
J. Non-Equilib. Thermodyn.
1998-Vol. 23-pp. 141-158

Second Law Induced Existence Conditions for Isothermal
2-Phase Region Cyclic Processes in Binary Mixtures

W. D. Bauer, W. Muschik
Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany

Registration Number 774

Abstract

Conditions describing the behaviour of the kink of isobars at the dew line in t;-x-phase
diagrams of binary mixtures are proved using the second law. These conditions are
interesting in connection to the compatibility of Serogodsky's and van Platen's cycles
with the second law of thermodynamics.

1. Introduction

Because the behaviour of mixtures is not easy to predict experimenters sometimes hope
to find "violations" of the second law in areas of the state space which are unusual
for cyclic processes of heat engines. But because also measurements in these
areas are difficult to perform there is the possibility that pretended violations of
the second law are caused by a forbidden interpretation of exact or even inexact
measurements or calculations. In the past two proposals among others were made
for an experimentally detected contradiction to the second law in binary mixtures:
The first one is A. Serogodsky's cycle [1] and the second one is the patented van
Platen's cycle [2] which both are described in the next section. In Section 3 we derive a
test criterion for these cycles with respect to the second law, the so-called kink criterion
describing the slope behavior of the isobars at the dew line in binary u-x-phase
diagrams. By this criterion the existence of these cycles can be tested due to the
second law. An example is discussed in section 4 by exploiting measured values of
nitrogen-n-butane numerically by use of a generalized Bender equation [3] with
adequate mixture rules of Tsai and Shuy [4]. The introduced kink criterion is satisfied
for this special material performing a Serogodsky process. Consequently the pretended
violation of the second law for the considered cyclic processes is caused by
incorrectly exploited or interpreted measured values or by incorrectly formulated
constitutive equations.
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142 W.D. Bauer, W. Muschik

2. Van Platen and Serogodsky cycles

2.1. van Platen cycle

The following cycle pretending to violate the second law is a simplifield version of a
cycle proposed by B. van Platen, the inventor of the absorption refrigerator [2], see
Figure 1. The purely isothermal cycle runs in the lower region of the binary Ñ-÷ ÷-phase
diagram, where dP^/dx^ > 0 holds at the dew line (P = pressure, xx = molar ratio of
one of the two components, í = specific volume), see Figure 1.

The van Platen cycle is realized in the following way (cf. Fig. 2, Fig. 3, and Fig. 4):
Starting out with state 1 at the dew line in the phase diagram, the vapour is isothermally
compressed reaching state 2. In the course of this, the compression vapour condenses to
liquid. At state 2 the volume is split into two parts by closing a tap, one partial
compartment 2 contains only vapour, and the other partial compartment 2" contains
liquid as well as vapour. Then both the volumes 2 and 2" are expanded separately till
the initial pressure of the cycle is reached in both the compartments 3' and 3". Then the
tap between both the compartments is opened, and-as we will see below-the initial
state 1 is reached again.

In order to characterize the different states of the cycle we have to introduce the
equilibrium state space of the two component two phase system. As we will prove in
Appendix I this state space is given by

Here x1 is the molar ratio of the first component of the two component system. The
volume Ê the molar ratio of the gaseous and fluid part of the first component are given
by constitutive equations, the equation of state and the phase diagram Figure 4

3'

Fig. 1: Simplified van Platen cycle in a P-x-phase diagram of a binary mixture at constant
temperature (TCi<T<TJ.
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Second law induced existence conditions 143

¢.

1-2 2-3 3-1

Fig. 2: Simplified van Platen cycle at constant temperature (T C t <> T< Tc ): 1-2 compression,
2 splitting the volume by closing the tap, 2-3 separate expansion of botii the compartments,
3 opening the tap, 3-1 irreversible closing of the cycle.

Fig. 3 Total P-V diagram of a simplified van Platen cycle in a binary mixture at constant
temperature (TC i < T< TJ.

Fig. 4: v-x diagram of a simplified van Platen cycle in a binary mixture: According to the second
law the isobar 3"-l is steeper than the isobar 1-3'.
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(2)

(3)

As demonstrated in Appendix I all other properties of the considered system can be
calculated from the state variables and from the constitutive equations.
According to (1) we obtain for the saturated

state 1: z(l} = (T, P (\\xj\\n\ (4)
0. (5)

By compression we get for the

state 2: z(2) = (T, P(2\ x,(2\ n\ (6)

P(2) > P(l), Xi(2) = x;(l), (7)

xf (2), x{(2) from the phase diagram (Figs. 1 and 4). (8)

Now the tap is closed, and the system is split into two parts having the states 2' and 2",
respectively. According to Appendix I, (92) and (93) the splitting into the subsystems
having the states 2' and 2" is described by the splitting factors á and â:

n(2) = an(2) = an, (9)

J x1(l) (10)

n(2") = (1 - a)n(2), x, (2") = = xx (2). (1 1)

The splitting is performed in such a way that state 2' includes only gas:

state 2': z(2') = (7; P(2'), x^'), n(2')), (12)

P(2') = P(2), x1(2') = xf(2')5 x'(2')=l, (13)

whereas

state 2": Z(2") = (T, P(2"\xl(2"\n(2"}) (14)

P(2") = P(2) (15)

includes gas and fluid.
According to (10) and (13)2 we obtain

or = (16)
j

Therefore the second splitting factor â is not arbitrary, but determined by the special
splitting due to the constraint of (13)2.
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Second law induced existence conditions 145

By decompression of the states 2' and 2" to the initial pressure we arrive at 3' and 3",
respectively,

state 3': z(3') = (Ô, Ñ (3')5 ÷&ú n(3')), (º7)

P(3') = P(l), n(3') = n(2') = áê(2) = an, (18)

Xl(3') = Xl(2') = x,(l) = x{(2'), (19)

which follows from (16) and (7)2. Further we obtain for

state3": Z(3") = (^P(3")5x1(3"),w(3")), (20)

P(3") = P(l), *(3") = n(2") = (1 - ö(2) = (1 - a)n, (21)

(22)
l — OC

Now the tap is opened, and we obtain the compound system 3' (J 3"

state 3' U 3": z(3' U 3") = (T, P(3' U 3"), *÷(3' U 3"), "(3' U 3")), (23)

P(3' U 3-) = P(l), n(3' U 37/) = n(3') + »1(3^ = n. (24)

Writing down its definition we obtain for

/^/ ^//\ /^/\ /^//\ni(3 u30 «é(3) + ç!(3 )
n(3'u3") n(3') + n(3")
1

-×é(3")ç(3")]· (25)

Inserting (19) and (22) this results in

'

Here the last equation follows by (18)2 and (21)2. Thus the states 1 -»2-»2', 2"-* 3',
3" -> 1 form a cyclic process, the van Platen process.

«

2.2. Serogodsky's cycle
A cycle analoguous to that of van Platen's was proposed by Serogodsky [1] in the
upper region of the phase diagram (3P(v)/dx1 < 0), compare Figures 5 to 8. Starting
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PI

P2

K l 3'

Fig. 5: Serogodsky cycle in a P-x-phase diagram of a binary mixture at constant temperature
(τ < T< Ô )\Ëá~ * ~ cj

1-2 2-3 3-1

Fig. 6: Serogodsky cycle at constant temperature (TC i < T< Tc):l-2 expansion, 2 splitting the
volume by closing the tap, 2-3 separate compression"of both tlie compartments, 3 opening the
tap, 3-1 irreversible closing of the cycle.

out with state 1 at the dew line saturated vapour is expanded isothermally. During this
process liquid condenses and we arrive at state 2. By closing a tap the volume is split
into two separated compartments: one, 2' containing only vapour and the other, 2"
containing vapour and liquid. After having recompressed both volumes to the initial
pressure of state 1 they are reunited by opening the tap and by expanding them
isobarically to the initial state.

The formal calculation is totally analoguous to that of the van Platen cycle and should
be skipped here.
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Second law induced existence conditions 147

Fig. 7: Total P-V diagram of a Serogodsky cycle in a binary mixture at constant temperature

Fig. 8: v-x diagram of a Serogodsky cycle in a binary mixture: According to the second law the
isobar 3"-l is more flat than the isobar 1-3'.

3. Second law induced existence conditions

In this section we derive conditions for the existence of van Platen and Serogodsky
cycles. Because both processes are isothermal the second law enforces that the work
absorbed in a cyclic process has to be positive [7]. This criterion is rather unpractical,
because up to now the work does not appear in the description of both the processes.
Therefore we will replace this work criterion by another one including only quantities
which can be read off from the used diagrams.
We introduce the averaged slope of the isobars (which are also isotherms) in the 2-phase
region by

- u(3")tg(p:=-

J. Non-Equilib. Thermodyn. · 1998 · Vol. 23 · No. 2
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and that in the I -phase region by

»PO- »W (28)

Here v indicates the molar volume of the appropriate states belonging to both the cycles
(see Fig. 4 and Fig. 8). According to (2) and (1) the molar volume is a function of
temperature, pressure, and molar ratio of the first component: õ( Ô, P, *i). Thus we
obtain

(29)

. (30)

v(3") = v(T,P,Xl(3")). (31)

According to (19) and (22), xt (3') and Xl (3") depend on xx (1), if the split factors á and â
are fixed. We now define the so-called kink of isobars

K(P,T,Xl(l)): = tg<p-tgt. (32)

As we will prove in the following, this kink of isobars replaces the work criterion of the
second law: The kink bends up in the Serogodsky cycle and bends down in the van
Platen cycle.

Proposition: If the van Platen or the Serogodsky cycle exist, the kinks of the isobars
satisfy the following inequalities:

K(P, T,x1)>Q) van Platen case: dP/dxt > 0, (33)

K(P, T, Xl) = 0, dP/dXl = 0, (34)

K(P, T,Xi)<0, Serogodsky case: dP/dXi < 0. (35)

Here Ñ = Ð( Ô, X j ) is the dew line in the binary P-xrphase diagram, see Figure 1.

Proof (for the van Platen cycle): The work done on the two subsystems (the two
cylinders / and //) along the cyclic process is

w= - Ó tyPtdVi* ñé = P n = '·Ñ· (36)
*=/ J
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Second law induced existence conditions 149

According to (13)1? (15), (18)15 and (21)t the initial and also the final pressures of the
compound process (2' -» 3') n (2" -» 3") are equal. Because the tap is closed during this
compound process we are able to control the volume changes of the partial processes
2' -» 3' and 2" -> 3" in such a way that always (36)2 is valid. According to (2) and (1), and
(92) and (93) the volumes of the subsystems are

÷é(1\áç), (37)

Vn(l) = Ö(Ô, P(l), xi(l), (1 ~ á)ð), (38)

V(l}=Vi(Y)+VI1(\\ (39)

Although there is no splitting of the system in state 1 by the tap, the subsystems / and //
are introduced according to the splitting of state 2. By this procedure the volumes Vl
and Vn are continuous quantities along the cyclic process. Hence we can transform
(36)x into

W= ÷ ÖíßÜÑß = (bVdP > 0. (40)

The last equation results from (39) and (36)2, and the inequality represents the second
law for isothermal cyclic processes (see Appendix I).

We now have to calculate the work (40) per mole (Fig. 3)

w=(L</P>0. (41)

The cyclic process contains two parts: The compression 1 -»2 and the dilatation 2 —> 3,
and therefore (41) results in

= vdp+ vdp= [vl2 — v23~]dp>0, dp>0.
·> 1 J 2 J 1

(42)

Thus we obtain immediately (Fig. 3)

vl2(P) > v23(P\ along 1 -^2 or 3 -^2. (43)

Especially we have for the beginning of the path, that are the states 1 and 3

(1 - ö(3"). (44)

This equation results from (99) in Appendix I because by closing the tap the system was
split into two parts with the splitting factor á according to (18)2 and (21)2.
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We now consider the straight line through the states 1 and 3 ; f

-*** (45)

Especially for the state 3', (45) yields

Xj^ij ^Cily /
Because of (19) and (22), and (7)2 we have

UCI fj ' JL I / A ^T\= X!(2)-^ v. (47)
1 — a

(48)

Inserting these two equations into (46) we obtain

8 = i[i;(l)-i;(3//)] + i;(3//), (49)

or
•*l*-v(3")l = v(l)-v(3"). (50)

From the Second Law (44) follows
<*ßí(3')-õ(3'ç<í(1·)-í(3"ú. (51)

Inserting this into (50) we obtain

á \_õ - 1>(3")] > á[é;(3') - t;(3'0] -* í > v(3'). (52)
This means that the slope (27) tgcp of the straight line 3" -- 1 is steeper than that tgif/ of
the straight 1 -- 3' in (28)

tg<p > tgilj. (53)
Thus according to (32) the proposition (33) is proved.

The proof for the Serogodsky cycle can be achieved analogously and is skipped here.

The case Ê = 0 in (34) is included as a limit in the van Platen case as well as in the
Serogodsky case because of the continuity of K.

4. An example

We now test the kink condition (35) for the Serogodsky cycle in a system consisting of
nitrogen-n-butane. First of all we need a constitutive equation for this binary liquid
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Second law induced existence conditions 151

mixture. In order to get good accuracy we choose the subsequently generalized Bender
equation of state which can be represented analytically and which can be programmed
economically by use of Horner's scheme [3] '·

Py
ËÔ= JSj + ä2Î2 + <53Î3 + <$4Î4 + <55Î5 + ä2 exp(- ä2) [Î6 + <52Î7]. (54)

Here the abbrevations ä and Î,· have the following meaning

= vc/v,

= e - âô - âô - Ý?ô -

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

The ^-coefficients are tabulated in [5], ù (the acentric factor) and ÷ (the Stiel polar
factor) are material constants taken from [5, 11].

In the generalized Bender equation of state (54) the critical values vc and Tc of the
mixture appear which we will mark by an additional index M: vcM, TcM. Also the material
constants ù and ÷ belong to the mixture and will be marked by the additional index:
COM, ÷Ì. The values of these four quantities are calculated by the pseudo-critical mixture
rule of Tsai and Shuy [4] in a version of Platzer [5]: Characterizing the components of
the mixture by indices . ̂  we have

Here the subscript c denotes values at the critical point, ô is defined by

and ej by

V
CM = Ó xixjvaj

û

õ * W faT^Ojfk»

i ùé> ×Ì ~ Ó xi ×ß·
i i

Here the constants ktj, Cy, and ç are fitting parameters.
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As already mentioned the material data of the pure components of N2 and «-butane
which we need in (65) to (67) are taken from [5]. In this reference some more details for
estimating constitutive data of pure components are described.
The phase equilibrium between fluid and gaseous nitrogen-n-butane is described by the
equilibrium conditions which we will consider now. From (1), (2), and (94) we have

õ = ê( Ô,Ñ, X I)-»P = K( Ô, õ, xx). (68)

In equilibrium this relation is valid for the gaseous and the fluid part of the mixture

Ñ = ê(Ô,õ9,÷9) = ê(Ô, vf, xf). (69)

The second part of the equilibrium conditions consists of the equality of the fugacities
of the gaseous and the fluid part of the mixture. Here the fugacity is defined by

,=ft(T,u,Xl\ (i =1,2) (70)

and according to [8] the fugacity coefficients are

·/ p / ml v *~ · , , i

with the abbreviation

Pv
(72)

Starting out with the equilibrium conditions (69) and (70) we can write down a system of
equations by which the equilibrium values, and therefore the phase diagrams can be
calculated by a standard Gauss-Newton algorithm:

= ê(Ô,Ìé)-ê(Ô,úß,÷ß), (73)

ÄË : =A ( T, v, X j ) - Ë ( Ô, à, xft (74)

Ä/2: =/2( Ã, ß>, 1 - *é) - 72( T, tf, l - ÷{). (75)

Here Tand x{ are fixed and values of the variables t>, xl5 and í are wanted, so that the
left-hand sides of (73) to (75) vanish. Thus we have by solving the system of equations
(73) to (75)

v^v9, *!-»*?, tf->t/, => (76)

=> ÄÑ^Ï, Ä/,-^0. (77)

Additionally for achieving an exactness as high as possible the parameters kip £0-, and ç
in (65) and (66) are fitted to the empirical values of Akers et al. [9] by a least square
procedure. More details can be found in Appendix II. The result of the calculation, an
isobar in a õ-x-diagram, is plotted in Figure 9. The slope condition according to the
second law is valid.
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Fig. 9: v-x diagram of the binary mixture N2-n-butane at 378.3°C calculated with a generalized
Bender equation of state using the mixture rules according Tsai, Shuy, and Platzer.

5. Discussion
Strictly speaking, it is a trite remark that constitutive equations have to obey the second
law [10]. Empirical fitted equations of state, such as Redlich-Kwong-type equations,
include a lot of measured or even estimated material "constants" [11]. If the accuracy of
these measurements is low or even inexact, these fitted constitutive equations may
pretend a "violation" of the second law in a special area of the phase diagram, especially
if this area is unusual for cyclic processes of heat engines. Because the second law is a
constraint for constitutive equations and not for processes [10], violations of the
second law cannot be caused by special processes - e.g. by a van Platen or by a
Serogodsky process considered here. In effect the second law forbids that "strange"
materials do exist.

The kink criterion derived here can test, if a considered empirical equation of state or
experimental data describe a "strange" material "violating" the second law or not. This
kink criterion of the isobars at the dew line starts out from the second law formulated as
a work criterion for isothermal processes [7] and it tests the existence of van Platen and
Serogodsky cycles performed by these materials.
But even if the calculation of these isothermal cyclic processes yields a "strange
material", we cannot conclude that the „second law may be violated: We consider the
free enthalpy change Ä G of the cyclic process in Figure 3 which is zero

AG1231=0. (78)

The free enthalpy's difference between the states 1 and 3 is supposed to be in

J. Non-Equilib. Thermodyn. · 1998 · Vol. 23 · No. 2
Bereitgestellt von | Technische Universität Berlin

Angemeldet
Heruntergeladen am | 09.11.18 18:26



154 W.D. Bauer, W. Muschik

contradiction to (41)

= Ã vdP+ \ vdP= <hvdP<0. (79)

Here the second equality sign follows from

Ã vdP = Ï (80)
^3

(see Fig. 3). According to (78) and (79) we have an increase of the free enthalpy
AG 3 _ t >0 for the irreversible part 3-1 which is in contradiction to the minimal
property of the free enthalpy in equilibrium. Consequently (79) cannot be valid or a
phase decay occurs during the irreversible part 3-1. In any case the conclusion, that the
second law is violated, cannot be verified. Therefore the kink criterion is satisfied.
As an example the kink criterion is tested for a nitrogen-n-butane binary mixture
performing a Serogodsky process. The empirical data are taken from measurements of
Akers et al [9], whereas Serogodsky's empirical values [1] - which differ strongly from
those of Akers - do not allow a fit to the exploitation procedure. As expected, the kink
criterion is satisfied for the considered example, and no violation of the second law can
appear.

6. Appendix I
Proposition: The equilibrium state space of a two component two phase system is given
by

z: = (T, P, xl9 n\ x{ < xt < x\. (81)

Here Ô,Ñ,÷^ç are temperature, pressure, molar ratio of the first component, and mole
number of the system, x{ and x{ are the molar ratios of the fluid and gaseous phases of
the first component.

Proof. According to Gibbs's phase rule /= Ê — Ñ + 2 the number of the intensive
variables in a two component two phase system is given by

/=2-2 + 2 = 2. (82)

These two independent intensive variables are the temperature Ô and the pressure P.
Beyond these variables the chemical composition (molar ratio xt of the first compo-
nent) and the mass (total mole number Þ) of the system determine its state

z: = (T,P,xl9n). (83)

For proving that the st^te space is represented by (83) we have to show, that all other
quantities of the system can be calculated by the constitutive equations and by use of
(83). Here the volume Ê the molar ratio of the gaseous xf and of the fluid part x{ of the
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Second law induced existence conditions 155

first component are given by constitutive equations, namely by the equation of state
and by the phase diagram in Figure 4.

Ê= Ö(æ), (84)

Then all other quantities of the system can be calculated in the following way:

n1=nx1, n2 = n-n1} x2 = l-x1. (86)

We obtain for the molar ratios:

(87)

^4- (88)

Finally we obtain for the mole numbers:

ng = xgn, nf = xfn, (89)

nl^x^n9, n*2 = x9
2nd, (90)

n{ = x{;/? n{ = x{nf. (91)

Because xa has to satisfy the inequality (81)2 which enforces (81)á to be a two phase
state-otherwise one of the equalities in (81)2 would be valid -we proved that (81) is the
(equilibrium) state space of a two component two phase system.

Proposition: If a system of the state ( Ô, Ñ, ÷1? Þ) is split into two subsystems of the states
( T, P, x'15 n') and ( T, P, x"1? H") we need two splitting factors á and â for the independent
variables ç and xx. The independent variables of the first subsystem become

n' = ocn, ÷\=â÷^ (92)

those of the second subsystem

ð" = (1-áÊ x^izx,. (93)

The molar volume is

V/n = :v = „'á + õ" (I - a). (94)

Proof: Because of (81) the splitting of the system into subsystems is defined by two
independent splitting factors á and â satisfying (92). From

n = n' + n"9 n^n^ + n^ . (95)

(93)i is evident, and we obtain by dividing (95)2 through n"

*é£ = *º^ + *ß· (96)
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This yields by inserting (92)2

*-*[>-'?} <97)

By use of (93)x and (92^ we obtain the proposition

- » - (98)

Because volumes are additive we obtain
V V'ri V'n"
n n'n n"n

which results in (94).
Proposition: The second law for isothermal cyclic processes runs as follows

>0. (100)

Proof. Starting out with Clausius9 inequality for closed systems [6]

Ó^ß^<ï (éïß)
we obtain for isothermal cyclic processes by use of the first law

-^Àß^Ë^0· <102>

This results in a Sears-Kestin statement [7], that is a work criterion for the second law

W= £ Wi = X (KWidt > 0. (103)
i f J

7. Appendix II
In Section 4 we used two numerical procedures which we discuss here in more detail.

7.1. Routine for calculating the phase equilibrium
The algorithm for calculating the phase equilibrium is implemented in a routine which
we call NEWTONGAUSS. This routine solves the system of equations (73) to (75). Its input
is a set of starting values for v9xl9 and v, fixed parameters, like material constants, Tand
x{9 allowed errors and switches used for economical programming. The output of this
routine consists of the results of the iteration containing í9, ÷{, é/, Ñ according to (69),
and 1çö£ according to (71). NEWTONGAUSS calls the sub-routine JACOBIMATRDC which
calculates the Jacobi matrix necessary for solving the phase equilibrium by iteration.
JACOBIMATRIX calls the sub-routine EQOFSTATE which calculates P, In öß and derivatives
at õ and xx of the equation of state. The routine GAUSSALGORITHMUS solves the linear
equation system (73) to (75) and determines the increment Ä ÷ for the next iteration step
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Fig. Al: Block diagram of the sub-routine
NEWTONGAUSS for calculating the phase equilib-
rium in binary mixtures.

Fig. A2: Block diagram of the sub-routine
LEASTSQUARES for fitting the material
parameters to the equation of state.

at ÷ = (v, x1? #). If the error of the solution is below the allowed limit the iteration stops
and all values are on display, i.e. printed. The rough structure of the program is
illustrated in Figure Al.

7.2. Routine for least square fit

We take the algorithm performing the least squares fit of the empirical data from [12]
and [13]. It is implemented in a sub-routine LEASTSQUARES. This sub-routine fits the
parameters in (65) and (66) to the empirical values of Akers et al [9]. The input of this
routine consists of the starting values of the fit constants, fixed parameters like material
constants, allowed errors and switches used for economical programming. The output
of this routine consists of the results of the iteration, i.e. the fit constants and
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furthermore the least squares sum values and errors documenting the performance of
the iteration. LEASTSQUARES calls the subrotine RESID which calculates the residuals as
relative errors between the theoretical and the measured values referred to the
measured ones. Then the sub-routine LSQ calculates all derivatives of the residuals
with respect to the fit parameters. Therefrom LEASTSQUARES calculates the Jacobi
matrix used for the Marquard method. After calling the standard library subroutine
GAUSSCHOLESKI the next step of the iteration is determined by solving the linear
equation system of the iteration. The result is controlled and, if necessary, the step width
will be reduced or enlarged making sure a continuous working of the routine. If the
accuracy demanded is achieved the iteration stops and delivers the results. The rough
structure of the program is illustrated in Figure A2.
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