
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

A Multi-Class Support Vector Machine
Based on Scatter Criteria

Robert Jenssen Marius Kloft, Alexander Zien,
Sören Sonnenburg, and Klaus-Robert Müller

Bericht-Nr. 2009-14
ISSN 1436-9915



A Multi-Class Support Vector Machine Based on

Scatter Criteria

Robert Jenssen1, Marius Kloft2, Alexander Zien3,4, Sören Sonnenburg3,
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Abstract

We re-visit Support Vector Machines (SVMs) and provide a novel interpretation thereof
in terms of weighted class means and scatter theory. The gained theoretical insight can be
translated into a highly efficient extension to multi-class SVMs: mScatter-SVMs. Numerical
simulations reveal that more than an order of magnitude speed-up can be gained while the
classification performance remains largely unchanged at the level of the classical one vs. rest
and one vs. one implementation of multi-class SVMs.

1 Introduction

Support Vector Machines (SVMs) [Vap98] have become one of the standard tools for binary clas-
sification. However their multi-class extensions are considered complex and still have rather de-
manding computational costs, as quantified in terms of the number N of training data points
and the number C of classes. The classic heuristics reduce a multi-class problem to several bi-
nary sub-problems by decomposing it either into C(C − 1)/2 one vs. one or into C one vs. rest
tasks. A next generation of multi-class SVM formulates one large joint optimization problem
[Vap98, WW99, BVB95, LLW04, HL02] and studies various ways for speed-up [CS01, FH02]; for
this, notably C × N variables typically need to be optimized, compared to N for binary SVMs.
An alternative line of research has re-interpreted multi-class SVMs as multidimensional subspace
projection method at improved computing times [SST05].

The present work contributes a multi-class SVM algorithm of similar complexity as its binary
counterpart. Also here an interesting re-interpretation provides the key insight. We start with
the so-called µ-SVM formulation and point out its relation to scattering in pattern recognition
(see Section 2). The theoretical insight obtained thereby allows to reformulate the multi-class
optimization problem in terms of class means as well as a global reference with only N variables
and a nice intuitive geometrical interpretation (see Fig. 1). After a brief remark about test rules
(Section 3), details are given on our fast implementation scheme (Section 4). We follow up by
detailed simulation studies (Section 5), revealing that our novel method is indeed faster at a similar
generalization accuracy as previous multi-class methods, before concluding the paper (Section 6).
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2 A New Interpretation of the µ-SVM

A number of equivalent SVM formulations have emerged over the years, e.g. C-, ν-, and µ-SVMs
[Vap98, SSWB00, CB99], or also the convex hull formulation of SVMs [MT06]. In this paper, we
will re-interprete the µ-SVM [CB99] in terms of weighted class mean vectors and scatter theory.
Let us consider the following optimization problem of training a µ-SVM,

min
w,b,ρ,ξi

1
2‖w‖

2 − 2ρ+ µ
∑N
i=1 ξi

s.t. yi(w>xi + b) ≥ ρ− ξi, and ξi ≥ 0, ∀i = 1, . . . , N
(1)

where yi ∈ {−1, 1} denotes the label of training data point xi generated from class ω1 : yi = 1 or
ω2 : yi = −1. This procedure maximizes the margin 2ρ

‖w‖ of the hyperplane determined by w and
b (see Fig. 1 (a) for an illustration). The dual optimization problem becomes

min
α

1
2
α>Kα, α =

[
α1

α2

]
, K =

[
K11 −K12

−K21 K22

]
,

subject to α>c 1 = 1, c = 1, 2 and 0 ≤ αi ≤ µ, ∀i, where 1 is an all ones vector. The subscripts
indicate the two classes and Kcc′ are inner-product matrices within and between classes (see also
[CB99]). This optimization determines w

w =
∑
i:yi=1

αixi −
∑

i:yi=−1

αixi. (2)

In the classification of a data point xt unseen to the SVM during training, the primal formulation
suggests a testing rule

xt → ω1 : w>xt + b > 0, otherwise xt → ω2.

The dual formulation of the µ-SVM has an interesting interpretation in terms of distances between
convex hulls, see for example [CB99, MT06].

2.1 Weighted Class Mean Vectors and Scatter Interpretation

By Lagrange theory, the µ-SVM hyperplane weight vector is given by Eq. (2). Let

m1 =
∑
i:yi=1

αixi, m2 =
∑

i:yi=−1

αixi.

Since the weighting coefficients are such that
∑
i:yi=1 αi =

∑
i:yi=−1 αi = 1 [CB99], m1 and m2

are per definition weighted class mean vectors.
Hence, it is readily observed that the µ-SVM optimization in the dual adjusts the weights of

m1 and m2 in order to minimize the squared Euclidean distance between these two vectors, that
is

min
α

1
2
‖m1 −m2‖2.

This operation will move m1 and m2 to the boundary region between the two classes. These
weighted class mean vectors may be thought of as representatives of their respective classes. Hence,
a class will not be represented by a ”typical” example, e.g. the un-weighted class mean, but rather
by a weighted combination of data points which are un-typical, in the sense that they are more
similar to the other class. This property is exactly the prime catalyst of the superior generalization
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ability of the SVM compared to methods which give equal weights to all data points. It is also
possible to express the parameter b in geometrical terms by invoking the KKT conditions:

b = −1
2

(m1 −m2)>(mmsv
1 + mmsv

2 ),

where Imsvc indicates the margin support vectors for which 0 < αi < µ and mmsv
c = 1

Ωc

∑
i∈Imsv

c
αixi

with Ωc =
∑
i∈Imsv

c
αi are the weighted mean vectors of the margin support vectors for each class,

and are therefore themselves situated on the ±ρ margin respectively. It is interesting to note that
in the hard margin case, i.e. all ξi = 0, then b = − 1

2 (m1 −m2)>(m1 + m2). This means that the
separating hyperplane in the hard margin case passes through the point m̄ = 1

2 (m1 + m2) which
is the arithmetic mean of m1 and m2. This is in direct analogy with the convex hull view. With
the arithmetic mean m̄ introduced into the picture, it is also possible to consider the testing rule
from a new viewpoint. We have

xt → ω1 : (m1 −m2)>xt −
1
2

(m1 −m2)>(mmsv
1 + mmsv

2 ) ≥ 0 otherwise xt → ω2.

Since m1− m̄ = 1
2 (m1−m2) and m2− m̄ = 1

2 (m2−m1), an equivalent expression for the testing
rule is

xt → ωc : arg max
c=1,2

(mc − m̄)>xt − (mc − m̄)>mmsv
c . (3)

In this formulation, both the functional distance and the geometric distance from the hyperplane
(mc−m̄)>x−(mc−m̄)>mmsv

c to the point x = mmsv
c equals 0, since ‖m1−m̄‖ = ‖m2−m̄‖ such

that functional and geometric distances are equivalent. Based on the above discussion, we also
have ‖m1−m2‖ = ‖m1−m̄‖+‖m2−m̄‖. This allows us to express the µ-SVM dual optimization
problem differently, since for C = 2 classes

min
α

1
2
‖m1 −m2‖2 = min

α

C∑
c=1

1
C
‖mc − m̄‖2. (4)

Interestingly, this cost function is equal to the between class scatter [DHS01], where scatter is
measured with respect to the weighted class mean vectors m1 and m2 and we assume equal class
priors P1 = P2 = 1

2 . This means that we may interpret the µ-SVM as a method which in training
adjust the weights of m1 and m2 in order to minimize the scatter between the classes under the
equal prior assumption. This will force m1 and m2 to the boundary region, thus emphasizing the
un-typical data points in each class. This is illustrated in Fig. 1 (b).

In this new framework, we note that in testing, each class is represented by two weighted mean
vectors. One is the overall weighted mean vector mc which depends on all the support vectors,
i.e. all xi for which αi > 0. The other representative is the weighted mean of the margin support
vectors mmsv

c which depends only on those xi for which 0 < αi < µ.
The weighted mean vectors and scatter-based view of the µ-SVM introduced here not only

provides a new interpretation, it also suggests extensions in two related directions, by defining
Pc = 1

C and mc =
∑
i:yi=c

αixi such that
∑
i:yi=c

αi = 1 and m̄ = 1
C

∑C
c=1 mc, Eq. (4) may be

used for a multi-class formulation where in the dual the between-class scatter between multiple
classes is minimized. An incorporation of unequal class priors into the picture is straight forward
but beyond the scope of this contribution.
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2.2 Multi-Class Extension of the µ-SVM

Inspired by the above reasoning, we propose a novel multi-class extension of the µ-SVM primal,
namely

min
w,wc,bc,ρ,ξi

1
2

C∑
c=1

1
C
‖wc − w̄‖2 − Cρ+ µ

∑
i

ξi

s.t. (wyi
− w̄)>xi + byi

≥ ρ− ξi, and ξi ≥ 0, ∀i, (5)

where yi ∈ {1, . . . , C} is the label for xi. Note that for C = 2 Eq. (1) is recovered with b = b1− b2
and w = w1 − w2. Again, ρ is a functional margin parameter and ξi, i = 1, . . . , N are slack
variables with respect to the margin. The first term in the above expression is the regularizer. See
Fig. 1 (c). We add two more constraints,

∑C
c=1 bc = 0 and w̄ = 1

C

∑C
c=1 wc. The first is necessary

to avoid the trivial solution wc = w̄ = 0 with bc = ρ → +∞ (in other words, to ensure effective
margin maximization). The second constraint specifies the role of w̄ as the arithmetic mean of
wc, c = 1, . . . , C. This allows for two different interpretations of constraint Eq. (5): (a) While
maximizing the functional margin ρ, the discriminant functions fc(·) must obey

fyi
(xi) = (wyi

− w̄)>xi + byi
≥ ρ− ξi

and (b) while maximizing the functional margin ρ, the discriminant functions gc(·) must obey

gyi(xi) = w>yi
xi ≥ w̄>xi + ρ− ξ′i,

where ξ′i = ξi+byi
and where both byi

and ξi are defined with respect to the wyi
−w̄ weight vector.

Interestingly, this means that during training gyi(·) must classify each data point xi greater than
the mean classifier w̄>xi = 1

C

∑C
c=1 w>c xi by a margin ρ− ξ′i. We formulate the Lagrangian as

L =
1
2

C∑
c=1

1
C
‖wc − w̄‖2 − Cρ+ µ

∑
i

ξi −
N∑
i=1

δiξi

+
N∑
i=1

αi
[
ρ− ξi − (wyi

− w̄)>xi − byi

]
+

〈
γ,

1
C

C∑
c=1

wc − w̄

〉
+ ε

(
C∑
c=1

bc

)
.

When dualizing, we readily obtain e.g. wt =
∑
i:yi=t

αixi, w̄ = 1
C

∑N
i=1 αixi and

∑
i:yi=t

αi = 1.

2.3 Dual Scatter Formulation of µ-SVM

Inserting mc =
∑
i:yi=c

αixi, c = 1, . . . , C and their arithmetic mean m̄ = 1
C

∑C
c=1 mc, we obtain

the dual optimization problem

min
α

1
2

C∑
c=1

1
C
‖mc − m̄‖2 .

Observe that the cost function to be optimized is proportional to the between-class scatter for
multiple classes under the assumption of equal class priors, where scatter is measured with respect
to the weighted class mean vectors mc, c = 1, . . . , C and the overall arithmetic mean m. See Fig.
1 (d). Furthermore, this may be expressed as a quadratic form 1

2α
>Kα, where

K =
1
C


(C − 1)K11 −K12 . . . −K1C

−K21 (C − 1)K22 . . . −K2C

...
...

. . .
...

−KC1 −KC2 . . . (C − 1)KCC

 ,
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(a) Two-class µ-SVM (b) Two-class scatter

(c) Multi-class µ-SVM (d) mScatter-SVM optimization

Figure 1: (a) The two-class µ-SVM maximizes a hyperplane margin. (We only illustrate hard
margin case.) (b) The two-class µ-SVM minimizes between-class scatter. (c) Our multi-class
µ-SVM maximizes the margin of several hyperplanes simultaneously. (d) The mScatter-SVM
minimizes the between-class scatter wrt. weighted class mean vectors and a global reference point
which is the arithmetic mean of the class means.

and Kcc′ , are inner-product matrices within and between classes. Finally, we get the optimization
problem for what we will call the mScatter1-SVM as

min
α

1
2
α>Kα (6)

s.t α>c 1 = 1, c = 1, . . . , C and 0 ≤ αi ≤ µ ∀i,

where α>c 1 =
∑
i:yi=c

αi. These constraints also enforce µ ≥ 1/Nmin where Nmin is the number
of points in the smallest class. At the same time, µ ≤ 1 since α>c 1 = 1, c = 1, . . . , C.

The matrix K is (N×N), positive semi-definite and symmetric. The optimization problem only
involves N variables and N + C simple constraints and the cost function is convex. This problem
is well suited for quadratic programming packages like e.g. Mosek and fast SMO implementations
are possible (see Section 4). Notice that the two-class µ-SVM dual appears as a special case.

Interestingly, we note that [NCAC08] reached an optimization problem of similar form, however,
from a starting point of distances between pairwise convex hulls. The weighted mean vector
perspective and our primal formulation are totally different, as well as the incorporation of slack
variables. This allows for a more complete study of the optimization problem from the viewpoint
of µ-SVMs, and opens up the possibility of a fast implementation (see Section 4). Furthermore, our
testing rule based on geometrical distances follow directly from our derivation of the optimization
problem (see Section 3), and leads to better classification results as mentioned in Section 5.

1margin scatter
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(a) (b)

Figure 2: (a) Illustration of Test Rule 2 which is a direct extension of the µ-SVM test rule in
the two-class case, using geometric distances. (b) The special geometry induced by the RBF
kernel translates into a measure of angles, hence favoring Test Rule 1 which is actually used in the
experiments.

As a further note, we would like to emphasize that the above theory was derived for cases
where the classes are distributed spherically around a centroid of the weighed class mean vectors.
However, such benign class distributions are of course not to be expected in real data. Obviously,
by mapping to feature space the purely inner-product based mScatter-SVM algorithm can be
reformulated with kernels; therefore, in the following, we will assume that a kernel function k(·, ·) =
〈φ(·), φ(·)〉 is employed, where φ(·) denotes the non-linear mapping (cf. [SMB+99, SSM98]).

3 Test Rules for Classification

Based on the discriminant functions gc(·) and fc(·) two different testing rules for classification
based on geometric distances (when testing based on weight vectors of different lengths, geometric
distances should be used) are possible: Test Rule 1 that is based on the angular spread with respect
to its class representative as

xt → ωc : arg max
c

m>c
‖mc‖

xt

and Test Rule 2 which we mention here for completeness

xt → ωc : arg max
c

1
‖mc − m̄‖

[
(mc − m̄)>xt − (mc − m̄)>mmsv

c

]
,

where mc and mmsv
c are the class representatives and m̄ = 1

C

∑C
c=1 mc. Notice that this test rule

reduces to Eq. (3) in the two-class case. Figure 2 illustrates both rules.
We use in this paper the most well-known and widely used non-linear kernel function, namely

the RBF kernel. The RBF kernel induces a special geometry since it maps data points to a
quarter sphere in the kernel feature space. All data points φ(xi), i = 1, . . . , N are therefore of
unit (constant) length, and the evaluation of Euclidean distances between points reduces to a
measure of angles. For discrimination we may make use of this property by employing the angular
discriminant function represented by Test Rule 1, which in our experience gives the best results.
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4 A Fast Implementation

With ever increasing data sets, solving complex mathematical programs such as the one in Eq. (6)
with off-the-shelf solvers quickly becomes impractical. Therefore dedicated efficient optimizers
have been developed for the well-understood quadratical programs (QPs) that emerge from binary
SVMs. Here we describe the implementation of such a high-performace solver for the mScatter
training problem.

Many efficient SVM training methods rely on decomposition techniques; examples are chunking
[Joa99] and Sequential Minimal Optimization (SMO, e.g. [FCL05]). The idea of decomposition is
to iteratively improve a solution candidate by solving a sequence of subproblems: to optimize a
small number of variables (the so-called working set) while, for that moment, freezing all others. In
chunking, the subproblems typically contain a few dozen variables and may be solved with off-the-
shelf optimizers. In SMO, the working sets consist of exactly two variables, such that analytical
optimization is possible.

Apart from the working set size, the critical design choice is the selection of the variables for
the sub-problem: the convergence speed for the global optimization depends on the amount of
progress that the sub-problems allow for. To make SMO efficient, clever selection strategies for
the two variables αki , α

k
j to be optimized at iteration k are required. A proven strategy based on

second order information is implemented in LibSVM [CL01], both for C-SVMs and ν-SVMs. We
exploit the fact that our problem (6) is a close relative of the ν-SVM dual, and extend the SMO
implementation of LibSVM to be suitable for the mScatter-SVM.

To do so, we start from the 2-class ν-formulation as stated in Eq. (28) in [FCL05] and repeated
here

min
α′

1
2
α′
>Kα′

s.t y>α′ = 0, α′
>1 = ν, 0 ≤ α′ ≤ 1

N
1.

We first notice that the two equality constraints can be expressed by class-wise total weight mass
conditions: α′1

>1 = α′−1
>1 = ν/2. Due to these equality constraints, reasonable subproblems

require yi = yj ; otherwise, neither α′i nor α′j could be changed. Consequently this constraint is
implemented by the selection strategy and a proper choice of the initial solution candiate. Note
that feasible initial points also require ν ≤ C ·Nmin/N . To recover problem (6), we need to perform
a variable transformation α′ 7→ C α

µ·N combined with the choice ν = C/(µ ·N).
For 2-class problems, LibSVM’s working set selection strategy for ν-SVMs (cf. WSS 5 in

[FCL05]) traverses the active set twice and thus requires an effort of O(2N + 2T ), where T is
the time to compute a kernel row. A straightforward generalisation traverses the active set for
each of the C classes leading to an effort of O(CN + CT ) which is what we used throughout
experiments. However, when ordering examples, such that yi ≤ yj for i < j and by creating C
arrays to hold the maximum class-wise gradient etc. the computational complexity can be further
reduced to O(N +C ·T +C). An efficient implementation will be made available upon acceptance
of the paper.

5 Experimental Results

The experiments essentially establish two main points. First, the presented method generalizes
similarly well as existing multiclass strategies, like one vs. one and one vs. rest. Second, there is a
considerable speed-up to be gained by our novel mScatter-SVM algorithm.
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(a) Circle (b) Checker

Figure 3: Visualization of toy data sets: (a) 100 class circle data set (b) 100 class checker data set

Dataset Checker-Board Circle Method
37 46 45 4 15 16 k−NN

Error [%] 46 48 49 24 20 22 OVR
37 40 40 6 15 16 MS-SVM

0.00 0.19 20.77 0.00 0.04 5.39 k−NN
Time (s) 0.01 1.62 165.27 0.01 3.73 1549.57 OVR

0.01 1.06 138.38 0.00 0.14 55.61 MS-SVM
#Classes 10 100 1000 10 100 1000
N 200 2000 20000 100 1000 10000

Table 1: Time comparison of the proposed mScatter SVM (MS-SVM) with respect to the tra-
ditional k−NN and one-against-rest (OVR) SVM training strategies. Times include training on
N/2 examples using the optimal parameter settings and testing on the remaining N/2 examples.
Compared to the OVR-SVM, the proposed MS-SVM achieves faster training and testing times
for all experiments (speedup factor up to 27) while achieving better accuracies. Note that these
data sets contain a fixed number k of examples per class and thus k−NN (given here for reference)
achieves the lowest classification error.

To systematically evaluate the properties of our algorithms we first conduct a toy experiment
on two artificially generated data set types: 2d-checker-boards with slightly overlapping fields and
one class for each field, and 2d-data sets of Gaussians evenly distributed on a circle. These data
sets are illustrated in Fig. 3. In these data sets both the number of classes and the number of
data points are increased (cf. Table 1). For the checker (circle) data set we generated 20 (10)
points per class and split the data set evenly into training and validation set (with an equal
number of points in each class). We then apply k nearest neighbor (k−NN), one vs. rest C-SVM
(OVR), and our proposed mScatter-SVM. We perform model selection over several parameters on
the validation set2. We then measure time (training+prediction) and classification error rates (in
percent, rounded) for the best performing model.

As is clearly seen from Table 1, our mScatter-SVM is much faster than the classical multiclass
one vs. rest (OVR) strategy3. In addition, the mScatter-SVM obtains much lower error rates
compared to OVR. Commonly, OVR or OVA deliver highest prediction accuracies. However,
this requires model parameter tuning in a class-specific way. Ultimately they fail to scale due to
the more involved optimization problem. These experiments illustrate in particular the speed-up
properties of our algorithm while maintaining good generalization.

2For k−NN, k ∈ {1, 3, 5, 7, 9}, for SVMs RBF-kernels of width σ2 ∈ {0.1, 1, 5}, SVMC ∈ {1, 10, 100} and
ν ∈ {C/N, 0.5, 0.999}.

3We did not perform one vs. one (OVO) training, as is not tractable when the number of classes is large.
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# training data # testing data # class # attributes
Iris 150 3 4

Wine 178 3 13
Glass 214 6 13
Vowel 528 11 10

Segment 2310 7 19
Dna 2000 1186 3 180

Satimage 4435 2000 6 36

Table 2: Properties of multi-class benchmark data sets used in main study of mScatter-SVM
generalization ability.

Test Rule 1 [Vap98, WW99] One vs. one
Iris 97.33 97.33 97.33

Wine 98.33 98.88 99.44
Glass 71.43 71.03 71.50
Vowel 99.43 98.49 99.05

Segment 97.40 97.58 97.40
Dna 98.39 95.62 95.45

Satimage 90.65 91.25 91.30

Table 3: Classification results using RBF kernel and 10-fold cross-validation over 75 σ-parameters
and 26 µ-parameters on several Real-world data sets.

Having established that our method is fast, we turn in our second experiment to a more thorough
evaluation of the generalization ability of mScatter-SVM. To this end, we study a number of multi-
class benchmark data sets from the LIBSVM web-site [CL01]. These data sets are pre-processed
such that each attribute is linearly scaled to [−1, 1] (except Dna). The properties of these data sets
are listed in Table 2.

For data sets Iris, Wine, Glass, Vowel and Segment we perform 10-fold cross-validation and
report the best average success rate in percent. We cross-validate over 26 µ-parameters and 75-σ
parameters, where σ governs the width of the RBF kernel. We evaluate this many parameters
because we can afford to with our fast method. For data sets Dna and Satimage training and
validation sets are available, in addition to the test set. Here, we use the validation set to determine
the best combination of kernel size and µ. We then test using these parameters based on the same
training data. Some of the same data sets were used in a large comparison study of several
multi-class SVM approaches in [HL02]. As a generic reference point we show some of the results
obtained in that study for joint optimization methods [Vap98, WW99] as well as the one vs. one
approach. The mScatter-SVM performs comparable for most data sets and even better in some
cases (notably on Dna), while for a couple of data sets the method performs only slightly worse.
Overall, mScatter-SVM clearly manages to maintain a good generalization ability compared to the
other much more computationally demanding methods. We mention that we have implemented
the heuristically obtained testing rule in [NCAC08], obtaining quite poor results in several cases
(e.g. Glass: 63.33, Segment: 94.91).
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6 Conclusion

Many problems in science and technology are intrinsically multi-class problems with a large number
of categories to be distinguished. While there are established excellent methods for two-class
problems, it is a challenge to extend them towards a large number of classes in a scalable way.
The straight forward extension of SVMs from two to multiple classes – namely by training all
C(C − 1)/2 one vs. one class combinations – will ultimately lead to infeasible computing times
for a large number of classes. Our novel mScatter-SVM algorithm aims to alleviate this limiting
factor while at the same time maintaining comparible generalization performance; it thus yields a
huge speedup. The algorithmic insight to achieve this comes from a reformulation of the classical
SVM in terms of class means and the scatter involved. In doing so, the arithmetic mean over all
class means becomes a pivotal quantity and helps to maintain a tractable number of constraints.
Intuitively, the resulting mathematical program (cf. Eq. (5)) enforces every sample to be by a
margin more similar to it’s class mean than to the overall mean. The assumptions under which
our method will work well also becomes transparent, namely, there should be a certain homogeneity
among the classes wrt. noise, outliers and regularization treatment. The reference to a global mean
introduces a global regularization or stiffness of the model. There are, of course, learning problems
that may require a fine grained class-wise regularization that is systematically only available by the
one vs. one multi-class approach. Note however that there is a sufficiently vast body of multi-class
problems that match our assumptions above.

So far, we have used RBF kernels in combination with an angle based classification rule for
deciding between multiple classes. We aim to further study which classification rule is suitable for
which kernel transformation. Future work will also exploit the mScatter-SVM algorithm for image
annotation, in subphoneme classification for speech recognition, and in computational biology.
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