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AbstratDerivation of realisti ontinuum models for epitaxial growth of thin solid �lms on rystalline sub-strates yields Cahn-Hilliard type equations of fourth or sixth order. To desribe and understandsolutions and solution spaes to these semi- or quasilinear partial di�erential equations (PDEs),the development of elaborated theory is neessary. Existene of solutions has to be shown inuntypial high order Sobolev spaes, the numeris has to be apable to deal with high orderderivatives for the time-dependent problems and with high order phase spaes for the stationaryase and methods of mathed asymptotis require mathing at many orders. In this work newtheory is presented for redued models of high order.For a sixth order PDE that desribes the faeting of a growing surfae in 2D [89℄ it is shownthat weak solutions exist. While for a related onvetive Cahn-Hilliard equation proving theexistene of absorbing balls diretly brings along existene of solutions [24℄, estimates for the sixthorder model are more di�ult to obtain sine the anisotropi surfae energy leads to undesiredterms. The problem is solved by appliation of frational operators to derive lower order boundsfrom a transformed equation, whih are then used to obtain higher order bounds from the originalequation. Next, new types of stationary solutions are found by an extension of a method ofmathed asymptotis where exponentially small terms are retained. By using this generalizationof the ansatz by Lange [62℄, the hump spaing is related to the Lambert W funtion and analytialexpressions are found for the far-�eld parameter in the limit of small driving fore strength. Thesesolutions live in a �ve dimensional phase spae and a ontinuation tehnique allows to trak themon branhes in a parameter plane. The asymptoti solutions an be used as initial input for thenumerial method.A new model for the self-assembly of quantum dots has been derived. It extends a work byTekalign and Spener [102℄ by an anisotropi surfae energy and an atomi �ux suh that realistisimulations of a Stranski-Krastanov growth an be arried out. A linear stability analysis to thefourth order quasilinear PDE shows the destabilizing e�et of the anisotropy, whih an also beobserved in simulations based on a pseudospetral method. While in the work for the isotropiase single bell-shaped dots were alulated, here huge arrays � hundreds of faeted nanoislands� are simulated, so that the evolution of the strutures an be ompared to experiments. Higher�ux rates yield bigger island densities and smaller dots are absorbed in favor of the bigger ones,resulting in an Ostwald ripening proess.Keywords:Self-assembly of quantum dots, ontinuum modeling, small slope redution, pseudospetralmethod, anisotropi surfae energy, exponential mathed asymptotis, existene of solutions,Ostwald ripening, linear stability analysis
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0.1 A quantum of self-assembled solids 1For a true writer eah book should be a new beginning where he tries again for something thatis beyond attainment. He should always try for something that has never been done or that othershave tried and failed. Then sometimes, with great luk, he will sueed.Ernest Hemingway (1899 - 1961)0.1 A quantum of self-assembled solidsMaybe true sientists have a similar motivation as true writers, sine it is the researhers' job totry for something that is beyond attainment. Sometimes, with great luk, they sueed and theirresults hange the world. Who would have believed in a wireless world thirty years ago whenprogramming meant printing holes into paper? Who believed in �ying 200 years ago? Theseideas were out of range for everyone exept for a few visionaries.By now a majority is aware of the existene of the nano-world, of nano-partiles, nano-oatings and nano-sales. However, most people might still miss spots where 'nano' plays a role.Quietly and unintrusively nano-tehnology settles in everyday life. The founders of the nano-or mesosopi world generate hanges on an invisible sale. When people drink out of a plastibottle, they do not think about hambers, plasmas, and resulting oatings on the inside of theirdrinking vessel.
Figure 1: STM piture of a Si1−xGex/Si(001) quantum dot. All faets are {105} oriented. Piture reprinted withpermission from Teihert [101℄.During the last deades inorporation of nano-strutures in various �elds of engineering hasbeome very popular and suessful. They are used to develop lasers with short wave lengths,proessors for omputers, mobile phones or ar aessories. Nano-oatings are employed for thereation of water-resistant or srath-proof materials or treatment of medial equipment. Manyother appliations are possible and the understanding of the world on miro-sales is neessary toimprove prodution proesses. In this work mathematial aspets onneted to epitaxial growthof solids on the nano/mesosale are in fous. Anisotropy of the surfae energy is important onsuh small sales. It is added to surfae di�usion models that desribe the self-assembly of thin



2rystalline �lms. The resulting partial di�erential equations (PDEs) are of high order and newtheory is developed to analyze them on several aspets, suh as equilibrium states, linear stabilityor general existene of solutions. The results are supported by simulations that are arried outwith help of pseudospetral methods.One of the small strutures that has raised great attention in reent years and whih playsa big role in this work is the so-alled quantum dot, or also nanodot, nanoisland or arti�ialatom. Quantum dots (QDs) are very small rystals whose typial sizes range between 1 and100 nm. This sale onstrains the motion of eletrons in the ondution band and holes in thevalene band in all diretions, labeling suh a nanoisland a zero-dimensional struture. In Figure1 one suh pyramidal rystal � germanium and silion grown on silion with a partiular rystalgrid orientation, Si1−xGex/Si(001) � is made visible by sanning tunneling mirosopy (STM).Anisotropy leads to preferred faets reated during growth, so that harateristi slopes appearthat are typially small. In the piture the vertial sale is exaggerated.A nanodot an be exited and the band gap energy is diretly related to its size. Thewave length of the emitted light is ontrollable one ontrol over the growth is ahieved. Thisproperty makes arti�ial atoms very useful for optoeletroni devies suh as LEDs or for lasers.The reation of solar power systems with higher onversion e�ienies � solar ells of thirdgeneration [20℄ � is a promising idea for the appliation of the nano rystals. Beause of theurrent growth of the photovoltai industry, an e�etive implementation ould revolutionize thenano rystal market. Although so far QDs do not play a major role on the market, neither asLEDs, nor as photovoltai systems or lasers, their in�uene will grow signi�antly in the next fewyears. Preditions are made whih state that the demand for the tiny rystals will explode duringthe next �ve years, when displays and lasers based on QDs will be produed for the market [88℄.Furthermore quantum omputing based on QDs is under researh, though independently of thetype of implementation it has remained a visionary goal for several deades [66℄.The sizes and shapes of quantum dots are relevant for their optoeletroni properties. Com-pliated ething tehniques give proper ontrol over the shapes, but they are expensive, whihmakes alternative self-assembly properties popular. Understanding and properly in�uening thiskind of growth would improve the quality of the produed devies. Self-assembly is known fromeveryday life, so many other physial systems where patterning an be observed have alreadybeen analyzed. In partiular the �eld of �uids is popular in this respet (e.g. [45, 54, 72℄). Gen-erally self-organization appears in many situations at many sites, be it on glaiers, on stalagmitesor as shown in Figure 2 on sand, water or mud, in the sky and on rystalline surfaes. Patterningan be observed on large sales (loud formation), intermediate sales (boiling water) or on verysmall sales � so small that they annot be made visible with optial mirosopes. When atomsare deposited onto a substrate in a suitable manner, formation of patterns an be observed. Anunderstanding of the mehanisms of this assembly is neessary to ontrol the distribution and thesizes of the nano-strutures. Sine surfae di�usion is responsible for the ordering of the surfae



0.1 A quantum of self-assembled solids 3

Figure 2: (a) Sand in the desert∗; (b) Water between glass plates∗ ; () A Si,Ge �lm on a Si(001) substrate (reprintCourtesy of International Business Mahines Corporation, opyright 2009 ©International Business MahinesCorporation); (d) A polymer �lm dewets a hydrophobi substrate (image ourtesy of Chiara Neto, The Universityof Sydney; for dewetting polymer �lms see e.g. her work with Jaobs [72℄); (e) Drying mud∗; (f) Cloud formation∗;(a), (b), (e) and (f) depit examples for marosopi patterns, while () and (d) show self-assembly on small sales.
∗ Pitures ourtesy of the �ikr members Mr. Mark, Daveybot, pitosribe, traitodd.atoms, its analysis is fundamental.The entral fous in this thesis lies in elaborate ontinuummodeling based on surfae di�usion,model redution, analysis and simulation of self-assembled patterning of thin-�lm rystallinenano-strutures. Here not only QD growth will be onsidered, but also thin rystalline surfaesthat undergo faeting during growth. Mathematially a big task lies in the analysis of theproperties of a smooth real funtion, h : Ω × IT → R, (x, y, t) 7→ h(x, y, t), that desribes theevolution of a self-assembled surfae � similar to the thin �lm depited in Figure 2 (). Here
Ω ⊂ R2 is a �xed domain with Lipshitz boundary or an in�nite domain. Typially it will behosen Ω = [0, L]2 and periodiity will be assumed at the boundaries. IT = [0, T ] is a time intervalso that overall (x, y) ∈ Ω and t ∈ IT . One ould onsider a funtion with more dependenies
h∗ : Ω × IT × P → R, (x, y, t, p1, . . . , pk) 7→ h∗(x, y, t, p1, . . . , pk), where (p1, . . . , pk) ∈ P is avetor of parameters � material properties suh as elastiity onstants or growth onditions liketemperature or deposition rate. However, these quantities are usually ombined in a few variables.The mathematial onept of nondimensionalization is applied to work with dimensionless unitsand this makes the �rst notation preferable. During aomplishment of parameter studies thedependenies are then expliitly disussed. Mathematially hallenge lies in the high order ofthe semi- or quasilinear PDEs that de�ne the funtions h as their solutions. New theory indi�erent �elds of mathematis has to be established to deal with the high derivatives and thenonlinearities.There are di�erent approahes for modeling and simulation of epitaxial growth, di�eringin their sale, their level of detail and their mathematial foundation [106℄. On the mirosopi



4level the models desribe atom interations and are quite aurate (moleular dynamis methods,Monte-Carlo simulations [49℄), but the omputational osts for investigating long-time behaviorof big arrays of QDs are exessive. Only early stages of the self-assembly and relatively smallarrays an be studied. Mean-�eld models as in the work by Ross et al. for QD self-assembly[86℄ an yield a oarse desription of the island distribution, but they do not aount for theshapes of the dots and the layout of the arrays, whih are essential information needed forthe antiipated improvement of the eletro-optial properties. Continuum models desribe theevolution of islands, inluding positions and shapes on the analyzed time domain. Anisotropisurfae energy is used to desribe growing rystalline surfaes that have preferred orientations.For modeling of QD growth an additional stress desription is needed. Opposite to homoepitaxy,whih is a one solid system, in heteroepitaxy �lm and substrate have di�erent lattie spaings.The �lm grows oherently on top of the substrate, so that a ohereny strain indues stressesinside both solids that ompete with the surfae energy. Typially linear elastiity theory in formof the Navier-Cauhy equations is applied. These an be solved numerially in terms of a three-dimensional �nite element ode as done by Zhang et al. [117, 118℄. Without optimized FEModes and high-speed mahines this approah again results in run time problems for large-salesimulations whih motivates the idea to derive simpli�ed expressions that do not rely on FEMomputations.Two equations are derived and analyzed in this work. One desribes the faeting of a growingsurfae and the other the evolution of Ge/Si or SixGe1−x/Si QDs. For both the modeling ansatzoriginates from Mullins' surfae di�usion formula [69℄. A hemial potential has to be de�nedto model the fores driving the surfae di�usion. Over the last two deades the resulting PDEmodels based on this approah gained omplexity by inluding more and more of the importante�ets that in�uene the growth. A few of the reently appeared publiations on ontinuumtheory for self-arranging surfaes an be found in the following list of referenes [16, 26, 27, 42,89, 97, 102, 103, 116℄. It is far from omplete and a more detailed disussion will be aomplishedthroughout the work, in partiular in Chapter 1. Continuum models often an be redued tosimpler PDEs that ontain less terms and nonlinearities, making simulations easier, faster andmore stable. Therefore small quotients of di�erent harateristi length sales an be employed toidentify small terms in suitable expansions that an be negleted. This has been done previouslyin the �eld of �uid dynamis where the full Navier-Stokes equations an be redued to lubriationmodels (see for example Atherton and Homsy [5℄ or for a more reent paper the work by Münh etal. [70℄, where models for di�erent slip-regimes are derived). Here the redution approahes areapplied to obtain equations desribing the growth of thin solid rystalline �lms � an idea that ispursued sine about a quarter entury. The oarsening of faeted growing rystals and quantumdot arrays reminds of oarsening in liquids [39, 45℄ and also of solid phase separating systemslike binary alloys [79, 83, 109℄. A new model for the QD self-assembly will be introdued, it isprobably the most realisti model for suh an Ostwald ripening system. A di�erent, yet existing



0.2 Prodution proesses and appliations of quantum dots 5model for the faeting of a growing surfae will be analyzed on many aspets. A detailed listing ofthe results will be given in Setion 0.5, where also the general struture of the thesis is explained.Readers familiar with rystals, epitaxy and in partiular with the topi of self-assembled QDsmight want to jump forward and ontinue with this setion, others an get an overview overthese important aspets and an understanding for why self-assembled nanostrutures an be veryvaluable. Observations during the deposition proess in the Ge/Si system, whih is qualitativelyvery similar to SixGe1−x/Si, are outlined step-by-step. These will be useful when they will beompared with the simulation results ahieved in this work. The most important aspets of QDsare outlined on the following pages, however, a omplete disussion is not o�ered. For furtherdetails the reader is referred to a book by Freund and Suresh [34℄.0.2 Prodution proesses and appliations of quantum dotsThe sizes and shapes of QDs depend on many aspets of fabriation, in partiular on the materi-als and temperature used in the growth hamber. Spontaneous arrangement of nano-struturesan be observed during a proess that is alled epitaxial growth. It is arried out at high tem-peratures, typially > 500◦C, so that surfae di�usion plays a major role. A rystalline materialis preipitated with a low �ux rate onto a substrate. As mentioned before, if the same materialis used for �lm and substrate, one talks about homoepitaxial growth, while heteroepitaxy is thease for two di�erent materials � it is the ommon method for QD self-assembly. For ertain �lmand substrate ombinations an initially monotonously growing planar �lm develops an instabilityafter some time. A mismath (or analogously mis�t) between the latties of �lm and substrateleads to stresses that are released one a ritial height is exeeded. This instability, where sur-fae energy is of order of the bulk stresses, is alled Asaro-Tiller-Grinfeld (ATG) instability [22℄.Small humps, often alled pre-pyramids, form and evolve to pyramids that oarsen throughoutthe proess (these islands have square bases and {1 0 5} faets; Miller indies are explained inSetion 0.3). Smaller islands vanish in favor of the bigger ones whih develop more pronounedfaets. Suh ripening phenomena are well analyzed in related �elds, for example in alloy mixturesor other phase boundaries of solids (for a modeling paper see Thornton et al. [104℄) and they alsoappear in liquid droplet dynamis (see for example [38, 45, 54℄). Researhers hope to predit thelayout of the arrays of QDs that form after su�iently long evolution. Sine some appliationsneed dense arrays, while others need equally sized arti�al atoms and/or equally distributed dots,the nano-industry would bene�t from the knowledge of how the island distribution is in�uened.Simulations with di�erent parameters ould make ostly experiments redundant and ould savea lot of work and resoures.Results from early experimental works left many open questions for several years, beausesome of them seemed to ontradit others. The major reason for the rather obsure �ndings wasthe impossibility to arry out in situ observations of the self-assembly of QDs. Only sine Ross
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Figure 3: Quantum dots grown by researhers from IBM. As in the Ge/Si(001) system one sees that Si1−xGexdots grown on Si(001) oarsen (here at 690◦C and a �ux rate of 5 monolayer (ML) per minute), that smallerhumps vanish and that bigger arti�ial atoms develop a pyramidal shape that eventually beomes a multi-faeteddome-struture. Reprint Courtesy of International Business Mahines Corporation, opyright 2009 ©InternationalBusiness Mahines Corporation.and her o-workers managed to implement a transmission eletron mirosopy (TEM) apparatusthat works in a hamber during growth, the understanding of the evolution of QDs has leadto a onsistent view [85℄. Results of the important work are shown in Figure 3. The IBMpitures visualize how a silion substrate is overed with germanium and silion atoms and howthe resulting �lm evolves. In (a) a �at state is visible. Atoms are deposited ontinuously onto thesurfae and the �lm grows for some time in vertial diretion as �at surfae. In (b) the Asaro-Tiller-Grinfeld (ATG) instability sets in and leads to formation of rather rounded strutures, thepre-pyramids. These pass into pyramidally formed nanodots as seen in () and (d). Here onean also observe that smaller islands are absorbed by a thin layer whih onnets the dots, sothat the overall number of islands dereases. The bigger dots grow and when they exeed a baselength of about 50nm, the pyramids hange their shape again and domes � multi-faeted islands� appear as in (e) and (f). Clearly the average size of the nano-strutures grows with time sinethe atoms from vanishing islands are redistributed to neighboring QDs while further depositiontakes plae.In Figure 4 one partiular oarsening event is depited. A smaller dot surrounded by threebigger pyramids is 'eaten'. The 'fat' dots survive and ontinue to grow. Throughout the wholeevolution this Ostwald ripening proess1, whih is also alled survival of the fattest, is visible.More details on Ge/Si(001) heteroepitaxy is given in Setion 0.4.Although Ge/Si is a ommon and well studied material ombination for fabriation of QDs1Originally the term Ostwald ripening refers to the Gibbs-Thomson e�et driven oarsening that appears ina system with �xed volume. However, reently it is also used for other, similar phenomena, like the ripening ofQDs.



0.2 Prodution proesses and appliations of quantum dots 7(and it is in fous at most points in this work onerning QDs), di�erent other ways of self-assembly are possible. Apart from di�erent materials for �lm and substrate, suh as indiumarsenide or indium gallium arsenide on gallium arsenide (InAs/GaAs, InGaAs/GaAs), admiumon selenium (Cd/Se) and others, the growth an be realized by diverse proesses. A distintionis drawn between hemial vapor deposition (CVD) and physial vapor deposition (PVD), whihboth may be subdivided into many methods. One of the most ommon proesses in this �eld isa PVD method, so-alled moleular beam epitaxy (MBE). Pure elements are heated in e�usionells until they evaporate. The atoms then move in a beam, whih means that they do notinterat with eah other until they reah the wafer. The other, the CVD tehnique, is basedupon reations in a gas whih lead to deposition of atomi layers. The CVD proess is dividedinto many di�erent types, for example plasma enhaned CVD, atomi pressure CVD, atomilayer CVD or ultra high vauum CVD, among others. There exist also other PVD or liquidepitaxy methods, however, giving a omplete overview is outside the sope of this doument.
Figure 4: Collapse of a quantum dot during Si1−xGex/Si(001) heteroepitaxy: While the three neighboring pyra-mids on top, bottom and on the left ontinue to grow, the middle dot shrinks until it is absorbed by the thinlayer. Reprint Courtesy of International Business Mahines Corporation, opyright 2009 ©International BusinessMahines Corporation.Optoeletroni devies based on QDs use the disrete energy struture of the nano-islands.Eletrons in the QDs an be exited so that they release a photon by falling bak from theondution band to the valene band. For photovoltai devies it is the other way round asinoming photons free eletrons whih then reate a urrent.One of the most important appliations of self-assembled nanostrutures so far is for bluelasers. Beause of the semiondutor devies developed by Nakamura in the 1990s, whih inor-porate self-assembled QDs or quantum wires (nano-strutures that are on�ned in two dimensionsonly, forming longitudinal ridges) high-frequeny lasers were born � see his book with Fasol andPearton [71℄. The nano-rystals enabled the development of lasers with blue light, giving theblue-ray tehnology its name. Also another big storage dis tehnology, the HD-DVD, usesself-assembled nano-strutures. The shorter wave length of 405 nanometer of blue light (in om-parison to 650 nanometer for red lasers) enables to fous the beam on smaller bumps, so thatit is possible to redue the trak pith signi�antly. The smaller trak width and smaller pitsform a high information density that allows the single-layer blue ray diss to store 27 GB, whilethe standard DVD an store only about 5GB. At the time of writing this thesis the blue-raytehnology just beame standard for high de�nition �lms.



8 Another upoming appliation is for photovoltais. It is ommon to lassify solar ells intothree generations. Eah subsequent tehnology is supposed to give bene�ts in prie per areaof the ells and in onversion e�ieny and quantum dots are supposed to give the newestgeneration a boost. The �rst generation still overs most of the market. For these establishedsystems silion rystal pillars are reated by Czohralski growth. These are ut into slies thatserve as photovoltai panels. In omparison to thin-�lm multirystalline layers, whih de�ne theseond generation and over nearly ten perent of the market, the �rst generation substrates arethik and muh of the material is lost when the big bulk rystals are ut. Although this makesthem expensive, they still enjoy great popularity sine bulk material ells have had a higheronversion e�ieny up to now. Sine only a few years ago, third generation photovoltais areunder onsideration. Additional layers that improve the onversion properties are inorporated.They an omprise various materials, for example they an be made of polymer ells, or ofmost relevane for this work, of QDs. The fundamental ability of QDs that wakes hopes forimproving solar ells lies in the multiple exiton generation (MEG) e�et. One inoming photonis able to exiting several exitons in a single QD. For solar ells staked QDs are needed forimplementations.Quantum omputers are a vision whose realization would revolutionize the world. Spins ofeletrons would take the plae of the usual on and o� positions of traditional omputers. Thereforea string of so-alled qubits needs to beome ontrollable, so that all on-o� ombinations an beomputed at one, whih would immensely derease run-times. To ahieve this goal, aessiblequbits have to be reated. Loss and DiVinenzo [66℄ desribe how one of these tiny rystalsould represent one qubit and also other results keep the vision of the superomputers alive.For example onjuntions between two dots via lithography have been ahieved, it is possibleto monitor the numbers of eletrons in the islands and the spin states have been deteted (seeJeong et al. [50℄). One the quantum states of QDs an be ontrolled, strings of nano-islands willhave to be reated. These would have a similar role as registers in personal omputers. Regulararrays of QDs with the same shapes and same quantum properties are essential for a suessfulrealization.The appliations show that it is important to grow QDs that are in a sense regular, be it insize and/or in the patterning. To obtain ontrol over the evolution, the mehanisms behind theself-ordering have to be understood. Properties of rystals have to be disussed.0.3 Growth types and rystal propertiesIn this setion some useful onepts from rystallography are introdued. To derive realistimodels that desribe growth of rystalline strutures these basis have to be known. First, growthtypes typially observed in PVD and CVD methods for heteroepitaxial growth are outlined,seond, basi properties of rystal strutures are explained and third, Miller indies that are used



0.3 Growth types and rystal properties 9for the desription of rystal orientations are de�ned.Growth types:Atom deposition methods suh as PVD or CVD lead to di�erent growth types that are lassi�edinto three groups in ase of heteroepitaxy. They are named Frank-van der Merwe, Volmer-Weberand Stranski-Krastanov growth and they are skethed in Figure 5. In the �rst ase a �lm growslayer by layer. An even surfae remains planar and gains in thikness. During a Volmer-Webergrowth proess the surfae diretly develops islands and parts of the substrate are unovered.Here terminology from liquid �lms is used. In similar situations these are alled dewetted, andthis expression is used for solid �lms, too. A prominent example for a material ombinationthat exhibits this behavior is Si/Ge. Here the substrate and �lm materials are interhanged inomparison to the system onsidered in this thesis. Silion has a higher surfae energy thangermanium, so that the substrate mainly remains unovered to minimize the overall surfaeenergy. For the third, the Stranski-Krastanov growth mode, the Ge/Si and GexSi1−x/Si systemsare arhetypes. For suh heteroepitaxial QD ombinations �rst a �at �lm inreases its thikness(pseudomorphi growth phase), then it beomes unstable and forms islands after a ritial heightis exessed. One these are big enough, they are alled QDs. A thin �lm overs the substrate, itis wetted, and onnets the nanoislands. These an be di�erent in size and shape and typiallyinrease their average size during further deposition. The QD model that will be derived anddisussed in this thesis desribes a Stranski-Krastanov growth proess. For the seond modelunder onsideration in this thesis none of the above shemes �ts to desribe the behavior ofthe surfae. However, there exist more growth types. In homoepitaxial, one-material systemsa surfae does not wet the substrate. Also here slope-seletion an be observed so that faetedisland-like strutures, e.g. pyramids that have diret ontat to their neighbors, form, grow andoarsen.Bravais latties:The materials under onsideration in this work are rystals, hene by de�nition they are har-aterized by repeating patterns � so-alled Bravais latties. Figure 6 depits basis ubes forrystals with ubi symmetry. Additionally to the nodes at the orner of simple ubes additionalknots an be found in the enter of the faets for fae entered ubi (f) rystals or in themiddle of the ube in body entered ubi (b) latties. Illustrious examples of materials withdiamond ubi symmetry (following an f lattie with additional atoms inside the ube) are thesemiondutor materials silion and germanium. Although many other and in partiular moreomplex symmetries an be found in rystals, only ubi symmetry will be onsidered throughoutthis work.The repeating struture of rystals leads to anisotropy in the surfae energy γ, whih is anenergy per unit area ([γ] = J/m2). A two-dimensional model rystal with 'ubi symmetry' asskethed in Figure 7 explains the di�erent properties of suh a material in di�erent diretions.



10

Figure 5: Shemati desription of possible island growth in heteroepitaxy. From left to right: Frank-van derMerwe, Volmer-Weber and Stranski-Krastanov growth.
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Figure 6: Bravais latties for rystals with ubi symmetry. From left to right: simple, body-entered and fae-entered. The main axes have the same length and form an angle of 90 degrees to eah other.Depending on the orientation of a formed surfae, the number of atoms lying in the range ofnearest neighbor interations, whih is skethed in the �gure by single irles, di�ers and leads tovariations in the bond strengths and hene the surfae energy. In the general 3D ase it dependson the outward unit normal n = (n1, n2, n3), γ = γ(n1, n2, n3). In Setion 1.2.2 anisotropy ofthe surfae energy will be disussed in detail. It is fundamentally di�erent than for most liquids,suh as water or oil, whih have an isotropi surfae energy. Fluids typially have a round formin equilibrium sine suh shapes minimize the surfae, and simultaneously yield the minimum ofthe surfae energy. Anisotropy adds a ertain amount of omplexity, sine it has to re�et therih struture of rystals.Miller indies:When anisotropy of rystals is onsidered triplet indies suh as (klm), {klm}, < klm > or [klm]are used. These areMiller indies and for materials with ubi symmetry they have the followingmeaning: (klm) is the surfae whih is orthogonal to the diretion (k, l,m)T in Eulidean spae



0.4 Ge/Si(001) quantum dots 11

Figure 7: Anisotropy of rystalline materials. Here a two-dimensional model rystal with 'ubi symmetry in 2D'is skethed and nearest neighbor interations are indiated by the bigger irles. On the left (01) orientations givea di�erent amount of blak/white dots in suh a irle than on the right, where the rystal is (11) oriented. HereMiller indies in 2D, explained below in 3D, were used.(these are diretions in Cartesian oordinates). Mathematially this gives the set
(klm) = {(a, b, c)T ∈ R3 : ak + bl + cm = 0} .

{klm} are all planes that are equivalent to the (klm) plane under ubi symmetry � that isequivalene under 90 degree rotations. One example is (the six planes of a Bravais ube are inone lass; k̄ denotes −k in rystallography)
{001} = {(100), (001), (010), (001̄), (01̄0), (1̄00)} .

[klm] represents the diretion (k, l,m)T and < klm > is the set of all symmetrially equiva-lent diretions and the example for the equivalent planes an be translated to the diretionsanalogously.0.4 Ge/Si(001) quantum dotsAs mentioned, two germanium and silion based epitaxial systems are very ommon, the Si1−xGex/Siand the Ge/Si ombinations, where the substrate is typially (001) oriented. These materialshave a ubi diamond symmetry, whih follows a fae-entered ubi bravais lattie, and sharesimilar lattie onstants. Qualitatively the resulting surfaes during heteroepitaxial growth forboth systems are nearly the same, so in many ases they are studied in parallel (see e.g. Druker[23℄). In Figures 3 and 4 pitures from the Si0.7Ge0.3/Si(001) system show how the evolutiontakes plae � as Stranski-Krastanov growth type with an instability that appears as small humps,whih evolve to faeted islands and oarsen while further atoms are deposited onto the surfae.



12In the following the data for a pure germanium �lm will be used. However, mixtures as aboveould be onsidered analogously, see for example [102℄. In this setion details of the two stagesof the evolution are presented. The following numbers and fats are based on the informationgiven in Druker's review [23℄ and the referenes therein. The desribed heteroepitaxial systemwill be ompared to numerial results at later stages of this thesis.Phase one: Pseudomorphi growthGermanium is deposited on top of a silion wafer. Both materials are in the same symmetrylass, but the inherited grid spaing of germanium is slightly bigger than that of silion. The �lmatoms adjust their grid spaing to the substrate's lattie. A �at, but due to ompression stressed,�lm grows until it reahes a ritial thikness hc = hc(T, F ). It is about three monolayers (ML)high, but this value hanges with temperature of the hamber T and the onstant deposition rate
F , whih lies in the range of a few monolayers per minute. IBM states 1 − 5ML/min in theirGe/Si experiments and using the value from Burbaev et al. [10℄, one monolayer is 0.14nm thik,so that the deposition rate an be written as 0.00233nm/s− 0.01165nm/s.Phase two: Island evolutionAfter the �rst stage, ripples begin to evolve into island strutures. After some time they showanisotropi behavior and oarsening takes plae throughout the whole phase. The following de-sription is valid for temperatures in the range of 500 to 600 ◦C: Square-based pyramids formout of the rounded nano-islands. These have {1 0 5} faets and a ontat angle of 11 degrees.Smaller mounds oalese, while bigger pyramids ontinue to grow. Further deposition of germa-nium atoms leads to a omplex transition to otagonal based domes with diameters above 50nmand higher ontat angle of 25 degrees, resulting in a bimodal distribution of islands [86℄. Stablefaets of the domes are {1 1 3}, {1 0 2} and {15 3 23}. Disloations are introdued, interdi�usionbetween substrate and �lm takes plae and the interfae between the two solids hanges fromurvature-free to one-like. For higher temperatures elongated islands with the same faets aremore ommon. Then also the e�et of intermixing of germanium and silion is more important,beause in this ase the interfae kinetis is not muh slower than the shape hange kinetis. Thisis a point that is not addressed in ontinuum models so far and a �at interfae will be onsidered.When disloations appear, the quality of the arti�ial atoms deteriorates and ontinuedgrowth an halt desirable quantum e�ets to appear. To obtain small, qualitatively good dotswith a disrete energy spetrum, the proess has to be stopped early enough.A short list summarizes the most important fats that will be needed during the modelingand for parameter de�nitions.

• Growth mode: Stranski-Krastanov
• Temperature: 500 − 600◦C

• Deposition rate: ≈ 0.002− 0.02nm/s



0.5 Content, results and struture of this work 13
• Materials and symmetry: Ge, Si(001), ubi
• Interfae between �lm and substrate: Flat (assumption reasonable under small slope as-sumption)
• Faets of the pyramids: {1 0 5}

• Critial height: ≈ 3ML ≈ 0.42nm

• Time range (from inset of the instability, through formation of ripple strutures, oarsening,faeting, growth until diameters of about 50nm are reahed): ≈ 0.5−3 minutes (dependenton the hosen �ux rate)Note that these are observations for a speial heteroepitaxial system. They will be useful inChapter 4, where a QD model for its self-assembly will be derived, analyzed and ompared toexperiments. However, the other parts of this work are devoted to an already existing model forhomoepitaxial growth. Rather than modeling aspets, in this ase the mathematial analysis isin the foreground. The overall ontent is outlined in detail in the following setion.0.5 Content, results and struture of this workIn this �rst paragraph the ontent is shortly summarized, thereafter details on the results areoutlined. The main body of this doument begins with general ontinuum modeling for surfaedi�usion based evolution of rystalline �lms. A surfae di�usion equation is derived that leavesmany degrees of freedom for further modeling by allowing for a general hemial potential. Themodel goes bak to the fundamental work by Mullins [69℄. Throughout the work two di�erentenergies are introdued that result in two models. The �rst has already been known, it is asixth order semilinear PDE that desribes the faeting of a growing surfae. The seond is anew fourth order quasilinear evolution equation for the self-assembly of quantum dots. Althoughit does not have the sixth order term, it an be seen as an extension of the �rst model, sineit also inorporates anisotropy of the surfae energy and an atomi �ux. Both models underonsideration are Cahn-Hilliard type equations and their high order requires elaborated theoryfor their analysis. To work with simpli�ed PDEs, the equations are nondimensionalized. Asymp-toti expansions that make use of typial small slopes are applied to derive redued models bynegleting small terms in the expanded expressions of the full equations. These are analyzed onstationary solutions, whih requires to work in high order phase spaes, mathing to many ordersor also new mathing proedures. The numeris for the dynamial behavior has to be apableto treat high order derivatives. This task is solved here via spetral di�erentiation. For the �rstequation the existene of weak solutions and higher regularity has been proved. The last regularhapter is devoted to the set-up of e�ient pseudospetral methods in Matlab. These allow to



14simulate domain-wall interations or huge arrays of QDs, so that their evolution an be omparedto experiments.The ontent and results in detail: In Chapter 1 the modeling of a surfae di�usion drivenproess is arried out. After the general derivation of an evolution equation for rystalline surfaesand a disussion about atomi �uxes, di�erent kinds of surfae energies are introdued. Variousformulas have been proposed in literature to improve existing models and this hapter gives asmall review of the important publiations. Di�erent terms in�uening the hemial potentialare a result of the funtional derivative of the free energy. Furthermore in heteroepitaxy a seondmajor in�uene has to be onsidered, the strain energy density. Di�erent lattie onstants in �lmand substrate lead to stresses that are modeled here in terms of linear elastiity theory. Afterits introdution the solution for a simple on�guration, the base state, is derived. However, anapproximate solution for the full elasti subproblem, whih is onsidered for modeling of theself-assembly of QDs in a later hapter, is taken from Tekalign and Spener [102℄. A detailedre-alulation of the results is given within Appendix C.In the following Chapters 2 and 3 a model for the faeting of a growing surfae is analyzed.For systems where two harateristi sales are given, one small and one large, often their ratiois used as small parameter. By expanding in terms of this quantity, PDEs an be simpli�ed toequations that are easier to solve. This is done here to obtain a semilinear evolution equation ofsixth order. The model has already been derived by Savina and her o-workers [41, 89℄ and somereferenes therein. Here the alulations are repeated in a ompat way. In the same framework arelated and new model for quantum dot self-assembly will be derived later on. In a ertain sense itextends the �rst model. In Setion 2.2 some notes on phase-separating systems of Cahn-Hilliardtype are stated, beause the derived equation for the desription of faeting of a growing surfaeis a lose relative of these models. In fat, formally it is a onvetive Cahn-Hilliard equation(see e.g. [24, 40, 44, 115℄) of higher order and throughout the work it will be addressed as theHCCH equation. Existene of weak solutions is proved in L2(0, T ; Ḣ3
per(Ω)) ∩ C0([0, T ], L̇2(Ω)).Therefore an introdution to the most important aspets of funtional analysis and operatortheory is given before the atual proof based on a Galerkin approah is arried out. A ompatoperator, the inverse of the bi-Laplaian working on a suitable Sobolev spae, is applied onto thePDE and a similar struture as for a onvetive reation-di�usion equation is obtained. It an beused to derive bounds in lower order spaes. By further testing the HCCH equation and usingthe previously obtained results, suitable estimates give � by passing to the limit of the Galerkinapproximation � existene in the higher order Sobolev spae. In Chapter 3 equilibrium solutionsand long-time behavior are disussed. New types of stationary solutions are derived with helpof a boundary value problem formulation in a �ve dimensional phase spae. With the numerialmethod solutions are haraterized on branhes in a parameter plane. Charateristi quantitiessuh as far-�eld value and hump-spaing are ompared with analytially alulated values. Toderive atual formulas for these quantities the method of mathed asymptotis is used with the



0.5 Content, results and struture of this work 15additional feature that exponentially small terms have to be retained, extending the method byLange [62℄ to higher-order singularly perturbed nonlinear boundary value problems. Solutions inthree neighboring regions are expanded, solved to four suessive orders and they are mathed todetermine unknown onstants. As result analytial features of spatially non-monotone solutionsare derived in the limit of vanishing driving fore strength. The width of the harateristihumps of the solution is related to the Lambert W funtion and analytial expressions for thebehavior in the far-�eld are derived. Finally the oarsening mehanisms for the HCCH equationare analyzed with help of a numerial study. Kinks, kink-pairs and kink-triplets show behaviorthat governs the overall evolution. It turns out that stationary patterns with a still quite rihstruture exist and that also traveling waves are possible. Typial frequenies of the solutionsgrow like the logarithm of the deposition parameter. A pseudospetral method introdued inChapter 5 is used to obtain these results.In Chapter 4 a redution similar as in in Chapter 2 is applied to a quantum dot model. Ityields a fourth order, quasilinear PDE that inorporates a nonloal term through the elastiproblem. To guarantee that all desired e�ets are still apparent in the redued equations, theoe�ients appearing in the problem are saled with are. The resulting PDE is alled thequantum dot model (QDM) equation. It is a new thin-�lm approximation that inludes thee�ets of stresses, anisotropi surfae energy, wetting interations and deposition at one. Theredution is arried out in a onsistent way, similarly as by Tekalign and Spener [102, 103℄ or byKorze and Evans [56℄. A numerial method based on spetral di�erentiation, whih is presentedin detail in Chapter 5, allows to simulate the self-assembly of QDs. Before stationary shapesare studied on the in�uene of the anisotropy, a linear stability is arried out. It indiates thathigher values of the anisotropy strength lead to more osillatory surfaes and that the ritialthikness in this Stranski-Krastanov system dereases. The stationary solutions obtained in twoand in three dimensions an be reovered during simulations of the surfae evolution on largedomains in di�erent sales. One observes hundreds of islands that are separated by a thin layerof the �lm's material. The QDs are pyramidal in shape as demanded by the anisotropy formula,but it is also shown that other anisotropies are admissible. The oarsening analysis shows thatthe number density of nano-islands deays over time like a power law. In partiular strongeranisotropy parameters initiate the oarsening phase earlier, whih on the other hand is slowerthan for the isotropi ase. Finally an atomi �ux is added and the numerial solutions reveal abehavior as it an be expeted from the results from the ase without deposition. In fat only nowthe Stranski-Krastanov growth mode antiipated an now be simulated and as in experimentshigher �ux rates result in more, but smaller dots, when omparing the surfaes after deposition ofthe same amount of material. The island density remains for longer times on a higher level, sinesmaller dots that tend to get absorbed in the ase without deposition survive due to the additionaladatoms attahing to the dots. The oarsening rates still an be desribed approximately by apower law. There have been many models desribing the QD self-assembly under disussion. For



16Ge/Si like systems the presented theory yields probably the most onvining results. Not onlyhas the theory by Tekalign and Spener [102, 103℄ been extended by a surfae energy anisotropyand an atomi �ux, also the simulations are partiularly strong. While in the isotropi aseonly single dots have been onsidered that tend to beome unrealistially steep, here hundredsof faeted dots an be simulated.The last regular Chapter 5 introdues the numeris used for the simulations presented through-out the thesis. It begins with an explanation of simple di�erentiation matries for �nite di�erenemethods (FDMs) and it is shown how few lines of Matlab ode an su�e to simulate even notso simple PDEs. Then pseudospetral methods (PSMs) are motivated in terms of trigonometriinterpolation, whih is onneted to the previously introdued theory sine �nite di�erenes anbe interpreted as derivatives of loal interpolants. It is explained how the Fourier transform basedmethods an be used for the simulation of three-dimensional QD growth. Comparisons between�nite di�erene approximations and spetral derivatives are presented, showing the superiorityof the latter for a ertain lass of well-behaving problems. Although the method is not new �trigonometri interpolation based methods used for simulations of PDEs exist sine the 1970s �the presentation should motivate any reader to use PSMs, if the underlying problem allows foran appliation. The thesis �nishes with onlusions and disussions for the future in Chapter 6.



Chapter 1Surfae di�usion based ontinuummodelingAfter 1980, you never heard referene to spae again. Surfae, the most onvining evidene ofthe desent into materialism, beame the fous of design. Spae disappeared.Arthur Erikson (1924 - 2009)Surfae treatments of any kind beame popular in the last entury, be it for Te�on pans,ars, glasses or lothes. The thiknesses of suh oatings dereased with inreased knowledge. Itssuess aelerated one fundamental understanding of the proesses on the nano and mesosaleexisted and methods for e�ient oating were available. Nowadays srath proof, water resistant,as membrane funtioning or other surfaes with speial properties due to oating an be foundall over the plae. As desribed in the introdution, many of suh thin-�lm appliations an berealized by epitaxy. In this hapter a theoretial desription for the surfae evolution is given.Continuum modeling based on a surfae di�usion formula derived by Mullins more than half aentury ago, 1957, is presented [69℄. It results in an evolution equation, whih has to be furtherspei�ed by the de�nition of a reasonable hemial potential that states how the surfae di�usionis driven. It will be shown that it an be used to adequately model the faeting of a growingsurfae or heteroepitaxial systems suh as Ge/Si. Generally the atomi �ux has to be taken intoaount and also anisotropy has to be notied sine the underlying materials have rystallinestrutures. For QD growth it is neessary to inorporate additional bulk stresses, whih resultfrom the lattie mismath of two di�erent rystalline materials. Figure 1.1 skethes the set-upfor surfae di�usion. Atoms impinge on a solid �lm. These are then driven by several physiale�ets along the surfae, whih results in an evolution of the �lm.The Nernst-Einstein relation gives the average normal veloity of surfae atoms. It is pro-portional to the �ux on the surfae J , whih is just the surfae gradient ating on a di�usion17



18 Chapter 1 Surfae di�usion based ontinuum modeling

Figure 1.1: Shemati surfae di�usion in a heteroepitaxial system.potential
J = −D∇sµ . (1.1)Here ∇s is the surfae gradient, µ is the hemial potential and D is a quantity dependent onmaterial properties that is assumed to be onstant throughout this doument. It is de�ned as
D =

Ω2Dsσ

kT
, (1.2)where k is the Boltzmann onstant, T is the absolute temperature in the hamber, Ω the atomivolume, σ the surfae density of adatoms and Ds a surfae di�usion onstant. In Setion 4.5typial values for quantities used in Ge/Si heteroepitaxy are olleted and used for simulationsthat are omparable to experiments.To obtain the speed of the surfae in normal diretion v, the negative surfae divergene of the

Figure 1.2: Con�guration for the orthogonal projetion.surfae �ux has to be taken,
v = −∇s · J = D∇2

sµ . (1.3)As depited in Figure 1.2 a projetion yields the vertial growth veloity ht. One has
cos(θ) = v/ht = e3 · n = 1/

√

1 + |∇h|2 , (1.4)



1.1 Atomi �ux 19where n is the outward unit normal that will be used frequently throughout this work,
n =









−hx

−hy

1









/
√

1 + |∇h|2 . (1.5)Here | · | denotes the Eulidean norm for n-vetors (in this ase n = 2) as in the whole doument.By using (1.3) and (1.4) the general evolution equation based on surfae di�usion in absene ofdeposition beomes
ht = D

√

1 + |∇h|2∇2
sµ . (1.6)To desribe the surfae energy, one of the major in�uenes for the hemial potential, severalmodels have been proposed (e.g. isotropi [95℄, or various anisotropi versions [19, 27, 89℄).The terms that result from taking the funtional derivative of the surfae free energy will bealulated after a disussion of an atomi �ux from the gas phase, whih is neessary for arealisti desription of an epitaxy proess. After these two parts the elasti problem will beintrodued in Setion 1.2. In heteroepitaxial systems, suh as those for QD growth, the strainenergy density forms a part of the hemial potential. Sine �lm and substrate are rystallinematerials, they have harateristi grid spaings af and as in �lm and substrate, respetively.Typially these values di�er in the seond deimal plae, e.g. for silion and germanium it isabout 4 perent with a bigger spaing for germanium. During early stages of deposition atomsfrom the �lm material adjust their spaing to the substrate's grid. A ompression indues stressesthat result in a nonzero strain energy density Esed. Eventually the ohereny stress release isre�eted in the evolution by formation of nano-islands.1.1 Atomi �uxAlready in one of the �rst works on ontinuum modeling of QD self-assembly, deposition hasbeen taken into aount [42, 95, 98℄. A perfet beam of atoms was assumed to impinge onto thesurfae. No perturbation of the deposited material was allowed. Generally, let fa be the material�ux, then the average normal veloity (1.3) is hanged by adding the simple term −fa · n. Theevolution equation beomes

ht =
√

1 + |∇h|2(−fa · n+ D∇2
sµ) . (1.7)Under the assumption that all atoms have a vertial deposition diretion, fa = (0, 0,−F ), theevolution equation simpli�es to

ht = F +
√

1 + |∇h|2D∇2
sµ . (1.8)It shows that this kind of deposition results in a vertial shift in the solution h→ h+ Ft, if thehemial potential does not depend on h.



20 Chapter 1 Surfae di�usion based ontinuum modelingSavina et al. [89℄ used a slightly di�erent approah. Their �ux points into the normal diretionof the surfae fa = −Fn, then (1.7) beomes
ht =

√

1 + |∇h|2(F + D∇2
sµ) . (1.9)The authors argued that suh a di�erently oriented �ux is suitable for the desription of a CVDlike proess, where reations in the gas lead to arbitrarily oriented atom trajetories in thehamber. Their model will be analyzed in this work, though for the QD growth model it isproposed to use a perturbed deposition �ux � Gaussian noise perturbs a perfet beam, whihis assumed to impinge vertially onto a �at surfae. More preisely, white noise is added tosimulate the natural �utuations that are generi in suh deposition methods. fa = (f1, f2, f3)has to re�et this random disturbane. In an MBE like proess, the atoms are deposited in abeam and they are oriented downwards, f3 < 0 (i.e. no evaporation is onsidered in the presentedmodels). The deviation from the vertial �ux is randomly distributed and variations in x and ydiretions have the same probability. The �ux at one spae point at di�erent time points is notorrelated and �nally the strength of the �ux fa is just the �ux rate F . Out of these propertiesone an dedue the �ux

fa = − w

|w|F with w = (r(0, σ1), r(0, σ1), r(1, σ2)) , (1.10)where r is a funtion generating Gaussian random numbers with expetations 0, 0 and 1 andstandard deviations σ1 and σ2. In eah time step these numbers have to be reomputed, henean impliit time dependeny is assumed for these values. For simpliity it will be written hereand in later setions r1 = r(0, σ1), r2 = r(0, σ1) and r3 = r(1, σ2) � eah expression representsa random generator funtion all in a numerial implementation. Overall adding the �ux yieldsa perturbed version of (1.8), namely
ht =

F

|w| (−r1hx − r2hy + r3) +
√

1 + |∇h|2D∇2
sµ . (1.11)1.2 Types of surfae energiesA onsiderable amount of equations for the desription of QD growth or other surfae di�usionbased proesses suh as homoepitaxy has been derived throughout the years starting from evo-lution equation (1.7). Di�erent formulas for the surfae energy, typially denoted by γ, in�uenethe hemial potential in various ways. In this setion it is explained how the dependeniesappear in the energy. In the �rst models, suh as those by Spener and his o-workers, nei-ther intermoleular interations between �lm and substrate nor anisotropy have been onsidered[95, 97, 98℄. Furthermore neither the experimentally observed wetting layer onneting the nano-strutures nor faeting of the dots is inorporated in these early works. Golovin et al. extendedthe fundamental theory by inluding wetting e�ets [42℄. Other groups suh as Pang and Huang



1.2 Types of surfae energies 21[77, 78℄ or Tekalign and Spener [102, 103℄ were also able to inorporate this extension. Whilethe former group used the Cerruti solution for a semi-in�nite solid as approximation of the fullelasti problem, the authors from the latter referenes onsidered linear elastiity in �lm andin substrate. They inorporated expansions of the displaements based on harateristi salesin both materials and solved the Navier-Cauhy equations for lower orders to derive a simple,redued, non-loal term. Savina and her olleagues reated a model for CVD like growth in ab-sene of elasti stresses [89℄. The group used a formula for strong anisotropi surfae energy, witha penalizing term for the edges whih is neessary in ase of orners in the equilibrium shapes.The model was further extended by Golovin et al. [43℄. Wetting interations are added to theanisotropi surfae energy, this an be ahieved by letting γ depend not only on the slopes, butalso on the surfae height h in a suitable manner. However, both works are not related to growthbased on the ATG instability sine no elasti subproblem is onsidered. For the heteroepitaxialase, a usped anisotropi surfae energy has been used by Eisenberg and Kandel [25, 26, 27℄.Although 2D simulations were arried out and showed promising results, the drawbak remainsthat methods based on derivatives annot handle suh disontinuities o�hand. No 3D simula-tions have been arried out. Others, suh as Chiu and Huang [18, 19℄, do onsider wetting andanisotropy in a smooth framework. However, these authors do not apply a long wave approxi-mation to their problem. The anisotropy and wetting layer formulas di�er from the equationsused in this work and the elastiity problem allows only for material onstants of the substrate.Suessively several lasses of surfae energies will be disussed now and more related liter-ature will be ited during the disussion. The impat of the di�erent formulas for γ onto thehemial potential term Esurf is given with the funtional derivative of the surfae free energy
Esurf =

δ

δh

∫

γ dS . (1.12)Here the integral is a surfae integral and dS is an in�nitesimal surfae element. To atuallyevaluate (1.12), formula (A.4) from appendix A will be applied repeatedly. Note that the termsurfae energy is somewhat ambiguous in this work and also in most other referenes. Dependenton the situation it stands for the surfae energy density γ (in other referenes also surfae tensionas for liquids) or the surfae free energy ∫ γdS. It will be lear from the ontext whih one ismeant.Five di�erent surfae energy types are onsidered in this hapter. They are denoted bySEk, k ∈ {I, II, III, IV, V }. After an introdution of these �ve formulas with an explanation oftheir di�erenes, onstituent terms of Esurf resulting from the derivative (1.12) are alulated inSetion 1.2.1. These are the atual equations needed for the set-up of useful PDEs.In the �rst ontinuummodels for heteroepitaxy the surfae energy was assumed to be isotropi,hene it was just a onstant. Many groups worked with surfae di�usion models whih inludedstresses and this simple surfae energy. To mention a few referenes: [95, 96, 97, 98, 114, 118, 119℄.SEI : γ = const .



22 Chapter 1 Surfae di�usion based ontinuum modelingSimulations of the self-assembly of QDs based on this formulation ontradit the experiments inthat no thin layers onneting the nano-strutures are observed. Therefore the formula has tobe extended suh that it varies with surfae height (for example by inorporation of a boundarylayer formula used by Spener [93℄). This dependeny suits as a smooth transition between thedi�erent surfae energies of the �lm and the substrate. In fat, if the two materials have di�erentsurfae energies, there is a gap between these two values. Smoothing out this disontinuity byadding this mathematial dependeny on h, whih arti�ially introdues an interfaial energy,has beome quite popular. In fat the blurring may be not only favorable beause of smoothnessand implementation issues, but it may be also more realisti than a simple jump. A ertainamount of atoms interdi�uses at the interfae and in a way the intermixing is approximated byde�ning a smooth transition. The resulting e�et is reminisent of wetting potentials in �uiddynamis (suh as van der Waals interations). If the surfae energy of the �lm is lower, regionsovered by a �at thin �lm are reated to minimize the overall energy of the system. This happensin most Stranski-Krastanov systems, so these kind of models reeive a huge amount of attention,see e.g. [3, 12, 42, 77, 102, 103℄, SEII: γ = γ(h) .One major harateristi of a rystal is its anisotropy that omes in generially with its regularstruture (see e.g. Setion 0.3). It leads to preferred orientations during growth, these orrespondto lower energy states. SEII an be extended by adding an orientation dependeny that an beexpressed by using the surfae gradient as argument of the surfae energy (�nd more explanationsin Setion 1.2.2). This gives a third surfae energy formula lass,SEIII : γ = γ(h, hx, hy) .This kind of surfae energy is used in Setion 4.1 to derive an elaborated model that inludes athin layer between QDs that develop preferred faets. It has been also used by several groupsthat have not applied a thin-�lm redution, and worked with full equations instead, see e.g.[16, 17, 18, 19, 117℄. Equivalent formulations to the gradient dependene of the surfae energyan be found by using the outward unit normal as argument, γ = γ(n), or two angles (in polaroordinates) γ = γ(θ1, θ2). However, these are rather ommon in works on equilibrium shapesthan for modeling the evolution of thin �lms and here the �rst notation is used.One an further extend the surfae energy by adding an edge regularization term. Whenanisotropy is strong, orners appear in the equilibrium shapes, whih an lead to an unphysialbakward di�usion when the formula is used for evolution equations. The nonsmooth ornersin the Wul� plots in ase of a nononvex surfae energy (see e.g. in the work by Li et al. [65℄)lead to the idea of penalizing high urvature regions by adding a saled κ2 term to the surfaeenergy, where κ is the mean urvature. The regularization approah has been addressed severalworks in rystal growth theory, e.g. in [11, 89, 94℄. In evolution equations this results in a sixthorder term, whih may imply higher demands on numerial shemes. For inorporation of the



1.2 Types of surfae energies 23Wilmore regularization higher order gradients have to be onsidered in the surfae energy,SEIV : γ = γ(h, hx, hy, hxx, hxy, hyy) .This formula will be used in a slightly alternative, a simpler, form without dependeny on thesurfae height h in Setion 2.1 for the derivation of the model by Savina et al. desribing thefaeting of a growing surfae [89℄. To aentuate the importane of this ase in this thesis, it istreated separately, although it is just a speial ase of SEIV .SEV : γ = γ(hx, hy, hxx, hxy, hyy) .Other approahes have been proposed. The most ommon for the anisotropi surfae energyis to let γ depend on an angle of orientation θ. However, sine this quantity is related to thesurfae slopes, it is somewhat equivalent. Bonzel and Preuss [8℄ or Eisenberg and Kandel [25, 26℄pursued this approah by giving preferred faets a usped minimum. It has to be regularizedagain to make standard simulations possible and apparently the approah has not been trakedfurther to ahieve 3D simulations for QD array studies. Wetting stress has been added in thework by Levine et al. [64℄, however, here it will not be mentioned further, sine it turned outthat it has not in�uene to leading order in a long wave approximation � the approah that istraked in this thesis.The hemial potential part that stems from the surfae energy (1.12) is now alulated forthe �ve energy types SEk, k ∈ {I, II, III, IV, V }. Therefore here and throughout the doumentsome abbreviations will be used,
N =

√

1 + h2
x + h2

y , (1.13)
∂w =

∂

∂w
,∇∇h = (∂hx , ∂hy)T and ∇∆h = ∂hxx + ∂hyy , (1.14)so that

∇ · ∇∇h = ∂x∂hx + ∂y∂hyand ∇2∇∆h = ∂xx∂hxx + ∂xx∂hyy + ∂yy∂hxx + ∂yy∂hyy .1.2.1 Funtional derivatives of surfae energy formulasIn this setion the funtional derivative of the surfae free energy, de�ned as the surfae integralover one of the formulas SEk, k ∈ {I, II, III, IV, V }, is onseutively alulated. The surfaeheight is assumed to be su�iently smooth, so that all terms used in the propositions are well-de�ned.Proposition 1 (SEI) Assume γ is onstant. Then
Esurf = −γκ .



24 Chapter 1 Surfae di�usion based ontinuum modelingProof
Esurf =

δ

δh

∫

γ dS

= γ
δ

δh

∫

Ndxdy

= γ[∂h −∇ · ∇∇h]N

= −γ
(

∂x(
hx

N
) + ∂y(

hy

N
)

)

= −γ hxx(1 + h2
y) + hyy(1 + h2

x) − 2hxhyhxy

N3
.

�Here the mean urvature κ is de�ned as in the appendix A, formula (A.2). Its sign is hosensuh that it is bigger zero for a standard parabola that is bounded below. In other notes youmay �nd it with a di�erent sign whih omes from a swith of perspetives between onvexityand onavity. Also an additional saling with 1/2 an be found in other papers. These smallvariations may appear puzzling, sine a sign swith in evolution equations generally implies quitethe opposite e�et � suh as blow up of the solutions.The above derived term is hereditary in that it shows up in the following types of surfaeenergies whih all extend SEI . Formally the abbreviation
Eκ = −γκ (1.15)will be used from now on � deliberately onealing the dependenies of γ.Proposition 2 (SEII) By adding dependeny on the surfae height, γ = γ(h), the surfae en-ergy terms beome

Esurf = γ′(h)n3 + Eκ . (1.16)Proof
Esurf = Nγ′(h) −∇ · γ(h)∇∇hN

= Nγ′(h) −
(

∂x(γ(h)
hx

N
) + ∂y(γ(h)

hy

N
)

)

= γ′(h)(N − h2
x + h2

y

N
) − γ(h)

(

∂x(
hx

N
) + ∂y(

hy

N
)

)

=
γ′(h)

N
− γ(h)κ .

�It was used that 1/N is just the third omponent of the outward unit normal n3. The additionalterm is abbreviated as
Ewet = n3 ∂hγ . (1.17)



1.2 Types of surfae energies 25Now the more general surfae energy SEIII is onsidered. The result is fundamental for thederivation of the QDM equation in Setion 4.1 � a QD self-assembly model that aptures manyproperties of the Ge/Si system.Proposition 3 (SEIII) The hemial potential terms for a surfae energy varying with the �lmthikness and the surfae slopes, γ = γ(h, hx, hy), are
Esurf = Ewet + Eκ + Eaniswith

Eanis = −2

(

hxhxx + hyhxy

N
∂hxγ +

hyhyy + hxhxy

N
∂hyγ

)

−N∂x∂hxγ −N∂y∂hyγ .(1.18)Proof
Esurf =

δ

δh

∫

γ(h, hx, hy)Ndxdy

= N∂hγ −∇ · ∇∇h(γN)

= N∂hγ −∇ · γ∇∇h(N) −∇ ·N∇∇h(γ)

= N∂hγ − ∂x(γ
hx

N
) − ∂y(γ

hy

N
) − ∂x(N∂hxγ) − ∂y(N∂hyγ)

= N∂hγ − h2
x + h2

y

N
∂hγ − hxhxx + hyhxy

N
∂hxγ − hyhyy + hxhxy

N
∂hyγ

−γ
(

∂x(
hx

N
) + ∂y(

hy

N
)

)

− ∂x(N∂hxγ) − ∂y(N∂hyγ)

= (∂h γ)n3 − γ(h, hx, hy)κ+ Eanis .

�Now the most omplex ase is onsidered, SEIV , the anisotropi surfae energy formula that isallowed to vary with the �lm thikness and depends on higher order gradients. It yields thefollowing terms.Proposition 4 (SEIV ) The variational derivative of the surfae free energy based on SEIV leadsto the four term expression
Esurf = Eκ + Ewet + Eanis + Ehot ,with

Ehot = [∂xx∂hxx + ∂xx∂hyy + ∂yy∂hxx + ∂yy∂hyy ](γN) .Proof The �rst three terms are obtained in the same way as before, they are formally notin�uened by the higher order gradient dependeny. The additional term is simply the thirdterm from the funtional derivative (see formula (A.4) in the appendix)
Ehot = ∇2∇∆h(γN) . (1.19)



26 Chapter 1 Surfae di�usion based ontinuum modeling
�This formula is used for the derivation of a higher order Cahn-Hilliard (HCCH) equation in Se-tion 2.1. There the speial ase SEV is needed for whih (1.19) an be used aordingly. Onlythe wetting term Ewet an be negleted sine in this ase ∂hγ = 0. An additional proposition forSEV is redundant.Summary of the surfae energy formulasIn general, for one of the surfae energies SEk, k ∈ {I, II, III, IV, V }, the hemial potentialin�uene Esurf depends on γ,

Esurf (γ) = Eκ(γ) + Ewet(γ) + Eanis(γ) + Ehot(γ) . (1.20)Table 1.1 summarizes whih entries appear for the di�erent surfae energy formulas. It shouldhelp to understand related artiles on evolution of surfaes based on surfae di�usion.
Esurf Eκ(γ) Ewet(γ) Eanis(γ) Ehot(γ)SEI : γ = γc • ◦ ◦ ◦SEII : γ = γ(h) • • ◦ ◦SEIII : γ = γ(h, hx, hy) • • • ◦SEIV : γ = γ(h, hx, hy, hxx, hxy, hyy) • • • •SEV : γ = γ(hx, hy, hxx, hxy, hyy) • ◦ • •Table 1.1: SEI−V : The left olumn shows the dependenies of the surfae energy. The bullets •indiate that the term appears in the hemial potential. The irles ◦ show in whih ases theterms do not appear.1.2.2 Anisotropi surfae energy of regular surfaesThe slopes of the evolving surfae, hx and hy, serve as arguments for the surfae energy typesSEIII , SEIV and SEV . This dependeny is used to model anisotropy of the surfae energy, whih,as already disussed in Setion 0.3, depends on the orientation of the surfae. The outward unitnormal n = (n1, n2, n3) is used naturally as argument for γ. Furthermore for a mathematialdesription of rystals with ubi symmetry the regular struture implies

γ1(n1, n2, n3) = γ1(π(n1, n2, n3)) = γ1(δ1n1, δ2n2, δ3n3), δi ∈ {±1} , (1.21)for any permutation π of the three omponents. In Figure 6 the bravais latties for ubi rystalshave already been introdued and in Figure 7 (Setion 0.3) the properties in (1.21) are visuallysupported for a 2D model rystal. For regular surfaes the surfae energy an be written as
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γ2(hx, hy) = γ1(n(hx, hy)). When it is treated as funtion dependent on the surfae slopes hxand hy, then the symmetry (1.21) transforms to

γ2(hx, hy) = γ2(hy, hx) = γ2(δ1hx, δ2hy), δi ∈ {±1} . (1.22)In fat, the symmetries (1.21) and (1.22) are equivalent for regular surfaes as it will be shownnow. This may be of interest, beause in some publiations the γ1 version is used, while in othersit is γ2.Proposition 5 Let h : Ω → R, (x, y) 7→ h(x, y) be the smooth parameterization of a on-neted surfae M over a bounded domain Ω ⊂ R2. Furthermore, let n : R2 → S2, (a, b) 7→
(−a,−b, 1)/

√
1 + a2 + b2 be the outward unit normal funtion whih maps onto the unit sphere

S2. Then by de�ning γ2 : R2 → R, γ2 := γ1 ◦ n the symmetries (1.21) and (1.22) are equivalent.Proof Sine the surfae is smooth, the third omponent of n is always bigger than or equalto zero, n3(a, b) ≥ 0, ∀(a,b)∈Ω, and hene δ3 = +1 in (1.21). Furthermore the 3-permutation
π = (π(1), π(2), π(3)) is only permitted if nπ(3) ≥ 0. Let δ1, δ2 ∈ {±1} be arbitrary.�⇒� Let (1.21) hold and π(n) = (n2, n1, n3), then
γ2(hx, hy) = γ1 ◦ n(hx, hy) = γ1(n1, n2, n3)

=

{

γ1(δ1n1, δ2n2, n3) = γ1 ◦ n(δ1hx, δ2hy) = γ2(δ1hx, δ2hy)

γ1(π(n1, n2, n3)) = γ1(nπ(1), nπ(2), nπ(3)) = γ1(n2, n1, n3) = γ2(hy, hx)
.�⇐� Let (1.22) hold, then as before γ1(n1, n2, n3) = γ2(hx, hy) = γ2(δ1hx, δ2hy) = γ1(δ1n1, δ2n2, n3).There is nothing to show for the interhange of the �rst two normal omponents sine one andiretly alulate γ1(n1, n2, n3) = γ2(hy, hx) = γ1(n2, n1, n3).Let n3 permute with one of the other omponents (onsider π(n) = (n3, n2, n1), the otherase an be treated analogously). Sine n1 > 0, there exist (a, b) ∈ R2 suh that (n3, n2, n1) =

(−a,−b, 1)/
√

1 + a2 + b2. Sine (n1, n2, n3) = (−hx,−hy, 1)/N , one obtains the identity
(1,−hy,−hx)/

√

1 + h2
x + h2

y = (−a,−b, 1)/
√

1 + a2 + b2 , (1.23)whih gives b = −hy/hx and a = 1/hx. Hene
γ1(π(n1, n2, n3)) = γ1(n3, n2, n1) = γ2(a, b) = γ1(n1, n2, n3)beause of (1.23). �In the following the anisotropi surfae energy will be expressed as

γ(hx, hy) =

∞
∑

k=0

k
∑

j=0

gkjh
j
xh

k−j
y , (1.24)



28 Chapter 1 Surfae di�usion based ontinuum modelingwhere for pratial use the �rst sum is trunated to be �nite. Beause of Proposition 5, often asurfae energy γ(n) has an analogous desription via gradient dependeny γ(hx, hy) and when theslopes are small, an expansion as in (1.24) is realisti. In this work the formula will be used fortwo long wave redued models desribing epitaxial growth. In general the anisotropy oe�ients
gkj have to be determined by experiments. However, it will be shown that they an be hosenproperly, when preferred orientations are known in advane.The anisotropy is important for any sort of rystalline material. For the heteroepitaxial systemthat is onsidered for QD growth, also an elasti subproblem has to be taken into aount. Inthe next setion it is shown how linear elastiity an be used for a two material set-up.1.3 The strain energy density for Ge/Si like systemsIt is known that in ertain heteroepitaxial proesses the surfae energy has the same order ofmagnitude as the bulk energy that results from a mis�t between two rystalline materials. Thehemial potential of suh an Asaro-Tiller-Grinfeld (ATG) instability driven evolution (see e.g.[4℄ or [22℄) an be divided into a sum of these two energies

µ = Esurf + Esed ,where Esurf has already been introdued in (1.12), where the strain energy density Esed resultsfrom mehanial deformations. The governing equations for the latter are disussed in thissetion. Two di�erent books may be worth a reading to aquire knowledge in the �eld of elastiity.A disussion on an engineering level is given by Sadd [87℄, while a more theoretial, mathematialapproah is presented in the lassi book by Landau and Lifshitz [61℄. The following theory hasbeen used analogously by Tekalign and Spener [102, 103℄ to derive a redued term that will beused in a model for heteroepitaxial growth in Chapter 4.For homogeneous, isotropi media Hooke's law is used to relate stress and strain. One thedeformations are known, these quantities an be alulated and the strain energy density an beevaluated at the surfae, giving the energy from mehanial deformations. It an be written asthe sum
Esed =

1

2
σijǫij |z=h , (1.25)where (σij)i,j∈{1,2,3} and (ǫij)i,j∈{1,2,3} are the stress and the strain tensor, respetively. Asusually in elastiity Einstein's summation onvention is used and repeated indies are summedup. However, this agreement will be applied in this work only in this setion and in the elastiityappendix C. In all other parts equations are treated with a straightforward notation. To avoidonfusion it should be noted at this point that while the strain tensor will always be writtenwith indies, the lattie mismath, whih is introdued now, will stand on its own as index-freevariable ǫ.



1.3 The strain energy density for Ge/Si like systems 29In heteroepitaxy with materials suh as silion and germanium the lattie spaings, af forthe �lm and as for the substrate, di�er by some perent. When the deposited atoms arrangeto math the substrate's lattie instead of building up their natural grid, the displaements aresmall, but present (see also Figure 1.4 for a visual aid). The mismath (or synonymously: themis�t)
ǫ =

af − as

af
(1.26)is the relative di�erene of the lattie spaings. For the Ge/Si(001) system it is approximately4 perent and for other systems suh as GexSi1−x/Si(001) it is even smaller. This motivates torelate the stress and the strain by linear elastiity (Hooke's law)

σij = Cijkl σkl . (1.27)The rank four tensor C = (Cijkl)ijkl is alled the sti�ness tensor. In most ases many of the81 entries are redundant and more pleasant relations between stress and strain an be reorded.For isotropi materials equation (1.27) beomes
σij =

E

1 + ν
ǫij +

Eν

(1 + ν)(1 − 2ν)
ǫkkδij i, j ∈ {1, 2, 3} , (1.28)with Poisson's ratio ν and the elasti modulus E. Slightly di�erent formulas are ited elsewhere,beause it is possible to express E and ν in terms of two other elastiity onstants, the shearmodulus or Lamé's �rst parameter. Conversion between these quantities is simple and it is givenwithin Table C.1 in Appendix C.Pang and Huang used anisotropi oe�ients in a reent work on Stranski-Krastanov growth[78℄ and the approah presented here might also be expanded to this ase. However, only thematerial onstants of one solid an be onsidered following their ansatz � here elastiity in �lmand in substrate are onsidered. In any ase the anisotropy of the elastiity problem is notsu�ient to model faeting of the growing surfae as shown with help of a phase �eld model bySeol et al. [91℄. In a way this is on�rmed by Pang and Huang, sine the surfae shapes in theirwork indeed do not show faeting. In the QD growth model that will be desribed here, faetingwill be a result of the anisotropy that is inorporated in the surfae energy.In linear elastiity the partial derivatives of the displaements ui de�ne the strain tensor. Itis the symmetri part of their gradient tensor

(ǫij)i,j∈{1,2,3} =
1

2
(∇u + ∇uT ) . (1.29)It is assumed that the mehanial steady state is obtained instantly while the thermodynamialevolution happens on a muh longer time sale. This yields the mehanial equilibrium ondition

∇ · σ = 0 . (1.30)Plugging in the de�nition of the strains (1.29) and the stress-strain-relation (1.28) into theequilibrium ondition (1.30), results in the well-known Navier-Cauhy equations of isotropi linear



30 Chapter 1 Surfae di�usion based ontinuum modelingelastiity theory
(1 − 2ν)∆u+ ∇(∇ · u) = 0 . (1.31)Boundary onditions have to be de�ned to obtain well-de�ned solutions to the above PDE.One the displaements are available one an alulate the strain tensor, then the stress tensorand �nally the strain energy density using (1.25).In Figure 1.3 the set-up for the self-assembly of QDs is skethed. A time-dependent thin �lmwith height h(x, y, t) > 0 sits on top of a relatively thik substrate that is treated for simpliity asa whole half-spae bounded by the �lm on top. The interfae between the materials is assumedto be at z = 0, onditions at this interfae and on the boundaries are neessary.

Figure 1.3: Sketh of the epitaxy setting: A �lm of thikness h grows on a substrate oupying an in�nitehalf-spae.On top of the �lm the pressure is assumed to be negligible, so that there the boundaryondition is
σ · n = 0 at z = h . (1.32)The small distortions near the interfae do not have a big impat on the displaements deepinside the bulk material, hene there the stresses vanish by inorporating the ondition
us

i → 0 for z → −∞ . (1.33)At the interfae between the two rystalline materials it is assumed that the displaementsof the �lm are equal to those of the substrate with an additional orretion in x and y diretionsarising from lattie mismath
uf

i = us
i + ǫ[x, y, 0]T at z = 0 , (1.34)with the lattie onstants mis�t parameter (1.26). Throughout the doument the supersript

f indiates a quantity that belongs to the �lm while the index s is related to the substrate.Variables without supersripts are supposed to be understood from the ontext. Often this is



1.3 The strain energy density for Ge/Si like systems 31expeted to be the ase and no indies are used. In other ases supersripts are reserved asusually for taking powers.At the �lm-substrate interfae, ontinuity of the normal omponent of the stress tensor isassumed. The interfae is treated as planar, hene urvature free. Sine the slopes of the interfaeare one order of magnitude smaller than the small parameter, at least in the early time domainof the Ge/Si(001) system, this assumption is reasonable in view of appliation of the small slopeapproximation. Then the outward unit normal vetor is just the third Cartesian basis vetor,whih gives the ontinuity ondition
(σf

i3)|z=0 = (σs
i3)|z=0 . (1.35)A typial additional urvature dependent term vanishes under the given assumptions.The omplete elastiity problem is now fully desribed by the equations (1.28)-(1.35) and forsimple problems it an even be solved analytially. Often it is useful to de�ne a referene statewhere the solution to the problem an be obtained easily. Here, for the heteroepitaxial problem,the base state is a �at �lm adjusting its lattie spaing to the undeformed substrate. The strainenergy density

Ebase
sed =

E

1 − ν
ǫ2 (1.36)of this on�guration is derived in the following Setion 1.3.1. In Setion 4.1, during the derivationof a realisti QD model, it will serve as saling parameter for the strain energy density, sine itde�nes a harateristi measure for the elasti problem.1.3.1 The base stateFigure 1.4 shows the set-up of the base state. The strain energy density for this on�gurationwill be alulated in terms of linear elastiity using the theory from the last setion. When atoms

Figure 1.4: Base state of the elastiity problem and a sketh of the grid ompression typial for many Stranski-Krastanov systems.from a growing �lm arry over the lattie spaing from the substrate material instead of buildingup their natural grid, ertain knowledge about the stress state is available. The displaements



32 Chapter 1 Surfae di�usion based ontinuum modelingof the �lm in the x and y diretions are uf
1 = ǫx and uf

2 = ǫy. For the vertial diretion z is notspei�ed, hene it is uf
3 = ϕ(x, y, z) with some funtion ϕ. Using (1.29), one derives the straintensor for the �lm

(ǫfij)ij =









ǫ 0 1
2∂xϕ

0 ǫ 1
2∂yϕ

1
2∂xϕ

1
2∂yϕ ∂zϕ









.Assuming that the �lm undergoes a ompression to �t its generi lattie to as in lateral diretions,this results in an equal biaxial fore in x and y diretions and in the diagonal stress tensor
(σf

ij)ij =









σ0 0 0

0 σ0 0

0 0 0









.Here σ0 is a quantity that is spei�ed later on. Sine the o�-diagonal entries are proportional tothe same entries of the strain tensor, the lateral derivatives of ϕ vanish, ∂xϕ = 0 and ∂yϕ = 0,whih gives ϕ = φ1(y, z) + const and ϕ = φ2(x, z) + const, so that overall
ϕ = φ(z) + const ,with some funtion φ(z) = φ1(y, z) = φ2(x, z). Using (1.28) yields

∂zϕ = ∂zφ = −2νf

Ef
σ0 .Integrating one and onsidering that in the base state the substrate is unhanged, us = 0, andthat us

3 = uf
3 at z = 0, the third omponent of the �lm-displaement an be de�ned as

uf
3 = −2νf

Ef
σ0z .The overall strain tensor now simpli�es to

(ǫij)ij =









ǫ 0 0

0 ǫ 0

0 0 − 2νf

Ef σ0









.The stress-strain relation (1.28) gives
σ11 = σ0 =

Ef

1 + νf
ǫ+

Efνf

(1 + νf )(1 − 2νf )
(2ǫ− 2νf

Ef
σ0)and hene

σ0 =
Ef

1 − νf
ǫ .



1.3 The strain energy density for Ge/Si like systems 33The results for the base state at one go are
uf =









ǫx

ǫy

− 2ν
1−ν ǫz









, (σf
ij)ij =









Ef

1−νf ǫ 0 0

0 Ef

1−νf ǫ 0

0 0 0









, (ǫfij)ij =









ǫ 0 0

0 ǫ 0

0 0 − 2νf

1−νf ǫ









(1.37)and the strain energy density (1.36) an be read o� diretly. These expressions will be used inSetion 4.1, where a heteroepitaxial model inorporates stresses in the bulk and the �lm whihdrive the instability.



Chapter 2The HCCH equation: Derivationand existene of solutionsAn oune of ation is worth a ton of theory. Friedrih Engels (1820 - 1895)This and the following hapter present the analysis of a sixth order semilinear PDE desribingthe faeting of a growing surfae in two dimensions. It will be derived in Setion 2.1 and it willbe alled the higher order onvetive Cahn-Hilliard (HCCH) equation. While in the subsequentChapter 3 long-time behavior and stationary solutions will be disussed, here a more funda-mental aspet, the existene of solutions, is onsidered. The general topi is of major interestsine many deades. The at the present time most illustrious PDE for suh a problem is theNavier-Stokes equation. Sine the 19th entury researhers try to �nd out if regular solutionsexist and meanwhile it beame a Millennium problem (the o�ial desription of the probleman be found at http://www.laymath.org). For the PDE onsidered here, it is also sought tomake substantial progress toward a mathematial theory that reveals important properties ofthe equation. However, the problem here is muh simpler than for the Millennium problem. Forthe inompressible Navier-Stokes equation the one- and two-dimensional ases were solved, andthe task remains to show or disprove existene of regular solutions in three dimensions, whih,of ourse, is a more omplex and ongoing task.Before disussing the existene of solutions, the equation is derived in the limit of small slopes.Therefore important terms of suitable expansions are identi�ed and those whih do not have amajor in�uene are ignored. In the framework of this approah, the thin-�lm assumption hasto hold true: The vertial sale H0 is muh smaller than the horizontal sale L. The quotientof these two quantities, α = H0/L ≪ 1, is the small parameter used for asymptoti expansions.In many applied mathematial problems suh small quantities are used to expand funtions and34



2.1 The faeting of a growing surfae 35determine important terms. Very often this is done in the �eld of mathed asymptotis, wheretwo or more regions of the solutions are saled di�erently and yield simpler problems. If thesean be solved, they leave onstants that have to be determined by mathing with neighboringregions. However, in this hapter no mathing proedures will be needed. This topi will be ofinterest in Chapter 3. Here asymptoti expansions are solely used to determine simpler evolutionequations, though the formal framework is similar. The �nal equation originates from the workby Savina et al. [89℄. It desribes the faeting of a growing anisotropi surfae under surfaedi�usion and a normal �ux. The derivation in the referene is somewhat longsome and requiresthe study of preeding works by Golovin et al. and MFadden et al. [41, 67℄. Here, based onthe theory from Chapter 1, a slightly alternative derivation is shown in a way that an be usedanalogously for the seond major PDE onsidered in this work, a new model for the oarseningof QDs, in Chapter 4. The problem of faeted, growing surfaes experienes ontinued interest.Apart from the set-up of various PDEs, for a onvetive Cahn-Hilliard equation a so-alledoarsening dynamial systems (CDS) has been introdued for the ase with one lateral variable.There eah faet is an unknown in an ODE desribing the evolution [109℄. Only reently thisidea has been extended to two lateral dimensions for the ase of sharp faets during growthof materials suh as CuO2. Watson and Norris derived a pieewise-a�ne dynamial surfae(PADS) to desribe the evolution of the strongly anisotropi surfae [73, 108℄. Suh approahesmay slightly deteriorate the auray of the model, in exhange numerial simulations an bearried out orders of magnitude faster than by solving orresponding PDEs.2.1 The faeting of a growing surfaeA higher order onvetive Cahn-Hilliard (HCCH) equation is derived in this setion [57, 89℄.Formally it is similarly strutured as the onvetive Cahn-Hilliard (CCH) equation. However,higher derivatives in the paraboli terms make it a PDE of very high, of sixth order. Evolutionequation (1.9) that inorporates a normal �ux from the gas phase is used with a hemial potentialthat depends on a strongly anisotropi surfae energy. Additionally an edge regularization termthat smoothes out orners in ase of strong anisotropy is onsidered. Altogether this yields amodel for the faeting of a growing surfae. A small slope approximation is then used to derivea simpli�ed PDE.The surfae free energy in this model is an integral over the anisotropi surfae energy density
γ and it de�nes the hemial potential as usually as its funtional derivative (see Chapter 1,formula (1.12)). Ω is a half-spae that is bounded above by a smooth surfae. Expanding thesurfae energy in terms of the outward unit normal omponents ni, i = 1, 2, 3, and using theanisotropy for rystals with ubi symmetry, one an derive the surfae energy

γa = γ0 + γ4(n
4
1 + n4

2 + n4
3) + γ6(n

6
1 + n6

2 + n6
3) , (2.1)where γ0, γ4 and γ6 are anisotropy oe�ients that have to be determined by experiments. For



36 Chapter 2 The HCCH equation: Derivation and existene of solutionsdetails of the derivation of (2.1) one an study the work by MFadden et al. [67℄, where it isshown how to use invariane under rotations of 90 degrees and re�etions to obtain this expansionin terms of the outward unit normal omponents. Additionally to the polynomial γa, whih leadsto an unphysial bakward di�usion term in the evolution equation if the anisotropy oe�ientsare big, Savina et al. [89℄ introdued an edge regularization term that is also known as Wilmoreregularization
γe =

1

2
νκ2 , (2.2)with an edge regularization fator ν > 0 and the mean urvature κ (see Appendix A, equation(A.2)). Then the overall surfae energy is

γ = γa + γe = γ0 + γ4(n
4
1 + n4

2 + n4
3) + γ6(n

6
1 + n6

2 + n6
3) +

1

2
νκ2 . (2.3)The κ term punishes high urvature and by its inorporation kinks are smoothed out. Asalready mentioned the Wilmore term has raised attention in the last years, for example in areent work by Spener [94℄, where equilibrium rystal shapes are determined. In onjuntionwith faeted surfaes it has been derived by Golovin et al. [40℄. It bases on a quite ommon stepmodel where instead of smooth slopes rystals steps are onsidered [106℄.2.1.1 The HCCH equationIn Chapter 1 it has been shown how to inorporate an anisotropi surfae energy into a surfaedi�usion evolution equation. Here the results for the �fth formula SEV are needed, sine γde�ned as in (2.3) depends on slopes and seond derivatives of the surfae h. The terms forSEV , whih are marked in Table 1.1, will be derived. Proposition 5 with formula (1.24) showsthat the surfae energy γ an be written in terms of the slopes instead of the normals under theassumption that the surfae an be parametrized regularly. It yields

γ = γ(hx, hy, hxx, hxy, hyy) = γ0γ̄ = γ0(1 + W(hx, hy) +
1

2
ν̃κ2) , (2.4)where γ̄ is the dimensionless surfae energy that ontains the nonlinear slope-dependent orretion

W . Sine the slopes for this model are assumed to be small, instead of a funtion with arbitrarynonlinearities, the polynomial
W(hx, hy) =

N
∑

k=1

k
∑

j=0

gkjh
j
xh

k−j
y (2.5)is used. The anisotropy oe�ients gkj are dimensionless while the edge regularization oe�ient

ν̃ = ν/γ0 still has a unit, [ν̃] = m2.The surfae energy (2.4) is used with the evolution equation (1.9). Table 1.1 from Setion1.2.1 yields
µ =

δ

δh

∫

γ0(1 + W(hx, hy) +
1

2
ν̃κ2)dS ,

= Eκ + Eanis + Ehot ,



2.1 The faeting of a growing surfae 37with
Eκ = −γκ ,

Eanis = −2

(

hxhxx + hyhxy

N
∂hxγ +

hyhyy + hxhxy

N
∂hyγ

)

−N∂x∂hxγ −N∂y∂hyγ ,

Ehot = [∂xx∂hxx + ∂xx∂hyy + ∂yy∂hxx + ∂yy∂hyy ](γN) .Here the abbreviation (1.13) and the derivatives (1.14) from before are used. Now the still quitegeneral evolution equation writes
ht =

√

1 + |∇h|2(F + D∇2
s[Eκ + Eanis + Ehot]) .The hemial potential terms ontain many nonlinearities that an be simpli�ed under the as-sumption that the slopes of the surfae remain small. Therefore harateristi lengths are intro-dued and the PDE is nondimensionalized. Let H0 be a small harateristi thikness sale andlet L be a bigger sale for the substrate diretions x and y, then the parameter α = H0/L ≪ 1an be used for asymptoti expansions [95, 102℄. The harateristi spae sales whih are usedto work with dimensionless quantities are H0 and L, so that

h = H0H, x = LX, y = LY . (2.6)They indue the harateristi time sale
t = τT with τ =

L4

Dγ0
.It is derived by nondimensionalization of the evolution equation. Therefore the hemial potentialis written as

µ =
γ0

L
µ̄, µ̄ = Ēκ + Ēanis + Ēhotand similarly the surfae Laplaian and the mean urvature are

∇2
s =

1

L2
∇̄2

s, κ =
1

L
κ̄ .The evolution equation then writes (derivative operators suh as the nabla operator are fromnow on in the new sales, ∇ = (∂X , ∂Y )T )

HT =
√

1 + α2|∇H |2(F̄ +
1

α
∇̄2

s[Ēκ + Ēanis + Ēhot]) . (2.7)Here the dimensionless deposition rate is F̄ = FL4/(H0Dγ0) and with ν̃ = L2ν̄ the hemialpotential terms write
Ēκ = −γ̄κ̄ ,

Ēanis = −2α
(HXHXX +HXHXY )∂HXW + (HY HY Y +HYHXY )∂HY W

(1 + α2(H2
X +H2

Y ))1/2

− 1

α
(1 + α2(H2

X +H2
Y ))1/2 (∂X∂HXW + ∂Y ∂HY W) ,

Ēhot =
1

α
∇2[∂HXX + ∂HY Y ](

1

2
ν̄κ̄2(1 + α2(H2

X +H2
Y ))1/2) .



38 Chapter 2 The HCCH equation: Derivation and existene of solutionsAll terms in the evolution equation are now expanded in powers of α to obtain a leading orderevolution equation that aptures all involved e�ets. Sine it turns out that the nononstanthemial potential terms are of order α, the time sale is already hosen suh that the smallparameter will not appear at these terms. Expanding the surfae Laplaian gives
∇̄2

s = ∇2 + O(α2) . (2.8)To apture the anisotropy in a redued formula, all orresponding surfae energy terms have tobe inorporated in the evolution equation. Therefore these terms have to be of the same order,whih is only the ase when
gkj = Gkjα

−k+2, Gkj = O(1) . (2.9)In this way
γ̄ = γ/γ0 = 1 + α2W (HX , HY ) +

α2

2
ν̄(∇2H)2 + O(α3) ,with the anisotropy in�uene

W (HX , HY ) =

N
∑

k=1

k
∑

j=0

GkjH
j
XH

k−j
Y . (2.10)Expanding the nondimensionalized hemial potential

µ̄ = µ̄(0) + αµ̄(1) + O(α2) ,the square root in equation (2.7) and the surfae Laplaian with respet to the small parameter αand onsidering the evolution equation in a frame that moves with the growth rate (H → H+F̄ T )leads to an evolution equation to order α
HT =

F̌

2
|∇H |2 + ∇2(µ̄(0)/α+ µ̄(1)) , (2.11)with F̌ = FL4/(H0Dγ0). It will be shown that ∇µ(0) is zero, so that it an be negleted in theformula above. Expansions of the hemial potential yield terms of leading order α,

Ēκ = −α∇2H + O(α3) ,

Ēanis = −α∇ · ∇∇HW (HX , HY ) + O(α3) ,

Ēhot =
1

α
∇2(∂HXX + ∂HY Y )[

1

2
ν̄α2(∇2H)2] + O(α3)

= αν̄∇4H + O(α3) ,so that the overall evolution equation beomes
HT =

F̌

2
|∇H |2 + ∇2[−∇2H −∇ · ∇∇HW (HX , HY ) + ν̄∇4H ] ,



2.1 The faeting of a growing surfae 39with the still very general anisotropy in�uene
∇ · ∇∇HW (HX , HY ) =

N
∑

k=2

k
∑

j=0

Gkj

(

j(j − 1)Hj−2
X Hk−j

Y HXX

+(k − j)(k − j − 1)Hj
XH

k−j−2
Y HY Y + 2j(k − j)Hj−1

X Hk−j−1
Y HXY

)

.Setting all Gkl = 0 exept of G20 = G22 = G1 < −1/2 and G40, G42, G40 bigger than zero (theseare onditions that have been obtained during the modeling of a surfae energy by Savina et al.[89℄ and the referenes therein), gives
HT =

F̌

2
|∇H |2 + ∇2

[

(−2G1 − 1)∇2H − 2G42(H
2
XHY Y +H2

YHXX + 4HXHY HXY )

−12G44H
2
XHXX − 12G40H

2
Y HY Y + ν̄∇4H

] (2.12)or equivalently with g = −2G1 − 1 > 0 a time-sale hange T → Tg and δ = F̌ /g

HT =
δ

2
|∇H |2 + ∇2
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−12
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g
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g
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Y HY Y +
ν̄

g
∇4H

)

.Resaling the X and Y variables one again (X → (ν̄/g)1/2X), then
(
ν

g
)2HT =

δ
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g
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XHY Y +H2
YHXX + 4HXHYHXY )

−12
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g
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XHXX − 12
G40

g
H2

YHY Y )

)

+ ∇4H + ∇6H .De�ning b = 2ν/g2G42, setting the anisotropy oe�ients to G44 = G40 = g/4 and a last timesale hange T → T (ν/g)2 gives the �nal semilinear PDE desribing the faeting of a growinganisotropi surfae,
HT =

δ

2
|∇H |2 + ∇4H + ∇6H

−∇2
[

b(H2
XHY Y +H2

Y HXX + 4HXHYHXY ) + 3H2
XHXX + 3H2

YHY Y

]

. (2.13)By reduing the equation to one lateral dimension and di�erentiating the whole expressions oneobtains
HXT =

δ

2
(H2

X)X +
(

HXXX +HXXXXX − (3H2
XHXX)X

)

XX
.Setting u = HX and using the small letters x, t for the lateral diretion X and time T again thisgives a sixth order equation, in the form derived by Savina et al. [89℄.

ut −
δ

2
(u2)x = (uxx + u− u3)xxxx . (2.14)It is alled higher order Cahn-Hilliard (HCCH) equation from now on and it is the equation thatwill be studied extensively in the following setions. The redued models are suitable to desribe



40 Chapter 2 The HCCH equation: Derivation and existene of solutionsfaeting of a growing surfae in one and two lateral dimensions, respetively. In Chapter 3 newtypes of stationary solutions to this equation are derived and in Setion 3.2 the results fromtime-dependent simulations are shown. Before proving existene for this PDE, some notes onrelated phase separating systems are made and mathematial basis are introdued.2.2 Related phase separation systemsThe spatial derivative term on the left in the HCCH equation (2.14) is alled onvetive termsine it reminds of the onvetion term appearing in �uid dynamis, i.e. in the Navier-Stokesequation. However, here the temperature is �xed and no real onvetion takes plae. The termson the right hand side an be interpreted as a higher order regularization term replaing theLaplaian in the visous ase of Burger's equation. Anyhow it seems more useful to ompare(2.14) to equations of Cahn type. There are many related PDEs in this lass of models. Now afew of them are introdued, eah in a form that resembles most the HCCH equation. For all ofthese evolution equations more ompliated versions based on more elaborated potentials exist.The Allen-Cahn (AC) equation [2℄
ut = uxx + u− u3 (2.15)ontains already part of the struture that appears in the HCCH equation. However, this PDEdoes not preserve mass, sine the nonlinearity is not di�erentiated, the order is di�erent andfurthermore a onvetion term is missing. It is also known as one of the reation-di�usionequations, or as Chafee-Infante equation. It has a struture that is fundamental for the analysisof the HCCH equation as the leading order solutions in a mathed asymptotis ansatz will show.It is already well understood, for example the existene of solutions is proved in standard PDEbooks suh as the monograph by Robinson [82℄. A version of the AC equation with onvetiveterm an be written as

ut −
δ

2
(u2)x = uxx + u− u3 . (2.16)This onvetion-reation-di�usion equation is labeled onvetive Allen-Cahn (CAC) equationand it has been also analyzed quite deeply. For example long time behavior of its solutions hasbeen studied by Chen et al. [14℄ and existene, uniqueness and regularity results have beenestablished already earlier (see e.g. Ladyzenskaja et al. [60℄). The needed estimates to establishthe existene are easy to obtain. For Cahn-Hilliard (CH) equations this is already somewhatmore ompliated. These mass onserving versions of the above models arouse more interestreently. One CH equation without mehanial deformations (e.g. onsidered in [74℄) an bewritten as

ut = (u3 − u− uxx)xx . (2.17)Formally this is the HCCH equation (2.14) without the deposition term, a di�erent sign on theright hand side and two derivatives less around the brakets. Elliott and Songmu [28℄ have



2.2 Related phase separation systems 41proved the existene of solutions. A potential funtion is essential to proeed in the way theseauthors did. For the HCCH equation without the deposition term, δ = 0, one ould use the sameLyapunov funtion to obtain similar results. However, sine δ > 0, the potential harater isdestroyed and this ansatz annot be used anymore. Here it is more promising to have a look onthe theory for the CCH equation, whih adds a onvetive term that stems from some externalfore to the CH equation
ut −

δ

2
(u2)x = (u3 − u− uxx)xx . (2.18)Eden and Kalantarov have shown that an attrator for the CCH equation exists [24℄. Along theway the theory yields the existene of weak solutions. It is not that easy for the HCCH equation,beause the nonlinearity from the surfae energy anisotropy is a term that is more di�ult totreat than for the CCH equation. By testing (2.18) with u, the u3 nonlinearity gives a negative(hene 'good' term) term on the right hand side and this is not the ase for the HCCH equation.The onvetive version of the CH equation has been analyzed in various other works (see e.g.[29, 40, 109, 115℄) and many properties of the solutions are yet known.The struture of the CCH equation is even more reminisent of the HCCH equation and it willbe shown what a sign swith and two more derivatives on the right hand side hange. In the nexthapter stationary solutions are found and it is shown that a orresponding parameter diagramreveals lose similarities to the CCH system. Also the oarsening behavior reminds of the CCHequation. Stationary and traveling wave patterns are analyzed for mall values of δ. By inreasingthis parameter more osillations in the solutions an be observed and in the limit δ → ∞ roughsurfaes develop. This is in analogy to the CCH equation, see also [44℄. A transition from aregime with stationary and traveling wave solutions to haoti behavior is observed.Reently it beame popular to inlude mehanial deformations to improve models for phaseseparation phenomena. The resulting PDE is alled Larhé-Cahn equation [63℄. Muh work onthis topi has been arried out by Garke and his o-workers, see e.g. [37℄. Extending hemialpotentials by ertain terms to model e�ets so far negleted reminds of the surfae di�usionequation for rystal growth (1.7). In Chapter 4 an equation will be derived as extension of aprevious work by Tekalign and Spener [102℄. The hemial potential is extended by anisotropyterms. It an also be viewed as an extension of the previous model for the faeting of a growingsurfae by adding the strain energy density and a wetting term to the hemial potential.So far nothing has been said about boundary onditions in this hapter. Relating to thiswork it seems most meaningful to treat the equations on a domain [0, L] with periodi boundaryonditions, hene

∂k
xu(x+ L) = ∂k

xu(x), k = 0, 1, . . . . (2.19)These �t generially to pseudospetral methods based on Fourier transforms and desribe in�nitepanels of the order parameter u. They allow to work with periodi Sobolev spaes whih anbe onvenient, sine one an just apply partial integration and neglet boundary terms withoutmuh thought. Note that when working in other spaes it is ommon to de�ne the boundary



42 Chapter 2 The HCCH equation: Derivation and existene of solutionsonditions in a way that unwanted boundary terms from partial integration vanish (suh as u = 0on ∂Ω). However, the standard Sobolev spaes with restritions for the boundary onditions andthe periodi versions share a lot of equivalent properties.Many numerial works have been aomplished for simulating equations of Cahn type, exten-sions to more ompliated free energies, to vetor-valued problems and/or to steep transitionsbetween the phases have been of interest and the set-up of �nite element odes and their anal-ysis has been arried out (see for example one reent work by Kornhuber and Krause [55℄, whopresent an e�etive multigrid method for appliation on a vetor-valued Allen-Cahn equationwith the rather ompliated logarithmi potential, and many of the referenes therein). Gener-ally more papers ould be disussed that are onerned with stationary solutions [75, 110, 111℄or the interations between domain walls [9, 29, 51, 109℄. However, there laks a omplete reviewon equations of Cahn type and their properties. Still there are many publiations that an beonsidered. The available methods from these referenes should help to analyze the higher ordermodel. Most important for the next setions are ertainly the works by Elliott and Songmu[28℄ and by Eden and Kalantarov [24℄. A Galerkin ansatz as in the former work with the artof estimating from the proof of absorbing balls in the latter work were ombined here. Though,the PDE onsidered here is of higher order than in the mentioned referenes. Equations of suha high order are untypial and only few theory is available at all. There exist a few thin-�lmequations and blow up of solutions to these equations has been analyzed [30℄. However, theanalysis is foused on singular events of degenerate models. Sixth order semilinear equationswith nonlinearities up to fourth order are ompletely untypial and display new hallenges inthe existene theory. Before presenting the existene results, aspets of funtional analysis areintrodued that are essential for the following disussions.2.3 Preliminaries: Conepts from funtional analysisThere exists muh standard literature that an be proposed as introdution to theory of PDEs.Related to existene proofs of evolution equations and in�nite-dimensional dynamial systems thebooks by Evans [31℄ and Robinson [82℄ are good hoies. Some onepts, suh as weak derivatives,partial integration, standard Sobolev spaes, ompleteness are premised as basi knowledge thatis neessary to understand the following theory. Sine ertain properties of operators will bevery important for the existene proofs, these are disussed in some more detail. Furthermorefundamental inequalities are introdued together with additional basi theorems. To motivatethe de�nitions following on the next pages, it should be kept in mind that the equation underdisussion is related to the negative Laplaian −∇2, the bi-Laplaian ∇4 and the negative tri-Laplaian −∇6, whih are all symmetri, linear, unbounded, positive operators that eah havean inverse if they at on suitable spaes. These inverse linear mappings are in some sense theopposite of the di�erentiation operators. They are ompat, linear operators and in ertain



2.3 Preliminaries: Conepts from funtional analysis 43situations their frations an be very useful. The terminology will be introdued now.2.3.1 Operators, frations, eigenvalues and eigenfuntionsLet H,W be Banah spaes over R with norms ‖ · ‖H and ‖ · ‖W . A linear operator L : H →Wis bounded if its images are bounded by their preimages in orresponding norms,
∃C>0∀x∈H‖Lx‖W ≤ C‖x‖H .Through this property an operator norm for all bounded operators L(H,W ) an be de�ned as
‖L‖L = sup

x∈H,x 6=0

‖Lx‖W

‖x‖Hand the tuple (L(H,W ), ‖ · ‖L) beomes a Banah spae itself. An operator is unbounded if it isnot bounded. L is alled ompat if the images of bounded sets are preompat (the losure isompat). Preisely one has
L(B) is ompat for all B ⊂ H bounded.Remark Compat operators are bounded. �Note that always if instead of a proof the proof box � appears, the proof is given inRobinson's book [82℄.For a Hilbert spae H , a salar produt (·, ·)H is de�ned together with an assoiated norm

‖u‖H = (u, u)
1/2
H . Then for a suitable subspaeW ⊂ H the linear operator L ∈ L(W,H) is alledsymmetri if

(Lu, v)H = (u, Lv)H ∀u,v∈W .The eigenvalues and eigenfuntion of linear operators will be useful for ertain expansions andestimates. The Hilbert-Shmidt theorem for the ompat ase will be diretly applied later onin the existene proofs. Therefore let H be an in�nite-dimensional Hilbert spae, A : H → H bethe unbounded, symmetri, linear operator and letM = A−1 : H → H be its inverse, a ompat,symmetri, linear operator.Lemma 6 (Hilbert-Shmidt Theorem) The eigenvalues λ̄j of M de�ned by the harateris-ti equation
Mϕj = λ̄jϕj , j = 1, 2, . . .are real and they an be ordered suh that
|λ̄j+1| ≤ |λ̄j |, j = 1, 2, . . .and

lim
j→∞

λ̄j = 0 .



44 Chapter 2 The HCCH equation: Derivation and existene of solutionsThe set of eigenfuntions {ϕj}j forms an orthonormal basis for H. The appliation of theoperator to a funtion an be expressed in terms of the eigenvalues as
Mu =

∞
∑

j=1

λ̄j(u, ϕj)Hϕj . (2.20)
�For the unbounded operator A one obtains a similar result. It bases on the fat that theeigenfuntions an be hosen as for the ompat operatorM , while the orresponding eigenvaluesare λj = 1/λ̄j. This results from the transformation of the harateristi equation

Mϕj = λ̄jϕj ⇔ ϕj = λ̄jM
−1ϕj ⇔ λjϕj = Aϕj .Note that with the ordering from above one has

|λj+1| ≥ |λj |, j = 1, 2, . . . (2.21)and
lim

j→∞
|λj | = ∞ . (2.22)Multipliation of equation (2.20) by A two times gives

Au =

∞
∑

j=1

1

λj
(u, ϕj)HA

2ϕj =

∞
∑

j=1

(u, ϕj)HAϕj =

∞
∑

j=1

λj(u, ϕj)Hϕj . (2.23)The results an be summarized in the following lemma.Lemma 7 Let A be a symmetri, linear, unbounded operator with the ompat, linear inverseM ,than A has an in�nite set of eigenvalues {λj}j that orrespond to the set of eigenfuntions {ϕj}j .They an be ordered as in (2.21), so that they tend to in�nity with j → ∞. The eigenfuntionsan be hosen as orthonormal basis of H and A applied to a funtion u has an expansion as in(2.23). �Remark If A is positive, that is (Aϕ,ϕ) ≥ 0 for all ϕ ∈ H , then all eigenvalues are positive. �Assume that A and M are operators that are de�ned as for the last two lemmata. If they arepositive, then the expansions in terms of the eigenfuntions allow to de�ne frational powers ofoperators applied to a funtion. Let α > 0, then for the operator A its fration is de�ned via
Aαu =

∑

j

λα
j cjϕj ,where now shortly cj = (u, ϕj)H . For the inverse operator M = A−1 one de�nes analogously

Mαu =
∑

j

λ̄α
j cjϕj .



2.3 Preliminaries: Conepts from funtional analysis 45These expressions will be used later on for alulations like the following (for u =
∑

k ckϕk and
w =

∑

k dkϕk)
(Mu,w)L2 = (

∑

k

λ̄kckϕk,
∑

j

djϕj)L2

=
∑

k,j

λ̄kckdj

∫

ϕkϕjdx

=
∑

k

λ̄
1/2
k ckλ̄

1/2
k dk

=
∑

k,j

λ̄
1/2
k ckλ̄

1/2
j dj

∫

ϕkϕjdx

= (M1/2u,M1/2w)L2 . (2.24)This partition of the operator will be useful for ertain estimates. Using the Hölder inequalityfor the salar produt in (2.24) one an further estimate the resulting L2 norms of eah argumentby using
‖M1/2u‖2 = (

∑

k

λ̄
1/2
k ckϕk,

∑

j

λ̄
1/2
j cjϕj)L2

=
∑

k,j

λ̄kckcj

∫

ϕkϕjdx

=
∑

k

λ̄kc
2
k

≤ λ̄1

∑

k

c2k

= λ̄1‖u‖2 . (2.25)In partiular this result shows that M1/2 is a bounded operator. It should be noted that theabove estimate partiularly holds for M = A−1 with A ∈ {−∇2,∇4,−∇6} working on suitablenormalized periodi Sobolev spaes. Then for eah operator the eigenvalue λ̄1 is di�erentlyde�ned.Let Ḣk
per be the Sobolev spae Hk that is restrited to periodi funtions on Ω = [0, L] whihhave zero mean. A1 = −∂xx : Ḣ1

per → L̇2, A2 = ∂xxxx : Ḣ2
per → L̇2, A3 = −∂xxxxxx : Ḣ3

per → L̇2with inverse operators Mk = A−1
k , k = 1, 2, 3. The mappings Mk are bounded from L̇2 to one ofthe higher order Sobolev spaes. However, bounded subsets in Ḣk

per are ompat in L̇2, so thatthe inverse mappings are in fat ompat operators from L̇2 into the same spae. More detailedinformation on the spaes will be given in the next setion.Consider the harateristi equations
Ajϕk = λjkϕk, j = 1, 2, 3, k = 0, 1, 2, . . .With ϕk = ei 2πk

L x one has
Aje

i 2πk
L x = λjke

i 2πk
L x, j = 1, 2, 3



46 Chapter 2 The HCCH equation: Derivation and existene of solutionsand the smallest nonzero eigenvalue is given for k = 1. For the three operators one obtains theeigenvalues by a simple alulation
(
2πk

L
)2ei 2πk

L x = λ1ke
i 2πk

L x ⇒ λ1k = (
2πk

L
)2 ,

(
2πk

L
)4ei 2πk

L x = λ2ke
i 2πk

L x ⇒ λ2k = (
2πk

L
)4 ,

(
2πk

L
)6ei 2πk

L x = λ3ke
i 2πk

L x ⇒ λ3k = (
2πk

L
)6 .It is interesting to see that all three operators have the same eigenfuntions and that the eigen-values of the bi- and tri-Laplaian are just powers of the eigenvalues of A1, λjk = λ2j

1k, j = 2, 3.As another result one obtains the inequality
‖u‖L2(Ω) ≤ (

L

2π
)2j‖Aju‖L2(Ω) ,sine

‖Aju‖2
L2(Ω) = ‖

∑

k

ckAjϕk‖2
L2(Ω) = ‖

∑

k

λjkckϕk‖2
L2(Ω) ≥ λ2

j1‖
∑

k

ckϕk‖2
L2(Ω) = λ4j

11‖u‖2
L2(Ω) .Analogously the estimates (2.25) an be written more preisely as

‖Mju‖2
L2(Ω) ≤ (

L

2π
)2j‖u‖2

L2(Ω) , j = 1, 2, 3 .The set {ϕk}k forms an orthonormal basis of L̇2. Furthermore, due to the periodiity andsmoothness, whih allows for partial integration with zero boundary terms, one has
((ϕk)x, (ϕl)x)L2 = (A1ϕk, ϕl)L2 = λ1kδkl ,

((ϕk)xx, (ϕl)xx)L2 = (A2ϕk, ϕl)L2 = λ2kδkl ,

((ϕk)xxx, (ϕl)xxx)L2 = (A3ϕk, ϕl)L2 = λ3kδkl ,hene the basis funtions {ϕk}k are orthogonal in Ḣj
per(Ω), j = 1, 2, 3 (and analogously for higherorders) and form a basis for these spaes on bounded domains.Now the here already used spaes are introdued more learly and useful aspets of funtionalanalysis are disussed.2.3.2 Spaes involving time, dual spaes, inequalities and other usefulresultsDual spaes and ompat embeddingsThe dual spae of a Banah spae H is the set of all linear funtionals ating on H and itis denoted by H∗ = L(H,R). A funtional f ∈ H∗ maps from H to R. Its norm is de�ned asbefore for linear operators

‖f‖H∗ = sup
x∈H,x 6=0

|fx|
‖x‖H

.



2.3 Preliminaries: Conepts from funtional analysis 47A paradigm for Banah spaes and their dual are the p integrable funtions Lp, here p ∈ (1,∞).The orresponding dual spae is (Lp)∗ ≃ Lq (where ≃ denotes an isometry, so that the spaesan be identi�ed with eah other). The indies are onjugate, that means 1/p + 1/q = 1. Inpartiular for p = q = 2 the dual of the Hilbert spae L2 an be identi�ed with the underlyingspae itself. The well-known representation theorem by Riesz generalizes this result.Lemma 8 (Riesz representation theorem) Let H be a Hilbert spae with dual H∗. Then
H∗ an be anonially identi�ed with H in the following sense: For any u∗ ∈ H∗ there exists aunique element u ∈ H suh that

u∗(v) = (u, v)H ∀v∈Hand
‖u∗‖H∗ = ‖u‖H .

�A sequene (xn)n ⊂ H in a Hilbert spae H onverges weakly to x ∈ H if it onverges in thesalar produt with any test funtion that is bounded in H ,
∃x∈H∀y∈H bounded (xn, y)H

n→∞→ (x, y)Hand therefore the notation
xn ⇀ xis used.It will be neessary to relate ertain spaes to eah other. To establish weak onvergene outof boundedness in appropriate spaes a lemma will be applied that works for three Banah spaes

X,Y, Z, where X is ompatly embedded in Y and Y is ontinuously embedded in Z. Beforeformulating the atual statement, the terminology has to be lari�ed.A Banah spae X is ontinuously embedded in a Banah spae Y (therefore the notation
X →֒ Y will be used) if X ⊂ Y and the following ontinuity ondition is ful�lled

∃C∈R∀a∈X‖a‖Y ≤ C‖a‖X .To de�ne ompat embeddings, the onept of preompat sequenes has to be introdued�rst. Let H be a Hilbert spae. A sequene (uk)k ⊂ H is preompat if there exists an element
u ∈ H and a onverging subsequene:

∃subsequene (vl)l⊂(uk)k
: vl

l→∞→ u in H .Compat embedding are speial ontinuous embeddings. A Banah spae X is ompatlyembedded in a Banah spae Y if



48 Chapter 2 The HCCH equation: Derivation and existene of solutions
• X is ontinuously embedded in Y , X →֒ Y ,
• (un)n∈N ⊂ X bounded ⇒ the sequene is preompat in Y .For this relation it will be written X →֒→֒ Y .Periodi spaesThe Sobolev spaes Wm,p (or Hm = Wm,2), the spaes of p-integrable funtions, whih haveweak derivatives to order m that are also integrable in Lp, are standard onstruts that aretaught in any funtional analysis ourse, so they will not be introdued in detail. However, herethe Hilbert spaes Hm will be onsidered with additional onstraints. Let Ω = [0, L]n ⊂ Rn bethe domain of interest. Then the spae of in�nitely di�erentiable, periodi funtions C∞

per(Ω) isjust C∞(Ω) with the restrition that the funtions f ∈ C∞
per(Ω) have the property f(x+ Lej) =

f(x), j = 1, . . . , n. The ompletion of this spae with respet to the Hk norm yields the periodiSobolev spaes Hk
per(Ω).For any u ∈ C∞
per(Ω) the Fourier series

u(x) =
∑

k∈Zn

ake
2πikx/L, āk = a−k, x ∈ Ω (2.26)is uniformly onvergent and any v ∈ Hm

per(Ω) an be approximated by suh funtions in theorresponding Sobolev norm. The bar on the oe�ients denotes the omplex onjugate value.The derivatives are easy to obtain by di�erentiating the exponential, giving the following result.Lemma 9 The norm
‖u‖Hm

f (Ω) = (
∑

k∈Zn

(1 + |k|2m)|ak|2)1/2and the standard norm
‖u‖Hm

per(Ω) = ‖u‖Hm(Ω)are equivalent. �The de�nition states that ‖u‖Hm
f (Ω) < ∞ for ∑k∈Zn(1 + |k|2m)|ak|2 <∞. This holds if
Ψm(u) =

∑

k∈Zn

|k|2m|ak|2 <∞ ,so that overall one an de�ne the periodi Sobolev spaes as
Hm

per(Ω) = {u =
∑

k∈Zn

ake
2πikx/L : āk = a−k,

∑

k∈Zn

|k|2m|ak|2 <∞}.However, Ψm is not a norm sine the positive de�niteness property is not given � it is a semi-norm. It an beome a norm for a slightly adjusted spae.



2.3 Preliminaries: Conepts from funtional analysis 49Lemma 10 The expression
‖u‖Ḣm

per(Ω) =
√

Ψ(u)is a norm for the subspae
Ḣm

per(Ω) = {u ∈ Hm
per(Ω) :

∫

Ω

u dV = 0}and then it is equivalent to the Hm norm. �The Ḣm
per inner produt is (u, v)Ḣm

per
= (Dmu,Dmv)L2 =

∑

k∈Zm |k|2makbk, when u as in(2.26) and
v(x) =

∑

k∈Zn

bke
2πikx/L, b̄k = b−k, x ∈ Ω .Banah-valued vetor spaesSolutions of time-dependent PDEs an be viewed as trajetories in in�nite dimensional phasespaes

u : [0, T ] → X, u = u(t) ,where X is a Banah spae, typially Lp or Hk. This approah motivates to de�ne Banah spaevalued funtion spaes
Lp(0, T ;X)that are Banah spaes themselves. These ontain the funtions whose X-norm is p-integrable,

‖u‖Lp(0,T ;X) = (

∫ T

0

‖u‖p
Xdt)

1/p <∞ .For X = Lp(Ω) the spaes simplify to
Lp(0, T ;Lp(Ω)) = Lp([0, T ]× Ω) .Another ommon notation is C0([0, T ], X), whih an be used when the funtions hange on-tinuously with time. In partiular it is used when applying the next result.Lemma 11 Let H and H̃ be Hilbert spaes with H →֒→֒ H̃ →֒ H∗ and let

u ∈ L2(0, T ;H), ut ∈ L2(0, T ;H∗) ,then
u ∈ C0([0, T ], H̃) .

�The next lemma shows that bounded sequenes have onvergent subsequenes in ertain ases(similarly as in �nite-dimensional spaes given with the theorem by Bolzano-Weierstrass).



50 Chapter 2 The HCCH equation: Derivation and existene of solutionsLemma 12 (Re�exive weak ompatness) Let (un)n∈N be a bounded sequene in the re�exiveBanah spae X. Then there exists a subsequene that onverges weakly in X. �Here re�exive means that H is isometrially isomorph to H∗∗, the dual of the dual spae. ForHilbert spaes this is always the ase. Also the Lebesgue spaes Lp, p ∈ (1,∞) are re�exive,with dual spae Lq, where q is onjugate to p, so that 1/p+ 1/q = 1. Although L1 has the dual
L∞, these spaes are not re�exive. The properties hold analogously for the restrited spaes
L̇p(Ω) = {f ∈ Lp(Ω) :

∫

fdV = 0}. It is useful to mention that the dual spae of a timedependent spae is Lp(0, T ;X)∗ = Lq(0, T ;X∗) and that re�exivity is arried over generiallyfrom X .This result shows that one boundedness of a sequene in a Hilbert spae or in one of the Lpspaes is proved, the extration of a weakly onvergent subsequene is possible. However, oftenstrong onvergene is needed. The next two lemmata are very useful to extrat subsequenes ofweakly onvergent sequenes that onverge strongly. Together with the preeding result they area foundation for most existene proofs based on Galerkin approximations in periodi spaes.Lemma 13 For Ω ⊂ Rn with a bounded C1 domain, and in partiular on intervals Ω = [a, b] ⊂
R, for k ∈ N the following embeddings are valid

Ḣk+1
per (Ω) →֒ Ḣk

per(Ω) ,

Ḣk
per(Ω) →֒→֒ L̇2(Ω) ,

L̇2(Ω) →֒ H−k(Ω) .

�On intervals Ω = [0, L] one even has the ompat embedding Ḣk+1
per (Ω) →֒→֒ Ḣk

per(Ω).The properties of these Sobolev spaes will be used in the following lemma (Aubin-Lionstheorem).Lemma 14 Let X,Y, Z be Banah spaes with X →֒→֒ Y →֒ Z and let X,Y be re�exive. Onehas for all p ∈ (0,∞) and onjugate index q that the embedding of
Lp(0, T ;X) ∩ Lq(0, T ;Z)into

Lp(0, T ;Y )is ompat. �Inequalities and other resultsCertain inequalities are used over and over again in existene theory. The most importantones are repeated here, beginning with a Poinaré inequality that holds for periodi spaes.



2.3 Preliminaries: Conepts from funtional analysis 51Lemma 15 For u ∈ Ḣ1
per(Ω) one has

‖u‖L2(Ω) ≤ C‖Du‖L2(Ω), C = L/(2π) . (2.27)
�For simple intervals, a funtion in Hk is already smooth to order k− 1. This result is part ofthe Poinaré embedding theorems.Lemma 16 Let Ω be an interval in R and suppose that u ∈ Hk(Ω). Then if k ≥ j + 1 then

u ∈ Cj(Ω̄) and there exists a onstant C suh that
‖u‖Cj(Ω̄) ≤ C‖u‖Hk(Ω)

�To establish useful estimates usually a lot of tehnial alulations have to be arried out. Severalinequalities are applied again and again to derive the desired results. The most ommon onesare Young's, Hölder's, Cauhy's and Minkowski's inequalities.Let p > 1 and q > 1 be a onjugate pair ( 1/p + 1/q = 1), then Young's inequality an bewritten as
ab ≤ ap

p
+
aq

q
, ∀a,b∈R≥0

.It an be used to prove Hölder's inequality
‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq , ∀f∈Lp,g∈Lq .The speial ase whih will be used here frequently is the Cauhy inequality, that is Hölder with

p = q = 2, giving
‖fg‖L1 ≤ ‖f‖‖g‖, ∀f,g∈L2 .In the following ‖ · ‖ denotes the 2-norm ‖ · ‖L2(Ω).Combining the Cauhy inequality with Young's inequality and by introduing an arti�ialepsilon, another useful inequality beomes
‖fg‖L1 ≤ ǫ

2
‖a‖2 +

1

2ǫ
‖b‖2 . (2.28)Analogously Young's inequality and the Hölder inequality an be used to derive the Minkowskiinequality (this is the generalized triangle inequality). Sine it will not be applied in this work,it is not stated here.A very useful di�erential inequality is the Gronwall inequality.Lemma 17 If an inequality of the form

d

dt+
f(t) ≤ g(t)f(t) + h(t)



52 Chapter 2 The HCCH equation: Derivation and existene of solutionsis given (d/dt+ is the right-hand derivative), then
f(t) ≤ f(0)eG(t) +

∫ t

0

eG(t)−G(s)h(s)ds, t ∈ [0, T ] ,with
G(t) =

∫ t

0

g(r)dr .

�The speial ase with onstant oe�ients
d

dt+
f(t) ≤ gf(t) + h . (2.29)yields

f(t) ≤ (f(0) +
h

g
)egt − h

g
.Now many useful tools from funtional analysis are at hand, however, some more basi theoryis neessary. The setion is �nished o� with additional standard results from analysis. The �rstis an existene result for ODEs:Lemma 18 For ontinuous right hand side f : Rn → Rn, x 7→ f(x) the ODE

ẋ = f(x), x(0) = u0has at least one solution on [0, T ] for some T > 0. �The next statement is often applied in existene proofs when nonlinearities ome into play.It is a weak version of the dominated onvergene theorem:Lemma 19 Let Ω ⊂ Rn open, bounded and let (fn)n ⊂ Lp(Ω) with ‖fn‖Lp(Ω) ≤ C be a sequeneof funtions that are pointwise onverging a.e. to a funtion f ∈ Lp(Ω). Then it also onvergesweakly, fn ⇀ f in Lp(Ω). �To show the pointwise onvergene used in the above lemma, the next result is useful.Lemma 20 For a sequene (un)n ⊂ L2(Ω) that onverges in L2, un → u ∈ L2(Ω), there existsa subsequene that onverges to u a.e. �Now the most important theoretial results from funtional analysis have been introdued.They are applied to prove existene of solutions to the HCCH equation.



2.4 Existene of solutions to the HCCH equation 532.4 Existene of solutions to the HCCH equationConsider the HCCH equation in the form
ut − δg(u)x − (uxx − f(u))xxxx = 0, x ∈ R, δ > 0 (2.30)

u(x, 0) = u0(x), x ∈ R ,with periodi boundary onditions on an interval Ω = [0, L] for t ∈ [0, T ] and where the nonlin-earities are simple polynomials in u,
g(u) =

1

2
u2, f(u) = u3 − u .Theorem 21 (Weak solutions to the HCCH equation) Equation (2.30) on a periodi in-terval with initial ondition u0 ∈ L2(Ω) has a weak solution for su�iently small values of δ: Forany T > 0 there exists a funtion

u ∈ L2(0, T ; Ḣ3
per(Ω)) ∩ L4(0, T ; L̇4(Ω)) ∩ C0([0, T ], L̇2(Ω))that ful�lls

∫

ΩT

utϕdxdt + δ

∫

ΩT

g(u)ϕx dxdt+

∫

ΩT

uxxxϕxxx dxdt −
∫

ΩT

f ′(u)uxϕxxx dxdt = 0, (2.31)for all ϕ ∈ L4(0, T, Ḣ3
per(Ω))Proof Consider the Galerkin approximation

uN =
N
∑

k=1

ckϕk , (2.32)where uN is expanded in terms of the eigenfuntions of the negative Laplaian with periodiboundary onditions {ϕj}j . These funtions form an orthonormal basis for L̇2 and also serveas orthogonal basis of Ḣk
per , k = 1, 2, 3, . . .. The supersript N in the approximation exlusivelystands for the �nite-dimensionality of the funtion and not a power as supersripts usually standfor. Then the following weak form is de�ned for uN

∫

Ω

uN
t ϕdx+ δ

∫

Ω

ΠN [g(uN)]ϕxdx+

∫

Ω

uN
xxxϕxxxdx−

∫

Ω

ΠN [f ′(uN )uN
x ]ϕxxxdx = 0, (2.33)for all ϕ ∈ Ḣ3

per(Ω) .Here the projetion ΠN is de�ned via
ΠN (

∞
∑

k=1

bkϕk) =

N
∑

k=1

bkϕk , (2.34)mapping L̇2 funtions to the �nite dimensional spae. It has the property
(ΠNv, w)L2 = (v,ΠNw)L2 ∀v,w∈L̇2 .



54 Chapter 2 The HCCH equation: Derivation and existene of solutionsThis attribute together with the orthogonality of the basis funtions allows to dedue simpli�edequations from the weak form that have to hold
∫

Ω

uN
t ϕj dx+ δ

∫

Ω

g(uN)(ϕj)x dx+

∫

Ω

uN
xxx(ϕj)xxx dx−

∫

Ω

f ′(uN)uN
x (ϕj)xxx dx = 0 ,

j = 1, . . . , N .Beause of the orthogonality of the hosen basis the �rst integral just gives the time derivativesof the oe�ients. Hene the ODE
ċj = −λ̃jcj + δ(g(uN )x, ϕj)L2 − (f ′(uN )uN

x , (ϕj)xxx)L2 , j = 1, . . . , N (2.35)is derived, where the λ̃j are the positive eigenvalues of the negative tri-Laplaian. Sine g, f andthe basis funtion are in C∞, the right hand side is a ontinuous funtion, dependent on theother oe�ients ck. Hene by Lemma 18 a solution exists loally in time and it an be extendedglobally if the solutions do not blow up. To prove global existene an auxiliary equation will beused. The HCCH equation (2.30) an be written as
ut − δuux +A(f(u) − uxx) = 0 , (2.36)where A is the bi-Laplaian, whih is a linear, symmetri, unbounded, positive operator atingon Ḣ4

per. Let M be its inverse operator, M = A−1, and let the orresponding eigenvalues bedenoted by λ1, λ̄1 for A and M , respetively, when they are ordered as in the Hilbert-ShmidtTheorem 6.Applying the ompat, linear operator M to (2.36) yields
Mut − δM(uux) + f(u) − uxx = 0 . (2.37)The orresponding weak form for the Galerkin approximation writes

∫

Ω

M1/2[uN
t ]M1/2[ϕ]dx− δ

∫

Ω

M1/2[ΠN (g(uN )x)]M1/2[ϕ]dx

+

∫

Ω

uN
x ϕxdx+

∫

Ω

f(uN)ΠN (ϕ)dx = 0, ϕ ∈ Ḣ1
per(Ω). (2.38)It was used that M1/2(ΠN (v)) = ΠN (M1/2v), whih one an see when inserting the de�nition ofthe frational operator and of the projetion (2.34).Testing with uN yields

1

2

d

dt
‖M1/2uN‖2 + ‖uN

x ‖2 +

∫

Ω

(uN)4dx

=

∫

Ω

(uN)2dx+ δ

∫

Ω

M1/2[ΠN (g(uN)x)]M1/2[uN ]dx . (2.39)As before and as in the following ‖ · ‖ denotes the L2 norm over the spae domain Ω. Severalestimates will have to be arried out and the appearing onstants will be denoted by C. These



2.4 Existene of solutions to the HCCH equation 55quantities may di�er from line to line, even from estimate to estimate. If they are supposed tobe �xed numbers, they will be written with some subsript, Ck for some k. The onstants maydepend on the domain Ω and the time T .The terms on the right are estimated as follows
∫

Ω

(uN )2dx ≤ 1

4
‖(uN)2‖2

L2 + C =
1

4
‖u‖4

L4 + C ,

δ

∫

Ω

M1/2[ΠN (g(uN)x)]M1/2uNdx ≤ δ‖M1/2[ΠN (g(uN )x)]‖‖M1/2uN‖

≤ ǫ1
δ
√

λ̄1

8
‖uN‖4

L4 +
δλ̄1

2ǫ1
‖uN‖2

≤ δ(
√

λ̄1ǫ
2
1 + 2λ̄1ǫ2)

8ǫ1
‖uN‖4

L4 + C . (2.40)Here ǫ1 and ǫ2 are arbitrary onstants and the quantity C depends on their inverse values.Furthermore it was used that for any vN that an be expanded as in (2.32) it is
‖M1/2vN

x ‖2 =

∫ N
∑

k,l=1

λ̄
1/2
k λ̄

1/2
l ckcl(ϕk)x(ϕl)xdx

=

N
∑

k,l=1

λ̄
1/2
k λ̄

1/2
l ckcl

∫

(−ϕk)xxϕldx

=

N
∑

k=1

λ̄kλ
1/2
k c2k

≤
√

λ̄1‖vN‖2 .This holds, beause the eigenvalues of the negative Laplaian are just the roots of the eigenvaluesof the bi-Laplaian λj on the periodi spaes under onsideration. Sine ΠN (g(uN )x) is of theform (2.32) one obtains ‖M1/2[ΠN (g(uN )x)]‖2 ≤
√

λ̄1‖[ΠN (g(uN ))]‖2 ≤
√

λ̄1‖g(uN)‖2. Nowhoosing ǫ1 = (1 +
√

2)/(2δ
√

λ̄1) (for the ase without deposition, δ = 0 the estimate is notneeded, hene it an be assumed δ > 0 here) and ǫ2 = 1/(8δ2(λ̄1)
3/2) guarantees that theoe�ient in front of the L4 term in (2.40) is equal to 1/4. Then after integration of (2.39) withrespet to time the overall estimate beomes

1

2
‖M1/2uN (T )‖2 +

∫ T

0

‖uN
x ‖2dt+

1

2

∫ T

0

‖uN‖4
L4dt ≤ C +

1

2
‖M1/2uN(0)‖2 ≤ C ,so that the following bounds an be dedued

M1/2uN is uniformly bounded in L∞(0, T ; L̇2(Ω)) ,

uN is uniformly bounded in L2(0, T ; Ḣ1
per(Ω)) ,

uN is uniformly bounded in L4(0, T ; L̇4(Ω)) ,

g(uN ) is uniformly bounded in L2(0, T ; L̇2(Ω)) .



56 Chapter 2 The HCCH equation: Derivation and existene of solutionsThe last bound follows diretly from the L4 result. The seond bound implies by the Sobolevembedding theorem for one-dimensional domains a bound in L2(0, T ;C0(Ω)). A uniform in timebound will be needed in the following. It an be derived by testing (2.37) with uN
t . It yields(with the double well W (u) = 1

4u
4 − 1

2u
2)

‖M1/2uN
t ‖2 +

1

2

d

dt
‖uN

x ‖2 +
1

2

d

dt

∫

Ω

W (uN )dx = δ

∫

Ω

M1/2[ΠNg(uN)x]M1/2[uN
t ]dx

≤ δ2

2
‖M1/2[ΠNg(u)x]‖2 +

1

2
‖M1/2uN

t ‖2

≤ δ2
√

λ̄1

8
‖u‖4

L4(Ω) +
1

2
‖M1/2uN

t ‖2 .Subtrating the last term, multipliation by 2, integration in time and using the L4 bound andthe H1 bound of the initial ondition yields
∫ T

0

‖M1/2uN
t ‖2 dt+ ‖uN

x (T )‖2 +

∫

Ω

W (uN (T ))dx ≤ ‖uN
x (0)‖2 +

δ2
√

λ̄1

4
‖u‖4

L4(ΩT ) ≤ C .This gives the uniform bound
uN is uniformly bounded in L∞(0, T ; Ḣ1

per(Ω)) ,whih in partiular implies by the Sobolev embedding theorem that uN is ontinuous for alltimes. Due to di�erentiability one an further dedue
‖f ′(uN )‖∞ ≤ C, ‖f ′′(uN )‖∞ ≤ C, . . . ∀t∈[0,T ] .The original weak equation (2.33) gives with the test funtion uN

1

2

d

dt
‖uN‖2 + ‖uN

xxx‖2 −
∫

Ω

f ′(uN )uN
x u

N
xxxdx = 0 . (2.41)Here periodiity was used with

∫

Ω

uNuN
x u

Ndx =
1

3

∫

Ω

((uN )3)xdx = 0 ,whih is a property ommonly used for the Navier-Stokes or the Korteweg-de-Vries equation. Byusing the time uniform bound |f ′(uN)| ≤ C1 one an further onlude
1

2

d

dt
‖uN‖2 + ‖uN

xxx‖2 ≤ |
∫

Ω

f ′(uN )uN
x u

N
xxxdx|

≤ C1

∫

Ω

|uN
x u

N
xxx|dx

≤ C1(
1

2ǫ
‖uN

x ‖2 +
ǫ

2
‖uN

xxx‖2) .Choosing ǫ = 1/C1 yields
d

dt
‖uN‖2 + ‖uN

xxx‖2 ≤ C‖uN
x ‖2 .



2.4 Existene of solutions to the HCCH equation 57Integration in time yields
‖uN(T )‖2 +

∫ T

0

‖uN
xxx‖2dt ≤ C ,so that additional results are established

uN is uniformly bounded in L∞(0, T ; L̇2(Ω)) ,

uN is uniformly bounded in L2(0, T, Ḣ3
per(Ω)) ,and one an additionally onlude that

f ′(uN)uN
x is uniformly bounded in L2(0, T ; L̇2(Ω)) .The previously derived bounds yield boundedness in the dual spae

‖uN
t ‖H−3 = sup

ϕ∈Ḣ3
per(Ω),|ϕ|=1

|
∫

uN
t ϕdx|

≤ sup
ϕ∈Ḣ3

per(Ω),|ϕ|=1

∫

|δuNuN
x ϕ| + |uN

xxxϕxxx| + |uN
xxϕxx| + |3(uN)2uN

x ϕxxx|dx

≤ C‖uN
x ‖(‖ϕ‖ + ‖ϕxxx‖) + ‖uN

xxx‖‖ϕxxx‖ + ‖uN
xx‖‖ϕxx‖ ≤ C ,hene

uN
t is uniformly bounded in L2(0, T ;H−3(Ω)) .This shows the existene of the Galerkin approximation in the weak sense for all times. Toshow existene of weak solutions, the limit N → ∞ has to be analyzed. Therefore the re�exiveweak ompatness theorem gives the following weakly onvergent subsequenes (as usually notrelabeled)

uN ⇀ u in L2(0, T ; Ḣ3
per(Ω))

uN
t ⇀ ut in L2(0, T ;H−3(Ω))

f ′(uN )uN
x ⇀ χ1 in L2(0, T ; L̇2(Ω))

g(uN) ⇀ χ2 in L2(0, T ; L̇2(Ω)).The two �rst weak limits imply by appliation of the ompatness theorem, lemma 14 with
Ḣ3

per(Ω) →֒→֒ L̇2(Ω) →֒ H−3(Ω)that L2 onvergene of a subsequene is established
uN → u in L2(0, T ; L̇2(Ω)) .Additionally one obtains by appliation of lemma 11 that

u ∈ C0([0, T ], L̇2(Ω)) .



58 Chapter 2 The HCCH equation: Derivation and existene of solutionsSine Ω is a bounded interval, it further holds Ḣ3
per(Ω) →֒→֒ Ḣ1

per(Ω) →֒ H−3(Ω) and lemma 14yields
uN

x → ux in L2(0, T ; L̇2(Ω)) .The onvergene in L2 is important when dealing with the nonlinearities.It has to be shown that indeed also with the projetions ΠNf ′(uN )uN
x and ΠNg(uN ) onvergeweakly. Therefore onsider

ΞN (ϕ) = ϕ− ΠN (ϕ) ,whih onverges strongly to zero in L2(ΩT ). Then
∫

ΩT

ΠN [g(uN )]ϕdxdt =

∫

ΩT

g(uN )ϕdxdt −
∫

ΩT

ΞN [g(uN )]ϕdxdt, ϕ ∈ L2(ΩT ) .The �rst integral tends to zero as derived before. The seond also tends to zero, sine
∫

ΩT

ΞN [g(uN)]ϕdxdt =

∫

ΩT

g(uN)ΞN [ϕ]dxdtand ΞN [ϕ] → 0 in L2(ΩT ). For ΠN [f ′(uN )uN
x ] one an proeed analogously, just by replaing gwith this nonlinearity. Hene it remains to show that the limits are indeed those antiipated.The L2 onvergene of uN , (uN )2 and uN

x gives with Lemma 20 a subsequene for that (againwithout relabeling) uN → u, (uN)2 → u2 and uN
x → ux a.e. in ΩT . Then by ontinuity g(uN )and f ′(uN )uN

x onverge almost everywhere to g(u) and f ′(u)ux. Lemma 19 with the L2 boundsyields weak limits g(uN) ⇀ g(u), f ′(uN )uN
x ⇀ f ′(u)ux that hold in L2, so that by uniqueness ofweak limits one has χ1 = f ′(u)ux and χ2 = g(u), respetively.As last step it has to be shown that indeed u(0) = u0. Here again a standard trik an beapplied. Therefore de�ne a test funtion ϕ ∈ C1([0, T ], Ḣ3

per(Ω)) that ful�lls ϕ(T ) = 0. Thisfuntion is also in L2(0, T ; Ḣ3
per(Ω)) and partial integration in time of the weak form (2.31) yields

−
∫

ΩT

uϕt dxdt+ [

∫

Ω

uϕdx]T0 + δ

∫

ΩT

g(u)ϕx dxdt

+

∫

ΩT

uxxxϕxxx dxdt −
∫

ΩT

f ′(u)uxϕxxx dxdt = 0 . (2.42)Analogously for the Galerkin approximation we have the equation
−
∫

ΩT

uNϕt dxdt + [

∫

Ω

uNϕdx]T0 + δ

∫

ΩT

ΠN (g(uN ))ϕx dxdt

+

∫

ΩT

uN
xxxϕxxx dxdt−

∫

ΩT

ΠN (f ′(uN )uN
x )ϕxxx dxdt = 0 . (2.43)The weak onvergene shows that in the limes the integrals are the same. The braket termsbeome [

∫

Ω
uNϕdx]T0 = −

∫

Ω
uN(0)ϕ(0)dx and [

∫

Ω
uϕdx]T0 −

∫

Ω
u0ϕ(0). Subtration of the twoweak equations and arbitrariness of ϕ(0) yields u0 = u(0). �



2.4 Existene of solutions to the HCCH equation 59Currently the result is extended to higher order Sobolev spaes and also a uniqueness statementis in preparation. The whole theory on existene of solutions to the HCCH equation will appearin a single publiation by Korze and Rybka [58℄. For the more general 2+1D model (2.13) adi�erent theory is being developed. A proof of existene of weak unique solutions will also appearsoon by Bodzenta et al. [7℄. The ansatz is di�erent than in the presented proof sine it bases ona �x point argument instead of a Galerkin approximation.



Chapter 3Stationary solutions and kinkdynamis to the HCCH equationSomeone told me that eah equation I inluded in the book would halve the sales.Stephen Hawking (1942 - )It has been proved in the last hapter that weak solutions to the HCCH equation (2.14) existglobally in time. Now their atual appearane, their form in equilibrium and their behavior on alarge time sale are analyzed with help of methods from dynamial systems, mathed asymptotisand numeris. New types of stationary solutions will be derived. Therefore a numerial sheme forapproximately solving a orresponding ODE in a boundary value problem framework is presentedand an extension of the method of mathed asymptotis that retains exponentially small termsduring the mathing proedure is arried out. A partiular equilibrium solution is onsidered intwo inner layers and one outer region. Appropriate saling, expanding and solving in eah regiontogether with a non-standard mathing proedure allows to alulate new spatially nonmonotonesolutions with hump spaings and far-�eld parameters, given as analytial expressions in the limitof vanishing deposition �ux δ = 0. The results from this part of the hapter originate from thework by Korze et al. [57℄. A vast amount of other examples for the appliation of the methodof mathed asymptotis exist. The here presented approah generalizes the work by Lange[62℄ to higher-order singularly perturbed nonlinear boundary-value problems, where standardappliation of mathed asymptotis is not able to loate the position of interior layers that delimitthe osillations of the non-monotone solutions. The internal layer struture of the solutions to theboundary value problem for the related Cahn-Hilliard and visous Cahn-Hilliard equations hasbeen resolved by Reyna and Ward [81℄. Their approah bases on a previous work by Ward [107℄,who used a near solvability ondition for a orresponding linearized problem in his asymptotianalysis. His work was inspired by publiations by O'Malley [76℄ and Rosenblat et al. [84℄, who60



3.1 Stationary solutions to the HCCH equation 61investigated the problem of spurious solutions to singular perturbation problems of seond-ordernonlinear boundary-value problems. For the related Kuramoto-Sivashinsky equation, a multiple-sales analysis of the orresponding third-order nonlinear boundary-value problem by Adams etal. [1℄ shows that the derivation of monotone and osillating traveling-wave solutions involveexponentially small terms.After the analysis of equilibrium states ripening of faeted surfaes in 2D for the HCCHequation is investigated. Simulations based on a pseudospetral method show how oarseningtakes plae. With the numerial method one ould reprodue the rates obtained by Savina et al.[89℄. However, here the attention is turned to how the oarsening is driven and when or how itstops. Kink interations are analyzed and stationary or traveling wave solutions are found. Withinreasing deposition rate osillations with higher wave numbers an be observed in the solutions.The result is very similar as for the related CCH equation. From oarsening to roughening, ananalogous work as by Golovin et al. [44℄ ould be written for the HCCH equation.3.1 Stationary solutions to the HCCH equationIn general, PDEs involving nonlinearities are hard to solve, so it is ommon to simplify the equa-tions as muh as possible in a way that the redued systems still ontain the useful information.Stationary solutions to PDEs are easier to obtain than those of the underlying equation withdynamis sine essentially one dimension less has to be treated in the analysis. The HCCH equa-tion (2.14) is de�ned for one lateral dimension only, hene by setting ut = 0 it even simpli�es toan ODE that an be handled with standard tools of analysis and numeris. Having stationarysolutions at hand may be adjuvant for the understanding of the evolution. Espeially in ase ofphase-separating systems, often moving fronts an be observed that resemble stationary shapesthat move with low veloity. This behavior an be used to derive sharp interfae models. Thishas been done for example for the CCH equation by Watson et al. [109℄, or for droplet dynamisby Glasner and Witelski [39℄.The simplest ase of equation (2.14) is given with δ = 0. Integrating four times and settingthe integration fators to zero gives
uxx + u− u3 = 0 . (3.1)This ODE is just the stationary version of the Allen-Cahn equation (2.15) or of the Cahn-Hilliard equation (2.17) (also with zero integration fators). It is known for a long time that thetangentials u0 = tanh(x/

√
2) an solve the equation and yield the transition from one state toanother. Sine u is the slope of the shape in ase of the HCCH equation, the stationary pro�lesfor this problem are given as

h0(x) = ±
√

2 ln cosh(x/
√

2) ,



62 Chapter 3 Stationary solutions and kink dynamis to the HCCH equationhene simple kinks or antikinks (triangular shapes). These funtions will serve as leading ordersolutions when using asymptoti expansions for the determination of speial equilibrium shapes.It is inevitable to disuss the ase with deposition, δ > 0. The parameter is assumed to besmall, say 0 < δ ≪ 1, whih is a realisti assumption for epitaxial proesses. From the lasthapter it is known that in this ase solutions exist. Integration of the HCCH equation (2.14)yields
δ

2
(u2 −A) + (uxx + u− u3)xxx = 0 , (3.2)under the assumption that u tends to a onstant value in the far �eld

lim
x±→∞

u(x) = ∓
√
A .The onstant equilibrium points are u± = ±

√
A, sine the onvetive term vanishes and also allderivatives are zero. The harater of the stationary points an be read o� from the harateristipolynomial

P±(λ) = P(u±) = λ5 + (1 ∓ 3A)λ3 ± δ
√
A = 0 . (3.3)It an be obtained by either transforming (3.2) to a �rst order system, linearizing and omputingthe harateristi polynomial of the Jaobian in the equilibrium points, or by linearizing diretlyaround the equilibrium point with the ansatz u = ±

√
A+ δeλx.The signs of the Eigenvalues yield information about the orbits, positive signs imply expo-nential growth of the speial solution to the linearized problem while negative signs indiateexponential deay in diretions of the orresponding eigenvetors. Sine the linearization givesqualitatively the same results near the equilibrium points, these information an be used for theomputation of stable and unstable manifolds. In Appendix B a short introdution to dynamialsystems ontains most of the important onepts used here. Detailed information an be foundin the books by Gukenheimer and Holmes [46℄ or Hale and Koak [47℄. In any way saddle pointso�er a rih behavior worth studying and it will be shown that the equilibrium points u± are suhsaddles.Analyti solutions for the roots of �fth order polynomial are not o�ered by nature as this isthe ase for its lower order ompanions. However, they an be approximated by making use ofusual asymptoti analysis tools [48, 52℄. To expand solutions in powers of the small parameter

δ, it is neessary to �nd out a suitable power ν ∈ Q+ for the expansion series
λ =

∞
∑

j=0

λjδ
jν .Independently of the hoie of ν, the O(1) terms (j = 0) gives the �ve roots

λ
(k)
0 = 0, k = 1, 2, 3 and λ

(k)
0 = ±

√
3A∓ 1, k = 4, 5 .



3.1 Stationary solutions to the HCCH equation 63Insertion of the next order approximation λ = λ0 + λ1δ
ν into equation (3.3) gives the followingorders that all have to be zero if λ is indeed a root.

O(δ) : ±
√
A O(δ3ν) : (10λ2

0 + (1 ∓ 3A))λ3
1

O(δν) : (5λ4
0 + (1 ∓ 3A)3λ2

0)λ1 O(δ4ν) : 5λ0λ
4
1

O(δ2ν) : (10λ3
0 + (1 ∓ 3A)3λ0)λ

2
1 O(δ5ν) : λ5

1 .Dependent on the fration ν the δ√A term is balaned with one of the other orders. For thestandard hoie ν = 1 it would be the O(δν ) terms and the solution for λ1 for the nonzero rootsof λ0 would be λ(k)
1 = ∓

√
A/(2(3A ∓ 1)2), k = 4, 5. Then for the other roots no solutions inleading order ould be obtained whih indiates a wrong saling of the exponents. Hene aninrease of the denominator q ∈ N in the small parameter ν = 1/q an be pursued. For ν = 1

2the same situation with the O(δ2ν) terms balaning the O(δ) term would appear. Expanding inthe powers of third roots improves the situation, beause for ν = 1
3 the fourth equation balanesthe �rst and

(10λ2
0 + (1 ∓ 3A))λ3

1 ±
√
A = 0 ⇔ λ3

1 =
∓
√
A

10λ2
0 + (1 ∓ 3A)

(3.4)is well de�ned for all λk
0 , k = 1, . . . , 5 (the equivalene holds as long as A 6= ±1/3). Thus usinglower orders of the expansion

λ =

∞
∑

j=0

λjδ
j/3 ,and analyzing further equation (3.4) in terms of the signs of the oe�ients gives the leadingorder signs of the roots. These arry along enough information to see whether the eigenvaluesorrespond to stable or to unstable diretions.Case 1: u = u+ =

√
A and 3A > 1The �ve asymptotis are

λ(1) = δ
1

3

( √
A

(3A− 1)

)
1

3

+ O(δ
2

3 ) (3.5)
λ(2,3) = δ

1

3

( √
A

(3A− 1)

)
1

3

(
−1 ± i

√
3

2
) + O(δ

2

3 ) (3.6)and
λ(4,5) = ±

√
3A− 1 + O(δ

1

3 ) . (3.7)Hene the �rst and fourth root have positive real part, while the others have a swithed sign.Case 2: u = u− = −
√
A and 3A > 1: The signs of the real parts of the asymptotis in (3.5) and(3.6) are simply swithed due to the di�erent sign in √

A and the leading orders of λ(k), k = 4, 5are unhanged from (3.7). Hene three real parts are positive and two are negative.Case 3 (u = u+ =
√
A and 3A < 1) and ase 4 (u = u− = −

√
A and 3A < 1 ) are ignored, sine



64 Chapter 3 Stationary solutions and kink dynamis to the HCCH equationthe leading parts of λ(k), k = 4, 5 are imaginary in these ases. These solutions osillate near
x = 0 and hene do not desribe appropriate surfae shapes.Savina et al. [89℄ use the method of mathed asymptotis to obtain the approximate solutionas simple stationary state for a small deposition rate δ. The alulations will be repeated inSetion 3.1.2 and extended to other steady solutions that were found. Before using a methodof mathed asymptotis for the analytial determination of partiular steady states and someof their properties, brunhes of stationary solutions are omputed numerially with help of aboundary value formulation.3.1.1 A phase spae methodIt is useful to resale the HCCH equation suh that the equilibrium points beome ±1. Thenthey do not vary with hanged parameter A whih makes the implementation of a boundaryvalue problem formulation muh easier. By setting u =

√
Aũ the problem writes

δ
√
A(1 − ũ2) − 2(ũxx + ũ−Aũ3)xxx = 0 , lim

x→±∞
ũ = ∓1 . (3.8)Redution to a �rst order system U ′ = F (U) gives a system funtion F : R5 → R5 with

Fi(U) = Ui+1, i = 1, 2, 3, 4 ,

F5(U) = 6A(U2)
3 + 18AU1U2U3 + (3A(U1)

2 − 1)U4 + δ
√
A(1 − (U1)

2)/2 .The steady states are U± = ±eT
1 , where e1 is the �rst Cartesian basis vetor in R5. At these pointsthe harateristi polynomials remain unhanged (3.3). In the following the onnetions betweenthe two equilibria U+ and U−, the heterolini onnetions, are sought. The disussion on theroots of the polynomial (3.3) shows for small δ that the dimensions of the unstable manifolds inthe upper steady state Wu(U+) and the stable manifold of the lower equilibrium point W s(U−)both equal two. Finding heterolini solutions on these manifolds is a odimension two event ifno additional properties of the solutions are taken into aount. However, it may be redued,beause the HCCH equation is reversible with the linear transformation

R : R5 → R5, R(U) = ((−1)jUj)j=1,...,5 (3.9)that ful�lls
R2 = Id and RF (U) = −F (RU) .It represents the reversibility in the phase spae and it is an involution (a re�etion). Its set of�xed points is the symmetri setion of the reversibility. This means odd omponents vanish,

Ui = 0 for i odd. A solution that rosses suh a point is neessarily symmetri under R, and foreah point U on the onnetion there exists a orresponding transformed point RU somewhereon the branh. Odd solutions ross a point in the symmetri setion, hene the distane funtion
dA(U) = min

x

√

∑

i oddUi(x)2 , (3.10)



3.1 Stationary solutions to the HCCH equation 65beomes zero at the symmetry point. The odimension of a reversible system redues by oneso that here �nding the heterolini onnetions beomes a odimension one problem. However,sine there are two parameters A and δ, on may be tempted to expet solution branhes in the
(A, δ) parameter plane and indeed, as for the CCH equation suh branhes were found.The phase spae is skethed in Figure 3.1, indiating the linearizations of the intersetingmanifolds in the equilibrium points. A boundary value formulation has been used to numeriallysolve the problem.

Figure 3.1: For the HCCH one searhes for heterolini orbits between the equilibrium points in a 5D phase spaethat is indiated here in 3D. The two-dimensional manifolds W u(U+) and W s(U−) are suggested by the twoplanes in the piture.Boundary value problem formulationThere exist several possibilities to set up equations for �nding heterolini onnetions in aboundary value problem framework. Here the translation invariane gives rise to in�nitely manysolutions. Several suitable phase onditions that pik one solution due to phase shifts are possible[35, 6℄. However, in the disussed ase a simpler approah an be pursued by halving the domainlength and using symmetry of the solutions. Then phase onditions beome redundant, beausethe phase is already �xed.Equation (3.8) ontains two parameters, A, δ, and in addition it has to be trunated to a�nite domain length L. Resaling the domain to [0, 1] yields the ODE
U ′

i = LUi+1, i = 1, 2, 3, 4 ,

U ′
5 = L

(

6A(U2)
3 + 18AU1U2U3 + (3A(U1)

2 − 1)U4 + δ
√
A

(1 − (U1)
2)

2

)

,

A′ = 0 .In the implementation the problem is solved and the omputations are ontinued after extrapo-lating to an approximate value the free parameter A for a nearby hosen and �xed δ. This is asystem of six equations, one for the parameter and �ve given by the original ODE, whih have to



66 Chapter 3 Stationary solutions and kink dynamis to the HCCH equationbe supplemented by the same number of boundary onditions. These are given by the neessitythat on the left domain end the equilibrium has to be met
U1(0) = 1, U2(0)2 + U3(0)2 = 0, U4(0)2 + U5(0)2 = 0while the ondition on the right interval end gives due to the reversibility

U1(1) = U3(1) = U5(1) = 0 .The boundary value solvers used are based on mono-impliit Runge-Kutta formulae [53, 92℄.Final shapes are obtained by re�eting the solution and its derivatives around zero and hangingthe signs of the �rst, third and �fth omponent. Examples of branhes of di�erent solutions areshown in Figure 3.2. With the above boundary value formulation it is possible to ompute new
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Figure 3.2: (
√

A, δ)−plane with urves for the �rst three heterolini onnetion branhes for the HCCH equation.Below and to the right �ve phase spae diagrams are shown (tuples (U1, U2), (U1, U3), . . .) for seleted solutionspointed out with arrows marking the orresponding parameters. The �rst pair (U1, U2) is plotted as bold solidurve, while the other onnetions are visualized with dotted lines.stationary solutions to the HCCH equation. Heterolini orbits in a two- or three-dimensionalphase spae an be visualized easily and onnetions indeed indiate that solutions were found.For dimension four or higher the situation beomes more ompliated. Plotting the solution in athree dimensional phase spae an show a onnetion that not neessarily implies that also thefourth (or higher) derivative is orretly onneted to be a solution. However, one an plot the2D phase spaes (U1, Uk), k = 2, 3, 4, 5 and demand onnetions between the equilibrium tuples
(±

√
A, 0) as a neessary ondition for heterolini orbits in the higher order spae. Several suhprojetions onto 2D are shown in Figure 3.2, where also a very rapidly osillating heteroliniurve in the bottom left is plotted whih was found by a shooting approah with a minimization



3.1 Stationary solutions to the HCCH equation 67proedure that used the two parameters and an angle as free parameters and the distane funtion(3.10) as objetive funtion. It indiates that as shown for the CCH equation one an in fat �ndmany more hetk branhes than those presented for k = 0, 1, 2, all emerging from (A, δ) = (1, 0),whih orresponds to the CH equation.In Figure 3.3 the hange in appearane of solutions on the het2 branh is shown as δ isinreased. The shape varies from a solution with two pronouned humps to a monotone one,similar to the het0 solution, although assoiated with di�erent, smaller, values of A. This isruial if one wants to ompute solutions for bigger δ with a boundary value solver. It easilyhappens that the solver swithes between solution branhes. However, this an be preventedby starting ontinuation in a parameter regime where the high-slope parts of the solutions arenon-monotone, and ontinuing with small steps towards bigger values of δ. A harateristi of
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Figure 3.3: Strutural hange of the saled het2 solution as δ is inreased.the HCCH solutions is the overshoot from the equilibrium value before the solutions go down.This height dereases with dereasing value of δ. For the CCH equation the shapes are are moresimilar at these regions to hyperboli tangent funtions.3.1.2 Exponential mathed asymptotisConsider a one-hump solution as skethed in Figure (3.4), whih will be denoted as the het1solution from now on. Two internal layers are given in the regions rl near κl < 0 and r0 around
κ0, and an outer layer is marked by Rl. The symmetry point is κ0 and as in the in the numerissetion before, it is assumed that κ0 = 0, then κl = −κr and layers right of r0 may be ignored.Solution in the inner layers will be derived and mathed to the outer solution.For monotone antikink solutions to the HCCH equation it has been demonstrated by Savinaet al. [89℄ that it is neessary to math terms up to order δ in order to obtain the orretion A1,given the asymptoti expansion of A

A = 1 +

∞
∑

k=1

δk/3 Ak . (3.12)The motivation for the one third power law expansion in δ stems from the eigenvalue analysispresented in Setion 3.1. Here, for the non-monotone antikinks the inner and outer solutions in
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Figure 3.4: Sketh of a symmetri one-hump, or het1 solution to the HCCH equation showing the general setupwith the three regions Rl, rl, r0 under onsideration for the mathing proedure.
rl and Rl, respetively, have to be mathed. Then also an exponential mathing of the innerlayers in rl and r0 is neessary. This has to be arried through iteratively up to three orders ofmagnitude in order to obtain the orretion A1 and the expression for the width of the humps.First, the salings for the three regions are desribed, before solving the individual problems andstarting with the mathing proedure. The outer solution has been derived by Savina et al. [89℄,the inner solutions have been obtained by Korze et al. [57℄.The inner solutions will be denoted by ul and u0 in rl and r0, respetively. These solutionslive in the variables xl and x0, while the outer solution U in Rl obtains the variable ξ.The inner layer rlThe analysis of the internal layers is performed in the inner saling and the variable near κl is

xl = (x− κ̄l)/
√

2 , (3.13)where κl is expanded in terms of the small parameter δ
κl = κ̄l +

√
2

∞
∑

k=1

δk/3κlk .Then the stationary form of (2.14) is
23/2δ(u2

l −A) + [u′′l − 2f(ul)]
′′′ = 0 , (3.14)where the prime (′) denotes partial di�erentiation with respet to the variable of the atualregion, here xl, and f is a double-well derivative,

f(u) = u3 − u .For the boundary onditions again κl is plaed near the point where ul rosses zero, i.e.
ul

(

κl − κ̄l√
2

)

= 0 . (3.15)



3.1 Stationary solutions to the HCCH equation 69The ondition towards −∞ needs to be mathed to the outer solution in the region Rl (see Figure3.4).The inner layer r0In the region near the symmetry point κ0 = 0, the variable x0 = x/
√

2 is used, giving
23/2δ(u2

0 −A) + [u′′0 − 2f(u0)]
′′′ = 0 . (3.16)The reversibility at zero gives the three onditions

u0(0) = 0, u′′0(0) = 0 and u′′′′0 (0) = 0 , (3.17)plus additional onditions from the exponential mathing to the internal layer at rl as x0 → −∞.The outer layer RlFor the outer region where xl beomes very large, the ansatz
ξ = δ1/3 xl and U(ξ; δ) = ul(xl; δ) (3.18)is used to obtain the outer problem

23/2(U2 −A2) + [δ2/3 Uξξ − 2f (U)]ξξξ = 0 (3.19)with the far �eld ondition
lim

ξ→−∞
U(ξ) =

√
A . (3.20)Expansions in the di�erent regionsIt is assumed that the solutions to these three problems for U , ul and u0 an be represented byasymptoti expansions

uα(xα) = uα0(xα) +
∞
∑

k=1

δk/3 uαk(xα), where α = 0, l (3.21)valid in rl and r0, respetively, and
U(ξ) = U0(ξ) +

∞
∑

k=1

δk/3 Uk(ξ) , (3.22)valid in the outer region Rl. In the following the outer problem is solved. It has already beenderived by Savina et al. [89℄. For most of the alulations the assistane of Maple was veryhelpful.Solving the outer problem in RlTo solve the outer problem, the expansions for U , (3.22), for the powers U2, U3

U2 = U2
0 + δ1/32U0U1 + δ2/3[2U0U2 + U2

1 ] + δ[2U0U3 + 2U1U2] + O(δ4/3) ,

U3 = U3
0 + δ1/33U2

0U1 + δ2/3[U0(2U0U2 + U2
1 ) + 2U0U

2
1 + U2

0U2]

+δ[2U0U1U2 + U0(2U0U3 + 2U1U2) + U2
0U3 + U1(2U0U2 + U2

1 )] + O(δ4/3) , (3.23)



70 Chapter 3 Stationary solutions and kink dynamis to the HCCH equationand for the far-�eld parameter (3.12) are used in equation (3.19) and the ondition (3.20). Inthis way di�erent problems for onseutive orders an be de�ned. These are solved, leavingintegration onstants that will have to be determined in a mathing proedure with the solutionsto the left inner layer.The leading order problem beomes O(1):
√

2(U2
0 − 1) + (U0 − U3

0 )ξξξ = 0 ,

lim
ξ→−∞

U0(ξ) = 1 .It has the trivial solution
U0 = 1 . (3.24)

O(δ1/3): To this order the problem beomes
1√
2
A1 + (U1)ξξξ −

√
2U1 = 0 ,

lim
ξ→−∞

U1(ξ) =
A1

2
. (3.25)The general solution onsists of a onstant, a e21/6ξ term and terms that are unbounded for

ξ → ∞. Hene the boundary ondition leaves only the integration onstant c1 and
U1 = c1e

21/6ξ +
A1

2
. (3.26)

O(δ2/3):To this order the equation and far-�eld ondition beome
1√
2
A2 + (U2)ξξξ −

√
2U2 +

3

2
(U2

1 )ξξξ −
1√
2
U2

1 = 0 ,

lim
ξ→−∞

U2(ξ) =
A2

2
− A2

1

8
.The solution to the ODE is with ξ̃ = 21/6ξ and an integration onstant c2 is

U2 =
A2

2
− A2

1

8
+ eξ̃(c2 +A1c1(1 − ξ̃)) − 23

24
(c1e

ξ̃)2 .The last problem to be solved for the outer solution is
O(δ):

U3ξξξ
−

√
2U3 = −A2√

2
+

1

4
U1ξξξξ

+
√

2U1U2 −
1

2

(

U3
1 + 6U1U2

)

ξξξ
,with lim

ξ→−∞
U3(ξ) =

A3

2
− A1A2

4
+
A3

1

16
. (3.27)One obtains

U3 =
A3

2
− A1A2

4
+
A3

1

16
+ (c3 + d1 + d2ξ + d3ξ

2)eξ̃ + (d4 +
23

21
A1c

2
1ξ̃)(e

ξ̃)2 +
127

28
c31(e

ξ̃)3 , (3.28)



3.1 Stationary solutions to the HCCH equation 71with another integration onstant c3 and the abbreviations dk, k = 1, 2, 3, 4 given in the end ofAppendix C, (C.26). Finally, the asymptoti representation in terms of xl an be obtained byusing (3.18) and expanding the exponentials. It yields an expression orret to order O(δ),
U =1 + (c1 +

1

2
A1) δ

1/3 +
(

c12
1/6xl + ě1

)

δ2/3 +

(

(−23

7
c21 + c2)2

1/6xl +
1

2
c12

1/3x2
l + ě2

)

δ

+ O(δ4/3) . (3.29)Here again new onstants were introdued and ě1, ě2 an also be found in the appendix.The inner regionsThe solutions to the other regions are disussed now. The strategy is similar as for the outerregion.Leading order in rlTo leading order in δ one obtains the problem in rl
(u′′l0 − 2 f(ul0))

′′′
= 0 , (3.30a)

ul0(0) = 0 . (3.30b)Mathing to the leading order outer solution (3.24) U0 = 1 gives a typial Cahn-Hilliard solution
ul0(xl) = − tanh(xl) . (3.31)Its representation towards the internal layer about x = 0 is given by

ul0 = −1 + 2e−2xl − 2e−4xl +O(e−6xl) (3.32)as xl → ∞.Leading order in r0The leading order problem for this region is
(u′′00 − 2 f(u00))

′′′
= 0 , (3.33a)

u00(0) = 0, u′′00(0) = 0 and u′′′′00 (0) = 0 , (3.33b)and its solution is
u00(x0) = tanh(x0) . (3.34)As x0 → −∞ its behavior is given by

u00 = −1 + 2e2x0 − 2e4x0 +O(e6x0) . (3.35)



72 Chapter 3 Stationary solutions and kink dynamis to the HCCH equation
O(δ1/3) in rlThe expansion of (3.14) and (3.15) to order δ1/3 yields

L(ul1, xl) = fl1(xl) , (3.36a)
ul1(0) = −u′l0(0)κl1 = κl1 , (3.36b)where L is de�ned by
L(v, z) = v′′ + 2

(

1 − 3 tanh2(z)
)

v (3.37)and
fl1(xl) := c1lx

2
l + c2lxl + c3l . (3.38)The homogenous solutions are therefore

φl(xl) = −u′l0(xl) = 1 − tanh2(xl) , (3.39)
ψl(xl) =

(∫ xl

0

dz

φ2
l (z)

)

φl(xl) . (3.40)The onstants c1l, c2l, c3l are obtained by three suessive integrations of the ODE for ul1 obtainedat this order. The inhomogeneous solution is now hosen so that it grows only algebraially as
xl → −∞ and vanishes at xl = 0. Partiular solutions to (3.36b) are of the form

ϕαj(xα) = ψα(xα)

∫ xα

0

φα fαj dz − φα(xα)

∫ xα

0

ψα fαj dz + γαjψα(xα) , (3.41)so that ϕl1 is obtained for α = l, j = 1 in (3.41) and
γl1 = −π

2

12
c1l + ln(2)c2l − c3l .Hene the solution is

ul1(xl) = −κl1φl(xl) + ϕl1(xl) . (3.42)As xl → −∞ the limiting behavior of ul1 is
ul1(xl) = −1

8
(c1l + 2c3l) −

1

4
c2lxl −

1

4
c1lx

2
l

+

(

1

64
(−7c1l − 8c3l + 256κl1 + 30c2l + 4c2lπ

2 − 72c1lζ(3))

+
1

16
(−6c2l + 15c1l + 24c3l)xl +

1

8
(6c2l − 3c1l)x

2
l +

1

2
c1lx

3
l

)

e2xl + O( e4xl) ,

(3.43)where ζ is the Riemann Zeta funtion, and ul1 must math the outer solution that is given by(3.29) and has only onstant terms to this order. Hene it an be required c2l = 0 and c1l = 0.The mathed solution is now
u

(l)
l1 (xl) = (1− tanh2(xl))κl1 −

c3l

16

(

− 2e6xl +4+10e2xl − 12e4xl − 24xle
2xl

) e−2xl

(e2xl + 1)
2 , (3.44)



3.1 Stationary solutions to the HCCH equation 73where u(l)
l1 denotes the solution that is obtained by mathing to the outer solution U . As it willbeome lear later, exponential mathing to the inner solution u0, i.e. as xl → ∞, where it isfound that

u
(l)
l1 (xl) =

1

8
c3le

2xl +
1

2
c3l +

(

−7

4
c3l + 4κl1 +

3

2
c3lxl

)

e−2xl +

(

11

4
c3l − 8κl1 − 3c3lxl

)

e−4xl

+O(e−6xl) ,requires also c3l = 0. Hene, denoting by u(e)
l1 the solution that has been exponentially mathedto the inner solution u0 near x = 0, one obtains

u
(e)
l1 (xl) =

(

1 − tanh2(xl)
)

κl1 . (3.45)
O(δ1/3) in r0To this order the problem in the region near κ0 is

L(u01, x0) = f01(x0) , (3.46a)
u01(0) = 0, u′′01(0) = 0 and u′′′′01 (0) = 0 , (3.46b)with

f01(x0) = c10x
2
0 + c20x0 + c30 . (3.47)Its general solution reads

u01(x0) = ϕ01(x0) + g1 ψ0(x0) , (3.48)where the homogeneous solutions are as before and the inhomogeneous solution is given byequation (3.41) with α = 0, j = 1 and
γ01 = −π

2

12
c10 + ln(2) c20 − c30 ,so that ϕ01(0) = 0 and ϕ01 grows algebraially as x0 → −∞. Furthermore, symmetry requires

ϕ′′
01(0) = 0 and ϕ′′′′

01 (0) = 0, whih implies c10 = 0 and c30 = 0 leading to
ϕ01(x0) =

c20
16(1 + e−2x0)2

(

1 − 4x0 + 12 dilog(e2x0 + 1)e−2x0 − e−4x0 + 12x2
0e

−2x0

+ π2e−2x0 + 12x0e
−4x0 − 14x0e

−2x0 − ln(1 + e−2x0)e2x0 + 8e−4x0 ln(1 + e−2x0)

− 8 ln(1 + e−2x0)) + e−6x0 ln(1 + e−2x0) + 2e−6x0x0

)

,where dilog denotes the dilogarithm funtion. The remaining free parameters of u01 that have tobe mathed are c20 and g1. As will be demonstrated later, exponential mathing to ul requiresan expression for u01 as x0 → −∞

u01(x0) = − g1
16
e−2x0 − 1

4
c20x0 −

3

8
g1

+
1

32

(

2c20π
2 + 15c20 + 26g1 + (48g1 − 12c20)x0 + 24c20x

2
0

)

e2x0

+
1

48

(

− 36g1 − 89c20 − 6c20π
2 + (84c20 − 144g1)x0 − 72c20x

2
0

)

e4x0 +O(e6x0)



74 Chapter 3 Stationary solutions and kink dynamis to the HCCH equationand then re-expanding u0 in the variable xl. This shows that also c20 = 0, g1 = 0 and c3l = 0.Any other hoie leads to a system for the parameters having no solution. Hene, only κl remainsas a free onstant in the two regions. The exponentially mathed solution is therefore simply
u

(e)
01 (x0) = 0 . (3.49)Internal layer in rl for O(δ2/3)The problem to this order near κl is

L(ul2, xl) = fl2(xl) , (3.50)
ul2(0) = −u′l0(0)κl2 −

1

2
u′′l0κ

2
l1 − u′l1(0)κl1 = κl2 − u′l1(0)κl1 , (3.51)where

fl2(xl) = d1lx
2
l + d2lxl + d3l + 6 ul0 (u

(e)
l1 )2 . (3.52)Note that u(l)

l1

′
(0) = 0. Again the inhomogeneous solution is hosen so that it grows only alge-braially as xl → −∞ and vanishes at xl = 0 to obtain (3.41) with α = l, j = 2 and

γl2 = −π
2

12
d1l + ln(2) d2l − d3l − κ2

l1 ,so that the general solution is represented as
ul2(xl) = −κl2φl(xl) + ϕl2(xl) . (3.53)As xl → −∞ it has to be ompared

ul2(xl) = −1

8
(d1l + 2d3l) −

1

4
d2lxl −

1

4
d1lx

2
l

+e2xl

( 1

64
[(−7 − 72ζ(3))d1l − 8d3l + 256(κl2 − κ2

l1) + (30 + 4π2)d2l]

+
3

16
(5d1l − 2d2l + 8d3l)xl +

3

8
(2d2l − d1l)x

2
l +

1

2
d1lx

3
l

)

+O(e4xl)with the outer solution. Mathing the onstant and the linear terms in xl yields
−1

4
d3l =

1

2
A1 −

1

8
A2

1 +
1

3
c1A1 +

23

14
c21 + c2 ,

−1

4
d2l = 21/6c1 .There is no quadrati term in the outer solution (3.29), hene d1l = 0. There are further mathingonditions but they do not simplify the problem struturally at this point and will be enforedlater, so that d2l, d3l and κl2 remain to be determined via exponential mathing. As xl → ∞,the expansion to this order an be written as

u
(l)
l2 =

1

2
d3l −

1

4
d2lxl +

1

8
d3le

2xl +
e−2xl

32

(

− 56d3l − 15d2l

− 2d2lπ
2 + 128(κ2

l1 + κl2) + (48d3l − 12d2l)xl − 24d2lx
2
l

)

+O(e−4xl) .

(3.54)



3.1 Stationary solutions to the HCCH equation 75Internal layer in r0 for O(δ2/3)As for the O(δ1/3) problem, at O(δ2/3) one has
L(u02, x0) = f02(x0) , (3.55a)

u02(0) = 0, u′′02(0) = 0 and u′′′′02 (0) = 0 , (3.55b)with
f02(x0) = d10x

2
0 + d20x0 + d30 . (3.56)The general solution is

u02(x0) = ϕ02(x0) + g2 ψ0(x0) , (3.57)where the homogeneous omponent is as before and the inhomogeneous part is obtained bysetting α = 0, j = 2 and γ02 = 0 in (3.41), so that ϕ02(0) = 0 and ϕ02 grows algebraially as
x0 → −∞. Symmetry requires ϕ′′

02(0) = 0, ϕ′′′′
02 (0) = 0, whih implies d10 = 0 and d30 = 0. Theremaining free parameters to be mathed are d20 and g2. In order to exponentially math to ulto O(δ2/3) and obtain u(e)

l2 , again u02(x0) has to be expanded as x0 → −∞, giving
u02(x0) = − µ̂

16
e−2x0 − 1

4
d20x0 −

3

8
µ̂

+
1

32

(

(15 + 2π2 + 2 ln(2))d20 + 26g2 + (48µ̂− 12d20)x0 + 24d20x
2
0

)

e2x0

+
1

48

(

− (89 + 6π2)d20 − 36µ̂+ (84d20 − 144µ̂)x0 − 72d20x
2
0

)

e4x0 +O(e6x0) ,where the abbreviation µ̂ = d20 ln(2)+ g2 has been used. This has to be re-expressed in terms of
xl.Internal layer in rl for O(δ)The problem to be solved at order O(δ) is

L(ul3, xl) = fl3(xl) ,

ul3(0) = −u′l2(0)κl1 − u′′l0(0)κl1κl2 − u′l0(0)κl3

−1

6
u′′′l0(0)κ3

l1 − u′l1(0)κl2 −
1

2
u′′l1(0)κ2

l2 , (3.58a)with
fl3(xl) = 2

(

(u
(e)
l1 )3 + 6 ul0 u

(e)
l1 u

(e)
l2

) (3.59)
−23/2

[

1

2
dilog(e2xl + 1) +

1

2
(1 + k1l)x

2
l + (ln(2) + k2l)xl + k3l

]

.Again the inhomogeneous solution is hosen so that it grows only algebraially as xl → −∞ andvanishes at xl = 0 and so that ϕl3(xl) is obtained by using formula (3.41) with α = l, j = 3 and
γl3 = 0. The solution is

ul3(xl) = −ul3(0)φl(xl) + ϕl3(xl) , (3.60)



76 Chapter 3 Stationary solutions and kink dynamis to the HCCH equationwhere k1l, k2l, k3l and κl3 remain to be determined via mathing. In order to exlude exponentialgrowth as xl → −∞ the relation
k2l =

√
2

48 ln(2)

(

κl1

(

−(12 + 9π2)d2l + 12d3l − 24κl2

)

+
√

2(24k3l − 12 ln(2)2 + k1lπ
2)
)is obtained, so that the expansion derived as xl → −∞ is

ul3(xl) =
1

4
√

2
(1 + k1l + 4k3l) +

1√
2
(ln(2) + k2l)xl + (k1l + 1)

√
2

4
x2

l +O(e2xl) . (3.61)Comparing this with the outer solution to O(δ), equation (3.29), yields the mathing onditions
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4
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A1 (3.62)
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c31for the onstant terms,
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(ln(2) + k2l) = (c2 −
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7
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1/6 and (k1l + 1)

√
2

4
= 2−2/3c1for the linear and the quadrati terms, respetively.Expanding the solution as xl → ∞ one �nds

ul3(xl) =
1
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κl1d2l(9π
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√
2π2(1 − k1l) − 48

√
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√
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)

+
1√
2
(ln(2) + k2l)xl + (k1l + 1)

√
2

4
x2

l +O(e−2xl) ,and it will be exponentially mathed to the solution near x = 0.Internal layer in r0 for O(δ)The general solution to the O(δ) problem
L(u03, x0) = f03(x0) , (3.63a)

u03(0) = 0, u′′03(0) = 0 and u′′′′03 (0) = 0 , (3.63b)with
f03(x0) = −21/2

[

dilog(e2x0 + 1) − dilog(2) + 2µ2x0 + (1 + k10)x
2
0

] (3.64)and the abbreviation µ2 = ln(2) + k20 beomes
u03(x0) = ϕ03(x0) + g3 ψ0(x0) , (3.65)



3.1 Stationary solutions to the HCCH equation 77where it has been required that u03(0) = 0 and u′′03(0) = 0. If it is further enfored u′′′′03 (0) = 0then k10 = 0. Again an inhomogeneous solution ϕ03(x0) is taken whih satis�es the aboveonditions, so that the general solution is obtained with
µ1 =

√
2(ln(2)2 + 2k20 ln(2)) − g3 and ω =
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(
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]

e2x0 +O(e4x0) .For exponentially mathing to ul this again has to be re-expressed in xl and ombined with theorresponding expressions for u00, u01 and u02 .Exponential mathingThe rest of the solution ul(xl) has to be mathed to the rest of the solution u0(x0). This requiresmathing the exponential terms in addition to the algebrai terms, i.e. mathing of the solutiondesribing the internal layer in rl to the solution in r0 requires expressing the variable x0 in termsof xl (or vie versa). Realling that x0 = xl + κ̄l/
√

2 and that κ̄l < 0 one obtains
e2x0 = e2xle

√
2κ̄l , (3.66)so that the e2x0 terms in the u0 expansion will produe saled e2xl terms (and analogously for

e−2x0 terms). Their orresponding mathing partner will be found at a di�erent order in δ inthe ul expansion. It is neessary to determine the relationship between e√2κ̄l and δ and in prin-iple several hoies are possible, but only one allows a onsistent mathing of both expansions.One an observe that the hoie e√2κ̄l = ρ δ1/3 , where ρ is some onstant, quikly leads to aontradition. However, the next natural hoie
e
√

2κ̄l = ρ δ2/3 (3.67)leads to a O(δ2/3) shift of terms, whih is lear when inserting the shift e.g. into equation (3.66).Then e2x0 shifts to a term δ2/3 e2xl or e−2x0 will end up as a term δ−2/3 e−2xl and other termshange aordingly. As a onsequene e.g. a term e2x0 in the leading order part of the u0expansion will have to math a e2xl term in the O(δ2/3) part of the ul expansion, or a e−2x0term in the O(δ) part of the u0 expansion will have to math a e−2xl term in the O(δ1/3) partof the ul expansion. These mathing onditions alulate straightforward one the orret shiftis hosen. In this way also terms are produed that have no partner term in the transformed



78 Chapter 3 Stationary solutions and kink dynamis to the HCCH equationexpansion. Their oe�ients must then be set to zero. If now the expansions for u01(x0), u02(x0)and u03(x0) are summed and re-expanded using (3.67), one obtains
u0(xl) = −1 − 1
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δ ,whih has to math ul1(xl), ul2(xl) and ul3(xl) to eah order, respetively. From this furtheronditions for the parameters in addition to those already found are derived. Solving the ompletesystem of equations then yields the solutions for the width of the hump
∆ =

√
2

6
ln

(

β

W (β1/3)3

)

, (3.68)with β = 211/(27δ2), where W is the Lambert W funtion (whih is de�ned as solution to
x = W exp(W )). The expressions for the remaining mathing onstants c1, c2, et. are omitted.The �rst orretion in (3.12) has the oe�ient

A1 = −3 21/6 . (3.69)3.1.3 Comparison between numerial data and analytial resultsIn light of the expansion for the far-�eld parameter (3.12) the O(δ1/3) terms A1 for the di�erentheterolini onnetions in a range of very small δ are estimated. In Figure 3.5 the numeriallyobtained values for A are plotted and a urve for the analytial expression is drawn in the sameplot for omparison. The values behave like A = 1 − 21/6δ1/3 in ase of the het0 solutions, sothat A1 = −21/6, whih is onsistent with the result in Savina et al. [89℄. The numerial resultfor het1 is in line with the analytial value (3.69) and sine for het2 the agreement A1 ≈ −5 21/6is observed, for hetk the general approximation
A1 ≈ −(2k + 1) 21/6 (3.70)an be proposed. It is reminisent of the CCH expression ACCH

1 (k) = −(2k+1)2−1/2 whih hasbeen obtained by Korze et al. [57℄. The HCCH formula (3.70) is used in Figure 3.5 to plot theanalytial values.The distanes between the �rst and seond root for the het1 and the het2 solutions are showin Figure 3.5 on the right. These values are ompared to the derived analytial expression (3.68)for the one-hump solutions in the same �gure. For small δ the agreement is good. For both het1and het2 solutions the distane is seen to inrease logarithmially as δ dereases.



3.2 Coarsening dynamis for the HCCH equation 79
−13 −9 −5

−5

−3

−1

log

lo
g(

1−
A

1/
2 )

 

 

−13 −10 −7

1.2

1.8

2.4

log

lo
g(

le
ng

th
 b

et
w

ee
n 

fir
st

 tw
o 

ro
ot

s)

het
1

het
2

het
2

het
1

analytical
values

(δ) (δ)

het
0

numerical
data

Figure 3.5: Left: Logarithmi (
√

A, δ) plot for very small δ. Analytial values are given as solid lines, dash-dottedlines are the values omputed with the BVP solver. On the right the distanes between the �rst two roots of the
het1, het2 solutions are visible, numerially and for het1 via the analytial expression (3.68) (solid line).3.2 Coarsening dynamis for the HCCH equationSavina et al. [89℄ derived oarsening rates for the HCCH equation (2.14). The authors observedthat after formation of osillatory surfaes with wave lengths approximately presribed by thelinear stability analysis, a power-law ditates the oarsening for small values of δ. This fastripening regime, whih is initiated after a transient slow phase, obeys approximately a t1/2 law.For inreased values of δ (in the paper the range δ ∈ (0, 0.1) was disussed) this phase startsearlier and tends to slow down at lower harateristi lengths before oarsening �nally stops.Hene one an guess that stationary solutions with higher frequenies are observed for growingvalues of δ. The mehanisms behind the oarsening are disussed on the following pages anda numerial study on�rms a growth in the harateristi wave numbers of the stationary ortraveling wave solutions. The used pseudospetral method will be explained in Chapter 5. Itextends earlier numerial implementations suh as by Rogers et al. [83℄, who made numerialsimulations for a CH equation.As expeted it turns out that adding the �rst order nonlinearity makes the behavior of solu-tions to the HCCH equation riher than for the ase δ = 0. Additionally to stationary patterns,also multi-hump traveling wave solutions an be observed. With inreasing δ the wave numberof these strutures grows, until a haoti regime is reahed. This reminds of the δ → ∞ limit ofthe CCH equation, known for its haoti behavior, as already mentioned by Savina et al. [89℄.In Figure 3.6 a typial simulation run for the HCCH equation is shown for δ = 0.04 on an
80π long domain for the time points t = 10k, k = 2, 4, 5. A random perturbation of the zero stateevolves to regions where the slopes are nearly onstant, u(x, t) = hx(x, t) ≈ ±1. These valuesare smaller in modulus when δ is inreased. The slopes are plotted on the left of this �gureand the orresponding shapes h(x, t) are given as triangular kink, antikink patterns on the right.They oarsen, bigger 2D pyramids survive and ontinue to grow. This behavior is also knownfrom quantum dot systems, as in those whih will be introdued in Chapter 4, and indeed an
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Figure 3.6: Typial evolution of the slopes u(x, t) and the orresponding shapes h(x, t) for the HCCH equation.Triangular strutures form that oarsen by a ollision mehanism. Here at t = 105 a steady state is formed thatdoes not further hange with time.extension of the HCCH model with a wetting layer yields similar results as in heteroepitaxialsystems [43℄. Similarly as observed in the evolution of domain walls in phase separating systems[79℄, the oarsening to the HCCH equation is desribed by kink-antikink pairs and kink-antikink-kink triplets. Eah time a pyramid vanishes, suh a triplet-ombination evolves to a simple kink.The remaining pattern at t = 105 appears to be stationary or traveling.Kink pair and kink triplet interations are mainly responsible for the ripening observed in allsimulations (from now on write k for kinks and a for antikinks so that pairs beome (k, a) andtriplets (a, k, a), and other orderings are possible). In Figure 3.6 one an observe that arrays ofthe simplest stationary kink pro�les (heterolini onnetions) appear during the evolution andde�ne orners of the pyramids. Note that during a oarsening event as in Figure 3.6, t = 104,the transition state resembles a het1 solutions found in the disussion of stationary solutions.Although these shapes seem numerially unstable, they an be observed during evolution.Kink pair interationFor δ = 0 � the ase without deposition � it is shown in Figure 3.7 that (k, a) or (a, k) pairsform stationary pro�les. In the time spae plots regions with bright shades orrespond to thesolution where u is positive, negative values have dark shades. Sine the pro�les onsist roughlyof two values and short transitions between these states, mainly one bright and one dark shadeappear in the �gures. The plots on the right in the same �gure show the nearly binary valuedpro�le of u whih looks perfetly symmetri. This property is broken for a nonzero depositionterm. Then also kink pairs are able to form traveling waves as it is shown in Figure 3.8 for
δ = 0.01.For the intermediate kink distane the pair tends to a di�erent diretion than for the other
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Figure 3.7: Kink pair interation for the HCCH equation with δ = 0. Upper plots orrespond to an (a, k)ombination and one line in the blak and white spae time plots belongs to a pro�le as on the right. The �rstthree �gures show the evolution (in time versus spae plots) for three di�erent (a, k) ombinations with di�erentkink distanes. Analogously the lower plots orrespond to (k, a), inverting the blak and white distribution.
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Figure 3.8: Kink pair interation for the HCCH equation for δ = 0.01. As in Figure 3.7 the upper plots belong tothe kink pair (a, k), while the lower plots orrespond to the other kink pair (k, a).two ases. Repeated simulations with more grid points yield the same results, so the observede�ets do not seem to be numerial artefats. For the simulations simple linear ombinationsof tanh pro�les were used as initial onditions. These evolve fast to the kink pairs sought,
(a, k) and (k, a), respetively. This way of deriving the kinks and antikinks does allow only forapproximate ontrol over the distane between the kinks. In ase of triplets this approah hasbeen used analogously, only that a third tanh funtion had to be onsidered in the initial pro�le.



82 Chapter 3 Stationary solutions and kink dynamis to the HCCH equationIn the plots for kink interations the time point is set to t = 0 when u(x, t) already evolved to astationary or traveling wave shape.Kink-tripletsWhile the single kink and kink pair simulations do not indiate oarsening sine the number ofdomain walls stays unhanged, the triplets do so. As seen in Figure 3.9 (a), (a, k, a) triplets formstationary solutions, while qualitative hanges in u appear in Figure 3.9 (b). The (k, a, k) tripletmerges to one simple kink after some time. Translated to the shapes h(x, t) this means that apyramid that is surrounded by two bigger pyramids vanishes. This oarsening struture is visiblethroughout long-time evolution on big domains. It seems that traveling wave patterns are drivenby kink pairs, while for oarsening at least three kinks have to be adjoint. This learly remindsof the CCH equation where the same observations were made [79, 109℄.
Figure 3.9: Dynamis of triplets; as before depited in a spae time plot as in Figure 3.7. In (a) an (a, k, a) tripletforms a stationary solution while in (b) an (k, a, k) triplet shows a ollision that results in one kink � a typialevent driving the oarsening.CoarseningThe detailed analysis of the kink behavior is reovered in simulations on big domains with manykinks. Figure 3.10 shows the evolution in a blak and white spae time plot with the samebrightness to height orrespondenes as before. Every time the surfae ripens, when pyramidsvanish, one sees that a blak-white-blak-white ombination ollides to a simple blak-whiteombination, meaning that a (k, a, k) triplet evolves to one single antikink exatly in the way asin Figure 3.9 (b).During several runs, suh as for δ = 0.04 in Figure 3.6, it was observed, that at late timethe oarsening tends to stop. The osillatory stationary solutions also found by Savina [89℄ leaveopen questions: (i) Are the observed solutions indeed there, or are they artefats of the numerialmethods? (ii) If they are not produed by the numeris, are they really stable? (iii) Do travelingwaves exist as indiate by the kink pair simulations? (iv) Is there any regularity in the appearane(e.g. the wave length) of suh shapes?For the �rst three questions (i), (ii), (iii) the following answers are proposed: Yes, these sta-tionary solutions exist, yes they are stable, yes there exist traveling wave solutions. Computationswere arried out with a pseudospetral method, with a �nite di�erene method and for di�erentgrid sizes in spae and time, all of them exposing the same stationary shapes. Calulations on
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Figure 3.10: Coarsening plot for the HCCH equation on a 60π long domain. White shades orrespond to valuesof u near +1 while dark shades indiate u ≈ −1. Ternary events governing the oarsening are visible throughoutthe whole evolution.larger domains reveal the same harateristi lengths of the solutions, so that the trunation ofthe spatial interval is not responsible for the observed phenomenon. Additionally a more detailednumerial study shows that also traveling wave multi-hump solutions are possible, yielding ananswer to (iii). However, although the following numeris indiates the behavior of the solutions,analytial studies should be arried out that support � or on�rm� these results. This task isleft for future work and it should be noted that an ansatz like by Zaks et al. [115℄ might lead tothe desired result. Beause of the strong similarities between the CCH and the HCCH equationit an be expeted that similar parameter planes for periodi solutions as in this work also existfor the higher order equation.In Figure 3.11 the evolution on smaller domains [−10π, 10π] has been visualized to investigatethe long-time behavior of the solutions to the HCCH equation dependent on small depositionrates. Starting from a randomly perturbed zero state, osillatory surfaes evolve that were storedto be able to initiate additional runs with less grid points. They yield the same results, supportingthe validity of the numerial sheme. At earlier times oarsening as in Figure 3.10 takes plae.However, for most values of δ it is not visible on the plots in Figure 3.11, sine it happens in thevery early phase of evolution. For twelve inreasing values of δ orresponding spae time plotsshow how the shapes evolve. To help understanding the graysale distribution the shape at thelatest time point is plotted below.It an be observed that for inreasing values of δ the number of stripes in the spae timeplots grows logarithmially slow in δ. This behavior is shown in Figure 3.12, where maxima for
u > 0 have been onsidered and where the x axis is logarithmi to show the moderation of theharateristi frequeny growth. For the nonequilibrium solutions the number of maxima hasbeen ounted at the latest omputed time point t = 105. However, the �gure does not revealthe additional information seen in Figure 3.11. Apart from stationary solutions (suh as for
δ = 0.05, 0.5) also traveling waves with various speed rates are observed (e.g. δ = 0.07, 3) andinterestingly, for δ = 5 and higher values haoti behavior is observed. In no referene frame this
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Figure 3.11: Multi-hump stationary solutions, traveling waves and transition to haoti behavior for the HCCHequation for values of δ between 0.01 and 5.
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Figure 3.12: Number of loal maxima for u > 0 in the stationary and traveling wave solutions to the HCCHequation for values of δ between 0.01 and 3. For higher values of δ the number of maxima at t = 105 has beenounted. The solid urve is a nonlinear least squares data �t for a logarithmi ansatz funtion. The δ axis islogarithmi in the plot.solutions is in equilibrium.The solution spae to the HCCH equation is worth to be analyzed further in future. How-ever, here the analysis of this rih equation omes to an end. In the following hapter a realistiquantum dot self-assembly model is derived, a linear stability analysis is arried out and sim-



3.2 Coarsening dynamis for the HCCH equation 85ulation results are presented. This PDE extends the previous model, sine additionally to ananisotropi surfae energy and an atomi �ux also wetting interations and an elasti subproblemare inorporated.



Chapter 4The QDM equation: Derivation,analysis and simulation resultsThe greatest hallenge to any thinker is stating the problem in a way that will allow a solution.Bertrand Russell (1872 - 1970)In the previous setions equation (2.14) has been studied extensively. It desribes a surfaethat undergoes faeting during the growth of this one material solid. To model more omplexsystems, suh as the self-assembly of quantum dots in a Stranski-Krastanov growth mode, moree�ets have to be taken into aount and the model has to be extended. In this hapter a thin�lm growing on top of a substrate is onsidered. Heteroepitaxial growth as in the Ge/Si system(see Setion 0.4) is desribed. The model inorporates a mis�t between the latties of �lm andsubstrate, whih leads to stresses, one of the major reasons for the observed Stranski-Krastanovgrowth mode. At a ertain thikness an ATG instability takes plae and a transition from layer tolayer growth to island oarsening is observed. The bulk energy plays an as important role as thesurfae energy. Furthermore intermoleular interations at the interfae are added, resulting in awetting layer that onnets the single dots (the terminology is taken from thin liquid �lms and isused analogously for solids). The surfae energy is anisotropi and leads to preferred orientationsduring growth as it has been also seen in solutions to the HCCH equation. However, a Wilmoreterm that would allow for strong anisotropy is not treated here. The model extends the equationsform the isotropi ase from Tekalign and Spener [102, 103℄. It has been introdued by Korzeand Evans [56℄ and is kept more general in this thesis. In partiular other anisotropies than forpyramidal dots an be used and deposition is inluded, whih is essential to simulate realistiStranski-Krastanov systems. As mentioned in the elastiity Setion 1.3, only isotropi theorywill be used for the bulk equations, and faeting is ahieved by the orientation dependeny ofthe surfae energy. 86



4.1 Derivation of the QDM equation 87First, in the following Setion 4.1, the redued quantum dot model (QDM) equation is derived,then in Setion 4.2 a linear stability analysis is arried out whih explains several of the observede�ets during evolution. Bigger anisotropy oe�ients turn out to destabilize �at surfaes andthe ritial thikness dereases with its inrease. Above a ertain anisotropy strength, all wavenumbers beome unstable and a regularizing term would be neessary for suh strong anisotropies.In Setion 4.3 stationary solutions are omputed for the 2D and the 3D ase, showing that theanisotropy formulas are well re�eted in equilibrium shapes. These shapes are also observedduring oarsening on large domains in Setion 4.4. Above a ritial height Ostwald ripening isobserved and at later times the number of islands dereases like a power law. Finally, in Setion4.5, an atomi �ux is added to the simulations and some runs are ompared to experiments.Certain important features of Stranski-Krastanov systems suh as Ge/Si are visible, in partiularthe island density grows for inreased deposition rates. Hundreds of dots an be simulated witha pseudospetral method sine the redued model is a self-ontained PDE that generially �ts toFourier based methods.4.1 Derivation of the QDM equationTo use the general evolution equation (1.7) with a randomly perturbed �ux (1.10), a realistihemial potential re�eting the e�ets that appear during QD self-assembly has to be de�ned.Sine in heteroepitaxy bulk stresses ompete with the surfae energy, it has the twofold form
µ = Esed + Esurf ,where Esed is the strain energy density evaluated at the free surfae (1.25), whih is governedby the linear elastiity equations that have been introdued in Setion 1.3. The other term issubdivided into three terms

Esurf = Eκ + Ewet + Eanis ,whih, as disussed in Setion 1.2, is a result of a surfae energy model SEIII , γ = γ(h, hx, hy).The �rst term Eκ appears for any possible surfae energy under onsideration, Ewet is responsiblefor the reation of a thin layer onneting the dots. The term for the anisotropy Eanis resultsfrom the slope-dependeny whih de�nes preferred orientations of the surfae. In this model itis renouned to use a Wilmore regularization. It will be shown that even small anisotropy oef-�ients are su�ient to desribe 'nearly faeted' islands. The terminology 'faeted' will be usedrepeatedly, although the preferred orientations do not appear perfetly �at in the simulations.However, the deviation from perfet, nonsmooth faets with edges is not very big, on the otherside dealing with more pronouned edges may beome problemati, espeially when it omesto numerial implementations. A derivation with the additional smoothing term (2.2) may bearried out in a future work. Essentially a sixth order linearity would be added to the PDE andhigher values for the anisotropy parameters would be hosen.



88 Chapter 4 The QDM equation: Derivation, analysis and simulation resultsThe thin-�lm redution has to be applied not only to the surfae energy terms as in theprevious model from Chapter 2, but also to the elastiity equations. This is a rather tehnialwork that has been presented by Tekalign and Spener [102℄. The results are reprodued in moredetail than in the originating work in Appendix C. As shown there, the strain energy densityevaluated at the surfae an be expressed as
Esed = Ebase

sed Ēsed = Ebase
sed (1 + αF−1[−ẽkF [H ]]) + O(α2) , (4.1)when the elastiity equations from Setion 1.3 are used and suitable asymptoti expansions arearried out. Here H is the nondimensional form of the surfae h, the material onstant ẽ isintrodued in formula (C.23) and k =
√

k2
1 + k2

2 is the length of the vetor of two wave numbers
(k1, k2) that appear in the two dimensional Fourier transform F and its inverse F−1. Thenondimensionalization is ahieved by using the expression Ebase

sed that has been derived in Setion1.3.1 as solution for the base state. Expression (4.1) and the harateristi sales are used in thefollowing to simplify a model overing the most important e�ets in heteroepitaxy. Additionallythe redution of the surfae energy terms is arried out. As result a �nal, self-ontained PDEdesribing the growth of self-assembled QDs is obtained. The analysis in Chapter 4 will showthat it is indeed a suitable model for the Ge/Si system.One big step towards the derivation of a redued model for heteroepitaxy is made by identi-fying the O(α) oe�ient in the the strain energy density expansion (4.1). Next the expansionterms for the surfae energy Esurf have to be alulated. The small slope redution is arried outsimilarly as in the derivation of the HCCH equation in Setion 2.1.1. Here the surfae energy iskept more general than in the work by Korze and Evans [56℄, where a quadruple well potential isused to model the anisotropy of Ge/Si(001) QDs. Furthermore a randomly perturbed deposition�ux is taken into aount.The surfae energy is de�ned as a variation of the boundary layer formula
γ(h, hx, hy) =

1

2
(γf(hx, hy) + γs) + (γf (hx, hy) − γs)

1

π
arctan(h/b) (4.2)that was disussed by Spener as speial ase of a general lass of boundary-layer transitionmodels [93℄. The expliit hoie of the arctan funtion has been made before by Kutka andFreund [59℄. The behavior of funtion (4.2) is skethed in Figure 4.1. The smooth transition ofthe surfae energy of the substrate γs to the surfae energy of the �lm γf is given by inorporatingthe arctan funtion that varies with height. Depending on the orientation of the �lm, a di�erentvalue of γf is adopted, so preferred faets have a smaller value than those orientations notpreferred (also alled forbidden orientations). The transition between �lm and substrate takesplae on a small transition length sale b. γf is similar to the formula in Setion 1.2.2, thoughhere without the edge regularization term

γf (hx, hy) = γ0γ̄(hx, hy) = γ0(1 + W(hx, hy)) . (4.3)
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Figure 4.1: Boundary layer formula with isotropi surfae energy of the substrate γs and di�erent anisotropystates for the �lm. The {001} orientation with surfae energy γ0 is in between a preferred energy for a faet,
γf

pref
, and a not preferred orientation with surfae energy γf

notpref
.The nondimensionalized surfae energy is γ̄ = 1 + W and the nondimensionalized anisotropyterm an be written as

W(hx, hy) =

N
∑

k=2

k
∑

j=0

gkjh
j
xh

k−j
y . (4.4)A slight hange has been made in omparison to equation (1.24). The sum is taken to be �nite,the �rst index starts at k = 2, beause the onstant values are olleted in γ0, the surfae energydensity of a horizontally oriented �lm, and here [gkj ] = 1. For a quadruple well that leads tofaeted pyramidal quantum dots [56℄, one ould set

N = 4, g20 = g02 = −2G, g40 = g04 = G̃and gkj = 0 for all other index pairs (k, j). Then
W(hx, hy) = G̃(h4

x + h4
y) − 2G(h2

x + h2
y), G̃, G > 0 . (4.5)However, the general form (4.4), whih allows for various anisotropies, is used for the rest of thishapter. The expansions of the terms Eκ, Ewet and Eanis de�ned by the formulas (1.15),(1.17)and (1.18), respetively, will be determined. A restrition on the polynomial is γf → ∞ for

hx, hy → ±∞. In this way high slopes, whih are not allowed to be preferred in any ase whenusing a small slope approximation, are punished.The terms ∂hxγ and ∂hyγ appearing in the hemial potential (1.18) are given as derivativesof the anisotropy funtion W

∇∇hγ =

(

∂hx

∂hy

)

γ = γ0Ψ(b, h)∇∇hW , (4.6)



90 Chapter 4 The QDM equation: Derivation, analysis and simulation resultssaled by the transition funtion
Ψ(b, h) =

1

2
+

1

π
arctan(h/b) . (4.7)The derivative is

∇∇hW =

(

∑N
k=2

∑k
j=1 gkjjh

j−1
x hk−j

y
∑N

k=2

∑k−1
j=0 gkj(k − j)hj

xh
k−j−1
y

)

. (4.8)After nondimensionalization of the evolution equation, expansions will be used to identify smallterms that are then negleted. For the appliation of the small slope redution the thin-�lmassumption has to hold. This is reasonable for several systems, however, the fous lies on theepitaxial pair Ge/Si. Druker writes, as also desribed in Setion 0.4, that pyramidal Ge/Siquantum dots are �at [23℄. Small bumps � prepyramids � are formed in the �rst stage. Thesegrow or ollapse, they evolve to pyramids with {1 0 5} faets that undergo further oarsening inan Ostwald ripening proess. Further evolution to dome-like dots of bigger sizes is not onsideredhere, so that the basis lengths of the dots remain large in omparison to their height for the timewindow of interest.As for the spae variables in the HCCH equation derivation, a generi saling under thethin-�lm assumption is
h = H0H = αLH, z = αLZ, (x, y) = (LX,LY ),

t = τT, ui(x, y, z) = LUi(X,Y, Z) ,where the saling for the displaements ui is used in Appendix C to derive an expansion forthe strain energy density. Furthermore the transition thikness is hosen orders of magnitudesmaller, it is saled by
b = Lα3b̄ ,so that the leading order of the wetting term Ewet will be of the same order as the surfaeenergy term Eκ. To guarantee that the overall redued PDE re�ets the anisotropi behaviorantiipated, orientation dependent variations have to be re�eted in the leading order term of

Eanis. Therefore assumption (2.9) from the �rst model is used. In this way the slope polynomialbeomes W = α2W with W de�ned by (2.10). From the nondimensionalization of the hemialpotential
µ =

γ0

L
µ̄, µ̄ = Ēsed + Ēκ + Ēwet + Ēanis ,and from the natural salings

σij = Ebase
sed σ̄ij , κ =

1

L
κ̄, γ = γ0γ̄, ∇2

s =
1

L2
∇̄2

s ,one an derive the harateristi length and time sales
L =

γ0

Ebase
sed

and τ =
L4

Dγ0
. (4.9)



4.1 Derivation of the QDM equation 91Evolution equation (1.11) in nondimensional form beomes
HT =

√

1 + α2(H2
X +H2

Y )
1

α
(∇̄2

s(Ēsed + Ēκ + Ēwet + Ēanis) + f̄) ,with the onstituent potential terms
Ēsed =

1

2

∑

i,j

σ̄ijǫij ,

Ēκ = −γ̄κ̄ ,

Ēwet =
(γf − γs)αb̄

γ0π(α4 b̄2 +H2)
√

1 + α2|∇H |2
, (4.10)

Ēanis = −2α
(HXHXX +HXHXY )∂HXW + (HY HY Y +HYHXY )∂HY W

(1 + α2(H2
X +H2

Y ))1/2
(4.11)

− 1

α
(1 + α2(H2

X +H2
Y ))1/2 (∂X [Ψ∂HXW ] + ∂Y [Ψ∂HY W ]) ,where in the last expression the transition funtion with resaled arguments Ψ = Ψ(Lα3b̄, H0H)has been used. The �ux term is̄

f = F̃
−αr1HX − αr2HY + r3

|w|with the dimensionless deposition number
F̃ =

FL3

Dγ0
. (4.12)Here, the randomly disturbed vetor is w = (r1, r2, r3)
T , de�ned as in equation (1.10).Now all terms are expanded with respet to the small parameter α. In partiular the leadingorder terms of the nondimensionalized hemial potential

µ̄ = µ̄(0) + αµ̄(1) + O(α2)and for the �ux
f̄ = f̄ (0) + αf̄ (1)will be determined. Derivative operators suh as the nabla operator ∇ = (∂X , ∂Y )T or theLaplaian ∇2 are from now on de�ned in the (X,Y ) variables. The surfae Laplaian ∇̄2

s an beexpanded as before to a standard Laplaian plus higher order perturbations (see equation (2.8)),so that to order α the evolution equation an be written as
HT = ∇2

(

1

α
µ̄(0) + µ̄(1)

)

+
1

α
f̄ (0) + f̄ (1). (4.13)In the following paragraphs the leading order terms of the hemial potential that an be insertedinto the above equation (4.13) are derived.



92 Chapter 4 The QDM equation: Derivation, analysis and simulation resultsThe strain energy density terms Ē(0)
sed, Ē

(1)
sed:The expansion

Ēsed = Ē(0)
sed + αĒ(1)

sed + O(α2) .is given with formula (4.1), it yields the oe�ients
Ē(0)

sed = 1 and Ē(1)
sed = F−1[−ẽkF [H ]] . (4.14)The surfae energy terms Ē(0)

κ , Ē(1)
κ :To leading order in α the mean urvature is just the Laplaian

κ̄ = ακ̄(1) + O(α3), κ̄(1) = ∇2H . (4.15)The overall expansion for the surfae energy term Eκ beomes
Ēκ = −

{

1

2

γ0 + γs

γ0
+
γ̃

b̄
arctan

(

H

α2b̄

)}

κ̄(1)α+ O(α3)

= −ακ̄(1) + O(α2) ,with γ̃ = b̄(γs − γ0)/(γ0π). Usually γ̃ > 0, when a �lm overing the substrate is favorable. Theoe�ients in the expansion are
Ē(0)

κ = 0 and Ē(1)
κ = −∇2H . (4.16)The wetting energy terms Ē(0)

wet, Ē(1)
wet:

Ewet from equation (4.10) is expanded to
Ēwet = α

−γ̃
H2

(

1 − α2|∇H |2
2

)

+ O(α4) ,so the the oe�ients in the expansion
Ēwet = Ē(0)

wet + αĒ(1)
wet + O(α2)are

Ē(0)
wet = 0 and Ē(1)

wet = − γ̃

H2
. (4.17)The anisotropy terms Ē(0)

anis, Ē
(1)
anis:The oe�ients for the anisotropy term

Ēanis = Ē(0)
anis + αĒ(1)

anis + O(α2)are determined now. Therefore the frations and the transition funtion in (4.11) are expanded
Ēanis = − 2α

(

1−α2H
2
X +H2

Y

2

)(

1−α2 b̄

H

)

{(HXHXX +HXHXY )∂HXW

+ (HY HY Y +HY HXY )∂HY W} + O(α3)

− 1

α

(

1+α2H
2
X +H2

Y

2

)(

∂X

[

(1−α2 b̄

H
)∂HXW

]

+ ∂Y

[

(1−α2 b̄

H
)∂HY W

])

.



4.1 Derivation of the QDM equation 93The hoie of W (2.10) gives the leading order expression
Ē(1)

anis = − 1

α2
∇ · ∇∇HW(HX , HY ) = −∇ · ∇∇HW (HX , HY ) . (4.18)The deposition terms f̄ (0), f̄ (1):Finally the deposition terms an be read o� from

f̄ = F̃
−αr1HX − αr2HY + r3

|w|

=
F̃ r3
|w| − α

F̃

|w| (r1HX + r2HY ) ,giving
f̄ (0) =

F̃ r3
|w| (4.19)and f̄ (1) = − F̃

|w| (r1HX + r2HY ) . (4.20)At this point it should be realled that the �ux has been hosen suh that it models a perturbedbeam of atoms whih is oriented in the (0, 0,−1) diretion. Therefore the time-dependent vetor
w = w(t) = (r1, r2, r3) has been de�ned, where r1 = r(0, σ1), r2 = r(0, σ1), r3 = r(1, σ2) and
r(µ̃, σ̃) denotes a Gaussian random number with expetation µ̃ and standard deviation σ̃.The quantum dot model (QDM) evolution equation:Using ∇2µ(0) = 0 the evolution equation (4.13) beomes

HT = ∇2(Ē(1)
sed + Ē(1)

κ + Ē(1)
wet + Ē(1)

anis) + f̄ (0)/α+ f̄ (1) . (4.21)Insertion of the derived terms (4.14), (4.16), (4.17),(4.18),(4.19) and (4.20) into (4.21) results inthe �nal evolution equation
HT = ∇2

(

F−1[−ẽkF [H ]] −∇2H − γ̃

H2
−∇ · ∇∇HW (HX , HY )

)

+
F̌ r3
|w| − F̃

|w| (r1HX + r2HY ) ,(4.22)where now
F̌ =

FL4

Dγ0H0
. (4.23)In the following this PDE is disussed in many details. For the ase without deposition a linearstability analysis will show the destabilizing properties of the anisotropy. Stationary solutions areomputed to show the atual e�et of the anisotropy. Then simulation results are presented onlarge domains. Computations with atomi �ux are ompared to real Stranski-Krastanov growth.After the derivation of a PDE it has to be proven that the model indeed re�ets the antiipatede�ets. This is done in the following setions for the derived model for heteroepitaxial growth� the QDM equation (4.22) � by appropriate analysis and numerial simulations. In Setion



94 Chapter 4 The QDM equation: Derivation, analysis and simulation results4.2 a linear stability analysis for the model in absene of deposition shows how the e�ets ofstresses due to lattie mis�t, wetting interations, surfae di�usion and anisotropy in�uene thestability of planar surfaes. In partiular it explains that stronger anisotropies make �at �lmsless stable and that above a ertain ritial anisotropy number an in�nite range of wave numbersis unstable.In Setion 4.3 stationary solutions are analyzed on the in�uene of the anisotropy strength.In 2D triangular shapes are obtained that do not further hange after su�iently long timeof evolution. Additionally the same shapes are omputed as numerial solutions to an ODEsupporting the orretness of the numerial method. In 3D various shapes are observed �dependent on the spei� de�nition of the anisotropy oe�ients. In Setion 4.4 a pseudospetralmethod is used to ompute the evolution of the surfae on large domains. As in the epitaxy resultsby IBM (see introdution, i.e. Figures 3 and 4), also in the simulations the typial Ostwaldripening behavior is observed. At the expense of the bigger dots that ontinue growing, smallerislands are absorbed. It is found that the number of islands per unit volume dereases like a powerlaw. Finally, in Setion 4.5, deposition is added to the model whih is neessary to ompare theresults with experiments. The shapes are similar as before, but now indeed a Stranski-Krastanovgrowth mode an be observed. As expeted by the preedent results, below a ritial thikness �at�lms are stable to perturbations with arbitrary wave numbers. Qualitative agreement betweensimulations and experiments is observed. Faeting remains a feature as without the depositionterm and also a wetting layer forms. For the same amount of deposited material it is shown thatan inreased deposition rate yields more dots with smaller base lengths and less wetted regions.For the following three setions it is assumed that the �ux is absent, f = 0 (so that fk =

0, k = 1, 2, 3), then the evolution equation writes
HT = ∇2

(

F−1[−ẽkF [H ]] −∇2H − γ̃

H2
−∇ · ∇∇HW (HX , HY )

)

. (4.24)In this disussion mass is onserved, whih is not the ase with a deposition �ux. It will be addedagain after arrying out a stability analysis and oarsening studies in two and three dimensions.4.2 Linear stability analysisA linear stability analysis an yield a priori information about the behavior of the surfae evo-lution, even if the underlying equation is nonlinear. When a �at �lm is perturbed by normalmodes, a dispersion relation shows whih wave lengths are visible during the �rst stage of evo-lution. Suh a study has been arried out for equation (4.24) without the anisotropy term byTekalign and Spener [102℄, and with a partiular anisotropy term whih is suitable to modelpyramidal shapes by Korze and Evans [56℄. Here the disussion is slightly more general sinethe anisotropy is kept less spei�. The ritial thikness of a �at �lm dereases as the unstableregime grows with inreasing anisotropy strength. Above a ritial value an in�nite range of wave



4.2 Linear stability analysis 95numbers is unstable. This results from the following onlusion.Proposition 22 The dispersion relation for the QDM equation (4.24) writes
σ = −k4 + ẽk3 − 2γ̃

H̄3
k2 − 2k2(G20k

2
2 +G21k1k2 +G22k

2
1) . (4.25)Proof The normal mode ansatz

H = H̄ + δȞ, Ȟ = eσt+ik1X+ik2Y , (4.26)with a small δ ≪ H̄ and the wave numbers k1, k2, is inserted into evolution equation (4.24). Thefour onstituent terms are analyzed separately.Insertion of the ansatz (4.26) into the surfae term Ē(1)
κ gives

Ē(1)
κ = −∇2H = −δ(∂XX + ∂Y Y )eσt+ik1X+ik2Y

= δk2Ȟ , (4.27)where as before k =
√

k2
1 + k2

2 . The strain energy density term gives
Ē(1)

sed = F−1
[

−ẽkF [H̄ + δeσt+ik1X+ik2Y ]
]

= F−1
[

−ẽk(F [H̄ ] + δeσtF [eik1X+ik2Y ])
]

= F−1
[

−ẽkF [H̄]
]

− ẽkδeσtF−1
[

F [eik1X+ik2Y ]
]

= −ẽkH̄ − ẽkδȞ . (4.28)Sine the �rst term is onstant it will vanish under di�erentiation and hene it an be ignoredwhen inserted into equation (4.24).The wetting term is expanded with respet to the small quantity δ
Ē(1)

wet = − γ̃

(H̄ + δȞ)2

= − γ̃

H̄2
+ 2

γ̃

H̄3
δȞ + O(δ2) (4.29)and also here the �rst term does not play a role for the dispersion relation.The anisotropy term is

Ē(1)
anis = −∇ · ∇∇HW (HX , HY )

= −∇ ·
(

∑N
k=2

∑k
j=0GkjjH

j−1
X Hk−j

Y
∑N

k=2

∑k
j=0Gkj(k − j)Hj

XH
k−j−1
Y

)

= −
N
∑

k=2

k
∑

j=0

Gkj

(

j∂X [Hj−1
X Hk−j

Y ] + (k − j)∂Y [Hj
XH

k−j−1
Y ]

) (4.30)and by inserting the normal mode ansatz it beomes
Ē(1)

anis = −
N
∑

k=2

k
∑

j=0

Gkj

(

j∂X [(ik1δȞ)j−1(ik2δȞ)k−j ] + (k − j)∂Y [(ik1δȞ)j(ik2δȞ)k−j−1]
)

= −δ
{

2G20∂Y [ik2Ȟ] +G21(∂X [ik2Ȟ ] + ∂Y [ik1Ȟ ]) + 2G22∂X [ik1Ȟ ]
}

+ O(δ2)

= 2(G20k
2
2 +G21k1k2 +G22k

2
1)δȞ + O(δ2) .
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Figure 4.2: Plots for the dispersion relation (4.31) for the isotropi ase and two anisotropi parameters (G =

0, 0.05, 0.15) with �xed �at state H̄ = 0.8. The magni�ations on the left show that a loal minimum is adoptedfor all three ases at small wave numbers.Using (4.26) and (4.27) - (4.30) in the evolution equation (4.24) yields
σδȞ = −k2

(

k2 − ẽk + 2
γ̃

H̄3
+ 2(G20k

2
2 +G21k1k2 +G22k

2
1)

)

δȞ ,and �nally division by δȞ gives (4.25). �Remark Assume that for materials with ubi symmetry the anisotropy onstants in the X and
Y diretions are equal and that the rystal is aligned with those axes, G20 = G22 = −2G and
G21 = 0. Then

σ = (4G− 1)k4 + ẽk3 − 2γ̃

H̄3
k2 . (4.31)The above equation (4.31) stems from the anisotropy formula

W⋄(HX , HY ) = G[H4
X +H4

Y − 2(H2
X +H2

Y )] , (4.32)whih has been introdued by Korze and Evans [56℄ for simulations of Ge/Si(001) patterning.The following disussion relates to this quadruple well model if not stated otherwise. Figure 4.2shows a plot of the orresponding dispersion relation (4.31). For small wave numbers the �lms arestable and an unstable regime for intermediate wave numbers grows as the anisotropy parameter
G is inreased. The maximal value is attained at a larger wave number and with higher moduluswhen G is growing. In fat for G > 0.25, the sign of the highest power of the polynomial (4.31)swithes and the unstable regime beomes in�nite. For the ase that stronger anisotropy wouldbe sought, an ansatz as for the model for the faeting of growing surfaes from Setion 2.1 ouldbe inorporated. A regularization term in the surfae energy would prevent the unwanted andunphysial bakward di�usion for G > 0.25.The ritial thikness below whih all �at �lms are stable depends on G. It beomes larger,the smaller the anisotropy is. This an be read o� from

Hc = Hc(G) = 2

(

γ̃(1 − 4G)

ẽ2

)1/3

, (4.33)
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Figure 4.3: Results from the dispersion relation (4.31): (a) The ritial number kc as funtion of the wave numbermodulus k. With inreasing anisotropy strength G the stable regime shrinks until at G = 0.25 the unstableinterval beomes in�nite. (b) Stability regime plot for three values of G, G = 0, 0.05, 0.15; it shows that forinreasing anisotropy parameter the ritial thikness Hc shrinks while the unstable regime grows. The ritialwave numbers kc(G) for the three ases are depited as vertial lines.with a maximal value obtained in the isotropi ase Hmax
c = Hc(0) = 2(γ̃/ẽ2)1/3.The orresponding ritial wave number modulus kc above whih all thiknesses are stable is

kc = kc(G) =
ẽ

1 − 4G
,whih is minimal for G = 0, kmin

c = kc(0) = ẽ. The results are summarized visually in Figure4.3, where (a) depits how kc → ∞ as G → 0.25, while (b) shows how the unstable regimegrows and the ritial thikness dereases for inreasing anisotropy strength (in the �gure this isjust the value of H̄ on the vertial axis where the transition from stable wave numbers only toexisting intervals of unstable wave numbers happens). Note that when G beomes bigger, higherfrequenies beome unstable. Starting a time dependent simulation with a planar initial pro�lethat is above the ritial thikness Hc(G) and whih is perturbed by small random values shouldshow more osillations for bigger G, sine the high frequeny omponents of the initial onditionare unstable. Indeed this is exatly the behavior observed and desribed in following setions.4.3 Periodi stationary solutionsStationary solutions to a PDE involving time often yield information about the patterning duringtime-dependent evolution. In this setion one-island steady states of equation (4.24) are omputedonseutively in two and three dimensions. These equilibrium states should re�et the anisotropisurfae energy � and indeed its impat is visible when omparing the shapes with the evolvingpatterns in the following Setions 4.4 and 4.5. For the simulations the material onstants for theGe/Si system, whih will be introdued in Setion 4.5, were used
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Figure 4.4: Growth of a two-dimensional solid �lm governed by equation (4.34) with anisotropy strength G = 0.1.Initially a uniform pro�le is perturbed by small random numbers. During the evolution, islands form, ollapse,and the shifted, triangularly shaped pro�le approahes that given by the steady state solution obtained by solvingthe ODE (4.36) (dashed urve).The two-dimensional aseHere a further simpli�ed model is onsidered by ignoring one of the two lateral dimensions. Byusing a double-well potential for the slopes (formula (4.32) with HY = 0), the quasilinear PDE
HT = ∂XX

(

F−1[−ẽ|k|F [H ]] + (4G− 12GH2
X − 1)HXX − γ̃

H2

) (4.34)is obtained on the periodi domain [0, L]. Note that in this dimension-redued ase the absolutevalue of the wave numbers has to be taken for the inverse Fourier transform in the elastiityterm. This is ruial for the simulations, where also wave numbers smaller than zero are allowed.In Figure 4.4 a typial evolution of the 2D �lm is depited. Starting from a �at state H(X, 0) =

0.7 + rd, where rd is a random number with mean zero and amplitude 0.0001, on a rathersmall domain [−2π, 2π], the perturbation evolves into small osillations that merge to two small,more rounded humps. These �nally shrink to one stationary island. By T = 200 the numerialmethod produes �lm pro�les that are stationary in the sense that suessive iterates Hk and
Hk+1 relatively di�er by less than a small threshold ǭ times the time step dT

|Hk+1 −Hk|
|Hk|

< ǭ dT . (4.35)The �gure shows that due to the boundary layer formula and the di�erenes in the surfaeenergy of �lm and substrate a thin layer between the dots is reated, that the anisotropy resultsin faeting and that the slopes of the �nal triangular shape are HX ≈ ±1, whih is of order
O(α) in the original sales. Detailed information about the underlying numeris an be foundin Chapter 5, in partiular in Setion 5.2, where ode snippets for FFT based pseudospetralmethods in Matlab are explained.The other shape visualized in Figure 4.4 as a dashed line is the solution from the steady stateproblem with HT = 0 in equation (4.34). It leads to a onstant hemial potential, hene it hasto hold

−HXX − ẽF−1[|k|F [H ]] − γ̃

H2
−F−1

[

ikF [4G(H3
X −HX)]

]

= C . (4.36)
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(a) (b)Figure 4.5: Steady pro�les for periodi solutions on a 2π long interval. (a) Inreasing surfae energy anisotropystrength G, with �xed �lm volume V . (b) Inreasing V from V = 2.6π to V = 4.8π for G = 0.1 leads to a family offaeted islands (solid lines). With onstant surfae energy, width remains approximately onstant (dashed lines).The onstant C is treated as unknown in a Newton-type method that is used to satisfy (4.36) ateah mesh point. As in the numerial simulations of the time-dependent system, a pseudospetralapproah is hosen, so that periodi boundary onditions are the natural hoie. Additionally a�xed volume V is presribed, suh that
∫ 2π

−2π

H dX = V (4.37)and the solution is supposed to be symmetri aroundX = 0. Both ways to ompute the stationarystates yield the same result, supporting the orretness and auray of the numerial methods.Only a phase shift reloates the two shapes by a ertain amount.The simulations for the stationary ase were then used to explore the e�et of the anisotropy.In Figure 4.5 (a) di�erent solutions for various values of G are plotted. For stronger anisotropythe shapes appear more faeted and tend to have slopes ±1, orresponding to the minima ofthe anisotropy funtion W . In Figure 4.5 (b) a �xed value G = 0.1 and inreasing volumes
V ∈ [2.6π, 4.8π] yield a family of triangular dots whih are ompared to isotropi humps withthe same volumes. While the anisotropi islands inrease their base width and keep their faets,for G = 0 this length remains onstant, whih is balaned by an inrease of the maximal height.The shapes remain bell-shaped.The three-dimensional aseFor the three-dimensional ase (4.24) stationary pyramidal strutures are omputed for variousanisotropy formulas by running simulations with an initial pro�le that resembles somewhat aquantum dot, a Gaussian

H(X,Y, 0) = 0.5 + e−( X
2

)2−( Y
2

)2 . (4.38)As before the iterations are stopped one the relative hange is smaller than a presribed tinythreshold using (4.35). Figure 4.6 is a three-dimensional analog to Figure 4.4 for the two-
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Figure 4.6: Evolution of a three-dimensional solid �lm governed by equation (4.24), starting with a Gaussianinitial pro�le and with the anisotropy strength G = 0.2. The �gures (a)-(f) orrespond to the dimensionless times
T = 0, 1, 3, 5, 10, 30.dimensional ase. The initially round, low-amplitude hump in (a) develops some osillatoryridges around a middle island in (b). These turn into faeted pyramids and the development ofa thin layer is visible in () and (d). The small dots, whih surround the middle pyramid, shrinkand are eventually absorbed by the layer ( (e) and (f), respetively). There remains one steady,faeted dot, whih does not further hange with time.The general form of the anisotropy (2.10) also allows to model systems other than Ge/Si(001).Without muh e�ort one an give di�erent polynomials a trial and use a slightly adjusted numer-ial method to ompute the dynamial behavior. To test if the theory works as expeted withalternative anisotropies three other W -funtions are de�ned

W8(HX , HY ) = G(H4
X −H4

Y −H2
X +H2

Y ) ,

W♦(HX , HY ) = G((HX − 0.3)4 + (HX + 0.3)4 +H4
Y −H2

Y −H2
X) ,

W△(HX , HY ) = G(2H2
XH

2
y +H4

X +H4
Y +HXH

2
Y +H2

XHY −H2
Y −H2

X) . (4.39)In Figure 4.7 the ontour lines of the four introdued anisotropy formulas are visualized in
HX , HY plots. The outer lines orrespond to bigger values of the anisotropy funtion and theminima are marked with small x. Beneath, four shapes of orresponding stationary solutions arevisualized. They indeed re�et the positions of the minima of the anisotropy funtion. As initialondition the Gaussian (4.38) has been used. The omputations have been arried out with apseudospetral method that used a 64x64 grid of wave numbers and they were stopped when theonvergene ondition (4.35) was ful�lled. The formulas are onstrutions whih help to verifythat the redued anisotropy term works also properly when de�ning other preferred orientations.However, the elastiity problem has not been adjusted for these simulations.
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Figure 4.7: Steady pro�les for periodi three-dimensional solutions. The upper row depits the ontour lines ofthe surfae energy assoiated with the anisotropy funtions W8, W⋄, W♦ and W△. The lower row shows plotsof orresponding three-dimensional islands. (a) Ridge; (b) Pyramid; () Rhombi pyramid; (d) Tetrahedron-likedot.With all four formulas an evolution similar as in Figure 4.6 an be observed and after su�ienttime a steady state is adopted. The �rst potential, W8, has two minima at slopes with oppositesign and results in a ridge, a quantum wire like struture, as in Figure 4.7 (a). (b) shows aGe/Si(001) like dot based on W⋄, () an elongated version of (b). Here the two pairs of minimaare loser together leading to a pyramid with a rhombi base. The last funtion W△ has threeminima, one is slightly o�side and deeper than the other two as shown in (d), where one an seethat one side of the tetrahedron-like dot is more pronouned than the other two attributing tothe di�erene of the minima.The stationary shapes our also during the time-dependent evolution. Study of the oars-ening of suh three-dimensional strutures is investigated in the following setion, just after theanalysis of the long time evolution of large two-dimensional arrays. All following time-dependentsimulations show that the observed stationary shapes appear saled in size as non-steady stateslong before equilibrium is reahed.4.4 Evolution on big domainsThe oarsening of arrays of two- and three-dimensional quantum dots is disussed in this setion.First the ase with one lateral dimension is onsidered, then the full QDM equation (4.24) isanalyzed. All results are obtained with the numerial PSM whih is introdued in Setion 5.2.It allows to simulate very large arrays in the two-dimensional ase without too high omputa-



102 Chapter 4 The QDM equation: Derivation, analysis and simulation resultstional osts, and also for the three-dimensional ase the treatable size of quantum dot arraysis astonishingly big. Computational run-time is not a major problem for the thin-�lm reduedmodel one a suitable pseudospetral sheme is set up. In related �elds the problems with onelateral dimension are even further redued. ODEs desribing the evolution of the individual is-land positions are derived. For the CCH equation this has been done by Watson et al. [109℄. Thefollowing results show that suh a redution is not neessary in 2D when reliable PSMs an beapplied to simulate hundreds of dots. However, sine the omputational time needed in the 3Dase ane beome large, it might be useful to set up a pieewise-a�ne dynamial surfae (PADS)as done by Watson and Norris for a related problem [73, 108℄.4.4.1 Coarsening of two-dimensional arraysFor simulations with one lateral dimension using equation (4.34) on equidistant grids with 8192or 4096 points for domains of length 600π or 300π in dimensionless units have been used and theonstant time step has been hosen to be either dt = 0.0001 or dt = 0.00001. Shapes foretold bythe omputed stationary solutions from the previous setion are observed, di�ering in size. Afteran initial phase, where a random perturbation of a �at state above the ritial thikness evolvesinto a surfae with many humps, they evolve into triangular strutures.

Figure 4.8: Evolution of the 2D Ge/Si(001) system at three time points on a setion of an overall nearly 2000dimensionless units long one-dimensional domain with G = 0.15. (a) Wrinkles appear just after starting thesimulation. (b) Triangular islands and a thin layer form. () Further oarsening leads to separated, faetedtwo-dimensional dots.A small setion of the overall nearly 2000 dimensionless units long domain at three time pointsof one run of the simulation is plotted in Figure 4.8. The initial height of the �lm was hosen tobe H0 = 0.75 and it was randomly perturbed with deviations up to a modulus of 0.0001 and zeromean. Already in the beginning of the simulation humps start to evolve. In (a) an osillatorysurfae with a wave length similar to the most ritial value from the linear stability analysis



4.4 Evolution on big domains 103forms wrinkle patterns. In (b) the humps are already bigger and a thin layer appears. Duringthe transition to (), an Ostwald ripening proess (survival of the fattest), where smaller dotsare eaten in expense of the bigger ones, takes plae. In () a few dots are left while the ripeningproess ontinues.Figure 4.9 shows the same run in a spae time plot on the whole domain. Brighter shadesorrespond to bigger �lm thiknesses and the vertial axis represents the time sale. The Ostwaldripening proess and ollapse of dots appear as white drops reeping from top down before theyare absorbed by the thin layer whih is blak in this �gure. This kind of evolution is reminisentof oarsening in liquid �lms where similar plots an desribe the evolution of two-dimensionaldroplets [39℄.

Figure 4.9: Simulation of oarsening of the 2D system. White shades orrespond to thiker regions. The lower'zebra' plot is a magni�ation of the marked retangular setion in the whole spae time plot. Below, the shape
H(X, 500) at T = 500 is shown on a subinterval. It orresponds to one horizontal line in the above blak andwhite plot at a ertain time point.Coarsening rates of the system an be obtained by analyzing the data in Figure 4.9 � essen-tially by ounting islands. Therfore an island density funtion

<N>=<N> (t) =
number of islandsdomain length (4.40)is introdued. It is averaged over four independent runs for the isotropi ase G = 0 and forthe two anisotropy strengths G = 0.05 and G = 0.15 to obtain statistis for the ripening of the



104 Chapter 4 The QDM equation: Derivation, analysis and simulation resultssurfaes. The results are shown in Figure 4.10, where the time on a logarithmi sale is plottedagainst the averaged harateristi density number denoted by <N>a. There appear to be twophases during the evolution, one where the island-strutures form � being larger for smallervalues of G � and a seond where atual oarsening takes plae. Surfae energies that dependon orientation lead to more islands in the �rst stage of evolution. This is on�rmed by the linearstability analysis from the last setion, whih has shown that for bigger values of G the mostunstable wave number inreases. For G = 0.15 the fast oarsening regime sets in quikly, whilein the isotropi ase this oarsening phase begins at muh later times. On the other hand, onedots start to ollapse, isotropi oarsening is faster than for non-zero values of G. The two-waylogarithmi plot shows that at late stages the oarsening rates an be desribed by power lawssine the graphs for <N>a appear as straight lines.

Figure 4.10: Coarsening diagram for the 2D Ge/Si system omparing dot densities for the isotropi (G = 0) andtwo anisotropi trials (G = 0.05 and G = 0.15). For eah trial the island density < N > has been averaged overfour runs, de�ning < N >a; the axes are logarithmi.4.4.2 Three-dimensional self-assemblyOften it is di�ult to set up three-dimensional simulations that are fast enough to allow for aoarsening analysis on a large time sale. Enforedly a redution in dimensions is applied andthe simpli�ed system is analyzed � similarly as for the QDM equation in the last setion. Thedrawbaks of suh redued systems are that the oarsening rates are not neessarily the samewhen hanging dimensions and espeially for anisotropi problems loss of information annot beavoided. If possible an analysis of the full equations should be aomplished. However, the 2Dsystem an yield useful information. The derivation of a dimension redued system is simplerand so is the numerial sheme and its implementation for simulations, whih an be orders ofmagnitude faster than for the full model. This allows to test ertain features of a new modelrapidly, to tune the parameters and �nd optimal grid sizes that an be used similarly for the 3Dsystem.Now oarsening of solutions to the 3D evolution equation (4.24) is studied. The free surfaedepends on the lateral variables X and Y , so that H = H(X,Y, T ). Typial Ostwald ripening,
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Figure 4.11: Collapse of a dot. Four islands seen from above. A darker shade (bluish) orresponds to a biggerheight of the surfae. The initial ondition seen in (a) are four round, exponential humps. The middle island hasinitially a �ve perent smaller height than the other dots. In (b) and () one an see how it shrinks and �nallyhow it is �eaten� in (d). The simulation has been arried out with G = 0.2. Time (T = 0, 5, 15, 20) and spae aregiven here as in the other �gures in dimensionless units.oarsening of faeted nano-islands, an be simulated with an FFT-based spetral implementationusing a semi-impliit Euler sheme and the disrete vetors U ≈ u. Here an update formula forthe QDM equation given in Table 5.1 in the numeris hapter has been applied. As beforeparameters for the Ge/Si(001) system and two di�erent anisotropy strengths G have been used.In Figure 4.11 a run of the PSM simulating the ollapse of a dot is depited. It reminds of theIBM experiments mentioned in the introdution, in partiular Figure 4, where a similar behavioris observed. For the set-up of the simulation four initially Gaussian humps were arranged asshown in Figure 4.11 (a). The middle dot is slightly smaller than the other three islands. All ofthem develop faets very fast (see piture (b)). The smaller pyramid shrinks as it is absorbed bythe thin layer. The shrinking and ollapse is visualized on the sequene (b), (), (d). By T = 20no leftovers of the smaller dot are visible. Again this is reminisent of Ostwald ripening and thisbehavior will be observed repeatedly on big domains in long-time simulations. The distanesbetween the islands are bigger than in the pitures from the experiments. The reason for thisstronger separation is the lak of a deposition �ux in the simulations arried out here. Thesurfaes are more similar to �lms during annealing, where the atomi �ux is already stopped. InSetion 4.5 it will be shown that indeed the island density grows when a material beam is on.Figure 4.12 shows a typial evolution at the four time points T = 5, 50, 200, 500 on a domainof dimensionless length 62π in eah diretion. The omputations were arried out on 512 × 512and 256×256 wave number grids, revealing the same behavior. The anisotropy strength G = 0.2leads to high frequeny osillations in the �rst stage of the evolution as seen in the plot for T = 5.At T = 50 the faeting is pronouned and the thin layer between the dots already appears. Moreof the substrate is overed by a thin �at layer during the oarsening proess, beause the surfaeenergy of the �lm is lower than that of the substrate. M more and more QDs vanish as one ansee omparing the surfaes at the time points T = 50, T = 200 and T = 500. The bigger islandshave faeted shapes resembling the pyramids seen in experiments for the Ge/Si(001) system, oralso for the GeSi �lms on Si [23, 32℄. A setion of three of the plots is depited in Figure 4.13
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Figure 4.12: Evolution of Ge/Si(001) quantum dots without deposition seen from above. An initial small randomperturbation of a �at state above the ritial height evolves by self-assembly to square-based pyramids with faets.For the simulation G = 0.2 is used in the quadruple well formula W⋄. Note that as in the other �gures in thissetion the X and Y variables are dimensionless units.from a three-dimensional perspetive to support better understanding of these �gures.As in the 2D ase stronger anisotropy parameters lead to surfaes with osillations of higherfrequeny in the �rst stages of the evolution and the faets are more pronouned. Figure 4.14shows how the di�erent anisotropy strengths in�uene the surfaes at later stages of the evolution.At the same point in time simulation results for G = 0, G = 0.1 and G = 0.25 are plotted. A fewdots are enlarged for G = 0 and G = 0.25 to emphasize the e�et of anisotropy. For the biggervalue of G the faets are sharper and also the small islands have nearly square bases. Clearly atransition from bell-shaped strutures to pyramids is visible.To analyze oarsening rates for the same three values of G, the measure (4.40) an be used
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Figure 4.13: 3D setions of the the �rst three plots in Figure 4.12.again, only that it has to be taken into aount that the domain is two-dimensional and henethe domain length has to be replaed by domain size. Here it has 62π dimensionless units ineah of the two diretions.Figure 4.15 (a) shows that the number of dots for higher values of G is bigger in early stages ofevolution, on�rming the predition of the linear stability analysis. For G = 0, after formation ofa bumpy surfae, nothing relevant happens until at T ≈ 150 oarsening sets in. It then proeedsfaster than with anisotropy. It seems that the lower energy state for faeted islands slightlystabilizes the islands during ripening. For G = 0.1 and G = 0.2 similar oarsening rates areobserved at later stages. The value < N > is plotted for T ≥ 250 in a doubly logarithmi plotin (b) where the urves behave like straight lines. This indiates as in the two-dimensional asea power law behavior.One an easily interhange the quadruple well anisotropy W⋄ with a polynomial that morelikely re�ets other anisotropies. One suh formula with three minima is denoted here by W△. Asimulation an be arried out as before with a small random perturbation of the �at state abovea ritial thikness as the initial state. As one an see in Figure 4.16 it leads to rather roundedosillations whih evolve to islands with three distint orientations � where two of those are,as in the setion on stationary shapes for this anisotropy formula, not that pronouned. Thestrutures oarsen and ontinue to grow in a similar way as for the quadruple well potential.This simple variation shows that it should be possible to simulate also systems like Ge/Si(111),where instead of pyramidal shapes with four faets in the same symmetry lass, only threepreferred diretions are present in the nano-islands [68℄. Sine the faets here are rather urvedand not symmetri, the polynomial hosen is rather aademi than a realisti hoie. However,it shows that the model and the numeris re�et the hosen anisotropy.
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Figure 4.14: Anisotropy e�et on the 3D Ge/Si(001) system. All pitures show the same time point after evolutionfrom the same initial ondition (random perturbation of a �at state above the ritial thikness). The upper leftis taken from a simulation with isotropi surfae energy (G = 0) and the dots have round tips. In the other twoupper pitures (G = 0.1 and G = 0.25) faeting is observed and it is stronger for the bigger anisotropy oe�ient
G. The two lower pitures are magni�ations for G = 0 and G = 0.25, where the hanged perspetive shows thetransition from bell shapes to pyramids when inreasing G.

Figure 4.15: Coarsening diagram for the 3D system. The ases for no (G = 0), weak (G = 0.1) and strong(G = 0.25) anisotropy are plotted in (a). In (b) the data for the late stage of oarsening is replotted for theanisotropi ases in a doubly logarithmi plot.4.5 E�et of depositionIn this setion the QDM equation with nonzero �ux (4.22) is onsidered. The numerial methodused to obtain the results from the last setions has to be adapted only slightly to simulatethe oarsening of QDs in presene of an atomi beam. The adjustments are explained at theend of Chapter 5. The spatial grid and time step sizes are hosen as in the previously presentedsimulations. Before the results are disussed, the atual parameters for the simulations are derivedand the deposition strength F̌ from formula (4.23) is alulated. It is not always straightforward
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Figure 4.16: Evolution of dots based on the triple-well potential W△. A random perturbation of a �at state evolvesto self-assembling patterns. For the simulation G = 0.2 is used with formula (4.39).to �nd exat onstants that are needed for a realisti desription of an experiment and sometimesvariations ome in by measurement errors. However, the here used quantities are adequateto show that the simulations qualitatively agree with experimental data from Ge/Si(001) self-assembled growth, whih has been desribed in the introdution, i.e. Setion 0.4. Apart fromlearly spei�ed physial quantities suh as the Boltzmann onstant, material spei� onstantsthat are less ommon are used. In the following the harateristi sales for the Ge/Si(001)system are alulated.The harateristi length sale is several nanometers
L = γ0/Ebase

sed =
γGe(001)(1 − νGe)

2µGe(1 + νGe)ǫ2
= 5.23nm .Therefore the surfae energy of a (001) oriented germanium rystal has been used, γGe(001) =

1.927×10−4J/cm2. This quantity is taken from Tekalign and Spener [102℄. Here parameters aretrunated after the seond or third deimal plae and identities hold within this auray. Theshear modulus µGe = 0.670 × 107N/cm2 is taken from Wortman and Evans [113℄ and Poisson'sratio is νGe = 0.273 [102℄. These two values ould be expressed in terms of two other elastiityparameters, Young's modulus EGe and Lamé's �rst parameter λGe, respetively. In Table C.1 inthe appendix it is explained how these quantities an be onverted into eah other. Furthermorefor the alulation of the length sale the lattie mismath
ǫ =

aGe − aSi

aSi
≈ 0.04was used with the lattie spaing of germanium aGe = 0.565 × 10−7cm and of silion, aSi =

0.543× 10−7cm, respetively. For the elasti and wetting parameters ẽ = 1.28 and γ̃ = 0.05 wereused [56℄.For the harateristi time sale, the di�usion onstant D from equation (1.2) is essential.Here it is alulated as
D = Ω2

GeDsσGe/(kT ) = 3.49 × 10−26cm4s/kg ,
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Figure 4.17: Part of the simulated domain for the deposition �ux F = 0.0053251nm/s. From a �at state in the�rst piture, the �lm exeeds the ritial thikness and island arrays form that oarsen in an Ostwald ripeningproess.where the Boltzmann onstant is k = 1.38 × 10−23J/K. The temperature in the experimentsunder onsideration is between 500 and 600 ◦C. Here it is hosen to be T = 873K(= 600◦C).The di�usion onstant is
Ds = 8.45 × 10−6e−0.83eV/(kT )cm2/s = 1.37 × 10−10cm2/sas in the work by Spener et al. [97℄. The surfae density of germanium atoms is approximatedby σGe = 2 atoms/a2

Ge = 6.27 × 1014/cm2. The 2 was hosen sine a germanium bravais lattieontains 4 atoms on a faet plus an additional fae entered atom. On a (001) oriented �atsurfae this makes four times a quarter atom plus one in the middle in eah base square. Theoverall time sale beomes in this way
τ = L4/(γ0D) ≈ 1.11s .To add deposition the dimensionless quantity F̌ from equation (4.23) has to be alulated. For

F the values F1 = 0.005nm/s, F2 = 0.01nm/s, F3 = 0.05nm/s, orresponding to rates between 2to 25 ML per minute, were implemented. Similar rates are used in experiments, though the thirdmay be already too big for epitaxial growth. Then F̌1 = 0.0053, F̌2 = 0.0107, F̌3 = 0.0533.In Figure 4.17 a typial simulation run is visualized for the deposition strength F1. Here and inall following simulations the anisotropy strength has been set to G = 0.2, resulting in a ritialthikness of about 3ML, similarly as in experiments. Sine the simulations start with a �at�lm below the ritial thikness, during evolution a �rst phase is observed, where only the tiny�utuations from the randomly perturbed �ux in�uene an otherwise planarly growing �lm. Thisis depited in the �rst of the four time shots. Eventually the ATG instability sets in and islandsform, oarsen and undergo faeting. This is visible in plot two to four in Figure 4.17. Already inthese pitures it an be notied that the island density is bigger than without deposition. The�ux tends to slow down the oarsening proess. How muh in�uene it has is shown in Figure4.18, where simulation results are depited for the three di�erent deposition rates Fk, k = 1, 2, 3.The omputational domain was in eah diretion about 120 dimensionless units, making more
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Figure 4.18: The three rows depit the surfae from above for the three di�erent deposition rates Fi, i = 1, 2, 3 attwo time points, where in eah ase the same amount of material has been deposited.than 600nm in sales with dimensions. Also in Figure 4.17 the omputational domain was thatbig. However, to better see how the anisotropy and the �ux in�uene the island shapes, only a
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Figure 4.19: Setion of the omputational domain from Figure 4.18. Deposition rates Fi, i = 1, 2, 3 at the timepoints when 10ML have been deposited. x, y and z axes are in nanometers.quarter of the domain has been plotted. In Figure 4.18 the whole domains are shown. The threerows orrespond to the three di�erent �uxes. In eah of the two olumns either an 5 or 10 ML�lm atom equivalent has been deposited. Three observations an be made diretly. For small �uxthe evolution is more similar to the ase without deposition. Ostwald ripening of square basedpyramids is visible. These are learly separated by a wetting layer. By inreasing the rate onean see that more dots exist for the same amount of deposited atoms. In the average they aresmaller and overall they leave less of the substrate overed by a thin layer. For the strong �ux anadditional e�et is visible. Sine the island density is further inreased, islands tend to remainonneted to others, resulting in elongated ridges. Only after further evolution they eventuallydissolve into separate islands. In all ases the anisotropi harater of the shapes of the islandsis learly pronouned. This is well visible in Figure 4.19, where in (a) a 3D view for the shapesfrom setions of the domains in Figure 4.18 is shown and below in (b) ontour lines visualizethe e�et of the anisotropy. The islands are learly oriented, even in ase of strong deposition.In the simulations, out of the range of allowed parameters, a rather strong anisotropy has beenused. Still, in experiments real faets have even less urvature. However, the author believesthat the observed anisotropy e�et is already a good approximation to perfetly �at faes withorners at the edges � espeially sine a smooth framework would be destroyed by using suh adesription. As mentioned, for the ase that more planar faets are sought, the approah fromthe other model, where a Wilmore regularization (2.2) is used to allow for strong anisotropy,ould be applied. In the redued equations a linear sixth order term would appear similarly as
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Figure 4.20: Coarsening diagram for the ase with deposition. The average height is plotted against the islanddensity in a doubly logarithmi plot. F1, F2, F3 are the deposition rates introdued before.As before for the ase without deposition a oarsening diagram has been reated. The islanddensity funtion (4.40) has been used for 3D islands by replaing the domain length, by domainsize, whih is L · L for a square domain with equally long sides of length L. In Figure 4.20 therates for three deposition rates are shown in a doubly logarithmi plot. It is learly visible thata muh higher island density is given for higher deposition rates. All three rates appear nearlyas straight lines. A slight onvexity is visible, but a power law behavior seems possible at laterstages of the evolution.Conluding, one sees that the deposition terms in�uene the growth similarly as in experi-ments, where an inreasing �ux rate also leads to a higher island density. For detailed omparisonsit would be preferable to work with experimentalists who an supply the exat data that is neededfor omparisons with simulation results. Suh a ooperation might be aspired in future, untilthen omparisons to data from literature have to su�e.In the following �nal hapter the numerial methods that were used throughout the work areintrodued. Loal and global interpolation is used to set up �nite di�erene and pseudospetralmethods.



Chapter 5Numerial methods for evolutionequations on periodi domainsThe proess of preparing programs for a digital omputer is espeially attrative, not only beauseit an be eonomially and sienti�ally rewarding, but also beause it an be an estheti experienemuh like omposing poetry or musi. Donald E. Knuth (1938 - )During the work on this thesis several odes had to be written to simulate high order PDEs onperiodi domains. While in the beginning they were in parts umbersome and slow, they evolvedto short and fast programs over the months. Finally the working numeris is indeed rewardingand estheti due to ompatness and simpliity.I didn't have time to write a short letter, so I wrote a long one instead. These words byMark Twain an be transferred analogously to the letters of a omputer sientist � his odes. Itneeds time to write qualitatively rih soure texts that work properly and are easy to understand.For mathematial implementations a deep understanding of the theory helps to simplify the nu-meris. In this hapter it is desribed how to avoid laborious, slow numeris for the problemsunder onsideration. Short, elegant solution shemes and their implementation in Matlab willbe desribed. It is not laimed that these are optimal, most aurate or the fastest odes possi-ble. However, they are really short, easy to understand and su�iently fast for the onsideredproblems.Here, and also in many other works on phase-separating systems, partial di�erential equationsof nth order
ht = F (h, hx, hy, hxx, hxy, hyy, hxxx, . . .) , (5.1)have to be solved. As in the previous hapters the spae variables are (x, y) ∈ Ω, the timeis denoted by t ∈ [0, T ], T > 0, h = h(x, y, t) is an at least n times and F : R → R is an114



115at least one time ontinuously di�erentiable funtion. Often the problems are assumed to beperiodi in spae, this is also done throughout this hapter. The indued boundary onditionsare naturally ful�lled when using pseudospetral methods (PSMs) based on periodi funtions,while the sti�ness matries used in �nite di�erene methods need to be altered for that end. Butnot for this reason the PSM is the favorable method for the introdued PDE problems. Thebene�ts, suh as auray and runtime, will beome lear in this hapter, where throughout Ω ishosen to be a square domain Ω = [0, L]2 and most times for onveniene L = 1.The following theory ould be easily extended to higher dimensional systems. This maybeome useful, for example the third dimension z is added in models for phase separation in bulkmaterials (e.g. as in the numerial study on a CH model [99℄). However, here additionally to thetime t only the variables x and y will be allowed, sine all problems in this work depend at themost on two lateral variables. The equations for the faeting of growing surfaes, (2.14), (2.13),and also the QDM model with and without deposition, (4.22), (4.24), an be simulated by thePSMs explained in this hapter.The problem equations ontain nonlinearities and thus they are not easy or not at all solvableanalytially. In this ase numerial simulations have to be arried out to see how solutions evolve.Unexperiened researhers might be worried when high derivatives ome into play. These areobsolete as it will be shown on the next few pages. The desribed line-methods, where the lateraldomain is disretized �rst to obtain an ODE in time, are explained and applied to high orderproblems. As in the existene theory from Chapter 2 it will beome lear that treatment of highorder derivatives is no insuperable hurdle.The disussion begins in Setion 5.1 with a tool every mathematiian, physiist and engineerlearns during his studies: The �nite di�erene method (FDM). Matlab works optimally withmatries, not for nothing its name stems from the �rst letters in matrix laboratory, and sinethe presented numeris will be supported with Matlab odes, the FDM will be introdued interms of di�erentiation matries. A simple and fast matrix vetor produt then yields derivativeapproximations based on Taylor expansions. This onept an be expanded to a wide lass ofinterpolation methods, and also PSMs an be introdued in this way. To gain omputationalspeed the fast Fourier transform (FFT) an be used (when talking about PSMs, here always themethod based on trigonometri interpolation is meant; other PSMs are possible, but they arenot further addressed). Sine the di�erentiation matries for these global interpolants are dense,the FFT allows to avoid dense matrix-vetor operations and redues the operations ount fromquadrati to O(N log(N)), when N is the number of grid points. This is still more than withloal interpolation methods, where sparse matries yield a redution in operation ount to O(N).However, the PSM o�ers huge bene�ts in auray and allows to use muh oarser grids when theunderlying problem is su�iently smooth. Here, both methods are motivated as interpolationmethods, then spetral di�erentiation is ompared to �nite di�erenes and �nally the method isapplied to the problems from the previous hapters.



116 Chapter 5 Numerial methods for evolution equations on periodi domainsThe introdution to �nite di�erenes is less interesting to readers familiar with this topi,however the way it is presented should larify the relation and di�erene to the PSM and it showshow simply both methods an be implemented. The short odes might support the reader in theopinion that the main work for solving a partial di�erential equation are multipliations withmatries or wave-vetors. This is of ourse not true in general. When problems are di�erentlystrutured than those disussed in this work, trouble may start. When it omes to omplexdomains and sharp transition regions in the solutions, the standard FDM and PSM might notbe useful. Then �nite element or �nite volume methods remain the tools of hoie, sine theseallow to deal with geometrially omplex domains and adaptive grids. Then a lot of work has tobe invested to de�ne and re�ne proper meshes and handle index sets, whih are used to de�neorret sti�ness matries that play the role of di�erentiation matries. This an be irumventedfor periodi problems on square domains. The following FDM and PSM are great tools whihan be implemented astonishingly easily.5.1 Finite di�erene methods (FDMs)Consider �rst one of the simplest PDE problems, a di�usion equation in two spatial dimensions.The initial value problem on a periodi domain and time interval [0, T ] is a paradigm for aparaboli equation and it is disussed in any numeris leture on PDEs. A funtion u : [0, T ] ×
[0, 1]× [0, 1] :→ R that ful�lls

ut = uxx + uyy, u(0, x, y) = u0(x, y), (x, y) ∈ Ω = [0, 1]2 , (5.2)
u(t, x, y) = u(t, x+ 1, y) = u(t, x, y + 1), (x, y) ∈ Ω ,is sought. The right hand side, the Laplaian of a funtion, appears in many PDEs. It is probablythe most ommon di�erential operator. Before starting to disretize, it will be explained howthis operator works. By looking onto the one-dimensional di�usion equation it is easier to showhow the terms in the di�usion equation in�uene the shape u. The PDE writes in this ase

ut = uxx , (5.3)
rate of change ′curvature′ .The annotations below the equation desribe the e�et of the derivatives on both sides of theequality sign. To leading order the seond derivative desribes the urvature, so that onvexregions pull the funtion down with time, while onave parts push the funtion up (here onvexmeans uxx < 0). Sine the di�usion equation is also known as heat equation, it an be interpretedin ontext of heat transfer. As example in Figure 5.1 one an imagine a periodi wire (by makinga irle out of the urves in the �gure and onneting the ends), whih is heated in one entralarea, giving the heat pro�le as in Figure 5.1 (a). With time the heat is smoothly distributedover the whole wire as shown in the following two pitures (b) and () � it di�uses. The same
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Figure 5.1: Simulation of di�usion equation (5.3) with initial ondition h(0, x) = tanh(x + 5)/2 − tanh(x − 5)/2on a 20π long domain. Convex parts of the shape are pulled down, while onavity indiates the opposite e�et,as denoted by the arrows in (a).property of the Laplaian applied to a funtion an be observed in two dimensions,
∇2u = uxx + uyy on [0, 1] × [0, 1] .The formula desribes the mean urvature in two lateral dimensions to leading order. Duringsimulations the onvex surfae regions are pulled down while the others are pushed up. Assuming

u to be su�iently smooth, the Laplae operator di�erentiates this funtion twie in eah of thetwo diretions when it is applied to this funtion. To ompute the derivatives approximately, anequidistant disretization, 0 = x1 < x2 < . . . < xn = 1, dx = xi+1 − xi, in both diretions anbe used. On eah grid point the values Ui,j = u(xi, xj), i, j = 1, . . . , n are omputed. Taylorexpansions in ±x and ±y diretions lead to the �nite di�erene approximation of the Laplaianof u at one point
∇2u|(xi,xj) =

Ui,j−1 − 2Ui,j + Ui,j+1

dx2
+
Ui−1,j − 2Ui,j + Ui+1,j

dx2
+ O(dx2) . (5.4)Naturally all funtion values would be stored in a matrix...

Ui−1,j−1 Ui−1,j Ui−1,j+1

· · · Ui,j−1 Ui,j Ui,j+1 · · ·
Ui+1,j−1 Ui+1,j Ui+1,j+1... ,

however sine di�erentiation matries will work on all n2 data points, these are olleted fromnow on in one N = n2 vetor
U = (U1,1, U2,1, . . . , Un,1, U1,2, U2,2, . . . , Un,2, U1,3, . . .)

T . (5.5)A matrix D2 ∈ RN×N based on the di�erentiation sheme (5.4) an be de�ned suh that itapproximates the Laplae operator
∇2u ≈ D2U .



118 Chapter 5 Numerial methods for evolution equations on periodi domainsBy staring long enough at the �nite di�erene (5.4) and the ordering of the vetor (5.5), one anread o� one typial row of this matrix
1

dx2
(0, . . . , 0, 1, 0, . . .0, 1,−4, 1, 0, . . . , 0, 1, 0, . . .0) ,where the far left and far right 1 are n entries away from the −4 that is positioned on the maindiagonal of D2. Periodiity is not yet inluded. For inorporation of boundary onditions to therather simple matrix, every time in the �nite di�erene star (5.4) an index is bigger N or lessthan 1, the periodiity has to be applied

Ui,j = Ui+n,j or Ui,j = Ui,j+n . (5.6)The resulting sparsity struture of the di�erentiation matrix D2 is shown in Figure 5.2. Addi-tional super- and subdiagonals are added in the upper-right and lower-left orner beause of theperiodiity. The round dots resemble ones, exept on the main diagonal whih ontains the −4entries. The number of nonzeros p = 5N grows only linearly in N , while the overall number of
Figure 5.2: Sparsity pattern for the Laplae operator with a entral di�erene sheme for both diretions. Herewith N = 64.matrix entries grows quadratially. Hene p/N2 N→∞→ 0 like 1/N . For an n × n domain thismeans the relation dereases like 1/n2. With n = 128, the matrix has already 268435456 entries,while only 81920 are nonzero. This shows the importane of using sparse strutures. Matlabo�ers the possibility to de�ne a sparse matrix D by using the ommand sparse(D) or spdiagswhih needs all the nonzero (sub-, super-) diagonals and their positions as input.A solution for equation (5.2) an be approximated with help of the derived di�erentiationmatrix D2. Disretized the PDE approximation writes

Ut = D2U ,whih is one of the simplest ODEs imaginable. One the sti�ness matrix D2 is de�ned (as sparsestruture), the problem an be solved on the time interval [0, T ] with a standard Matlab ODEsolver, as in the following ode snippet (here u0 is the initial pro�le given as N -vetor as inputdata and subsripts are lifted in all odes).



5.1 Finite di�erene methods (FDMs) 119[t,y℄=ode45(�(t,y)laplaian(t,y,D2),[0, T℄,u0);funtion dy = laplaian(t,y,D)dy = D*y;The funtion handle �(t,y)1 Laplaian(t,y,D2)2 points to the funtion underneath theode45 all, whih is an adaptive, expliit Runge-Kutta based solver � a standard Matlab routine.The �rst braket ()1 ontains the argument for the solver, while the seond braket ()2 addition-ally allows for parameters (or as here the di�erentiation matrix) that have to be available toevaluate the system funtion. Any other ODE method, suh as an impliit Euler implementedby hand, an be hosen as solution sheme. Therefore the time domain is deomposed equidis-tantly with time step dt, whih does not need to ful�ll a CFL ondition. This gives with the
n× n identity matrix In

U+ − U

dt
= D2U

+ ⇔ (In − dtD2)U
+ = U .The impliity makes it neessary to solve a linear system in eah iteration. With Matlab's easy-to-handle sparsity ommands, the implementation is nearly trivial and fast, as shown in the nextfew lines.M = sparse(sparse(eye(N)) - dt*D2);for t = 0:dt:Tu = M\u;endHere eye(N) de�nes a N ×N identity matrix. One the di�erentiation matrix is assembled andthe system funtion is oded, the di�usion equation an be solved with a one line ommand inthe time loop ('u = M\u' solves the system MU+ = U).As long as PDEs are linear one an set up analogous proedures to ompute approximatesolutions. Consider for example the bi-Laplaian ∇4u = uxxxx + 2uxxyy + uyyyy, or maybediretly the even more ompliated tri-Laplaian ∇6u = uxxxxxx+3uxxxxyy +3uxxyyyy +uyyyyyy.Disretizing and writing down a sheme based on Taylor's expansions an yield the �rst term

(uxxxxxx)|(xi,yi) ≈
Ui,j+3 − 6Ui,j+2 + 15Ui,j+1 − 20Ui,j + 15Ui,j−1 − 6Ui,j−2 + Ui,j−3

(dx)6
.The other derivative approximations yield similar expressions. It then is neessary to ollet theoe�ients of equal terms and as before periodi boundary onditions are imposed. Althoughthis is possible and Pasal's triangle an help to �nd the oe�ients, nobody an want to dothat by hand. One lower order di�erentiation matries are de�ned, higher derivative operatorsan be approximated by taking powers of the already given matries. For the bi-Laplaian the
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Figure 5.3: Sparsity patterns for the bi-Laplaian and the tri-Laplaian with N = 256.di�erentiation matrix an be de�ned as D4 = D2
2 and for the tri-Laplaian it an be set to

D6 = D3
2 , giving the sparsity patterns shown in Figure 5.3. These matries orrespond to thede�nition of the higher order operators as powers of the Laplaian,∇4u = (∇2)2u,∇6u = (∇2)3u.The matrix-matrix multipliations have to be arried out with are to avoid a ubi operationount. The �tri-Laplae-equation�

ut = ∇6u (5.7)an now be solved approximately by de�ning the system matrix
M = In − ∆tD6and applying the impliit Euler sheme exatly as before, or by using any favorite, often moreaurate, ODE solver. The evolution of initially two overlapping Gaussians is shown in Figure 5.4.As in the usual di�usion equation the humps gradually derease, while the �atter areas grow.However, although the pitures of the evolution appear very similar as in standard di�usionproblems, the time-sale is way faster.

Figure 5.4: Evolution of the tri-Laplae equation (5.7) on a 64x64 grid. The initial ondition on the [−2π, 2π] ×
[−2π, 2π] domain is u(0, x, y) = exp(−(x + 1)2/2 − (y + 1)2/2) + exp(−(x − 4)2 − (y − 4)2)/3.This was easy. As easy that you might be tempted to solve the disussed equations analyt-ially. This is of ourse not the point. The overall aim is to solve equations that inorporatenonlinearities � where analytial solutions are hard to �nd.



5.1 Finite di�erene methods (FDMs) 121Now, again in one lateral dimension, a more ompliated problem is onsidered, the HCCHequation (2.14), whih desribes the faeting of a growing surfae in 2D. It is a semilinear PDE,with two nonlinearities, one from the deposition �ux and the other from the anisotropy of thesurfae energy. To approximate a �rst derivative one an use a simple entral di�erene
(ux)|xi

=
Ui+1 − Ui−1

2dx
+ O(dx2)that de�nes the di�erentiation matrix (periodiity inluded)

D =
1

2dx
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. (5.8)
Seond derivatives ould also be approximated with a entral di�erene

(uxx)|xi
=
Ui+1 − 2Ui + Ui−1

dx
+ O(dx2)yielding

D2 =
1

dx
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. (5.9)
When de�ning fourth and sixth derivative matries via D4 = D2

2, D6 = D3
2, the spatial terms onthe right hand side of the HCCH equation an be approximated by

δ

2
D[U2] +D3

2U +D2
2[U − U3] .Based on this expression one an set up an expliit method. It would be easy to implement,however, due to the sixth order derivatives, by the rule of thumb a CFL ondition gives a hard toadhere restrition dt ≤ Cdx6, whih makes stable omputations on large time domains impossibledue to the too strit step size restrition. Instead one an implement an impliit Euler sheme

U+ − U

dt
=
δ

2
D[(U+)2] +D3

2U
+ +D2

2 [U
+ − (U+)3] . (5.10)Therefore in eah iteration a nonlinear system of equations

F (U+) = 0



122 Chapter 5 Numerial methods for evolution equations on periodi domainshas to be solved for eah time step, where
F (U+) = U+ − U − dt(

δ

2
D[(U+)2] +D3

2U
+ +D2

2[U
+ − (U+)3]) .A possible implementation is shown in Code 5.5. Input data is the maximal time T , the timefuntion u = hh_impliit_fd(T, dt, n, L, delta)xgrid = linspae(-L/2, L/2, n);dx = xgrid(2) - xgrid(1);D = sparse(zeros(n,n));D2 = sparse(zeros(n,n));for k=1:n-1D(k,k+1) = 1/(2*dx); D(k+1,k) = -1/(2*dx);D2(k,k)=-2/dx; D2(k,k+1) = 1/dx; D2(k+1,k) = 1/dx;end% periodiityD(1,n) = -1/(2*dx); D(n,1) = 1/(2*dx);D2(1,n) = 1/dx; D2(n,1) = 1/dx;% bi-Laplaian and tri-LaplaianD4 = D2^2;D6 = D2^3;%initial shapeu = h_init(xgrid)';%time loopfor t = 0:dt:Tuplus = fsolve(�(uplus)myfun(uplus, u, dt, delta, D, D4, D6), u);u = uplus;end% system funtion alled by Newton solverfuntion Y = myfun(Up, U, dt, delta, D, D4, D6)Y = Up - U + dt*(-delta/2*D*(Up.^2) - D6*Up - D4*(Up - Up.^3));Code 5.5: Program ode for the simulation of the HCCH equation with an impliit Euler sheme based on �nitedi�erenes.step size dt, the number of grid points n, the domain length L and the deposition parameter

δ. Also a funtion hinit is needed to de�ne an initial shape as n-vetor. The assembly of the



5.1 Finite di�erene methods (FDMs) 123matries ould be established with the spdiags ommand, however, the presented way is moresuitable to show that the matries indeed are of the form (5.8) and (5.9). By de�ning them assparse objets only the nonzero entries and their positions are stored in the Matlab struture.Sine the sheme is impliit, the time step may be hosen quite big. However, it must not beforgotten, that this quantity stems from a Taylor expansion where it is used as small parameter.The error of the overall sheme grows, when it is inreased.Generally impliit odes are slow when systems of nonlinear equations have to be solved ineah iteration. If one is interested in many runs for parameter studies, long-time evolution orextensions to higher dimensions, an improved implementation might be neessary. Sine expliitmethods an imply hard restritions on the time step size, something in between expliit andimpliit might be preferable. Above, the linear bi- and tri-Laplaian have a major in�ueneon the stability regions. A ommon trik is to treat these high derivatives impliitly and onlythe nonlinearity expliitely. This relaxes the step size restritions and gives bene�ts in run-time(more omments on suh a semi-impliit method will be given in the PSM Setion 5.2). For theHCCH equation the sheme writes
U+ − U

dt
=
δ

2
DU2 +D3

2U
+ +D2

2(U
+ − U3) (5.11)and it yields the linear system for U+

(In − dt(D3
2 +D2

2))U
+ = U + dt(

δ

2
D[U2] −D2

2[U
3]) , (5.12)whih has to be solved in eah iteration. Note that this is a major simpli�ation in relation to thefully impliit sheme. Treating the nonlinearity expliitely makes the system of equations that hasto be solved linear. No Newton-like methods need to be applied. The matrix (In − dt(D3

2 +D2
2))an be stored as sparse system matrix. D and D2

2 should also be saved in separate arrays, so thatthey do not need to be reomputed in eah time step. The few lines in Code 5.6 show how theHCCH equation an be simulated in the above framework with Matlab. The input parameterare as before in Code 5.5.Finite di�erene methods are easy to derive in one dimension. Also in two lateral diretionsthey are frequently used, but it may be nasty to assemble the system matries. Considering threeor more lateral dimensions leads to an exhaustive �ght with indies and other methods or theuse of programs that help to assemble the sti�ness matries might be advantageous.The auray of the FDM is not as good as it an be ahieved with a PSM for a ertainproblem lass. So-alled spetral auray yields large bene�ts for su�iently smooth problemsand in the next setion it is presented how this an be ahieved. However, hanging boundaryonditions in FDMs for one lateral dimension is simple, while this an be already a major obstalefor PSMs.



124 Chapter 5 Numerial methods for evolution equations on periodi domainsfuntion u = hh_solve_fd(T, dt, n, L, delta)...% bi-Laplaian and system matrixD4 = D2^2;M = sparse(eye(n,n)) - dt*(D2^3+D4);%initial shapeu = h_init(xgrid)';%time loopfor t = 0:dt:Tu = M\(u + dt*(delta/2*D*(u.^2)) - D4*(u.^3));endCode 5.6: Program ode for the simulation of the HCCH equation with a semi-impliit �nite di�erene sheme.The �rst lines denoted by the three dots are as in Code 5.5.5.2 Pseudospetral methods (PSMs)Di�erentiation matries have been disussed in Trefethen's modern introdution [105℄ in on-juntion with PSMs. Fornberg has written a guide on these topis some time earlier [33℄ andin general PSMs are used sine the 1970s. However, the basis for the most popular PSM is theFourier transform, whih is known sine about 200 years. PDEs have been solved with help ofspetral di�erentiation throughout the last deades (generally in the �eld of �uids [13℄; an exam-ple for a spei� problem is the simulation of seismi waves [100℄). Anyhow for many people thePSM seems to be non-existent, even if their problems are very PSM friendly (very smooth solu-tions, simple domains and preferably periodi boundary onditions). This is quite astonishing,one one has understood how easy a PSM an be implemented and how aurate it works.Here the introdution to the method begins in one spae dimension, where the PSM an bederived from trigonometri, hene global, interpolation. This loses the irle to the loal inter-polation method, the FDM from the foregoing setion. The omputations are then aeleratedby using the FFT [21℄. Thereafter an extension to two spae dimensions is presented and �nallythe results are used to solve PDEs numerially.5.2.1 Spetral di�erentiation and aurayIn this setion di�erentiation in one lateral variable x is onsidered and an equidistant grid asbefore is used. For the set-up of �nite-di�erene shemes Taylor expansions have been used



5.2 Pseudospetral methods (PSMs) 125to de�ne reasonable di�erentiation matries in the last setion. A derivative obtained by aforward-bakward Taylor expansion (entral di�erene sheme) is equivalent to the derivativeof the unique seond order polynomial rossing three neighboring funtion values on the gridevaluated in the middle point. Hene the FDM an be interpreted as interpolation method andthis viewpoint shows that it an be generalized easily. Using higher order polynomials that relyon more neighboring funtion values leads to higher order �nite di�erene shemes. The higherthe order, the more entries appear in the di�erentiation matries. To obtain an approximatederivative of a smooth funtion u, whih is sampled on an equidistant grid {xj : j = 1, . . . , N}suh that uj = u(xj), j = 1, . . . , N , an interpolation proedure for a entral di�erene derivativemight be written as (ignoring the boundaries)
• Find unique pj ∈ P2 with pj(xj) = uj and pj(xj±1) = uj±1 ,
• Set vj = p′j(xj) .Here P2 denotes the set of all polynomials of degree two and vj are the derivative approximations.The set P2 may be replaed by either higher order polynomials, or by ompletely di�erent sets.Aordingly the number of points where the interpolant is supposed to math the funtion hasto be adjusted. In ase of PSM global interpolation in all points xj , j = 1, . . . , N is arried outwith a set of trigonometri funtions F . The proedure hanges to
• Find p ∈ F with p(xj) = uj , ∀j ,
• Set vj = p′(xj), ∀j .This is already the basis for a PSM, it is spetral di�erentiation based on global trigonometriinstead of �nite di�erene approximations based on loal polynomial interpolation. Note thatfor the seond proedure the question of uniqueness is more ompliated. Figure 5.7 shows thatsums of osines and sines as interpolants have to be used with are. In (a) the underlying periodifuntion is plotted together with the disrete points used for the interpolations. While in Figure5.7 (b) the seond order polynomials are uniquely de�ned and give a unique approximationfor the derivative, there are in�nitely many possible interpolants when applying trigonometriinterpolation. Figures 5.7 () and (d) show the qualitative di�erene that an be ahieved withtrunated Fourier series that use di�erent sets of wave lengths. While in () the �bad� oe�ientslead to totally wrong derivative approximations in the sample points, the auray in (d) is insome sense perfet, beause of the hosen trigonometri form of u.For a trigonometri PSM the funtion spae F ontains the omplex exponentials, F =

{eikx, k ∈ K}. The set of wave numbers K = {k1, . . . , kN} is �nite, but sine there exists anin�nite number of wave numbers k that an be hosen, the so-alled aliasing e�et an our.Piking the wrong wave lengths an lead to unwanted osillations. This beomes more lear by
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Figure 5.7: (a) Periodi funtion u(x) = sin(x) + cos(2x) sin(x)2 on [−π, π], sampled over 8-points. (b) Loalinterpolation with seond order polynomials. () �Bad� trigonometri interpolation. (d) Trigonometri interpola-tion with minimal mean square slope (the dashed line of the interpolant lays just on top of the funtion urve).looking on the de�nition of the trigonometri interpolant
IN (x) = F−1[û](x) =

1

N

N
∑

j=1

ûj exp(ikjx) , (5.13)where û = (ûj)j = F [u] is the disrete Fourier transform (DFT) of u and F−1 is its inverse. It anbe used with di�erent sets K and this formula still yields an interpolant of the sampled funtion.However, piking highly pithed sines and osines in the expansions leads to the aliasing e�et.As it is visible in Figure 5.7, the derivative values do not math at all, although the funtionvalues are orret.The derivative of the interpolant an be alulated easily. It is
I ′N (x) =

1

N

N
∑

j=1

(ikj ûj) exp(ikjx) ,whih shows that the vetor of the approximate derivative values in the sample points is
(vj)j = F−1[(ikjuj)j ] .The main idea of di�erentiation via trigonometri interpolation is already explained. It an beahieved with the inverse of the Fourier transform that is previously multiplied by the imaginarynumber and suitably hosen wave numbers. If these are piked suh that the interpolant hasminimal mean square slope, spetral auray of the derivative approximation an be observed� for analyti funtions this means that asymptotially it is more aurate than any �nitedi�erene approximation.



5.2 Pseudospetral methods (PSMs) 127As in the FDM Setion 5.1, di�erentiation matries an be set up. They yield derivativeapproximations through simple matrix vetor produts. Later di�erentiation will be arried outin terms of the FFT, beause it o�ers bene�ts in runtime. However, using di�erentiation matriesmight beome neessary when other than periodi boundary onditions have to be handled (forexamples see Trefethen's book [105℄). Also the relation, similarities and di�erenes, betweenFDMs and PSMs beomes more lear. Trefethen shows that the band-limited interpolant � theDFT interpolant (5.13) with minimal mean square slope � an be written in terms of periodisin funtions SN ,
IN (x) =

N
∑

j=1

ujSN (x− xj), with SN(x) =
dx sin(πx/dx)

2π tan(x/2)
.Now di�erentiation expressions suh as uxx an be approximated by I ′′N (x) =

∑N
j=1 ujS

′′
N (x−xj),or evaluated in the grid points

uxx ≈ DS(uj)j , (5.14)with the di�erentiation matrix (DS)k,l = S′′
N (xk − xl). With this approah the theory from theforegoing setions an be applied equivalently to solve PDEs. Bigger sets of various di�erentiationmatries are already available and need not to be implemented from srath (see Weidemann andReddy [112℄).Using di�erentiation matries an enable to apply more ompliated boundary onditions thanperiodiity. However, sine this is not neessary for the problems in this work, the derivativeapproximations will be obtained with help of existing FFT odes whih are generially optimalfor smooth periodi funtions. Instead of the O(N2) operations needed to evaluate (5.14), theosts are redued to O(N log(N)) � whih is a signi�ant improvement. As mentioned, theorret order of the wave numbers is essential to obtain derivatives with spetral auray. Theuser has to be areful, sine it varies with the pakages that an be used. As before in thisdoument, the theory will refer to Matlab's FFT and all odes will be written in Matlab sript.Sine the routines are based on Fortran's FFTW � fastest Fourier transform in the west [36℄ �the algorithm in Matlab is similarly e�ient.Di�erentiation with the Matlab FFTA di�erentiable, periodi funtion f(x), given by the user as disretization on a sampled domain

[0, 2π], an be di�erentiated with the few lines presented in Matlab Code 5.8. The only ritialpoint is given with the de�nition of the wave numbers whih needs to orrespond to the orderingof the wave vetor Matlab uses for its FFT routine. It is
K = [0, 1, . . . , N/2 − 1, N/2, −N/2 + 1, −N/2 + 2, . . . ,−1] . (5.15)Computing derivatives in this way is not only easy, as long as the underlying funtions are very



128 Chapter 5 Numerial methods for evolution equations on periodi domains% N number of grid points, dx equidistant spaing of grid xgridN=100; dx = 2*pi/N;xgrid = 0:dx:2*pi-dx;%oeffiients for the differentiation in spetral spaeoeff = i*[[0:N/2℄ [-N/2+1:-1℄℄;% f user-defined funtion; 2 pi - periodi, smoothu = f(xgrid)% transform into Fourier spae, multiply with oeffiients, transform baka = fft(u);ax = oeff.*a;ux = real(ifft(ax)); Code 5.8: Spetral di�erentiation with the FFT.smooth, it is also more aurate than any approximation with loal polynomial interpolationon su�iently �ne grids. While polynomials an only ahieve a onsisteny order of O(dxp) forsome p ∈ N, the trigonometri interpolation based derivatives for analyti funtions have the order
O(cN ), for some c < 1. This result is spei�ed soon in more detail, but �rst the HCCH equation(2.14) will be solved with help of trigonometri interpolation. The solution approximation isdenoted as earlier by U = (Uj)j=1,...,N . The equation is transformed into disrete Fourier spae( Û = F(U), U = (Uj)j=1,...,N ), giving

Ût =
δ

2
ikF [U2] + (k4 − k6)Û − k4F [U3], k ∈ K. (5.16)This formula is a salar equation in C. When writing Û , the Fourier transform at a partiularwave number Û(k) is meant. An expression like ikF [U2] has to be read as follows. U is squaredpointwise in disrete real spae. The transformation V = (Vj)j = F [U2] gives an N -vetor inFourier spae. Then for kj ∈ K one alulates the N values ikjVj .Applying a semi-impliit sheme as for the FDM method (5.11) gives

Û+ − Û

dt
=
δ

2
ikF [U2] + (k4 − k6)Û+ − k4F [U3], k ∈ K. (5.17)While for the presented FDM the system of equations (5.12) has to be solved in eah time step,this is not neessary for the PSM. Although the high order derivatives are treated impliitly, theupdate formula for the new vetor in Fourier spae is expliit,

Û+ =
Û + dt{ δ

2 ikF [U2] − k4F [U3]}
1 + dt(k6 − k4)

, k ∈ K. (5.18)An e�ient implementation in Matlab is shown in Code 5.9. First the k-vetors and S, thevetor of denominator values for the system funtion in (5.18), whih is onstant when using an



5.2 Pseudospetral methods (PSMs) 129equidistant time disretization, are de�ned. Then initial values are set up and as one an see the�nal time loop is very short. Note that the input parameters are as in the FDM Codes 5.5 or5.6, only that the domain length L is replaed by a positive integer M de�ning the 2πM longdomain.funtion u = hh_solve_psm(T, dt, n, M, delta)xgrid = linspae(-M*pi, M*pi, n);% wave vetor, differentiation vetors and onstant denominatork = [[0:n/2℄ [-n/2+1: -1℄℄./M;ik = i*k;k4 = k.^4;S = [1 + dt*(k.^6-k4)℄;% initial shape and its Fourier transformU = h_init_random(xgrid);u = fft(U);% time loopfor t = 0:dt:TU = real(ifft(u));u= (u + dt*(delta/2*ik.*fft(U.^2) - k4.*fft(U.^3)))./S;end Code 5.9: Program for the simulation of the HCCH equation with a simple PSM.Comparison of derivative approximationsTwo di�erent methods (5.6) and (5.9) have been presented that are both apable of approximatingsolutions to the HCCH equation. Now the auray of the used derivative approximations isdisussed, sine these determine the auray of the whole methods.As mentioned, all �nite di�erene derivative approximations have a trunation error of order
O(dxp), where p is some integer dependent on the order of the polynomial that is used for theinterpolation. No matter how good the FDM is, the error is always bounded by a power of thegrid spaing dx. This is not the ase for spetral derivatives when the underlying problem isanalyti, sine then the error dereases faster than any power of dx. To be more preise, twotheorems taken from Trefethen [105℄ are ited. The �rst gives a statement about the auray of
Ck funtions and the seond yields the result for analytial funtions.Theorem 23 (Spetral auray) Let u ∈ Cp(R), p ≥ 1 with ∂lu ∈ L2(R), l ∈ {0, 1, . . . , p}with ∂pu of bounded variation. Furthermore let ul be the lth spetral derivative, that is the



130 Chapter 5 Numerial methods for evolution equations on periodi domainsapproximation of ∂lu on a grid dxZ, l < p, and let ∂lu be of bounded variation, then
|ul − ∂lu| = O(dx(p−l))in the small limit dx→ 0. �This is a result �nite di�erenes that are adapted for the underlying problem ould theoretiallyalso ahieve. However, the smoother the funtion, the better does spetral di�erentiation work.Best results are obtained for analytial funtions as the next Theorem says.Theorem 24 (Spetral auray for analyti funtions) Let u ∈ C∞(R) with ∂pu ∈ L2(R),

p ∈ N and of bounded variation. Additionally let up be the pth spetral derivative, then
∀m∈N|up − ∂pu| = O(dxm)in the small limit dx→ 0. �Although these results are stated for funtions on whole R, they apply analogously to periodifuntions on bounded domains. This will be visible in the following examples.It is a quite ommon opinion that FFT based methods bring along problems when disontinu-ities or sharp transitions ome into play. Although this is true, it should be noted that this e�etis not neessarily worse than when using �nite di�erenes. These also rely on the smoothness ofthe underlying funtion. The following example is more or less ontrary to the expetation ofbetter working �nite di�erenes. A '2-phase funtion' is de�ned as

u(x) = tanh(µ(x− 3

4
π)) − tanh(µ(x +

3

4
π)), x ∈ [0, 2π] .It an be interpreted as a transition between two states, whih beome steeper the bigger theparameter µ beomes, as shown in Figure 5.10. Beause of the huge slope it may appear like adisontinuity on a disrete grid with oarse spaings. Although it is a onstruted, aademi fun-tion, it relates to phase-separating systems like the CH equation, where the simplest stationarysolutions desribing the transition between two states are just tanh funtions. Suh funtions alsoappeared in leading order during the disussion of stationary solutions to the HCCH equation inChapter 3.Figure 5.11 shows that the error between a entral �nite di�erenes approximation and thederivative of the example funtion dereases with inreasing number of grid points like a straightline with �nite slope in a log-log-plot � as expeted by the power of dx in the onsistenyresidual � while the spetral derivatives aelerate the derease of the error slope. It wouldbe steeper than any straight line after su�ient inrease of grid points if this e�et would notbe stopped by round-o�, whih omes in shortly above mahine preision and aumulates withbigger grid-sizes. These observations have been made for all tested values of µ.
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FD µ=26Figure 5.11: Doubly logarithmi error plot for the '2-phase-funtion' for di�erent values of µ. The di�erent urveswithout markers orrespond to FFT based di�erentiation, while the nearly straight lines marked with rosses showthe error of a entral �nite di�erene.5.2.2 PSMs for 3D problemsFor the three-dimensional problems, two diretions in spae and one in time, the FFT gives alinear relation between the spatial variables (x, y) and the wave numbers (k1, k2) in Fourier spae.This bond will be denoted by (x, y) ↔ (k1, k2) and the set of wave numbers K beomes now aset of wave number pairs (k1, k2) ∈ K. The disretized Laplaian then obeys the rule
uxx + uyy ↔ (ik1)

2Û + (ik2
2)Û = −k2Û ,with k =

√

k2
1 + k2

2 . As before for one-dimensional derivatives, the auray of the Laplaianapproximation with spetral di�erentiation in two dimensions is astonishing as the error plot foran exemplary Gaussian funtion in Figure 5.11 shows. In this log-log plot the error of the seondorder FD approximation to the exat Laplaian of a given C∞ funtion appears as straight linefor growing numbers of grid points. Interestingly the di�erentiated funtion is not periodi, butanyhow its spetral derivative gives the desired result of spetral auray. Sine the tails ofthe exponential deay rapidly, they are essentially zero at the boundaries and de�ne an arti�ialperiodiity. This an be used for other problems, too. One well-known example where this is done
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fro

|| D u − ∆ u ||
froFigure 5.12: Di�erene of the �nite di�erene and the pseudospetral derivative to the exat Laplaian of u(x, y) =

1/3 exp(−2x2 − 2y2) omputed on a [−2π, 2π] × [−2π, 2π] domain. The errors are alulated in the Frobeniusnorm. Here D is a di�erentiation matrix that stems from a seond order di�erene sheme.is the Korteweg de Vries (KdV) equation modeling the evolution of solitary waves. Trefethengives examples how PSMs an be applied to this equation [105℄.To solve PDEs one an proeed as before. Consider as simple example the di�usion problem(5.2) with periodi boundary onditions. Disretized and transformed into Fourier spae one hasfor eah wave vetor (k1, k2)

Ût = −k2Û , (k1, k2) ∈ K ,whih is an ODE in Fourier spae. An expliit Euler sheme writes
Û+ − Û

dt
= −k2Û ⇔ Û+ = (1 − dtk2)Û , (k1, k2) ∈ Kand leads to the usual problem that a CFL ondition has to be ful�lled and only tiny time stepsare feasible. However, here the stable impliit Euler sheme for linear equations has the niebene�t that it results in an expliit update formula and hene it is not omputationally moreexpensive than the unfavored expliit method.

Û+ − Û

dt
= −k2Û+ ⇔ Û+ = Û/(1 + dtk2) , (k1, k2) ∈ K .Generally any ODE solver is appliable. With the Matlab ode45 solver a short routine an beimplemented as in Code 5.13. These few ommands not only solve the problem, but also plot thesolution. It seems more work to onvert the two-dimensional array to a one-dimensional arrayand bak with the Matlab ommand reshape, than atually to solve the problem. Any linearPDE with periodi boundary onditions and a square domain an be simulated in a similarlysimple way. It beomes more interesting when nonlinearities ome into play.Evolution equations with nonlinearitiesAs before all problems have a square domain and the PDEs are supported with periodi bound-ary onditions. As �rst example onsider a binary phase-separating system, a speial reation-di�usion equation, the Allen-Cahn equation as in Setion 2.2. With a usual saling (ǫ is a



5.2 Pseudospetral methods (PSMs) 133k2 = reshape(k2,n^2, 1);[t,y℄=ode45(�(t,y)laplaian(t,y,k2),[t_min t_max℄, U);for k=1:length(t)mesh(X,Y, real(ifft2(reshape(y(k,:),n,n)')));axis([-L, L, -L, L, 0, 2℄);endfuntion dy = laplaian(t,y,k2)dy = -k2.*y;Code 5.13: Program ode for the omputation of a numerial solution for the di�usion equation with a PSM.small number, if it is hosen too small, the presented method may fail) it an be written fortwo-dimensional square domains as
ut = ǫ∇2u+

1

ǫ
(u− u3) on [−L,L]× [−L,L].The system funtion is a Laplaian applied on the order parameter and an additional nonlinearterm in u, the reation term. Disretized and transformed into Fourier spae, Û = F(u), itbeomes

Ût = −ǫ k2 Û +
1

ǫ
(Û −F(U3)) , (k1, k2) ∈ K .The nonlinearity prevents an impliit Euler to de�ne an expliit update formula as this is thease for linear PDEs. For this system it writes

Û+ − Û = −ǫ dt k2Û+ + dt
1

ǫ
(Û+ −F((U+)3)) , (k1, k2) ∈ K .A nonlinear, omplex system would have to be solved in eah iteration. This would be very ostly,beause Newton-like methods would have to be inorporated. As before this is avoided by usingsemi-impliit methods. For a semilinear PDE it is of big advantage to treat the high (and lukilylinear) derivatives impliitly and leave the nonlinearities expliit. For the Allen-Cahn equationthis gives

Û+ − Û

dt
= −k2 ǫ Û+ +

1

ǫ
(Û+ −F(U3))

⇔ Û+ = (Û − dt
1

ǫ
F(U3))/S (k1, k2) ∈ K .Here

S = S(k1, k2) = (1 + dt(k2ǫ− 1

ǫ
))is a onstant N×N matrix and this expliit updating sheme makes an implementation straight-forward. One S is de�ned, the main iteration in a Matlab environment an be written as



134 Chapter 5 Numerial methods for evolution equations on periodi domainsfor t = 0:dt:Tu = (u - dt*(fft2(real(ifft2(u)).^3)./epsilon))./S;endNote that when L = 2πM for some M ∈ N, the Matlab wave vetor K in (5.15) has to besaled by dividing by M . As for linear PDEs, now no system of equations has to be solved.However, as often when omputational speed and simpliity is gained there exists a drawbak.Sine the nonlinearity is treated expliitely, the sheme is not stable for big time steps and a CFLlike restrition on its size has to be onsidered to prevent blow-up. However, for problems thatinvolve nonlinearities it is di�ult to derive analytial bounds on the step size and sometimes onlytrial and error gives su�ient experiene to determine how big it an be hosen. Neverthelessit is a huge bene�t in omparison to a purely expliit formula, sine the high derivatives wouldmake the restrition not or at least very di�ult to manage. This is less probable for purelynonlinear problems.Analogously a sheme an be obtained to simulate the Cahn-Hilliard equation in two lateraldimensions
ut = ∇2[u3 − u−∇2u] on [−L,L]× [−L,L].The additional two derivatives appear as multipliation by −k2, so that the update formulawrites
Û+ = (Û − dt(k2F(U3)))/S , (k1, k2) ∈ K ,with the slightly altered expression

S = 1 + dt(k4 − k2) . (5.19)For the equation desribing the faeting of a growing surfae, (2.13), one an proeed in the sameway. The tri-Laplaian
∇6u = uxxxxxx + 3(uxxxxyy + uxxyyyy) + uyyyyyydisretized and in Fourier spae beomes

∇̂6U |(k1,k2) = −(k6
1 + 3k4

1k
2
2 + 3k2

1k
4
2 + k6

2)Û = −k6Û , (k1, k2) ∈ K ,so that the expression (5.19) an be used aordingly. A semi-impliit Euler PSM then writes
Û+ − Û

dt
= LÛ+ + N ,

⇔ Û+ =
Û + dtN
1 − dtL , (k1, k2) ∈ K , (5.20)with the linear operator
L = k4 − k6



5.2 Pseudospetral methods (PSMs) 135and the nonlinear, expliit term
N =

δ

2
F [H2

X +H2
Y ] + k2F [b(H2

XHY Y +H2
YHXX + 4HXHYHXY ) + 3H2

XHXX + 3H2
YHY Y ] .For the evaluation of the nonlinearity, the derivatives an be obtained with spetral di�erentia-tion. For example HXHY HXY an be evaluated as F [F−1[ik1Û ]F−1[ik2Û ]F−1[−k1k2Û ]].For neither of the CH type equations it is di�ult to establish a PSM that works as long as nottoo small parameters are involved. Corresponding ODE shemes are summarized in Table 5.1.It remains to introdue the sheme that has been used for the other main equation of this work,the QDM equation (4.24). It an be solved with sheme (5.20), with new linear and nonlinearterms

L = ẽk3 − k4 , (5.21)
N = k2(ik1F [∂HXW ] + ik2F [∂HY W ] + γ̃F [

1

H2
]) .For the ase with deposition, equation (4.22), the update formula is slightly adjusted, itbeomes

Û+ =
Û + dt(N + r)

1 − dtL , (k1, k2) ∈ K (5.22)where r = F̌ r3/|w| and the linearity is adjusted to
L = ẽk3 − k4 − iF̃ (k1r1 + k2r2)/|w| . (5.23)Finally, before this last regular Chapter is �nished and a short disussion and the outlookfor future work ompletes this doument, a last remark on the di�erene between PSM andspetral methods (SM) is given. Generally PSMs are a sublass of SMs. One an derive eitherFDMs, FEMs, SMs or PSMs as methods of weighted residuals. Therefore the sought solutionis expanded and a residual based on this expansion is de�ned. It then is inserted into a salarprodut with suitable test funtions as dual pairing and minimization of this produt gives anapproximate solution. Dependent on the test and basis funtions, this approah results in thedi�erent numerial methods known for solving PDEs. In ase of SMs and PSMs one hoosesglobal funtions suh as trigonometri funtions or Chebyshev polynomials as basis elements. Inase of the PSM the test funtions are speial, delta funtions are hosen for that end. As a resultintegrals are evaluated only in ertain points � the olloation points � while for other SMs theintegrals have to be evaluated ompletely. This explains why PSMs are also alled olloationmethods.
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PDE in real spae ht = f(h, hx, . . .) Sheme in Fourier spae Ût = LÛ + N

f = ∇2h L = −k2

f = −∇4h L = −k4 = −(k4
1 + 2k2

1k
2
2 + k4

2)

f = ∇6h L = −k6 = −(k6
1 + 3k4

1k
2
2 + 3k2

1k
4
2 + k6

2)

f = ∇2h− h3 + h L = −k2 + 1,N (H) = −F [H3]

f = ∇2(−∇2h+ h3 − h) L = −k4 + k2,N (H) = −k2F [H3]

f = ∇4(∇2h− h3 + h) L = −k6 + k4,N (H) = −k4F [H3]

f = ∇4H + ∇6H −∇2[b(H2
XHY Y +H2

YHXX L = −k6 + k4

+4HXHYHXY ) + 3H2
XHXX + 3H2

YHY Y ] N = k2[bF [H2
XHY Y +H2

YHXX

+4HXHYHXY ] + 3F [H2
XHXX +H2

YHY Y ]]

f = ∇2[F−1[−ẽkF [H ]] −∇2H − γ̃
H2 L = ẽk3 − k4

−∇ · ∇∇HW (HX , HY )] N = ik1F [∂HXW ] + ik2F [∂HY W ] + γ̃F [ 1
H2 ]

f = ∇2[F−1[−ẽkF [H ]] −∇2H − γ̃
H2 L = ẽk3 − k4 − iF̃ /|w|(r1k1 + r2k2)

−∇ · ∇∇HW (HX , HY )] N = ik1F [∂HXW ] + ik2F [∂HY W ] + γ̃F [ 1
H2 ]

+ F̌ r3

|w| − F̃
|w|(r1HX + r2HY ) r = F̌ r3/|w|Table 5.1: Summarizing table: System funtions for the evolution equations in 3D for the di�erentPDEs onsidered in this work and orresponding shemes in Fourier spae.



Chapter 6Summary and disussionFrom the end spring new beginnings. Pliny the Elder (23 AD - 79 AD)In this work many important topis onerning the self-assembly of thin rystalline �lms havebeen addressed, several questions were answered, others were posed. From the set-up of ontin-uum models, to redution via small slope approximations, existene of solutions, their long-timebehavior, analysis of stationary solutions and numerial simulations, many new results have beenpresented. To work with the high order equations of Cahn-Hilliard type new theory has beenestablished. The thesis is summarized on these last pages and at the end possibilities for futureresearh are outlined.It has been desribed how to model an epitaxy proess in terms of a ontinuum theory basedon Mullins' surfae di�usion formula. Various equations introdued in publiations from thelast two or three deades an be derived with help of the presented modeling approah. Self-ontained evolution equations of fourth and sixth order are obtained by applying a onsistentmodel redution. Therefore harateristi sales of the underlying problem are inorporated tode�ne asymptoti expansions, whih an be used to identify less important terms that an benegleted. How to de�ne a reasonable hemial potential, whih at the end of the day has themain in�uene on the evolution, is still under disussion although the models improved a lotduring the last deades. Over the years more and more of the important e�ets one wishes tomodel have been aptured. Two fundamentally di�erent potentials for two phenomena have beenaddressed in this work. They result in two evolution equations alled here the HCCH equation[89℄ and the new QDM equation [56℄, whih were simulated and analyzed on many aspets.The �rst model relies on a strongly anisotropi surfae energy that is regularized by a Wilmoreterm and additionally a normal atom �ux impinges onto the surfae. For the resulting PDEexistene of weak solutions has been proved. A Galerkin approah has been applied to establishthe result. To obtain lower order bounds in the �rst stage, a suitable inverse operator of the137



138 Chapter 6 Summary and disussionbi-Laplaian has been applied to the equation whih then has been tested with suitable funtions.One an proeed with the standard form of the equation to derive higher order bounds. Passingto the limit of the Galerkin approximation yields the desired result. A pseudospetral method wasused to atually ompute approximate solutions. With help of this numerial method it has beenfound that the harateristi wave lengths of the traveling wave or stationary solutions derease,until a haoti regime is reahed. In a next step possible stationary solutions have been derivedand ertain features were desribed analytially. Heterolini onnetions in a �fth order phasespae have been found. These an be traked in a parameter plane by appliation of a suitableontinuation approah. For solutions on one of the branhes a method of mathed asymptotishas been introdued. It is speial in that it retains exponentially small terms in a mathingproedure to derive expressions for the far-�eld parameter for the new spatially nonmonotonoussolutions in the limit of small driving strength. It extends a method that has been introduedby Lange [62℄. Furthermore a harateristi hump spaing has been related to the Lambert Wfuntion, whih loses the analysis to the HCCH equation within this work. Although manyresults have been established, more work is on the way. For the original equation for the faetingof a growing surfae in three dimensions (2.13) an existene proof for weak solutions is prepared.Uniqueness is still an open question up to now.The QDM equation is the �rst onsistent small slope redued equation for quantum dotgrowth whih inludes the e�ets of stresses, wetting interations, anisotropi surfae energy and adeposition �ux at one. An elasti problem has to be onsidered, beause of the oherent interfaea destabilizing ohereny stress is reated in the growing rystal. It ompetes with the surfaeenergy, whose variable anisotropy allows for di�erent preferred faets. A height-dependeny of thesurfae energy results in a onnetion of the islands by a very thin �lm. Simulations have shownthat the QDM equation is apable to desribe the assembly of Ge/Si(001) pyramids and theirOstwald ripening. A pseudospetral method enables large-sale simulations that show triangularsolutions in two dimensions and faeted islands in three dimensions whose shapes depend on theinorporated anisotropy formula. The linear stability analysis desribes analytially what anbe observed in early stages of simulations. The anisotropy ats destabilizing and the ritialthikness of �at �lms dereases when the anisotropy parameter is inreased. The most unstablewave lengths then beome smaller. A randomly perturbed deposition �ux has been added intothe model and indeed the Stranski-Krastanov growth mode is observed during simulations. As inexperiments the island density inreases for stronger atomi �uxes. Ostwald ripening of quantumdots as in experiments by IBM qualitatively validate the model. The ripening takes plae witha rate that obeys a power law for the late time of evolution.A hapter about the numerial shemes used for the simulations in this thesis has ompletedthe work. Motivated as interpolation methods, �nite di�erene and pseudospetral methods wereintrodued that are appliable to solve the high order PDEs desribing the self-assembly of thinrystalline surfaes. Due to the smoothness of the solutions, the PSM works espeially well when



139periodiity of the solutions is assumed, as this is also the ase in the existene proof. Matlabodes were enlosed to show how short the implementations of suh e�etive methods may be.The �eld of modeling, analysis and numerial simulation of self-assembled solid struturesallows for further researh. A possible task is the extention of the QDM equation to anisotropielastiity. Similarly as done by Pang and Huang [78℄, Hooke's law might be adjusted to bulkanisotropy. However, the authors treated a half-spae problem, while a real extension of the QDMequation would need the possibility to allow for di�erent elasti onstants in the �lm and in thesubstrate. Of partiular interest in modeling are the interfae onditions whih are ruial inheteroepitaxial systems. Sine it beomes popular to use staked quantum dots [15, 90℄ � atomsare deposited epitaxially on a substrate that ontains 'built-in' strain due to underlying inlusions� the derived QDM equation might be extended to a model for the growth of suh many-layersystems in a similar way as for �uids, where several layers of liquid material are overing eahother [80℄. A study of the interfaes and onditions at these boundaries would be neessary.Furthermore the numeris might be another hallenge due to growing omplexity for both, theevolution equation and the oupled elastiity problem. From the theoretial side existene ofsolutions may be analyzed further, be it for the QDM equation, for stationary solutions or apossible new model for staked nanoislands.
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Appendix AMathematial basis: SurfaemodelingThe following mathematial basis are presented without detailed assumptions that an be im-posed. All funtion are assumed to be su�iently smooth, so that the expressions stated makesense.Consider a funtion h : Ω → R that smoothly parameterizes a surfae
S = {(x, y, z) ∈ R3|∃(x,y)∈Ω : h(x, y) = z} ,where Ω ⊂ R2 is bounded with Lipshitz boundary and onneted. Then one an de�ne tangentialand normal vetors, the mean urvature and the surfae Laplaian.Two tangent vetors, t1 and t2, are de�ned by di�erentiating the graph funtion (x, y) →

(x, y, h(x, y)) with respet to the domain variables x and y:
t1 = (1, 0, hx)T , t2 = (0, 1, hy)

T .The unit normal n is orthogonal to both of these vetors and it has unit length. The orthogonalityis by onstrution given as ross produt and normalization yields the desired unit length.
n =

t1 × t2
‖t1 × t2‖

=
1

√

1 + |∇h|2









−hx

−hy

1









. (A.1)The mean urvature is de�ned as
κ =

hxx(1 + h2
y) + hyy(1 + h2

x) − 2hxhyhxy

(1 + |∇h|2) 3

2

. (A.2)There are di�erent de�nitions in other works, in partiular ruial sign hanges may be found.Here a parabola bounded below has a mean urvature bigger zero. The surfae Laplaian, applied149



150 Appendix A: Mathematial basis for surfae modelingfor surfae di�usion problems, is given as
∇2

s =
1

1 + |∇h|2
(

(1 + h2
y)∂xx + (1 + h2

x)∂yy − 2hxhy∂xy − κ
√

1 + |∇h|2(hx∂x + hy∂y)
)

. (A.3)However, use of this longsome expression is mostly avoided by appliation of a long wave ap-proximation. To leading order, for surfaes with small slopes, it simply beomes the standardLaplaian.Often surfae integrals are used in the modeling of surfae energies. There it is useful tode�ne an in�nitesimal surfae element. It is given as
dS =

√

1 + |∇h|2dxdy .It an be derived in one dimension with help of Taylors expansion and Pythagoras
∆s =

√

∆x2 + ∆z2 =
√

∆x2 + [h(x+ ∆x) − h(x)]2

.
=
√

∆x2 + [h(x) + hx∆x− h(x)]2 = ∆x
√

1 + h2
x .In mathematial modeling the Euler-Lagrange equation appears frequently when instead of diretsolving of a PDE a minimizer of a funtional is sought. Let

∫

Ω

F (h,∇h)dVbe a funtional with a su�iently smooth kernel F : Ω → R, F 7→ F (h,∇h). To �nd a minimizer,any diretion (h̄,∇h̄) (here: a funtion in a suitable spae, e.g. ∇h̄ · n = 0 on ∂Ω or periodi,so that partial integration an be applied suh that boundary terms are zero) the diretionalderivative has to vanish
0 =

d

dǫ

∫

Ω

F (h+ ǫh̄,∇h+ ǫ∇h̄)dx

=

∫

Ω

d

dǫ
F (h,∇h) + Fh(h,∇h)ǫh̄+ F∇h(h,∇h)ǫ∇h̄+ O(ǫ2)dx

=

∫

Ω

Fh(h,∇h)h̄+ F∇h(h,∇h)∇h̄+ O(ǫ)dx

=

∫

Ω

[Fh(h,∇h) −∇F∇h(h,∇h)]h̄+ O(ǫ)dx .The fundamental lemma of alulus of variation says that F has to ful�ll the so-alled Euler-Lagrange-equation as neessary ondition for an extremum h in the leading order
∂

∂h
F (h,∇h) −∇ · ∇∇hF (h,∇h) = 0 .



Appendix A: Mathematial basis for surfae modelingFor higher order gradient dependeny of the energy funtional the results an be extended. Ingeneral one refers to the terms on the left as the funtional or variational derivative δE/δh. Formore spatial dimensions the general form writes
δ

δh

∫

Ω

F (h,∇h,∇2h, . . .)dV =
∂F

∂h
−∇ · ∂F

∂(∇h) + ∇2 · ∂F

∂(∇2h)
− . . . . (A.4)



Appendix BMathematial basis: DynamialsystemsFollowing this book by Gukenheimer and Holmes [46℄, here the most important terminologyfrom the �eld of dynamial systems is brie�y introdued. The following de�nitions are neededwhen heterolini solutions, onnetions between two saddle points, are sought. Starting with anautonomous, expliit ODE
∂nu = f(u, ∂u, . . . , ∂n−1u) ,one obtains by setting U1 = u, U2 = ∂u, . . . , Un = ∂n−1u a �rst order system

U ′ = F (U) ∈ Rn .It de�nes an n dimensional phase spae � the topologial spae where solutions live. Preiselyone de�nes:A dynamial system is a tuple (X,φ), where X is the phase spae (say X = Rn) and φ is anevolution operator
φ : X × R → X, φ = φ(U, t) ,whih ful�lls (with U ∈ X, ti ∈ R, i = 1, 2)1. φ(U, 0) = U2. φ(U, t1 + t2) = φ(φ(U, t1), t2) .These onditions ome into play naturally, sine typially t is the time so that the �rst onditionstates that the position of a point under a �ow is unhanged in the beginning of observation andthat stepping suessively forward two times t1 and t2 is the same as if one would diretly makeone big step t3 = t1 + t2. 152



Appendix B: Mathematial basis for dynamial systems

Figure B.1: Stable manifold W S of an equilibrium point UE and its linear approximation ES .A �ow is a dynamial system (X,φ) whih ful�lls
d

dt
φ(U, t) = F (φ(U, t)) .For example solutions to ODEs de�ne �ows. These are sets of trajetories in the phase spae.An orbit or a trajetory (for U ∈ X) is the set
{φ(U, t) | t ∈ R} .A point UE ∈ X is alled �xed/equilibrium/stationary point or steady state if φ(UE , t) = UEfor all time. The stable and unstable manifolds are de�ned as the set of trajetories tending toor away from suh an equilibrium point UE

W s(UE) = {U ∈ X | lim
t→∞

φ(U, t) = UE} ,

Wu(UE) = {U ∈ X | lim
t→−∞

φ(U, t) = UE} . (B.1)A heterolini onnetion is an orbit between two hyperboli equilibrium points UE
+ and UE

−

φ(U, t) with lim
t→±∞

φ(U, t) = UE
± (or UE

∓ ) .Usually tangent linearizations Es/u(UE) ≈ W s/u(UE) near equilibrium points are used to om-pute approximately the whole manifolds with a omputer. A very simple example is depited inFigure B.1. A linearized manifold yields a loal desription of the nonlinear manifold near thestationary point. Taylor's expansion
F (UE + δU)

.
= F (UE) + δF ′(UE)Uand

F (UE) = 0 ⇒ F (UE + δU) = (UE)′ + δU ′ = δU ′



154 Appendix B: Mathematial basis for dynamial systemsyield the ODE
U ′ = F ′(UE)U = AU .The eigenvetors of the system matrix A span the solution spae. The sign of the eigenvalues de-termines exponential growth or deay for the fundamental solutions, hene one lassi�es di�erentsubspaes spanned by the eigenvetors of A:1. The stable subspae Es = span{v1, . . . , vns}2. The unstable subspae Eu = span{u1, . . . , unu}3. The entered subspae Ec = span{w1, . . . , wnc}The vetors vi are the (generalized) Eigenvetors orresponding to solutions with exponentialdeay, hene to Eigenvalues with ℜ(λi) < 0, ui to those with ℜ(λi) > 0 and wi orrespond toEigenvalues with zero real part, hene indiate osillations with onstant amplitude or onstants(for λ = 0). Obviously n = ns + nu + nc. In this work the ase nc = 0 and hene n = ns + nu isonsidered for alulations of steady states of the HCCH equation.So-alled in�nite-dimensional semi-dynamial systems are frequently used in onnetion withevolution equations. The solution to a time-dependent PDE ut = F (u, ux, uy, uxx, . . .) at onepartiular time point t is typially an element of a Banah spae X . The PDE de�nes trajetoriesin an in�nite semi-dynamial phase spae via

u : [0, T ] → X, t 7→ u(t) ∈ X .Sine t ≥ 0 (the other diretion of integration typially leads to blow-up), suh equations formsemi-dynamial systems.



Appendix C
ElastiityIn this appendix the long wave approximation for the elastiity problem, whih has not beenaddressed in detail in the body of the doument, is presented. Charateristi sales are usedto de�ne expansions of the displaements in �lm and substrate. This yields di�erent problemsto di�erent orders. With suitable mathing one an derive an expansion for the strain energydensity Esed. The following alulations have been arried out by Tekalign and Spener [102℄,here they are repeated with more details.Redued expressions for the strain energy densityTo evaluate the strain energy density at the surfae (1.25), it is neessary to obtain expressionsfor the displaements. In Setion 1.3.1 these have been derived for a simple on�guration �the base state. In general it is not easy to determine analytial expressions for the strain energydensity and either laborious numerial approximations are sought or analytial simpli�ations aremade. Here a thin-�lm redution �rst introdued by Tekalign and Spener [102℄ is arried out. Touse the small-slope approximation requires to sale the Navier-Cauhy equations, the boundaryonditions and the strain and stress with the harateristi lengths. The harateristi horizontallength sale on the wafer in systems like Ge/Si is large in omparison to the vertial sale. Thefaets have small slopes whih an be used to identify small terms that may be negleted. Theharateristi thikness is H0 and the horizontal length sale in x and y diretions is L. Then
α = H0/L≪ 1 is a small parameter used for the overall saling

(x, y) = (LX,LY ), z = H0Z = αLZ ,

h = H0H = αLH, ui(x, y, z) = LUi(X,Y, Z) . (C.1)155



156 Appendix C: ElastiityInsertion into the Navier-Cauhy equations (1.31), the strain tensor (1.29), the stress tensor(1.28) and boundary onditions at Z = H , (1.32) results in the saled elastiity equations
(1 − 2ν)(∂2

X + ∂2
Y +

1

α2
∂2

Z)U1 + ∂2
XU1 + ∂X∂Y U2 +

1

α
∂X∂ZU3 = 0 ,

(1 − 2ν)(∂2
X + ∂2

Y +
1

α2
∂2

Z)U2 + ∂2
Y U2 + ∂X∂Y U1 +

1

α
∂Y ∂ZU3 = 0 ,

(1 − 2ν)(∂2
X + ∂2

Y +
1

α2
∂2

Z)U3 +
1

α2
∂2

ZU3 +
1

α
∂Y ∂ZU2 +

1

α
∂X∂ZU1 = 0 . (C.2)The symmetri strain tensor beomes

(ǫij)i,j =









∂XU1
1
2 (∂XU2 + ∂Y U1)

1
2 (∂XU3 + 1

α∂ZU1)
1
2 (∂XU2 + ∂Y U1) ∂Y U2

1
2 (∂Y U3 + 1

α∂ZU2)
1
2 (∂XU3 + 1

α∂ZU1)
1
2 (∂Y U3 + 1

α∂ZU2)
1
α∂ZU3









, (C.3)while the symmetri stress tensor (σij)ij an be written omponent-by-omponent as
σ11 = λf (∂XU1 + ∂Y U2 +

1

α
∂ZU3) + 2µf∂XU1 ,

σ22 = λf (∂XU1 + ∂Y U2 +
1

α
∂ZU3) + 2µf∂Y U2 ,

σ33 = λf (∂XU1 + ∂Y U2 +
1

α
∂ZU3) +

2

α
µf∂ZU3 ,

σ12 = σ21 = µf (∂XU2 + ∂Y U1) ,

σ13 = σ31 = µf (∂XU3 +
1

α
∂ZU1) ,

σ23 = σ32 = µf (∂Y U3 +
1

α
∂ZU2) . (C.4)

λf and µf are the two Lamé parameters, see also Table C.1 for elastiity parameter onversion.The boundary onditions on the �lm σijnj = 0 ⇔ σijnjN = 0 beome
0 =

µf

α
∂ZU1 +

(

µf∂XU3 − λfHX∂ZU3

)

−α
(

(λf (∂XU1 + ∂Y U2) + 2µf∂XU1)HX + µf (∂XU2 + ∂Y U1)HY

)

,

0 =
µf

α
∂ZU2 +

(

µf∂Y U3 − λfHY ∂ZU3

)

−α
(

µf (∂XU2 + ∂Y U1)HX + (λf (∂XU1 + ∂Y U2) + 2µf∂Y U2)HY

)

,

0 =
1

α
(2µf + λf )∂ZU3 +

(

λf (∂XU1 + ∂Y U2) − µf (HX∂ZU1 +HY ∂ZU2)
)

−α
(

µf (HX∂XU3 +HY ∂Y U3)
)

. (C.5)The displaements in the �lm (here without supersripts) are expanded in terms of the slopeparameter
Ui = U

(0)
i + αU

(1)
i + α2U

(2)
i + O(α3), i = 1, 2, 3 . (C.6)These are inserted into the resaled Navier-Cauhy equations (C.2) and the boundary onditions(C.5) whih results in di�erent problems at di�erent orders. These are



Appendix C: Elastiity
O(1):To the leading order the Navier-Cauhy equations write

∂2
ZU

(0)
1 = 0, ∂2

ZU
(0)
2 = 0, ∂2

ZU
(0)
3 = 0and the boundary onditions at Z = H beome

∂ZU
(0)
1 = 0, ∂ZU

(0)
2 = 0, ∂ZU

(0)
3 = 0 .

O(α):The �lm equations for the next order problem write
0 = ∇̌ · (U (1)

i , U
(0)
3 ) + δ3i(∂

2
ZU

(1)
3 + ∂X∂ZU

(0)
1 ), i = 1, 2, 3 , Z ∈ (0, H) , (C.7)in the �lm and on the upper boundary

0 =
2ν

1 − 2ν
∂ZU

(0)
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3 , (C.8)
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(0)
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(0)
2 HY , at Z = H,where for the Navier-Cauhy equations the seond order di�erential operator

∇̌ =

(

(1 − 2ν)∂2
Z

∂X∂Z

)was used.
O(α2):One order up it an be proeed analogously with the Navier-Cauhy equations, while the upperboundary onditions write

∂ZU
(2)
1 = −∂XU

(1)
3 +

2ν

1 − 2ν

(

∂XU
(0)
1 + ∂Y U

(0)
2 + ∂ZU

(1)
3

)

HX

+2HX∂XU
(0)
1 + (∂XU

(0)
2 + ∂Y U

(0)
1 )HY ,

∂ZU
(2)
2 = −∂Y U

(1)
3 +

2ν

1 − 2ν

(

∂XU
(0)
1 + ∂Y U

(0)
2 + ∂ZU

(1)
3

)

HY

+2HY ∂Y U
(0)
2 + (∂XU

(0)
2 + ∂Y U

(0)
1 )HX ,

∂ZU
(2)
3 =

ν

2(1 − ν)
(∂ZU

(1)
1 HX + ∂ZU

(1)
2 HY ) +

ν

ν − 1
(∂XU

(1)
1 + ∂Y U

(1)
2 )

+
ν

2(1 − ν)
(∂XU

(0)
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(0)
3 HY ) . (C.9)Now the derived PDEs have to be solved. This is done also one order after another, so thatthe just derived expressions for lower orders an be inserted into the atual alulations.

O(1):The general solutions for the �lm equations are
U

(0)
1 = A1(X,Y )Z+B1(X,Y ), U

(0)
2 = A2(X,Y )Z+B2(X,Y ), U

(0)
3 = A3(X,Y )Z+B3(X,Y )



158 Appendix C: Elastiitywith integration fators Ai(X,Y ) and Bi(X,Y ). The boundary onditions imply that the oef-�ients of the linear terms are zero, so that the leading order solutions simplify to
U

(0)
1 = B1(X,Y ), U

(0)
2 = B2(X,Y ), U

(0)
3 = B3(X,Y ) .The leading order solution for the �lm displaements should orrespond to the solution to thebase state (1.37), whih is in the new sales
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.This leads to expressions for the Bi terms, so that the leading order solution is the linear funtion
U

(0)
1 = ǫX, U

(0)
2 = ǫY, U

(0)
3 = 0 . (C.10)

O(α):Equations (C.7) and (C.8) give the O(α) displaements
U

(1)
i = A

(1)
i (X,Y ), i = 1, 2, U

(1)
3 =

2ν

ν − 1
ǫZ + A

(1)
3 (X,Y ) . (C.11)Here A(1)

i are funtions that will have to be spei�ed through expressions of the substrate dis-plaements and the boundary onditions at the interfae. To derive the O(α) strain tensor theproedure has to be repeated one more for the next order.
O(α2):The general solutions is as in the preeding orders

U
(2)
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(2)
i (X,Y )Z +A

(2)
i (X,Y ) . (C.12)The boundary onditions to the same order, (C.9), simplify after inserting the lower order solu-tions to
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2 (X,Y )) .These expressions are just the Bi funtions in (C.12), so that the seond order terms beome
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Appendix C: ElastiityInsertion of the expressions for the displaements into the strain and the stress tensor ( (C.3)and (C.4)), respetively, give the leading order strain energy density
E(0)

sed =
1

2
σ

(0)
ij ǫ

(0)
ij =

E

1 − ν
ǫ2 = Ebase

sedand the next order orretion
E(1)
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2

(

σ
(1)
ij ǫ

(0)
ij + σ

(0)
ij ǫ

(1)
ij
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=
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2 +

E
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∂XA
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1
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ǫE

1 − ν
(∂XA

(1)
1 + ∂Y A

(1)
2 ) . (C.13)The leading order term is just the strain energy density of the base state (1.36). To su�ientlydesribe epitaxial growth, this order has to be inorporated into the evolution equation and henethe integration fators A(j)

i have to be determined. This will be done by alulating the elastiresponse of the substrate. Here, the saling is hosen slightly di�erently. Unlike the �lm, thevertial and the horizontal sales are similar and the displaements are saled with the samelength
(x, y, z) = L(X,Y, Z̄), us

i = LUs
i .

Z̄ is di�erent than the Z from before, however, for onveniene the bar will be dropped. Theproblem is transformed into Fourier spae for the two horizontal, in�nite dimensions. With thewave numbers k1 and k2, 2D transforms for the �lm height and the substrate displaements write
Ĥ(k1, k2, t) =

∫

R2

H(X,Y, t)e−ik1X−ik2Y dXdY ,

Ûs
i (k1, k2, Z, t) =

∫

R2

Us
i (X,Y, Z, t)e−ik1X−ik2Y dXdY , i = 1, 2, 3 .The orresponding inverse transformations are
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Us
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Ûs
i (k1, k2, Z, t)e

ik1X+ik2Y dk1dk2 , i = 1, 2, 3 .Navier-Cauhy equations (1.31) in Fourier-spae write (with Ûs
i = Ûs

i (k1, k2, Z, t))
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1Û
s
1 − k1k2Û
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√

k2
1 + k2

2 is the length of the wave vetor. These equations are ful�lled if the kernelsof the integrals are identially zero
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s
2 + ∂ZZ Û

s
3 , (C.14)in the in�nite half-spae below the solid-solid interfae, hene for Z < 0. At minus in�nity theondition

Ui
Z→−∞→ 0has to hold. Expanding the displaements

Us
i = Us

i0 + αUs
i1 + α2Us

i2 + O(α3) (C.15)and its transform analogously gives the interfae ondition (1.34) at Z = 0 ,
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3j . (C.16)For the orresponding orders this leads to the onditions

Us
i0 = 0, Us

ij = Uf
ij , i = 1, 2, 3, j ∈ {1, 2, . . .} at Z = 0 . (C.17)Beause of the linear harater, equations (C.14) are ful�lled if the O(αj) problems
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3j , (C.18)hold true. The solutions are

Ûs
ij = Cije

kZ + ZekZ ki

k(3 − 4νs)

3
∑

l=1

klClj . (C.19)Here k3 = ik for notational onveniene and not a third wave number as one might think. Theunknown funtions Cij are determined by the boundary onditions (C.17). For orders α and α2these give
Cij = (Û

(j)
i )|Z=0 = Â

(j)
i , i = 1, 2, 3, j = 1, 2 . (C.20)



Appendix C: ElastiityFurthermore the ontinuity ondition on the normal stresses (1.35) to these orders is
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i3 )f
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|z=0, l = 1, 2 . (C.21)As desribed later this gives
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Ĥ , (C.22)with

ẽ =
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. (C.23)Using equation (C.20) in the strain energy term of order α (C.13) gives in Fourier spae
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ǫ2(ẽkĤ) ,so that overall the strain energy density orretion is

E(1)
sed = F−1[−Ebase

sed ẽkĤ ] . (C.24)As last step, the expressions in (C.22) are derived. Using the expansions (C.15) in Hooke'slaw (1.28), whih relates the stress and the strain tensor, gives
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2l) . (C.25)These formulas are inserted together with the expressions (C.4) for the �lm stress into theinterfae normal ontinuity ondition (C.21). To order α−1 no onditions are obtained. To order

O(1) also no restritions an be found as follows from the next alulation.
O(1):

λf (∂XU
(0)
1 + ∂Y U

(0)
2 + ∂ZU

(1)
3 ) + 2µf∂ZU

(1)
3 = λs(∂XU

s
10 + ∂Y U

s
20 + ∂ZU

s
30) + 2µs∂ZU

s
30 ,

µf (∂XU
(0)
2 + ∂Y U

(0)
1 ) = µs(∂XU

s
20 + ∂Y U

s
10) ,

µf (∂XU
(0)
3 + ∂ZU

(1)
1 ) = µs(∂XU

s
30 + ∂ZU

s
10) .



162 Appendix C: ElastiityInserting the solutions (C.11) and (C.10) and using (C.17) shows that these equations do notde�ne any new restritions. Only in the �rst equation there are nonzero terms on the left handside, these are
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2ν

ν − 1
ǫ) + 2µf 2ν

ν − 1
ǫ = 0and thus also do not ontribute anything. The next order is important.
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21) .Inserting the expressions for the solutions and hanging to Fourier spae gives
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.This is a 3x3 linear system for the Ck1 funtions, giving exatly the expressions in (C.22).
Conversion of elastiity parametersFor homogeneous isotropi media generally two elasti moduli are su�ient for the desriptionof Hooke's law. However, there are di�erent suh parameters and these an be tranformed intoeah other. Table C.1 shows the most important transformations, whih are espeially usefulwhen other publiations are studied. There frequently other parameters are used in the elastiityexpressions.
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(ν,E) (µ,E) (µ, ν) (ν, λ) (µ, λ)

E id id 2µ(1 + ν) λ (1−2ν)(1+ν)
ν µ 3λ+2µ

λ+µ

λ Eν
(1+ν)(1−2ν) µE−2µ

3µ−E
2µν
1−2ν id id

µ E
2(1+ν) id id λ1−2ν

2ν id

ν id E
2µ − 1 id id λ

2(λ+µ)Table C.1: E Young's modulus (or elasti modulus), λ Lamé's �rst parameter, µ Lamé's seondparameter (shear modulus), ν Poisson's ratio. The table shows some transformation between theelastiity parameters (soure Wikipedia or any good book on elastiity).Constants for HCCH mathingHere the onstants abbreviated for use in Chapter 3 are given:
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Spaes, salar produts and normsLet Ω ⊂ Rn bounded with Lipshitz boundary and f : Ω → R. Then the spaes, orrespondingsalar produts and indued norms an be de�ned as follows.
• Standard Eulidean norm for vetors v ∈ Rn: |v| = (

∑n
j=1 v

2
j )1/2

• Ck(Ω,R) = {f : Ω → R : f is k times ontinuously di�erentiable}
• C∞(Ω,R) = {f : Ω → R : f is ∞ times ontinuously di�erentiable}
• Lp-norm: ‖f‖Lp(Ω) = (

∫

Ω
|f |pdV )1/p

• Notation for L2: ‖f‖ = ‖f‖L2(Ω)

• ‖f‖L∞ = limp→∞ ‖f‖Lp(Ω) = ess supx∈Ω|f(x)| = infc≥0{|f(x)| ≤ c, a.e.}

• Lebesgue spaes: Lp(Ω) = {f : Ω → R measurable:‖f‖Lp(Ω) <∞}, p ∈ (0,∞]

• The salar produts induing the p-norm are for f, g : Ω → R: (f, g)Lp =
∫

Ω
(fg)p/2dV

• Sobolev spaes with time:
Lp(0, T ;X) = {f : [0, T ] → X : f measurable, ‖ ‖f(t)‖X‖Lp([0,T ]) <∞}

• L∞(0, T ;X) = {f : [0, T ] → X : f measurable, ess supt∈[0,T ]‖u(t)‖X <∞}

• Loally integrable funtions:
L1

loc(Ω) = {f : [0, T ] → X : f measurable, ∀X⊂Ω ompat ∫X |f |dx <∞}

• Norm for Sobolev spae: ‖f‖k,p = (
∑k

j=0 ‖f (j)‖p
p)

1/p

• Sobolev spaes: W k,p(Ω) = {f : Ω → R : ‖f‖k,p <∞}Funtions that have weak derivatives up to order k whih belong to Lp

• The most ommon Sobolev spaes: Hk(Ω) = W k,2(Ω) (i.e. H0 = L2)

• Inner produt in Hk: (f, g)Hk =
∑k

j=0(f
(j), g(j))L2

• Ḣk(Ω) = Ẇ k,2(Ω) = {f ∈ Hk(Ω) :
∫

Ω
fdV = 0}164



Spaes, salar produts and norms
• From here on: Ω = [0, L]m, then:
C∞

per(Ω) = {f ∈ C∞(Ω) : f(x+ ejL) = f(x), j = 1, . . . ,m}

• Hk
per(Ω) is the ompletion of C∞

per(Ω) in the Hk-norm
• Ḣk

per(Ω) = Hk
per(Ω) ∩ Ḣk(Ω)

• Norm for periodi Sobolev spaes with zero mean: ‖f‖Ḣk
per

=
∑

|α|=k |Dαf |2

• H−k(Ω) is the dual spae to Hk
per(Ω): H−k(Ω) = (Hk

per(Ω))∗

• For a Hilbert spae H and dual H∗ it is ‖f‖H∗ = sup{(f, u)H : u ∈ H with ‖u‖H ≤ 1}



List of Abbreviationsa.e. - almost everywhereAC - Allen-CahnATG - Asaro-Tiller-GrinfeldCAC - onvetive Allen-CahnCCH - onvetive Cahn-HilliardCFL - Courant-Friedrihs-LevyCH - Cahn-HilliardCVD - hemial vapor depositionDE - di�erential equationFDM - �nite di�erene methodFEM - - �nite element methodHCCH - higher order onvetive Cahn-HilliardMEG - multiple exiton generationMBE - moleular beam epitaxyML - monolayerODE - ordinary di�erential equationPDE - partial di�erential equationPSM - pseudospetral methodPVD - physial vapor depositionQD - quantum dotQDM - quantum dot modelSM - spetral methodSTM - sanning tunneling mirosopyTEM - transmission eletron mirosopy
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