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Abstract 

The effectiveness of today’s human-machine interaction is limited by a communication 
bottleneck as operators are required to translate high-level concepts into a machine-mandated 
sequence of instructions. In contrast, we demonstrate effective, goal-oriented control of a 
computer system without any form of explicit communication from the human operator. Instead, 
the system generated the necessary input itself, based on real-time analysis of brain activity. 
Specific brain responses were evoked by violating the operators’ expectations to varying degrees. 
The evoked brain activity demonstrated detectable differences reflecting congruency with or 
deviations from the operators’ expectations. Real-time analysis of this activity was used to build a 
user model of those expectations, thus representing the optimal (expected) state as perceived by 
the operator. Based on this model, which was continuously updated, the computer automatically 
adapted itself to the expectations of its operator. Further analyses showed this evoked activity to 
originate from the medial prefrontal cortex and to exhibit a linear correspondence to the degree of 
expectation violation. These findings extend our understanding of human predictive coding and 
provide evidence that the information used to generate the user model is task-specific and reflects 
goal congruency. This paper demonstrates a new form of interaction—without any explicit input 
by the operator—enabling computer systems to become neuroadaptive, that is, to automatically 
adapt to specific aspects of their operator’s mindset. Neuroadaptive technology significantly 
widens the communication bottleneck and has the potential to fundamentally change the way we 
interact with technology. 
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Significance statement 

The human brain continuously and automatically processes information concerning its internal 
and external context. We demonstrate the elicitation and subsequent detection and decoding of 
such ‘automatic interpretations’ by means of context-sensitive probes in an ongoing human-
computer interaction. Through a sequence of such probe-interpretation cycles, the computer 
accumulates responses over time in order to model the operator’s cognition, even without that 
person being aware of it. This brings human cognition directly into the human-computer 
interaction loop, expanding traditional notions of ‘interaction’. The concept 
introduces neuroadaptive technology—technology which automatically adapts to an estimate of 
its operator’s mindset. This technology bears relevance to auto-adaptive experimental designs, 
and opens up paradigm-shifting possibilities for human-machine systems in general.  

 

 

Introduction 

In the European Union, 96% of enterprises rely on computers for their productivity (1). Advances 
in human-computer interaction (HCI), concerning the effective, efficient, and satisfying use of 
computer systems, may thus carry great societal benefits, e.g. in terms of productivity. However, 
although interaction techniques have become increasingly user-friendly—e.g. from punch cards 
to touch screens—they still depend on the user (operator) to translate their original thought or 
intention into a sequence of small, explicit commands (2). This translational step, where the 
human operator must ultimately obey the machine’s logic, presents both a communication 
bottleneck and a source of potential error (3). At the same time, the computer has practically no 
limitation to the amount of information it can communicate, and is not as adaptable as its user. In 
these aspects, present-day HCI is asymmetrical (4). Comparing this to human-human interaction, 
Fischer (5) emphasizes the importance of a shared understanding of the situation and an 
understanding of the communication partner. In this sense, for a computer system to ‘understand’ 
its user, it needs a model of that user—a source of information that goes beyond the explicitly 
given commands. On the basis of such a model, a computer system could adapt its behavior to 
better suit the current mode of the user (5). This could help alleviate the issue of asymmetry. 
Relevant information to that end concerns the user’s intentions, subjective interpretations, and 
emotions. 

Four decades of developments in brain-computer interfaces (BCI; 6, 7) have yielded a set of 
methods that may be used to obtain such information in real time, provided that this information 
is detectably reflected in brain activity. Specifically, BCIs can detect in real time changes in the 
electroencephalogram (EEG) and translate these changes into control signals, in line with the 
principles of physiological computing (8). A sub-group of BCIs, so-called passive BCIs (pBCI; 
9), focuses on monitoring otherwise covert aspects of the user state (10) during an ongoing 
human-computer interaction. Neurophysiological correlates of the above-mentioned aspects can 
be detected and interpreted in the context of the interaction, and can be used to inform the 
computer about relevant changes in the user’s cognition and affect. Using pBCI, thus, a computer 
can in fact acquire information about its operator other than the explicitly given commands. As 
such, neurophysiological activity can induce appropriate changes in the machine in real time, 
essentially serving as an implicit command, without requiring the user to exert any conscious 
effort in communicating to the computer (9).  
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Previous and present-day BCI systems use information derived about the user state in only an ad-
hoc fashion: momentary information derived by the BCI from the EEG is directly interpreted as a 
specific user intention (11, 12), situational interpretation (13), or a change in the cognitive (14) or 
affective (15) state. These implementations represent one-to-one mappings of user states to 
machine behavior. We propose, however, that a machine using pBCI can detect both general user 
states and transient, event-related responses, and can use these to continuously and 
accumulatively learn about its operator. Specifically, we propose that the machine collates the 
neurophysiological responses of its operator (i.e. implicit inputs) and co-registers them against 
the events and contexts that evoked them. This allows it to build and continuously update a 
specific and context-sensitive model of that operator (10). The goal is to combine the information 
gathered from multiple responses to different events in order to gain insights into higher-level 
aspects of the operator’s cognition. 

One aspect of higher cognition that may be inferred in this manner is described by the theory of 
human predictive coding. Predictive coding holds that there exists a continuous, automatic 
prediction of future (neuronal) events, as well as a continuous comparison of those predictions 
with their corresponding final perception (16, 17, 18). Discrepancies resulting from these 
comparisons inform the brain of the correctness of its predictions and actions, providing a 
fundamental mechanism—prediction error minimization—to shape and optimize behavior. The 
corresponding predictive signals are assumed to be carried by the dopaminergic system. Changes 
in the continuous evaluation of events and actions lead to changes in the dopaminergic input to 
the anterior cingulate cortex, (dis)inhibiting its neurons and eliciting a detectable response (19). 
Predictions of what is expected to happen, in this sense, relate closely to what is intended to 
happen. This makes the correlates of predictive coding a fundamental source of information 
concerning user intention—an aspect of the user’s cognition that is highly relevant to human-
computer interaction.  

In this paper, we demonstrate that by collating passive BCI output and context information, it is 
possible to develop, step by step, a user model that accurately reflects correlates of predictive 
coding and reveals task-relevant subjective intent.  

Specifically, we demonstrate that a user model can be developed and used to guide a computer 
cursor toward the intended target, without participants being aware of having communicated any 
such information. Using a passive BCI system, the participant’s situational interpretations of 
cursor movements were classified and interpreted, in the given context, as directional 
preferences. A user model was generated to represent these context-dependent directional 
preferences, and this model was then used to guide the cursor toward the intended movement 
direction. 

 

Results  

The experimental paradigm involved a form of cursor control. The cursor moved discretely over 
the nodes of a (four-by-four or in later stages six-by-six) grid. For each movement the cursor 
could travel up to eight directions, horizontally, vertically, and diagonally, to one of the adjacent 
nodes. Each movement served both to move the cursor and to elicit a neurophysiological 
response, reflecting the subjective correctness of that movement. In essence, each movement thus 
also served as a probe for information. One of the grid’s corners was designated the target. For 
each movement, it could thus be determined at what angle of deviance relative to the target the 
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cursor had moved. This was used for an objective interpretation of the cursor’s behavior. We 
describe the paradigm in detail in the supplement. 

 

 
Figure 1. Neurophysiological analysis. a) Grand average ERP at Fz (n=19) time-locked to cursor 
movement, divided into eight groups depending on angular deviance. b) Peak amplitudes around 
180 ms for the ERP in a, and mean classifier output for cursor movements sorted by angular 
deviance with selected significant differences indicated (p < 0.001 ***, p < 0.01 **, p < 0.05 *). 
c) Grand average ERP (n=19) projected through the sources focused on in the third time window 
(150–200ms; indicated in gray). d) Scalp map of difference-between-classes activity that 
contributed to classification in the third time window. e) Source localization for the third time 
window. 

 

The event-related potential (ERP) following each probe (i.e. each cursor movement) is shown in 
Figure 1a. A one-way analysis of variance (ANOVA) of the systematic peak differences around 
180 ms indicated a significant main effect of angular deviance from the target direction on peak 
amplitude (F(7,126) = 47.243, p < 0.001). Specifically, the peak amplitudes (Figure 1b, upper 
curve) differed significantly (p < 0.001) between both the lowest and the highest angular 
deviation from the target direction as used by the classifier. In-between, the peak amplitudes 
scaled linearly with angular deviance, as fitted by a linear regression model using each group’s 
mean angular deviance as a predictor (slope coefficient b = -0.0035, F = 45.28, p < 0.001; R2 = 
0.33). Further post-hoc comparisons corrected for false discovery rate additionally indicated that 
significant differences between adjacent groups (p < 0.05) were found mostly for groups of lower 
angular deviance, whereas differences between the three largest-deviance groups (124° and up) 
were not significant. The results of all post-hoc comparisons are listed in Supplementary Table 
S3. In summary, the probe elicited systematic variations in event-related amplitudes, depending 
on the goal congruency of the presented stimulus. 
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To enable real-time detection of the individual, single-trial neuroelectric responses, we calibrated 
a discriminative classification system. Calibration was based on two classes of responses 
representing the extreme ends of the spectrum, with angular deviances of 0° making up the one 
class, and angular deviances of ≥135° the other (see Figure 2a). This classification system used a 
subject-dependent linear combination of all 64 available channels, taking into account full scalp 
information. It automatically generated appropriate spatial filters for eight 50 ms time windows—
starting at 50 ms after stimulus presentation—using supervised machine learning and linear 
discriminant analysis. This set of filters weighted each electrode in each time window, depending 
on its relevance to classification. The recorded signal projected through them thus allowed an 
optimal discrimination between the two classes. This projected recorded signal—from all 64 
channels, between 50 and 450 ms after stimulus presentation—defined the control signal. The 
feature extraction is described in more detail in the supplementary material. 

The resulting classification system did not only provide a filtered discriminative control signal, it 
also allowed us to investigate what cortical sources the system focused on. Based on this 
information, conclusions can be drawn about the discriminative cognitive processes underlying 
the classification. Figure 1cde shows an analysis of the features used for classification between 
150 and 200 ms, highlighting the relevant factors in this time window: the discriminative scalp 
activity, the source localization of this activity within the brain, and a projected ERP of the signal 
generated from the identified sources. Supporting Figure S5 and Supporting Video S1 and S2 
present this same analysis for the full time course under investigation. See Supplementary Figure 
S8 for scalp maps of the class-specific activity in each time window. 

This approach identified a specific neuroanatomical area across participants: the system based its 
decisions on neuronal activity that predominantly originated in the medial prefrontal cortex 
(mPFC). The classification system was trained only on two binary classes representing the 
smallest and largest angular deviances. Back-projection of the signal through the system's filters, 
however, reveals that the classification system optimally identified the same sources that 
generated the linear modulations seen in the grand average ERP. Following the pattern found for 
the peak amplitudes at Fz, peak amplitudes of the projected ERPs differed significantly (p < 
0.001) between the classes used by the classifier. In-between, the peak amplitudes scaled linearly 
with angular deviance, as fitted by a linear regression model of the aggregated means, using each 
group’s mean angular deviance as a predictor (b = -0.0019, F = 31.9, p = 0.011; R2 = 0.91). 
Statistically significant differences between adjacent groups also followed a similar pattern; see 
Supplementary Table S5 for all pairwise comparisons. It is thus clear that the classification 
system focused on a response that reflected the probe’s logic.  

The signal thus carried task-relevant information. For a true test of this signal’s single-trial 
reflection of individual judgments of cursor movements, and thus its usefulness in creating a user 
model describing subjective intent, we created a closed-loop, online version of the original offline 
paradigm. Following each single cursor movement, an individually calibrated classification 
system classified the evoked response. The extracted information was used for reinforcement 
learning on the side of the cursor (20), modifying the probabilities of upcoming cursor 
movements such that the cursor would be more likely to go toward the target if the classifications 
were correct. The resulting probability statistics can then be understood as a user model, 
describing the user’s preferred behavior of the cursor. This description’s accuracy is then 
reflected in the user model’s success in enabling effective, goal-oriented control of the cursor. 
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Performance was operationalized as the number of cursor movements required to reach one 
target. Because even a completely randomly moving cursor would eventually reach the target, 
three conditions were distinguished: random, online, and ‘perfect’. In the random condition, no 
reinforcement took place and the cursor merely moved randomly. In the online condition, the 
cursor was reinforced based on the classifications of the classification system. The ‘perfect’ 
condition was simulated: the cursor already knew the location of the target and reinforced itself 
with 100% accuracy, although it did proceed to move probabilistically. This condition represents 
the best possible performance given the constraints of the grid and the cursor’s movement 
algorithm. 

The offline calibration data was gathered on a four-by-four grid. The online, closed-loop system 
was tested on both a four-by-four grid, and on a theretofore unseen six-by-six grid. Performance 
results are summarized in Figure 3. 

On the four-by-four grid, a randomly moving cursor required an average of 27 movements. In the 
simulated condition of perfect performance, this number dropped to 10. When the cursor was 
reinforced online, an average of 13 steps was required—a significant improvement compared to 
the random condition (p < 0.025) bridging the gap towards the perfect condition by 82%.  

On the six-by-six grid random cursor movement required 90 steps on average, and 14 in the 
perfect-accuracy simulation. Even though no training data had been gathered from the six-by-six 
grids, the online system bridged this gap by 88%, requiring 23 movements on average (p < 0.01).  

On both grids, the online performance also differed significantly from the perfect performance (p 
< 0.025).  

Supporting Video S3 shows a number of online cursor movements and illustrates the adaptive 
paradigm’s responses.  

Online application thus significantly increased the goal congruency, confirming that the signal 
the classification system focused on was situationally relevant. Although the cursor only made 
binary interpretations of the classifier’s output, this output was continuous: a scale, from -1 to +1, 
correlating to the movements’ degree of goal congruency. This is illustrated in Figure 1b (lower 
curve). The classifier output differs significantly (p < 0.001) between the classes used by the 
classifier. In-between, the classifier output scaled linearly with angular deviance, as fitted by a 
linear regression model using each group’s mean angular deviance as predictor (b = 0.0035, F = 
295.42, p < 0.001; R2 = 0.76). See Supplementary Table S4 for further comparisons. 

Even though the linearly scaled information was not taken into account, binary classifications 
still resulted in a graded user model, describing the appropriateness of the different cursor 
movements depending on the intended target’s position. To illustrate this, Figure 2a visualizes the 
cursor’s movements over a grid during one of the online runs with the target in the southwest 
corner. Figure 2b shows how the individual directional preferences/probabilities in the user 
model are updated after every cursor movement, showing the progression toward a clearly 
identified preference for the southwest corner. Figure 2c illustrates the mean final user models for 
all participants for the four different target positions. It is clear to see that the user models 
accurately represented the intended target position. The mean final user model across all 
participants is illustrated in Supplementary Figure S4, with statistics in Supplementary Table S2. 
Supplementary Figure S9 shows one more example of online cursor behavior. 
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Figure 2. Cursor behavior and user model generation. a) Sample online cursor movements. Also 
indicated: selected movement directions, their relative angular deviance, and class membership 
(calibration phase). Movements with an angular deviance > 0º, < 135º (e.g., gray arrows) were 
not in the training set. b) User model evolution during the movements in a based on movement 
classifications. Ground truth is taken from button presses. c) The mean final user model 
representing the directional probabilities/preferences upon reaching the target, grouped by 
absolute target position.  

 

 

 

 
 

Figure 3. Performance measure distributions for non-supported, online, and perfectly reinforced 
cursor movements on the two online grid sizes. Panel A: Performance on the four-by-four grids. 
Panel B: Performance on the six-by-six grids. All differences between the three conditions are 
significant (p < 0.025). Whiskers cover ± 2.7 σ. 
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Discussion 

We have demonstrated that binary classifications of subjective interpretations of cursor 
movements can be aggregated into a user model reflecting, in the given context, directional 
intent. Based on this model, the cursor was effectively guided toward the target. Participants were 
not aware of their influence on the cursor. Although not used explicitly in this study, analysis 
shows that more fine-grained information may be available in the elicited responses, encoded in 
the linear dependency of the response on the angular deviance. 

A novel approach combining independent component analysis (ICA; 21,22; see Materials and 
Methods), supervised machine learning, and higher-order statistics not only gave insight into the 
individual single-trial responses, but also enabled error-minimized source localization and signal 
back-projection as well as real-time single-trial analysis. These characteristics could be used to 
validate the classification system as well as the user model. Firstly, the online application of the 
classification system increased the paradigm’s goal congruency to near the optimum: the gap 
from no reinforcement to optimal reinforcement could be bridged by over 80% using the 
presented classification system, both on the four-by-four grid and on the theretofore unseen six-
by-six grid. This significant reduction in the number of steps required to reach a target provides 
evidence that the classification of brain responses following a cursor movement was based on 
task-relevant information: each movement indeed elicited a response enabling the identification 
of subjective directional preferences.  

Secondly, the neurophysiological analysis, based on the classification system’s filter set, revealed 
that the underlying signal predominantly stemmed from the mPFC, and reflected the 
experimental paradigm’s logic. Further interpretation of the neurophysiological response points 
to its likely generator process. Given the signal’s time course, its localization, and the evoking 
stimuli, the response is in line with the framework of predictive coding. We hypothesize that in 
the present study, participants consistently predicted—for lack of information that would indicate 
otherwise—that the cursor would perform the only action that would have been appropriate, i.e., 
that it would move in the direction of the target. Interestingly, however, our findings imply an 
extension of the general framework of predictive coding. A focus on “negative” signals is central 
to current interpretations and findings related to predictive coding: indications of discrepancies, 
of prediction errors, are seen as central to learning by reinforcement—in turn explaining the large 
range of rich human behavior and intelligence (23). The sensitivity of the ERP amplitude to the 
quality of the cursor movements, however, seems to indicate that neural activity generated within 
the mPFC provides a range of graded responses to both positive and negative movements. In this 
context, these reflect the observer’s directional preferences, modeling an important, task-relevant 
factor of their subjective cognition. This points to a continuous response range within the mPFC 
that not only detects deviations from a predicted event to adapt future behavior, but also confirms 
correct predictions to reinforce adequate behavior or sharpen perceptive hypotheses. This activity 
thus reflects complex aspects of the operator’s cognition, and can be highly informative for 
external systems that have access to it. 

Taken together, these results demonstrate effective cursor control through implicit interaction: 
While participants were unaware of having any influence on the cursor, the presented stimuli 
elicited informative neuronal responses that allowed the system to establish a user model from 
which the participants’ intentions could be derived. The computer system adapted its behavior to 
fit this model—thus becoming neuroadaptive. The necessary information could also have been 
provided explicitly and volitionally, but conscious interpretation can involve any number of 
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additional considerations and processes (e.g. resolving competing interpretations from different 
judgment strategies), and would require an explicit decision as well as its translation into a 
command to inform the machine. Direct access to such interpretations circumvents these time-
consuming and effortful steps, proving advantageous even with simple binary decisions, as 
implemented here. Communicating more fine-grained information, as seems also to be available, 
would be even more difficult using traditional input techniques, but equally effortless using the 
method presented here. As such, neuroadaptive technology based on passive BCI bypasses the 
communication bottleneck present in traditional HCI, effectively widening it by allowing 
interaction to take place through implicit channels. This decreases the asymmetry present in 
current human-computer interaction paradigms. 

At this point, we would like to speculate about possible implications and future extensions of the 
findings and the line of thought presented here. Our current method essentially quantified 
subjective directional preferences, supplying a single value that indicated, in the given context, 
whether a person interpreted a single cursor movement as being supportive of reaching the target 
or not. This can be seen as a real-time assessment of subjective satisfaction/dissatisfaction with 
the presented probe stimulus, thus allowing the generation of a user model representing 
subjective intent. Interestingly, one can imagine a computer system that intelligently decides 
what probe to present, in order to gather information. A system with an incomplete user model, 
for example, could present a probe in order to gauge the user’s response and thus gather the 
missing information. Such an act of active learning (24) would invert the traditional HCI cycle: 
the probe may be understood as a command—a request for feedback—direct from the machine to 
the user’s brain, inducing its own interpretation, which results in the machine indeed receiving 
the requested feedback. In the demonstration presented here, each cursor movement served as 
such a probe, and allowed the gradual development of a user model, but a more intelligent 
selection of probes may improve the system’s efficiency.  

With such a fundamental process as for example predictive coding underlying a neuroadaptive 
system, a large scope of potential applications can be imagined. Any process or path that can be 
divided into a sequence of one-dimensional (e.g. positive-negative) responses could potentially 
be covered implicitly (see Supplementary Figure S10). And, as human predictive coding shows, a 
great deal can be achieved based on such information using, for example, the relatively simple 
process of reinforcement. The two-dimensional grid used here could be replaced by any n-
dimensional space representing different system parameters. It is tempting to envision how such 
neuroadaptive systems could transform work and leisure activities in everyday settings. An 
implementation analogous to the current demonstration (but going beyond the currently presented 
results), using affective interpretations rather than cognitive ones (25), could be an adaptive, 
open-ended electronic book. While reading, the reader would interpret the story as it unfolded, 
thus automatically responding to events with a detectable affective state. Based on what the 
reader apparently finds enjoyable, a neuroadaptive system could then change the content of 
subsequent pages. With a sequence of such adaptations, the story is gradually steered in the 
reader’s preferred direction. However, the reader would not actively be directing the story, and 
would not even need to be aware of the system’s existence. 

Similarly, the general method demonstrated here is of value to neuroadaptive experimental 
paradigms. Such paradigms can use the real-time feedback supplied by the classification system 
to adapt to individual strategies, rather than enforcing a uniform logic over all participants. Probe 
stimuli can be used to first inspect the subjective relevance of different experimental aspects, for 
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example, and then adaptively go into detail, presenting more fine-grained nuances of these 
aspects, to model how they influence the brain dynamics of that individual. 

A word of caution is in order. Neuroadaptive systems can be said to be systems with an agenda, 
having a goal of their own (8). By autonomously initiating each interaction cycle using a 
specifically-selected probe stimulus, they would be in a position to ‘guide’ the interaction such 
that specific information can be gathered, and to change the interactive experience based on that 
or other information. When designing such systems, care should be taken that this agenda is not 
adverse to the user’s intention. Furthermore, the fact that it can rely on automatic, unconscious 
responses represents a potential danger to informed consent. Users should always have access to 
full information concerning the system’s goals and actions. 

The benefits of closed-loop neuroadaptive technology, however, may be vast. It enables novel 
experimental paradigms to model and adapt to relevant individual aspects in real time. For 
technology in general, this concept could represent a paradigm shift in that it skips translational 
effort, grants the machine initiative and agency, and may even function outside of conscious 
awareness. This offers designers the prospect to completely re-think the notion of ‘interaction’ 
and the possibilities offered by it. In almost a century of neurophysiological research, a number 
of correlates of cognitive processes have been identified in the EEG, some of which can already 
be detected in single trials using passive BCI methodology (as e.g. 11, 13, 14, 15, 26). We are 
looking forward to investigating which of these could be meaningfully elicited and interpreted in 
order to inform personalized user models, as per the concept of neuroadaptive technology 
presented here. Commercial systems and experimental paradigms specifically designed for this 
type of implicit interaction—a cybernetic convergence of human and machine intelligence—
could offer new functionality and scientific results we cannot currently foresee. 

 

Materials and Methods 

Experimental procedure and set-up: All participants were informed of the nature of the 
experiment and the recording and anonymization procedures before signing a consent form. The 
ethics committee of the Department of Psychology and Ergonomics at the Technische Universität 
Berlin approved the experiment and the procedures. 

A gray grid was shown on a black background, with a red target node indicated in one of the 
grid’s corners, and a red circular cursor visible on one of the nodes (see Figure 2a and 
Supplementary Figure S1). The cursor’s starting position on each grid was one node away from 
the corner opposite the target's, in a straight line to the target. In each trial, the cursor moved from 
its current node to one of the adjacent nodes. A one-second animation within the cursor served as 
a countdown. The cursor would then instantaneously jump to the next node, highlighting in white 
its new position and the grid line between the two nodes. This configuration remained visible for 
one second. Following that, the highlights disappeared and the cursor would remain at its new 
position for one more second before the next trial. Supporting Video S4 shows animated stimuli 
as seen by the participant. 

Throughout the experiment, participants were instructed to judge each individual cursor 
movement as either ‘acceptable’ or ‘not acceptable’ with respect to reaching the target, and to 
indicate their judgment by pressing either ‘v’ or ‘b,’ respectively, on a computer keyboard using 
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the index finger of one hand. These button presses were logged by the system but were not used 
as input. 

EEG was recorded using 64 active Ag/AgCl electrodes mounted according to the extended 10–20 
system. The signal was sampled at 500 Hz and amplified using BrainAmp DC amplifiers (Brain 
Products GmbH, Germany).  

Participants first performed five blocks of 120 trials on grids of four-by-four nodes. If the target 
had not been reached after 55 trials in one grid, a new grid was started. Fifty-five is twice the 
median number of random movements required to reach a target on a four-by-four grid. The EEG 
recorded during these five blocks served to calibrate the classifier, as discussed below. In online 
sessions, this classifier was then applied to one more block of 120 trials on four-by-four grids, 
and one last block of 120 trials on six-by-six grids. No maximum number of trials other than the 
block’s length was set for the six-by-six online blocks. 

During calibration blocks, the cursor moved randomly. During online application of the pBCI, 
the directional probabilities were altered based on the classification of each movement as either 
‘correct’ or ‘incorrect,’ biasing the cursor to repeat movements classified as ‘correct.’  

A total of 19 participants participated in this study, with an average age of 25.4 years ±3.4. Seven 
were female. All had normal or corrected to normal vision. The first three only performed offline 
calibration trials, while the following 16 additionally performed online trials. 

Additional details are provided in the supplementary information. 

 

Classifier: A classifier was individually calibrated on data from the initial 600-trial recording of 
random cursor movements. Movements with an angular deviance of 0° were labeled as class 1, 
and movements with an absolute deviance of 135° or more were labeled as class 2. A regularized 
linear discriminant analysis classifier was trained to separate classes (13). 

The open-source toolbox BCILAB (27) version 1.01 was used to define and implement the pBCI. 
Features were extracted through the windowed means approach, using the average amplitudes of 
eight sequential time windows of 50 ms each, between 50 and 450 ms after each cursor 
movement (13). For this feature extraction, the data was first resampled at 100 Hz and band-pass 
filtered using fast Fourier transform (FFT) from 0.1 to 15 Hz. Ensuring that the features were 
independent and identically distributed, a 5x5-times nested cross-validation with margins of 5 
was used to select the shrinkage regularization parameter, and to generate estimates of the 
classification system’s online reliability. 

Additional details are provided in the supplementary information. 

 

Identifying scalp projections: Following Haufe (28), linear discriminant analysis (LDA) patterns 
𝐴𝐴 = (𝑎𝑎𝑗𝑗)𝑗𝑗 were generated for each participant from the LDA filters 𝑀𝑀 = (𝑚𝑚𝑗𝑗)𝑗𝑗 originally used 
for online classification by conjugation with the features’ covariance matrix 𝐶𝐶: 𝐴𝐴 =  𝐶𝐶𝐶𝐶𝐶𝐶−1. 
Spatial interpretation of these patterns for each time window reflects a mixture of scalp 
activations related to discriminative source activity 𝐴̂𝐴 = (𝑎𝑎�𝑗𝑗  )𝑗𝑗 and class-invariant noise 
representation 𝑁𝑁, with 𝐴𝐴 = 𝐴̂𝐴 + 𝑁𝑁. The latter was filtered out by weighting each pattern entry ja
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with the correlation of its associated feature activity vector over trials jF  to the binary vector of 

true class labels L: jjj aLFcorra ⋅= ),(ˆ The resulting correlated pattern jjaA )ˆ(ˆ =  can be 
visualized by topographic plots for each time window, as in Figure 1d. 

Additional details are provided in the supplementary information. 

 

Localization: The classification model used was a multivariate approach, an LDA, optimized for 
the discriminability of the extracted features between classes. Each feature represents data at a 
single sensor for one of the chosen time windows. Hence, applying the methodology recently 
introduced by Haufe et al. (28) interprets the classification model at sensor level, and reveals 
further insight into the relevant underlying processes. 

To identify the sources producing the signal, the backward model, i.e. the LDA filter, was 
combined with an independent component analysis (ICA). The ICA unmixing matrix 𝑊𝑊 =
 (𝐼𝐼1, 𝐼𝐼2, … , 𝐼𝐼𝑛𝑛) was determined on manually cleaned data for each participant by using the 
Adaptive Mixture ICA (AMICA) Toolbox (29), such that s = Wx, where s represents the source 
activation related to a given scalp activation x. For each time window, the relevance for 
classification Ri of each independent component Ii can then be determined by distributing the 
LDA filter weights to the independent components via W, weighted by two factors. The first 
factor compensates for the amplitude alignment of the LDA filter weights to the feature 
amplitudes. It is determined by calculating the variance over trials of the feature 𝐹𝐹�𝑖𝑖 extracted from 
the time series of the independent component: Vi = var(𝐹𝐹�𝑖𝑖). A second weight is determined for 
filtering out noise representations by weighting the independent components with the correlation 
of their feature activity to the true class labels (as described above for electrode activity): 𝑅𝑅𝑖𝑖 =
𝑉𝑉𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐹𝐹�𝑖𝑖 , 𝐿𝐿� ∗ 𝑊𝑊𝑊𝑊 

To then localize these sources, equivalent dipole models that describe the most likely position of 
the source in a standard head model were identified for selected components by using the 
EEGLAB plug-in DIPFIT 2.x (30). Components were selected by a threshold criterion for 
residual variance of the dipole model (RV < 0.15) and visual inspection of the activation spectra, 
time courses, and scalp topographies. Only dipolar components clearly reflecting cortical, ocular, 
or muscular activity were included in the analysis. For every time window, each of the 371 
resulting dipoles was weighted by the relevance Ri of its associated independent component. The 
areas of high relevance were then described by a weighted dipole density plot using the EEGLAB 
plug-in dipoleDensity (31) by plotting the dipole density per cubic millimeter weighted by the 
relevance Ri of each included dipole with a smoothing kernel of 12 mm. 

Supporting Video S2 shows the results of this analysis for the full time course under 
investigation. 

The above-mentioned process of dipole selection did not markedly influence the analysis. 
Compared to all 1191 dipoles and averaged over the eight time windows, the 820 rejected dipoles 
(68.8%) carried 7.5% of the weights distributed by the classifier. Relative to all 1191 dipoles, a 
total of 87 dipoles received a relevance weight larger than a standard deviation of 1 in at least one 
of the time windows. These 7.3% of dipoles carried 77.8% of the total weight distributed by the 
classifier. Four of these highly weighted dipoles (4.6%) were rejected in the process explained 
above and not included in the analysis. These four represent 1.7% of the weight included in the 
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analysis. Three belonged to the same subject. 

Additional details are provided in the supplementary information. 

Performance measures and statistical methods: Cursor performance was operationalized as the 
number of movements required to reach the target. Only completed grids are included in the 
analysis, i.e., either when the target was hit or the maximum number of trials was reached. 
Online, this latter event occurred a total of seven times to seven participants on the four-by-four 
grids, and to two participants on the larger grids. Out of 120 cursor movements per grid size per 
participant, this resulted in 88 pBCI-supported target hits for the smaller grid, and 47 for the 
larger one. 

Random cursor movement data is non-parametrically distributed and varies greatly. Therefore, 
we used a resampling approach where the available sample of pBCI-supported measures was 
repeatedly compared to a new random sample of the same size of non-supported performance 
measures, using a Wilcoxon rank-sum test. Out of 50000 such comparisons, 98% of tests were 
significant at α = 0.025 for the smaller grid; for the larger grid, 100% of tests were significant at 
this level. 

The ‘perfect’ performance was simulated by automatically reinforcing the cursor as in the online 
sessions, with all movements with an angular deviance of less than 45° reinforced positively and 
all others negatively. The same procedure as above yielded significant differences to the pBCI-
supported measures for both the four-by-four grid (99.9% of tests significant at α = 0.025) and 
the six-by-six grid (100%).  

Additional details are provided in the supplementary information. 
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Materials and Methods 
1. Experimental Set-Up 

Two computers were used for this experiment: One to display the stimuli and another to record 
EEG. Stimuli were shown on an Iiyama ProLite B2776HDS 27’’ display using a resolution of 
1920×1080 pixels, located approximately one meter away from the participants. The keyboard 
used was a standard US layout computer keyboard. 

EEG was recorded continuously using 64 active Ag/AgCl electrodes (actiCAP; Brain Products 
GmbH, Munich) mounted according to the extended 10-20 system on an elastic cap (EASYCAP 
GmbH, Munich). The signal was sampled at 500 Hz and amplified using BrainAmp amplifiers 
(Brain Products GmbH, Munich). All electrodes were referenced to FCz. 

EEG data was recorded and combined with the paradigm’s markers using the Lab Streaming 
Layer framework (Swartz Center for Computational Neuroscience [SCCN], University of 
California, San Diego [UCSD]). 

 

2. Experimental Paradigm 

The cursor’s movements were restricted by the nodes of a visible grid. The cursor started out on 
one of these nodes and, for each movement, could only move to one of the adjacent nodes. 
Depending on the cursor’s position in the grid, then, there were up to eight possibilities for one 
movement. The grid consisted of grey open circles connected by grey lines on a black 
background. The cursor in this paradigm was a red, filled circle. The cursor’s size was 4.5% of 
the display’s total height, the grid nodes’ size 6%, and the horizontal and vertical grid lines’ 
length 15%. Line thickness between the grid nodes was set to 2 pixels. ‘Red’ was pure 
RGB(255,0,0), ‘grey’ RGB(51,51,51) and ‘black’ RGB(0,0,0). The dimensions of the grid are 
discussed below. 

An animation allowed the participants to be able to anticipate the moment of each movement. 
Over the course of one second, a white ‘ghost cursor’ would grow inside of the actual cursor. As 
soon as this ghost reached the same size as the actual cursor, it would instantaneously be 
repositioned to the chosen adjacent node, while also highlighting the grid line connecting the two 
nodes in white. ‘White’ here was pure RGB(255,255,255), and the highlighted grid line’s 
thickness was increased to 3 pixels. The movement remained visible for one second, with the red 
original cursor still on the initial node, the white ghost cursor on the new node, and a white line 
connecting them. Following that, all whites disappeared and the (red) cursor would 
instantaneously move to and remain at its new position, on the new node, for another second, 
before the animation would start over for the next movement. In all, a single trial was three 
seconds in length. 

Grids of three different dimensions were used in this study: One by three nodes 1×3), four by four 
nodes (4×4), and six by six nodes (6×6). 
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On each grid, a single red node in one of the corners indicated the current target. Once the cursor 
had landed on this target node, a new grid was started with the same dimensions, but a different 
layout. For the 1×3 grids, each new grid was rotated either 45, 90, or 135 degrees relative to its 
predecessor, and a new target corner was chosen at random (‘corner’ here is one of the two 
ending nodes of the grid row). The larger grids did not rotate, but a new target was selected for 
each new grid such that no two subsequent grids had a target in the same corner. Each newly 
started grid was displayed for one second before the first movement was initiated, for the 
participants to orient themselves. 

In all grids, the cursor’s starting position was one node away from the corner opposite the 
target’s, in a straight line to the target.  

Supplementary Figure S1 illustrates the stimuli; Supplementary Video 1 contains animated 
stimuli as seen by the participant. 

For each individual cursor movement, a movement direction was chosen randomly from the set of 
possible movements. By default, all possible directions had an equal probability of being selected, 
and during the offline (calibration) sessions, these initial probabilities remained unchanged---the 
cursor was unbiased and moved randomly. However, during online application of the pBCI, the 
directional probabilities were altered based on the classification of each movement as either 
‘correct’ or ‘incorrect’, biasing the cursor to repeat movements classified as ‘correct’. 

Specifically, all movement directions were represented a specific number of times in the set from 
which each new movement was randomly selected. After classification, the respective directions’ 
numbers were increased or decreased such that the resulting probability of each subsequent 
direction is given by 

 

xmn

mx
p

)1( 


 

 

where x is the respective direction’s initial number of shares in the set, n is the full set’s initial 
size, and m is a multiplier. For a movement classified as ‘correct’, m was 2.0 for that movement’s 
direction and 1.5 for the two adjacent directions; for movements classified as ‘incorrect’, m was 
0.5 and 0.75, respectively. All directions started with a share of 100 elements each in the set. All 
shares below 1 were rounded up at the time of selection. 

The adaptation of adjacent directions represents a certain degree of leniency which the 
participants were assumed to show in their judgements: If the target is a few nodes north of the 
cursor’s current position, a first move to the north-west is imperfect but may still be acceptable. 
Therefore, the feedback received from a movement to the north-west should not only alter this 
specific direction’s probability, but should also influence subsequent movements to both the north 
and the west.  

All visible on-screen events were marked in the EEG stream and additional information about 
each cursor movement was logged, including distance to the target and the movement’s direction 
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relative to the target direction (i.e., a straight line unconstrained by the grid represented a 0° 
movement). 

The paradigm was written in Python using the Simulation and Neuroscience Application Platform 
1.02-beta (SCCN, UCSD; https://github.com/sccn/SNAP). 

 

3. Participants 

A total of nineteen participants participated in this study, with an average age of 25.4 years ± 3.4. 
Seven were female, and a total of two participants were left-handed. Participants were asked, 
alternately, to use either their left or their right hand to indicate their judgements. This resulted in 
ten participants not using their dominant hand. All had normal or corrected to normal vision. 
Instructions were given in writing, in German. While all knew German, thirteen did not have 
German as their mother tongue; these were verbally given additional, standardized instructions. 

Nineteen participants performed calibration trials, while sixteen of them additionally performed 
online trials. 

 

4. Experimental Procedure 

All participants were informed of the nature of the experiment and the recording and 
anonymization procedures before signing a consent form. The ethics committee of the 
Department of Psychology and Ergonomics at the Technische Universität Berlin approved the 
experiment and the procedures. 

After preparation and setting up the EEG cap, which took roughly one hour per participant, 
participants were seated in a padded chair in a dimly lit room, about one meter away from the 
stimulus display. In writing, they were instructed to judge each individual cursor movement on 
the display as either ‘acceptable’ or ‘not acceptable’, with respect to reaching the target, and to 
indicate their judgement by pressing either ‘v’ or ‘b’, respectively, on a computer keyboard using 
one and the same finger of one hand. The participants performed this task during all blocks.  

Participants were first given four blocks of 50 trials on 1×3 grids. Here, the cursor performed 
only one movement per grid: Regardless of whether or not that movement reached the target, a 
new grid was subsequently started. This was because after a movement away from the target, 
only one movement possibility would remain, i.e. that trial would have no informational value. 
Breaks between these blocks were self-paced, and participants were given time to practice before 
the first block was started.  

Following these first blocks, participants received additional instructions for the larger grids, 
emphasizing their task to judge every movement individually and independently of the cursor’s 
movement history. Participants were again given some time to practice, on a 4×4 grid, and then 
performed five blocks of 120 trials on grids of that size. Here, if the target had not been reached 
after 55 trials in one grid, a new grid was started. 55 is twice the median number of random 
movements required to reach a target on a 4×4 grid. 

Taking symmetry and rotation into account, a total of 43 unique cursor movements are possible 
on the 4×4 grid, i.e., 43 unique pairs of distance and angular deviance. In between the five 
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calibration blocks, in four sessions, participants were shown, in random order, all 43 unique 
cursor movements. For each of these, participants were asked to rate it as either ‘acceptable’ or 
‘not acceptable’, and on a scale of 1 to 5, with 5 being ‘the best possible movement in that 
situation’, and 1 being ‘the worst’. Here, unlike during the blocks, there was no time limit 
imposed on their answers. 

EEG recorded during these latter five blocks served to calibrate the classifier, as discussed in 
Supplementary Method 5. This classifier was then applied to one more block of 120 trials on 4×4 
grids, and one last block of 120 trials on 6×6 grids. No maximum number of trials other than the 
block’s length was set for these online blocks. 

 

5. Feature Extraction and Classification 

A BCI based on supervised machine learning needs to be calibrated before it can be applied. This 
calibration is typically performed on sets of recordings, usually EEG epochs, which are known to 
contain the signals that need to be detected later. On the basis of these epochs, a classifier is 
calibrated to optimally distinguish between the different classes of source signals. 

The classes the classifier was calibrated on were formed on the basis of the movements’ angular 
deviance from a straight line towards the target, as illustrated in Supplementary Figure S2. 
‘Correct’ movements were those with an absolute angular deviance of 0°; ‘incorrect’ were those 
with an absolute angular deviance of 135° or more, as in Supplementary Figure S3. These class 
definitions were determined based on the first three participants’ data. 

Note that the participants’ judgements, indicated using button-presses, were ignored: Only a 
movement’s angle with respect to the target determined its class. Movements between 0 and 135° 
were not included for calibration. 

The open-source toolbox BCILAB (23) version 1.01 was used to define and implement the pBCI. 
Features were extracted through the windowed means approach. This approach extracted features 
from the time course of each of the 64 channels by subsampling the ERPs of each epoch. This 
was done by dividing the time course into a sequence of 8 consecutive 50 ms windows (8 time 
windows starting at 50 ms after cursor movement) and replacing each window by its average. The 
resulting features were thus one value for each channel in each time window. Linear discriminant 
analysis (LDA) was then applied to these features generated from all available calibration trials to 
distinguish between the features belonging to the two classes. The outcome of the LDA is a linear 
weighting of all features. In other words, in each time window all channels receive a weight 
according to their relevance for classification in that specific time window. The linear 
combination of all features of one single trial with these weights then gives a number between -1 
and 1, indicating whether this trial is classified as belonging to class 1 or to class 2. 

For the feature extraction, the data was first resampled at 100 Hz, and band-pass filtered from 0.1 
to 15 Hz. Linear discriminant analysis was regularized by shrinkage. A [5,5]-times nested cross-
validation with margins of 5, ensuring the independence and identicality of the feature 
distributions, was used to select the shrinkage regularization parameter, and to generate estimates 
of the model’s online reliability.  
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6. Extended Feature Analysis 

The method used by the pBCI to extract discriminative information (described in Supplementary 
Method 5, above) can be analyzed to reveal further insights into the relevant underlying 
processes. The classification model used here is a multivariate approach, a linear discriminant 
analysis (LDA), optimized for the discriminability of the extracted features between classes. Each 
feature represents data at a single sensor for one of the chosen time windows. Hence, the 
methodology recently introduced by Haufe et al. (1) could be applied to interpret the 
classification model. 

For one of the eight 50 ms time windows, Figure 2 in the main manuscript illustrates three aspects 
of the information used by the pBCI: its scalp topography, its estimated source within the brain, 
and the activity of that source as filtered from the EEG, i.e. the selected signal of interest. 

 

Signal of interest. Panel (C) of Figure 2 in the main manuscript shows the EEG activity 
projected by the LDA filter for the third time window, i.e., the combined activity of all 64 
channels as filtered by the classifier. Supplementary Figure S5 illustrates this for all eight time 
windows. 

In Supplementary Figure S5, the ERP is shown for eight groups of cursor movements, time-
locked to that movement, as well as the difference wave between the two classes (‘correct’ and 
‘incorrect’). The difference wave represents the actual signal (and the optimization target) used 
by the classifier, in the corresponding time window. The time window of the LDA filter used is 
indicated in grey. 

Each figure indicates the response to different cursor movements of those processes whose 
activity was filtered from the EEG in that time window, over the course of a full second. 

 

Identifying scalp projections. In panel (A) of Figure 2 in the main manuscript, the scalp map 
shows, on average for all participants, the (interpolated) activation pattern which illustrates how 
the signal of interest is expressed in the 64 channels (1), in the third time window. Supplementary 
Video 3 shows this activation pattern over the full length of the used 400 ms. 

For each participant, LDA patterns jjaA )(  were generated from the LDA filters ܯ ൌ ሺ ௝݉ሻ௝ 

originally used for online classification by conjugation with the features’ covariance matrix 
1: CMCAC . Spatial interpretation of these patterns for each time window reflects a mixture 

of scalp activations related to discriminative source activity jjaA )ˆ(ˆ  and class-invariant noise 

representation N, with NAA  ˆ . The latter was filtered out by weighting each pattern entry ja

with the correlation of its associated feature activity vector over trials jF  to the binary vector of 

true class labels L: 

 

jjj aLFcorra  ),(ˆ  
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The resulting correlated pattern jjaA )ˆ(ˆ  can be visualized by topographic plots for each time 

window, as in Figure 2 of the main manuscript, Supplementary Figure S5, and Supplementary 
Video 3. 

 

Identifying relevant sources. To identify the sources underlying these topographic 
representations, the backward model, i.e. the LDA filter, was combined with an independent 
component analysis (ICA). The ICA unmixing matrix ܹ ൌ	ሺܫଵ, ,ଶܫ … ,  ௡ሻ was determined onܫ
previously manually cleaned data for each participant by using the Adaptive Mixture ICA 
(AMICA) Toolbox (2), such that Wxs  , where s represents the source activation related to a 

given scalp activation x. For each time window, the relevance for classification iR  of each 

independent component iI  can then be determined by distributing the LDA filter weights to the 

independent components via W, weighted by two factors. The first factor is compensating for the 
amplitude alignment of the LDA filter weights to the feature amplitudes. It is determined by 

calculating the variance over trials of the feature iF̂  extracted from the time series of the 

independent component: )ˆvar( ii FV  . A second weight is determined for filtering out noise 

representations by weighting the independent components with the correlation of their feature 
activity to the true class labels (as described above for electrode activity).  

 

ܴ௜ ൌ ௜ܸ ∗ ,෠௜ܨሺݎݎ݋ܿ ሻܮ ∗  ܯܹ

 

Localizing relevant sources. To localize the identified sources, equivalent dipole models that 
describe the most likely position of the source in a standard head model were identified for 
selected components by using the EEGLAB plug-in DIPFIT 2.x (3). Components were selected 
by a threshold criterion for residual variance of the dipole model (RV < 0.15) and visual 
inspection of activation spectra, time courses, and scalp topographies. Only components 
reflecting cortical, ocular, or muscular activity were included in the analysis. 

For each time window, each of the 371 resulting dipoles was weighted by the relevance iR  of its 

associated independent component, described above. The areas of high relevance were then 
described by a weighted dipole density plot using the EEGLAB plug-in dipoleDensity (4).  

Supplementary Video 4 shows the result of this analysis over the full length of the used 400 ms, 

by plotting the dipole density per cubic millimeter weighted by the relevance iR  of each included 

dipole with a smoothing kernel of 12 mm. 

The above-mentioned process of selection did not markedly influence this analysis. Compared to 
all 1191 dipoles and averaged over the eight time windows, the 820 rejected dipoles (68.85%) 
carried 7.5% of the weights distributed by the classifier. Relative to all 1191 dipoles, a total of 87 
dipoles received a relevance weight larger than 1 standard deviation in at least one of the time 
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windows. These 7.3% of dipoles carried 77.82% of all total weight distributed by the classifier. 
Four of these highly weighted dipoles (4.6%) were rejected in the process explained above and 
not included in the analysis. These four represent 1.67% of the weight included in the analysis. 
Three belonged to the same subject.  

Behavioral analysis. Participants indicated their evaluation of each movement as ‘acceptable’ or 
‘not acceptable’ through button presses. A paired-samples t-test was conducted to compare the 
subjects’ mean reaction times. There was a significant difference between ‘acceptable’ button 
presses (mean 369.7 ms±66.9) and ‘not acceptable’ button presses (mean 310.7 ms ±60.7); t(18) 
= 8.347, p<0.001. This calculation included only reaction times between 100 and 1000 ms.  

No systematic effect reflecting this delay can be found in the ERPs used for classification 
however (see Figure 1, 2, and Supplementary Figure S5). This, in combination with an absence of 
relevance weights in the motor cortex (Supplementary Figure S5) and the ERPs' independence of 
eye movements (Supplementary Figure S6), leads us to conclude that the behavioral delay has 
had no effect on the passive BCI.  

 

7. Performance Measures and Statistics 

The performance of the cursor was operationalized as the number of movements required to reach 
the target. Trials at the end of a block that did not contribute to reaching a target or hitting the 
maximum number of trials for that attempt, were discarded. This measure does include those 
attempts that hit the maximum number of trials, which happened a total of seven times to seven 
participants on the 4×4 grid, and to two participants on the 6×6 grid. This resulted in 88 pBCI-
supported data points for the 4×4 grid, and 47 for the 6×6 grid.  

As a comparison, a sample of around 7000 data points was taken using the same measure from 
non-supported (random) blocks. This data is non-parametric and varies greatly. Therefore, a 
resampling approach was taken where the available sample of pBCI-supported measures was 
repeatedly compared to a new random sample of the same size of non-supported performance 
measures. This comparison was done through a Wilcoxon rank-sum test. Out of 50 000 such 
comparisons, 98.02% of tests were significant at the α=0.025 level for the 4×4 grid performance 
measures; for the 6×6 grid, 100.00% of tests were significant at this level. On a 4×4 grid, non-
supported cursor movement required on average (median) 27 trials to reach a target, whereas with 
BCI support, this decreased to an average of 13. On a 6×6 grid, the median values were 90 and 
23, respectively.  

The pBCI-supported performance was furthermore compared to ‘perfectly supported’ 
performance, where the cursor was reinforced as during the online sessions, except automatically, 
with perfect accuracy. Here, all movements with an angular deviance less than 45º were judged to 
be ‘correct’ and reinforced accordingly, and all others were ‘incorrect’, and their probabilities 
decreased as described in Supplementary Method 2. The same procedure as above yielded 
significant differences to the pBCI-supported measures for both the 4×4 grid (99.98% of tests at 
α=0.025) and the 6×6 grid (100%). The median perfectly supported performance measure on the 
4×4 grid is 10 movements, and 14 movements on the 6×6 grid. 

Additionally, the mean directional probabilities upon reaching the target in both online grids 
(combined) were calculated. These are illustrated in Supplementary Figure S4. Supplementary 
Table S2 lists the Bonferroni-adjusted results of pairwise post hoc tests from a one-way ANOVA 



 

 

9 
 

(F(7,105)=57.520, p<0.001) on this data. On average, the classifier has been able to reinforce the 
‘correct’ directions significantly more strongly than ‘incorrect’ directions. 

 

8. Linear Dependency of Peak Amplitude 

Figures 1 and 2 of the main manuscript show a linear scaling of peak amplitudes with respect to 
absolute angular deviance away from the target. The eight groups of angular deviations were 
selected such that for each single participant, at least 50 trials were present in each group, i.e., for 
an optimal signal to noise ratio while maintaining maximal angular resolution.  

For the derivation of the single electrode ERP, BrainVision Analyzer was used (Version 
2.0.2.5859, Brain Products GmbH, Munich, 2012). The raw EEG data was first band-pass filtered 
from 0.5 to 45 Hz, and decomposed into statistically maximally independent source signals 
through ICA. Individual components that resembled eye movements and eye blinks were 
manually selected for removal based on their time course and topography (as e.g. described in 
26). Figure 1 shows the grand average ERP over all nineteen participants at Fz with these 
components removed. For a comparison, Supplementary Figure S6 shows the grand average ERP 
at Fp1, Fp2, and Fz for only the removed components. No systematic response of the sort seen in 
Figures 1 or 2 is visible, pointing to cortical causes of the differences. At Fz, where the cortical 
components peak around +3.9 µV for e.g. the 0º condition, the eye components show an 
amplitude of –0.37 µV. 

Statistical analysis focused on the systematic peak differences seen at Fz around 180 ms. A one-
way ANOVA indicated a significant influence of angular deviance on peak amplitude (F(7,126) = 
47.243, p < 0.001). Post-hoc comparisons corrected for false discovery rate are listed in 
Supplementary Table S3 and illustrated in Supplementary Figure S7. The peak amplitudes differ 
significantly (p < 0.001) between the classes used by the classifier. In between, the peak 
amplitudes scale linearly with angular deviance, as fitted by a linear regression model using each 
group’s mean angular deviance as predictor (b = -0.0035, F = 45.28, p < 0.001; R2 = 0.33). 
Classifier output followed a similar trend, as in Figure 4 of the manuscript. 
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Figures 
 

 

Fig. S1. Experimental Paradigm and Procedure 

The experimental paradigm and procedure. Left: Three different grid sizes were used in the 
experiment. Data from five blocks in 4×4 grids was used to calibrate the classifier, which was 

then applied to another 4×4 block, and one block on a 6×6 grid. Data from the 1×3 grids has not 
been used in this paper. Each cursor movement consisted of the cursor moving from one node to 
one of the directly adjacent ones. The cursor could move horizontally, vertically, and diagonally 
over the grid. Since the target was known and indicated, for each movement, it was possible to 

determine a measure of correctness for each movement by means of calculating the angular 
deviance, as in Supplementary Figure S2. Right: Detail of a 4×4 grid showing the cursor’s 

movement animation. 
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Fig. S2. Angular Deviance 

Illustration of the angular deviance of two possible cursor movements (north, and north-west) 
from the optimal path straight towards the target. Angular deviance was measured as the absolute 

deviation, in degrees, of the movement direction from a straight line to the target. 
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Fig. S3. Class Definition of the Classifier’s Training Set 

The classifier was calibrated on a subset of trials from a 600-trial calibration session. This set was 
selected by angular deviance: Movements with an absolute angular deviance to the target of 0º 
were included as ‘correct’, while movements with a deviance of 135º or more were included as 

‘incorrect’. This figure illustrates which of all possible movements on the 4×4 grid were included, 
and in which category: Green represents ‘correct’, red ‘incorrect’. From the total of 600 trials per 
participant on the 4×4 grids, this selection left 62.7 ± 7.8 ‘correct’ and 124.4 ± 8.9 ‘not accepable’ 

trials per participant for the classifier to be calibrated on. 
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Fig. S4. Directional Probabilities 

Mean directional probabilities, relative to the target from the cursor’s starting position, upon 
hitting the target, in the BCI-supported condition, averaged over participants. Error bars represent 

the standard deviation. See Supplementary Table S2 for significance tests. 
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Fig. S5. LDA-projected ERPs 

(Figure spans three pages; this is page 1 of 3.) 
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Fig. S5. LDA-projected ERPs 

(Figure spans three pages; this is page 2 of 3.) 
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Fig. S5. LDA-projected ERPs 

(Figure spans three pages; this is page 3 of 3.) 

The classifier was calibrated on features spanning eight time windows of 50 ms each. For each 
time window, the above figures show on the left: Source localisation via weighted dipole density 
of the process(es) focused on in that time window; right: Full-length ERPs, combined as per that 

time window’s LDA filter, of eight groups of cursor movement, as well as the projected 
difference wave between ‘correct’ and ‘incorrect’ classes (i.e. the filter’s optimisation target). 

Each figure’s actual time window, which actually contributed to classification, is highlighted in 
grey. 
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Fig. S6. Influence of Eye Movements on the ERP at Fz 

The grand average ERP (n = 19) at Fp1, Fp2, and Fz for only those components that contained 
strong eye movements and were removed for neurophysiological analysis. No systematic 

response is visible. 
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Fig. S7. Mean Peak Amplitudes at Fz 

Peak amplitudes around 180 ms for the eight groups of cursor movements. The peak amplitudes 
differ significantly (p < 0.001 ***) between the classes used by the classifier. In between, the 

peak amplitudes scale linearly with angular deviance, as fitted by a linear regression model using 
each group’s mean angular deviance as predictor (b = -0.0035, F = 45.28, p < 0.001; R2 = 0.33). 
Statistically significant differences between adjacent groups are indicated as well (p < 0.05 *). 
See Supplementary Table S3 for exact figures of all comparisons. Classifier output followed a 

similar trend, as in Figure 4 of the manuscript. 
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Fig. S8. Scalp Activity Series 

Class-specific grand average scalp activities (n = 19), time-locked to cursor movement, at the 
middle of each time of the eight time windows used for classification. Left: Scalp activities of 
class 1, containing only cursor movements that went directly towards the target. Right: Scalp 

activities of class 2, containing cursor movements with an angular deviance of 135º or more. EEG 
data was first band-pass filtered from 0.1 to 5 Hz as per the classification approach and re-

referenced to the common average. See Figure 2 in the main manuscript and Supplementary 
Video S4 for the class-correlated scalp activity that the classifier focused on.  
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Fig. S9. Example Online Cursor Behavior 

Visualization of two online target selections. Left: Trace of cursor movements over the grid. Each 
cursor movement only progressed one node over the grid; extended straight lines thus reflect 
multiple movements. Right: Progression of normalized directional probabilities relative to 0º, 

with 0º being the direction towards the target at the start of the grid. All directions started out with 
equal probabilities, indicated at trial 0. Each subsequent trial shows the directional probabilities 
after that trial’s cursor movement was classified and the cursor was reinforced accordingly. The 

colors reflect the confusion matrix with the participant’s button presses being used as ground 
truth. True positive (light green) indicates the cursor movement was correctly classified as 

‘correct’. True negative (dark green) indicates a correctly classified ‘incorrect’ movement; false 
positive (light red) an incorrectly classified ‘correct’ movement; false negative (dark red) an 

incorrectly classified ‘incorrect’ movement. The top row shows a relatively slow online run of 31 
trials on a six-by-six grid. A number of misclassifications, especially near the middle, delay the 
probabilistic model’s convergence towards the desired target direction. However, the erroneous 

trials do not lead to an adverse bias while the correct classifications do systematically point 
towards the target, and the correct direction is found. The lower row shows a shorter run of 14 

trials with only two misclassifications. 
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Fig. S10. The neuroadaptive control loop 

A stimulus or parameter change provokes an automatic response from the user, whose biosignals 
are monitored. The user’s response can be classified from the gathered data, allowing the system 

to interpret the response in light of the previously gathered user information and the current 
context. With this information, the system updates its user model. Based on the user model and 

the current system status, the system may decide on a new probe stimulus. 
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Tables 
 

 

 

Table S1. Online Classification Accuracy 

Online classification rates for the 4×4 grid, and the 6×6  grid. TP = True Positives, TN = True 
Negatives, CR = Classification Rate (combined TP and TN). 

 

Supplementary Table S1 lists the classification rates for the online blocks, i.e. what percentage of 
classifier output agreed with the given definitions of ‘correct’ and ‘incorrect’ movements. These 
definitions were the same as the ones used for calibration: Movements with an angular deviance 
to the target of 0º were defined to be ‘correct’, and those with a deviance of 135º or more were 

taken to be ‘incorrect’. The labels of all other movements were subject to individual 
interpretation, and have therefore not been included in this analysis. 

The table lists these rates for all participants that completed online blocks. From the total of 
nineteen, this excludes the first three participants, who only performed offline calibration blocks. 

A further three participants only performed 4×4 grids online. 
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Table S2. Post Hoc: Final Direction Probabilities 

Bonferroni-adjusted pairwise comparisons of the mean directional probabilities upon reaching the 
target. 

 

Supplementary Figure S2 shows the mean directional probabilities upon reaching the target in 
both online grids, sorted by their angular deviance to the target, which was fixed relative to the 

cursor’s starting position. Supplementary Table S2 lists the Bonferroni-adjusted results of 
pairwise post hoc tests from a one-way ANOVA (F(7,105) = 57.520, p < 0.001) on this data. On 

average, the classifier has been able to reinforce the ‘correct’ directions significantly more 
strongly than ‘incorrect’ directions. 
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Table S3. Post Hoc: Peak Amplitude Differences at Fz 

Pairwise comparisons, adjusted for false discovery rate, of the mean peak amplitudes at Fz for the 
eight angular categories. 

 

A one-way ANOVA indicated a significant influence of angular deviance on peak amplitude 
(F(7,126) = 47.24, p < 0.001). In Supplementary Table S3 are listed the post-hoc comparisons—
one-sided t-tests with pooled standard deviations, corrected for false discovery rate—between the 

eight individual groups of cursor movement. 
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Table S4. Post Hoc: Classifier Output 

Pairwise comparisons, adjusted for false discovery rate, of the mean peak amplitudes at Fz for the 
eight angular categories. 

 

A one-way ANOVA indicated a significant influence of angular deviance on classifier output 
(F(7,105) = 28.32, p < 0.001). Below are listed the post-hoc comparisons—one-sided t-tests with 

pooled standard deviations, corrected for false discovery rate—between the eight individual 
groups of cursor movement. 
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Table S5. Pairwise Comparisons: Projected ERP Peak Amplitude Differences 

Pairwise comparisons of the mean amplitudes in the third time window (150-200 ms) of the 
LDA-projected ERP.  

Supplementary Figure S5 shows LDA-projected ERPs. At Fz, significant amplitude differences 
were found at around 180 ms following cursor onset (see Figure 1 of the main manuscript and 
Supplementary Figure S7). This falls within the third time window used by the classification 
system (150 to 200 ms following cursor movement). This table shows the results of pairwise 
comparisons using one-tailed permutation tests of the mean amplitudes of the LDA-projected 

ERPs in that time window, between the eight individual groups of cursor movement. 
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