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Zusammenfassung

Diese Arbeit gibt eine Einführung in die Modellierung von lokal reagierenden Wän-
den, sogenannten Linern. Ein Impedanzmodell zur Beschreibung eines Liners im
Zeitbereich und dessen praktische Anwendung mit einem numerischen Verfahren
für die Beschreibung der Schallausbreitung werden präsentiert. Besonderes Augen-
merk wird auf die Modellierung von Strömungseinflüssen auf die resultierende Im-
pedanz einer überströmten akustischen Auskleidung und die Vermeidung der mit
dem Modell in Verbindung gebrachten Instabilität gelegt. Das numerische Verfah-
ren wird zunächst detailliert beschrieben. Dabei wird auch auf die verschiedenen
zur Anwendung gebrachten Modellgleichungen eingegangen. Des Weiteren wer-
den Randbedingungen und numerische Herangehensweisen für die Verwendung
von beliebigen mittleren Strömungszuständen und krummlinigen Koordinatensys-
temen aufgezeigt. Eine Methode zur direkten Überprüfung der numerischen Lö-
sung mittels der akustischen Intensität, die ohne die Kenntnis einer analytischen
Lösung auskommt, wird ebenfalls vorgestellt. Zur Überprüfung werden zahlrei-
che veröffentlichte Lösungen für Fragestellungen zur Schallausbreitung in akustisch
ausgekleideten Strömungskanälen und die Abstrahlung von solchen Kanälen her-
angezogen. Die nahezu perfekte Übereinstimmung für viele der Beispiele verifiziert
das Impedanzmodell und die numerischen Methode. Es werden modal axialsym-
metrische, zwei- und dreidimensionale Problemstellungen von den Beispielen abge-
deckt. Der Einfluss der verschiedenen Ansätze zur Unterdrückung der Strömungs-
instabilität wird ebenfalls an diesen Beispielen untersucht. Es wird eine Methode
zur Berechnung der Impedanz aus Messungen mit überströmten Dämpfern vorge-
stellt. Sie basiert auf einer Optimierung der Modellparameter des Impedanzmodells
im Zeitbereich. Das Verfahren liefert den gesamten Frequenzgang der Impedanz
mit einer Optimierung. Vier verschiedene akustische Auskleidungen werden unter-
sucht. Bei allen wird der Frequenzgang sehr gut durch das verwendete, erweiterte
Helmholtz-Resonator-Modell wiedergegeben. Bei einer Untersuchung der notwen-
digen Modellgenauigkeit für die Berechnung der Impedanz, wird ein relativ großer
Einfluss von kleinen Reflexionen auf das Ergebnis bei der Verwendung von Druck-
amplituden als Vorgabe vom Experiment nachgewiesen. Daher werden in den fol-
genden Beispielen energetische Reflexions- und Transmissionsfaktoren, welche un-
abhängig von Reflexionen an den Rohrenden sind, zur Definition der Zielfunkti-
on verwendet. Es werden Verbindungen zwischen den Modellparametern des Im-
pedanzmodells und den spezifischen Abmessungen der akustischen Auskleidung
hergestellt. Diese werden verwendet, um einer Messung zugängliche Parameter der
Auskleidung aus den optimierten Modellparametern zu berechnen. Diese liegen für
die vier Beispiele mit Ausnahme einiger Fälle, bei denen die Resonanzfrequenz des
Helmholtz-Resonators nicht innerhalb des vermessenen Frequenzbereichs liegt, im
erwarteten Bereich. Zuletzt werden noch Beispiele für die Anwendung der Impe-
danzmodellierung im Zeitbereich gegeben. Dabei wird Gebrauch von der Verknüp-
fung der Modellparameter zur Geometrie der Resonatoren gemacht. Das Impedanz-
modell verringert die numerische Problemgröße dabei wesentlich.



Abstract

This work gives an introduction to the numerical modeling of locally reacting acous-
tic treatments. A time-domain impedance model and its implementation with a
numerical method for Computational Aeroacoustics are presented. A special em-
phasis is put on the modeling of the flow effect on the impedance and the treatment
of the related flow instability. First, the numerical method is described in detail in-
cluding a variety of mathematical model equations, which are used in the present
work. Boundary conditions and numerical approaches for the handling of arbitrary
base flow fields and curvilinear meshes are presented as well. A method for the di-
rect validation of a numerical solution by using the acoustic intensity is developed.
It does not require an analytical solution. In a first validation, several benchmark
problems from the literature, concerning the sound propagation in lined flow ducts
and the radiation from such ducts, are considered. The almost perfect agreement
of the current method for a large number of different problems verifies the cor-
rect implementation of the impedance model and the numerical method. Modal-
axisymmetric, two- and three-dimensional examples are covered. The effect of re-
moving the flow instability is studied with these examples. An impedance eduction
method is applied, using an optimization to obtain the model parameters of the ex-
tended Helmholtz resonator model from in-situ measurements with four different
liner samples. All are found to be well described by the extended Helmholtz res-
onator model. The time-domain impedance eduction provides the whole frequency
response of the impedance by one optimization. The impact of the numerical mod-
eling on the resulting impedance is also studied. The results indicate a significant
influence of reflections in the experiment on the resulting impedance, when using
pressure amplitude data as input for the impedance eduction. Thereafter, reflection
independent energy transmission and reflection coefficients are used as input for
the impedance eduction. The link between the educed model parameters and the
geometry of the liner is pointed out. The connection is used to calculate measurable
parameters of the liner from known geometry parameters and the eduction result.
The educed geometry is found to be in a reasonable range for most of the examples.
An exception is found with few cases, where the resonant frequency of the liner is
not covered by the range of frequencies that is considered in the experiment. Finally,
the link between geometry and impedance model is used in three different applica-
tions. The application of a time-domain impedance model significantly reduces the
problem size in these cases.
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1. Introduction

1.1. Background

The sustained development of todays air traffic is connected to a complex interac-
tion of the airports as economical hot spots and the surrounding infrastructure. This
usually results in attracting people to live in the structurally and economically well
established areas in the vicinity of airports. To serve the objective of an airport,
airplanes have to pass its surrounding at low altitude for take-off and approach
maneuvers. Due to the exposed radiation from an aircraft flying low overground
in urban areas the air-traffic noise affects a large number of people. The European
Community estimates, [26], that over 40 million people were affected by aircraft
noise in Europe in the year 2001. For comparison only 24 million were affected by
road noise and about three million by railway noise according to the same study
[26]. The economical growth of an airport is found to be limited mainly by the
public acceptance of the air traffic with respect to the noise emission [26] and conse-
quently the noise emission of each single flight maneuver. Due to the effects of noise
on economy, environment, well being and health, aircraft noise reduction is an im-
portant objective of the union and national European funding for research activities
defined for instance in the ACARE 2010 and 2020 goals [27], and the noise radiation
from an aircraft at take-off and approach is a critical design condition for all aircraft
components.

In addition to the community noise requirements the cabin noise has become a
major comfort criterion and marketing argument for aircraft manufacturers. With
increasing application of composite materials in aircraft construction, the noise re-
ception into the cabin has become even more critical. Acoustic design of all aircraft
components is usually a compromise between noise reception and lightweight con-
struction. The requirement of additional damping of the cabin and nacelle for noise
reduction in the worst case cancels the weight reduction achieved by the application
of modern composite materials. A noise reduction at the source of noise is a major
objective to exploit the potential of modern materials and lightweight construction.

On the noise emission side, all devices in the outer flow (wings, flaps, landing
gear etc.) are potential sources of airframe noise. This is the major source of aircraft
noise besides the noise generation by the aeroengines. Modern high-bypass ratio
turbofan-engines are characterized by a large reduction of the jet noise. It is still the
major source of noise at approach. However, a continued reduction of the jet noise
makes the latent internal noise sources become dominant at approach conditions for
certain observation angles today. Such sources are for instance the main fan, engine
core and internal-flow noise. The compressor, turbine and combustion system are
abstracted as the core, which features further different acoustic source mechanisms.
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1. Introduction

Fan, compressor and turbine consist of rotating and fixed blades, which produce the
necessary momentum for the main fan and at the same time radiate rotor-alone and
rotor-stator-interaction noise. Future turbofan engine designs will probably feature
geared fans. This would result in additional fan noise and mechanical noise from
the lightweight gear box, together with a further reduction of jet noise. Noise radi-
ation and thrust generation are inseparably connected to a certain extent [35], such
that the possible emission reduction is limited for these components. However, the
ducted-fan design allows for further noise reduction on the internal path of noise by
using acoustic lining.
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Figure 1.1.: Honeycomb-type liner panel

Today, the passive acoustic treat-
ment of the internal path of noise
in aeroengines is a standard tech-
nique. The best ratio of weight
and noise reduction is currently
achieved by generalized Helm-
holtz resonator panels as the one
sketched in Fig. 1.1. The third
generation of such panels still fea-
tures the basic design consisting of
rigid back plate, cavities and perfo-
rated face sheet. However, a wire
mesh has been added to obtain sta-
ble damping properties for all flow
speeds. The description as Helm-
holtz resonator or coupled system

of such resonators still applies rather well for these linings. New aeroengine liner
concepts involve a septum inside the cavity to produce multiple degrees of free-
dom. In this way the broadband damping behavior of the liner can be improved.
Future developments may involve ceramic foams and even active or adaptive liner
concepts, which require a generalized theory for their description.

Numerical methods have successfully gained acceptance in all fields of industrial
research and development. While the industrial application of computational fluid
dynamics (CFD), which mainly concerns the averaged flow characteristics, has been
left behind for the research, the focus at the Universities has been towards the devel-
opment of accurate and cost-efficient numerical methods for the description of un-
steady flow phenomena. Numerical methods for the computation of specific aeroa-
coustic phenomena have been greatly developed over the last two decades. These
methods can exhibit important achievements for all the issues that are relevant to
the aeroacoustics of an aeroengine. The turbo-machinery noise generation is well
described by advanced CFD methods based on unsteady RANS or DES approaches
[87]. The combustion system is covered by unsteady RANS or LES approaches e. g.
[13, 70, 140]; the jet noise is well predictable using a combination of classical DES,
LES or DNS as well as newly developed high-order methods and an acoustic anal-
ogy to obtain the far-field radiation, e. g. [5]. Finally the sound propagation inside
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the engine ducts and to the moderate far field is efficiently predicted by high-order
schemes for computational aeroacoustic problems [74, 115, 135, 141, 142].

The description of the whole engine by a single optimally efficient method is still
out of reach for the next few years. This means that zonal approaches, combining
different methods for different physics, form the state of the art up to now. The
concept of this zonal description of the problem will be addressed in more detail be-
low. Even though the modeling of the noise generation and propagation has made
significant advances in the past, there are still two essential modeling problems re-
maining insufficiently solved. One concerns the non-reflective boundary condition
at the open ends of the computational domain. The related numerical boundary con-
ditions are usually based on the idea to allow no reflections at such points, which
is then more or less realized for the numerical solution of a specific problem. The
other is the efficient description of an acoustic lining under flow conditions in the
time domain, which is still insufficient in terms of stability and the coverage of rele-
vant liner designs. A time-domain impedance boundary condition, which is able to
model a variety of different acoustic impedances would be a solution for both of the
above problems. It could be applied as a replacement for the non-reflective bound-
ary conditions modeling the reflections from connected duct systems outside the
computational domain, as well as for its original purpose of describing an acoustic
treatment.

The current work contributes to the development of impedance boundary condi-
tions. It concerns the extension of a numerical method for computational aeroacous-
tics (CAA) by a time-domain impedance boundary condition, which allows grazing
flow conditions. An optimized computational aeroacoustics (CAA) method is cho-
sen as platform for the implementation of the impedance boundary condition. The
field currently undergoes a rapid development, such that this work must address
the enhancement of the CAA method and boundary conditions, as well as its gen-
eralization to three-dimensional problems. However, the time-domain impedance
boundary condition is not limited to the current numerical method and the applica-
tion with an aeroengine problem. Rather, the current work is intended to provide
a general insight to time-domain impedance modeling. The validation and verifi-
cation of the method with the analytical solution and experiments is an important
aspect of the current work. In addition, a method for the validation of a specific
numerical solution, which is based on the conservation of the acoustic energy, is
presented.

1.2. State of the art in Computational Aeroacoustics (CAA)

An attempt of a definition of CAA: While the origin of the discipline of Aeroacous-
tics can be precisely tracked back to a publication of Sir James Lighthill [75] in 1952,
the origin of Computational Aeroacoustics can only approximately be defined; it
can be dated back to the early 1980’s. The first occurrence of the term “computa-
tional aeroacoustics” is probably in a visionary publication of Hardin and Lamkin
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1. Introduction

[42], who claimed and showed that with the ongoing development of computing
resources, computational aeroacoustics has become possible with one of the first
aeroacoustic simulations of a cylinder-wake flow. In a second publication, [43],
Hardin and Lamkin introduced the acronym CAA for computational aeroacoustics.
Unlike the numerical method which is described in this work, Hardin and Lamkin
used a non-optimized “classical” CFD method in their early works.

In their sense, the term CAA was originally defined as a numerical simulation of
the aerodynamic noise generation with standard CFD methods in combination to
a simulation of the noise propagation with an acoustic far-field prediction method.
Later the term CAA method was applied to describe the large variety of new high-
order methods [50, 67, 93, 127], which were developed specialized for the simula-
tion of aeroacoustic phenomena. The growing CAA community adopted and ex-
tensively applied the term CAA method for any computational method that was
developed to describe the aerodynamic noise generation and/or propagation. This
definition still covers the application of an acoustic analogy as CAA method. How-
ever, today the term is commonly used, other than it was originally defined, in the
sense of an optimized method for solving the governing equations of the acoustic
wave propagation in an arbitrary flow. In order to give to the CAA method which
is used in this thesis a more definite form, the state of the art in CAA methods, is
described following in this section.
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Figure 1.2.: Computed relative wave
number over physical rel-
ative wave number.

Problem size for acoustic applications:
To understand the requirement of a spe-
cial numerical method for the computation
of aeroacoustic phenomena, one may con-
sider the following task. The sound propa-
gation in a cube with a side length of 1 m is
to be calculated without flow. The medium
is considered to be air with a speed of
sound of approximately c = 340 m/s.
The upper frequency limit to be resolved
is set to 10 kHz. The resulting minimum
wave length is λ = 0.034 m. Now con-
sider a numerical method, which uses an
equidistant mesh to solve a wave equa-
tion numerically. The numerical accuracy
of the method depends on the spatial res-
olution. Therefore, the minimum number
of points per wavelength (PPW) is given
by the highest wave number and the accu-
racy requirement of the scheme. The free-
field wave number k = ω/c is considered
as the upper limit; higher duct modes and waves propagating transverse to the
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mesh have a lower projected wave number. An example of the functional depen-
dence of the relative wavenumber (k ∆x)∗ of several central differencing schemes
on (k ∆x), which defines the accuracy limit of the scheme, is given in Fig. 1.2. One
can see from the figure, that a low-order scheme requires a higher resolution for the
same accuracy. The exact accuracy limit is, however, not visible from the mode of
presentation in the figure. The number of points per wavelength is connected to
(k ∆x) by nPPW = λ/∆x = 2π/(k ∆x). When considering a typical second-order
scheme of computational fluid dynamics, the accuracy limit is found to be about
nPPW ≥ 50 PPW. So to resolve the above cube, one needs 50 points in the minimum
wavelength λ = 0.034 m or about 1500 points per dimension of the cube, which
results in a mesh of about 3 billion (3× 109) mesh points. The time-resolved simula-
tion of the problem requires to compute a time series, that allows an acoustic wave
to cross the whole cube, which is 0.042 s. Considering an equal ratio of space and
time discretization (CFL = 1 ⇔ ∆t = ∆x/c = 2× 10−5 s), at least about 2000 time
steps have to be calculated to allow that. Currently, such large problems can only be
handled on large parallel computing facilities and the simulation consumes a large
amount of computational time. Therefore, the application in the industrial design
process is not affordable. On the other hand, optimized high-order CAA methods
can practically reach an accuracy limit of about nPPW ≥ 7 PPW. This limit results in
a mesh spacing of 5 mm, or 200 points per dimension of the 1 m3 cube. The resulting
three-dimensional mesh has a point number of only 8 million. The time step size is
also increased if the CFL number remains close to one. Less than 300 time steps are
necessary for the waves to cross the whole computational domain at least once. Al-
together the problem size can be reduced by a factor of 2500, due to the introduction
of an optimized high-order scheme. As a consequence of this reduction, the prob-
lem becomes computable on a single modern desktop system within several hours.
Even though the high-order method requires more arithmetic operations per point
and time step than a similar low-order discretization, an advantage remains for the
high-order method. This advantage is the mainspring for the continued develop-
ment of optimized CAA methods.

Hydrodynamic modes of perturbation: The above consideration is valid only for
acoustic waves in a homogeneous cube of air at rest. The presence of an inhomoge-
neous base flow adds more complications. When considering a perturbation about
the mean state of the fluid, four different types of modes of perturbation are found
according to Chu and Kovásznay [25]. Two of these modes are of acoustic nature,
running with the local speed of sound up- and downstream relative to the moving
medium. The other two are described as vortical and entropy-mode wave; these hy-
drodynamic modes of perturbation are found to move with the flow speed, which
complicates the situation. Due to the disparity of the length scales is impossible
to resolve the hydrodynamic and all acoustic modes in the same frequency range.
Moreover, and different from the acoustic perturbations, the hydrodynamic modes
are significantly affected by viscosity and heat conduction. Therefore, the region of
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interest for a numerical solution differs for the hydrodynamic and acoustic pertur-
bations. This fact leads directly to the idea of a zonal approach, not only with respect
to different numerical methods, but also to the different physics.

1.2.1. Zonal approaches
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Source − turbulent flame:
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− vorticity mode

− turbulent shear layer

Indirect noise sources:

Energy cascade in exit nozzle and turbine:

Jet
(CFD)
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− turbulent jet−noise (Lighthill)

Indirect jet noise:

− turbulence acoustic interaction

Source zone
(CFD)

swirl stabi−
lised flame

− accelerated entropy mode
− accelerated vorticity mode

Ac. propagation through shear layer (CAA)acoustic wave      transmitted + reflected sound wave

Figure 1.3.: Sources of sound in a generic combustion system with turbine and ex-
haust jet attached.

A relatively complex example for the application of a zonal approach is the com-
bustion chamber of an aeroengine with the connected turbine and exhaust duct.
As can be seen from the simplified sketch of Fig. 1.3, the system features several
sources. One major source of perturbations is the combustion process itself. Some
of the additional sources are described as linear or nonlinear interaction of perturba-
tion modes with each other and the base flow according to Chu and Kovásznay [25].
The sound sources further downstream are the turbine and the jet. Both have to be
described by a compressible CFD approach. The turbine stages feature several non-
linear source mechanisms. There is the tonal noise generation at the blade passing
frequency due to the interaction of the aerodynamic fields of rotor and stator blades
and the turbulent broadband noise of the accelerated wakes of each turbine stage.
In addition, accelerated flow inhomogeneities from upstream engine components
generate noise according to first experimental reports by Sharland [119]. Finally, be-
sides the first-order linear refraction of sound waves due to the shear layer of the
jet, there is a nonlinear scattering of sound in the strong vorticity of the shear layer
which leads to the spectral broadening of tonal components. The linear interaction
of perturbations with the inhomogeneous base flow is covered by a linearized Eu-
ler model. The nonlinear effects of perturbations, which are interacting with each
other, reduce the possibility of a simplified mathematical modeling. Furthermore,
the direct perturbation sources as the direct noise generation by the turbulent flame,
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the rotating potential flow field around the turbine rotor, the rotor–stator interaction
in the turbine stages and the turbulent jet-noise cannot be described by an inviscid
model. These regions require a solution of the full viscous Navier-Stokes equations,
which has been indicated in Fig. 1.3 by the term (CFD). This CFD-like model does
not necessarily imply the application of a low-order CFD scheme. However, the
nonlinear viscid mathematical models which describe this zone are usually imple-
mented with such numerical methods for historical reasons. The advantage of the
zonal approach is obvious; well established and validated low-order methods can
be applied for the regions of sound creation, while the sound propagation is covered
by the newly developed CAA schemes. In an earlier stage, simplified models for the
source may be used (e. g. a single Tyler-Sofrin [133] mode for a rotor-stator-stage).

The idea of a zonal approach gets a further boost when considering the typical
magnitude of interest. While the hydrodynamic perturbations are usually high-
amplitude phenomena, the audible range from the hearing threshold to the thresh-
old of pain has a dynamic range of several decades. The hearing threshold is char-
acterized by a particle displacement, in the range of the mean free path of a particle.
The minimum audible pressure amplitude is 10 orders of magnitude below the am-
bient pressure in air according to Ehrenfried [31], then. A perturbation approach is
introduced to overcome numerical difficulties due to the limited mantissa of a real
number.

In the above example of Fig. 1.3, the combustion zone is featuring nonlinear in-
teraction and chemical reactions. It could be considered by an incompressible LES
or unsteady RANS simulation, which provides the relevant perturbation sources.
This incompressible CFD simulation, in which the density is only a function of tem-
perature, can only cover the incompressible phenomena as the low Mach number
flow inside the combustion chamber. The acoustic wave propagation in the whole
combustion system is then described by complementary systems of acoustic pertur-
bation equations as it was developed by Ewert and Schröder [34] and later Bui et al.
[19] and Seo and Moon [118]. The required acoustic sources are obtained from an
analysis of the CFD simulation results. This limitation can however be overcome
by an extension of the perturbation approach to allow the propagation of hydro-
dynamic and acoustic perturbations. So, fully, partially or only at the boundary
overlapping zonal approaches become possible using a linearized Euler model. A
partially overlapping zonal approach based on an unsteady RANS simulation of the
source zone was for example described by Schemel et al. [114] using a sponge layer
to couple the perturbations from the CFD simulation into the propagation zone.

In the above example of Fig. 1.3, we can also put in evidence some drawbacks as-
sociated with the zonal modeling. The sound propagation at the interface between
the sound source and the propagation zone is usually not bi-directional. Therefore,
reflections from the propagation zone cannot reach a point in the source zone. A
standing wave in the whole duct cannot be described in this way. Reflected waves
from connected duct systems are of special importance for combustion problems,
as various authors report [52, 82, 103]. An impedance boundary condition could be
used to add these reflections to the simulation of the source zone. Furthermore, the
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propagation of noise through a region with strong sound sources requires a switch-
ing between the propagation zone and the source zone approaches. This requires
the source zone method to correctly predict the propagation of perturbations. The
problem is best addressed by using a numerical method, which is capable of han-
dling both, the source and the propagation zone, with a high-order CAA method.
This idea was for instance followed by Bogey and Bailly [12] and Schwartzkopff
et al. [116]. Note that these source handling CAA methods fully replace the zonal
approach for the acoustic propagation to the moderate far field.

1.2.2. High-order CAA schemes

The development of high-order CAA schemes followed the starting shot of Hardin
and Lamkin [42] with some years of delay. Several methods were presented of
which the finite-difference ones took a large share; the compact scheme of Lele
[67] or the Dispersion Relation Preserving (DRP) scheme of Tam and Webb [127]
were developed in this time, to name only some examples. Others used Discon-
tinuous Galerkin methods [98] or spectral elements [93] in the frequency domain.
The time integration for the finite difference and Discontinuous Galerkin methods
is formulated explicitly. Unsteady acoustic problems require a high time resolution
with a CFL-number around unity, such that the time explicit formulation has no
disadvantage. Optimized Adams-Bashford schemes as in Tam et al. [128] and opti-
mized Runge-Kutta schemes as the Low-Dissipation Low-Dispersion Runge-Kutta
(LDDRK) of [50] or the 2N-storage schemes of Stanescu and Habashi [121] were de-
veloped. Problems of the finite-difference schemes in handling short waves were
overcome by the introduction of selective artificial dissipation, in the earlier appli-
cations [128]. Later repeated filtering of the solution [12, 102, 142] or the implemen-
tation of a filter into a high-order optimized backward stencil [144] were found to
be much more reliable and efficient, especially in connection with curvilinear non-
equally spaced meshes.

1.2.3. Non-reflective boundary conditions

With the development of the field of CAA new key problems were introduced. Dif-
ferent from the elliptic equations associated with incompressible fluid dynamics, the
aeroacoustic model is of a hyperbolic type. The hyperbolic system allows reflections
from the boundaries to propagate through the whole computational domain. There-
fore, the computation of a numerical solution to an aeroacoustic problem requires
boundary conditions, which model an anechoic termination. This new key issue
of CAA was addressed by several authors with different approaches. An overview
about the non-reflective boundary conditions for computational aeroacoustics can
be found in Tam [123].

In general, two classes of non-reflective boundary conditions can be identified
from this overview: Firstly there are generalized characteristic-based boundary con-
ditions, which formulate a radiation problem at the boundary to obtain an approx-
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imation for outgoing waves. Examples for such conditions are presented by Giles
[40], Thompson [131, 132], Tam and Webb [127] and Bogey and Bailly [11]. While
Giles [40] and Thompson [131, 132] use an analysis of the Fourier transformed gov-
erning equations and characteristics, Tam and Webb [127] and Bogey and Bailly [11]
formulate their boundary condition directly as a radiation problem from a compact
source. The second type can be characterized as absorbing layer boundary con-
ditions, which add dissipation to the differential equation in order to remove any
perturbation before reaching the boundary. An early example for such a boundary
condition, which finds application in CAA is the sponge layer presented by Israeli
and Orszag [54]. The idea was later refined, in order to remove reflections from the
interface to the sponge layer, obtaining the perfectly matched layer (PML) boundary
condition [9, 48, 49]. Several authors developed different PML formulations [1, 2, 45]
for Discontinuous Galerkin or Finite Element methods.

The one boundary condition which gives similar good reflection properties for
all possible applications, is still not yet available. The ongoing development on the
area is represented by Ehrenfried [30] and Hu et al. [51] to name only some of the
more encouraging approaches. The present thesis uses three different boundary
conditions, which were found to be complementary in terms of accuracy, possible
application and computational effort. These boundary conditions are described in
Section 3.5.

1.2.4. Impedance modeling in the time domain

The modeling of a partially-reflecting surface by its impedance is the major objective
of the current work. The reflective properties of an acoustic lining or connected sys-
tems are described by a complex number, the impedance, in the frequency domain.
In general, the inverse Fourier transform of a impedance boundary condition from
the frequency- to the time domain leads to a convolution. This can be solved by a di-
rect numerical approach, as has been shown recently by Burak et al. [20]. However,
the method is still expensive. For some specific representations of the impedance as
a function of frequency, it is possible to obtain a convolution free time-domain repre-
sentation, e. g. by using derivatives and integrals as Tam and Auriault [124] or the
z-transformation of a periodic frequency response as Özyörük and Long [88] and
Rienstra [108]. Tam and Auriault [124] use a mass-spring-damper model as tem-
plate for the frequency response of the impedance. Their model has been extended
by Fung et al. [39] and Tam et al. [122] with higher order time derivatives, yielding
higher powers of iω without physical interpretation. Even though, these first works
can be considered as a milestone in impedance modeling, further development in
the area took a long time coming. The first attempts of Tam and Auriault [124]
and Özyörük and Long [88], Özyörük et al. [90] were not able to handle grazing
flow conditions on the impedance surface or the method was found to be unsta-
ble under several flow conditions. The problems are found to be associated with
the simplified description of the grazing base-flow conditions on the lined surface
by the Ingard/Myers boundary condition [85]. An instability was first reported by
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Tester [129] in a numerical study of overflown impedance surfaces. Several groups
were involved to the continued development of time-domain impedance modeling,
[38, 39, 61, 88, 89, 90, 124]. The presence of an instability was either theoretically or
numerically reported in all the cited papers considering nonzero base flow veloci-
ties. The theoretical description has provided more and more detailed information
about the instability over the last 13 years [16, 107, 111, 124]. A detailed discussion
of all aspects of time-domain impedance modeling is given in Chapter 4.

1.3. Relevant experiments

The implementation of a new time-domain impedance boundary condition cannot
be performed without validation experiments. These experiments are summarized
in this section. Some further experimental results are included to the discussion in
Chapter 7.

1.3.1. Measurement of the normal incidence impedance

The measurement of the normal incidence impedance with a so called Kundt’s tube1

as sketched in Fig. 1.4 is well established and described by DIN 52215 (ISO 10534)
[29]. It is based on a two-microphone method, which allows to split incoming and
reflected waves, based on the observed pressure amplitude and phase at the two
microphone positions. A plane wave assumption is used to reconstruct the sound
field at the surface of the sample object and the normal-incidence impedance is cal-
culated as the ratio between acoustic pressure and velocity-perturbation amplitude.
However, this technique does not allow an impedance measurement in the presence
of grazing flow over the surface. Such grazing flow conditions are found in all air-
craft liners (aeroengine inlet, bypass ducts and exhaust as well as air conditioning),
in operating conditions. An in-situ measurement of the impedance, as it is described
in the next section, becomes necessary to account for the grazing flow.

Direct measurement of the impedance: A new method for the exact local mea-
surement of the impedance is currently becoming available. This method makes
use of a so called PU-probe, which is an instrument to measure the local pressure
and velocity. The impedance is obtained directly from the measurement at the sur-
face. The method is described by Lanoye et al. [66]. It is able to provide a highly
resolved map of the local impedance and has been demonstrated to be successfully
applied without flow [66]. However, currently there is no impedance data which
was obtained by such probes under grazing flow conditions. Therefore, the method
could not be considered in the current work.

1Named in memoriam to the German Mathematican and Physician August Kundt (*November, 18th, 1839
– †May, 21st, 1894) who used a similar tube made of glass to visualize sound waves and measure the
speed of sound in 1866 and later worked with Hermann von Helmholtz in Berlin [136].
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1.3.2. In-situ measurement of the impedance
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Figure 1.4.: Kundt’s tube

As described above, an in-situ measurement of
the impedance of an acoustic liner with the ex-
act flow conditions found in the application is
very desirable. A group of NASA was one of
the first who developed a measurement tech-
nique which allows a grazing flow on the im-
pedance surface [68]. The experimental set-
up is sketched in Fig. 1.5(a). The liner sam-
ple is flush mounted to one side of a flow
duct with square cross section. The pressure
field in the hard walled sections up- and down-
stream of the liner sample and opposite to the
liner sample is measured by microphones. The
first experiments with flow in the 1980’s used
a traversing mechanism for the microphone,
whereas nowadays a large number of flush
mounted microphones are used for a simulta-
neous measurement [55, 56, 57, 59, 60, 68, 69].
The input acoustic field is controlled by a con-
trol loop using several speakers and one microphone to obtain the desired sound
field. An anechoic termination is used for the downstream end only. Up till now
there is no report of an impedance eduction involving higher modes, such that the
measurable range is limited to frequencies below the cut-on of the first higher mode
in the test section or a large error must be accepted for higher frequencies.

Similar experiments are found in different test facilities of which one of the first
was the NLR acoustic flow duct facility [65]. This facility employs two settling
chamber of an Eiffel-type wind tunnel2 as reverberant chambers to measure the
overall acoustic intensity in the test sections up- and downstream the liner. This
measurement allows to calculate an overall energy dissipation due to the liner sam-
ple under grazing flow conditions. Published measurements are not limited below
the cut-off of the first higher mode [84]. However, the different attenuation charac-
teristics for higher modes lead to an increase of the error for frequencies above the
cut-on of the first higher mode in the test section.

A comparison of the further American in-situ test facilities of Boeing, General
Electric and B. F. Goodrich may be found in Jones et al. [55]. All these experiments
use either the NLR or the NASA method to acquire the acoustic data. In this work,
in-situ measurements, which were carried out in a new test facility at the DLR in
Berlin [22, 46], are used. This test setup combines the features of NASA and NLR
experiment. Microphones in the hard walled inflow- and outflow ducts are used to

2In memoriam to the French engineer Gustave Eiffel (*December, 15th, 1832 – †December, 27th, 1923 [136]),
who first used a suction type wind tunnel design, which sucks air from the environment through the test
section and blows it off to the free space afterwards.
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1. Introduction
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Figure 1.5.: Schematics of the different acoustic flow tube designs for in-situ imped-
ance measurements

calculate the acoustic power up- and downstream the lined duct section. The mea-
surement is made independent of reflections by a combined analysis of the up- and
downstream excitation using a modal analysis [46]. This finally leads to a reflection
independent measurement of the acoustic energy dissipation with a small number
of microphones. Furthermore, the absence of microphones at the wall opposite to
the sample allows to investigate two lined walls and cylindrical liner samples. Even
though, there are no theoretical limitations which would disallow that, the method
has not yet been applied to frequencies above the cut-on of the first higher mode.
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1.4. Structure of this work

As can be seen from the above summary of experimental methods, two general
concepts find application: A detailed measurement of the sound pressure level op-
posite to the liner allows to calculate an exponential decay along the liner, whereas
the measurement in the up- and downstream sections allows to calculate the in-
sertion loss and energy dissipation due to the sample. These measurements are
then used as input for a numerical impedance eduction. The different measurement
methods are theoretically equivalent. However, practically they may show different
error tolerance. The current work uses published experimental data of the NASA
flow tube experiment [57] as well as data obtained in cooperation with the DLR
from their flow tube to compare the usability of the different data for the impedance
eduction.

1.4. Structure of this work

This work is organized as follows. First the mathematical models are presented in
Chapter 2. Then the numerical CAA-method and the standard boundary condi-
tions, which are used in the current work, are given in Chapter 3. The time-domain
impedance modeling is reviewed and the implementation of the related boundary
condition is described in Chapter 4. A method for validating the numerical solution
and locating sources is presented in Chapter 5. The impedance eduction method
used in the current work will be detailed in Chapter 6. Then, the results will be pre-
sented and compared to analytical solutions and experiments in Chapter 7. Finally
conclusions are drawn in Chapter 8.
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2. Mathematical modeling

In this section a class of mathematical models for time domain CAA methods will
be presented. All of them are based on the idea of separating the nonstationary flow
into a stationary base flow and an instationary perturbation. Such a perturbation
approach has an advantage when considering a small acoustic perturbation, which
would otherwise be hidden below the numerical noise of the mantissa of the digital
representation of the base flow.

Here, the focus is put on the inviscid linear acoustic wave propagation in an ar-
bitrary flow field. The inviscid modeling has the advantage that no resolved sim-
ulation of boundary layers is required, even though it is still possible for the base
flow. Furthermore, the acoustic boundary layers are usually very thin and a resolved
simulation of them in a current aeroengine on today’s computing resources would
result in a practically not yet solvable problem. A finite-difference method is used
for the discretization as described in Chapter 3. Therefore, a differential formulation
of the governing equations has been chosen here.

This section shortly sketches the development of several perturbation models,
which are based on the inviscid Euler equations for the perturbation. However, it
will be shown that the base flow can be any viscous or inviscid flow field. To in-
crease the efficiency and accuracy, simplified mathematical models are developed,
which are applicable in the propagation zone of the zonal approach described in Sec-
tion 1.2.1. Several subsequent models with increasing limitations due to the mod-
eling assumptions, which were implemented with the numerical method in Chap-
ter 3, are presented. A vector notation without predefined limitation of the model to
a specific coordinate system (2D, modal-axisymmetric or 3D) is used for the devel-
opment. The mathematical form for the implementation into the numerical method
is detailed in Appendix A.2. At the end of this chapter only the modal axisymmet-
ric approach is presented and the particular features of the other coordinate systems
are addressed in the Appendix A.2.1.

2.1. Governing equations

The governing equations describing a compressible perturbation in an instationary
fluid flow are the Navier-Stokes equations, in general. These are the conservation
law for the mass, the momentum balance and the energy balance given in the fol-
lowing according to the derivations of Pierce [95], Rienstra and Hirschberg [110],
Spurk [120] and Zierep [148]. The primitive form of the balances is used in an Eule-
rian way of description in a fixed frame of reference. However, the formulation of
the impedance boundary condition in Chapter 4 will be freely applicable with any
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2. Mathematical modeling

system of equations for the fluid motion. The derivation is carried out, starting from
the physical quantities consisting of a value and the corresponding SI unit, which is
denoted by a tilde above the symbol. Later the nondimensional quantities without
tilde are introduced for the implementation with the numerical method.

2.1.1. Mass conservation of a fluid element

The mass conservation of a fluid element is written using the density $̃ and the
velocity vector ũ as follows (comp. [120, 148]):

∂ $̃

∂ t
+ ũ · ∇̃ $̃ + $̃ ∇̃ · ũ = 0. (2.1)

In the following, the material derivative D̃(·)/D̃t̃ will be used for a more compact
notation of the governing equations:

D̃ (·)
D̃ t̃

:=
∂ (·)
∂ t̃

+ ũ · ∇̃ (·). (2.2)

The mass conservation of Eq. (2.1) is recast using the definition of the material
derivative to:

D̃ $̃

D̃ t̃
+ $̃ ∇̃ · ũ = 0. (2.3)

2.1.2. Momentum balance over a fluid element

Here the Navier-Stokes equations describing the motion of a viscous fluid are con-
sidered as a starting point for the derivation. These equations combine the consti-
tutive law for a Newtonian fluid with the balance of momentum. The equations are
written using the pressure p̃, viscous stresses described by the shear-rate-tensor τ̃
and the volumetric forces K in addition to the variables introduced above, comp.
[95, Eq. (10-1.14)]:

$̃

(
∂ ũ
∂ t

+ ũ · ∇̃ ũ
)

= $̃ K − ∇̃ p̃ + $̃ν̃∇̃ · τ̃. (2.4)

In the following, the volumetric forces K are neglected, as neither gravity nor mag-
netic forces are important in current aeroengines. The surface-forces have been split
into the normal pressure forces p̃ and the viscous stresses ν̃ τ̃. Here, the shear-rate
tensor is denoted by the symbol τ̃. It describes the dissipation due to viscous ef-
fects in the fluid at motion. In Eq. (2.4) the kinematic viscosity ν̃ is denoted by the
symmetric null-trace shear-rate tensor, according to Pierce [95, Eq. (10-1.10)], by:

τ̃i j =
∂ ũi
∂ x̃j

+
∂ ũj

∂ x̃i
− 2

3
∇̃ · ũ δi j.

Using the material derivative, the balance of momentum can be written as follows:

D̃ ũ
D̃ t̃

+
1
$̃

∇̃ p̃ = ν̃ ∇̃ · τ̃. (2.5)
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2.2. Nondimensional mathematical model

2.1.3. Energy balance over a fluid element

A starting point for the derivation is the entropy conservation of the inviscid theory
from gas dynamics (e. g. Zierep [148]), which can be extended to a Kirchhoff-Fourier
equation according to Pierce [95, Eq. (10-1.15)] to account for viscous effects and heat
conduction:

$̃ T̃
D̃ s̃
D̃ t̃

= −∇̃ · q̃ +
ν̃

2 ∑
i,j

τ̃2
i j, (2.6)

where q̃ denotes the heat conduction. From this equation, under the assumption of
a reversible process in an ideal gas, one obtains the following form of the energy
equation, which makes use of the pressure as dependent variable:

D̃ p̃
D̃ t̃

+ γ p̃ ∇̃ · ũ = (γ− 1)

−∇̃ · q̃ +
ν̃

2 ∑
i,j

τ̃2
i j

 . (2.7)

A more detailed derivation is found in the Appendix A.1.1.

2.2. Nondimensional mathematical model

Equations (2.3), (2.5) and (2.7) are now used as a starting point for the following
derivations. The implementation of the mathematical model benefits of a nondi-
mensional form in which all terms are of a similar order of magnitude. Problem
specific units are introduced instead of the SI system. The units are temporally and
spatially constants such that all derivatives of the unit quantities are zero. The units
itself must be nonzero. Furthermore, the most simple unit system is required to
avoid conversion or conflicting definitions. This system is here obtained with the
units given in Table 2.1.

The derivation of the above nondimensional form from Eq. (2.3), Eq. (2.5) and
Eq. (2.7) is found in the Appendix A.1.2. In the following, the nondimensional quan-
tities are written without tilde. The resulting nondimensional system of governing
equations is

D $

D t
+ $ ∇ · u = 0, (2.8a)

D u
D t

+
1
$
∇p =

1
Re∞

∇ · τ, (2.8b)

and
D p
D t

+ γ p ∇ · u = (γ− 1)

−∇ · q +
1

2 Re∞
∑
i,j

τ2
i j

 . (2.8c)
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2. Mathematical modeling

Table 2.1.: Units for the nondimensional formulation of the governing equations and
the related SI units

Quantity Unit SI-unit Description / unit measure

x̃ L∞ m typical length

c̃, ũ c∞ m s−1 typical speed of sound

$̃ $∞ kg m−3 typical density

t̃ L∞
c∞

s typical acoustic time scale

f̃ , [ω̃] c∞
L∞

s−1 typical acoustic [angular] frequency

p̃ $∞ c2
∞ Pa typical pressure

ν̃ c∞ L∞ m2 s−1 typical kinematic viscosity

ã c2
∞

L∞
m s−2 acceleration scale

Ĩ $∞ c3
∞

L∞
W m−2 intensity scale

The Reynolds number Re is defined here with the reference speed of sound c∞ and
the reference length L∞ as

Re =
c∞ L∞

ν̃
. (2.9)

The nondimensional Eqs. (2.8a), (2.8b) and (2.8c) exactly match the relations set up
by Eqs. (2.3), (2.5) and (2.7). The physical quantity is obtained by multiplying the
nondimensional value by its unit from Table 2.1.
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2.3. Perturbation approach

2.3. Perturbation approach

The next step in the derivation of a simplified model for the propagation of pertur-
bations from a known source is the introduction of a perturbation approach. Each
nondimensional field–quantity is split into a base-flow component and a perturba-
tion on top of it. The base flow is assumed to be time stationary. The decomposition

$ = $0 + $′, u = u0 + u′ and p = p0 + p′

is used to replace the field quantities in Eq. (2.8) to obtain the following:

D $′

D t
+
(
u0 + u′

)
·∇$0 +

(
$0 + $′

)
∇ ·

(
u0 + u′

)
= 0, (2.10a)

D u′

D t
+
(
u0 + u′

)
·∇u0 +

1
$0 + $′

∇
(

p0 + p′
)

=
1

Re∞
∇ ·

[
τ0 + τ′

]
, (2.10b)

and
D p′

D t
+
(
u0 + u′

)
·∇p0 + γ

(
p0 + p′

)
∇ ·

(
u0 + u′

)
= (γ− 1)

−∇ · q +
1

2 Re∞
∑
i,j

[
τ0,i j + τ′i j

]2
 .

(2.10c)

Note that, D ·
D t is defined with the velocity vector in the transport term. It is expressed

as follows after the velocity-field decomposition:

D (·)
D t

:=
∂ (·)
∂ t

+
(
u0 + u′

)
·∇ (·). (2.11)

2.4. Nonlinear perturbed nonconservative nonlinear Euler model
(PENNE [76])

To obtain the most general implemented model from Eq. (2.10), it is assumed that the
effect of the viscosity is negligibly small for the perturbations. The resulting system
of partial differential equations is called perturbed nonlinear, nonconservative Euler
equations (PENNE) according to Long [76]. It is then given as:

∂ $′

∂ t
+
(
u0 + u′

)
·∇$′ +

(
$0 + $′

)
∇ · u′ + u′ ·∇$0 + $′ ∇ · u0 = 0,

(2.12a)

∂ u′

∂ t
+
(
u0 + u′

)
∇u′ +

1
$0 + $′

∇p′ + u′ ·∇u0 −
$′

$0 ($0 + $′)
∇p0 = 0,

(2.12b)

and
∂ p′

∂ t
+
(
u0 + u′

)
·∇p′ + γ

(
p0 + p′

)
∇ · u′ + u′ ·∇p0 + γ p′ ∇ · u0 = 0.

(2.12c)
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2. Mathematical modeling

The base flow solves the Navier-Stokes or Euler equations. A more detailed deriva-
tion may be found in Appendix A.1.3. The Equations (2.12) have been expressed
in a matrix–vector notation, for easier implementation with the numerical method.
The related matrix–vector expression is given in Appendix A.2.2, for 2D, 3D and ax-
isymmetric assumptions for the solution, boundary conditions and base-flow field.

The nonlinear system may find application in connection with high-amplitude
acoustic-wave propagation and the steepening of acoustic pulses and it includes the
interaction of vortices and unsteady temperature variations with the acoustic field.
Both are not covered by a linear model. The PENNE equations are used here to cal-
culate a steady base flow field. When compared to a linear perturbation approach,
the numerical effort is slightly increased due to the additional nonlinear terms.

2.5. Linearized Euler equations

In addition to the above inviscid assumption, the perturbations are assumed to be
small when compared to the average field quantity. The pressure p′ and density $′

perturbations are assumed to be small compared to the pressure p0 and density $0
of the base flow respectively. The local average speed of sound:

c =
√

γ p0/$0 (2.13)

is the reference field quantity for the definition of a small perturbation of the ve-
locity field (|u′| � c). Note that c is a nondimensional local speed of sound but
the relations apply for the physical speed of sound too. In addition, it is assumed
that the spatial and temporal derivatives of a perturbation are in the order of the
perturbation itself. This assumption is usually well realized for acoustic perturba-
tions in the audible range. The typical wave length is λ = c/ f for acoustic waves.
Thus, the temporal derivatives of a small perturbation scale with the nondimen-
sional angular frequency ω and the spatial derivatives with the Helmholtz-number
He = L∞ ω/c. The definition He is independent of the dimensional or nondimen-
sional notation, therefore the tilde omitted. Both scaling factors range from 10−2 to
102 for frequencies between 10 Hz and 40 kHz in hot air and air at standard condi-
tions, respectively; assuming a typical length of L∞ = 1 m.

For non-acoustic perturbations, e. g. vortices and non-isentropic perturbations
the wave length is proportional to magnitude of the local flow speed |u|. Thus, the
wave length can become very small in local stagnation regions. Such under-resolved
hydrodynamic perturbations are cut-off by the finite grid resolution within the nu-
merical method. Therefore, the case where a spatial derivative of the perturbation
quantities becomes much larger than the perturbation itself is theoretical.

The derivatives of a perturbation are assumed to be in the same order as the per-
turbation itself in the following. In combination with the assumption of a small per-
turbation, one obtains a set of linearized perturbation equations. Equations (2.10)
are considered as a starting point again, and any term of second and higher order
in the perturbation quantities and their derivatives are neglected. The balances for
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2.6. Isentropic pressure–density relation

the average flow field are removed from the equations and the viscous terms are
neglected for the perturbations as shown in Appendix A.1.3. The linearized Euler
equations are then obtained; they are expressed as follows:

∂ $′

∂ t
+ u0 ·∇$′ + $0 ∇ · u′ + u′ ·∇$0 + $′ ∇ · u0 = 0, (2.14a)

∂ u′

∂ t
+ u0 ·∇u′ +

1
$0

∇p′ + u′ ·∇u0 +
$′

$0
u0 ·∇u0 = 0 (2.14b)

and
∂ p′

∂ t
+ u0 ·∇p′ + γ p0 ∇ · u′ + u′ ·∇p0 + γ p′ ∇ · u0 = 0. (2.14c)

The corresponding matrix-vector form is specified in Appendix A.2.3 for the three
coordinate systems considered in the present work. The linear system may be ap-
plied for a large range of problems involving the transport of hydrodynamic pertur-
bations and the interaction of these perturbations with the base flow.

2.6. Isentropic pressure–density relation

Finally, the isentropic variant of the LEE is obtained by replacing Eq. (2.14c) with
the isentropic pressure–density relation of acoustics:

p′ = γ
p0
$0︸︷︷︸

=c2,Eq. (2.13)

$′

p′ = c2 $′ (2.15)

With this simplification one out of five partial differential equations is removed for
the three dimensional problem. Two out of twelve are removed for the modal ax-
isymmetric approach. As all of the differential equations are of similar structure, the
numerical effort is similar. Thus, the reduction of one equation means a reduction
of the problem size by 20 %. Furthermore, the above isentropic relation removes the
entropy mode from the solution of the resulting system. This is a limitation on one
hand. However, it possibly increases the stability, as the entropy-related instability
mechanism is removed. The corresponding matrix–vector form is omitted in the
appendix as it simply uses Eq. (2.15) to replace the pressure equation. The relation
of the resulting model to the wave equation is described in the Appendix A.1.4

2.7. Modal axisymmetric approach

The modal axisymmetric approach goes back to an idea suggested by Michel [79].
The implementation of the approach described below was presented as [72]. At the
same conference Zhang et al. [141] presented a similar development with the dif-
ference, that the computation of a complex-valued perturbation field was avoided
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2. Mathematical modeling

at the expense of an additional time integration. Both works were later published
as articles [73, 142]. Here we assume, that acoustic waves propagate within a duct
or radiate from a duct, in the presence of a nonuniform, axisymmetric base flow. A
cylindrical coordinate system, as it is sketched in Fig. 2.1, is introduced. Further-
more, it is assumed that the flow duct is axisymmetric along the x-axis and as well
all boundary conditions as the base flow are assumed to be constant in the azimuthal
direction. Then it becomes possible to rewrite the three dimensional problem as an
infinite series of two dimensional problems by using a Fourier-series approach for
the azimuthal direction:

φ′(x, r, ϕ, t) = Re

{
∞

∑
m=−∞

φ̂m(x, r, t) ei mϕ

}
, (2.16)

where φ′ denotes perturbation field quantities

φ′ :=
[
$′, u′, p′

]
, (2.17)

and φ̂ denotes the complex-valued perturbation amplitude, which is independent
of the azimuthal angle. There is no simplification up to now. The ϕ-dimension
has been developed into an infinite number of azimuthal modes m. However, in
aeroengines the number of cut-on azimuthal modes is limited as we can assume a
limited band of frequencies for the aeroacoustic excitation. Thus, Eq. (2.16) can be
limited to the cut-on or close to cut-on −M . . . M azimuthal modes as

φ′(x, r, ϕ, t) = Re

{
M

∑
m=−M

φ̂m(x, r, t) ei mϕ

}
. (2.18)

The derivative in ϕ-direction is given as:

∂ φ′(x, r, ϕ, t)
∂ ϕ

= Re

{
M

∑
m=−M

i m φ̂m(x, r, t) ei mϕ

}
. (2.19)

Thus, the derivative of the complex-valued perturbation amplitude in the azimuthal
direction is simply replaced by a multiplication with (i m) and, due to the above
assumptions, the derivatives of the base flow in the azimuthal direction cancel out.

The Fourier-ansatz implies a potential reduction of the problem size. Especially
for the modal field of the aeroengine inlet, only a small number of modes is involved
to the tonal sound field. In this case, the highly demanding three dimensional prob-
lem can be replaced by a small set of two dimensional problems. In addition, the
concept of a two dimensional simulation is advanced over a three dimensional one
in a Cartesian coordinate system in terms of the resolution of the azimuthal structure
of the sound field close to the axis especially for higher azimuthal modes, as they
are typically found in the aeroengine inlet of high-bypass-ratio ducted fan designs.
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2.7. Modal axisymmetric approach

r

ϕ
x

Figure 2.1.: Cylindrical
coordinate
system

Real and imaginary part of the complex-valued per-
turbation amplitude φ̂m have to fulfill the differential
equation, e. g. Eq. (2.14), in the cylindrical coordinate
that is system sketched in Fig. 2.1. Moreover, each mode
must fulfill the differential equation independently of
the other modes. This results in a decoupled set of
2 M + 1 equations for the real and imaginary part of
the complex-valued perturbation amplitude vector φ̂m,
which has to be solved numerically in 2D. In compar-
ison to a fully two-dimensional or fully axisymmetric
problem, the number of equations is doubled due to the
complex variables. A complex expansion of the plane wave (m = 0) is included in
the modal axisymmetric approach as well.
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3. CAA method

The numerical CAA method, which is adopted in the present work for the dis-
cretization of the different PDE systems described above, is detailed in this chapter.
To implement a general purpose CAA method, which is capable of handling body-
fitted meshes and curvilinear coordinate systems, a number of different techniques
is combined. Besides own developments, concerning the filtering of the solution and
the sound source, approaches and methods from the literature are recast, combined
and extended by own ideas to obtain the implemented form of the CAA method.
The techniques are summarized in this chapter. A special emphasis is put on the
treatment of the domain boundaries. The impedance boundary condition is omit-
ted here. As it represents the principal objective of the current work, it is introduced
in the following Chapter 4.

3.1. Discretization schemes

3.1.1. Spatial discretization

The spatial discretization has been developed according to the dispersion-relation-
preserving (DRP) scheme of Tam and Webb [127]. However, the wave-number
range for the optimization is reduced to |k ∆x| < 0.95. The scheme features an op-
timized fourth-order central-differencing scheme with a seven-point stencil. At the
domain boundaries, optimized backward stencils of fourth order with also seven
points find application. The wave-number range for the optimization of the back-
ward schemes is further reduced with respect to the works of Tam and Webb [127]
in the current work. For two- and three-dimensional problems the schemes are ap-
plied for each coordinate direction ξi in the computational domain. The coefficients
of the discretization scheme may be found in Appendix B.1.

To give an overview of the accuracy associated with the spatial discretization,
the results of a Fourier error analysis of the central DRP scheme and the boundary
related seven-point-backward stencils are summarized in Figs. 3.1 and 3.2. Fig. 3.1
shows the numerical wave number according to Tam et al. [128, Eq. 2.5], which is
found to be

k ∆x ≈ (k ∆x)∗ = −i
M

∑
j=−N

aN,M
j ei j k ∆x, (3.1)

for an arbitrary finite difference discretization with constant grid spacing ∆x. The
ordinate of Fig. 3.1 is the relative wavenumber specified as k ∆x. An idealized
scheme calculating the first derivative, would give (k ∆x)∗ = k ∆x for all wave
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Figure 3.1.: Results of the Fourier error analysis for the spatial discretization. The
real and imaginary part of the numerically evaluated relative wave
number (k ∆x)∗ as a function of the relative wave number (k ∆x)

numbers k and grid spacings ∆x. However, this is impossible to obtain with a fi-
nite number of points in the finite differencing stencil. With the discretization ap-
plied in the current work, a good representation is observed up to a resolution of
about 5 PPW for the real part of (k ∆x)∗ in Fig. 3.1(a). The imaginary part of (k ∆x)∗
corresponds to the amplification or dissipation of waves [147]. Other than for the
central schemes, it is impossible to find backward schemes with maximum order,
which show no dissipation or amplification, comp. Eq. (3.1). The imaginary part
of the numerical wave number (k ∆x)∗ of the backward scheme depends on the
wave-number range which is used for the optimization. For the schemes used in
the current work, the range has been varied for each of the stencils to obtain an
optimum for the usable range. The amplification or dissipation properties of the
backward schemes are summarized in Fig. 3.1(b).

In order to have an estimate of the numerical dispersion error due to the scheme,
the numerical group velocity is considered. It is expressed according to Tam et al.
[128] as

v∗gr =
d (k ∆x)∗

d(k ∆x)
.

Trends of vgr are considered in Fig. 3.2. The numerical group velocity depends on
the local derivatives; its deviation from one corresponds to the phase error due to
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3.1. Discretization schemes

the spatial discretization scheme, when assuming ideal properties for the time dis-
cretization according to Tam et al. [128]

vgr =
dω

dk
=̇

dω

dω∗︸ ︷︷ ︸
≈1

dω∗

dk∗︸ ︷︷ ︸
=vgr

dk∗

dk︸︷︷︸
=v∗gr

≈ v∗gr vgr.

As can be seen from Fig. 3.2, the numerical group velocity remains within a range
of 3 % error, marked by black lines in the figure, for a discretization with more than
six points per wavelength (PPW). This is considered to be the usable range of the
spatial discretization scheme.

3.1.2. Time stepping
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Figure 3.2.: Numerical group velocity for
the discretization schemes

The time stepping is performed by
the fourth order low-dissipation–low-
dispersion Runge–Kutta scheme (LD-
DRK) of Hu et al. [50] which appropri-
ately alternates five- and six-stage al-
gorithms. These algorithms are opti-
mized in combination with respect to
the error for harmonic wave propaga-
tion. The scheme is implemented in
the memory efficient 2N storage form
described by Stanescu and Habashi
[121]. The coefficients of the 5/6-
stage LDDRK scheme going back to Hu
et al. [50], in the implemented form of
Stanescu and Habashi [121], are given
in Appendix B.1.2.

3.1.3. Low-pass
filtering of the solution

According to Tam et al. [128] all high-
order finite-differencing schemes are
affected by spurious grid oscillations, which are related to not fully resolved short-
wave components in the solution. These short waves are further classified as disper-
sive waves and parasite waves according to their group velocity [128]. The group
velocity of the central scheme is plotted in Fig. 3.3 on the right scale to illustrate the
three wavenumber ranges. The usable range of the scheme is denoted as long wave
range. It is limited to resolutions of more than 6 PPW. Dispersive waves with an
under-predicted group velocity are found between about 6 PPW and 3 PPW. Below
3 PPW parasite waves with negative group velocity arise. Due to the large modulus
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3. CAA method

of the group velocity in this range, the very short waves travel with a multiple speed
of sound. They pollute the computational domain very fast according to Tam et al.
[128]. Therefore, these authors introduced artificial-selective damping to remove
the short-wave component.
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Figure 3.3.: Comparison of the filter dissipation for different filter choices

The approach is found to be insufficient for many practical problems, which is
due to the highly-dissipative Gaussian template for the wavenumber response of
the artificial-selective damping on one hand and due to the integration of it with
the physical model on the other hand. Due to the template, the artificial damp-
ing is found to be not selective enough in the application. In consequence, actu-
ally resolved waves are affected by high dissipation. The filter characteristics of the
artificial-selective damping stencil are shown in Fig. 3.3 on the left scale for compar-
ison. A high attenuation of more than 0.1 % per application of the damping stencil
is found up to 20 PPW. The integration of the artificial damping into the physical
model causes difficulties for realistic problems. Unfiltered data is used to calculate
the derivatives by the DRP scheme in every time step. The artificial-selective damp-
ing corrects only oscillations found in the older time step. For any realistic problem,
which features singularities, as the leading or trailing edge of a liner are, this leads
to an unlimited amplification of short wave components during the simulation.
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3.1. Discretization schemes

To avoid the problem, a spatial low-pass filter is applied to the perturbation field
in an additional step. It is implemented independently from the time stepping. Usu-
ally the filter is applied every other time step; larger intervals are also possible. After
the filtering, the derivatives are calculated based on the filtered field. In this way,
the propagation of short waves is effectively suppressed. The filtering increases the
computational time as the whole perturbation field is updated. However, by apply-
ing large time intervals between the filtering operations, the negative impact of the
filter on the computational time can be minimized.

A filter is in general defined as an approximation φ∗ of a field variable φ at the
point l which is based on −N to M neighboring points. The symbol φ∗ refers to
the filtered field, whereas φ is the original unfiltered field. The filter is then defined
with the filter coefficients wj as

φ∗
l = φl −

M

∑
j=−N

wj φl+j. (3.2)

When considering the filter definition of Eq. (3.2), the transfer function of the filter
in the wavenumber space is given by the response to a spatially harmonic excitation
with the relative wavenumber k ∆x as

Ψ = 1−
N

∑
j=−N

wj ei j k ∆x. (3.3)

From Eq. (3.3) follows that a zero imaginary part, corresponding to a zero phase
error, is achieved by a symmetric set of filtering coefficients (M = N) with wj = w−j.
The filter coefficients are derived based on a Taylor-series expansion of the filter
definition according to [147]. They are given in Appendix B.1.3. The dissipation of
the filter, which is defined by |1−Ψ| is plotted for the filter functions applied in
Fig. 3.3.

Eq. (3.2) can be seen as a correction of the original functional value due to the
filter. Thus, a modification of the filter similar to the idea of the artificial-selective
damping by Tam et al. [128] becomes possible. A filter coefficient σfilter is introduced,
0 < σfilter < 1, which softens the effect of the filter

φ+
l = φl − σfilter

N

∑
j=−N

wj φl+j, (3.4)

where φ+ is the modified filtered field. This operation is found to be very useful
for a control of the attenuation of waves in the transition zone of the filter and when
using the simple one-dimensional filter in 2D and 3D.

A non-optimized seven-point-stencil filter of sixth order, which use the same sten-
cil size as the DRP scheme, is not able to provide the desired properties in terms of
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3. CAA method

a sharp cut-off and low-dissipation in the pass-band [91, 102]. Thus, several opti-
mized and non-optimized filter stencils up to 12th order were considered in a nu-
merical study [91, 102]. Fig. 3.3 provides a qualitative information about the differ-
ent filter orders for the non-optimized filters. In the numerical study, the 12th or-
der as well as an eleven-point-stencil optimized low-dissipation filter of Bogey and
Bailly [12], were not able to fully remove the short wave components and the related
instability for some relevant cases. Furthermore, any optimized filters do not show
a convergence to lower dissipation with increasing grid resolution. Thus, a grid re-
finement may result in an unexpected result when applying an optimized filter. The
10th order eleven-point-stencil filter was found to be best suited, cutting-off short
waves and leaving the long waves nearly unaltered, down to a limit of about 7 PPW
in this study. It is used in the following. It should be noted, that the choice of a non-
optimized 10th order filter with eleven-point-stencil was also independently made
by Zhang et al. [142] for a CAA method based on the compact scheme of Lele [67].

At domain boundaries, the eleven-point-stencil central filter cannot be applied.
It is found, that a filtering with shorter filter stencils has a favorable effect on the
stability, when applied at block boundaries (N = 5 . . . 3) and towards the wall (N =
5 . . . 0). However, to avoid too high dissipation due to these short filters, the filter
coefficient σfilter is reduced with decreasing filter order according to the empirical
law

σ
(N)
filter =

(
2 N + 1

11

)2
σN=5

filter . (3.5)

The combination of Eq. (3.5) and the low-order filter is not able to achieve the filter-
ing performance of the 10th order filter. However, the short waves close to the wall
are found to be sufficiently blocked and the long-wave dissipation is confined to an
acceptable level.

3.2. Base-flow field

The base flow for a duct geometry with varying cross section or for an open duct
aspiring air from the environment can be computed with the CAA method. Some
of the simulations in the present work use a base-flow field, which was computed
by using the nonlinear Euler model (PENNE, comp. section 2.4) in combination
with the CAA method, on the mesh which was built for the simulation of the acous-
tic wave propagation. The boundary conditions are modified in order to specify
a time-constant source in the sponge layers of both duct ends. It is based on the
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3.3. Handling of curvilinear meshes

gas-dynamic relations for a compressible stream filament (comp. [148]):

$rest

$
=
[

1 +
γ− 1

2
Ma2

] 1
γ−1

, (3.6a)

prest

p
=
[

1 +
γ− 1

2
Ma2

] γ
γ−1

, (3.6b)

Trest

T
=
[

1 +
γ− 1

2
Ma2

]
, (3.6c)

where rest denotes the quantities at rest. The connection of Mach number Ma and
cross sectional area is given by

A
A∗ =

1
Ma

[
2

γ + 1

(
1 +

γ + 1
2

Ma2
)] γ+1

2 (γ−1)
. (3.7)

The Mach number is given for one end of the duct e. g. from a measurement. Then
the critical cross section is calculated using the Mach number and cross section of the
duct in Eq. (3.7). This critical cross section is used to obtain the Mach number for the
other end, for which no flow conditions are provided. The resulting Mach number
is used together with the Eqs. (3.6) to compute the pressure and density at the other
duct end. For the aspiration of air from the environment the Mach number at the
other end is set to zero, resulting in the thermodynamic conditions at rest for this
end. The boundary values are specified through a sponge layer, which is leading to
a overdetermined system. However, the boundary conditions are fully correct for a
non-dissipative stream trace, such that the non-conservative CAA method is able to
obtain a valid inviscid compressible flow field.

3.3. Handling of curvilinear meshes

In this section, the necessary steps to apply the DRP scheme with curvilinear body-
fitted meshes are described. First, a metric is defined, which implements the map-
ping between the general curvilinear physical mesh and the computational domain
and vice versa. The equidistant orthogonal mesh in the computational domain fea-
tures an unity spacing in each coordinate direction. Based on this metric, a normal
vector at the domain boundary of the physical domain is derived.

3.3.1. Metric

To obtain the metric, a curvilinear coordinate system is introduced, which is used
for the discretization of the physical domain. The discretization is defined, based on
the position vector x in Cartesian or cylindrical coordinates. By the discretization x
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3. CAA method

is expressed as a function of the coordinate vector ξ in the computational domain.
Then, using the chain rule, the derivative can be calculated as follows

∂ φ

∂ xi
=

∂ φ

∂ ξ j

∂ ξ j

∂ xi
, (3.8)

where an implicit summation over duplicate indexes applies. The derivative in the
computational domain ∂

∂ ξ j
is calculated by the DRP scheme as it was described

above. The step size in the computational domain is one for all directions. To obtain
the derivative in the physical domain, the metric coefficients gj

i of the mapping be-
tween computational domain and physical domain are required. These coefficients
are calculated as inversion of ∂ xi

∂ ξ j
as

gj
i :=

∂ ξ j

∂ xi
=

[
∂ xi
∂ ξ j

]−1

. (3.9a)

The derivative ∂ xi
∂ ξ j

is calculated by the optimized discretization as earlier explained.
Alternatively, non-optimized high order schemes according to [147] are applied.

In two dimensions, the inversion is given as

gj
i =

1

det
[

∂ xi
∂ ξ j

]
 ∂ x2

∂ ξ2
− ∂ x1

∂ ξ2

− ∂ x2
∂ ξ1

∂ x1
∂ ξ1

 . (3.9b)

In three dimensions one obtains:

gj
i =

1

det
[

∂ xi
∂ ξ j

]


∂ x2
∂ ξ2

∂ x3
∂ ξ3

− ∂ x2
∂ ξ3

∂ x3
∂ ξ2

∂ x1
∂ ξ3

∂ x3
∂ ξ2

− ∂ x1
∂ ξ2

∂ x3
∂ ξ3

∂ x1
∂ ξ2

∂ x2
∂ ξ3

− ∂ x1
∂ ξ3

∂ x2
∂ ξ2

∂ x2
∂ ξ3

∂ x3
∂ ξ1

− ∂ x2
∂ ξ1

∂ x3
∂ ξ3

∂ x1
∂ ξ1

∂ x3
∂ ξ3

− ∂ x1
∂ ξ3

∂ x3
∂ ξ1

∂ x1
∂ ξ3

∂ x2
∂ ξ1

− ∂ x1
∂ ξ1

∂ x2
∂ ξ3

∂ x2
∂ ξ1

∂ x3
∂ ξ2

− ∂ x2
∂ ξ2

∂ x3
∂ ξ1

∂ x1
∂ ξ2

∂ x3
∂ ξ1

− ∂ x1
∂ ξ1

∂ x3
∂ ξ2

∂ x1
∂ ξ1

∂ x2
∂ ξ2

− ∂ x1
∂ ξ2

∂ x2
∂ ξ1

 .

(3.9c)
As can be seen, the two-dimensional case is a special case of the three-dimensional
one. It is obtained by introducing a virtual third dimension, which is oriented per-
pendicular to the other two dimensions. This virtual third dimension is discretized
by ξ3, such that ∂ x1

∂ ξ3
= ∂ x2

∂ ξ3
= 0 and ∂ x3

∂ ξ3
= 1 apply.

3.3.2. Normal vector of a domain boundary

A common variable in the formulation of both, non-reflective and partially or fully
reflective boundary conditions, is the normal vector of a surface. This is defined by
the outermost grid surface in 3D or grid line in 2D. A sketch of the normal vector for
a 3D case is given in Fig. 3.4. The above definition of the metric can be used to con-
struct this normal vector in a very easy way. The metric gj

i defines a dual coordinate
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3.3. Handling of curvilinear meshes

system, in which each basis vector is oriented normal to the complementary set of
two other basis vectors from the corresponding original system. The original basis

is defined as
[

∂ xi
∂ ξ j

]
. Thus, the normal vector of a surface defined by ξ2 and ξ3 would

be gj
1. When comparing with Eq. (3.9c), this is correctly identified as the cross prod-

uct of the coordinate derivatives in the dimensions 2 and 3 of the computational
domain. Each line of the matrix gj

i defines one basis vector, which is orthogonal to
the two grid lines with a dimension not equal to the number of the line in the matrix.
For the two dimensional case, no special formulation is required. When considering
Eq. (3.9b) the construction of a normal vector in 2D by exchanging the components
of a vector and altering the sign of one of the components is recovered from the
definition using gj

i .

ξ 1

ξ 2
ξ 3

n

outer surface

computational domain

Figure 3.4.: Outer grid surface and nor-
mal vector nk (k = 1)

The above consideration gives the di-
rection of the normal vector. The ori-
entation is obtained by the scalar prod-
uct of the normal vector with ∆xi(∆ξk),
where k is the index of the coordinate
line not included in the surface. ∆ξk is
a variation of ξk along this line into the
domain away from the boundary. If the
scalar product is greater than zero, the
normal vector points into the domain,
whereas a negative scalar product indi-
cates an outside orientation. The nor-
mal vector is then simply reoriented
by a multiplication with −1 to obtain
a standard orientation. In the current
work the standard orientation for the
normal vector is considered to be that
the normal vector points outside from the domain.

Finally, the resulting vector is normalized to an unit length which altogether leads
to the definition:

nk = nk,j := − sgn
(

gl
k ∆xl(∆ξk)

) gj
k√

gn
k gn

k

, (3.10)

The dimension of the mesh, which is not oriented inside the surface is denoted by
k, while j is the running index to define the vector components. The vector nk de-
fines the normal to the dimension(s) other than k. The normal vector points into
direction k of the mesh if a Cartesian mesh is chosen. However, the definition does
not require an orthogonal mesh at the wall. As the dual basis is used, the vector is
always oriented perpendicular to the surface defined by the other dimensions with
the order of accuracy that is used to calculate the derivatives ∂ xi

∂ ξ j
.
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3.4. Wall modeling for CAA methods

The wall boundary condition is implemented in the current method according to the
way pointed out by Tam and Dong [126]. They showed that the discretized system,
which is obtained by the application of the DRP scheme, does not allow additional
boundary conditions at a wall. The number of unknowns in the discretized system
exactly matches the number of degrees of freedom. Their solution is to introduce an
additional degree of freedom for each additional condition to the discretized system.
This means one additional variable for each point at the wall and each boundary
condition. Tam and Dong [126] implemented the wall boundary condition, which
forces the normal velocity to be zero, by introducing ghost points adjacent to the
wall outside the computational domain. These points store only the pressure per-
turbation. In the current work, the approach is implemented in a recursive way.

As well the impedance boundary condition as the condition at a hard wall can be
stated as a condition to the time derivative of the normal velocity u′n(t). This condi-
tion is applied to the relation between the pressure gradient and the normal veloc-
ity, which has been obtained from the balance of momentum. As stated above, the
mathematical model describing the sound propagation is usually based on a form of
the linearized Euler equations; but it could as well be the nonlinear Euler equations.
The model could even incorporate viscous effects by a form of the Navier Stokes
equations. The momentum equation of all these mathematical models connects u̇′

to the pressure gradient. Therefore, the momentum equation can be expressed as
follows

∂ u′

∂ t
= − f ($0, u0, $′, u′, . . . )− 1

$0
∇ p′. (3.11)

The function f denotes all terms not containing the pressure. By appropriately as-
signing f , the above equation covers all of the mathematical models mentioned
above. The balance of momentum normal to the wall is obtained by taking the
scalar product of Eq. (3.11) and n

∂ u′n
∂ t

= − fn($0, u0, $′, u′, . . . )− 1
$0

n ·∇ p′, (3.12)

where the subscript n denotes the normal component of a vector.

The impedance boundary condition at the wall is formulated by a prescribed u̇′n.
For a hard wall the condition u̇′n = 0 applies. The condition is used to calculate
the resulting pressure in the ghost point through the momentum equation. A partly
discretized momentum equation with dimension D for a point at the wall, with the
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3.4. Wall modeling for CAA methods

discretization applied only for the pressure is shown below

∂ u′n
∂ t

+ fn($0, u0, $′, u′, . . . )+

1
$0

D

∑
d=1

[
D

∑
l=2

nd g(l)
d

∂ p′

∂ ξl
+ nd g(1)

d

 M̂

∑
j=−N̂+1

aN̂,M̂
j pj + aN̂,M̂

1 pghost

] = 0.

(3.13)

The wall is located at the lower boundary of dimension k = 1 in the above example.
The metric tensor is denoted as gl

d. The finite difference stencil at the wall with the
ghost point at j = 1 is obtained by setting N̂ = 1 and M̂ = 6 for a seven-point finite-
difference discretization. The spatial discretization, using backward-differencing
stencils where needed to fit the stencil into the computational domain, is applied
to obtain f . The scalar product of f and the normal vector of the wall n yields
fn. It is important to note that the pressure is not present in the functions fn and
f for the systems of governing equations mentioned above. A condition for the
unknown ghost-point pressure pghost is obtained by using the prescribed u̇′n from
the impedance boundary condition

pghost = − $0

aN̂,M̂
1 ∑D

d=1 nd g(1)
d

(
∂ u′n
∂ t

+ fn($0, u0, $′, u′, . . . )
)

− 1

aN̂,M̂
1 ∑D

d=1 nd g(1)
d

{
D

∑
d=1

D

∑
l=2

(
nd g(l)

d
∂ p′

∂ ξl

)

+
D

∑
d=1

nd g(1)
d

M̂

∑
j=−N̂+1

aN̂,M̂
j pj

}.

(3.14)

Here, the only difference to the discretized system used throughout the computa-
tional domain is the additional ghost point. It leads to a shift of the finite-difference
stencil towards the wall. This shift effects only the first three grid lines adjacent to
the wall. Then Eq. (3.14) is used in a two-step predictor-corrector approach. The
derivatives are first taken considering a zero pressure in the ghost point as

(∇p′)∗ =
D

∑
d=1

[
D

∑
l=2

g(l)
d

∂ p′

∂ ξl
+ g(1)

d

M̂

∑
j=−N̂+1

aN̂,M̂
j pj

]
ed.

These derivatives are then used with the standard implementation of the discretized
system. Then p′ghost is calculated based on Eq. (3.14), where u̇′n is given by the im-
pedance model. The remaining terms on the right hand side result from the spatial
discretization of the momentum equation, which can be calculated independently
of the ghost point pressure. The resulting corrected pressure in the ghost point is
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then used to complete the pressure derivative for the three grid lines directly at the
wall

(∇p′)+ =
D

∑
d=1

[
g(1)

d aN̂,M̂
1 pghost

]
ed.

The sum of (∇p′)∗ and (∇p′)+ is the full gradient of the pressure in the wall region.
The mesh generation with commercial packages becomes much easier, if the ghost

point does not have to be included in the grid. The recursive implementation, which
is described above, applies for each single grid line lateral to the wall. The ghost
point pressure can be independently calculated for each grid line. After the correc-
tion of the normal derivative has been performed for this line, the ghost pressure is
not needed any more. Thus, the ghost point is not created and no storage is reserved
in the mesh. The metric is based on the internal points without the ghost point as
well.

3.5. Non-reflective boundary conditions

In the current work, three different non-reflective boundary conditions are imple-
mented and applied. None of them provides the desired fully non-reflective charac-
teristics under all circumstances. However, they are found to have complementary
properties. The first is the radiation/outflow boundary condition of Tam and Webb
[127] and Bogey and Bailly [11], which is presented in Section 3.5.1. The extension
of these boundary conditions by a sound source according to Tam [123] is also pre-
sented there. The second non-reflective boundary condition uses a sponge layer
according to Israeli and Orszag [54]. It includes a formulation for a non-reflective
sound source and is described in Section 3.5.2. Finally, the perfectly matched layer
boundary condition (PML) of Hu [49] is presented in Section 3.5.3. The PML fea-
tures advanced reflection characteristics for higher modes close to cut-off in ducts
[113]. It is found, that the implementation of the sound source with the PML means
an extraordinary effort. As two reliable and accurate alternatives are available, the
implementation of a sound source with the PML is omitted.

3.5.1. Radiation/outflow boundary condition

The physical background of the radiation and outflow boundary condition is a clas-
sification of the perturbations as entropy mode, vorticity mode or acoustic mode
waves. According to an analysis of Chu and Kovásznay [25], the interaction of these
modes is a second-order effect, when considering small variations of the fluid state.
For small perturbations, the acoustic waves travel with the speed of sound rela-
tive to a system moving locally with the fluid, whereas the entropy and vorticity
modes move with the fluid at the flow speed as a pattern of “frozen turbulence”
[95]. A detailed analysis may be found in Pierce [95]. The idea is now to formulate
the non-reflective boundary condition by considering the asymptotic solution for a
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3.5. Non-reflective boundary conditions

compact source, which radiates any kind of perturbations. The governing equations
are modified such that only outgoing characteristics are described and no boundary
condition is necessary any more. The modeling of incoming perturbations is re-
moved from the PDE system.

Radiation condition

er

cer

radiation boundary

Q

vg

u0

u0.e r
.e rvg

u0

acoustic mode, ray

  

Figure 3.5.: Sketch of a computational do-
main with source Q inside, ra-
diation vector and construc-
tion of the group velocity

Due to the different character of hy-
drodynamic and acoustic modes of per-
turbation an inflow or no flow bound-
ary requires a different treatment than
the outflow. The radiation boundary
condition describes only the radiation
of acoustic waves. It is applied as in-
flow or no-flow boundary condition, as
hydrodynamic modes moving with the
flow cannot approach an inflow. The
outflow boundary condition requires
an additional treatment of the entropy
and vorticity modes. For both bound-
ary conditions the approximate source
position has to be specified in advance
by a guess of the solution.

The radiation condition is presented first. Then the outflow boundary condition is
developed as an extension to it. When considering a compact source and assuming
that the origin of the acoustic waves is known, one can formulate the radiation con-
dition based on a spherical wave equation for 3D or a cylindrical wave equation for
axisymmetric and 2D problems. The radiation boundary condition for the spherical
radiation in three dimensions is given according to Bogey and Bailly [11] as follows

∂

∂t


$′

u′

p′

 + vgr

(
∂

∂r
+

D
r

)
$′

u′

p′

 = 0 (3.15a)

∂

∂t
φ′ + vgr

(
∂

∂r
+

D
r

)
φ′ = 0. (3.15b)

where D = 1 applies for the originally considered spherical radiation. The group
velocity is given by the same authors to

vgr = u0 · er + c. (3.16)

The geometric construction of the group velocity with respect to the radiation di-
rection is sketched in Figure 3.5. The radiation condition is solved instead of the
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interior PDE system at the outermost three grid lines at the non-reflective boundary.
The assumed source position may influence the result significantly. The radiation
condition has a wide range of applications. Good results may be obtained even
when applied in the moderate far field. However, for the propagation of higher
modes in flow ducts, this kind of boundary condition is inadequate due to the dis-
crepancy of the group velocity.

Modifications: To obtain a two dimensional form of the radiation condition, D =
0.5 is used in Eq. (3.15) according to Tam and Webb [127]. An one-dimensional
radiation condition would be obtained by replacing the radial direction in Eq. (3.15)
with the normal vector of the radiation boundary and omitting the decay with r by
setting D = 0 in Eq. (3.15). This formulation is applied as radiation condition in a
ducted environment. In addition, this modification makes the radiation condition
compatible to the wall boundary condition. The combination of wall and radiation
boundary condition would otherwise lead to unstable solutions.

Outflow boundary condition

er

Q

u0

outflow boundary

vorticity mode

entropy mode

Figure 3.6.: Sketch of a computational do-
main with source Q inside,
outflow of vorticity and en-
tropy mode waves with the
flow speed u0 and radiation
unity vector er

The outflow boundary condition is ob-
tained by adding the transport of en-
tropy and vorticity perturbations to the
system. The situation at the outflow
is sketched in Figure 3.6. The pres-
sure perturbation p′ is purely acoustic,
whereas the entropy mode is added to
the density perturbation ($′ = $′a + $′s)
and the vortical perturbation is super-
imposed to the acoustic velocity (u′ =
u′a + u′ω). The acoustic density pertur-
bation is given by $a = c−2 p′, whereas
the acoustic velocity component is u̇′a +
u0 · ∇u′a = −$−1

0 ∇p′. With these
prerequisites, according to Bogey and
Bailly [11], the outflow condition is ob-
tained to

∂$′

∂t
+ u0 · ∇$′ =

1
c2

(
∂p′

∂t
+ u0 · ∇p′

)
, (3.17a)

∂u′

∂t
+ u0 · ∇u′ = − 1

$0
∇p′ (3.17b)

and
∂p′

∂t
+ vgr

(
∂

∂r
+

D
r

)
p′ = 0. (3.17c)
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3.5. Non-reflective boundary conditions

ṗ′ occurs in Eq. (3.17a) and (3.17c). Thus, Eq. (3.17c) is used to obtain ṗ′. The result
is used to eliminate ṗ′ from Eq. (3.17a) yielding an expression for $′

∂$′

∂t
+ u0 · ∇$′ =

1
c2

(
−vgr

(
∂

∂r
+

D
r

)
p′ + u0 · ∇p′

)
. (3.17d)

The above set of equations applies for the spherical radiation from a three-
dimensional point source. The modifications, which have been detailed above, are
applied to obtain the two- and one-dimensional outflow conditions.

Variations of the base flow have been neglected by the construction of the out-
flow boundary condition. This seems legitimate, as such variations would describe
sources in the boundary region, which are not necessarily part of the numerical so-
lution. However, it is found that strong variations of the mean flow may lead to
problems with the outflow condition. These problem are observed when an insta-
bility wave, which is generated in a free shear layer, reaches the boundary. Further-
more, the outflow boundary condition of Eqs. (3.17b) to (3.17d) must not be applied
at an inflow or no flow boundary. This would lead to an ill-posed problem, as the
boundary condition for the incoming entropy and vorticity perturbations would be
missing.

Automatic detection of radiation or outflow boundary condition

To automatically detect a local inflow, no-flow or outflow boundary, the normal
vector n of the outermost grid line according to Eq. (3.10) is used. The scalar product
with the average velocity vector u0 leads to the following differentiation between
radiation and outflow boundary condition

n · u0

{
> 0, outflow boundary condition

≤ 0, radiation boundary condition.
(3.18)

The automatic detection is used in the following and the corresponding boundary
condition is applied. The resulting formulation is denoted as radiation/outflow
boundary condition.

Implementation of the sound source

The implementation of a sound source, which specifies an incoming wave at the
boundary with the radiation/outflow boundary condition is described in this sec-
tion according to the ideas of Tam [123]. Instead of formulating a radiation/outflow
boundary condition for the whole perturbation field, as it was applied in the pre-
ceding sections, a decomposition of the field into a source contribution (in) and a
radiation/outflow contribution (out) is considered. The state vector φ′ of the fluid is
then written as superposition of the incoming source contribution and the outgoing
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3. CAA method

perturbation, for which the radiation/outflow condition applies

φ′ = φ′
in + φ′

out (3.19a)
$′

u′

p′

 =


$′in

u′in
p′in

+


$′out

u′out

p′out

 . (3.19b)

The radiation/outflow boundary condition is applied for the outgoing field φ′
out =

φ′ − φ′
in. By using the definition of Eq. (3.19a), the radiation condition Eq. (3.15b)

with an additional source yields

∂

∂t
[
φ′ −φ′

in
]
+ vgr

(
∂

∂r
+

1
r

) [
φ′ −φ′

in
]

= 0. (3.20)

The outflow boundary condition from Eqs. (3.17a) to (3.17c) yields

∂
[
$′ − $′in

]
∂t

+ u0 · ∇
[
$′ − $′in

]
=

1
c2

(
∂
[
p′ − p′in

]
∂t

+ u0 · ∇
[
p′ − p′in

])
, (3.21a)

∂
[
u′ − u′in

]
∂t

+ u0 · ∇
[
u′ − u′in

]
= − 1

$0
∇
[
p′ − p′in

]
(3.21b)

and
∂
[
p′ − p′in

]
∂t

+ vgr

(
∂

∂r
+

1
r

) [
p′ − p′in

]
= 0. (3.21c)

The source φ′
in is specified at the boundary in terms of spatial and temporal

derivatives. This defines a von Neumann boundary condition. Arbitrary time and
space functions can be specified through φ′

in. Limits are only given by the spatial
and temporal resolution. Moreover, only acoustic waves make sense at an outflow.

3.5.2. Sponge layer

The current form of the simple sponge layer, which can also be used to add a sound
source to the computation is based on an observation of Israeli and Orszag [54].
According to these authors, an additional damping term of Newtonian cooling or
friction type in the PDE can act as an approximation of a non-reflective boundary
condition. The additional term is defined as follows

∂ φ

∂ t
= − f (φ)− σd(x) (φ−φin), (3.22)

where φin denotes the optional source term. The source value is also specified at the
three outermost grid lines in terms of a Dirichlet boundary condition. If no source is
specified at a boundary, the source term and the perturbation field of the outermost
grid line are set to zero.
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3.5. Non-reflective boundary conditions

In practice the size of the sponge layer and the functional shape of the damp-
ing coefficient are essential for the non-reflective qualities of the sponge layer. The
damping function towards the wall is given as

σd(x) =

 exp

{
−1

2
nP

d2
BC

∆x2
NC/F

}
, dBC < ∆xNC/F

0 , else

, (3.23)

where

dBC =
√

(xi − xi,o)2

and ∆xNC/F =
√

(xi,e − xi,o)2

are the distance of the point from the boundary of the computational domain and
the width of the sponge layer, respectively. This leads to a Gaussian distribution
of the damping coefficient, which reaches a maximum at the outer surface of the
computational domain. The damping is uni-directional, which leads to massive
reflection of waves that propagate along the sponge layer at very low angles [113].
The simple sponge layer, which is defined by this boundary condition, however,
provides good reflection characteristics with a well chosen damping distribution
for waves impinging almost perpendicular to the boundary. In addition it is much
easier and faster than the PML, which is described in the next section.

3.5.3. Perfectly matched layer (PML)

The perfectly matched layer (PML) boundary condition was initially developed for
computational electrodynamics and goes back to Berenger [9]. The basic idea is to
split the fluxes, in Berengers case of the Maxwell-equations, into the contribution of
each coordinate direction. Then the coordinate direction, associated with the flux
towards the outer surface is charged by an additional dissipation, which makes the
damping of perturbations selective to the direction. In the frequency domain, this
operation describes a stretching of the related coordinate by adding an imaginary
part, according to [45]. The dispersion relation is preserved by this operation Hes-
thaven [45]. Hu first adopted the method as non-reflective boundary condition for
CAA. Tam et al. [125] found this PML formulation to be unstable. The original PML
was found to be an only weakly well posed mathematical problem for nonzero mean
flow velocities by Hu [49]. He recovered the stability of the PML by introducing a
Prandtl–Glauert transformation. The resulting boundary condition can be written
using

∂ φ′
1

∂ t
:= φ′ (3.24a)
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3. CAA method

for two-dimensional and modal-axisymmetric cases as (comp. Hu [49]):

∂ φ′

∂ t
= −A · ∂ φ′

∂ x
− B · ∂ φ′

∂ r
− 1

r
C · φ′ − D · φ′︸ ︷︷ ︸

Euler equation

−(σx + σr) φ′︸ ︷︷ ︸
Sponge layer

(3.24b)

− σr A ·
∂ φ′

1
∂ x

− σx B ·
∂ φ′

1
∂ r

− (σx + σr)
1
r

C · φ′
1

− Max

1− |Ma|2 A ·
[
σx φ′ + (σx σr) φ′

1
]
−

May

1− |Ma|2 B ·
[
σr φ′ + (σx σr) φ′

1
]

︸ ︷︷ ︸
Prandtl-Glauert-transform

,

where the two-dimensional case is obtained by setting C = 0 and D = D2D as
shown in Appendix A.2.3. The tree-dimensional PML is derived in the current work,
extending the above conditions, under the assumption that the base flow is oriented
in x-direction

∂ φ′

∂ t
= −A · ∂ φ′

∂ x
− B · ∂ φ′

∂ y
− C · ∂ φ′

∂ z
− D · φ′ − (σx + σy + σz) φ′ (3.24c)

− (σy + σz) A ·
∂ φ′

1
∂ x

− (σx + σz) B ·
∂ φ′

1
∂ y

− (σx + σy) C ·
∂ φ′

1
∂ z

− Max

1− |Ma|2 A ·
[
σx φ′ + (σx σy) φ′

1
]
,

It should be noted that the PML as well as the sponge layer do not modify the
governing equations to disallow the wave propagation back into the computational
domain. Therefore, it is still required to specify a boundary condition for each vari-
able in order to state a mathematically well-posed problem. In the current work, the
boundary value is specified to be zero for the outermost grid line. This corresponds
to a Dirichlet type boundary condition. To avoid reflections at this boundary condi-
tion, the sponge layer or the PML should remove any perturbation before it reaches
this boundary.

3.6. Sound source

In this section, the definition of a sound source at the boundary is described. In fact,
this source is a boundary condition rather than a source in the sense of Lighthill’s
aeroacoustic analogy. However, the related boundary condition is referred to as
sound source in the following.
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3.6. Sound source

3.6.1. Plane waves

First, plane waves are considered. A single plane wave in x1-direction is given as

φin =



$′

u′

v′

w′

p′


= Re





1
c2 A
k

$0 d A

0

0

A


exp[i

(
ω t− k x

)
]


, (3.25)

under the assumption of a base flow in x1-direction and with d is defined as

d := (ω − u0 k) (3.26)

A denotes the amplitude of the incoming wave and k is the wave number according
to the dispersion relation (ω

c
−Max k

)2
− k2 = 0.

The axial wave number is obtained to be

k =
ω

c
−Ma± 1
1−Ma2 . (3.27)

The wave number is positive for waves propagating in positive x1-direction. A
complex wave number corresponds to a cut-off mode.

This source formulation is used for the broadband time-domain impedance educ-
tion with a multi-frequency excitation. This is obtained by superimposing the so-
lutions for different frequencies. In this way, all frequencies from the experiment
are investigated at once. The multi-frequency source involves a large number of
trigonometric function calls, especially, if the radiation/outflow boundary condi-
tion is applied as sound source. To reduce the computational time, the source data
is calculated in a preprocessing step. It is sampled on an adequately large time step
and stored for each point inside the source region. The stored data for the sound
source must be interpolated to the very fine resolved, subsequent time levels of the
Runge–Kutta scheme. Therefor a filtering interpolation is introduced as it is de-
scribed in the following section.

3.6.2. Generalization of the filtering approach for the interpolation of the
source

The filtering interpolation is based on the following approach

φin(t) =
N

∑
j=1

wj φs(τl+j). (3.28)
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3. CAA method

The source data is assumed to be discretized by any non-constant time step τ and
the offset is assumed to be correctly chosen, such that t is located as close as possible
to the center of the source time interval [τl+1 – τl+N ]. The system defining the filter
coefficients wj is constructed based on a Taylor-series expansion of the above defi-
nition, according to the method used for the construction of a standard filter (comp.
[147, Chapter 10])

N

∑
j=1

wj = 1, (3.29a)

N

∑
j=1

wj

(
τl+j − t

)
= 0, (3.29b)

...
N

∑
j=1

wj

(
τl+j − t

)N−2
= 0 (3.29c)

and
N

∑
j=1

wj (−1)j = 0. (3.29d)

The last equation defines a low-pass filter. It imposes the condition that an oscilla-
tion of the source data should not be transferred to φin.

The above linear system of equations is set up once for each subsequent time
level of the Runge–Kutta scheme. The coefficients wj are obtained by solving it. The
filter coefficients are calculated only one time. They are then used to interpolate the
whole source vector φs for all grid points in the source region. The filter size is a
free parameter. It is found that N > 15 points can lead to accuracy problems for the
coefficient calculation and makes it slow. A too small point number, on the other
hand, would require a fine time step in the stored source data to obtain an adequate
accuracy. A filtering interpolation involving nine points inside the source data is
found to be most efficient.

3.6.3. Modes in a cylindrical duct

In this section, the analytical solution in a cylindrical or annular duct with uniform
base flow and arbitrary wall impedance is given. It is used to specify the modal
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3.6. Sound source

source in an axisymmetric duct. The eigenfunctions are given as

φin =



$′

u′

v′

w′

p′


mn

= Re





1
c2 B(r)
k

$0 d B(r)
i

$0 d B′(r)

− m
r $0 d B(r)

B(r)


exp[i

(
ω t−mϕ− k x

)
]


, (3.30a)

where B(r) is given as a combination of amplitude A and Bessel and Neumann
functions

B(r) = A {Jm (µm,n r) + Q Ym (µm,n r)} . (3.30b)

The ordinal values m and n denote the azimuthal and radial mode order, respec-
tively. The coordinate system is assumed to be oriented as shown in Fig. 2.1. The
eigen-value µm,n is obtained from the boundary condition at the outer and inner ra-
dius ra and ri of an annular duct. In general, it can be complex to allow an arbitrary
impedance on the surface. The axial wave number is obtained from the dispersion
relation in the moving fluid (ω

c
−Max k

)2
− k2 − µ2

m,n = 0

to k =
− ω

c Max ±
√(

ω
c
)2 −

(
1−Ma2

x

)
µm,n

1−Ma2
x

. (3.31)

Making use of the impedance formulation for a moving surface by Ingard [53], the
boundary condition at the outer radius is obtained to

u′n Z = p′ − k
i ω

u0 p′ (3.32a)

or i ω u′n Z = i (ω − u0 k) p′. (3.32b)

The following velocity-pressure relation is obtained from the conservation of mo-
mentum under the assumption of an uniform mean flow

i (ω − u0 k) u′n = − ∂ p′

∂ r
.

By combining this pressure-velocity relation with a given mode

p′ = B(r) exp[i
(
ω t−mϕ− k x

)
],
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3. CAA method

one obtins the radial component of the velocity perturbation to

u′n = − B′(r)
i (ω − u0 k)

exp[i
(
ω t−mϕ− k x

)
]. (3.33)

Here, the prime of B denotes the derivative with respect to the independent variable
r. Combining Eqs. (3.32b) and (3.33) one obtains a boundary condition for the im-
pedance wall, which can be used to obtain the eigenvalue of the radial distribution

−i ω Z B′(rwall) + (ω − u0 k)2 B(rwall) = 0. (3.34)

For hard walls, the condition falls back to

B′(rwall) = 0. (3.35)

The in general complex ratio of the Bessel and Neumann functions, Q, is used to
fit the boundary conditions at inner and outer wall. Without a center body, there is
no contribution of the Neumann function (Q = 0). With a lined center body of the
impedance Zi, the boundary condition at the inner radius ri is used to obtain the
complex ratio of Bessel and Neumann functions according to

−i ω Zi
(

J′(µm,n ri) + Q Y′(µm,n ri)
)
+ (ω − u0 k)2 (J(µm,n ri) + Q Y(µm,n ri)) = 0.

This leads to the following explicit formulation of Q

Q = − −i ω Zi J′(µm,n ri) + (ω − u0 k)2 J(µm,n ri)
−i ω Zi Y′(µm,n ri) + (ω − u0 k)2 Y(µm,n ri)

. (3.36)

The impedance boundary condition at the outer wall, r = ra, of impedance Zo is
used to obtain a transcendent equation. It is solved numerically in the current work
to obtain µm,n

−i ω Zo
(

J′m(µm,n ro) + Q Y′m(µm,n ro)
)

+ (ω − u0 k)2 (Jm(µm,n ro) + Q Ym(µm,n ro)) = 0.
(3.37)

An iterative method is implemented with MATLAB, which uses the µm,n of the pre-
vious step or an initial guess to obtain k from Eq. (3.31) and Q from Eq. (3.36). Then,
a zero search is employed for Eq. (3.37). Finally, the eigenvalues kx and µm,n and the
ratio Q are used to specify the sound source.
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4. Time-domain impedance modeling

In this chapter, the time-domain impedance boundary condition which is the main
objective of the present work, is developed and discussed. This boundary condition
can for instance be used to model the acoustic lining of aeroengines. Today, such
aircraft liners are typically designed as arrays of small Helmholtz resonators. Thus,
the modeling of the Helmholtz resonator as a basic component is investigated in
detail in the first part. The connection between geometry, model for the frequency
response and time-domain impedance boundary condition is pointed out. The mod-
eling of the flow effect and the related instability is reviewed from the literature. Fi-
nally, the implementation of the impedance boundary condition into the numerical
method is described in detail.

4.1. The concept of acoustic impedance

The acoustic impedance of a surface is originally defined as the complex ratio of
acoustic pressure and acoustic velocity at the surface for acoustic waves imping-
ing perpendicular to the surface. This definition is extended to arbitrary angles of
incidence by replacing the acoustic velocity with its component u′n normal to the
surface. In the current work locally-reacting surfaces1 are considered. By using the
complex amplitudes of pressure p̂ and velocity perturbation ûn, the complex im-
pedance of the surface is defined as

Z(iω) =
p̂(iω)

ûn(iω)
. (4.1)

where ûn = û · n is the normal component of the complex amplitude of the velocity
perturbation. Z is a complex function of the angular frequency. This dependence is
emphasized by the independent variable (iω) in the following. Due to the consider-
ation of the Fourier transformed equations, Z is not explicitly depending on the time
t. The consideration of Fourier transformed PDE’s and their solution is referred to
as frequency domain in the following. In contrast, the original equations are consid-
ered to be in the time domain. The non-dimensional impedance ζ is introduced by
normalizing Z with the impedance of air $0 c

ζ(iω) =
Z

$0 c
. (4.2)

1A locally-reacting surface is characterized by the direct dependency of the velocity perturbation normal
to the wall to the pressure perturbation at the wall. In contrast, non-locally-reacting surfaces cannot be
described by such a simple model and for instance add a dependency to the pressure gradient or higher
derivatives of the pressure along the wall.
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4.2. The Helmholtz resonator2 in frequency domain

Mm

mK

p’
x

D

S

Figure 4.1.: Mechanical analog

There are many methods to realize a locally-
reacting surface. In the following sections, the
realization by a perforate face over closed cavi-
ties is considered in more detail. This concept is
frequently used as basic element of the acous-
tic lining in aeroengines. Provided the acous-
tic wave length is much longer than the size of
each resonator element, it can be approximated
as locally-reacting surface. A low-frequency
limit of such a resonator is found in the single
degree of freedom mass-spring-damper system shown in Figure 4.1. It is used to
describe a locally-reacting surface in each wall point.

S
0

L

V

Figure 4.2.: Helmholtz
resonator

The mass-spring-damper element shown in Fig. 4.1 is
forced by the acoustic pressure on its surface. The equa-
tion of motion reads

Mm ẍ = S p′ − Km x− D ẋ, (4.3)

where S denotes the area of the surface element. To ob-
tain the impedance, the velocity of the mass element is
identified with the acoustic velocity component normal
to the surface. Eq. (4.3) is multiplied by S−1; the mass
Mm, spring rate Km and damping rate D are replaced by
the corresponding specific values mm, km and d, which

are related to the unit area. A complex ansatz is introduced for u′n = ûn eiω t and
p′ = p̂ eiω t. Finally the impedance of the mass-spring-damper element shown in
Figure 4.1 yields

Z =
p̂

ûn
= iω mm + d +

km

iω
. (4.4)

Now, the Helmholtz resonator shown in Figure 4.2 is used as a template, to iden-
tify the mechanical model parameters with the constructive details of the resonator,
these are the cavity volume V, the neck length L and the open area of the neck
S0, as shown in Figure 4.2. The damping rate per unit area d is only imprecisely
described by theoretical predictions and needs exact measurements. Thus, the un-
damped Helmholtz resonator is considered first. An one-dimensional theory of the

2Named in memoriam to the German polymath Hermann von Helmholtz (*August 31st 1821 – †September
8th 1894 [136]) who dedicated his early working period to acoustics, including the development of an
exact mathematical theory and a mechanical analogue of the resonator (Helmholtz, Theory of air Oscil-
lations in Tubes With Open Ends, Jour. f. reine und angewandte Mathematik 57, p. 1-72, 1860, found
in [95]). Hermann von Helmholtz for instance described such devices in a 1863 publication [44], where
an ear plugged resonator was used as frequency-selective hearing aid to enhance the perception of pure
tones.
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4.2. The Helmholtz resonator in frequency domain

Helmholtz resonator identifies the model parameters of the mechanical system as
follows

mm = $0 L and km =
S0 $0 c2

V
, (4.5a)

where mm follows from an identification of the mass element as the air in the neck
of the resonator and km is obtained by considering a quasi-static, adiabatic compres-
sion of the fluid in the cavity, due to the air pressed in from the neck. A detailed
derivation can be found e. g. in Ehrenfried [31, page 368ff.]. By inserting the expres-
sions Eq. (4.5a) into Eq. (4.4), one obtains the impedance of the Helmholtz resonator
for low frequencies via the mechanical analogue

ZHR = iω $0 L + d +
1

iω
S0 $0 c2

V
. (4.5b)

Please note, that mm is the mass per unit area and km is the stiffness per unit area.
The resonance angular frequency of the undamped Helmholtz resonator is obtained
by the mechanical analogue. It reads

ω0 =

√
km

mm
=

√
c2 S0
V L

. (4.6)

At the resonance frequency the imaginary part of the impedance, the reactance, be-
comes zero. By fitting the damping parameter of the mechanical analogue, the re-
sistance can be tuned. The imaginary part of the impedance outside the resonance
does not contribute to the dissipation of acoustic waves. Rather it introduces a phase
shift which leads to reflections at the transition between a hard wall and the liner,
which is called hard–lined transition in the following.

4.2.1. Helmholtz resonator panels for acoustic lining

Typical acoustic linings for room acoustics or aeroengines use panels that include
a large number of Helmholtz resonators. The area covered by the liner panel, S, is
usually considered as a reference rather than the open area, S0. To take account for
this fact, the ratio of open and treated area, σ, is introduced as (comp. e. g. Fuchs
[36])

σ =
S0
S

. (4.7a)

Then, according to Fuchs [36], the mass per surface area and spring rate per surface
area are obtained to

mm =
$0 L

σ
and km =

S $0 c2

V
. (4.7b)
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This leads to a modified resonance frequency for such panels, which depends on the
total area of the panel instead of the neck area

f0 =
ω0
2 π

=
c

2 π

√
σ S
V L

. (4.7c)

4.2.2. Neck correction

The aforementioned mechanical analogue assumes an ideal massless spring and an
ideal mass with infinite stiffness. However, the medium inside the cavity volume,
which is described as an ideal spring, has a finite mass. Furthermore, the moving
air in- and outside the neck increases the moving mass according to Alster [4]. The
additional mass is added by a length correction. The model assumes a solid-body
motion of the mass. Therefore, it is limited to low frequencies for which the typical
extension of the resonator is much smaller than the acoustic wavelength. Higher
frequency models will be discussed in Section 4.3. Due to the additional mass, the
predicted resonance frequency of the Helmholtz resonator may differ significantly
from the result in the preceding section. E. g. Alster [4] found errors up to 143 %
even with an end correction. The end correction leads to an increased mass:

mm = $0 (L + ∆Li + ∆Lo) or mm = $0 L (1 + ∆L) .

As the ends of the neck can be acoustically different, the neck correction is split into
a contribution of the medium in- and outside the neck according to Alster [4]. Both
have to be added in order to obtain the effective mass. They are subsumed to the
correction factor ∆L. For a single resonator Alster [4] gives an analytical formula,
which is found to be in a good agreement with the experimentally observed reso-
nance frequency for a wide range of resonator types. However, the end correction
for open ends remains empirical in Alster [4, Eq. (33)].

4.3. Extension to high frequencies

The theory of the Helmholtz resonator, which was presented in the preceding sec-
tions, is limited to low frequencies. This limitation is due to the assumptions of a
solid body motion of the medium in the neck and a negligible mass for the fluid in
the cavity volume. Furthermore, the changes in the volume are assumed to be quasi
static. This limitations are dropped in the current section and three high frequency
resonator models are presented.

4.3.1. The broadband λ/4-resonator

A very simple principle of an acoustic lining is the λ/4-resonator. It consists of a
narrow channel, which is connected to the environment on one end and closed by a
rigid wall on the other end. Due to the dimensions, the wave propagation in other
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directions than along the channel axis is negligible. The impedance function of such
an undamped λ/4-resonator is described as

Z = −i $0 c cot
(

ω
l
c

)
= −i $0 c cot (Hel) , (4.8)

where l denotes the depth of the channel from the open end to the rigid closure and
Hel the related Helmholtz number. The rigid wall boundary condition at the bot-
tom of the duct leads to equal complex amplitudes for incoming and reflected plane
waves at this side of the channel. In consequence, the ratio of incoming and out-
going pressure waves at the open end of the duct is described by a cosine function,
whereas the acoustic velocity obeys to a sine function. This leads to the cotangent
function describing the ratio of pressure and velocity at the open end in Eq. (4.8).

Even though, the resonator has a simple geometry, the model is not directly com-
parable to the mass-spring-damper analogue. However, for low frequencies, which
lead to small Helmholtz numbers built with the depth of the cavity volume (Hel �
π), the cotangent term can be approximated by a truncated Laurent series about
Hel = 0 as (comp. [3, page 75, Eq. (4.3.70)]), which results in the following approxi-
mation

Z ≈ −i $0 c
[

1
Hel

− Hel
3

]
≈ $0 c2

iω l
+

iω $0 l
3

.

By considering terms of equal order in iω, the identification with terms in the me-
chanical analogue becomes possible. 1/3 of the air in the λ/4-resonator contributes
to a mass-like term, whereas the whole air in the cavity acts as spring, for low fre-
quencies. This illustrates that the continuous modeling of the high-frequency res-
onator does not clearly distinguish between a massless spring and an ideal incom-
pressible mass. Rather both parts are described as a compressible medium with
finite mass.

4.3.2. Ko’s broadband impedance model

Another model, which describes the response of a resonator up to high frequencies
is found in Ko [63]. The frequency response of a 1970s state-of-the-art liner is well
described by this model, according to Ko [63]. The model is considered here, as it
was used by Koch [64] to describe the frequency response of the liner, which is con-
sidered in Section 7.1.3 in a benchmark problem. As the λ/4-resonator, Ko’s model
shows a cotangent. However, additional terms are found. Ko does not provide an
explanation of these terms. Ko’s model is stated as (comp. [63, Eq. (21)])

ζ = R∗f

(
1 + i

f
f f

)
− i cot (k l) , (4.9a)
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which reads in a dimensional notation

Z = $0c R∗f +
iω
ω f

$0c R∗f − i $0 c cot (Hel) . (4.9b)

f f is a characteristic frequency. It is related to the frequency for which the imaginary
part of the first term becomes equal to the real part. Viscous damping effects are only
described by R f = R∗f $0c, such that the real part of the impedance, the resistance,
remains constant for all frequencies. R f corresponds to the damping term of the
mechanical analogue. The i f f−1

f term corresponds to the mass reactance of the me-
chanical analogue, which is described by the iω mm term in Eq. (4.5b). The second
purely imaginary term,

SV l

f, Rff

V

Figure 4.3.: High frequency res-
onator

the cotangent term in Eq. (4.9b), is only in-
directly related to the mechanical analogue
Eq. (4.5b), such that the Laurent series must
be employed. The corresponding terms of the
λ/4-resonator, Eq. (4.8), on the other hand, can
be directly identified due to the cotangent term
found in both models. Ko’s model corresponds
to a damped λ/4-resonator with an additional
moving solid-body mass.

For the identification with the mass-spring-
damper analogue, the active length l of the Ko’s
model is rewritten using the ratio of the pris-
matic volume V and its cross section SV to ob-
tain l = V/SV . In Eq. (4.9a) l originally denotes the depth of the resonator cavity,
which corresponds to an analogy with the λ/4-resonator. Finally, one obtains the
following low-frequency approximation of the model of Ko

Z = R f + iω

[
R f

ω f
+

$0
3

V
SV

]
+

1
iω

$0 c2 SV
V

. (4.10)

The cotangent term becomes separated into mass- and spring-like contributions, as
it was found above for the λ/4-resonator.

Comparing Eq. (4.10) to the mechanical analogue of Eq. (4.5b), the spring rate,
which is the coefficient of the (iω)−1 term, is slightly modified due to the use of the
volume cross section SV instead of the neck area S0. Furthermore, the geometrical
representation of the mass mm is replaced by the characteristic frequency ω f and
the damping parameter R f . Therefore, the term can be interpreted as the mass-
reactance term of the face sheet. An additional mass-reactance term ($0 V)/(3 SV)
arises due to the first order approximation of the Laurent series which originates
from the cotangent function. It describes a length correction for the moving medium
in the cavity volume. The length correction for the masses moving outside the cavity
must be applied in addition.

52



4.3. Extension to high frequencies

4.3.3. The extended Helmholtz resonator model (EHR)

Finally, the model, which has been implemented to the CAA method is introduced
in this section in the frequency domain, before its implementation is described in
Section 4.5.2. According to Rienstra [108] it is called Extended Helmholtz Resonator
(EHR) model. Similar to the two models shown above, the EHR features a cotan-
gent term. It was introduced by Rienstra [108] as a high-frequency extension of the
Helmholtz resonator model. It describes the impedance of a damped Helmholtz
resonator in a very general form as

ζEHR(iω∗) = R∗f + iω∗ m∗
f − iβ∗ cot

(
1
2

ω∗ T∗l − i
1
2

ε

)
(4.11a)

Or in a dimensional notation

ZEHR(iω) = R f + iω m f − iβ cot
(

1
2

ω Tl − i
1
2

ε

)
(4.11b)

=

(
R f + iω m f

) (
1− e−α

)
+ β

(
1 + e−α

)
1− e−α

, (4.11c)

with α = iω Tl + ε. (4.11d)

The five parameters of this model R f , m, ε, β and Tl have to be real and positive
in order to achieve a passive and causal impedance Z(iω), according to Rienstra
[108]. Z(iω) is a rational function that describes a periodic frequency response of
the impedance given by the function e−iω Tl .

The low frequency limit of the EHR is obtained in a similar way as the one of Ko’s
model approximating the cotangent function by a Laurent series

ZEHR(iω) ≈ R f +
1
6

ε β +
2 β ε

T2
l +

(
ε
ω

)2 + iω
(

m f +
β Tl

6

)
+

1
iω

(
2 β Tl

T2
l +

(
ε
ω

)2

)
(4.12)

The identification of the parameters with the mechanical analogue is also similar to
Ko’s model. In accordance with Rienstra [108], R f and m f are found to correspond
to the resistance and reactance of the face sheet, respectively. The model abstracts
the panel geometry to a time delay parameter Tl in the cotangent, which can either
be identified with the λ/4-resonator depth l or the ratio V/(c S) of the mechanical
analogue. Moreover, a frequency dependent dissipative term which is scaling with
ε, is added to the cotangent by Rienstra [108]. According to Rienstra [108], this
corresponds to a damping inside the cavity fluid. The whole cotangent is scaled
by the parameter β, which can be related to the open area ratio of the liner when
comparing the formulations for resonator panels and the result for a single λ/4-
resonator.
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4. Time-domain impedance modeling

Practical application of the EHR model: In the engineering practice the impedance
is usually given in terms of a normalized impedance ζ as function of the physical
frequency f . This means, that frequency- and time-scales remain dimensional, while
the impedance is given nondimensional. To account for this, a hybrid dimensional /
nondimensional form of the EHR is introduced. The parameters R∗f = R f ($0 c0)−1

and β∗ = β ($0 c0)−1 are used from the nondimensional model. They are given with
nondimensional unit in the following. ω and Tl are dimensional with the 1 s−1 and
1 s as unit respectively. m f requires a special treatment as it directly combines time
and impedance scales. Therefore, a dimensional m̂ f = m f $−1

0 is used, which has
the unit 1 s. This convention will be used unless noted differently and the stars and
hats are dropped in the following.

4.3.4. Comparison of the impedance models

The low-frequency limits for the impedance models presented in the preceding sec-
tions are summarized in Tab. 4.1. The table allows to identify the geometrical pa-
rameters of the mass-spring-damper model and the λ/4-resonator with the model
parameters of Ko [63] and Rienstra [108]. However, the parameter fit concerns only
the low frequency range.

Table 4.1.: Low frequency limits of the impedance models assuming a dimensional
notation.

mass (iω) friction (1) spring ( 1
iω )

Single resonator $0 L d $0 c2 S0
V

λ/4 resonator 1
3 $0 l - $0 c2 1

l

Realistic panel $0 L (1+∆L)
σ d $0 c2 S

V

Ko [63] R f
ω f

+ 1
3 $0 l R f $0 c2 1

l

Rienstra [108] m f + 1
6 β Tl R f + 2 β ε

T2
l +( ε

ω )2 + 1
6 β ε

2 β Tl

T2
l +( ε

ω )2

Geometrical identification of the EHR-model parameters: The geometrical iden-
tification of the parameters in the EHR model can now be used in both directions.
Firstly, it is possible to specify three out of the five model parameters of the EHR
from the geometry, whereas two are found to be related to the damping for which
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4.3. Extension to high frequencies

no geometrical parameters were given by the mechanical analogue. If the cavity
damping parameter ε becomes sufficiently small (βε � R f ), the friction becomes
dominated by R f and the specific mass and spring rate per unit area read

mm = $0 m f + $0 c0
1
6

β Tl ; and km = $0 c0
2 β

Tl
.

For a given resonance frequency, under the assumptions that R f , ε and m f is very
small, Tl is approximated as Tl ≈ 2/ f0. Then β and m and R f are obtained to

β = c
σ S
V

Tl
2

, (4.13a)

m =
1
σ

L (1 + ∆L)− c2 σ S
V

T2
l

12
(4.13b)

and R f =
d

$0 c0
. (4.13c)

The resistance is usually provided from airflow measurements through the perforate
or from direct impedance measurements.

Secondly, the geometrical parameters of a liner panel can be calculated from the
EHR model parameters. The ratio of panel area and volume is obtained from a
comparison of the coefficients of the spring like term in Tab. 4.1, by using the partly
nondimensional EHR

S
V

=
1
c0

2 β Tl

T2
l + ε2

ω2

. (4.14a)

For a panel with prismatic cells and negligibly thin separations between the cells,
the ratio of the active panel area S and the cavity volume almost equals the inverse
of the cell depth

1
H
≈ S

V
≈ S

S H
. (4.14b)

Furthermore, the mass-like term provides an expression for L/σ, where L is the
corrected neck length and σ the open area ratio

L
σ

= m f + c0
1
6

β Tl . (4.14c)

The above connections are used to calculate educed geometrical parameters from the
impedance eduction (comp. Chapter 6) results in Section 7.2.
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4.4. Models for a grazing flow on the impedance surface

In the presence of a nonzero base-flow velocity, the impedance surface is sepa-
rated from the fluid in motion by a boundary layer attached to the impedance sur-
face. The acoustic waves pass this boundary layer twice as incoming and reflected
waves. Due to the boundary layer, the angle of incidence to the impedance surface
is changed. For analytical models of hard walled ducts, the boundary layer is usu-
ally neglected and the base flow is abstracted as uniform flow. However, with a
finite impedance of the surface, the boundary layer becomes important, due to the
modification of the angle of incidence on the impedance surface.

The effective impedance of a surface under grazing flow conditions is defined as
the modified impedance under flow conditions Z′ = p̂/ûn. Where p̂ and ûn are the
complex amplitudes of pressure and velocity perturbation in the moving medium
directly at the surface. In contrast, the impedance has been defined with the cor-
responding perturbation quantities in a fluid layer at rest with the surface. The
parameters, which influence the effective impedance are identified in Appendix C
using the boundary condition of Ingard [53] and Myers [85]. The effective imped-
ance depends on the flow Mach number and the angle of incidence. This angle
depends on the base flow conditions and the acoustic mode, such that the effective
impedance of an uniform panel could change with the position. Exactly the desired
Mach number and the acoustic mode have to be considered to measure the effec-
tive impedance. Moreover, it changes with the operation conditions. The practical
application of the effective impedance is rejected due to this lack of generality. An
independent definition of the impedance would be desirable.

Ingard [53] formulated an impedance boundary condition for grazing flow con-
ditions, which makes use of the impedance, which can be measured without flow.
The model for the infinitely thin shear layer on the impedance surface is obtained
by considering a fluid particle, which moves from the moving fluid into the resting
impedance surface. The displacement of such a physical particle should be con-
tinuous over the boundary layer, while the particle velocity may jump due to the
infinitely thin shear layer. This consideration finally leads to a model, which makes
use of the standard impedance definition without flow, and includes a convective
term to model the flow effects. Myers [85] extended the consideration of Ingard by
including the effect of the wall curvature under flow conditions in a generalized
derivation of the impedance boundary condition with flow. The result of this con-
sideration is used in the present work to model the flow effect. It is briefly resumed
in Section 4.4.2.

Last but not least, with the availability of sufficient computer resources it becomes
possible to consider a resolved boundary layer at the impedance surface using a
no-slip condition for the base flow. Due to the zero flow speed at the impedance
surface, the original impedance definition without flow is recovered. The Myers
boundary condition becomes obsolete. It is replaced by the numerical simulation
of the wave propagation through the boundary layer. Some relevant results for this
method from the literature are summarized in the following Section 4.4.1.
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4.4. Models for a grazing flow on the impedance surface

4.4.1. A resolved boundary layer at the impedance wall

The obvious method to include the flow effect on the impedance, is a resolved
boundary layer with no slip condition at the impedance surface. This method has
been applied for instance by Zheng and Zhuang [145] and Reymen et al. [99]. Both
use artificial profiles for the boundary layer. While Zheng and Zhuang [145] ob-
serve a convergence of the solution towards the solution using the Ingard/Myers
boundary condition with a decreasing boundary layer thickness at the wall, Rey-
men et al. [99] use a finite-element approach with only two elements of quadratic
order in the channel height to model the base flow. This leads to an artificially thick-
ened boundary layer. In consequence, the modeling error due to the large boundary
layer thickness probably leads to a wrong prediction of the NASA flow tube exper-
iment. However, both groups [99, 145] use artificial boundary layer profiles.

Realistic boundary layers from a CFD simulation are considered by Burak et al.
[20]. They show that a correct prediction of the NASA grazing-flow-tube experiment
can be obtained by a high-order CFD code. Burak et al. [20] consider different CFD
methods in combination with impedance boundary conditions. The results of Burak
et al. [20], obtained by using a linearized Navier-Stokes solver together with a RANS
model of the boundary-layer profile is most promising. The nondimensional wall
distance y+ of the first cell is chosen to be up to 160, with only small impact on
the acoustic solution at most of the frequencies considered. Solely the frequency of
1 kHz shows significant differences between low Re and high Re modeling, which
are attributed to a flow instability present at this frequency.

The publications of Zheng and Zhuang [145] and Reymen et al. [99] emphasize
the importance of the correct boundary layer thickness for the acoustic solution with
lined walls. The attenuation of acoustic waves by the liner as well as the presence of
flow instabilities depends on it. However, the length scales of the boundary layer are
much smaller than the acoustic scales. The resolved modeling requires an adequate
grid resolution for both the acoustic scales and the boundary layer. When consid-
ering the thickness of the viscous sublayer as a minimum resolved length scale, the
resolution would be dramatically increased from the acoustic limit. For many pos-
sible applications, for instance the radiation of fan-tone noise from an acoustically
lined aeroengine inlet, a fully resolved boundary layer results in a substantial in-
crease of the required spatial resolution and an extraordinary increase of the prob-
lem size, even if a RANS wall model can be applied for the flow, as observed by
Burak et al. [20].

4.4.2. The Ingard/Myers boundary condition

The impedance definition of Eq. (4.1) can only find application if a layer of resting
fluid adjacent to the impedance surface is present, which is not moving relatively to
the surface, in average. The grazing flow along the surface is connected to this thin
layer at rest by a boundary layer of finite thickness in reality. Theoretical consider-
ations of the duct acoustics in hard-walled ducts commonly neglect this shear layer
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4. Time-domain impedance modeling

and a plug-flow assumption finds application. However, this would directly lead to
the problem of the effective impedance when applied for an impedance surface. For
the following consideration it is necessary to assume an infinitely thin shear layer
which connects the inner flow in the duct to the surface at rest. The perturbation
quantities are altered over this shear layer. Therefore, the quantities p̃ and ũn are
introduced as the complex amplitudes of the pressure and normal velocity in the
layer not moving with respect to the impedance surface. The impedance definition
of Eq. (4.1) now applies for the unknowns ũn and p̃. The problem is shifted to the
unknown relation between the perturbations in the resting and the moving layer
of fluid. This relationship is obtained by Myers [85] assuming the continuity of the
particle displacement over the infinite thin shear layer. The impedance boundary
condition of Myers [85] is formulated as

ûn(iω) =
p̂(iω)
Z(iω)

+u0 ·∇
(

p̂(iω)
iω Z(iω)

)
︸ ︷︷ ︸

convective term

− p̂(iω)
iω Z(iω)

n · (n ·∇ u0)︸ ︷︷ ︸
curvature term

. (4.15)

The surface quantities at rest, p̃ and ũn, are related to the perturbations inside the
steadily moving fluid directly at the surface denoted by the complex amplitudes p̂
and ûn. The wall normal n is defined positive when pointing into the impedance
surface. The additional terms of Eq. (4.15) in comparison to Eq. (4.1) describe the
convection with the mean flow and the curvature of the impedance surface. Ingard
[53] formulated a similar boundary condition, which applies for plane impedance
surfaces. The boundary condition of Myers [85] adds the curvature effects with
respect to this boundary condition. The two additional terms become zero without
a mean flow (u0 = 0). In this case Eq. (4.15) returns to Eq. (4.1) as the assumed thin
shear layer vanishes and the field variables on both sides are equal. The boundary
condition applies only if the boundary layer thickness of the mean flow and the
acoustic boundary layers are small compared to the acoustic wavelength [85].

A comparison of the Ingard/Myers boundary condition as a model for the bound-
ary layer and resolved artificial boundary layers of different thickness is provided
in Section 7.1.2.

4.4.3. Hydrodynamic surface waves and the instability

Numerical phenomenology

The implementation of an impedance boundary condition, which makes use of the
Ingard/Myers boundary condition, seems to face a serious instability problem. Sev-
eral authors, who employ an impedance boundary condition under nonzero mean-
flow conditions, report an instability in their simulations. The instability is found
in both time-domain [24, 61, 90] and frequency-domain [129] formulations. Only Ju
and Fung [61] considered the instability observed by them with a refined mesh as
a purely numerical problem. All other authors, including Tester [129] who first re-
ported the problem, address it as a model-inherent instability of a Kelvin–Helmholtz
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4.4. Models for a grazing flow on the impedance surface

type. The free shear layer, which is necessary to support the Kelvin–Helmholtz in-
stability, is found in the modeled shear layer of the Ingard/Myers boundary condi-
tion, which was described in the preceding section. The shear layer model describes
a dissipative effect, which adds rotation and non-isentropy to the base flow. This is
the energy source for the instability, which may grow spatially or temporally with-
out bounds in the linear model.

To further isolate the problem, it is necessary to look at the conditions under
which the instability was revealed:

• A nonzero mean flow is necessary for the instability to be present [107].

• Resolving the shear layer removes the instability in most cases [20, 99, 146].

• Some of the authors report the instability only for refined meshes [24, 61, 104].

• If the discretization of the convective term is dissipative or implicit or a filter
is applied, the instability is likely to be removed [24, 71, 90, 105, 122].

Theoretical considerations

The instability is still subject to ongoing theoretical work [15, 17, 94, 107]. Rienstra
[107] first classified the solutions in a cylindrical duct with impedance walls. Among
the modes he found solutions with large imaginary part of the radial wave number.
These modes are described as surface waves, as there is a large decay of the mode
amplitude with increasing distance from the wall [15]. The decay is associated with
the large imaginary part of the radial wave number found by Rienstra [107].

According to Rienstra [107] there may be up to four of such solutions for each
azimuthal mode m with a nonzero mean flow. One of them is found to be poten-
tially unstable, depending on the impedance and flow velocity at the surface, ac-
cording to Brambley and Peake [17]. Without base flow, there are only two surface
waves which are considered to be of acoustic nature, therefore.3 The other two sur-
face waves are classified as hydrodynamic surface waves. These waves only appear
in the presence of a nonzero base flow; they vanish with the base flow velocity in
the near wall region approaching to zero. One of these waves can describe a spa-
tially growing convective instability or even a temporally growing absolute instability
of Kelvin–Helmholtz type.

The analysis of Rienstra [107] considers the limit for large angular frequencies in
combination with an infinitely thin shear layer at the surface. For this limit, the
instability is always present, independently of the actual impedance and flow con-
ditions [107]. A refined analysis of the surface waves and the connected instability
is provided in the work of Brambley and coauthors [15, 17]. They found that some
of these surface waves may not be present for higher azimuthal modes m and a
Helmholtz number built with the outer radius of the duct (Her) in the range of m.

3These surface waves find for instance application in the touch pads of laptops (comp. e. g. the patent of
Brenner and Fitzgibbon [18]).
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Rienstra and Vilenski [111] recently also provide an extended analysis which uses
a tanh-profile as template for the boundary layer. They show that the instability
may be removed in the presence of a boundary layer of finite thickness. The pres-
ence of the instability is found to be depending on the momentum thickness of the
boundary layer, the flow Mach number, the impedance and the excitation frequency
according to the analysis of Rienstra and Vilenski [111]. The result provides an in-
sight under which conditions the instability becomes present. However, it does not
remove the instability of the Myers boundary condition.

Brambley [14] suggests a method to remove the instability, which is based on the
idea of a finite membrane stiffness. This clearly contradicts the idea of a locally
reacting surface. This leads to an additional term, scaling with a fourth power of the
wave number k, in the impedance model. However, this term becomes important for
large k for which a finite difference approximation of the fourth derivative becomes
most inaccurate. Therefore, adding the k4-term suggested in [16] does not remove
the instability in a preliminary study with the CAA method described in this thesis.
Altogether, the latest analysis shows that the instability it is present under realistic
flow conditions for specific choices of impedance and flow parameters.

Experimental evidence

There are only few experiments in which an instability is found to dominate the
observed sound field [41, 62, 77]. As reported by Jüschke and Ronneberger [62],
regarding an experimental study of a lined cylindrical duct with a reactance domi-
nated liner, an instability leads to a large amplification of pressure amplitudes. The
flow resistance of the duct is found to be significantly increased at the same time.
Großer [41] found in his analysis that the instability is a Kelvin–Helmholtz instabil-
ity, which is present around the resonance frequency of a series of λ/4 resonators
connected to a duct. However, his theoretical considerations are not able to provide
a valid prediction of the conditions under which the instability is found.

De Metz and Farabee [77] describe several different mechanisms for the develop-
ment of an instability in the flow over a single cavity. A feedback loop between the
cavity oscillations and the Kelvin–Helmholtz instability of the adjacent shear layer
is only one. Bauer and Chapkis [8] find the instability of an aircraft liner design to
be related to a Strouhal-number of Srl = l f /v = 0.2 defined by the free stream ve-
locity and the hole diameter l of the liner panel for a relatively thick shear layer. The
instability is related to the convection time between the trailing and leading edge
of the cavity. This is expressed by the scaling with the cavity diameter. De Metz
and Farabee [77] suggest their observed instability is a shear-layer instability scal-
ing with the momentum thickness δm. The Strouhal number with this thickness is
found to be Srδ = 0.022 for laminar and Srδ ≈ 0.2 for turbulent flows. They also
describe the instability as half-jet instability. This kind of Kelvin–Helmholtz insta-
bility was theoretically described by Michalke [78] in the stability analysis of a free
jet. The instability mechanism is obtained by a feedback loop through the cavity or
the trailing edge of the cavity with the Kelvin–Helmholtz instability.

60



4.4. Models for a grazing flow on the impedance surface

Even though no instability is reported by Jones et al. [57], the results of the NASA
flow tube experiment indicate an unexpectedly strong near field around the trailing
edge of the liner for 1 kHz. The pressure field at the opposite wall of the liner does
not show a continued attenuation to the end of the liner for the resonance frequency
of the thin ceramic tubes. The observed overall attenuation is high in this case,
such that the possible instability is superimposed to a large decay along the liner.
However, the instability is most likely to arise for the resonance frequency.

Altogether, the Kelvin–Helmholtz instability can be regarded as a rare observa-
tion as also found by Rienstra and Vilenski [111], which has to be avoided for any
production aircraft liner according to Bauer and Chapkis [8]. One possible explana-
tion for the missing wide experimental evidence is the connection of the instability
to the shear layer thickness [111]. With a realistic shear layer thickness, the instabil-
ity may be removed in the simulation [99, 145]. On the other hand, there are some
reports of the so called liner self noise [8], which could be attributed to the Kelvin–
Helmholtz instability. Self-noise amplitudes of up to 158 dB at the liner surface are
reported by Bauer and Chapkis [8] and it is suggested to include the self-noise of a
liner into the design as an important parameter. However, liner self-noise is related
to various effects, such that the Kelvin–Helmholtz instability could not directly be
linked to this statement. Bauer and Chapkis [8] and Jüschke and Ronneberger [62]
report an increasing boundary layer thickness if an instability becomes present. This
could be an effective limiting mechanism which reduces the observed amplitude of
the instability to a non-dominant level. Furthermore, as the data of Jones et al. [57]
suggests, a strongly limited instability could be considered as a reduced attenuation
of the liner or experimental error, such that it would not be reported in many cases.

Conclusions about the surface waves and the instability

The observations in several numerical studies [24, 61, 104] show that the instabil-
ity is a short-wave phenomenon. This is in accordance to the theoretical results of
Brambley and Peake [17] and Rienstra [107]. From the list in the preceding sections
one can extract two methods to suppress the instability. First, a filtering of the solu-
tion or coarsening of the grid seems to remove the instability. The other method of
choice seems to be a resolved shear layer, as it was discussed in Section 4.4.1. As the
applied time-domain CAA-methods use spatial filtering [102] or a selective artificial
damping term [128] to suppress grid oscillations, filtering and coarsening both add
dissipation. Therefore, the additional dissipation is considered as the basic mecha-
nism, which disallows the development of an instability wave for some simulations.
Additional dissipation seems to be alerting in the context of computational aeroa-
coustics at first glance. It could easily falsify the acoustic solution together with the
suppression of the instability. On the other hand, hydrodynamic and acoustic so-
lution could be understood as linear independent components of the solution to a
linear problem. The large disparity of scales allows to filter the hydrodynamic solu-
tion out, such that there is a chance to remove the instability mode without impact
to the acoustic solution.
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4.5. Development of a time domain representation

In general, a time-domain representation for a wall-impedance model in the fre-
quency domain is obtained by an inverse Fourier transform. The inverse Fourier
transform of the impedance definition of Eq. (4.1) leads to a convolution as

p′(t) = z(t) ∗ u′n(t).

To obtain the current pressure perturbation at the wall, an integration over the time
history of the normal velocity is required. There are reported attempts perform
the convolution directly by applying a numerical integration [20]. However, the
application of this method seems to be very limited due to the storage demands
and the computational time. Therefore, in the following, a method is applied which
reduces the effort for the calculation of the inverse Fourier transform. The method
applies the integral, differential and the shifting theorems of the Fourier transform.

The implementation of the impedance model is considered as an extension of the
wall model of Section 3.4. In Section 3.4 the time derivative of the normal velocity u̇n
is set to zero, yielding the boundary condition for a rigid and impermeable surface
at rest. In this section, the impedance model is used to alter this setting for a moving
or permeable surface with a given impedance. The objective which is followed with
the impedance model is the specification of u̇′n for the application as target value
within the wall model of Eq. (3.14).

4.5.1. Impedance models based on the mass-spring-damper analogy

In the first step, for the sake of completeness, the mass-spring-damper model of
Eq. (4.4) is considered as the frequency response of the complex impedance Z(iω).
As can be seen from the derivation of the model which is originally formulated in
the time domain, the inverse Fourier transform of the resulting equation becomes
straightforward by using the derivative and integral theorem

p̂ = d ûn + iω mm ûn + km
ûn

iω
, (4.16a)

p′ = d u′n + mm u̇′n + km U′
n (4.16b)

with U̇′
n = u′n. (4.16c)

A time-domain impedance boundary condition based on a mass-spring-damper
analogy was first considered by Tam and Auriault [124]. It can be written in the
form

∂ u′n
∂ t

=
1

X+

[
p′ − R0 u′n − X− U′

n
]

, (4.17)

where the generic resistance parameter R0 is identified as the dissipative term d
of the mass-spring-damper model and the two reactance parameters are identified
as mass-reactance X+ = mm and spring-rate X− = km. Tam and Auriault [124]
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4.5. Development of a time domain representation

provide a stability analysis for the model Eq. (4.17). They show that the model is
stable, provided that the three model parameters R0, X− and X+ are real and pos-
itive. Tam and Auriault [124] also point out, that the straightforward application
of the mass-spring-damper model in connection with the Myers boundary condi-
tion is mathematically unstable. The model will not be considered in the following.
However, it has been implemented extended by a treatment of the flow effects to the
current CAA method [71].

4.5.2. Implementation of the extended Helmholtz resonator (EHR) with
flow

A discrete-digital or time-discretized signal can be Fourier transformed by inter-
preting the sampled signal as a continuous analog signal multiplied by a series of
delta functions in time. The resulting frequency response is a superposition of pe-
riodic functions. Due to the shifting theorem, the inverse Fourier transform of the
resulting frequency response is a series of delta functions. In the context of elec-
tromagnetism these properties of the Fourier-transform are generalized to a theory
referred to as z-transform. The first application of the z-transform in the CAA con-
text was reported by Özyörük and Long [88]. They used it, to implement a time
discretization of a generalized impedance model, based on a representation of the
impedance as a complex fraction of polynomials of iω. A time-domain impedance
model is obtained by a z-transform. Obviously this time-domain formulation does
not need a convolution. However, due to the integration of the numerical time-
marching method and the mathematical formulation of the impedance boundary
condition in the works of Özyörük & Long, a transfer of the method to another im-
pedance function seems challenging. This may be the main reason why for nearly
ten years the group of Özyörük & Long [88, 89, 90] was the only one applying such
z-transform-based time-domain impedance models.

The z-transform was also applied by Rienstra [108] to obtain the time-domain re-
presentation of the extended Helmholtz resonator model presented in Section 4.3.3.
His work includes a review of the method of Özyörük & Long and distinguish-
ing between the impedance model which undergoes the z-transform and the time
integration method to obtain the time-domain impedance model. The steps of Rien-
stra [108] are followed here to obtain a time-domain impedance boundary condition
based on the EHR model.

The derivation of a time-domain representation of the EHR-model of Eq. (4.11)
requires the application of a generalized δ-function to obtain the inverse Fourier-
transform of a periodic function e−iω Tl

δ(t− Tl) =
1

2π

∫ ∞

−∞
e−iω Tl eiω t dω. (4.18)

Now consider the inverse Fourier transform of the product

F−1 { p̃(iω)} = F−1 {Z(iω) ũn(iω)} = z(t) ∗ ũ′n(t),

63



4. Time-domain impedance modeling

with

Z(iω) = e−iω Tl .

Due to the periodic frequency response of Z(iω) which is expanded to a single δ-
function through the z-transform, one obtains

1
2π

∫ ∞

−∞
z(τ) ũ′n(t− τ) dτ = zn ũ′n(t− Tl). (4.19)

Considering an extended Helmholtz resonator including viscous effects and damp-
ing according to Eq. (4.11), Z(iω) becomes a rational function of e−iω Tl . Using the
definition of α, Eq. (4.11d) in Eq. (4.11c) and multiplying the whole equation by the
denominator (1− e−α) yield(

1− e−α
)

p̃(iω) =
[(

R f + β + iω m f

)
−
(

R f − β + iω m f

)
e−α
]

ũ(iω).

Now the inverse Fourier transform is applied to both sides, using the shifting theo-
rem, Eq. (4.18), of the inverse Fourier-transform given by Eq. (4.19). This results in
the following time-domain impedance boundary condition, for the extended Helm-
holtz resonator model without flow

p̃′(t)− e−ε p̃′(t− Tl) =
(

R f + β
)

ũ′n(t)

−
(

R f − β
)

e−ε ũ′n(t− Tl) + m f

(
∂ ũ′n
∂ t

(t)− e−ε ∂ ũ′n
∂ t

(t− Tl)
)

.
(4.20)

The extended Helmholtz resonator with flow

In this section the Ingard/Myers boundary condition of Eq. (4.15) is used to model
the grazing flow effect. Even though the resulting mathematical model is unstable
under certain conditions, this seems to be the only way to obtain a time-domain
impedance boundary condition which is able to handle a nonzero mean flow at the
impedance surface. Equation (4.15) is divided by iω. The iω m f term is directly
transformed to a time derivative. The flow effect is added to Eq. (4.20) by replacing
the pressure with the result of the Ingard/Myers boundary condition. The imple-
mented form of the boundary condition to u̇′n is given as

∂ u′n
∂ t

(t) =
1

m f

[
µ(t)− (R f + β) u′n(t)

]
− 1

m f
e−ε

[
µ(t− Tl)− (R f − β) u′n(t− Tl)

]
+ e−ε ∂ u′n

∂ t
(t− Tl)︸ ︷︷ ︸

storage term

, (4.21)
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4.5. Development of a time domain representation

where µ(t) is defined with the auxiliary variable P′, Ṗ′ = p′, to rewrite the time
integration, which arises from the Ingard/Myers boundary condition.

µ(t) = p′ + u0 ·∇P′ − n · (n ·∇u0) P′︸ ︷︷ ︸
convective and curvature terms

, (4.22a)

with the symbol sp introduced as

∂ sp

∂ t
:= u0 ·∇p′ − n · (n ·∇ u0) p′. (4.22b)

It can be written as:

µ(t) = p′ + sp. (4.22c)

Equations (4.22b), (4.22c) and (4.21) represent the implementation form of the EHR.

Implementation of the extended Helmholtz resonator model 4

The present-work implementation of a time-domain impedance boundary condi-
tion to a DRP-based CAA software, which started with Richter et al. [105], is based
on an electronic prepublication of Rienstra [108]. Rienstra [108] points out several
variants of the implementation of an extended Helmholtz resonator model. Besides
this, he gives clear suggestions for the implementation of one of the extended Helm-
holtz resonator models. The present implementation does not strictly follow these
suggestions. It is described in more detail in the following. Furthermore, some par-
allel development in the work of Chevaugeon et al. [24], who implemented the EHR
with a CAA software based on a Discontinuous Galerkin method, is discussed and
compared.

If m f of an impedance surface defined by Eq. (4.11) is sufficiently large, the cou-
pling of the time-domain impedance boundary condition through this parameter
becomes possible. Therefore, the face-sheet reactance m f is assumed to be nonzero
in the following. Chevaugeon et al. [24] used a similar assumption for the imple-
mentation of the extended Helmholtz resonator for nonzero mean flow conditions.

The EHR requires the data at previous times t − Tl . As the coefficients are con-
stant in Eq. (4.21); the whole expression for the old time levels can be stored in one
variable per boundary point. With the simulation marching on in time, the full time
series back to t− Tl is required. In his publication, Rienstra [108] suggests to chose
Tl such that it exactly matches to a multiple of the time step in the simulation. This
limitation seems clear for multi-time-level high-order schemes. However, the sub-
sequent time steps of the LDDRK method would have no high-order approximation

4The EHR has simultaneously been implemented as time-domain impedance boundary condition to a
DRP-based [105] and a DG-based [24] CAA software. The implementations were carried out indepen-
dently based on Rienstra [108] and both were presented at the AIAA-CEAS Aeroacoustics conference
2006.
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4. Time-domain impedance modeling

of the older time level available. Moreover, a large number of subsequent time lev-
els would have to be stored. To overcome the problem, an interpolation is used in
the current work. The old time level t − Tl is obtained from the storage term in
Eq. (4.21), which has been stored at time levels close to t − Tl , by the filtering in-
terpolation described in Section 3.6.2. The storage term is calculated and saved for
each full step of the LDDRK only. The terms explicitly showing Tl in Eq. (4.21) are
stored in one variable for each boundary point at every full time-step of the LD-
DRK. This is implemented using a circular buffer. Old time levels up to ten time
steps before t − Tl are stored to have an adequate number of time samples for the
interpolation and avoid backward interpolation stencils. The limitation of Tl to a
whole-numbered multiple of the time-step size is overcome with this operation.

Another difficulty in connection with the LDDRK applied with Eq. (4.21) is related
to the time derivative u̇′n(t − Tl). It is not directly provided by the Runge-Kutta
time marching scheme in 2N-storage form. To obtain a high-order finite difference
approximation, seven time steps of un behind the current one are stored in an own
circular buffer. The high-order time derivative, which is required for the storage
term, is calculated by applying the seven point central differencing scheme (DRP)
of Section 3.1.1 with this data.

Suppression of the instability with flow

In Section 4.4.3 additional dissipation was identified as a possible treatment of the
instability of the Ingard/Myers boundary condition, as a result of a literature review.
The additional dissipation is implemented in this work on the storage term and the
whole convective part (sp) of µ(t), which arises from the Ingard/Myers boundary
condition (comp. Eq. (4.22)). The terms of the auxiliary storage variable, which
are evaluated at the time level t − Tl in Eq. (4.21) are summed up before filtering
it spatially. The convective and curvature terms of µ(t) are filtered after the time
integration has been performed with the LDDRK [48]. It is found in a preliminary
study that a second-order filter (see Appendix B.1.3) is required to obtain a stable
solution. This is the only filter stencil that does not respond with grid oscillations
to a pulse like input. Furthermore, it is found that the average solution tends to
drift from zero if a transition between lined surface and hard wall is present. This is
attributed to numerical errors at the leading and trailing edge of the liner. To avoid
an offset and give the acoustic field a more continuous shape in the vicinity of the
leading and trailing edge of a liner, the filtering domain is extended by one point
with a functional value of zero at these ends. The very dissipative treatment of the
storage, convective and curvature terms has been extensively tested and the results
will be reported in this work in Chapter 7.

4.5.3. Outlook: Generalization of time-domain impedance modeling

The mass-spring-damper model of Section 4.5.1 can be extended to a more gen-
eral frequency response by adding higher-order derivatives and integrals, which
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4.5. Development of a time domain representation

results in higher powers of iω in the resulting frequency response. This method was
used by Fung and Ju in various publications [37, 38, 61]. These authors consider
a complex reflection coefficient of the surface instead of the impedance to define
the boundary condition for a locally-reacting surface in the time domain. The gen-
eralization of the mass-spring-damper model is relatively straight forward in this
way. The method corresponds to a development of the frequency response of the
impedance into a Taylor series before applying the inverse Fourier transform. There
is no direct identification of the coefficients with physical parameters of the liner.
Thus, the modeling of a realistic liner panel by applying such extended mass-spring-
damper analogies may require more additional parameters than the extended Helm-
holtz resonator model of Section 4.5.2. The approach may, however, be promising
when considering a digital filter as model for the frequency response. This is for
instance done by Polifke et al. [96] for an entirely real reflection coefficient of a com-
bustion system inlet and outlet. Such a filter can include higher-order time deriva-
tives and integrals as well as the information of older time steps. In this way, an
impedance model based on a digital filtering may be seen as the generalization of
time-domain impedance modeling on the expense of the physical interpretation of
the model parameters.
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5. Analysis and assessment of the numerical results

In this chapter, methods for the location of the sources of sound or numerical error
in the solution are presented. The source power level (QPL) scale is introduced to
present the relevant source strength in a compact way. Finally, the conservation of
the acoustic energy as quality criterion for the solution is introduced.

5.1. Motivation

Due to the non-conservative character of the model equations and most of the nu-
merical methods for computational aeroacoustics, a technique for validating the nu-
merical solution for a specific problem is desirable in addition to the initial valida-
tion and verification of the method itself. Moreover, it seems almost impossible to
validate the method including all possible settings for the time step size, numerical
method, filter and all geometrical situations. Rather the numerical result for a spe-
cific problem has to be investigated with respect to its quality. This is done here by
the conservation of energy in the solution. As the acoustic perturbation energy is a
small fraction of the total energy in the flow in general, only the fluctuation quanti-
ties are considered for the validation. However, there is no universal conservation
law of the acoustic energy compound alone in an arbitrary mean flow. The practical
applicability of the validation method, therefore, depends on the possibility to find
a definition of the acoustic energy for which a conservation law applies at least ap-
proximately with the current base-flow field. Due to the fluctuating character of the
acoustic intensity, a time average energy conservation is investigated to make the
result independent of the instationary energy distribution.

5.2. Source location

The idea of using the acoustic intensity for a source location goes back to Ehrenfried
[32]. The average acoustic source strength of a process in general follows from a
balance of the acoustic energy. This balance is averaged in time to obtain〈

∂ea

∂t

〉
t
+ 〈∇ · Ia〉t = 〈qs〉t . (5.1)

Under the assumption of a statistically stationary solution for the process, the av-
erage change rate of the specific acoustic energy ea is zero. In consequence, the di-
vergence of the time averaged acoustic intensity, is found to be equal to the average
radiating acoustic source strength [104]

∇ · 〈Ia〉t = 〈qs〉t . (5.2)
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5. Analysis and assessment of the numerical results

Based on Eq. (5.2) the average production of acoustic energy, which is considered as
the source strength, can be calculated from the time averaged intensity.

5.2.1. Introduction of the QPL scale for the source power level

The source strength shows a large dynamic range. Its unit is Wm−3, denoting a
specific acoustic power. To obtain the acoustic power which is input in average,
the source strength is related to a reference volume. The approximate volume of
an expected major source region may be used for this purpose, such that the ob-
tained acoustic source power is directly related to the observed acoustic power in
the duct. For instance in the following experiment Vref ≈ 10−5 m3 is used. The
average acoustic power input is then obtained to

Pin = 〈∇ · Ia〉t Vref. (5.3)

This is the acoustic power which is input in average from a source with equally dis-
tributed additive superposing source strength all over the reference volume. For
a better visualization of the large dynamic range of the acoustic source strength, a
logarithmic scale is chosen which is based on the power spectral density (PSD). The
average source strength can be negative, which means an annihilation of acoustic
energy. Therefore, the absolute value of the source power is considered to obtain
another logarithmic scale for the annihilation of acoustic energy. The resulting two
logarithmic scales are put together adding the original sign of Pin to obtain negative
values for sinks and positive ones for sources of acoustic energy. To obtain distinct
scales with this properties, sources with an QPL below 0 dB are cut-off by a max op-
eration in the logarithm. Accordingly, the acoustic source power level QPL, which
gives the average acoustic power input on a PSD like scale can be defined as

QPL = sgn (Pin) 10 log10

[
max

(
|Pin|

10−12W
, 1
)]

. (5.4)

The QPL becomes zero, if the absolute value of the input source power is below the
threshold of 10−12 W.

5.3. Intensity definitions

The definition of the acoustic intensity is, however, not unique. Different very uni-
versal definitions of an acoustic energy or generalized perturbation energy are pre-
sented in the following. The definition of Morfey [80] states the, up to now, most
general expressions for an acoustic intensity and energy. They are defined by Mor-
fey [80] as

ea =
p′2

2$0 c2
0

+
$0
2

u′a · u′a +
p′

γ p0
$0 u0 · u′a (5.5a)

and Ia =
(

p′ + $0 u0 · u′a
) (

u′a +
p′

γ p0
u0

)
. (5.5b)
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Applying these definitions with Eq. (5.2), a conservation of energy without any ad-
ditional sources can be shown for the special case of a potential flow. This theoreti-
cally means a limitation to a purely potential base-flow field with a purely acoustic
perturbation on top of it. In practice, due to the negligible interaction of the hy-
drodynamic and acoustic modes in a constant base-flow field as shown by Chu and
Kovásznay [25], the conservation of the acoustic energy can be extended to arbi-
trary perturbations in a constant flow field. For other flow conditions, e. g. entropy
mode waves or vortices in any non-constant flow field, acoustic sources 〈qs〉t 6= 0
are present.

A generalized perturbation energy and the related energy flux was given by My-
ers [86]:

ea =
p′2

2$0 c2
0

+
$0
2

u′a · u′a + $′ u0 · u′a (5.6a)

and Ia =
(

p′ + $0 u0 · u′a
) (

u′a +
$′

$0
u0

)
. (5.6b)

This definition is also investigated here, as it could be advantageous for the iden-
tification of numerical errors in the presence of hydrodynamic perturbations. The
original definition of the acoustic intensity by Morfey [80] is recovered from the
generalized energy flux by replacing $′ in Eq. (5.6b) by p′ c−2, with c2 = γ p0 $−1

0 .
A common problem of both definitions is the dependency on the acoustic velocity

perturbation u′a. The acoustic velocity perturbation is not directly available, as the
velocity perturbation u′ found in the CAA solution is a superposition of acoustic
u′a = ∇φ and vortical u′ω = ∇ × ψ velocity perturbation, in general. A general
method for splitting the acoustic and hydrodynamic velocity perturbation in an ar-
bitrary base-flow field is not yet available. However, as long as u′ω remains small
u′a could be identified by the u′ of a numerical solution. This applies very well for
the propagation of tones against the flow in the inlet of an aeroengine. In a more
complex flow field, the identification leads to errors. In the wake of a flame for ex-
ample an initial entropy perturbation causes acoustic perturbations and vortices to
be generated in the combustion chamber exit nozzle with a strong gradient of the
base flow. The arrival of the entropy perturbation in the nozzle triggers both other
perturbation forms, such that the three modes of perturbation are correlated with a
fixed phase.

5.4. Solution validation based on a global conservation of acoustic
energy

The investigation of a global conservation of the acoustic energy to access the quality
of a numerical solution, as it is presented in this section, is not a completely new
idea. Eversman [33] introduced a prove of a numerical FEM solution based on the
conservation of the acoustic energy according to the definition of Morfey [80]. The

71



5. Analysis and assessment of the numerical results

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

Px P2P1
PLiner

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

x

n

= =

n
dissipation insertion loss

x,iΣIx,iΣI

I

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

I

Figure 5.1.: Sketch explaining the application of the acoustic intensity to compare
results and as quality criterion

approach is based on a balance of the acoustic energy flux entering the duct from
the source boundary and the outgoing fluxes over the lined wall and the terminal
plane of the duct. The situation is sketched in Fig. 5.1. The incoming acoustic power
from the left boundary (P =

∫
IdS) is denoted as P1, whereas PLiner and P2 denote

the outgoing power over the liner and the right boundary, respectively. The time
averaged acoustic energy flux in a hard-walled duct section, without sources, is
constant. With liner, a global balance of the incoming and outgoing acoustic energy
has to consider the flux over the liner PLiner in addition. The acoustic energy flux
through the duct decreases with the distance from the source along the liner, then.
To prove a numerical result, the time averaged acoustic intensity component with
an orientation parallel to the axis is integrated over a disc closing the duct section
at a given axial position x (comp. Fig. 5.1). With liner, the cumulated flux over the
lined wall from the source at x0 to the axial position x is considered in addition. The
resulting average acoustic energy flux Pa through a disc at the axial position x and
the lined wall from the source position x0 to x is then given as

〈Pa(x)〉t =
∫

Sdisc(x)
〈Ia,x(x)〉t dS︸ ︷︷ ︸

flux along the axis

+
∫ x

x0

〈Ia,n(ξ)〉t dSshell︸ ︷︷ ︸
flux over the wall

, (5.7)

where Ia,x = Ia · ex denotes the axial component of the acoustic intensity, n(ξ) is
the outer normal unit vector of the lined surface and x0 is the position of the source
boundary. 〈Pa〉t must be constant and equal to the input acoustic power in the ab-
sence of sources. However, the identification of a source, as such, obviously depends
on the definition of the acoustic energy and intensity. In the absence of sources, the
annihilation of acoustic power along x is attributed to numerical dissipation. The
acoustic energy flux is a measure of the quality of the numerical solution, then.
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5.5. Comparison of the intensity definitions

5.5. Comparison of the intensity definitions

(a) General perturbation energy of Myers, Eqs. (15-17), (comp. Eq. (5.6b)) [86], u1
replaced by u′

(b) Acoustic energy of Morfey [80] Eqs. (23-24), (comp. Eq. (5.5b)) u′a replaced by
u′

Figure 5.2.: Comparison of the intensity definitions: QPL (upper part of each figure)
and overall acoustic power flux (lines below).

The different definitions of the energy flux are studied numerically by means of
an axisymmetric flow duct which is excited by a harmonic entropy source, exciting
$′ constantly along an axial position with a given frequency, at the left end, shown
in Fig. 5.2. To distinguish the effects of nozzle and diffuser, a straight duct section
of about one wavelength of the acoustic perturbation is added between the acceler-
ation and deceleration zone. The average flow field is based on a nonlinear Euler
solution according to section 3.2. The Mach number ranges between Ma = 0.17 and
Ma = 0.51 in the wide and narrow duct sections, respectively. Acoustic sources are
expected only in the nozzle and diffuser, due to an indirect noise generation in the
acceleration zones of the flow, for the definition following Morfey [80], whereas a
generalized perturbation energy according to Myers [86] should not be generated or
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5. Analysis and assessment of the numerical results

annihilated at all for such a boundary value problem. Especially, all straight parts
of the duct should be free of sources and feature a constant acoustic power flux in
average independently of the intensity definition. The results of the preliminary
investigation are shown in Fig. 5.2.

Location of sources: As can be seen from Fig. 5.2(a) the modified definition of My-
ers [86] locates sources all over the duct. The periodic pattern of negative and posi-
tive source strength corresponds to the wave length of the periodic entropy pertur-
bation. Probably, the correlation between vorticity, acoustic and entropy mode leads
to a misinterpretation by the modified energy definition of Myers [86]. Therefore,
this definition is considered not successfully applicable for the location of sources.

The modified definition of the acoustic intensity by Morfey [80] results in a better
identification. All sources in the inlet duct are completely removed, as can be seen
in Fig. 5.2(b). The source strength in the straight duct section between nozzle and
diffuser and in the straight outlet duct is reduced with respect to the modified def-
inition according to Myers [86]. The remaining sources must be due to the vortical
perturbations which are generated by the acceleration of entropy perturbations in
the nozzle and diffuser. The entropy mode itself does not interfere with the acoustic
intensity any more.

Integral acoustic power flux: Examples for the evaluation of the acoustic power
flux from the preceding section are given in Fig. 5.2, in the lower part of each figure.
The definition of Myers [86] leads to strong axial variations of the integral acoustic
power flux all over the duct [Fig. 5.2(a)]. The definition of Morfey [80] produces a
nearly constant energy flux in the straight duct sections [Fig. 5.2(b)], even though
the overall velocity perturbation was used instead of the acoustic velocity. The re-
maining small variations in the ducts downstream the first contraction are probably
due to the missing distinction of vortical and acoustic velocity component. The con-
traction and widening duct sections show variations, which are attributed to the
indirect entropy noise generation. The wavelength of the initial harmonic entropy
perturbation in the numeric experiment is much smaller than the length of the noz-
zle and diffuser sections. Thus, a pattern of positive and negative sources is found
in these regions and the average acoustic intensity varies with the position.
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6. Impedance eduction from measurements

This chapter shortly describes the impedance eduction process, which will be ap-
plied in Section 7.2. First, the definition of the objective function is described in
Section 6.2. Two different types of experimental data as input are addressed. Then
the flow effect on the impedance is addressed in Section 6.3. Different strategies are
pointed out, which will be compared with the example of the NASA flow tube data
in Section 7.2.1. Finally, the optimization algorithm is addressed at the end of this
chapter.

6.1. Overview of the impedance eduction process

To calculate the impedance from in-situ measurements, an optimization procedure
with the CAA-method is developed. The impedance of the liner is varied, in order
to find an impedance which results in a similar pressure pattern as it is observed in
the experiment. The optimization uses a control loop, which varies the parameters
of the impedance model and controls the deviation from the experiment via an ob-
jective function. The five parameter EHR of Section 4.3 is used. The optimization
problem can, therefore, be described as nonlinear problem with a control over the
boundary. The EHR model requires all parameters to be real and positive to obtain
a passive and causal impedance according to Rienstra [108]. Therefore, constraints
have to be put in the optimization for all model parameters. A further constraint is
necessary, as m f , which is the coupling parameter, must not be zero and small m f
limit the CFL-number in the simulation, as it will be shown later. Furthermore, to
avoid aliasing effects with discrete frequency data, the time lag Tl of the EHR model
has to be limited to a band of frequencies of about ±50 % of an initial guess.

6.2. Objective function

The objective function for the optimization process is defined by the deviation be-
tween the experimental data and the corresponding numerical result. The experi-
mental data can be spatially resolved sound pressure level and phase information
as well as modal amplitudes. The modal amplitudes are based on multiple micro-
phone measurements to perform a wave splitting. This makes the data theoretically
independent of the position of measurement. Currently, the wave splitting in the
experiment is limited to a decomposition into up- and downstream running plane
waves. The advantage of an impedance eduction with a time-domain impedance
boundary condition is that only few model parameters describe a large range of fre-
quencies. In case of the EHR, five model parameters describe the whole frequency
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response. Assuming p̂(n)
exp,i to be the in general complex amplitude vector of the ex-

perimental data and p̂(n)
num,i to be the corresponding numerical result, where n runs

over all frequencies and i over the different measurement positions, the objective
function is defined as the square of the L2 norm

Ξ = ∑
n

∑
i

∣∣∣ p̂(n)
num,i − p̂(n)

exp,i

∣∣∣2 (6.1)

The numerical data is monitored at exactly the same spatial position as it was
done in the experiment. To make the grid generation independent of the position of
measurement, a spatial interpolation of the pressure data to the exact measurement
position is implemented which is based on cubic splines. The optimization of three-
dimensional problems with the present CAA-method is currently not fast enough
for any realistic application. Therefore, the simulation is considered to be based on
the two-dimensional or modal-axisymmetric approach. The interpolation is only
one-dimensional then. The cubic-spline interpolation along the wall is used in the
current work, to calculate the pressure data at the exact position of measurement.
The interpolation is carried out for each full time step of the Runge-Kutta scheme
and the time-dependent pressure data is stored. The Fourier transform is performed
in a post-processing step. It is implemented in MATLAB as part of the objective
function call.

Due to the different processing depth of the experimental data it is now necessary
to distinguish between (a) sound pressure level and phase data at given positions
and (b) post processed experimental data in form of transmission and reflection
coefficients as input for the impedance eduction. In both cases the monitoring of the
pressure and the Fourier transform are applied. The further steps differ for the two
methods.

6.2.1. Impedance eduction based on raw sound pressure level data

In case (a), it is only necessary to calculate the complex pressure amplitude for
each frequency from the sound pressure level and phase given from the experi-
ment. Then the complex amplitudes are directly compared by the norm given in
Eq. (6.1). In a first step only the magnitude of the sound pressure was considered to
define the objective function [105, 106]. This also results in a good agreement with
the experiment.

6.2.2. Impedance eduction based on energy transmission and reflection

For case (b), it is theoretically possible to use the acoustic intensity of Chapter 5 to
obtain the energy reflection and transmission. However, it was not made use of this
option in the current work, to keep the analysis as close as possible to the experi-
ment. Especially in case of a resolved boundary layer, the resulting transmission and
reflection could depend on the position of measurement. The experimental data is
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Figure 6.1.: Sketch of the set-up for the calculation of the transmission and reflection
coefficient

based on a wave splitting which combines a downstream and upstream excitation
of the liner sample in order to make the resulting energy transmission, reflection
and dissipation independent of reflections from the anechoic terminations [46]. A
simplified formulation is applied to calculate the transmission and reflection coef-
ficient from the numerical simulation result, omitting two different excitations and
reducing the problem by a factor of two therewith. In a first simulation the base-
line pressure is obtained without liner. Then, the reflected pressure amplitude is
calculated as p̂refl = ( p̂− p̂base). The transmitted pressure is simply identified with
the pressure in the duct section following the liner sample, assuming perfect ane-
choic boundary conditions for the numerical simulation. The energy transmission
and reflection is calculated based on the definition of these coefficients with flow
according to Blokhintsev [10] (comp. Heuwinkel [46])

T =
S2 ($0c)1
S1 ($0c)2

(1 + Ma2)2

(1 + Ma1)2

(
p̂trans

p̂base

)2
(6.2a)

R =
(1−Ma1)2

(1 + Ma1)2

(
p̂refl
p̂base

)2
, (6.2b)

where S is the cross sectional area of the duct and section 1 is considered to be the
section with the incoming wave from the excitation and 2 is the section following the
sample in the direction of sound propagation. The baseline amplitudes are denoted
by the subscript base. The Mach number Ma is considered to be signed positive
when the incoming acoustic waves propagate with the flow.

6.3. Flow effects

The resulting impedance depends on multiple parameters of which the base flow is
one of the most important. The flow effects which have been described in section 4.4
have to be considered for the impedance eduction, as well. A resolved boundary
layer of the base flow, according to section 4.4.1, would be most desired for an accu-
rate impedance eduction. However, the required resolution for the boundary layer
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6. Impedance eduction from measurements

may increase the problem size beyond the limits of a currently optimizable problem.
Thus, the Ingard/Myers boundary condition must be used according to the consid-
eration of section 4.4.2 including the stabilization by low-order filtering. In this case,
a partially-resolved boundary layer or a plug-flow assumption are applied for the
base flow. These two alternatives are compared in section 7.2.1 with respect to the
reproduction of the impedances educed by Jones et al. [57] for the ceramic tubular
liner in the NASA flow-tube experiment.

6.4. Optimization algorithm

Finally, the optimization algorithm has to be described. An own implementation of
an optimization algorithm would go beyond the scope of the current work. Thus,
a commercially available algorithm was chosen in accordance with Zhaung [143]
for the optimization. The function fmincon from the MATLAB optimization toolbox
evaluates the objective function. The objective function is implemented as MAT-
LAB function, which performs the necessary post processing, calculates a Fourier
transform of the microphone data and finally returns the objective function. The
actual core of the objective function is a system call to the CAA-software, which can
also run remotely on a different machine. The so called medium-scale algorithm of
the constrained nonlinear MATLAB optimization procedure fmincon is used. It im-
plements the BFGS Quasi-Newton method and a line search using a merit function
[23]. Gradients are calculated by additional calls of the CAA-method through the
MATLAB function.

The possibility of a development of an adjoint method from the discretized form
of the equations was also considered to replace the calculation of gradients by MAT-
LAB. In case of five model parameters, this could reduce the number of CAA runs
to two, one forward in time with the original equations and one backward with
the adjoint equations, instead of six for the calculation of a new optimization step.
However, the development of the adjoint method is complicated due to the im-
plementation of the impedance boundary condition, where the control takes place.
Moreover, the current problem is controlled via a boundary condition. This is a
nonstandard situation in the control theory, which usually considers a control over
the whole volume. In consequence, when considering the possible reduction of the
computational time for the optimization, which is currently between less than a day
and up to one week for the cases presented below, the effort for implementing the
adjoint method is much higher than the expected reduction of the computational
time.
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7. Results and Discussion

This chapter is separated into three parts. The first, Section 7.1, contains test cases for
the validation and verification of the impedance model and the CAA method with
theoretical data. Some further tests, which are presented in this section, consider
the impact of realistic flow profiles and the suppression of the instability with the
time-domain impedance boundary condition. In the second part, Section 7.2, the
impedance eduction from in-situ measurements with four different liner samples
is provided to further validate the method in comparison to published impedance
data. The educed model parameters of the EHR are used to calculate an educed ge-
ometry, which allows an insight to the physics of the liner. The last part, Section 7.3,
gives examples for applications of the EHR model. There is no strict separation of
physical results and the validation of the numerical method. Both are presented and
discussed together. The variety of benchmark cases is chosen to allow an assessment
of the capability of the current CAA method for a broad range of applications.

7.1. Validation and verification of the impedance models

7.1.1. Verification of the impedance boundary condition with the
analytical solution

First, annular ducts with constant inner and outer radius are considered in prepa-
ration for the code benchmark, which is carried out later in this section. No-flow
and uniform base-flow conditions all over the duct (plug flow) are considered. The
analytical solution of Section 3.6.3 is used for comparison. The geometry and test
case definition is adapted from the more complex examples of the benchmark. The
test cases for this first verification are summarized in table 7.1.

Azimuthal mode propagation with the flow in an annular duct with lined
centerbody

The first test case, A4, considers an infinite cylindrical duct with lined centerbody.
The wall impedance and the dimensions correspond to the semi-infinite duct of Sec-
tion 7.1.3. There is no flow in the duct. The isentropic modal-axisymmetric model
equations according to Section 2.6 are used. A simple sponge layer with sound
source is applied at the source boundary, whereas the PML is used at the other end
of the domain. The resulting pressure and velocity contours of the numerical and
analytical solutions are compared in Fig. 7.1. The analytical solution uses the same
contour levels as the numerical result. The solutions are in a perfect agreement with
each other. As well the implementation of the impedance boundary condition as the
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7.1. Validation and verification of the impedance models

(a) p′

(b) u′2

(c) u′3

Figure 7.1.: Detailed comparison of numerical (top) and analytical solution (below)
for case A4 (Tab. 7.1). Equal contour levels for analytical and numerical
solution.

overall numerical method including the sound source and non-reflective boundary
conditions is verified by the perfect agreement of analytical and numerical results.
Moreover, the resulting pressure contours along a line of y = 1.1 m are compared
in Fig. 7.2. They are also found in a perfect agreement for case A4. Due to the ap-
plication of a PML boundary condition, the waves are damped for x > 4.6 m in the
numerical solution. The PML removes the pressure perturbations before they can
reach the domain boundary.

The second case A4.5 adds a base flow of Ma = 0.5. The waves are propagating
with the flow in this case which is denoted by the positive Mach number in table 7.1.
The boundary conditions are the same as above.

Three different situations are considered in Fig. 7.3. First the low-order filtering
of the auxiliary liner variables which is described in Section 4.5.2 is studied with
this case. In general, the filtering is necessary to avoid the instability of the In-
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Figure 7.2.: Detailed comparison of numerical and analytical solution at a line y =
1.1 m for case A4 (Tab. 7.1).

gard/Myers boundary condition. However, in this example the five parameters of
the EHR are chosen such that the real part of the impedance remains as large as
possible for all frequencies. This avoids the instability. In addition, the impact of a
smaller filter stencil with lower order close to the domain boundaries is studied by
completely avoiding the reduced filter stencils. Note that this is not indicated for
most of the applications of the method. It is, however, possible for A4.5 due to the
equidistant and orthogonal grid with perfect unity aspect ratio. Furthermore, no
singularities, as impedance jumps, are found in this infinite lined duct. The instan-
taneous pressure contour along the inner and outer walls are extracted in Fig. 7.3
for a comparison to the analytical solution. They are expected to be most affected
by the low-order filtering. The numerical results are compared to the numerical so-
lution without any low-order filtering. The comparison shows that the low-order
filtering neither of the auxiliary variables nor the perturbation field close to the wall
produces an observable deviation from the solution without any low-order filtering.
There is, however, an observable small deviation from the analytical solution.

Summarizing the observations in case A4 and A4.5, the correct implementation
of the EHR-based time-domain impedance boundary condition to the current CAA
method is verified by the agreement of analytical solution and numerical result.
Both of the problems are well resolved by about 23 PPW and 39 PPW in axial di-
rection, respectively. The azimuthal mode number is low, such that 31 points in
radial direction provide a sufficient resolution. Moreover, only few radial modes
are cut-on in the corresponding hard-walled duct [28], such that a leakage into cut-
on higher radial modes is impossible. Therefore, this test case is considered less
challenging than the ones, which are considered in the following.
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(b) along lined inner wall

Figure 7.3.: Comparison of the pressure levels along the lined inner and outer walls
of the annular duct with flow for case A4.5 (Tab. 7.1).

Higher modes in an annular duct with lined outer wall

In this section an annular duct with hard inner and lined outer wall is considered.
The geometry and liner parameters correspond to the conditions found in the fan
plane of the generic inlet configuration considered in Section 7.1.2. The boundary
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conditions and mathematical model are the same as above, with the exception that
the inner wall is acoustically hard and the outer wall is lined in the following. The
mesh has 101 grid points in radial direction and an unity aspect ratio. The high
resolution of the mesh allows to cover all higher radial modes which are cut-on in
the current examples. Two cases are picked from the test matrix of the benchmark
case considered below. The wave propagation without flow and against an uniform
base-flow of Ma = 0.5 are considered for each case. The basic information of the
cases is summarized in Tab. 7.1.

(a) p′

(b) u′2 (c) u′3

Figure 7.4.: Comparison of numerical (gray-scale-contours) and analytical solution
(contour lines) for case B10 (Tab. 7.1). Equal contour levels.

First, a m = 10, n = 1 mode at a Helmholtz number of He = 50 is investigated.
Perturbation pressure, and radial and azimuthal velocity are shown in Fig. 7.4 for
case B10 without flow and in Fig. 7.5 for case B10.5 with sound waves propagating
against the flow. The plots of $′ and the axial velocity component u′1 are omitted as
both are found to correspond to a scaled pressure field. There is a very good agree-
ment of analytical and numerical result for both cases. However, when comparing
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the exact position of the contour lines, small differences are found (comp. Fig. 7.4
and 7.5). Especially the radial velocity distribution at the inner wall shows phase
and amplitude errors, which indicates the presence of higher radial modes in the
duct.

(a) p′

(b) u′2 (c) u′3

Figure 7.5.: Comparison of numerical (gray-scale contours) and analytical solution
(red contour lines) for case B10.5 (Tab. 7.1). Equal contour levels.

The results are further analyzed by an axial line cut along r = 0.94 m, comparing
the instantaneous pressure between analytical and numerical solution. It is shown
in Fig. 7.6 for case B10. The good agreement of the instantaneous field data can
only partly be supported by this line cut. The peak amplitude shows differences of
up to 10 % for case B10. Furthermore, the instantaneous pressure at each sampling
point, which should exactly match the analytical solution, is found to be different
by about the same amount. The error increases with increasing distance from the
source (x = 0 m).

The phenomenon is not related to the non-reflective boundary condition at the in-
let. An early stage, where the waves not yet have reached the non-reflective bound-
ary, shows similar differences. A possible reason for the observed deviation is, that
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(b) B10-2 with refined mesh

Figure 7.6.: Comparison of numerical and analytical solution at r = 0.94 m without
flow (cases from Tab. 7.1).

the solution is described as a superposition of Bessel and Neumann functions in ra-
dial direction. The spatial discretization as well as the filtering are not optimized for
this type of functions. Errors of the radial discretization could lead to a leakage to
higher radial modes. The presence of a large number of cut-on higher radial modes
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(a) B10.5

0 0.5 1 1.5 2
x [m]

-15

-10

-5

0

5

10

15

p’
 [

Pa
]

analytical solution
CAA, EHR

(b) B40.5

Figure 7.7.: Comparison of numerical and analytical solution at r = 0.94 m for
waves propagating against the flow with liner (cases from Tab. 7.1).

complicates the situation, as it is a prerequisite for the leakage of energy to these
modes. According to Rienstra and Eversman [109] nine and eleven radial modes
are cut-on in the corresponding hard walled configurations without and with flow,
respectively. A refinement of the mesh is carried out to prove the hypothesis (case
B10-2 shown in Fig. 7.6). However, the almost doubled number of radial sampling
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(a) B10.5-hard
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Figure 7.8.: Comparison of numerical and analytical solution at r = 0.94 m
for modes propagating against the flow with hard walls (cases from
Tab. 7.1).

points to 201 does not provide a significant improvement. The error level remains
similar or even increases for the line at r = 0.94 m. Thus, other errors, as an ex-
citation of higher modes by the source or small errors of the impedance boundary
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condition, must be causing the small deviation. Even though the problem does only
marginally influence the solution, it should be considered as a serious error source
for the application of the method.

Now the wave propagation against the flow is considered. Fig. 7.7 shows the
instantaneous pressure perturbation along a line at r = 0.94 m for case B10.5 and
B40.5. Due to the larger axial wave number with flow, the axial resolution is only
halve as large as for the corresponding cases without flow. Comparing the numer-
ical result which is denoted by crosses and the analytical solution shown as circles,
the symbols do not exactly meet. This indicates the presence of amplitude and phase
errors. These errors are, however, smaller than the ones observed in the case with-
out flow. The maximum amplitude error is less than 3 %. However, for smaller
r there may be larger errors due to the relatively high amplitudes of higher radial
modes there.

Finally, for the sake of completeness the corresponding fully hard-walled annular
ducts with acoustic waves propagating against the flow are considered in Fig. 7.8.
There are only small differences between numerical and analytical solution. For
B10.5-hard the deviation between analytical and numerical solution increases with
the propagation distance, whereas B40.5-hard case shows an alternating error pat-
tern. However, the error remains much smaller than it has been observed with liner,
even though the resolution is comparable between the hard-walled and the liner
cases. A possible explanation is the smaller variation of the hard-walled modes in
radial direction. The acoustic power in the duct is preserved for all cases with an
error level below 1 % of the input energy.

7.1.2. Validation of the impedance models and the CAA method with a
generic fully lined inlet duct

Geometry, benchmark source and numerical specifications

A generic aeroengine intake, for which numerical and semi-analytical solutions can
be found in the literature [109], is considered in this section. It is used to further
validate and study the properties of the time-domain impedance boundary condi-
tion. The inlet is equipped with a spinner. The acoustic waves are excited in the fan
plane (x = 0 m) as single annular duct modes according to Section 3.6.3. The inlet
geometry is given by the following functions according to Rienstra and Eversman
[109].

Ri = max

{
0, 0.64212−

√
0.04777 + 0.98234

( x
L

)2
}

,

Ro = 1− 0.18453
( x

L

)2
+ 0.10158

e−11 (1− x
L ) − e−11

1− e−11 ,

where Ri denotes contour of the spinner and Ro the contour of the outer wall. L =
1.86393 m is the overall length of the inlet duct.
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Figure 7.9.: Numerical set-up for of the generic aeroengine inlet according to [109].

A sketch of the numerical setup is provided in Fig. 7.9. The physical domain is
extended by a source region (left) and a zone for the PML boundary condition at
the inflow (right). The radius of the duct is kept constant in the extended zones.
The overall grid size is 145 389 points. 1 206 points or < 1 % of the overall domain
are used to implement exchanges, 870 points to describe the modal-axisymmetric
boundary condition and 12 165 points (8 %) to implement the non-reflective bound-
ary conditions. There are 201 points in radial direction, which corresponds to the
resolution of the refined mesh used in the preliminary study in Section 7.1.1. In the
cylindrical duct section without spinner the aspect ratio is one and the radial extent
of the duct is almost twice as large as over the spinner. Therefore, the minimum
axial resolution in the current case is similar to the one of the original mesh used in
the preliminary study of Section 7.1.1. The computational time for the case is 26 h
for 50 000 iterations on one core of a dual core AMD Opteron 270 processor with
2.0 GHz and 8 GB main memory. This corresponds to a computational time of 13 µs
per time step and grid point, which is typical for the current CAA method with the
isentropic modal-axisymmetric model. The CFL number is 0.25.

The published results were obtained using a semi-analytic multiple-scales (MS)
and a numerical finite element method (FEM), respectively [109]. The multiple
scales method makes use of the WKB assumption to calculate the modes in a slowly
varying duct [109]. In the MS, the duct modes for the lined cases are defined using
the Myers boundary condition [109]. The FEM method solves a convective wave
equation for the acoustic potential in the frequency domain [109]. An impedance
boundary condition, which applies the Myers boundary condition in the frequency
domain is implemented to the FEM [109]. Only cases considering a lined wall and
nonzero base-flow conditions were picked from the publication of Rienstra and Ev-
ersman [109] for comparison. The outer contour of the duct is fully lined, whereas
the spinner is hard walled. For a shorter notation the descriptors given in Tab. 7.2
are used in the following to identify the cases.
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Table 7.2.: Benchmark cases for the sound propagation in a generic aeroengine inlet
against the flow at Ma = −0.5 from [109]. The first radial mode is excited.

case m [−] He1m [−] hard wall cut-on radial
modes [109]

PPWx

R10-10 10 10 0 225

R10-16 10 16 2 93

R10-50 10 50 11 22

R20-50 20 50 9 23

R30-50 30 50 6 26

R40-50 40 50 3 30

Base flow

Figure 7.10.: Mach number contours for the generic aeroengine inlet case computed
with the nonlinear Euler (PENNE) model.

The base-flow conditions are given as follows. The Mach number in the fan plane
is Ma = −0.5. The other parameters have no influence, as the frequency and imped-
ance are given nondimensional. In the following the coordinate system is chosen
such, that the sound propagation is oriented positive with the x-axis. Thus, a neg-
ative Mach number denotes the flow direction and the direction of sound propaga-
tion are opposite. The base flow for the current investigation is based on an inviscid
nonlinear Euler simulation as it is described in Section 3.2. The same mesh was used
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for the calculation of the base flow. Thus, the current base flow is not exactly equal
to the conditions used by the MS and FEM method.

Resulting relative pressure contours

The resulting normalized pressure amplitude contours are summarized in Fig. 7.11
to 7.16. A large variation of the Helmholtz and azimuthal mode number is covered
by these examples. An estimate of the resulting axial resolution, which has been
calculated with the real part of the axial wave number kx at the source position and
the overall maximum of the axial spacing ∆x in the mesh, is summarized in Tab. 7.2.
For comparison the figures from Rienstra and Eversman [109] as given below in
Fig. 7.11 to 7.16, where MS denotes the multiple scales and FEM the finite element
result. As can be seen from the figures, the location of the main lobe as well as the
contours at the wall are in a good agreement the published FEM and MS results. In
most cases the current CAA result combines elements from the FEM and MS results.

The largest observable difference is found at the inlet plane (x = L), where the
contours show a strong decay for the current CAA results in all cases. The extension
of the computational domain to implement the PML boundary condition is rather
arbitrary. It is chosen in this case in accordance to the benchmark source of [109].
The current results indicate the presence of additional reflections from the sharp
edge at the inlet plane. The pressure amplitude contours in Fig. 7.11 to 7.16 show
distinct insular structures indicating reflections close to the inlet plane for the CAA
result. These structures are observed in all plots apart from case R10-10 as isles
or pinches. In the case R10-10 the strong attenuation of the cut-off mode reduces
the amplitude below the minimum contour level before reaching the inlet plane.
Therefore, possible reflections are not visible. The cut of the domain directly at the
lip is not the typical situation in the application of a CAA method. A real aeroengine
would have a lip extending to the outer wall of the nacelle and engine test facilities
features bell shaped inlets, in order to have flow conditions similar to the in flight
situation. The objective of the numerical simulation is to obtain the radiation of
sound waves to the near field of the inlet. Therefore, the observed difference is
considered an unessential error for the intended application.

Other observed differences are more important. One is found in the comparison
of the absolute contour levels. While the contour lines for the low Helmholtz num-
bers in case R10-10 and R10-16 which are shown in Fig. 7.11 and Fig. 7.12, nearly
reach the same maximum axial position as in the FEM and MS results, the higher
Helmholtz numbers shown in Fig. 7.13 to 7.16 show an obvious reduction of the
maximum axial extent of the related contours for the current CAA results. The dif-
ference could point to increased dissipation by the numerical method, which should
not be observed with the relatively large axial resolutions (comp Tab. 7.2) used for
these cases. The problem will further be addressed in the following by analyzing
the acoustic power flux in the inlet.

Another difference is observed when directly comparing the FEM and CAA re-
sults. The FEM results show a radial variation in the fan plane with a node line and
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Figure 7.11.: Comparison of the current CAA results to the results of Rienstra and
Eversman [109]; R10-10 described in Tab. 7.2.
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Figure 7.12.: Comparison of the current CAA results to the results of Rienstra and
Eversman [109]; R10-16 described in Tab. 7.2.
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Figure 7.13.: Comparison of the current CAA results to the results of Rienstra and
Eversman [109]; R10-50 described in Tab. 7.2.
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Figure 7.14.: Comparison of the current CAA results to the results of Rienstra and
Eversman [109]; R20-50 described in Tab. 7.2.
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(a) CAA
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Figure 7.15.: Comparison of the current CAA results to the results of Rienstra and
Eversman [109]; R30-50 described in Tab. 7.2.
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Figure 7.16.: Comparison of the current CAA results to the results of Rienstra and
Eversman [109]; R40-50 described in Tab. 7.2.
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two local radial maxima around r = 0.55 m and r = 0.85 m for R20-50 in Fig. 7.14(b)
and around r = 0.55 m and r = 0.85 m for R30-50 in Fig. 7.15(a). This indicates
the presence of higher radial modes in the fan plane for the FEM result. Such vari-
ations are not found in the current result. However, the lower contour levels in the
inlet show some wiggles which point to the presence of higher modes in the current
result, too. The number of cut-on radial modes in the corresponding hard-walled
configuration is cited from Rienstra and Eversman [109] in Tab. 7.2. The results show
that, as well the FEM as the CAA results include higher radial modes for the higher
Helmholtz number (He = 50) cases shown in Fig. 7.13 to Fig. 7.16. An artificially
increased scattering into higher radial modes by the CAA method was found as a
problem in the verification of the preceding section as well. The FEM results seem
to be even more affected by the radial mode scattering at the source. However, the
amplitude of these higher radial modes seem to be reduced with increasing propa-
gation distance for the FEM results.

Higher radial modes also become visible at the inlet plane for the FEM result in
case R10-50, R20-50 and R30-50. A similar strong scattering into a higher radial
mode is only observed for one case, R10-50, with the current method. However, the
radial mode number seems to be different from the FEM result. The different base
flow conditions are considered to be the cause for the observed differences.

Altogether the results verify the implementation of the EHR-based time domain
impedance boundary condition with the current CAA method. Small differences are
attributed to the different mean-flow profiles. A comparison of the current result to
earlier ones [106], using artificial base-flow conditions similar to the MS method,
shows the strong influence of the mean flow. The question about numerical dis-
sipation in the current result remains open up to now. It will be addressed in the
following section by an analysis of the acoustic intensity.

Intensity based verification of the results

The acoustic energy conservation computed by Eq. (5.7) for the six test cases shown
in Tab. 7.2 is given in Fig. 7.17 denoted as sum. The two summands of Eq. (5.7),
which describe the flux along the axis, as well as the cumulated flux over the wall,
are also given in the figures. The overall conservation of the acoustic power flux,
which is observed as almost constant sum of the components, indicates a very low
dissipation in the current numerical results. Small axial variations are found, which
show the presence of small instationary components due to reflections or vortical
perturbations in the solution. These perturbations are, however, orders of magni-
tude below the overall acoustic power flux. Altogether, the acoustic intensity veri-
fies the current numerical result. The above observed smaller pressure amplitudes
with respect to the FEM and MS results are not related to the dissipation of the nu-
merical method, therefore.
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Figure 7.17.: Acoustic intensity flux related to the input at the source boundary for
the current CAA result, case descriptors from Tab. 7.2.
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Influence of low-order filtering and the resolved boundary layer at the wall

Figure 7.18.: Mean flow profile with
three grid points of
boundary layer for the
generic aeroengine inlet

Finally, the generic inlet case is considered
to study the impact of the low-order filter-
ing in the EHR to suppress the instability of
the Myers boundary condition (comp. Sec-
tion 4.5.2). Furthermore, the idea to use a
resolved boundary-layer profile at the wall
instead of the Myers boundary condition
is studied. It is found, that a specific im-
pedance model and mesh allows to obtain
a solution, which is later disturbed by the
slowly growing instability. This early state
solution is considered as benchmark source
for the stabilization approaches. Case R10-
50 from Tab. 7.2 is considered for the fur-
ther investigation. As it features the lowest
resolution and the largest number of cut-on
radial modes, the results are considered to
be representative for other cases.

Two different filtering stencils are consid-
ered for the liner variables, of which only
the low-order filtering as it is described in
Section 4.5.2 is successful in suppressing the instability for a large number of time
steps. As can be seen from Fig. 7.19(b), the low-order filtering causes only small
variations from the original result with the Myers boundary condition.

The resulting acoustic power flux along the axis is given in Fig. 7.19(a) for differ-
ent artificial boundary layer profiles with different boundary layer thickness δ and
zero velocity at the wall. The base-flow profiles are completely artificial. One of
the boundary layer profiles is shown in Figure 7.18. Most of the profiles are con-
structed by sixth-order polynomials. One cosine profile is considered to study the
influence of the functional shape. As can be seen from Fig. 7.19(a), the cosine profile
almost exactly reproduces the result of the polynomial profile with the same bound-
ary layer thickness. All resolved boundary layer cases predict a lower attenuation
than the application of the Myers boundary condition would do. A convergence
towards the result using the Myers boundary condition is observed with decreasing
boundary layer thickness. This is similar to the reports of Zhuang [146] for a 2D
channel. However, the current results indicate that the mesh is not fine enough to
resolve a boundary layer, which fully reproduced the Myers boundary condition.
No instability is observed with any of the resolved boundary layer profiles.

A boundary layer with 30 points thickness makes the acoustic power loss over
the liner very small. The observed result for the axial power flux would only be
expected for a hard walled duct not for a lined one. However, the interior acoustic
field in this case looks more like in the lined duct cases with small perturbation am-
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plitudes close to the wall. The lower attenuation is due to the refraction of acoustic
waves away from the lined surface, which becomes completely inefficient due to
this.
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Figure 7.19.: Normalized acoustic power flux along the axis if the generic inlet con-
figuration for case R10-50 from Tab. 7.2 to compare the stabilization
approaches of (a) section 4.4.1 and (b) section 4.5.2.

With respect to the stabilization of the impedance boundary condition the conclu-
sions of this investigation are:

• A second-order filtering of the storage term is required to stabilize the EHR
for the current impedance model parameters and grid sizes, other choices may
still be unstable or even be stable without filtering.

• The impact of a second-order filtering of the auxiliary variables of the Myers
boundary condition on the observed acoustic field is found to be small. Thus,
the method seems applicable in general. All verification results presented in
this work use the low-order filtering of the storage variables of the EHR model
unless other noted.

• A resolved boundary layer may, however, lead to significantly different re-
sults, depending on the boundary layer thickness.

• The result which has been obtained with the Myers boundary condition rep-
resents the limit for decreasing boundary-layer thickness.

7.1.3. Sound radiation from lined ducts

Two cases from the literature, considering the radiation of sound waves from lined
ducts, are used as benchmark source in this subsection. The test cases cover two-di-
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mensional channels with and without partial lining [64] as well as an axisymmetric
annular duct with full, partial and without lining [28]. The emphasis is put on the
cases with flow in the following. The whole validation including cases without flow
can be found in Buske et al. [21]. The EHR model is used for both of the test cases.

Radiation of sound waves from two-dimensional lined ducts [64]

The first benchmark case uses the published analytical solution of Koch [64] for
comparison. It considers the radiation of sound waves from a partially-lined two-
dimensional duct. The lining of the upper and lower wall of the channel extends
from x = −2.17 H to x = −1 H, where H = 0.1873 m is the height of the channel
and x = 0 denotes the exit plane of the semi-infinite channel. Koch [64] uses the
broadband impedance model of Ko [63], to describe the frequency response of the
liner panel. The impedance function is given according to Koch [64, Eq. (2)] by

Z = R∗

(
1 + i

f∗
f0∗

)
− i cot (2 π d∗ f∗) .

Expanding the reduced frequency f∗ = f H c−1 and the constants c = 340 m/s,
f0∗ = 8.14, R∗ = 1.4 and d∗ = 0.136 one yields the model parameters of the EHR
model by comparison of the coefficients in Tab. 4.1

R f = 1.4, m f = 1.507× 10−5 s, β = 1, Tl = 1.497× 10−4 s and ε = 0.

With these model parameters for the EHR, the maximum possible time-step size in
the simulation is reduced to ∆t = 5.5× 10−8 s. This corresponds to a reduction by
one order of magnitude with respect to the hard walled case (∆t = 8.9 × 10−7 s).
The maximum time-step size with the EHR model is found to be proportional to
the parameter m f . The CAA simulation uses an equidistant orthogonal mesh of
267 521 points. The radiation boundary condition of Section 3.5.1 is applied at the
outer boundaries of the computational domain. The sound source in the duct is
implemented via a sponge layer according to Eq. (3.22). It uses 10 grid lines to
prescribe a non-reflective source. The two-dimensional linearized Euler equations
are used for the simulation. All cases of the benchmark source by Koch [64] consider
a medium at rest for the sound propagation. The Ingard/Myers boundary condition
is not required in this case. A summary of the test cases, which are going to be
presented below, is given in Tab. 7.3.

The test cases cover a wide variety of impedance values and frequencies. The
lowest frequency from the benchmark source for m = 0 is omitted for a more clear
presentation; it is found in a good agreement with Koch’s result [21]. Figs. 7.20 to
7.22 show the resulting far-field characteristics, in terms of relative pressure ampli-
tudes according to Koch [64], for the other cases. An acoustic intensity based AIBM
far-field calculation is applied, which solves an inverse acoustic problem to obtain
the far-field characteristics [137, 138]. As can be seen from the figures, the near-field
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Figure 7.20.: Comparison of the CAA near field (dashed), CAA–AIBM far field pre-
diction results (solid line) and the analytical solution (dotted) for the
radiation from a partially lined duct without flow; mode m = 0; the
case description is found in Tab. 7.3; the hard walled result is given in
the upper part of each sub-figure for comparison.
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Figure 7.21.: Comparison of the CAA near field (dashed), CAA–AIBM far field pre-
diction results (solid line) and the analytical solution (dotted) for the
radiation from a partially lined duct without flow; mode m = 0; the
case description is found in Tab. 7.3; the hard walled result is given in
the upper part of each sub-figure for comparison.
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Figure 7.22.: Comparison of the CAA near field (dashed), CAA–AIBM far field pre-
diction results (solid line) and the analytical solution (dotted) for the
radiation from a partially lined duct without flow; mode m = 0; the
case description is found in Tab. 7.3; the hard walled result is given in
the upper part of each sub-figure for comparison.
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Table 7.3.: Benchmark cases for the radiation from a partially lined two dimensional
channel from Koch [64]. The mode number corresponds to the two-
dimensional hard-walled duct mode here.

case Z [−] m [−] f [Hz] f∗ = f H/c[−] PPW [-]

K0.8-0 1.4− i 1.09 0 1453.5 0.8 37.5

K1.8-0 1.4 + i 0.28 0 3270.3 1.8 16.6

K2.8-0 1.4 + i 1.56 0 5087.1 2.8 10.7

K0.8-1 1.4− i 1.09 1 1453.5 0.8 37.5

K1.8-1 1.4 + i 0.28 1 3270.3 1.8 16.6

K2.8-1 1.4 + i 1.56 1 5087.1 2.8 10.7

K1.2-2 1.4− i 0.40 2 2180.2 0.8 25.0

K1.8-2 1.4 + i 0.28 2 3270.3 1.8 16.6

K2.8-2 1.4 + i 1.56 2 5087.1 2.8 10.7

characteristics of the CAA simulation on an arc with radius 1.5 m around the cen-
ter line of the duct exit and the AIBM far-field characteristics are very similar with
respect to the position and number of lobes. However, the amplitude differs.

With respect to the result of Koch [64], the amplitudes are too low for almost all
cases. The deviation is smaller for the hard-walled cases. The shape of the radiation
characteristics is still met for the lined duct cases. The reason for the lower ampli-
tudes is probably artificial dissipation in the numerical simulation. The increased
dissipation in the cases with liner is related to the smaller time-step size. The filter-
ing of the solution is fixed to the iterations of the Runge-Kutta scheme. It is carried
out for each other time step, independently of the time-step size. This leads to a
increased number of filtering operations for a wave propagating with liner over a
given distance. In the current example, there are ten times more filtering operations
for the cases with liner than for the cases without. Due to the increased number of
filter calls, the characteristics with liner show an increased dissipation. The increase
of the deviation from the analytical solution with the frequency substantiates the
assumption. The dissipation of the overall method increases with the wave num-
ber. A larger deviation is especially found for higher modes at higher frequencies,
where the resolution reaches down to 10.7 PPW. There are, however, different error
levels between the main and side lobes, which identify the reflections at the sound
source as additional cause of error. The reflections are selective to the modal con-
tent. Waves impinging perpendicular to the source are less affected than higher
modes with a small cut-off ratio [113]. In consequence, the source may excite re-
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flected higher modes, which lead to altered radiation characteristics and feed the
side lobes.

To further isolate the error, the simulation should be repeated with a larger num-
ber of time steps between two filtering calls. Further insight may also be provided
by varying the source boundary condition. However, there is no perfect bound-
ary condition for close to cut-off waves [113]. The PML, which was found to be
best suited in such cases according to Schemel [113] is not implemented as source
boundary condition yet. The repeated simulation is omitted here. Excluding the
highest frequency from the benchmark, the presented results reach a sufficient level
of consistency with the analytical solution of Koch [64] such that the verification can
be considered successful.

Sound radiation from an annular duct with jet flow and a lined centerbody [28]

The benchmark case for this subsection considers the radiation of sound from an an-
nular duct with fully or partially lined centerbody. It represents a simplified model
for a so called short cowl aeroengine design with a lined outer wall of the core noz-
zle. In this design, the inner core of the engine is not fully encased by the bypass
duct. The lining of the afterbody, which is the outer wall of the engine core ex-
tending downstream of the main nozzle, was found to have a large noise reduction
potential by Richards et al. [100].

The analytical solution has been published by Demir and Rienstra [28] together
with a variety of cases for code benchmarking. The analytical solution is based on a
semi-infinite hard-walled duct with hard-walled or lined infinitely long centerbody.
The outer diameter of the annular duct is 2.4 m, whereas the centerbody diameter is
1.6 m. There is a jet flow from the duct. The jet features a non-developing infinitely
thin shear layer. The flow over the liner has a local Mach number of Ma = 0.5 and
there is an ambient flow with Ma = 0.3. The sound waves propagate with the flow.
Inside the jet and the annular duct the temperature is slightly increased, such that
the speed of sound is c = 350 m/s. A single azimuthal duct mode is excited inside
the duct. The wall impedance of the lined inner wall is Z = 2− i for all cases given
by the benchmark source [28]. Only cases with jet flow and liner are picked of the
large number of cases considered by Demir and Rienstra [28]. The test cases which
are going to be presented in the following are summarized in Table 7.4.

The results in this section were obtained using the current CAA method in com-
bination with an acoustic intensity based far-field method (AIBM) of Yu et al. [137,
138]. The results were also published as [21]. The modal-axisymmetric linearized
Euler equations are applied with a fully non-isentropic pressure equation. A grid
stretching towards the boundary is used in combination with a radiation/outflow
boundary conditions of Section 3.5.1 and a sponge layer [comp. Eq. (3.22)] at the
outer boundaries. The sound source is prescribed by a sponge layer of 15 points
according to Section 3.5.2. A lined duct mode according to Section 3.6.3 is speci-
fied at the source plane inside the lined duct via the sponge layer of Section 3.5.2
for the lined centerbody cases. The lined afterbody is excited by a single hard wall
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Table 7.4.: Cases considered from Demir and Rienstra [28] for the sound radiation
form an annular duct with lined centerbody. Only the first radial mode is
excited.

case Z = [-] m [−] n [−] f [Hz] surface lined

D660-1 2− i 4 1 660 whole centerbody

D660-2 2− i 4 2 660 whole centerbody

D1095-1 2− i 4 1 1095 whole centerbody

D1095-2 2− i 4 2 1095 whole centerbody

D1095-3 2− i 4 3 1095 whole centerbody

D660-AB 2− i 4 1 660 afterbody only

D1095-AB 2− i 4 1 1095 afterbody only

mode inside the annular duct. A more detailed case description may be found in
Buske et al. [21]. The base-flow conditions used for the analytical solution cannot
be directly adapted to the CAA simulation. This is due to the infinite-thin shear
layer of the jet flow in the benchmark source, for which no modeling exists in the
current CAA method. The shear layer has to be resolved, which is done in the cur-
rent work by artificially increasing the shear layer thickness. This is obtained by
repeated second order filtering (comp. Appendix B.1.3) of the infinitely thin shear
layer. In addition to the filtering of the mean flow profile, the source terms arising
from the spatial derivatives of the mean flow are also filtered with the same stencil.
It is found that 15 filtering iterations are sufficient to obtain a stable and accurate
solution. However, the presented results are based on a 50-times filtered base-flow
profile.

Lined centerbody: The results obtained for a fully-lined centerbody are summa-
rized in Fig. 7.23 and Fig. 7.24. The three line styles represent the CAA, AIBM and
the analytical result for the relative far-field SPL. The near-field result, which has
been obtained on an arc of r = 6 m and is scaled for a distance of r = 46 m is
shown as dashed line. The CAA–AIBM far-field prediction for R = 46 m is shown
as solid line. The corresponding analytical solution is shown as dotted line. Firstly,
the comparison of the acoustic near-field (CAA) and far-field results (AIBM) shows
a relatively good agreement of both results. There are, however, some essential
differences. One is the position of the minimum radiation direction, which differs
between the current CAA and AIBM results for D660-2, D1095-2 and D1095-3. Fur-
thermore, there are additional small side lobes in the far field which are not found
in the near field. Both observations are attributed to acoustic near-field effects, as
the CAA result is monitored at a surface relatively close to the duct end.
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(b) D660-2 [21]

Figure 7.23.: Comparison of CAA (dashed), CAA–AIBM far-field (solid line) and the
analytical solution (dotted) for the radiation from an annular duct with
a lined centerbody f = 660 Hz (basic case informations in Tab. 7.4).

When comparing the current far-field results to the published result of Demir and
Rienstra [28], the agreement is very good. The general shape of the directivity plots
is very similar and the main lobe and first side lobe are well met. The angle is mea-
sured relatively to the duct axis with a zero angle in flow direction. It should be
noted, that angles lower than 12 degrees are directly affected by the shear layer,
such that the far-field characteristics are assumed to be incorrect for lower angles.
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(a) D1095-1 [21]
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(b) D1095-2 [21]
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(c) D1095-3 [21]

Figure 7.24.: Comparison of CAA (dashed), CAA–AIBM far-field (solid line) and the
analytical solution (dotted) for the radiation from an annular duct with
a lined centerbody f = 1095 Hz (basic case informations in Tab. 7.4).
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In fact the CAA results show a larger deviation from the analytical solution up to al-
most 30 degrees. The amplitude is over-predicted and side lobes are missing in this
range of angles. However, on the background of the different shear layer, which is
infinitely thin in the benchmark source and of finite thickness for the current result,
this deviation is not surprising.
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Figure 7.25.: Comparison of the CAA near-field (dashed), CAA–AIBM far-field
(solid line) and the analytical solution (dotted) for the radiation from
an annular duct with a lined afterbody (cases according to Tab. 7.4).
The analytical solution of Demir and Rienstra [28] with Kutta condi-
tion is used as reference.
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7.1. Validation and verification of the impedance models

Another observable difference concerns high angles between 120 and 180 degrees.
The acoustic pressure amplitude of the backscattered waves is approximately one
order of magnitude below the one of the main lobe. The CAA results show smaller
amplitudes under these angles, too. This effect has been observed for several dif-
ferent radiation problems [135] and is related to the non-infinite upstream extent of
the computational domain. Altogether, the results with fully-lined centerbody vali-
date the implementation of the time-domain impedance boundary condition based
on the EHR into the present CAA method including the instability treatment of the
Myers boundary condition.

Lined afterbody: A lined afterbody is also considered by the benchmark source
[28], which means the centerbody is lined outside the duct (x > 0) and hard walled
inside (x < 0). The lined afterbody adds the problem of a hard to lined wall tran-
sition. Fig. 7.25 presents the results of the related two test cases. When compared
to the fully-lined centerbody the sound pressure level in the far-field is increased.
The CAA near-field and CAA–AIBM far-field results are found in a reasonable
agreement with some observable near-field effects as blurred side lobes and slightly
changing amplitudes. For both cases the back scattered waves show a distinct min-
imum in the near field, which is not found in the far field.

The analytical results, which have been obtained by a Wiener–Hopf technique
compare two models for the hard-lined transition. One is the modeling as a discon-
tinuity at which the perturbation field may show a jump. The other is the applica-
tion of a so called full Kutta-condition, which keeps the stream traces parallel to the
wall in a small vicinity of the transition point. There is an observable difference of
both conditions [28]. The current simulations cannot, however, directly apply either
one of the conditions. Rather the filtering of the solution leads to a condition, which
keeps the stream traces smooth but not parallel in the vicinity of the hard–lined
transition. There are no experimental investigations of the impedance jump up to
now, but it is assumed that the physical reality will be a partial Kutta condition with
smooth stream traces. Therefore, the results obtained by using a full Kutta-condition
are considered for the benchmark. The results are in a good agreement with the ana-
lytical solution. The application of a far-field method even improves the agreement.
Angles up to 30 degrees are affected by the shear layer and show higher amplitudes
in combination with blurred lobes for the current result. From 30 to 60 degrees the
current result underpredicts the benchmark source by less than 5 dB. The resolved
shear layer, which is replacing the modeled infinite thin one from the benchmark
source in the current simulation, probably affect the solution under these angles, as
well. The backward angles are found in a perfect agreement.

Altogether the results in this section further validate the implementation of the
EHR model as well as the whole CAA method including the boundary conditions.
The strategy of artificially thickening an infinite thin shear layer by low order filter-
ing in order to handle a jet flow as base flow for the current perturbation approach is
also verified by these results. The filtering of the mean flow still leaves the number
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of filtering iterations and the order of the filter free to choice. A preliminary study
of these parameters is provided in Buske et al. [21].

7.1.4. Investigations using the benchmark data from the NASA grazing
flow impedance tube (GIT) experiment

In this section the configuration of the NASA GIT experiment will be presented
and used for a further investigation of the EHR model. However, a comprehensive
validation with the GIT benchmark data is provided in the following Section 7.2.1.

Specification of experiment and numerical method used

x [mm]

r
[m

m
]

0 203 406 609 812
0

51

102

Liner (Z, length=406 mm)

sound source
in additional
sponge layer

terminal plane
(measured Ze)SPL for comparison

hard wallshard walls

Figure 7.26.: Numerical model for the NASA-GIT [57] (height coordinate flipped
with respect to the reference)

In a first step, the NASA GIT experiment is approximated by a two-dimensional
model in the computation. Later a three-dimensional example will be provided. The
numerical grid and the boundary conditions are summarized in Figure 7.26. The
setup shown in Figure 7.26 is extended by a PML [Eq. (3.24)] downstream the ter-
minal plane to obtain a reflection free outflow. Unlike the numerical model applied
by Watson et al. [134] the sound source is also assumed non-reflective to upstream
propagating waves, by using a sponge-layer in combination with the sound source
[comp. Eq. (3.22)].

The computation domain is decomposed into three blocks. These blocks exchange
all field data and each grid point is calculated in only one block. The model param-
eters of the EHR model are assumed to be constant along the one wall of the block
in the middle. The other blocks have hard walls. There are very short waves present
in the acoustic field in reaction to the impedance jumps at the block interfaces. As a
side effect of the numerically motivated filtering, which has been described in Sec-
tion 3.1.3 for the CAA scheme and in Section 4.5.2 for the liners auxiliary variables,
the streamlines pass smoothly across the edges between the hard wall and the liner.
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7.1. Validation and verification of the impedance models

Assessment of the accuracy of the impedance representation

First the accuracy of the resulting frequency response of the impedance is assessed
without flow. Furthermore, the flow effect on the effective impedance is studied
with one example. The theoretical impedance function according to Eq. (4.11) is
compared to the one, which is obtained from the CAA result. The model parameters
for the EHR model are given as

R f = 1.× 10−6; β = 1.69; ε = 0.69;
1

m f
= 479.3 s−1;

1
Tl

= 2075 s−1.

The above impedance parameters are used in the following to prove the impedance
model. The simple test calculates the effective impedance Z′ = p̂/û2 from pressure
and velocity magnitude in several points on the liner. The time-resolved data is
stored with the computation and the necessary Fourier transforms are implemented
with MATLAB.
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Figure 7.27.: Impedance calculated from the CAA result for the NASA-GIT setup

The 26 investigated frequencies reach from 500 Hz to 3 kHz in 100 Hz steps. 26
monitor points were placed along the lined wall in order to prove the impedance.
The observed impedance should exactly match the theoretical impedance function
according to Eq. (4.11) without flow. However, techniques like the filtering of the
field and the filtering of the auxiliary variables of the EHR are required to stabilize
the solution. The filtering adds an error in general. All results are plotted on top
of each other in Fig. 7.27. As can be seen from the figure, the frequency response
deviates for several points. The points closest to the hard–lined and lined–hard
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transition show a larger resistance for frequencies around 1 kHz and 3 kHz. The
observed resistance is more than twice as large as the specified value for some fre-
quencies with small resistance. The second grid point from the impedance jump
shows a smaller impedance around the anti-resonance. The value is 15 % smaller
than the specified value for the largest resistance. Similar to this observation, the
reactance does not meet the presetting and the largest deviations are observed for
the four points, which are closest to the transitions. Besides these hard–lined and
lined–hard transition effects, the calculated impedance function is in good agree-
ment to the theoretical one for all other 22 points shown in Fig. 7.27. In general the
implementation of the EHR is validated by this test. However, if the main attenu-
ation effect of the liner is achieved by reflections at the hard–lined and lined–hard
transitions, the current implementation may produce errors. These errors are grid
dependent due to the grid dependent filtering.

Three-dimensional simulation of the NASA-GIT experiment

In this section the effect of a three-dimensional flow profile on the impedance is
investigated. This provides an outlook on the capability of the EHR-based time-
domain impedance boundary condition for three-dimensional simulations. Further
examples for the application are found in Panek et al. [92].

(a) Velocity profile from Jones et al. [57] (Maeff. =
0.335)

(b) Instantaneous pressure contours and perturba-
tion velocity vectors ( f = 2500 Hz)

Figure 7.28.: Base flow and 3D CAA result for the NASA-GIT experiment.

An axial cut through the cross section of the channel with the three-dimensional
flow profile, which is used for the 3D simulation is presented in 7.1.4. The three-
dimensional base-flow profile has been measured by Jones et al. [57] with a Pitot
probe, such that no data at the surface is available and a cubic extrapolation to the
wall point had to be applied. The grid resolution of the equidistant orthogonal
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7.1. Validation and verification of the impedance models

mesh equals the resolution in the corresponding two-dimensional case. The CAA
simulation uses only 15 grid points in hight and dept of the duct each. Therefore, a
fully resolved viscous sublayer cannot be applied for both, the two- and the three-
dimensional simulation. The Ingard/Myers boundary condition is combined with
the partial resolved boundary layer profile. The velocity at the surface is nonzero.
An EHR fit to the measured termination impedance of Jones et al. [57] is used as
boundary condition for the outflow of the computational domain.

The resulting instantaneous pressure contours in Fig. 7.28(b) qualitatively show
the function of the stabilization approach by low-order filtering with a partly re-
solved shear layer in 3D. For a further investigation the three-dimensional geometry
is excited by the same multi-frequency source as the two-dimensional case. Com-
paring the simulation times, the three-dimensional case takes 9.2 hours for 30 000
iterations or 16 µs per node and iteration, whereas a two-dimensional simulation
takes 53 minutes for the same number of iterations, which means 24 µs per node
and iteration. The resulting sound pressure level at the hard wall opposite to the
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Figure 7.29.: Comparison of the tree- and two-dimensional simulations for the
NASA-GIT experiment
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liner is detailed for selected frequencies in Fig. 7.29 in comparison to the analytical
solution. The three-dimensional result is obtained at the centerline of the hard wall.
As can be seen from the figures, there is a small difference between two- and three-
dimensional simulation for most of the cases. Only f = 500 Hz and f = 3000 Hz
show larger deviations. In general the three-dimensional simulation seems to show
more pronounced oscillations along x. They are similar to oscillations found in the
experiment.

From the relatively good agreement of three- and two-dimensional simulation
can be concluded that the EHR model works well for both cases. The stabilization
by low-order filtering is verified with this comparison as well. Furthermore, the
differences show that the three-dimensional channel flow has an essential influence
on the resulting sound field. The computational times for three-dimensional simu-
lations do not allow an impedance eduction, yet. This could, however, be achieved
in the near future by porting of the CAA software to a more efficient processor e. g.
a graphics processing unit to reduce the turn around time.

7.1.5. Conclusions to the validation and code benchmark

The correct reproduction of the analytical solutions for annular ducts, as well as the
good agreement of the current result for the large number of test cases from the liter-
ature, prove the correct implementation of the EHR-based time-domain impedance
boundary condition. The majority of the examples considers two-dimensional or
modal-axisymmetric mathematical models. However, one tree-dimensional simu-
lation verifies the applicability of EHR model in 3D.

The examples at the same time prove the suppression of the flow instability, which
appears with the application of the Ingard/Myers boundary condition for a nonzero
base flow. A low-order filter is applied. The effect of this engineering approach is
investigated in detail with realistic test cases. The impact found to be very small
in the case of a fully lined generic inlet duct. However, when considering hard–
lined and lined–hard transitions, larger differences are observed for points in the
vicinity of the transitions. As has been shown above from a literature review, the
instability of the Myers boundary condition depends on many parameters. The
current investigation can never cover all of them. Thus, even though the actual
examples demonstrate the stability of the filtered Myers boundary condition, the
approach may fail for other impedance functions, flow conditions or mesh sizes.
Furthermore, the prediction of the conditions, under which the flow instability of
the Kelvin–Helmholtz type occurs in reality, is probably not possible. An alternative
is found in the application of a resolved boundary layer of the base flow. This has
been shown, to essentially influence the resulting acoustic field in several cases. A
resolved thick shear layer at the impedance surface is found to provide significantly
other results than the Myers boundary condition. The three-dimensionality of the
boundary layer profiles in a channel with square cross section is found to influence
the acoustic field as well.

Among the limitations of the current CAA method, which have been exposed by
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the thorough validation and verification, are a small leakage to higher modes for the
modal-axisymmetric approach and remaining reflections from the source boundary
for some of the cases. The impact of the observed errors on the acoustic solution is
small, but their presence should alert from applying a CAA method without a prove
of the solution. Another important question concerns the correct modeling of the
transitions between hard wall and liner panel and vice versa. Analytical solutions
apply a so called full Kutta condition [28]. Such a condition is not directly prescribed
for the CAA simulation. However, the high-order filtering of the solution leads to a
similar condition, provided that the grid resolution is well adjusted.

The maximum CFL-number is found to be proportional to the parameter m f of the
EHR model. Therefore, the time-step size had to be reduced far below the theoretical
limit, which is obtained with the current numerical schemes for the LEE, in some of
the cases. With a reduced time-step size, a more frequent filtering leads to increased
dissipation observed in the solution. However, this could be avoided by reducing
the filtering frequency.

7.2. Impedance eduction

In this section, the impedance eduction of Chapter 6 is applied with data from in-
situ measurements as input. The resulting impedance is compared to published
impedance data. A further validation of the result is provided by comparing the
known geometrical parameters of the liner sample, to the ones calculated from the
impedance-eduction result. Therefor the relations of Section 4.3.4 are applied. Four
different samples are considered, of which one is axisymmetric and the other three
are plane samples which are mounted to one side of the test section with quadratic
cross section. Complex pressure amplitudes from the NASA-GIT experiment [57]
are considered as input in Section 7.2.1. The influence of the base-flow profile and
the imperfect anechoic termination in the experiment on the eduction result is stud-
ied. Then, energy dissipation, transmission and reflection coefficients from the DLR
flow impedance test rig [22] are considered as input for the impedance eduction for
two different plane liner sample in Section 7.2.2. Finally, the effect of a bias flow on
the impedance of a large axisymmetric resonator is studied in Section 7.2.3 before
general conclusions to the impedance eduction are drawn in Section 7.2.4
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7.2.1. NASA impedance flow tube experiment

a=0.6 mm

l=85.6 mm

Figure 7.30.: Sketch of the ceramic tubular
liner.

The impedance eduction in this section
uses the published NASA-GIT data for
a ceramic tubular liner sample as input
(see Jones et al. [57]). The liner con-
sists of densely-packed narrow ceramic
tubes with a diameter of 0.6 mm and
a length of 85.6 mm according to Jones
et al. [57]. The surface porosity is given
by Jones et al. [57] as σ = 57 %. Addi-
tional data with an increased frequency
resolution of 100 Hz has been provided
by Jones in a private communication
[58]. The deviation of the numerical re-
sult from the measured SPL and phase
is used to define the objective function for the impedance eduction as described in
Chapter 6. The resulting impedance function is compared to the eduction results of
Jones et al. [57]. The discrepancy of the impedance is considered as a benchmark
for the time-domain impedance eduction using the EHR model. In a preliminary
investigation [105] the EHR was found to be not able to sufficiently reproduce the
frequency response of the given impedance by a direct fit of the function in the fre-
quency domain. Thus, the capability of the EHR as broadband impedance model
will be tested by the impedance eduction as well.

In the following, three different set-ups will be considered for the broadband im-
pedance eduction with input data sets for five different flow Mach numbers pro-
vided by Jones et al. [57, 58]. First the impedance eduction is carried out neglect-
ing the boundary layers in the duct and assuming perfectly anechoic terminations.
Then, the EHR is used to fit the measured termination impedance and the result is
applied using an uniform flow and a partial resolved measured flow profile, respec-
tively.

Numerical setup for the impedance eduction

As in the experiment, only the downstream propagation of acoustic waves parallel
to the flow direction is considered. The mesh resolution in height direction is 30
points. Overall the mesh consists of 15 345 points. The radiation boundary condition
of Section 3.5.1 is used as anechoic termination of the computational domain and at
the same time implements the sound source. The parameters are limited for the
eduction process, such that the CFL-number can be chosen to 0.3. The turn-around
time of one function call, which means one CAA simulation with the impedance
varied, is about 25 minutes for 15 000 time steps. This is required to obtain a non-
transient solution of 0.01 s length. This corresponds to an exact multiple of the
smallest common period time of the multi-frequency excitation signal and allows
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a direct extraction of the excitation frequencies from the Fourier-transformed data.
The whole optimization takes up to 41 steps with over 250 function calls in the most
cases. This results in a computational time of approximately four days for each flow
Mach number.

Uniform flow and anechoic terminations

First the impedance eduction is carried out using an uniform flow in the duct. The
termination is assumed to be fully anechoic using the radiation/outflow boundary
condition of Section 3.5.1. Fig. 7.31 summarizes the resulting impedance functions
for all published flow velocities. The Mach number given below corresponds to the
effective Mach number from the experiment, which is used to specify the uniform
flow profile. The impedance eduction results of Jones et al. [57] are plotted for com-
parison. All Mach numbers show relatively large differences in the frequency range
around 2100 Hz. This corresponds to the anti-resonance of the ceramic tubular liner.
When comparing the resulting sound pressure level and phase to the experiment by
the figures given in the Appendix D.1.1, relatively large differences are observed for
several frequencies for the phase as well as for the sound pressure level.

Table 7.5.: Model parameters of the EHR for a plug flow profile and fully anechoic
terminations.

Ma [-] 1/Tl [s−1] R f [-] 1/m f [-] β [-] ε [-] l [mm] L [mm]
0 2195.9 1.×10−6 106.1 2.442 0.6008 77.4 41.3

0.079 2158.6 1.×10−6 226.8 1.661 0.6481 78.8 27.4
0.172 2092.2 1.×10−6 883.9 1.898 0.5806 81.1 29.9
0.255 2100.9 1.×10−6 482.2 1.681 0.6164 81.0 27.0
0.335 2084.4 1.×10−6 1999. 1.672 0.5919 81.6 26.2

The five parameters of the EHR are shown in Tab. 7.5 for each flow Mach number.
The parameter R f is found to be very small in all cases. R f correctly describes the
negligible face sheet resistance of the faceless tubular liner. In fact 1.× 10−6 is the
lower limit set for the constraint optimization of this parameter. The cavity damping
parameter ε is found to be relatively large, ranging from 0.58 to 0.65 with a variation
of ±5 % between the different flow Mach numbers. The resonance frequency is
approximately identified as f0 ≈ 0.5 T−1

l . It is found to be between 1042 Hz and
1098 Hz for the different flow velocities. The case without flow is out of range with
respect to β. This leads to the large impedance peak shown in Fig. 7.31 (a) in the
anti-resonance. Furthermore, m f shows a relatively large variation with the flow
velocity.

The physical interpretation of the model parameters allows more insight. The
liner panel consists of multiple λ/4-resonators. As can be seen from Tab. 4.1, the
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Figure 7.31.: Educed impedance with plug flow assumption and fully anechoic ter-
minations in comparison to the result of Jones et al. [57].

frequency response of the impedance of a λ/4-resonator with rigid thin pipes is
described by a cotangent function. Comparing Eqs. (4.8) and (4.11), the time delay
2 Tl of the EHR is identified with the l = λ/4 resonance 2 Tl = l/(2 c). In this way,
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7.2. Impedance eduction

the cavity depth can be calculated from Tl as

l =
1
2

Tl c.

The educed cavity depth is shown in Tab. 7.5. The educed cavity depth (l = 0.077 . . .
0.082 m), seems to be consequently smaller than the real depth of the ceramic tubu-
lar liner, which is 0.0856 m according to Jones et al. [57]. The cavity damping is not
modeled and therefore not present in the impedance model of the λ/4-resonator,
Eq. (4.8). However the results indicate, that there is a significant cavity damping
which is described by the parameter ε. This is due to viscous effects inside the nar-
row cavities according to Jones et al. [57]. Different from the oversimplified model
of Eq. (4.8), the current impedance eduction results in a nonzero face sheet reactance
m f . The parameter is used for the coupling of the model and could not be zero. A
constraint is used in the optimization to ensure this. However, the limit for this
parameter is not touched by the eduction result.

Comparing the mass-like terms of the mechanical analog, the λ/4-resonator and
the EHR shown in Tab. 4.1 for low frequencies one obtains

L
σ

=
1
3

l = m f +
1
6

c β Tl .

This means, that the relation of the effective neck length and the open area for the
current liner, L/σ, should be a third of the cavity depth l on one hand and is con-
nected to the m f , β and Tl on the other hand. This is used to calculate the effective
neck length from the impedance eduction result and the open area ratio. The educed
corrected neck length L is given in Tab. 7.5. The result of Ma = 0 is not in line with
the others; for all other cases it is in the expected range of l/3 = 28.5 mm.

Altogether, the impedance eduction in this section can be considered successful.
However, the resulting impedance functions show relatively large deviations from
the result of Jones et al. [57]. The same applies for comparison of the SPL and phase
data between the eduction result and the published data by Jones et al. [57] which is
shown in the Appendix D.1.1. Moreover, the educed geometry of the λ/4 tubes is in
range of the real geometry, but systematically underpredicts the real cavity depth.

Modeling of the measured termination impedance

In the following the measured termination impedance of the NASA flow tube exper-
iment is considered for the impedance eduction. The EHR model is directly fitted to
the measured frequency response of the termination impedance. The results visual-
ized in Fig. 7.32 and the model parameters are given in Tab. 7.6.

The given impedance from the experiment indicates a relatively good anechoic
termination, with a real part of the impedance around unity and small imaginary
parts. The magnitude of the pressure reflection factor, according to Ehrenfried [31],
is calculated from the measured impedance. It remains below 10 % without flow and
reaches up to 15 % for the higher flow speeds. The EHR model slightly overshoots
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7. Results and Discussion

the reflection factor for the lower flow velocities. For the high flow speeds the fit of
the termination impedance is improved. The Ingard/Myers boundary condition is
not applied for the termination.
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Figure 7.32.: Frequency response of the termination impedance. Fit by the EHR-
model in comparison to the original data provided by Jones et al. [57].
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7.2. Impedance eduction

Table 7.6.: Impedance model parameters for the termination impedance.
Ma [-] 1/Tl [s−1] R f [-] 1/m f [-] β [-] ε [-]

0 446.1 0.903 235.1 0.100 0.636
0.079 475.6 0.981 1000. 0.100 1.000
0.172 2131. 0.874 1000. 0.118 0.965
0.255 727.2 0.850 1000. 0.145 0.918
0.335 346.8 0.732 2000. 0.268 1.000

Uniform flow and measured termination impedance

In a first step, the termination impedance is applied together with a plug-flow as-
sumption for the base flow. The results provide an insight to the effect of the ter-
mination impedance on the educed liner impedance. For more clarity of the pre-
sentation the resulting SPL and phase plots are given in the Appendix D.1.2. With
the termination impedance, reflections become an essential part of the solution in
particular around the anti-resonance showing only small attenuation of acoustic en-
ergy by the liner. Therefore, the agreement to the experimental data is improved
particularly in this range of frequencies. Moreover, the peak level of the impedance
function is decreased and becomes similar to the published eduction result of Jones
et al. [57] in the frequency domain with the application of a termination impedance.
However, the frequency of the phase shift between positive and negative imaginary
part of the impedance is slightly increased with respect to the published data of
Jones et al. [57]. The resonance frequency is also found to be increased in the current
simulation.

Table 7.7.: Model parameters of the EHR for a plug-flow profile with the measured
termination impedance.

Ma [-] 1/Tl [s−1] R f [-] 1/m f [-] β [-] ε [-] l [mm] L [mm]
0 2147.1 1.×10−6 235.1 1.661 0.6355 79.2 27.4

0.079 2157.9 1.×10−6 229.8 1.656 0.6516 78.8 27.3
0.172 2147.1 1.×10−6 194.4 1.691 0.6613 79.2 28.4
0.255 2210.2 1.×10−6 113.8 1.569 0.6495 76.9 27.9
0.335 2096.1 1.×10−6 970.6 1.676 0.6871 81.1 26.4

The educed EHR model parameters show only small variations with the flow
velocity as can be seen in Tab. 7.7. The only exception is found in Ma = 0.335, where
Tl and m f are reduced. The educed effective depth of the cavity underpredicts than
the real cavity depth, when considering the speed of sound in cold air as reference.
This reduced length corresponds to an increased resonance frequency. However, it
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Figure 7.33.: Educed impedance with plug-flow assumption and EHR fit to the mea-
sured termination impedance in comparison to the result of Jones et al.
[57].

could also be due to a higher speed of sound inside the cavity. The active length is
calculated based on a speed of sound of c = 340 m/s in the cavity. However, due
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7.2. Impedance eduction

to the large cavity damping, the temperature inside the ceramic tubes may increase.
Assuming a temperature of T = 323 K, the speed of sound increases to c = 360 m/s,
which would lead to the increase of the resonance frequency of the ceramic tubes
to f0 = 1.05 kHz, as it is observed in the current impedance eduction. The educed
corrected neck length is found to be in the range of l/3. The variation of the educed
cavity depth and corrected neck length with the grazing flow velocity is relatively
small.

Measured flow profile and termination impedance

Finally, in this section the EHR fit of the measured termination impedance is consid-
ered together with the measured flow profile. The flow profile given by Jones et al.
[57] is approximated by a cubic polynomial to provide the base-flow profile on the
mesh of the acoustic simulation. Interpolation as well as extrapolation to the wall
points are necessary. The velocity at the wall is nonzero. The filtered Ingard/Myers
boundary condition is applied to model the flow effects. Only velocity data is avail-
able from the experiment. As the pressure and density have not been measured,
an uniform density and pressure distribution is assumed for the base-flow field.
The frequency response of the educed impedance is compared to the result of Jones
et al. [57] in Fig. 7.34. Due to the partial boundary layer profiles, the agreement with
Jones’ impedance data is further improved in comparison to the preceding sections.
The same applies for the resulting sound pressure level along the opposite wall, as
can be seen from the series of figures given in the Appendix D.1.3.

The Ma = 0 case has been considered again to prove the convergence of the
method. The result in this section differs from the one of the preceding section.
The resonance frequency is shifted. The figures given in the Appendix D.1.2 and
D.1.3 show, that both impedances provide a good agreement for different frequen-
cies, whereas others are not so well met. Thus, it is supposed that multiple local
optima of the impedance function are present for this case. When comparing the
impedance function, the small differences mainly concern the location of the anti-
resonance, such that the impedance eduction can be considered successful, anyway.

Table 7.8.: Model parameters educed with the EHR for a realistic flow profile with
termination impedance.

Ma [-] 1/Tl [s−1] R f [-] 1/m f [-] β [-] ε [-] l [mm] L [mm]
0 2088.0 0.000279 836.6 1.805 0.6931 81.4 28.6

0.079 2154.5 1.×10−6 203.9 1.688 0.6321 78.9 28.1
0.172 2086.1 1.×10−6 999.0 1.767 0.6582 81.5 27.9
0.255 2093.5 1.×10−6 999.0 1.699 0.6094 81.2 26.8
0.335 2130.7 1.×10−6 281.5 1.747 0.6931 79.8 28.5
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Figure 7.34.: Educed impedance with a partial boundary layer profile and an EHR
fit to the measured termination impedance in comparison to the result
of Jones et al. [57].

Finally, the educed model parameters for this case are summarized in Tab. 7.8.
Two remarkable changes are observed. One is the face sheet mass reactance, which
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7.2. Impedance eduction

is decreased for most of the cases with respect to the result of the preceding sections.
The other is an increase of the parameter β, which controls the cotangent component
of the impedance. The corresponding effective neck length and active cavity depth
are found in the correct range again. The observed variations with the flow velocity
are small. However, the educed cavity depth is systematically smaller than the real
cavity depth, when assuming the ambient speed of sound.

Summary of the study with the NASA-GIT data

The general methodology for the impedance eduction, which has been developed
in the current work, is similar to the one, described by Watson et al. [134] for the
data of Jones et al. [57]. However, one major difference is obvious. The current
CAA method operates in the time-domain, whereas the published impedance data
is based on an eduction for each single frequency. The impedance eduction in the
time-domain allows to simultaneously find the impedance for multiple frequencies.
Therefor the five parameter EHR model is applied as template for the frequency re-
sponse of the impedance. This has the advantage that the number of parameters
in the optimization does not increase with the number of frequencies in the exper-
iment, as it would be the case for the frequency domain method of Watson et al.
[134].

The number of parameters is essential for the number of function calls, respective
runs of the CAA method for a converged optimization. A side effect of the imped-
ance model is the connection of the data over the whole frequency range. As this
connection is based on the physical representation of the liner as Helmholtz res-
onator array, the resulting impedance function corresponds to this physical model.
The effect of the connection is twofold. It may help to provide a valid impedance
for frequencies, where the objective function shows a plateau and the frequency do-
main method could find multiple local optima, on one hand; on the other hand,
the connection of all frequencies may produce additional local optima for the cur-
rent method. The frequency response of the impedance function is forced by the
EHR model, even if the liner cannot be described as an array of equal Helmholtz
resonators.

However, the small deviation of the resulting SPL and phase data of the pressure
from the experiment, validates the current impedance eduction results. The result-
ing impedance is in a reasonable agreement to the result of Jones et al. [57]. The ob-
served differences mainly concern the range around the anti-resonance. The results
also show that the EHR model is applicable to describe the ceramic tubular liner
over the whole range of frequencies by one set of parameters. Moreover, the educed
effective geometry of the liner is in a reasonable agreement to the real measures. The
application of the measured termination impedance improves the agreement with
the published data. All at all, the results validate the implementation of the EHR
model.
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7. Results and Discussion

7.2.2. Plane liner samples at the DLR flow impedance test facility

In this section two plane liner panels are investigated. They are sketched in Fig. 7.35.
The measurements have been carried out in the DLR flow impedance tube test rig
[22]. Additional measurements of the manufacturer of the samples, AleniaAerma-
cchi S.p.A., are provided as impedance data from measurements with Kundts tube
and in-situ measurements in the NLR flow impedance tube [22]. The different test
facilities are described in Section 1.3. The available benchmark data is not directly
comparable to the current results. The measurement with Kundts tube and the NLR
flow tube uses an excitation level of 130 dB, whereas for the DLR flow tube mea-
surements the excitation level is between 110 and 120 dB [22]. Furthermore, the
impedance data from the NLR flow tube uses a higher flow speed.
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(b) AA-2 – linear liner with gauze covering

Figure 7.35.: A sketch of samples AA-1 and AA-2

The DLR test setup features a 80 mm× 80 mm test section of 220 mm length, in
which a liner can be mounted to replace the lower wall. The general topology is
similar to the NASA-GIT experiment shown in Fig. 7.26. However, anechoic termi-
nations are used for both duct ends in the DLR flow tube. Both liner samples fully
fit into the test section and are sealed. Flush mounted microphones are positioned
at the centerline of the upper wall in the up- and downstream duct sections. The mi-
crophone data is processed in order to calculate energy reflection and transmission
coefficients according to Busse et al. [22].

The numerical set-up for the impedance eduction with both samples uses a mesh
of 1375 points with a mesh spacing of 8 mm. The data collection in the simulation
is reduced to four out of five positions up- and downstream of the sample each.
The CFL number is 0.15 to allow relatively small m f in the optimization process.
The non-reflective boundary conditions are implemented via the radiation/outflow
boundary condition of Section 3.5.1 and the simplified method of Section 6.2.2 is
applied to calculate energy transmission and reflection. 35 000 time steps are calcu-
lated in total to obtain a non-transient time series of 0.1 s which takes 3 minutes in
real time on one core of a dual core AMD Opteron 244 processor.
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7.2. Impedance eduction

Results for a perforate single degree of freedom (SDOF) liner (AA-1)
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Figure 7.36.: Frequency response of the educed impedance in comparison to Kundts
tube measurements of AleniaAermacchi S.p.A. [22] for AA-1.

The data processing from the experiment provides two different sets for the prop-
agation of sound waves over the liner without flow. As only the the end of the duct
used for the excitation is switched, the results should be equal for these cases. How-
ever, the test setup is not fully symmetric due to slightly different anechoic termina-
tion devices on both ends and the connected air supply from the compressor on one
side. In fact, comparing the input data of the two cases found in Appendix D.2.1
only small differences are observed. The two different data sets of energy trans-
mission and reflection are considered as input for the impedance eduction. The
resulting impedance functions are plotted in Fig. 7.36. It should be noted that the
experimental data from the DLR flow tube covers only frequencies between 210 Hz
and 2110 Hz, since the current data processing is limited to plane waves in the exper-
iment. The extended frequency range in the plot is obtained by evaluating Eq. (4.11)
with the resulting model parameters from the impedance eduction. As can be seen
from the figure, the impedance functions differ only for the low-frequency range. In
this range the largest deviation between the two sets of input data is found, com-
paring the figures in Appendix D.2.1. Therefore, the current eduction result can be
seen as resulting impedance error due to the different input.

For comparison the Kundts tube measurements of AleniaAermacchi S.p.A. are
shown in Fig. 7.36. The current impedance eduction shows significant deviations
from the Kundts tube measurements for AA-1. The real part of the impedance al-
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most steadily decreases with the frequency for the Kundts tube measurements. This
decrease continues beyond the resonance frequency which is marked by the zero
crossing of the imaginary part. On the other hand, real and imaginary part of the
impedance are coupled through the cotangent function in the EHR. Therefore, such
a regime is not possible with the EHR model. The gradient of the imaginary part of
the impedance is lower in the Kundts tube measurements than it is found with the
current impedance eduction. Furthermore, the resonance frequency is found to be
approximately 100 Hz lower for the current result.

Comparing the energy dissipation, transmission and reflection coefficients shown
in the Appendix D.2.1 a good agreement is found. A significant deviation from the
experimental data can only be observed for frequencies above 1700 Hz. The current
impedance eduction is not able to reproduce the attenuation peak and the following
drop for Ma = 0 in this case. The resonance frequency falls into this range, such that
the prediction could be affected by the deviation.
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Figure 7.37.: Educed impedance comparison between the current result and NLR
flow tube measurements of AleniaAermacchi S.p.A. [22, 117] for sam-
ple AA-1.

The results of the impedance eduction with sample AA-1 are summarized for all
investigated flow Mach numbers in Fig. 7.37. The resonance frequency ranges from
1800 Hz to 2300 Hz for the results. For higher frequencies, the real part of the im-
pedance increases for upstream sound propagation and decreases for downstream
propagation. The low frequency range below 1 kHz shows indifferent effects. How-
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7. Results and Discussion

ever, the variations are in the same range as the difference between the two Ma = 0
cases and do not raise from the estimated error level of the processing chain. The
flow effect on the imaginary part of the impedance is a decrease of the slope for all
flow directions.

Impedance eduction results from NLR flow tube measurements of AleniaAer-
macchi S.p.A. are given in Fig. 7.37 for comparison. There are only few points of
measurement, as the original frequency range of the NLR flow tube measurement
is much larger than for the currently reported DLR experiment and the frequency
resolution is relatively low. Ma = ±0.3 could not yet be achieved in the DLR exper-
iment such that Ma = −0.2 is the case next to the NLR data; the green crosses (NLR,
Ma = −0.3) are compared to the diamonds Ma = −0.2 now. With this comparison
the differences observed with the NLR impedance data is similar to the observation
with the Kundts tube measurements above. The real part shows a decay to higher
frequencies for the NLR experiment. Furthermore, the real part is higher for the cur-
rent eduction result than for the NLR experiment for all frequencies. The imaginary
part shows a smaller slope for the few data points from the NLR measurement. This
smaller slope could, however, be due to the difference in the flow velocity.

The educed five parameters of the EHR model are now used to calculate the corre-
sponding geometrical parameters of the Helmholtz resonator panel. The Eqs. (4.14)
are used to obtain the ratio of corrected neck length and open area ratio L/σ as well
as the ratio of cavity volume and surface area S/V of one cell. From the first L,
which corresponds to the thickness of the face sheet plus an additional length cor-
rection is obtained using σ = 4.3 %, as given by Busse et al. [22]. The thickness of
the facing material is 1 mm. The ratio of surface area and prismatic volume corre-
sponds to the inverse of the cell depth, which is H = 12.7 mm for AA-1. The educed
EHR model parameters and the corresponding neck length and cavity height are
given in Tab. 7.9. This quantity is also given in Tab. 7.9. The base flow has a strong
influence on the educed effective neck length. It is reduced with the flow speed.
The educed cavity depth also shows relatively large variations. The resulting cavity
depth from the impedance eduction is up to 23 % smaller than the real depth. How-
ever, in general the geometrical parameters are in the correct range. The connection
of the geometry and the EHR validates the current result. Furthermore, in this case
the physical interpretation of the model parameters of the EHR model is validated
by the corresponding geometry parameters.

Results for the SDOF liner with gauze covering (AA-2)

The comparison between Kundts tube measurements of AleniaAermacchi S.p.A.
and the impedance eduction result without flow for the SDOF liner sample with
gauze covering (AA-2) is given in Fig. 7.38. The comparison of energy coefficients
has been put into Appendix D.2.2. As can be seen from Fig. 7.38, the agreement be-
tween the current impedance eduction and the Kundts tube measurements is much
better than for AA-1. The real part of the impedance is in perfect agreement. The
imaginary part has a lower gradient for the Kundts tube measurements. Moreover,
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Figure 7.38.: Frequency response of the educed impedance in comparison to the
Kundts tube measurements of AleniaAermacchi S.p.A. [22] for sample
AA-2.

the different propagation directions show a small deviation without flow. This de-
viation is mainly observed in the imaginary part.

The influence of the base flow on the impedance of sample AA-2 is studied in
Fig. 7.39. The impedance functions are almost on top of each other for the real part.
The imaginary part shows a split into two different results for up- and downstream
propagation, with a very small deviation of the corresponding two results varying
the flow speed for each direction. As the test setup is not fully symmetric with
respect to the up- and downstream propagation, the deviation is assumed to be a
consequence of a small error in the input data (comp. Appendix D.2.2). Altogether
AA-2 shows almost no influence of the base flow on the impedance.

The result of the impedance eduction is further investigated by the corresponding
educed liner geometry. Sample AA-2 has a cavity depth of H = 30.734 mm and
a, due to the gauze covering, not measurable open area ratio according to Busse
et al. [22]. Therefore, the open area ratio is assumed to be equal to the one of AA-
1 (σ = 4.3 %). The educed model parameters of the EHR model, as well as the
related educed geometrical parameters are given in Tab. 7.10. Similar to the EHR
model parameters, the geometrical parameters show only small variations. The only
exception is found in Ma = +0, where the resonance frequency differs from the
other results and the geometry parameters are also found to be different. The other
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Figure 7.39.: Frequency response of the educed impedance for different Mach num-
bers for AA-2.

cases show a good agreement of the geometry parameters with each other and are
very close to the real geometry with H = 30.73 mm according to Busse et al. [22].

Comparison of the results

When comparing the impedance eduction results without flow and the Kundts tube
measurements, relatively large differences are found for the sample AA-1, whereas
the sample AA-2 shows a nearly perfect agreement. The only relevant difference
in the panel structure is the gauze which was added for sample AA-2. The gauze
should reduce the development of large scale flow structures close to the liner and
make it less sensitive for flow and high amplitude effects. The Kundts tube mea-
surements were carried out with a much higher excitation level than measurements
for the current impedance eduction. Therefore, the observed differences for sample
AA-1 could be related to a nonlinear variation of the impedance with the amplitude.
AA-2 behaves linear and the impedance is not affected by the excitation amplitude.
Similar differences are observed with the NLR flow tube data, which points to the
nonlinear behavior again. Further experiments, which vary the excitation ampli-
tude, are required to bring the different experiments into accordance and verify the
postulated nonlinear behavior of sample AA-1.

The current results prove the flow effect on the impedance of AA-1, whereas the
impedance of the gauze covered linear liner panel AA-2 remains almost constant in
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7. Results and Discussion

the investigated range of frequencies. The educed geometrical parameters, which
were calculated from the impedance eduction result, are in a good agreement with
the real panel geometry. Altogether, the good agreement of geometry and educed
impedance verifies the correct impedance eduction based on the energy transmis-
sion and reflection.

7.2.3. Single axisymmetric resonator

The last example for the impedance eduction from measurements consideres a large
annular resonator with bias flow through the apertures. The sample consists of a
large annular cavity of V = 8.233 × 10−3 m3 around a circular flow duct of D =
140 mm in diameter [46, 47]. The cavity is connected to the flow duct by two rings
of 104 apertures in total. The apertures have a diameter of 2.5 mm. The active length
of the sample is only l = 11 mm [46]. The open area ratio is 6.79 % and the face sheet
thickness 1 mm. In the experiment by Heuwinkel [46], Heuwinkel et al. [47], base
flow conditions up to Ma = ±0.1 have been considered.

Specifications for the impedance eduction

The impedance eduction uses energy transmission and reflection coefficients to de-
fine the objective function. A plug flow assumption is used for the base flow. The
effect of the bias flow on the base flow is neglected. The effect of the bias flow on the
resulting impedance of the large resonator is, however, included in the measured
energy transmission, reflection and dissipation data.

The corresponding numerical set-up for the impedance eduction uses a grid spac-
ing of 4 mm, resulting in a total mesh of 5100 points. The axisymmetric isentropic
variant of the model equations is applied. Only the real part is used in the computa-
tion setting the azimuthal mode number to zero. The radiation/outflow boundary
condition of Section 3.5.1 is used as non-reflective boundary condition. It also imple-
ments a sound source at one end of the computational domain which is transparent
to reflections from the hard-lined and lined-hard transitions. 21 000 time steps are
calculated with a CFL number of 0.5, which results in a turn-around time of 34.4
minutes on one core of a dual core AMD Opteron processor 244.

Results

The impedance functions resulting from the eduction are presented in Fig. 7.40.
Without base flow, the real part of the impedance increases with the bias flow ve-
locity. The resistance is zero without bias flow. With base flow the resistance first
decreases for bias flow velocities up to vjet = 6, while it increases for higher bias flow
velocities. The imaginary part of the impedance shows a smaller slope when a bias
flow is added for zero base flow. This decrease steadily depends on the bias flow
velocity for zero base flow speed. The observation is also found for higher bias flow
velocities than vjet = 6 for the sound propagation against the flow at Ma = −0.1.
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Figure 7.40.: Educed impedance for different bias flow velocities vjet and base flow
Mach numbers Ma.

The sound propagation in flow direction shows no clear trends for the effect of the
bias flow on the imaginary part of the impedance. Without base flow, the first zero
crossing of the imaginary part, which corresponds to the first resonance frequency
is found between f0,1 = 220 . . . 375 Hz for the different bias flow velocities. A sec-
ond resonance, is found with the third zero crossing of the imaginary part around
f0,2 = 1280 . . . 1370 Hz. However, some of the cases show a significantly higher f0,2.
The energy dissipation reaches a local maximum for both of these frequencies. For
the sound propagation against the flow the resonances are moved to higher frequen-
cies in most of the cases. For the sound propagation against the flow, the resonance
frequency is reduced.

The energy transmission, reflection and dissipation coefficients found by the im-
pedance eduction are given in Appendix D.2.3. In general, they are in a very good
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7. Results and Discussion

agreement with the experimental results of Heuwinkel [46]. An exception must be
made for the sound propagation with a base flow at Ma = 0.1, where the character-
istic peaks of the dissipation curve are not found in the numerical result for some of
the cases.

It should be noted that the energy dissipation of the sample DLR-1C is lower than
for the samples investigated in the preceding section. Different from the other sam-
ples, the liner produces relative large reflections for some frequencies. The active
length of the sample is very small such that it is meshed by only four grid points in
axial direction. This is unfavorable for the resulting impedance representation, but
an increase of the mesh size would increase the time for the optimization. Therefore,
the sample is considered to be at the limit of the current method.

To further study the eduction results, the five parameters of the EHR model for
the optimal impedance function are summarized in Tab. 7.11 and Tab. 7.12. Further
information is provided by the last three columns of the table. Eqs. (4.14) are used
to calculate the resulting neck length based on the open area ratio of 6.79 % and the
cavity volume based on the active surface S = π D l from the EHR model param-
eters. Furthermore, a resonance frequency f0 which is based on the corrected neck
length and the resulting volume–open area ratio is provided. Due to the large face
sheet mass reactance m f , it is not possible to use the approximation f0 ≈ 0.5 T−1

l
here.

First of all, the resulting cavity volumes are out of the expected range for the
sound propagating with the flow at Ma = 0.1. The experimental data shows a
relatively large scattering such that a better eduction result could not be obtained.
Therefore, the Ma = 0.1 cases will be excluded from the following discussion. The
result of Ma = −0.1, vjet = 30 m/s is dropped from the discussion for the same rea-
son. Omitting these cases the following conclusions can be drawn from the tables:

• The cavity damping parameter of the EHR model is found to be zero or very
small in most of the cases.

• Without flow the face sheet resistance increases with the bias flow velocity
increasing. With flow the effect is only observed for higher bias flow velocities
beyond vjet = 6 m/s.

• Without any flow the volume of the resonator is educed with about 10 % error
and the educed neck correction is between 1.5 . . . 1.6 mm. This corresponds
to a reasonable value between 60 % to 64 % of the aperture diameter for the
correction.

• Without base flow the moving mass of the Helmholtz resonator denoted by
the corrected neck length L decreases with increasing bias flow velocity.

• Without base flow the effective cavity volume decreases with the bias flow
velocity up to vjet = 6 . . . 10 m/s. It increases for higher bias flow velocities.
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7.2. Impedance eduction

• The resonance frequency is in the range of 200 . . . 400 Hz. The resonance fre-
quency increases with the bias flow velocity to reach a maximum between
vjet = 16 . . . 20 m/s. With flow the tendency is not clear from the results.

The educed geometry parameters without any flow are in range of the original ge-
ometry. Furthermore, the cases without base flow show a sensitivity to the propaga-
tion direction. The deviation of the results indicates the overall error development
from the experimental result through the impedance eduction. Even though the
variation of each model parameter is small, the geometry parameters are recovered
with a variation of up to 11 % for the cavity volume and 14 % for the effective neck
length. The results clearly identify an effect of the bias flow on the impedance. The
variation of the geometrical parameters and of the resonance frequency is signifi-
cantly larger than the error level, which is identified by the deviation of the educed
impedance for waves propagating parallel and in opposite direction to the axis of
the test set-up without flow. The corrected neck length is reduced with increasing
bias flow velocity, whereas the educed cavity volume is reduced for relatively small
bias flow velocities and increases again with higher bias flow speeds. This reduction
of the neck length has also been described by Ronneberger [112].

For the wave propagation with flow, the resonance frequency is outside the range
of measurement. The experiment could not be extended to lower frequencies due
to the resonance of the speaker which is used for the excitation. In this case the im-
pedance eduction results in a set of parameters, which fails to recover the geometry
and resonance frequency. Therefore, the presence of the resonance frequency is con-
sidered important for a correct broadband impedance eduction. Altogether, this last
example for an impedance eduction from measurements demonstrates the applica-
bility of the method for in-situ measurements of axisymmetric liner samples. Even
though the sample DLR-1C reaches the limits of the current impedance eduction
process a large number of valid results could be obtained. Due to the physical back-
ground of the EHR model, faulty eduction results (denoted by a star in Tab. 7.12)
could be identified.

7.2.4. Conclusions to the eduction results

The large number of impedance eduction results, which has been presented in Sec-
tion 7.2, demonstrates the capability of the EHR model. A representation of the
impedance by one set of parameters, which approximates the experimentally ob-
served data very well, is obtained for almost all samples with and without flow.
The four liner samples cover a variety of relevant liner designs. The structure of
the liner panels ranges from thin λ/4-tubes over typical inlet liner designs, includ-
ing a so called linear liner with gauze covering, to a single resonator with multiple
apertures connected to a large annular volume. Energy transmission and reflection
as well as pressure amplitudes are considered as input for the impedance eduction
from the experiment. Plane samples as well as a cylindrical resonator have been
considered.
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7. Results and Discussion

The eduction is validated by the agreement of the current broadband time-domain
impedance eduction result with the published impedance eduction data of Jones
et al. [57] for the NASA-GIT experiment with a ceramic tubular liner. The observed
differences mainly concern the anti-resonance and the peak magnitude of the im-
pedance. Due to the low attenuation around the anti-resonance the variation of the
impedance produces only small variations in the objective function here. Small de-
viations at this frequency range compensate for a much larger error around the first
and second resonance. In addition, it is found that the termination impedance has a
significant influence on the resulting liner impedance and the remaining overall er-
ror with respect to the pressure amplitude data. The influence of a partially resolved
boundary layer profile at both walls is found to be less significant.

Besides the comparison to data from Kundts tube as well as NLR flow tube mea-
surements published by Busse et al. [22] for some of the other samples, a valida-
tion of the educed liner impedance is provided by the calculation of measurable
geometry parameters from the educed EHR parameter set for all samples. These
educed geometry parameters are in a good agreement with the real measures of
the liner samples for most of the cases. Large differences are only observed in one
case, where the resonance frequency of the sample is out of the measured frequency
range. However, the resulting impedance functions show only small difference to
valid results in the frequency range considered by the experiment. Moreover, all
eduction results show a certain scattering of the EHR model parameters, when vary-
ing the propagation direction of the sound wave in the experiment without flow.
The geometry which is calculated back based on these parameters shows the same
scattering. As the results should be independent of the propagation direction, the
scattering is considered as a measure of the overall error from the measurement and
the eduction process.

The impedance eduction results in a set of model parameters, which best approxi-
mate the experimentally observed sound field with the current CAA method. These
model parameters can directly be applied to a realistic aeroengine in a two- or three-
dimensional simulation as it is shown for instance in [92] using the educed parame-
ters of sample AA-2 in a three dimensional configuration. Systematic errors e. g. due
to the approximation of the hard-lined transition by the CAA method are expected
to cancel by this application.

7.3. Applications as broadband impedance model

This section is intended to give examples of the potential of the EHR model in the
application. All three applications which are given in the following, make use of
the connection of the EHR model parameters to the geometry of the resonator. The
first two examples demonstrate the applicability of the EHR model to describe the
impedance of a volume, which is connected to a duct system. These examples
deal with problems, which have been investigated experimentally in the frame-
work of the CombustionNoise initiative. The first example, which is presented in
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7.3. Applications of the EHR

Section 7.3.1, is a benchmark of the CAA method with a generic model experiment
for the entropy noise generation. The second example in Section 7.3.2 uses a pulse
excitation of the averaged flow field in a combustion chamber to calculate a quali-
tative spectrum of the system response. The last application, which uses the CAA
method to predict the attenuation of low frequency noise from an airfield by large
resonators, is presented in Section 7.3.3.

7.3.1. Modeling of the plenum impedance in an experiment for entropy
noise

In this section a model experiment for the indirect noise generation in combustion
systems is investigated. This indirect noise is generated by initially silent acceler-
ated hydrodynamic perturbations according to [25]. The model experiment uses an
axisymmetric flow duct. To reduce the mesh size and at the same time obtain a
better approximation for installations inside the plenum, the EHR is used to model
the plenum impedance. The geometrical setup and the experimental data of heat
supply, flow parameters and acoustic measurements in the outlet duct are provided
by Bake et al. [6].
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Figure 7.41.: Schematic of the model experiment with the electrical heated inlet duct
(left, heating red) and the outlet duct with three microphones right. The
plenum (left) has been modeled by the EHR.

The validation experiment [6, 7] uses and electrical heat source in an axisymmet-
ric duct with nozzle. The flow comes from the left in Figure 7.41 into the plenum,
which is followed downstream by the heated inlet duct that acts as model for the
combustion chamber. Then the flow is accelerated into the nozzle with a diameter
of 7.5 mm and decelerated in a long diffuser, which ends in the outlet duct with an
anechoic termination to the open space. The outlet duct features four microphone
positions in the experiment, of which only three have been covered by the compu-
tational domain.
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Figure 7.42.: Overall input power calculated from temperature measurements.

The electrical heating is performed through six modules, which are stringed with
thin platinum wires [6]. The resulting flow temperature was measured through the
resulting density variation by a LASER-vibrometer [6].

Heat source

The overall heat supply is given in Figure 7.42. The heating is triggered by a rectan-
gular pulse of 0.1 s length. The heat supply is idealized as volumetric heat input in
the computation. The overall measured power P is equally distributed in the source
volume. The single wire layers are powered successively in order to obtain a more
sharp switch on pulse, as it was performed in the related experiment. To specify
the heat source in the simulation, the vibrometer measurement is filtered and flat-
tened. The measured pulse shape is assumed to be proportional to the heat supply
of one wire layer. In this way, the overall power of the wire modules can be calcu-
lated as shown in Figure 7.42. The overall power is then equally distributed to the
source region of the numerical model with a time delay of ∆t = ux,0 ∆x−1 for the
downstream grid lines.

Meshing

The setup is meshed by a structured axisymmetric mesh, which consists of 31 878
points in 6 subdomains. The mesh is optimized to be orthogonal, equidistant and
have an aspect ratio close to unity. Especially the local grid spacings in axial and
radial direction are nearly equal. The typical grid spacing ranges from 5× 10−4 m
to 1 × 10−3 m in the inlet and outlet duct respectively. The smallest mesh size of
3 × 10−4 m is reached in the throat of the nozzle. The different grid spacings be-
tween the inlet and outlet duct arise, as nearly one half of the radial grid lines are
terminated in the round wall of the nozzle. This meshing strategy allows to have
large variations in diameter on a short length without extensive grid stretching and
skewing. The resolvable frequency range for acoustic waves reaches up to 34 kHz,
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when considering a conservative accuracy limit of approximately 10 PPW. The only
exception is found in the upstream acoustic wave, which cannot be resolved by a
linear approach in case of a transonic flow regime. The propagation of hydrody-
namic perturbations can be resolved up to approximately 1 kHz in the inlet duct,
even at the lowest mass flow rates. The resolution in the nozzle is much better.
The outlet duct can only resolve halve of the frequency range given above. How-
ever, the hydrodynamic perturbations in the straight outlet duct with constantly low
mean flow Mach number do not contribute to the acoustic field in our simulation.
The high-frequency component is simply removed by the filter. The CFL number
is chosen to be 0.75 and 106 time steps are calculated to reach a real time of 0.4 s
at least. The structured meshing of the plenum without three-dimensional installa-
tions would require additional 7 subdomains and more than doubles the grid size if
an equidistant mesh spacing is used [103].

Mean flow field

The average flow state is a required prerequisite to simulate the propagation of small
perturbations in the test setup. It is calculated with the CAA method solving a
nonlinear Euler equation as described in section 3.2 on the mesh described above.
To improve the convergence speed, a tree point stencil filter of second order is used
for the mean flow calculation all over the domain. With this filter the CFL number
could be increased up to 1. A steady state solution is obtained after 50 000 iterations.

Pressure response in comparison to the experiment

Figure 7.43.: Pressure response at the microphones in the exhaust duct for Ma = 0.73

In this section the pressure response at a microphone in the outlet duct is com-
pared between the numerical solution and the experiment. Previous CAA simula-
tions of the experimental setup indicate a strong dependency of the observed pres-
sure response to the unknown impedance of the settling chamber ZPlenum [101].
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This plenum impedance has not yet been measured. It is estimated by the analogy
of the low-frequency limit of the EHR to the mechanical analogue [comp. Eq. (4.13)].
The real part of the impedance, the resistance is not covered. The plenum geome-
try is given as cavity with a volume of V = 4.6 l and the active area of the neck is
S = 7.1 cm2. The plenum has only a negligibly short neck to the duct. Thus the
neck length fully depends on a length correction. The usual empirical length cor-
rection for the waves moving inside the cavity is in the order of the neck radius,
which would lead to L = 1.5 cm, whereas the consideration of a length correction
for cylindrical volumes by Alster [4] would result in L = 0.2 cm. Depending on the
length, the resonant frequency is obtained to be f0 ≈ 44 . . . 170 Hz. f0 is approxi-
mate the inverse of the halve response time Tl . Consequently, the nondimensional
model parameters are obtained to β ≈ 0.3 . . . 0.17 and m f ≈ 2× 10−5. The damp-
ing of the cavity volume due to the installations and the inflow is not clear, but
definitely nonzero. The same applies to the face sheet reactance, which probably in-
creases with the flow velocity. The theoretical consideration gives an estimate for the
parametric range of the EHR. The parameters are chosen as follows: Tl = 1/270 s,
β = 0.4 and m f = 1/20000. A moderate face sheet resistance of R f = 0.5 and cavity
damping of e−ε = 0.8 are assumed.

(a) Ma = 0.31 (b) Ma = 0.52

(c) Ma = 0.73 (d) Ma = 1.05

Figure 7.44.: Average acoustic source strength QPL (top as contour plot) and axial
acoustic power flux Pa (below as lines).

The result obtained with this representation of the plenum closely approximates
the experimentally observed pressure response, as can be seen from Fig. 7.43. How-
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ever, there are still some differences in the detail. The relatively free choice of pos-
sible EHR parameters strongly influences the observed result such that it cannot be
considered as a validation of the method.

Quality analysis and source location

In this section the intensity based source location of section 5.2 is applied in order to
verify the numerical solution and at the same time locate acoustic sources. The re-
sults of the intensity analysis are presented in Fig. 7.44. All flow speeds are based on
the impedance model considered above for the plenum. The direct source strength
of the heat input is visible with the QPL-scale in the region between x = 0.4 m to
x = 0.436 m. However, the acoustic energy input by the direct source (QPL ≈ 70 dB)
is several orders of magnitude below the maximum observed energy input in the
duct. The indirect source strength which is found in the nozzle and diffuser is much
larger (QPL ≈ 120 dB). The most powerful acoustic sources are found in the noz-
zle throat. Due to the sinks fund in the diffuser, only a small fraction of the source
strength in the nozzle radiates to the downstream duct section.

Some additional acoustic sources are located further downstream in the diffuser.
However, these sources may originate from the simplification of the acoustic veloc-
ity perturbation u′a to the overall velocity perturbation. A strong, large vortex is
generated by the entropy perturbation passing the inhomogeneous flow field in the
nozzle. This vortex is correlated with the acoustic waves in the exhaust duct. Both
originate from the passage of the initial entropy perturbation through the nozzle.
Therefore, the vortical perturbation contributes to the modified intensity according
to Morfey [80] in time average and is faulty identified as acoustic energy.

Below the contour plots the overall acoustic power flux in time average 〈Pa〉t is
given for each flow speed in Fig. 7.44. While the color map is the same for all fig-
ures, the overall acoustic power has been adjusted to represent the observed levels
better. The heat module is identified as source again by the almost linear increase of
the acoustic power. The acoustic power flux is negative upstream (left in Fig. 7.44)
of the heating module and positive downstream of the module, which indicates the
dominance of the direct sound sources on the effective flux of acoustic energy in
the inlet duct. The acoustic power flux in the straight duct sections between heat
module and nozzle is approximately constant, which validates the CAA solution
(The small decrease and variation in front of the nozzle is due to an interpolation
error for the two grid blocks involved in the integration there). The intense increase
of the acoustic power flux in the nozzle leads to large amplitudes of 〈Pa〉t. For a
better presentation the peak has been cut-off in Fig. 7.44. The intense right run-
ning acoustic waves originating from the nozzle are then annihilated in the diffuser
directly following the nozzle throat, which is indicated by the decrease of 〈Pa〉t. Fi-
nally the acoustic power flux in the diffuser becomes very low and increases again
to the outlet. The acoustic power flux becomes constant again, even though there
are remaining acoustic sources identified by the QPL in the outlet duct.

Altogether it has been shown that the CAA method including the EHR model
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and the analysis of the acoustic intensity are well applicable for the model experi-
ment and have high potential to be applied in realistic combustion problems as well.
A further improvement of the acoustic intensity analysis by splitting acoustic and
hydrodynamic velocity perturbations is appreciated to remove a possible misidenti-
fication of vortical perturbations with the acoustic intensity. The strong local flux of
acoustic energy between the strong sources in nozzle and diffuser may be reduced
by another intensity definition.

7.3.2. Modeling of the plenum impedance in a combustion chamber

In this section a premixed swirling flame enclosed by an approximately cylindrical
shell with one open surface opposite to the burner is considered. This configuration
has been investigated experimentally and numerically within the CombustionNoise
initiative Zhang et al. [140] as a simplified model of a premixed swirl burner in a
gas turbine combustor. The set-up features the typical aspiration of hot gases by an
enclosed flame without the production of indirect noise due to the acceleration in
the combustion chamber exit nozzle.

Case description

Even though the combustion chamber is not fully axisymmetric, due to the instal-
lation of windows and cooling devices which are necessary for the optical access to
the chamber, it can be approximated by the axisymmetric approach very well. How-
ever, the swirl nozzle of the burner can not be covered by the modal-axisymmetric
approach due to the complex geometry. Therefore, the inflow is modeled as an
acoustic impedance using the boundary condition of Section 4.3. The five model
parameters of the EHR are calculated based on Eq. (4.14) and the assumption that a
sufficiently large cavity damping is caused by the installations inside the plenum of
the burner. The geometric parameters are estimated to be V = 7.6 l, S0 = 56.6 cm2

and L = 14.5 cm. The length correction is usually found to be in the order of one to
two times the diameter of the resonator neck. The neck of the burner is much longer
than the diameter. Therefore the effect of the length correction remains small. The
resonance frequency is obtained as f0 ≈ 100 . . . 122 Hz depending on the length cor-
rection. For small m f , f0 is approximately the inverse of the halved response time
Tl . Consequently the model parameters of the EHR are obtained as β ≈ 0.6 and
m f ≈ 10−4. The parameters for the EHR are chosen as follows in the simulation:
Tl = 1/250 s, β = 0.6 and m f = 1/2000. The latter is necessary to obtain a larger
maximum time step size for the simulation and does not significantly change the
low frequency impedance. The face sheet resistance is assumed to be very small
(R f = 0) and a considerable cavity damping is obtained by setting e−ε = 0.75. The
impedance is applied at the inflow of the chamber (x = 0 m, y = 0 . . . 0.06 m). The
rest of the chamber is assumed to be hard walled.
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Base flow field

Two different base flow conditions are considered. A steady RANS simulation and
the averaged flow field obtained from an LES simulation, which were both carried
out by Zhang et al. [140] using CFX, have been made available to the author by
Zhang and Bender [139]. These results are applied as the base-flow regime and the
linearized non-isentropic Euler equations for a cylindrical geometry are used. The
resulting mean flow conditions are very similar at first glance as can be seen from
Fig. 7.45. However, the flame cone and the recirculation zones differ between the
RANS (Fig. 7.45(a)) and averaged LES results (Fig. 7.45(b)).

(a) RANS (b) averaged LES

Figure 7.45.: Mach number and stream traces for the average flow fields provided
by Zhang et al. [140].

Simulation of the response to a short fluctuation in heat release

The CAA method is now used to compute the spectral peak frequencies of the sys-
tem consisting of the averaged combustor flow field and the geometrical boundary
conditions. A short heating pulse simulating an instationary fluctuation in the heat
release is used as an excitation. The pulse length is chosen short enough that the
frequency band given from the experiment is excited almost uniformly. The pulse is
added in a square region covering a large fraction of the averaged flame front posi-
tion. The resulting process is statistically stationary after all perturbations have left
the computational domain through the non-reflective boundaries or the impedance
wall.

Results

For the CAA simulation, only the cylindrical combustion chamber and a cut-out of
the exterior are meshed using 0.87× 105 grid points. The computation of 105 time
steps takes 33 h on a dual core Athlon 64 X2 CPU with 2.2 GHz using a parallel
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Figure 7.46.: Fourier transform of the swing-off response in the combustion cham-
ber, experimental data form Zhang and Bender [139].

processing with MPI (comp. [130]). The resulting swing-off response to the heat-
ing pulse is given for the two different mean flow conditions in Fig. 7.46. The EHR
model is used as boundary condition for the inflow section, whereas the remaining
part of the bottom of the model combustion chamber is assumed to be hard walled.
The RANS-based mean flow conditions lead to an over prediction of all peak fre-
quencies as shown in Fig. 7.46(a). In contrast the experimental spectrum is qualita-
tively and quantitatively well met for the LES-based average flow field, as can be
seen from Fig. 7.46(b). All spectral peak frequencies in the low range (≤ 1 kHz)
are correctly identified. Only the lowest peak is clearly missed. The decay with the
frequency cannot be correctly predicted because the pulse excitation is not entirely
equivalent to the excitation by the flame. Furthermore, the RANS-based mean flow
leads to the growth of instabilities with the linearized Euler equations. For the re-
sult shown in Fig. 7.46, the simulation was stopped before the instability became
observable. No such instability is found with the averaged LES flow field as mean
flow.

Finally, a source location is considered in Fig. 7.47. The QPL clearly identifies the
heated region (square around x = 0.06 m and y = 0.08 m) as the major source of
sound. The location for the artificial heating pulse is chosen such that the majority
of the reaction zone is covered. Therefore, no further information could be obtained
from this region. However, an excitation further downstream close to the cham-
ber exit also featured the major source in the heated region. As expected the direct
noise clearly dominates the configuration. In addition to this direct source, some in-
direct sources are found as thin lines of positive and negative source strength along
the free shear layers of the swirling flow inside the combustion chamber. The source
strength may also be connected to the vorticity generated in the non-isentropic, non-
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(a) RANS (b) LES

Figure 7.47.: Source location for the swing-off response of the enclosed swirl com-
bustor flow.

potential flow field. Furthermore, a vortex shedding from the wall of the chamber is
faulty identified as strong acoustic source by the QPL. A decomposition into acous-
tic and hydrodynamic velocity field is highly desired to overcome the problem.

Altogether, the current numerical result provides a good prediction of the exper-
imentally observed peak frequencies, when using the averaged LES data as base
flow field and a correct EHR parameter set for the plenum. It demonstrates that the
combination of average flow field and geometrical boundary conditions including
the impedance of the burner plenum can fully determine the resulting frequency re-
sponse of the investigated burner. The application of the EHR model for the plenum
impedance significantly reduces the problem size. At the same time it allows a much
better representation of the impedance, than a simplified axisymmetric meshing of
the complex plenum would. However, it must be noted that the result highly de-
pends on the choice of parameters for the impedance model of the plenum.

7.3.3. Effect of large Helmholtz resonators on the propagation of low
frequency noise

This last example deals with the propagation of low-frequency noise of a jet aircraft
at take-off. The major source is the jet. Obviously the acoustic lining of the internal
pathway of noise is not promising to reduce this kind of noise. A reduction is,
however, highly demanded by the operators and residents of an airport. Large areas
for constructional measures of noise reduction are available. However, the required
hight of acoustic screens for the low-frequency noise in the current example exceeds
the limit for a save operation of the airport. To overcome the problem and achieve
a significant noise reduction for the urban areas around the runway of the airport,
the concept of an acoustic lining of the internal path of sound has been adopted
for the outdoor sound propagation. Large scale resonators with very broadband
low frequency attenuation characteristics are applied to virtually enlarge a building
or earthwork, which is raised for noise reduction. The application of such large
resonators to improve the acoustics of a building goes back far to the ancient Greek

153



7. Results and Discussion

theaters using vases as it is described by Vitruv. The ancient techniques have been
rediscovered by the master-builders of the Middle Ages for their Cathedrals using
large resonators fixed into the wall for the acoustic enhancement of the building.
Nowadays, the lining of the top edge of acoustic screens was proposed by Möser
[81].

The characteristic of the noise source, which is an aircraft at ground operation and
take-off has been systematically investigated by Pott-Pollenske et al. [97]. According
to their results, the major contribution is found in the low-frequency range around
200 Hz. Their results are A-weighted, such that the maximum sound pressure is
observed at a lower frequency. Furthermore, in the current example the large scale
atmospheric boundary layer plays a major role for the sound propagation. These
effects are studied in this section using the EHR model and the CAA method. To
reduce the problem size a two-dimensional numerical model problem is considered.

Model setup for the propagation of low-frequency sound waves including
atmospheric boundary layer effects

The simulation is carried out in 2D with a monopole line source elevated by 1.5 m
above the runway. As a rough model for the low-frequency aircraft noise radiation
at take-off multiple low frequencies are excited. The excited frequencies are ranging
from f = 10, 20 . . . 90 Hz. All frequencies have the same source amplitude and
phase, such that the resulting signal could be described as a periodic pulse signal.
The ground surface is approximated as a flat hard wall. The domain for the simu-
lation ranges from 250 m left of the runway to 912 m right of the runway. Overall
about 1 million points are used with a mesh spacing of ∆x = ∆y = 0.5 m. The mesh
allows to resolve frequencies up to 100 Hz. The time-step size is chosen depending
on m f . For the current examples a CFL number of 0.1 is used. To compute a full
period of the propagated pulse signal, which is 0.1 s in real time, 30 000 time steps
are necessary. The parallel simulation using MPI takes 14 hours on two cores of an
AMD Opteron 244 processor.

The intended solution to the low-frequency noise problem involves the installa-
tion of a building or earthwork to shield the noise from the urban areas. The exact
shape is a complex geometrical form with elliptic recesses towards the runway. A
simplified geometry is used to study the effect of the installation. The maximum
height of the fence is 20 m in a distance of 290 m from the runway. The fence is
modeled as a box with an extend of 122 m in the direction of sound propagation.
The acoustic treatment on top of the fence is modeled by the EHR model.

The situation with wind is studied considering a typical wind speed of 20 km/h
at 13 m over the ground, blowing off the runway towards the urban areas. This is
considered as the critical situation, because the related atmospheric boundary layer
leads to a refraction of the sound waves towards the ground. Herein u0 ∼ h1/7 is
considered as template for the atmospheric boundary layer.

The impedance function is designed such that a broadband attenuation in the
low frequency range is provided. This is achieved by tuning the resonators to a
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(a) Wind speed distribution used for the simulations.
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(b) Impedance functions for a large Helmholtz resonators (σ = 50 %; L denotes
the effective neck length including corrections).

low resonant frequency and using large Helmholtz resonator volumes. However,
the treatment could be build as λ/4 or λ/2 tubes as well. The impedance functions
plotted in Fig. 7.3.3 could be achieved by resonators with a volume of 1 m3 and
large faces sheet or cavity damping respectively. A nonzero face sheet resistance is
assumed for the second resonator by setting R f = 0.5.

Baseline solution without lining of the top roof

The sound field shown in Fig. 7.48(a) results from the multi-tone harmonic-pulse
excitation described above. The diffraction of waves can clearly be observed at the
edges of the not lined fence. The fence alone creates a zone of silence behind it-
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self. However, due to diffraction, the low-frequency noise which passes the build-
ing above, begins to enter this zone. In addition, the atmospheric boundary layer
with the steep gradient towards the ground pushes the sound waves further down.
To obtain a quantitative measure for the attenuation, the averaged sound intensity
levels over all excited frequencies are normalized by the source intensity and related
to the radius as measure for the cylindrical radiation surface around the line source.
This finally leads to a local averaged sound power attenuation for all frequencies
included in the source signal. The attenuation is plotted on a dB scale in Fig. 7.48(b),
Fig. 7.49(b) and Fig. 7.50(b) with and without treatment of the top roof, respectively.

As can be seen from Fig. 7.48(b) the fence without liner on top is only able to
reduce the noise behind the building by 2 to 6 dB. The result for observers in a larger
distance may even be worse due to diffraction effects of the atmospheric boundary
layer.

Finally the path of sound over the building is studied using stream traces of the
acoustic intensity. These stream traces indicate that the noise, which is found in
the shadow behind the fence passes it immediately at the top roof and then enters
the zone of silence from above. Therefore, a treatment of the top roof is considered
promising.

Shading with treatment on the top

The instantaneous pressure plots for the same excitation, but with a liner at the top
roof are plotted in Fig. 7.49(a) and Fig. 7.50(a). It can be observed, that the acoustic
waves do not pass along the top face of the fence any more. Due to the treatment,
the waves show a decay of the pressure towards the top of the fence. Furthermore,
the secondary point source exciting waves from the edge of the top which is located
most far away from the runway (x = 372 m), is not visible with the treatment. Thus,
it can be expected, that the treatment improves the acoustic shielding of the fence.

(c) Instantaneous sound pressure contours (d) Relative attenuation and intensity pathway

Figure 7.48.: Instantaneous pressure plot and average sound power attenuation
with wind and without liner for f = 10, 20, . . . 90 Hz.

This is studied in the following, by the means of the relative acoustic intensity
(comp. Fig. 7.49(b) and Fig. 7.50(b)). Due to the treatment, a zone of silence be-
hind the building is created, which produces up to 10 dB attenuation at an observer
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(a) Instantaneous pressure distribution (b) Relative attenuation with resonators on top of the
fence

Figure 7.49.: Instantaneous pressure and average sound power attenuation with
wind and with the liner impedance shown as black lines in Fig. 7.3.3(b)
for f = 10, 20, . . . 90 Hz.

(a) Instantaneous pressure distribution (b) Relative attenuation with resonators on top of the
fence

Figure 7.50.: Instantaneous pressure plot and average sound power attenuation
with wind and with the liner impedance shown as red line in
Fig. 7.3.3(b)for f = 10, 20, . . . 90 Hz.

position 800 m from the runway for the low-frequency range considered.
The stream traces of the acoustic intensity gain further insight. Like for a ray-

tracing method they show the pathway of sound. The building with acoustic treat-
ment all over the top is found to be virtually higher than the original building.
While the acoustic waves pass the original building directly over the hard walled
top at 20 m altitude from ground, the path traces with acoustic treatment are found
at a height of above 30 m over ground for both impedance functions investigated.
Acoustic waves passing the building at a lower altitude are absorbed by the treat-
ment. Furthermore, a reflection of waves towards the sky is found, which leads to
an increase of the relative power level under an angle of approximately 10 degrees
from the edge of the building which is closer to the runway with the horizon. Due
to the increased virtual height of the fence, the sound intensity close to the ground
is significantly decreased.

Altogether, the EHR model with the Myers boundary condition has been suc-
cessfully applied to simulate the effect of large scale Helmholtz resonators on the
low-frequency sound wave propagation in the vicinity of an airfield. The results
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demonstrate, that the additional treatment of a building, which acts as a fence to
shield the low-frequency noise from urban areas may effectively improve the ob-
served noise reduction. The improvement for the current examples is around 6 dB
for the currently investigated resonators with respect to the same building without
the passive acoustic treatment on the top roof.

7.3.4. Conclusions to the application examples

The three examples demonstrate a variety of applications for the EHR model. While
the examples in the preceding sections are closely related to the acoustic lining of
the inlet and bypass duct of aeroengines, the current examples extend the applica-
tion to combustion chambers of aeroengines and gas turbines. The outdoor sound
propagation is also considered with the method. However, the computational time
and resource consumption is not competitive in comparison to the usually applied
ray methods in this case. All three examples use an initial guess for the EHR model
parameters. This guess which is based on the approximate geometry of the plenum
or resonator and an estimate of the damping parameters based on the installed de-
vices. It is, however, able to essentially improve the reproduction of the experimen-
tal result. The results in this section underline the wide variety of applications and
the importance of impedance modeling. Connected duct systems and resonators
are approximated by the EHR model rather than meshing their complex geometry.
In many cases, as in the first two examples, this means that an axisymmetric sim-
ulation becomes possible. Therefore, the problem size is significantly reduced with
respect to a fully three-dimensional simulation of the complex geometry which is
modeled by the EHR in the examples. The base flow is identified as another impor-
tant parameter of influence by the above examples.
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The correct implementation of the EHR model is firstly verified by the very good
agreement of the results to the analytical solution for annular ducts with lining. A
set of further benchmark tests against previously published data demonstrates the
capability of the model. Theoretical predicted propagation and radiation character-
istics are well predicted. However, the limitations of the current CAA method in
terms of numerical dissipation and reflections are pointed out in some cases. The
method is intended for the simulation of the sound propagation in the inlet, bypass
duct or hot-stream channel of an aeroengine and the radiation to the immediate
near field of it. The studied benchmark cases feature geometrical complexity and
complex base-flow conditions as they are expected to be found here. The excellent
agreement between the numerical results and the theoretical predictions demon-
strates the reliability of the method.

A possible flow instability at an impedance wall under grazing flow conditions
is removed for the Ingard/Myers boundary condition by low-order filtering of se-
lected terms of the impedance model. Besides a comparison between non-filtered
and filtered solutions for one case which demonstrates an only small impact on the
numerical solution, the approach is verified by all presented results. The low-order
filtering allows correct predictions by the Ingard/Myers boundary condition with
a low number of grid points. An artificially thickened boundary layer is also in-
vestigated, as it is theoretically able to completely avoid the instability. It is found
that, with decreasing boundary layer thickness, the solution converges to the one
which is obtained with the Ingard/Myers boundary condition. However, an artifi-
cial thickening of the boundary layer, to resolve it, should be considered with care.
It affects the result much more than a filtering of the auxiliary variable with the In-
gard/Myers boundary condition does. All at all, when considering the efficiency
as the main objective, the application of the Ingard/Myers boundary condition is
the optimal approach, whereas a fully resolved boundary layer profile can provide
correct predictions with high computational costs.

The EHR model is applied to educe the impedance from measurement data for
a wide variety of SDOF liners. The good agreement to the published impedance
data is a further validation of the method. The EHR model is shown to properly
describe the impedance for several different liners in a broad range of frequencies
under various flow conditions. The effect of a grazing base flow on the resulting
impedance is also pointed out by the results. For the ceramic tubular liner design
and the so called linear liner with gauze covering it is not detectable from the vari-
ation of the impedance eduction results. The other liners show an influence. The
resulting model parameters can directly be used in a simulation of the liner in its
realistic installation situation in an aeroengine.
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The relation of the effective panel geometry to the educed model parameters of
the impedance boundary condition allows further insight to the effect of grazing
base-flow conditions and a bias flow through the apertures. The grazing flow effect
on the educed geometry shows no clear trends for the current results, whereas a
bias flow through the apertures reduces the effective neck length. Without flow,
the educed geometrical parameters of the liner are in a good agreement with the
panel geometries, which further validates the results. However, the geometrical
identification of the model parameters fails when the first resonance of the liner is
outside the range of frequencies considered by the measurement.

Finally, the time-domain impedance boundary condition serves as replacement
for the geometrically very complex and large inflow plenum in two problems from
combustion noise and is used to model an acoustic impedance for the outdoor sound
propagation. The impedance boundary condition greatly improves the result and at
the same time reduces the numerical problem size in all cases.

A method to validate the numerical results is provided. The conservation of the
acoustic energy for each numerical solution is monitored with this method and a
detailed analysis is provided for some of the numerical results. The acoustic inten-
sity is also applied to identify radiating sources. The results are in agreement with
the theory. The presented analysis of the acoustic intensity is not limited to finite
difference CAA methods; it is well suited for aeroacoustic simulations in general.

Outlook: The hard–lined and lined–hard transitions are found to be essential for
the experimentally observed acoustic field. The current results are grid dependent,
due to the filtering of the field and it seems that the minimum resolution limit is
increased due to the presence of such transitions. To overcome this limitation and
develop a model for the transition, an experimental investigation, for instance by
LASER-optical methods or hot wire anemometry, would be required. Furthermore,
the currently available measurements are limited to frequencies up to 3 kHz. This
is mainly due to a limitation of the available experiments to frequencies below the
cut-off of the first higher mode in the flow tube. An extension of the experiments
and the impedance-eduction method to higher modes is required to prove the ap-
plicability of the EHR model to describe the frequency response in this whole range.
Moreover, with the general methodology of the current work it is also possible to de-
velop higher-order impedance models which allow to describe more complex liner
designs. A class of such models can be obtained by using digital filters as a template
for the time-domain representation and by applying then the inverse z-transform to
obtain a frequency response of the impedance. However, in the digital filter case,
the physical interpretation of the related model parameters would not be as sim-
ple as for the extended Helmholtz resonator. Another important task which has
been raised with the current work, is the separation of the acoustic and hydrody-
namic velocity perturbation. This is highly demanded for a general application of
the acoustic-intensity-based quality analysis and source location. Furthermore, such
a decomposition would allow to study the source strength of the radiating aerody-
namic sources far in excess to applications of CAA methods.
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A. Supplemental material for the mathematical models

A.1. Derivations

A.1.1. Manipulation of the energy equation

Starting point is the Kirchhoff–Fourier equation according to Pierce [95, Eq. (10-
1.15)]:

$̃ T̃
D̃ s̃
D̃ t̃

= −∇̃ · q̃ +
ν̃

2 ∑
i,j

τ̃2
i j, (A.1)

where the Fourier law for the thermal conduction is given as

q̃ = −κ̃ ∇T̃.

The change rate of the specific entropy in a volume element equals to the ratio of
heat input and temperature [83, Eq. (4.2)]

ds̃ =
˙̃q dt̃
T̃

. (A.2)

Considering a reversible process for the heat input into an ideal gas, one can use the
specific enthalpy to rewrite the above relation. After multiplying with the absolute
temperature T̃ one obtains:

T̃ ds̃ = dh̃− dp̃
$̃

.

The heat input for a reversible process is set into relation with the specific enthalpy
h̃. The specific enthalpy is equal to the change of temperature with constant pressure
[83, Eq. (2.69)]:

dh̃ = Cp dT̃.

By using this relation in connection with the constitutive equation for an ideal gas

p̃
$̃

= RT̃, (A.3)

one obtains

dh̃ =
Cp

R

(
dp̃
$̃
− p̃ d$̃

$̃2

)
.
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The above expression for dh̃ is used in Eq. (A.2) to obtain

ds̃ =
Cp

RT̃

(
dp̃
$̃
− p̃ d$̃

$̃2

)
− dp̃

T̃ $̃

=
(
Cp −R

) dp̃
p̃
− Cp

d$̃

$̃
.

The second relation is realized using the ideal gas law Eq. (A.3) to eliminate T̃. Fi-
nally, the relation R = Cp − Cv is introduced to arrive at the expression:

ds̃ = Cv
dp̃
p̃
− Cp

d$̃

$̃
. (A.4)

For further modifications it is useful to introduce the ratio of the specific heats γ,
which is defined as

γ =
Cp

Cv
. (A.5)

Then making use of the ideal gas equation (A.3) and the above definitions Eqs. (A.5)
and (A.4) in Eq. (A.1) results in:

Cv

R

(
D̃ p̃
D̃ t̃

− γ
p̃
$̃

( D̃ $̃

D̃ t̃

)
︸ ︷︷ ︸

=−$̃ ∇̃·ũ, mass conservation

)
= −∇̃ · q̃ +

ν̃

2 ∑
i,j

τ̃2
i j.

Finally, the preceding relation is simplified by using R = Cp − Cv and by making
use of the conservation of mass, Eq. (2.3), to eliminate the terms depending on $̃

1
γ− 1

(
D̃ p̃
D̃ t̃

+ γ p̃ ∇̃ · ũ
)

= −∇̃ · q̃ +
ν̃

2 ∑
i,j

τ̃2
i j. (A.6)

A.1.2. Nondimensional form of the equations

The unit quantities of Table 2.1 are used to rewrite the governing equations. For the
mass conservation introducing the non-dimensional quantities results in:

D̃ $̃

D̃ t̃
+ $̃ ∇ · ũ =

c∞

L∞

D $∞ $

D t
+

$∞

L∞
$ ∇ · (c∞ u)

=
c∞ $∞

L∞

(
D $

D t
+ $ ∇ · u

)
= 0.

(A.7a)

The balance of momentum Eq. (2.5) is rewritten in the same manner obtaining the

factor a2
∞

L∞
which is the unit of an acceleration:

a2
∞

L∞

(
D u
D t

+
1
$
∇p

)
=

a2
∞

L∞

(
ν ∇ · τ

)
. (A.7b)
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The energy balance in terms of the pressure Eq. (2.7) is rewritten to a nondimen-

sional form by the factor $∞ c3
∞

L∞
which is an unit of power:

$∞ c3
∞

L∞

(
D p
D t

+ γ p ∇ · u
)

= (γ− 1)
$∞ c3

∞
L∞

(
−∇ · q +

ν

2 ∑
i,j

τ̃2
i j

)
. (A.7c)

A.1.3. Transformation to the nonlinear PENNE equations

To obtain the nonlinear mathematical model some further manipulations are ap-
plied to the sets of Eq. (2.10)

∂ $′

∂ t
+
(
u0 + u′

)
·∇$′ +

(
$0 + $′

)
∇ · u′ + u′ ·∇$0 + $′ ∇ · u0

+u0 ·∇$0 + $0 ∇ · u0︸ ︷︷ ︸
=0, mass conservation of the base flow

= 0, (A.8a)

∂ u′

∂ t
+
(
u0 + u′

)
·∇u′ +

1
$0 + $′

∇p′ + u′ ·∇u0 −
$′

$0 ($0 + $′)
∇p0

− 1
Re∞

∇ · τ′︸ ︷︷ ︸
≈0

+u0 ·∇u0 +
1
$0

∇p0 −
1

Re∞
∇ · τ0︸ ︷︷ ︸

=0, momentum balance of the base flow

= 0

(A.8b)

and

∂ p′

∂ t
+
(
u0 + u′

)
·∇p′ + γ

(
p0 + p′

)
∇ · u′ + u′ ·∇p0 + γ p′ ∇ · u0

− (γ− 1)
1

2 Re∞
∑
i,j

[
2 τ0,i j + τ′i j

]
τ′i j︸ ︷︷ ︸

≈0

+u0 ·∇p0 + γ p0 ∇ · u0 − (γ− 1)

−∇ · q +
1

2 Re∞
∑
i,j

τ2
0,i j


︸ ︷︷ ︸

=0, energy balance of the base flow

= 0.

(A.8c)

The balance of momentum Eq. (A.8b) has been derived by using a relation found by
Long [76]:

1
$0 + $′

=
1
$0

$0
$0 + $′

=
1
$0

$0 + $′ − $′

$0 + $′
=

1
$0

(
1− $′

$0 + $′

)
=

1
$0
− $′

$0 ($0 + $′)
.

165



A. Supplemental material for the mathematical models

The acoustic Reynolds number Re∞, comp. Eq. (2.9), is usually very large. There-
fore, the viscous effects due to the perturbation are very small and in most cases
can be neglected. The energy Eq. (A.8c) shows some terms featuring products of
the base-flow shear-rate tensor of the with the perturbation shear-rate tensor. These
terms can be neglected by assuming that the gradient of the perturbation is small
compared to the corresponding quantity of the averaged flow field.

A.1.4. Relation of the linearized Euler equations to the wave equation
and concluding remarks

The relation of the linearized Euler equations to the convective wave equation of
aeroacoustics is pointed out here, for completeness. The pressure–density relation
of Eq. (2.15) is equal to the one found e. g. in Ehrenfried [31, Eq. (2.1.15)], under the
assumption that the speed of sound in the base-flow field is uniform. Eqs. (2.14a)
and (2.14b) return to the form of [31, Eqs. (2.1.8) and (2.1.11)], under the assumption
of an uniform base flow:

D0 $′

D0 t
+ $0 ∇ · u′ = 0

and
D0 u′

D0 t
+

1
$0

∇p′ = 0,

where the substantial derivative is defined with the base flow as,

D0 (·)
D0 t

=
∂ (·)
∂ t

+ u0 ·∇(·).

Taking the substantial derivative of the first and the divergence of the second equa-
tion multiply by $0 under the assumption of an irrotational perturbed flow-field
and making use of the pressure–density relation Eq. (2.15), one recovers a convec-
tive wave equation of the form:

1
c2

D2
0 p′

D2
0 t

−∇ ·∇ p′ = 0.

In a medium at rest the above equation simplifies to the standard wave equation, as
for example found in Ehrenfried [31, Eq. (2.1.23)].

A.2. Matrix–Vector form of the mathematical models for
implementation

The implementation of the mathematical model follows the scheme

∂ Φ′

∂ t
= −A · ∂ Φ′

∂ x
− B · ∂ Φ′

∂ y
− C · ∂ Φ′

∂ z
−D ·Φ′
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for the three dimensional form. D carries the source terms, which are introduced
by derivatives of the base flow field. For the two dimensional form, the matrix C
becomes zero and D is modified under the assumption of a base flow, which is con-
stant in x3–direction. Thus only a modified D2D is given, which directly corresponds
to the form how the two dimensional equations are implemented via compiler flags.

The 3D axisymmetric form uses a cylindrical coordinate system to state the gov-
erning equations. Thus, a modified definition is used in the form:

∂ Φ′

∂ t
= −A · ∂ Φ′

∂ x
− B · ∂ Φ′

∂ r
− 1

r
CAxi ·Φ′ −DAxi ·Φ′.

Furthermore, a Fourier decomposition (with the ordinal number m, which corre-
sponds to the azimuthal mode number) of the field in azimuthal direction is in-
troduced to cover higher modes. A complex amplitude of Φ′ is considered. This
approach does not allow a non–linear model for m 6= 0. The axisymmetric form
shares the matrices A and B with the three dimensional form. Thus, only CAxi and
DAxi are given for this case.

A.2.1. Gradient and divergence for the specific coordinate systems

The gradient and divergence of a vector and a scalar are specified here. The modal
axisymmetric approach is a special case, as in addition to the application of a cylin-
drical coordinate system, a Fourier series ansatz is applied for the azimuthal direc-
tion of the perturbation field as it was described in Section 2.7.

A.2.2. Nonlinear equations

Three-dimensional (3D) nonlinear equations

A =


u0 + u′ $0 + $′ 0 0 0

0 u0 + u′ 0 0 1
$0+$′

0 0 u0 + u′ 0 0
0 0 0 u0 + u′ 0
0 γ (p0 + p′) 0 0 u0 + u′

 (A.9a)

B =


v0 + v′ 0 $0 + $′ 0 0

0 v0 + v′ 0 0 0
0 0 v0 + v′ 0 1

$0+$′

0 0 0 v0 + v′ 0
0 0 γ (p0 + p′) 0 v0 + v′

 (A.9b)
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C =


w0 + w′ 0 0 $0 + $′ 0

0 w0 + w′ 0 0 0
0 0 w0 + w′ 0 0
0 0 0 w0 + w′ 1

$0+$′

0 0 0 γ (p0 + p′) w0 + w′

 (A.9c)

D =



∂ u0
∂ x + ∂ v0

∂ y + ∂ w0
∂ z

∂ $0
∂ x

∂ $0
∂ y

∂ $0
∂ z 0

− 1
($0+$′) $0

∂ p0
∂ x

∂ u0
∂ x

∂ u0
∂ y

∂ v0
∂ z 0

− 1
($0+$′) $0

∂ p0
∂ y

∂ v0
∂ x

∂ v0
∂ y

∂ v0
∂ z 0

− 1
($0+$′) $0

∂ p0
∂ z

∂ w0
∂ x

∂ w0
∂ y

∂ w0
∂ z 0

0 ∂ p0
∂ x

∂ p0
∂ y

∂ p0
∂ z γ

(
∂ u0
∂ x + ∂ v0

∂ y + ∂ w0
∂ z

)


(A.9d)

Axisymmetric nonlinear equations

As the resulting PDE is nonlinear, the assumption of constant m for the azimuthal
direction does not apply with non–linear wave propagation. Therefore, the modal
approach cannot be applied with nonlinear waves. The axisymmetric variant of the
governing equations is not modal but purely axisymmetric here:

CAxi =


v0 0 $0 + $′ 0 0
0 0 0 0 0
0 0 0 −(2 w0 + w′) 0
0 0 w0 v0 + v′ 0
0 0 γ (p0 + p′) 0 γ v0

 (A.10a)

DAxi =



∂ u0
∂ x + ∂ v0

∂ r
∂ $0
∂ x

∂ $0
∂ r 0 0

0 ∂ u0
∂ x

∂ u0
∂ r 0 − 1

$0 ($0+$′)
∂ p0
∂ x

0 ∂ v0
∂ x

∂ v0
∂ r 0 − 1

$0 ($0+$′)
∂ p0
∂ r

0 ∂ w0
∂ x

∂ w0
∂ r 0 0

0 ∂ p0
∂ x

∂ p0
∂ r 0 γ

[ ∂ u0
∂ x + ∂ v0

∂ r

]


(A.10b)

Two-dimensional nonlinear equations

D2D =



∂ u0
∂ x + ∂ v0

∂ y
∂ $0
∂ x

∂ $0
∂ y 0 0

− 1
($0+$′) $0

∂ p0
∂ x

∂ u0
∂ x

∂ u0
∂ y 0 0

− 1
($0+$′) $0

∂ p0
∂ y

∂ v0
∂ x

∂ v0
∂ y 0 0

0 0 0 0 0

0 ∂ p0
∂ x

∂ p0
∂ y 0 γ

(
∂ u0
∂ x + ∂ v0

∂ y

)


(A.11)
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A.2.3. Linearized model equations

The linearized model equations are obtained by dropping the nonlinear terms from
the above set of equations. Furthermore, the momentum equations are recast in a
slightly modified form.

Three-dimensional linearized governing equations

A =


u0 $0 0 0 0
0 u0 0 0 1

$0

0 0 u0 0 0
0 0 0 u0 0
0 γ p0 0 0 u0

 (A.12a)

B =


v0 0 $0 0 0
0 v0 0 0 0
0 0 v0 0 1

$0

0 0 0 v0 0
0 0 γ p0 0 v0

 (A.12b)

C =


w0 0 0 $0 0
0 w0 0 0 0
0 0 w0 0 0
0 0 0 w0

1
$0

0 0 0 γ p0 w0

 (A.12c)

D =



∂ u0
∂ x + ∂ v0

∂ y + ∂ w0
∂ z

∂ $0
∂ x

∂ $0
∂ y

∂ $0
∂ z 0

1
$0

(
u0

∂ u0
∂ x + v0

∂ u0
∂ y + w0

∂ u0
∂ z

)
∂ u0
∂ x

∂ u0
∂ y

∂ v0
∂ z 0

1
$0

(
u0

∂ v0
∂ x + v0

∂ v0
∂ y + w0

∂ u0
∂ z

)
∂ v0
∂ x

∂ v0
∂ y

∂ v0
∂ z 0

1
$0

(
u0

∂ w0
∂ x + v0

∂ w0
∂ y + w0

∂ u0
∂ z

)
∂ w0
∂ x

∂ w0
∂ y

∂ w0
∂ z 0

0 ∂ p0
∂ x

∂ p0
∂ y

∂ p0
∂ z γ

(
∂ u0
∂ x + ∂ v0

∂ y + ∂ w0
∂ z

)


(A.12d)

Linearized modal-axisymmetric governing equations

CAxi =



v0 − i m w0 0 $0 −i m $0 0
0 −i m w0 0 0 0

−w2
0

$0
0 −i m w0 −2 w0 0

v0 w0
$0

0 w0 v0 − i m w0 − i m
$0

0 0 γ p0 −i m γ p0 γ v0 − i m w0

 (A.13a)
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DAxi =



∂ u0
∂ x + ∂ v0

∂ r
∂ $0
∂ x

∂ $0
∂ r 0 0

1
$0

(u0
∂ u0
∂ x + v0

∂ u0
∂ r ) ∂ u0

∂ x
∂ u0
∂ r 0 0

1
$0

(u0
∂ v0
∂ x + v0

∂ v0
∂ r ) ∂ v0

∂ x
∂ v0
∂ r 0 0

1
$0

(u0
∂ w0
∂ x + v0

∂ w0
∂ r ) ∂ w0

∂ x
∂ w0
∂ r 0 0

0 ∂ p0
∂ x

∂ p0
∂ r 0 γ

[ ∂ u0
∂ x + ∂ v0

∂ r

]


(A.13b)

Linearized two-dimensional governing equations

D2D =



∂ u0
∂ x + ∂ v0

∂ y
∂ $0
∂ x

∂ $0
∂ y 0 0

1
$0

(
u0

∂ u0
∂ x + v0

∂ u0
∂ y

)
∂ u0
∂ x

∂ u0
∂ y 0 0

1
$0

(
u0

∂ v0
∂ x + v0

∂ v0
∂ y

)
∂ v0
∂ x

∂ v0
∂ y 0 0

1
$0

(
u0

∂ w0
∂ x + v0

∂ w0
∂ y

)
∂ w0
∂ x

∂ w0
∂ y 0 0

0 ∂ p0
∂ x

∂ p0
∂ y 0 γ

(
∂ u0
∂ x + ∂ v0

∂ y

)


(A.14)
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B.1. Discretization schemes

This appendix summarizes the discretization schemes.

B.1.1. Spatial discretization

Consider a discretization of the form:

∂ φ

∂ ξ
=̇

M

∑
j=−N

aN,M
j φl−j,

where l is the index the derivative is calculated for and the coefficients aj are defined
by the numerical scheme.

Central DRP

N = 3, M = 3 l+1 l+2l−3 ll−1l−2 l+3

aN=−3,M=3
−3 = −0.019408956520410941487537255049161731932458

aN=−3,M=3
−2 = 0.16096915941497709928348235352998026106316

aN=−3,M=3
−1 = −0.76371144926872137410435294191247532632895

aN=−3,M=3
0 = 0.

aN=−3,M=3
1 = −aN=−3,M=3

−1

aN=−3,M=3
2 = −aN=−3,M=3

−2

aN=−3,M=3
3 = −aN=−3,M=3

−3
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Optimized fourth order backward stencils

N = 0, M = 6 l+4 l+5l l+3l+2l+1 l+6

aN=0,M=6
0 = −aN=6,M=0

6 = −2.2219902954809613859765704546589404

aN=0,M=6
1 = −aN=6,M=0

5 = 4.7937139708231946144678659038618207

aN=0,M=6
2 = −aN=6,M=0

4 = −4.8887154219014803402387769892811775

aN=0,M=6
3 = −aN=6,M=0

3 = 3.7241945556599418409859936218708754

aN=0,M=6
4 = −aN=6,M=0

2 = −1.9475764115885354499368986580520868

aN=0,M=6
5 = −aN=6,M=0

1 = 0.64080276257284296548277779947966337

aN=0,M=6
6 = −aN=6,M=0

0 = −0.10042916008504576552695652935653925

N = 1, M = 5 l+3 l+4l−1 l+2l+1l l+5

aN=1,M=5
−1 = −aN=5,M=1

5 = −0.19275393397114015670013031922280788

aN=1,M=5
0 = −aN=5,M=1

4 = −1.1617462897578052505309642583597451

aN=1,M=5
1 = −aN=5,M=1

3 = 2.2833737916894651931443149806000292

aN=1,M=5
2 = −aN=5,M=1

2 = −1.4942869230903372823604513541795313

aN=1,M=5
3 = −aN=5,M=1

1 = 0.79138992627937021495654335012659431

aN=1,M=5
4 = −aN=5,M=1

0 = −0.2681591974297292679807469539809972

aN=1,M=5
5 = −aN=5,M=1

−1 = 0.042182626280174218003082842187723145

N = 2, M = 4 l+2 l+3l−2 l+1ll−1 l+4

aN=2,M=4
−2 = aN=4,M=2

4 = 0.043961792318923609279579522990388796

aN=2,M=4
−1 = aN=4,M=2

3 = −0.44665643971666746381288248812779784

aN=2,M=4
0 = aN=4,M=2

2 = −0.50947801953384086459664104040712118

aN=2,M=4
1 = aN=4,M=2

1 = 1.2919072955902599630917393369600177

aN=2,M=4
2 = aN=4,M=2

0 = −0.51171625718486879463853256311267614

aN=2,M=4
3 = aN=4,M=2

−1 = 0.1551341504041561236704183102119714

aN=2,M=4
4 = aN=4,M=2

−2 = −0.02315252187794980542889788921456784
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B.1.2. Temporal discretization

The two sets of coefficients for the alternating five/six stage Low-Dispersion Low-
Dissipation Runge–Kutta scheme (LDDRK) are given below for the 2N-storage form,
which has been implemented according to Stanescu and Habashi [121]:

a(5)
1 = 0; a(6)

1 = 0

a(5)
2 = −0.6051226; a(6)

2 = −0.4412737

a(5)
3 = −2.0437564; a(6)

3 = −1.0739820

a(5)
4 = −0.7406999; a(6)

4 = −1.7063570

a(5)
5 = −4.4231765; a(6)

5 = −2.7979293

a(5)
6 = −; a(6)

6 = −4.0913537

b(5)
1 = 0.2687454; b(6)

1 = 0.1158488

b(5)
2 = 0.8014706; b(6)

2 = 0.3728769

b(5)
3 = 0.5051570; b(6)

3 = 0.7379536

b(5)
4 = 0.5623568; b(6)

4 = 0.5798110

b(5)
5 = 0.0590065; b(6)

5 = 1.0312849

b(5)
6 = −; b(6)

6 = 0.15

c(5)
1 = 0; c(5)

1 = 0

c(5)
2 = 0.2687454; c(5)

2 = 0.1158485

c(5)
3 = 0.5852280; c(5)

3 = 0.3241850

c(5)
4 = 0.6827066; c(5)

4 = 0.6193208

c(5)
5 = 1.1646854; c(5)

5 = 0.8034472

c(5)
6 = −; c(5)

6 = 0.9184166.
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B. Supplemental material for the CAA method

B.1.3. Filtering stencils

The symmetric filter stencils are defined according to:

φ∗
l = φl −

N

∑
j=−N

wj φl+j.

O(0) l

wN=0
0 = 0.

O(2) l+1ll−1

wN=1
−1 = wN=1

−1 = −1/4

wN=1
0 = 1/2.

O(4) l+1 l+2ll−1l−2

wN=2
−2 = wN=2

2 = 1/16

wN=2
−1 = wN=2

1 = −1/4

wN=2
0 = 3/8.

O(6) l+1 l+2l−3 ll−1l−2 l+3

wN=3
−3 = wN=3

3 = −1/64

wN=3
−2 = wN=3

2 = 3/32

wN=3
−1 = wN=3

1 = −15/64

wN=3
0 = 5/16.

O(8) l+1 l+2l−3 l−1l−2 l+3l−4 l+4l

wN=4
−4 = wN=4

4 = 1/256

wN=4
−3 = wN=4

3 = −1/32

wN=4
−2 = wN=4

2 = 7/64

wN=4
−1 = wN=4

1 = −7/32

wN=4
0 = 35/128.
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B.1. Discretization schemes

O(10) l+1 l+2l−3 l−1l−2 l+3l−5 l−4 l+5l+4l

wN=5
−5 = wN=5

5 = −1/1024

wN=5
−4 = wN=5

4 = 5/512

wN=5
−3 = wN=5

3 = −45/1024

wN=5
−2 = wN=5

2 = 15/128

wN=5
−1 = wN=5

1 = −105/512

wN=5
0 = 63/256.

O(12) l+1 l+2l−3 l−1l−2 l+3l−6 l−5 l−4 l+6l+5l+4l

wN=6
−6 = wN=6

6 = 1/4096

wN=6
−5 = wN=6

5 = −3/1024

wN=6
−4 = wN=6

4 = 33/2048

wN=6
−3 = wN=6

3 = −55/1024

wN=6
−2 = wN=6

2 = 495/4096

wN=6
−1 = wN=6

1 = −99/512

wN=6
0 = 231/1024.
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C. The effective impedance with flow

The boundary condition of Myers [85] allows an insight on which parameters influ-
ence the effective impedance of a surface. To obtain the effective impedance, all per-
turbations are assumed to be harmonic with angular frequency ω. Then Eq. (4.15) is
rewritten into the following form:

Z =
p̂

ûn
+

Z
iω p̂

p̂
ûn

u0 · ∇
p̂
Z
− n · (n · ∇u0)

iω
p̂

ûn
. (C.1)

Defining the effective impedance as Z′ = p̂
ûn

in the presence of a grazing mean flow,
Eq. (C.1) can be written as:

Z′ =
p̂

ûn
= Z/

[
1 +

Z
iω p̂

u0 · ∇
p̂
Z
− n · (n · ∇u0)

iω

]
, (C.2)

where Z′ is the effective acoustic impedance. Z is the impedance in the original
definition without flow and the mean flow does not alter this impedance as non-
linear effects are neglected for now. In practice there is a change of the impedance
due to the grazing flow, which is considered to be a nonlinear effect. For a two-
dimensional plane impedance wall oriented along the x-direction, as shown in Fig-
ure C.1, Eq. (C.2) can be simplified to:

Z′ = Z/
[

1 +
Z

iω p̂
u0 · ∇

(
p̂
Z

)]
. (C.3)

This result can be directly derived from the Ingard [53] boundary condition. Eq. (C.2)
and Eq. (C.3) constitute the basis for the calculation of the effective impedance.

If assuming plane harmonic waves in a plug-flow in the x-direction with unity
amplitude (e[i(kx x−ωt)]), Eq. (C.3) can be further simplified into the following form
verified by Ju and Fung [61]:

ûn =
p̂

Z′
, (C.4a)

where Z′ = Z/
(

1− u0
kx

ω

)
(C.4b)

= Z/
(

1− u0
c

kx

k

)
(C.4c)

= Z/(1− Mx cos θ) (C.4d)
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C. The effective impedance with flow
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Figure C.1.: Sketch to visualize the incident angle in the effective impedance defini-
tion

denotes the effective plane-wave impedance with the incident wave angle, mea-
sured from the inner normal of the surface as shown in Fig. C.1, defined as θ =
cos−1[kx/k] depending on k and u0 through kx.

The result indicates, that the effective impedance of a surface depends on the
angle θ, under which the acoustic waves impinge onto the surface. The normal
incidence wave would feature a different effective impedance than any grazing in-
cidence mode. The angle may even change along an uniform liner, leading to a vari-
ation of the effective impedance. Therefore, the measurement of the effective imped-
ance has to be performed in situ such that the angle of incidence exactly matches the
conditions under which the impedance surface is used. Furthermore, the flow ve-
locity changes the effective impedance through Mx. This finally makes the effective
impedance a very fragile definition, with nearly no practical relevance. However,
the connection Eq. (C.2) puts up a possible method to obtain the effective imped-
ance, which was applied by Li et al. [71].
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D. Detailed resources for the impedance eduction

etailed plots comparing the experimental input for the objective function with the
resulting numerical quantities from the impedance eduction are given in this ap-
pendix. In the first Section D.1, the sound pressure level along the opposite wall of
the liner is considered for comparison. It is calculated as:

Lp = 20 log10

(
p̂( f )√

2 · 2 · 10−5 Pa

)
,

where p̂( f ) denotes the complex perturbation pressure amplitude resulting from
the Fourier transform of a data set with multiple time length of the full period time
of f . The resulting sound pressure level is normalized by the first microphone of the
experiment. The phase is considered to be the phase angle of the complex pressure
amplitude p̂. It is unfolded to fit the range of the experiment.

In the other two sections the energy transmission, reflection and dissipation are
considered as input for the objective function. These quantities show a large dy-
namic range between 0 and 1. To obtain a better overview a decibel scale is applied:

Lr,t,∆ = 10 log10 ([t | r | ∆]) .

This decibel scale directly allows to calculate the transmission and reflection by
adding the value to the source value. The dissipation describes the acoustic power,
which is absorbed by the liner. L∆ = 0 dB would be a perfect absorbing liner with
no transmission and reflection.
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D. Detailed resources for the impedance eduction

D.1. SPL and phase data comparison for the NASA-GIT experiment

D.1.1. Uniform flow and anechoic terminations
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(f) f = 3000 Hz

Figure D.1.: Comparison to the experiment of Jones et al. [57] without termination
impedance, no flow
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D.1. SPL and phase data comparison for the NASA-GIT experiment
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(f) f = 3000 Hz

Figure D.2.: Comparison to the experiment of Jones et al. [57] without termination
impedance and plug flow, Ma = 0.079.
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D. Detailed resources for the impedance eduction
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(f) f = 3000 Hz

Figure D.3.: Comparison to the experiment of Jones et al. [57] without termination
impedance and plug flow, Ma = 0.172.
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D.1. SPL and phase data comparison for the NASA-GIT experiment
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(f) f = 3000 Hz

Figure D.4.: Comparison to the experiment of Jones et al. [57] without termination
impedance and plug flow, Ma = 0.255.
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D. Detailed resources for the impedance eduction
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(f) f = 3000 Hz

Figure D.5.: Comparison to the experiment of Jones et al. [57] without termination
impedance and plug flow, Ma = 0.335.
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D.1. SPL and phase data comparison for the NASA-GIT experiment

D.1.2. Uniform flow and measured termination impedance
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(f) f = 3000 Hz

Figure D.6.: Comparison to the experiment of Jones et al. [57] with termination im-
pedance, no flow.
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D. Detailed resources for the impedance eduction
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(f) f = 3000 Hz

Figure D.7.: Comparison to the experiment of Jones et al. [57] with termination im-
pedance and plug flow, Ma = 0.079.
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D.1. SPL and phase data comparison for the NASA-GIT experiment
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(f) f = 3000 Hz

Figure D.8.: Comparison to the experiment of Jones et al. [57] with termination im-
pedance and plug flow, Ma = 0.172.
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Figure D.9.: Comparison to the experiment of Jones et al. [57] with termination im-
pedance and plug flow, Ma = 0.255.
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(f) f = 3000 Hz

Figure D.10.: Comparison to the experiment of Jones et al. [57] with termination im-
pedance and plug flow, Ma = 0.335.
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D.1.3. Measured flow profile and termination impedance
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Figure D.11.: Comparison to the experiment of Jones et al. [57] with termination im-
pedance and no flow.
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Figure D.12.: Comparison to the experiment of Jones et al. [57] with termination im-
pedance and flow profile, Ma = 0.079.
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Figure D.13.: Comparison to the experiment of Jones et al. [57] with termination im-
pedance and flow profile, Ma = 0.172.
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Figure D.14.: Comparison to the experiment of Jones et al. [57] with termination im-
pedance and flow profile, Ma = 0.255.
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Figure D.15.: Comparison to the experiment of Jones et al. [57] with termination im-
pedance and flow profile, Ma = 0.335.
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D.2. Comparison of energy transmission, reflection and dissipation coefficients

D.2. Comparison of energy transmission, reflection and
dissipation coefficients from the impedance eduction

D.2.1. Perforate SDOF liner (AA-1)
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Figure D.16.: Comparison of the resulting energy transmission and dissipation coef-
ficients to the experimental result of Busse et al. [22] for sample AA-1.
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D.2.2. SDOF liner with wire mesh (AA-2)
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Figure D.17.: Comparison of the resulting energy transmission and dissipation coef-
ficients to the experimental result of Busse et al. [22] for sample AA-2.
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D.2. Comparison of energy transmission, reflection and dissipation coefficients

D.2.3. Axisymmetric samples with large cavity volume (DLR-1C)
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Figure D.18.: Comparison of the resulting energy transmission and dissipation coef-
ficients to the experimental result of Heuwinkel [46] for Ma = 0.
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Figure D.19.: Comparison of the resulting energy transmission and dissipation coef-
ficients to the experimental result of Heuwinkel [46] for Ma = −0.
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(e) v = 16 m/s
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Figure D.20.: Comparison of the resulting energy transmission and dissipation coef-
ficients to the experimental result of Heuwinkel [46] for Ma = −0.1.

199



D. Detailed resources for the impedance eduction
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Figure D.21.: Comparison of the resulting energy transmission and dissipation coef-
ficients to the experimental result of Heuwinkel [46] for Ma = 0.1.
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