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Abstract

In this master’s thesis we adapt recent results on optimal control of continuous-time lin-
ear differential-algebraic equations to the discrete-time case of implicit difference equa-
tions. First, we adapt equivalent characterizations of solvability of the so-called Kalman-
Yakubovich-Popov inequality for differential-algebraic equations to the case of implicit
difference equations. That is, we relate the solvability of a certain matrix inequality to
the positivity of the Popov function on the unit circle. An essential difference between the
continuous-time and the discrete-time linear-quadratic optimal control problem is due
to different structures occurring during the analysis in the form of even or palindromic
matrix pencils, respectively. Therefore, with the help of certain structured Kronecker
canonical forms, we adapt characterizations of inertia of even matrix pencils to palin-
dromic matrix pencils. To this end, we first introduce a suitable notion of inertia for
palindromic matrix pencils. These results are used – analogously to the continuous-time
case – to characterize solvability of Lur’e equations equivalently by the existence of cer-
tain deflating subspaces of the palindromic matrix pencil. Then we use these findings to
describe feasibility and the structure of solutions of the linear-quadratic control problem
with infinite time horizon. Finally, these results are illustrated by means of an example.
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Zusammenfassung

In dieser Masterarbeit werden aktuelle Ergebnisse zur Optimalsteuerung zeitkontinuierli-
cher linearer differentiell-algebraischer Gleichungen auf den zeitdiskreten Fall impliziter
Differenzengleichungen übertragen. Zunächst werden äquivalente Charakterisierungen
zur Lösung der sogenannten Kalman-Yakubovich-Popov-Ungleichung für differentiell-
algebraische Gleichungen auf den Fall impliziter Differenzengleichungen übertragen, d. h.
die Lösung einer bestimmten linearen Matrixungleichung wird mit der Positivität der
Popov-Funktion auf dem Einheitskreis in Verbindung gebracht. Ein wesentlicher Un-
terschied zwischen dem zeitdiskreten und dem zeitkontinuierlichen linear-quadratischen
Optimalsteuerungsproblem besteht in der bei der Analyse auftretenden Struktur in Form
eines geraden bzw. palindromischen Matrizenbüschels. Anschließend werden daher – mit-
hilfe geeigneter strukturierter Kronecker-Normalformen – Charakterisierungen über die
Trägheit für gerade Matrizenbüschel auf palindromische Matrizenbüschel übertragen.
Dazu wird zunächst ein geeigneter Trägheitsbegriff für palindromische Matrizenbüschel
eingeführt. Diese Ergebnisse werden benutzt, um – analog zum zeitkontinuierlichem Fall
– die Lösbarkeit von Lur’e-Gleichungen äquivalent durch die Existenz bestimmter inva-
rianter Unterräume des palindromischen Matrizenbüschels zu beschreiben. Danach wer-
den die gewonnenen Resultate genutzt, um Zulässigkeit und die Struktur von Lösungen
des linear-quadratischen Optimalsteuerungsproblems für implizite Differenzengleichun-
gen mit unendlichem Zeithorizont zu untersuchen. Abschließend werden die Ergebnisse
anhand eines Beispiels verdeutlicht.
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Nomenclature

∅ empty set

N = {1, 2, . . .}; set of natural numbers

N0 = N ∪ {0}

R field of real numbers

R+ set of positive real numbers

R+
0 set of non-negative real numbers

C field of complex numbers

ℜ(α) real part of a complex number α ∈ C

I(α) imaginary part of a complex number α ∈ C

K ∈ {C,R}

KN0 set of all sequences x = (xj)j whose components lie in the space K

Km×n set of m by n matrices over K

A
1
2 the unique square root of a positive semi-definite matrix A ∈ Kn×n

det A determinant of a matrix A ∈ Kn×n

tr A trace of a matrix A ∈ Kn×n

A∗ complex transpose of a matrix A ∈ Km×n

A+ Moore-Penrose pseudo inverse of a matrix A ∈ Km×n

Ag a generalized inverse of a matrix A ∈ Km×n, i. e., AAgA = A

A−∗ conjugate transpose of the inverse of an invertible matrix A ∈ Km×n

In(A) = (n+, n0, n−); inertia of a quasi-Hermitian A ∈ Kn×n, where n+, n0, and
n− denote the number of eigenvalues λ = rei ω

2 where r is positive, zero, or
negative, respectively, ω ∈ [0, 2π)
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Nomenclature

Km×n[z] ring of polynomial matrices with coefficients in K

Km×n(z) field of rational matrices with coefficients in K

rkK(z) A(z) rank of a rational matrix A(z) ∈ Km×n(z)

G∼(z) := G
(
z−1)∗ for the rational matrix G(z) ∈ Kn×n(z)

∥x∥2 2-norm of a vector x ∈ Kn

ℓ2(Kn) space of quadratic-summable sequences x ∈ (Kn)N0 , i. e.,
∑∞

k=0 ∥xj∥2 < ∞

∥x∥ℓ2 = (
∑∞

k=0 ∥xj∥2)
1
2 ; ℓ2-norm of a sequence x ∈ ℓ2(Kn)

d
dt differentiation operator, i. e., d

dtx(·) = ẋ(·)

∆h discretization operator, see (2.10)

σ shift operator, i. e., σ(xj)j = (xj+1)j

Bσ
(E, A, B) set of all [ x∗ u∗ ]∗ which solve the discrete-time IDE (2.6) for some consis-

tent x0 ∈ Kn

B
d
dt

(E, A, B) set of all [ x∗ u∗ ]∗ which solve the continuous-time DAE (2.8) for some
consistent x0 ∈ Kn

Σm,n(K) set of all (E, A, B) ∈ Kn×n × Kn×n × Kn×m with regular zE − A

Σw
m,n(K) set of all (E, A, B, Q, S, R) ∈ Kn×n × Kn×n × Kn×m × Kn×n × Kn×m ×

Km×m, where (E, A, B) ∈ Σm,n(K) and Q and R are Hermitian

Wc set of x0 ∈ Kn such that there exist (uj)j ∈ (Km)N0 so that the IDE (2.6)
is solvable

J σ(x, u) objective function of the discrete-time optimal control problem (2.27)

J
d
dt (x, u) objective function of the continuous-time optimal control problem (2.28)

Wσ set of all x0 ∈ Kn such that there exists [ x∗ u∗ ]∗ ∈ Bσ
(E, A, B) with Ex0 =

Ex0

W
d
dt set of all x0 ∈ Kn such that there exists [ x∗ u∗ ]∗ ∈ B

d
dt

(E, A, B) with Ex(0) =
Ex0
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1 Introduction

Differential-algebraic equations arise when modeling the behavior of dynamical systems
[Lue77; ND89]. For instance, these can be electrical circuits [Ebe08; Rei10] or mechan-
ical multibody systems [Ste06]. For the analysis of these mostly nonlinear problems
one usually employs some linearization techniques [Cam95; KM06]. If one chooses a
stationary reference solution one ends up in a linear system of the form

E
d
dt

x(t) = Ax(t) + Bu(t), (1.1)

where E, A ∈ Kn×n, B ∈ Kn×m are some matrices, x(t) ∈ Kn is state, and u(t) ∈ Km

denotes the input. This – in addition to the fact that some applications can even be
modeled directly by a linear system as in (1.1) – makes it important to understand
the structure of these linear systems. However, in practice it is not always possible to
reflect the continuous-time character of equation (1.1). Measurements are usually made
at discrete time points only. This leads to implicit difference equations of the form

Eσxj = Axj + Buj , (1.2)

where σ denotes the shift operator, i. e., σxj = xj+1 and (xj)j ∈ (Kn)N0 , (uj)j ∈ (Km)N0

are some sequences.
A particularly important problem for systems (1.1) and (1.2) is the linear-quadratic

optimal control problem [Bac06; KM04; LR95; Meh91], that means finding an input u
such that a certain functional given by∫ ∞

0

[
x(t)
u(t)

]∗ [
Q S
S∗ R

] [
x(t)
u(t)

]
dt (1.3)

subject to (1.1) in the continuous-time case or

∞∑
j=0

[
xj

uj

]∗ [
Q S
S∗ R

] [
xj

uj

]
(1.4)

subject to (1.2) in the discrete-time case, respectively, is minimized. Directly connected
to the optimal control problem are specially structured matrix pencils in the form of
even matrix pencils in the continuous-time case or BVD or palindromic matrix pencils
in the discrete-time case.
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1 Introduction

Vs

Is
G

C

ϕ1

1
ϕ2

2

GND

Figure 1.1: Simple Electrical Circuit

As an instructive example we consider the simple electrical circuit as in Figure 1.1
consisting of a voltage source Vs, a conductance G > 0, and a capacitor C > 0; all
connected in series. Using the modified nodal analysis [ET00], i. e., writing down Kirch-
hoff’s current law for nodes 1 and 2, we obtain the equation[

0 0
0 C

]
d
dt

[
ϕ1(·)
ϕ2(·)

]
=
[
−G G
G −G

] [
ϕ1(·)
ϕ2(·)

]
+
[
−1
0

]
Is, (1.5)

where ϕ1, ϕ2 denote the node potentials and Is is the input current from the voltage
source. Set x = [ ϕ∗

1 ϕ∗
2 ]∗ and u = Is. Then, discretization of this equation with the

explicit Euler method with stepsize h, i. e., replacing ẋ(tj), where tj = tj−1 + h, by

x(tj+1) − x(tj)
h

, (1.6)

leads to the system[
0 0
0 C

]
σ

[
(ϕ1,j)j

(ϕ2,j)j

]
=
[
−hG hG
hG C − hG

] [
ϕ1
ϕ2

]
+
[
−h
0

]
Is. (1.7)

We will be interested in finding solutions to this system such that the expression
∞∑

j=0
∥xj∥2

2 + ∥uj∥2
2 (1.8)

is minimized, i. e., we set Q = I2, S = 0, and R = 1 in (1.3).
The emphasis in this thesis is to provide analogous results in the discrete-time setting

to what was obtained in [Rei11; RRV15; Voi15] for continuous-time systems. Therefore,
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at first, in Chapter 2 we recap basic matrix and control theoretic notations and results.
In Chapter 3 we introduce a variant of the Kalman-Yakubovich-Popov inequality for
implicit difference equations given by[

A∗PA − E∗PE + Q A∗PB + S
B∗PA + S∗ B∗PB + R

]
⪰VΣ 0, P = P ∗, (1.9)

a discrete-time version of the inequality introduced in [RRV15]. We show statements
which relate the solvability of this inequality on a certain subspace VΣ to the non-
negativity of the Popov function on the unit circle, a certain rational matrix function
defined by

Φ(z) :=
[
(zE − A)−1B

Im

]∼ [
Q S
S∗ R

] [
(zE − A)−1B

Im

]
∈ Km×m(z), (1.10)

where G∼(z) := G
(
z−1)∗ for a rational matrix G(z) ∈ Kn×n(z).

In Chapter 4 we introduce the notion of inertia for palindromic matrix pencils eval-
uated at the unit circle and provide spectral characterizations regarding positivity of
the Popov function, similar to the characterizations which were obtained in [Rei11] and
[Voi15] for even matrix pencils in the continuous-time case.

In Chapter 5 we investigate Lur’e equations – a more general form of algebraic
Riccati equations [LR95; Meh91] – for the discrete-time control problem, where for
q := rkK(z) Φ(z) a solution (X, K, L) ∈ Kn×n × Kq×n × Kq×m with X = X∗ fulfills[

A∗XA − E∗XE + Q A∗XB + S
B∗XA + S∗ B∗XB + R

]
=VΣ

[
K∗

L∗

] [
K L

]
. (1.11)

We show that solvability of this equation – in analogy to the results in [Rei11; RRV15]
for even matrix in the continuous-time case – can be related to the existence of certain
deflating subspaces of corresponding BVD matrix pencils or palindromic matrix pencils,
respectively.

Finally, in Chapter 6 we apply these results to the optimal control problem and de-
scribe feasibility and the structure of optimal solutions.
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2 Mathematical Preliminaries

In this chapter we introduce basic notions that we need for the investigations in this
thesis.

2.1 Matrix Theoretic Concepts

First we recall some fundamentals of matrices, matrix polynomials, and rational matri-
ces.

2.1.1 Matrix Inequalities

Matrix inequalities play an important role in optimal and robust control. Here we
consider matrix inequalities on a certain subspace.

Definition 2.1. Let A ∈ Kn×n and V ⊆ Kn be some subspace. Then we call A
positive (semi-)definite on V if x∗Ax > 0 (x∗Ax ≥ 0) for all x ∈ V \ {0} and we
write A ≻V 0 (A ⪰V 0). Furthermore, A is called negative (semi-)definite if −A is
positive (semi-)definite and we write A ≺V 0 (A ⪯V 0). If A is positive and negative
semi-definite we write A =V 0.

Further, let B ∈ Kn×n. By A ⪰V B, A ≻V B, or A =V B we mean A − B ⪰V
0, A − B ≻V 0, and A − B =V 0, respectively.

Note that for V = Kn this reduces to the standard definition of definiteness. If this
is the case then we omit the subscript V in the inequalities.

Lemma 2.2. Let A ∈ Kn×n, B ∈ Kn×k, and V ⊆ Kn be some subspace with im B ⊆ V.
Then we have:

(a) For A ⪰V 0 it follows that B∗AB ⪰ 0.

(b) If im B = V, then B∗AB ⪰ 0 implies A ⪰V 0.

(c) Let Ṽ ⊆ Kn be a subspace such that Ṽ = T −1V for some invertible T ∈ Kn×n.
Then we have A ⪰V 0 if and only if T ∗AT ⪰

Ṽ
0.

In particular, if V = Ṽ = Kn then for every invertible T ∈ Kn×n this means that
A ⪰ 0 if and only if T ∗AT ⪰ 0.

5



2 Mathematical Preliminaries

Proof. First we show statement (a). Thus, let y = Bx ∈ im B ⊆ V for some arbitrary
x ∈ Kk be given. Then we obtain

x∗(B∗AB)x = (Bx)∗A(Bx) ≥ 0

and thus B∗AB ⪰ 0.
For statement (b) assume that y ∈ V is given. We can write y = Bx for some x ∈ Kk

and thus
y∗Ay = (Bx)∗A(Bx) = x∗(B∗AB)x ≥ 0.

Hence, A ⪰V 0.
Now we show part (c). Let B ∈ Kn×k be some matrix with im B = V. Then

B̃ := T −1B fulfills im B̃ = Ṽ. Assume that A ⪰V 0. By (a) we obtain that B∗AB ⪰ 0
and thus also B̃∗(T ∗AT )B̃ ⪰ 0. Hence, by (b) we have T ∗AT ⪰

Ṽ
0. The converse

direction follows analogously.

We have seen that transformations of the form T ∗AT for matrices A ∈ Kn×n and
invertible T ∈ Kn×n can be used in matrix inequalities. Thus, we introduce the following
notation.

Definition 2.3. Let A, B ∈ Kn×n be given. Then A and B are congruent if there exists
an invertible T ∈ Kn×n such that

T ∗AT = B.

If this is the case then we write A
T∼ B and if the transformation matrix T is not of

interest we may also write A ∼ B.

A useful tool for characterizing positivity of a block matrix is the Schur complement.

Proposition 2.4. [HZ05, Section 1.6] Let an Hermitian matrix

X =
[

A B
B∗ C

]
∈ Kn+m×n+m

be given and denote by Ag and Cg generalized inverses of A and C satisfying AAgA = A
and CCgC = C, respectively. Then the following are equivalent.

(a) We have that X ⪰ 0.

(b) It holds that A ⪰ 0, C − B∗AgB ⪰ 0, and (In − AAg)B = 0.

(c) It holds that C ⪰ 0, A − BCgB∗ ⪰ 0, and (In − CCg)B∗ = 0.

The matrices C − B∗AgB and A − BCgB∗ are called generalized Schur complement
with respect to A and C, respectively.

6



2.1 Matrix Theoretic Concepts

2.1.2 Matrix Pencils
In this subsection we introduce well-known concepts for general matrix pencils zE −A ∈
Km×n[z]. These are matrix polynomials of degree less or equal one.

Definition 2.5. A matrix pencil zE − A ∈ Km×n[z] is called regular if m = n and

det(zE − A) ∈ K[z] \ {0}.

Otherwise it is called singular.

For a regular pencil zE − A ∈ Kn×n[z] we define eigenvalues and eigenvectors.

Definition 2.6. Let zE − A ∈ Kn×n[z] be regular. A scalar λ ∈ C is called (finite)
eigenvalue of the pencil zE − A ∈ Kn×n[z] if

det(λE − A) = 0.

In addition, λ = ∞ is called (infinite) eigenvalue of zE − A if det(E) = 0. Vectors
0 ̸= x ∈ Kn such that (λE − A)x = 0 in the case of finite eigenvalues or Ex = 0
in the case of infinite eigenvalues, respectively, are called eigenvectors of the pencil
zE − A ∈ Kn×n[z].

The definition of infinite eigenvalues ∞ is justified by the fact that every finite eigen-
value also fulfills

det
( 1

λ
(λE − A)

)
= 0

and
lim

λ→∞
det

( 1
λ

(λE − A)
)

= lim
λ→∞

det
(

E − 1
λ

A

)
= det(E).

Thus, whenever we say that some statement is valid at ∞, we actually mean it is valid
at 0 for the reverse pencil E − zA ∈ Kn×n[z].

The spectral structure of a matrix pencil is obtained from the so-called Kronecker
canonical form (KCF). A matrix pencil zE − A ∈ Km×n[z] is said to be in KCF if it can
be written as

diag (K1(z), . . . , Kl(z)) , l ∈ N,

where each block Kj(z) is in one of the following forms:

Type K1: ⎡⎢⎢⎢⎢⎢⎢⎢⎣

z − λ 1
z − λ 1

. . .
. . .

. . . 1
z − λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Kkj×kj [z], kj ∈ N, λ ∈ C;

7



2 Mathematical Preliminaries

Type K2: ⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 z
−1 z

. . .
. . .

. . . z
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Kkj×kj [z], kj ∈ N;

Type K3: ⎡⎢⎢⎢⎢⎣
−1 z

−1 z
. . .

. . .

−1 z

⎤⎥⎥⎥⎥⎦ ∈ Kkj−1×kj [z], kj ∈ N;

Type K4: ⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
z −1

z
. . .

. . . −1
z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Kkj×kj−1[z], kj ∈ N.

Blocks of type K1 and K2 correspond to finite eigenvalues and infinite eigenvalues,
respectively. Blocks of these types and combinations of them are regular. Blocks of
types K3 and K4 are rectangular and thus not regular. Note that we allow for blocks of
type K3 or K4 to have zero rows or zero columns, respectively. Such blocks represent a
zero row or zero column, respectively, in the KCF of zE − A.

We have the following theorem.

Theorem 2.7. [Gan60] For every matrix pencil zE−A ∈ Km×n[z], there exist invertible
matrices W ∈ Cm×m, T ∈ Cn×n such that the pencil

W (zE − A)T ∈ Km×n[z]

is in KCF. The KCF is unique up to permutations of the blocks.

In the case of a regular pencil zE − A ∈ Kn×n[z], i. e., blocks of type K3 and K4 are
not present in its KCF, we obtain the following simplification.

Theorem 2.8 (Weierstrass canonical form). For every regular matrix pencil zE − A ∈
Kn×n[z], there exist invertible matrices W, T ∈ Cn×n such that

W (zE − A)T =
[
zIn1 − J 0

0 zN − In−n1

]
, (2.1)

8



2.1 Matrix Theoretic Concepts

where n1 ∈ N0, J ∈ Kn1×n1 is in Jordan canonical form, and N ∈ Kn−n1×n−n1 is in
Jordan canonical form and nilpotent.

If we want transformation matrices W, T ∈ Kn×n, i. e., W and T lie in the same field
as E and A, we can use another form which we obtain at the cost of losing the Jordan
structure of J and N .

Theorem 2.9 (Quasi-Weierstrass form [BIT12]). For every regular matrix pencil zE −
A ∈ Kn×n[z], there exist invertible matrices W, T ∈ Kn×n such that

W (zE − A)T =
[
zIn1 − J 0

0 zN − In−n1

]
, (2.2)

where n1 ∈ N0, J ∈ Kn1×n1, and N ∈ Kn−n1×n−n1 is nilpotent.

When characterizing the eigenstructure of matrices A ∈ Kn×n, often invariant sub-
spaces are involved, i. e., subspaces V ⊆ Kn such that AV ⊆ V. The generalization
of invariant subspaces to matrix pencils zE − A ∈ Km×n[z] are so-called deflating sub-
spaces. Here, we are using a general definition which is also suitable for singular matrix
pencils, see [Doo83; Voi15].

Definition 2.10 (Basis matrix, deflating subspaces). Let zE − A ∈ Kn×n[z] and some
subspace Y ⊆ Kn be given.

(a) A matrix Y ∈ Cn×k with full column rank such that Y = im Y is called basis
matrix of Y.

(b) If for a basis matrix Y ∈ Cn×k of Y there exist W ∈ Cn×p and zÊ − Â ∈ Cp×n[z]
such that

(zE − A)V = W (zÊ − Â)

and rkC(z)(zÊ − Â) = p, then Y is called deflating subspace of zE − A.

Indeed, every invariant subspace V ⊆ Kn of A ∈ Kn×n with basis matrix V ∈ Kn×k

describes a deflating subspace for the associated matrix pencil zIn −A by setting W = V
and (zÊ − Â) = zIk − Λ, where Λ ∈ Kk×k fulfills AV = V Λ.

An important property that deflating subspaces might have is E-neutrality.

Definition 2.11 (E-neutrality). [GLR06; Rei11] Let E ∈ Kn×n and some subspace
Y ⊆ Kn be given. Then Y is called E-neutral if for all x, y ∈ Y it holds that

x∗Ey = 0.

It is called maximally E-neutral if every proper superspace W ⊋ Y is not E-neutral.

9



2 Mathematical Preliminaries

For a subspace Y ⊆ Kn we can check E-neutrality by testing whether

Y ∗EY = 0, (2.3)

where Y ∈ Kn×k is given such that im Y = Y. In addition, we have the following lemma.

Lemma 2.12. Let Y ∈ Kn×k be given and let W ∈ Kn×n, T ∈ Kk×k be some invertible
matrices. Further, let E ∈ Kn×n and Ŷ := WY T . Then Y is E-neutral if and only if
im Ŷ is W −∗EW −1-neutral.

Proof. We have that im Y is E-neutral if and only if Y ∗EY = 0 which holds if and only
if

Ŷ ∗(W −∗EW −1)Ŷ = T ∗Y ∗W ∗W −∗EW −1WY T = 0

which is valid if and only if im Ŷ is W −∗EW −1-neutral.

We now provide a result on how to check for maximality of an E-neutral space.

Lemma 2.13. Let X, Y ∈ Kn×r be given such that

im
[
X
Y

]

is E-neutral with
E =

[
0 −In

In 0

]
.

Then it follows that

rk
[
X
Y

]
≤ n.

Proof. From E-neutrality we obtain that

[
Y ∗ −X∗

] [X
Y

]
= 0

and thus
dim ker

[
Y ∗ −X∗

]
≥ rk

[
X
Y

]
.

Hence, the rank nullity theorem [Mey00, p. 199] implies

2n = dim ker
[
Y ∗ −X∗

]
+ rk

[
Y ∗ −X∗

]
≥ 2 rk

[
X
Y

]
.

10



2.1 Matrix Theoretic Concepts

2.1.3 Polynomial and Rational Matrices

We now turn to matrix polynomials of arbitrary degrees, i. e., we consider matrices
A(z) ∈ Km×n[z]. This part is based on [Kac07; PW98].

Definition 2.14. A matrix U(z) ∈ Kn×n[z] is called unimodular if it is invertible over
K[z], i. e., its inverse exists and is again a polynomial in K.

Unimodular matrices can be characterized as follows.

Lemma 2.15. [PW98, Section 2.5] Let U(z) ∈ Kn×n[z] be given. Then U(z) is uni-
modular if and only if its determinant is a constant.

We have the following canonical form under unimodular transformations for polyno-
mial matrices A(z) ∈ K[z].

Theorem 2.16 (Smith form). [PW98, Section 2.5] Let A(z) ∈ Km×n[z] be given. Then
there exist unimodular U(z) ∈ Km×m[z], V (z) ∈ Kn×n[z] such that

U(z)−1A(z)V (z)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(z)
. . .

pr(z)
0

. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.4)

where pj ∈ K[z] \ {0} and pj divides pj+1 for j = 1, . . . , r − 1 and r ∈ N0.

Similar statements as for matrix polynomials can be obtained for rational matrices.
These are matrices A(z) ∈ Km×n(z), i. e., matrices whose coefficients lie in the field of
rational functions.

Theorem 2.17 (Smith-McMillan form). [Kac07, Section 2.6] Let A(z) ∈ Km×n(z) be
given. Then there exist unimodular U(z) ∈ Km×m[z], V (z) ∈ Kn×n[z] such that

U(z)−1A(z)V (z)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(z)
q1(z)

. . .
pr(z)
qr(z)

0
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.5)

11



2 Mathematical Preliminaries

where pj , qj ∈ K[z]\{0} with leading coefficient one such that pj and qj have no nontrivial
common divisor, pj divides pj+1, and qj+1 divides qj for j = 1, . . . , r − 1 and r ∈ N0.

By P(A) we denote the set of poles of A(z), i. e., P(A) is the set of all λ ∈ C with
q1(λ) = 0.

Note that polynomial matrices are canonically embedded in the field of rational ma-
trices, i. e., the following statements are also valid for polynomial matrices.

Definition 2.18. Let A(z) ∈ Km×n(z) be given. The normal rank of A(z) is defined as
the rank over the field Km×n(z) and denoted by rkK(z) A(z). The rational matrix A(z)
is rank deficient, if

rkK(z) A(z) < min{m, n}.

Moreover, A(z) has a rank drop at λ ∈ C if

rk A(λ) < rkK(z) A(z).

Lemma 2.19. [Kac07, Section 1.6] Let A ∈ Km×n(z) be given. Then the normal rank
of A is invariant under multiplications with unimodular matrices.

We have an immediate consequence of the Smith-McMillan form.

Corollary 2.20. For a rational matrix A(z) ∈ Km×m(z) with set of poles P(A) the
mapping

K \ P(A) ∋ λ ↦→ rk A(λ)
is lower semi-continuous, i. e., for all λ0 ∈ K \ P(A) we have

rk A(λ0) ≤ lim inf
λ→λ0

rk A(λ).

In particular, rank drops only occur at isolated points.

Proof. First transform A(z) into Smith-McMillan form which by Lemma 2.19 has the
same normal rank as A(z). The diagonal structure and the fact that rational functions
only have rank drops at isolated points then completes the proof.

2.2 Control Theoretic Concepts
Let E, A ∈ Kn×n and B ∈ Km×n be given matrices. Then

Eσ(xj)j = A ((xj)j) + B ((uj)j) , x0 = x0, (2.6)

where x = (xj)j ∈ (Kn)N0 and u = (uj)j ∈ (Km)N0 , is called linear-implicit difference
equation – or short – implicit difference equation (IDE). Here, σ denotes the shift oper-
ator mapping a sequence (xj)j ∈ (Kn)N0 to (xj+1)j ∈ (Kn)N0 and x0 ∈ Kn is the initial
condition. For every j ∈ N0 (2.6) reads as

Exj+1 = Axj + Buj , x0 = x0. (2.7)

12



2.2 Control Theoretic Concepts

In the case where E = In we also call (2.6) an explicit difference equation (EDE).
By replacing the shift operator σ by the differentiation operator d

dt we obtain a linear
differential-algebraic equation (DAE), also called descriptor systems – the continuous-
time counterpart of IDEs – which have the form

E
d
dt

x(·) = A (x(·)) + B (u(·)) , x(0) = x0, (2.8)

where x : I → Kn, u : I → Km, and I = [0, ∞) ⊆ R. For every t ∈ I equation (2.8) has
the form

Eẋ(t) = Ax(t) + Bu(t) (2.9)
with the initial condition x(0) = x0. In the case where E = In we also call (2.8) an
ordinary differential equation (ODE).

IDEs and DAEs are strongly related. For instance, by sampling we can construct an
IDE out of a DAE. To see this, we first construct a sequence (xj)j from x(·) by setting
xj := x(tj), where tj = tj−1 + h, and h ∈ R+ denotes a step size. The quantity 1/h is
called sampling rate. Next, we introduce the discretization operator ∆h := (σ − In)/h
corresponding to a discretization with the explicit Euler method. With a slight abuse of
notation we also allow the application of ∆h (and σ) to single elements xj . This has to be
understood as taking the n-th element of the sequence obtained by evaluating ∆h(xj)j

(or σ(xj)j). This operator maps every element xj to a first order forward difference, i. e.,

∆hxj = xj+1 − xj

h
. (2.10)

Letting h tend towards 0, we see that ∆hxj is an approximation to ẋ(tj). Thus, replacing
ẋ(tj) in (2.9) by ∆hxj we obtain for every j ∈ N0 that

Eσxj = (E + Ah)xj + Bhuj ,

where Ah := hA and Bh := hB.
Another approach to discretize the DAE (2.9) is using the implicit Euler method, i. e.,

we approximate ẋ(tj) by
xj − xj−1

h
. (2.11)

This leads to the discretized system[
E − Ah −Bh

]
σ

[
xj

uj

]
=
[
E 0

] [xj

uj

]
. (2.12)

Yet another approach to discretize the DAE (2.9) using the trapezoidal rule [HNW93,
p. 204] is approximating ẋ(tj+1) + ẋ(tj) by 2/h(xj+1 + xj). Thus, summing up equation
(2.9) at t = tj and t = tj+1 and applying the trapezoidal rule gives[

E − h
2 A −h

2 B
]

σ

[
xj

uj

]
=
[
E + h

2 A h
2 B
] [xj

uj

]
. (2.13)

13
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The discretizations presented here will appear at different stages in the forthcoming
chapters.

2.2.1 Solution Theory

In this subsection we characterize solutions of the IDE (2.6). For given (uj)j ∈ (Km)N0

and x0 ∈ Kn we say that (2.6) is solvable if we have (xj)j ∈ (Kn)N0 such that (2.6) is
fulfilled. If such (xj)j is unique it is also called uniquely solvable for (uj)j ∈ (Km)N0

and x0 ∈ Kn. We call x0 ∈ Kn a consistent initial value if there exists (uj)j ∈ (Km)N0

such that the IDE (2.6) is solvable, otherwise x0 is called inconsistent. Furthermore, we
denote by Wc the set of consistent initial values, i. e., the set of all x0 ∈ Kn such there
exist (uj)j ∈ (Km)N0 so that the IDE (2.6) is solvable.

We have the following well known result, see [Brü07; Sty03].

Lemma 2.21. Let matrices (E, A, B) ∈ Kn×n ×Kn×n ×Kn×m be given. Then the IDE
(2.6) is uniquely solvable for every (uj)j ∈ (Kn)N0 and consistent x0 ∈ Kn if and only if
zE − A is regular.
If this is the case then there are T, W ∈ Kn×n leading to quasi-Weierstrass form (2.2)
with some J ∈ Kn1×n1 and nilpotent N ∈ Kn−n1×n−n1 , n1 ∈ N0. Further, let ν be the
index of nilpotency of N , i. e.,

ν =

⎧⎨⎩min
{

k ∈ N
⏐⏐⏐Nk−1 ̸= 0, Nk = 0

}
, n − n1 ̸= 0,

0, n1 = n,

with the convention that 00
n×n := In.

Then the unique solution (xj)j ∈ (Kn)N0 for given (uj)j ∈ (Km)N0 and consistent
initial value x0 ∈ Kn can be written as

xj = FjEx0 +
j+ν−1∑

k=0
Fj−k−1Buk, (2.14)

where the coefficients Fj are defined by

Fj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
T

[
J j 0
0 0

]
W, j = 0, 1, . . . ,

T

[
0 0
0 −N−j−1

]
W, j = −1, −2, . . . .

For the rest of this thesis we will restrict to the case where zE − A is regular and
denote the set of all such (E, A, B) ∈ Kn×n × Kn×n × Kn×m with regular zE − A by
Σm,n(K). This is no restriction in practice, since by reinterpretation of variables we can
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2.2 Control Theoretic Concepts

always extract a regular system from an IDE, see [CKM12]. The index of nilpotency
ν as defined in Lemma 2.21 is characteristic for the system (E, A, B) ∈ Σm,n(K), i. e.,
it is independent of the choice of particular transformation matrices that lead to quasi-
Weierstrass form (2.2). Thus, we will refer to ν as the index of such a system (E, A, B).
Moreover, we denote by Bσ

(E, A, B) the (discrete-time) behavior of (E, A, B), i. e., the
linear space of all [

(xj)j

(uj)j

]
∈ (Kn)N0 × (Km)N0

which solve (2.6) for some consistent x0 ∈ Kn. In addition, we call Wσ the set of
consistent initial shift variables, i. e., the set of all x0 ∈ Kn such that there exists[

(xj)j

(uj)j

]
∈ Bσ

(E, A, B)

with Ex0 = Ex0.
We have the following characterization of Wσ which is an adaption of the character-

ization [Ber14, Lemma 3.1.4(c)] to the discrete-time case.

Lemma 2.22. Let (E, A, B) ∈ Σm,n(K) with corresponding IDE (2.6) be given. Fur-
ther, let Wc be the set of all consistent initial values x0 ∈ Kn, i. e., for all x0 ∈ Wc

there exists [ x∗ u∗ ]∗ ∈ Bσ
(E, A, B) with x0 = x0. Then for Wσ we have that

Wσ =Wc + ker E.

Proof. First we show the inclusion ⊆. Thus, let x0 ∈Wσ. Then there exists [ x∗ u∗ ]∗ ∈
Bσ

(E, A, B) with Ex0 = Ex0. Since x0 ∈Wc, this means we can write x0 = x0 +(x0 −x0),
where x0 − x0 ∈ ker E.

For the inclusion ⊇ let x = xv + xe ∈ Wc + ker E. Since xv ∈ Wc we can find
[ x∗ u∗ ]∗ ∈ Bσ

(E, A, B) such that x0 = xv and thus Ex = E(xv + xe) = Exv = Ex0.

In the continuous-time case, similar statements are valid, see, e. g., [Ber14; KM06].
We denote by B

d
dt

(E, A, B) the (continuous-time) behavior of (E, A, B), i. e., the linear
space of all [ x∗ u∗ ]∗ in some proper function space which solve (2.8) for some consistent
x0 ∈ Kn, see [Ber14] for details. Note that the set of initial values x0 such that there
exists [ x∗ u∗ ]∗ ∈ B

d
dt

(E, A, B) with x0 = x0 coincides with Wc, see, e. g., [Dai89]. In
addition, we call W

d
dt the set of consistent initial differential variables, i. e., the set of

all x0 ∈ Kn such that there exists [
x(·)
u(·)

]
∈ B

d
dt

(E, A, B)

with Ex0 = Ex0. It coincides with Wσ by Lemma 2.22.
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2.2.2 Feedback Equivalence
In this subsection we introduce an equivalence relation on the set Σm,n(K) which will
be particularly useful in Chapters 3 and 5. This section is mainly based on [RRV15,
Section 2.3].

Definition 2.23 (Feedback equivalence). Two systems (Ei, Ai, Bi) ∈ Σm,n(K), i = 1, 2,
are said to be feedback equivalent if there exist invertible matrices W, T ∈ Kn×n and a
feedback matrix F ∈ Km×n such that[

zE2 − A2 −B2
]

= W
[
zE1 − A1 −B1

]
TF ,

where
TF =

[
T 0

FT Im

]
.

If this is the case we say that (E1, A1, B1) is feedback equivalent to (E2, A2, B2) via W
and TF .

Note that in the behavior sense, i. e., looking at the system defined by zE −A, where

E :=
[
E 0

]
, A :=

[
A B

]
,

feedback equivalence corresponds to strong equivalence as introduced in [KM06]. In
particular, this means that feedback equivalence is indeed an equivalence relation, see
[KM06, Lemma 2.2.].

Given such an equivalence relation, one is usually interested in some condensed form.
The following result provides such a form.

Theorem 2.24 (Feedback equivalence form). [IR14, Proposition 2.12] Let the system
(E, A, B) ∈ Σm,n(K) be given. Then (E, A, B) is feedback equivalent to (EF , AF , BF )
via some W and TF , where

[
zEF − AF BF

]
=

⎡⎢⎣zIn1 − A11 0 0 B1
0 −In2 zE23 B2
0 0 zE33 − In3 0

⎤⎥⎦ , (2.15)

n1, n2, n3 ∈ N0, and E33 is nilpotent.

A similar form has also been achieved in [BGM97, Theorem 4.1] via unitary transfor-
mations.

Example 2.25 (Simple circuit revisited). Consider the electrical circuit as in (1.7). For
the sake of simplicity we now set h = 1, G = 1, and C = 1. Then the system is given by

E =
[
0 0
0 1

]
, A =

[
−1 1
1 0

]
, B =

[
−1
0

]
. (2.16)
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We obtain that the system is feedback equivalent to

[
zEF − AF −BF

]
= W

[
zE − A −B

]
TF =

[
z − 1 0 1

0 −1 −1

]
(2.17)

via zero feedback, i. e., F = 0 and

W =
[

1 1
−1 0

]
, TF =

⎡⎢⎣1 1 0
1 0 0
0 0 1

⎤⎥⎦ . (2.18)

Thus, we have n1 = n2 = 1 and n3 = 0 in (2.15).

Proposition 2.26. Let the system (E, A, B) ∈ Σm,n(K) be feedback equivalent to the
system (EF , AF , BF ) ∈ Σm,n(K) in feedback equivalence form (2.15). Further, denote
by

(In1 , A11, B1) ∈ Σm,n(K)

the associated EDE system. Then for λ ∈ C we have det(λEF − AF ) ̸= 0 if and only if
det(λIn1 − A11) ̸= 0.

Proof. Note that every nilpotent matrix E33 ∈ Kn3×n3 has only eigenvalues zero and
thus det(sE33 − In3) = (−1)n3 . Then the assertion follows immediately from the block-
diagonal structure of zEF − AF .

2.2.3 System Space

In this subsection we investigate properties of the solution space of the IDEs given by a
system (E, A, B) ∈ Σm,n(K). This section is based on [RRV15, Chapter 3].

Definition 2.27. Let (E, A, B) ∈ Σm,n(K). The smallest subspace VΣ ⊆ Kn+m such
that [

xj

uj

]
∈ VΣ

for all j ∈ N0 and for all [ x∗ u∗ ]∗ ∈ Bσ
(E, A, B) is called system space of (E, A, B).

Lemma 2.28. Let (E, A, B) ∈ Σm,n(K). Further, assume that (EF , AF , BF ) ∈ Σm,n(K)
is feedback equivalent to (E, A, B) via W and TF . Then the system spaces VΣ and VΣ

F

of (E, A, B) and (EF , AF , BF ), respectively, are related via

VΣ = TFVΣ
F . (2.19)

Proof. The assertion has been shown in [RRV15, Lemma 3.2].
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Proposition 2.29. Let (E, A, B) ∈ Σm,n(K) with the system space VΣ be given. Fur-
ther, assume that (EF , AF , BF ) ∈ Σm,n(K) with corresponding system space VΣ

F is
feedback equivalent to (E, A, B) via W and TF such that (EF , AF , BF ) is in feedback
equivalence form (2.15). Then we have:

(a) It holds that VΣ
F = im V Σ

F , where

V Σ
F :=

⎡⎢⎢⎢⎣
In1 0 0 0
0 0 0 −B2
0 0 0 0
0 0 0 Im

⎤⎥⎥⎥⎦ ∈ Kn+m×n+m. (2.20)

(b) It holds that

[
A B

] [(zE − A)−1B
Im

]
= z

[
E 0

] [(zE − A)−1B
Im

]
. (2.21)

(c) For all λ ∈ C with det(λE − A) ̸= 0 it holds that

im
[
(λE − A)−1B

Im

]
⊆ VΣ. (2.22)

(d) Consider V Σ
F as in (a) and let V Σ := TF V Σ

F . Then

V Σ
F V

Σ
F = VΣ

F

and
V ΣT −1

F VΣ = VΣ.

Proof. Assertion (a) is shown in the proof of [RRV15, Proposition 3.3]. Assertion (c)
is shown in [RRV15, Lemma 3.5], where part (b) is obtained in the proof of [RRV15,
Lemma 3.5]. For part (d) we have

V Σ
F V Σ

F =

⎡⎢⎢⎢⎣
In1 0 0 0
0 0 0 −B2
0 0 0 0
0 0 0 Im

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

In1 0 0 0
0 0 0 −B2
0 0 0 0
0 0 0 Im

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
In1 0 0 0
0 0 0 −B2
0 0 0 0
0 0 0 Im

⎤⎥⎥⎥⎦ = V Σ
F .

Since im V Σ
F = VΣ

F this shows the first statement. Thus, with Lemma 2.28 we obtain

V Σ(T −1
F VΣ) =(TF V Σ

F )VΣ
F = TF (V Σ

F V
Σ
F ) = TFVΣ

F = VΣ.
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2.2.4 Controllability

Before we introduce the linear-quadratic optimal control problem, we first need to recap
several concepts of controllability for the system given by (E, A, B) ∈ Σm,n(K). These
concepts are similar to the continuous-time as in [BBMN99; Dai89] and are discussed
in, e. g., [Dai89; Sty03].

Definition 2.30. The system (E, A, B) ∈ Σm,n(K) is called

(a) completely controllable (C-controllable) if for every initial point x0 ∈ Kn and every
final point xf ∈ Kn there exist [ x∗ u∗ ]∗ ∈ Bσ

(E, A, B) such that x0 = x0 and
xjf

= xf at some timepoint jf ∈ N0;

(b) controllable on the reachable set (R-controllable) if for every consistent initial point
x0 ∈ Kn and every consistent final point xf ∈ Kn there exist [ x∗ u∗ ]∗ ∈ Bσ

(E, A, B)
such that xjf

= xf at some timepoint jf ∈ N0;

(c) impulse controllable (I-controllable) if for every initial point x0 ∈ Kn there exists
[ x∗ u∗ ]∗ ∈ Bσ

(E, A, B) such that Ex0 = Ex0, i. e., Wσ = Kn.

In the case where E = In, the notions R-controllability and C-controllability coincide
and thus for systems of the form (In, A, B) ∈ Σm,n(K) we omit the prefix R or C and
say that they are controllable.

We have the following well-known characterizations of the different controllability
notions [Ber14; Dai89; Sty03].

Proposition 2.31. Let the system (E, A, B) ∈ Σm,n(K) be given. Then we have:

(a) The system (E, A, B) is R-controllable if and only if

rk
[
λE − A B

]
= n

for all λ ∈ C.

(b) The system (E, A, B) is C-controllable if and only if it is R-controllable and in
addition

rk
[
E B

]
= n.

(c) The system (E, A, B) is I-controllable if and only if

rk
[
E AS∞ B

]
= n,

where S∞ is a basis of ker E.
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(d) The system (E, A, B) is I-controllable if and only if there exist W and TF such
that for the system in feedback equivalence form (EF , AF , BF ) ∈ Σm,n(K) as in
(2.15) it holds that n3 = 0.

Proof. Parts (a) and (b) follow from the discussion in [Sty03]. Part (c) is shown in
[Ber14] and part (d) is shown in [BBMN99].

According to Proposition 2.31 eigenvalues λ ∈ C of (E, A) such that

rk
[
λE − A B

]
̸= n

destroy the controllability property and thus are referred to as uncontrollable modes at
λ; otherwise they are called controllable modes at λ.

Lemma 2.32. Let the system (E, A, B) ∈ Σm,n(K) be feedback equivalent to the system
(EF , AF , BF ) ∈ Σm,n(K) in feedback equivalence form (2.15). Furthermore, denote by
(In1 , A11, B1) ∈ Σm,n1(K) the associated EDE system. Then we have:

(a) Let λ ∈ C. Then the system (EF , AF , BF ) has an uncontrollable mode at λ if and
only if the system (In1 , A11, B1) has an uncontrollable mode at λ.

(b) The system (EF , AF , BF ) is R-controllable if and only if (In1 , A11, B1) is control-
lable.

Proof. Assertion (a) is shown in [RRV15, Lemma 2.9(c)]. Then assertion (b) is an
immediate consequence of (a), since by Proposition 2.31 the system (EF , AF , BF ) is
R-controllable if and only if no λ ∈ C is an uncontrollable mode of (EF , AF , BF ).

Controllable modes at some λ ∈ C can be used to change the spectral properties of
(E, A).

Proposition 2.33 (Pole placement). [Cob81] Let (E, A, B) ∈ Σm,n(K) be given. Fur-
ther, let the system (E, A, B) have a controllable mode at some λ ∈ C. Then for any
µ ∈ C there exists a feedback matrix F ∈ Km×n such that in zE−(A+BF ) the eigenvalue
λ is replaced by µ, where meanwhile all other eigenvalues of zE − A are unchanged.

2.2.5 Asymptotic Stability

Asymptotic stability of a system (E, A, B) ∈ Σm,n(K) is another important property
of dynamical systems. It guarantees that with zero input u = (uj)j the state x = (xj)j

tends towards zero as j goes to infinity. Since the input u does not contribute to the
analysis we may instead consider systems (E, A) ∈ Σ0,n(K) =: Σn(K) without input and
corresponding behavior Bσ

(E, A). This subsection is based on [Ela05].
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Definition 2.34. Let (E, A) ∈ Σn(K) be given. Then (E, A) is called asymptotically
stable if for x ∈ Bσ

(E, A) we have that lim
j→∞

Exj = 0.

Let W, T ∈ Kn×n be the transformation matrices leading to quasi-Weierstrass form
(2.2). Then, from (2.14) we obtain that x ∈ Bσ

(E, A) is given by

xj = T

[
J j 0
0 0

] [
x1

0
0

]

and some x1
0 ∈ Kn1 . Thus,

WExj = W

[
J jx1

0
0

]

and asymptotic stability of (E, A) is equivalent to asymptotic stability of the EDE sys-
tem (In1 , J) ∈ Σn1(K). We have the following algebraic characterization of asymptotic
stability.

Proposition 2.35. Let (E, A) ∈ Σn(K) be given. Then (E, A) is asymptotically stable
if and only if all finite eigenvalues λ ∈ C of zE − A lie inside the unit disk, i. e., |λ| < 1.

Proof. Let W, T ∈ Kn×n be the transformation matrices leading to quasi-Weierstrass
form (2.1). The assertion is an immediate consequence of [Ela05, Theorem 4.13] and the
fact that the finite eigenvalues of (E, A) correspond to the eigenvalues of (In1 , J).

Another characterization is obtained via Lyapunov equations.

Proposition 2.36. Let (E, A) ∈ Σn(K) be given with corresponding system space VΣ.
Then (E, A) is asymptotically stable if and only if for every Hermitian Q ∈ Kn×n with
Q >VΣ 0 there exists an Hermitian P ∈ Kn×n with P >VΣ 0 such that

A∗PA − E∗PE + Q =VΣ 0. (2.23)

Proof. Let W, T ∈ Kn×n be the transformation matrices leading to quasi-Weierstrass
form (2.1). Since we do not consider inputs we can apply Lemma 2.28 and Proposi-
tion 2.29(a) to obtain

TVΣ = im
[
In1

0

]
.

Set

W −∗PW −1 =
[
P11 P12
P ∗

12 P22

]
, T ∗QT =

[
Q11 Q12
Q∗

12 Q22

]
. (2.24)
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Thus, by Lemma 2.2(c), equation (2.23) is equivalent to

0 =
[
In1

0

]∗

T ∗
(
(A∗W ∗)(W −∗PW −1)WA − (E∗W ∗)(W −∗PW −1)WE + Q

)
T

[
In1

0

]
=J∗P11J − P11 + Q11,

where P11 ≻ 0, Q11 ≻ 0. This equality holds if and only if (In, J) is asymptotically
stable [Ela05, Theorem 4.30].

In the case where E = In we obtain for asymptotically stable A that for every positive
definite Q we have the existence of positive definite P such that

A∗PA − P + Q = 0. (2.25)

If Q is positive semi-definite, then P as in (2.25) can be constructed by [Ela05]

P =
∞∑

k=0
(A∗)kQAk. (2.26)

For the IDE case this means, that a solution P as in (2.23) can be constructed by setting
P11 =

∑∞
k=0 (J∗)kQ11Jk, P12 = 0, and P22 = 0 in (2.24).

It is also of interest, if for a system (E, A, B) ∈ Σm,n(K) we can find a feedback such
that the resulting system is asymptotically stable.

Definition 2.37. Let (E, A, B) ∈ Σm,n(K) be given. Then (E, A, B) is called stabiliz-
able if there exists a feedback F ∈ Km×n such that the system given by (E, A + BF ) ∈
Σn(K) is asymptotically stable.

Stabilizability can be characterized algebraically.

Lemma 2.38. Let (E, A, B) ∈ Σm,n(K) be given. Then (E, A, B) is stabilizable if and
only if

rk
[
λE − A B

]
= n

for all λ ∈ C with |λ| ≥ 1.

Proof. The result is an immediate consequence of Propositions 2.33 and 2.35.

2.2.6 Linear-Quadratic Optimal Control

One main goal of this thesis is to provide tools for analyzing the discrete-time infinite
horizon linear-quadratic control problem [Bac06; KM04; Meh91]. It is given by:
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2.2 Control Theoretic Concepts

For x0 ∈Wσ find [ x∗ u∗ ]∗ ∈ Bσ
(E, A, B) such that Ex0 = Ex0, lim

j→∞
Exj = 0, and the

objective function

J σ(x, u) :=
∞∑

j=0

[
xj

uj

]∗ [
Q S
S∗ R

] [
xj

uj

]
(2.27)

is minimized. In other words, we are interested in the value of the functionalWσ
+(Ex0) :

EWσ → R+
0 ∪ {±∞} defined by

Wσ
+(Ex0) := inf

{
J σ(x, u)

⏐⏐⏐⏐ [ x∗ u∗ ]∗ ∈ Bσ
(E, A, B), Ex0 = Ex0, lim

j→∞
Exj = 0

}
.

The problem is called feasible if ∞ > Wσ
+(Ex0) > −∞. It is called solvable if the

infimum is actually a minimum. Note that for x0 ∈ Wσ the existence of [ x∗ u∗ ]∗ ∈
Bσ

(E, A, B) such that Ex0 = Ex0 is guaranteed by the definition of Wσ. If further
(E, A, B) is stabilizable we can choose u such that in addition lim

j→∞
Exj = 0, i. e.,

Wσ
+(Ex0) < ∞.
In the continuous-time case this problem is formulated as:
For x0 ∈W

d
dt find [ x∗ u∗ ]∗ ∈ B

d
dt

(E, A, B) such that Ex(0) = Ex0, lim
t→∞

Ex(t) = 0 and
the objective function

J
d
dt (x, u) :=

∫ ∞

0

[
x(t)
u(t)

]∗ [
Q S
S∗ R

] [
x(t)
u(t)

]
dt (2.28)

is minimized. Again, we are interested in the value of the functional W
d
dt

+ (Ex0) :
EW

d
dt → R+

0 ∪ {±∞} defined by

W
d
dt

+ (Ex0) := inf
{
J

d
dt (x, u)

⏐⏐⏐⏐ [ x∗ u∗ ]∗ ∈ B
d
dt

(E, A, B), Ex(0) = Ex0, lim
t→∞

Ex(t) = 0
}

.

As before, the problem is called feasible if ∞ >W
d
dt

+ (Ex0) > −∞. It is called solvable
if the infimum is actually a minimum. By Σw

m,n(K) we denote the set of all

(E, A, B, Q, S, R) ∈ Kn×n × Kn×n × Kn×m × Kn×n × Kn×m × Km×m, (2.29)

where (E, A, B) ∈ Σm,n(K) and Q and R are Hermitian.
Now we show that the objective function J σ(x, u) does not change if we perform a

feedback transformation of (E, A, B) and appropriately transform Q, S, R. To this end,
assume that the system (EF , AF , BF ) ∈ Σm,n(K) is equivalent to (E, A, B) via W and

23



2 Mathematical Preliminaries

TF . Applying the transformation TF to [ x∗ u∗ ]∗ in J σ(x, u) leads to

J σ(xF , uF ) =
∞∑

j=0

[
xj

uj

]∗

T
−1

F

[
T 0

FT Im

]∗ [
Q S
S∗ R

] [
T 0

FT Im

]
T

−1
F

[
xj

uj

]

=
∞∑

j=0

[
xF,j

uF,j

]∗ [
T ∗(Q + F ∗S∗) T ∗(S + F ∗R)

S∗ R

] [
T 0

FT Im

] [
xF,j

uF,j

]

=
∞∑

j=0

[
xF,j

uF,j

]∗ [
T ∗(Q + F ∗S∗ + SF + F ∗RF )T T ∗(S + F ∗R)

(S∗ + RF )T R

] [
xF,j

uF,j

]
,

where [
xF,j

uF,j

]
:= T −1

F

[
xj

uj

]
.

Thus, J σ(x, u) does not change under feedback transformations when we use the mod-
ified weights[

QF SF

S∗
F RF

]
:=
[
T ∗(Q + F ∗S∗ + SF + F ∗RF )T T ∗(S + F ∗R)

(S∗ + RF )T R

]
. (2.30)

Analogously, one can show that J
d
dt (x, u) does not change under feedback transfor-

mations when we use the modified weights as in (2.30).
In the following we assume that the system (E, A, B, Q, S, R) ∈ Σw

m,n(K) is impulse
controllable and that [

Q S
S∗ R

]
⪰ 0. (2.31)

It is well-known that in this case solutions of the optimal control problem can be charac-
terized via certain structured matrix pencils, see, [BMMX09; KM08; Meh91; MMMM06].
In the continuous-time case, applying Pontryagin’s maximum principle [Meh91] leads to
the necessary optimality conditions⎡⎢⎣ 0 E 0

−E∗ 0 0
0 0 0

⎤⎥⎦ d
dt

⎡⎢⎣µ
x
u

⎤⎥⎦ =

⎡⎢⎣ 0 A B
A∗ Q S
B∗ S∗ R

⎤⎥⎦
⎡⎢⎣µ

x
u

⎤⎥⎦ ,

Ex(0) = Ex0, lim
t→∞

E∗µ(t) = 0,

(2.32)

where [ x∗ u∗ ]∗ ∈ B
d
dt

(E, A, B), x0 ∈ W
d
dt , and µ : I → Kn denotes some Lagrange

multiplier. In [RRV15] the necessary optimality conditions (2.32) are also derived for
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the case where (2.31) does not hold. Moreover, the behavior of this DAE can be described
by the matrix pencil

sE −A =

⎡⎢⎣ 0 −sE + A B
sE∗ + A∗ Q S

B∗ S∗ R

⎤⎥⎦ ∈ K2n+m×2n+m[s]. (2.33)

It has the special structure that E∗ = −E and A∗ = A. Such pencils are called even
matrix pencils [MMMM06].

In the discrete-time case, applying Pontryagin’s maximum principle [Meh91] leads to⎡⎢⎣ 0 E 0
A∗ 0 0
B∗ 0 0

⎤⎥⎦σ

⎡⎢⎣µ
x
u

⎤⎥⎦ =

⎡⎢⎣ 0 A B
E∗ Q S
0 S∗ R

⎤⎥⎦
⎡⎢⎣µ

x
u

⎤⎥⎦ ,

Ex0 = Ex0, lim
j→∞

E∗µj = 0,

(2.34)

where [ x∗ u∗ ]∗ ∈ Bσ
(E, A, B), x0 ∈ W

d
dt , and µ ∈ (Kn)N0 denote some Lagrange multi-

pliers. The behavior of this IDE can be described by the matrix pencil

zE −A =

⎡⎢⎣ 0 zE − A −B
zA∗ − E∗ −Q −S

zB∗ −S∗ −R

⎤⎥⎦ ∈ K2n+m×2n+m[z], (2.35)

a so-called BVD-pencil; here BVD is an acronym for Boundary Value problem for the
optimal control of Discrete systems. The structure of this pencil is not invariant under
unitary transformations which leads to problems in the numerical treatment [BMMX09].
In [BMMX09; Sch08] it is shown how we can achieve a structured version if we introduce
new Lagrange multipliers

mj := µj − µj+1. (2.36)
This reformulation yields⎡⎢⎣ 0 E 0

A∗ Q S
B∗ S∗ R

⎤⎥⎦ d
dt

⎡⎢⎣µ
x
u

⎤⎥⎦ =

⎡⎢⎣ 0 A B
E∗ Q S
0 S∗ R

⎤⎥⎦
⎡⎢⎣µ

x
u

⎤⎥⎦ ,

Ex0 = Ex0,
∞∑

j=0
E∗mj = E∗µj

(2.37)

with corresponding matrix pencil

zE −A = zA∗ −A

⎡⎢⎣ 0 zE − A −B
zA∗ − E∗ (z − 1)Q (z − 1)S

zB∗ (z − 1)S∗ (z − 1)R

⎤⎥⎦ ∈ K2n+m×2n+m[z]. (2.38)
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This pencil has the special property of being palindromic, i. e., E = A∗. This struc-
ture is preserved under congruence transformation and thus is suitable for the numerical
treatment [BMMX09; Sch08]. In Section 4.2 we discuss in more detail properties of
palindromic pencils and their relation to even matrix pencils. However, in [MS14] it is
shown that in an abstract Banach space setting the operator associated to the palin-
dromic pencil (2.38) is not self-adjoint; in contrast to the operator associated to the
even pencil (2.33), see also [KMS14]. One way out is to use a second order palindromic
matrix polynomial z2A2 + zA1 +A0 ∈ K2n+m×2n+m[z]. It has the form

z2A2 + zA1 +A0 = z2

⎡⎢⎣0 E 0
0 0 0
0 0 0

⎤⎥⎦+ z

⎡⎢⎣ 0 −A −B
−A∗ Q S
−B∗ S∗ R

⎤⎥⎦+

⎡⎢⎣ 0 0 0
E∗ 0 0
0 0 0

⎤⎥⎦
with the special property that A∗

2 = A0 and A∗
1 = A1.

We show in Chapters 5 and 6 that in analogy to the continuous-time case in [RRV15],
also in the discrete-time case we can drop assumption (2.31) to obtain the necessary
optimality conditions (2.34) and (2.37).
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3 Kalman-Yakubovich-Popov Lemma

Consider the weighted system (E, A, B, Q, S, R) ∈ Σw
m,n(K) as in (2.29) and corre-

sponding system space VΣ. In this chapter we relate positive semi-definiteness on the
unit circle of the Popov function – a specific rational matrix function – to the solvability
of a certain matrix inequality, namely the Kalman-Yakubovich-Popov inequality. We
will see in Chapter 6 that positive semi-definiteness on the unit circle of the Popov
function is sufficient for feasibility of the optimal control problem (2.27).

First, we reconsider the well-known results for explicit difference equations. Then
we generalize these results to IDEs in a similar way as it was done in [RRV15] for the
generalization of the ODE case to the DAE case.

Definition 3.1. Let (E, A, B, Q, S, R) ∈ Σw
m,n(K) be given. Then the rational matrix

function

Φ(z) :=
[
(zE − A)−1B

Im

]∼ [
Q S
S∗ R

] [
(zE − A)−1B

Im

]
∈ Km×m(z)

is called Popov function of (E, A, B, Q, S, R).
Here, for a given rational matrix function G(z) ∈ Km×n[z] the rational matrix G∼(z)
is defined by G∼(z) = G(z−1)∗. Note that for values z on the unit circle this notation
coincides with the conjugate transpose. In the continuous-time case the definition of
G∼(z) is altered in such a way that G∼(z) coincides with the conjugate transpose of
G(z) on the imaginary axis.

The Popov function is important for characterizing the solvability of the Kalman-
Yakubovich-Popov inequality.

Definition 3.2. Let (E, A, B, Q, S, R) ∈ Σw
m,n(K) be given. Consider P = P ∗ ∈ Kn×n

and

M(P ) :=
[
A∗PA − E∗PE + Q A∗PB + S

B∗PA + S∗ B∗PB + R

]
. (3.1)

IfM(P ) ⪰VΣ 0, then P is called solution of the discrete-time Kalman-Yakubovich-Popov
(KYP) inequality

M(P ) ⪰VΣ 0, P ∗ = P. (3.2)
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3 Kalman-Yakubovich-Popov Lemma

Throughout this chapter we will make use of the system (E, A, B, Q, S, R) ∈ Σw
m,n(K)

being transformed to (EF , AF , BF , QF , SF , RF ) via feedback equivalence, i. e., we have
invertible W, T ∈ Kn×n and a feedback matrix F ∈ Km×n such that

EF = WET, AF = W (A + BF )T, BF = WB,
QF = T ∗(Q + SF + F ∗S∗ + F ∗RF )T, SF = T ∗(S + F ∗R), RF = R.

(3.3)

These transformations will allow us to extract an EDE formulation from the IDE prob-
lem. The next results are crucial for the proof of the KYP Lemma in the EDE case as
well as in the IDE case and are mainly adaptions of the corresponding results in [RRV15,
Section 4].

Lemma 3.3. Let (E, A, B, Q, S, R) ∈ Σw
m,n(K). Then we have

[
(zE − A)−1B

Im

]∼ [
A∗PA − E∗PE A∗PB

B∗PA B∗PB

] [
(zE − A)−1B

Im

]
= 0. (3.4)

Proof. By using (2.21) we obtain

[
(zE − A)−1B

Im

]∼ [
A∗PA − E∗PE A∗PB

B∗PA B∗PB

] [
(zE − A)−1B

Im

]

=
[
(zE − A)−1B

Im

]∼([
A∗

B∗

]
P
[
A B

]
−
[
E∗

0

]
P
[
E 0

]) [(zE − A)−1B
Im

]
(2.21)=

[
(zE − A)−1B

Im

]∼(
z−∗

[
E∗

0

]
P
[
E 0

]
z −

[
E∗

0

]
P
[
E 0

]) [(zE − A)−1B
Im

]
= 0.

Lemma 3.4. Let (E, A, B, Q, S, R) ∈ Σw
m,n(K) with corresponding feedback equivalent

system (EF , AF , BF , QF , SF , RF ) as in (3.3) be given. Further, let P = P ∗ ∈ Kn×n

and set PF = W −∗PW −1 and

TF =
[

T 0
FT Im

]
.

Then
MF (PF ) = T ∗

F M(P )TF , (3.5)

where MF (PF ) is the matrix in (3.2) corresponding to (EF , AF , BF , QF , SF , RF ).
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Proof. We have

T ∗
F M(P )TF =

[
T 0

FT Im

]∗ [
A∗PA − E∗PE + Q A∗PB + S

B∗PA + S∗ B∗PB + R

] [
T 0

FT Im

]

=
[
A∗

F PF WA − E∗
F PF WE A∗

F PF BF

B∗PA B∗PB

] [
T 0

FT Im

]
+
[
QF SF

S∗
F RF

]

=
[
A∗

F PF AF − E∗
F PF EF A∗

F PF BF

B∗
F PF AF B∗

F PF BF

]
+
[
QF SF

S∗
F RF

]
=MF (PF ).

3.1 Explicit Difference Equations

In this section we consider weighted explicit difference equations (EDEs), i. e., systems
(E, A, B, Q, S, R) ∈ Σw

m,n(K) with E = In. These systems have been studied a lot in
the last decades. The famous Kalman-Yakubovich-Popov Lemma for ODEs goes back
to the 1950s, see [Kal63; Pop61; Yak62]. A version for the EDE case can be found in
[Ran96; ZDG96]. Note that for the system spaceVΣ of EDEs it holds thatVΣ = Kn+m

and the KYP inequality thus asks for P = P ∗ such that M(P ) ⪰ 0. Since this result is
of major importance for the considerations in this thesis, we present the main ideas of
the proof by Rantzer [Ran96] for the discrete-time case.

First we need the following lemmas.

Lemma 3.5. Let M, N ∈ Cp×q be some matrices. Then the following holds:

(a) We have MM∗ = NN∗ if and only if there exists U ∈ Cq×q such that UU∗ = Iq

and M = NU .

(b) If further q = 1 then MM∗ = NN∗ is equivalent to the existence of ω ∈ [0, 2π)
such that M = eiωN .

Proof. Assertion (a) is shown in [Ran96, Lemma 3(i)]. Then (b) is an immediate conse-
quence of (a) since numbers U ∈ C fulfilling UU∗ = 1 lie on the unit circle.

Lemma 3.6. Let M, M̃ ∈ Cp×q be given. If MWM∗ − M̃WM̃∗ = 0 for some positive
semi-definite Hermitian W ∈ Cq×q, then W is of the form

W =
q∑

k=1
wkw∗

k, (3.6)

where wk ∈ Cq fulfill Mwkw∗
kM∗ − M̃wkw∗

kM̃∗ = 0 for k = 1, . . . , q.
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3 Kalman-Yakubovich-Popov Lemma

Proof. The proof is similar to [Ran96, Lemma 5.]. By Lemma 3.5(a) we obtain a unitary
matrix U ∈ Cq×q such that

M̃W
1
2 = MW

1
2 U.

Rewrite U as U =
∑q

k=1 eiωkvkv∗
k such that

∑q
k=1 vkv∗

k = Iq and v∗
kvj = 0 for j ̸= k. Set

wk := W
1
2 vk. Then for k = 1, . . . , q we obtain

Mwkeiωk = MW
1
2 Uvk = M̃W

1
2 vk = M̃wk

and thus we have Mwkw∗
kM∗ − M̃wkw∗

kM̃∗ = 0.

Then we obtain the following theorem.

Theorem 3.7 (KYP Lemma). Let (In, A, B, Q, S, R) ∈ Σw
m,n(K) and the Popov func-

tion Φ(z) ∈ Km×m(z) be given. Then the following statements hold:

(a) Assume that (In, A, B) is controllable. If for all ω ∈ R with det(eiωIn − A) ̸= 0
we have

Φ(eiω) =
[
(eiωIn − A)−1B

Im

]∗ [
Q S
S∗ R

] [
(eiωIn − A)−1B

Im

]
⪰ 0, (3.7)

then there exists some P = P ∗ ∈ Kn×n such that

M(P ) =
[
A∗PA − P A∗PB

B∗PA B∗PB

]
+
[

Q S
S∗ R

]
⪰ 0. (3.8)

(b) If, on the other hand, we have some P = P ∗ ∈ Kn×n such that (3.8) is valid, then
(3.7) holds for all ω ∈ R with det(eiωIn − A) ̸= 0.

Proof. First we show statement (a). Thus, assume that for all ω ∈ [0, 2π) such that
det(eiωIn − A) ̸= 0 we have Φ(eiω) ⪰ 0. This is equivalent to the fact that for all
ω ∈ [0, 2π) such that det(eiωIn − A) ̸= 0 we have[

x
u

]∗ [
Q S
S∗ R

] [
x
u

]
⪰ 0

for all u ∈ Km and x = (eiωIn − A)−1Bu ∈ Kn. By using Lemma 3.5(b) with M =
Ax + Bu and N = x this again is equivalent to Ξ ∩ Υ = ∅, where

Ξ :=
{([

x
u

]∗ [
Q S
S∗ R

] [
x
u

]
, (Ax + Bu)(Ax + Bu)∗ − xx∗

) ⏐⏐⏐⏐⏐ [ x∗ u∗ ]∗ ∈ Kn+m

}

and
Υ := {(s, 0n×n) | s < 0}.
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3.1 Explicit Difference Equations

Every element in the convex hull of Ξ can be written as

N∑
k=1

([
xk

uk

]∗ [
Q S
S∗ R

] [
xk

uk

]
, (Axk + Buk)(Axk + Buk)∗ − xkx∗

k

)
, (3.9)

where [ x∗
k u∗

k ]∗ ∈ Cn+m, k = 1, . . . , N . Equivalently, using the switching invariance of
the trace operator, i. e., tr(C1C2) = tr(C2C1) for all matrices C1 ∈ Kq1×q2 , C2 ∈ Kq2×q1 ,
every element in the convex hull of Ξ can be reformulated as(

tr
(

W

[
Q S
S∗ R

])
,
[
A B

]
W

[
A∗

B∗

]
−
[
In 0

]
W

[
In

0

])
,

where W =
∑N

k=1 [ x∗
k u∗

k ]∗[ xk uk ]∗ ⪰ 0. If such an element also lies in Υ, Lemma 3.6
implies that we can redefine [ x∗

k u∗
k ]∗ in such a way that the second component of each

term in (3.9) is zero and N = n + m. Thus, there has to be at least one index j such
that [

xj

uj

]∗ [
Q S
S∗ R

] [
xj

uj

]
< 0.

This shows that we have Ξ ∩ Υ = ∅ if and only if conv Ξ ∩ Υ = ∅, where conv Ξ denotes
the convex hull of Ξ.

Now we take the final step of the proof. If conv Ξ ∩ Υ = ∅, then by the separation
theorem for convex sets [Bre10, Section 1.2] there exists (0, 0) ̸= (p, P ) ∈ R×Kn×n with
P = P ∗ such that

ℜ(py + tr PV ) ≥ 0

for all (y, V ) ∈ Ξ and
ℜ(py + tr PV ) ≤ 0

for all (y, V ) ∈ Υ. This means that p ≥ 0 and

0 ≤ p

[
x
u

]∗ [
Q S
S∗ R

] [
x
u

]
+ tr (P ((Ax + Bu)(Ax + Bu)∗ − xx∗))

=
[
x
u

]∗(
p

[
Q S
S∗ R

]
+
[
A∗PA − P A∗PB

B∗PA B∗PB

])[
x
u

] (3.10)

for all [ x∗ u∗ ]∗ ∈ Kn+m.
If p = 0 then equation (3.10) implies that[

A∗PA − P A∗PB
B∗PA B∗PB

]
⪰ 0. (3.11)
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3 Kalman-Yakubovich-Popov Lemma

This inequality is invariant under feedback by Lemma 3.4. Thus, by controllability of
(In, A, B, Q, S, R) and Proposition 2.33 we can assume without loss of generality that
A is asymptotically stable. Hence, by (2.26) we have P ⪯ 0. Let

P̃ := U∗PU = diag(P1, 0) ⪯ 0

for some unitary U ∈ Kn×n, where P1 ∈ Kr×r is invertible. We have that r > 0 since
P ̸= 0. Furthermore, let

Ã = U∗AU =
[
A11 A12
A21 A22

]
, B̃ = U∗AU =

[
B1
B2

]

be partitioned accordingly.
Thus, with (3.11) and Lemma 3.4 we have⎡⎢⎣A∗

11P1A11 − P1 A∗
11P1A12 A∗

11P1B1
A∗

12P1A11 A∗
12P1A12 A∗

12P1B1
B∗

1P1A11 B∗
1P1A12 B∗

1P1B1

⎤⎥⎦ ⪰ 0. (3.12)

Therefore, by Proposition 2.4 we obtain A∗
12P1A12 = 0 and B∗

1P1B1 = 0 and thus
A12 = 0 and B1 = 0. This is contradicting the controllability of (In, A, B), since every
eigenvalue of A11 at the same time is an uncontrollable mode of (Ir, A11, B1) ∈ Σm,r(K)
and due to the block diagonal structure also of (In, A, B). Hence, p > 0. Thus, dividing
equation (3.10) by p leads to (3.8).

If, on the other hand, statement (b) holds, we have that (3.10) is valid for p = 1. Thus,
another application of the separation theorem immediately shows that conv Ξ ∩ Υ = ∅,
which – as shown in the first part of the proof – holds if and only if (3.7) is true for all
ω ∈ [0, 2π) such that det(eiωIn − A) ̸= 0.

Note that in the proof of Theorem 3.7 we did not use the controllability assumption
on (In, A, B, Q, S, R) ∈ Σw

m,n(K) for showing statement (b).

3.2 Implicit Difference Equations
For the generalization of the KYP inequality to implicit difference equations we first
need to understand relations between the different Popov functions and KYP inequalities
corresponding to systems (E, A, B, Q, S, R) ∈ Σw

m,n(K) and

(EF , AF , BF , QF , SF , RF ) ∈ Σw
m,n(K)

as in (3.3) and how they are related to explicit difference equations.
The associated EDE part is given by

(In1 , As, Bs, Qs, Ss, Rs) ∈ Σw
m,n1(K)
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3.2 Implicit Difference Equations

which is defined by

As = A11, Bs = B1,
Qs = Q11, Ss = S1 − Q12B2, Rs = B∗

2Q22B2 − B∗
2S2 − S∗

2B2 + R.
(3.13)

Proposition 3.8. Consider the Popov function

ΦF (z) :=
[
(zEF − AF )−1BF

Im

]∼ [
QF SF

S∗
F RF

] [
(zEF − AF )−1BF

Im

]
∈ Km×m(z)

of the system (E, A, B, Q, S, R) ∈ Σw
m,n(K) as in (3.3).

(a) The Popov functions ΦF (z) and Φ(z) are related via

ΦF (z) = Θ∼
F (z)Φ(z)ΘF (z), (3.14)

where ΘF (z) = Im + FT (zEF − AF )−1BF ∈ Km×m(z) is invertible.

(b) Further, assume that (EF , AF , BF , QF , SF , RF ) is given in feedback equivalence
form as in (2.15) and partitioned accordingly. Then it holds that

ΦF (z) = Φs(z),

where Φs(z) is the Popov function corresponding to the EDE part

(In1 , As, Bs, Qs, Ss, Rs) ∈ Σw
m,n1(K)

as in (3.13).

Proof. Relation (3.14) is shown in [Voi15, Proposition 3.2.2 a)] with the help of the fact
that

T (λEF − AF )−1BF = (λE − A)−1BΘF (λ) (3.15)

for all λ ∈ C such that det(λEF − AF ) ̸= 0 and det(λE − A) ̸= 0. Furthermore, by using
(3.15) we obtain

ΘF (λ) = Im + FT (λEF − AF )−1BF = Im + F (λE − A)−1BΘF (λ)

and thus
(Im − F (λE − A)−1B)ΘF (λ) = Im.

Hence, ΘF (s) is invertible.
For part (b) see [RRV15, Lemma 4.2(a)].
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3 Kalman-Yakubovich-Popov Lemma

We now turn to a reduction of the problem for systems (EF , AF , BF , QF , SF , RF ) ∈
Σw

m,n(K) in feedback equivalence form as in (3.3) to the corresponding EDE system

(In1 , As, Bs, Qs, Ss, Rs) ∈ Σw
m,n1(K)

as in (3.13).

Lemma 3.9. Assume that (EF , AF , BF , QF , SF , RF ) ∈ Σw
m,n(K) as in (3.3) is given

in feedback equivalence form as in (2.15) and partitioned accordingly. Further, consider
the corresponding EDE part

(In1 , As, Bs, Qs, Ss, Rs) ∈ Σw
m,n1(K)

as in (3.13) and partition the Hermitian matrix

PF =

⎡⎢⎣P11 P12 P13
P ∗

12 P22 P23
P ∗

13 P ∗
23 P33

⎤⎥⎦ ∈ Kn×n

accordingly. Then P11 ∈ Kn1×n1 is a solution of the KYP inequality (3.2) corresponding
to the EDE part (In1 , As, Bs, Qs, Ss, Rs) if and only if PF is a solution of the KYP
inequality (3.2) corresponding to (EF , AF , BF , QF , SF , RF ).

Proof. We have[
A∗

F PF AF − E∗
F PF EF + QF A∗

F PF BF + SF

B∗
F PF AF + S∗

F B∗
F PF BF + RF

]

=

⎡⎢⎢⎢⎣
A∗

11P11A11 − P11 A∗
11P12 M13 A∗

11P11B1 + A∗
11P12B2

P ∗
12A11 P22 M23 P ∗

12B1 + P22B2
M∗

13 M∗
23 M33 M34

B∗
1P11A11 + B∗

2P ∗
12A11 B∗

1P12 + B∗
2P22 M∗

34 M44

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
Q11 Q12 Q13 S1
Q∗

12 Q22 Q23 S2
Q∗

13 Q∗
23 Q33 S3

S∗
1 S∗

2 S∗
3 R

⎤⎥⎥⎥⎦ (3.16)

for some M13 ∈ Kn1×n3 , M23 ∈ Kn2×n3 , M33 ∈ Kn3×n3 , M34 ∈ Kn3×m, and

M44 = B∗
1P11B1 + B∗

1P12B2 + B∗
2P22B2 + B∗

2P ∗
12B1 ∈ Km×m.

Let [ x∗ u∗ ]∗ ∈ VΣ
F . Thus, by (2.20) there exists an x1 ∈ Kn1 such that

x =

⎡⎢⎣ x1
−B2u
0n3×1

⎤⎥⎦ . (3.17)
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Then we obtain[
x
u

]∗ [
A∗

F PF AF − E∗
F PF EF + QF A∗

F PF BF + SF

B∗
F PF AF + S∗

F B∗
F PF BF + RF

] [
x
u

]
= x∗

1

(
(A∗

11P11A11 − P11 + Q11)x1 − (A∗
11P12 + Q12)B2u

+ (A∗
11P11B1 + A∗

11P12B2 + S1)u
)

− u∗B∗
2

(
(P ∗

12A11 + Q∗
12)x1 − (P22 + Q22)B2u + (P ∗

12B1 + P22B2 + S2)u
)

+ u∗
(
(B∗

1P11A11 + B∗
2P ∗

12A11 + S∗
1)x1 − (B∗

1P12 + B∗
2P22 + S∗

2)B2u

+ (B∗
1(P11B1 + P12B2) + B∗

2(P22B2 + P ∗
12B1) + R)u

)
=
[
x1
u

]∗ [
A∗

sP11As − P11 + Qs A∗
sP11Bs + Ss

B∗
s P11As + S∗

s B∗
s P11Bs + Rs

] [
x1
u

]
.

(3.18)

Thus [
x1
u

]∗ [
A∗

sP11As − P11 + Qs A∗
sP11Bs + Ss

B∗
s P11As + S∗

s B∗
s P11Bs + Rs

] [
x1
u

]∗

≥ 0 (3.19)

for all [ x∗
1 u∗ ]∗ ∈ Kn1+m if and only if[

x
u

]∗ [
A∗

F PF AF − E∗
F PF EF + QF A∗

F PF BF + SF

B∗
F PF AF + S∗

F B∗
F PF BF + RF

] [
x
u

]
≥ 0

for all [ x∗ u∗ ]∗ ∈ VΣ
F . Hence, P11 is a solution of the KYP inequality (3.2) corresponding

to the EDE part if and only if PF solves (3.2) corresponding to (EF , AF , BF ).

We are now ready to state the generalization of the KYP Lemma for IDEs.

Theorem 3.10 (KYP Lemma for IDEs). Let (E, A, B, Q, S, R) ∈ Σw
m,n(K) and the

system space VΣ be given with corresponding Popov function Φ(z) ∈ Km×m(z).

(a) If there exists some P ∈ Kn×n that is a solution of (3.2), then Φ(eiω) ⪰ 0 for all
ω ∈ R with det(eiωE − A) ̸= 0.

(b) If on the other hand (E, A, B) is R-controllable and Φ(eiω) ⪰ 0 for all ω ∈ R with
det(eiωE − A) ̸= 0, then there exists a solution P ∈ Kn×n of (3.2).

Proof. We first show assertion (a). Assume that P ∈ Kn×n fulfills the KYP inequal-
ity (3.2), i. e., M(P ) ⪰VΣ 0. Further, let ω ∈ R be such that det(eiωE − A) ̸= 0. By
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3 Kalman-Yakubovich-Popov Lemma

Lemma 3.3, together with Lemma 2.2(b) and Proposition 2.29(b), statement (a) then
follows due to

Φ(eiω) =
[
(eiωE − A)−1B

Im

]∼ [
Q S
S∗ R

] [
(eiωE − A)−1B

Im

]

=
[
(eiωE − A)−1B

Im

]∗

M(P )
[
(eiωE − A)−1B

Im

]
⪰ 0.

(3.20)

For part (b) assume that Φ(eiω) ⪰ 0 for all ω ∈ R with det(eiωE − A) ̸= 0. For the
system in feedback equivalence form (EF , AF , BF , QF , SF , RF ) ∈ Σw

m,n(K) and cor-
responding Popov function ΦF (z) ∈ Km×m(z) we obtain from Proposition 3.8(b) that
ΦF (eiω) ⪰ 0 for all ω ∈ R also fulfilling det(eiωEF − AF ) ̸= 0. In particular, by Proposi-
tion 2.26 for such ω we have det(eiωIn1 − A11) ̸= 0. Furthermore, by Proposition 2.32(b)
the associated EDE system (In1 , A11, B1) ∈ Σm,n(K) is controllable.

This means we are in the situation of Theorem 3.7 for the EDE system

(In1 , As, Bs, Qs, Ss, Rs) ∈ Σw
m,n1(K)

as in (3.13). Thus, applying Lemma 3.9 gives a solution PF of the KYP inequality (3.2)
corresponding to the system (EF , AF , BF , QF , SF , RF ). Then, using Lemma 3.4 and
Lemma 2.2(c) completes the proof.

Example 3.11 (Example 2.25 revisited). Consider the system (E, A, B) as in Exam-
ple 2.25. From its feedback equivalence form as in (2.17) we obtain with (2.20) that

V Σ
F =

⎡⎢⎣1 0 0
0 0 −1
0 0 1

⎤⎥⎦
spans the system space VΣ

F and thus

VΣ = TFVΣ
F = im

⎡⎢⎣1 0 −1
1 0 0
0 0 1

⎤⎥⎦
with

TF =

⎡⎢⎣1 1 0
1 0 0
0 0 1

⎤⎥⎦ .

From [
Q S
S∗ R

]
= I3
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we obtain as modified weights

[
QF SF

S∗
F RF

]
=
[
T ∗(Q + F ∗S∗ + SF + F ∗RF )T T ∗(S + F ∗R)

(S∗ + RF )T R

]
=

⎡⎢⎣2 1 0
1 1 0
0 0 1

⎤⎥⎦ .

Moreover, the associated EDE part as in (3.13) is given by

As = 1, Bs = −1, Qs = 2, Ss = −1, Rs = 2. (3.21)

Thus, by Proposition 2.4, P11 solves the KYP inequality[
2 −P11 − 1

−P11 − 1 P11 + 2

]
⪰ 0 (3.22)

if and only if
−

√
3 ≤ P11 ≤

√
3.

Therefore, choosing P11 = −1, we have that

P = W ∗PF W =
[
1 −1
1 0

] [
−1 0
0 0

] [
1 1

−1 0

]
=
[
−1 −1
−1 −1

]

solves the KYP inequality (3.2). In particular, by Theorem 3.10 we obtain that for the
Popov functions ΦF (z) ∈ K(z) and Φ(z) ∈ K(z) we have ΦF (eiω) ⪰ 0 and Φ(eiω) ⪰ 0.

The next remark is based on an idea presented in [SW10] for the case where E = In.
Remark 3.12. Let (E, A, B, Q, S, R) ∈ Σw

m,n(K). Then we have⎡⎢⎢⎢⎣
E 0
A B

In 0
0 In

⎤⎥⎥⎥⎦
∗ ⎡⎢⎢⎢⎣

−P 0 0 0
0 P 0 0
0 0 Q S
0 0 S∗ R

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

E 0
A B

In 0
0 In

⎤⎥⎥⎥⎦
=
[
−E∗P A∗P

0 B∗P

] [
E 0
A B

]
+
[

Q S
S∗ R

]

=
[
A∗PA − E∗PE + Q A∗PB + S

B∗PA + S∗ B∗PB + R

]
=M(P ).

(3.23)

Thus, the existence of a solution P = P ∗ ∈ Kn×n to (3.2) is equivalent to P solving the
matrix inequality for the extended equation (3.23). Furthermore, replacing[

−P 0
0 P

]
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3 Kalman-Yakubovich-Popov Lemma

by [
0 hP

hP 0

]
=
[

In In

−hIn/2 hIn/2

] [
−P hP/2
P hP/2

]

=
[

In In

−hIn/2 hIn/2

] [
−P 0
0 P

] [
In −hIn/2
In hIn/2

] (3.24)

in (3.23), for h = 1 we obtain

⎡⎢⎢⎢⎣
E 0
A B

In 0
0 In

⎤⎥⎥⎥⎦
∗ ⎡⎢⎢⎢⎣

0 P 0 0
P 0 0 0
0 0 Q S
0 0 S∗ R

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

E 0
A B

In 0
0 In

⎤⎥⎥⎥⎦
=
[

A∗P E∗P
B∗P 0

] [
E 0
A B

]
+
[

Q S
S∗ R

]

=
[
A∗PE + E∗PA + Q E∗PB + S

B∗PE + S∗ R

]
,

which corresponds to the matrix M(P ) in the continuous-time KYP inequality, see
[RRV15].

The replacement (3.24) corresponds to a discretization of the DAE (2.9) with the
trapezoidal rule (2.13). To see this, consider

h

[
E 0
A B

]∗ [
0 P
P 0

] [
E 0
A B

]

=
[
E 0
A B

]∗ [
In In

−hIn/2 hIn/2

] [
−P 0
0 P

] [
In −hIn/2
In hIn/2

] [
E 0
A B

]

=
[
E − h

2 A −h
2 B

E + h
2 A h

2 B

]∗ [
−P 0
0 P

] [
E − h

2 A −h
2 B

E + h
2 A h

2 B

]
,

where [
σIn −In

] [E − h
2 A −h

2 B

E + h
2 A h

2 B

] [
xn

un

]
= 0

corresponds to the system equations obtained from the trapezoidal rule (2.13).
Remark 3.13. The result of Theorem 3.10 is analogous to the continuous-time result
in [RRV15]. To see this, replace positivity of the Popov function on the unit circle by
positivity on the imaginary axis in (a) and replaceM(P ) by its continuous-time analog.
However, in [RRV15] the assumption of R-controllability was alternatively replaced by
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the condition that the Popov function has full rank and (E, A, B) is sign-controllable. To
adapt this to the discrete-time setting we would need a discrete-time analog of [CALM97,
Theorem 6.1], which provides the characterizations via sign-controllability in the ODE
case.
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4 Structure of Palindromic Matrix Pencils

In this chapter we are concerned with specially structured matrix pencils zE − A ∈
Kn×n[z], in particular palindromic matrix pencils. For the investigation of these palin-
dromic matrix pencils we first introduce so-called quasi-Hermitian matrices. Then we
present the connection to even matrix pencils and we show characterizations of the iner-
tia of palindromic matrix pencils similar to what was done in [CALM97; CG89; Rei11;
Voi15] in the even case.

4.1 Quasi-Hermitian Matrices
Here we introduce the concept of quasi-Hermitian matrices, which is an extension to the
notion of Hermitian and skew-Hermitian matrices.

Definition 4.1. A matrix A ∈ Kn×n with

A = eiωA∗

and ω ∈ [0, 2π) is called quasi-Hermitian.

Lemma 4.2. Let A ∈ Kn×n be quasi-Hermitian with angle ω ∈ [0, 2π). Then all
eigenvalues λ of A lie on a line with angle ω

2 through the origin, i. e.,

λ = rei ω
2

for some r ∈ R.

Proof. Let λ = reiθ, with θ ∈ [0, π) and r ∈ R, be an eigenvalue of A and x ∈ Kn a
corresponding eigenvector with ∥x∥2 = 1. Then it holds that

reiθ = λ = λx∗x = x∗Ax = eiωx∗A∗x

= eiωre−iθ.

Hence, we obtain θ = ω
2 .

We can extend the notion of inertia for Hermitian matrices to quasi-Hermitian matri-
ces.
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Definition 4.3. Let A ∈ Kn×n be quasi-Hermitian with angle ω ∈ [0, 2π). Then the
inertia of A along ω

2 is

In(A) := In ω
2
(A) := (n+, n0, n−), (4.1)

where n+, n0, and n− denote the number of eigenvalues λ = rei ω
2 where r is positive,

zero, or negative, respectively. We omit the subscript ω
2 in In ω

2
(A) if the angle is clear

from the context.

Similar to the Hermitian case, also in the quasi-Hermitian case we have a canonical
form under congruence transformations.

Theorem 4.4. The inertia of a quasi-Hermitian matrix is invariant under congruence
transformations. On the other hand, for two matrices A,B ∈ Kn×n with the same
inertia there exists some invertible U ∈ Kn×n such that

U∗AU = B,

i. e., A and B are congruent.

Proof. In [Ikr01] it is shown that two normal matrices A,B ∈ Kn×n are congruent if and
only if for every angle ω ∈ [0, 2π) they have the same number of nonzero eigenvalues λi

and µi, respectively, with arg λi = arg µi = ω and, in addition, have the same number
of zero eigenvalues.
This proves the statement, since in particular A is normal, i. e., A∗A = AA∗, and from
Lemma 4.2 we obtain that all eigenvalues of A lie on a line through the origin which is
reflected in the definition of In(A).

We conclude this section with some results on inertia of some specially structured
quasi-Hermitian matrices. Note that here, adding two tuples of inertia (n+

1 , n0
1, n−

1 ) and
(n+

2 , n0
2, n−

2 ) has to be understood component-wise, i. e.,

(n+
1 , n0

1, n−
1 ) + (n+

2 , n0
2, n−

2 ) := (n+
1 + n+

2 , n0
1 + n0

2, n−
1 + n−

2 ).

Lemma 4.5. Consider a quasi-Hermitian matrix A ∈ Kn+l+m×n+l+m of the form

A = eiω

⎡⎢⎣ 0 0 C
0 B 0

C∗ 0 0

⎤⎥⎦ (4.2)

for some B = B∗ ∈ Kn×n, C ∈ Kl×m and ω ∈ [0, 2π). Then it holds that

In(A) = In(B) + (rk C, l + m − 2 rk C, rk C) .
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Proof. The assertion is shown in [Brü11, Lemma 3.10] for ω = 0 with congruence trans-
formations. By applying the same congruence transformations, by Theorem 4.4 it also
holds for general ω ∈ [0, 2π).

Lemma 4.6. Consider a quasi-Hermitian matrix A ∈ Kn+2m×n+2m of the form

A = eiω

⎡⎢⎣ 0 0 C
0 B D

C∗ D∗ E

⎤⎥⎦ (4.3)

for some B = B∗ ∈ Kn×n, invertible C ∈ Km×m, D ∈ Km×n, E = E∗ ∈ Kn×n, and
ω ∈ [0, 2π). Then it holds that

In(A) = In(B) + (m, 0, m) .

Proof. Applying congruence transformations to A via

U =

⎡⎢⎣In −C−∗D∗ −C−∗E
2

0 Im 0
0 0 In

⎤⎥⎦
we obtain that

U∗AU =

⎡⎢⎣ 0 0 C
0 B 0

C∗ 0 0

⎤⎥⎦ .

Thus, the assertion is an immediate consequence of Lemma 4.5 by using Theorem 4.4.

Lemma 4.7. Consider a quasi-Hermitian matrix A ∈ K2m×2m of the form

A = eiω
[

0 C
C∗ E

]
(4.4)

for some E = E∗ ∈ Km×m, invertible C ∈ Km×m and ω ∈ [0, 2π). Then it holds that

In(A) = (m, 0, m) .

Proof. The assertion is an immediate consequence of Lemma 4.6.

4.2 Palindromic and Even Matrix Pencils
In this section we consider so-called even and palindromic matrix pencils, where we will
focus on the latter ones. Both are matrix polynomials of degree one of the form

zE −A ∈ Kn×n[z], (4.5)
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where E,A ∈ Kn×n. Even matrix pencils arise in the continuous-time optimal con-
trol problem and are characterized by the fact that E∗ = −E and A∗ = A, whereas
palindromic matrix pencils are obtained in the discrete-time setting with the property
that E = A∗. Note that congruence transformations preserve the palindromic and even
structure, respectively: For invertible U ∈ Kn×n the matrix pencil

U∗(zE −A)U = z(U∗EU) − U∗AU

is still palindromic or even, respectively. Palindromic matrix pencils are directly con-
nected to even matrix pencils via the generalized Cayley transform c [Cay46; Meh96;
Sch08], which is defined by

c(zE −A) := z(E +A) − (E −A).

Since
c (c(zE −A)) = 2zE − 2A

we immediately see that the image of c under palindromic pencils is the set of even
pencils and vice versa. In particular, one can show that the eigenvalue ∞ is mapped
uniquely to the eigenvalue one. We are now interested in a structure-preserving canonical
form revealing the eigenstructure of a palindromic matrix pencil.

Theorem 4.8 (Palindromic Kronecker canonical form). [Sch08] Let zA∗ −A ∈ Kn×n[z]
be a palindromic matrix pencil. Then there exists some invertible U ∈ Cn×n such that

U∗(zA∗ −A)U = diag (D1(z), . . . , Dk(z)) (4.6)

for some k ∈ N is in palindromic Kronecker canonical form (PKCF), where each block
Dj(z) ∈ Ckj×kj [z], kj ∈ N, is of one of the following forms:

Type P1: For λj ∈ C with |λj | < 1 and kj even Dj(z) is of the form

Dj(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z − λj

. .
.

−1

. .
.

. .
.

z − λj −1
zλj − 1

. .
.

z

. .
.

. .
.

zλj − 1 z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Type P2: For λj = eiθj ∈ C with θj ∈ [0, 2π), i. e., |λj | = 1, εj ∈ {−1, 1}, and kj odd
Dj(z) is of the form

Dj(z) = εj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z − λj

. .
.

−1

. .
.

. .
.

z − λj −1

ze−iθj/2 − eiθj/2 −1
zλj − 1 z

. .
.

z

. .
.

. .
.

zλj − 1 z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Type P3: For λj = eiθj ∈ C with θj ∈ (0, 2π), i. e., |λj | = 1, εj ∈ {−1, 1}, and kj even
Dj(z) is of the form

Dj(z) = εj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z − λj

. .
.

−1

. .
.

. .
.

z − λj −1
zλj − 1 z − 1

. .
.

z

. .
.

. .
.

zλj − 1 z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Type P4: For λj = 1 = eiθj ∈ C, i. e., θj = 0, εj ∈ {−1, 1}, and kj even Dj(z) is of the
form

Dj(z) = εj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z − 1

. .
.

−1

. .
.

. .
.

z − 1 −1
z − 1 iz + i

. .
.

z

. .
.

. .
.

z − 1 z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Type P5: For kj odd Dj(z) is of the form

Dj(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z

. .
.

−1

z . .
.

−1
−1 z

. .
.

. .
.

−1 z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The PKCF is unique up to permutations of the blocks, and the quantities εj ∈ {−1, 1}
are called sign-characteristics.

A closely related version of the above theorem was developed simultaneously in [HS06].
Remark 4.9. We have multiplied the sign-characteristics of the blocks of type P4 oc-
curring in [Sch08] with −1 in order to simplify some of the upcoming results. This is
justified by the fact that if D̃j(z) with sign-characteristic ε̃j corresponds to a block of
type P4 introduced in [Sch08], then Dj(z) = −U∗D̃j(z)U with

U = i
[
Ikj/2

−Ikj/2

]
∈ Ckj×kj

is a block of type P4 with sign-characteristic εj = −ε̃j according to Theorem 4.8.
Remark 4.10. By analyzing the eigenstructure of the blocks in the form (4.6) we obtain:

(a) Blocks of type P1 correspond to eigenvalues λ and 1/λ with |λ| ≠ 1, i. e., these
eigenvalues occur in pairs

{
λ, 1

λ

}
. In particular, this holds for the pairing {0, ∞}.

(b) Blocks of type P2, P3, and P4 correspond to eigenvalues λ with |λ| = 1.

(c) Blocks of type P5 correspond to rank deficiency of the pencil, i. e., they correspond
to singular blocks.

Consider the palindromic matrix pencil P(z) = zA∗ −A ∈ Kn×n[z]. By inserting eiω

for the polynomial variable z we obtain

P(eiω) = eiωA∗ −A = iei ω
2 (ie−i ω

2A − iei ω
2A∗) (4.7)

and hence

P(eiω)∗ = −ie−i ω
2 (ie−i ω

2A − iei ω
2A∗) = (−ie−i ω

2 )2P(eiω) = −e−iωP(eiω).

Thus, P(eiω) is quasi-Hermitian and has a well-defined inertia. Investigating the block
structure of the PKCF leads to the following result.
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4.2 Palindromic and Even Matrix Pencils

Lemma 4.11. Assume that zA∗ −A ∈ Kn×n[z] is in PKCF, i. e., it holds that zA∗ −
A = diag (D1(z), . . . , Dk(z)) for some k ∈ N. Then the inertia pattern of each block
Dj(z) ∈ Ckj×kj [z], kj ∈ N, is given as follows:

(a) If Dj(z) is of type P1, then for all ω ∈ [0, 2π) it holds that

In
(
Dj(eiω)

)
=
(

kj

2 , 0,
kj

2

)
.

(b) If Dj(z) is of type P2 and θj ∈ (0, 2π), then for all ω ∈ [0, 2π) it holds that

In
(
Dj(eiω)

)
=
(

kj − 1
2 , 0,

kj − 1
2

)
+ In (εj(ω − θj)) .

(c) If Dj(z) is of type P2 and θj = 0, then for all ω ∈ [0, 2π) it holds that

In
(
Dj(eiω)

)
=
(

kj − 1
2 , 0,

kj − 1
2

)
+ In (εjω) .

(d) If Dj(z) is of type P3 and θj ∈ (0, 2π), then for ω ∈ [0, 2π) it holds that

In
(
Dj(eiω)

)
=
(

kj

2 , 0,
kj

2

)
if ω ̸= θj, and

In
(
Dj(eiω)

)
=
(

kj

2 − 1, 1,
kj

2 − 1
)

+ In (εj)

if ω = θj.

(e) If Dj(z) is of type P4 with θj = 0, then for ω ∈ [0, 2π) it holds that

In
(
Dj(eiω)

)
=
(

kj

2 , 0,
kj

2

)
if ω ̸= 0, and

In
(
Dj(eiω)

)
=
(

kj

2 − 1, 1,
kj

2 − 1
)

+ In (εj)

if ω = 0.

(f) If Dj(z) is of type P5, then for all ω ∈ [0, 2π) it holds that

In
(
Dj(eiω)

)
=
(

kj − 1
2 , 1,

kj − 1
2

)
.
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4 Structure of Palindromic Matrix Pencils

Proof. First we show statement (a). Thus, consider a block Dj(z) of type P1. Inserting
eiω for z and using (4.7) yields

Dj(eiω) =iei ω
2

[
0 C

C∗ 0

]

with some C ∈ Ckj/2×kj/2. Note that C is invertible since |λj | < 1. Hence, applying
Lemma 4.5, claim (a) follows.
To show parts (b) and (c) we have to consider blocks Dj(z) of type P2, i. e., we have

Dj(eiω) = εj iei ω
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α

. .
.

γ

. .
.

. .
.

α γ

β γ

α γ

. .
.

γ

. .
.

. .
.

α γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where α = i
(
−ei ω

2 + e−i( ω
2 −θj)

)
, β = i

(
e−i(ω−θj)/2 − ei(ω−θj)/2

)
= 2 sin

(
ω−θj

2

)
, γ =

ie−iω/2. First assume that w = θj , i. e., α = β = 0. Then we have

Dj(eiω) = εj iei ω
2

⎡⎢⎣0
γI(kj−1)/2

γI(kj−1)/2

⎤⎥⎦ .

Thus, the block structure together with Lemma 4.5 implies

In
(
Dj(eiω)

)
=
(

kj − 1
2 , 1,

kj − 1
2

)
. (4.8)

Now let ω ̸= θj , i. e., α, β ̸= 0. Thus, we are in the situation of Lemma 4.6 and since
β > 0 if and only if w > θj , with (4.8) this concludes parts (b) and (c).

Now we show parts (d) and (e). If we have a block of type P3 or P4, then the matrix
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4.2 Palindromic and Even Matrix Pencils

Dj(eiω) is structured as

Dj(eiω) = εj iei ω
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α

. .
.

γ

. .
.

. .
.

α γ

α β

. .
.

γ

. .
.

. .
.

α γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where α = i
(
−ei ω

2 + e−i( ω
2 −θj)

)
, γ = ie−iω/2 and β = i

(
e−iω/2 − eiω/2

)
= 2 sin

(
ω
2
)

or

β =
(
eiω/2 + e−iω/2

)
= 2 cos

(
ω
2
)

for type P3 or P4, respectively. First assume that
ω = θj , i. e., α = 0 and β > 0. Then we have

Dj(eiω) = εj iei ω
2

⎡⎢⎢⎢⎣
0

γIkj/2−1
β

γIkj/2−1

⎤⎥⎥⎥⎦ .

Thus, the block structure together with Lemma 4.5 implies that

In
(
Dj(eiω)

)
=
(

kj

2 − 1, 1,
kj

2 − 1
)

+ In (εj) ,

since for all possible values of θj ∈ [0, 2π) the corresponding value of β is strictly greater
than zero. Now assume that ω ̸= θj , i. e., α is nonzero. Then we are in the situation of
Lemma 4.7 and the assertion follows immediately.
Finally, we show statement (f). If we have a block of type P5, then we have to consider

Dj(eiω) = iei ω
2

[
0 C

C∗ 0

]
,

where ω ∈ [0, 2π),

C =

⎡⎢⎢⎢⎢⎢⎣
−iei ω

2

. .
.

ie−i ω
2

−iei ω
2 . .

.

ie−i ω
2

⎤⎥⎥⎥⎥⎥⎦ ∈ C(kj−1)/2+1×(kj−1)/2,

and rk C = kj−1
2 . Lemma 4.5 then implies the desired result.
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4 Structure of Palindromic Matrix Pencils

Remark 4.12. The results from Lemma 4.11 can be used to determine the block structure
of a pencil zA∗−A ∈ Kn×n[z] in the form (4.6), given the inertia patterns for ω ∈ [0, 2π).
For specific patterns all possible combinations of blocks can be found in Table 4.1. Note
that blocks of type P1 have a very simple inertia pattern and thus from a general pattern

In(eiωA∗ −A) = (k1, k2, k3)

– except for the case where k2 = 0, i. e., all blocks are of type P1 – we cannot tell if and
how many blocks of type P1 there are. For this reason in Table 4.1 we omit combinations
of blocks with type P1 except for the pattern made up solely from blocks of type P1.

4.3 Inertia of Palindromic Pencils in Optimal Control

Let (E, A, B, Q, S, R) ∈ Σw
m,n(K) be given. We consider palindromic matrix pencils

arising in the optimal control problem as in (2.38) of the form

zA∗ −A =

⎡⎢⎣ 0 zE − A −B
zA∗ − E∗ (z − 1)Q (z − 1)S

zB∗ (z − 1)S∗ (z − 1)R

⎤⎥⎦ ∈ K2n+m×2n+m[z]. (4.9)

If we insert eiω into (2.38) for z we obtain the quasi-Hermitian matrix

D(ω) := iei ω
2 (ie−i ω

2A − iei ω
2A∗) = iei ω

2

⎡⎢⎣ 0 Eω − Aω Bω

E∗
ω − A∗

ω Qω Sω

B∗
ω S∗

ω Rω

⎤⎥⎦ ∈ C2n+m×2n+m

(4.10)
with Eω = −iei ω

2 E, Aω = −ie−i ω
2 A, Bω = ie−i ω

2 B, Qω = sωQ, Sω = sωS and Rω = sωR,
where sω = ie−i ω

2 − iei ω
2 = 2 sin

(
ω
2
)
.

Lemma 4.13. Let (E, A, B, Q, S, R) ∈ Σw
m,n(K) and consider the matrix D(ω) as in

(4.10) with ω such that det(Eω − Aω) ̸= 0. Furthermore, let

U =

⎡⎢⎣In 0 (E∗
ω − A∗

ω)−1(Qω(Eω − Aω)−1Bω − Sω)
0 In −(Eω − Aω)−1Bω

0 0 Im

⎤⎥⎦ ∈ C2n+m×2n+m. (4.11)

Then D(ω) is congruent to

U∗D(ω)U = iei ω
2

⎡⎢⎣ 0 Eω − Aω 0
E∗

ω − A∗
ω Qω 0

0 0 2 sin
(

ω
2
)

Φ
(
eiω)

⎤⎥⎦ . (4.12)
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Table 4.1: Correspondence between specific inertia patterns for ω ∈ [0, 2π) and some
fixed θ ∈ [0, 2π) of a matrix pencil in the form (4.6) and all possible block
combinations that might lead to such a pattern. The signs + or − denote
the sign-characteristic of a block, if applicable. For combinations including
blocks of type P4, i. e., θ = 0, the first column must be ignored. Blocks of
type P5 do not have an associated angle θ, i. e., their pattern is independent
of ω. For example, the pattern in the 8th entry can be achieved by either
combining a block with positive sign-characteristic of type P2 with a block
with positive sign-characteristic of type P3 or combining a block with positive
sign-characteristic of type P2 with a block with positive sign-characteristic of
type P4

Inertia pattern for

ω < θ ω = θ ω > θ Possible block combinations
1 (k, 0, k) (k, 0, k) (k, 0, k) P1

2 (k, 1, k) (k, 1, k) (k, 1, k) P5

3 (k, 0, k) (k − 1, 2, k − 1) (k, 0, k) +P2 −P2,
+P3 −P3,
+P4 −P4

4 (k, 0, k) (k, 1, k − 1) (k, 0, k) +P3,
+P4

5 (k, 0, k) (k − 1, 1, k) (k, 0, k) −P3,
−P4

6 (k, 0, k + 1) (k, 1, k) (k + 1, 0, k) +P2

7 (k + 1, 0, k) (k, 1, k) (k, 0, k + 1) −P2

8 (k, 0, k + 1) (k, 2, k − 1) (k + 1, 0, k) +P2 +P3,
+P2 +P4

9 (k + 1, 0, k) (k − 1, 2, k) (k, 0, k + 1) −P2 −P3,
−P2 −P4

10 (k, 0, k + 1) (k − 1, 2, k) (k + 1, 0, k) +P2 −P3,
+P2 −P4

11 (k + 1, 0, k) (k, 2, k − 1) (k, 0, k + 1) −P2 +P3,
−P2 +P4
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4 Structure of Palindromic Matrix Pencils

Proof. We have

[
0 0 Im

]
U∗D(ω)U

⎡⎢⎣ 0
0

Im

⎤⎥⎦
= iei ω

2
(
B∗

ω(E∗
ω − A∗

ω)−1(Qω(Eω − Aω)−1Bω − Sω) − S∗
ω(Eω − Aω)−1Bω + Rω

)
= iei ω

2

[
(Eω − Aω)−1Bω

−Im

]∗ [
Qω Sω

S∗
ω Rω

] [
(Eω − Aω)−1Bω

−Im

]

= iei ω
2

[
iei ω

2 (eiωE − A)−1ie−i ω
2 B

−Im

]∗

sω

[
Q S
S∗ R

] [
iei ω

2 (eiωE − A)−1ie−i ω
2 B

−Im

]

= iei ω
2

[
−(eiωE − A)−1B

−Im

]∗

2 sin
(

ω

2

)[
Q S
S∗ R

] [
−(eiωE − A)−1B

−Im

]

= iei ω
2 · 2 sin

(
ω

2

)
Φ
(
eiω
)

.

Furthermore, we have[
In 0 0
0 In 0

]
U∗D(ω)U =

[
In 0 0
0 In 0

]
D(ω)U

= iei ω
2

[
0 Eω − Aω Bω

E∗
ω − A∗

ω Qω Sω

]
U

= iei ω
2

[
0 Eω − Aω −Bω + Bω

E∗
ω − A∗

ω Qω (Qω(Eω − Aω)−1Bω − Sω) − Qω(Eω − Aω)−1Bω + Sω

]

= iei ω
2

[
0 Eω − Aω 0

E∗
ω − A∗

ω Qω 0

]
.

The remaining components of the desired matrix can then be obtained by the fact that
U∗D(ω)U is Hermitian.

Theorem 4.14. Let (E, A, B, Q, S, R) ∈ Σw
m,n(K) be given with corresponding Popov

function Φ(z) ∈ Km×m(z) and rkK(z) Φ(z) = q for some q ∈ N0. Assume that (E, A, B)
has no uncontrollable modes on the unit circle and let r = rk [E − A B]. Then the
following are equivalent:

(a) The Popov function Φ(z) is positive semi-definite on the unit circle, i. e., Φ(eiω) ⪰ 0
for all ω ∈ [0, 2π).

(b) The following conditions for the PKCF of zA∗ −A as in (4.6) hold:
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4.3 Inertia of Palindromic Pencils in Optimal Control

(i) There are no blocks of type P2 corresponding to eigenvalues λ = eiθ, θ ̸= 0,
and all blocks of type P3 have negative sign-characteristic.

(ii) The number of blocks of type P2 corresponding to an eigenvalue λ = 1 with
positive sign-characteristic is greater by q than the number of those with neg-
ative sign-characteristic.

(c) The following conditions for the PKCF of zA∗ −A as in (4.6) hold:
(i’) There are no blocks of type P2 corresponding to eigenvalues λ = eiθ, θ ̸= 0.

(ii’) The number of blocks of type P2 corresponding to an eigenvalue λ = 1 with
positive sign-characteristic is greater by q than the number of those with neg-
ative sign-characteristic.

Proof. The strategy of the proof is similar to the one in [Voi15, Theorem 3.4.2] for the
continuous-time case. First note that since (E, A, B) has no uncontrollable modes on
the unit circle, by Proposition 2.33 we can find a feedback matrix F ∈ Km×n such that
(E, A + BF ) has no eigenvalues on the unit circle. Then by Lemma 3.4 and the fact
that the palindromic pencil zA∗

F −AF corresponding to (E, A + BF, B) is connected
to zA∗ −A via AF = U∗

FAUF , where

UF :=

⎡⎢⎣In 0 0
0 In 0
0 F Im

⎤⎥⎦ ∈ K2n+m×2n+m,

we can assume without loss of generality that (E, A) has no eigenvalues on the unit
circle.

Now we show that (a) implies (b). Therefore, assume that Φ(eiω) ⪰ 0 for all ω ∈ [0, 2π)
. Then in particular we have

In(Φ(eiω)) = (q − a(ω), m − q + a(ω), 0)

for all ω ∈ (0, 2π), where a : (0, 2π) → N0 is some function which is zero for almost all
ω ∈ (0, 2π). Hence, by Lemma 4.13, Lemma 4.7 and Theorem 4.4 we obtain

In
(
eiωA∗ −A

)
= (n + q − a(ω), m − q + a(ω), n)

for ω ∈ (0, 2π). Again, by Theorem 4.4 the inertia of eiωA∗ − A coincides with the
inertia of the PKCF of zA∗ − A as in (4.6) evaluated at eiω. Since by Theorem 4.8
the block structure of the PKCF is uniquely determined, we can proceed by identifying
blocks by their inertia patterns.
Note that rkK(z)(zA∗ −A) = 2n + q, since zA∗ −A can only have a finite amount of
rank drops and due to Lemma 4.13 and the regularity of zE − A there exist infinitely
many values λ ∈ C for which rk(λA∗ − A) = 2n + q. From Lemma 4.11 we can infer
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4 Structure of Palindromic Matrix Pencils

that we have exactly 2n + m − (2n + q) = m − q blocks of type P5 in the PKCF of
zA∗ −A, since these are the only rank deficient blocks.
Thus, since rk(A∗ −A) = 2r, the number of blocks of type P2 or P4 corresponding to
an eigenvalue λ = 1 is exactly 2(n − r) + q.
Then, removing the blocks of type P5 from the PKCF of zA∗ −A yields a matrix pencil
zA∗

1 −A1 ∈ K2n1+q×2n1+q[z] in PKCF with full normal rank and inertia

In(eiωA∗
1 −A1) = (n1 + q − a(ω), a(ω), n1)

on (0, 2π). Then, by Lemma 4.11, there are q blocks of type P2 with corresponding
eigenvalue λ = 1 and positive sign-characteristic, since these are – according to Table 4.1,
entries 6, 8, 10 – present in every combination of blocks with an inertia pattern of the
form

(k + 1, 0, k)

independent of ω > 0 . Removing these blocks leads to the pencil zA∗
2−A2 ∈ K2n2×2n2 [z]

in PKCF with inertia

In(eiωA∗
2 −A2) = (n2 − a(ω), a(ω), n2)

on (0, 2π). Furthermore, from Lemma 4.11 and Table 4.1, entry 6, we deduce that there
are no blocks of type P2 corresponding to eigenvalues λ = eiθ, θ ̸= 0. Thus, all blocks of
type P3 have negative sign-characteristic, since these are – according to Table 4.1, entry
5 – the only blocks with an inertia pattern of the form

(k − 1, 1, k)

for exactly one value of ω > 0. This shows statement (i). Removing these blocks, we
obtain a matrix pencil zA∗

3 −A3 ∈ K2n3×2n3 [z] in PKCF with inertia

In(eiωA∗
3 −A3) = (n3, 0, n3)

on (0, 2π). The inertia of zA∗
3 − A3 together with Lemma 4.11 and Table 4.1, entries

3, 6, 7, reveals that the remaining blocks of type P2 corresponding to an eigenvalue λ = 1
are split up equally into those with positive and those with negative sign-characteristic.
Since there are exactly 2(n − r) + q blocks corresponding to an eigenvalue λ = 1, this
shows (ii) and thus statement (b).

The proof that (c) follows from (b) is clear, since condition (i’) follows immediately
from condition (i) and conditions (ii) and (ii’) coincide.

Now let the conditions (i’), and (ii’) hold. Again, by Lemma 4.13, Lemma 4.7 and
Theorem 4.4, for ω ∈ (0, 2π) we obtain

In
(
eiωA∗ −A

)
= (n, 0, n) + In

(
Φ(eiω)

)
= (n + m1 − a1(ω), m − m1 − m2 + a1(ω) + a2(ω), n + m2 − a2(ω))
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and functions ai : (0, 2π) → N0, i = 1, 2, which are zero for almost all ω ∈ (0, 2π) such
that m1 + m2 = q. We now have to show that m2 = a2(ω) = 0. By Table 4.1, entry 6,
blocks of type P2 with positive sign-characteristic are the only ones leading to an inertia
pattern of the form

(k + 1, 0, k)

for ω > θ. The only blocks that could compensate the additional positive eigenvalue
for ω > θ are – according to Table 4.1, entries 3, 6 – blocks of type P2 with negative
sign-characteristic. By condition (i’) we are only allowed to take such blocks with θ = 0.
By condition (ii’) then we obtain that n + m1 = (n + m2) + q and thus m2 = 0, m1 = q.
Hence, we have

In(Φ(eiω)) = (q − a1(ω), m − q + a1(ω) + a2(ω), −a2(ω)) .

Since the inertia of a quasi-Hermitian matrix by definition is a triple of non-negative
integers, this implies a2 ≡ 0 and thus Φ(eiω) ⪰ 0 for all ω ∈ (0, 2π). Then, by continuity,
also Φ(1) ⪰ 0.

Example 4.15 (Example 2.25 revisited). We consider the system (E, A, B, Q, S, R)
with corresponding system (EF , AF , BF , QF , SF , RF ) in feedback equivalence form as
in (2.16), (2.17), and Example 3.11. The associated palindromic pencil zA∗ − A ∈
K5×5[z] as in (2.38) is given by

zA∗ −A =

⎡⎢⎢⎢⎢⎢⎣
0 0 1 −1 −1
0 0 −1 z 0

− z z z − 1 0 0
z −1 0 z − 1 0
z 0 0 0 z − 1

⎤⎥⎥⎥⎥⎥⎦ . (4.13)

Transforming the matrix A to the corresponding matrix AF of the system in feedback
equivalence form (2.17) via

UF :=

⎡⎢⎣W ∗ 0 0
0 T 0
0 FT Im

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 −1 0 0 0
1 0 0 0 0
0 0 1 1 0
0 0 1 0 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ ∈ K5×5

we obtain

AF = U∗
FAUF =

⎡⎢⎢⎢⎢⎢⎣
0 0 1 0 1
0 0 0 1 −1
1 0 2 1 0
0 0 1 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ .
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4 Structure of Palindromic Matrix Pencils

The matrix AF can can be further transformed to

U∗(zA∗
F −AF )U =

⎡⎢⎢⎢⎢⎢⎣
0 −1 0 0 0
z 0 0 0 0
0 0 0 z − (2 +

√
3) 0

0 0 (2 +
√

3)z − 1 0 0
0 0 0 0 z − 1

⎤⎥⎥⎥⎥⎥⎦ (4.14)

in PKCF as in (4.6) via

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 −1 +
√

3 −3
2 −

√
3 0

1 −1 −1 + 1√
3 −1 −

√
3

2 0
0 0 − 1√

3
1
4

(
1 +

√
3
)

− 1√
2

0 1 1 − 1√
3

1
2

(
2 +

√
3
)

0
0 0 −1 + 1√

3 −1 −
√

3
2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

From (4.14) we see that the PKCF of zA∗
F −AF and thus also of zA∗ −A consists of

a 2 × 2 block of type P1 corresponding to the eigenvalues {0, ∞}, a 2 × 2 block of type
P1 corresponding to the eigenvalues {2 +

√
3, 2 −

√
3}, and a 1 × 1 block of type P2

corresponding to the eigenvalue 1. Furthermore, for the Popov function ΦF (z) it holds
that rkK(z) ΦF (z) = 1. Thus, we have shown that the assumptions of Theorem 4.14(b)
are fulfilled and hence ΦF (eiω) ⪰ 0 for all ω ∈ [0, 2π). Thus, we have confirmed the
result obtained in Example 3.11.

Remark 4.16. The result of Theorem 4.14 is related to [Voi15, Theorem 3.4.2]. Here,
we replaced positivity of the Popov function on the imaginary axis by positivity of the
Popov function on the unit circle.

Moreover, the blocks of the PKCF 4.6 have some correspondence to the blocks of type
E1–E4 of the even Kronecker canonical form [Tho76] of an even matrix pencil. With
the notation as introduced in [Voi15, Theorem 2.1.13] we obtain that blocks of type E1
correspond to finite eigenvalues not on the imaginary axis, blocks of type E2 correspond
to eigenvalues on the imaginary axis, blocks of type E3 correspond to infinite eigenvalues,
and blocks of type E4 correspond to rank deficiency of the matrix pencil.

Then, comparing the respective results on the inertia patterns of these blocks in
Lemma 4.11 and [Voi15, Lemma 2.1.15] we find that blocks of type P1 are analogs
of blocks of type E1, blocks of type P2 corresponding to eigenvalues λ = eiθ, θ ̸= 0 are
analogs of blocks of type E2 of odd size, blocks of type P3 are analogs of blocks of type
E2 of even size, blocks of type P4 corresponding to an eigenvalue λ = 1 are analogs of
blocks of type E3 of even size, blocks of type P2 corresponding to an eigenvalue λ = 1
are analogs of blocks of type E3 of odd size, and blocks of type P5 are analogs of blocks
of type E4.
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5 Lur’e Equations

In this chapter we characterize solvability of Lur’e equations for explicit as well as for
implicit difference equations in a similar way as in [RRV15] for continuous-time systems.
Finding a solution of the Lur’e equation means finding X = X∗ ∈ Kn×n, K ∈ Kq×n,
and L ∈ Kq×m such that

M(X) =
[
A∗XA − E∗XE + Q A∗XB + S

B∗XA + S∗ B∗XB + R

]
=VΣ

[
K∗

L∗

] [
K L

]
, (5.1)

where q := rkK(z) Φ(z).
If X is a solution of the KYP inequality (3.2), then we can always find K ∈ Kp×n and

L ∈ Kp×m for some p ∈ N0 such that (5.1) holds. To see this, let V Σ be a basis of the
system space VΣ ∈ Kn+m×n1+m. Thus, by Lemma 2.2 we have (V Σ)∗M(X)V Σ ⪰ 0,
where p denotes the number of positive eigenvalues. This means that we can find U11 ∈
Kp×n1 , U12 ∈ Kp×m, U21 ∈ Kn1+m−p×n1 , and U22 ∈ Kn1+m−p×m such that

(V Σ)∗M(X)V Σ =
[
U∗

11 U∗
21

U∗
12 U∗

22

] [
Ip 0
0 0

] [
U11 U12
U21 U22

]
.

Neglecting the parts corresponding to the zero eigenvalues leads to

(V Σ)∗M(X)V Σ =
[
U∗

11
U∗

12

] [
U11 U12

]
.

Set [
K L

]
:=
[
U11 U12

]
(V Σ)+,

where (V Σ)+ ∈ Kn1+m×n+m denotes the Moore-Penrose left inverse of V Σ. Hence, we
have found K and L such that

M(X) =VΣ

[
K∗

L∗

] [
K L

]
.

The next result shows that for such solutions it holds that p ≥ q. Thus, in other words,
we are interested in the existence of solutions of (5.1) with minimal rank q.
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5 Lur’e Equations

Proposition 5.1. Let (E, A, B, Q, S, R) ∈ Σw
m,n(K) be given and let q = rkK(z) Φ(z).

Further, let
(X, K, L) ∈ Kn×n × Kq×n × Kq×m

be a solution of the Lur’e equation (5.1) and assume, that for M ∈ Kp×n and N ∈ Kp×m

also the triple (X, M, N) fulfills (5.1). Then we have q ≤ p and

rkK(z)

[
zE − A −B

(z − 1)K (z − 1)L

]
= n + q.

Proof. Let ω0 ∈ [0, 2π) be given with det(eiω0E −A) ̸= 0 and rk Φ(eiω0) = q. Then, from
Lemma 3.3, for the Popov function we obtain

Φ(eiω0) =
[
(eiω0E − A)−1B

Im

]∗ [
Q S
S∗ R

] [
(eiω0E − A)−1B

Im

]

=
[
(eiω0E − A)−1B

Im

]∗ [
A∗XA − E∗XE + Q A∗XB + S

B∗XA + S∗ B∗XB + R

] [
(eiω0E − A)−1B

Im

]

=
[
(eiω0E − A)−1B

Im

]∗ [
M∗

N∗

] [
M N

] [(eiω0E − A)−1B
Im

]

=
([

M N
] [(eiω0E − A)−1B

Im

])∗ [
M N

] [(eiω0E − A)−1B
Im

]
= Z(eiω0)∗Z(eiω0),

where Z(z) = N + M(zE − A)−1B ∈ Kp×m(z). Hence, we have

q = rk Φ(eiω0) = rk Z(eiω0)∗Z(eiω0) = rk Z(eiω0) ≤ p.

Analogously, we obtain for all ω ∈ [0, 2π) with det(eiω0E − A) ̸= 0 that

Φ(eiω) = W (eiω)∗W (eiω),

where W (z) = L + K(zE − A)−1B ∈ Kq×m(z). Since

q ≥ rk Φ(eiω) = rk W (eiω)∗W (eiω) = rk W (eiω)

and rk W (eiω0) = q it follows that rkK(z) W (z) = q. Then we obtain

n + q = rkK(z)

[
In 0
0 (z − 1)Iq

] [
In 0

K(zE − A)−1 Iq

] [
zE − A −B

0 W (z)

]

= rkK(z)

[
zE − A −B

(z − 1)K (z − 1)L

]
.
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5.1 Explicit Difference Equations

In the following we will derive certain deflating subspaces of BVD and palindromic
matrix pencils, respectively, from a solution of the Lur’e equation (5.1). First, we do this
for the case of explicit difference equations. Afterwards, based on these results, we do
the generalization to the implicit case with the help of feedback transformations similar
to the approach in Chapter 3.

5.1 Explicit Difference Equations
In the EDE case, i. e., systems (In, A, B, Q, S, R) ∈ Σw

m,n(K) finding a solution of the
Lur’e equation (5.1) reduces to:

For q := rkK(z) Φ(z) find X ∈ Kn×n, K ∈ Kq×n, and L ∈ Kq×m such that

M(X) =
[
A∗XA − X + Q A∗XB + S

B∗XA + S∗ B∗XB + R

]
=
[
K∗

L∗

] [
K L

]
. (5.2)

The next result is an analogous version of [Rei11, Lemma 12] for the discrete-time case.

Lemma 5.2. Let (In, A, B, Q, S, R) ∈ Σw
m,n(K) be given and let q = rkK(z) Φ(z).

Furthermore, let Φ(eiω) ⪰ 0 for all ω ∈ [0, 2π) such that det(eiωIn − A) ̸= 0 and let an
Hermitian X ∈ Kn×n be given with

rkM(X) = q.

Then (5.2) has a solution (X, K, L) ∈ Kn×n × Kq×n × Kq×m.

Proof. Let ω ∈ [0, 2π) be such that det(eiωIn − A) ̸= 0 and rk Φ(eiω) = q. From
Lemma 3.3 applied for E = In we obtain that

Φ(eiω) =
[
(eiωIn − A)−1B

Im

]∗

M(X)
[
(eiωIn − A)−1B

Im

]
⪰ 0.

Assume that
In(M(X)) = (q+, m − q+ − q−, q−)

with q+ + q− = q. Using Theorem 4.4 and neglecting the parts of the transformation
matrix corresponding to the zero eigenvalues we find U11 ∈ Kq+×n, U12 ∈ Kq+×m,
U21 ∈ Kq−×n, and U22 ∈ Kq−×m such that

M(X) =
[
U∗

11 U∗
21

U∗
12 U∗

22

] [
Iq+ 0
0 −Iq−

] [
U11 U12
U21 U22

]
.

Suppose now that X is not a solution of the KYP inequality (3.8), i. e., that q− > 0.
Then for G1(eiω) = U11(eiωIn − A)−1B + U12 and G2(eiω) = U21(eiωIn − A)−1B + U22 it
follows that

0 ⪯ Φ(eiω) = G∗
1(eiω)G1(eiω) − G∗

2(eiω)G2(eiω).
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5 Lur’e Equations

Let x ∈ ker G1(eiω). Then

0 ≤ −x∗G∗
2(eiω)G2(eiω)x ≤ 0

and thus x ∈ ker G2(eiω). Therefore, im G∗
2(eiω) ⊆ im G∗

1(eiω) and hence, we obtain

q = rk Φ(eiω) ≤ rk G1(eiω) ≤ q+ < q.

This is a contradiction and thus q+ = q. But then (X, U11, U12) is a solution of the
Lur’e equation (5.2).

Example 5.3 (Example 2.25 revisited). Consider the system (E, A, B, Q, S, R) as in
(2.16) and Example 3.11. We have seen in Example 3.11 that with

Ms(Ps) =
[

2 −Ps − 1
−Ps − 1 Ps + 2

]

Ps =
√

3 solves the KYP inequality (3.2) for the EDE system (In1 , As, Bs, Qs, Ss, Rs)
as in (3.21). In particular, we have that rkMs(Ps) = 1 = rkK(z) Φs(z) for the Popov
function Φs(z) ∈ K(z) of the EDE system. Thus we obtain

Ms(Ps) =
[ √

2 0
−

√
3+1√

2 1

] [
1 0
0 0

] [√
2 −

√
3+1√

2
0 1

]
and hence,

(Ps, Ks, Ls) =
(

√
3,

√
2, −

√
3 + 1√

2

)
is a solution of the Lur’e equation (5.2).

Now we are ready to show that the existence of a solution of the Lur’e equation (5.2)
is equivalent to the existence of a certain deflating subspace of the palindromic matrix
pencil as in (2.38). This result is the continuous-time analog of [Rei11, Theorem 11].
Theorem 5.4. Let (In, A, B, Q, S, R) ∈ Σw

m,n(K) be given and consider the associated
palindromic pencil zA∗ −A as in (2.38). Further, let q = rkK(z) Φ(z) and assume that
rk [ In − A −B ] = n. Then the following are equivalent:

(a) There exists a solution (X, K, L) ∈ Kn×n × Kq×n× ∈ Kq×m of (5.2).

(b) It holds that Φ(eiω) ⪰ 0 for all ω ∈ [0, 2π) such that det(eiωIn − A) ̸= 0. Fur-
thermore, there exist matrices Yµ, Yx ∈ Kn×n+m, Yu ∈ Km×n+m and Zµ, Zx ∈
Kn×n+q, Zu ∈ Km×n+q such that for

Y =

⎡⎢⎣Yµ

Yx

Yu

⎤⎥⎦ , Z =

⎡⎢⎣Zµ

Zx

Zu

⎤⎥⎦
the following holds:
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5.1 Explicit Difference Equations

(i) The matrix [
In − A −B

] [Yx

Yu

]
has full row rank n.

(ii) The space Y = im Y is maximally (A∗ −A)-neutral.
(iii) There exist Ẽ, Ã ∈ Kn+q×n+m such that (zA∗ −A)Y = Z(zẼ − Ã).

Proof. Denote by C ∈ Kn+m×n and Cc ∈ Kn+m×m the right inverse and a basis matrix
of the kernel of [

In − A −B
]

,

respectively. Further let [
C−

1
C−

2

]
:=
[
C−

11 C−
12

C−
21 C−

22

]
:=
[
C Cc

]−1
,

where C−
1 = [ In − A − B ] ∈ Kn×n+m, C−

2 ∈ Km×n+m, C−
11 = In − A ∈ Kn×n,

C−
12 = −B ∈ Kn×m, C−

21 ∈ Km×n, and C−
22 ∈ Km×m.

First assume that there exists a solution (X, K, L) of (5.2). Then by Theorem 3.7 we
have Φ(eiω) ⪰ 0 for all ω ∈ [0, 2π) such that det(eiωIn − A) ̸= 0 . Set

Y =

⎡⎢⎣Yµ

Yx

Yu

⎤⎥⎦ =

⎡⎢⎣X(A − In) XB
In 0
0 Im

⎤⎥⎦ , Z =

⎡⎢⎣Zµ

Zx

Zu

⎤⎥⎦ =

⎡⎢⎣ In 0
(In − A∗)X K∗

−B∗X L∗

⎤⎥⎦ , (5.3)

and

zẼ − Ã =
[

zIn − A −B
(z − 1)K (z − 1)L

]
. (5.4)

Property (i) follows, since

rk
[
In − A −B

] [Yx

Yu

]
= rk

[
In − A −B

]
= n

by assumption. For property (ii) we first note that for

V :=

⎡⎢⎣In 0 0
0 C−

11 C−
12

0 C−
21 C−

22

⎤⎥⎦ ∈ K2n+m×2n+m (5.5)

we have
V −∗(A∗ −A)V −1 = E, (5.6)
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5 Lur’e Equations

where E ∈ K2n+m×2n+m as in (2.33). Then by Lemma 2.12, im Y is maximally (A∗−A)-
neutral if and only if im Ŷ is maximally E-neutral, where

Ŷ := V Y
[
C Cc

]
=

⎡⎢⎣−X 0
In 0
0 Im

⎤⎥⎦ . (5.7)

On the one hand, im Ŷ is E-neutral, since

Ŷ ∗EŶ =
[
−X + X 0

0 0

]
= 0.

On the other hand, we have that n+m = rk Ŷ and by Lemma 2.13, the rank of every E-
neutral space is bounded from above by n + m. Therefore, im Ŷ is maximally E-neutral
which shows (ii). Finally, we have (iii) by

(zA∗ −A)Y

=

⎡⎢⎣ zIn − A −B
z (A∗X(A − In) + Q) − X(A − In) − Q z(A∗XB + S) − XB − S

z (B∗X(A − In) + S∗) − S∗ z(B∗XB + R) − R

⎤⎥⎦
=

⎡⎢⎣ zIn − A −B
z ((In − A∗)X + K∗K) − (In − A∗)XA − K∗K zK∗L − (In − A∗)XB − K∗L

z (−B∗X + L∗K) − B∗XA − L∗K zL∗L + B∗XB − L∗L

⎤⎥⎦
=Z(zẼ − Ã).

Now assume that we are in the situation of (b). Then by (ii), im Ŷ is maximally E-neutral
for

Ŷ :=

⎡⎢⎣Ŷµ

Ŷx

Ŷu

⎤⎥⎦ = V Y
[
C Cc

]

and V and E as in (5.5) and (5.6). By property (i) we obtain

rk Ŷx = rk
[
In 0

] [Ŷx

Ŷu

]
= rk

[
In − A −B

] [Yx

Yu

] [
C Cc

]
= n.

Thus, there exists an invertible T1 ∈ Kn+m×n+m such that

Ŷ T1 =

⎡⎢⎣Ŷµ1 Ŷµ2

In 0
Ŷu1 Ŷu2

⎤⎥⎦ .
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5.1 Explicit Difference Equations

By Lemma 2.12, Ŷ T1 is still maximally E-neutral and we obtain

0 = (Ŷ T1)∗EŶ T1 =
[
In −Ŷ ∗

µ1 0
0 −Ŷ ∗

µ2 0

]
Ŷ T1 =

[
Ŷµ1 − Ŷ ∗

µ1 Ŷµ2

−Ŷ ∗
µ2 0

]
;

in particular X := −Ŷµ1 is Hermitian. Hence, maximal E-neutrality implies full rank of
Ŷu2 . Applying another column transformation to Ŷ via an invertible T2 ∈ Kn+m×n+m

yields

Ŷ T1T2 =

⎡⎢⎣−X 0
In 0
0 Im

⎤⎥⎦ .

Doing the backtransformation for Y we obtain

Y = V −1Ŷ T1T2
[
C Cc

]−1
T̂ , (5.8)

where
T̂ :=

[
C Cc

]
(T1T2)−1

[
C Cc

]−1
.

This implies

Y T̂ −1 =

⎡⎢⎣X(A − In) XB
In 0
0 Im

⎤⎥⎦ . (5.9)

We partition zÊ − Â := (zẼ − Ã)T̂ −1 into

zÊ − Â =
[
zÊ1 − Â1 zÊ2 − Â2

]
,

where zÊ1 − Â1 ∈ Kn+q×n[z] and zÊ2 − Â2 ∈ Kn+q×m[z]. Then property (iii) implies⎡⎢⎣ zIn − A −B
z (A∗X(A − In) + Q) − X(A − In) − Q z(A∗XB + S∗) − XB − S∗

z (B∗X(A − In) + S∗) − S∗ z(B∗XB + R) − R

⎤⎥⎦
=

⎡⎢⎣Zµ

Zx

Zu

⎤⎥⎦ [zÊ1 − Â1 zÊ2 − Â2
]

,

yielding In = ZµÊ1 and thus rk Zµ = n. Therefore, there exists invertible T3 ∈
Kn+m×n+m such that ZµT3 = [ In 0 ]. Then for

ZT3 =:

⎡⎢⎣ In 0
Zx1 Zx2

Zu1 Zu2

⎤⎥⎦ , T −1
3 (zÊ − Â) =:

[
zÊ11 − Â11 zÊ12 − Â12
zÊ21 − Â21 zÊ22 − Â22

]
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5 Lur’e Equations

partitioned accordingly, we obtain⎡⎢⎣ zIn − A −B
z (A∗X(A − In) + Q) − X(A − In) − Q z(A∗XB + S∗) − XB − S∗

z (B∗X(A − In) + S∗) − S∗ z(B∗XB + R) − R

⎤⎥⎦
=

⎡⎢⎣ In 0
Zx1 Zx2

Zu1 Zu2

⎤⎥⎦[zÊ11 − Â11 zÊ12 − Â12
zÊ21 − Â21 zÊ22 − Â22

]
.

(5.10)

Thus, the first equation gives Ê11 = In, Â11 = A, Ê12 = 0, and Â12 = B. For z = 1 we
obtain from (5.10) that⎡⎢⎣ In − A −B

(A∗ − In)X(A − In) (A∗ − In)XB
B∗X(A − In) B∗XB

⎤⎥⎦ =

⎡⎢⎣ In 0
Zx1 Zx2

Zu1 Zu2

⎤⎥⎦[ In − A −B

Ê21 − Â21 Ê22 − Â22

]
.

Multiplying from the right with C results in[
(In − A∗)X 0

0 −B∗X

] [
In − A −B
In − A −B

]
C =

[
Zx1

Zu1

]
+
[
Zx2

Zu2

] [
Ê21 − Â21 Ê22 − Â22

]
C

and thus [
Zx1

Zu1

]
=
[
(In − A∗)X

−B∗X

]
−
[
Zx2

Zu2

] [
Ê21 − Â21 Ê22 − Â22

]
C.

Inserting this relation into (5.10) for z = ∞ gives[
A∗X(A − In) + Q A∗XB + S
B∗X(A − In) + S∗ B∗XB + R

]

=
[
Zx2

Zu2

] [
Ê21 Ê22

]
+
([

(In − A∗)X
−B∗X

]
−
[
Zx2

Zu2

] [
Ê21 − Â21 Ê22 − Â22

]
C

)[
In 0

]
,

which leads to

M(X) =
[
A∗XA − X + Q A∗XB + S

B∗XA + S∗ B∗XB + R

]

=
[
Zx2

Zu2

] ([
Ê21 Ê22

]
−
[
Ê21 − Â21 Ê22 − Â22

] [
C 0

])
.

Thus we have
rkM(X) ≤ q. (5.11)
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5.1 Explicit Difference Equations

Further, by Lemma 3.3, for ω ∈ [0, 2π) we can rewrite Φ(eiω) as

Φ(eiω) =
[
(eiωIn − A)−1B

Im

]∗

M(X)
[
(eiωIn − A)−1B

Im

]
and thus in (5.11) we even have equality. Therefore, we can apply Lemma 5.2 and hence,
we have shown that (a) holds.

In the case of a BVD pencil we can prove a similar statement.

Theorem 5.5. Let (In, A, B, Q, S, R) ∈ Σw
m,n(K) be given and consider the associated

BVD pencil zE −A as in (2.35). Further, let q = rkK(z) Φ(z). Then the following are
equivalent:

(a) There exists a solution (X, K, L) ∈ Kn×n × Kq×n × Kq×m of (5.2).

(b) It holds that Φ(eiω) ⪰ 0 for all ω ∈ [0, 2π) such that det(eiωIn − A) ̸= 0. Fur-
thermore, there exist matrices Yµ, Yx ∈ Kn×n+m, Yu ∈ Km×n+m and Zµ, Zx ∈
Kn×n+q, Zu ∈ Km×n+q such that for

Y =

⎡⎢⎣Yµ

Yx

Yu

⎤⎥⎦ , Z =

⎡⎢⎣Zµ

Zx

Zu

⎤⎥⎦
the following hold:

(i) The matrix

Yx =
[
In 0

] [Yx

Yu

]
has full row rank n.

(ii) The space Y = im Y is maximally Ee-neutral, where

Ee :=

⎡⎢⎣ 0 −In 0
In 0 0
0 0 0

⎤⎥⎦
corresponds to E in the even pencil in (2.33).

(iii) There exist Ẽ, Ã ∈ Kn+q×n+m such that (zE −A)Y = Z(zẼ − Ã).

Proof. First assume that there exists a solution (X, K, L) of (5.2). Then by Theorem 3.7
Φ(eiω) ⪰ 0 for all ω ∈ [0, 2π) such that det(eiωIn − A) ̸= 0. Set

Y =

⎡⎢⎣Yµ

Yx

Yu

⎤⎥⎦ =

⎡⎢⎣−X 0
In 0
0 Im

⎤⎥⎦ , Z =

⎡⎢⎣Zµ

Zx

Zu

⎤⎥⎦ =

⎡⎢⎣ In 0
−A∗X −K∗

−B∗X −L∗

⎤⎥⎦ ,
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5 Lur’e Equations

and
zẼ − Ã =

[
zIn − A −B

K L

]
.

This immediately shows property (i). Note that im Y is exactly im Ŷ in the proof of
Theorem 5.4, see (5.7). Thus, following the lines of this proof we obtain property (ii).
Finally, we have (iii) by

(zE −A)Y =

⎡⎢⎣ zIn − A −B
−zA∗X − Q + X −S

−zB∗X − S∗ −R

⎤⎥⎦
=

⎡⎢⎣ zIn − A −B
−zA∗X + A∗XA − K∗K A∗XB − K∗L
−zB∗X + B∗XA − L∗K B∗XB − L∗L

⎤⎥⎦
=Z(zẼ − Ã).

Now assume that we are in the situation of (b). Then, by again looking at the proof
of Theorem 5.4, properties (i) and (ii) imply that there exists a transformation matrix
T1 ∈ Kn+m×n+m such that

Y T1 =

⎡⎢⎣−X 0
In 0
0 Im

⎤⎥⎦
and X is Hermitian. Partition zÊ − Â := (zẼ − Ã)T −1

1 into

zÊ − Â =
[
zÊ1 − Â1 zÊ2 − Â2

]
,

where zÊ1 − Â1 ∈ Kn+q×n[z] and zÊ2 − Â2 ∈ Kn+q×m[z]. Then property (iii) implies⎡⎢⎣ zIn − A −B
−zA∗X − (Q − X) −S

−zB∗X − S∗ −R

⎤⎥⎦ =

⎡⎢⎣Zµ

Zx

Zu

⎤⎥⎦ [zÊ1 − Â1 zÊ2 − Â2
]

,

yielding In = ZµÊ1 and thus rk Zµ = n. Therefore, there exists invertible T2 ∈
Kn+m×n+m such that ZµT2 = [ In 0]. Then for

ZT2 =:

⎡⎢⎣ In 0
Zx1 Zx2

Zu1 Zu2

⎤⎥⎦ , T −1
2 (zÊ − Â) =:

[
zÊ11 − Â11 zÊ12 − Â12
zÊ21 − Â21 zÊ22 − Â22

]

accordingly partitioned, we obtain⎡⎢⎣ zIn − A −B
−zA∗X − (Q − X) −S

−zB∗X − S∗ −R

⎤⎥⎦ =

⎡⎢⎣ In 0
Zx1 Zx2

Zu1 Zu2

⎤⎥⎦[zÊ11 − Â11 zÊ12 − Â12
zÊ21 − Â21 zÊ22 − Â22

]
. (5.12)
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5.2 Implicit Difference Equations

Thus, the first equation gives Ê11 = In, Â11 = A, Ê12 = 0, and Â12 = B. For z = ∞ we
obtain from (5.12) that⎡⎢⎣ In 0

−A∗X 0
−B∗X 0

⎤⎥⎦ =

⎡⎢⎣ In 0
Zx1 Zx2

Zu1 Zu2

⎤⎥⎦[ In 0
Ê21 Ê22

]
.

Thus we have [
Zx1

Zu1

]
=
[

−A∗X
−B∗X

]
−
[
Zx2

Zu2

]
Ê21.

Inserting this relation into (5.12) for z = 0 gives[
−X + Q S

S∗ R

]
=
[
Zx2

Zu2

] [
Â21 Â22

]
+
([

−A∗X
−B∗X

]
−
[
Zx2

Zu2

]
Ê21

)[
A B

]
,

which finally leads to

M(X) =
[
A∗XA − X + Q A∗XB + S

B∗XA + S∗ B∗XB + R

]
=
[
Zx2

Zu2

] [
Â21 − Ê21A Â22 − Ê21B

]
.

Thus
rkM(X) ≤ q

and the result follows as in Theorem 5.4 by using Lemma 5.2.

5.2 Implicit Difference Equations
In this section we generalize the results from the previous section to implicit difference
equations. As for the KYP inequality we need relations between the Lur’e equation (5.1)
corresponding to the original system and the associated equation corresponding to the
feedback equivalent system (EF , AF , BF , QF , SF , RF ) ∈ Σw

m,n(K) as in (3.3). These
findings are related to the results in [RRV15] in the continuous-time case.

Lemma 5.6. Let (E, A, B, Q, S, R) ∈ Σw
m,n(K) be given and q = rkK(z) Φ(z). Then

(X , K , L) ∈ Kn×n × Kq×n × Kq×m is a solution of (5.1) if and only if

(XF , KF , LF ) := (W −∗XW −1, KT + LFT, L) (5.13)

is a solution of (5.1) associated to the feedback system

(EF , AF , BF , QF , SF , RF ) ∈ Σw
m,n(K)

as in (3.3), i. e.,

MF (XF ) =
[
A∗

F XF AF − E∗
F XF EF + QF A∗

F XF BF + SF

B∗
F XF AF + S∗

F B∗
F XF BF + RF

]
=VΣ

F

[
K∗

F

L∗
F

] [
KF LF

]
.
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5 Lur’e Equations

Proof. First note that for

TF =
[

T 0
FT Im

]
we have [

K L
]
TF =

[
KT + LFT L

]
. (5.14)

In addition, by Proposition 3.8(a) we obtain that q = rkK(z) Φ(z) = rkK(z) ΦF (z). Thus,
Lemma 3.4 and Lemma 2.2(c) immediately yield the assertion.

Moreover, we now characterize the connection between the Lur’e equation (5.1) corre-
sponding to the system (EF , AF , BF , QF , SF , RF ) ∈ Σw

m,n(K) in feedback equivalence
form as in (3.3) and the Lur’e equation (5.2) corresponding to the associated EDE part
as in (3.13).

Lemma 5.7. Let (E, A, B, Q, S, R) ∈ Σw
m,n(K) with the system space VΣ be given

and consider the system (EF , AF , BF , QF , SF , RF ) ∈ Σw
m,n(K) as in (3.3) in feedback

equivalence form (2.15) with system space VΣ
F . Further, consider (XF , KF , LF ) as in

(5.13) partitioned according to the block structure of the feedback equivalence form.
Then with q = rkK(z) Φ(z) we have that (X , K , L) ∈ Kn×n×Kq×n×Kq×m is a solution

of (5.1) if and only if (X11, K1, L − K2B2) ∈ Kn1×n1 × Kq×n1 × Kq×m is a solution of
(5.2) for the EDE system

(In1 , As, Bs, Qs, Ss, Rs) ∈ Σw
m,n1(K)

as in (3.13).

Proof. Consider [ x∗ u∗ ]∗ ∈ VΣ
F , i. e.,

x =

⎡⎢⎣ x1
−B2u
0n3×1

⎤⎥⎦ ,

with x1 ∈ Kn1 . Then

[
KF LF

] [x
u

]
=
[
K1 K2 K3 L

] ⎡⎢⎢⎢⎣
x1

−B2u
0n3×1

u

⎤⎥⎥⎥⎦ =
[
K1 L − K2B2

] [x1
u

]
.

Furthermore, by Proposition 3.8(b) we obtain that q = rkK(z) Φs(z) = rkK(z) Φ(z), where
Φs(z) denotes the Popov function corresponding to the EDE system. Thus, together with
(3.18), Lemma 3.4 and Lemma 2.2(c) immediately yield the assertion.
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5.2 Implicit Difference Equations

For the rest of this chapter we assume that (E, A, B, Q, S, R) ∈ Σw
m,n(K) is impulse

controllable, i. e., there exists a feedback such that the system

(EF , AF , BF , QF , SF , RF ) ∈ Σw
m,n(K)

as in (3.3) is in feedback equivalence form such that n3 = 0. This is justified by the
fact that by Lemma 2.21 the subsystem described by (E33, In3 , 0) ∈ Σm,n3(K) obtained
from the feedback equivalence form (2.15) has only the zero solution and thus does
not contribute to the dynamics of the system. Indeed, in the proofs of Lemma 3.9
and Lemma 5.7 the parts of (EF , AF , BF , QF , SF , RF ) corresponding to the last n3
variables do not contribute to the analysis. The following proposition makes this precise,
using the same projection ansatz as in [RRV15, Theorem 5.9].

Proposition 5.8. Let (E, A, B, Q, S, R) ∈ Σw
m,n(K) with the system space VΣ be given

and consider the system (EF , AF , BF , QF , SF , RF ) ∈ Σw
m,n(K) as in (3.3) in feedback

equivalence form (2.15). Further, let q = rkK(z) Φ(z). Define the projector

Π := W −1

⎡⎢⎣In1 0 0
0 0 0
0 0 0

⎤⎥⎦W ∈ Kn×n. (5.15)

Then we have
im Π = EWσ (5.16)

and the following statements hold:

(a) The projected system (ΠE, A, B) ∈ Σm,n(K) is impulse controllable and

Bσ
(E, A, B) = Bσ

(ΠE, A, B).

In particular, the system space of (ΠE, A, B) is VΣ.

(b) There exists a solution P ∈ Kn×n of the KYP inequality (3.2), i. e., M(P ) ⪰VΣ 0,
if and only if MΠ(P ) ⪰VΣ 0, where MΠ(P ) is the matrix in (3.2) corresponding
to the projected system (ΠE, A, B) ∈ Σm,n(K).

(c) There exists a solution (X, K, L) ∈ Kn×n × Kq×n × Kq×m of the Lur’e equation
(5.1) if and only if (X, K, L) also fulfills the Lur’e equation (5.1) corresponding
to the projected system (ΠE, A, B) ∈ Σm,n(K).

Proof. Part (a) and (5.16) follow with the algebraic manipulations mentioned in the
proof of [RRV15, Theorem 5.9].

Now set

ΠF := WΠW −1 =

⎡⎢⎣In1 0 0
0 0 0
0 0 0

⎤⎥⎦ .
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5 Lur’e Equations

For parts (b) and (c) note that the system (ΠF EF , AF , BF ) ∈ Σm,n(K) is in feedback
equivalence form (2.15) where compared to (EF , AF , BF ) ∈ Σm,n(K) the matrices E23
and E33 are set to zero. Looking carefully at the proofs of Lemma 3.9 and Lemma 5.7
we see that these matrices have no effect in the respective results and thus the assertion
follows.

As a next step, we perform transformations of the palindromic or BVD pencils corre-
sponding to the system (EF , AF , BF , QF , SF , RF ) ∈ Σw

m,n(K) in feedback equivalence
form as in (3.3) such that we obtain the respective palindromic or BVD pencils corre-
sponding to the EDE system (In1 , As, Bs, Qs, Ss, Rs) ∈ Σw

m,n1(K) as in (3.13) in the
first diagonal block of the transformed pencil.

Lemma 5.9. Let (EF , AF , BF , QF , SF , RF ) ∈ Σw
m,n(K) as in (3.3) be given in feedback

equivalence form (2.15) such that n3 = 0. Further, let the corresponding palindromic
pencil zA∗

F −AF as in (2.38) be given. Denote by zA∗
s −As the pencil corresponding

to the EDE system (In1 , As, Bs, Qs, Ss, Rs) ∈ Σw
m,n1(K) as in (3.13), i. e.,

zA∗
s −As =

⎡⎢⎣ 0 zIn1 − As −Bs

zA∗
s − In1 (z − 1)Qs (z − 1)Ss

zB∗
s (z − 1)S∗

s (z − 1)Rs

⎤⎥⎦ ∈ Kn1+m×n1+m[z]. (5.17)

Then there exists an invertible Û ∈ K2n+m×2n+m such that

Û∗(zA∗
F −AF )Û =

⎡⎢⎣zA∗
s −As zD 0
− D∗ 0 zIn2

0 −In2 0

⎤⎥⎦ , (5.18)

where

D =

⎡⎢⎣ 0
Q12

S∗
2 − B∗

2Q22

⎤⎥⎦ (5.19)

and

Û =

⎡⎢⎢⎢⎢⎢⎣
In1 0 0 0 0
0 −Q∗

12 −S2 + Q22B2 −Q22 In2

0 In1 0 0 0
0 0 −B2 In2 0
0 0 Im 0 0

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
In1 0 0 0 0
0 0 0 0 In2

0 In1 0 0 0
0 0 0 In2 0
0 0 Im 0 0

⎤⎥⎥⎥⎥⎥⎦
  

=:P̃

⎡⎢⎢⎢⎢⎢⎣
In1 0 0 0 0
0 In1 0 0 0
0 0 Im 0 0
0 0 −B2 In2 0
0 −Q∗

12 −S2 + Q22B2 −Q22 In2

⎤⎥⎥⎥⎥⎥⎦ .

  
=:Ũ

(5.20)
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5.2 Implicit Difference Equations

Proof. We prove the assertion by subsequent congruence transformations, where the first
transformation consists of permutations only. Set

U1 =

⎡⎢⎢⎢⎢⎢⎣
In1 0 0 0 0
0 In1 0 0 0
0 0 Im 0 0
0 0 0 In2 0
0 0 0 −Q22 In2

⎤⎥⎥⎥⎥⎥⎦ , U2 =

⎡⎢⎢⎢⎢⎢⎣
In1 0 0 0 0
0 In1 0 0 0
0 0 Im 0 0
0 0 −B2 In2 0
0 0 0 0 In2

⎤⎥⎥⎥⎥⎥⎦ , (5.21)

and

U3 =

⎡⎢⎢⎢⎢⎢⎣
In1 0 0 0 0
0 In1 0 0 0
0 0 Im 0 0
0 0 0 In2 0
0 −Q∗

12 −S2 0 In2

⎤⎥⎥⎥⎥⎥⎦ . (5.22)

Then we have

zA∗
F −AF =

⎡⎢⎢⎢⎢⎢⎣
0 0 zIn1 − A11 0 −B1
0 0 0 −In2 −B2

zA∗
11 − In1 0 (z − 1)Q11 (z − 1)Q12 (z − 1)S1

0 zIn2 (z − 1)Q∗
12 (z − 1)Q22 (z − 1)S2

zB∗
1 zB∗

2 (z − 1)S∗
1 (z − 1)S∗

2 (z − 1)R

⎤⎥⎥⎥⎥⎥⎦

P̃∼

⎡⎢⎢⎢⎢⎢⎣
0 zIn1 − A11 −B1 0 0

zA∗
11 − In1 (z − 1)Q11 (z − 1)S1 (z − 1)Q12 0
zB∗

1 (z − 1)S∗
1 (z − 1)R (z − 1)S∗

2 zB∗
2

0 (z − 1)Q∗
12 (z − 1)S2 (z − 1)Q22 zIn2

0 0 −B2 −In2 0

⎤⎥⎥⎥⎥⎥⎦

U1∼

⎡⎢⎢⎢⎢⎢⎣
0 zIn1 − A11 −B1 0 0

zA∗
11 − In1 (z − 1)Q11 (z − 1)S1 (z − 1)Q12 0
zB∗

1 (z − 1)S∗
1 (z − 1)R z(S∗

2 − B∗
2Q22) − S∗

2 zB∗
2

0 (z − 1)Q∗
12 zS2 − (S2 − Q22B2) 0 zIn2

0 0 −B2 −In2 0

⎤⎥⎥⎥⎥⎥⎦

U2∼

⎡⎢⎢⎢⎢⎢⎣
0 zIn1 − A11 −B1 0 0

zA∗
11 − In1 (z − 1)Qs (z − 1)Ss (z − 1)Q12 0
zB∗

1 (z − 1)S∗
s (z − 1)Rs z(S∗

2 − B∗
2Q22) − S∗

2 0
0 (z − 1)Q∗

12 zS2 − (S2 − Q22B2) 0 zIn2

0 0 0 −In2 0

⎤⎥⎥⎥⎥⎥⎦

U3∼

⎡⎢⎢⎢⎢⎢⎣
0 zIn1 − A11 −B1 0 0

zA∗
11 − In1 (z − 1)Qs (z − 1)Ss zQ12 0
zB∗

1 (z − 1)S∗
s (z − 1)Rs z(S∗

2 − B∗
2Q22) 0

0 −Q∗
12 −(S2 − Q22B2) 0 zIn2

0 0 0 −In2 0

⎤⎥⎥⎥⎥⎥⎦ .
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Thus we obtain Ũ = U1U2U3.

Corollary 5.10. Let (EF , AF , BF , QF , SF , RF ) ∈ Σw
m,n(K) as in (3.3) be given in

feedback equivalence form (2.15) such that n3 = 0. Further, let the corresponding BVD
pencil zEF −AF as in (2.35) be given. Denote by zEs−As the BVD pencil corresponding
to the EDE system (In1 , As, Bs, Qs, Ss, Rs) ∈ Σw

m,n1(K) as in (3.13), i. e.,

zEs −As =

⎡⎢⎣ 0 zIn1 − As −Bs

zA∗
s − In1 −Qs −Ss

zB∗
s −S∗

s −Rs

⎤⎥⎦ ∈ Kn1+m×n1+m[z]. (5.23)

Consider D, Û , P̃ , and U2 as in (5.19)–(5.22). Then together with

Ǔ := P̃U2 =

⎡⎢⎢⎢⎢⎢⎣
In1 0 0 0 0
0 0 0 0 In2

0 In1 0 0 0
0 0 −B2 In2 0
0 0 Im 0 0

⎤⎥⎥⎥⎥⎥⎦ (5.24)

we have

Û∗(zE −A)Ǔ =

⎡⎢⎣zEs −As 0 0
− D∗ 0 zIn2

0 −In2 0

⎤⎥⎦ . (5.25)

Proof. Note that zEF −AF as in (2.35) distinguishes from zA∗
F −AF as in (2.38) by

not incorporating terms made up from

z

[
QF SF

S∗
F RF

]
.

Thus, proceeding as in the proof of Lemma 5.9 we see that the term zD in (5.18) cannot
be present in (5.25).

Now we are able to prove a generalization of Theorem 5.4. This result is related to
the result in [RRV15] in the continuous-time case.

Theorem 5.11. Let (EF , AF , BF , QF , SF , RF ) ∈ Σw
m,n(K) as in (3.3) be given in

feedback equivalence form (2.15) such that n3 = 0. Further, let the corresponding palin-
dromic pencil zA∗

F − AF (2.38) be given. In addition, let q = rkK(z) Φ(z) and assume
that rk [ E − A B ] = n . Then the following are equivalent:

(a) There exists a solution (X, K, L) ∈ Kn×n × Kq×n × Kq×m of the Lur’e equation
(5.1).
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(b) It holds that Φ(eiω) ⪰ 0 for all ω ∈ [0, 2π) such that det(eiωE − A) ̸= 0. Fur-
thermore, there exist matrices Yµ, Yx ∈ Kn×n+m, Yu ∈ Km×n+m and Zµ, Zx ∈
Kn×n+q, Zu ∈ Km×n+q such that for

Y =

⎡⎢⎣Yµ

Yx

Yu

⎤⎥⎦ , Z =

⎡⎢⎣Zµ

Zx

Zu

⎤⎥⎦
the following holds:

(i) The matrix [
E − A −B

] [Yx

Yu

]

has rank n1.

(ii) The space Y = im Y is of dimension n + m and (A∗ −A)-neutral.

(iii) It holds that

VΣ = im
[
Yx

Yu

]
.

(iv) There exist Ẽ, Ã ∈ Kn+q×n+m such that (zA∗ −A)Y = Z(zẼ − Ã).

Proof. First we show that the statement is invariant under feedback transformations.
Therefore, assume we have given the system (EF , AF , BF , QF , SF , RF ) in feedback
equivalence form as in (3.3) with corresponding transformation matrices W and TF and
corresponding palindromic pencil zA∗

F − AF as in (2.38). Then by Lemma 5.6, part
(a) is equivalent to the existence of a solution (XF , KF , LF ) as in (5.13) of the Lur’e
equation (5.1) corresponding to (EF , AF , BF , QF , SF , RF ).

To show the equivalence of statement (b) to according statements for the system in
feedback equivalence form let

UF :=

⎡⎢⎣W ∗ 0 0
0 T 0
0 FT Im

⎤⎥⎦ ∈ K2n+m×2n+m

and set

YF :=

⎡⎢⎣Yµ,F

Yx,F

Yu,F

⎤⎥⎦ := U−1
F Y, ZF :=

⎡⎢⎣Zµ,F

Zx,F

Zu,F

⎤⎥⎦ = U∗
F Z. (5.26)
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Then AF = U∗
FAUF and statement (i) is equivalent to

rk
[
EF − AF −BF

] [Yx,F

Yu,F

]

= rk
[
E − A −B

] [ T 0
FT Im

] [
T 0

FT Im

]−1 [
Yx

Yu

]
= n1.

Furthermore, we have that rk YF = rk Y = n+m and by Lemma 2.12, im Y is (A∗ −A)-
neutral if and only if im YF is (A∗

F −AF )-neutral, i. e., there is no larger space that is
(A∗

F −AF )-neutral. In addition, by Proposition 2.29(a) we obtain that (iii) is equivalent
to

VΣ
F =

[
Yx,F

Yu,F

]
.

Finally, statement (iv) is equivalent to (zA∗
F −AF )YF = ZF (zẼ − Ã) by the definition

of AF , YF and ZF . Hence, we have shown that it is sufficient to prove the equivalence
between (a) and (b) for the system (EF , AF , BF , QF , SF , RF ) in feedback equivalence
form.

Now we show that statement (b) follows from statement (a). From Lemma 5.7 we
infer that (X11, K1, L − K2B2) is a solution of the EDE Lur’e equation (5.2) for the
EDE system

(In1 , As, Bs, Qs, Ss, Rs) ∈ Σw
m,n1(K)

as in (3.13). By denoting the corresponding palindromic pencil arising in the optimal
control problem by zA∗

s −As as in (5.17), Theorem 5.4 implies the existence of

Ys =

⎡⎢⎣X11(A11 − In1) X11B1
In1 0
0 Im

⎤⎥⎦ , Zs =

⎡⎢⎣ In1 0
(In1 − A∗

11)X11 K∗
1

−B∗
1X11 (L − K2B2)∗

⎤⎥⎦
as in (5.3) and

zÊs − Âs =
[
zIn1 − A11 −B1
(z − 1)K1 (z − 1)(L − K2B2)

]

as in (5.4) such that (zA∗
s −As)Ys = Zs(zÊs − Âs). Note that as in Theorem 5.4, im Ys

is maximally (A∗
s −As)-neutral.

From Lemma 5.9 we obtain an invertible transformation matrix Û ∈ K2n+m×2n+m as
in (5.20) such that

zÂ∗ − Â := Û∗(zA∗
F −AF )Û =

⎡⎢⎣zA∗
s −As zD 0
− D∗ 0 zIn2

0 −In2 0

⎤⎥⎦ (5.27)
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with

D =

⎡⎢⎣ 0
Q12

S∗
2 − B∗

2Q22

⎤⎥⎦ ∈ K2n1+m×n2 .

By inspecting the proof of Theorem 5.4 we find that

(zÂ∗ − Â)Ŷ = Ẑ(zÊ − Â), (5.28)

where

Ŷ =

⎡⎢⎣Ys 0
0 0
0 In2

⎤⎥⎦ , Ẑ =

⎡⎢⎣Zs 0
0 In2

0 0

⎤⎥⎦ , zÊ − Â =
[
zÊs − Âs 0
− D∗Ys zIn2

]
.

Thus we have

Ŷ ∗(Â∗ − Â)Ŷ =
[
Y ∗

s 0 0
0 0 In2

]⎡⎢⎣A∗
s −As D 0
− D∗ 0 In2

0 −In2 0

⎤⎥⎦
⎡⎢⎣Ys 0

0 0
0 In2

⎤⎥⎦
=
[
Y ∗

s (A∗
s −As) Y ∗

s D 0
0 −In2 0

]⎡⎢⎣Ys 0
0 0
0 In2

⎤⎥⎦
=
[
Y ∗

s (A∗
s −As)Ys 0

0 0

]
= 0,

and we obtain that im Ŷ is n + m dimensional and (Â∗ − Â)-neutral. Set

V̂ =

⎡⎢⎣ In1 0 0
0 0 Im

Q∗
12 −In2 −B2 + S2 − Q22B2

⎤⎥⎦ .

Transforming the quantities in (5.28) to feedback equivalence form (3.3) we obtain

(zA∗
F −AF )YF V̂ = ZF (zẼ − Ã), (5.29)

where

YF V̂ =

⎡⎢⎣Yµ,F

Yx,F

Yu,F

⎤⎥⎦ V̂ :=

⎡⎢⎢⎢⎢⎢⎣
Yµ1,F

Yµ2,F

Yx1,F

Yx2,F

Yu,F

⎤⎥⎥⎥⎥⎥⎦ := Û Ŷ V̂ =

⎡⎢⎢⎢⎢⎢⎣
X11(A11 − In1) 0 X11B1

0 −In2 −B2
In1 0 0
0 0 −B2
0 0 Im

⎤⎥⎥⎥⎥⎥⎦ , (5.30)
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5 Lur’e Equations

ZF := Û−∗Ẑ, and

(zẼ −Ã) := (zÊ −Â)V̂ =

⎡⎢⎣zIn1 − A11 0 −B1
(z − 1)K1 0 (z − 1)(L − K2B2)
(z − 1)Q∗

12 −zIn2 −zB2 + (z − 1)(S2 − Q22B2)

⎤⎥⎦ . (5.31)

Then we obtain property (i) by

rk
[
EF − AF −BF

] [Yx,F

Yu,F

]
= rk

[
In1 − A11 0 −B1

0 −In2 −B2

]⎡⎢⎣In1 0 0
0 −B2 0
0 Im 0

⎤⎥⎦
= rk

[
In1 − A11 −B1 0

0 0 0

]
= n1.

Property (ii) follows from the fact that im Ŷ is n + m dimensional and (Â∗ − Â)-
neutral and Lemma 2.12. Furthermore, by Proposition 2.29(a) we have property (iii).
Altogether, this shows statement (b).

Now assume that (b) holds for the system (EF , AF , BF , QF , SF , RF ) in feedback
equivalence form, i. e., properties (i)–(iv) are satisfied. From these properties we con-
struct a deflating subspace for the palindromic pencil zA∗

s −As such that we can apply
Theorem 5.4. Therefore, partition YF into

YF =

⎡⎢⎣Yµ,F

Yx,F

Yu,F

⎤⎥⎦ :=

⎡⎢⎢⎢⎢⎢⎣
Yµ1,F

Yµ2,F

Yx1,F

Yx2,F

Yu,F

⎤⎥⎥⎥⎥⎥⎦
and denote by Â and Û the matrices we obtain from Lemma 5.9 such that (5.27) holds.
Then, for Ŷ := Û−1YF we have

Ŷ = Û−1YF =

⎡⎢⎢⎢⎢⎢⎣
In1 0 0 0 0
0 0 In1 0 0
0 0 0 0 Im

0 0 0 In2 B2
0 In2 Q∗

12 Q22 S2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Yµ1,F

Yµ2,F

Yx1,F

Yx2,F

Yu,F

⎤⎥⎥⎥⎥⎥⎦ =:

⎡⎢⎢⎢⎢⎢⎣
Yµ1,F

Yx1,F

Yu,F

Ŷµ2,F

Ŷx2,F

⎤⎥⎥⎥⎥⎥⎦
for some Ŷµ2,F , Ŷx2,F ∈ Kn2×n+m. Thus, im Ŷ is n + m dimensional by property (ii) and
(Â∗ − Â)-neutral by Lemma 2.12.

Now we show that

rk

⎡⎢⎣Yµ1,F

Yx1,F

Yu,F

⎤⎥⎦ = n1 + m. (5.32)
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5.2 Implicit Difference Equations

From property (iii) and Proposition 2.29(a) we obtain that

rk
[
Yx1,F

Yu,F

]
= n1 + m.

Furthermore,

im

⎡⎢⎣Yµ1,F

Yx1,F

Yu,F

⎤⎥⎦
is (A∗

s−As)-neutral and thus with the same argumentation as in the proof of Theorem 5.4
this means that

rk

⎡⎢⎣Yµ1,F

Yx1,F

Yu,F

⎤⎥⎦ ≤ n1 + m.

Altogether, we thus have

n1 + m = rk
[
Yx1,F

Yu,F

]
≤ rk

⎡⎢⎣Yµ1,F

Yx1,F

Yu,F

⎤⎥⎦ ≤ n1 + m.

The relation (5.32) implies that

im

⎡⎢⎣Yµ1,F

Yx1,F

Yu,F

⎤⎥⎦
is also maximally (A∗

s −As)-neutral. This, together with the fact that rk Ŷ = n + m,
allows us to perform a column transformation of Ŷ via T1 ∈ Kn+m×n+m such that⎡⎢⎢⎢⎢⎢⎣

Yµ1,F

Yx1,F

Yu,F

Ŷµ2,F

Ŷx2,F

⎤⎥⎥⎥⎥⎥⎦T1 = Ŷ T1 =

⎡⎢⎢⎢⎢⎢⎣
X11(A11 − In1) X11B1 0

In1 0 0
0 Im 0
0 0 Yx2

0 0 Yµ2

⎤⎥⎥⎥⎥⎥⎦
with Hermitian X11 ∈ Kn1×n1 , some Yx2 , Yµ2 ∈ Kn2×n2 , and

rk
[
Yx2

Yµ2

]
= n2. (5.33)

Set

Ys :=

⎡⎢⎣X11(A11 − In1) X11B1
In1 0
0 Im

⎤⎥⎦ .
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5 Lur’e Equations

Additionally, from the (Â∗ − Â)-neutrality of im Ŷ T1 in particular we obtain

0 =
[
Y ∗

s 0 0
] ⎡⎢⎣A∗

s −As D 0
− D∗ 0 In2

0 −In2 0

⎤⎥⎦
⎡⎢⎣ 0

Yx2

Yµ2

⎤⎥⎦ =
[
Y ∗

s 0 0
] ⎡⎢⎣DYx2

Yµ2

−Yx2

⎤⎥⎦

=
[
(A∗

11 − In1)X11 In1 0 0 0
B∗

1X11 0 Im 0 0

]⎡⎢⎢⎢⎢⎢⎣
0

Q12Yx2

(S∗
2 − B∗

2Q22)Yx2

Yµ2

−Yx2

⎤⎥⎥⎥⎥⎥⎦
=
[

Q12Yx2

(S∗
2 − B∗

2Q22)Yx2

]
.

Hence we have DYx2 = 0.
From property (iv) we obtain⎡⎢⎣zA∗

s −As zD 0
− D∗ 0 zIn2

0 −In2 0

⎤⎥⎦
⎡⎢⎣Ys 0

0 Yx2

0 Yµ2

⎤⎥⎦ =
[
Z11 Z12
Z21 Z22

] [
zÊ11 − Â11 zÊ12 − Â12
zÊ21 − Â21 zÊ22 − Â22

]
,

(5.34)

where Z11 ∈ K2n1+m×n1+q, Z12 ∈ K2n1+m×n2 , Z21 ∈ K2n2×n1+q, Z22 ∈ K2n2×n2 , zÊ11 −
Â11 ∈ Kn1+q×n1+m[z], zÊ12 − Â12 ∈ Kn1+q×n2 [z], zÊ21 − Â21 ∈ Kn2×n1+m[z], and
zÊ22 − Â22 ∈ Kn2×n2 [z]. From the last block column and block row of (5.34) we obtain[

zYµ2

−Yx2

]
=
[
Z21 Z22

] [zÊ12 − Â12
zÊ22 − Â22

]
(5.35)

and thus by (5.33) we have
rk
[
Z21 Z22

]
= n2.

Therefore, we can determine a transformation matrix T2 ∈ Kn+q×n+q such that

rk
[
Z21 Z22

]
T2 =

[
0 Z̃22

]
for some Z̃22 ∈ K2n2×n2 . Set [

Z̃11 Z̃12
0 Z̃22

]
:=
[
Z11 Z12
Z21 Z22

]
T2

and [
zẼ11 − Ã11 zẼ12 − Ã12
zẼ21 − Ã21 zẼ22 − Ã22

]
:= T −1

2

[
zÊ11 − Â11 zÊ12 − Â12
zÊ21 − Â21 zÊ22 − Â22

]
,
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5.2 Implicit Difference Equations

accordingly partitioned. Thus reevaluating (5.35) for the transformed matrices we also
obtain full normal rank n2 of zẼ22 − Ã22. Hence there exists some λ0 ∈ C such that
λ0Ẽ22 − Ã22 is invertible. From the last block column and first block row of (5.34) we
infer

0 = λ0DYx2 = Z̃11(λ0Ẽ12 − Ã12) + Z̃12(λ0Ẽ22 − Ã22).

Thus, Z̃12 can be expressed as

Z̃12 = −Z̃11(λ0Ẽ12 − Ã12)(λ0Ẽ22 − Ã22)−1.

Inserting this relation into the first block row and block column of (5.34) we have

(zA∗
s −As)Ys = Z̃11

(
zẼ11 − Ã11 − (λ0Ẽ12 − Ã12)(λ0Ẽ22 − Ã22)−1(zẼ21 − Ã21)

)
.

Hence, we are finally in the position to apply Theorem 5.4. From this we obtain a
solution (Xs, Ks, Ls) of (5.2) corresponding to the system (In1 , As, Bs, Qs, Ss, Rs).
By Lemma 5.7 we then also find a solution (XF , KF , LF ) of (5.1) corresponding to the
system in feedback equivalence form (EF , AF , BF , QF , SF , RF ).

Remark 5.12. Let an impulse controllable system (E, A, B, Q, S, R) ∈ Σw
m,n(K) be

given and let zA∗ − A be the palindromic pencil as in (2.38). Further, assume that
there exists a solution (X, K, L) of the Lur’e equation (5.1).

(a) The matrix pencil (zẼ − Ã) ∈ Kn+q×n+m[z] that we have obtained in the proof of
Theorem 5.11 fulfills rkK(z)(zẼ − Ã) = n + q by Proposition 5.1, since

n + q = rkK(z)

[
zE − A −B

(z − 1)K (z − 1)L

]

= rkK(z)

[
W 0
0 Im

] [
zE − A −B

(z − 1)K (z − 1)L

]
TF

= rkK(z)

⎡⎢⎣zIn1 − A11 0 −B1
0 −In2 −B2

(z − 1)K1 (z − 1)K2 (z − 1)L

⎤⎥⎦
= rkK(z)

⎡⎢⎣zIn1 − A11 0 −B1
0 −In2 0

(z − 1)K1 0 (z − 1)(L − K2B2)

⎤⎥⎦ .

(5.36)

This means in particular that the existence of solutions of (5.1) implies the exis-
tence of a deflating subspace of the palindromic pencil zA∗ −A.

(b) In the proof of Theorem 5.11 we have constructed a deflating subspace im YF as
in (5.30) for the system (EF , AF , BF , QF , SF , RF ) in feedback equivalence form
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5 Lur’e Equations

(3.3) from a solution (XF , KF , LF ) of the Lur’e equation (5.1). From here we can
construct a deflating subspace im Y for the original system by using (5.26). By
Lemma 5.7 it is justified to set

W −∗XW −1 = XF :=
[
X11 0

0 0

]
. (5.37)

Thus, we have

Y :=UF YF V̂ T −1
F

=

⎡⎢⎣W ∗ 0 0
0 T 0
0 FT Im

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎣

X11(A11 − In1) 0 X11B1
0 −In2 −B2

In1 0 0
0 0 −B2
0 0 Im

⎤⎥⎥⎥⎥⎥⎦T −1
F

=

⎡⎢⎣W ∗ 0 0
0 T 0
0 FT Im

⎤⎥⎦
⎡⎢⎣−XF + (In − EF ) 0 0

0 In 0
0 0 Im

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎣

In1 − A11 0 −B1
0 −In2 −B2

In1 0 0
0 0 −B2
0 0 Im

⎤⎥⎥⎥⎥⎥⎦T −1
F

=
[
X(A − E) + G1 XB + G2

V Σ
1 V Σ

2

]
,

where

im
[
G1 G2

]
= im W ∗

[
0 0
0 In2

]
W
[
E − A −B

]
⊆ ker E∗, (5.38)

[
V Σ

1 V Σ
2

]
:= TF V Σ

F T
−1

F , (5.39)

and

V Σ
F :=

⎡⎢⎣In1 0 0
0 0 −B2
0 0 Im

⎤⎥⎦ (5.40)

spans the system space VΣ
F , see Proposition 2.29(a). Altogether, this leads to

(zA∗ −A)Y = Z(zĚ − Ǎ), where Z = U∗
F ZF and zĚ − Ǎ := (zẼ − Ã)T −1

F .

Example 5.13 (Example 2.25 revisited). Consider the system (E, A, B, Q, S, R) as
in (2.16) and Example 3.11. Note that since n3 = 0 in (2.17) the system (E, A, B)
is impulse controllable according to Proposition 2.31(d). We have seen in Example 5.3
that

(Xs, Ks, Ls) =
(

√
3,

√
2, −

√
3 + 1√

2

)
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is a solution of the Lur’e equation (5.2) corresponding to the EDE system

(In1 , As, Bs, Qs, Ss, Rs)

as in (3.21). By Lemma 5.7 we obtain that

XF =
[√

3 0
0 0

]
, KF =

[√
2 0

]
, LF = −

√
3 + 1√

2
(5.41)

solves the Lur’e equation of the system in feedback equivalence form. Therefore, by
Lemma 5.6 we see that

X = W ∗XF W =
[
1 −1
1 0

] [√
3 0

0 0

] [
1 1

−1 0

]
=
[√

3
√

3√
3

√
3

]
,

K = KF T −1
[√

2 0
] [0 1

1 −1

]
=
[
0

√
2
]

, L = −
√

3 + 1√
2

(5.42)

solves the Lur’e equation (5.1) corresponding to the original system.
Thus, according to Remark 5.12 the matrix Y ∈ K5×3 defined by

Y =
[
X(A − E) + G1 XB + G2

V Σ
1 V Σ

2

]
=

⎡⎢⎢⎢⎢⎢⎣
0 + 1 0 − 1 −

√
3 + 1

0 + 0 0 + 0 −
√

3 + 0
0 1 1
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦ (5.43)

is a deflating subspace of the palindromic pencil as in (4.13).

As in the EDE case we can show a similar statement for BVD pencils as in (2.35).

Theorem 5.14. Let (EF , AF , BF , QF , SF , RF ) ∈ Σw
m,n(K) as in (3.3) be given in

feedback equivalence form (2.15) such that n3 = 0. Further, let the corresponding BVD
pencil zEF − AF as in (2.38) be given. In addition, let q = rkK(z) Φ(z). Then the
following are equivalent:

(a) There exists a solution (X, K, L) ∈ Kn×n × Kq×n × Kq×m of the Lur’e equa-
tion (5.1).

(b) It holds that Φ(eiω) ⪰ 0 for all ω ∈ [0, 2π) such that det(eiωE − A) ̸= 0. Fur-
thermore, there exist matrices Yµ, Yx ∈ Kn×n+m, Yu ∈ Km×n+m and Zµ, Zx ∈
Kn×n+q, Zu ∈ Km×n+q such that for

Y =

⎡⎢⎣Yµ

Yx

Yu

⎤⎥⎦ , Z =

⎡⎢⎣Zµ

Zx

Zu

⎤⎥⎦
the following holds:
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5 Lur’e Equations

(i) The matrix [
E 0

] [Yx

Yu

]
has rank n1.

(ii) The space Y = im Y is of dimension n + m and Ee-neutral, where

Ee :=

⎡⎢⎣ 0 −E 0
E∗ 0 0
0 0 0

⎤⎥⎦
corresponds to E in the even pencil in (2.33).

(iii) It holds that

VΣ = im
[
Yx

Yu

]
.

(iv) There exist Ẽ, Ã ∈ Kn+q×n+m such that (zE −A)Y = Z(zẼ − Ã).

Proof. First we show that the statement is invariant under feedback transformations.
Therefore, assume we have given the system (EF , AF , BF , QF , SF , RF ) in feedback
equivalence form as in (3.3) with corresponding transformation matrices W and TF and
corresponding BVD pencil zEF − AF as in (2.35). Then by Lemma 5.6, part (a) is
equivalent to the existence of a solution (XF , KF , LF ) as in (5.13) of the Lur’e equation
(5.1) corresponding to (EF , AF , BF , QF , SF , RF ).

To show the equivalence of statement (b) to according statements for the system in
feedback equivalence form let

UF :=

⎡⎢⎣W ∗ 0 0
0 T 0
0 FT Im

⎤⎥⎦ ∈ K2n+m×2n+m

and set

YF :=

⎡⎢⎣Yµ,F

Yx,F

Yu,F

⎤⎥⎦ := U−1
F Y, ZF :=

⎡⎢⎣Zµ,F

Zx,F

Zu,F

⎤⎥⎦ = U∗
F Z. (5.44)

Then zEF −AF = U∗
F (zE −A)UF , and statement (i) is equivalent to

rk
[
EF 0

] [Yx,F

Yu,F

]

= rk
[
E 0

] [ T 0
FT Im

] [
T 0

FT Im

]−1 [
Yx

Yu

]
= n1.
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Furthermore, we have that rk YF = rk Y = n+m and by Lemma 2.12, im Y is Ee-neutral
if and only if im YF is Ee

F -neutral, where

Ee
F := U∗

FE
eUF =

⎡⎢⎢⎢⎢⎢⎣
0 0 −In1 0 0
0 0 0 0 0

In1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ .

In addition, by Proposition 2.29(a) we obtain that (iii) is equivalent to

VΣ
F =

[
Yx,F

Yu,F

]
.

Finally, statement (iv) is equivalent to (zEF −AF )YF = ZF (zẼ − Ã) by the definition of
zEF −AF , YF and ZF . Hence, we have shown that it is sufficient to prove the equivalence
between (a) and (b) for the system in feedback equivalence form (EF , AF , BF , QF , SF , RF ).

Now we show that statement (b) follows from statement (a). From Lemma 5.7 we
infer that (X11, K1, L − K2B2) is a solution of the EDE Lur’e equation (5.2) for the
EDE system

(In1 , As, Bs, Qs, Ss, Rs) ∈ Σw
m,n1(K)

as in (3.13). By denoting the corresponding BVD pencil arising in the optimal control
problem by zEs −As as in (5.17), Theorem 5.5 implies the existence of

Ys =

⎡⎢⎣−X11 0
In1 0
0 Im

⎤⎥⎦ , Zs =

⎡⎢⎣ In1 0
−A∗

11X11 −K∗
1

−B∗
1X11 −(L − K2B2)∗

⎤⎥⎦
as in (5.3), and

zÊs − Âs =
[
zIn1 − A11 −B1

K1 L − K2B2

]
as in (5.4) such that (zEs −As)Ys = Zs(zÊs − Âs). Note that as in Theorem 5.5 im Ys is
maximally Ee

s-neutral. From Corollary 5.10 we obtain invertible transformation matrices
Û , Ǔ ∈ K2n+m×2n+m such that

zÊ − Â := Û∗(zEF −AF )Ǔ =

⎡⎢⎣zEs −As 0 0
− D∗ 0 zIn2

0 −In2 0

⎤⎥⎦ (5.45)

with

D =

⎡⎢⎣ 0
Q12

S∗
2 − B∗

2Q22

⎤⎥⎦ ∈ K2n1+m×n2 ,
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5 Lur’e Equations

and

Êe := Û∗Ee
F Ǔ =

⎡⎢⎣Ee
s 0 0

0 0 0
0 0 0

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0 −In1 0 0 0

In1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ . (5.46)

Inspecting the proof of Theorem 5.5 we find that

(zÊ − Â)Ŷ = Ẑ(zÊ − Â), (5.47)

where

Ŷ =

⎡⎢⎣Ys 0
0 0
0 In2

⎤⎥⎦ , Ẑ =

⎡⎢⎣Zs 0
0 In2

0 0

⎤⎥⎦ , zÊ − Â =
[
zEs − As 0
− D∗Ys zIn2

]
.

Thus we have

Ŷ ∗ÊeŶ =
[
Y ∗

s 0 0
0 0 In2

]⎡⎢⎣Ee
s 0 0

0 0 0
0 0 0

⎤⎥⎦
⎡⎢⎣Ys 0

0 0
0 In2

⎤⎥⎦ = 0,

and we obtain that im Ŷ is n + m dimensional and Êe-neutral. Set

V̂ =

⎡⎢⎣In1 0 0
0 0 Im

0 −In2 −B2

⎤⎥⎦ .

Transforming the quantities in (5.47) to feedback equivalence form (3.3), we obtain

(zEF −AF )YF V̂ = ZF (zẼ − Ã), (5.48)

where

YF V̂ =

⎡⎢⎣Yµ,F

Yx,F

Yu,F

⎤⎥⎦ V̂ :=

⎡⎢⎢⎢⎢⎢⎣
Yµ1,F

Yµ2,F

Yx1,F

Yx2,F

Yu,F

⎤⎥⎥⎥⎥⎥⎦ := Ǔ Ŷ V̂ =

⎡⎢⎢⎢⎢⎢⎣
−X11 0 0

0 −In2 −B2
In1 0 0
0 0 −B2
0 0 Im

⎤⎥⎥⎥⎥⎥⎦ , (5.49)

ZF := Û−∗Ẑ, and

(zẼ − Ã) := (zÊ − Â)V̂ =

⎡⎢⎣zIn1 − A11 0 −B1
K1 0 L − K2B2

−Q∗
12 −zIn2 −zB2 + Q22B2 − S2

⎤⎥⎦ . (5.50)
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5.2 Implicit Difference Equations

Then we obtain property (i) by

rk
[
EF 0

] [Yx,F

Yu,F

]
= rk

[
In1 0 0
0 0 0

]⎡⎢⎣In1 0 0
0 0 −B2
0 0 Im

⎤⎥⎦
= rk

[
In1 0 0
0 0 0

]
= n1.

Property (ii) follows from the fact that im Ŷ is n + m dimensional and Êe-neutral and
Lemma 2.12. Furthermore, by Proposition 2.29(a) we have property (iii). Altogether,
this shows statement (b).

Now assume that (b) holds for the system (EF , AF , BF , QF , SF , RF ) in feedback
equivalence form, i. e., properties (i)–(iv) are satisfied. From these properties we con-
struct a deflating subspace for the BVD pencil zEs −As such that we can apply Theo-
rem 5.5. Therefore, partition YF into

YF =

⎡⎢⎣Yµ,F

Yx,F

Yu,F

⎤⎥⎦ :=

⎡⎢⎢⎢⎢⎢⎣
Yµ1,F

Yµ2,F

Yx1,F

Yx2,F

Yu,F

⎤⎥⎥⎥⎥⎥⎦
and denote by Ê, Â, Û , and Ǔ the matrices we obtain from Corollary 5.10 such that
(5.45) is fulfilled. Then, for Ŷ := Ǔ−1YF we have

Ŷ = Ǔ−1YF =

⎡⎢⎢⎢⎢⎢⎣
In1 0 0 0 0
0 0 In1 0 0
0 0 0 0 Im

0 0 0 In2 B2
0 In2 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Yµ1,F

Yµ2,F

Yx1,F

Yx2,F

Yu,F

⎤⎥⎥⎥⎥⎥⎦ =:

⎡⎢⎢⎢⎢⎢⎣
Yµ1,F

Yx1,F

Yu,F

Ŷµ2,F

Ŷx2,F

⎤⎥⎥⎥⎥⎥⎦
for some Ŷµ2,F , Ŷx2,F ∈ Kn2×n+m. Then, im Ŷ is n+m dimensional by property (ii) and
Êe-neutral by Lemma 2.12.

We first show that

rk

⎡⎢⎣Yµ1,F

Yx1,F

Yu,F

⎤⎥⎦ = n1 + m. (5.51)

From property (iii) and Proposition 2.29(a) we obtain that

rk
[
Yx1,F

Yu,F

]
= n1 + m.
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5 Lur’e Equations

Furthermore,

im

⎡⎢⎣Yµ1,F

Yx1,F

Yu,F

⎤⎥⎦
is Ee

s-neutral for Ee
s as in (5.46) and thus with the same argumentation as in the proof

of Theorem 5.5 this means that

rk

⎡⎢⎣Yµ1,F

Yx1,F

Yu,F

⎤⎥⎦ ≤ n1 + m.

Altogether, we thus have

n1 + m = rk
[
Yx1,F

Yu,F

]
≤ rk

⎡⎢⎣Yµ1,F

Yx1,F

Yu,F

⎤⎥⎦ ≤ n1 + m.

The relation (5.51) implies that

im

⎡⎢⎣Yµ1,F

Yx1,F

Yu,F

⎤⎥⎦
is also maximally Ee

s-neutral. This, together with the fact that rk Ŷ = n + m, allows us
to perform a column transformation of Ŷ via T1 ∈ Kn+m×n+m such that⎡⎢⎢⎢⎢⎢⎣

Yµ1,F

Yx1,F

Yu,F

Ŷµ2,F

Ŷx2,F

⎤⎥⎥⎥⎥⎥⎦T1 = Ŷ T1 =

⎡⎢⎢⎢⎢⎢⎣
−X11 0 0
In1 0 0
0 Im 0
0 0 Yx2

0 0 Yµ2

⎤⎥⎥⎥⎥⎥⎦
with Hermitian X11 ∈ Kn1×n1 , some Yx2 , Yµ2 ∈ Kn2×n2 , and

rk
[
Yx2

Yµ2

]
= n2. (5.52)

Then with property (iv) proceeding as in the proof of Theorem 5.4 we find Zs ∈
K2n1+m×n1+q, zEs − As ∈ Kn1+q×n1+m[z] such that we are in the position to apply
Theorem 5.4. In this way we obtain a solution (Xs, Ks, Ls) of (5.2) corresponding
to the system (In1 , As, Bs, Qs, Ss, Rs). By Lemma 5.7 we then also find a solution
(XF , KF , LF ) of (5.1) corresponding to the system (EF , AF , BF , QF , SF , RF ) in feed-
back equivalence form.

86



5.2 Implicit Difference Equations

Remark 5.15. Let an impulse controllable system (E, A, B, Q, S, R) ∈ Σw
m,n(K) be

given and let zE −A be the BVD pencil as in (2.35). Further, assume that there exists
a solution (X, K, L) of the Lur’e equation (5.1).

(a) The matrix pencil (zẼ−Ã) ∈ Kn+q×n+m[z] we obtain in the proof of Theorem 5.14
fulfills rkK(z)(zẼ − Ã) = q, see (5.36). This means in particular that the existence
of solutions of (5.1) implies the existence of a deflating subspace of the BVD pencil
zE −A.

(b) In the proof of Theorem 5.14 we have constructed a deflating subspace YF as
in (5.49) for the system (EF , AF , BF , QF , SF , RF ) in feedback equivalence form
(3.3) from a solution (XF , KF , LF ) of the Lur’e equation (5.1). From here we
can construct a deflating subspace Y for the original system by using (5.44). By
Lemma 5.7 it is justified to set

W −∗XW −1 = XF :=
[
X11 0

0 0

]
. (5.53)

Thus we have

Y :=UF YF V̂ T −1
F

=

⎡⎢⎣W ∗ 0 0
0 T 0
0 FT Im

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎣

−X11 0 0
0 −In2 −B2

In1 0 0
0 0 −B2
0 0 Im

⎤⎥⎥⎥⎥⎥⎦T −1
F =

[
−XE + G1 G2

V Σ
1 V Σ

2

]
,

where V Σ
1 , V Σ

2 are as in (5.39) and

im
[
G1 G2

]
= im W ∗

[
0 0 0
0 −In2 −B2

]
T

−1
F ⊆ ker E∗. (5.54)

Altogether, this leads to (zE−A)Y = Z(zĚ−Ǎ), where Z = U∗
F ZF and zĚ−Ǎ :=

(zẼ − Ã)T −1
F .

Remark 5.16. A major difference between Theorem 5.11 and Theorem 5.14 or Theo-
rem 5.4 and Theorem 5.5 is that in the BVD case we do not need the artificial assump-
tion

rk
[
E − A −B

]
= n, (5.55)

or equivalently
rk
[
In1 − A11 −B1

]
= n1, (5.56)
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5 Lur’e Equations

i. e., controllability at one. If the system (E, A, B) is obtained by discretization with
the implicit Euler method as in (2.12), we see that in the limiting case h → 0 this
corresponds to

rk lim
h→0

[
In1 − hA11 −hB1

]
= rk

[
In1 0

]
= n1,

which is trivially fulfilled. Therefore, for sufficiently small h we may assume validity of
this assumption.
Remark 5.17. The result of Theorem 5.11 is completely analogous to [RRV15, Theorem
6.2]. Here, we again replace positivity of the Popov function on the imaginary axis
by positivity on the unit circle. Furthermore, instead of a deflating subspace for the
associated even pencil as in (2.33), we here find a deflating subspace of the associated
palindromic pencil as in (2.38). Moreover, in condition (b)(i) we replace

[
E 0

] [Yx

Yu

]

by [
E − A −B

] [Yx

Yu

]
,

or in other words, instead of evaluating the pencil

[
zE − A −B

] [Yx

Yu

]

at ∞, we evaluate it at one. Finally, we replace the condition of E-neutrality of the
deflating subspace Y of (2.33) by (A∗ − A)-neutrality of the deflating subspace Y of
(2.38). In other words, the associated matrix pencil in the one case is evaluated at ∞,
and in the other case it is evaluated at one.
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6 Application to Optimal Control

In this chapter we discuss implications for the feasibility and the structure of solu-
tions of the discrete-time optimal control problem (2.27) corresponding to the system
(E, A, B, Q, S, R) ∈ Σw

m,n(K) based on the results from the previous chapters. Here we
assume that the system (E, A, B, Q, S, R) is stabilizable.

First, let P ∈ Kn×n be a solution of the KYP inequality (3.2) and let x0 ∈Wσ. Thus,
we have [ x∗ u∗ ]∗ ∈ Bσ

(E, A, B) with Ex0 = Ex0 and limj→∞ Exj = 0. Then by the
definition of the system space VΣ ⊆ Kn+m, we obtain [ x∗

j u∗
j ]∗ ∈ VΣ for all j ∈ N0.

Thus, for j2 ≥ j1 we have that

x∗
j2E∗PExj2 − x∗

j1E∗PExj1

=
j2−1∑
k=j1

∆1(x∗
kE∗PExk)

=
j2−1∑
k=j1

σ(x∗
kE∗PExk) − x∗

kE∗PExk

=
j2−1∑
k=j1

(Axk + Buk)∗P (Axk + Buk) − x∗
kE∗PExk

=
j2−1∑
k=j1

[
xk

uk

]∗ [
A∗PA − E∗PE A∗PB

B∗PA B∗PB

] [
xk

uk

]

≥ −
j2−1∑
k=j1

[
xk

uk

]∗ [
Q S
S∗ R

] [
xk

uk

]
.

(6.1)

For j1 = 0, j2 → ∞ we thus obtain for the objective function J σ(x, u) that

x∗
0E∗PE∗x0 ≤ J σ(x, u)

and thus
x∗

0E∗PE∗x0 ≤Wσ
+(Ex0) < ∞. (6.2)

Hence, if P ∈ Kn×n solves the KYP inequality (3.2) we have feasibility of the optimal
control problem for every x0 ∈Wσ, i. e., ∞ >Wσ

+(Ex0) > −∞. In addition, we obtain
that the Popov function Φ(z) ∈ Km×m[z] is positive semi-definite on the unit circle by

89



6 Application to Optimal Control

Theorem 3.10. On the other hand, if the system (E, A, B) is R-controllable and the
Popov function Φ(z) is positive semi-definite on the unit circle, then by Theorem 3.10
we have the existence of a solution P ∈ Kn×n of the KYP inequality (3.2) and thus
feasibility of the optimal control problem.

If further we have a solution (X, K, L) of the Lur’e equation (5.1), then for every
x0 ∈Wσ and [ x∗ u∗ ]∗ ∈ Bσ

(E, A, B) ∩ ℓ2(Kn+m) with Ex0 = Ex0 and lim
j→∞

Exj = 0 we
obtain in (6.1) that

−x∗
0E∗XEx0 =

∞∑
k=0

[
xk

uk

]∗(
M(X) −

[
Q S
S∗ R

])[
xk

uk

]

=
∞∑

k=0

[
xk

uk

]∗ [
K∗

L∗

] [
K L

] [xk

uk

]
− J σ(x, u)

and thus x∗
0E∗XE∗x0 + ∥Kx + Lu∥2

ℓ2 = J σ(x, u).
In the following we characterize the structure of an optimal solution if it exists. First,

we impose the assumption that (X, K, L) even fulfills

(x0)∗E∗XEx0 =Wσ
+(Ex0) (6.3)

for all x0 ∈Wσ.
If x0 ∈Wσ is given, then [ x∗ u∗ ]∗ ∈ Bσ

(E, A, B) with Ex0 = Ex0 and lim
j→∞

Exj = 0 is

an optimal solution if and only if ∥Kx + Lu∥ℓ2 = 0. If this is the case, then [ x∗ u∗ ]∗
fulfills [

E 0
0 0

] [
xj+1
uj+1

]
=
[

A B
K L

] [
xj

uj

]
,

Ex0 = Ex0, lim
j→∞

Exj = 0.

For an impulse controllable system (EF , AF , BF , QF , SF , RF ) ∈ Σw
m,n(K) as in (3.3) in

feedback equivalence form with corresponding transformation matrices W, T, F we set

XF = W −∗XW −1 =
[
X11 X12
X21 X22

]
.

Since

E∗XE =T −∗
[
In1 0
0 0

] [
X11 X12
X∗

12 X22

] [
In1 0
0 0

]
T −1

=T −∗
[
In1 0
0 0

] [
X11 0

0 0

] [
In1 0
0 0

]
T −1,
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by Lemma 5.7 we can without loss of generality set X12 = 0 and X22 = 0.
In addition, from Theorem 5.14 we obtain a deflating subspace Y ∈ K2n+m×n+m of

the BVD pencil zE −A as in (2.35), i. e., we have Z ∈ K2n+m×n+q and a matrix pencil
zĚ − Ǎ ∈ Kn+q×n+m[z] such that (zE −A)Y = Z(zĚ − Ǎ). It can be constructed as in
Remark 5.15(b). Inserting σ for z this leads to⎡⎢⎣ 0 σE − A −B

σA∗ − E∗ −Q −S
σB∗ −S∗ −R

⎤⎥⎦[−XE + G1 G2

V Σ
1 V Σ

2

] [
xj

uj

]

= Z

⎡⎢⎣σIn1 − A11 0 −B1
K1 0 L − K2B2

−Q∗
12 −σIn2 −σB2 + Q22B2 − S2

⎤⎥⎦T −1
F

[
xj

uj

]
, (6.4)

where im [ G1 G2 ] ⊆ ker E∗, see (5.54),[
V Σ

1 V Σ
2

]
:= TF V Σ

F T
−1

F ,

and

V Σ
F :=

⎡⎢⎣In1 0 0
0 0 −B2
0 0 Im

⎤⎥⎦ .

Since [ x∗
j u∗

j ]∗ ∈ VΣ, it follows with Proposition 2.29(a) that

T
−1

F

[
xj

uj

]
=

⎡⎢⎣ x1,j

−B2uj

uj

⎤⎥⎦
for some x1,j ∈ Kn1 . Then by Lemma 5.7 and Lemma 5.6 we have that[

K1 L − K2B2
] [x1,j

uj

]
=
[
KF LF

]
T

−1
F

[
xj

uj

]
=
[
K L

] [xj

uj

]
= 0. (6.5)

In addition, from (3.16) we obtain[
Q∗

12 Q22 S2
]

= K∗
2

[
K1 K2 L

]
and thus[

Q∗
12 S2 − Q22B2

] [x1,j

uj

]
=
[
Q∗

12 Q22 S2
]
T

−1
F

[
xj

uj

]
= K∗

2

[
K1 K2 L

]
T

−1
F

[
xj

uj

]

=K∗
2

[
K L

] [xj

uj

]
= 0.

(6.6)
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6 Application to Optimal Control

Thus, by equations (6.5) and (6.6) the right-hand-side of (6.4) is zero. Furthermore, by
Proposition 2.29(d) we have that

V Σ
[
xj

uj

]
=
[
xj

uj

]
.

Set

µj :=
[
−XE + G1 G2

] [xj

uj

]
. (6.7)

Thus
lim

j→∞
E∗µj = lim

j→∞
−E∗XExj = 0,

and hence, (µj)j is part of a solution of the boundary value problem

⎡⎢⎣ 0 E 0
A∗ 0 0
B∗ 0 0

⎤⎥⎦σ

⎡⎢⎣µ
x
u

⎤⎥⎦ =

⎡⎢⎣ 0 A B
E∗ Q S
0 S∗ R

⎤⎥⎦
⎡⎢⎣µ

x
u

⎤⎥⎦ ,

Ex0 = Ex0, lim
j→∞

E∗µj = 0.

Moreover, for an impulse controllable system (E, A, B, Q, S, R) we can take the same
approach for a deflating subspace Y ∈ K2n+m×n+m of the palindromic pencil zA∗ −A as
in (2.38) obtained in Theorem 5.11. There we have Z ∈ K2n+m×n+q and a matrix pencil
zĚ − Ǎ ∈ Kn+q×n+m[z] such that (zA∗ −A)Y = Z(zĚ − Ǎ). It can be constructed as
in Remark 5.12(b). Inserting σ for z leads to

⎡⎢⎣ 0 σE − A −B

σA∗ − E∗ (σ − 1)Q (σ − 1)S
σB∗ (σ − 1)S∗ (σ − 1)R

⎤⎥⎦[−X(E − A) + G1 −XB + G2

V Σ
1 V Σ

2

] [
xj

uj

]

= Z

⎡⎢⎣σIn1 − A11 0 −B1
(σ − 1)K1 0 (σ − 1)(L − K2B2)
(σ − 1)Q∗

12 −σIn2 −σB2 + (σ − 1)(S2 − Q22B2)

⎤⎥⎦T −1
F

[
xj

uj

]
, (6.8)

where im [ G1 G2 ] ⊆ ker E∗, see (5.38).
Again by equations (6.5) and (6.6) the right-hand-side of (6.8) is 0. Set

mj :=
[
X(A − E) + G1 XB + G2

] [xj

uj

]
. (6.9)
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Thus
∞∑

k=0
E∗mk =

∞∑
k=0

−E∗XExk + E∗X
[
A B

] [xk

uk

]

=
∞∑

k=0
−E∗XE(xk − xk+1)

= − E∗XEx0 = E∗µ0

and hence, (mj)j is part of a solution of the boundary value problem⎡⎢⎣ 0 E 0
A∗ Q S
B∗ S∗ R

⎤⎥⎦σ

⎡⎢⎣m
x
u

⎤⎥⎦ =

⎡⎢⎣ 0 A B
E∗ Q S
0 S∗ R

⎤⎥⎦
⎡⎢⎣m

x
u

⎤⎥⎦ ,

Ex0 = Ex0,
∞∑

k=0
E∗mk = E∗µ0.

(6.10)

Example 6.1 (Example 2.25 revisited). Consider the system (E, A, B, Q, S, R) as in
(2.16) and Example 3.11. In Example 5.13 we have seen that

(X, K, L) =
([√

3
√

3√
3

√
3

]
,
[
0

√
2
]

, −
√

3 + 1√
2

)

is a solution of the Lur’e equation (5.1). We have

E∗XE =
[
0 0
0

√
3

]

and thus by (6.2) for every

x0 =
[
x0

1
x0

2

]
∈Wσ

the optimal value Wσ
+(Ex0) is bounded from below by

√
3 |x0

2|2.
Indeed, setting

uj = 2√
3 + 1

(
1 − 2√

3 + 1

)j

x0
2,

we obtain – according to (2.14) – that

xj =
[
1 − 2√

3+1
1

](
1 − 2√

3 + 1

)j

x0
2
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solves (1.7) with

J σ(x, u) =
∞∑

j=0
∥xj∥2 + ∥uj∥2

=|x0
2|2
((

1 − 2√
3 + 1

)2
+ 1 +

( 2√
3 + 1

)2
) ∞∑

j=0

(
1 − 2√

3 + 1

)2j

=|x0
2|2 12 − 6

√
3

1 −
(
1 − 2√

3+1

)2 = |x0
2|2

√
3,

i. e., (x, u) is an optimal solution fulfilling Ex0 = Ex0 and lim
j→∞

Exj = 0.
In particular, from (5.43) we obtain that

mj =
[
1 −1 −

√
3 + 1

0 0 −
√

3

] [
xj

uj

]
= −

√
3 2√

3 + 1

[
1
1

](
1 − 2√

3 + 1

)j

x0
2

fulfills the boundary value problem (6.10), where

µ0 = −
√

3
[
1
1

]
x0

2.

Remark 6.2. The results of this Chapter are analogous to [RRV15, Section 7] if we replace
the respective continuous-time objects by their discrete-time analogs. For instance, the
continuous-time analog of (6.1) is obtained by replacing the operator ∆1 by d

dt and
replacing the sum by an integral.

However, the assumption made in (6.3) is somewhat restrictive at first glance. To
justify this choice, it would be sufficient to show that for ε > 0 there exists [ x∗ u∗ ]∗ ∈
Bσ

(E, A, B) with Ex0 = Ex0 and lim
j→∞

Exj = 0 such that ∥Kx + Lu∥ℓ2 < ε. This means

that we can find [ x∗ u∗ ]∗ ∈ Bσ
(E, A, B) with Ex0 = Ex0 and lim

j→∞
Exj = 0 such that we

get arbitrarily close to the optimal value, although an optimal control might not exist.
In the continuous-time case, the validity of this assumption is guaranteed by an ap-

plication of [IR14, Theorem 6.6] to the closed-loop system obtained from a stabilizing
solution of the continuous-time Lur’e equation. To achieve a similar result in the discrete-
time case we would need to investigate properties and existence of stabilizing solutions
of the discrete-time Lur’e equation in analogy to [Rei11; RRV15]. Stabilizing solutions
of the Lur’e equation (5.1) are those which fulfill

rk
[

λE − A −B
(λ − 1)K (λ − 1)L

]
= n + q

for all λ ∈ C with |λ| > 1. Furthermore, we would need an analogous discrete-time
result for [IR14, Theorem 6.6].
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7 Conclusions and Outlook

We have discussed several problems arising in the discrete-time linear-quadratic optimal
control problem and we have seen their relations to the results that have been obtained
in the continuous-time setting. In Chapter 3 we have discussed an extension of the
Kalman-Yakubovich-Popov inequality for standard difference equations to the case of
implicit difference equations. The characterizations are analogous to what was obtained
in [RRV15] in the continuous-time case. For an analogous relaxation of the controllability
assumption to sign-controllability we would need the discrete-time analog of of [CALM97,
Theorem 6.1].

In Chapter 4 we further related the spectral properties of the palindromic pencil
associated to the discrete-time optimal control problem (2.27) to the positivity of the
Popov function on the unit circle. To this end, we introduced the notion of quasi-
Hermitian matrices which allows for a generalization of the concept of inertia. Also
these results are related to the results in [Voi15] for the continuous-time case.

In Chapter 5 we introduced Lur’e equations for explicit as well as for implicit differ-
ence equations. We have shown that solvability of these equations is equivalent to the
existence of certain deflating subspaces of the BVD and palindromic pencil arising in the
discrete-time control problem (2.27). In the palindromic case we needed the additional
assumption that the given system is controllable at the eigenvalue one, which can al-
ways be achieved for discrete-time systems originating from discretization. It is an open
question whether this condition can be dropped if the latter is not the case. Moreover,
the results of this chapter are related to the results obtained in [RRV15; Voi15] in the
continuous-time case. Nonetheless, some more technical difficulties had to be tackled.

In Chapter 6 we have seen how we can use these results to characterize the solutions
of the boundary value problems associated to the discrete-time optimal control prob-
lem (2.27). However, the assumption made in (6.3) is somewhat restrictive. In the
continuous-time case discussed in [RRV15], the validity of this assumption is guaranteed
by an application of [IR14, Theorem 6.6] to the closed-loop system obtained from a sta-
bilizing solution of the continuous-time Lur’e equation. To achieve a similar result in the
discrete-time case we would need to investigate stabilizing solutions of the discrete-time
Lur’e equation in analogy to [Rei11; RRV15]. Furthermore we would need an analogous
discrete-time result for [IR14, Theorem 6.6].
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