P̄m

≤ γi,m

1 + ργi,m

(

1 +
η̃i,m

P̄mgi,m

)

:= ci,m ∀i,m ∈ I,Ma, a ∈ Ain f . (2.57)
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Likewise, the cost parameter in orthogonal RANs can be calculated. In these systems the re-

quired minimum data rates correspond to a certain amount of time slots and are obtained from

(2.4). The division of the required by the total number of available slots results in the cost values

in orthogonal air interfaces:

ci,m :=
ζi

R̄i,mT̄m

∀i,m ∈ I,Mb, b ∈ Aorth (2.58)

Based on the definition above c ∈ R I×M
+ defines the cost matrix with entries [c]i,m = ci,m.

Combining the cost definition with the RANs’ resource constraints (2.3) and (2.5) leads to the

observation that any subset of users Im can be supported by BS m if and only if

∑

i∈Im

ci,m ≤ 1. (2.59)

It is noted that the if and only if condition holds despite defining the costs based on an upper

bound in (2.57). This is a direct consequence since (2.57) holds with equality in case (2.59)

does.

The simple cost definition and corresponding feasibility constraints are only possible under

the assumption that each base station has only one distributable resource such as power in case

of interference limited air interfaces and time or frequency slots for orthogonal ones and that

the inter-cell interference is constant. Then, the amount of resources needed to support a user

does not depend on the compilation of resources assigned to other users in the air interface.

For instance, in interference limited RANs with multiple transmit antennas a user’s interference

not only depends on the sum of the transmitted interfering power but also on its compilation.

Then, the problem transforms in a sum-of-ratio formulation from fractional programming and

is generally hard to solve (see also Chapter 3).

2.3.2 Optimization Problem and Relaxation

In this section the static optimization problem of maximizing an operator’s utility function, i.e.

the weighted number of assignable users, and its relaxation is presented. The weights hereby

allow the priorization of certain services or user classes and from a cross-layer perspective

may also represent the coupling between the physical and higher layers. In heterogeneous

multi-system scenarios it is generally not an option to split service requests and assign users to

multiple air interfaces at the same time due to separated architectures and enhanced signaling

efforts. Also multi-link operation, used e.g. for soft handovers, where users are connected

to multiple BSs of one air interface at the same time, is only standardized for few RATs and

specific services classes and thus not considered in this analysis. In addition, assigning users

only partially is not desired due to strict minimum QoS requirements. Under these premises the
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optimization problem results in:

yopt = max
v

∑

i,m∈I,M
wivi,m

subj. to
∑

i∈I
vi,mci,m ≤ 1 ∀m ∈ M

∑

m∈M
vi,m ≤ 1 ∀i ∈ I

vi,m ∈ {0, 1} ∀i,m ∈ I,M

(2.60)

In (2.60) wi denotes the weight of user i ∈ I and v ∈ RI×M is the assignment matrix with entries

[v]i,m = vi,m = 1 if user i is assigned to BS m ∈ M and vi,m = 0 otherwise. The first set of

constraints in (2.60) reflects the BSs’ resource limitations while the second prevents assigning

a user to multiple BSs at the same time. In order to avoid only partial fulfilling of users’ service

requests the third constraint is used. It leads to the combinatorial nature of the problem and

exponentially growing complexity in the degrees of freedom.

Problem (2.60) can be identified as a GAP, a generalization of the Multiple Knapsack

Problem (MKP), which is NP-complete and APX-hard ‡ [FGMS06]. Thus, using suboptimum

algorithms is often inevitable to solve it.

A well known technique for finding approximate solutions to combinatorial problems is

continuous relaxation. It is applied in e.g. [JMO03] and is also used in the following. The

combinatorial problem (2.60) can be transformed into a convex optimization problem by re-

laxing the third constraint, which corresponds to a scenario where also partial assignments and

splitting of users is feasible. The latter can be formulated as:

y∗ = max
v

∑

i,m∈I,M
wivi,m

subj. to
∑

i∈I
vi,mci,m ≤ 1 ∀m ∈ M

∑

m∈M
vi,m ≤ 1 ∀i ∈ I

vi,m ≥ 0 ∀i,m ∈ I,M,

(2.61)

with v∗ ∈ RI×M
+ the optimum relaxed assignment matrix and [v∗]i,m = v∗i,m. Based on the relaxed

problem the notion of split and partially assigned users is formalized:

• User i is called a partially assigned user in case 0 <
∑

m∈M v∗
i,m < 1 holds for the optimum

assignment that solves the relaxed optimization problem (2.61). The corresponding set of

partially assigned users is defined by Ipart = {i : i ∈ I, 0 <
∑

m∈M v∗i,m < 1}

‡APX-hard means that there does not even exist an approximation scheme that comes arbitrarily close to the

optimum value in polynomial time. For the GAP only a 2-approximation exists. This means the tightest lower

bound of an polynomial approximation is half of the optimum solution.
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• The set of split users is defined by Isplit = {i : i ∈ I,∑m∈M v∗i,m = 1, ∃m ∈ M : 0 < v∗i,m <

1} and users i ∈ Isplit are denoted as split.

• The sets of users which are either partially assigned or split is given by Ipart,split = Ipart ∪
Isplit.

An efficient algorithm for solving (2.61) is presented in Section 2.3.5. Based on its solution,

which may contain partially assigned or split users, a feasible assignment ṽ of the integer prob-

lem (2.60) can be constructed by not assigning any user i ∈ Ipart,split. This leads to an assignment

ṽi,m =






1, if v∗i,m = 1

0, else
(2.62)

and results in the utility

ỹ =
∑

i,m∈I,M
wiṽi,m. (2.63)

2.3.3 Bounds

Although only loose approximations exist for the GAP in general, upper and lower bounds can

be developed for the scenario under investigation. Thereby, tight results are obtained as long as

all users have equal weights.

Upper Bound

The following statements are direct consequences resulting from a comparison of (2.60) and

(2.61):

• The relaxed problem (2.61) aims to maximize the same objective as (2.60) but over an

extended space of variables v which includes all possible solutions of (2.60). Thus, its

solution is an upper bound of the combinatorial problem.

• If v∗i,m ∈ {1, 0} ∀i,m ∈ I,M, then the maximum solution to (2.61) is also the optimum

solution to (2.60).

• In case wi = 1∀i ∈ I holds the solution of (2.60) is integer. Thus, since the assignment v∗

results in an upper bound to the combinatorial problem, no better solution than the largest

integer, which is smaller than the optimum relaxed utility, exists:

yopt ≤ ⌊y∗⌋. (2.64)

The upper bound of the problem gives valuable information about checking the quality of avail-

able suboptimal solutions. Nevertheless, it reveals few insights into the general performance

of a polynomial time approximation. Thus, a lower bound on the performance of a suboptimal
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algorithm is of interest. It can be obtained by upper bounding the number of partially or split

users Ipart,split.

Lower Bound

In order to find a lower bound to the approximate solution (2.63) the Lagrangian function and the

Karush-Kuhn-Tucker (KKT) conditions of the relaxed optimization problem can be exploited

[Ber95a], [BV04]. The Lagrangian function to (2.61) is given by

L(v, λ,µ,σσσ) =
∑

i,m∈I,M
wivi,m −

∑

m∈M
λm





∑

i∈I
ci,mvi,m − 1





−
∑

i∈I
µi





∑

m∈M
vi,m − 1




+

∑

i,m∈I,M
σi,mvi,m,

(2.65)

where λ ∈ RM
+ , µ ∈ RI

+ and σσσ ∈ RI×M
+ are the non-negative dual variables. Since (2.61) is a

convex problem and Slater’s condition holds, the following KKT conditions are necessary and

sufficient for the optimum solution:

∂L(v, λ)

∂vi,m

= wi − λmci,m − µi + σi,m = 0 ∀i,m ∈ I,M (2.66)

λm(
∑

i∈I
ci,mvi,m − 1) = 0 ∀m ∈ M (2.67)

µi(
∑

m∈M
vi,m − 1) = 0 ∀i ∈ I (2.68)

σi,mvi,m = 0 ∀i,m ∈ I,M (2.69)

In many air interfaces a user’s channel gain directly influences the resource costs. Then, due

to uncorrelated fading processes and unequal path loss exponents in different air interfaces it is

a valid assumption that all entries of the cost matrix c are independently drawn from a set of

random distributions. This assumption is helpful if the rank of the cost matrix is of interest and

will be referred to as random afflicted costs. The following proposition can now be given:

Proposition 1. If all entries of c are random afflicted, then the optimum assignment of the

relaxed optimization problem (2.61) has at most M − 1 split users with probability one.

Proof. It is assumed that user i ∈ Isplit is split between two BSs mi and ni ∈ M. In this case

v∗i,mi
, v∗i,ni

> 0 and σ∗i,mi
= σ∗i,ni

= 0 with (·)∗ denoting the optimum parameters. Substituting this

into (2.66) leads to

wi − µ∗i = λ∗mi
ci,mi
= λ∗ni

ci,ni
. (2.70)

Thus, a user can only be split if its costs weighted by λ are equal in multiple BSs.

Extending this observation to all users i ∈ Isplit that are assumed to be split between two

BSs mi, ni ∈ M a modified cost matrix csplit ∈ RIsplit ,M

+ can be defined. Each row of csplit has two
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non-zero entries, ci,mi
in the mth

i
column and −ci,ni

in the nth
i

column. Based on the modified cost

matrix the second equality in (2.70) can be written in matrix form:

csplitλ
∗
= 0 (2.71)

As can be observed, the solution of (2.71) is only non-trivial if

rank(csplit) ≤ M − 1. (2.72)

Due to the assumption of random affliction the matrix csplit has full rank with probability one,

and thus, there are at most M − 1 split users in an optimum assignment. In the example above

users were split between two air interfaces only. It is noted, however that the rank argumentation

is also valid if users are split between more than two base stations. �

Next, the partially assigned users are investigated and the following holds:

Proposition 2. For random afflicted costs the number of partially assigned users at the optimum

of (2.61) is limited to Ipart ≤ M − Isplit with probability one.

Proof. Based on (2.68) it follows that µ∗i = 0 ∀i ∈ Ipart and from (2.69) that for all users

∀i ∈ Ipart ∃ m ∈ M : σ∗i,m = 0. Substituting both into (2.66) it is a direct consequence that for

each user i ∈ Ipart there exists at least one BS m ∈ M where

λ∗m =
wi

ci,m

(2.73)

holds. Due to random affliction of the costs the latter equation holds for at most M users and

thus the number of split users is limited to Ipart ≤ M. Since for each split user there is already

one element of λ∗ predetermined so that (2.71) holds only M − Isplit degrees of freedom are left

for compliance with (2.73), which concludes the proof. �

From Propositions 1 and 2 it can be directly concluded that there always exists an optimum

assignment with at most M split or partially assigned users if the matrix csplit has full rank.

The assumption of random afflicted costs is not suitable for all air interfaces, however. In

air interfaces like GSM, where time-slots cannot be shared between voice users and the slot

length is fixed, resource costs may be bound to a finite set of discrete values. In this case

the independence of all rows in csplit cannot be guaranteed with probability one anymore and

there may exist an arbitrary number of split users in an optimum solution. Then, an equivalent

assignment with at most M − 1 split users, that results in the same optimum utility, can always

be found. This property is shown next:

Proposition 3. Assume v∗ maximizes (2.61) and Isplit is the corresponding set of split users

with Isplit > M − 1. Then, there always exists a feasible assignment v# resulting in the same

optimum with I#
split

the set of split users and I#
split
≤ M − 1.
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Proof. The proof relies on showing that all assignments of split users with Isplit > M − 1, that

solve the relaxed problem, lie on a hyperplane. It is shown by geometric arguments that there

always exists a point on the latter which corresponds to a solution with at most M−1 split users.

First, it is assumed that an optimal solution of (2.61) has Isplit > M − 1 split users, each

assigned to two base stations with

v∗i,mi
> 0, v∗i,ni

> 0, v∗i,mi
+ v∗i,ni

= 1, ∀i ∈ Isplit (2.74)

and that mi, ni ∈ M are the BSs between which user i ∈ Isplit is split. Next, the KKT conditions

(2.66)-(2.69) are investigated aiming to describe all possible partitions of split users v∗
i,m, i ∈

Isplit that do not violate the conditions and thus solve the relaxed optimization problem. Since

the optimum dual parameters are fixed (2.66) is satisfied. Also σ∗i,mi
= σ∗i,ni

= 0 ∀i ∈ Isplit holds

and therefore (2.69). Following these observations the amount of resources Γm =
∑

i∈Isplit
ci,mv∗i,m,

which is assigned to split users in BS m, is defined. To describe all possible partitioning of

split users that result in the optimum solution the assignment vector vsplit ∈ RIsplit

+ with entries

[vsplit]i := vi,mi
is introduced. Furthermore, substituting vi,ni

= 1 − vi,mi
∀i ∈ Isplit into (2.68)

guarantees that the latter equation is always met. Thus, any assignment vsplit for which

Γm =
∑

i:mi=m,i∈Isplit

ci,mvi,m +
∑

j:n j=m, j∈Isplit

c j,m(1 − v j,m j
) ∀m ∈ M (2.75)

holds also satisfies (2.67) and is optimal. Constructing csplit similarly as in the proof of Propo-

sition 1, (2.75) can be written in matrix form:

Γ
′ = cH

splitvsplit (2.76)

Here, Γ′ ∈ RM
+ has entries

Γ′m = Γm −
∑

j:n j=m, j∈Isplit

c j,m ∀m ∈ M. (2.77)

Exploiting the fact that rank(csplit) ≤ M − 1 one observes that an infinite number of optimum

solutions to (2.76) exists with at least Isplit −M + 1 degrees of freedom. Since (2.76) is linear all

solutions vsplit are characterized by a hyperplane in an Isplit-dimensional space. This is illustrated

for Isplit = 3 in Figure 2.8 for one degree of freedom on the left hand side and two degrees of

freedom on the right one. The vertices of the cube with edge length one in the plots represent

assignments where all split users i ∈ Isplit are assigned or erased completely to one BS (v∗i,mi
=

{1, 0}). At piercing points of the hyperplane with a face or an edge of the cube the number of split

users is reduced to two or one in the 3-dimensional example. Also, in higher dimensional spaces

piercing points with faces or edges are equivalent to solutions were users are assigned or erased

completely from a BS (and therefore erased or assigned completely to the complementary BS).
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11

1 1v1,m v1,m

v2,m v2,m

v3,m v3,m

Figure 2.8: Possible resource assignments of split users that solve (2.61) for Isplit = 3 and one

(left), two (right) degrees of freedom. All optimum solutions lie on the line segment (left) or

hyperplane (right) inside the cube. Any piercing point of the hyperplane with a face or edge

corresponds to assignments with two or one split users, respectively.

Generally speaking, each degree of freedom allows to reduce the number of split users by one,

which proves the existence of a solution with at most M − 1 split users if an intersection of the

hyperplane and the cube can be guaranteed. The existence of the latter follows directly from

the fact that the original solution v∗ lies inside the cube and on the hyperplane at the same time.

So far, the proof assumed that users are not split between more than two BSs. To proof

the general case one can extend Isplit and csplit by pseudo users: Without loss of generality it

is assumed that user j is split between 3 air interfaces m, n, l. Then, one can model user j in a

modified set I′
split

as two users j1, j2 with v j1,m = t, 0 < t < 1 and v j2,n + v j2,l + t = 1. Using the

argumentation from above a representation equivalent to (2.76) can be formulated:

Γ
′′ = cH

splitv
′
split, (2.78)

with v′
split
= (vsplit, t). The remainder of the proof is equivalent to the case where users are only

split between two BSs. �

A similar observation can be made for the partially assigned users:

Proposition 4. There always exists an optimum assignment which solves (2.61) with at most

M − Isplit partially assigned users.

Proof. By observing that the sum utility is independent how a split user is partitioned between

multiple BSs one can always find an assignment where vsplit is chosen in a way so that there are

no resources left for partially assigned users in the BSs which correspond to the entries of vsplit.

Thus, at most M − Isplit BSs may have residual resources which can be assigned to one partially

assigned user each. �
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Based on the precedent observations the following theorem can be stated:

Theorem 1. There exists always a solution to the relaxed optimization problem (2.61) with at

most M partially assigned or split users Ipart,split ≤ M, that can be achieved in polynomial time.

Thus, the suboptimal solution (2.63) can be bounded below by

ỹ ≥ ⌈y∗ − M⌉, (2.79)

if wi = 1 ∀i ∈ I and else

ỹ ≥ y∗ − M max
i∈I

wi. (2.80)

Proof. Equations (2.79) and (2.80) follow directly from Propositions 1, 2, 3 and 4. Polyno-

mially growing complexity of finding an assignment with at most M split or partially assigned

users can be guaranteed since the relaxed problem is convex. In case the solution is not unique

finding a corresponding assignment from the relaxed solution represents a linear problem which

is also convex. �

2.3.4 Interpretation of the Lagrange Multipliers

The following section intends to shed light on the relaxed optimization problem from an intu-

itive point of view after it was proven in Section 2.3.3 that close to optimum user assignments

can be found based on solutions of problem (2.61). First, general characteristics of optimum

BS/air interface selections are derived, thereby limiting the observations to a scenario with two

BSs and

ci,mλ
∗
m > ci,nλ

∗
n m, n ∈ M. (2.81)

Exploiting the KKT conditions it follows from (2.66) that at the optimum of the relaxed problem

wi − µ∗i = ci,mλ
∗
m − σ∗i,m = ci,nλ

∗
n − σ∗i,m (2.82)

holds. Furthermore, since all dual parameters λ∗m are non-negative by definition σ∗i,m > σ∗i,n ≥ 0

follows. Thus, for (2.69) to hold v∗i,m = 0 is required and assigning user i to BS m cannot be

optimal. This example extends to general assignments, in case the optimum dual parameters are

known, and identifies the BS with the minimum weighted costs as optimum cells where users

should be assigned:

mi = arg min
m∈M

λ∗mci,m (2.83)

This characteristics suggests interpreting λ as measures of a BSs’ load since low λm increase

the attractivity of assignments based on (2.83).

Next, the dual parameters µ are investigated. Their entries range between zero and wi and

are independent of the air interface. As seen in the proof of Proposition 2 µ∗i = 0 holds if the
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user is only partly assigned and if µi = wi the cost of the user has to be zero.

The interpretations of the Lagrange multiplies can help to design further simplified assign-

ment algorithms. For example, if averaged values of λ∗ are known for the BSs of all air inter-

faces, the assignment of users could be performed in a completely distributed way based on the

weighted costs without solving the optimization problem for each set of user requests.

2.3.5 Cost Based Algorithm

In this section an algorithmic procedure for maximizing the weighted number of assignable

users is derived which complies with the performance bounds of Theorem 1 and thus converges

in close vicinity of the optimum solution of the combinatorial problem (2.60). The algorithm

consists of two parts: first a procedure that solves the relaxed problem (2.61) is presented which

calculates the optimum dual parameters λ∗. Based on the latter heuristics are then used to

construct a feasible solution of problem (2.60).

A variety of algorithms and ready to use tools are known in the literature to solve convex

optimization problems with different complexity and convergence characteristics. Nevertheless,

an algorithmic framework in the dual domain is derived to gain deeper insights into the structure

of the problem in the following. As in Section 2.2.2 the ellipsoid method [FR] is applied. For

this procedure fast convergence to the optimum is observed in simulations. The dual function is

defined by the supremum of the Lagrangian (2.65) over the primal variables and can be written

as:

g(λ,µ,σσσ) = sup
v

L(v, λ,µ,σσσ)

= sup
v

∑

i∈I

∑

m∈M

(

wi − λmci,m − µi + σi,m

)

vi,m +
∑

m∈M
λm +

∑

i∈I
µi (2.84)

It represents an upper bound to the primal problem (2.61) [BV04]. Since the latter is convex and

Slater’s condition holds the duality gap, i.e. the difference between the bound and the primal

problem, is zero and its solution is equal to the minimum of the dual function (2.84):

y∗ = min
λ,µ,σσσ�0

g(λ,µ,σσσ). (2.85)

Thus, minimizing (2.84) over the dual variables represents a valid alternative to solve (2.61).

Equation (2.84) reveals a necessary optimality condition with central role for the user assign-

ment. The minimum in (2.85) can only be attained in case the dual function (2.84) is bounded

above. This, however, is only guaranteed if

wi − λmci,m − µi + σi,m = 0 ∀i,m ∈ I,M (2.86)

holds; a constraint which is already presented in (2.82) for a two BS example originating from
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the KKT conditions. By rearranging terms in (2.86) the following constraint is obtained:

µi = wi − λmci,m + σi,m ≥ 0 ∀i ∈ I (2.87)

The inequality above guarantees the required non-negativity of the dual parameters µ and re-

veals an additional optimality criteria: in case wi−minm∈M λmci,m < 0 it follows from (2.87) that

σi,m > 0 ∀m ∈ M which prohibits assigning user i to any BS at all for optimum λ∗. Contrary to

this observation, in case wi − minm λ
∗
mci,m > 0 then µ∗i > 0 follows which guarantees that user i

is assigned completely by (2.68) for optimum λ∗.

Substituting (2.87) into the dual (2.84) results in

g(λ,σσσ) =
∑

m∈M
λm +

∑

i∈I

[

wi − λmci,m +σσσi,m

]

0 (2.88)

which can be directly minimized over σσσ:

g(λ) = min
σσσ≥0

g(λ,σσσ) =
∑

m∈M
λm +

∑

i∈I:minm λmci,m≤wi

wi −min
m∈M

λmci,m

=
∑

m∈M
λm




1 −

∑

i∈Im(λ)

ci,m




+

∑

i∈∪m∈MIm(λ)

wi (2.89)

In (2.89)

Im(λ) =

{

i : i ∈ I, i < In,m, m = arg min
m∈M

ci,mλm, wi > λmci,m

}

(2.90)

defines the set of users that would be assigned to BS m in case λ is optimal. To minimize

(2.89) and therefore solve (2.85) the subgradient based ellipsoid method is applied. A valid

subgradient ν can be calculated directly by differentiating the dual function corresponding to

Danskin’s Theorem [Ber95a]. Its elements hereby result in

[ν(λ)]m =
∂g(λ)

∂λm

= 1 −
∑

i∈Im(λ)

ci,m (2.91)

and their sign indicates whether assigning the set of users Im(λ) is feasible or violates the BS’s

resource constraint corresponding to (2.59). The subgradient ν is generally not unique, and

multiple solutions exist in case ∃ i ∈ I : λmci,m = λnci,n, n , m ∈ M. Nevertheless, for each

subgradient and λ̂ ∈ RM
+

g(λ) ≥ g(λ̂) + (λ − λ̂)ν(λ̂) (2.92)

has to hold by definition (2.20), and thus allows to rule out a half-space of the set of weights λ

which does not decrease the dual function.

The ellipsoid method exploits this characteristic and was introduced in Section 2.2.4. Its

function principle is repeated here for convenience. To minimize the dual function over λ first

an ellipsoid is constructed which includes all feasible λ � 0. From this set one half-space is
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Algorithm 2 Ellipsoid Method

initialize: n = 0

λ(0)
= 1

2
λmax corresponding to (2.94)

E(0) = 1

|| 1
2
λmax ||22

IM

while ρ(E(n)) > ǫ do

(1) calculate Im(λ(n)) ∀m ∈ M, λ
(n)
m ≥ 0 corresponding to (2.90) and set

vi,m =

{
1, if i ∈ Im

0, else

(2) calculate the subgradient ∀m ∈ M

[ν]m =






∑

i∈I
ci,mvi,m − 1 ∀m : λ(n)

m ≥ 0

κ else

(2.93)

(3) update ellipse

E(n+1) =
|M|2 − 1

|M|2

(

E(n) +
2

|M| − 1

ννH

νHE(n)−1
ν

)

with new centroid

λ(n+1)
= λ(n)

+
1

|M| + 1

E(n)−1

ν
√
νHE(n)−1

ν

(4) n = n + 1

end while

deleted in each iteration based on (2.92) and the smallest ellipsoid which covers the remaining

half-space is constructed. Thus, the ellipsoid’s volume is shrinking in each iteration and always

includes the optimum solution. The procedure, adapted to the relaxed optimization problem

(2.61), is summarized in Algorithm 2. Here, similar to Algorithm 1, ǫ is a small positive scalar

which defines the stopping criteria of the procedure, n denotes the iteration index and ρ(E) the

absolute value of the largest eigenvalue of E. The initial ellipse which has to include all λ that

could be optimal can be defined as follows: under the assumption that there is the possibility

of assigning at least one user to each BS λm ≤ maxi∈I
wi

ci,m
has to hold based on (2.87) and the

following definition is made:

λmax := 1M max
i,m∈I,M

wi

ci,m

(2.94)

Then, the ball with center 1
2
λmax and radius ‖1

2
λmax‖2 includes all feasible λ that could be optimal.

Since the initial ball covers λ ≺ 0 non-negativity of λ(n) cannot be guaranteed in step (3) in

Algorithm 2. Thus, the case differentiation in step (2) is introduced which guarantees that the

negative half space is erased from the ellipse by setting the corresponding component of the

subgradient equal to κ, a very large positive scalar, in case λ(n) has negative entries. Based on

this rather technical preliminary Algorithm 2 provably converges to the optimum λ∗ and the
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Algorithm 3 Polynomial Assignment

(1) Evaluate Im(λ∗) ∀m ∈ M based on (2.90)

for i ∈ Mi(λ
∗), withMi(λ

∗) = {i ∈ I : λ∗mci,m = λ
∗
nci,n = minm∈M λ

∗
mci,m ≤ wi, n , m ∈ M} do

(2) Reassign user i to subset Imi
(λ∗),mi = arg minm∈Mi

ci,m

end for

for m ∈ M do

(3) Index elements in Im(λ∗) with increasing cost weight ratios
ci,m

wi
, with nth element index

πn

(4) csum = 0, n = 1

while n ≤ Im do

if csum + cπn,m ≤ 1 then

(5) Assign user with index πn to BS m

(6) csum = csum + cπn,m, n = n + 1

end if

end while

end for

solution y∗ of the relaxed problem (2.61).

Nevertheless, the close to optimum user assignment that corresponds to λ∗ is still unknown.

In general, sets of users (2.90), which comply with the integer constraint in the combinatorial

problem (2.60) by definition, may not be unique and it is likely that any selection Im(λ∗)m ∈ M
leads to a violation or under exploitation of the resource constraint (2.67) of some of the BSs.

In this case, it is required to split users between multiple BSs and/or assign a user partially.

Since this is not an option for the original optimization problem (2.60) heuristic strategies for

obtaining user assignments complying with the integer constraint are presented next.

In case Im(λ∗)∀m ∈ M are unique no split users exist in the solution of the relaxed problem

and the combinatorial problem (2.60) decouples in M independent Knapsack problems:

y∗m = max
∑

i∈Im(λ∗)

wi ∀m ∈ M (2.95)

Knapsack problems are also NP-complete in general [KPP04]. However, a good approximation

to their solution is achieved by first ordering the elements in the subsets with decreasing weight-

cost ratios wi/ci,m∀i ∈ Im(λ∗) and then, starting with the element with the highest weight-cost

ratio, assigning users until no complete user can be assigned without violating (2.59). It is

noted that this procedure solves the Knapsack problem exactly in case all users have equal

weights [KPP04].

In the general case of the subsets Im(λ∗) m ∈ M being not unique the following procedure

is used: First, all users i which could be element in more than one subset are assigned to the

subset Im with the highest weight-cost ratio, which leads to non overlapping subsets Im. Then,

the procedure above is applied. This strategy is referred to as polynomial assignment and it is

summarized in Algorithm 3.

It is often possible to further improve the assignment. In case users’ weights differ filling
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the unused resources with previously not assigned users with low costs is an option. Sometimes

remaining resources can be rearranged by interchanging users between BS so that additional

users fit into the system. However, nothing can be said about the performance of this additional

steps in general. Simulations, where rearranging users is applied are denoted as heuristically

improved results in Section 2.3.6.

2.3.6 Simulation Results for Static Scenarios

In this section the performance of the proposed algorithms in Section 2.3.5 and its bounds are

evaluated using a static simulation environment in Matlab. A single-cell downlink scenario

consisting of one colocated UMTS and GSM BS with omnidirectional antennas is considered.

A fixed number of 20 streaming users requesting a minimum data rate of 12.2kbit/s, and 20

which request a minimum rate of 128kbit/s, are equally distributed on a circular playground

with radius 1200m. The UMTS and GSM BSs are positioned at its center. Furthermore, equal

weights wi = 1 ∀i ∈ I are assumed for all users. All remaining parameters correspond to the

system model introduced in Section 2.1. In the simulations the performance of the following 3

algorithms and the bounds are compared:

• Polynomial assignment: The proposed Algorithm 2 in connection with 3 from Section

2.3.5.

• Heuristically Improved Algorithm (HIA): After the execution of the polynomial assign-

ment Algorithm 2 and 3 the sum of unused resources of both BS is sometimes greater

than the cost of a non-assigned user. In this case there is a chance that shifting of users

rearranges the left resources in a way that additional users can be assigned. Due to com-

plexity limitations only a simple reassignment procedure is tested: for each assigned user

it is checked if it would fit into the alternative RAN and if the freed resource plus the

unused resource in the current BS allows the assignment of an additional user.

• Load balancing: The set of users I is randomly split into two subsets IGS M and IUMTS

with equal size. In each RAN the assignment is performed corresponding to steps (3)-

(6) in Algorithm 3 using the disjoint sets IUMTS and IGS M instead of Im(λ∗). If one air

interface is not fully loaded after the assignment procedure, the policy attempts to assign

as many additional users from the set of non assigned users from the alternative RAN to

both BSs.

Simulation results are presented in Figure 2.9. Here, the Cumulative Density Function (CDF)

of the number of assignable users is shown for the three algorithms. The results are based on

1000 random user constellations and corresponding cost matrices. The suboptimal algorithms

which are based on continuous relaxation and the lower bounds top the load balancing strategy

considerably as can be observed. The HIA leads to further improvements and performance

close to the upper bound.
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Figure 2.9: CDF of the number of assignable users in a static, heterogeneous scenario consisting

of a colocated UMTS and GSM BS.

2.3.7 Simplex Algorithm

Although the simulation results in Section 2.3.6 are promising and give an impression of the

relative performance gains that are achievable with cost based user assignments, they are based

on an idealized system model in a static environment and the do not consider practical limita-

tions, such as measuring inaccuracy. In real world scenarios, however, user mobility, fading and

changes of the request situation lead to system models which vary over time. Although tools

for a probabilistic treatment of those scenarios exist, e.g. dynamic programming [BW09], they

are usually prohibitive for online applications because of their computational complexity.

This section aims to adapt the cost based concept to more realistic scenarios under consid-

eration of the time varying, probabilistic system model from Section 2.1.1. By introducing a

bipartite procedure an adaptation to the random nature of this model is proposed. It consists of

a static snapshot optimization which is applied to an actual realization of the cost and request

matrix. For this snapshot of the current system status a close to the optimum assignment is

calculated which corresponds to an equivalent static scenario. Special attention is paid to ro-

bustness of the new approach. Obviously, validity of the solution is lost immediately after a

change of the cost or the request matrix. Since changes are often small, however, the deviation

increases slowly over time. Nevertheless, updates of the snapshot optimization are required

and the algorithm’s performance depends on the frequency of its execution and corresponding

triggers. The performance of the snapshot optimization is compared for two different sets of

triggers.
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Snapshot Optimization

For reasons that will become clear later in this section the ellipsoid method in Algorithm 2 is

replaced by a stepwise subgradient procedure to minimize the dual function of the relaxed op-

timization problem (2.61). Thereby, it is exploited that the dual function (2.89) is the piecewise

maximum over hyperplanes. Its minimum is attained at one of its vertices due to its convexity.

A vertex of the dual function (2.84) is characterized by λ for which all components of the sub-

gradient (2.91) are non-unique. Based on these characteristics an algorithm is presented which

moves from one vertex to one of its neighbors in each step. The neighboring vertex which

decreases the dual function the most is chosen. In case the dual cannot be reduced further the

minimum is reached. Neighboring vertices, which lead to a decrease of the dual function, can

be easily found based on the subgradient (2.93) and by increasing or decreasing an element λm

of λ one by one until a user i ∈ I leaves or enters the set Im, respectively:

λ+m(λ) = λ : min
i∈Im(λ)

min
n,m∈M

λnci,n

ci,m

, λ > λm (2.96)

λ−m(λ) = λ : max
i∈∪n,mIn(λ)

max
n,m∈M

λnci,n

ci,m

, λ < λm

Altogether, there are 2M neighboring vertices of which M have to be checked in each iteration.

In real world scenarios the number of vertices which must be checked can often be reduced by

separating the set of BS and users geographically e.g. in subsets corresponding to one colocated

BS of each RAN and users that are within their coverage.

The procedure described above is summarized in Algorithm 4. It can be initialized with

arbitrary λ, although in this case the updated λ may not correspond to a vertex but to an edge

of the dual function. Nevertheless, convergence of the procedure is guaranteed by convexity of

the dual function and by the fact that its value decreases in each iteration. Algorithm 4 offers

some major advantages compared to the ellipsoid method used in Algorithm 2. Among those

is the algorithm’s robustness to varying or erroneous cost matrices, which is a key requirement

in real world scenarios. The varying nature of the costs hereby result from users’ mobility,

fading, changing request situations and measurement uncertainty. The vertex based Algorithm

4 is always able to converge to the minimum of the dual function independent of precedent

iterations that were based on outdated or erroneous cost data. On the contrary, this does not

hold for the ellipsoid method: here, in case the optimum solution is once erased from the set of

possible solutions by mistake during the iterating process, convergence to the optimum solution

is precluded. An additional advantage of Algorithm 4 is its ability to utilize a solution that was

obtained in a previous run as starting point of a new execution. As long as variations of the cost

matrix are small, which is usually the case if the optimization is executed at frequent intervals,

the procedure benefits from the fact that changes of the optimum assignment are small and

convergence is achieved in few iterations. Furthermore, by iterating from one vertex to another

the problem of step size selection is circumvented which often represents a limitation of classic
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Algorithm 4 Simplex Algorithm

(1) initialize λ(0) arbitrary or use result from last run if available

n=0

while g(λ(n)) > g(λ(n−1)) or n < 2 do

for m = 1 to M do

(2) evaluate mth element of the subgradient νm(λ(n)) based on (2.91)

(3) modify the weight vector λ̃m ∈ RM
+ with elements [λ̃m]k based on (2.96)

[λ̃m]k =






λ+m(λ(n)) if k = m, νm(λ(n)) < 0

λ−m(λ(n)) if k = m, νm(λ(n)) > 0

λ
(n)

k
if k , m else

end for

(4) using (2.89) set

λ(n+1)
= arg max

m∈M
g(λ̃m)

n = n + 1

end while

(5) return λ(n−1)

subgradient procedures [Ber95a]. After the convergence of Algorithm 4 users are assigned

corresponding to Algorithm 3 in Section 2.3.5.

Triggers for the Simplex Approach

Having introduced the snapshot optimization now two different triggers for its execution are

presented. Both are adapted to the heterogeneous multi-cell scenario from Section 2.1 and

initiate the execution of Algorithm 4 and 3 only in one superimposed cell at a time. Hereby, a

superimposed cell corresponds to one colocated UMTS and GSM/EDGE BS and the subset of

users which is currently assigned to it. The execution of the snapshot optimization results in

one of three options for all currently assigned users in the superimposed cell: a user stays either

assigned to its current BS, is vertically handed over to the colocated BS of the alternative RAN

or a dropping procedure is initiated.

In the cost based strategy 1, the snapshot optimization is triggered by each call setup in the

superimposed cell which is closest to the new service requesting user. It is executed without

considering the new user, who may be blocked thereafter if no assignment is possible. This

strategy is characterized by not actively dropping an ongoing call, since the new call is not con-

sidered and a feasible assignment already existed before its execution. The call setup procedure

for the new call request is independent of the snapshot optimization and is explained in Section

2.3.8.

The cost based strategy 2 triggers the snapshot optimization whenever an existing call can

no longer be supported by its currently serving BS and no handover to a neighboring cell of
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the same RAN is possible. Then, the snapshot optimization is triggered in the corresponding

superimposed cell and may either lead to a feasible assignment for all users or initiate the

dropping procedure described in Section 2.3.8.

2.3.8 Simulations in Varying Environments

In this section simulation results for Algorithm 4 and 3 in connection with the cost based strat-

egy 1 and 2 are be compared to a load balancing algorithm and separated system operation

for a time varying, heterogeneous scenario consisting of a multi-cell UMTS and GSM/EDGE

network with colocated base stations. Details on the scenario as well as the C++ based event

driven MRRM Simulator are given in Section 2.1. In the scenario all users request a circuit

switched voice service which is characterized by a minimum data rate of ζ = 12.2kbit/s and an

average duration of 120s. All requests are generated based on the probabilistic system model in

Section 2.1.1 with equal call arrival rates in both air-interfaces. In contrast to earlier simulations

all users are assumed to move at a speed of 120km/h.

Next, details on investigated strategies are given. The load balancing strategy provides

the same MRRM functionality as both cost based approaches. It incorporates directed retry

at the call setup and possible ISHOs before a user is dropped. More precisely, at a call setup

feasibility of assigning the new call to the closest BS of an arbitrarily chosen default air-interface

is checked first. If this fails, the neighboring BSs of the same RAN are considered. In case non

of them can accept the call the request is directed to the alternative RAN, where first the closest,

then the neighboring BSs are checked for an assignment. If all attempts fail the call is blocked

from the system. This procedure, called directed retry, is commonly used for call setups by

the load balancing and cost based strategies 1,2. It differs from the separated system operation,

where a new call is blocked directly in case the closest BS of the default RAN and its neighbors

cannot accept the call.

In case a user cannot be supported by its currently assigned BS anymore and no handovers

inside the current RAN are possible the load balancing algorithm triggers an ISHO request in the

colocated BS and neighboring ones in the alternative RAN. If at least one BS in the alternative

RAN can accept the call it is handed over to the one with the strongest channel gain that can

accept it. This ISHO procedure is also applied by the cost based strategies 1 and 2. Only the

separated system operation directly drops the call.

Figure 2.3.8 (left) shows the average number of assigned users per superimposed cell, i.e.

the average utility of the combinatorial problem (2.60) with equal weights, for separated system

operation and for the three MRRM strategies: load balancing, cost based strategy 1 and 2.

No resources are reserved for handovers at call setup leading to a dropping probability which

exceeds the blocking probability by approximately one order of magnitude at vehicular mobility

with 120km/h. The sum of both, denoted as service denial probability, is presented in Figure

2.3.8 (right).
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Figure 2.10: Average number of supported users (left) and service denial probability (right) in

a heterogeneous multi-cell UMTS/GSM scenario per superimposed cell.

Accepting a service denial quota of 2.5% could be a reasonable system configuration for

operators. At this point, the cost based strategies 1 and 2 show gains of 15-20% with regard

to the utility which is represented by the amount of users in the system, in comparison to the

MRRM strategy load balancing. The performance gain of the cost based strategies arises from

frequent user reassignment to their optimal air interface and relies on the channel and service

dependent suitability of the UMTS and GSM air interface. The GSM resource costs are less

distance sensitive compared to the ones of the UMTS air interface. Thus, it is observed that the

cost based strategies minimize the resource consumption by increasing the UMTS user density

around the cell center, while distant users are preferably assigned to GSM.

At vehicular mobility the differences between both cost based strategies are relatively small

since the snapshot procedure is called sufficiently often with 0.7 and 0.4 calls per second per

cell for strategies 1 and 2, respectively. At lower user speeds the triggers of strategy 2 occur

less frequently which leads to larger performance gaps between both cost based strategies and

better performance of cost based strategy 1.

To allow for a fair comparison between the cost based strategies and load balancing one has

to consider the signaling and computational efforts as well. The cost based strategy 1 and 2 need

6 iterations on average per optimization call to calculate the optimum air interface weights and

initiate 3.0 ISHOs per superimposed cell per second compared to 0.3 ISHOs when applying the

load balancing strategy. Although these expenses seem to be high for practical scenarios and

costs for handovers and signaling as well as signaling delays are neglected, the results can be

used as benchmarks to evaluate the performance of further simplified MRRM strategies.
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2.4 Distributed Utility Maximization for Services with Fixed

and Elastic QoS Constraints

In Sections 2.2 and 2.3 allocation strategies for services, characterized by fixed QoS require-

ments, have been developed for heterogeneous scenarios. In this section also BE services are

considered in addition, thereby extending ideas of the cost based approach. An algorithmic

framework that operates in a decentralized way is proposed which overcomes major drawbacks

of the cost based assignments by drastically reducing the signaling efforts and not initiating

ISHOs by default.

Contrary to services with fixed QoS requirements, BE users are characterized by their ability

to operate flexibly in a wide range of data rates; possibly without any minimum QoS require-

ments. For this class of users the weighted number of users cannot be used as performance

metric anymore as done in the previous sections; a property which extends to the investigated

multi-service scenarios. Therefore, a utility concept, which represents a flexible performance

metric equally applicable for BE users and those with minimum QoS requirements, is em-

ployed. To be more precise, utilities represent QoS indicators in dependence of users’ data

rates in the investigated scenario and, by the ability to choose appropriate utility functions, give

operators the freedom to tune the operation point of the heterogeneous system with regard to

fairness/throughput and user/service priorities.

Related work on utility maximization in non-heterogeneous interference limited systems

is carried out in [SWB07] and [Chi05a], where the generally non-convex utility maximization

problem is turned into a convex representation for a certain class of utility functions exploit-

ing characteristics of the spectral radius and the posinomial transform. A similar problem is

addressed in [HBH06], [SBH08] using super-modular game theory. Contrary to these works

which consider link wise utilities and homogeneous scenarios, a model with user wise utili-

ties that are functions of the sum of a user’s individual link rates is considered in this section;

this practical assumption in addition to heterogeneity significantly complicates the analysis and

neither of the approaches in [SWB07], [Chi05a], [HBH06] or [SBH08] can be applied.

In this section the user assignment in heterogeneous multi-cell scenarios consisting of inter-

ference limited and orthogonal RANs such as UMTS and GSM/EDGE, respectively, is formu-

lated as a utility maximization problem constrained by the resource limitations (such as power

or bandwidth) of the individual BSs as well as users’ minimum data rate requirements. All re-

sults hold for general, concave utility functions. Nevertheless, the analysis is focused on utility

functions which comply with the concept of α-proportional fairness, introduced in [MW00],

without loss of generality. The latter allows to variably shift the operation point of the scenario

between maximum sum throughput, proportional fairness to the point of max-min fairness by

a single, parameterizable utility function. A key characteristic often simplifying the design of

efficient algorithms is convexity of the underlying problem. For the utility maximization prob-

lem a convex formulation is constructed by introducing an approximation of users’ data rates
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in interference limited RANs. It is tailored to the investigated UMTS system introduced in

Section 2.1.2 and results in convex achievable rate regions of the corresponding BSs. By using

structural properties, a decentralized algorithm that solves the optimization problem for static

scenarios is presented and simple assignment rules are derived using the dual representation of

the utility problem in analogy to the snapshot optimization in Section 2.3. The insights gained

from the static analysis are then transferred to dynamic scenarios and a simplified, distributed

protocol is designed. Both algorithms allow operators to arbitrarily tune the fairness-throughput

tradeoff online without requiring any system changes.

Contrary to the static algorithm which relies on updating the dual parameters in direction

of a subgradient and requires exchanging signaling information in each iteration, a user selects

a close to optimum cell only once in the dynamic procedure when entering the system. It

thereby bases its decision only on own measurements and a single scalar parameters which

each BS broadcasts to the user once before its call setup. Independently of the users’ RAN/cell

selections each BS controls its resource allocation autonomously of its neighbors. Although

the convergence of the dynamic algorithm cannot be guaranteed close to the global optimum

operation is observed in case a sufficient number of users requests service and the variation

of the channel gains, originating from users’ mobility and fading, are low. This is verified by

the derivation of an upper performance bound and comparison to simulation results. Still, also

for low service request rates and stronger channel variations considerable throughput and sum

utility gains are obtained in comparison to a load balancing strategy.

The section is organized as follows: after the introduction of the utility concept and the rate

approximation in Sections 2.4.1 and 2.4.2 the optimization problem is formulated in Section

2.4.3. Algorithms that solve the problem in a decentralized way for static and dynamic scenar-

ios are presented in Section 2.4.4. There also the upper performance bound for the dynamic

scenario is derived. In Section 2.4.6 the performance of the dynamic algorithm is eventually

evaluated and compared to a load balancing approach.

2.4.1 Utility Concept and α-Proportional Fairness

Instead of maximizing a fixed metric like the system throughput the optimization problem is

formulated in terms of utility functions, which relate assigned resources, system parameters as

the SINR or the data rate to benefits such as revenues, fairness or user satisfaction. Thereby,

the utility measure is defined for a static system with fixed request situation and channel gains.

For the probabilistic system model of Section 2.1.1 with random arrivals, user mobility and

fading processes the utility represents an instantaneous objective which is evaluated at certain

points in time similar to the snapshot model in Section 2.3.7. More precisely, the investigations

are focused on utility functions which are concave, twice continuously differentiable, strictly
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increasing, and dependent on the user’s data rate in the following form:

U =
∑

i∈Ib

ψi





∑

m∈M
Ri,m




(2.97)

Hereby, Ib ⊆ I represents the set of users requesting BE services andM the set of BS of all

RATs. The rate assigned by BS m ∈ M to user i ∈ I is given by Ri,m = [R]i,m and R ∈ RI×M.

Without loss of generality ψi(·) in (2.97) is defined by:

ψαi (Ri) =






wi log(Ri) if α = 1

wi

1 − αR1−α
i otherwise

(2.98)

and

Ri =
∑

m∈M
Ri,m ∀i ∈ I. (2.99)

Equation (2.98) corresponds to the well established weighted α-proportional fairness [MW00]

and is from special interest for operators since it allows for flexible tuning of the system’s

fairness in a wide range. Without considering users with fixed QoS constraints a rate allocation

R∗ is said to be α-proportional fair, if for any feasible allocation R

∑

i∈Ib

Ri − R∗i
R∗

α

i

≤ 0 (2.100)

holds [MW00]. The parameter α in (2.98) hereby tunes the fairness-throughput trade-off: for

α = 0 the system throughput is maximized, which may result in assignments where only very

few users are served and which is quite unfair. A selection α = 1 leads to proportional fairness

which is equivalent to assigning equal shares of resources to all users in the scenario. And for

α → ∞ the assignment converges to a max-min fair allocation, where all users are assigned

equal data rates and the overall system throughput may be low [MW00].

It is noted that defining the utility with respect to the sum of a user’s link rates in (2.97) is

more relevant for practical application than e.g. the sum utilities of individual links

Ulink =
∑

i

∑

m

ψ(Ri,m) (2.101)

used in [SWB07], [HBH06]. It is this so-called non-separable utility formulation which leads to

the desired characteristic that most users establish only a single link, as shown in Section 2.4.3.

Contrary to this, the separable utility in (2.101) favors assignments with multi-link operation

which is often non-feasible in practical heterogeneous scenarios. This characteristic is a direct

consequence of the utility function’s concavity and Jensen’s inequality: assuming that a user

i is assigned a certain sum rate Ri = Ri,m + Ri,n which can be split between two links Ri,m

and Ri,n, it is beneficial with regard to the separable sum utility to activate both links because
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ψ(Ri,m) + ψ(Ri,n) ≥ ψ(Ri) holds.

2.4.2 Rate Approximation in Interference Limited RANs

In Section 2.1.2 a linear connection between a user’s data rate and the assigned time slots is

established for orthogonal air interfaces. This relation does not hold for interference limited

RANs in general and is accompanied by non-convex rate and utility regions [OY07], [SB07].

Although convexity of the utility region is proven in [Chi05a] for link-wise α-proportional fair

utilities with α ≥ 1 and based on the high SINR approximation

Ri,m = C log(βi,m) (2.102)

this model is not suitable for the interference limited UMTS system from Section 2.1.

It is a direct consequence of strictly increasing utilities that transmitting at maximum power

Pm = P̄m, m ∈ Mb, b ∈ Ain f is optimal to maximize the sum utility in interference limited single

cell scenarios. This property generally does not hold for multi-cell RANs of this class. However,

it represents a reasonable assumption when the request and channel situation is symmetric in

all interference limited cells. This holds for the system model under investigation on average.

Based on the latter and assuming that the SINR is not too high, the assigned data rate in the

corresponding BSs can then be approximated by using (2.7) from Section 2.1.4:

Ri,m = Cb log

(

1 + Db

gi,m pi,m

ρgi,m(P̄m − pi,m) +
∑

n,m gi,nP̄n + ηin f

)

(2.103)

= Cb log

(

1 + Db

pi,m

Ii,m − ρpi,m

)

(2.104)

≈ ∆b

Υi,m
︸︷︷︸

R̄i,m

pi,m (2.105)

with

Υi,m =
ρgi,mP̄m +

∑

n,m∈Mb
gi,nP̄n + ηin f

gi,m

. (2.106)

The approximation of users’ data rates in (2.105) represents the first order Taylor expansion

about p = 0 for ∆b = CbDb and is thus a linear function of the assigned power. Clearly, this

approximation holds only for low data rates. To obtain tight approximations for a wider range

of rates which are typically assigned in UMTS, using a higher slope ∆b > CbDb proves practi-

cal. The real rate mapping from Section 2.1.4 and the approximation (2.105) are plotted over

the weighted power p/Υ for a UMTS BS in Figure 2.11 and with ∆b chosen so that the approx-

imation intersects the real rate curve at the origin and 100kbit/s. Thus, it covers the range of
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Figure 2.11: UMTS resource-rate mapping: quality of linear approximation (2.105).

rates that are typically assigned to users in UMTS in the investigated scenario quite well§. Ob-

viously, the linear relation between the data rate and assigned power is only a model, but works

fine for the current problem as can be observed in the figure. Based on the approximation a BS’s

resource constraint (2.5) in the interference limited RAN can be written only in dependence of

the users’ data rates:
∑

i∈I

Ri,m

R̄i,m

≤ P̄m ∀m ∈ Mb, b ∈ Ain f (2.107)

2.4.3 Problem Formulation

Having introduced the system model and the utility concept now the formal problem formula-

tion is presented. It is aimed to find the user assignment in a heterogeneous multi-cell scenario

that maximizes the sum utility of all BE users under the constraint that all voice users i ∈ Iv

comply with their minimum data rate requirements ζi. Based on the earlier presented assump-

tions, the problem can be formulated as

max
R

∑

i∈Ib

ψi





∑

m∈M
Ri,m





subj. to
∑

i∈I

Ri,m

R̄i,m

≤ Γ̄m ∀m ∈ M
∑

m∈M
Ri,m ≥ ζi ∀i ∈ Iv

Ri,m ≥ 0 ∀i,m ∈ I,M

(P1)

§It is noted that p/Υ corresponds to the complementary mean square error which is introduced in Chapter 3

and relates to the SINR by the following bijective mapping pi,m/Υi,m =
βi,m

βi,m+1
.
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with Γ̄m denoting available resources:

Γ̄m =






T̄m ∀m ∈ Ma, a ∈ Aorth

P̄m ∀m ∈ Mb, b ∈ Ain f

(2.108)

Problem (P1) consists of a concave objective over linear constraints and is thus convex. Con-

sequently, a variety of ready-to-use algorithms exists to solve it [BV04]. However, neither give

these algorithms insights into the problem structure nor do they point to a decentralized solu-

tion. To overcome this limitations a different approach based on duality [Ber95a], [BV04] is

developed here: instead of solving (P1) directly it is transformed into an alternative problem

which is known to have the same solution as (P1) but can be solved in a decentralized way. To

obtain an expression for the dual transform the Lagrangian function of (P1) is needed, which

represents the sum of the objective and the by dual parameters weighted constraints:

L(R, λ,µ,σσσ) =
∑

i∈Ib

ψi





∑

m∈M
Ri,m





−
∑

m∈M
λm





∑

i∈Ib

Ri,m

R̄i,m

− Γ̄m





+
∑

i∈Iv

µi





∑

m∈M
Ri,m − ζi





+
∑

i∈I

∑

m∈M
σi,mRi,m

(2.109)

Here λ ∈ RM
+ ,µ ∈ RI

+,σσσ ∈ RI×M
+ are non-negative dual parameters. The dual function of (P1)

can be written as [BV04]:

g(µ, λ,σ) = max
R

L(R,µ, λ,σσσ) (2.110)

Due to non-negativity of the dual parameters one observes that (2.110) is always larger than or

equal to the solution of (P1). Thus, minimizing the unconstrained dual function over the dual

parameters

min
µ,λ,σσσ≥0

g(µ, λ,σσσ) = min
µ,λ,σσσ≥0

max
R

L(R,µ, λ,σσσ)
︸               ︷︷               ︸

inner problem

(2.111)

yields an upper bound on the original optimization problem (P1) and is called the dual problem

of (P1). Furthermore, by convexity of (P1) and since Slater’s condition [BV04] holds, the

bound is tight and (2.111) and (P1) have the same solution. The motivation to use the dual

formulation is the possibility to decouple the optimization problem into an inner maximization

problem over the primal variables R and an outer minimization over the dual parameters which

is called outer loop below. Additionally, the dual problem allows to exploit structural properties

which greatly simplify the algorithm design. The inner problem can be solved by each BS

individually. In addition, there exists a very limited number of degrees of freedom for the
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selection of meaningful dual parameters in the outer loop. To be more precise, only λ has to be

optimized iteratively in the outer minimization. A rate allocation R(λ) that maximizes the inner

problem can be calculated directly for a given λ independently of σσσ and µ. Before providing

further details the KKT conditions are given which are necessary and sufficient for the optimum

solution of (P1) (or equivalently (2.111)) [BV04] and which are exploited later:

∂L(R,µ, λ,σσσ)

∂Ri,m

= 0 ∀i,m ∈ I,M (2.112)

λm(
∑

i∈I

Ri,m

R̄i,m

− Γ̄m) = 0 ∀m ∈ M (2.113)

µi(ζi −
∑

m∈M
Ri,m) = 0 ∀i ∈ Iv (2.114)

σi,mRi,m = 0 ∀i,m ∈ I,M (2.115)

Inner Problem

Rearranging terms in (2.109) results in:

L(R,µ, λ,σσσ) =
∑

i∈Ib

ψi





∑

m∈M
Ri,m





+
∑

i∈Iv

∑

m∈M
Ri,m

(

σi,m −
λm

R̄i,m

+ µi

)

+
∑

i∈Ib

∑

m∈M
Ri,m

(

σi,m −
λm

R̄i,m

)

+
∑

m∈M
λmΓ̄m −

∑

i∈Iv

µiζi

(2.116)

From (2.116) one observes that (2.110) is only finite if and only if

σi,m −
λm

R̄i,m

+ µi = 0 ∀m, i ∈ M,Iv, (2.117)

λm

R̄i,m

> σi,m ∀m, i ∈ M,Ib, (2.118)

and hence it follows that (2.117) and (2.118) are necessary conditions to obtain a meaning-

ful solution in (2.111). Furthermore, the first KKT condition (2.112) has to hold for any rate

assignment that solves (2.110) which after substituting (2.117) into (2.116) simplifies to:

∂L

∂Ri,m

= ψ′i(
∑

m∈M
Ri,m) + σi,m −

λm

R̄i,m

= 0 ∀m, i ∈ M,Ib (2.119)

Here, ψ′i(x) = ∂ψ′i(x)/∂x holds and (2.119) are necessary and sufficient conditions for the max-

imum of the Lagrangian function which is independent of the voice users. Although the op-
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timization of the dual parameters is formally performed in the outer problem, one observes

already here that only certain σσσ can lead to the optimum solution of (P1). More precisely, for a

given λ only one element σi,m can be chosen independently for each user i so that (2.119) is not

violated. All other elements σi,n, n , m result directly from σi,m by (2.119). This is shown in

the following example: assume one element σi,m and λ are given for user i from the outer loop.

Then, for the rate assignment that maximizes the inner problem ui := ψ′i(
∑

m∈M Ri,m) = λm

R̄i,m
−σi,m

has to hold (from (2.119)). Since (2.119) is a necessary condition also for all n , m it follows

that σi,n = ui(σi,m) + λm

R̄i,n
, n , m which is therefore uniquely determined by σi,m. This observa-

tion reduces the degrees of freedom to select meaningfulσσσ to one scalar element per user in the

outer loop. From (2.119) it further follows that σi,m = 0 can only hold for m ∈ Mopt,i(λ), with

Mopt,i(λ) =

{

m′i ∈ M : m′i = arg min
m∈M

λm

R̄i,m

}

. (2.120)

This is a direct consequence of the dual parameters’ non-negativity and ui based on (2.119).

Having σ∗i,m = 0, however, is a necessary condition for R∗i,m > 0 since for any optimum rate

assignment of (P1) the last KKT condition (2.115) has to be fulfilled. Therefore, regardless of

the outer optimization it can already be state here that σi,n > 0 ∀n <Mopt,i(λ), i ∈ Ib and only

rate assignments

Ri,m






≥ 0 ∀m ∈ Mopt,i(λ)

= 0 else
(2.121)

have to be considered for BE users as solution for (P1). If the maximum slope of the utility

function ψ′(0) is smaller than minm
λm

R̄i,m
, however, then σi,m > 0 ∀m ∈ Mopt,i follows from

(2.119) and user i is not assigned any resources in this case. The KKT conditions lead to similar

optimality conditions for voice users: from (2.117) as well as the argumentation above it follows

that

µi = min
m∈M

λm

R̄i,m

∀i ∈ Iv (2.122)

and that (2.121) in connection with (2.120) is also a necessary condition for the voice users.

Although it is noted here that the solution of (2.110) is uniquely determined for a given

λ (see proof of Theorem 2 in Section 2.4.4), the corresponding rate assignment may not be

unique. Multiple rate assignments which maximize the Lagrangian exist in the rare case when

∃{m, n ∈ M,m , n : λm/R̄i,m = λn/R̄i,n} and thus |Mopt,i(λ)| > 1. For users i ∈ I with

|Mopt,i(λ)| = 1 it follows by (2.119) and the discussions on σσσ that the unique rate assignment

Ri,m(λ) =






ψ′−1
i

(

λm

R̄i,mi

)

if ψ′i,m(0) >
λm

R̄i,m

,m ∈ Mopt,i(λ), ∀i ∈ Ib

ζi if m ∈ Mopt,i(λ), ∀i ∈ Iv

0 else

(2.123)
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maximizes the inner problem and solves (2.110). Thereby the rates only depend on λ, with

ψ′−1(·) the inverse of the derivative of the utility function ψ′(ψ′−1(x)) = x.

Equation (2.123) gives some valuable insights into the optimum BS/RAN selection of users

and the corresponding resource assignment. First, it can be shown that almost all users are

assigned to exactly one BS since |Mopt,i(λ)| = 1 in general. Secondly, this BS can be determined

independently by each user if λ is known and under the assumption that each user i can measure

R̄i.m ∀m ∈ M. Both characteristics rely on the linear connection between the data rate and the

assigned resources as well as on the user based utilities. They greatly simplify the distributed

solution of (P1). Contrary to this characteristic, one would obtain R∗i,m > 0 ∀i,m ∈ I,Mb, b ∈
Ain f under the high SINR assumption (2.102) in [Chi05a], which implies that all users have

active connections to all BSs in interference limited air interfaces. Third, the maximum slope

of the utility function ψi(0) defines a threshold which can be tuned to switch off BE users with

low R̄i,m, as described in Section 2.4.6.

Outer Problem

Since for µ (2.117) has to hold, λ and formally σσσ are the only dual parameters that have to be

considered in the outer optimization. In order to minimize the dual (2.110) clearly all entries of

σσσ have to be as small as possible and chosen in a way that (2.119) holds. Thus,

σi,m′
i
= 0 ∀{i,m′i : i ∈ Ib,m

′
i ∈ Mopt,i(λ),

λm′
i

R̄i,m′
i

≤ ψ(0)} (2.124)

holds. Substituting (2.124) into the dual function a subgradient approach can be applied to

minimize the latter over λ [Ber95a], which is shown next. Assuming that

R̂ = arg max
R

L(R, λ̂)

solves the inner problem for a given λ̂ obtained by (2.123), the following holds for the dual

function [Ber95a]:

g(λ) ≥ L(R̂, λ) = L(R̂, λ̂) +
∑

m∈M
(λm − λ̂m)(Γ̄m −

∑

i∈I

R̂i,m

R̄i,m

) (2.125)

The last equation is obtained by adding and subtracting the term

∑

m∈M
λ̂m(Γ̄m −

∑

i∈I

R̂i,m

R̄i,m

)

and the assumption that σi,mRi,m = 0 ∀i,m ∈ I,M. Furthermore, from definition (2.20) follows

that ν ∈ RM, with [ν]m = (Γ̄m −
∑

i∈I
R̂i,m

R̄i,m
) in (2.125) is a subgradient.

A descriptive explanation of the subgradient approach can be stated: for a given λ̂ , λ∗ the
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Algorithm 5 Decentralized Utility Maximization

(1) each BS initializes λ
(0)
m , νm = 1 ∀m ∈ M, n = 0.

while ‖ν‖2 > ǫ and n < nmax do

(2) each BS broadcasts λ
(n)
m to all users.

(3) each user i ∈ I evaluatesMopt,i(λ
(n)) with (2.120) and announces an assignment request

to m′i(λ
(n)) ∈ Mopt,i(λ

(n)). If |Mopt,i(λ
(n))| > 1 it picks one BS of the set randomly.

(4) based on the assignment requests each BS calculates the rate assignment that max-

imizes its sum utility and that fulfills the voice user’s rate constraints corresponding to

(2.123).

(5) each BS evaluates its subgradient component νm = (Γ̄m −
∑

i∈I
Ri,m

R̄i,m
) and updates its dual

weight λ
(n+1)
m = λ

(n)
m − s(n)νm n = n + 1.

end while

(6) assign users to m′
i
(λ(n)) with Ri,m corresponding to (3),(4).

rate assignment R̂ , which maximizes the Lagrangian function, may either violate the feasible

rate region constraint or may not exploit the available resources. Both cannot be optimal since

the first case is not feasible and in the latter case the assignment of more resources to any BE user

would increase the sum utility. In both cases the subgradient gives the direction how λ should be

updated so that the resource constraints are less violated or more resources are assigned. At the

global optimum of (P1) all entries of the subgradient are zero and all resource constraints are

met with equality. The subgradient is used in the decentralized algorithm, presented in Section

2.4.4.

2.4.4 Decentralized Algorithms

After formulation of the dual problem and analyzing its characteristics two decentralized algo-

rithms are now presented to solve (P1) in a static and a dynamic scenario. In the static setup all

user requests and channel gains are assumed to be fixed, while in the dynamic one the request

situation, the channel gains and user mobility are subject to stochastic processes. The static

algorithm hereby serves as a motivation for the dynamic one which is adapted for practical

applications with the advantage of requiring almost no signaling information.

Static Scenario

Based on the optimality conditions of the inner problem and the subgradient of the outer loop

in Section 2.4.3 the static Algorithm 5 is formulated, where n denotes the index of the iteration,

s(n) is the step size in the nth iteration and ǫ a constant used for the stopping criteria. The

algorithm is closely related to the simplex Algorithm 4 in Section 2.3.7 and can be operated in

a decentralized way. It consists of an iterative procedure where in each cycle at first all BSs

broadcast the BS weights λm to all users. Then, each user i ∈ I evaluates λm/R̄i,m for all m ∈ M
and sends an assignment request (and the corresponding R̄i,m or ζi) to a BS m′i ∈ Mopt,i(λ).

Next, each BS m individually calculates the rate assignment which maximizes the Lagrangian
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for all users that sent an assignment request to it. The rate assignment depends on the current

λ
(n)
m and may lie either inside, on the boundary or outside the feasible rate region of BS m and

thereby either under-exploit, meet with equality or violate its resource constraint, respectively.

Correspondingly, BS m will update λm by s(n) in direction of the negative subgradient and the

cycle starts again by broadcasting the updated BS weights. Since the BE users’ data rates are

continuous functions of λ which results in strictly convex dual functions, no vertex search can

be applied to update the dual parameters as used in Algorithm 4. This makes the step size

selection a crucial factor for the convergence speed of this Algorithm.

Although Algorithm 5 may not converge to the optimum rate assignments in case ∃i ∈ I :

|Mopt,i(λ
∗)| > 1, the following theorem can be formulated:

Theorem 2. Assume that the step size s(n) is selected corresponding to the Armijo rule (see

(2.24),(2.25) in Section 2.2.3 or [Ber95b]) and that a feasible allocation for the voice users

exists, then Algorithm 5 converges to the optimum dual weights λ∗.

In case |Mopt,i(λ
∗)| = 1 ∀i ∈ I the corresponding rate assignment of Algorithm 5 is also

optimal.

In case ∃i ∈ I : |Mopt,i(λ
∗)| > 1 an optimum rate assignment that solves (P1) can be

obtained by solving the set of linear equations:

∑

m∈Mopt,i

R∗i,m = ψ
′−1

(

min

{

min
m

λ∗m

R̄i,m

, ψ′i(0)

})

, ∀i ∈ Ib

∑

m∈Mopt,i

R∗i,m = ζi, ∀i ∈ Iv

∑

i∈I
R∗i,m = Γ̄m, ∀m ∈ M

(2.126)

In case all R̄i,m ∈ I,M are random afflicted, the set of split users Isplit = {i ∈ I :

|Mi,opt(λ
∗)| > 1} has a cardinality |Isplit| ≤ M − 1

Proof. First, it is shown that any rate assignment which corresponds to steps (3) and (4) of

Algorithm 5 maximizes the inner problem of (2.111) independently of the sets’Mopt,i(λ) car-

dinality. This property follows from the necessary condition (2.119), which can be rewritten

as

Ri =
∑

m

Ri,m = ψ
′−1(

λm

R̄i,m

− σi,m

︸       ︷︷       ︸

ci

)∀m, i ∈ M,Ib

and since
∑

m∈M Ri,m = ζi∀i ∈ Iv has to hold by (2.114). Substituting both into (2.116) together

with (2.117) results in the dual function

g(λ) =
∑

i∈Ib

ψ(ψ′−1(ci)) −
∑

i∈Ib

ciψ
′−1(ci) +

∑

m∈M
λmΓ̄m −

∑

i∈Iv

µiζi, (2.127)
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which is independent of the users’ BS selections even if they are not unique. Step (5) corre-

sponds to an update of λ in direction of the negative subgradient which was derived in Section

2.4.3. Since (P1) is a convex optimization problem and Slater’s condition holds, it is proven

in [Ber95a] that the dual problem (2.111) has the same solution as (P1). Furthermore, the

dual function decreases in each iteration based on the subgradient update and provably con-

verges to the globally optimal parameters if the step size is selected corresponding to the Armijo

rule [Ber95a]. Thus, convergence to λ∗ is guaranteed.

The second part is a direct consequence of the rate assignments’ uniqueness for |Mopt,i(λ
∗)| =

1 ∀i ∈ I.

The third part of the proof also follows from the observation that the value of the dual

function (2.110) is independent of which BS mi ∈ Mopt,i(λ
∗) is selected by user i if ∃ i ∈ I :

|Mopt,i(λ
∗)| > 1 in step (3). Since it clearly matters for complying with the feasible rate region

constraints, however, the optimum rate assignment of users that are in multi-link operation

results from solving the set of KKT conditions. These reduce to (2.126) since λ∗m > 0 ∀m ∈
M, µ∗i > 0 ∀i ∈ Iv for any non-trivial solution.

The proof’s last part which limits the number of split users to at most M − 1 is similar to the

one of Proposition 1: assigning user i ∈ I to two BS mi, ni ∈ M is only optimal in case

λ∗mi

R̄i,mi

=
λ∗ni

R̄i,ni

(2.128)

holds based on (2.117) for i ∈ Iv and based on (2.119) for i ∈ Ib. Assuming that all users

i ∈ Isplit are assigned to at least two BSs mi, ni each, (2.128) can be written in matrix form:

Cλ∗ = 0 (2.129)

with the ith row of matrix C ∈ RIsplit×M having non-zero entries R̄−1
i,mi

and −R̄−1
i,ni

in the mth
i

and

nth
i

column, respectively. Due to the assumption of random affliction C has full rank and a

non-trivial solution to (2.129) exists only for |Isplit| ≤ M − 1.

�

Dynamic Scenario

In a dynamic scenario where users and service requests follow the stochastic mobility and traf-

fic model defined in Section 2.1.1, the application of Algorithm 5 may be a good choice from

a theoretic perspective. Practically, however, the procedure is too expensive, since, having the

optimum user assignment at any point in time, it would have to be executed each time a user’s

channel gain or interference situation changes (and therefore R̄) and when a service request ar-

rives or leaves the system. Each execution may thereby trigger reassignments of a whole set of

users and a considerable amount of signaling information would have to be exchanged between

users and BSs in each iteration similar to the cost based approaches presented in Section 2.3.7.
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Algorithm 6 a BS/RAN Selection of user i ∈ I
(1) User i measures its channel gains and evaluates R̄i,m for all BS m ∈ M
(2) User i evaluatesMopt,i(λ) with (2.120) based on the broadcasted λ and sends an assign-

ment request to a BS m ∈ Mopt,i.

Algorithm 6 b Resource Assignment of BS m

(1) Initialize νm = 1, n = 1 if not initialized: λ
(n)
m = 1

while ‖νm‖2 > ǫ do

(2) For all users i that are assigned to BS mMopt,i = {m} is set and Ri,m(λ(n)) are calculated

based on (2.123)

(3) BS m evaluates its subgradient νm = (Γ̄m−
∑

i∈I:Mi,opt={m}
Ri,m

R̄i,m
) and updates its dual weight

λ
(n+1)
m = λ

(n)
m − s(n)νm; n = n + 1

end while

(3) Rates Ri,m are assigned to users corresponding to (2) and the updated λ
(n)
m is broadcasted

In addition, to perform real user and rate assignments one has to wait for convergence of Algo-

rithm 5, due to the possible violation of the feasibility constraints during the iterating process.

To overcome this limitations the following adaptation of Algorithm 5 to a dynamic procedure

is suggested, which can be split into two almost independently operating parts: the BS/RAN

selection of users and the resource assignment inside each BS.

A user’s heterogeneous cell/RAN selection procedure is described in Algorithm 6a. It

is similar to the one in the static setup: all BSs broadcast λ and a new user selects a BS

m ∈ Mopt,i(λ). However, unlike in Algorithm 5 where all users directly update their cell/RAN

selection if λ is updated the selection is conducted only once by each user at the beginning of

its service request or if it would be dropped from the air interface where it is currently assigned

to. Thereby, each user performs the selection independently using only local information (users

can measure or estimate R̄i,m for all BSs) and the BS weights λ similar to the static procedure.

After a user selected a BS or in case the request, the channel or the interference situation has

changed, an update of the resource assignment is triggered in the corresponding BS. Thereby,

the triggers are independent for each BS and no information from neighboring cells is needed

for the resource assignment. Also, contrary to the static Algorithm 5, the resource update will

not trigger the cell/RAN selection of users and users stay assigned to their current BS in general.

Only if a user cannot be supported by a BS anymore and no intra-system hand-over is possible

the user will execute Algorithm 6a again possibly leading to a single ISHO to an alternative

RAT.

The resource assignment in a BS is updated following the iterative procedure in Algorithm

6b. Algorithm 6b maximizes the sum utility of the BS over all BE users that are assigned to

it and assures that all voice users comply with their minimum rate requirement. The rates are

assigned in a way that all available resources are exploited and that the resource constraint of

the BS is met with equality before λ is broadcasted again. This stands in clear contrast to the
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static algorithm where λ is updated based on the subgradient and a certain step size. It is noted

that for convergence of procedure 6b a unique mapping between λm and the assigned rates must

exist which is guaranteed for twice differentiable, increasing strictly concave utility functions.

Thus, one would have to use Algorithm 5 instead or modify 6 for linear utility functions which

correspond to maximizing the sum throughput.

Since in Algorithm 6 each user only actively selects a BS once at its call setup and the pro-

cedure does not trigger reassignments of other users in general, almost no signaling information

needs to be exchanged between users and BSs. The simplicity of Algorithm 6, however, comes

at the cost of its optimality. The influence of new users on λ, mobility and the restriction that

users stay in the actual air interface if possible lead to situations where a user j may find itself

assigned to a BS m j <Mopt, j(λ). Wrong assignments will lead to deviations of λ and it cannot

be guaranteed that the procedure approaches λ∗, which would be the optimum weight vector for

the current request and channel situation in the scenario.

Utility Bound

In Section 2.4.6 the performance of Algorithm 6 is evaluated and, instead of comparing it to

Algorithm 5, whose implementation in the MRRM Simulator is impractical, a simple upper

bound on the maximum utility is derived here for comparison. The bound allows to evaluate

the maximum degradation of an assignment obtained with the dynamic procedure from the

optimum solution of (P1). Since the latter overestimates (P1) it represents also an upper bound

for Algorithm 5, which may differ from the solution of (P1) by not enabling splitting of users.

This may be required in case ∃i ∈ I : |Mopt,i(λ
∗)| > 1.

It is assumed that the dynamic algorithm approaches λ+ and a rate assignment Rǫ at a certain

point in time where users i ∈ I are assigned to BSs mǫ
i
∈ M. Then, there exists a corresponding

dual function g(λ+) which is an upper bound on (P1):

g(λ+) = max
R

L(R, λ+) = L(R+, λ+) ≥ L(R∗, λ∗) ≥ L(Rǫ , λ+) =
∑

i∈Ib

ψi





∑

m∈M
Rǫ

i,m




(2.130)

Thus, the deviation to the global optimum of a rate assignment Rǫ can be bounded by the

difference of L(R+, λ+) and L(Rǫ , λ+)

∆L =
∑

i∈Ib∩Iǫ

ψi(R
+
i,m) − ψi(R

ǫ
i,m) −

∑

m∈M
λ+m





∑

i∈Iǫ

(
R+i,m − Rǫ

i,m

R̄i,m

)



, (2.131)

with Iǫ = {i ∈ I,mǫ
i
<Mopt,i(λ

+)}. Only the rates R+ are needed for the evaluation of the bound

which can be easily calculated by (2.123).
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2.4.5 Soft QoS Support

In problem formulation (P1) voice users’ minimum QoS requirements are incorporated as con-

straints including the possibility that the problem is infeasible for high voice user loads or

through voice users in deep fades. In these cases no reasonable resource allocation can be ex-

pected from Algorithms 5 and 6, thus demanding prevention of those situations. In addition,

it is noted that at least one BE user has to be assigned to each BS for the calculation of the

corresponding λm by Algorithm 6; reasonable assignments are improbable otherwise.

It is observed in simulations that the occurrence probability of the latter events is low for

moderate arrival rates of all service classes, and feasibility of an assignment is additionally

checked by the MRRM Simulator before a call is accepted. Nevertheless, an alternative concept

is outlined here to handle these situations.

Users with fixed QoS requirements can also be integrated as utility users which results in

the following problem formulation:

max
R

∑

i∈I
ψi





∑

m∈M
Ri,m




(2.132)

subj. to
∑

i∈I

Ri,m

R̄i,m

≤ Γ̄m ∀m ∈ M (2.133)

Ri,m ≥ 0 ∀i,m ∈ I,M (2.134)

To find an (close to) optimum assignment for (2.132) Algorithms 5 and 6 can be used as well.

Solutions of (P1) and (2.132) usually lie close together in case appropriate utility functions for

the voice users are chosen, although meeting the required rates with equality cannot be guar-

anteed even if a feasible solution for the constraint problem exists. Thus, problem formulation

(2.132) represents an option if the rate constraints of voice users are ”soft”, where supporting

a service at possibly lower QoS than originally requested is favored to not supporting the user

at all. To achieve similarity of the solutions of (P1) and (2.132) one can exploit the fact that a

utility user’s data rate corresponds to the point on the utility curve where its slope is equal to

λ/R̄ according (2.123). Thus, by having a strong bending of the voice users’ utility functions at

the required rate ζ in connection with much weaker curvature of the BE users’ utility curves, the

rate assignments of voice users stays close to the required rates for a large range of λ/R̄ while

the same range of the ratio’s variation strongly influences the BE users’ rate assignments. This

characteristic is illustrated in Figure 2.12 where two utility functions, one for the voice (green)

and one for the BE users (red), are depicted. The dashed tangents indicate the rate assignments

for two exemplary values of λ/R̄. One observers that the shape of the utilities give voice users

a soft priority as well: in Figure 2.12 the exemplary tangent with high slope results in almost

zero rate for the BE user while the voice user would be assigned a rate close to its desired rate

ζ = 12.2kbit/s.

To formulate soft constraints one can revert to the concept of α-proportional fairness and
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Figure 2.12: Utility curves used in the simulations (blue) and an exemplary utility for soft

rate constraints (green) with two λ/R̄ realizations and corresponding rate assignments (dashed

lines).

utility functions in the form:

ψi(Ri)) = wi

1

1 − α

(

Ri

ζi

)1−α

, α ≫ 1 (2.135)

Hereby, α-proportional fairness is of special interest through its convergence to max-min fair-

ness for α→ ∞ which allows to penalize deviations from the desired constraint arbitrarily hard.

Although there always exists a solution to (2.132) it is noted that in case a voice user request

is infeasible the utility maximization based on α-proportional fairness will not switch off any

user through its infinite slope at the origin for α > 0. The notion of soft QoS constraints in

connection with α-proporitonal originates from [SFB08]. Nevertheless, it is noted here that the

thesis’ author proposed the usage of strongly bended utility functions for confining utility users’

rates to small intervals already in [BSK07].

2.4.6 Simulation Results

In this section the performance of Algorithm 6 is evaluated and compared to a standard load

balancing algorithm for the heterogeneous UMTS GSM/EDGE scenario defined in Section 2.1.

All simulations are performed with the MRRM Simulator introduced in Section 2.1.4 and all

users are assumed to move corresponding to the pedestrian mobility model in [TR101] with

3km/h.
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The load balancing strategy and Algorithm 6 are quite similar and differ only in the BS/RAN

selection procedure which are triggered at a call setup or at an ISHO request. All other mech-

anisms, i.e intra-system handovers and the triggers, correspond to the standards and stay un-

touched. Both algorithms perform the resource assignment inside a BS by Algorithm 6b which

maximizes the assigned users’ sum utility of each BS. The load balancing strategy performs

the BS/RAN selection corresponding to the following procedure, in case a new user requests

service or an ISHO: at first the user short-lists one BS of each air interface, thereby selecting

those with the strongest pilot signals which could accept the call in the users vicinity. Usually,

these are the closest UMTS and GSM BSs to the user. Then, the user sends the request to the

BS with the lower load value. The load values lv,m, lb,m are obtained by signaling and are defined

for voice and BE requests, respectively, as follows:

lv,m =






∑

i∈Iv

ti,m

T̄m

∀m ∈ Ma, a ∈ Aorth

∑

i∈Iv

pi,m

P̄m

∀m ∈ Mb, b ∈ Ain f

(2.136)

lb,m =
1

|Ib|
∑

i∈Ib

(

1

Ri,m

)

∀m ∈ M (2.137)

The normalized rate mapping used for assignments in the UMTS air interface and its linear

approximation corresponding to (2.105) are shown in Figure 2.11. The approximation’s slope

is chosen so that it intersects with the real rate mapping curve at the origin and at 100kbit/s and

corresponds to ∆b = 1.53e6bit/s. For the GSM air interface the mapping depicted in Figure 2.2

(right) is used.

The shifted version of the α-proportional fair curve with α = 1/2, shown in Figure 2.12

(red), serves as utility function. It represents a rather throughput oriented metric than propor-

tional fairness through its low curvature:

ψ(Ri) =

√

Ri

kbit/s
+ 1 −

√
1 (2.138)

The shifting operation in (2.138) results in a finite slope of the curve at the origin which is

essential to enable switching off users. Otherwise, a user in a deep fade may be assigned almost

all resources, if limx→0 ψ
′(x) = ∞.

In the simulation scenario there are on average 10 voice service call setup requests per

second inside the movement area which corresponds to approximately 36 active voice users and

a voice traffic load of 440kbit/s per cell area on average. Additionally, a varying number of BE

users request service. In Figure 2.13 (left) the throughput of the BE users is shown resulting

from the real SINR-rate mapping and its approximation over the average number of active BE

users. As can be observed, Algorithm 6 achieves up to 30% more throughput compared to the

load balancing strategy. The real and approximated rates match very well in the region for low
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Figure 2.13: Performance of Algorithm 6 in comparison to load balancing as well as quality

of linear rate approximation and the upper utility bound without considering slow fading. BE

throughput with and without linear approximation (2.105) (left). Sum utility U and upper bound

U + ∆L (right).

user request rates, but also at high loads the deviations are small compared to the gains. The

sum utility per cell area and the upper bound are shown in Figure 2.13 (right). The utility gain

of Algorithm 6 is approximately 25% compared to load balancing. Of special interest is the

distance of the sum utility to its upper bound: the latter is almost zero at high call arrival rates,

indicating that Algorithm 6 performs close to the optimum and no significant gains could be

achieved by using Algorithm 5 instead. At lower rates this observation does not hold. Here, the

dynamic procedure pays the price for its simplicity with regard to performance loss. The main

reason for the loss results from the fluctuation of λ. At low request rates a user’s call setup or

service termination has a great impact on the resource allocation of the other users in the cell and

therefore leads to strong variations of λ over time. The latter directly influences the set of users’

optimum BSs Mopt(λ) and thus often leads to the case where users find themselves assigned

to a currently non-optimal BS. Then, the dynamic algorithm loses performance since the cell

selection is only allowed once per user in general. Higher utility values could be obtained here

by allowing users to perform ISHOs so that each user would be assigned toMopt(λ) again. This

characteristic is also reflected in the looseness of the bound. Unlike low request rates, if the

average number of users in a cell is high, the influence of a single user’s arrival or departure

from a cell on λ is diminishing and a user’s optimum BS hardly changes over time. In this case,

the performance is almost optimal and the bound is very tight. The tightness also indicates that

the influence of the users pedestrian mobility and therefore the variation of R̄ (and Mopt) is

negligible in this scenario.

For the heterogeneous UMTS GSM/EDGE system the following interpretation of the op-

timum assignment strategy can be given: one observes that R̄ is a monotonically increasing

function of a user’s SINR for both air interfaces. Thus, for a given λ the optimum BS/RAN

selection mopt,i = arg minm λm/R̄i,m(βi,m) reduces to an SINR threshold. The latter depends on

the air interface and the service type through R̄(β) and on λ which can be interpreted as a mea-
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Figure 2.14: RAN assignment of BE users without slow-fading: 1→ 100% assigned to UMTS

0→ 100% assigned to GSM.

sure for the BS’s load. The threshold characteristic can be observed in Figure 2.14 where the

BE user assignment is shown by color shades with regard to the selected RAT: Algorithm 6

assigns users to UMTS that are in the red area close to the BSs and users in the blue area to

GSM/EDGE. The border of both areas is characterized by the threshold SINR of each RAN

which has a lobe pattern because of the directional antenna characteristics. Due to a symmetric

request distribution and colocated BS sites the pattern looks very regular in Figure 2.14, and

thus, results in similar λm for BSs of one RAT. Nevertheless, Algorithm 6 also flexibly adapts

itself to a close to optimum configuration in case of arbitrary, not necessary colocated, BS po-

sitioning and varying load situations without any change in configuration of the algorithm. The

optimum area pattern looks of course different. Contrary to the BE users Algorithm 6 assigns

almost all voice users to UMTS in the presented scenario. This is due to the fact that time-slot

sharing is not possible in GSM for voice users, which is reflected in the low maximum of the

SINR rate mapping curve in the right graph of Figure 2.2. Thus, a much lower λ of the GSM

BS compared to the λ of the UMTS BS would be required to make GSM attractive for an as-

signment. This instance may suggest that also the major part of the gain of Algorithm 6 is based

on the low effectivity of voice in GSM, which is not avoided in load balancing. Simulations,

however, show that in similar scenarios with pure BE service requests gains of more than 20 %

are obtained.

To demonstrate that the utility bound can be tight and to visualize the assignment policy of

Algorithm 6 qualitatively no slow-fading has been active in the simulations so far. In Figure

2.15 the sum utility and the bound is shown for the scenario above, however, this time with slow

fading corresponding to Section 2.1.4 in both air interfaces with a variance of 6dB. Considering
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Figure 2.15: Sum utility and upper bound with 6 dB slow-fading.

load balancing the slow-fading hardly influences the strategy’s performance. For Algorithm 6,

however, the users’ mobility in connection with the slow-fading has a non-negligible impact.

Now, even small changes in position may result in large differences of the channel gains and

thus R̄ which lead to more wrongly assigned users and looseness of the bound. Nevertheless,

still a gain of approx 20 % is achieved in the scenario. Similarly, the performance of Algorithm

6 decreases and the bound gets less tight without slow-fading in case the velocity is increased.

For completeness it is noted here that in case users do not change their position the tightness

of the bound under slow-fading is similar to the one shown in Figure 2.13 (right).

The observations made in Section 2.4.3 and in the simulations open up the way to design

even more simplified algorithms that may be interesting for practical applications. For given

scenarios fixed BS weights λ or service dependent SINR, channel or even distance thresholds

could be applied for the cell/RAN selection or as triggers for inter-system hand-overs. When

users are subject to strong channel variations originating e.g. from mobility or fading during a

service request, updating the cell/RAN selection by executing Algorithm 6a at more frequent

intervals is an option to improve the performance and to get close to the optimum again.

2.5 Summary

In this chapter an optimization framework for wireless heterogeneous multi-cell scenarios in

slowly varying environments was developed and three different strategies for an efficient ex-

ploitation of air interface diversity were presented.

The first one in Section 2.2 revealed that the aptitude to support users with fixed QoS con-

straints strongly depends on the requested service mix and corresponding radio access tech-

nologies. For the problem of maximizing the number of users at a requested service mix it was

shown that this effect can be efficiently exploited and that an optimum service mix for individual

RANs exists. Furthermore, by reformulation as dual max-min problem the latter decoupled into

individual weighted sum rate maximization problems for each BS/RAN. Algorithm 1 was then
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derived for the calculation of the optimum weights, which characterize the optimum services

mixes in individual cells. Contrary to known strategies for calculating the optimum service

mixes in heterogeneous scenarios in the literature, the presented algorithm stands out for its

simplicity and guaranteed convergence in polynomial time.

Identifying that user capacity regions can be often approximated by simplexes for the pre-

sented models of interference limited and orthogonal air interfaces allowed to design further

simplified procedures: in the special case of a heterogeneous UMTS GSM/EDGE scenario with

one voice and one data service with fixed QoS requirements assigning all voice users to the

UMTS network and data users to the GSM/EDGE system by default, only using the alternative

RAN if the default cell cannot accept the request, was shown to result in the optimum service

mixes by simulations.

The second strategy extended the service based optimization approach by considering user-

wise suitability in individual air interfaces in addition to the requested service type. The con-

cept of user costs, comprising the users’ channel gains, interference situation, service class

and characteristics of the radio access technologies was introduced and led to linear feasibil-

ity constraints of individual BSs. Based on the costs Algorithms 2 and 4 were presented for

maximizing the weighted total number of users with fixed QoS constraints in heterogeneous

scenarios. Due to the problem’s combinatorial nature, both algorithms did not always converge

to the global optimum. However, by introducing upper and lower performance bounds, user

allocations with at most M users less assigned compared to the optimum combinatorial solution

could be guaranteed. Continuous relaxation was employed for the derivation of the algorithms

and considerable gains in comparison to a load balancing strategy were achieved in static sce-

narios. These gains could be maintained in dynamic simulations even at vehicular user mobility,

although requiring frequent updates of the user assignment and ISHOs. To meet the increased

robustness demands in time varying systems Algorithm 4 which employs a simple subgradient

controlled vertex search procedure and which converged within few iterations was derived.

The last strategy presented in Section 2.4 extended the ideas of the cost based approach and

integrated BE users as well as α-proportional fairness. For this scenario an adaptable utility

maximization problem constrained by the fixed QoS users’ minimum rate requirements was

formulated and general insights into the structure of its solution were gained in the dual do-

main. Optimality of single link operation could be established for almost all users based on the

in approximation linear rate regions; a result which stands in clear contrast to those obtained in

interference limited RANs under the high-SINR approximation. These observations were then

used to develop decentralized algorithms for static scenarios and refined for dynamic settings.

In the dynamic setting users independently selected an air interface and cell based on their costs

and based on broadcasted BS weights λ at call setup. Hereby, λ, weighted by R̄−1, corresponded

to the utility function’ slope of assigned BE users and was updated independently by each BS

without requiring signaling between BSs at all. Although the procedure may result in subop-

timal assignments it wins over by its simplicity and low signaling efforts. Contrary to the cost
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based approaches no additional snapshot optimizations, often accompanied by a multitude of

ISHOs, were needed. High gains in comparison to a simple load balancing algorithm were

obtained and close to optimum performance could be shown by simulations based on a duality

bound.



Chapter 3

MSE Based Utility Maximization in

Parallel Broadcast Channels

3.1 Introduction

The degrees of freedom for resource allocation often extend to multiple dimensions in modern

wireless communication systems thereby including time, frequency, power and spacial parti-

tioning. This multi-dimensional freedom does not only allow for better adaptation to the wire-

less channel and thus more efficient exploitation of wireless resources, but also leads to more

involved analysis how resources should be assigned in order to achieve certain measures of op-

timality. A key requirement for a profound analysis of a heterogeneous communication system

is the understanding of the underlying radio access technologies themselves. Therefore, this

chapter aims to gain deeper insights into the achievable rate and utility regions of RANs where

in addition to power allocation also the bandwidth assignment can be controlled. A model that

embraces this multidimensionality in a general way is the Parallel Broadcast Channel (PBC). It

represents an orthogonal concatenation of multiple interference limited communication chan-

nels, each one similar to the interference limited system model in Chapter 2. The subchannels

may be coupled by a common power budget, and in addition to power control also the user

assignment to the individual subchannels can be controlled.

A more general definition of the PBC and analogies to different communication channels

can be found in [Tse97]. Important for the practical relevance of the PBC in the context of

this thesis is its ability to model communication systems which base upon OFDM [Cha66],

a key concept employed in the current WLAN, WiMAX and Long Term Evolution (LTE) re-

leases [WLA07], [WiM04], [LTE08]. OFDM allows to partition the static, frequency selective

channel into orthogonal subbands for which flat fading conditions are usually assumed using

the Discrete Fourier Transform (DFT) at transmitters and receivers. Thus, OFDM falls within

the concept of PBCs in case transmission form a BS to users is considered. Details on OFDM

can be found in various text books such as [NP99], [HK06].

71
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A lot of research has been carried out on the characteristics of PBCs and on resource al-

location for OFDM systems in the last years. The PBC capacity region is derived in [HH75]

and [Tse97]. However, non-linear decoding techniques such as successive interference cancel-

lation [Cov72], [CT91] or dirty paper coding [Cos83] must be applied for reaching its boundary.

An optimum resource allocation strategy under the assumption that the number of subcarriers

goes to infinity and that at most one user is assigned to each carrier is presented in [SL05a].

Suboptimal schemes for the combinatorial problem of user assignments with a limited number

of subcarriers is covered in [WCLM99], [SL05b], [YL06], [SMC06].

For linear signal processing, which is a more practical assumption and considered in this

thesis, the PBC represents a special case of the interference channel whose capacity region is a

research topic open for the last 30 years [Car78], [ETW07]. Even for a single broadcast chan-

nel, which serves as model for interference limited systems such as CDMA based UMTS, the

achievable rate regions based on Shannon’s capacity are not convex in general [SB07]. Also

maximizing the sum rate is a difficult problem in case the cross-correlation between users’

codes, known as the non-orthogonality factor, is low [OY07]. For full cross correlation it is

shown in [LG01] that assigning a single user all resources for a certain period of time maxi-

mizes the sum rate in the context of time variant channels in connection with an average power

constraint.

To guarantee real time ability, global convergence and low computational complexity of

algorithms, transforming the resource allocation problem into a convex optimization problem

is often inevitable and a difficult task for system designers. If, however, a convex formulation

is found a multitude of ready-to-use algorithms exist that guarantee convergence to the global

optimum in polynomial time. Although important optimization problems like maximizing the

system throughput are in general non-convex, combining them with fairness in a utility frame-

work often opens up a way to transform them into convex ones. An important class of utility-

functions, for non-orthogonal, fully coupled interference-limited networks, which allows for a

convex problem formulation, is presented in [BWS07]. There, based on the Perron-Frobenius

theory, it is shown that for any utility function in dependence of the SINR, where the inverse is

log-convex, a convex problem representation of the power allocation problem can be found.

In this chapter a new class of utility functions which base upon the Mean Square Error

(MSE) instead of the SINR is derived for PBCs such as multiuser OFDM with a sum power

constraint. These networks represent a subclass of the fully coupled interference channel and are

also equivalent to block diagonal Multiple Input Multiple Output (MIMO) broadcast scenarios.

The new utility class allows to formulate equivalent, convex problems with regard to MSEs over

an extended set of variables and leads to necessary and sufficient conditions for optimality of the

original, non-convex problem in terms of power. The new class includes the log-convex set and

extends it towards more throughput oriented metrics. Although standard methods exist to solve

the problems in the convex form, a gradient projection approach in the non-convex domain is

presented. It is observed to converge faster to the global optimum.
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The MSE represents an alternative metric to the SINR for describing a wireless system’s

QoS and is related to many important performance measures such as the data rate, SINR and bit

error rates by bijective mappings [Pal05]. Its structure often proves advantageous to the SINR

in formulating convex optimization problems [SS05], [CTJLa06], [SSB07]. Nevertheless, the

feasible MSE region is in general non-convex as shown in [SSB08], [HJ08].

3.2 System Model

A system of K parallel Broadcast (BC) channels over which a transmitter communicates with I

receivers is considered. The set of subchannels and users is denoted by K and I, respectively.

No assumptions are made on the number of users to be allocated to each of the subchannels.

The transmitter is restricted to linear signal processing. Denoting the channel gain matrix by

g ∈ RI×K
+ with entries gi,k and the circular symmetric white Gaussian noise by n ∈ RI×K

+ with

entries ni,k ∼ CN(0, 1) the achievable SINR of receiver i on subchannel k is given by

βi,k =
gi,k pi,k

gi,k

∑

j,i p j,k + 1
,

where pi,k = [p]i,k with p ∈ RI×K
+ is the power allocated to user i on subchannel k. Based on the

normalized MSE [VAT99], [SSB07]

MSEi,k = 1 − gi,k pi,k

gi,k

∑

j∈I p j,k + 1
,

the Complementary Mean Square Error (CMSE) of user i on subchannel k is defined as

γi,k = 1 −MSEi,k =
gi,k pi,k

gi,k

∑

i∈I pi,k + 1
∀i, k ∈ I,K . (3.1)

All derivations base on the complementary MSE in this chapter since this allows for comparing

the results directly to those obtained in [SWB06]. Under the assumption that the optimum

linear Minimum Mean Square Error (MMSE) receive filter is applied, the following well-known

bijective mappings

γi,k =
βi,k

1 + βi,k

, βi,k =
γi,k

1 − γi,k

∀i, k ∈ I,K (3.2)

relate the SINR and the CMSE to one another.

Now, in analogy to the well-established sum MSE, the sum of the CMSEs is defined by

γγγ ∈ RI
+ with elements

γi =
∑

k∈K
γi,k i ∈ I. (3.3)

It is noted that all derivations can be equivalently formulated for the sum power constraint

Multiple Access Channel (MAC) based on duality [SB05], since the mapping between SINR

and the CMSE are bijective.
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3.3 Problem Statement

Users’ QoS demands can be described by some appropriate utility functions that map the used

resources on a real number. Here, the utility maximization (Problem 2) or sum power mini-

mization subject to utility constraints (Problem 3) with regard to CMSEs is of interest. This

stands in some contrast to typical direct formulations in the SINRs (or rates) but, from a coding

perspective, appears to be advantageous for PBC systems such as OFDM.

Problem 2 Given a twice continuously differentiable, strictly increasing utility function ψ :

R+ 7→ R, non-negative weights w ∈ RI
+ and a maximum sum power P̄ the following resource

allocation problem is considered:

max U := max
∑

i∈I
wi

∑

k∈K
ψi,k(γi,k(p1,k, ..., pI,k))

subj. to
∑

i∈I

∑

k∈K
pi,k ≤ P̄

(P2)

For notational simplification the somewhat weaker problem where the user’s utility functions

are equal ψi,k = ψ ∀i, k ∈ I,K is investigated. Problem (P2) represents a sum-of-ratios problem

as in fractional programming, which is NP-complete in general [SS03]. However, the following

result is known:

The log-convexity class [BWS07], [Chi05b]:

The utility maximization problem

max
∑

i∈I
wi

∑

k∈K
ψ(βi,k(p1,k, ..., pI,k))

subj. to
∑

i∈I

∑

k∈K
pi,k ≤ P̄

(3.4)

with regard to the SINR has a convex representation for any continuous, strictly increasing util-

ity function whose inverse is log-convex. This result can be obtained by using Perron Frobenius

theory [BWS07] or the posinomial transform [Chi05b], respectively. Important utility functions

such as the approximation of the Shannon rate at high SINR R ≈ log(β) and α-proportional util-

ities [MW00] with regard to the SINR

ψ(β) =
1

1 − αβ
1−α, α ≥ 1

fall into the log-convexity class, where α represents a non-negative scalar which tunes the con-

cavity of the utility curve.

By applying the posinomial transform this result can be directly extended to (P2) with resect

to CMSEs:

Lemma 1. The utility maximization problem (P2) has a convex representation for any strictly
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increasing utility function ψ(γ) ∈ Ψl with

Ψl :=
{

ψ : R++ 7→ R , ψ−1(·) is log-convex
}

(3.5)

Proof. By substituting pe
i,k
= log(pi,k) ∀i, k ∈ I,K and the auxiliary constraint γe

i,k
≤ log(γi,k) ∀i, k ∈

I,K , into (P2) one obtains:

U∗ = max
∑

i∈I
wi

∑

k∈K
ψ

(

eγ
e
i,k

)

(3.6)

subj. to γe
i,k − pe

i,k + log





∑

i∈I
epe

i,k + g−1
i,k



 ≤ 0 ∀i, k ∈ I,K
∑

i∈I

∑

k∈K
epe

i,k ≤ P̄

The objective in (3.6) is concave by ψ ∈ Ψl; the constraints are jointly convex in pe
i,k
, γe

i,k
∀i, k ∈

I,K . Thus, (3.6) represents a convex optimization problem. Equality of its solution and (P2)

follows from the fact that the auxiliary constraint has to be met with equality at the optimum.

Otherwise the utility could be further increased for strictly increasing utility functions. �

Problem 3 From an operator’s perspective it is not always desirable to maximize utilities for

constrained resources. The dual problem formulation of minimizing the needed resources for

minimum utility requirements ψ̄i, i ∈ I has the same relevance:

min
∑

i∈I,k∈K
pi,k

subj. to
∑

k∈K
ψ(γi,k(p1,k, ..., pI,k)) ≥ ψ̄i ∀m ∈ I

(P3)

3.4 Utility Optimization Based on CMSEs

3.4.1 Multiuser CMSE Region

In this section the achievable CMSE region is studied and results concerning its convexity are

presented. First, a fixed sum power budget P̄k is assumed for subchannels k ∈ K . Solving (3.1)

for the power of user i and summation over all users on this subchannel yields:

∑

i∈I
γi,k

(

P̄k +
1

gi,k

)

≤ P̄k ∀k ∈ K . (3.7)
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Thus, the set of achievable CMSEs for a fixed sum power P̄k on subchannel k can be written as

Gk(P̄k) =

{

γγγk :
∑

i∈I
γi,k

(

1 +
1

gi,kP̄k

)

≤ 1

}

(3.8)

with γγγk ∈ RI
+ and [γγγk]i = γi,k which is the intersection of a half-space with RM

+ and thus a

convex set. The set of achievable complementary sum MSEs for a fixed power allocation among

subchannels can be written as:

G(P̄1, ..., P̄K) =
∑

k∈K
Gk(P̄k) (3.9)

Obviously, (3.9) is a polytope and thus also convex, which allows to formulate a convex opti-

mization problem for arbitrary, concave utility functions over the set G(P̄1, ..., P̄K).

On the contrary, this property does not hold for the sum power constrained CMSE region:

G(P̄) =
⋃

P1,...,PK :
∑

k∈K Pk=P̄

G(P1, ..., PK) (3.10)

Lemma 2. The complementary MSE region under a sum power constraint G(P̄) defined in

(3.10) is not necessarily a convex set.

Proof. A pathological channel realization is studied, and by assuming convexity of G(P̄) it is

shown that this leads to a contradiction. A system with K = I = 2 is considered with normalized

sum power P̄ = 1 and

g =





g1,1 g1,2

g2,1 g2,2



 =





100 1

1 1



 . (3.11)

Furthermore, p(1) and p(2) are power allocations with elements

p(1) =





p
(1)

1,1
p

(1)

1,2

p
(1)

2,1
p

(1)

2,2



 =





0 0.5

0 0.5





and

p(2) =





p
(2)

1,1
p

(2)

1,2

p
(2)

2,1
p

(2)

2,2



 =





0.1 0

0 0.9



 .

The corresponding CMSEs result in

γγγ(1) =





0
2
3



 and γγγ(2) =





0.91

0.47



 .
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Due to convexity of G(P̄) the linear combination

γγγ∗ =
1

2
(γγγ(1) + γγγ(2)) =





0.45

0.57





must be achievable with sum power P̄ ≤ 1.

The set G(P̄) can be upper bounded by

G(P̄) ⊆
⋃

0≤p≤1

{

γ ∈ R2
+ : γ2 ≤ −γ1a(p) + b(p)

}

where

a(p) =
g2,1 p

g2,1 p + 1

g1,1 p + 1

g1,1 p

and

b(p) =
g2,1 p

g2,1 p + 1
+

g2,2(1 − p)

g2,2(1 − p) + 1
.

This is illustrated in Figure 3.1 (left). The function

γ2(p) = −γ1a(p) + b(p)

is concave in p ∈ [0, 1] and by using an upper bound on the achievable γ2 can be found for any

given value of γ1. Setting γ1 = γ
∗
1

and solving

γ̃2 = max
p∈[0,1]

−γ∗1a(p) + b(p)

leads to (see Figure 3.1 (right))

γ̃2 < γ
∗
2

which is a contradiction, since γ∗
2

must be achievable due to the convexity of G(P̄). Thus, G(P̄)

is not a convex set. �

The relation between G(P̄), G(P1, P2) and Gk(Pk) is exemplarily illustrated in Figure 3.2.

The exemplary channel realization (3.11) is also suitable for analyzing the properties of the

CMSE region of the multiple access channel with individual power constraints, for which the

following Lemma holds:

Lemma 3. The complementary MSE region of the multiple access channel with user wise sum

power constraints, defined as

G(P̄1, . . . , P̄I) =





γγγMAC : γMAC

i,k =
gi,k pi,k

∑

j∈I g j,k p j,k + 1
,
∑

k∈K
pi,k ≤ p̄i, pi,k ≥ 0 ∀i, k ∈ I,K





(3.12)

and γγγMAC ∈ RI
+ with elements [γγγMAC]i =

∑

k∈K γ
MAC
i,k
∀i ∈ I, is not necessarily a convex set.
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Figure 3.1: Illustration of Lemma 2’s proof: achievable region and convex-combination γγγ∗

(left). Gap between γ∗
2

and γ2 = −γ∗1a(p) + b(p) (right).

Proof. Similar to the proof of Lemma 2 convexity of the MAC CMSE region is assumed for

K = I = 2 and a counter example constructed. Assuming that the channel matrix is given by

(2.31) and p̄1 = p̄2 = 0.5, then, the power allocation

p(1) =





p
(1)

1,1
p

(1)

1,2

p
(1)

2,1
p

(1)

2,2



 =





0.5 0

0 0.5



 .

and

p(2) =





p
(2)

1,1
p

(2)

1,2

p
(2)

2,1
p

(2)

2,2



 =





0 0

0.25 0.25



 .

result in

γγγMAC(1) =





0.98

0.34



 and γγγMAC(2) =





0

0.4



 .

Due to the assumed convexity of the region a power allocation that achieves

γγγMAC+ =
1

2
(γγγMAC(1) + γγγMAC(2)) =





0.49

0.37





must exist. Solving the problem

γγγMAC∗
2 = max γMAC

2,1 + γ
MAC
2,2 (3.13)

subj. to p1,1 + p1,2 ≤ 0.5

p2,1 + p2,2 ≤ 0.5

γMAC
1,1 + γ

MAC
1,2 = 0.49

pi,k ≥ 0 ∀i, k ∈ {1, 2}



3.4. Utility Optimization Based on CMSEs 79

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

γ
1

γ 2

G(P̄)

G(P1, P2)

G1(P1)

G2(P2)

Figure 3.2: Illustration of the different complementary BC MSE regions for a specific choice of

P1 and P2 with P1 + P2 = P̄.

results in

p∗ =





0.01 0

0.04 0.46





and γMAC∗
2

= 0.33 < γMAC+
2

, however. Therefore, no feasible power allocation exists which

achieves γγγMAC+. This contradicts the assumption on convexity of the CMSE MAC region.

�

The complementary MSE MAC region and the construction of the contradiction in Lemma

3 is shown in Figure 3.3 for the example used in the proof.

3.4.2 Consequences for the MIMO MSE Region

An interesting consequence of Lemma 2 and 3 is the following corollary.

Corollary 1. The achievable region of individual users’ sum MSEs in the sum power con-

strained MIMO BC channel and MIMO MAC with user wise power constraints is not necessar-

ily a convex set.

Proof. This follows from the fact that any system of parallel BC channels and MACs can be

written as a block-diagonal MIMO BC channel and MAC, respectively and from Lemma 2 and

Lemma 3. �

In [JB03, Thm. 4] it is claimed that the 2-user MIMO MAC MSE region is a convex set.

A direct consequence of the proof techniques used in [JB03, Thm. 4,Thm. 5] would then be
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Figure 3.3: Complementary MSE MAC region for p̄1 = p̄2 = 0.5 and g from (3.11).

the convexity of the 2-user MIMO BC MSE region. Both, however, contradict Corollary 1.

The reason for the latter is that in [JB03] only feasibility of tuples with the same sum MSE are

considered, which is not sufficient for proving convexity of the whole region.

3.4.3 Convexity of the BC Utility Region

While convexity of the BC channel’s CMSE region is achieved with per subcarrier constraints

this does not hold for the region G(P̄) in general. However, there exists a class of utility func-

tions which allows a convex representation of the achievable utility region:

Lemma 4. For utility functions

ψ(γ) = γ1/α α ≥ 2, γ ≥ 0, (3.14)

the set

Q(P̄) =





q : qi =

∑

k

ψ(γi,k(p1,k, . . . , pI,k)),
∑

i,k

pi,k ≤ P̄, pi,k ≥ 0 ∀i, k ∈ I,K




(3.15)

with q ∈ RI
+ and [q]i = qi ∀i ∈ I is a convex set.

Proof. The mapping ψ(γ) is concave and strictly monotonously increasing. Thus, an inverse

function φ : q → γ with γi,k = φ(qi,k) = ψ
−1(qi,k) ∀i, k ∈ I,K exists. By substituting the latter

into (2.2) the sum power constraint can be expressed using the following set of equations in
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dependence of the extended set of non-negative variables qi,k and Pk, i, k ∈ I,K :

∑

i∈I
φ(qi,k)

(

1 +
1

gi,kPk

)

≤ 1 ∀k ∈ K
∑

k∈K
Pk ≤ P̄

(3.16)

Thus,

f (q, P) = φ(q)

(

1 +
1

gP

)

being jointly convex in q, P is a sufficient condition for Q(P̄) being a convex set. Now the

Hessian of f (q, P) is considered, which is given by

H f (q,P) =





∂2φ(q)

∂q2 (1 + 1
gP

) −∂φ(q)

∂q
1

gP2

−∂φ(q)

∂q
1

gP2 φ(q) 2
gP3




.

Due to the assumptions made on ψ(γ)

tr
(

H f (q,P)

)

≥ 0 (3.17)

holds. Hence,

det
(

H f (q,P)

)

≥ 0 (3.18)

represents a sufficient condition for positive-semi-definiteness of H f (q,P) and thus convexity of

the set. Substituting the inverse of (3.14) into (3.18) the latter can be rewritten as

det
(

H f (q,P)

)

= α2q2α−2 1

g2P4

︸         ︷︷         ︸

=:A

(

2(1 + gP)(1 − 1

α
) − 1

)

︸                        ︷︷                        ︸

=:B

≥ 0.

Obviously, A ≥ 0 holds independent of α and B ≥ 0 is true if

α ≥ 2(1 + gP)

2(1 + gP) − 1
(3.19)

and thus

α ≥ 2

which concludes the proof. �

Corollary 2 (high SINR). For gi,kPk ≫ 1 ∀i, k ∈ I,K G(P̄) converges to a convex set.

Proof. Substituting the high SINR assumption into (3.19)

lim
gP→∞

2(1 + gP)

2(1 + gP) − 1
= 1
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holds, ensuring convexity of Q(P̄) for linear utilities such as ψ(x) = x in approximation. For the

latter utility function G(P̄) is equal to Q(P̄), which completes the proof. �

3.4.4 A New Class of Utility Functions: the Square Root Law

Using the insights gained from Lemma 4 now a more general class of utility functions for which

solvability of (P2) is guaranteed in polynomial time can be formulated.

Defining

ΨM =
{

ψ : R+ 7→ R , (ψ ◦ g′)(x) concave and twice continuously differentiable
}

, (3.20)

with g′(x) = x2, then, the optimization problem

max
∑

i∈I
wi

∑

k∈K
ψ(x2

i,k)

subj. to
∑

i∈I
x2

i,k

(

1 +
1

gi,kPk

)

≤ 1 ∀k ∈ K
∑

k∈K
Pk ≤ P̄

(P2’)

with ψ ∈ ΨM is convex and has the same solution as (P2). This property is referred to as the

square root law.

Problem (P2’) represents a relaxed version of (P2) over an extended space of variables. The

relaxation is inherent in the first constraint in (P2’) which is equivalent to
∑

i∈I pi,k ≤ Pk. As

direct consequence of the objective function’s monotonicity the constraint is met with equality

at the optimum and thus the solutions of (P2) and (P2’) are identical. Standard algorithms

from convex optimization theory can be applied to solve the latter in polynomial time [Ber95a].

However, the set of variables to be optimized is enlarged from IK to (I+1)K unknowns through

the relaxation. This is disadvantageous regarding complexity and convergence speed. It is

also noted that (P2’) reveals no information on the complexity of solving (P2) directly in the

domain of powers. Since (P2) is not convex, local, convex and/or gradient based optimization

algorithms may get stuck at local maxima or saddle points [Ber95a]. In addition, it is noted that

a unique bijective map which relates arbitrary points xi,k, Pk to pi,k exists only on the boundary

of the constrained set in (P2’). Nevertheless, the following theorem guarantees that any local

optimum of (P2) is also the global one and that no saddle points exist∗.

Theorem 3. Suppose ψ(γ) ∈ ΨM, then the KKT conditions are necessary and sufficient for the

solution of Problem (P2) in p.

∗In [BWS04] a similar theorem is proven for (3.4) and utilities of the log-convex class. There, necessity and

sufficiency of the KKT conditions in the powers is shown based on the existence of a unique, bijective mapping

between each power and utility vector. Since the utility region is convex the authors conclude that for any p , p∗

there always must exist a path in the power region with strictly increasing utility.
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Proof. In the proof it is shown that any power allocation p∗ which complies with the KKT

conditions of (P2) is one-to-one related to an allocation x∗,P∗ for which the corresponding

optimality conditions of (P2’) hold. Since only a unique KKT point exists for (P2’) the same is

true for (P2). The KKT condition of (P2) are defined by [Ber95a]:

wiψ
′(γi,k)

γi,k

pi,k

−




∑

j∈I
w jψ

′(γ j,k)
γ2

j,k

p j,k

+ µ





︸                        ︷︷                        ︸

Qk

+ρi,k = 0 ∀i, k ∈ I,K (3.21)

µ(
∑

i∈I

∑

k∈K
pi,k − P̄) = 0 (3.22)

ρi,k pi,k = 0 ∀i, k ∈ I,K (3.23)

µ ≥ 0 , ρi,k ≥ 0 ∀i, k ∈ I,K (3.24)

with ψ′(x) = ∂
∂x
ψ(x) and µ ∈ R+, ρρρ ∈ RI×K

+ non-negative dual parameters. Next, it is shwon that

for x2
i,k
= γi,k(p),

∑

i∈I pi,k = Pk and λk =
µPk

1−∑i∈I γi,k
∀i, k ∈ I,K complying with (3.21)-(3.24) is

equivalent to complying with the KKT conditions of (P2’) where λλλ ∈ RK
+ , δ ∈ R+, σσσ ∈ RK

+ are

dual parameters:

2xi,k

(

wiψ
′(x2

i,k) − λk

(

1 +
1

gi,kPk

))

= 0 ∀i, k ∈ I,K (3.25)

λk

P2
k

∑

i∈I

x2
i,k

gi,k

− δ + ρk = 0 ∀k ∈ K (3.26)

λk





∑

i∈I
x2

i,k

(

1 +
1

gi,kPk

)

− 1



 = 0 ∀k ∈ K (3.27)

δ





∑

k∈K
Pk − P̄



 = 0 (3.28)

σkPk = 0 ∀k ∈ K (3.29)

δ ≥ 0 , λk ≥ 0 , ρk ≥ 0 ∀k ∈ K (3.30)

By setting x2
i,k
= γi,k ∀i, k ∈ I,K the first KKT conditions (3.21) and the term in brackets in

(3.25) are equal for λk = QkPk ∀k ∈ K . Therefore, if (3.21) holds also (3.25) does. Using (3.7)

and reformulating (3.27) results in λk(
∑

i∈I pi,k − Pk) = 0 ∀k ∈ K , which, in connection with

(3.28) is equivalent to the power constraint (3.22). At any KKT point the power constraints

are met with equality, and therefore (3.27) holds for arbitrary λk ≥ 0. Otherwise, increasing

the user’s power would increase the utility because of the strictly increasing utility functions.

Concurrently, (3.27) can be rearranged to

Pk
∑

i∈I
γi,k

gi,k

=
1

1 −∑

i∈I γi,k

(3.31)
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which will be used in (3.33) to show equivalence of (3.21) and (3.26). Furthermore, (3.21) can

be solved for Q by exploiting the fact that Qk = wiψ
′(γi,k)

γi,k

pi,k
+ρi,k =

λk

Pk
∀i, k ∈ I,K holds. With

reference to (3.23) one obtains:

λk

Pk

− µ

1 −∑

i∈I γi,k

= 0 ∀k ∈ K (3.32)

The equivalence of (3.21) and (3.26) follows from substituting (3.31) into (3.32). This results

in
λk

Pk

− µPk
∑

i∈I
γi,k

gi,k

= 0 (3.33)

which holds if (3.26) is fulfilled and δ is equal to µ. Analogy of the slackness conditions (3.23)

and (3.29) is an immediate consequence and at the same time concludes the proof by showing

that any p∗ that is a KKT point in (P2) is also a KKT point in (P2’) and vice versa. �

The following lemma clarifies the connection between the log-convexity class and utility

functions which comply with the square root law.

Lemma 5. The inverse of a function ψ(·) : R++ 7→ R is log-convex if and only if ψ(xn) is concave

in x > 0 for any n ≥ 1,n ∈ N.

Proof. First, it is supposed that ψ(ex) is concave in x which is equivalent to the inverse of ψ(·)
being log-convex. For any x, x̄ > 0 and 0 < ᾱ < 1 with ¯̄α = 1 − ᾱ, x := ey, x̄ := eȳ and

x(ᾱ) := ᾱx+ ¯̄αx̄ is defined. Then, by exploiting the fact that the arithmetic mean is always equal

or larger than the geometric mean one obtains for n ≥ 1:

ψ(xn(ᾱ)) = ψ
((

ᾱey + ¯̄αeȳ
)n)

≥ ψ(eᾱny+ ¯̄αnȳ)

≥ ᾱψ(eny) + ¯̄αψ(enȳ)

= ᾱψ(xn) + ¯̄αψ(x̄n)

Next, it is assumed that ψ(xn(ᾱ)) is concave for any n ≥ 1. In order to show concavity also

in the argument ex the following inequality is considered: by fixing ǫ > 0 and setting y, ȳ > 0 to

an arbitrary value, then it holds for sufficiently large n(ǫ, y, ȳ):

(

ᾱeyn−1

+ ¯̄αeȳn−1
)n
≤

(

ᾱ(1 + (1 + ǫ)yn−1) + ¯̄α(1 + (1 + ǫ)ȳn−1)
)n

=
(

1 + ᾱ(1 + ǫ)yn−1 + ¯̄α(1 + ǫ)ȳn−1
)n

≤ eᾱ(1+ǫ)y+ ¯̄α(1+ǫ)ȳ

Hereby, the first inequality is obtained using ex ≤ 1 + (1 + ǫ)x for x→ 0 and the second one by
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(1 + x
n
)n ≤ ex. Hence,

ψ(eᾱ(1+ǫ)y+ ¯̄α(1+ǫ)ȳ) ≥ ψ
((

ᾱeyn−1

+ ¯̄αeȳn−1
)n)

≥ ᾱψ
(

(eyn−1

)n
)

+ ¯̄αψ
(

(eȳn−1

)n
)

= ᾱψ (ey) + ¯̄αψ
(

eȳ
)

follows for any ǫ > 0. In case of negative y, ȳ < 0 a similar argument holds. Since the right

hand side is independent of ǫ one can take the limit ǫ ↓ 0 such that the left hand side converges

uniformly for any 0 ≤ ᾱ ≤ 1 within a closed interval bounded below by the right hand side.

Thus, the inequality is still satisfied in the limit. �

Consequently, the log convex class being a strict subset of the square root class Ψl ⊂ ΨM is

a direct consequence of Lemma 5 and the fact that ψ(x) = x1/2 ∈ ΨM and ψ(x) = x1/2
< Ψl.

3.5 Minimum Sum Power under CMSE Constraints

To minimize the sum power for given CMSE constraints Problem (P3) can be recast in following

form:

min
∑

k∈K
Pk

subj. to
∑

i∈I
γi,k

(

1 +
1

gi,kPk

)

≤ 1 ∀k ∈ K
∑

k∈K
ψ′(γi,k) ≥ ψ̄i ∀i ∈ I

It is obvious that the derivations made for Problem (P2) equivalently hold for the sum power

minimization problem.

Theorem 4. Suppose that the utility ψ(γ) belongs toΨM, then the KKT conditions are necessary

and sufficient for the solution of Problem (P3).

Proof. Similar to the proof of Theorem 3. �

3.6 Algorithms and Simulation Results

Based on the analysis of (P2) and (P3) algorithms for their solutions are presented now, which

converge to the global optima in polynomial time. Hereby, the algorithm for maximizing the

sum utility operates in the non-convex domain of powers.
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Figure 3.4: Function principle of the gradient projection algorithm for K = 1, g1 = 0.5, g2 = 2

and maxp1+p2≤1

√
γ1 +

√
γ2 : starting at p(0) the power is updated in direction of the gradient

(black line) and projected (green line) on the feasible power set (bounded by red line). Conver-

gence at p∗ is achieved as soon as the negative gradient and projection are parallel.

3.6.1 Sum Utility Maximization

For the sum utility maximization (P2) Algorithm 7 which operates directly in the power domain

is presented. Its function principle consists of two major steps: in the first one the power vector

is updated in direction of the gradient ∆∆∆ ∈ RI×K
+ of the objective in (P2) with elements

∆i,k =
∂U(p)

∂pi,k

=
∂
∑

i∈I wi

∑

k∈K ψ(γi,k)

∂pi,k

∀i, k ∈ I,K ,

which may result in a violation of the power constraint. In the second step the power vector is

projected on the feasible power region P = {p � 0| ‖ p ‖1≤ P̄} by operation [·]P. Hereby, the

projection of p = [p̃]P is equivalent to solving the convex optimization problem:

p = arg min
p∈P
‖(p − p̃)‖2 (3.34)

Convergence of the algorithm is achieved as soon as the gradient stands perpendicular to the

boundary of the feasible power set and the power vector update and the projection result in the

point of origin. The operation of the gradient projection algorithm is shown in Figure 3.4.

In Algorithm 7 n denotes the iteration index and s(n) the step size for the power update. The

latter is selected corresponding to the Armijo rule [Ber95a] s(n) = θdn , where di is the smallest
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Algorithm 7 Maximum Utility

(1) set p(0) = P̄/(M + K)1,p(−1) = 0, n = 1

while ‖ p(n−1) − p(n−2) ‖2> ǫ do

(2) γ
(n)

i,k
=

p
(n−1)

i,k
∑

j∈I p
(n−1)

j,k
+ 1/gi,k

∀i, k ∈ I,K

(3) ∆
(n)

i,k
= wi

∂

∂γi,k

ψ(γ
(n)

i,k
)





γ
(n)

i,k

p
(n−1)

i,k



 −
∑

j∈I
w j

∂

∂γ j,k

ψ(γ
(n)

j,k
)





(γ
(n)

j,k
)2

p
(n−1)

j,k




∀i, k ∈ I,K

(4) p(n) = [p(n−1) + s(n)∆∆∆(n)]P

(5) n = n + 1

end while

integer for which

U(p(n)) − U(p(n−1)) ≥ ζ θdi ‖ ∆∆∆(n) ‖22 (3.35)

holds, with constants 0 < θ, ζ < 1. A small constant ǫ serves as stopping criteria. Although

(P2) is not convex in general convergence of Algorithm 7 to the optimum can be proved:

Theorem 5. The gradient projection Algorithm 7 converges to the global optimum of (P2) if

ψ ∈ ΨM and if the step size is selected corresponding to the Armijo rule.

Proof. The convergence of Algorithm 7 to a stationary point p∗ follows directly from Proposi-

tion 2.3.1 in [Ber95a] for s(n) selected by the Armijo or corresponding to step size optimization.

At any stationary point p∗ = [p∗ + s∗∆∆∆∗]P must hold. By formulating the projection [p̃]P as

a convex optimization problem (3.34), the following KKT are necessary and sufficient for any

projected power vector p = [p̃]P:

2(p̃ − p) − µ′1 + σ′ = 0 (3.36)

µ′
(

‖ p ‖1 −P̄
)

= 0 (3.37)

σ′i,k pi,k = 0 ∀i, k ∈ I,K (3.38)

µ′ ≥ 0 , σσσ′ � 0 (3.39)

Substituting the stationarity condition p̃ = p∗ + s∗∆∆∆∗,p = p∗ into (3.36) results in

2s∗∆∆∆∗ − µ′1 +σσσ′ = 0. (3.40)

Equations (3.37)-(3.40), however, are equivalent to the KKT conditions (3.21)-(3.24) of (P2)

when µ′ = 2s∗µ holds, appropriate σσσ′ is selected and s∗ denotes the step size at the fix point.

Therefore, any fixed point of Algorithm 7 is a KKT point of (P2) which, following Theorem 3,

is unique and the global optimum. �
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Algorithm 8 Minimum Sum-Power

(1) set q(0) ∈ Ψ0, q
(−1)

i,k
= 0 ∀i, k ∈ I,K , n = 1

while ‖ q(n−1) − q(n−2) ‖2> ǫ do

(2) ∆
(n)

i,k
=

φ′(qi,k)

1 −∑

i∈I φ(qi,k)

(

1

gi,k

− Pk

)

(3) q
(n)

i
= [q

(n−1)

i
+ s(n)∆∆∆

(n)

i
]Ψ̄i
∀i ∈ I

(4) n = n + 1

end while

3.6.2 Sum Power Minimization

Although a gradient approach could directly be applied to (P3) in the powers, a gradient pro-

jection Algorithm in the domain of the utilities qi,k = ψ(γi,k) is proposed. This allows for a

projection operation as simple as the one used in Section 3.6.1 since the boundary of the fea-

sible utility set forms a hyperplane. With regard to γi,k = φ(qi,k) ∀i, k ∈ I,K problem (P3), by

using (3.31), transforms into

P∗ = min
qi∈Ψ̄i ∀i∈I

∑

k∈K
Pk(q1,k, . . . , qI,k) (3.41)

= min
qi∈Ψ̄i ∀i∈I

∑

k∈K

∑

i∈I φ(qi,k)/gi,k

1 −∑

i∈I φ(qi,k)

with Ψ̄i = {qi : qi � 0,
∑

k∈K qi,k ≥ ψ̄i} ∀i ∈ I and qi ∈ RK
+ . Obviously, (3.41) has the same

solution as (P3) and Algorithm 8 is proposed to solve it. Contrary to the utility maximization in

Section 3.6.1 a solution to (P3) may not exist. Thus, a feasible starting point q(0) ∈ Ψ0 within

the feasible set has to be selected first for the initialization of Algorithm 8 with:

Ψ0 =





q � 0|

∑

k∈K
qi,k ≥ ψ̄i ∀i ∈ I,

∑

i∈I
φ(qi,k) < 1 ∀k ∈ K






In Algorithm 8 the index of the iteration is denoted by n, a constant for the stopping criteria by

ǫ, the components of the gradient by ∆i,k = ∂Pk/∂qi,k ∀i, k ∈ I,K and the step size which is

selected corresponding to the Armijo rule by s(n) in iteration n. In step (3) [·]Ψ̄i
is the projection

to the feasible set Ψ̄i.

Theorem 6. The gradient projection Algorithm 8 converges to the global optimum of (P3) if

ψ ∈ ΨM, if the step size is selected corresponding Armijo rule and if a feasible starting point

exists.

Proof. Similar to Theorem 5 �
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Figure 3.5: Convergence speed of Algorithm 7 for random channels and ψ(γ) = γ1/3.

3.6.3 Simulation Results

In this section simulation results for the utility maximization and sum power minimization

based on Algorithms 7 and 8 are presented. In Figure 3.5 the convergence of Algorithm 7

is shown for different numbers of users, subchannels and random channel gains. The utility

function ψ(γ) = γ1/3 is used as well as parameters θ = 0.5 and P̄ = 10. Convergence is usually

achieved in few iterations. A similar performance can be observed for Algorithm 8 which is

presented in Figure 3.6. Here, the convergence speed for I = 20 users with random minimum

utility requirements with average ψ̄i = 0.45K and the same utility function as for the utility

maximization are shown. Here, convergence is again achieved within few iterations.

3.7 Suboptimum Resource Allocation in PBCs

Maximizing the sum utility or weighted sum rate for PBCs is a non-convex problem for general

utilities ψ < ΨM and therefore difficult to solve. Nevertheless, under the additional constraint

that at most one user can be assigned to each subcarrier, resource allocation schemes exist which

come close to the optimum of maximum weighted sum rate problems as proposed in [SMC06].

Based on the additional constraint the optimization problem decouples into K independent sub-

problems in the dual domain which are still combinatorial, however, simple to solve. Further-

more, it can be easily checked if the solution of the modified problem also represents the global

optimum of the original, non-convex problem. The derivation of these properties is presented

next.

Formally, the maximum weighted sum rate problem in a PBC with the single user per sub-
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Figure 3.6: Convergence speed of Algorithm 8 for I = 20 and ψ̄i = 0.45K.

carrier constraint results in

U∗ = max
p∈CP

∑

i∈I
µiRi(p) (3.42)

with user’s rates calculated by Ri =
∑

k∈K log(1 + gi,k pi,k) without loss of generality and

Cp =





p : p � 0,

∑

i∈I

∑

k∈K
pi,k ≤ P̄, pi,k p j,k = 0 ∀i , j, i, j ∈ I, k ∈ K





. (3.43)

the feasible power region. The last constraint in 3.43 guarantees that at most one user is assigned

to each subcarrier and prevents CP from being a convex set. The dual formulation of (3.42)

results in the following unconstrained min-max problem, which represents an upper bound to

the solution of(3.42) [Ber95a]:

U+d = min
λP≥0

max
pi,k p j,k=0 ∀i, j

∑

i∈I
µi

∑

k∈K
log(1 + gi,k pi,k) − λP(

∑

i∈I

∑

k∈K
pi,k − P̄) (3.44)

= min
λP≥0

∑

k∈K
max

i∈I
max
p�0

{

µi log(1 + gi,k pi,k) − λP pi,k

}

︸                                    ︷︷                                    ︸

max P

+λPP̄

In (3.44) µ ∈ RI
+ and λP ∈ R+ represent non-negative dual parameters. For given µ, λP the

max P problem in the dual formulation is convex and the optimum power allocation can be

calculated by the waterfilling solution pi,k(λP) = [µi − λP

gi,k
]0. Consequently, also the optimum

user assignments which solve the second maximization and thereby comply with the single user
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per subcarrier constraint, ik(µ, λP) = arg maxi∈K µi log(1 + gi,k pi,k(λP)) − λP pi,k can be evaluated

for each subcarrier k ∈ K . To minimize the dual over λP a subgradient approach similar to the

one proposed in Algorithm 5 step (5) can be applied with subgradient −ν = ∑

k∈K pik(µ,λP),k − P̄

obtained by Danskin’s Theorem as in (2.91). This subgradient ν(λ+P), with λ+P the optimum

dual parameter which solves (3.44) reveals also important information on the duality gap, i.e.

the distance between the solution of the dual problem and (3.42): in case ν(λ+P) = 0 then λ+P

represents a geometric multiplier in the sense of [Ber95a] and U∗ = U+
d

holds according to

Proposition 5.1.1 in [Ber95a]. For ν(λ+) , 0 any feasible resource assignment equal or close

to p(λ+P) is usually close to the optimum of (3.42). Its quality can be checked by evaluating the

dual for which U+
d
≥ U∗ always holds.

3.8 PBCs in Heterogeneous Multi-Air Interface Networks

Based on the approximation scheme for the weighted sum rate maximization from Section 3.7

PBC like systems such as OFDM based radio access networks can now be integrated into the

heterogeneous utility maximization framework of Chapter 2. For heterogeneous scenarios con-

sisting of an OFDM based air interface/BS and a setM of interference limited and/or orthogonal

RATs/BSs (in the context of Chapter 2) with at least partly overlapping coverage the following

optimization problem is formulated:

U∗ = max
∑

i∈I
ψi (Ri) (3.45)

subj. to Ri ≤
∑

m∈M
Ri,m +

∑

k∈K
log(1 + gi,k pi,k) ∀i ∈ I

Rm ∈ Cm ∀m ∈ M
p ∈ CP

In (3.45) ψ(·) represents a strictly increasing, concave utility function, Ri the sum rate assigned

to user i and Cm the feasible rate region of BS m in an interference limited or orthogonal RAN

from Section 2.4.3:

Cm =

{

Rm : Rm � 0,
Ri,m

R̄i,m

≤ Γ̄m

}

∀m ∈ M (3.46)

Here again optimizing in the dual domain is advantageous compared to direct optimization of

the non-convex problem (3.45). With µ ∈ RI
+, λ = (λ1, . . . , λM, λP) ∈ RM+1

+ and σσσ ∈ RI×M
+ the

dual parameters, the dual problem results in:

U∗d = min
µ,λ,σσσ�0

g(µ, λ,σσσ) (3.47)
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with the dual function

g(µ, λ,σσσ) = max
Ri≥0

∑

i∈I
ψ(Ri) − µiRi (3.48)

+
∑

m∈M
max

Rm

∑

i∈I

(

µi −
λm

R̄i,m

+ σi,m

)

Ri,m +
∑

m∈M
λmΓ̄m

+
∑

k∈K
max

i∈I
max
p�0

{

µi log(1 + gi,k pi,k) − λP pi,k

}

+ λPP̄.

As can be observed, the dual decouples into independent weighted sum rate maximization prob-

lems for each BS/subcarrier with dual parameters being the weights. For a reasonable minimiza-

tion over µ, λ,σσσ the maximum over the primal variables has to be bounded above. This is only

the case if the following holds:

µi −
λm

R̄i,m

+ σi,m = 0 ∀i,m ∈ I,M (3.49)

By solving (3.49) for λm, substitution into (3.48) one can directly minimize the dual over σσσ,

which results in

σi,m(µ) =






0 if i ∈ Im(µ)

µ jR̄ j,m

R̄i,m

− µi, j ∈ Im(µ) else
∀m ∈ M (3.50)

with

Im(µ) = {i : i = arg max
j∈I

µ jR̄ j,mΓ̄m} ∀m ∈ M (3.51)

and the dual problem:

U∗d = min
µ,λP�0

{

max
Ri≥0

∑

i∈I
(ψ(Ri) − µiRi) (3.52)

+
∑

m∈M
max

i∈I
{µiR̄i,mΓ̄m}

+
∑

k∈K
max

i∈I
max
p�0

{

µi log(1 + gi,k pi,k) − λP pi,k

}

+ λPP̄
}

The minimization of (3.52) over λP is equivalent to that in (3.44) which is covered in Section

3.7. Using this procedure it is assumed that λ+P = λP(µ+) minimizes (3.52) for a given µ+ and

that

p+i,k(µ
+, λP) =






[µ+i −
λ+p

gi,k

]0 if i = ik(µ
+, λ+P)

0 else.

(3.53)
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with ik(µ
+, λ+P) being the user assigned to subcarrier k is the corresponding power allocation.

For the same µ+ the following primal variables maximize (3.52):

R+i (µ+i ) = ψ′−1(µ+i ) ∀i ∈ I (3.54)

with ψ′−1( ∂
∂Ri
ψ(x)) = x being the inverse of the first derivative of the utility function.

Then, based on the Lagrangian function L(·), the following inequality for the dual optimiza-

tion problem can be derived which inherits a subgradient:

g(µ) ≥ L(µ,R+,p+, λ+P) (3.55)

=
∑

i∈I

(

ψ(R+i ) − µiR
+
i

)

+
∑

m∈M
max

i∈I
{µiR̄i,mΓ̄m}

+
∑

k∈K
µik(µ+,λ+

P
) log(1 + gi,k p+i,k(µ

+, λP)) − λ+P p+i,k(µ
+, λP) + λ+PP̄

≥ g(µ+) +
∑

i∈I
(µ+i − µi)R

+
i

+
∑

m∈M
(µim(µ+) − µ+im(µ+))R̄im(µ+),mΓ̄m (3.56)

+
∑

k∈K
(µik(µ+,λ+

P
) − µ+ik(µ+,λ+

P
)) log(1 + gik(µ+,λ+

P
),k p+i,k(µ

+, λ+P)) (3.57)

with im(µ+) ∈ Im(µ+). Therefore, the components of a valid subgradient ν are given by:

νi(µ
+) = Ri −

∑

m∈M
R̄im(µ+),mΓ̄m −

∑

k∈K
log(1 + gik(µ+,λ+) p

+
ik
(µ+, λ+P) ∀i ∈ I (3.58)

Similar to the subgradient procedures presented in Algorithm 5 in Section 2.4.4 the following

update procedure is guaranteed to converge to the solution of (3.52) if the step size s(n) at the nth

iteration is chosen corresponding to the Armijo Rule:

µ(n+1) = µ(n) + s(n)ν(µ(n)) (3.59)

At the optimum weight vector µ∗ the subsets Im(µ∗) ∀m ∈ M are likely to have a cardinality

larger than one. In this case, any rate allocation for which the following holds solves (3.47):

∑

i∈Im(µ∗)

Ri,m

R̄i,m

= Γ̄m ∀m ∈ M (3.60)

The solution is equivalent to the global optimum of (3.45) if a rate allocation is found with sub-

gradient ν(µ∗) = 0. In this case the optimum rate allocation lies on a part of the boundary that

coincides with its convex hull and is achievable by a weighted sum rate maximization. Never-

theless, due to non-convexity not all points on the boundary of the rate region can be reached

by the latter. This property is visualized in Figure 3.7 for an exemplary scenario consisting of
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Figure 3.7: Exemplary rate regions for a heterogeneous scenario with two users and 3

RANs/BSs. Two regions are represented by simplexes (e.g. UMTS, GSM BSs) and one

by a non-convex set (e.g. an OFDM BS). The dashed lines indicate the construction of the

sum region C = C1 + C2 + CP. The red part of the boundary B(C) can be achieved with

maxR∈Cl
µR ∀l ∈ {1, 2, P}. To reach the green part of the boundary different weight vectors

µl for each BS have to be used: maxR∈Cl
µlR ∀l ∈ {1, 2, P}. At the optimum the supporting

hyperplanes of the utility level curves and the rate region coincide.

three RANs.

An important question for sum utility maximization problems in heterogeneous scenarios

including PBCs and user wise utility functions is whether assigning users to a single RAT/BS

is (close to) optimal or under which conditions individual users have to be active in multiple

RANs at the same time in order to maximize the sum utility. Theorem 2 in Section 2.4.4

showed that assigning at most M − 1 users to multiple BSs is required for maximizing the

sum utility in a heterogeneous scenario which consists of interference limited and orthogonal

RANs under the assumption of random afflicted R̄. However, this property does not extend to

heterogeneous scenarios including PBCs in general. Here, one can also find a (sub)optimum

solution by solving a weighted sum rate problem for all BSs/RANs in the dual domain as it

was shown at the beginning of this section. Graphically, the weighted sum rate maximization

is equivalent to maximizing the distance of a supporting hyperplane from the origin over the

rate region of the individual RANs. For simplex like rate regions this results in a corner or
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edge being optimal for most weight vectors and corresponds to having only a subset of users

which does not intersect with subsets of other simplex like RANs active in each RAN. In PBCs,

however, for a wide range of weight vectors optimality of an assignment requires all users to

be active at the same time. Thus, assigning users to multiple RANs is often a prerequisite for

optimum allocations in scenarios including PBCs. This property is analyzed in more detail in

the following.

It is assumed that all users’ channel gains gi,k are IID corresponding to a certain distribution

with expectation E[gi,k] = ḡi. Then, the probability of user i being assigned to subcarrier k is

given by

Pi,k =P
[

µi log(1 − λP + gi,k)µi > µ j log(1 − λP + g j,k)∀ j , i ∈ I
]

(3.61)

=1 − Π j,iP
[

µi log(1 − λP + gi,k)µi < µ j log(1 − λP + g j,k)
]

(3.62)

and the probability of user i being assigned to at least one subcarrier by

Pi = 1 − (1 − Pi,k)
K . (3.63)

Thus, in case Pi,k > 0 for all weight vectors µ ≻ 0 with bounded entries, any user is assigned

to at least one subcarrier of the PBC with probability one if the number of subcarriers tends to

infinity

lim
K→∞

Pi = 1. (3.64)

In addition, user i may be active in one of the interference limited or orthogonal RANs. Graph-

ically, this property corresponds to the fact that the PBC’s rate region cuts all hyperplanes

spanned between the axes of the I-dimensional coordinate system perpendicularly for K → ∞.

Thus, each user’s rate is larger than zero at any maximum weighted sum rate point for weight

vectors non-parallel to the axes. Figure 3.8 shows simulated average rate regions and supporting

hyperplanes at intersections with the axes of an OFDM system for different numbers of subcar-

riers in a two user scenario. The total bandwidth is assumed to be constant and normalized to

one so that the normalized rate of user i on subcarrier k is given by Ri,k =
1
K

log(1 + gi,k pi,k).

The power pi,k is calculated corresponding to (3.53) and sum power constraint P̄ = K. In the

simulations the channel gains gi,k are IID and they are drawn from exponential distributions as

in (2.1) with averages ḡ1 = 1, ḡ2 = 5. The average rate regions are calculated over 1000 random

sets of channel gain realizations. As can be observed in the figure, with increasing number of

subcarriers not only the rate regions grow but also the range of weight vectors which maximizes

the weighted sum rate and results in assignments Ri > 0 ∀i ∈ I increases. This renders the

assignment of users to multiple RANs more likely for allocations that maximize the weighted

sum rate. The performance loss incurred by restricting a user’s assignment to a single BS is

hard to predict and strongly depends on the curvature of the PBC’s rate region.
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Figure 3.8: Average rate regions and supporting hyperplanes with maximum and minimum

slope for an OFDM system with two users and different numbers of subcarriers. With increas-

ing number of subcarriers the set of weight vectors where the maximum weighted sum rate

allocation has inactive users (Ri = 0) decreases.

3.9 Summary

In this section the convexity of the utility maximization problem for parallel broadcast channels

under a sum power constraint and its dual, the sum power minimization under utility constraints

was investigated. By formulating both problems with regard to CMSEs convex representations

for any link wise utility function which complies with the square-root criteria were derived.

Hereby, compliance can be easily checked and it applies to all continuous, strictly increasing

functions where ψ ◦ x2 is concave. The new class of utilities, for which the square-root law

holds, contains the known log-convexity class. It extends the range of utility functions for which

finding a global solution of both problems can be guaranteed in polynomial time. Furthermore,

the KKT conditions of the original problems in the power domain were shown to be necessary

and sufficient for optimality and a globally convergent algorithm in the non-convex domain was

proposed. Simulations of the latter showed that convergence to the global optimum is usually

achieved in few iterations.

To integrate PBCs into the framework of heterogeneous scenarios with user wise utilities

introduced in Chapter 2 a suboptimum duality based power and subcarrier allocation scheme
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under the constraint that at most one user can be assigned to each subcarrier was presented. It

was shown, that the corresponding assignments are globally optimal for the still non-convex

problem, if all constraints are met with equality. Nevertheless, by integrating a PBC like RAN

in a heterogeneous scenario in the context of Chapter 2, having each user active in the PBC

is likely to be required to achieve the maximum sum utility for large numbers of subcarriers.

Thus, the number of users for which an assignment to multiple RANs is required at the same

time cannot be bounded above as in heterogeneous scenarios with simplex like capacity regions.





Chapter 4

Queue Based Utility Maximization in

Heterogeneous Wireless Scenarios

Modern communication systems often incorporate queuing systems in connection with multi-

user scheduling in order to transform the quickly varying nature of the wireless channel into

diversity gains and increase the spectral efficiency. Hereby, scheduling represents a form of

time division multiplex, where the transmission resource is slotted into short intervals in time

and each interval is assigned to a subsets of users. Optimally, the slots are short enough to

follow the variations of the channel thereby enabling a dynamic adaption of the resource alloca-

tion in each slot and optimal exploitation of time diversity. To guarantee a maximum degree of

freedom for the scheduling decisions it is the the buffers’ function to have a sufficient amount

of users’ data packets in stock. In addition to the scheduling itself, flow control, which tunes

restocking of the buffers, represents a crucial factor for BE services with flexible data rates in

these systems. To allow for a reasonable performance evaluation of systems where the dynamic

resource allocation changes at high frequency an adaptation of the performance measures intro-

duced in the previous Chapters 2 and 3, where the channel was assumed to change slowly over

time, is required. The former defined notions of instantaneous or snapshot utilities lose their

relevance. In the context of scheduling the utility should reflect a user’s average performance

over a longer period of time than a single scheduling cycle. Based on this fact also channels’

probabilistic characteristics and the history of resource assignments represent crucial factors

for controlling the scheduling and flow control in each time slot and may have to be taken into

account for driving a wireless system at a desired operation point.

Although dynamic resource allocation in buffered systems in connection with scheduling

seems to be more costly than in the slowly varying RANs investigated in previous chapters,

many important results are available in the literature. Regarding queuing networks it is known

that maximum weighted sum rate scheduling over instantaneous rate regions at each time slot,

where the queue lengths represent the weights, is a throughput optimal strategy [TE92]. A

strategy is called throughput optimal if it keeps all queues stable for any vector of average

arrival rates that lies within the ergodic achievable rate region of the network. One important

99
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message revealed from this result is that throughput optimality can be achieved without knowing

the channel statistics and the achievable ergodic rate region. Relevant information regarding

previous resource assignments and channel realizations seem to be inherent in the buffer states.

A general formulation of throughput optimal scheduling strategies that use functions of the

buffer state as weights for the weighted sum rate maximization is derived in [ZW09].

Regarding BE services soft performance measures such as fairness gain importance. Here,

queue based maximum weighted sum rate scheduling in connection with queue based flow con-

trol is observed to come arbitrarily close to α-proportional fair allocations or maximize general

concave, strictly increasing utilities with regard to users’ average data rates [ES07], [Sto05],

[NML08]. While the former works use Lyapunov drift techniques to show convergence to the

optimum of their policies the framework of stochastic optimization theory is used in [KW04].

There, the authors show that instantaneous weighted sum rate maximization, using each user’s

mean rate, averaged over the previous time slots as inverse weights, as proposed in [Tse], leads

to proportional fair rate assignments without consideration of buffers. Previous work on static

rate regions in [LPW02] reveals that the weighted sum rate maximization employed by the

Transmission Control Protocol (TCP) Vegas in wireline networks with the window size as

weights, solves an equivalent sum utility maximization problem with the window size repre-

senting the dual parameters.

In this chapter, a heterogeneous scenario consisting of several radio access networks which

employ scheduling and which are equipped with buffers for each user are investigated. Contrary

to the slowly varying channels assumed in Chapters 2 and 3, quickly changing environments are

considered and optimum flow control, routing and scheduling policies are derived that maximize

the heterogeneous system’s sum utility for BE users with flexible QoS constraints. User wise

QoS measures with respect to average data rates serve as utility functions. It is assumed that

the instantaneous rate regions and the queue states are known, while no information on the

channel statistics and ergodic achievable rate regions is available, similar to the framework

in [ES07], [NML08]. More precisely, it is shown in Section 4.4 that the queue based algorithms

in [ES07], [NML08] are equivalent to dual stochastic subgradient procedures with constant step

size and that the queues take the role of the dual parameters. Based on this observation, which

allows to apply known results from stochastic optimization theory, a queue based algorithm

is derived which performs similarly to a subgradient algorithm with adaptable step size. The

advantages of the new algorithm in comparison to those proposed in [ES07] and [NML08] are

multifold: the adaptable step size allows to increase the algorithm’s convergence speed, which

is identified as a major drawback of queue based policies in [PEOM08]. There, the authors

suggested to maximize the instantaneous sum utility instead of using queue based approaches

to circumvent slow convergence. In addition, the average buffer lengths have to grow large for

the known queue based algorithms in order to get close to optimum assignments and thus cause

long delays. These drawbacks are overcome by the algorithms presented in this chapter.

Although virtual queue concepts are known [KS04] to reduce the length of the real equilib-
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rium buffer states, these concepts are unable to balance user and air interface wise delays. The

equilibrium queue states are still proportional to the optimum dual parameters which depend on

the utility functions and the ergodic achievable rate regions. Thus, out-of-sequence problems

may occur in case a user’s packets are routed through different RANs. By introducing opti-

mum flow control, routing and scheduling policies that base their decisions upon functions of

the buffer states and the actual rate regions, this problem is also overcome in this chapter. The

functions constitute additional degrees of freedom that allow to control the equilibrium buffer

states individually for each user and air interface and therefore the delay while still maximizing

the system’s sum utility.

4.1 System Model

A time slotted scenario consisting of multiple wireless radio access technologies with M the

set of BSs of all RANs is considered. Hereby, each RAN is assumed to consist of a single BS

without loss of generality. Furthermore, it is assumed that all RANs have overlapping coverage

and that all users i ∈ I are able to cope with all technologies. The air interfaces are assumed

to be orthogonal to each other due to different carrier frequencies. A Heterogeneous Access

Management (HAM) unit, which is responsible for the flow control and routing of users’ pack-

ets, connects the wireline backbone network with the RANs’ BSs. Each BS m possesses one

buffer per user. The fill levels at time slot t are denoted by qm(t) = (q1,m(t), . . . qi,m(t), . . . , qI,m(t))

and storage for a vector wm(t) = (w1,m(t), . . .wi,m(t), . . . ,wI,m(t)) is provided. The vector’s en-

tries individually parameterize a function f (w, q) for each buffer and are used to decide on

resource allocation, flow control and routing decisions in Section 4.5 and 4.6. Depending on

the algorithm the parameters wi,m(t) = wi,m are either fixed or time dependent. An exemplary

heterogeneous system model is depicted in Figure 4.1 for two RATs with one BS each and

three users. Detailed properties of the scenario’s entities as well as on resource allocation, flow

control and routing are specified below:

• Resource allocation, scheduling (inside BSs):

At each time slot t BS m schedules packets with a rate ηm(t) ∈ RI
+ with ηi,m = [ηm]i from

its buffers to users according to a policy φm(·):

ηm(t) = φm[ f (w1,m(t), q1,m(t)), . . . , f (wI,m(t), qI,m(t)),Cm(t)] (4.1)

The policy has access to BSs’ actual (functions of the) buffer states and can assign rates

within the actually feasible rate region Cm(t), which is assumed to be a convex set. For

resource allocation no information on the queues, weights or rate regions of RATs n ,

m ∈ M are known. Thus, each RAT is operated individually and may not be aware of

the heterogeneity of the overall scenario. This makes the scenario scalable and requires

almost no modifications of indivdial RANs if integrated in a heterogeneous system. It
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Figure 4.1: System model of a heterogneous scenario consisting of a HAM unit and two RANs.

The HAM unit controls the users’ packet arrival rates and routes data to the indiviual BSs.

Thereby it bases its decisions on the actual (function of the) queue states and currently scheduled

rates. For scheduling, which is performed inside each BS, only information on the current buffer

states and the currently achievable rate region of the corresponding BS is available.

is also noted that no signaling information from the HAM is required, except in case an

update of the function f (·) occurs. A realization of the rate region Cm(t) depends on the

actual channel state and the RAT characteristics. Each realization is assumed to be IID

over time. The on average achievable ergodic rate regions, defined by

C̄m = lim
T→∞

1

T

T∑

t=0

Cm(t) (4.2)

are assumed to be unknown.

• Flow control (inside the HAM unit):

At each time slot t the HAM unit requests packets with rate Rsum(t) = (R1(t), . . . ,Ri(t), . . . ,RI(t))

from the users’ packet sources through a wired link which does not represent a bottleneck

of the system. To make a flow control decision the HAM has access to f (wi,m(t), qi,m(t))

of all users and BSs and the rates which have been allocated at time slot t:

Rsum(t) = γ[ f (w1,1(t), q1,1(t)), . . . , f (wI,M(t), qI,M(t)), η1(t), . . . , ηM(t)]

Since links between the HAM unit and BSs are assumed to be wireline the amount of

signaling information that has to be reported from the BSs to the HAM unit is not regarded

a critical factor. In the oposing downlink direction where the data traffic is usually higher

because of unsymetric capacities in real world wireless networks, almost no signaling
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information is required.

• Routing (inside the HAM unit):

The flow of packets of user i which enters the HAM unit at a rate Ri determined by the

flow control is split and routed to the queues of the individual BSs with rates Ri,m(t) and
∑

m∈M Ri,m(t) = Ri(t). No extra information except the one available for the flow control

is needed to perform optimal routing decisions and no queuing of the packets inside the

HAM unit is required through instantaneous routing.

Based on the policies defined above the queues of users evolve corresponding to the following

model:

qi,m(t + 1) =
[

qi,m(t) + Ri,m(t) − ηi,m(t)
]

0 ∀i,m ∈ I,M (4.3)

4.2 Problem Formulation

Having introduced the system model the problem formulation is presented next. It is aimed to

find routing and flow control policies for the HAM unit and corresponding resource allocation

policies in the RANs’ BSs that maximize the sum utility of users over the unknown, ergodic

rate regions:

U∗ = max
∑

i

ψ





∑

m

ηi,m





subj. to ηm ∈ C̄m ∀m ∈ M
(P4)

In (P4) ψ(·) is a concave, twice differentiable, strictly increasing utility function and since

C̄m m ∈ M are convex the latter is a convex optimization problem that can be solved by a

multitude of algorithms such as those introduced in Chapter 2 and 3 in polynomial time in case

all C̄m m ∈ M are known. However, due to the assumptions that the on average achievable

ergodic rate regions are unknown these algorithms cannot be applied. Formulating the problem

in terms of the realizations of the achievable rate regions (P4) results in

U∗ = max
∑

i

ψ





∑

m

lim
T→∞

1

T

T∑

t=1

ηi,m(t)





subj. to ηm(t) ∈ Cm(t) ∀m ∈ M, t ≤ T

4.3 Queue Based Flow Control and Scheduling

Next, the queue based Algorithm 9 to solve problem (P4) under the requirements of the system

model is presented. This algorithm does not aim to tune the equilibrium buffer states of the

users and thus f (w, q) is set to f (wi,m(t), qi,m(t)) = qi,m(t) ∀i,m ∈ I,M. The scalar parameter



104 Chapter 4. Queue Based Utility Maximization in Heterogeneous Wireless Scenarios

Algorithm 9 Queue Based Utility Maximization

At each time slot t do

Resource Allocation:

Each BS m ∈ M allocates data rates that maximize the weighted sum rate over the rate

region’s actual realization with the buffer states as weights:

ηm(t) = arg max
ηm∈Cm(t)

∑

i∈I
qi,m(t)ηi,m (4.4)

Flow control and Routing:

For each user i ∈ I packets are routed to BS m ∈ M with rate:

Ri,m(t) =
s(t)

k
ψ′−1

(

1

k
qi,mi(q)(t)

)

1m=mi(q) +

(

1 − s(t)

k

)

ηi,m(t) (4.5)

k ∈ R++ in Algorithm 9 is a positive constant which jointly controls the equilibrium buffer states

of all queues and s(t) a step size parameter. The indicator function is given by 1m=n which is

equal to one for m = n, zero for m , n, and

mi(q) = arg min
m∈M

qi,m(t).

The inverse of the derivative of the utility function is denoted by ψ′−1(·) with ψ′−1
(
∂
∂x
ψ(x)

)

= x.

The following result holds for Algorithm 9:

Lemma 6. Assuming that for the step size

0 ≤ s(t)

k
≤ 1 ∀t ≤ T (4.6)

lim
t→∞

s(t)

k
= 0 (4.7)

lim
T→∞

T∑

t=0

s(t)

k
= ∞ (4.8)

lim
T→∞

T∑

t=0

(

s(t)

k

)2

< ∞ (4.9)

holds, then Algorithm 9 converges to the solution of problem (P4) with probability one.

Proof. The proof is a direct consequence of the derivations in Section 4.4. Equation (4.6) is

needed to guarantee non-negativity of the flow control. �

4.4 Stochastic Subgradient Interpretation

In this section the equivalence of Algorithm 9 and a dual stochastic subgradient procedure is

derived. To gain better intuition first fixed rate regions Cm(t) = C̄m ∀m ∈ M are assumed and it
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is shown that the flow control, routing and scheduling rules in Algorithm 9 maximize the dual

function of an auxiliary problem to (P4) which has the same solution. Furthermore, equivalence

of the buffers and the dual parameters follows and both evolve similarly in the direction of a

subgradient. This interpretation is then extended to time variant rate regions based on stochastic

subgradients.

Constant Rate Regions

The auxiliary problem is defined as:

max
∑

i

ψ





∑

m∈M
Ri,m





subj. to
Ri,m

k
≤ ηi,m

k
∀i,m ∈ I,M

ηm ∈ C̄m ∀m ∈ M
Ri,m ≥ 0 ∀i,m ∈ I,M

(P4’)

which is equivalent to (P4) for constant regions. Its dual function is given by

g(λ,σσσ) =max
R

∑

i




ψ





∑

m∈M
Ri,m




− 1

k

∑

m

λi,mRi,m +
∑

m

σi,mRi,m





︸                                                                ︷︷                                                                ︸

flow control

+
1

k

∑

m

max
ηm∈C̄m

∑

i

λi,mηi,m

︸              ︷︷              ︸

resource allocation

(4.10)

with R ∈ RI×M with [R]i,m = Ri,m and λ, σσσ ∈ RI×M
+ non-negative dual parameters. A direct

consequence of duality theory is that

min
λ,σσσ�0

g(λ,σσσ) (4.11)

and (P4’) have the same solution since Slater’s condition holds [Ber95a]. Furthermore, one

observes that (4.10) decouples into two maximization groups for given λ, flow control and

resource allocation: to maximize the flow control part in (4.10) over the rates the following has

to hold for a given λ+:

∑

m

Ri,m = ψ
′−1

(

1

k
λ+i,m − σi,m

)

∀i,m ∈ I,M. (4.12)
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Substituting (4.12) into the dual formulation allows to directly minimize the dual function over

σσσ, which results in setting:

σi,mi(λ
+) = 0 ∀i ∈ I,mi(λ

+) = arg min
m∈M

λ+i,m (4.13)

Furthermore, in case the BSs mi(λ
+) are unique for all users i ∈ I, (4.12) can be solved for

Ri,m by exploiting the KKT conditions which correspond to the last constraint in (P4’): since

σi,mRi,m = 0 ∀i,m ∈ I,M must hold for any possibly optimum rate assignment and due to

non-negativity of the dual parameters σσσ � 0, λ � 0 only rate assignments

R+i,m(λ+) =






ψ′−1

(

1

k
min
m∈M

λ+i,m

)

if m = mi(λ
+)

0 else

(4.14)

have to be considered. In case a user’s BS mi(λ
+) is not unique and the set

Mi(λ
+) = {m : m ∈ M,m = arg min

m∈M
λ+i,m} (4.15)

has a cardinality larger than one any rate assignment that satisfies

∑

m∈Mi(λ
+)

R+i,m = ψ
′−1(

1

k
min
m∈M

λ+i,m) (4.16)

and R+i,m = 0 ∀i,m ∈ M,I,m <Mi(λ
+) maximizes the flow control part in (4.10) and complies

with the KKT conditions above.

The optimum resource allocation in (4.10) for a given λ+

η̄+i,m(λ+) = arg max
ηm∈C̄m

∑

i∈I
λ+i,mηi,m (4.17)

represents a weighted sum rate maximization which is assumed to be solvable inside the BSs

by an appropriate procedure for fixed capacity regions Cm(t) = C̄m, ∀m ∈ M.

Based on the analysis above λ remains the only unknown in the dual function. To minimize

(4.11) over the latter and thus solve (P4’) an iterative algorithm based on a subgradient can be

used. A subgradient can be derived from the following observation: assuming that R+, η̄+ with

η ∈ RI×M with [η]i,m = ηi,m solve the inner maximization in (4.10) for a given λ+, then

g(λ) ≥ L
(

R+, η̄+, λ
)

(4.18)

= L
(

R+, η̄+, λ+
) − 1

k

∑

i∈I

∑

m∈M

(

λi,m − λ+i,m
) (

R+i,m − η̄+i,m
)
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holds with the Lagrangian function

L(R, η, λ) =
∑

i

ψ(Ri) −
1

k

∑

i∈I

∑

m∈M
λi,m(Ri,m − ηi,m). (4.19)

Consequently, based on the definition in (2.20) in connection with (4.18)

1

k

(

R+ − η̄+) (4.20)

represents a subgradient and gives a descent direction of g(λ). Updating the dual parameters

corresponding to

λ(t + 1) =

[

λ(t) +
s(t)

k

(

R+(λ(t)) − η̄+(λ(t)))
]

0

(4.21)

is known to converge to the minimum of the dual function [Ber95a] and thus to the solution

of (4.11) and (P4’) if (4.7)-(4.9) hold for s(t)/k and if the flow control and scheduled rates are

bounded by some constants.

The update of the dual parameters (4.21) in connection with (4.14) and (4.17) form a dual

subgradient procedure that solves (P4’) for Cm(t) = C̄m, ∀m ∈ M. This procedure, however,

is reproduced by Algorithm 9: by substituting the resource allocation (4.4) and flow control

(4.5) into the queuing equation (4.3) one observes that the buffers qi,m evolve similar to the dual

parameters λi,m in (4.21) and the weighted sum rate maximization in (4.4) is equal to (4.17).

Random Capacity Regions

Under the assumptions of Section 4.1 one can only evaluate η̄+m if the capacity regions are

fixed, and the interpretation of Algorithm 9 as dual subgradient procedure only holds under this

assumption. In case the rate regions’ realizations are random and IID, however, the following

property can be exploited: if for the subgradient at a given λ+

R+(λ+) − η̄+(λ+) = Et

[

R+(λ+) − η+(t, λ+)] (4.22)

holds with

η+m(t, λ+) = arg max
ηm∈Cm(t)

∑

i∈I
λ+i,mηi,m, (4.23)

then one can represent

R+(λ+) − η+m(t, λ+) = R+(λ+) − η̄+m(λ+) + δM(t|λ+) (4.24)

as a noisy estimate of the subgradient with δM(t|λ+) being a random variable with zero mean

which complies with martingale difference noise properties [KY03]. Consequently, it follows
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from Theorem 2.1, Chapter 5 in [KY03] that

R+(λ+) − η+(t, λ+) (4.25)

is a stochastic subgradient of (P4’) for random capacity regions. Furthermore, the update pro-

cedure

λ(t + 1) = λ(t) +
s(t)

k

(

R+(λ(t)) − η+(t, λ(t))) (4.26)

in connection with (4.23) and (4.14) converges to the optimum dual parameters

lim
t→∞
λ(t) = λ∗ (4.27)

with probability one assuming that for the step size s(t)/k (4.7)-(4.9) hold. For the correspond-

ing flow control, routing and resource allocation

Et

[

η+i,m(t, λ∗)
]

= R+i,m
(

λ∗
)

= η∗i,m = R∗i,m ∀i,m ∈ I,M (4.28)

follows, with (·)∗ denoting the optimum variables which also solve (P4):

∑

i

ψ





∑

m

η∗i,m



 = U∗ (4.29)

Substituting the algorithm’s flow control and scheduling into the queuing equation one ob-

serves that Algorithm 9 mimics the stochastic subgradient procedure by replacing λ with q and

the proof of Lemma 6 follows directly. At the optimum the subgradient is zero so that for the

optimum buffer lengths

q∗i,m = k
∂

∂x
ψ(x)|x=∑m∈M η∗

i,m
∀i,m ∈ M (4.30)

holds.

Based on the derivations above one is now able to analyze the algorithms proposed in [ES07]

and [NML08] in the context of stochastic subgradient procedures. There, the authors proposed

algorithms that are equivalent to Algorithm 9 if s(t)/k = 1 is chosen for slightly different system

models. In [ES07] a single cell BC scenario is analyzed while in [NML08] a multihop network

is considered. In both works Lyapunov drift techniques are used to derive upper bounds on the

algorithms’ performance degradation from the global optimum in dependence of the constant

k. The latter directly influences the flow control and therefore also the equilibrium buffer states.

There it is observed that the degradation decreases with increasing k while the equilibrium

buffer lengths increase at the same time. For convergence to the global optimum the average

equilibrium buffer lengths must additionally converge to infinity ∗. The latter requirement is a

consequence of rate regions’ random nature and is explained in the following: for strictly convex

∗By interpreting the algorithms as stochastic subgradient procedures also the results on constant step size from

[KY03], Chapter 11.1.2 can be applied.
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ergodic rate regions global optimality of an assignment can only be achieved if the scheduling

operation is performed with the same, constant weight vector for each realization. If the buffers

represent the weights, thus, either the buffers’ lengths have to be large so that their variations,

caused by the random number of packets which leave the buffers, are small; or the flow control

must be able to instantaneously balance the buffers’ variations which are caused by the random

nature of the rate regions. For constant step sizes s(t)/k = 1 as in [ES07] and [NML08] the

former is the required to guarantee achieving the optimum. Contrary to this, the flow control

(4.5) in Algorithm 9 feeds back the actually scheduled rates for s(t)/k < 1. Thereby it balances

the variations of the buffers and for s(t)/k → 0 they stay constant independently of their lengths

and k. Thus, convergence to the global optimum can be guaranteed for Algorithm 9 also for

finite buffer lengths.

4.5 Tuning of Equilibrium Buffer States

In Section 4.4 it was observed that Algorithm 9 can be interpreted as a stochastic subgradient

algorithm with the queues resembling the dual parameters. This immediately reveals the follow-

ing disadvantages of Algorithm 9: the optimum dual parameters λ∗ and equivalently the queues

q∗ which solve (4.10) are predetermined by the average ergodic rate regions in connection with

the utility function and the scalar parameter k by (4.30). Thus, since a user’s equilibrium queue

lengths are equal in all RANs, q∗i,m = q∗i,n ∀n,m ∈ M, i ∈ I and equality of the scheduled rates

does not hold in general η∗i,m , η∗i,n ∀m , n ∈ M, i ∈ I, also the delays of a user’s packets

which are routed through different BSs may differ severely. The corresponding delays can be

calculated by Little’s Law:

di,m :=
Et[qi,m(t)]

Et[ηi,m(t)]
∀i,m ∈ I,M (4.31)

Different delays may result in out-of-sequence problems of a user’s packet stream. To overcome

these limitations Algorithm 10, which uses functions of the buffer state instead of pure queue

lengths as weights for the scheduling inside BSs, is derived. To guarantee its convergence to

the optimum rate assignments the algorithm is designed so that f (w, q̃i,m(t)) evolves exactly as

the dual parameters λi,m(t) ∀i,m ∈ I,M of the equivalent stochastic subgradient procedure

(or equivalently to qi,m(t) of Algorithm 9). Hereby, q̃(t) ∈ RI×M
+ with [q̃]i,m = q̃i,m denotes the

buffer states obtained if Algorithm 10 (or 11) is applied and q(t) those obtained by Algorithm

9 for better readability. By parameterizing the function f (w, q) through wi,m ∀i,m ∈ I,M
the users’ individual equilibrium buffer lengths and corresponding delays can be influenced

in each BS. No extra signaling is needed to operate Algorithm 10 once the parameters are

known inside BSs and the HAM. To guarantee equivalence of f (w, q̃(t)) = q(t) ∀t ≥ 0 the flow

control has to be adapted in Algorithm 10. There g(w, q) denotes the inverse of f (w, q) and

g (w, f (w, q̃(t))) = q̃(t) holds.
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Algorithm 10 Modified Algorithm

Resource Allocation: Each RAT m allocates data rates so that the weighted sum rate is

maximized

ηm(t) = arg max
r∈Cm(t)

∑

i∈I
f
(

wi,m, q̃i,m(t)
)

ri,m (4.32)

Flow Control and Routing: For each user i

R̃i,m(t) =

[

g

(

wi,m, f
(

wi,m, q̃i,m(t)
)

+
s(t)

k
ψ′−1

(
1

k
min
m∈M

f
(

wi,m, q̃i,m(t)
)
)

− s(t)

k
ηi,m(t)

)

− q̃i,m(t) + ηi,m(t)

]

0

(4.33)

is routed to queue q̃i,m

Lemma 7. Assuming that f (wi,m, q̃i,m(t)) = wi,mq̃i,m(t), wi,m ≥ s(t)

k
∀i,m ∈ I,M, t ≥ 0 and that

(4.7)-(4.9) hold, then Algorithm 10 converges to optimum sum utility U∗ of (P4) with probability

one, similar as Algorithm 1, but, with equilibrium buffer states:

q̃∗i,m =
1

wi,m

q∗i,m ∀i,m ∈ I,M (4.34)

Proof. It is assumed that wi,mq̃i,m(t0) = qi,m(t0)∀i,m ∈ I,M holds. For better readability the

indices i,m are omitted. Then, (4.33) results in

R̃(t) =
s(t)

kw
ψ′−1

(

1

k
min
m∈M

wq̃(t)

)

+

(

1 − s(t)

kw

)

η(t) (4.35)

under consideration that the flow control is non-negative for w ≥ s(t)

k
. Substituting (4.35) into

the queuing equation (4.3) multiplied by w results in

wq̃(t + 1) = w
[

q̃(t) + R̃(t) − η(t)
]

0
(4.36)

=

[

q(t) +
s(t)

k

(

ψ′−1

(

1

k
min
m∈M

q(t)

)

− η(t)

)]

0

= q(t + 1)

Thus, w(q̃(t)) evolves exactly as q(t) for all t ≥ t0. Furthermore, the resource allocation η(t) of

Algorithms 9 and 10 are similar and thus the proof of Lemma 6 can be applied. �

Remark: Lemma 7 holds also for non-linear functions f (w, q) as long as one can guarantee

that the flow control and routing is feasible and λi,m(t) = f (wi,m, q̃i,m(t)) ∀i,m ∈ I,M, t ≥ 0.

For f (w, q) = wq,w <
s(t)

k
(indices omitted) this cannot be guaranteed since negative flow

control may be necessary to guarantee that equality of f (w, q̃(t)) = q(t) holds for all t ≥ 0†.

†It is noted that the conditions on f (w, q) have no connection to those in [ZW09], which guarantee throughput

optimality of scheduling policies like (4.32) in networks without flow control.
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Algorithm 11 Adaptive Algorithm

Resource Allocation: Each BS m allocates data rates so that the weighted sum rate is maxi-

mized

ηm(t) = arg max
r∈Cm(t)

∑

i

wi,m(t)q̃i,m(t)ri,m (4.37)

Flow Control and Routing: For each user i

R̃i,m(t) =

s(t)

k

(

ψ′−1
(1

k
minm∈M wi,m(t)q̃i,m(t)

) − ηi,m(t)
)

− sw(t)(q̃i,m(t) − q̄i,m)q̃i,m(t)

wi,m(t) + sw(t)(q̃i,m(t) − q̄i,m)
+ ηi,m(t)

(4.38)

with sw(t) ≥ 0 chosen so that R̃i,m(t) ≥ 0 and wi,m(t + 1) ≥ 0 ∀i,m ∈ I,M holds

Weight Update:

wi,m(t + 1) = wi,m(t) + sw(t)
(

q̃i,m(t) − q̄i,m

)

(4.39)

One important observation in Lemma 7 is that w is not bounded above. Thus, the average

queue lengths q̃ can be made arbitrarily small.

4.6 Adaptive Tuning of Queues

In the last section Algorithm 10 was presented which enables individual tuning of the users

equilibrium buffer states. Since the optimum q∗, or λ∗, are usually not known at the initia-

tion of an algorithm it is difficult to select wi,m for achieving convergence to a desired equi-

librium buffer length q̄i,m ∀i,m ∈ I,M and corresponding delay. To overcome this limita-

tion and to guarantee limt→∞ q̃i,m = q̄i,m ∀i,m ∈ I,M a second dynamic control mecha-

nism is integrated into Algorithm 10 which adaptively tunes wi,m(t) and results in Algorithm

11. In the modified procedure, sw(t) represents the step size parameter for tuning w(t) and

f (wi,m(t), q̃i,m(t)) = wi,m(t)q̃i,m(t) is chosen. Furthermore, the flow control of Algorithm 11 is

designed in a way that wi,m(t)q̃i,m(t) = λi,m(t) holds and λ(t) given by (4.26).

Lemma 8. Assuming that wi,m(t) ≥ s(t)

k
∀ t ≥ 0 and that (4.7)-(4.9) hold, then Algorithm 11

converges to

lim
t→∞

∑

i

ψ





∑

m

Et[ηi,m(t)]



 = U∗ with probability one. (4.40)

Furthermore, if η∗i,m > 0 ∀i,m ∈ I,M, then there exists a sequence of sw(t) for which

lim
t→∞

q̃i,m(t) = q̄i,m ∀i,m ∈ I,M with probability one. (4.41)

Proof. The first part of Lemma 8 follows by substituting (4.38) and (4.37) into (4.3). Then, one

obtains the update equation for the stochastic subgradient (4.26) by replacing wi,m(t)q̃i,m(t) with

λi,m(t) ∀i,m ∈ I,M. Together with the requirements for the step size s(t) convergence of the
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procedure to the global optimum follows according to Lemma 6 with probability one.

To prove the lemma’s second part the following Lyapunov function is introduced:

L(q̃(t)) =
∑

i∈I

∑

m∈M
(q̃i,m(t) − q̄i,m)2, t ≥ t0 (4.42)

Negativity of its expected drift ∆L(q̃(t)) = E[L(q̃(t + 1)) − L(q̃(t))] for any buffer state q̃(t) , q̄

and equality to zero for q̃∗ is sufficient for limt→∞ q̃(t) = q̄ to hold [KY03]. By substituting

(4.37) and (4.38) into the queuing equation (4.3) and the assumption that η(t) = η∗ for t ≥ t0 the

expected drift results in

∆L(q̃(t)) =
∑

i∈I

∑

m∈M
∆q̃2

i,m(t)





sw(t)2

(

wi,m(t) + sw(t)∆q̃i,m(t)
)2
− 2sw(t)

wi,m(t) + sw(t)∆q̃i,m(t)



 (4.43)

with ∆q̃i,m(t) = q̃i,m(t + 1) − q̃i,m(t) ∀i,m ∈ I,M for t ≥ t0. It is strictly negative under the

assumption that wi,m(t) ≥ s(t)/k ∀t ≤ T and

0 ≤ sw(t) ≤ min
i∈I

min
m∈M

2wi,m(t). (4.44)

The requirement η∗
i,m > 0 ∀i,m ∈ M ensures that any queue length can be reduced by switch-

ing off the flow control and that there always exists a feasible step size sw(t) > 0 ∀t ≥ t0

with probability one. Thus, a sequence of sw(t) which complies which limt→∞ sw(t) = 0,

limT→∞
∑T

t=0 s2
w(t) < ∞ and limT→∞

∑T
t=0 sw(t) = ∞ can be always found. The latter conditions

are equivalent to fulfilling the step size requirements of Theorem 2.1, Chapter 5 in [KY03],

and in connection with the negative drift guarantee convergence of limt→∞ q̃i,m(t) = q̄i,m for all

i,m ∈ I,M. This concludes the proof. �

4.7 Simulation Results

In this section the performance of Algorithms 9-11 is evaluated for a heterogeneous scenario

consisting of two colocated BSs employing different radio access technologies. Within a dis-

tance of 300-1800 meters to the BSs there are 6 users requesting packet based services with

flexible data rates. In both BSs it is assumed that only one user is scheduled per time slot. The

data rate which user i ∈ I would be assigned in BS m ∈ M on average if scheduled in each

time slot is denoted by R̄i,m and depends on the RAT and the user’s distance to the BSs. They

are listed in Table 4.1. The rates correspond to those achievable in a WiMAX and HSDPA BS,

respectively and originate from [KSB+08] with units optionally in Mbit/s or in number of queue

slots emptied per time slot. For the latter to hold, it is assumed that packets with a size of 2 kbit

in sum fit into one queue slot and that scheduling intervals are 2 ms.

The data rate between the HAM unit and buffers inside BSs is limited by 100Mbit/s per link.

One major reason for the high spectral efficiency of HSDPA and WiMAX are the RANs’ pos-
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Table 4.1: Average data rates in dependence of distance for WiMAX and HSDPA

Index i=1 i=2 i=3 i=4 i=5 i=6

Distance [m] 300 600 900 1200 1500 1800

RAT 1: R̄i,1 [Mbit/s] 5.70 4.80 3.00 2.22 1.32 0.72

RAT 2: R̄i,2 [Mbit/s] 4.00 3.60 2.40 1.10 0.50 0.10

sibilities to exploit diversity gains originating from fast fading. In the simulations this effect is

modeled by assuming a linear relation between users’ data rates and the fast fading realizations

of the channels with respect to their average values. A realization of the rate region is given by

Cm(t) =





ηm :

∑

i∈I

ηi,m

Rfad,i,m(t)
≤ 1, ηi,m ≥ 0





∀m ∈ {1, 2} (4.45)

where Rfad,i,m(t) is a random realization of an exponentially distributed variable with average R̄i,m

according to (2.1). No closed form expression for C̄m can be given since the regions strongly

depend on the distribution of R̄m and on the number of users.

In all simulations long term proportional fair rate assignments are desired which correspond

to maximizing the following utility at time t:

U(t) =
∑

i∈I
log





1

t

t∑

τ=1

ηi,1(τ)

Mbit/s
+
ηi,2(τ)

Mbit/s



 (4.46)

In Figure 4.2 the influences of the parameter k and the step size on the performance of Al-

gorithm 9 is evaluated. For fixed step size s(t)/k = 1, which corresponds to the algorithms

presented in [ES07] and [NML08], the tradeoff between convergence speed and close to opti-

mum operation becomes visible in the blue and red curves which represent the sum utility for

k = 1400 and k = 70 over time, respectively. While a faster increase of U(t) at low t and quick

convergence is obtained for k = 70 it comes at the cost of a severe degradation of the sum utility

compared to the one achieved for k = 1400 and constant step size. Algorithm 9 in connection

with flexible step size selection s(t) = k/t0.3 and k = 70 combines achieving the maximum sum

utility and fast convergence. This is reflected by the green curve in the figure. The influence of

k and s(t) on the evolution of the queues and delays is shown in Figure 4.3 and 4.4. The delay

is defined in dependence of the scheduled rates’ moving average:

di,m(t) =
qi,m(t)

1
T

∑τ=T−1
τ=0 ηi,m(T − τ)

∀i,m ∈ I,M, t ≥ T, T = 100.

As one could expect, the simulation with k = 1400 results in 20 times higher equilibrium queue

lengths and also delays compared to the simulations with k = 70. The large variations of the

queue lengths compared to their average values are responsible for the performance degradation

of the constant step size simulation with k = 70 . These directly influence the scheduling
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Figure 4.2: Influence of step size, k, delay in the flow control and separated user assignments

on the evolution of the sum utility for Algorithm 9, 10 and 11. Utilizing a decreasing step size

s(t)/k = t−0.3 in Algorithms 9, 10 and 11 outperform the fixed step size s(t)/k = 1 operation

of Algorithm 9 in terms of sum utility and convergence speed. In case the information for

calculating the flow control is outdated or under the constraint that users can be assigned to at

most one air interface the performance degrades.

process and prevent the queues from converging to the optimum weights even on average. In

the simulation with decreasing step size the variations are strongly damped and convergence to

the optimum weights is achieved. Here, the variations of the queue which are caused by the

scheduling are compensated through the flow control.

Figure 4.2 shows the evolution of the sum utility for two additional simulations. The green

curve corresponds to Algorithm 9 with k = 70, s(t)/k = t−0.3 and the assumption that only

outdated information on the scheduled data rates is available for the flow control. For this

simulation the flow control is calculated by

Ri,m(t) =
s(t)

k
ψ′−1

(

1

k
qi,m∗

i
(t)(t)

)

1m=m∗
i
(t) +

(

1 − s(t)

k

)

ηi,m(t − 1)

instead of using (4.5) in Algorithm 9. The delay leads to a performance degradation, which is

smaller than the loss at fixed step size operation and k = 70, however‡.

‡Analyzing the influence of the delay on the algorithm’s performance and on global stability analytically is

difficult [LS04], specifically for random rate regions. It requires solving a set of delay differential equations. Thus,

often linearization of the equations is used in the literature, which, however, guarantees only local stability in the
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Figure 4.3: Influence of step size s(t) and k on the evolution of queues of RAT 2 of Algorithm

9. Small step sizes reduce the ratio of queues’ variance and equilibrium length.
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Figure 4.4: Influence of step size s(t) and k on users’ delays in RAT 2 for Algorithm 9 (legend

as in Figure 4.3).

The magenta curve corresponds to the performance of Algorithm 9 with k = 70, s(t)/k =

t−0.3 and the additional constraint that each user is assigned to at most one air-interface. Assign-

ing the nearest 4 users to RAT 1 and the remaining 2 to RAT 2 maximizes the sum utility in the

investigated scenario in this case, but at large performance losses compared to having all users

active in both RATs and therefore full diversity. An analytical analysis of the performance gain

of possibly having all users active in all RATs compared to restricting each user to one tech-

nology requires knowledge about the underlying rate regions. Since the latter strongly depend

on the number of users, the RAN characteristics and fading distributions no general results are

presented here.

The performance of Algorithm 10 with k = 70 and s(t)/k = t−0.3 for the same scenario

vicinity of the optimum solution [ZWL07].
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Figure 4.5: Influence of f (w, q̃(t)) = wq̃(t) on the evolution of queues, weighted queues and

delays of RAT 1 and 2 for Algorithm 10 with s(t)/k = t−0.3, k = 70. While the weighted queues

evolve similarly to the ones if Algorithm 9 is applied the real buffers and delays scale with the

inverse of the weights w1 = (1.00, 1.19, 1.90, 2.57, 4.32, 7.92), w2 = (1, 1, 1, 100, 100, 100).

(legend as in Figure 4.3)

and f (wi,m, qi,m(t)) = wi,mqi,m(t) ∀i,m ∈ I,M is shown in Figure 4.5 for the first and second

air interface, respectively. Here, the inverse of each user’s averaged sum rate 1/(R̄i,1 + R̄i,2)

normalized so that the smallest entry is equal to one serve as weight vector for the first BS in

the simulations w1 = (1.00, 1.19, 1.90, 2.57, 4.32, 7.92). The latter are expected to balance the

users equilibrium queue lengths in this BS since proportional fair assignments result in optimum

dual parameters which are proportional to the inverse of the average rate. For the second BS

w2 = (1, 1, 1, 100, 100, 100) is used which reduces the equilibrium buffer states of users 4-6

to one percent of the values obtained in Figure 4.3 with Algorithm 9. As can be observed in

Figure 4.5 the weighted queue lengths f (wi,2, q̃i,2(t)) = wq̃i,2(t) of BS 2 evolve similarly to the

queues in Figure 4.3, the real buffers and the delays are reduced by a factor w, however.

Figure 4.6 shows the evolution of the real and weighted queues as well as the delays if

Algorithm 11 is applied. Again k = 70, s(t)/k = t−0.3 is used and delays of d̄i,m = 5 schedul-



4.8. Summary 117

1 2 3 4 5

x 10
4

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5

x 10
4

0

20

40

60

80

100

120

1 2 3 4 5

x 10
4

0

2

4

6

8

10

12

14

16

18

20

t [scheduling slots]t [scheduling slots]t [scheduling slots]

q
1

w
q̃

1

d
1

[s
ch

ed
u

li
n

g
sl

o
ts

]

1 2 3 4 5

x 10
4

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5

x 10
4

0

20

40

60

80

100

120

1 2 3 4 5

x 10
4

0

2

4

6

8

10

12

14

16

18

20

t [scheduling slots]t [scheduling slots]t [scheduling slots]

q
2

w
q̃

2

d
2

[s
ch

ed
u

li
n

g
sl

o
ts

]

Figure 4.6: Influence of adaptive weight control in Algorithm 11 with f (w(t), q̃(t)) = w(t)q̃(t),

s(t)/k = t−0.3, sw(t) = 0.03t−0.1, k = 70 and desired delays di,m(t) = 5 time slots ∀i,m ∈ I,M.

(legend as in Figure 4.3)

ing slots equivalent to 10ms are desired for all users in both BSs. To integrate the required

delays in Algorithm 11 desired equilibrium buffers q̄ corresponding to sliding averages with

q̄i,m(t) = d̄i,m
1
T

∑T−1
τ=0 ηi,m(t − τ), T = 100,∀i,m ∈ I,M are used. The step size sw(t) is cho-

sen corresponding to sw(t) = 0.03t−0.1. As can be observed in the figure, the weighted queues

evolve similarly to the real and weighted ones obtained by Algorithm 9 and 10 in Figures 4.3

and 4.5, respectively. The delays, however, converge to the desired values d̄i,m = 5∀i,m ∈ I,M
although this corresponds to different equilibrium buffer states in the BSs.

4.8 Summary

In this chapter decentralized algorithms for the utility maximization in heterogeneous queuing

scenarios in quickly changing environments were proposed. These algorithms, consisting of

flow control, routing and resource allocation thereby base their decisions upon functions of the
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buffer states and instantaneous rate regions and converge to rate assignments that correspond to

the optimum sum utilities over the unknown, ergodic rate regions.

Contrary to known algorithms, which are identified as stochastic subgradient procedures

with constant step size in Section 4.4, the proposed Algorithms 9, 10 and 11 are similar to

stochastic subgradient procedures with tunable step size. This proves advantageous with regard

to the convergence speed and the delay in the simulations: by choosing small step sizes the

equilibrium buffer lengths and thus the delays can be jointly reduced almost arbitrarily without

any performance loss.

By using functions of the buffer states for flow control, routing and resource allocation,

Algorithms 10 and 11 are able to tune users’ individual delays in all BSs. Thereby they prevent

out-of-sequence problems of users’ packet flows.



Chapter 5

Conclusions and Outlook

5.1 Conclusions

In this thesis the resource allocation in wireless scenarios which consisted of several radio ac-

cess networks with overlapping coverage and where operators have the freedom to assign users

to a technology of their choice was analyzed. Emphasis was put on the design of algorithmic

solutions that consider practical limitations of real world scenarios. Where global optimality of

the procedures could not be proved, bounds on the optimum solution were provided to allow

for expedient performance evaluations and comparisons.

The first part of the thesis was dedicated to multi-system scenarios in slowly changing en-

vironments. By exploiting the fact that some air interfaces support certain service classes more

efficiently than others - a characteristic resulting e.g. from technology dependent coding and

modulation schemes - an algorithmic concept which maximizes the total number of assignable

users was proposed. Rewriting the underlying optimization problem as a max-min formulation

constituted the key property for the derivation of an intuitive and quickly converging algorithm.

In the analyzed model users had fixed QoS requirements and the feasible rate regions of individ-

ual BS were assumed to be known. Gains of approximately 15% could be obtained compared

to a simple load balancing strategy.

Having used the air interfaces’ service dependent suitability in the previous analysis, users’

individual channel gains were then also considered. The latter provided an additional source of

diversity since air interfaces are subject to e.g. different propagation losses based on different

carrier frequencies and diverse sensitivity to interference. A cost model was introduced which

comprisesd all relevant air interface and service specific characteristics in one scalar parame-

ter per user and BS. Then, an algorithm was derived for maximizing the weighted number of

assignable users in a heterogeneous multi-cell UMTS GSM/EDGE scenario. Due to the practi-

cally motivated constraint that users cannot be assigned to multiple radio access networks at the

same time an approximate algorithm was derived using continuous relaxation. This provably

resulted in an assignment with at most M users less than at the global optimum. The algorithm

119
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was then adapted to the probabilistic nature of service requests, channels and users’ mobility

by a more robust design. The latter approached the vicinity of the optimum by a subgradient

directed vertex search and increased the number of supportable users by approximately 20%

even in single service setups.

While the former analysis was restricted to services with fixed QoS constraints BE users

were integrated by introducing a utility concept. It represents a framework to flexibly measure

the quality of an assignment with regard to fairness, system throughput, user priorities or com-

binations thereof. Extending the ideas of the cost based concept, an optimum cell selection and

resource allocation rule which maximized the BE users’ sum utility and guaranteed service to

the users with fixed QoS constraints at the same time was derived. Although the corresponding

algorithm operated in a completely distributed way it still required a non negligible amount

of signaling between users and BSs. Thus, an adaptation of the procedure which reduced the

required signaling to a single reciprocal information exchange between the BSs and a new user

at its service setup request was proposed. The reduction of the signaling effort came at the cost

of the algorithms’ optimality which could not be guaranteed anymore. However, close to the

optimum operation was observed in simulations by comparing it to an upper bound in a hetero-

geneous UMTS GSM/EDGE system. The scenario’s utility and throughput increased by up to

30% compared to a load balancing strategy.

To further extend the previously introduced air interface models where either the bandwidth

or the power represented the assignable resource, parallel broadcast channels were investigated.

They allow for both, power allocation and subcarrier selection and serve as general model

for wireless systems like OFDM. Using a complementary mean square error representation

the square root law was derived. It holds for all utility functions whose concatenations with

f (x) = x2 are concave and guarantees the existence of a convex representation of the utility

maximization problem and the sum power minimization with regard to CMSEs. The new class

thereby represents an extension of the log-convex utility class. Furthermore, an algorithm in the

non-convex domain of powers was proposed and its convergence to the global optimum proven.

OFDM like systems were then integrated into the previously analyzed heterogeneous scenar-

ios and a suboptimum assignment strategy proposed which restricted the number of assignable

users to one on each subcarrier. Contrary to pure UMTS GSM/EDGE scenarios, close to opti-

mality of assigning each user to a single cell was lost in setups comprising all three radio access

technologies. More precisely, the property that for optimum assignments all users are likely to

be active in the OFDM system was shown.

The last part of the thesis covered the utility maximization in heterogeneous scenarios in

quickly changing environments where BSs were equipped with queues. There, it was assumed

that the achievable rate regions represented random realizations of an underlying probabilistic

channel model and it was aimed to maximize an average utility metric over time. An algo-

rithmic framework whose information was limited to queue states and the actual realization of

the rate regions was derived. The latter was shown to be equivalent to a stochastic subgradient
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procedure with flexible step size and with buffers representing the dual parameters of the under-

lying optimization problem. The ability to adapt the step size proved advantageous with regard

to known buffer based concepts from the literature: it resulted in faster convergence speed,

lower delays and the fact that the global optimum could be attained for finite equilibrium buffer

lengths. The concept was then extended to allow for individual tuning of user’s delays and thus

circumventing out-of-sequence problems, which may occur in case a user’s packets are routed

to different BSs and subject to different delays.

Summarizing the results three main questions were answered in this thesis:

Why ... should air interface selection improve a heterogeneous system’s performance?

• It allows to balance air interface loads in case of asymmetric request situations or network

capacities.

• Intelligent air interface selection is able to exploit the fact that the efficiency to support

users strongly depends on the service class as well as channel characteristics and differs

between technologies. Thus, the heterogeneous system’s spectral can be increased.

• In quickly changing environments, where a user’s performance depends on random chan-

nel realizations, having the choice between multiple sources increases diversity, even if

the average efficiencies are equal for users.

How... can air interface diversity be exploited and what do optimum assignments look like?

• To maximize the supportable number of users or a parameterizable system utility (approx-

imately) convex problem reparameterizations can often be found. They allow to design

decentralized algorithms adapted to the architecture of the underlying radio networks and

the over time varying request situations.

• In air interfaces such as GSM/EDGE and UMTS simplex like rate regions result in opti-

mal allocations where almost all users are assigned to at most one air interface. In these

scenarios, the air interface selection reduces to service and air interface specific SINR

thresholds, which depend on the system configuration and the desired optimization met-

ric.

• In heterogeneous systems, where the underlying technologies employ scheduling, buffer

based flow control and scheduling policies can be designed which learn unknown ergodic

rate regions and perform similar to stochastic subgradient procedures with adaptable step

size.

Which... gains can be expected?

• All proposed algorithms increased the heterogeneous systems’ performances by up to

30% compared to simple load balancing strategies. For most assignments either optimal-

ity could be proven or bounds to the optimum solution were provided.
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5.2 Outlook

Although this thesis provided insights into the structure and algorithms for the optimum air

interface selection and resource allocation the following research topics are of interest:

• Which impact does the requirement of assigning each user to at most one technology

at a time have on the system performance? This question was answered for simplex

like rate regions in the thesis. Analyzing this for general convex regions will require to

investigate the regions’ shapes and curvatures which depend on the channel distributions

and numbers of users.

• In queuing systems zero variance of the buffers is required to maximize the sum utility by

buffer based scheduling policies if the rate regions are strictly convex. It was shown that

the variance of the buffers’ fluctuation can be reduced by considering actually scheduled

rates in the flow control. In the proposed algorithms the influence of the scheduled rates

on the flow control was tuned by the step size. In real world scenarios only delayed

information on the scheduled rates may be available for flow control thereby prohibiting

elimination of the variance. Although simulations with delayed information still showed

considerable utility gains compared to known queue based strategies, the optimum step

size which minimizes the buffers’ variance is still unknown. Its calculation will require

solving non-linear delay differential equations.



Acronyms

3GPP Third Generation Partnership Project

APX Approximable

BC Broadcast

BE Best Effort

BS Base Station

CDF Cumulative Density Function

CDMA Code Division Multiple Access

CMSE Complementary Mean Square Error

DFT Discrete Fourier Transform

EDGE Enhanced Data Rates for GSM Evolution

ETSI European Telecommunications Standards Institute

FDMA Frequency Division Multiple Access

GAP General Assignment Problem

GSM Global System for Mobile Communications

HAM Heterogeneous Access Management

HIA Heuristically Improved Algorithm

HSDPA High Speed Downlink Packet Access

IID Independent and Identically Distributed

ISHO Inter-system Hand-over

KKT Karush-Kuhn-Tucker
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LTE Long Term Evolution

MAC Multiple Access Channel

MIMO Multiple Input Multiple Output

MKP Multiple Knapsack Problem

MMSE Minimum Mean Square Error

MRM Multiple Radio Management

MRRM Multiple Radio Resource Management

MSE Mean Square Error

NP Non Polynomial

OFDM Orthogonal Frequency Division Multiplex

PBC Parallel Broadcast Channel

PDF Probability Density Function

QoS Quality of Service

RAN Radio Access Network

RAT Radio Access Technology

SINR Signal to Interference and Noise Ratio

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TIA Telecommunication Industry Association

UMTS Universal Mobile Telecommunications System

VoIP Voice over Internet Protocol

WLAN Wireless Local Area Network

WiMAX Worldwide Interoperability for Microwave Access
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