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Abstract

This article introduces and motivates idempotent relations. It summarizes char-
acterizations of idempotents and their relationship to transitive relations and
quasi-orders. Finally it presents a counting method for idempotent relations
and lists the results for up to 6 points.
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Chapter 1

Introduction

An idempotent relation is one that is persistent under sequential relational com-
position. Sequential composition r; s of two relations r ⊆ A×B and s ⊆ B×C
is defined as {(x, y) | ∃ z. (x, z) ∈ r ∧ (z, y) ∈ r}. A relation r ⊆ A × A is
idempotent iff r; r = r.

In this paper we arrive at reducing the problem of counting idempotents to
counting unlabelled and labelled partial orders and quasi-orders. The presented
method works for counting labelled idempotents. For the unlabelled case it does
not work. However, it arrives at counting a subclass of unlabelled idempotents,
those that have a partial order kernel.

We reuse in this paper the following Sloane sequences [9] and their num-
bers: A000798 (labelled quasi-orders Q), A001930 (unlabelled quasi-orders q),
A001035 (labelled partial orders PO), and A000112 (unlabelled partial orders
po). We also use Stirling numbers of the second kind, A008277 and A008278. In
the following we present a counting method for a new sequence, that of labelled
idempotent relations I.

This paper begins in Section 2 with notations, some facts that are needed
about the automorphism group on partial orders, and a summary of previous
results about idempotents that have been leading on to the counting formula
presented in this paper. Then in Section 3 we present the theory that enables
counting idempotents. We give the counting results for up to 6 points – as far
as we have been able to calculate by hand. The method we present is suitable
for being implemented as a computer program thereby increasing the number
of points. In an appendix we give details of the calculation for up to 5 points,
for the calculation of up to 6 points see the author’s web page [6].
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Chapter 2

Background

In the theory of software specification in particular in refinement theory we con-
sider operations on a system specification as relations rather than functions. If
an element of the domain of a relation is related to more than one element in
the range this is viewed as non-determinism and more pragmatically as a choice
or conscious loseness in specification. In order to build a proper calculus for
specification languages, algebra for relations is needed. In an algebraic char-
acterization of operation composition, idempotence enables to reduce doubles,
e.g. op1; op1; op2 = op1; op2.

In the paper [7] we presented a first approach to investigate the theory of
idempotents using the Isabelle/HOL theorem prover. In [5] we used the example
of idempotents as a basic application of interactive theorem proving to develop
simple algorithms rigorously. There we constructed a generate-and-test method
for idempotents. As generate-and-test is not efficient this method enables to
count idempotents only up to five elements in reasonable time. Already for
six we have a run time of roughly ten weeks. Nevertheless, our generate-and-
test algorithm is valuable as a counting method as the implementation of the
efficient test predicate is proved sound inside Isabelle/HOL. Therefore, we can
use it here to verify our results.

The three main steps of characterizing finite idempotent relations presented
in [7] and [5] are as follows. We use the notation r(x) to abbreviate the relational
image of r at x, i.e., {y | (x, y) ∈ r}. The set fix r annotates {x ∈ dom r | (x, x) ∈
r}.

Let r be reflexive and transitive. Then r is idempotent. (2.1)

idempotent r ≡

(
∀x. r(x) =

⋃
y ∈ fix r ∩ r(x). r(y)

transitive r

)
(2.2)

idempotent r ≡

 ∀ n ∈ N. r(n) =
⋃

x ∈ F ∩ r(n). r(x)

rF transitive

∀ f ∈ F. ∀ y ∈ N ∩ r(f). r(y) ⊆ r(f)

 (2.3)
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where rF = {(x, y). (x, y) ∈ r∧x ∈ F}, F = fixp r, and N = dom r \F in (2.3).
These three properties are mechanically verified in Isabelle/HOL [5]; the proof
scripts are available at the author’s web page [6].

A relation is called a quasi-order iff it is reflexive and transitive [8]. From
(2.1) it follows immediately that a quasi-order is idempotent.

We annotate labelled quasi-orders with Q(n), unlabelled with q(n), where
n is the number of elements in the domain of the relation. To annotate the
domain we sometimes use Nn because the initial segment of the naturals may
well represent any set of (labelled) points. For conjunctions p∧ q we sometimes
use two-dimensional depiction, i.e.

(
p
q

)
. For disjointness of two sets A,B, i.e.,

A ∩B = ∅, we write A � B .

Counting partial orders

Partial orders have been subject to counting methods many times. Most recent
advances are due to Pfeiffer and Brinkmann and McKay [1, 2, 3, 8]. In [8]
counting different kinds of relations R — including transitive relations and
quasi-orders — has been achieved using the automorphism group Aut(R). Using
similar methods Brinkmann and McKay arrive at improving their earlier results
[1] to up to 15 or 16 points [2].

In the following we introduce the relationship between unlabelled and la-
belled partial orders needed for counting idempotents. We deviate from the
way Pfeiffer introduced automorphisms and partial orders using action groups
as we need only some facts that can already be derived using equivalence re-
lations and factorizations. For a deeper and more complete characterization of
partial orders and automorphisms see Pfeiffer’s paper [8].

Proposition 2.0.1. The relation

∼ = {(x, y) | ∃ φ ∈ Aut(PO(n)). φ(x) = y}

is an equivalence relation on labelled partial orders PO(n). It partitions PO
into its orbits with respect to the automorphism group. The factorization yields
an isomorphism to the unlabelled partial orders.

ι : PO(n)/ ∼ ∼= po(n) (2.4)

Proof. The relation ∼ is reflexive, as for any s ∈ PO(n) we have id s = s
and id ∈ Aut(PO(n)). It is symmetric as with f ∈ Aut(PO(n)) also f−1 ∈
AutPO(n). Therefore, for any s, s′ ∈ PO(n) iff s ∼ s′, i.e., f(s) = s′ for some
f ∈ Aut(PO(n)), then also s′ ∼ s, as f−1(s′) = s and f−1 ∈ PO(n). Finally,
we use the same proof with the argument f1, f2 ∈ Aut(PO(n)) implies f2 ◦ f1 ∈
Aut(PO(n)) to prove transitivity of ∼. Hence ∼ constitutes an equivalence
relation.

For the second part it follows immediately from the homomorphism theorems
of universal algebra that the factorization PO(n)/ ∼ with the induced relation
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[x]∼ ∼ι [y]∼ iff x ∼ y is well-defined. The factorized relation is isomorphic to
the unlabelled partial orders over n points po(n) as any relation with the same
graph but different order of nodes is contained in the same equivalence class.

We will usually write ζ for the natural epimorphism from PO → PO/ ∼ and
[s]R to annotate a representant of the class of s ∈ PO . The proposition imme-
diately implies that – as ∼ constitutes a partitioning – we can count PO using
the size of the orbits and the representatives from PO. Let ι be the resulting
isomorphism from PO(n)/ ∼ to po(n) introduced in the previous proposition.
The labelled partial orders PO(n) are a disjoint union of the equivalence classes
of PO(n)/ ∼. We can build this union using ι as follows.

PO(n) =
•⋃

s∈po(n)

{r ∈ PO(n) | ι[r]∼ = s} (2.5)

Hence the number of relations in PO(n) can be calculated from the cardinality
of po(n) and the size of the classes.

#PO(n) =
∑

s∈po(n)

#ι−1(s) (2.6)

The number of elements in an equivalence class corresponds to the size of the
orbit created by the automorphism group. If the size of the class [s]∼ is one, i.e.,
any automorphisms maps s to itself, then the size of the orbit is 1. The maximal
number of elements of an orbit is n! as this is the number of permutations of n
elements, and hence also the maximal number of automorphisms for n elements.
In the case of such a class [s]∼ with n! elements each automorphism maps to a
different relation – the orbit does not repeat elements. The other cases are all
factors of n! and may be calculated as follows.

First we introduce the notion of indistinguishability of subrelations of a
labelled partial order s ∈ PO. Indistinguishable subrelations are subsets of a
relation s that are invariant under automorphisms. A family χ of sets χj , j ∈ J
with χj ⊆ s and χj � χk for j 6= k ∈ J is a set of indistinguishable subrelations
iff

∃φ ∈ Aut(PO(n)).

 ∀j ∈ J. ∃! k ∈ J. k 6= j ∧ φ(χj) = χk

∀(x, y) ∈ s \
⋃

j∈J χj . φ(x, y) = (φ(x), φ(y)) = (x, y)
φ(s) = s

 .

We consider only maximal indistinguishable sets of subrelations χ, i.e. if some
subset u ⊆ s is indistinguishable to some χj then there is a k such that u = χk.
Intuitively, indistinguishable subsets are subgraphs of a relation that may be ex-
changed without changing the relation. Concerning the cardinality of the orbits,
it diminishes proportional with the factorial of the size of the sets of indistin-
guishable subsets. If there are indistinguishable subsets that contain smaller
indistinguishable subsets than the reduction is proportional to the product of
the smaller subrelations. Hence, for the calculation of the orbits we consider
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sets of minimal subrelations. Let s ∈ po(n) and χj be a family of minimal
indistinguishable subsets in s. Then the following inequality holds.

#ι−1s =
n!∏

j∈J(#χj)!
(2.7)

Finally, we need as a provisional step the relationship between quasi-orders
and partial orders also presented in Pfeiffer’s paper [8].

For any quasi-order v∈ Q(n) the symmetric core ≡ of v is defined by

x ≡ y iff
(

x v y
y v x

)
.

As pointed out by Pfeiffer [8] the induced relation vi on the classes of Nn/ ≡
is a partial order. To count quasi-orders one can thus count the number of
partitions of a set with n elements into k nonempty subsets and multiply with
the number of partial orders, i.e.,

#Q(n) =
k∑

i=1

{n

i

}
#PO(k) ,

where the number of partitions is a Stirling number of the second kind (see the
Appendix for the first few numbers).

A Stirling distribution for a partial order s ∈ PO(n) we call according to
this the natural epimorphism S : Q(n) → PO(n).
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Chapter 3

Counting Idempotents

Our counting method for idempotents provides an efficient method for calcu-
lating the numbers of labelled idempotent relations by calculating partitions of
partial orders and labelled quasi-orders. It is based on the basic construction
idea that is already visible in properties (2.1) and (2.2) being made more precise
in (2.3). Any quasi-order is an idempotent relation (2.1). Property (2.2) shows
that an idempotent relation r over a base set A can be constructed starting from
a quasi-order over a subset of A — the fixpoints of r — by selecting a range
extension and a domain extension, i.e., by choosing the non-fixpoints that are
elements of the ranges of the fixpoints (range extensions) and the non-fixpoints
that share the ranges of fixpoints (domain extensions).

If an element n shares the range of a fixpoint f , i.e., r(f) ⊆ r(n) we say n
hangs-onto f in r. The hangs-onto relation of an idempotent s is a quasi-order
order, and vice versa any quasi-order may be seen as a hangs-onto relation for
some idempotents s. This is the key to our counting method for idempotents.
As already noted in Section 2, the quasi-orders can be partitioned to partial
orders by factorizing with the symmetric core ≡ . We use this simplification
as well to partition idempotents according to the partial order representing the
hangs-onto relationship of the fixpoints rather than the quasi-orders, as the
symmetric core does not have much effect on idempotents. Taking as given the
number of unlabelled partial orders representing the abstracted and factorized
hangs-onto relation of a set of idempotents, we define the alphabet of choices
of range extension, domain extension and range/domain extension represented
by it — the latter is a combination according to property (2.3). The alphabet
represents for each non-fixpoint all possibilities how it may be related to the
partial order kernel of a relation. This alphabet enables the unique construction
of idempotents. Its cardinality for each partial order kernel thus gives rise to
counting idempotents.

The construction process starts from the quasi-order and the induced partial
order that build the kernel of an idempotent.

Definition 3.0.2. The Q-kernel of an idempotent s ∈ I(n) is s ∩ (fix s ×
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fix s). Similarly, the PO-kernel is ζ(s ∩ (fix s × fix s)) where ζ is the natural
epimorphism. For the unlabelled cases we assume the corresponding definitions.

The natural epimorphism may be continued on idempotents.

Definition 3.0.3. Let s ∈ I(n), k ∈ Q(m), and k′ ∈ PO(m′), such that k is
the Q-kernel of s, and, k′ the PO-kernel of s, i.e. ζ(k) = k′. The continuation
ζ̂ is the extension of ζ to I(n), i.e. ζ̂(s) = s/ζ .

The order on s/ζ is the induced order ŝ given as

([x], [y]) ∈ ŝ iff (x, y) ∈ s

which is well-defined as non-fixpoints are not part of the symmetric core. Oth-
erwise, (n, n′) ∈ s and (n′, n) ∈ s for non-fixpoints n, n′ would imply (n, n) ∈ s
and (n′, n′) ∈ s because of transitivity and hence n, n′ would be fixpoints.

We observe that idempotents are respected by the transition from quasi-
orders to partial orders.

Proposition 3.0.4. Let s ∈ I(n), and t ∈ Q(m) the Q-kernel and t′ ∈ PO(m′)
the PO-kernel of s. Then ζ̂(s) ∈ I(n′) for n′ = n− (m−m′).

Proof. For the kernel this property is already given by the Stirling properties
(see Section 2). For the remaining cases of non-fixpoint z related to the kernel
we use the above noted fact that non-fixpoints are not part of the symmetric
core. Hence the idempotents properties follow immediately because whenever
(z, x) ∈ s then also (z, y) ∈ s for all y ≡ x because of transitivity. Also for
the other direction (x, z). Hence, in the factorization, for all x, y, z, (x, y) and
(y, z) iff (x, z) . The size of the base set is n′ = n − (m − m′) again because
the non-fixpoints are not part of the symmetric core, hence their classes are
singleton.

Definition 3.0.5. (domain/range extension) Given a base set Nn, a set of
fixpoints F ⊆ Nn, and a quasi-order or a partial order s on F , let n ∈ Nn \ F
be some arbitrary non-fixpoint. Then

• a range extension r is a subset of F such that the extended relation s ∪
(r × n) is idempotent, and

• a domain extension d is a subset of F such that the extended relation
s ∪ (n× d) is idempotent.

A down-set is defined for any partial order v as a set d closed with respect
to smaller elements, i.e., if x ∈ d and y v x then y ∈ d. We write ↓v d or if the
relation is clear fom context just ↓ d. Up-sets ↑ u are defined dually [4].

Lemma 3.0.6. Let F ⊆ Nn be a set of fixpoints and 7→ be a partial order on
F . Any d ⊆ F is a domain extension iff ↑7→ d and any r ⊆ is range extension
r iff ↑7→ r.
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Proof. Let d be a domain extension, x ∈ d, and x 7→ y . If for a non-fixpoint
n we have that n 7→ x then also n 7→ y because of transitivity, whence y ∈ d.
Similarly, let r be a domain extension, x ∈ r and y 7→ x . If x 7→ n then again
because of transitivity, we have also y 7→ n whereby again y ∈ r. The other
direction follows for domain extension from (2.3) first conjunct and for range
extension from transitivity.

Lemma 3.0.7. Let F ⊆ Nn be a set of fixpoints, s be a partial order on F ,
r, d ⊆ F , and n ∈ Nn \ F . Then ↑s d, ↓ rs, r � d, and ∀ x ∈ r, y ∈ d. (x, y) ∈ s
iff s ∪ n× d ∪ r × n is idempotent.

Proof. Assuming an idempotent of the form s∪n×d∪r×n we have by property
(2.3) third conjunct that s(n) ⊆ s(f) for any f ∈ r, i.e., for any x if (n, x) ∈ s
then (f, x) ∈ s . Let f ′ ∈ d. As (n, f ′) ∈ s by assumption, we have (f, f ′) ∈ s .
Since f ∈ r was arbitrary, we have ∀ f ∈ r, f ′ ∈ d, (f, f ′) ∈ s . For disjointness,
assume r 6� d. Then for any x ∈ r ∩ d we have by construction (n, x) ∈ s and
(x, n) ∈ s which contradicts transitivity if n is a non-fixpoint. For ↑s d and ↓s r
the arguments from the proof of Lemma 3.0.6 apply.

Definition 3.0.8 (Alphabet). Let s be a partial order in PO(n), and B its base
set ran s = dom s. The alphabet (of possible choices to extend to an idempotent)
for s is the following set.

A(s) = {(r, d) ∈ P(B)× P(B) | ↓sr ∧ ↑sd ∧ r � d ∧ ∀x ∈ r, y ∈ d.(x, y) ∈ s}

The alphabet entails the following four cases for any (r, d) ∈ P(B)× P(B):

(
r = ∅
d = ∅

)
∨
(

r = ∅
↑sd

)
∨
(

d = ∅
↓sr

)
∨


(r, d) 6= (∅, ∅)
↑sd ∧ ↓sr

r � d
∀x ∈ r, y ∈ d.

(x, y) ∈ s

 .

In order to efficiently count we observe that labelled partial orders that belong
to the same orbit with respect to the automorphism group have isomorphic
alphabets.

Proposition 3.0.9. Let s, s′ ∈ PO(n) such that s ∼ s′. That is, there is
f ∈ Aut(PO(n)) with f(s) = s′. Now, let f̂ be the pointwise continuation of f
on alphabets, i.e., f(r, d) = (f(r), f(d)). Then for any (r, d) ∈ A(s) we have
that f(r, d) ∈ A(s′) = A(f(s)), i.e., the alphabets are isomorphic.

Proof. Since f is an automorphism we have that f(B) = B, hence f(r, d) ∈
P(B)×P(B) = P(f(B))×P(f(B)) . Now, we consider the four cases implicit in
the definition of alphabet. We show for each case that f(r, d) ∈ A(f(s)) . First,
if f(r, d) = (f(r), f(d)) = (∅, ∅) then it is in A(f(s)) as (f(∅), f(∅)) = (∅, ∅) .
If (f(r), f(d)) = (∅, f(d)) and f(d) 6= ∅, then r = ∅ and d 6= ∅ . Hence,
as (r, d) ∈ A(s), we have that ↑ d. As f is a homomorphism, we also have
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↑ f(d). Similarly, for f(d) = ∅ and r 6= ∅, we have d = ∅, ↓ r, r 6= ∅,
and f(r) 6= ∅. Again, as f is homomorphism, we have ↓ f(r) . Finally, for
(f(r), f(d)) 6= (∅, ∅), then also (r, d) 6= (∅, ∅). Therefore, as (r, d) ∈ A(s),
∀ x ∈ r, y ∈ d. (x, y) ∈ s. Let x′ ∈ f(r) and y′ ∈ f(d) be arbitrary. Then as f
is onto there are x ∈ r and y ∈ d with f(x) = x′, f(y) = y′, and (x, y) ∈ s. As
f is homomorph (f(x), f(y)) in f(s) = s′.

Proposition 3.0.9 simplifies the way we can count alphabet sizes. It suffices
to construct and count the alphabet just for each representative of a class of
partial orders ι−1(s)R where s ∈ po(n) and ι the isomorphism introduced in
(2.4).

Corollary 3.0.10. For any alphabet size j and points k we have the following
equality.

#{x ∈ PO(k) | A(s) = j} =
∑

s∈po(k)
A(ι−1(s)R)=j

#ι−1(s)

To calculate the size of the classes we can use properties (2.6) and (2.7). A
further observation that facilitates the counting of alphabets is that the number
of down-sets (or pure range extensions) is equal to the number of up-sets (see the
example calculation in the Appendix). Also, symmetric structures have equally
sized alphabets.

An idempotent can be represented by its partial order kernel, a Stirling
distribution and alphabet choices for each non-fixpoint.

Theorem 1 (Representation). For any labelled idempotent i over Nn with given
fixpoints F and non-fixpoints N there are a unique Stirling distribution S :
Q(m) → PO(m′), s ∈ PO(m′), and α ∈ N → A(s). Vice versa, any such
representation (S, s, α) corresponds to one idempotent relation for F and N .

Proof. Let sq ∈ Q(m) be theQ-kernel of i and s ∈ PO(m′) be the corresponding
PO-kernel ζ(sq). We show that the non-fixpoints can be uniquely represented
by α with respect to the continuation ζ̂(i). Proposition 3.0.4 grants that we can
abstract from the symmetric core, here represented by S. Let n ∈ N . Either
n /∈ dom i ∪ ran i then α(n) = (∅, ∅) . If n ∈ ran i only, let r be the set
of all fixpoints for which n is a range extension. By Lemma 3.0.6 we have ↓ r.
Similarly, if n is only in the domains of elements in d we have ↑ d. Finally, if both
cases are represented by (r, d) we have ∀ x ∈ r, y ∈ d. (x, y) ∈ s because of the
third conjunct in property (2.3). Each of these cases corresponds to an element
of A(s). Vice versa, we can construct an idempotent from the representation as

S−1(s) ∪
⋃

n∈N

n× S−1(π2(α(n))) ∪ S−1(π1(α(n)))× n

where πi are the projections of a pair to its i-th component. Idempotence of
the constructed relation is a consequence of Proposition 3.0.4 together with
Lemmata 3.0.6 and 3.0.7 .

16



For n = 0 and n = 1 the number of idempotents is 1. For any larger number
the following theorem enables to count the number of labelled idempotents.

Theorem 2 (Number of labelled idempotents). The number of idempotent re-
lations I(n) can be calculated for n > 1 as

#I(n) = 1 + (
n−1∑
i=1

(
n

i

) 2i+1−1∑
j=3

pijj
n−i) + #Q(n)

where the pij are given by the characteristic sequence

pij =
i∑

k=1

{
i

k

}
#{s ∈ PO(k) | #A(s) = j} .

Proof. The 1 stands for the empty relation which is idempotent. Otherwise we
partition the idempotents according to their numbers of fixpoints. If there are n
fixpoints, that is, the relation is reflexive, then according to property (2.1), the
number of labelled idempotents is given by the number of labelled quasi-orders
Q(n). For any number of fixpoints i, 0 < i < n, there are

(
n
i

)
disjoint cases.

For any selection of i fixpoints, the representation given by Theorem 1 yields for
each of the n−i non-fixpoints j selections if there is an alphabet with j elements
represented by some Q-kernel. So we need to know the number of labelled PO-
kernels that have an alphabet with j elements. Therefore the characteristic
sequence pij counts the number of labelled partial orders that have alphabets
with j elements. For i fixpoints the maximal cardinality of an alphabet is
2i+1 − 1 for i unrelated points. The minimum is 3 as the full relation (on any
set of fixpoints F ) gives the alphabet {∅, (F, ∅), (∅, F )} . For any j, for which
exist some partial orders s with #A(s) = j, we have to consider the distribution
of the i fixpoints in 1 < k < i nonempty subsets where k corresponds to the
number of points of the structures s with #A(s) = j. The Stirling coefficient
represents the number of choices for the symmetric cores.

With Theorem 2 we can count labelled idempotents given the alphabets for
the partial order kernels for specific sizes j . For the latter we can use Corollary
3.0.10 in addition to construct the alphabet just once for each class of partial
orders. For examples of the alphabets and calculations of the results up to 5,
see the Appendix. In Table 3.1 we provide an overview over the results up to
6 together with the values for quasi-orders and partial orders and the numbers
of all relations over n elements R(n) = ℘(Nn × Nn) with #R(n) = 22n

for
comparison.

In the remainder of this section, we will briefly show in how far this method
for counting labelled idempotents can be used for counting unlabelled ones.

The alphabets constructed for the labelled partial orders give rise to con-
struct alphabets a(s) of unlabelled s ∈ po. From those we can in a similar way
derive the number of unlabelled idempotents that have a partial order kernel,
i.e. where the symmetric core contains only singleton elements.
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# 0 1 2 3 4 5 6
R 1 2 16 512 65536 33554432 68719476736
PO 1 1 3 19 219 4231 130023
po 1 1 2 5 16 63 318
Q 1 1 4 29 355 6942 209527
q 1 1 3 9 33 139 718
I 1 1 11 123 2360 73023 3494057

Table 3.1: Numbers of the examined relations up to 6

Theorem 3 (Number of unlabelled idempotents with po-kernel). The number
of idempotents ipo(n) whose q-kernel is already a partial order is given for n > 1
by

#ipo(n) = 1 + (
n−1∑
i=1

2i+1−1∑
j=3

#{s ∈ po(j) | #a(s) = j}
(

n− i + j − 1
j − 1

)
) + #q(n) .

Proof. The formula derives in a similar way as that in Theorem 2. The choices
for the non-fixpoints, however, are calculated as multisets: for each non-fixpoint
it matters which alphabet-element is chosen but the order does not matter.
Hence, a selection of (n − i) non-fixpoints consists of a multiset with n − i
elements out of j possible alphabet elements. For the choices of i fixpoints
0 < i < n the order does not matter, hence we just sum up without binomial
coefficient.

The Stirling selection can unfortunately not be applied to derive fom this
number the general number of unlabelled idempotents. The reason is that the
reverse introduction of symmetric cores into the unlabelled partial order kernel
may turn indistinguishable fixpoints into distinguishable sets of fixpoints. We
believe it is not possible to generally calculate the numbers of unlabelled idem-
potents from the numbers of ipo as the distinguishability it too dependent on
the inividual structure of an s ∈ ipo .
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Chapter 4

Outlook and Conclusions

We have presented a counting method for labelled idempotent relations. This
counting method reduces the problem to counting labelled quasi-orders, unla-
belled and labelled partial orders, and constructing the alphabets for partial
orders representing the kernel of an idempotent. For unlabelled idempotents we
presented a partial result.

We have applied the presented counting method for labelled idempotents
up to six points. The results are shown in Table 3.1 and the derivation steps
are contained in the Appendix. The results are additionally verified by the
mechanically proved generate-and-test method [5].

The calculation of the number of idempotents over n points as described in
this paper is an algorithm that takes some representation of unlabelled partial
orders over m < n points, the number of labelled quasi-orders over n points,
and outputs the number of labelled idempotents. The algorithm constructs the
alphabets for each representant of a labelled partial orders and calculates the
size of the orbit. Finally, it just calculates the number of idempotents using the
formula of Theorem 2. We have not yet attempted to implement this algorithm.
Such an implementation will certainly increase the number of points for which
we can calculate the number of labelled idempotents, we believe up to more
than 10. However, as we directly reuse the number of Q we cannot get further
than 16 – which is the current state of the art for labelled quasi-orders [2].
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Appendix

In this appendix we illustrate our counting method for labelled idempotents by
giving the details of the calculation. The numbers of idempotents for n ∈ {0, 1}
are #I(0) = #{∅} = 1 and #I(1) = #{{(a, a)}} = 1 .

Labelled idempotents with two elements I(2)

Following Theorem 2 we need as input #Q(2), which is 4 according to Sloane
sequence A000798, see also Table 3.1.

Now the formula of Theorem 2 instantiates for 2 to:

#I(2) = 1 +
1∑

i=1

(
2
i

) 2i+1−1∑
j=3

pijj
2−i +Q(2) = 1 + 2p133 + 4

where p13 is given by:

1∑
k=1

{
1
k

}
#{s ∈ PO(k) | #A(s) = 3}] = #{s ∈ PO(1) | #A(s) = 3} .

The set PO(1) is just the one point relation o = {(a, a)} . The alphabet over
this relation is A(o) = {(∅, ∅), ({a}, ∅), (∅, {a})} . Since #A(o) = 3 we have
that p13 is indeed 1, whereby

#I(2) = 1 + 6 + 4 = 11 .

Labelled idempotents with three elements I(3)

The unlabelled partial orders with two elements are the following. The labelled
.
.

versions are the following three elements s0, s1, and s2.
a.
b.

a

b

b

a
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We depict the order from top to bottom, for example, the middle one, say s1, is
the relation {(a, a), (a, b), (b, b)} . A more elaborate representation of the three
relations s0, s1, and s2 is given below where we can omit labels a and b as they
are represented by positions top and bottom.

@@ ��

Although the second representation is graphically more elegant we use the first
one for counting alphabets. The alphabet for the leftmost labelled partial order
s0 is:

A(s0) = {(∅, ∅), ({a}, ∅), ({b}, ∅), ({a, b}, ∅), (∅, {a}), (∅, {b}), (∅, {a, b})} .

The number of elements of this alphabet is #A(s0) = 7 .
Next, we build the alphabet for s1:

A(s1) = {(∅, ∅), ({a}, ∅), ({a, b}, ∅}, (∅, {b}), (∅, {a, b}), ({a}, {b})} .

The orders s1 and s2 are both in the same equivalence class with respect to the
natural isomorphism ζ (see Section 2). According to Proposition 3.0.9 it suffices
to build one of the alphabets A(s1) or A(s2) as they are isomorphic and hence
have the same number of elements. That is, #A(s1) = #A(s2) = 6 .

The numbers p2j for 3 ≤ j ≤ 7 can now be calculated from these alphabet
sizes. The characteristic number p23 is again 1 as #{s ∈ PO(1) | #A(s) = 3}
is one (see previous section) and

{
2
1

}
is also one. There is no element of PO(2)

that has an alphabet with three elements. The sequence elements p24 and p25

are zero as there are again no structures in PO(1) or PO(2) with alpabets of
those sizes. However, as we have have seen above there are structures s1, and s2

with alphabet size six. Hence p26 is two. For 7 the automorphism orbit contains
only s0, therefore p27 is 1. Summarizing, the number of idempotents with three
elements can be calculated as follows.

#I(3) = 1 +
2∑

i=1

(
3
i

) 2i+1−1∑
j=3

pijj
3−i + #Q(3)

= 1 +
(

3
1

)
p1332 +

(
3
2

)
(3p23 + 6p26 + 7p27) + 29

= 1 + 27 + 3(3 + 12 + 7) + 29 = 123

Labelled idempotents with four points I(4)

The labelled partial orders with three elements are represented by the following
five representants s0, . . . , s4 ∈ PO(3) from left to right.

a.
b.
c.

a.
b

c

a

b

c

@�

a

b c
@�

a b

c
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The alphabets and sizes of the orbits for each si are given in the following table.
For brevity we write ∅ for (∅, ∅), Sr for (S, ∅), Sd for (∅, S), and 〈S0, S1〉rd

for (S0, S1) .

si A(si) #A(si) #ι−1(si)

s0 {∅, {a}d, {b}d, {c}d, {a, b}d, {a, c}d, {b, c}d, {a, b, c}d, 15 1
{a}r, {b}r, {c}r, {a, b}r, {a, c}r, {b, c}r, {a, b, c}r}

s1 {∅, {a}d, {c}d, {b, c}d, {a, c}d, {a, b, c}d, 12 6
{a}r, {b}r, {a, b}r, {b, c}r, {a, b, c}r, 〈{b}, {c}〉rd}

s2 {∅, {c}d, {b, c}d, {a, b, c}d, {a}r, {a, b}r, {a, b, c}r, 10 6
〈{a}, {c}〉rd, 〈{a}, {b, c}〉rd, 〈{a, b}, {c}〉rd}

s3 {∅, {b}d, {c}d, {b, c}d, {a, b, c}d, {a}r, {a, b}r, {a, c}r, 12 3
{a, b, c}r, 〈{a}, {b}〉rd, 〈{a}, {c}〉rd, 〈{a}, {b, c}〉rd}

s4 {∅, {c}d, {a, c}d, {b, c}d, {a, b, c}d, {a}r, {b}r, {a, c}r, 12 3
{a, b, c}r, 〈{a}, {c}〉rd, 〈{b}, {c}〉rd, 〈{a, b}, {c}〉rd}

As an illustration for sets of minimal indistinguishable subsets χ consider s4:
χ1 = {a}, χ2 = {b}, hence ι−1(s4) = 3!

2! = 3 . Similarly for s0 we have χ1 = {a},
χ2 = {b}, χ3 = {c} and ι−1(s4) = 3!

3! = 1 . From this table we can directly see
that p3,10 = 6, p3,12 = 12, and p3,15 = 1. The characteristic number p33 is again
1 as

{
3
1

}
= 1. For p36 we get a nonzero in the sum only for 2, i.e.{

3
2

}
#{s ∈ PO(2) | #A(s) = 6} = 6 .

For p37, similarly, {
3
2

}
#{s ∈ PO(2) | #A(s) = 7} = 3 .

Now, the number of elements in I(4) can be calculated as follows.

#I(4) = 1 +
3∑

i=1

(
4
i

) 2i+1−1∑
j=3

pijj
4−i + #Q(4)

= 1 +
(

4
1

)
p1333 +

(
4
2

)
(32p23 + 62p26 + 72p27) +(

4
3

)
(3p33 + 6p36 + 7p27 + 10p3,10 + 12p3,12 + 15p3,15) + 355

= 1 + 108 + 780 + 1116 + 355 = 2360

Labelled idempotents with five points I(5)

The labelled partial orders with four elements are represented by the following
16 representants s0, . . . , s15 ∈ PO(4).
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a.
b.

c.
d.

a.
b.

c

d

a.
b

c

d

a

b

c

d

a

b

c

d

@�

a

b c

d.
@�

a b

c

d.
@�

a

b c d

QQ
a

b

��
c

d

a

@�
b

c d
@�

a b c

d

@�

a b

c

d
@�

a b

c
@

d

@
@�

a

b c

d

@�

a

b c
@

d

@�

a

b c

�@
d

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

#A(si) 31 24 18 19 15 22 22 24 22 18 24 18 20 19 19 18
#ι−1(si) 1 12 24 12 24 12 12 4 6 12 4 12 24 24 24 12

The new values for the characteristic sequence p4j , 31 ≥ j ≥ 17 are simply
given by the sum of the orbits of all structures having j alphabet elements
because

{
4
4

}
= 1. Other new values are p4j for 3 ≤ j ≤ 16 given by additional

multiplication with the corresponding Stirling numbers:

p43 p46 p47 p4,10 p4,12 p4,15

1 14 7 36 72 30

The case p4,15 shows why we build the characteristic sequence by a sum over
k ∈ 1 . . . i. We can have partial orders with a different number of points and
equal alphabet sizes: the relation {(a, a), (b, b), (c, c)} ∈ PO(3) and the above
s4 ∈ PO(4) have alphabet size 15, hence contribute to p4,15 .

p4,15 =
{

4
3

}
#{s ∈ PO(3) | #A(s) = 15}+

{
4
4

}
#{s ∈ PO(4) | #A(s) = 15}

= 6 + 24 = 30

The calculation of #I(5) is now as follows.

#I(5) = 1 +
4∑

i=1

(
5
i

) 2i+1−1∑
j=3

pijj
5−i + #Q(5)

= 1 +(
5
1

)
p1334 +(

5
2

)
(33p23 + 63p26 + 73p27) +(

5
3

)
(32p33 + 62p36 + 72p37 + 102p3,10 + 122p3,12 + 152p3,15) +(

5
4

)
(3p43 + 6p46 + 7p47 + 10p4,10 + 12p4,12 + 15p4,15 +

18p4,18 + 19p4,19 + 20p4,20 + 22p4,22 + 24p4,24 + 31p4,31) +
6942

= 1 + 405 + 8020 + 29250 + 28405 + 6942 = 73023
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Used Stirling numbers

The first few Stirling numbers
{

n
k

}
representing the partition of n elements into

k parts are given in the following table.

k \ n 1 2 3 4 5
1 1 1 1 1 1
2 1 3 7 15
3 1 6 25
4 1 10
5 1
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