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1. ABSTRACT 

 

(German) Anthrax, von Bacillus anthracis verursacht, stellt eine große 

bioterroristische Bedrohung dar. Letaltoxin (LeTx), die Kombination des Letalfaktors 

(LF) und des protektiven Antigens (PA), ist für die besondere Pathogenese und hohe 

Letalität des Anthrax entscheidend. Ich konnte zeigen, daß die humanen α-Defensine 

starke Inhibitoren des LF sind. Humanes Neutrophilen Protein-1 (HNP-1) schützte 

Maus-Makrophagen vor der durch B. anthracis-Sporen induzierten Zytotoxizität. HNP-

1 vermittelte Schutz durch Hemmung der Anthrax LeTx-Aktivität, indem es die LeTx 

verursachte Spaltung einer Mitogen aktivierten Proteinkinase (MAPK) Kinase (MKK) 

blockiert. Dies stellte den unterbrochenen MAPK Kinase Signaltransduktionsweg in 

LeTx behandelten Makrophagen wieder her. Kinetische Analysen zeigten, daß HNP-1 in 

Form eines nicht-kompetitiven Inhibitors die Aktivität des Anthrax LF verhindert.  

HNP-1 und -2 schützten Maus-Makrophagen vor der durch LeTx verursachten Zell-

Lyse. Darüberhinaus zeigten In-vivo-Versuche mit Mäusen, daß die Behandlung mit 

HNP-1-3 vor den tödlichen Folgen des Anthrax LeTx schützt. 
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(English) Anthrax caused by Bacillus anthracis represents a major bioterroristic 

threat. Lethal toxin (LeTx), the combination of lethal factor (LF) and protective antigen 

(PA), plays a central role in anthrax pathogenesis and is critical for its high mortality. I 

demonstrate that human neutrophil α-defensins are potent inhibitors of LF. Human 

neutrophil protein (HNP)-1 protected murine macrophages from B. anthracis spore 

induced cytotoxicity. HNP-1 achieved protection by inhibiting anthrax LeTx activity. 

HNP-1 inhibited LeTx induced cleavage of a mitogen activated protein kinase (MAPK) 

kinase (MKK) and restored impaired MAPK signaling in LeTx treated macrophages. 

Kinetic analysis revealed that HNP-1 is a noncompetitive inhibitor preventing anthrax 

LF activity. HNP-1 and -2 protected murine macrophages from LeTx induced cytolysis 

and in vivo treatment with HNP-1-3 protected mice against fatal consequences of 

anthrax LeTx. 
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2. INTRODUCTION 

The recent dissemination of anthrax through the U.S. mail, has drawn considerable 

attention in both the medical and lay communities to the risks of bioterrorism. Robert 

Koch (1843-1910)1, German scientist and Nobel laureate, who founded modern medical 

bacteriology, discovered several disease-causing bacteria, including the etiologic agent 

of anthrax, and discovered the animal vectors of a number of major diseases. Koch's 

first major breakthrough in bacteriology occurred in the 1876, when he demonstrated 

that the infectious disease anthrax developed in mice only when the disease-bearing 

material injected into the bloodstream of mice contained viable rods or spores of 

Bacillus anthracis. Koch's isolation of the anthrax bacillus was of momentous 

importance, because this was the first time that the causative agent of an infectious 

disease had been demonstrated beyond reasonable doubt. 

  Louis Pasteur (1822-1895)2, French chemist and biologist, who founded the science 

of microbiology, proved the germ theory of disease, invented the process of 

pasteurization, and developed vaccines for several diseases. He also determined the 

natural history of anthrax. He proved that anthrax is caused by a particular bacillus and 

suggested that animals could be protected against anthrax by pretreating them with 

attenuated bacilli, thus providing immunity against potentially fatal attacks. In order to 
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test his theory, Pasteur inoculated 25 sheep; a few days later he inoculated these and 25 

naive sheep with an especially strong inoculum, and he left 10 sheep untreated. He 

predicted that the second 25 sheep would all perish and concluded the experiment 

dramatically by showing protected 25 sheep by pretreatment and the carcasses of the 25 

sheep.  

 

2.1 B. anthracis and anthrax toxin 

B. anthracis, the etiological agent of anthrax, is a Gram-positive, non-motile, aerobic, 

facultative anaerobic, spore-forming rod-shaped bacterium3. Anthrax is primarily a 

disease of herbivores, but all mammals including humans are susceptible. The disease is 

initiated by the entry of spores into the host body. This can occur via a minor abrasion, 

an insect bite, or by eating contaminated meat or inhaling airborne spores. There are 

three types of human infection: cutaneous, gastrointestinal and inhalational. Each form 

can progress to fatal systemic anthrax. Indeed, despite appropriate therapy, the disease 

may be rapidly fatal as a result of shock-like symptoms, sepsis, and respiratory failure4.  

Dormant spores are highly resistant to adverse environmental conditions and they 

are able to survive for long periods in contaminated soils. In a suitable environment, 

spores re-establish vegetative growth5. Spores are taken up by macrophages and 
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transported to the regional lymph nodes draining the inoculation site6. As the phagocytic 

capacity of the lymph node is overwhelmed, the infection extends to successive nodes 

and the bacilli will then enter the blood stream. Although B. anthracis is an extracellular 

pathogen, it nevertheless appears to require an intracellular step to initiate infection. It is 

possible that spore germination is triggered within the macrophage by host-specific 

signals3. 

Fully virulent strains of B. anthracis carry two large plasmids, pXO1 and pXO2, 

that encode the primary virulence factors: toxin production and capsule formation, 

respectively5. The capsule, a polymer of gamma-d-glutamic acid7, contributes to 

pathogenicity by enabling the bacteria to evade the host immune defenses and provoke 

septicemia. The toxin consists of three proteins: lethal factor (LF), edema factor (EF) 

and protective antigen (PA). Individually none of these three proteins is toxic, but the 

combination of LF and PA (called lethal toxin; LeTx) can cause lethal shock and the 

combination of EF and PA (called edema toxin; ET) induces edema at the site of 

injection in experimental animals8. LF is a Zn2+-protease that cleaves certain mitogen-

activated protein (MAP) kinase kinases (MKK)9, leading to death of the host via a 

poorly defined sequence of events. EF, a calmodulin- and Ca2+-dependent adenylate 

cyclase, is responsible for the edema seen in the disease10.  
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2.1.1 Overview of toxin action 

LF, EF, and PA can form toxic complexes either on the surface of receptor-bearing cells 

or in solution. The toxin probably plays an important role early in infection. Assembly 

of the three toxin proteins is initiated when PA binds to a cellular receptor and is 

activated by a member of the furin family of cellular proteases11. This cleaves the 

molecule into two fragments: PA20 (20 kDa), corresponding to the N terminus of the 

protein, and PA63 (63 kDa), corresponding to the C terminus. PA20 slowly dissociates 

from PA63 and diffuses into the surrounding medium, leaving PA63 bound to the 

receptor. Receptor-bound PA63 then spontaneously self-associates to form ring-shaped, 

heptameric oligomers12. LF and EF bind competitively to high-affinity sites spanning 

the interface of the PA63 subunits, leading to formation of a series of toxic complexes 

containing 1 to 3 bound molecules of EF and/or LF per PA63 heptamer13 

Oligomerization of PA63 induces endocytosis and trafficking of the complexes to 

an acidic compartment. There, the heptamer undergoes a conformational transition from 

a pore precursor (prepore) to an integral-membrane, ion-conductive pore14. 

Translocation of EF and LF across the membrane to the cytosol is linked to this 

transition, but the mechanistic relationship between pore formation and translocation is 

not well understood. Once within the cytosol, EF catalyzes the conversion of ATP to 
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cAMP, and LF acts proteolytically to cleave certain MKKs. EF and LF enter essentially 

all types of cultured cells (Fig.1). 

 

 

Fig. 1. Anthrax toxin action in

cells 

Protective antigen (PA) binds

anthrax toxin receptors TEM8 or

CMG2 and is cleaved by furin.

Cleaved PA oligomerizes and

provides binding sites for EF or

LF. The complex is endocytosed

and LF and EF are translocated

to the cytosol after acidification

of an intra cellular compartment.

EF catalyzes the conversion of

ATP to cAMP. LF cleaves

members of MKK family. 

 

 

2.1.2 Lethal factor 

LF is a Zn2+ dependent metalloprotease. The only known substrates are MKK isotypes 

1-4 and 6-715. LF cleaves within the N-terminal proline-rich region that precedes the 

kinase domain of these proteins, disrupting a protein-protein interaction site involved in 

assembling signaling complexes, thus preventing MKK activation.  

Another recent discovery is the inhibition of glucocorticoid receptor (GR) function 

by very low doses of LF16. The GR response is primarily associated with anti-

inflammatory functions. GR inhibition may play a role in multiple stages of anthrax 
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infection: from promoting establishment of bacteremia to exacerbating subsequent 

molecular events induced by LF in various tissues. GR response differences between rat 

strains and among various species may define their relative abilities to resist the initial 

establishment of a B. anthracis infection or may alter their susceptibility to the effects 

of LF. The Fischer rat, for example, is known to be a hypersecretor of glucocorticoids in 

response to infection. At a later stage of infection, the control by glucocorticoids of the 

host response to hypoxia could be critical, because hypoxia was prominent in LeTx-

treated mice17. 

How LeTx leads to death of the host is not clear. It has been reported that it 

suppresses proinflammatory cytokine production in mouse macrophages and that 

cleavage of MKKs reduces production of nitric oxide (NO) and TNF-α induced by 

bacterial lipopolysaccharaide (LPS) and IFN-γ18. These results suggest ways by which 

LeTx may impair the host innate immune system. They also cast doubt on earlier 

indications that lethality of the host is mediated by hyperproduction of cytokines by 

macrophages. LeTx has been reported to cause an increase in permeability to ions and 

rapid depletion of ATP in J774 macrophage-like cells, leading to colloid-osmotic lysis19. 

There is also evidence for a role for reactive oxygen intermediates20. Recently it was 

proposed that inhibition of the MKKs blocks induction of certain NF-κB target genes, 
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allowing apoptosis of activated macrophages21. Other reports indicate that protein 

synthesis and proteasome activity are required for expression of LeTx cytotoxicity and 

that Kif1C, a kinesin-like motor protein, mediates resistance to LeTx22. 

 

2.1.3 Protective Antigen 

PA is a large protein consisting of four domains (I–IV), primarily involved in targeting 

the toxin to host cells by recognizing ATR2 or CMG223. The crystal structure reveals 

that the high-affinity binding of PA with CMG2 is due partly to the involvement of a 

magnesium ion at the interface between PA and CMG224, 25. A key aspartic acid residue 

in domain IV of PA works in conjunction with a metal-ion-dependent adhesion site 

(MIDAS) on CMG2 to coordinate the ion. 

Once PA binds to CMG2 on the host-cell surface, a protease clips PA into two 

pieces. The smaller portion diffuses away, and the larger part remains bound to the 

CMG2 receptor, eventually forming a complex of seven PA–CMG2 modules, called a 

pre-pore. The edema factor and/or the lethal factor bind to this PA–CMG2 complex, 

triggering endocytosis. To inject the edema factor and the lethal factor into cells, the 

seven PA molecules must act together to form a pore bridging the endosome membrane 

and opening out into the cytosol. The pore transfers the edema factor and the lethal 
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factor to the cytosol, ultimately leading to cell death through the disruption of vital 

physiological processes26. 

The crystal structure elucidated by Liddington and colleagues reveals a molecular-

switching mechanism in the complex that could control the formation of this pore (Fig. 

2)27. The groove in CMG2, which interacts with PA domain II contains a crucial residue 

(histidine 121) that holds the PA in the right conformation until it is ready to insert into 

the endosomal membrane. Their model suggests that once the endosome is formed, the 

internal pH decreases and histidine 121 is protonated, becoming positively charged. 

This repels a nearby arginine on PA, reducing the affinity of the 3–4 loop of PA for 

CMG2. Consequently, the PA domain II undergoes a large conformational change, with 

the 2–3 strands adjacent to the 3–4 loop peeling away from PA like the skin of a banana 

peeling away from the fruit. The 2–3 strands are lined with several histidines, and 

protonation of these probably helps this unwrapping process. Once free of CMG2 and 

PA, the strands insert into the endosomal membrane and form the pore by twisting 

around the strands from the six neighboring PA molecules. Essentially, CMG2 acts as a 

pH-sensitive switch, holding the PA in the right shape until just the right time, before 

releasing it to form the pore. 
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Fig. 2. Action mode of PA 

When PA binds to CMG2, a loop of

PA domain II is gripped in a groove

on the CMG2 surface. Inside the

endosome the pH decreases,

generating a positive charge in the

CMG2 groove. This repels the β3–β4

loop, resulting in a conformational

change in the PA domain II. The loop

and some neighboring strands peel

away and insert into the endosomal

membrane. They twist around

strands from neighboring PA–CMG2

modules to form a pore. 
 

 

2.1.4 Edema Factor 

EdTx alone does not cause major tissue damage, and it is generally assumed that, 

consistent with functions of other toxins that elevate cAMP concentration, its main role 

in pathogenesis is to impair phagocyte function10. This hypothesis is supported, for 

example, by results showing that EdTx inhibits phagocytosis of spores by human 

polymorphonuclear leukocytes28. EF is a potent, calmodulin (CaM)-dependent, and 

Ca2+-dependent adenylate cyclase, with a 1000-fold higher catalytic rate than that of 

mammalian CaM-activated adenylate cyclase. It is related to adenylate cyclases 

produced by Bordetella pertussis and Pseudomonas aeruginosa, but not to those of 

mammals.  
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2.1.5 Cellular Receptors 

Anthrax toxin receptor (ATR), encoded by the tumor endothelial marker 8 (TEM8) has 

been identified23. TEM8 was initially defined as a gene expressed at elevated levels in 

tumor vasculature and in the vasculature of the developing mouse embryo. However, 

cDNA expression analysis and in situ hybridization experiments have revealed that this 

protein has a broad tissue distribution that includes brain, heart, intestine, lung, skeletal 

muscle, and pancreas. The normal physiological function of ATR/TEM8 is not known, 

yet.  

It was recently shown that the related capillary morphogenesis protein 2 (CMG2) 

is also an anthrax toxin receptor25. CMG2 was originally identified on the basis of its 

increased expression levels in human umbilical vein endothelial cells (HUVECs) 

undergoing capillary formation in vitro. Although RT-PCR analysis had suggested that 

this gene is expressed only in human placenta, subsequent expressed sequence tag 

analysis has demonstrated CMG2 expression in a broad range of different tissue types 

including heart, lung, liver, and skeletal muscle. Although the physiological function of 

CMG2 is not yet known, one domain of this protein binds selectively to collagen IV and 

to laminin, making it likely that these two proteins are natural ligands for the receptor in 

vivo. 
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2.2 Human alpha-defensins 

Among diverse mammalian antimicrobial peptides, defensins are a family of cationic 

peptides which characteristically comprise three intramolecular disulfide bridges to 

stabilize them in a complex, folded beta-sheet configuration29. There are three defensin 

subfamilies: The α-, β- and θ-defensins, which differ in the length of peptide segments 

between the cysteins and in the pairing of the cysteins that are connected by disulfide 

bonds. The six known human α-defensins include human neutrophil protein (HNP)-1-4 

and two intestinal α-defensins, human defensin (HD)-5 and -6 (Fig.3). HNP-1-4 are 

expressed primarily by granulocytes30 and certain lymphocytes31. The other two, human 

defensin (HD) -5 and -6, are expressed mostly by intestinal Paneth cells29. 

 

 

 

Fig. 3. Primary amino acid sequences of human α-defensins.  

The pattern of cysteine-disulfide pairing is shown by boxed residues and lines. 
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HNP-1-3 are the most abundant peptides in azurophilic granules of neutrophils and 

constitute about 5% of the total protein in human neutrophils32. Notably, mice lack 

HNP-1-3 homologues in their neutrophils33. The other human neutrophil defensin, 

HNP-4, is approximately 100-fold less abundant and may perform functions other than 

host defense34. 

 

2.2.1 Defensin Genes 

Human α-defensin genes encoding HNP-1 and HNP-3 are located on chromosome 8, 

band p23. Since the gene for HNP-2, a peptide that lacks the N-terminal alanine of 

HNP-1 and the N-terminal aspartic acid of HNP-3, has not been found, it is likely that 

HNP-2 is generated by differential posttranslational processing from preproHNP-1 

and/or preproHNP-335. 

 

2.2.2 Synthesis and Posttranslational Processing of Human α-defensins 

HNP-1-3 mRNA are present at high levels in bone marrow. Although mature human 

PMNs contain about 5 µg of HNP-1-3 per 106 cells32, the RNA is not detected in these 

cells, indicating that defensin synthesis is restricted to the bone marrow precursors of 

granulocytes. PreproHNP-1 is posttranslationally processed to inactive proHNP-1, then 
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to mature HNP-1 (Fig.4). The first HNP-1 intermediate contains 75 amino acids and 

arises by removal of the preproHNP-1 signal peptide. This intermediate is 

proteolytically processed over 20 hr via a 56 residue intermediate into the mature 29 and 

30 residue HNP-136. 

 

 

 

Fig. 4. Diagram of preproHNP-1. 

A defensin-processing pathway removes the signal sequence, then over several hours

cleaves the propiece leaving the mature defensin. The prodefensin (anionic propiece +

mature defensin) contains a motif targeting the peptide into granules. The prodefensin

lacks microbicidal activity, presumably because the anionic propiece keeps the mature

cationic peptide latent. 

 

 

 

 

2.2.3 Three Dimensional Structures 

X-ray crystallography revealed that HNP-3 is an elongated ellipsoidal molecule whose 

structure is dominated by a three stranded, cysteine-stabilized antiparallel beta-sheet. No 

α-helical domains are present. HNP-3 was crystallized as a dimer that configured a six-

stranded β-sheet stabilized by hydrophobic interactions and hydrogen bonds37. However, 

it is not clear whether this dimer is the biologically relevant form. 
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2.2.4 Antimicrobial activity of Human Neutrophil α-defensins 

Despite their abundance in human polymorphonucleated neutrophils (PMN), α- 

defensins are not found in murine PMN. In vitro studies identified HNP-1-3 as natural 

peptide antibiotics that displayed antimicrobial activity against bacteria, fungi, and 

viruses34. In general, they exhibit greater potency against gram-positive bacteria than 

against gram-negative bacteria. However, HNP-1-3 show reduced antimicrobial 

activities in the presence of physiological concentrations of salt or serum29. Thus, the 

direct microbicidal effect of HNP-1-3 in vivo is likely to occur mainly in the 

phagocytotic vacuoles of phagocytes and on the surface of skin and mucosal epithelia, 

where there is low ionic strength38.  

The current model of antimicrobial mechanism is based on the cationic property of 

HNP-1-3 (Fig.5)29. Bacterial membranes are organized in such a way that the outermost 

leaflet of the bilayer, the surface exposed to the outside, is heavily populated by lipids 

with negatively charged phospholipid headgroups. In contrast, the outer leaflet of the 

membranes of the mammalian host is composed principally of lipids with no net 

charges; the majority of lipids with negatively charged head groups are segregated into 

the inner leaflet, facing the cytoplasm. On the basis of this different membrane 

composition, cationic HNP-1-3 specifically target microbes39.  
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Fig. 5. The carper-wormhole model of 

action of defensin 

Defensins are amphipathic molecules that

have clusters of positively charged amino

acid side chains and hydrophobic amino

acid side chains. Electrostatic attraction

and the transmembrane bioelectric field

pull the peptide into the membrane. As

peptides accumulate in a ‘carpet’, the

membrane is strained and the peptide

transition into another arrangement that

lowers the strain but results in the

formation of membrane ‘wormholes’.  

 

Following the eletrostatic adsorption of defensins to sites near the target cell 

membrane, individual defensin molecules or dimers enter the energized cell membrane 

under the influence of its electromotive force40 and disrupt its integrity, probably by 

forming voltage regulated pores. Unless these lesions are repaired, irreversible target 

cell injury occurs. 

 

2.2.5 Other activities of HNP-1-3 

HNP-1-3 may participate in other aspects of innate immunity and adaptive immunity38. 

HNP-1-3 can stimulate bronchial epithelial cells to produce interleukin (IL)-8. Because 

IL-8 is a potent neutrophil chemotactic factor, HNP-1-3 might indirectly promote the 
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accumulation of neutropihls at inflammatory sites. HNP-1-3 also directly act on 

immune cells. HNP-1-3 are selectively chemotactic for immature dendritic cells (DC) 

and CD4+/CD45RA+ naive and CD8+, but not CD4+/CD45RO+ memory T cells41. This 

chemotactic activity can be inhibited by pertussis toxin, suggesting that they are 

mediated by G protein coupled receptors. These capacities of HNP-1-3 predict that they 

play a role as natural adjuvants in the initiation of adaptive immune responses. Indeed, 

HNP-1-3, when simultaneously administered with ovalbumin (OVA) intranasally into 

mice, enhance the production of OVA-specific serum IgG and the generation of IFN-γ, 

IL-5, IL-6 and IL-10 by OVA-specific CD4+ T cells42. Furthermore, intraperitoneal 

injection of HNP-1-3 with keyhole limpet hemocyanin (KLH) or B-cell lymphoma 

idiotype Ag into mice not only augment the levels of Ag-specific IgG but also enhance 

the resistance of immunized mice to tumor challenge43. 
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3. AIM OF THE STUDY 

The natural antibiotic peptides have emerged as important molecules of innate immunity. 

Human α-defensins are small cationic peptides that are composed of 29 to 35 amino 

acids. Of human α-defensins, HNP-1−3 are generally considered to be direct effectors of 

innate antimicrobial immunity since they show the capacity to kill a particular spectrum 

of bacteria, fungi, and enveloped viruses. Although it is well known that HNP-1−3 act 

as natural peptide, their ability against B. anthracis has not been demonstrated. I, 

therefore, examined the effect of HNP-1−3 in B. anthracis infection. 

Specific aims were: 

i) To examine the effect of HNP-1−3 on B. anthracis 

ii) To investigate the inhibition mode of anthrax LeTx by HNP-1−3 

iii) To evaluate the capacity of HNP-1−3 as a therapeutic candidate against anthrax. 
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4. MATERIALS AND METHODS 

 

4.1 Cationic peptides  

Synthetic LL-37 was generously provided by Dr. Hubert Kalbacher (University of 

Tübingen). Synthetic Magainin I was purchased from Sigma. Synthetic HNP-1 and -2 

were obtained from Bachem. For mouse experiments, HNP-1-3 was purified from 

human buffy coats (Deutsches Rotes Kreuz) following the published procedure44 with 

minor modifications. In brief, 1 volume of 3% Dextran in HBSS/10mM HEPES were 

added to 2 volumes of buffy coat, mixed by inverting. After 30 min incubation, top 

phase (leukocyte rich plasma) was taken and spun at 220g for 10 min. The pellet was 

resuspened in 10 ml PBS, and red blood cells were lysed by adding 30 ml water 

(hypotonic lysis of RBC). One min after hypotonic lysis, it was stopped by adding 3 ml 

of 10X PBS. Prepared white blood cells were resuspended in 15 ml of 0.34M sucrose 

(pH7.4) and homogenized with a glass homogenizer (tight pestle) until all cells were 

disrupted. Cell debris was removed by centrifugation at 1,600g for 10 min. and the 

granule rich supernatant was collected. To sediment the granules, the supernatant was 

spun 27,000g for 30 min. The collected granule pellet was resuspended in 20 ml ice-

cold 5% acetic acid and sonicated. This granule extract was diluted with 30 ml 5% 
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acetic acid and stirred at 4 °C overnight. After spinning at 27,000g, the defensin-rich 

supernatant was colleted. The defensin rich extracts were loaded on Superdex peptide 

column equilibrated with 5% acetic acid and HNP-1-3 were eluted with 1.5 CV of 5% 

acetic acid and 1.5 CV of 50% acetic acid. HNP-1-3 containing fractions were further 

purified by C18 column with water-acetonitrile gradient that contains 0.1% trifluoro 

acetic acid (TFA). 

 

4.2 Recombinant proteins 

Recombinant LF and PA were purchased from Calbiochem or purified from the 

nonsporogenic, protease deficient, avirulent strain B. anthracis BH445 (pXO1-, pXO2-, 

CMr) containing an LF45 or PA46 expression vector, kindly provided by Dr. Stephen H. 

Leppla (NIH). The modified FA medium was composed of 35 g of tryptone, 5 g of yeast 

extract and 100 ml of 10× salts per liter. The 10× salts solution (pH 7.5) was prepared 

from 60 g of Na2HPO4-7H2O, 10 g of KH2PO4, 55 g of NaCl, 0.4 g of L-tryptophan, 0.4 

g of L-methionine, 0.05 g of thiamine-HCl, and 0.25 g of uracil per liter. The solution 

was filter sterilized before it was added to the medium. Twenty ml overnight culture was 

inoculated to 6 liter of modified FA supplemented with 20 µg/ml kanamycin and 20 

µg/ml chloramphenicol. This was cultured for 18 h in a fermentor in the condition of 
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Oxygen 30% saturation, 37°C, and pH 7.5. The supernatant was collected by 

centrifugation and filtered through 0.2 µm filter. After adding 60 ml 0.5M EDTA to 

inhibit proteolysis, the filtered broth was concentrated to 300 ml using ultrafiltration 

(Pellicon-2). Two hundred g (NH4)2SO4/ liter was added gently and stirred in cold room 

for 1 h. Precipitated proteins were removed by spinning at 6,000g, 4°C, 30 min and 

filtering. The filtered supernatant was loaded to Phenyl Sepharose Fast Flow 

equilibrated with 1.5M (NH4)2SO4/10mM HEPES/5mM EDTA and LF or PA was eluted 

with a 30-CV linear gradient from 1.5 M to 0 M (NH4)2SO4 in 10 mM HEPES/5mM 

EDTA. Dialyzed LF/PA fractions from Phenyl Sepharose were loaded onto Q-sepharose 

equilibrated with 20 mM Tris-Cl/5 mM EDTA and eluted with a 15-CV linear gradient 

from 0 to 500 mM NaCl. Purified LF or PA was further cleared by Superdex 75 

equilibrated in PBS containing 5 mM EDTA and the confirmed fractions were dialysed 

against 10 mM HEPES/10% glycerol. 

 

4.3 Spore experiments 

B. anthracis (Sterne) spores were prepared as described47. In brief, 2× SG medium was 

inoculated with one colony from the over night Brain heart infusion (BH) agar plate 

culture and incubated at 37°C on a shaker. An aliquot of 1 ml of this preculture was 
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added to 50 ml 2× SG medium and cultured with shaking. After 25 h, 200 ml of sterile 

H2O was added to the culture and incubation was continued with shaking for additional 

40 h. The culture was then spun down, washed with PBS and resuspended in 50 ml of 

sterile PBS. After heating the culture to 70°C for 40 min, the spores were evaluated by 

microscopy. 2× SG medium was prepared as followed. 16.0 g Difco™ Nutrient broth, 

2.0 g KCl, 0.5 g MgSO4·7H2O were dissolved in 800 ml of distilled water and the pH 

was adjusted to 7.0 by addition of 1 M NaOH. After autoclaving, 1.0 ml 1 M Ca(NO3)2, 

1.0 ml 0.1 M MnCl2·H2O, 1.0 ml 1 mM FeSO4, 2.0 ml 50% (w/v) glucose were added 

and the final volume was adjusted to 1 liter with H2O. 

RAW264.7 cells were seeded in a 96 well plate at a density of 4×104 cells per well 

in RPMI 1640 medium containing serum without antibiotics. For the assay, 2×105 

spores per well and described amounts of HNP-1 were added to the cells in serum-free 

RPMI 1640. Eight h after infection, cytotoxicity was determined by CytoTox 96® 

cytotoxicity assay (Promega).  

For in vitro killing assay, 2×105 spores in serum-free RPMI 1640 were incubated in 

the presence or absence of 1 µM HNP-1. At each time point, colony forming units 

(CFU) were determined. 
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4.4 Cell viability assay 

One day before the assay, RAW264.7 cells were seeded in a 96 well plate at a density of 

3×104 cells per well in RPMI medium containing FCS. For the assay, 400 ng/ml LF, 

1,600 ng/ml PA and described amounts of HNP-1-3 were added simultaneously to cells 

in serum-free RPMI or RPMI supplemented with 5% FCS. Five h after treatment, cell 

viability was determined by methyl thiazole tetrazolium (MTT) assay. In brief, 20 µl of 

MTT solution (2 mg/ml in PBS) was added to each well containing cells. The plate was 

incubated in a CO2 incubator at 37ºC for 1 h. After removing media, 100 µl of DMSO 

was added to each well and pipetted up and down to dissolve the crystals. The plate was 

further incubated at the 37ºC for 5 min. The absorbance was measured at 510 nm by an 

ELISA reader (Reference wavelength 690 nm). 

 

4.5 Trypan blue Assay 

RAW 264.7 cells were seeded in a well of a chamber slide at a concentration of 6×104, 

one day before the experiment starts. On the experiment day, the medium was 

exchanged with serum free RPMI. Cells were treated with LeTx (400 ng/ml LF and 

1600 ng/ml PA) in the presence of 7 µM HNP-1 or LL-37. Four hours later, the cells 

were stained for 10 min by adding final concentration of 0.1% Trypan blue to culture 
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medium. After staining, cells were washed with PBS, and fixed with 4% formaldehyde 

for microscopy. 

 

4.6 Analysis of MKK3 in RAW 264.7 cells 

RAW 264.7 cells were seeded in a well of a 6 well plate at a concentration of 5×105, one 

day before the experiment. LeTx (400 ng/ml LF and 1600 ng/ml PA) was added to 

culture medium in the presence of 10 µM HNP-1 or LL-37. One or 2 h after the 

treatment, cells were lysed by 100 µl 1× SDS PAGE loading buffer per well. Twenty µl 

of the each lysate was loaded to a well in 10% SDS polyacrylamide gel. For 

immunoblotting, a specific antibody against C-terminal of MKK3 (Santa Cruz) was 

used. This experiment was done under serum free condition.  

 

4.7 In vitro MKK3b cleavage assay 

S35 labelled MKK3b was in vitro translated from pcDNA-MKK3b (with kind help of Dr. 

Jiahuai Han, the Scripps Research Institute) using TNT® quick coupled 

transcription/translation systems (Promega) following the provided protocol. In vitro 

translated MKK3b was incubated at 37 °C for 1 h in reaction buffer (20 mM HEPES, 1 

mM CaCl2, pH 7.2) with indicated amounts of LF and either HNP-1, Magainin I or LL-
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37. The reactions were loaded on a 10% SDS-PAGE gel and after running, analyzed by 

autoradiography.  

 

4.8 MMP inhibition assay 

Ten µg of native collagen (Type I) was incubated at room temperature for 1 h with 100 

ng of MMP-1 (Sigma) in the presence of described amount of HNP-1 or MMP inhibitor 

III (C19H29N3O4, Calbiochem). The reaction was performed in 30 µl of reaction buffer 

consisting of 50 mM HEPES, 200 mM NaCl, 10 mM CaCl2 and 0.05% Brij-35 and 

analyzed by 7% SDS-PAGE. 

 

4.9 Furin inhibition assay 

PA (10 µg) was incubated in a volume of 30 µl with recombinant furin (New England 

Biolab) in 50 mM HEPES, 200 mM NaCl, 10 mM CaCl2 and 0.05% Brij-35. 0-10 µM 

of HNP-1 or Furin inhibitor II (Calbiochem) were added to the reaction. The reaction 

was analysed by 7% SDS-PAGE 

 

4.10 Analysis of activation of MAPKs in RAW 264.7 cells 

RAW 264.7 cells were seeded in a well of a 6 well plate at a concentration of 5×105, one 
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day before the experiment. On the day of the experiment, cell culture medium was 

changed to 5% FCS containing RPMI. Cells were treated with 200 ng/ml LF and 1600 

ng/ml PA for 2h and subsequently activated by 10 µg/ml Bacillus subtilis lipoteichoic 

acid (LTA) (Sigma). Thirty min after LTA treatment, cells were lysed with 100 µl SDS-

PAGE loading buffer per well. The lysates were analyzed by immunoblotting with 

antibodies specific to different MAPKs and their phosphorylated (activated) forms. All 

antibodies in this experiment were purchased from Cell Signaling. 

 

4.11 Kinetic characterization 

Chromogenic substrate was synthesized by Jerini Peptide Technology as descibed48. In 

order to determine IC50 value and the inhibition type, we measured initial enzyme rates. 

To ensure initial kinetics, proteolysis was followed only 5% toward completion. For 

IC50 determination, 10 nM LF was preincubated with 0-10 µM HNP-1 for 30 min at 

room temperature and the reaction was started by adding substrate, to a final 

concentration of 100 µM. Competition assay was performed without preincubation of 

LF and HNP-1. To examine the effect of DTT, HNP-1 was treated with 20 mM DTT at 

room temperature for 1 h and then dialyzed against 20 mM HEPES and 1 mM CaCl2 

using a 1 kDa cut-off dialysis membrane. LF (10 nM) was preincubated with DTT 
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treated or untreated HNP-1 at room temperature for 15 min and the relative activity was 

measured by monitoring pNA release from the substrate. In all kinetic experiments, the 

reaction buffer was 20 mM HEPES, 1 mM CaCl2.  

 

4.12 Mouse protection experiment 

Seven to 8 weeks old female BALB/c mice were treated with LeTx (50 µg of LF and 50 

µg of PA in 0.2 ml PBS) i.v. into one tail vein, immediately followed by i.v. injection 

with the indicated doses of purified HNP-1-3 or synthetic LL-37 diluted in 0.2 ml PBS 

into the other tail vein. Survival of mice was monitored for 10 days after toxin treatment. 

Experiments were conducted according to the German animal protection law. 
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5. RESULTS 

5.1 B. anthracis mediated cytotoxicity in the presence of HNP-1 

It has been shown that a toxin producing B. anthracis strain (Sterne) kills murine 

macrophages49, 50. To determine whether HNP-1 protects macrophages from toxin 

producing B. anthracis, we examined the cytotoxicity of anthrax spores in HNP-1 

treated RAW 264.7 cells. As shown in Fig. 6A, as little as 1 µM of HNP-1 inhibited the 

anthrax spore induced cytotoxicity almost completely. Surprisingly, this protective 

effect was independent from HNP-1’s well-known microbicidal activity because HNP-1 

at this low concentration of 1 µM did not show any significant sporicidal effect (Fig. 

6B). 

 

 

 

 

 

 

Fig.6. HNP-1 rescues macrophages from anthrax spore induced cell death 

a. RAW 264.7 cells were infected with B. anthracis spores and followed by treating

with indicated amounts of HNP-1. Cytotoxicity was determined by measuring released

lactate dehydrogenase (LDH) levels. b. In vitro killing assay was performed against

spores in the presence or in the absence of 1 µM HNP-1. After indicated incubation

times, CFU were determined. 
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5.2 LeTx mediated cytolysis in the presence of HNP-1. 

Since B. anthracis Sterne mediated macrophage cytotoxicity is largely determined by 

LeTx, we examined whether HNP-1−3 have any effect on this anthrax toxin. The 

murine macrophage cell line, RAW 264.7, is commonly used for LF assays because it is 

highly sensitive to cytolysis caused by LeTx. When these cells were treated with LeTx, 

they succumbed to the toxin within few h. In marked contrast, the addition of HNP-1 

completely abolished cytotoxicity (Fig. 7A). This HNP-1 mediated protection was 

observed even 24 h after LeTx treatment (Fig. 7D). HNP-2 (Fig. 7B) whereas LL-37, 

another neutrophil cationic peptide with a similar size and net charge like HNP1-3, did 

not display any significant effect (Fig. 7C).  

 

5.3 Cell viability assay by trypan blue 

Consistent with the above results from MTT assay, microscopy using trypan blue 

staining showed that LeTx treatment caused cell death resulting in staining by trypan 

blue. In constrast, HNP-1 treated cells were not stained by the dye even in the presence 

LeTx, suggesting HNP-1 protect cells from LeTx induced cell lysis. LL-37 and LeTx 

cotreated cells showed the same phenotype as LeTx treated cells (Fig. 8).  
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Fig. 7. Inhibition of LeTx cytotoxicity by HNP-1 and -2 

RAW264.7 cells were treated with LeTx and various concentrations of HNP-1 (A),

HNP-2 (B) or LL-37(C). Five h after treatment, cell viability was determined by

MTT assay. Panel (D) shows HNP-1 mediated cell protection 24h after LeTx

treatment.   
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Fig. 8. Trypan blue cell assay  
RAW 264.7 cells were treated with 

LeTx (400 ng of LF AND 1600 ng of

PA/ml) in the presence of 7 μM 

HNP-1 or LL-37. Four hours after 

treatment, cells were stained with 

Tryphan blue. 



5.4 Activity of HNP-1-3 against LeTx under serum supplemented 

conditions 

To examine whether this phenomenon is physiologically relevant and to assess potential 

effects of serum components, I performed the same assay under serum-supplemented 

conditions. In the presence of 5% fetal calf serum (FCS), HNP-1 still protected cells 

from LeTx induced cytotoxicity, although a higher amount of HNP-1 was needed (Fig. 

9A). Purified natural HNP 1-3 mixture from human leukocytes (Fig. 9B) showed 

similar protection.  

 

 

 

Fig. 9. Inhibition of toxin action in the 

presence of serum 

RAW264.7 cells were treated with LeTx 

and indicated concentrations of synthetic 

HNP-1 (A) or natural HNP-1-3 (B) in 5% 

FCS supplemented medium. Five h after 

treatment, cell viability was determined 

by MTT assay.  
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5.5 The effect of HNP-1 on LeTx induced MKK cleavage. 

Because LF is a protease cleaving the N-terminus of MKKs9, I investigated whether 

HNP-1 inhibited cleavage of MKK3b in LeTx treated cells. RAW 264.7 macrophages 

were treated with LeTx (400 ng/ml LF and 1600 ng/ml PA) and HNP-1 (7 µM) for 1 or 

2 h, and the cell lysates were analyzed using an antibody directed against the C-terminal 

end of MKK3. Within 2 h of LeTx treatment, MKK3b was almost completely converted 

to its cleaved form but this cleavage was efficiently inhibited by HNP-1 (Fig. 10). 
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Fig. 10. Inhibition of MKK3 cleavage in macrophages 

RAW 264.7 macrophages were either untreated (-) or treated (+) with anthrax

LeTx (LF 400 ng/ml and PA 1600 ng/ml) and HNP-1 (7 μM) for 1 h or 2 h. The

cell lysates were analyzed by immunoblotting with anti- MKK3 antibody. 
 

nalysis of a MKK cleavage by LF in the presence of HNP-1 

rify whether HNP-1 directly inhibits the endoprotease activity of LF, we 

med in vitro cleavage assay with S35-labeled LF substrate (Fig. 11). In vitro 
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translated MKK3b was almost completely cleaved within 1 h by 500 ng of LF. In 

contrast, in the presence of 10 µM HNP-1, proteolysis was efficiently inhibited, 

suggesting that HNP-1 inactivates the catalytic activity of LF. Other cationic 

antimicrobial peptides, Magainin I (Fig. 11 upper panel) and LL-37 (Fig. 11 lower 

panel) did not prevent cleavage of MKK3b mediated by LF. 

 

 

 

 

 

Fig. 11. Inhibition of LF mediated proteolysis 

In vitro translated MKK3b was incubated for 1h with indicated amounts of LF and 

either HNP-1, LL-37 (lower panel) or Magainin I (upper panel). 

5.7 MMP inhibition assay 

To determine the specificity of HNP-1 against LF, a metalloprotease, I assessed whether 

HNP-1 showed inhibitory effects on host matrix metalloprotease (MMP)-1. As shown in 

Fig.12, the established MMP-1 inhibitor prevented MMP-1 from producing cleavage 
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products of collagen type I, a known substrate of MMP-1. However, at the same range 

of concentration, HNP-1 did not show any significant effect on this reaction. 

 

 

Fig. 12. HNP-1 has no effect on a host 

metalloprotease 

Native collagen (Type I) was incubated

with 100 ng of MMP-1 in the presence of

described amounts of HNP-1 or MMP

inhibitor and analyzed by 7% SDS-

PAGE. Arrowheads indicate cleavage

products.  

 

5.8 Furin inhibition assay 

Cationic characteristics of HNPs are determined mainly by poly-arginine residues in 

their amino acid sequences. Since poly-arginine containing peptides represent potent 

inhibitors of furin51, which cleaves RXXR motif in PA11, I assessed whether HNP-1 also 

has furin inhibitor activity. Hexa-D-arginine (D6R) was shown to inhibit the 

endoprotease activity of furin. As expected, 1-10 µM D6R inhibited PA cleavage by 

furin in a dose dependent way. In contrast, HNP-1 failed to inhibit the cleavage of PA at 

the same range of concentration (Fig. 13). 
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Fig. 13. HNP-1 has no effect on 

host furin 

Protective antigen was incubated

with furin in the presence of HNP-1

or Furin inhibitor. Arrowheads

indicate cleavage products.  

 

5.9 Effect of internalized HNP-1 on LeTx induced cell death 

Potential LF inhibitors are expected to enter cells to exert their activity against LF, and 

HNP-1−3 can, indeed, be internalized into host cells. Given the described effects of 

HNP-1 on LeTx, I investigated whether HNP-1 can inhibit LF inside cells. RAW 264.7 

cells were incubated with HNP-1 at 37ºC for 1h, washed extensively to remove free 

HNP-1 and subsequently treated with LeTx (400 ng/ml LF and 1600 ng/ml PA) at 37ºC 

for 5 h. As shown in Fig. 14, treatment of macrophages with HNP-1 prevented LeTx 

toxicity in a HNP-1 dose dependent manner, indicating that HNP-1 acts on LF inside 

cells. 
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Fig. 14. Intracelluar protection  

RAW 264.7 cells were incubated with

HNP-1 at 37ºC. After 1 h, the medium

was removed and replaced with fresh

medium containing LeTx. Cells were

incubated further at 37ºC for 5 h. 

 

5.10 Restoration of LeTx mediated impairment of MKK signaling by HNP-1 

LF inhibits extracellular signal-regulated kinase (ERK) and p38 MAPK signaling 

through cleavage of members of MKK family in activated macrophages21. To 

characterize the effects of HNP-1 on LeTx mediated impairment of MAPK signaling, 

macrophages were incubated with LeTx (200 ng/ml LF and 1600 ng/ml PA) and HNP-1 

(30 µM) for 2 h, followed by stimulation with B. subtilis LTA. This experiment was 

performed under 5% FCS supplemented conditions to achieve efficient stimulation of 

Toll-like receptors (TLR) by LTA52. LeTx strongly inhibited ERK and p38 activation in 

macrophages and phosphorylation of these two MAPKs was restored by HNP-1 (Fig. 

15). 
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Fig. 15. Restoration of impaired MAP signaling  

RAW 264.7 cells were treated(+) with LeTx (200 ng/ml LF and 1600 ng/ml PA)

and HNP-1 (30 μM) in 5% FCS containing medium. Two h after treatment, cells

were stimulated with 10 μg/ml B. subtilis LTA for 30 min and the lysates were

assessed with antibodies against MAPKs (Total) and their phosphorylated forms

(Phospho).  
inetic characterization 

ucidate the inhibition mode, we performed kinetic characterization using a 

ogenic peptide substrate48. The initial rates of enzyme reaction in the presence of 

s concentrations of HNP-1 provided IC50 values of 190 ± 33 nM (Fig. 16A). In 

mpetition assay (Fig. 16B), HNP-1 acted noncompetitively. When Vmax versus [E], 

 [E] represents concentration of enzyme, was plotted, HNP-1 was identified as a 

ible noncompetitive inhibitor showing smaller slopes than the control curve 

6C). Reversibility testing using ultrafiltration confirmed that inhibition is 
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reversible.  

Since HNP-1−3 have intramolecular disulfide bridges, I determined whether these 

disulfide bonds are important for the inhibitory capacity. As shown in Fig. 17D, DTT 

treated HNP-1 did not show any significant inhibition suggesting that the unique 

structure of HNP-1 determined by disulfide bridges is a critical requirement for 

inhibition. 

 
Fig. 17. Characterization of LF inhibition by HNP-1  

A. HNP-1 inhibited 50% of LF activity at a concentration of 190 ± 33 nM. B. Lineweaver-

Burk plot indicates noncompetitive inhibition mode. C. A plotting of Vmax versus

concentrations of LF confirms that HNP-1 is a reversible noncompetitive inhibitor. D. DTT

treated HNP-1 did not show any significant effect on LF. 
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5.12 In vivo protection experiment 

Having identified LeTx neutralization as a novel biological function of HNP-1-3, I 

decided to exploit this activity for therapeutic intervention against anthrax. To this end, 

LeTx sensitive Balb/c mice received LeTx (50 µg LF and 50 µg PA) intravenously (i.v.), 

immediately followed by the indicated amounts of purified HNP-1−3 i.v. (Fig. 18A and 

B). Within 2 days, mice succumbed to the toxin. In striking contrast, 500 µg of HNP-1-3 

protected mice from intoxication of LeTx. LL-37, a control antimicrobial peptide, had 

no effect on LeTx toxicity (Fig. 18B). 

 

 

 

 

 

 

Fig. 18. Protection of mice from LeTx intoxication by HNP-1−3 

LeTx sensitive Balb/c mice received LeTx (50 µg LF and 50 µg PA)

intravenousely (i.v.), followed by PBS, purified HNP-1−3, or LL-37 i.v. A: 5 mice

per group and B: 3 mice per group were monitored for 10 days 
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6. DISCUSSION 

6.1 Beyond antimicrobial activities of defensins 

HNP-1-3 have well established capacity to kill a variety of microbial pathogens. 

However, the antimicrobial activity is often extrapolated from in vitro measurements at 

high concentrations and under non-physiological, low ionic strength conditions and 

serum free conditions. By contrast, divalent cations such as Mg2+ or Ca2+, which are 

present at concentrations of 1-2 mM in almost every body fluid, will reduce or 

completely eliminate the antimicrobial activity of HNP-1-329, 38. Interestingly, beside 

their potential antimicrobial activity, these peptides show other functions in 

physiological conditions; e.g., immunopotentiating activities of defensins have been 

reported38. Human neutrophil α-defensins show chemotactic activities for T cells and 

dendritic cells41. They enhance the production of antigen specific antibodies and certain 

cytokines by immune cells42. In addition to these functions, my data reveal a novel 

biological function of HNP-1−3; namely neutralization of a secreted bacterial enzyme.  

The structural characteristics of HNP-1−3 such as overall dimensions, positive 

charge, β-sheet, and disulfide bonds are reminiscent of various snake, scorpion, and 

spider toxins37. Since many venom peptides act as enzyme inhibitors, the structural 

characteristics of HNP-1−3 prompted me to assess the potential of HNP-1−3 to 
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neutralize secreted bacterial enzymes. Supporting my finding that HNP-1−3 inhibit LF 

activity, a recent report showed that HNP-1−3 neutralize fibrinolytic activity exerted by 

staphylokinase secreted by Staphylococcus aureus53. In addition, I recently identified 

several bacterial ADP-ribosyltransferases including Diphtheria toxin and Pseudomonas 

exotoxin A, which are also inhibited by HNP-1−3 (data not shown). Many bacterial 

pathogens secrete enzymes into the host environment to avoid destruction by the 

immune system. Because recruited human neutrophils release abundant HNP-1−3 

locally in the infection regions, I assume that HNP-1−3 achieve efficient neutralization 

of bacterial enzymes in vivo.  

 

6.2 Restoration of impared MAPK cascade  

Activation of TLRs by LTA21 and Anthrolysin O54 from B. anthracis results in 

activation of an apoptotic signaling cascade in macrophages and this apoptosis process 

is usually inhibited by NF-κB and p38 induced survival genes. However, LeTx renders 

macrophages sensitive to LTA or Anthrolysin O-induced apoptosis by preventing 

activation of the p38 MAPK pathway21. LF cleaves MKKs between their NH2-terminal 

extension and the catalytic domain9. Because the NH2-terminal extension is required for 

interactions with both MAPKs and MKK kinases (M3Ks), this cleavage prevents 
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MAPK activation. 

In addition, the inactivation of the MAPK pathway by LeTx in both macrophages 

and dendritic cells55 leads to inhibition of proinflammatory cytokine secretion, 

downregulation of costimulatory molecules such as CD80 and CD86, and ineffective T 

cell priming. The net result is an impaired innate and adaptive immune response. 

Endothelial cells of the vascular system undergo apoptosis upon LT exposure, also 

likely due to inactivation of the MAPK pathway56. The activity of various hormone 

receptors such as glucocorticoids, progesterone and estrogen is also blocked, due to 

inhibition of p38 MAPK phosphorylation, thus affecting the body's response to stress16. 

So far, there has been no study showing how our immune system could protect against 

this detrimental weapon of B. anthracis. Here, my data show that human neutrophil 

released HNP-1−3 neutralize LF and this results in restoration of impaired MAPK 

cascade, proposing our immune system has developed HNP-1−3 as central innate 

defense molecules against distinct toxins.  

 

6.3 Fatal consequence of inhalation anthrax  

The concentration of HNP-1−3 in plasma under normal circumstances is around 40 

ng/ml but this rises up to 0.9-170 µg/ml during severe infections57. The local 
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concentrations of HNP-1−3 are expected to be much higher. In this regards, it is unclear 

why inhalation anthrax often causes fatal consequences in humans even in presence of 

profound natural inhibitors of LF. It is possible that the endogenous expression levels of 

HNP-1−3 are not sufficiently high to neutralize the lethal effects of LeTx during 

infection, particularly after inoculation of high doses of B. anthracis. It is also possible 

that B. anthracis suppresses secretion of HNP-1−3 by human leukocytes via unknown 

mechanisms. 

 

6.4 Mode of action of HNP-1−3 

HNP-1−3 contain three intramolecular disulfide linkages to maintain its stable and 

compact conformation. It has been shown that the cyclic analogs of HNP-1 with 

different S-S pairings exhibit antimicrobial activity whilst the linear HNP-1 is inactive58. 

Thus, it is of interest to address whether these S-S bonds are essential for its function as 

LF inhibitor. My data suggest that the unique structure of HNP-1 determined by 

disulfide bonds is a critical requirement for inhibition since reduced HNP-1 did not 

show anti-LF activity.  

According to LF structure analyses, the cluster of acidic residues in the active 

center shows a preference for basic residues in the substrates and the substrates should 
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bind with antiparallel β-sheet formation to LF59. Complying with these requirements, 

HNP-1-3 are β-sheet dominant cationic peptides containing the LF recognition motif 

(Fig.19). Considering this notion, it was not expected that kinetic studies would indicate 

noncompetitive inhibition mode. However, as shown in Fig. 17, kinetic analysis 

revealed that HNP-1 binds to a remote region from the active site of LF and causes a 

conformational change in the active center, preventing the enzyme from converting the 

bound substrate to its product. It is unclear whether this motif in HNP-1−3 is important 

for the function as LF inhibitors at this moment. Future investigations are aimed at 

determining how the disulfide-bond dependent structure of HNP-1 influences its 

binding to undefined site(s) of LF. It would be of great interest to analyze the 

crystallized co-complex of HNP-1 and LF.  

 
 
 
 
 
 
 

 49



 

 
Fig. 19. Alignment of MKKs and HNP-1−3 

Known LF substrates, MKK, and HNP-1−3 are aligned according to common

physiochemical properties: + indicates a basic residue and h stands for hydrophobic amino

acid. The amino acids in blanks indicate the cleavage site of each LF substrate. In the first

‘h’ position, predominantly hydrophobic residues come, in second ‘h’ invariably hydrophobic

amino acids exist, and in +++ motif, at least one basic residue is present. 

 

 

 

 

6.5 Pharmacological potential of HNP-1−3 

My data not only reveal that the human immune system produces potent inhibitors for 

LF, but also demonstrate a potential of HNP-1−3 for therapy of anthrax. Although B. 

anthracis itself can be treated by antibiotics, this frequently fails if not initiated 

promptly after infection, because even after bacterial eradication, secreted toxins remain 

active. These obstacles underscore the need for novel intervention strategies against 

anthrax. Indeed, recently, based on recent progress in understanding the mechanisms of 

anthrax toxin, new therapeutic candidates have been designed, such as recombinant 
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antibodies against the toxin60, peptide61, 62 or small chemical inhibitors of LF48, 63, and 

polyvalent inhibitors of PA-LF interactions64. HNP-1−3 have several therapeutic 

advantages over other candidates. HNP-1−3 are multifunctional peptides. Besides their 

well-established capacity to kill a variety of microbial pathogens, immunoenhancing 

capabilities have also been reported in HNP-1−3. Human neutrophil α-defensins show 

chemotactic activities for T cells and dendritic cells41. They enhance the production of 

antigen specific antibodies and certain cytokines by immune cells facilitating the 

initiation of adaptive immune responses42. Hence, LeTx neutralization by HNP-1−3 in 

combination with antibiotic eradication of B. anthracis should be exploited for efficient 

prevention of fatal anthrax incidences. 
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