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Zusammenfassung: 
 

Untersuchung zur antibakteriellen Wirkung und zum Biosynthese-Genclusters 

des Peptidantibiotikum Feglymycin 

 
Feglymycin ist ein aus Streptomyces sp. DSM 11171 isoliertes, lineares 13mer-Peptid, das zu einem 

hohen Anteil aus den nicht-proteinogenen Aminosäuren Hpg (4-Hydroxyphenylglycine) und Dpg (3,5-

Dihydroxyphenylglycine) besteht. Zudem besitzt es eine interessante, alternierende Abfolge von D- 

und L- Aminosäuren und strukturelle Ähnlichkeiten mit den Glycopeptiden der Vancomycin-Gruppe 

von Antibiotika und den Glycodepsipeptid-Antibiotika Ramoplanin und Enduracidin. Außerdem besitzt 

Feglymycin eine interessante Bioaktivität. Es wirkt in vivo antibakteriell gegen MRSA-Stämme (multi-

resistente Staphylococcus aureus Stämme) und inhibitiert in vitro die Replikation von HIV-Viren im 

Zellkulturtest. Aufgrund seiner molekularen Masse und strukturellen Ähnlichkeit mit bekannten 

Zellwandbiosynthese-Inhibitoren wie z.B. Vancomycin und Ramoplanin, wurde auch Feglymycin als 

Zellwandbiosynthese-Inhibitor getestet. In diesen Tests zeigte Feglymycin keinen Effekt auf die 

membran-gebundenen zweite und die dritte Stufe der Peptidoglycanbiosynthese. Jedoch deuteten die 

Experimente auf eine Inhibition der früheren Biosyntheseschritte hin.  

Ziel dieser Arbeit war es, die antibakterielle Wirkung von Feglymycin auf die bakterielle 

Zellwandbiosynthese im Detail zu untersuchen und das biologische Target zu identifizieren. Zusätzlich 

wurde das Feglymycin Biosynthese-Gencluster untersucht. In LC-MS „one-pot assays“ wurde die 

Wirkung von Feglymycin auf die isolierten E. coli-Enzyme MurA-F getestet. Hierbei konnte 

reproduzierbar gezeigt werden, das Feglymycin die Enzyme MurA (Enopyruvyl-UDP-GlcNAc 

Synthase) und MurC (UDP-N-Acetyl-muramyl-L-alanin Ligase) inhibiert. In spektrophotometischen 

Assays mit den E. coli-Enzymen MurA und MurC konnte ein Ki-Wert von 0.33 +/- 0.04 µM für das 

MurC Enzym und ein Ki-Wert von 3.4 +/- 1.1 µM für das MurA Enzym bestimmt werden. Weitere 

Untersuchungen  zeigten, dass Feglmycin auch die MurA (IC50 = 3.5 +/- 1.3 µM) und MurC (IC50 = 1.0 

+/- 0.6 µM) Enzyme des gram-positiven Bakteriums Staphylococcus aureus inhibiert. Feglymycin 

zeigte dabei eine nicht-kompetitive Inhibition gegenüber der Bindung der Substrate des MurA Enzyms 

PEP (Phosphoenolpyruvat) und UDP-GlcNAc (UDP-N-Acetylglucosamin) und der Substrate des MurC 

Enzyms  UDP-MurNAc (UDP-N-Acetylmuramat), ATP (Adenosintriphosphat) and L-Alanin. Feglmycin 

ist daher der erste Naturstoff der das MurC Enzym inhibiert. Zudem zeigt Feglymycin einen nicht-

kompetitive Inhibitionstyp. Circulardichromismus (CD) Experimente mit den isolierten E. coli-Enzymen 

MurA und MurC und Feglymycin deuten einen möglichen allosterischen Effekt des Inhibitors auf die 

Enzyme an.  

Zusätzlich wurde die Feglmycinproduktion durch den Stamm Streptomyces sp. DSM 11171 

und die Feglymycin-Detektion mittels LC-MS optimiert. Durch die Sequezierung des Genoms von 

Streptomyces sp. DSM 11171 konnte das Feglymycin Biosynthese-Gencluster identifiziert werden. Bei 

der Annotation des Genclusters zeigte sich, dass es sich bei Feglymycin um ein nicht-ribosomal 

synthetisiertes Peptid (NRPS) handelt dessen Biosynthese der Biosynthese der Glycopeptidantibiotika 

der Vancomycin-Gruppe von Antibiotika ähnelt. Zudem konnten im Streptomyces sp. DSM 11171 

Genom weitere NRPS und Polyketidsynthase (PKS) Gencluster identifiziert und annotiert werden.   



Abstract: 

Investigation of the antibacterial activity and the biosynthesis gene cluster of 
the peptide antibiotic feglymycin  

Feglymycin is a linear 13-mer peptide produced by Streptomyces sp. DSM 11171 containing largely 

the non-proteinogenic Hpg (4-hydroxyphenylglycine) and the non-proteinogenic Dpg (3,5-

dihydroxyphenylglycine) amino acids and an interesting alternation of D and L amino acids. It shows 

structural homogies to the glycopeptides of the vancomycin group of antibiotics and the 

glycodepsipeptide antibiotics ramoplanin and enduracidin. Feglymycin additionally shows an 

interesting biological activity. It possesses antibiotic activity against MRSA (multi-resistant 

Staphylococcus aureus) strains in vivo and inhibits syncytium formation in HIV infection in vitro. Due to 

its molecular mass and structural analogies to known inhibitors of the cell-wall biosynthesis, i.e. 

vancomycin and ramoplanin, feglymycin was tested as cell-wall biosynthesis inhibitor. In these tests 

feglymycin showed no effect on the membrane-bound second and third step of the peptidoglycan 

biosynthesis but the experiments indicated an inhibition of earlier biosynthetic steps. 

Aim of this work was to investigate the antibacterial activity of feglymycin on the bacterial cell-

wall biosynthesis in more detail and to identify the biological target. Additionally the feglymycin 

biosynthesis gene cluster was investigated. Feglymycin was tested in a LC-MS one-pot assay against 

the isolated enzymes MurA-F from E. coli. Dereplication revealed that feglymycin specifically inhibits 

the enzymes MurA (enolpyruvyl-UDP-GlcNAc synthase) and MurC (UDP-N-acetyl-muramyl-L-alanine 

ligase). In in vitro assays with the enzymes MurA and MurC from gram-negative E. coli, a Ki value of 

0.33 +/- 0.04 µM was determined for the MurC enzyme and a Ki value of 3.4 +/- 1.1 µM for the MurA 

enzyme. Further investigations showed that feglymycin also inhibits the MurA (IC50 = 3.5 +/- 1.3 µM) 

and MurC (IC50 = 1.0 +/- 0.6 µM) enzyme from gram-positive Staphylococcus aureus. The inhibition 

mode of feglymycin was found to be non-competitive with the binding of PEP (phosphoenolpyruvate) 

and UDP-GlcNAc (UDP-N-acetylglucosamine) in case of the MurA enzyme and non-competitive with 

binding of UDP-MurNAc (UDP-N-acetylmuramic acid), ATP (adenosine-triphosphate) and L-alanine in 

case of the MurC enzyme. Feglymycin is therefore the first natural compound found to inhibit the MurC 

enzyme showing a non-competitive inhibition type. Circular dichroism (CD) experiments with the 

isolated enzymes MurA and MurC from E. coli and feglymycin indicated a possible allosteric effect of 

feglymycin.  

Furthermore the feglymycin production by Streptomyces sp. DSM 11171 and feglymycin 

detection by LC-MS were optimized. Sequencing of the genome of Streptomyces sp. DSM 11171 

allowed the idenfitication of the feglymycin biosynthesis gene cluster. Annotation of the gene cluster 

showed that feglymycin is a non-ribosomal synthesized peptide (NRPS) closely related to the 

glycopeptides of the vancomycin group of antibiotics. Additionally further NRPS and polyketide 

synthase (PKS) gene clusters were identified in the Streptomyces sp. DSM 11171 genome and 

annotated. 
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1 Introduction 

1.1  Short story of antibiotics and their discovery 

The era of antibiotics from microorganisms started with the discovery of penicillin by 

Alexander Fleming (Fleming 1929). For his discovery Fleming was later, together 

with Howard W. Florey and Ernst B. Chain, two other antibiotic pioneers, decorated 

with the Nobel Prize. In the 1940ies the production of penicillin was industrialized and 

the success soon led to the discovery of further antibiotics. Antibiotics, first reserved 

only for the military, became available to a larger public and reduced the mortality 

rates of infectious diseases (Alanis 2005) e.g. tuberculosis so significantly that they 

took a lot of these illnesses their threat. Most of the major classes of antibiotics used 

today like the tetracyclines, the chlorampenicols and the glycopeptide antibiotics 

were already discovered between 1940 and 1960 (Figure 1.1). In the end of the 

1960ies screening programs started to fail to discover new antibiotics and the 

emergence of antibiotic resistance started to be a problem. To overcome this 

problem and in order to generate new antibacterially active substances, semi-

synthetic modification of known antibiotics became popular. Semisynthesis proofed a 

good method to generate therapeutics improved in stability, tolerance and less prone 

to induce resistance. However by the 1980ies this method seemed exhausted 

(Fernandes 2006). The success of the antibiotic ciprofloxacin (Ciprobay, Bayer AG) 

synthetically derived from nalidixic acid led to the intensive investigation and 

synthesis of further fluoroquinolone antibiotics (Oliphant, Green 2002). At the same 

time automatable screening of small-molecule libraries became fashionable 

(Fernandes 2006). These screening efforts were extended by the use of 

combinatorial libraries and by high-throughput screenings focusing on specific 

bacterial target proteins. Simultaneously new bacterial targets were investigated. 

These screenings led to a large number of very effective protein inhibitors. However 

a lot of these molecules showed no activity in vivo or did not meet the requirements 

in toxicity, stability and permeability. It became obvious that the best inhibitor is not 

necessarily the best antibiotic (Peláez 2006). The realization that nature, driven by 

thousands of years of evolution may have created the best lead structures recently 

led to the concept of diversity-oriented synthesis of more nature-akin compounds 

(Newman 2008) but also to a return to long ago discovered but not followed up 

antibiotics (Fernandes 2006).  
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Figure 1.1: Time line of the discovery of cell wall biosynthesis inhibitors. 
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1.2  Recent approaches to the discovery of new antibiotics 

In reflection that synthetic screening methods failed some approaches went back to 

the isolation of natural compounds (van Lanen, Shen 2006). Mathematic calculations 

number the percentage of so far cultured and investigated bacteria only around 1 % 

of the actual natural biodiversity. For the genus Streptomyces e.g. a possible total 

number of 100.000 different compounds were predicted; much more than up to now 

discovered (Watve et al. 2001). New cultivation methods were suggested to help 

studying until now “unculturable” strains (Vartoukian et al. 2010) but also to 

reinvestigate long known antibiotic producers. Also well-known antibiotic producers 

might contain some new surprises, as genome sequencing of several of these strains 

revealed that long known strains often possess several unknown gene clusters 

(Bentley et al. 2002). Genetic methods and new cultivation methods might help to 

activate so far hidden antibiotics (Peláez 2006). More sensitive and fractionated 

screening methods might also help as some antibiotics might only escaped detection 

due to low titer production.  

A particular focus has lately been put on marine organisms. Marine microbes have 

just recently been started to be explored but already raise great expectations as 

sources for new bioactive compounds. Arguments in favor of are the harsh and 

competitive natural environment marine microbes are exposed to and the finding that 

a lot of the bioactive compounds found in marine invertebrate actually origin from 

symbiotic marine bacteria (Zhang et al. 2005; Peláez 2006). Also other more exotic 

sources for antibiotics have been explored like the antimicrobial peptides produced in 

animals, insects and plants (Bulet et al. 2004). The finding of antimicrobial 

compounds in the brain of cockroaches and locust (Lee et al. 2011; Khan et al. 2008) 

lately attracted a great deal of attention even outside of the scientific community. 

An approach still waiting for a break-through success beside proof of concept is 

metagenomics. Metagenomics means the subcloning of DNA fragments of non-

cultivatable environmental strains via plasmids, cosmids or BACs into E. coli and 

Streptomyces strains creating large metagenomic libraries to discover new active 

gene clusters (Daniel 2004; Peláez 2006). The compounds thus far identified from 

these metagenomic approaches turned out to be structurally rather simple (Gillespie 

et al. 2002; Brady et al. 2001). Beside discovering of new gene clusters the transfer 

of identified gene clusters into stains more easy accessible to molecular biological 
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methods (heterologous expression) can also help to characterize and modify a 

natural compound (van Lanen, Shen 2006).  

A rather new and courageous approach is combinatorial biosynthesis. Combinatorial 

biosynthesis takes advantage of the modular biosynthesis assembly lines of non-

ribosomally synthesized peptides and polyketides from various polyketide synthases. 

The idea is the de novo biosynthesis of new natural products by changes in the 

arrangement of the modules e. g. by site-directed mutagenesis (Wilkinson, 

Micklefield 2007). Combinatorial biosynthesis could not fulfill the high hope put into 

this technology as it soon became obvious that the biosynthetic modules cannot be 

exchanged freely without limit. Limitations by not well-known molecular-recognition 

and proof-reading mechanisms often led to low or no production of the 

reprogrammed NRPS and PKS in vivo (Wilkinson, Micklefield 2007). However the 

increasing knowledge of NRPS and PKS systems might open this possibility or even 

the de novo biosynthesis of PKS or NPRS from a building block kit of modules in 

future (Leman et al. 2007).  

Another interesting new approach focuses on in vivo screening. Instead of only 

screening for antibacterial activity with living bacterial cells or only screening against 

a specific target in an in vitro screening this approach combines the advantages of 

both screening methods. These new screening arrays use bacterial strains where the 

target gene is either over- or underexpressed. These modified strains can render 

resistance or hypersensitivity to a specific active compound. Compound that fail to 

penetrate the cell wall fail to bring positive results and at the same time only 

compounds active against the specific target or closely associated targets are 

selected (Peláez 2006; DeVito et al. 2002). A similar approach has been previously 

been introduced for screening of cytotoxic compounds like anticancer drugs with 

mutated yeast stains (Giaever et al. 1999).  Even if not all of these approaches might 

be fruitful they certainly will broaden our knowledge of producers and biosynthesis of 

natural compounds.  

 

1.3  Antibiotic Resistance 

In 1945 Sir Alexander Fleming warned in an interview with the New York Times that 

the inappropriate use of penicillin might cause the selection of resistant mutant 

strains (Alanis 2005). History proofed him right. Only few years after its discovery 
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penicillin resistance started to emerge (Alanis 2005). Now, 50 years later antibiotic 

resistance is wide-spread and the incident of multi-drug-resistant “superbugs” is a 

new threat for society. Antibiotic resistant strains first emerged in hospitals and for 

years seemed to be a pure hospital problem. However lately there are increasing 

reports of spread of antibiotic resistant strains outside of hospitals in communities 

(Martin et al. 2002; Calva et al. 1996) indicating an ubiquitous spread. Multi-resistant 

strains do not only increase the mortality and the costs of treatment but are often also 

more aggressive than the wild type strain and can cause severe infections also in 

young and healthy individuals instead of predominantly attacking immuno-

compromised persons (Fernandes 2006). Additionally strains formally considered 

non-pathogenic like Enterococci have gained antibiotic resistance and are becoming 

increasingly established as cause of hospital-acquired infections (Cetinkaya et al. 

2000). At the same time the number of new antibiotics approved for medical use in 

humans (Alanis 2005) and also the chemical variation of the new antibiotics 

decreased (Lipsitch et al. 2002) over the years (Donadio et al. 2010), making some 

scientist doubtful if we will manage future biological threats or instead enter into a 

post-antibiotic era (Alanis 2005).  

 

1.4  Antibiotics and pharma 

Beside the growing difficulty to find new antibiotic classes the decrease of newly 

licensed antibiotics and the lack of variety in new antibiotics are caused by the 

shrinking effort of industry in the field of antiinfective research (Donadio et al. 2010). 

A lot of “big pharma” companies bid farewell from antibiotic research due to the low-

market potential of the discovery and commercialization of new antibiotics while only 

some small pharma firms and universities keep alive antiinfective research (Boggs, 

Miller 2004). The reason for the withdrawal is an unprofitable risk benefit analysis for 

antibiotics. While discovery and development can take between seven to ten years 

and is very risky and cost-intensive as e.g. clinical controls are much stricter than for 

example for cancer medication, the time to make money out of a new invention is 

short and regulated. When put on the market a race with the time starts. 

Pharmaceutical companies have a general financial interest to sell as many drugs as 

possible before the patents expire and the market is overrun with generics (Williams, 

Bax 2009). This however is in discrepancy with the today’s awareness to use new 
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antibiotics as last resort antibiotics to delay emerge of resistance (McGowan 2004). 

Additionally in contrast to high profit drugs in target areas like diabetes and cancer 

antibiotics are only prescribed for a very limited time span until the patient is fully 

cured from the bacterial infection. Also emerge of resistance reduces the frequency 

an antibiotic can be applied. A last resort antibiotic that lost its activity against multi-

resistant strains also loses its job (Fernandes 2006). The shrinking of the antibiotic 

pipeline (Clarke 2003) definitely presses the urge for rethinking. Possible solutions 

might be a public funding of antibiotic research, less stiff regulations (Boggs, Miller 

2004), clinical trails more suitable for antibiotics and an extension of patent terms 

(Fernandes 2006).  

 

Figure 1.2: Causes of antibiotic resistance and solutions. 

  

1.5  Causes of antibiotic resistance 

Antibiotic resistance is to a certain extend a homemade problem (Figure 1.2). 

Inappropriate, incorrect and overuse of antibiotics for medical treatments are one 

main cause. Another cause is the intensive use of antibiotics in the food industry 

(Lipsitch et al. 2002). Antibiotics are especially used in animal feed but are even 

applied to control plant diseases (Barbosa, Levy 2000).  

Antibiotic resistance can be naturally obtained by mutation or acquired by gene 

transfer from other bacteria. Unfortunately resistance gene can often be found in 

transposons or on plasmids, therefore especially mobile genome regions. Genetic 
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exchange between bacteria normally appears by conjugation, transformation or 

transduction (Knippers 1985). In case of conjugation genes are transferred on a 

plasmid through a tubular channel termed pilus between two neighboring bacteria. 

Transformation describes the ingestion and incorporation of free DNA fragments from 

the surrounding by a recipient bacterium. Transductions results from an error of a 

bacteriophage (Knippers 1985). The bacteriophages can accidentally pack DNA of 

their bacterial host instead of virus DNA into the phage envelope and inject it into 

another bacterium (Alanis 2005). The high multiplication and mutagenesis rates as 

well as the possibility to transfer genetic material between different bacterial species 

give bacteria the possibility to adapt very fast to environmental changes. The use of 

antibiotics results in a selective pressure causing a direct mutagenesis towards the 

formation of resistance mechanisms and their spread within the bacterial community.  

There are different approaches to reduce the occurrence and spread of resistance in 

future. One of the most important is perhaps an improvement of hospital hygiene to 

stop the spread and breading of resistant bacteria (Pittet 2003). The other is a 

responsible administration of antibiotics both for humans and in the food industry. 

New “last resort” drugs should only be administered in cases of emergency when no 

other antibiotics can be used. Another approach might be the use of more narrow-

range antibiotics and the cycling of antibiotics in their application (Kollef 2006). The 

hope that bacteria will lose their resistance when relieved from selective pressure, 

therefore a reversal of resistance, might have been too optimistic. Studies on this 

topic showed that resistance once obtained seems to be rather stable (Barbosa, Levy 

2000). However a more responsible handling and the awareness of possible risks 

might delay the rise of resistance and the spread of multi-resistant strains in future.  

 

1.6  Bacterial cell wall 

The bacterial cell wall biosynthesis is an interesting target for antibiotics. Prokaryotic 

cells possess both, cell membranes and cell walls as barriers and as boundary 

separating the cytoplasm from its surroundings. Some bacteria also have an 

additional covering layer called capsule. Cell membranes consist of a lipid bilayer 

with integrated or peripheral membrane proteins and, according to the fluid mosaic 

model of Singer and Nicolson (Singer, Nicolson 1972), the cell membrane is fluid and 

allows the diffusion of lipids and proteins in the plane of the membrane. In contrast to 
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the very flexible cell membrane, the cell wall has a more rigid structure. It provides 

both mechanical stability and protection. At the same time, it also allows the selective 

translocation of substances from the cytoplasm to the extracellular space through 

special channels, transporters and pores. A key component of bacterial cell walls is 

peptidoglycan, a polymer comprised of chains of repeating units of β-(1,4)-linked N-

acetylglucosamine-N-acetylmuramic disaccharides crosslinked by a pentapeptide 

stem. The pentapeptide stem is crosslinks to the peptide stem of another glycan 

chain thus resulting in the three dimensional structure of the polymer (Meroueh et al. 

2006). There are two general types of bacterial cell walls: Gram-positive and Gram-

negative cell walls distinguishable by the so called Gram staining with crystal violet 

(also hexamethyl pararosaniline chloride) (Gram 1884). The membrane of Gram-

negative bacteria consists only of an thin layer of peptidoglycan surrounded by a 

second lipid bilayer containing a lot of lipoproteins and connected at the extracellular 

site to lipopolysaccharides (LPS) (Baron 1996). The LPS (lipopolysaccharides) are 

recognized by the immune system and often act as endotoxins and can cause severe 

disease reactions like sepsis in a Gram-negative bacterial infection (Raetz, Whitfield 

2002). LPS is not found in Gram-positive bacteria. Gram-positive bacteria, in 

contrast, have a thick peptidoglycan layer containing additionally teichoic acids (TA) 

and lipoteichoic acids (LTA). In contrast, the cell wall of Gram-negative bacteria 

contains no teichoic acids. Lipoteichoic acids consist of teichoic acids and ribitol 

phosphate anchored by a lipid anchor in the cell membrane. They can cause 

pathogenic reactions comparable to LPS. 

 

1.7  Peptidoglycan biosynthesis 

The synthesis of peptidoglycan is often described in three stages. The first two 

stages occur in the cytoplasm and are finalized by the transport of the so called 

Park’s Nucleotide (UDP-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelyl-

D-alanyl-D-alanine) to the other side of the membrane, which is the periplasm in 

Gram-negative and the extracellular space in Gram-positive organisms. In the 

subsequent third biosynthetic stage, the peptidoglycan building blocks are connected 

by enzymatic transglycosylations and transpeptidation reactions.  

The enzymes MurA-MurF catalyze the initial stages of the peptidoglycan biosynthesis 

toward Park’s Nucleotide (Figure 1.3). The MurA enzyme catalyzes the coupling of 
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UDP-GlcNAc (UDP-N-acetyl-glucosamine) with PEP (phosphoenolpyruvate) to yield 

EP-UDP-GlcNAc (UDP-N-acetyl-glucosamine-enolpyruvate). EP-UDP-GlcNAc is 

then reduced by the MurB enzyme, using NADPH as a reducing agent, to UDP-

MurNAc (UDP-N-acetylmuramic acid). UDP-MurNAc is the substrate for the MurC 

enzyme, which adds L-alanine to UDP-N-acetylmuramic acid in an ATP-driven 

reaction. The synthesis of Park’s nucleotide is continued by addition of D-Glu (D-

glutamate) by the MurD enzyme and meso-Dap (meso-diaminopimelic acid) in case 

of Gram-negatives, or L-Lys (L-lysine) in case of Gram-positives by the MurE enzyme 

in ATP-dependent steps. Finally, D-Ala-D-Ala (D-alanyl-D-alanine) is added by the 

MurF enzyme and the biosynthesis of the Park’s nucleotide is completed (Kahne et 

al. 2005). The second stage involves the enzymes MraY and MurG and results in the 

synthesis of the so called Lipid II. The Park’s nucleotide is transferred by the MraY 

enzyme onto a lipid carrier creating lipid I. Lipid I is further modified by the 

glycosyltransferase MurG to form lipid II (Winn et al. 2010).  Lipid II is then flipped in 

a still not fully understood way from the cytoplasmic site to the periplasm or 

extracellular space respectively. The third stage of peptidoglycan biosynthesis takes 

place in the extracellular space (or periplasm) and starts with the transfer of the 

disaccharide pentapeptide to the GlcNAc sugar of an existing peptidoglycan strand. 

This reaction is catalyzed by various transglycosylases. The immature and 

mechanically weak peptidoglycan strands are than stabilized by cross-linking of the 

pentapeptides of different strands. The crosslinking is carried out by a family of 

transpeptidases that catalyze amide bond formation of the δ-NH2-group of lysine and 

the carbonyl carbon of the D-Ala-D-Ala-amide bond of the pentapeptide resulting in 

the release of the second D-Ala (Kahne et al. 2005).  
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Figure 1.3: Scheme of the peptidoglycan biosynthesis and known antibiotics of the peptidoglycan 

biosynthesis. 

 

1.8  Enzymes of the initial step of peptidoglycan biosynthesis 

The enzymes MurA-F catalyze the first steps of peptidoglycan biosynthesis (Figure 

1.4) and are all soluble cytoplasmic enzymes and very well studied in numerous 

publications (Schönbrunn et al. 1996; Benson et al. 1993; Jin et al. 1996; Bertrand et 

al. 1997; Gordon et al. 2001; Yan et al. 2000). For all of them crystal structures have 

been obtained (mostly from E. coli), for most of them even multiple crystal structure 

e.g. of proteins from divers bacterial sources or co-crystals of the enzymes with 

different substrates and inhibitors. The first enzyme MurA (UDP-N-acetylglucosamine 

enolpyrovyltransferase, also termed MurZ) catalyzes the transfer of enolpyruvate 

from PEP to UDP-GlcNAc to form EP-UDP-GlcNAc under the release of one 

equivalent phosphoric acid (Brown et al. 1994). This reaction is very unusual and the 
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only other enzyme known to transfer enolpyruvyl from PEP is the S-

enolpyruvateshikimate-3-phosphate synthase (EPSPS) involved in the shikimate 

pathway in bacteria, fungi and plants (Holländer, Amrhein 1980). MurA and EPSPS 

are also structurally very similar but there are mechanistic differences that also result 

in susceptibility to different inhibitors. MurA is inhibited by phosphomycin (Figure 1.5) 

that has no effect on EPSPS. In contrast EPSPS can be effectively inhibited by the 

herbicide glyphosate, which has no effect on MurA (Holländer, Amrhein 1980; 

Schönbrunn et al. 1996). During the MurA reaction a PEP-enzyme intermediate is 

formed. The highly conserved Cys115 (in the E. coli enzyme) attacks the C2 position 

of PEP resulting in phospholactoyl-MurA. PEP is not released unless the second 

substrate UDP-GlcNAc is present (Brown et al. 1994). The reaction mechanism also 

explains why MurA is inhibited by phosphomycin. Phosphomycin is attacted by MurA 

like PEP but due to the epoxide motif the reaction stops after the attack and the 

active site of the enzyme is irreversibly blocked (Marquardt et al. 1994). The MurA 

enzyme consists of two globular domains connected by a double stranded hinge 

(Schönbrunn et al. 1996). Each domain consists again of three subdomains. The 

overall six subdomains are structurally very similar. Each of them consists of two α-

helices and four β-sheets. The UDP-GlcNAc sugar is bound in the hinge region while 

PEP is bound at a flexible loop of one of the two domains. The reaction is expected 

to be accompanied by a conformational change (Schönbrunn et al. 1996).  

MurB (UDP-N-acetylenolpyrovylglucosamine reductase) is a flavoprotein. It contains 

a non-covalently bond FAD cofactor that functions a redox intermediate. It facilitates 

the transfer of hydride from the cosubstrate NADPH to the enolpyruvyl moiety of EP-

UDP-GlcNAc. The enolpyruvyl motif therefore is reduced to a lactyl ether to yield 

UDP-MurNAc (Benson et al. 1993). The kinetic mechanism is proposed to be a ping 

pong bi bi mechanism (Dhalla et al. 1995). Therefore NADPH is expected to be 

bound first and released before the second substrate EP-UDP-GlcNAc is bound and 

released. Both substrates are expected to share the same binding site (Dhalla et al. 

1995). The MurB enzyme consists of three domains which are structurally 

inhomogeneous. All three domains possess a mixture of α-helices and β-sheets. The 

active site, containing the FAD cofactor, is placed in a cavity formed by all three 

domains (Timothy E Benson et al. 1996; Farmer et al. 1996). 

The MurC protein (UDP-N-acetylmuramate-L-alanine ligase) catalyzes the transfer of 

L-alanine to UDP-N-acetylmuramate. L-alanine is linked to the carboxyl group of the 
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lactyl ether of the muramyl sugar under the release of one water molecule. The 

energy for the reaction is provided by the conversion of one molecule ATP to ADP 

and Pi. The MurC protein consists of three globular inhomogeneous domains. All 

three consist of both α-helices and β-sheets. The first domain shows similarities to 

the Rossmann fold, found in many nucleotide binding proteins, and is assumed to 

possess the structural requirements to bind the substrate UDP-MurNAc-Ala. The 

second domain is expected to bind ATP due to similarities to structures of other ATP 

or GTP binding proteins and the third domain shows a classical Rossmann fold. The 

active site is expected in an opening between all three domains (Spraggon et al. 

2004). MurC is a self-associating protein and exists in equilibrium between the 

monomeric and the dimeric form, which are both active. The Kd value of the 

association was determined as 1.1+/- 0.4 µM at 37 °C. The oligomerization is not 

stabilized by disulfide bridges or influenced by the substrates. The role of the 

oligomerization for the protein is also not known (Jin et al. 1996).  

MurD (UDP-MurNAc-L-alanine: D-glutamate ligase) transfers the amino acid D-

glutamate onto the glycopeptide. MurD is structurally very similar to MurC. It 

possesses the same three globular domains and strong similarities also exist in the 

arrangement of the domains (Bertrand et al. 1997).  

MurE (UDP-MurNAc-L-alanyl-: D-glutamate: meso-diaminopimelate/ L-lysine ligase) 

transfers either meso-Dap or L-Lys onto the UDP-MurNAc-dipeptide. The enzyme is 

not promiscuous but two different forms with different substrate specificity exist in 

Gram-positive and Gram-negative bacteria. MurE and MurF (UDP-MurNAc-tripeptide 

D-alanyl-D-alanine ligase), the latter adds adds the L-alanyl-L-alanine residue, share a 

similar three-dimensional structure with the other two Mur ligases (Gordon et al. 

2001; Yan et al. 2000). Only MurF somehow structurally sticks out of this group. 

While the central and C-terminal domain show high similarity to the MurD enzyme, 

the N-terminal domain has no homology to the other Mur enzymes or any other 

protein (Gordon et al. 2001).  

In summary the Mur ligases show an overall high structural homology beside only low 

sequence similarity (10-20 %). Together with the folylpoly-γ-L-glutamate synthetase 

(FGS) of Lactobacillus casei they form the Mur ADP forming ligase superfamily 

(Gordon et al. 2001). Especially the ATP binding site is highly conserved. The amide 

formation is expected to be initiated by a phosphorylation of the carboxyl group of the 

growing peptide chain to yield a mixed anhydride followed by a nucleophilic attack of 
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the NH3-group of the incoming amino acid resulting in the formation of a tetrahedral 

intermediate which later collapses under release of the phosphate group (Bertrand et 

al. 1997).  

 

Figure 1.4: Reactionschemes of the initial steps of peptidoglycan biosynthesis. 
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1.9  Inhibitors of the cytoplasmic steps of peptidoglycan 
biosynthesis 

Phosphomycin (also 3-methyloxiran-2-yl-phosphonic acid) is today the only known 

natural compound inhibitor of the enzyme cascade MurA-F (Figure 1.4). It was first 

isolated in 1969 and instantly found to be an inhibitor of the cell wall biosynthesis due 

to its triggering of spheroplast formation in some susceptible bacteria cells. It is 

expected to utilize the bacterial L-α-glycerophosphate transport system but has only 

very low toxicity in humans (Hendlin et al. 1969). Phosphomycin inhibits the MurA 

enzyme by covalently attacking the Cys residue of the active site. Besides an only 

moderate Ki value of 8.6 µM, phosphomycin is a very competent inhibitor and forms a 

stable enzyme-inhibitor complex due to the covalent bond between MurA and 

inhibitor (Marquardt et al. 1994). The moderate Ki value might results from the fact 

that the binding of phosphomycin is highly dependent on the presence of UDP-

GlcNAc. As Baum et al. described it displays an significantly lower IC50 value of 0.4 

µM in presence of UDP-GlcNAc compared to a much higher IC50 value of 8.8 µM in 

absence of UDP-GlcNAc (Baum et al. 2001). As phosphomycin preferably binds to 

the MurA-UDP-GlcNAc complex the inhibition mode probably matches best with an 

uncompetitive inhibition (Marquardt et al. 1994). Besides the inhibitor kinetics also 

biosynthesis has been clarified. Interestingly it was found that the last step, the 

epoxydation is catalyzed by a unique non-haem iron dependent monooxygenase 

(Higgins et al. 2005). Phosphomycin is a broad range antibiotic active against both 

Gram-negative and Gram-positive bacterial strains including MRSA and VRSA. Due 

to all this desirable qualities it established itself as an often used antibiotic especially 

applied against urinary tract infections. Mycobacterium tuberculosis is however not 

susceptible to phosphomycin because the M. tuberculosis MurA enzyme employs an 

Asp residue in the active site instead of Cys (Higgins et al. 2005). Self-resistance of 

phosphomycin-producing strains is conferred by mono- or diphosphorylation of 

phosphomycin. Also glutathione-modifications have been described likewise resulting 

in an inactive product (Kobayashi et al. 2000).  

By phage-display recently a peptide inhibitor of the MurF enzyme was identified. The 

inhibitory effect however was very low and an in vivo activity not described (Paradis-

Bleau et al. 2008). Another inhibitor targeting the early steps of peptidoglycan 

biosynthesis despite not targeting the Mur enzymes is cycloserine (Figure 1.5). 

Cycloserine targets both the alanine racemase and the D-alanine ligase responsible 
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for the supply of D-alanyl-D-alanine, the substrate of the MurF enzyme (Lambert, 

Neuhaus 1972). Cycloserine is active against many bacteria including M. tuberculosis 

but rarely used due to strong side effects (Ducati et al. 2006). Remarkably 

cycloserine is however applied to treat anxiety disorders and depressions. 

Cycloserine binds to the N-methyl-D-aspartate receptor (NMDA) in the amygdala 

expected to be connected with fear conditioning (Davis et al. 2005).  

Strong efforts have been made in the synthesis of new inhibitors for the enzymes 

MurA-F. However none of these non-natural inhibitors resulted until today in a 

clinically used antibiotic. A lot of the synthetic inhibitors are substrate- or transition-

state analogues (Emanuele, JR. et al. 1996; Tanner et al. 1996) but beside these 

also new more unexpected structures were identified (El Zoeiby et al. 2003). 

 

Figure 1.5: The natural inhibitors of the initial steps of peptidoglycan biosynthesis: phosphomycin and 

cycloserin. 

 

For MurA three different inhibitors; a cyclic disulfate (RWJ-3981, Figure 1.6), a 

pyrazolopyrimidine (RWJ-110192, Figure 1.6) and a purine analogue (RWJ-140998, 

Figure 1.6) were indentified by screening of a chemical library (Baum et al. 2001). 

The IC50 values were found to be 0.2-0.9 µM and therefore significantly lower than for 

phosphomycin (8.8 µM) and a different binding mode compared to phosophomycin 

was postulated. Interestingly the inhibitory effect of all three inhibitors could be 

suppressed by addition of DTT (Baum et al. 2001). Beside the promising in vitro 

results in vivo tests showed only moderate antibacterial activity with MIC between 4-

32 µg/ml and further experiments with tritiated UDP-GlcNAc, thymidine, uridine and 

amino acids indicated that the in vivo activity may not result from the specific 

inhibition of MurA as DNA, RNA and protein synthesis were also found to be inhibited 

by these compounds (Baum et al. 2001). Likewise by chemical screening a moderate 

MurA inhibitor derived from 5-sulfonoxy-anthranilic acid (T6361R/T6362R, Figure 1.6) 

was identified and characterized by co-crystallization with the enzyme. Interestingly 



16 

 

the inhibitor was found not to bind site specifically but to block conformational 

changes between the open and closed form of the enzyme (Eschenburg et al. 2005). 

 

Figure 1.6: Synthetic inhibitors of the MurA enzyme: RWJ-3981, RWJ-110192, RWJ-140998 and 

T6361R/T6362R. 

 

To inhibit the MurB enzyme a number of 4-thiazolidinone inhibitors were synthesized 

as surrogates of the diphosphate moiety of EP-UDP-GlcNAc. Some showed a 

moderate activity in vitro, in vivo tests were however not reported (Figure 1.7) 

(Andres et al. 2000). A more successful approach was the synthesis of a library of 

3,5-dioxopyrazolidines as inhibitors of the MurB enzyme from E. coli and S. aureus 

by Yang and coworkers (Figure 1.7) (Yang et al. 2006). These compounds showed 

antibacterial activity with MIC values between 0.25 µg/ml and 16 µg/ml against 

MRSA, vancomycin-resistant Enterococcus faecialis and Streptococcus pneumoniae. 

The best inhibitor of MurB gave a KD of 260 nM. Some of the inhibitors showed 

additionally a moderate inhibitory effect on MurA and MurC enzymes from E. coli. A 

crystal structure of the complex of the inhibitor with the MurB enzyme from E. coli 

indicated a binding in the active site of MurB and an interaction with the FAD cofactor 

(Yang et al. 2006). 
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Figure 1.7: Synthetic inhibitors of the MurB enzyme: 4-thiazolidinones and 3,5-dioxopyrazolidines. 

 

As inhibitors of the enzymes MurC-F mostly phosphinate inhibitors mimicking 

transition state analogues of the tetrahedral intermediate formed during amide 

formation were studied (Figure 1.8). These often showed a very good inhibitory 

action (El Zoeiby et al. 2003). Examples comprise a MurC inhibitor by Marmor et al. 

(Figure 1.8) (Marmor et al. 2001), a MurD inhibitor by Tanner et al. (Tanner et al. 

1996), a MurE inhibitor by Zeng et al. (Zeng et al. 1998) and a MurF inhibitor by Miller 

et al. (Miller et al. 1998). In vivo activity of these compounds however was not even 

tested or appeared not promising to perform further studies. Beside the phosphinate 

inhibitors mostly substrate analogues were tested with only unsatisfying results for 

further investigation of their antibacterial potential (El Zoeiby et al. 2003). 
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Figure 1.8: Structure of the phosphinate inhibitors and multitarget inhibitors of the Mur enzymes.  

 

Additionally to inhibition of the single enzymes efforts lately were made to find 

multitarget inhibitors of the Mur enzymes. Mansour et al. investigated napthyl tetronic 

acids as multitarget inhibitors of the enzymes MurA-F (Figure 1.8). These compounds 

showed an inhibitory effect on the MurB enzyme in low µM range and also an 

antibacterial activity with MIC values between 2 µg/ml and 64 µg/ml on E. coli and 

S. aureus but less efficiency against the other Mur enzymes (Mansour et al. 2007). 

Tomašić et al. synthesized a number of 5-benzylidenethiazolidin-4-one derivatives 

from which some showed multitarget inhibition of the enzymes MurD-F (Figure 1.8). 

These compounds were tested against E. coli, S. aureus, E. faecalis or P. aeruginosa 

however none of them had any considerable antibacterial effect on these bacteria 

strains (Tomašić et al. 2010).  
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1.10  The enzymes of the second stage of peptidoglycan 
biosynthesis 

The second stage of peptidoglycan biosynthesis takes place in the cytoplasm at the 

inner face of the cell membrane and involves the enzymes MraY and MurG. MraY 

(phospho-MurNAc-peptapeptide translocase) transfers the UDP-MurNAc-

pentapeptide onto a membrane anchored undecaprenyl phosphate (C55P) under 

release of UMP. The product of the MraY reaction is lipid I (undecaprenyl-

pyrophosphate MurNAc-pentapeptide). In the subsequent reaction the 

glycosyltransferase MurG transfers a GlcNAc sugar from UDP to the 4’-hydroxy 

group of MurNAc under formation of a β-1,4-linkage. The undecaprenyl-

pyrophosphate disaccharide pentapeptide is termed Lipid II. MraY is an intregral 

membrane protein and MurG is a membrane associated enzyme (Winn et al. 2010). 

Their membrane localization and the difficulty to generate the substrates for the MraY 

and MurG enzyme reactions are probably the reasons why enzyme assays were not 

available and both enzymes were not characterized in detail until recently. The MraY 

protein possesses homologies to several hexosamine-1-phosphate transferase 

enzymes both in prokaryotes and eukaryotes (Winn et al. 2010). The enzyme kinetics 

of MraY was first studied in 1996 in a fluorescence assay with isolated Park’s 

nucleotide and the enzyme was solubilized by high amount of the detergent TritonX-

100 (Brandish et al. 1996a). Topological studies of MraY revealed ten 

transmembrane α-helices and five cytoplasmic and six periplasmic domains (Bouhss 

et al. 1999). By sequence alignments three highly conserved aspartic acid residues 

were identified on the cytoplasmic side and found to be essential for MraY activity 

(Lloyd et al. 2004). 

The MurG enzyme was not sequenced before 1990 and first overexpressed in 1998 

(Ha et al. 2001). Assays to study the MurG enzyme were established both by semi-

synthesis (Auger et al. 1997; Auger et al. 2003) and total synthesis of Lipid I (Ha et 

al. 1999). Membrane association was bypassed by addition of Triton-X 100. Lately 

also crystal structures of the MurG enzyme were obtained. The MurG enzyme 

consists of two domains which possess a strong structural similarity in spite of low 

sequence similarity. Both adopt an α/β sheet motif, the so called Rossmann fold. It is 

postulated that both substrates bind to a different domain in the course of the MurG 

reaction. Astonishingly MurG has strong homologies to the T4 phage β-
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glycosyltransferase and only little homologies to any other studied 

glycosyltransferases (Ha et al. 2001).  

 

1.11  Inhibitors of the second stage of peptidoglycan 
biosynthesis 

A considerable number of inhibitors of the MraY enzyme have been described. Best 

known are perhaps the MraY inhibitors tunicamycin, mureindomycin and 

liposidomycin. The inhibition occurs supposable by substrate analogy to the UDP-

MurNac-pentapeptide. Beside these analogies differences in structure, mechanism of 

inhibition and target specificity have been described (Brandish et al. 1996b). 

Tunicamycin, isolated in 1971 from Streptomyces superificus, active against Gram-

positive bacteria, yeast and fungi consists of a uracil moiety, GlcNAc, an 11-carbon 

aminodialdose (tunicamine) and a fatty acid chain linked to the amino group (Figure 

1.9). Different homologues exist, which differ in the length of the fatty acid chain 

(Takatsuki et al. 1971). Tunicamycin was found to be a reversible inhibitor of both 

MraY and the mammalian UDP-GlcNAc-dolichyl-phosphate-GlcNAc-1-phosphate 

transferase, involved in the biosynthesis of glycoproteins in eukaryotic cells (Heifetz 

et al. 1979). Due to its toxicity towards eukaryotes tunicamycin is not employed as an 

antibiotic but it is used as an experimental tool as it induces unfolded protein 

response as a cellular stress response (Mitra et al. 2002). Mureindomycin and 

liposidomycin, in contrast, specifically inhibit the bacterial enzyme with a different 

binding kinetics than tunicamycin (Brandish et al. 1996b). Mureindomycin, a mixture 

of homologous peptidyl nucleoside antibiotics was first isolated from Streptomyces 

flavidovirens in 1989 (Isono et al. 1989a). Beside one Met and two Tyr residues it 

contains 2-amino-3-N-methylaminobutyric acid (AMBA) as well as uracil or 

dihydrouracil, respectively (Figure 1.9). Mureindomycin was found to exhibit an 

especially high activity against Pseudomonas while liposidomycin possess a good 

activity against Mycobacteria including multi-drug resistant Mycobacterium 

tuberculosis. Liposidomycin is a uracil-nucleoside antibiotic isolated 1985 from 

Streptomyces griseosporeus in Japan (Isono et al. 1985). Later it was grouped 

together with the structurally very similar natural product caprazamycin (Hirano et al. 

2008) and more simple structured FR900493 (Hirano et al. 2007) as 6´-N-alkyl-5´-β-

O-aminoribosylglycyluridine antibiotics. Further related antibiotics are muraymycin 
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(McDonald et al. 2002), pacidamycin (Fronko et al. 2000), capuramycin (Yamaguchi 

et al. 1986) and napsamycin (Chatterjee et al. 1994).  

 

Figure 1.9: Inhibitors of the second stage of peptidoglycan biosynthesis: tunicamycin, mureidomycin 

and amphomycin.  

 

Amphomycin, an undecepeptide antibiotic, also inhibits the MraY catalyzed reaction 

(Figure 1.9) (Tanaka et al. 1979). More detailed studies revealed that the inhibition 

results from a Ca2+ dependent complexation of the C55-isoprenyl phosphate 

(Banerjee 1987). Due to its more general mechanism of action it inhibits all 

glycosylations of dolicyl phosphate and therefore like tunicamycin also eukaryotic 

glycopeptide biosynthesis.  

The natural MraY inhibitors have inspired the synthesis and semisynthesis of a 

number of artificial inhibitors (Kimura, Bugg 2003). Lin at al. e.g. synthesized a 
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number of muraymycin inhibitors that however were not tested in vivo (Lin et al. 

2002). A modification of capuramycin of Bogatcheva and coworkers in contrast was 

able to improve in vitro activity of the compound (Bogatcheva et al. 2011). 

For the MurG enzyme less inhibitors are known. Ramoplanin is known to inhibit the 

MurG enzyme additionally to its inhibitory effect on the third stage of peptidoglycan 

biosynthesis (McCafferty et al. 2002). Recently efforts were made to identify synthetic 

MurG inhibitors (Hu et al. 2004; Trunkfield et al. 2010). A donor displacement screen 

in the group of Walter identified seven MurG inhibitors with IC50 values against E. coli 

MurG of 1-6 µM. In vivo tests were however not reported (Figure 1.10) (Hu et al. 

2004). Transition state analogues synthesized by Trunkfield and coworkers were less 

successful. Most compounds showed only little or no effect on E. coli MurG 

(Trunkfield et al. 2010).  

 

Figure 1.10: Synthetic inhibitors of the MurG enzyme (Hu et al. 2004). 
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1.12  The enzymes of the third stage of peptidoglycan 
biosynthesis 

The last stage of peptidoglycan comprises only two reactions, a transglycosylation 

and a transpeptidation. Due to the extensive formation of a network structure it might 

be however considered enzymatically most complex and is also least understood. 

This is due to the fact that the two reactions are catalyzed by a larger group of 

different enzymes known as penicillin-binding proteins (PBP). In this context it is 

interesting to note, that E. coli e.g. can produce 12 different PBP (O'Daniel et al. 

2010). The group of PBPs were initially characterized for they ability to bind penicillin 

(Spratt 1977) and are traditionally further classified by their molecular weight as high 

or low molecular weight PBP. Some of the high molecular weight PBP contain both 

transglycosylase and transpeptidase domains (Lovering et al. 2007), the other PBP 

seem to catalyze only one of the two reactions (Kahne et al. 2005). The high 

molecular weight PBPs are mainly responsible for peptidoglycan polymerization, but 

some are also believed to play a role in cell morphogenesis and to interact with 

proteins involved in the cell cycle (Sauvage et al. 2008). The low molecular weight 

PBPs, in contrast, are related to cell separation and peptidoglycan maturation and 

recycling (Sauvage et al. 2008). Both high and low molecular weight PBP are 

membrane anchored (O'Daniel et al. 2010). 

 

Table 1.1: Natural product inhibitors of peptidoglycan biosynthesis in the order they are mentioned in 

the text. 

Antibiotic Target activity 

Initial stage of peptidoglycan biosynthesis 

Phosphomycin MurA Ki: 8.6 µM E. coli MurA (Baum 
et al. 2001) 

Cycloserin Alanine-racemase and D-
alanine ligase 

Ki: 6.5 * 10-4M E. coli alanine 
racemase (Lambert, Neuhaus 
1972) 

Second stage of peptidoglycan biosynthesis 

Tunicamycin MraY and mammalian 
UDP-GlcNAc-dolichyl-
phosphate-GlcNAc-1-
phosphate transferase 

Ki: 0.55 µM E. coli MraY 
(Brandish et al. 1996b) 
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Liposidomycin B MraY IC50 = 0.05 µg/mL for E. coli 
MraY (Hirano et al. 2008) 

Mureidomycin A MraY Ki: 0.04 *10 µM E. coli MraY 
(Brandish et al. 1996b) MIC = 
1.56 µg/mL against antibiotic-
resistant Pseudomonas 
aeruginosa  (Isono et al. 1989b) 

Caprazamycin MraY IC50 = 0.05 µg/mL E. coli MraY; 
MIC = 3.13 µg/mL against 
multi-drug-resistant 
Mycobacterium tuberculosis 
(Hirano et al. 2008) 

 

Muraymycin MraY IC50 = 0.027 µg/mL E. coli 
MraY; MIC 2 to 16 µg/mL 
against Staphilococcus 
(McDonald et al. 2002) 

Pacidamycin MraY MIC 1 to 125 µg/mL against 
Pseudomonas aeruginosa  
(Fronko et al. 2000) 

Capuramycin  MraY MIC 12.5 µg/mL against 
Streptococcus pneumoniae and 
MIC 3.2 µg/mL against 
Mycobacterium smegmatis 
(Yamaguchi et al. 1986) 

Napsamycin MraY MIC 12 to 25 µg/mL against 
Pseudomonas aeruginosa  
(Chatterjee et al. 1994) 

Amphomycin MraY IC50 = 20 µg/ml MraY (Tanaka 
et al. 1979) 

Ramoplanin MurG; Lipid II, different 
binding site than 
vancomycin 

MIC 2. µg/mL against MRSA 
(McCafferty et al. 2002) 

Final stage of peptidoglycan biosynthesis 

Penicillin Transpeptidase IC50 = 0.5 µg/mL binding to 
S. aureus PBP1, MIC 0.03 
µg/mL against penicillin 
suseptable Streptococcus 
pneumoniae (Kosowska-Shick 
et al. 2010) 

Moenomycin Transglycosylation MIC 0.01-0.3 µg/mL against 
S. aureus (Ostash, Walker 
2010), KD = 54.2 nM E. coli 
PBP1 (Cheng et al. 2008) 
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Prasinomycin Transglycosylation MIC 0.15 µg/mL against 
S. aureus (Ostash, Walker 
2010) 

Marcabomycin Transglycosylation MIC 0.05 µg/mL against 
S. aureus (Ostash, Walker 
2010) 

Diumycin Transglycosylation MIC 0.02 µg/mL against 
S. aureus (Brown et al. 1974) 

Vancomycin Lipid II, complexes D-Ala-
D-Ala moiety 

KD 1,6 µM D-Ala-D-Ala 
derivates (Rao et al. 1998), MIC 
1.4 µg/mL against S. aureus 
(Peschel et al. 2000) 

Balhimycin Lipid II, complexes D-Ala-
D-Ala moiety 

MIC 1.4 µg/mL against 
S. aureus (Peschel et al. 2000) 

Chloroeremomycin Lipid II, complexes D-Ala-
D-Ala 

MIC 0.057 µg/mL against M. 
luteus (Allen, Nicas 2003) 

Teicoplanin Lipid II, complexes D-Ala-
D-Ala 

MIC 1.3 µg/mL against 
S. aureus (Peschel et al. 2000) 

A40926 Lipid II, complexes D-Ala-
D-Ala 

MIC 0.06 µg/mL against 
S. aureus and 2 µg/mL against 
Neisseria gonorhoeae 
(Goldstein et al. 1987) 

A47934 Lipid II, complexes D-Ala-
D-Ala 

MIC 0.06 µg/mL against 
S. aureus and 8 µg/mL against 
Neisseria gonorhoeae 
(Goldstein et al. 1987) 

Ramoplanin Lipid II, different binding 
site than vancomycin; 
MurG 

MIC 0.38–1.5. µg/mL against 
MRSA and 0.1–1.5 µg/mL 
against VRE (Brumfitt et al. 
2002) 

Enduracidin Lipid II, different binding 
site than vancomycin 

MIC 0.78 µg/mL against 
S. aureus (Tsuchiya et al. 1968) 

Janiemycin Lipid II, different binding 
site than vancomycin 

MIC 0.05 µg/mL against 
S. aureus (Brown et al. 1974) 

Nisin Pore formation MIC 0.06 µg/mL against 
L. lactis (Sun et al. 2009), 

MIC 1.5-16 mg/L against MRSA 
and MIC 1.5-16 mg/L against 
VRE (Brumfitt et al. 2002) 

Epidermin Pore formation MIC 0.3 µg/mL against 
S. carnosus (pRB473/pTepiQ10 
(Otto et al. 1998) 
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Mersacidin Lipid II, different binding 
site than vancomycin 

MIC 0.1 µg/mL against 
M. luteus (Brötz et al. 1998)  

Actagardin Lipid II, different binding 
site than vancomycin 

MIC 0.8 µg/mL against 
M. luteus (Brötz et al. 1998) 

Mannopeptimycin Lipid II, different binding 
site than vancomycin 

MIC 4-128 µg/mL against 
MRSA (Singh et al. 2003) 

Bacitracin C55-isoprenyl 
pyrophosphate 

MIC 2-16 mg/L against MRSA 
and MIC 12-125 mg/L against 
VRE (Brumfitt et al. 2002) 

Katanosin Transglycosylation 
different to vancomycin 

MIC 0.39-0.78 µg/mL against 
S. aureus (Shoji et al. 1988) 

Plusbactin Transglycosylation 
different to vancomycin 

MIC 0.4-1.6 µg/mL against 
MRSA (Shoji et al. 1992) 

 

1.13  Inhibitors of the third stage of peptidoglycan 
biosynthesis 

The enzymes of the third stage of peptidoglycan biosynthesis are highly qualified as 

targets for antibiotics. Not only are they essential and specific for bacteria but they 

are additionally highly accessible (at least in Gram-positive bacteria), also for 

compounds that cannot penetrate the cell wall, due to the fact that they are localized 

in the extracellular phase in Gram-positive and the periplasm in Gram-negative 

bacteria (Lovering et al. 2007). Furthermore despite of the high number of different 

PBP most of them are targeted by the same antibiotics due to the high degree of 

conservation of the active domains. Probably because of these favorable properties 

for drug design a lot of effort has been put in the discovery, synthesis and 

semisynthesis of new inhibitors (Malabarba et al. 1997). But also nature seems to 

favor the third stage of peptidoglycan biosynthesis as a considerable number of 

natural compound inhibitors inhibit the last stage of cell wall biosynthesis (Kahne et 

al. 2005). There are roughly three different classes of antibiotics inhibiting the final 

stage of peptidoglycan biosynthesis: inhibitors of the transpeptidases, inhibitors of 

the transglycosylases and antibiotics binding to the substrate of the 

transpeptidase/transglycosylase reaction (Kahne et al. 2005). The β-lactam 

antibiotics belong to the first mentioned class, a member of the second class is 

moenomycin and vancomycin is a representative of the last class. Beside these three 

distinct types there are still further inhibitors that can be regarded as inhibitors of the 
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third step of peptidoglycan biosynthesis. For example bacitracin that inhibits the 

regeneration of C55-isoprenyl pyrophosphate, the lipid carrier of the disaccharide 

pentapeptide, and lantibiotics like nisin that interact with lipid II and induce pore 

formation.  

 

Figure 1.11: The inhibitors of the third stage of peptidoglycan biosynthesis penicilin, ramoplanin, 

vancomycin and moenomycin.  

 

1.14  The β-lactam antibiotics 

β-lactam antibiotics bind to the active center of the transpeptidases (Frère et al. 

1974). Among these penicillin (Figure 1.11) is probably the most renowned member 

of this complex group of antibiotics. The observance of its antibiotic effect by 

Alexander Fleming in 1929 (Fleming 1929) is often considered the start of the era of 

antibiotics (Fernandes 2006). β-lactam antibiotics are both produced by filamentous 

fungi like Penicillium notatum (Fleming 1929) and Gram-positive as well as Gram-

negative bacteria (Brakhage et al. 2005). β-lactam antibiotics divide in a large 

number of structurally diverse antibiotics that all share the β-lactam motife in their 

structure. Worth mentioning are certainly clinically important β-lactam antibiotic 

subgroups, like the cephalosporins, the carbapenems and the monobactams which 
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are less prone to cause allergies than the Penicillin antibiotics (Pegler, Healy 2007; 

Frumin, Gallagher 2009). Beside allergies the biggest problem with the clinical 

treatment with β-lactam antibiotics is the wide spread of β-lactam resistance. β-

lactam resistance was first reported in 1940 (Abraham, Chain 1940) and is based on 

enzymatic hydrolysis of the β-lactam ring by β-lactamases. Since the first discovery 

of β-lactam resistance a large number of different β-lactamases have been 

described. A problematic factor of β-lactam resistance is that especially Gram-

positives can produce large quantities of β-lactamases, which they export. Thus, they 

can protect a whole bacteria colony against the antibiotic threat. Also the plasmid-

mediated host-to-host transfer of β-lactam resistance is quite common 

(Theuretzbacher 1998). The fast spread and effectiveness of some β-lactamases 

even trigger labels like “superbug” as has been used in the popular press for a multi-

drug resistant Gram-negative Enterobacteriaceae carring a particularly efficient 

metallo-β-lactamase 1 (NDM-1) (Kumarasamy et al. 2010; Wandtner 16.09.2010). β-

lactam resistance can be bypassed by the application of combination drugs, e.g. a β-

lactam antibiotic and a β-lactamase inhibitor. Examples are the high selling drug 

augmentin (Glaxo Smith Kline) a combination of amoxicillin with the β-lactamase 

inhibitor clavulamic acid. Further examples are piperacillin and tazobactam in the 

commercial antibiotic tazocin (Wyeth) and the combination of β-lactamase inhibitor 

sulbactam with cefoperazone (Sulperzone) or amplicillin (Sultamicillin) (Saudagar et 

al. 2008).  However this solution predicatively has a time-limit as resistance to β-

lactamase inhibitors starts to emerge (Papp-Wallace et al. 2010). 

 

1.15  The Moenomycin-type antibiotics 

The members of the moenomycin family of antibiotics are very effective inhibitors of 

the transglycosylation step with MIC values around 1-100 ng/mL (Lovering et al. 

2007; Cheng et al. 2008; Ostash, Walker 2010). Moenomycin (Figure 1.11, also 

bambermycin, flavomycin or flavophospholipol), eponym of this family was isolated in 

1965 (Wallhausser et al. 1965) and 1969 (Schacht, Huber 1969) and is a glycolipid 

antibiotic. Further moenomycin like antibiotics are prasinomycin, macabomycin and 

duimycin (Lugtenberg et al. 1972; Brown et al. 1974). Moenomycin consists of a 

pentasaccharide linked by 3-phosphoglyceric acid to a C25 isoprenoid chain 

(moenocinol) (Baizman et al. 2000) and is the only bacterial secondary product 
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known containing 3-phosphoglyceric acid (Ostash, Walker 2010). Due to poor 

pharmacokinetic properties monomycin so far has not been considered for clinical 

use. It however is applied as additive in animal feed (Kahne et al. 2005). Acquired 

resistances against moenomycin are not known, however a natural resistance of 

some E. faecium strains was reported (Butaye et al. 2003). A mechanism conveying 

moenomycin resistance is also unknown (Ostash, Walker 2010). 

 

1.16  The Vancomycin-type antibiotics  

Vancomycin (Figure 1.11) is the best known member of a family of antibiotics also 

called glycopeptide antibiotics. Vancomycin was discovered by McCormick in 1956 

from Amycolatopsis orientalis (McCormick et al. 1955-1956). The structure however 

was not elucidated before 1978 (Sheldrick et al. 1978) probably due to the fact that 

vancomycin and its related glycopeptides exhibit a very complex structure and 

possess a lot of modifications like crosslinking, glycosylation, lipidation, methylation, 

halogenation or sufonylation. Beside distinct differences in the nature of their 

modification all vancomycin antibiotics, at first sight, show a closely related structure: 

A heptapeptide scaffold cycled or branched by extensive oxidative cross-linking 

(Kahne et al. 2005). The peptide scaffold contains an altering number of non-

proteinogenic amino acids like 4-hydroxyphenylglycine (Hpg), 3,5-

dihydroxyphenylglycine (Dpg) and β-hydroxy-chlorotyrosine (Cht). Other important 

members of the group of vancomycin antibiotics are balhimycin (Pelzer et al. 1999), 

complestatin (Chiu et al. 2001), chloroeremomycin (also termed LY264826) (Rolston 

et al. 1990; van Wageningen et al. 1998), teicoplanin (Li et al. 2004), A40926 (Sosio 

et al. 2003) and A47934 (Pootoolal et al. 2002). Identfication of the gene clusters of 

many members of the group of vancomycin antibiotics proved that they are 

synthesized by non-ribosomal peptide synthetases. Vancomycin inhibits the cell wall 

biosynthesis by binding tightly to the D-Ala-D-Ala terminus of a growing peptidoglycan 

chain in the late stages of the peptidoglycan biosynthesis (Reynolds 1989). It shows 

a bad permeability for the cytoplasmic membrane (Perkins, Nieto 1970) and also for 

the outer membrane of Gram-negative bacteria (Kahne et al. 2005) wherefore it is 

only applied to Gram-positive bacteria. All glycopeptide antibiotics are generally 

considered to act by the same mode of action. However there is a growing 

awareness of differences in the mode of action and mechanism of resistance to 
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different glycopeptides (Kahne et al. 2005). Complestatin i.e. was reported to 

possess an anticomplement and a neuroprotective activity (Kaneko et al. 1980). 

Vancomycin and teichoplanin are considered as last resort antibiotics and especially 

used for patients suffering from bacterial infections with MRSA because for several 

decades of usage no vancomycin resistance emerged. However resistance to 

vancomycin by vancomycin-resistant Enterococci has spread since the end of the 

1980ies (Cetinkaya et al. 2000) and lately also resulted in emergence of vancomycin-

resistant MRSA (so called VRSA) (Chang et al. 2003). Vancomycin resistance is 

generally enabled by the remodeling of the D-Ala-D-Ala terminus of peptidoglycan to 

D-Ala-D-Lac and conferred by a resistance cassette of five genes VanRSHAX. VanR 

and VanS code for a two-domain response regulator and a transmembrane sensor 

kinase and have regulatory function. VanH converts pyruvate to D-Lac and VanA 

links D-Lac and D-Ala. D-Ala-D-Lac is accepted by the normal MurF enzyme. VanX 

cleaves of the ordinary D-Ala-D-Ala terminus and hence reduces the amount of 

possible target for the glycopeptide antibiotics (Walsh et al. 1996). Different 

phenotypes of resistant strains with different susceptibility to different glycopeptide 

antibiotics were observed and termed VanA, VanB and VanC. Interestingly VanB 

strains are still susceptible to teicoplanin while VanA strains are not, although both 

carry the complete resistance cassette. Later it was found that vancomycin but not 

teicoplanin induces the VanS senor kinase in VanB strains which has been 

suggested to be associated with the membrane localization of teicoplanin due to its 

accessory lipid chain (Kahne et al. 2005).  

A lot of semisynthetic derivates of the glycopeptide antibiotics have been described 

and synthesized; some of which had an increased in vivo activity also against 

vancomycin-resistant strains (Nicas et al. 1995; Al-Nawas, Shah 1998; Goldstein et 

al. 2004, Allen, Nicas 2003). 

 

1.17  Ramoplanin 

Closely related to the vancomycin group of antibiotics, but no members are the 

glycodepsipeptide antibiotics ramoplanin and enduracidin. Ramoplanin (Figure 1.11), 

produced by Actinoplanes sp., was discovered in 1984 in a screening for new cell 

wall inhibitors in Italy (Pallanza et al. 1984). Ramoplanin is a 17 amino acid cyclic 

peptide with an attached fatty acid chain and several non-proteinogenic Hpg amino 
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acids. It additionally carries amino acids modified by β-hydroxylation, chlorination and 

glycosylation. Ramoplanin has a broad-spectrum activity against Gram-positive 

bacteria with MIC values around 2.0 µg/mL (McCafferty et al. 2002). It binds to lipid I 

and lipid II but instead of the D-Ala-D-Ala motif targets the disaccharide and the 

attached pyrophosphate motif of Lipid II (Cudic et al. 2002). Crystal structures 

showed the formation of an amphipathic dimer able to interact with the membrane 

(Hamburger et al. 2009). Additionally it was found that ramoplanin can inhibit the 

MurG enzyme in vitro, but it is not clear if this activity also plays a role in vivo, as the 

MurG enzyme is located at the inner face of the cell membrane and it is still unknown 

if ramoplanin can get there (McCafferty et al. 2002). The different mode of action 

compared to the vancomycin antibiotics and the good tolerance of ramoplanin in 

humans makes it a good candidate for the therapy of infection with VRE strains 

(Emerson, Marzella 2007). Semisynthetic approaches report the exchange of the 

lipidic part by a carboxylic acid to increase tolerability in intravenous injections which 

resulted in slight decrease of the biological activity of some bacteria strains (Ciabatti 

et al. 2007). 

Enduracidin and janiemycin (Brown et al. 1974) are further cell wall inhibitors that are 

structurally closely related to ramoplanin. For enduracin in addition an antiviral 

activity (McCafferty et al. 2002) and an activity against the human prolyl 

endopeptidase (Kimura et al. 1997) has been reported.  

 

1.18  Lantibiotic cell wall biosynthesis inhibitors 

Another famous group of peptide antibiotics are the lantibiotics. The name lantibiotics 

derives from lathionine. A lathionine motif formally can be regarded as the 

crosslinking of two alanine residues by a thioether bridge. The lantibiotics are a larger 

group of peptides ribosomal produced by Gram-positive bacteria and some of them 

target the bacterial cell wall biosynthesis (Chatterjee et al. 2005).  
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Figure 1.12: The lantibiotic inhibitors of the peptidoglycan biosynthesis nisin, mersacidin, actagardin 

and epidermin.  

 

Besides the lathionine motif they can contain further modifications likewise introduced 

posttranslationally. Lantibiotics are generally classified in type A or type B lantibiotics 

according to their topology. An additional subgroup is the two component lantibiotics. 

Another way to classify lantibiotics is the classification according to the modifying 
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enzymes. The most prominent member of the group of lantibiotics is probably Nisin 

produced by Lacococcus lactis and first discovered in 1928 (Figure 1.12) (Rogers, 

Whittier 1928). Nisin is used as a food preservative and induces pore formation in the 

bacterial cell membrane. It is a type A lantibiotic and has an amphipathic screw-like 

structure (Chatterjee et al. 2005). Nisin contains 34 amino acids, one lathionine ring, 

four methyllantionine rings and three modified amino acids (one 2,3-didehydroalanine 

and two 2,3-didehydrobutyrines). Interestingly it was found that nisin interacts with 

the lipid II molecule to facilitate the integration into the cell membrane. The interaction 

with lipid II might help to adopt the right conformation for pore formation and explain 

the higher effectiveness of nisin compared to other pore forming antibiotics (Brötz, 

Sahl 2000). For the lantibiotic epidermin (Figure 1.12) the same mode of action as for 

nisin is considered. Epidermin host resistance is provided by the export of epidermin 

out of the cell by specific ABC transporters (Otto et al. 1998). Non-host strains were 

reported to gain nisin resistance by physiological adoption, therefore changes in the 

composition of the cell membrane. Lately in non-host strains a nisin resistance 

protein was discovered that was able to proteolytically inactive nisin in vitro and by 

this also provide nisin resistance (Sun et al. 2009).  

The lantibiotics mersacidin (Figure 1.12) and actagardin (Figure 1.12) also inhibit the 

bacterial cell wall biosynthesis. They are shorter than nisin and possess a more 

globular three-dimensional structure and are therefore classified as type B lantibiotics 

(Chatterjee et al. 2005). Both mersacidin and actagardin inhibit the transglycosylation 

step by binding to lipid II (Brötz et al. 1998). The lipid II binding domain recognized by 

mersacidin and actagardin is very similar to the motif recognized by ramoplanin. Also 

the backbone fold is very much similar to the peptide backbone of ramoplanin 

(McCafferty et al. 2002). A paralleled evolution might therefore have led to a similar 

mode of action in different antibiotic classes.  

 

1.19  Further inhibitors of the later stages of peptidoglycan 
biosynthesis 

Further inhibitors of the final stages of peptidoglycan biosynthesis that do not belong 

to the above mentioned groups and families are mannopeptimycin, bacitracin and the 

katanosins. 
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Mannopeptimycin (Figure 1.13) is another peptide cell wall inhibitor active against a 

variety of Gram-positive bacteria first discovered in 1958 and re-discovered in 2003 

(Singh et al. 2003). It is a cyclic glyco-hexapeptide and was also found to inhibit the 

transglycosylation by binding to Lipid II, possibly at a different binding site than 

vancomycin and ramoplanin (Ruzin et al. 2004). 

The peptide antibiotic bacitracin (Figure 1.13), produced by Bacillus subtilis and 

Bacillus licheniformis, was first isolated in 1945 (Johnson et al. 1945). Instead of only 

one antibiotic Bacillus normally produces a mixture of closely related structures of 

which bacitracin A is the main component. Bacitracin A is a 12 amino acid peptide 

with an N-terminal pentapeptide and a C-terminal seven amino acid lactam ring. The 

structure of bacitracin slightly resembles to a lariat. It exhibits a thiazoline ring 

between a Cys and an Ile residue at the N-terminal end, which is important for its 

antibiotic activity (Stone, Strominger 1971). Bacitracin A forms a complex with the 

C55-isoprenyl pyrophosphate and by this inhibits the regeneration of the lipid carrier 

of Park`s nucleotide. Interestingly the complexation requires a metal ion as cofactor 

(Stone, Strominger 1971). Furthermore bacitracin can bind to the major grove of the 

DNA and is also referred to as a potential proteinase inhibitor (Pfeffer et al. 1991). 

Bacitracin is industrially used in animal feed, for antibiotic ointments and for antibiotic 

treatment during chemotherapy. Resistance to bacitracin can occur by increased de 

novo synthesis of the C55-isoprenyl phosphate. E.g. strong amplification of a C55-

isoprenyl kinase responsible for phosphorylation of C55-isoprenol was found to confer 

resistance to bacitracin (Cain et al. 1993). 

Katanosin A  and katanosin B (Figure 1.13, also lysobactin), isolated 1988 from the 

genus Cytophaga (Shoji et al. 1988), are 11 amino acids cyclic depsipeptides and 

also possess a so called “lariat” structure with a linear dipeptide part and macro cycle 

part of nine amino acids. They additionally possess five non-proteinogenic amino 

acids one D-Arg and four β-hydroxylated amino acids. The katanosins are active 

agains VRE and seem to inhibit the transglycosylation differently to vancomycin. The 

mode of action was not studied yet in detail but a mode of action similar to 

ramoplanin or mannopeptimycin is expected (Maki et al. 2001; Breukink, de Kruijff 

2006). The total synthesis of katanosin was published at the same time by Nussbaum 

et al (von Nussbaum et al. 2007) and Campagne (Campagne 2007). Due to its 

expedient qualities the katanosin derivatives were studied further by the Bayer AG 

(Leverkusen, Germany) to gain a possible clinical antibiotic (von Nussbaum et al. 
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13.04.2007). The homologous antibiotic plusbactin, isolated 1992 from 

Pseudomonas (Shoji et al. 1992) is expected to act in the same way as katanosin. 

 

Figure 1.13: The inhibitors mannopeptimycin, katanosin and bacitracin. 

 

1.20  Feglymycin 

The isolation and structure elucidation of feglymycin from Streptomyces sp. DSM 

11171 was first published in 1999 by Vertesy (Figure 1.14). Additionally an 

antibacterial activity against Staphylococcus strains and a strong inhibition of 

syncytium formation in HIV infection in vitro was described (Vértesy et al. 1999). 

Feglymycin is a linear 13er peptide containing largely non-proteinogenic Hpg (4-

hydroxyphenylglycine) and the non-proteinogenic Dpg (3,5-dihydroxyphenylglycine) 

amino acids and an interesting alternation of D and L amino acids. Hpg and Dpg can 
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also be found in members of the group of glycopeptide antibiotics, the ramoplanin 

group of antibiotics and the lipohexapeptide arylomycin (Luo et al. 2009). Feglymycin 

however sticks out of this listing for having a much more simple structure. Cystals 

structures revealed an antiparallel double-helical dimer formation of two feglymycin 

molecules (Figure 1.14). Similar antiparallel double-stranded β-helices are also 

formed by other D-L alternating peptides and also by the peptide antibiotic gramicidin 

A (Bunkóczi et al. 2005). The specific structure of gramicidin A enables the molecule 

to form channels in phospholipid membranes (Wallace 1986).  

 

Figure 1.14: Structure and amino acid sequence of the tridecapeptide feglymycin and the crystal 

structure of feglymycin.  

 

For feglymycin a similar mode of action is however not expected as the dimer would 

be too short to span the membrane and the channel is additionally blocked by 

phenylalanine side chains. Instead a function as ion carrier was proposed (Bunkóczi 
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et al. 2005). In 2009 the total synthesis of feglymycin was achieved and a more 

detailed investigation of the antibacterial and antiviral activity conducted. Anti-HIV-1 

activity was tested against MT-4 cell lines. For feglymycin an IC50 value of 1.9 µg/ml 

was determined with no cytotoxic effects at 100 µg/ml. Besides feglymycin also the 

N-terminal Cbz-protected heptamer fragment of feglymycin and the Cbz-protected 

heptamer fragment with a methyl group at the C-terminal end showed an anti-HIV-1 

activity around 8 µg/ml and low cytotoxic effects (Dettner et al. 2009). Feglymycin 

was also tested against different MRSA strains and showed IC80 values around 0.7-

2.3 µg/ml and MICs (minimal inhibitory concentration) between 1-4 µg/ml. Feglymycin 

was additionally tested against Gram-negative E. coli and E. faecalis, Gram-positive 

Streptococcus pyogenes and Mycobacterium smegmatis as well as the yeast strains 

Candida albicans. The antibacterial activity against these strains was found to 

exceed a MIC of 64 µg/ml and was therefore not determined (Dettner et al. 2009). 

1.21   Non ribosomal peptide synthetases (NRPS) 

The large number of non-proteinogenic amino acids in feglymycin indicates that 

feglymycin might be a non-ribosomal synthesized peptide. Also the glycopeptide 

antibiotics and the glycodepsipeptide antibiotics ramoplanin and enduracidin are 

synthesized by NRPS (non-ribosomal peptide synthetases) (Kahne et al. 2005). The 

non-ribosomal peptide synthesis allows bacteria and fungi to overcome structural 

restrictions of the ribosomal peptide synthesis. Ribosomal peptide synthesis is largely 

restricted to the proteinogenic amino acids with only very few exceptions and to 

posttranslational modification. For NRPS, in contrast, incorporation of non-

proteinogenic amino acids, the formation of branched and cyclic structures or 

modification like methylation, glycosylation and halogenation are more rule than 

exception. Non-ribosomally synthesized peptides are often very active compounds 

with interesting bioactivities and speculative applications. Beside antibiotics, 

immunosuppressives like cyclosporin (Borel et al. 1977), cytostatics like bleomycin 

A2 (Twentyman 1983), toxins like thaxomin A (Healy et al. 2002) and iron-chelators 

like enterobactin belong to the non-ribosomally synthesized peptides (Raymond et al. 

2003b). NRPS are big multi-enzyme complexes with modular organization. One 

module normally corresponds to one amino acid. The modules again contain of 

several domains that possess a conserved structure. A typical module contains of the 

three domains C – A – T (Figure 1.15) (Schwarzer et al. 2003).  
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Figure 1.15:  Organization of a hypothetical three-modular NRPS with one E-domain.  

 

The A-domain (adenylation domain) is responsible for the recognition and activation 

of the amino acid substrate. Like during ribosomal peptide synthesis the amino acids 

first need to be activated by transfer of AMP from ATP onto the carboxyl group of the 

amino acid forming the aminoacyl adenylate (Schwarzer et al. 2003). The A-domain 

however has no further similarities to aminoacyl-tRNA-synthetases but instead 

structural similarities to the firefly luciferase as has been shown for an A-domain of 

the NRPS gramicidin A (Conti et al. 1997). The sequences of the binding pocket of A-

domains activating the same substrate are often strongly conserved. Comparison of 

the sequence of an A-domain with sequences of known A-domains therefore often 

allows a relatively good prediction of the preferred substrate (Bachmann, Ravel 

2009b). 

The T-domain (thiolation domain) also called PCP (peptidyl carrier protein) is 

responsible for the transport of the amino acid and the growing peptide chain 

between the different domains. It needs the 4-phosphopantethein (4’PP) cofactor 

from coenzyme A to be active which is supplied by the 4-phosphopantetheinyl 

transferase (Sfp). The C-domain (condensation domain) is responsible for the 

formation of the peptide bond. Beside the A-domain also the C-domain has some 

substrate specificity (Schwarzer et al. 2003). The modules are normally arranged 

linear in direct correspondence to the amino acid sequence of the non-ribosomal 

peptide. This is also called colinearity or type A NRPS. Type B NRPS are iterative 
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NRPS and type C NRPS are non-linear NRPS. Iterative NRPS are NRPS were every 

module is used more than once (Schwarzer et al. 2003). An example for an iterative 

NRPS is the enniatin synthetase. The enniatin synthetase contains of only two 

modules that catalyze the synthesis of the cyclohexadepsipeptide enniatin in three 

reaction cycles (Glinski et al. 2002). 

The first module of an NRPS is called initiation module and normally lacks the C-

domains. The last module of an NRPS normally contains an additional Te-domain 

behind the PCP and is called termination module. The Te-domain releases the 

finished peptide chain. It can also introduce further modifications like 

macrocyclisation or functions as a storage position in iterative NRPS (Schwarzer et 

al. 2003). Another change to the usual domain arrangement can be the insertion of 

E-domains (epimerase domains) behind the T-domain. E-domains can convert L-

amino acids into D-amino acids. Incorporation of D-amino acid however can also 

occur by recognition of D-amino acid by D-amino acid specific A-domains. Further 

modification are the replacement of the C-domain by a Cy-domain (heterocyclization 

domain) able to introduce heterocycles like thiazolines or oxazolines e. g. in the 

yesiniabactin biosynthesis gene cluster (Pfeifer et al. 2003) or an N-methylation 

domain inserted in the A-domain e. g. in cyclosporine (Dittmann et al. 1994). 

Heterocycles like thiazolines and oxazolines however not specific for NRPS but can 

also be introduced in ribosomal synthesized peptides as has been shown for the 

ribosomal synthesized cytotoxin Streptolysin S (Mitchell et al. 2009).  

 

1.22   Mass spectrometry 

Mass spectrometry allows the separation of ions by their mass to charge ration (m/z). 

It is used for identification, quantification and structure elucidation of analytes. Mass 

spectrometers are often used on-line hyphenated to chromatographic systems like 

HPLC or GC. A mass spectrometer commonly consists of an ion source, a mass 

analyzer and a detection unit. Typical ion sources are e.g. ESI (electrospray 

ionization), MALDI (matrix-assisted laser desorption/ionization) and ICP (inductively 

coupled plasma). The mass analyzer separates ions by their m/z value using an 

electric or/and magnetic field. Commonly applied mass analyzers are time-of-flight 

(TOF), Quadrupole or ion trap systems. Ions are detected by electron multipliers or 

micro channel plate detectors. 
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1.23  TOF mass spectrometer 

Time-of-flight (TOF) mass spectrometers measure the time an ion needs to pass 

through a long flight tube. The ions are accelerated in the flight tube by an electric 

field. For ions bearing the same charge the velocity and therefore the time of flight 

depends only on the molecular mass (Wiley, McLaren 1955). The very fast detection 

needed to differentiate the minor flight time discrepancies is mostly provided by a 

time to digital converter (TDC) that allows resolutions down to a few picoseconds 

(ps). To increase the dynamic range often multiple TDCs are used. Time-lag-focusing 

is applied to compensate the time spread of ions produced early and late in the 

ionization event. Ions are not directly accelerated in the flight tube but are delayed for 

some nanoseconds (ns) after ionization (delayed extraction). Some TOF mass 

spectrometers possess a reflectron. The reflectron uses an electrostatic field to 

reflect the ions like a mirror. If a gradient instead of a simple electric field is applied 

the resolution can be increased. Additionally the reflectron increases the flight 

distance in a given flight tube. Because of the very high resolution and the ability to 

detect also large molecular masses TOF mass spectrometry is often applied for 

biological samples or proteomics.  

 

1.24   Quadrupole mass spectrometer 

A quadrupole analyzer (Q) normally consists of four parallel hyperbolic metallic rods. 

The quadrupole serves as a mass filter. By applying oscillating electric fields on the 

rods only ions with a specific mass are able to pass and to proceed to the detector. 

To record a full mass scan the quadrupole has to serve as a mass filter over time for 

different molecular masses. The quadrupole then sequentially scans every m/z value 

separately. Due to the dedicated measurement time for a single molecular mass the 

detection time for every m/z value becomes lesser for full mass scan compared to a 

single ion scan. Very high specificity can be achieved with triple quadrupole (QQQ) 

mass spectrometers. Triple quadrupole mass spectrometers have three quadrupoles 

arranged in series (Figure 1.16) (de Hoffmann 1996). The first and the third 

quadrupole commonly work as mass filters. The second quadrupole is the collision 
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cell and often actually a hexapole. It is filled with an inert gas like helium, argon or 

nitrogen and allows the controlled fragmentation of the precursor ions.  

 

Figure 1.16: Scheme of a triple quadrupole (QQQ) mass spectrometer.  

1.25   Ion trap mass spectrometer 

Ion trap (IT) mass spectrometers use a quadrupole ion trap or an orbitrap to separate 

ions by mass. In ion trap mass spectrometer selected ions are trapped, accumulated 

and controlled ejected. A three dimensional quadrupole ion trap consists of two 

parallel hyperbolic rods and one hyperbolic ring electrode which is arranged between 

the rods. Ions are trapped by a field induced oscillation in three dimensional electric 

fields. In a linear ion trap ions are trapped in a two dimensional electric field.  

The orbitrap mass spectrometry technique was invented by Alexander Marakov in 

2000 (Makarov 2000). In the orbitrap mass spectrometer the electric field is not 

applied to a hyperbolic rod but to a spindle-shaped electrode. Ions circulate in orbits 

around the electrode. The orbits additionally move back and forth along the spindle 

(lateral movement). These oscillations are inversely proportional to the square root of 

the m/z. Orbitrap mass spectrometer have an especially high mass accuracy of 2-5 

ppm and a very high resolving power (up to 150.000). Orbitrap mass spectrometry 

therefore is used to determine exact masses of molecules (Hu et al. 2005).  

 

1.26  MSMS and SRM measurements 

MSMS also termed product ion scan is performed to characterize or identify a 

substance, especially proteins, by mass spectrometry. For MSMS so called tandem 

mass spectrometry is applied. A specific precursor mass is isolated from other 

molecular masses and fragmented in a collision cell to produce a number of product 
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ions (Yost, Enke 1978). The molecular mass of the product ions is characteristic of 

the substance, wherefore substances can be identified by their specific fragmentation 

pattern also called mass fingerprint. The fragmentation can also be used to 

characterize a chemical structure. A fragment of m/z 91 for example is characteristic 

of aromatic substances.  

In SRM (single reaction monitoring) experiments a specific precursor mass is isolated 

from the other masses and fragmented. Only one specific product ion whose signal is 

indicative for a substance is detected. SRM is the most sensitive mode of operation, 

because the ions are filtered both for a specific precursor ion and for a specific 

product ion. SRM experiments are primarily performed with triple quadrupole mass 

spectrometer. The first quadrupole isolates the precursor, the second one act as a 

collision cell and the last quadrupole isolates a specific product ion. With the help of a 

calibration curve that has to be best created with the same substance or an internal 

standard under identical conditions, SRM measurements can enable the absolute 

quantification of a substance. If multiple SRM are run for the same precursor ion one 

speaks of MRM (multiple reaction monitoring). MRM relies of the detection of several 

specific product ions instead of just one and therefore allows even better specificity 

and reliability especially for quantitative applications (de Hoffmann, Stroobant 2007).  
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2 Materials 

2.1  List of abbreviations 

A adenine 

ACN acetonitrile 

L-Ala L-alanine 

D-Ala-D-Ala D-alanyl-D-alanine 

Amp ampicillin 

AP alkaline phosphatase 

APS ammonium persulfate 

ATP adenosine triphosphate 

BCIP 5-bromo-4-chloro-3-indolyl phosphate 

BSA bovine serum albumin 

C cytosine 

CaCl2 calcium chloride 

CaCO3 calcium carbonate 

C-18 octadecylsilane 

Cys cysteine 

meso-Dap meso-diaminopimelic acid 

dH2O deionized water 

DMSO dimethyl sulfoxide 

DNA desoxyribonucleic acid 

dNTP desoxyribonucleoside triphosphate 

Dpg 3,5-dihydroxyphenylglycine 

DTT dithiothreitol 

EDTA ethylenediaminetetraacetic acid 

e.g. exempli gratiā (for example) 
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EIC entracted ion current 

EP-UDP-GlcNAc UDP-N-acetyl-glucosamine-enolpyruvate 

ESI electrospray ionization 

g gram 

g earth's gravitational acceleration 

G guanine 

GlcNAc N-acetylglucosamine  

D-Glu D-glutamate 

GTP guanosine triphosphate 

h hours 

HCOOH formic acid 

His-Tag 6-histidine-tag 

HPLC high performance liquid chromatography 

Hpg 4-hydroxyphenylglycine 

IC50 half maximal inhibitory concentration 

IC80 concentration of 80 % inhibition 

IgG immunoglobulin G 

IPTG Isopropyl-β-D-1-thiogalactopyranoside 

Kan kanamycin 

KM inverse of enzyme affinity; equivalent to the substrate 

concentration at which the rate of conversion is half of 

Vmax 

KCl potassium chloride 

KH2PO4 potassium dihydrogen phosphate 

L liter 

µL microliter 

LC liquid chromatography 
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LDH lactic dehydrogenase 

Lipid I undecaprenylpyrophosphoryl-N-acetylmuramoyl-

pentapptide 

Lipid II undecaprenylpyrophosphoryl-N-acetylglucosamine-N-

acetylmuramoyl-pentapptide 

NaCl sodium chloride 

NADH nicotinamide adenine dinucleotide (reduced) 

NBT nitro blue tetrazolium chloride 

(NH4)2SO4 ammonium sulfate 

NADPH nicotinamide adenine dinucleotide phosphate (reduced) 

m/z mass-to-charge ratio 

M molar 

MeOH methanol 

MIC minimum inhibitory concentration 

mL milliliter 

µM  micromolar 

mg milligram 

µm micrometer 

mM millimolar 

MurA enolpyruvyl-UDP-GlcNAc synthase 

MurB UDP-N-acetylenolpyruvoylglucosamine reductase 

MurC UDP-N-acetyl-muramyl-L-alanine ligase 

MurD UDP-N-acetylmuramoylalanine-D-glutamate ligase 

MurE UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-

diaminopimelate ligase 

MurF UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine 

ligase 
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MurG UDP-N-acetylglucosamine-N-acetylmuramyl-

pentapptide pyrophosphoryl-undecaprenol N-

acetylglucosamine transferase 

MraY phospho-N-acetylmuramoyl-pentapptide-transferase 

MgCl2 magnesium chloride 

MgSO4 magnesium sulfate 

MnCl2 manganese chloride 

MOPS 3-(N-morpholino)propanesulfonic acid 

MPa megapascal 

MS mass spectrometry 

MSMS product ion scan 

MWCO molecular weight cut off 

NRPS non-ribosomal peptide synthetase 

OD optical density 

ORF open reading frame 

PCR  polymerase chain reaction 

PEP phosphoenolpyruvate 

PK pyruvate kinase 

PKS polyketide synthase 

pM picomolar 

PMSF phenylmethylsulfonyl fluoride 

RbCl2 rubidium chloride 

RNA ribonucleic acid 

RP reverse phase 

RT room temperature  

SDS sodium dodecyl sulfate 

SIM single ion monitoring 
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TEMED N,N,N’,N’-tetramethylendiamin 

Tris tris(hydroxymethyl)aminomethane 

TFE trifluoroethanol 

Triton X-100 polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl 

ether 

TOF time-of-flight 

U uridine 

UDP uridinediphosphat 

UDP-GlcNAc UDP-N-acetylglucosamine 

UDP-MurNAc UDP-N-acetylmuramic acid 

UV ultra violett light  

Vmax maximum reaction rate 

VIS visible light  

X-Gal bromo-chloro-indolyl-galactopyranoside 
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2.2  List of used bacteria strains 

strain antibiotic 

resistance 

description company 

E. coli DH5α none strain for cloning 

endA1 gene mutation 

 decreased 

nuclease activity 

Life Technologies 

E. coli BL21 none protein expression 

strain 

lon and ompT gene 

mutation decreased 

protease activity 

Novagen 

E. coli K12 none wild type - 

E. coli ET12567 chloramphenicol  methylation deficient 

E. coli strain 

- 

E. coli 

ET12567+pUZ8002 

chloramphenicol, 

kanamycin 

E. coli donor strain for 

Streptomyces 

conjugation 

 

Streptomyces sp. 

HAG 4675 DSM 11 

171 

phosphomycin feglymycin producing 

strain 

- 
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2.3  Media 

2.3.1 E. coli media 

 

LB 

0.5 % yeast extract 5.0 g 

1 % tryptone 10.0 g 

1 % NaCl 5.0 g 

dH2O add 1 L 
For agar plates add 17 g agar per 1 L medium. 

 

TY  

1 % yeast extract 10.0 g 

1.6 % tryptone 16.0 g 

0.5 % NaCl  5.0 g 

dH2O add 1 L 

For agar plates add 17 g agar per 1 L medium. 
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2.3.2 Streptomyces media: 

 

E1 medium 

glucose 20.0 g 

soluble starch 20.0 g 

yeast extract 5.0 g 

pharma medium 2.5 g 

MgSO4 x 7 H2O 1.0 g 

KH2PO4 x 3 H2O 1.3 g 

NaCl 3.0 g 

CaCO3 3.0 g 

tap water add 1 L 

Adjust pH to 6.8 

 

 

GYM medium 

glucose 4.0 g 

yeast extract 4.0 g 

malt extract 10.0 g 

dH2O add 1 L 

Adjust pH to 7.2. 

 

For agar plates add 12 g agar and 2 g CaCO3 per 1 L medium. 

 

HA medium 

bacto yeast extract 4.0 g 

malt extract 10.0 g 

glucose 4.0 g 

dH2O add 1 L 

Adjust pH to 7.3 with NaOH. Add 1 mM CaCl2 after autoclaving. For agar plates add 

20 g agar.  
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M9 minimal medium 

Prepare first M9 salt medium 

Na2HPO4 x 7 H2O 64.0 g 

KH2PO4 15.0 g 

NaCl 2.5 g 

NH4Cl 5.0 g 

dH2O add 1 L 

Dilute 200 mL of sterile M9 salt medium in 700 mL sterile dH2O. Add 2 mL of sterile 

1 M MgSO4, 20 mL of 20 % glucose, 100 µL of sterile 1 M CaCl2.  

 

MS medium 

mannit 20.0 g 

soy flour 20.0 g 

dH2O add 1 L  

For agar plates add 21 g agar per 1 L medium. 

 

N-Z-amine medium 

glucose 10.0 g 

soluble starch 20.0 g 

yeast extract 5.0 g 

N-Z-amine 5.0 g 

CaCO3 1.0 g 

dH2O add 1L 

Adjust pH to 7.2. For agar plates add 15 g agar per 1 L medium. 

 

Paper medium 

malt extract 20.0 g 

yeast extract 2.0 g 

glucose 10.0 g 

(NH4)2HPO4 0.5 g 

dH2O add 1L 

Adjust pH to 6.0. For agar plates add 20 g agar per 1 L medium. 
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TSB (tryptone soya broth) 

tryptone soya broth powder 30.0 g 

dH2O add 1L 

 

YEME (yeast extract-malt extract medium) 

yeast extract 3.0 g 

bacto-peptone 5.0 g 

malt extract 3.0 g 

glucose 10.0 g 

sucrose 340.0 g 

dH2O add 1 L 

Add 5 mM MgCl2 x 6H2O after autoclaving. 
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2.4  Buffers 

 

2.4.1 Buffers for the production of competent E. coli cells 

 

TJB1  

RbCl 3.00 g 

MnCl2 x 4H2O 2.37 g 

potassium acetat 0.74 g 

CaCl2 x 2H2O 0.36 g 

glycerine 37.5 mL 

dH2O add 250 mL 

Adjust carefully to pH 5.8 with HCl. Sterilize buffer by filtrations. 

 

TJB2 

MOPS  0.20 g 

RbCl 0.12 g 

CaCl2 x 2H2O 1.10 g 

glycerine 15.0 mL 

dH2O add 100 mL 

Adjust carefully to pH 7.0 with NaOH. Sterilize buffer by filtrations. 

 

2.4.2 Buffers for agarose gel electrophoresis 

 

10 x TAE buffer 

Tris 48.4 g 

acetic acid (96 %) 11.4 mL 

EDTA 7.2 g 

dH2O add 1 L 

Adjust pH to 7.9 
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2.4.3 Buffers for SDS-PAGE 

 

Sample buffer 

1 M Tris/HCl pH 6,8 3.75 mL 

SDS 1.2 g 

glycerin 6 mL 

bromophenol blue 6 mg 

dH2O add 13.5 mL 

Add 100 mM DTT freshly before use. 

 

10 x Electrophoresis buffer  

Tris 31.0 g 

glycine 144.0 g 

SDS 10.0 g 

dH2O add 1 L 

 

      

Separating gel buffer 

250 mM Tris/HCl pH 6.8 

 

Stacking gel buffer 

1,5 M Tris/HCl pH 8.8 

 

APS stock solution 

100 mg/mL APS in dH2O 

 

Separating gel (for 2 gels) 

H2O 3.4 mL 

separating gel buffer 2.5 mL 

Rotiphorese 30 % (37.5:1) 4.0 mL 

10 % SDS 100 µL   

APS stock solution 50 µL   

TEMED   25 µL   

Add APS and TEMED only directly before pouring the gel. 
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Stacking gel (for 2 gels) 

H2O  3.05 mL 

stacking gel buffer 1.25 mL 

Rotiphorese 30 % (37.5:1) 0.65 mL 

10 % SDS 50 µL   

APS stock solution 25 µL   

TEMED 12.5 µL   

add APS and TEMED only directly before pouring the gel 

 

Comassie blue stain solution 

serva blue R250 0.86 g 

ethanol 250 mL 

acetic acid (96 %) 50 mL 

dH2O add 500 mL 
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2.4.4 Buffers for Western Blotting 

 

Blotting buffer 

Tris/HCl  3.03 g 

flycerine 4.4 g 

methanol 200 mL 

dH2O add 1 L 

Adjust pH to 8.3 

 

TNT buffer 

Tris/HCl  2.42 g  

NaCl 29.22 g 

Tween20 500 µL   

dH2O add 1 L 

Adjust pH to 7.5 

 

AP buffer  

Tris/HCl  12.1 g 

NaCl 5.84 g 

MgCl2 x 6 H2O 1.02 g 

dH2O  add 1 L 

Adjust pH to 9.5 

 

10 % Thimerosal stock solution  

Dissolve 1 g thimerosal in 10 mL water. Store at 4 °C in the dark. 

 

BCIP stock solution 

Dissolve 10 mg/mL BCIP in 100 % dimethylformamide. Store at – 20 °C.   

 

NBT stock solution  

Dissolve 50 mg/mL NBT in 70 % dimethylformamide. Store at – 20 °C.  
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2.4.5 Buffers for CD spectroscopy 

 

Phosphate buffer (0.1 M) 

pH Volume of 1 M K2HPO4 

(mL) 

Volume of 1 M KH2PO4 

(mL) 

5.8 8.5 91.5 

6.0 13.2 86.8 

6.2 19.2 80.8 

6.4 27.8 72.2 

6.6 38.1 61.9 

6.8 49.7 50.3 

7.0 61.7 38.5 

7.2 71.7 28.3 

7.4 80.2 19.8 

7.6 86.6 13.4 

7.8 90.8 9.2 

8.0 94.0 6.0 

Prepare at 25 °C and dilute in 1L dH2O.  
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2.5  Vectors, primers and proteins 

Table 2.1: List of used vectors 

name antibiotic 

resistance/marker 

description company 

pDrive ampicillin, 

kanamycin 

direct cloning vector 

vector map (Appendix 6.1) 

Quiagen 

pEt24a(+) kanamycin protein expression vector, T7-

promotor, C-terminal His-Tag 

vector map (Appendix 6.2) 

Novagen 

pEt28a(+) kanamycin protein expression vector, T7-

promotor, N- and C-terminal 

His-Tag 

vector map (Appendix 6.3) 

Novagen 

pEt21a(+) ampicillin T7-promotor, C-terminal His-

Tag 

vector map (Appendix 6.4) 

Novagen 

pUZ8002 kanamycin Carries tra gene  coding for 

transfer protein Tra allowing 

intergeneric conjugation 

in house 

pK18mobapra apramycin Vector to induce specific 

knock-out mutants in 

Streptomyces 

vector map (Appendix 6.5) 

in house 

 

Table 2.2: Table of used primers 

gene forward primer (5’3’)  reverse primer (3’5’) 

murA (E. coli) CGCGCCATATGATGGATAAATTT
CGTGTTCAGG 

AGAGCTCGAGTTCGCCTTTCACACG
CTCAA 

murB (E. coli) GGCGGAATTCATGAACCACTCCT
TAAAAC 

GCGGCTCGAGTGAAATTGTCTCCAC
TGCG 

murC (E. coli) GCGCCATATGATGAATACACAAC
AATTGGC 

AGAGCTCGAGGTCATGTTGTTCTTC
CTCCG 
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murD (E. coli) GGCGGAATTCATGGCTGATTATC
AGGGTAAA 

AGAGCTCGAGACCTAACTCCTTCGC
CAGAC 

murE (E. coli) GCGTGCATATGGTGGCAGATCG
TAATTTGCG 

AGAGCTCGAGTGCAATCACCCCCAG
CAGAC 

murF (E. coli) GCGCGAATTCATGATTAGCGTAA
CCCTTAG 

GCGCCTCGAGACATGTCCCATTCTC
CTGTA 

murA (S. aureus) TTTGCTAGCGATAAAATAGTAAT
CAAAGGTG 

TAACTTGCATAATTGCTAGAGCTCTC
A 

murC (S. aureus) GCGCCATATGTTAAAACGCATTT
TTCATGCCTAATTTA 

GCGCCTCGAGATGACACACTATCAT
TTTGTCGGAATT 

murD (S. aureus) GGCGCCATATGATGCTTAATTAT
ACAGGG 

GCGCCTCGAGATAAGATGGTAAATG
GGCAC 

 

Table 2.3: Table of overexpressed proteins 

protein calculated 

MW in 

Dalton 

protein sequence 

MurA (E. coli) 46,013 MMDKFRVQGPTKLQGEVTISGAKNAALPILFAALLAEEPVEIQNV
PKLKDVDTSMKLLSQLGAKVERNGSVHIDARDVNVFCAPYDLVK
TMRASIWALGPLVARFGQGQVSLPGGCTIGARPVDLHISGLEQL
GATIKLEEGYVKASVDGRLKGAHIVMDKVSVGATVTIMCAATLAE
GTTIIENAAREPEIVDTANFLITLGAKISGQGTDRIVIEGVERLGGG
VYRVLPDRIETGTFLVAAAISRGKIICRNAQPDTLDAVLAKLRDAG
ADIEVGEDWISLDMHGKRPKAVNVRTAPHPAFPTDMQAQFTLLN
LVAEGTGFITETVFENRFMHVPELSRMGAHAEIESNTVICHGVEK
LSGAQVMATDLRASASLVLAGCIAEGTTVVDRIYHIDRGYERIEDK
LRALGANIERVKGELEHHHHHH 

MurB (E. coli) 40,573 MNHSLKPWNTFGIDHNAQHIVCAEDEQQLLNAWQYATAEGQPV
LILGEGSNVLFLEDYRGTVIINRIKGIEIHDEPDAWYLHVGAGENW
HRLVKYTLQEGMPGLENLALIPGCVGSSPIQNIGAYGVELQRVCA
YVDSVELATGKQVRLTAKECRFGYRDSIFKHEYQDRFAIVAVGLR
LPKEWQPVLTYGDLTRLDPTTVTPQQVFNAVCHMRTTKLPDPKV
NGNAGSFFKNPVVSAETAKALLSQFPTAPNYPQADGSVKLAAG
WLIDQCQLKGMQIGGAAVHRQQALVLINEDNAKSEDVVQLAHHV
RQKVGEKFNVWLEPEVRFIGASGEVSAVETISLEHHHHHH 

MurC (E. coli) 56,985 MGSSHHHHHHSSGLVPRGSHMMNTQQLAKLRSIVPEMRRVRHI
HFVGIGGAGMGGIAEVLANEGYQISGSDLAPNPVTQQLMNLGATI
YFNHRPENVRDASVVVVSSAISADNPEIVAAHEARIPVIRRAEMLA
ELMRFRHGIAIAGTHGKTTTTAMVSSIYAEAGLDPTFVNGGLVKA
AGVHARLGHGRYLIAEADESDASFLHLQPMVAIVTNIEADHMDTY
QGDFENLKQTFINFLHNLPFYGRAVMCVDDPVIRELLPRVGRQTT
TYGFSEDADVRVEDYQQIGPQGHFTLLRQDKEPMRVTLNAPGR
HNALNAAAAVAVATEEGIDDEAILRALESFQGTGRRFDFLGEFPL
EPVNGKSGTAMLVDDYGHHPTEVDATIKAARAGWPDKNLVMLF
QPHRFTRTRDLYDDFANVLTQVDTLLMLEVYPAGEAPIPGADSR
SLCRTIRGRGKIDPILVPDPARVAEMLAPVLTGNDLILVQGAGNIG
KIARSLAEIKLKPQTPEEEQHDLEHHHHHH 

MurD (E. coli) 51,858 MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSEFMADYQ
GKNVVIIGLGLTGLSCVDFFLARGVTPRVMDTRMTPPGLDKLPEA
VERHTGSLNDEWLMAADLIVASPGIALAHPSLSAAADAGIEIVGDI
ELFCREAQAPIVAITGSNGKSTVTTLVGEMAKAAGVNVGVGGNIG
LPALMLLDDECELYVLELSSFQLETTSSLQAVAATILNVTEDHMD
RYPFGLQQYRAAKLRIYENAKVCVVNADDALTMPIRGADERCVS

http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.13830,1,1
http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.13830,1,1
http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.13830,1,55
http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.13830,1,91
http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.13830,1,159
http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.13830,1,171
http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.13830,1,285
http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.13830,1,307
http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.13830,1,334
http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.13830,1,342
http://www.expasy.ch/cgi-bin/dna_sequences?/work/expasy/tmp/http/seqdna.13830,1,367
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FGVNMGDYHLNHQQGETWLRVKGEKVLNVKEMKLSGQHNYTN
ALAALALADAAGLPRASSLKALTTFTGLPHRFEVVLEHNGVRWIN
DSKATNVGSTEAALNGLHVDGTLHLLLGGDGKSADFSPLARYLN
GDNVRLYCFGRDGAQLAALRPEVAEQTETMEQAMRLLAPRVQP
GDMVLLSPACASLDQFKNFEQRGNEFARLAKELGLEHHHHHH 

MurE (E. coli) 54,507 MADRNLRDLLAPWVPDAPSRALREMTLDSRVAAAGDLFVAVVG
HQADGRRYIPQAIAQGVAAIIAEAKDEATDGEIREMHGVPVIYLSQ
LNERLSALAGRFYHEPSDNLRLVGVTGTNGKTTTTQLLAQWSQL
LGEISAVMGTVGNGLLGKVIPTENTTGSAVDVQHELAGLVDQGA
TFCAMEVSSHGLVQHRVAALKFAASVFTNLSRDHLDYHGDMEH
YEAAKWLLYSEHHCGQAIINADDEVGRRWLAKLPDAVAVSMEDH
INPNCHGRWLKATEVNYHDSGATIRFSSSWGDGEIESHLMGAFN
VSNLLLALATLLALGYPLADLLKTAARLQPVCGRMEVFTAPGKPT
VVVDYAHTPDALEKALQAARLHCAGKLWCVFGCGGDRDKGKRP
LMGAIAEEFADVAVVTDDNPRTEEPRAIINDILAGMLDAGHAKVM
EGRAEAVTCAVMQAKENDVVLVAGKGHEDYQIVGNQRLDYSDR
VTVARLLGVIALEHHHHHH 

MurF (E. coli) 52,195 MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSEFMISVTL
SQLTDILNGELQGADITLDAVTTDTRKLTPGCLFVALKGERFDAH
DFADQAKAGGAGALLVSRPLDIDLPQLIVKDTRLAFGELAAWVRQ
QVPARVVALTGSSGKTSVKEMTAAILSQCGNTLYTAGNLNNDIG
VPMTLLRLTPEYDYAVIELGANHQGEIAWTVSLTRPEAALVNNLA
AAHLEGFGSLAGVAKAKGEIFSGLPENGIAIMNADNNDWLNWQS
VIGSRKVWRFSPNAANSDFTATNIHVTSHGTEFTLQTPTGSVDVL
LPLPGRHNIANALAAAALSMSVGATLDAIKAGLANLKAVPGRLFPI
QLAENQLLLDDSYNANVGSMTAAVQVLAEMPGYRVLVVGDMAE
LGAESEACHVQVGEAAKAAGIDRVLSVGKQSHAISTASGVGEHF
ADKTALITRLKLLIAEQQVITILVKGSRSAAMEEVVRALQENGTCL
EHHHHH 

MurA  

(S. aureus) 

44,995 MDKIVIKGGNKLTGEVKVEGAKNAVLPILTASLLASDKPSKLVNVP
ALSDVETINNVLTTLNADVTYKKDENAVVVDATKTLNEEAPYEYV
SKMRASILVMGPLLARLGHAIVALPGGCAIGSRPIEQHIKGFEALG
AEIHLENGNIYANAKDGLKGTSIHLDFPSVGATQNIIMAASLAKGK
TLIENAAKEPEIVDLANYINEMGGRITGAGTDTITINGVESLHGVEH
AIIPDRIEAGTLLIAGAITRGDIFVRGAIKEHMASLVYKLEEMGVEL
DYQEDGIRVRAEGELQPVDIKTLPHPGFPTDMQSQMMALLLTAN
GHKVVTETVFENRFMHVAEFKRMNANINVEGRSAKLEGKSQLQ
GAQVKATDLRAAAALILAGLVADGKTSVTELTHLDRGYVDLHGKL
KQLGADIERIND 

MurB  

(S. aureus) 

33,783 MINKDIYQALQQLIPNEKIKVDEPLKRYTYTKTGGNADFYITPTKN
EEVQAVVKYAYQNEIPVTYLGNGSNIIIREGGIRGIVISLLSLDHIDV
SDDAIIAGSGAAIIDVSRVARDYALTGLEFACGIPGSIGGAVYMNA
GAYGGEVKDCIDYALCVNEQGSLIKLTTKELELDYRNSIIQKEHLV
VLEAAFTLAPGKMTEIQAKMDDLTERRESKQPLEYPSCGSVFQR
PPGHFAGKLIQDSNLQGHRIGGVEVSTKHAGFMVNVDNGTATDY
ENLIHYVQKTVKEKFGIELNREVRIIGEHPKES 

MurC  

(S. aureus) 

52,402 MGSSHHHHHHSSGLVPRGSHMTHYHFVGIKGSGMSSLAQIMHD
LGHEVQGSDIENYVFTEVALRNKGIKILPFDANNIKEDMVVIQGNA
FASSHEEIVRAHQLKLDVVSYNDFLGQIIDQYTSVAVTGAHGKTS
TTGLLSHVMNGDKKTSFLIGDGTGMGLPESDYFAFEACEYRRHF
LSYKPDYAIMTNIDFDHPDYFKDINDVFDAFQEMAHNVKKGIIAW
GDDEHLRKIEADVPIYYYGFKDSDDIYAQNIQITDKGTAFDVYVDG
EFYDHFLSPQYGDHTVLNALAVIAISYLEKLDVTNIKEALETFGGV
KRRFNETTIANQVIVDDYAHHPREISATIETARKKYPHKEVVAVFQ
PHTFSRTQAFLNEFAESLSKADRVFLCEIFGSIRENTGALTIQDLID
KIEGASLINEDSINVLEQFDNAVVLFMGAGDIQKLQNAYLDKLGM
KNAFLEHHHHHH 

MurD  

(S. aureus) 

53,203 MGSSHHHHHHSSGLVPRGSHMMLNYTGLENKNVLVVGLAKSG
YEAAKLLSKLGANVTVNDGKDLSQDAHAKDLESMGISVVSGSHP
LTLLDNNPIIVKNPGIPYTVSIIDEAVKRGLKILTEVELSYLISEAPIIA
VTGTNGKTTVTSLIGDMFKKSRLTGRLSGNIGYVASKVAQEVKPT
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DYLVTELSSFQLLGIEKYKPHIAIITNIYSAHLDYHENLENYQNAKK
QIYKNQTEEDYLICNYHQRQVIESEELKAKTLYFSTQQEVDGIYIK
DGFIVYKGVRIINTEDLVLPGEHNLENILAAVLACILAGVPIKAIIDSL
TTFSGIEHRLQYVGTNRTNKYYNDSKATNTLATQFALNSFNQPII
WLCGGLDRGNEFDELIPYMENVRAMVVFGQTKAKFAKLGNSQG
KSVIEANNVEDAVDKVQDIIEPNDVVLLSPACASWDQYSTFEERG
EKFIERFRAHLPSYLEHHHHHH 

Sequences marked in blue do not belong to the original protein sequence. The blue 

sequences are additional sequences added by the pEt24a(+), pEt28a(+) or pEt21 

vectors. 

 

Table 2.4: Reaction kits 

name company 

PCR Purfication Kit Qiagen GmbH, Hilden, Germany 

PCR Cloning Kit Qiagen GmbH, Hilden, Germany 

A-Addition Kit Qiagen GmbH, Hilden, Germany 

GeneJET Plasmid Miniprep Kit Fermentas GmbH, St. Leon-Rot, 

Germany 

GeneJET Gel Extraction Kit Fermentas GmbH, St. Leon-Rot, 

Germany 

 

Table 2.5: Purchased enzymes 

enzyme company 

Taq-DNA polymerase Fermentas GmbH, St. Leon-Rot, 

Germany 

Herculase II Fusion DNA polymerase Agilent Technologies Deutschland 

GmbH, Böblingen, Germany 

antarctic phosphatase New England Biolabs Inc., Ipswich, 

England 

T4 DNA ligase New England Biolabs Inc., Ipswich, 

England 

L-lactic dehydrogenase type II isolated 

from rabbit muscle 

Sigma-Aldrich Chemie GmbH, Munich, 

Germany 
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pyruvate kinase isolated from rabbit 

muscle 

Sigma-Aldrich Chemie GmbH, Munich, 

Germany 

 

2.6  Chemicals  

All common reagents and chemicals were purchased from Sigma-Aldrich or Carl 

Roth GmbH and were not considered for the following list. 

reagent company 

BugBuster Protein Extraction Reagent Novagen, EMD Chemicals 

Inc.,Gibbstown, USA 

 

2.7  Equipment 

equipment company 

refrigerator Liebherr GmbH, Ochsenhausen, 

Germany 

freezer Privileg GmbH, Stuttgart, Germany 

Varioklav 300 EP-Z (autoclave) Thermo Fisher Scientific GmbH, 

Dreieich, Germany 

Sano Clav typ LaM-20 (benchtop autoclave) A. Wolf  SANOclav GmbH, Bad 

Überkingen-Hausen, Germany 

Forma – 86 °C ULT Freezer Thermo Fisher Scientific GmbH, 

Dreieich, Germany 

Holten horizontal Lavin Airflow clean bench Thermo Fisher Scientific GmbH, 

Dreieich, Germany 

Multitron II (shaker) Infors GmbH, Einsbach, Deutschland 

Privileg 8022 L microwave Privileg GmbH, Stuttgart, Germany 

thermomixer comfort Eppendorf Vertrieb Deutschland 

GmbH, Wesseling-Berzdorf, 

Germany 
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Microcentrifuge 5415 D Eppendorf Vertrieb Deutschland 

GmbH, Wesseling-Berzdorf, 

Germany 

refrigerated bench-top centrifuge 5810 R Eppendorf Vertrieb Deutschland 

GmbH, Wesseling-Berzdorf, 

Germany 

constant climate chamber Binder GmbH, Tuttlingen, Germany 

heating oven Binder GmbH, Tuttlingen, Germany 

Pricisa XR 1255 M (balance) Precisa Gravimetrics AG, Dietikon, 

Switzerland 

Ultraspec 2100 pro (UV-Vis spectrometer) GE, Munich, Germany 

Heidolph Laborota 4000 efficient  

(rotary evaporator) 

Heidolph Instruments GmbH & Co. 

KG, Schwabach, Germany 

Sensoquest labcycler (PCR machine) Sensoquest Biomedizinische 

Elektronik GmbH, Göttingen, 

Germany 

sub cell horizontal electrophoresis systems Bio-Rad Laboratories Inc., Munich, 

Germany 

Bio View transilluminator UXT-20M1SR Bio step GmbH, Jahnsdorf, Germany 

Bio-Rad Power Pac HC (power source) Bio-Rad Laboratories Inc., Munich, 

Germany 

SIM-AMINCO French Pressure Cell Press Polytec GmbH, Waldbronn, Germany 

His Trap FF crude 5 mL GE, Munich, Germany 

Mini-Protean tetra vertical electrophoresis 

system 

Bio-Rad Laboratories Inc., Munich, 

Germany 

Trans-Blot semi-dry transfer cell Bio-Rad Laboratories Inc., Munich, 

Germany 

Infinite M200 microplate reader Tecan Group Ltd., Männedorf, 

Switzerland 
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ultrasonic bath Merck eurolab GmbH, Darmstadt, 

Germany 

Agilent 1200 analytical LC system Agilent Technologies Deutschland 

GmbH, Böblingen, Germany 

Agilent 1100 preparative LC system Agilent Technologies Deutschland 

GmbH, Böblingen, Germany 

ÄKTApurifier UPC 10 system GE, Munich, Germany 

Micromass Q-TOF 2 mass spectrometer Waters GmbH, Eschborn, Germany 

Triple Quad LS/MS 6460 system Agilent Technologies Deutschland 

GmbH, Böblingen, Germany 

Exactive mass spectrometer Thermo Fisher Scientific GmbH, 

Dreieich, Germany 

Grace Grom-SIL 120 ODS-5 ST 10 µm, 

250 mm x 20 mm (preparative HPLC) 

Grace Davison Discovery Sciences - 

Alltech Grom GmbH, Worms, 

Germany 

Phenomenix Luna C18, 5µm, 

100 mm x 4.6 mm (analytical HPLC) 

Phenomenix Inc., Aschaffenburg, 

Germany 

Grace Grom-Sil 120 ODS-5 ST, 3 µm 

100 mm x 2.0 mm (Q TOF 2) 

Grace Davison Discovery Sciences - 

Alltech Grom GmbH, Worms, 

Germany 

Eclipse Plus C18 column, 1.8 µM, 

2.1 mm x 50 mm (Triple-Quad) 

Agilent Technologies Deutschland 

GmbH, Böblingen, Germany 

Eclipse XDB C-18 column, 5 μm, 

4.6 mm x 150 mm (Orbitrap) 

Agilent Technologies Deutschland 

GmbH, Böblingen, Germany 

His Load 16/60 Superdex 75 prep grade GE, Munich, Germany 

JASCO J715 CD-spectrometer Jasco Europe, Cremella, Italy 

Quartz cuvettes  Hellma GmbH & Co. KG, Müllheim, 

Germany 
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2.8  Common usage 

Basic materials were not considered for the following lists. 

material company 

MF-Millipore, membrane filter, 0.22 µM  Millipore GmbH, Schwalbach, Germany 

Spectra/Por dialysis membrane MWCO 

12,000-14,000 

Spectrum Europe B.V., Breda, The 

Netherlands 

Amicon Ultra Ultracel 30 K, MWCO 

30,000 centrifugal filter devices 

Millipore GmbH, Schwalbach, Germany 
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3 Methods 

 

3.1  Molecular biological techiques  

3.1.1 Primer design 

PCR primers were designed with the help of the Clone Manager Suit 7 (Sci-Ed 

software http://www.scied.com). The melting temperature of the primers ranged from 

54 to 65 °C and was chosen as close as possible for a primer pair.  

 

3.1.2 PCR 

The polymerase chain reaction (PCR) was performed both with the Taq-polymerase 

and the Herculase II fusion polymerase. The Herculase II fusion polymerase was 

used mostly for cloning to improve the accuracy of the amplification, the Taq-

polymerase for test PCRs.  

The Taq-polymerase was originally isolated from Thermus aquaticus and is a 

thermostable DNA polymerase with a temperature optimum at 72 °C. The Taq-

polymerase however does not possess a proof-reading function and can be 

overstrained by GC-rich sequences. The Herculase polymerase allows a higher 

fidelity and better amplification of GC-rich sequences, due to fusion of a Pfu-based 

DNA polymerase to a high affinity DNA-binding domain. The Pfu-polymerase, 

originally isolated from Pyrococcus furiosus, possesses a proof-reading function and 

can therefore provide a higher accuracy than the Taq-polymerase. Taq-polymerase 

and Pfu-polymerase also differentiate in their produced overhangs. Taq-based 

polymerases produce PCR products with A-overhangs, so called “sticky ends”. Pfu-

based polymerases, in contrast, produce PCR products without overhangs, so called 

“blunt ends”.  

Isolated genomic DNA, plasmid DNA or bacterial cultures were used as templates for 

the PCR reactions. For colony PCR bacterial colonies were picked with plastic tips 

into the PCR reaction mix. The success of the PCR reaction was checked by agarose 

gel electrophoresis. 3-5 µL of the PCR product were mixed 2:1 with sample buffer 

and run on an agarose gel along with a molecular weight marker to allow an 

estimation of the molecular weight of the PCR product.  

http://www.scied.com/
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PCR mix for the Taq-DNA polymerase  

  

2.5 µL   10 x Taq PCR buffer 

0.5 µL    dNTP mix (10 mM each) 

0.5 µL   forward primer (25 pM) 

0.5 µL   reverse primer (25 pM) 

0.125 µL   Taq DNA Polymerase 

1 µL or 0.5 µL    liquid culture, genomic DNA 

oder plasmid DNA 

dH2O ad 25 µL total volume  

 

PCR mix for the Herculase II DNA polymerase 

  

10 µL   5 x Herculase PCR buffer 

1 µL    dNTP mix (25 mM each) 

1 µL   forward primer (25 pM) 

1 µL   reverse primer (25 pM) 

1 µL   Herculase DNA Polymerase 

1 µL or 0.5 µL    Liquid culture, genomic 

DNA oder plasmid DNA 

dH2O ad 50 µL total volume  
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PCR programme 

step temperature time  

1. 95 °C 5 min 

2. 95 °C 1 min 

3. 55 °C 15 s 

4. 72 °C 1 min 30 s 

5.  step 2. (35 x)  

6. 72 °C 5 min 

7. 16 °C 10 min 

 

3.1.3 Agarose gel electrophoresis  

Agarose gel electrophoresis was applied to separate DNA molecules by size. 1 % 

agarose was suspended in TAE buffer and boiled in a microwave oven until the 

solution cleared. 0.5 µg/mL ethidium bromide was added to the clear solution and the 

solution was poured into horizontal gel trays. The gel was cooled at RT until a rigid 

gel formed. DNA samples were mixed 2:1 with sample buffer. The gel chamber was 

filled with TAE buffer and the DNA samples were loaded into the gel slots. To allow 

an estimation of the molecular weight of the DNA sample, a molecular weight marker 

was run along with the DNA sample. The gels were run at 85 V until the sample 

buffer had crossed three quarters of the gel. The gel was documented using a UV gel 

detection system.  

 

3.1.4 Quantification of PCR products and plasmids  

PCR products and plasmids were quantified spectroscopically with an UV 

spectrophotometer at the wavelength of λ = 260 nm. An absorbance of 1 with 1 cm 

path length at λ = 260 nm equals 50 µg/mL DNA. Additionally the ratio of 

260 nm/280 nm was determined. A 260 nm/280 nm ratio of 1.8-2.0 indicates pure 

protein. A 260 nm/280 nm ratio above 2.0 indicates RNA contamination and a ratio 

below 1.8 indicates protein contamination.  
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3.1.5 Production of chemically competent E. coli cells 

Chemically competent E. coli cells were prepared according to the method described 

by Hanahan (Hanahan 1983). An overnight E. coli culture was picked from a glycerol 

stock in 3 mL of YT medium and incubated for 12 h at 37 °C with shaking. A main 

culture was prepared by inoculating 200 mL of YT medium with 1 mL of the overnight 

culture and incubated at 37 °C with shaking until an OD600 value of 0.4-0.5 was 

reached. The main culture was cooled for at least 10 min on ice and centrifuged for 

5 min at 4 °C and 4,000 g. The cell pellet was resuspended in 30 mL of ice-cold TJB1 

medium and stored for further 5 min on ice. After incubation in TJB1, the cells were 

pelleted again by centrifugation as described before. Afterwards the cell pellet was 

resuspended in 2 mL of ice-cold TJB2 medium and immediately aliquoted in 100 µL 

aliquots and transferred to – 80 °C. Chemically competent E. coli cells were stored at 

– 80 °C until usage.  

 

3.1.6 Heat shock transformation of chemically competent E. coli 
cells 

Chemically competent E. coli cells were thawed on ice. Up to 10 µL of plasmid DNA 

was carefully mixed with the competent cells and incubated for 30 min on ice. A heat 

shock was applied by transferring the cells for 30 s to a heating block of 42 °C. After 

the heat shock, the cells were stored for further 5 min on ice before they were diluted 

in 250 µL LB medium and incubated for 1 h at 37 °C with shaking. The bacterial 

solution was plated on agar plates with LB medium and an antibiotic and stored 

overnight at 37 °C to select successfully transformed cells.  

 

3.1.7 Creating an intermediate cloning vector 

Genes of interest were amplified by PCR (see PCR 3.1.2). Primers were designed 

with restriction sites to allow later on cloning into the expression vectors pEt24a(+) 

and pEt28a(+). The PCR products were isolated using a Quiagen PCR Purification 

Kit following the manufacturer’s instructions. The isolated PCR products were cloned 

into a pDrive cloning vector with the use of the Qiagen PCR Cloning Kit following the 

manufacturer’s instructions. The pDrive vector carries ampicillin and kanamycin 

resistance genes and a LacZΔM15 gene coding for a β-galactosidase. β-

galactosidase can hydrolyze X-gal into galactose and 5-bromo-4-chloro-indoxyl which 
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in presence of oxygen turns into a blue dye. The β-galactosidase gene is disrupted 

by ligation of a DNA insert into the cloning site. Positive clones therefore cannot 

express β-galactosidase. The production of β-galactosidase can be induced with 

IPTG. In presence of IPTG and X-gal negative clones therefore have a blue color 

while positive clones remain white. Positive clones can therefore be selected by color 

in the so called “blue/white selection”. The pDrive vector is supplied by the 

manufacturer in linear form with U-overhangs at each end. The U-overhangs allow a 

precise ligation of PCR products with A-overhangs. The use of PCR products with 

“blunt ends” however can significantly decrease the cloning efficiency. Genes 

amplified with Herculase II DNA polymerase therefore were modified with a Quiagen 

A-Addition Kit following the manufacturer’s instruction to generate A-overhangs. The 

ligation was performed with 50 ng of pDrive cloning vector and a three times molar 

ratio of PCR product with the supplied ligase and enzyme buffer in a total reaction 

volume of 10 µL. After incubation for 1-2 h at 16 °C 5-10 µL of the ligation mix were 

transformed into chemically competent E. coli DH5α cells (see heat shock 

transformation of chemically competent cells). Positive clones were selected by 

plating the cells on LB agar plates containing 50 µg/mL Kan, 50 µM IPTG and 

80 µg/mL X-gal and incubated overnight at 37 °C. To improve the blue/white 

selection the plates were incubated a second time at 4 °C for at least 1 h. Selected 

positive clones were analyzed by colony PCR and restriction analysis. Constructs 

verified by PCR and restriction analysis were isolated using the GeneJET Plasmid 

Miniprep Kit following the manufacturer’s instructions. DMSO stocks of successfully 

transformed colonies were prepared by mixing 900 µL of cell solution with 100 µL of 

sterile DMSO and transferring the cells to – 80 °C. DMSO stocks were stored at -

 80 °C.  

 

3.1.8 Creating a protein expression vector 

Genes of interest were cloned from the intermediate cloning vector into the pEt24a(+) 

and the pEt28a(+) expression vector. The pEt24a(+) and the pEt28a(+) vector 

possess a kanamycin resistance gene and a cloning/expression region controlled by 

a T7 expression system. The bacteriophage T7 promoter is induced by the T7 RNA 

polymerase. When induced the T7 promoter is so active, that after some hours nearly 

50 % of the cell total protein content can be made up of the desired product. The 

pEt24a(+) and the pEt28a(+) vector contain a copy of a T7 RNA polymerase that is 
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under the control of a lacUV5 promoter. The lacUV5 is normally repressed and no T7 

RNA polymerase and therefore no product is expressed. In presence of lactose or 

the lactose analogue IPTG the lacUV5 promoter is induced and the T7 RNA 

polymerase is expressed. Induction with IPTG (normally with an IPTG concentration 

between 100-500 µM) leads thus to a very strong transcription of the inserted gene 

within a few hours. The cloning region of both the pEt24a(+) and the pEt28a(+) 

vector is designed in a way to allow the production of a fusion protein carrying a His-

tag to facilitate protein purification.  

E. coli DH5α cells containing the empty pEt24a(+) or pEt28a(+) expression vectors 

were picked from glycerol stocks into 10 mL LB medium with 50 µg/mL Kan and 

incubated overnight at 37 °C with shaking. pEt24a(+) and pEt28a(+) plasmids were 

isolated using the GeneJET Plasmid MiniPrep Kit following the manufacturer’s 

instructions. 1-2 µg of the expression vectors pEt24a(+) and pEt28a(+) were digested 

in a 50 µL reaction mixture containing 1 µL each of the appropriate restriction 

enzymes and the appropriate buffer at 37 °C for 4 h. For double digests optimal 

enzyme buffers were selected with the help of the Fermentas DoubleDigest Tool 

(http://www.fermentas.com/en/tools/doubledigest) and enzyme concentrations were 

used as recommended by the manufacturer. Similarly, pDrive plasmids containing 

the genes of interest were isolated and digested with the appropriate restriction 

enzymes. Digestion products were separated by agarose gel electrophoresis (see 

agarose gel electrophoresis). The digested pEt24a(+) and pEt28a(+) vectors and the 

genes of interest were cut out of the gel and isolated from the gel with the GeneJET 

Gel Extraction Kit following the manufacturer’s instructions. Before ligation, the vector 

fragments were dephosphorylated with antarctic phosphatase following the 

manufacturer’s instruction to prevent self-ligation. The dephosphorylated vector 

fragments and the gene fragments were joined together using the T4 DNA ligase 

following the manufacturer’s instructions. The ligation was performed with 50 ng of 

vector and a 6-12 times molar ratio of PCR product with 1 µL ligase in the supplied 

enzyme buffer in a total reaction volume of 20 µL. After incubation at 16 °C for 4-

12 h, the ligation products were transformed into chemically competent E. coli DH5α 

cells. Positive clones were selected by plating the transformed cells on LB agar 

plates containing 50 µg/mL Kan and storing at 37 °C overnight. Selected positive 

clones were analyzed by colony PCR and restriction analysis. Constructs verified by 

PCR and restriction analysis were isolated using the GeneJET Plasmid Miniprep Kit 

http://www.fermentas.com/en/tools/doubledigest
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following the manufacturer’s instructions and sent for sequencing to LGC genomics 

(LGC Genomics GmbH, Berlin, Germany) to confirm the correctness of the inserted 

gene. DMSO stocks of successfully transformed colonies were prepared by mixing 

900 µL of cell solution with 100 µL of sterile DMSO and transferring the cells to –

 80 °C. DMSO stocks were stored at – 80 °C. Constructs verified by sequencing were 

transferred into the E. coli BL21 cells. The success of the transformation was verified 

by colony PCR. DMSO stocks were generated also from successfully transformed 

BL21 cells and stored at – 80 °C.  

 

3.1.9 Restriction analysis 

Restriction analysis was performed to identify a DNA sequence on the basis of size 

of the restriction fragments generated by digest with a specific restriction enzyme. 

Successful cloning of a gene into a vector for example can be verified by cutting the 

plasmid both within the sequence of the gene and within the sequence of the vector. 

The Clone Manager Suit 7 (Sci-Ed software http://www.scied.com) was used to 

select suitable restriction enzymes and predict the size of the restriction fragments. 

For the restriction analysis 5 µL of isolated plasmid was digested in 20 µL reaction 

mixes containing each 0.5 µL of the selected restriction enzymes and the matching 

restriction buffer for at least 2 h at 37 °C. The digestion products were analyzed by 

agarose gel electrophoresis.  

 

3.1.10 Construction of Plasmids for the Generation of knock-out 
mutants 

The genes ORF7, ORF26, ORF27, DpgD from Streptomyces sp. DSM 11171 

genomic DNA were amplified by PCR reactions with the Herculase II fusion DNA 

polymerase using a forward primer introducing an EcoRI restriction site and a reverse 

primer introducing an XbaI restriction site. The amplified genes were digested by 

EcoRI and XbaI and ligated into the Streptomyces knock-out vector pK18mobapra. 

Each recombinant plasmid was analysed by restriction analysis and PCR. 

Correctness of inserted gene fragments was verified by sequencing by LG genomics 

(LGC Genomics GmbH, Berlin, Germany) and the obtained sequence showed 

complete identity with the corresponding Streptomyces sp. DSM 11171 genes 

(www.expasy.ch). The resulting constructs were transformed into E. coli 

http://www.scied.com/
http://www.expasy.ch/
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ET12567+pUZ8002, selected with chloramphenicol (34 µg/mL), kanamycin (50 

µg/mL) and apramycin (100 µg/mL) and stored at -80 °C.  

 

3.1.11 Preparation of Streptomyces sp. DSM 11171 spore solution 

Streptomyces sp. DSM 11171 was plated from cryostocks on HA agar plates for 3-

4 days until spore formation was visible. The spores were detached from the agar 

plates with 9 mL of 0.1 % Tween20 solution, transferred into a sterile plastic tube and 

resuspended by intense vortexing for at least 1 min. The spore solution was than 

filtrated through sterile cotton batting and the spores were pelleted by centrifugation 

for 5 min at 4,000 rpm at 4 °C. Spores were resuspended in 1 mL 20 % glycerine 

solution and stored at -80 °C until usage.  

 

3.1.12 Conjugation of Streptomyces sp. DSM 11171 to generate 
knock-out mutants 

The E. coli ET12567+pUZ8002 strains containing the recombinant plasmids were 

grown in 20 mL LB medium supplemented with chloramphenicol (34 µg/mL), 

kanamycin (50 µg/mL) and apramycin (100 µg/mL) at 37 °C to an OD600 of 0.4-0.6, 

harvested and washed two times with the same volume fresh LB medium and 

resuspended in 2 ml LB. 50 µL fresh Streptomyces sp. DSM 11171 spore solution 

was resuspended in 2xYT (16.0 g/L tryptone, 10.0 g/L yeast extract, 5.0 g/L NaCl, pH 

7.0) medium, heat shocked for 10 min at 50 °C and mixed with 500 µL of E. coli 

solution. The Streptomyces E. coli mixture was plated on MS agar plates and 

incubated for at 28 °C. After 24 h the plates were coated with NB soft agar (8.0 g/L 

nutrient broth, 5.0 g/L agar) with apramycin (1 mg/mL) and phosphomycin (1 mg/mL) 

and grown at 28 °C for additional 3-4 days. Successful conjugates were transferred 

on HA agar plates with apramycin (25 µg/mL) and phosphomycin (400 µg/mL) and 

analysed by restriction analysis and PCR and stored as spores at -80 °C. 

 

3.1.13 Analysis of the genomic data 

The Feglymycin genome cluster was analyzed with the help of the artemis genome 

annotation tool (http://www.sanger.ac.uk/resources/software/artemis/) (Rutherford et 

al. 2000), the NCBI blast tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the 

http://www.sanger.ac.uk/resources/software/artemis/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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NRPS/PKS analysis tool of the university of Maryland 

(http://nrps.igs.umaryland.edu/nrps/) (Bachmann, Ravel 2009a). 

 

3.2  Biochemical techniques 

3.2.1 SDS-PAGE 

Sodium dodecyl sulfate acryl amide gel electrophoresis (SDS-PAGE) allows the 

separation of proteins according to their molecular weight. By running protein 

samples together with a protein marker the molecular weight of a sample can be 

estimated. 12 % acryl amide gels were prepared according to the method of Laemmli 

(Laemmli 1970). First a 12 % separation gel was prepared, poured into a vertical gel 

tray and left at RT until a rigid gel formed. To prevent the separation gel from drying, 

it was meanwhile covered with a layer of isopropanol. After the separation gel had 

polymerized, the isopropanol was removed and the separation gel was covered with 

the 4 % stocking gel. Protein samples were mixed 1:1 with sample buffer and 

transferred for 5-10 min to a 95 °C heating block. The electrophoresis chamber was 

filled with electrophoresis buffer and the protein samples were loaded into the gel 

slots along with a molecular weight marker. The gels were run for 1.5 h at 100 V. 

Afterwards the gels were stained with comassie blue staining solution for 1 h with 

shaking. The gel was destained with tap water overnight. To accelerate the 

destaining, the gels were heated one or more times for 1 min in water in a microwave 

oven.  

 

3.2.2 Small scale protein expression 

To test the protein expression under different expression conditions a small scale 

protein expression followed by a small scale protein preparation was performed. 

Bacterial cultures were prepared by picking a bacterial culture from an agar plate or a 

DMSO stock into 2-3 mL of LB medium containing 50 µg/mL Kan and incubation 

overnight at 37 °C with shaking. As main culture 50 mL of LB medium containing 

50 µg/mL Kan was inoculated with 500 µL bacterial culture and incubated at 37 °C 

with shaking until an OD600 of 0.5-0.6 was reached. Protein expression was induced 

with ITPG concentrations between 0 and 500 µM and the main culture was incubated 

for further 3 h at 37 °C, for 1 d at 17 °C or for 2-3 d at 14 °C with shaking. The main 

culture than was used for small scale protein preparation. 

http://nrps.igs.umaryland.edu/nrps/)2
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3.2.3 Small scale protein preparation 

Small scale protein preparation was performed with help of the BugBuster Protein 

Extraction Reagent. 5 mL of bacterial culture was pelleted by centrifugation for 5 min 

at 4 °C with 4,000 rpm. The cell pellet was thoroughly resuspended in 500 µL of 

BugBuster Protein Extraction Reagent and incubated for 20-30 min at RT with 

shaking to allow complete lysis of the cell wall. The crude cell lysate was centrifuged 

for 20 min at RT with 16,000 rpm and the supernatant, containing the soluble 

proteins, was separated from the pellet. Both supernatant and pellet were analyzed 

by SDS-PAGE. 

 

3.2.4 Large scale protein expression  

Large scale protein expression was performed with larger amounts of bacterial 

culture to enable the purification of larger amounts of protein. Bacteria cultures were 

prepared by picking a bacterial culture from an agar plate or a DMSO stock into 2-

3 mL of LB medium containing 50 µg/mL kan and incubation overnight at 37 °C with 

shaking. As main culture 0.5-1 L of LB medium containing 50 µg/mL kan was 

inoculated with 2 mL preparatory culture and incubated at 37 °C with shaking until an 

OD600 of 0.5-0.6 was reached. For the Mur proteins it was found that they were all 

expressed at least partially soluble at 37 °C. The main culture was induced with 

500 µM of IPTG and incubated for further 3 h at 37 °C with shaking. Afterwards the 

main culture was transferred to 17 °C and incubated overnight with shaking at lower 

temperature to improve the solubility of the expressed proteins.  

 

3.2.5 Large scale protein preparation 

1 L bacterial culture was pelleted by centrifugation for 20 min at 4,000 rpm. The cell 

pellet of the 1 L culture was taken up in 15 mL of lysis buffer. Salt concentration, pH 

and additives like MgCl2, β-mercaptoethanol or Triton X-100 may influence the 

solubility and stability of a protein. A suitable lysis buffer had to be individually 

determined for every protein. Low imidazole concentrations were added to the lysis 

buffer to prevent unspecific binding to the Ni2+-sepharose columns. For proteins with 

a low affinity to Ni2+-sepharose however also low imidazole concentration decrease 

binding. For MurA, MurC and MurD from E. coli and MurA and MurD from S. aureus 
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a simple lysis buffer was used (20 mM Tris/HCl pH 8.0, 500 mM NaCl, 10 mM MgCl2, 

20 mM imidazole and 1 mM PMSF, freshly added). For MurB, MurE and MurF from 

E. coli and MurC from S. aureus a lysis buffer with a lower imidazole concentration 

containing additionally Triton X-100 and glycerine was used (20 mM Tris/HCl pH 8.0, 

500 mM NaCl, 10 mM MgCl2, 10 mM imidazole, 1 % Triton X-100, 1 % glycerine and 

1 mM PMSF, freshly added). For MurB from S. aureus a similar lysis buffer with lower 

salt concentration was used (20 mM Tris/HCl pH 7.5, 75 mM NaCl, 20 mM MgCl2, 

10 mM imidazole, 1 % glycerine, 1 % Triton X-100 and 1 mM PMSF, freshly added). 

Cells were lyzed by passing through a French press twice. Cell debris was removed 

by centrifugation for 20 min at 12,000 rpm at 4 °C. The supernatant containing the 

soluble proteins was used for protein purification. 

 

3.2.6 Protein purification 

The recombinant proteins were purified by affinity chromatography. Affinity 

chromatography of proteins carrying a His-Tag is enabled by the fact that the 

imidazole group of histidine specifically binds Ni2+-ions. The soluble protein fraction of 

the large-scale protein preparation was loaded on a 5 mL His-Trap Ni2+-sepharose 

column using an Äkta LC system with on-line UV-detection at λ = 280 nm and eluted 

by a linearly increasing imidazole concentration with a standard flow of 1 ml/min and 

a pressure of 0.2-0.4 MPa. Before loading the protein fraction, the column was 

washed with 5 column volumes of water and equilibrated with 5 column volumes of 

binding buffer. All buffers were filtrated with a 0.22 µm membrane filter prior to being 

applied on the Äkta LC system. The binding buffer was in most cases identically to 

the lysis buffer. Only in those cases of the lysis buffers containing Triton X-100, the 

Triton X-100 concentration of the binding buffer was chosen 10 times lower than the 

Triton X-100 concentration of the lysis buffer (0.1 % Triton X-100 instead of 1 %). The 

protein fraction was loaded with a flow rate of 1 mL/min and at a column pressure 

below 0.5 MPa. After loading the sample, the column was first washed with 8 column 

volumes of binding buffer. Bound proteins eluted by linearly increasing the imidazole 

concentration to a total concentration of 250 mM imidazole. For the MurB proteins 

from E. coli and S. aureus a lower flow rate of 0.5 mL /min was chosen to increase 

binding.  
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3.2.7 Protein dialysis 

By protein dialysis the high imidazole and salt concentrations resulting from the 

protein purification protocol were removed. Protein-containing fractions were 

transferred into a dialysis membrane tubing with a molecular weight cut-off of 12,000-

14,000 Da and dialyzed with stirring in 1 L of dialysis buffer (20 mM Tris/HCl pH 7.0, 

50 mM NaCl, 10 mM MgSO4, 1 mM DTT and 20 % glycerine) at 4 °C for 24 h. If 

necessary the proteins were concentrated with an Amicon Ultra centrifugal filter 

devices with a MWCO of 30 kDa following the manufacturer’s instructions.  

 

3.2.8 Spectroscopic determination of the protein concentration 

Protein concentration was determined by UV-Vis spectroscopy at a wavelength of 

λ = 280 nm. Aromatic amino acids like tyrosine, tryptophan, histidine and 

phenylalanine are mainly responsible for the absorption of proteins at λ = 280 nm. 

From the aromatic amino acids tryptophan has the biggest share in the absorption at 

λ = 280 nm. Protein concentrations were calculated from the specific absorbance of 

the protein. Specific absorbance of a protein was predicted with the help of the 

ProtParam tool of the ExPASy Proteomics Server 

(http://www.expasy.ch/tools/protparam.html).  

 

3.2.9 Western blot 

Western blot is an immunological technique to detect specific proteins with the help 

of antibodies. Western blotting is normally performed with two antibodies. The first 

antibody binds specifically to the target protein. The second antibody targets the first 

antibody and carries a marker to facilitate detection. The marker can be a linked 

protein e.g. alkaline phosphatase or horseradish peroxidase that catalyzes a reaction 

producing a colorimetric reaction product. Other used markers are e.g. radioactive 

isotopes or fluorophores. For Western blotting, proteins are first separated by SDS-

PAGE (see SDS-PAGE). Because Antibody detection cannot be performed with an 

SDS gel the proteins are transferred from the unstained gel to a nitrocellulose 

membrane by means of electric current. This step has been termed blotting. The 

membrane is later blocked with BSA or milk powder to prevent unspecific binding of 

the antibody to the membrane. The Mur proteins were detected with an antibody 

produced in mice that specifically targets the His-Tag of the proteins. The second 

http://www.expasy.ch/tools/protparam.html
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antibody was an anti-mouse IgG antibody bound to alkaline phosphatase (AP). BCIP 

and NBT were used as substrates for AP. BCIP is hydrolyzed by the AP to form 5-

bromo-4-chloro-indolyl and phosphate. 5-bromo-4-chloro-indolyl is further oxidized by 

oxygen to from the deep blue insoluble pigment 5,5′-dibromo-4,4′-dichloro-indigo 

(Knecht, Dimond 1984). NBT works as an oxidant and promotes the formation of 5,5′-

dibromo-4,4′-dichloro-indigo. 

After running the SDS gel, the gel and a nitrocellulose membrane of identical size 

were incubated for 20 min in the blotting buffer. Afterwards both were transferred to a 

semi-dry blotting gadget and blotted for 40 min at 15 V. The membrane was then 

transferred to the blocking solution (30 mL of TNT + 3 % BSA + 0.02 % (g/g) 

thimerosal). After 1 h, the blocking solution was replaced by a solution containing the 

first antibody (2.1 µL mouse anti-poly-histidine antibodies in 30 mL TNT + 1 % BSA + 

0.02 % (g/g) thimerosal). The membrane was incubated with the first antibody for 

1.5 h at RT or for 12 h at 4 °C. Unbound antibodies were removed by washing the 

membrane three times for 10 min with 30 mL of TNT (+ 1 % BSA) before it was 

incubated for additional 1.5 h with a solution containing the second antibody (6 µL 

goat anti-mouse IgG-alkaline phosphatase antibodies in 30 mL of TNT + 1 % BSA). 

After incubation with the second antibody the membrane was washed again three 

times for 10 min with 30 mL of TNT + 1 % BSA. To detect the bound antibodies the 

membrane was incubated with 15 mL of AP solution containing 300 µL of freshly 

added BICP solution and 135 µL of freshly added NBT solution. The AP reaction was 

stopped after the protein bands became visible by washing the membrane with tap 

water.  

 

3.2.10 In vitro reconstruction assays of MurA-MurF  

To investigate the inhibitory effect of feglymycin on the activity of the MurA-F 

enzymes from E. coli a one-pot assay was used. All reactions were performed in 

triplicate. A solution containing 20 mM Tris/HCl pH 7.0, 10 mM MgCl2 , 2 mM DTT, 

400 µM UDP-GlcNAc, 400 µM PEP, 250 nM MurA and 50 µM feglymycin was 

prepared and incubated at 25 °C. As references a solution without feglymycin as a 

positive control and a solution without MurA as a negative control were prepared. For 

investigation of the MurB enzyme, the same solution as for the MurA reaction was 

prepared and incubated at 25 °C. After 2 h, additionally 400 µM NADPH, 100 nM 

MurB and 50 µM feglymycin were added. As references, a positive control without 
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feglymycin as well as a negative control without MurB was prepared. For 

investigation of the MurC enzyme, the same solutions as for the MurB reaction were 

prepared and incubated at 25 °C. After 2 h, additional 400 µM ATP, 400 µM L-Ala, 

300 nM MurC and 50 µM feglymycin were added and reference samples were 

prepared as described for MurB. For investigation of the MurD enzyme, the same 

solutions as for the MurC reaction were prepared and incubated at 25 °C. After 2 h, 

additional 400 µM D-Glu, 400 µM ATP, 450 nM MurD and 50 µM feglymycin were 

added and reference samples were prepared. For the MurE enzyme, the same 

solutions as for the MurD enzyme were prepared and incubated at 25 °C. After 4 h, 

additional 1 mM meso-DAP, 1 mM DTT, 400 µM ATP, 350 nM MurE and 50 µM 

feglymycin were added and references were prepared. For the MurF enzyme, the 

same solutions as for the MurE enzyme were prepared and incubated at 25 °C. After 

4 h, additional 1 mM D-Ala-D-Ala, 1 mM DTT, 400 µM ATP, 300 nM MurF and 50 µM 

feglymycin were added and references were prepared. All enzyme reactions were 

performed at 25 °C for 4 h. After 4 h, the enzyme reactions were stopped by addition 

of 1:2 ice-cold methanol. Both samples and reference samples were cooled for 

10 min on ice and then centrifuged for 10 min at 15 000 g. The supernatant was 

analyzed by LC-ESI-MS (see LS-MS detection by means of ESI-TOF-MS and ESI-

QQQ-MS) and high-resolving ESI-Orbitrap-MS (see high resolving ESI-MS). 

 

3.2.11 MurA assay 

The MurA assay was performed as a coupling assay with the MurB enzyme from 

E. coli similar to the assay previously described by Brown et al. (Brown et al. 1994). 

The MurB enzyme converts the product of the MurA reaction EP-UDP-GlcNAc to 

UDP-MurNAc accompanied by the spectrophotometrically detectable conversion of 

NADPH to NADP+. The decrease of NADPH was read in 96 well plates at a detection 

wavelength λ = 340 nm at 20 s intervals with a UV-Vis reader (Tecan) for 20 min at 

37 °C. All measurements were performed in triplicate and with controls (no substrate 

added). All Vmax and Km values were determined both under saturation with UDP-

GlcNAc or PEP. The reaction buffer for the MurA enzyme from E. coli contained 

50 mM Tris/HCl pH 7.0, 10 mM KCl, 3.5 mM DTT, 500 µM NADPH, 500 nM MurB, 

200 µM PEP or 400 µM UDP-GlcNAc and 20 nM MurA and was preincubated for 

5 min at 37 °C prior to starting the reaction. One substrate was always preincubated 

with the enzyme at a fixed concentration. The reaction was started by addition of the 
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second substrate. For determination of the IC50 values, the reaction mixture was 

preincubated for 5 min with 10 different concentrations of feglymycin (0- 50 µM), 

phosphomycin (0-250 µM) or bacitracin (between 0-250 µM). The reaction was 

started by addition of 400 µM UDP-GlcNAc (in case of feglymycin and bacitracin) or 

200 µM PEP (in case of phosphomycin). To determine the time-dependence of the 

reaction, the reaction mixture was incubated with 5 µM feglymycin at 37 °C at 

different time intervals between 1 min and 20 min before it was started by addition of 

400 µM UDP-GlcNAc. To determine the inhibition type and Ki-values, the reaction 

mixture was preincubated with 5-6 different feglymycin concentrations around the 

IC50 value (3.4 µM). The reactions were started either by addition of 10 different 

concentrations of PEP or UDP-GlcNAc (0-800 µM) while the other substrate was kept 

at a fixed concentration (400 µM). The reaction buffer for the MurA enzyme from 

S. aureus contained 20 mM Tris/HCl pH 7.5; 10 mM KCl; 2 mM DTT; 500 µM 

NADPH; 500 nM MurB; 400 µM PEP; 400 µM UDP-GlcNAc and 250 nM MurA. The 

determination of the Vmax, Km and IC50 values was performed as described for the 

MurA enzyme from E. coli. 

 

3.2.12 Calculation of the Vmax, Km and Ki values 

Linear fitting of the reciprocal of the substrate concentration and velocities are error-

prone due to the fact that in a Lineweaver-Burk plot the lowest substrate 

concentration corresponds to the highest reciprocal values. Therefore, instead of the 

untransformed data, the Vmax and KM values determined by non-linear regression 

were inserted into the reciprocal Lineweaver-Burk equation (1) to obtain a linear 

function used for a Lineweaver-Burk plot. Vmax and Km non-linear least-squares fitting 

was performed with equation (1) and by the Levenberg–Marquardt algorithm 

implemented in the SciPy library (http://www.scipy.org) with a by Bartlomiej Krawczyk 

in-house written python program. Ki-values were calculated from the IC50 values as 

described by Copeland (Copeland 2000) for reversible non-competitive inhibitors.  

 

         (1) 

The α value can be concluded from the interstion point of the lines in the 

Lineweaver-Burk plot. An α value of ~ 1 can be concluded if the converging lines in 

the Lineweaver-Burk plot intersted to the left of the y-axis and on the x-axis. Lines 
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that interst above the x-axis indicate an α value > 1 and lines that interst below the 

x-axis indicate an α value < 1  The Ki value was calculated from the IC50 value with 

the following equation (2) (Copeland 2000). 

  if α = 1  Ki =IC50        (2) 

The kcat value was calculated as Vmax/cenzyme with Vmax in [M/s] and cenzyme in [M]. 

 

3.2.13 MurC assay 

The MurC assay was performed as a coupling assay monitoring the decrease of 

NADH with pyruvate kinase (PK) and lactic dehydrogenase (LDH) similar to the 

assay performed by Jin (Jin et al. 1996). The conversion of UDP-MurNAc to UDP-

MurNAc-L-Ala is ATP-driven and accompanied by the formation of ADP. ADP and 

PEP serve as substrate for PK for the formation of pyruvate and ATP. Pyurvate, 

again, is used together with NADH by LDH to form lactat and NAD+. The conversion 

of NADH to NAD+ is spectrophotometrically detectable. The decrease of NADH was 

read in 96 well plates at λ = 340 nm at 20 s intervals with an UV-Vis reader (Tecan) 

for 20 min at 37 °C. All measurements were performed in triplicate and with controls 

(no substrate added). All Vmax and Km values were determined varying the L-Ala, ATP 

and UDP-MurNAc substrate concentration while the other two substrates were kept 

at saturation. The reaction buffer for the MurC enzyme from E. coli contained 50 mM 

Tris/HCl pH 8.0, 10 mM MgCl2, 10 mM NH4SO4, 400 µM L-alanine or/and 400 µM 

ATP or/and 400 µM UDP-MurNAc, 2.5 mM DTT, 1 mM PEP, 1 mM NADH, 10 U/ml 

LDH, 10 U/ml PK, 20 nM MurC and was preincubated for 5 min at 37 °C prior to 

starting the reaction. Two substrates were always preincubated with the enzyme at a 

fixed concentration. The reaction was started by the addition of the third substrate. 

For determination of the IC50 values, the reaction mixture was preincubated for 5 min 

with 10 different concentrations of feglymycin (between 0-50 µM), β-chloro-L-alanine 

(between 0-250 µM) or bacitracin (between 0-250 µM). The reaction was started by 

addition of 400 µM UDP-MurNAc (in case of feglymycin) or 400 µM L-alanine (in case 

of β-chloro-L-alanine and bacitracin). To determine the time-dependence of the 

reaction, the reaction mixture was incubated with 0.5 µM feglymycin at different time 

intervals between 1 min and 20 min before the reaction was started by addition of 
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400 µM UDP-MurNAc. To determine the inhibition type and Ki-values, the reaction 

mixture was preincubated with 5 different feglymycin concentrations around the IC50 

value (0.5 µM). The reactions were started either by addition of 10 different 

concentrations UDP-MurNAc, ATP or L-alanine (0-800 µM) while the other substrates 

were kept at fixed concentrations (400 µM). The reaction buffer for the MurC enzyme 

of S. aureus was the same as for the MurC enzyme from E. coli with a MurC 

S. aureus concentration of 200 nM. The determination of the Vmax, Km and IC50 values 

were performed analogously as described for the MurC enzyme from E. coli. 

Calculation of Vmax, Km, kcat and Ki for MurC was performed as described above for 

the MurA enzyme (see Calculation of the Vmax, Km and Ki values). 

 

3.2.14 Reversibility test 

Reversibility of the inhibition of the MurA and MurC E. coli enzymes by feglymycin 

was tested using a comparative dilution analysis as described by Copeland 

(Copeland 2005). With the help of the comparative dilution analysis it should be 

tested if the inhibitor binds irreversibly to the enzyme, so that the enzyme stays 

inactive after contact with high concentrations of inhibitor, even after dilution to a 

much lower inhibitor concentrations. For this experiment, the enzyme in a 

concentration of about 100-fold higher than used for the activity assay (2 µM 

MurA/MurC) was incubated with an inhibitor concentration about 10-fold higher than 

the IC50 value (5 µM for MurC, 50 µM for MurA) for 20 min. After preincubation, the 

enzyme was either diluted 100-fold with reaction buffer without feglymycin or 100-fold 

with reaction buffer containing a 10-fold lower concentration of feglymycin (0.5 µM for 

MurC, 5 µM for MurA). Therefore the end concentration after dilution was 20 nM 

enzyme in the reaction buffer. The reaction was started by addition of 400 µM UDP-

GlcNAc/UDP-MurNAc and the enzyme activity was detected within the first 4 min 

after dilution in intervals of 20 s as described above. All reactions were performed in 

triplicate. 

3.3  Analytical techniques 

3.3.1 Cultivation of Streptomyces sp. DSM 11171 strain for DNA 
sequencing 

Streptomyces sp. DSM 11171 spores were seeded on GYM agar and grown for 2 d 

at 30 °C. A 1 cm x 1 cm piece of agar was cut out and transferred into 100 ml TSB 
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medium. After incubation for 2 days at 28 °C and 180 rpm the cells were harvested 

and frozen at - 80 °C. Isolation of genomic DNA and sequencing was carried out by 

LG genomics (LGC Genomics GmbH, Berlin, Germany). 

3.3.2 Extraction of feglymycin from agar plates for LC-MS 
detection 

Streptomyces sp. DSM 11171 spores were seeded on different agar plates and 

grown for 3 d at 30 °C. 50 µg of cell culture was scratched off the agar plates and 

resuspended in 500 µL 80 % MeOH (in dH2O) and disrupted by 15 min incubation in 

an ultrasonic bath. The cell extract was centrifuged for 15 min at 15,000 rpm and the 

supernatant was analyzed by LC-MS.  

 

3.3.3 Extraction of feglymycin from cell cultures for LC-MS 
detection 

 Streptomyces sp. DSM 11171 spores were seeded on GYM agar plates and grown 

for 2 d at 30 °C. A 1 cm x 1 cm piece of agar was cut out and transferred into 50 mL 

of TSB medium and incubated at 28 °C and 120 rpm. After two d 50 mL of E1 

medium in a 250 mL flask were inoculated with 5 mL of the TSB culture und 

incubated at 28 °C and 120 rpm. After 7 d 1 mL of cell culture was harvested and 

pelleted by centrifugation at 5,000 rpm for 5 min. The cells were resuspended in 

500 µL 80 % MeOH (in dH2O) and disrupted by 15 min incubation in an ultrasonic 

bath. The cell extract was centrifuged for 15 min at 15,000 rpm and the supernatant 

was analyzed by LC-MS.  

 

3.3.4 Isolation of preparative amounts of feglymycin 

Streptomyces sp. DMS 11171 spores were seeded on a GYM agar plate and 

incubated for 2 d at 30 °C. A 1 cm x 1 cm piece of agar was then cut out and 

transferred into a 250 mL flask containing 50 mL of TSB medium und incubated at 

28 °C and 120 rpm. After 2 d 200 mL of E1 medium in a 500 mL flask were 

inoculated with 20 mL of the TSB culture und incubated at 28 °C and 120 rpm. After 

7 d the cells were pelleted by centrifugation for 20 min at 4,000 rpm at RT. The cell 

pellet was resuspended by vortexing in 100 mL of 80 % MeOH (in dH2O) and 

disrupted by 30 min incubation in an ultrasonic bath. The cell extract was centrifuged 

for 30 min at 15,000 rpm and the supernatant was dried on a rotation evaporator. 
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The methanol extract was resolved in 2 mL MeOH and cleared by centrifugation for 

15 min at 15,000 rpm. The supernatant was fractionated by RP-HPLC with a Grace 

Grom-SIL 120 ODS-5 ST column (10 µm, 250 mm x 20 mm) using the following 

gradient:  

 

time 

(min) 

% A  

(H2O + 0.1 % HCOOH) 

% B  

(MeOH + 0.1 % HCOOH) 

0.0 95 5 

40.0 60 40 

40.1 0 100 

45.0 0 100 

45.1 95 5 

50.0 95 5 

Feglymycin eluted at a retention time Rt = 31 min. Fractions containing feglymycin 

were combined and methanol and water were evaporated at the rotary evaporator.  

 

3.3.5 Isolation of preparative amounts of nocardamine 

Streptomyces sp. DMS 11171 spores were seeded on a GYM agar plate and 

incubated for 2 days at 30 °C. A 1 cm x 1 cm piece of agar was then cut out and 

transferred into a 250 mL flask containing 50 mL of TSB medium und incubated at 

28 °C and 120 rpm. After 2 d 200 mL of M9 minimal medium in a 500 mL flask were 

inoculated with 20 mL of the TSB culture und incubated at 28 °C and 120 rpm. After 

3 d the cells were pelleted by centrifugation for 20 min at 4,000 rpm at RT. A column 

was prepared with 20 g of XAD-16 material and equilibrated with 10 column volumes 

of dH2O. The supernatant was transferred on the column and incubated with the 

XAD-16 material for 20 min. The column was run with a flow rate of 1-2 mL/min. The 

XAD column was washed first with 200 mL dH2O, then 200 mL 15 % MeOH (in 

dH2O) and 200 mL 40 % MeOH (in dH2O). Nocardamine was eluted from the XAD 

column with 200 mL 100 % MeOH. Methanol was evaporated at a rotary evaporator 

and the pellet was redissolved in 2-3 mL 100 % dH2O and cleared by centrifugation 

for 15 min at 15,000 rpm. The supernatant was fractionated by RP-HPLC with a 
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Grace Grom-SIL 120 ODS-5 ST column (10 µm, 250 mm x 20 mm) and the following 

gradient: 

 

time 

(min) 

% A  

(H2O + 0.1 % HCOOH) 

% B  

(MeOH + 0.1 % HCOOH) 

0.0 95 5 

30.0 50 50 

35.0 40 60 

35.1 0 100 

40.0 0 100 

40.1 95 5 

45.0 95 5 

Nocardamine eluted at retention time of Rt = 30 min and demethylenenocardamine a 

lower homologue of nocardamine at retention time of Rt = 27.5 min. Fractions 

containing nocardamine and demethylenenocardamine were combined and methanol 

and water were dried at the rotary evaporator. 

 

3.3.6 LS-MS detection with ESI-TOF-MS  

Substrates and products of the Mur enzyme reactions were measured with LC-ESI-

MS in negative ion mode. Enzymes were pelleted prior to the mass spectrometric 

analysis by addition of 2 volumes of ice-cold MeOH and centrifugation for 15 min at 

15 000 g. The experiments were recorded on a QTof2 mass spectrometer coupled to 

an HPLC Agilent 1200. HPLC was performed using a C18 column (100 x 2 mm, 3 

µM, Grace) with a flow rate of 0.3 mL/min using an optimized gradient. The gradient 

was 5 % aqueous ACN (0.1 % HCOOH) to 100 % ACN (0.1 % HCOOH) in 15 min 

and then isocratic at 100 % ACN (0.1 % HCOOH) for further 3 min. The following 

settings were found to be best for the detection of the MurA-F substrates and 

products: 

capillary voltage 2.4 kV 

cone voltage 45 V 
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desolvation temperature 350 °C 

source temperature 120 °C 

MCP 1750 V 

TOF 9.1 kV 

start mass 100 

end mass 2800 

scan time 0.5 s 

inter-scan delay 0.1 

ionization negative 

 

3.3.7 LS-MS detection of the MurA-F substrates and products with 
the TripleQuad LC-MS 

LC-MS measurements were recorded on a TripleQuad LC/MS 6460 mass 

spectrometer coupled to an Agilent 1290 Infinity HPLC system. To detect full mass 

scans the setting MS2Scan was chosen. Enzymes were pelleted prior to the mass 

spectrometric analysis and the reaction mix was diluted by addition of 5 volumes of 

ice-cold MeOH and centrifugation for 15 min at 15 000 g. Analysis were performed by 

direct injection without column with a flow of 0.3 mL/min and water (0.1 % HCOOH) 

as solvent. Spectra were recorded for 1 min after injection. The following settings 

were found to be best for the detection of the MurA-F substrates and products: 
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scan type MS2Scan 

gas temperature 250 °C 

gasflow 10 l/min 

nebulizer 30 psi 

sheath gas temperature 40 °C 

sheath gas flow 11 l/min 

capillary  3500 V 

nozzle voltage 2000 V 

start mass 500 

end mass 1500 

scan time 500 ms 

fragmentor  120 V 

ionization negative 

 

3.3.8 High resolving ESI-MS 

High resolution mass spectra were recorded on an Orbitrap XL mass spectrometer or 

an Exactive Orbitrap mass spectrometer. Analysis were performed on an Eclipse 

XDB C-18 column (5 μm, 4.6 x 150 mm, Agilent) with a flow of 0.2 mL/min. Enzymes 

were pelleted prior to the mass spectrometric analysis and the reaction mix was 

diluted by addition of 10 volumes of ice-cold MeOH and centrifugation for 15 min at 

15 000 g. The injection volume was 10 µL and the gradient was 5 % MeOH to 95 % 

MeOH in 25 min and then isocratic at 95 % MeOH for further 13 min. All samples 

were run in negative ion mode with a resolution of R = 100,000. 

 

3.3.9 LC-MS detection of feglymycin with the TripleQuad LC-MS 

LC-MS measurements were recorded on a TripleQuad LC/MS 6460 mass 

spectrometer coupled to an Agilent 1290 Infinity HPLC system. Enzymes were 

pelleted prior to the mass spectrometric analysis and the reaction mix was diluted by 

addition of 5 volumes of ice-cold MeOH and centrifugation for 15 min at 15 000 g. To 
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detect full mass scans the setting MS2Scan was chosen. The detection was 

optimized with the synthetic feglymycin (50 µM). Especially the Capillary and Nozzle 

Voltage as well as the Fragmentor tension had a strong influence on the yield of 

feglymycin detection. The following settings were found to be best for feglymycin 

detection: 

scan type MS2Scan 

gas temperature 250 °C 

gas flow 10 l/min 

nebulizer 30 psi 

sheath has temperature 40 °C 

sheath gas flow 11 l/min 

capillary  3000 V 

nozzle voltage 2000 V 

start mass 500 

end mass 2200 

scan time 500 s 

fragmentor  180 V 

ionization negative 

Analysis were performed on an Eclipse Plus C18 column (RRHD = 1.8 µM, 

2.1 mm x 50 mm, Agilent) heated to 35 °C with a flow of 0.3 mL/min. The following 

gradient was used: 
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time  

(min) 

% A  

(H2O + 0.1 % HCOOH) 

% B  

(ACN + 0.1 % HCOOH) 

0 95 5 

6 50 50 

6.5 0 100 

8 0 100 

8.5 95 5 

10 95 5 

Feglymycin was detected at a retention time of Rt = 3.6 min. All measurements were 

repeated at least three times and performed with two different samples. Synthetic 

feglymycin (50 µM) was used as a reference.  

 

3.3.10 MSMS measurement of feglymycin with the TripleQuad LC-
MS 

MSMS measurements were performed with the TripleQuad LC/MS 6460 coupled to 

an Agilent 1290 Infinity HPLC system. The two-fold negatively charge mass of 

feglymycin ([M-2H]2- = 948.8) was set as precursor ion. The settings were identical as 

for the full mass scan except for the following changes: 

scan type product ion scan 

precursor ion 948.8 Da 

start mass 100 Da 

end mass 1200 Da 

collision energy 35 V 

Samples were measured with a gradient from 5 to 100 % ACN (0.1 % HCOOH) in 

water (0.1 % HCOOH) in 6.5 min (see LC-MS detection of feglymycin with the 

TripleQuad LC-MS). 
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3.3.11 SIM-MS measurements of feglymycin with the TripleQuad LC-
MS 

SIM (single ion monitoring)-measurements were performed with the two-fold 

negatively charged feglymycin ion ([M-2H]2- = 948.8) as detection mass. The SIM 

setting was found to provide the highest sensitivity for feglymycin detection. The 

settings were identical as for the full mass scan except for the following changes: 

scan type SIM 

detection mass 948.8 Da 

Samples were measured with a gradient from 5 to 100 % ACN (+ 0.1 % HCOOH) in 

water (+0.1 % HCOOH) in 6.5 min (see LC-MS detection of feglymycin with the 

TripleQuad LC-MS). 

 

3.3.12 SRM MS measurements of feglymycin with the TripleQuad 
LC-MS 

SRM measurements were performed with the two-fold negatively charged 

Feglymycin ion ([M-2H]2- = 948.8) and a collision energy of 35 V. The feglymycin 

product ion mass 287 Da was used for detection. A calibration curve was created by 

first measuring six different concentrations of synthetic feglymycin between 0-50 µM. 

The settings were identical as for the full mass scan except for the following changes: 

scan type MRM 

precursor ion 948.8 Da 

product ion 287 Da 

dwell 500 ms 

collision energy 35 V 

Samples were measured with a gradient from 5 to 100 % ACN (+ 0.1 % HCOOH) in 

water (+0.1 % HCOOH) in 6.5 min (see LC-MS detection of feglymycin with the 

TripleQuad LC-MS). 

 

3.3.13 CD spectroscopy 

Optically active molecules absorb left- and right-handed circularly polarized light 

differently. This characteristic depends on the wavelength of the light. The difference 

in absorption of left- and right-handed circularly polarized light leads to the 

occurrence of elliptically polarized light. Amino acids, except for glycine, are optically 

active molecules. A protein therefore contains many optically active atoms which 
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contribute to its CD spectrum. The optical identity of a single amino acid however 

cannot be determined from a protein CD spectrum; however the CD spectrum of a 

protein can help to predict the secondary structure of a protein. This is due to the fact 

that the secondary structure elements α-helix, β-sheet and random coil all exhibit 

different and characteristic CD spectra. By comparison of CD spectrum of a protein 

with a set of CD spectra of proteins with known structures, the secondary structure of 

an unknown protein can be predicted.  

CD spectra were recorded with a JASCO J715 CD-spectrometer from a wavelength 

of 190 nm - 300 nm in 0.5 nm steps with a quartz cuvette (1 mm layer, Hellma) at 

room temperature at a bandwidth of 1 nm. Each spectrum was generated from at 

least three individual wavelength scans. The molar ellipticity [θ] was calculated from 

the detected ellipticity θ [mdeg] with the following fomulare.  

 

with l = layer thickness of the cuvette in [cm] and c = concentration in [mol/l]. 

 To exchange the Tris-containing dialysis and storage buffer of the Mur enzymes to a 

10 mM phosphate buffer pH 8.0 more suitable for CD spectrometry, a gel filtration 

was performed. The protein solutions were loaded on a Superdex 75 prep grade Gefi 

column using an Äkta LC system with on-line UV-detection. Before loading the 

protein fraction, the column was washed with 3 column volumes of water and 

equilibrated with 3 column volumes of phosphate buffer. The Mur enzymes eluted 

after ~ 0.4 column volumes. CD measurements were performed with 16 µM MurA of 

E. coli and 17.5 µM MurC of E. coli. Additionally to the pure enzymes the enzymes 

were measured together with an equimolar, a two-fold and a four-fold molar 

concentration of feglymycin. As reference the phosphate buffer without enzyme and 

the highest employed feglymycin concentration in phosphate buffer were measured. 

CD spectra of the proteins were also recorded in phosphate buffer with 20 % 

trifluoroethanol (TFE). Trifluoroethanol has a general supportive effect on the 

formation of helices in proteins and peptides (Myers et al. 1998). 
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4 Results 

4.1  Cloning of the murA-F genes of E. coli and the murC and murD 
gene of S. aureus into E. coli protein expression vectors 

To find the optimal PCR conditions for the different genes, test-PCRs were performed 

with the Taq DNA polymerase. In case of the E. coli genes liquid cultures of the wild 

type strain E. coli K12 were used as DNA template for the PCRs. The optimal 

annealing temperature for the different primer (see Table 2.2 list of used primers) 

was tested over a temperature gradient from 50° C – 56 °.C. The results of the PCR 

amplification were tested with agarose gel electrophoresis (Figure 4.1; Figure 4.2). 

 

 

Figure 4.1: Test-PCRs with Taq DNA polymerase. Liquid cultures of E. coli K12 were used as 

templates for the genes murA, murB, murD, murE and murF from E. coli. The optimal annealing 

temperature was tested over a gradient from 50°C to 56°C in 0.5 °C steps. 
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Figure 4.2:  Test-PCRs with Taq DNA polymerase. Liquid cultures of E. coli K12 were used as 

templates for the murC gene from E. coli. The optimal annealing temperature was tested over a 

gradient from 50°C to 56°C in 0.5 °C steps. 

In case of the murC and murD gene of S. aureus, S. aureus genomic DNA provided 

by Heiko Schadt (a former PhD student in the group of Prof. Roderich Süssmuth) 

was used as DNA template for the PCRs (see Table 2.2 list of used primers). The 

results of the PCR amplification were tested with agarose gel electrophoresis (Figure 

4.3).  

  

Figure 4.3: Test-PCRs with Taq DNA polymerase. S.aureus genomic DNA was used as a template for 

the genes murC (left picture) and murD (right picture) from S. aureus. For murC, different template 

concentrations (0.5-1 µl) and addition of DMSO to the PCR mix was tested at an annealing 

temperature of 54 °C. For murD, the optimal annealing temperature was tested over a gradient from 

50°C to 56°C in 0.5 °C steps. 
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For the cloning step, the genes murA, murB, murC, murD, murE and murF from 

E. coli and murC and murD from S. aureus were amplified by PCR with a Herculase 

II fusion DNA polymerase using the optimized PCR conditions shown above (primers 

see Table 2.2 list of used primers). The success of the PCRs was checked by 

agarose gel electrophoresis and the PCR products were purified with a Quiagen PCR 

purification kit. The isolated DNA was quantified photometrically. The isolated PCR 

fragments were directly cloned into the pDrive vector using the PCR cloning kit and 

transformed into competent E. coli DH5α cells. The intermediate vectors were 

isolated with a GeneJET Plasmid Miniprep Kit. Successful cloning and transformation 

was confirmed for all genes by PCR and restriction analysis. The genes murA and 

murE from E. coli were cloned into the pEt24a(+) protein expression vector. The 

genes murC from S. aureus, murD from E. coli, murD from S. aureus and murF from 

E. coli were cloned into the pEt28a(+) protein expression vector. MurB from E. coli 

and murC from E. coli were cloned both in the pEt24a(+) and the pEt28a(+) protein 

expression vector. The expression vectors containing no insert and the intermediate 

vectors were digested with the appropriate restriction enzymes and inserts and 

plasmids were separated by agarose gel electrophoresis.The linearized expression 

vectors and the genes were isolated from the gel using a GeneJET Gel Extraction 

Kit, ligated with T4 DNA ligase and transformed into competent E. coli DH5α cells. 

The expression vectors were isolated with a GeneJET Plasmid Miniprep Kit. 

Successful cloning and transformation was confirmed for all genes by PCR and 

restriction analysis. The correctness of the inserted genes was additionally verified by 

sequencing by LCG genomics (Berlin). The correct expression vectors were than 

transformed into E. coli BL21 cells. Sucessful transformation was confimed for all 

genes by PCR.  
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Figure 4.4: Restriction analysis of pEt28a(+) vectors containing the murC gene from E. coli. Both 

fragments (insert and linearized vector without insert) have the expected size. 

 

The genes murA and murB from S. aureus already cloned in the appropriate E. coli 

protein expression vector pEt15b were a friendly gift by the group of Prof. H. G. Sahl 

(Bonn university).  
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4.2  Isolation of the heterologously and homologously expressed 
Mur enzymes 

4.2.1 Protein test expression 

The overexpression of the Mur enzymes was tested by small scale protein 

expression at different temperatures and with different IPTG concentrations. Proteins 

were isolated by small scale protein preparation from both the pellet and the 

supernatant fraction and analyzed by SDS-PAGE. All Mur enzymes were all found to 

be expressed at least partially soluble and in high concentration at 37 °C and after 

induction with an IPTG concentration of 250-500 µM.  

 

4.2.2 Large scale expression and isolation  

Large scale protein expression of the Mur enzymes was performed in LB medium at 

37° C. 0.5-1 L bacteria culture were grown to an OD600 of 0.6-0.8 and protein 

expression was induced by addition of 250-500 µM IPTG. Cells were grown first for 

3-4 h at 37° C (MurA, MurC, MurD) or directly transferred to 17° C (MurB, MurE, 

MurF) and incubated for further 24 h at 17 °C. Large scale protein preparation was 

performed with an optimized lysis buffer. For MurA, MurC and MurD from E. coli and 

MurA and MurD from S. aureus a simple lysis buffer was used. For MurB, MurE and 

MurF from E. coli and MurC from S. aureus a lysis buffer with a lower imidazole 

concentration containing additionally Triton X-100 and glycerin was employed. For 

MurB from S. aureus a similar lysis buffer with lower salt concentration was used. 

Proteins were purified by affinity chromatography with His Trap 5 mL columns (GE, 

Munich) using an ÄKTApurifier UPC 10 system (GE, Munich). High imidazole 

concentrations were removed by dialysis (see 3.2.5  large scale protein preparation, 

3.2.6 protein purification, 3.2.7 protein dialysis).  
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Figure 4.5: SDS-PAGE of the isolated enzymes MurA-F from E. coli and MurA-D from S. aureus.  
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MurA 

The MurA enzymes both from E. coli and S. aureus showed a good solubility. From 

1 L bacterial culture 16 mg of the E. coli enzyme (Figure 4.6) and 25 mg of the 

S. aureus enzyme were isolated. Interestingly the addition of low concentration of 

Triton X-100 to the lysis buffer and the addition of high salt concentrations (20 mM 

NH4SO4, 20 mM MgCl2  and 200 mM NaCl) to the dialysis buffer led to a nearly total 

loss of activity of the S. aureus enzyme.  

 

MurB  

The MurB enzymes both from E. coli and S. aureus showed a very low solubility. 

From 1 L bacterial culture only 0.3 mg of the E. coli enzyme could be isolated with 

only poor purity when using the standard lysis buffer (Figure 4.7). The usage of an 

optimized lysis buffer with a lower imidazole (10 mM instead of 20 mM) concentration 

and an additional Triton X-100 concentration of 1 % and a decrease of flow rate of 

the Äkta LC system from 1 mL/min to 0.5 mL/min however helped to increase the 

protein yields to about 5 mg/L (Figure 4.8). The S. aureus enzyme was isolated with 

the same optimized buffer as the E. coli enzyme with yields of 19 mg/L. 

 

MurC 

The MurC enzyme from E. coli was isolated both as a construct with a C-terminal 

His-Tag (expressed in protein expression vector pEt24a(+)) and as a construct with 

both C- and N-terminal His-Tag (expressed in protein expression vector pEt28a(+)). 

The MurC construct with only C-terminal His-Tag showed only a very low binding 

affinity to the Ni2+ sepharose column and therefore could not be isolated. The MurC 

construct with both C- and N-terminal His-Tag in contrast was isolated in the very 

high concentration of more than 90 mg/L bacterial culture and good purity (Figure 

4.9). Hence, the S. aureus enzyme was also expressed in the pEt28a(+) vector and 

likewise isolated in very high concentration and purity (38 mg/L).  
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Figure 4.6: Isolation of the MurA enzyme from E. coli by affinity chromatography (His-Trap column). Left picture: affinity chromatography run detected at 

λ = 280 nm. Right picture: SDS-PAGE of different fractions of the affinity chromatography run. Fraction 1 contains the unbound proteins. Fraction 4 contains a 

high concentration of very pure MurA enzyme.  



100 

 

 

Figure 4.7: Isolation of the MurB enzyme from E. coli by affinity chromatography (His-Trap column) with standard lysis buffer (20 mM Tris/HCl pH 8.0, 500 mM 

NaCl, 10 mM MgCl2, 20 mM imidazole and 1 mM PMSF freshly added). Left picture: affinity chromatography run detected at λ = 280 nm. Right picture: SDS-

PAGE of different fractions of the affinity chromatography run. Fraction 1 contains the unbound proteins. Fractions 2-4 contain low concentration of impure MurB 

enzyme. 
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Figure 4.8: Isolation of the MurB enzyme from E. coli by affinity chromatography (His-Trap column) with an optimized lysis buffer (20 mM Tris/HCl pH 8.0, 

500 mM NaCl, 10 mM MgCl2, 20 mM imidazole and 1 mM PMSF freshly added) and under optimized isolation conditions. Left picture: affinity chromatography 

run detected at λ = 280 nm. The absorption of Triton X-100 leads to a higher base line. Right picture: SDS-PAGE of a MurB protein fraction isolated by affinity 

chromatography.  
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Figure 4.9: Isolation of the MurC enzyme from E. coli by affinity chromatography (His-Trap column). Left picture: affinity chromatography run detected at 

λ = 280 nm of the isolation of the pEt24a(+) construct (N-terminal His-Tag). Central picture: affinity chromatography run detected at  λ = 280 nm of the isolation of 

the pEt28a(+) construct (C- and N-terminal His-Tag). Right picture: SDS-PAGE of different fractions of the affinity chromatography run of the pEt28a(+) construct. 

Fraction 1 contains the unbound proteins.Fraction 3-6 contained very high concentration of pure MurC enzyme.  
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MurD 

The MurD enzymes both from E. coli and S. aureus showed a good solubility. 1 L 

bacterial culture yielded 28 mg of the E. coli enzyme (Figure 4.10) and 24 mg of the 

S. aureus enzyme. 

 

MurE 

The MurE enzyme from E. coli showed low solubility. Using an optimized lysis buffer 

with a lower imidazole concentration (10 mM instead of 20 mM) and an additional 

Triton X-100 of 1 % as used for the MurB enzyme however led to the isolation of 

concentrations as high as 18 mg/L bacteria culture of pure MurE enzyme (Figure 

4.11). 

 

MurF 

The MurF enzyme from E. coli showed low solubility. Using an optimized lysis buffer 

with a lower imidazole concentration (10 mM instead of 20 mM) and an additional 

Triton X-100 of 1 % as used for the MurB enzyme however increased protein yield to 

4.5 mg/ L bacteria culture of moderately pure MurF enzyme (Figure 4.11). 
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Figure 4.10: Isolation of the MurD enzyme from E. coli by affinity chromatography (His-Trap column). Left picture: affinity chromatography run detected at 

λ = 280 nm. Right picture: SDS-PAGE of different fractions of the affinity chromatography run. Fraction 1 contains the unbound proteins. Fraction 4 contains a 

very high concentration of very pure MurD enzyme. 
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Figure 4.11: Isolation of the MurE and MurF enzymes from E. coli by affinity chromatography (His-Trap column). Left picture: affinity chromatography run of the 

isolation of the MurE enzyme detected at λ = 280 nm. Central picture: affinity chromatography run of the isolation of the MurF enzyme detected at 280 nm. Right 

picture: SDS-PAGE of different fractions of the two affinity chromatography runs. Fractions 1 contains the unbound proteins. Fractions 2 contain the isolated 

proteins. 
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4.3  In vitro reconstitution assays of the MurA-MurF enzyme 
cascade 

To investigate the inhibitory effect of feglymycin on the activity of the MurA-F 

enzymes from E. coli a one-pot assay was used. By using a one-pot assay, a fast 

screening of the Mur enzymes without the time-consuming isolation of the substrates 

for the enzymes MurB-MurF is facilitated. The stepwise and controlled stalling of the 

pathway allowed studying the effect of feglymycin to every single enzyme of the 

biosynthetic pathway. Enzymes in the pathway preceding the enzyme of interest 

were preincubated with substrate to allow the formation of a larger amount of product 

before the enzyme being studied and, optionally, the inhibitor were added. The 

enzyme and substrate concentrations were optimized to allow a near to complete 

conversion of substrates to products in the chosen time span, but not to high to be 

still able to observe also slight reductions of enzyme activity. The product of each 

enzyme reaction was detected by LC-ESI-TOF-MS (Figure 4.12) and high-resolving 

LC-ESI-Orbitrap-MS (Table 4.1). With LC-ESI-TOF-MS all masses were detected as 

single charged ions in negative ionization mode (Figure 4.12). With LC-ESI-Orbitrap-

MS the larger enzyme products (UDP-MurNAc-L-Ala-D-Glc, UDP-MurNAc-L-Ala-D-

Glc-meso-Dap and UDP-MurNAc-L-Ala-D-Glc-meso-Dap-L-Ala-L-Ala) were best 

detected as two-fold charged ions in negative ionization mode ([M-2H]2-) while the 

small enzyme products were detected as singly charged ions ([M-H]-). The 

theoretically calculated masses of the enzyme products correspond well to the 

masses detected with high resolution ESI-Oribitrap-MS (Table 4.1).  
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Figure 4.12: MS spectra of substrates and products of enzyme reactions MurA-F (E. coli) detected 

with the LC-ESI-TOF-MS in negative ionization mode. All masses were detected as [M-H]
-
. 

UDP-GlcNAc ([M-H]
-
 = 606) 

EP-UDP-GlcNAc ([M-H]
-
 = 676) 

UDP-MurNAc ([M-H]
-
 = 678) 

UDP-MurNAc-l-Ala ([M-H]
-
 = 749) 

UDP-MurNAc-l-Ala-d-Glc ([M-H]
-
 = 878) 

UDP-MurNAc-l-Ala-d-Glc-meso-Dap ([M-H]
-
 = 1050) 

UDP-MurNAc-L-Ala-d-Glc-meso-Dap-d-Ala-d-Ala ([M-H]
-
 = 1192).  
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Table 4.1: Theoretical and found molecular masses detected with high-resolving LC-ESI-Orbitrap-MS. 

 Theoretical mass  Mass detected   

EP-UDP-GlcNAc 

(C20H29O19N3P2) 

[M-H]
-
 = 676.0792 [M-H]

-
 = 676.0787 (+ 0.01 mmu) 

UDP-MurNAc 

(C20H31O19N3P2) 

[M-H]
-
 = 678.0949 [M-H]

-
 = 678.0944 (+ 0.03 mmu) 

UDP-MurNAc-L-Ala 

(C23H36O20N4P2) 

[M-H]
-
 = 749.1320 [M-H]

-
 = 749.1318 (+ 0.39 mmu) 

UDP-MurNAc-L-Ala-D-Glc 

(C28H43O23N5P2) 

[M-2H]
2-

 = 438.5834 [M-2H]
2-

 = 438.5830 (+0.12 mmu) 

UDP-MurNAc-L-Ala-D-Glc- 

meso-Dap 

(C35H55O26N7P2) 

[M-2H]
2-

 = 524.6258 [M-2H]
2-

 = 524.6243 (- 0.96 mmu) 

UDP-MurNAc-L-Ala-D-Glc- 

meso-Dap-D-Ala-D-Ala 

(C41H64O28N9P2) 

[M-2H]
2-

 = 595.6629 [M-2H]
2-

 = 595.6622 (- 0.18 mmu) 

 

By performing the enzyme assays simultaneously in the presence and absence of 

the inhibitor feglymycin, the effect of feglymycin on every Mur enzyme was studied. 

All reactions were performed in triplicate. The enzyme reactions were stopped after a 

specific time and the samples were measured by LC-ESI-TOF-MS (Table 4.2). The 

experiment was also repeated and measured with LC-Triple-Quad-MS. The extracted 

substrate and product ion masses detected with LC-ESI-TOF-MS were quantified by 

their peak areas [cts]. Repeated LC-ESI-TOF-MS experiments with defined substrate 

and enzyme concentrations gave highly reproducible peak areas [cts]. The performed 

quantification from the peak area is only a relative and no absolute quantification. An 

absolute quantification would require calibration curves performed with defined 

concentrations of each reaction product as detected counts [cts] might vary between 

the different products due to differences in ionization yield. The detected peak areas 

[cts] are however good indicators for the relative amount and thus formation of the 

products of the enzyme reactions. The LC-ESI-TOF-MS data were chosen for the 

quantification because the variation of counts [cts] between the different reaction 

products and also between the different experiments was found to be lower than in 

case of the LC-Triple-Quad-MS data.  

  



109 

 

Table 4.2: Substrate and product formation by the enzymes MurA-F (E. coli) in the presence and 

absence of 50 µM feglymycin detected by LC-ESI-TOF-MS in negative ionization mode. 

MurA substrate mass 

[M-H]
-
  =  606 

peak area [cts] 

product mass 

 [M-H]
-
  =  676 

peak area [cts] 

control (no feglymycin) 141.6 +/- 27.1* 622.7 +/- 100.7* 

with 50 µM feglymycin 518.7 +/- 7.7* 17.7 +/- 1.5* 

   

MurB substrate mass 

[M-H]
-
  =  676 

peak area [cts] 

product mass 

[M-H]
-
  = 678 

peak area [cts] 

control (no feglymycin) 77.3 +/- 12.9 634.0 +/- 143.9 

with 50 µM feglymycin 76. 7 +/- 17.2 600.3 +/- 145.2 

   

MurC substrate mass 

[M-H]
-
    =  678 

peak area [cts] 

product mass 

[M-H]
-
    = 749 

peak area [cts] 

control (no feglymycin) 23.7 +/- 2.3* 639.0 +/- 71.3* 

with 50 µM feglymycin 693.3 +/- 212.4* 17.3 +/- 3.8* 

   

MurD substrate mass 

[M-H]
-
    =  749 

peak area [cts] 

product mass 

[M-H]
-
    = 878 

peak area [cts] 

control (no feglymycin) 3.0 +/- 1.0 1088.0 +/- 192.8 

with 50 µM feglymycin 14.0 +/- 2.6 1241.3 +/- 349.2 

   

MurE substrate mass 

[M-H]
-
    =  878 

peak area [cts] 

product mass 

[M-H]
-
    = 1050 

peak area [cts] 

control (no feglymycin) 25.3 +/- 17.6 470.3 +/- 87.0 

with 50 µM feglymycin 14.3 +/- 5.9 472.7 +/- 72.5 

   

MurF substrate mass 

[M-H]
-
    =  1050 

peak area [cts] 

product mass 

[M-H]
-
    = 1192 

peak area [cts] 

control (no feglymycin) 239.7 +/- 52.3 406.3 +/- 187.3
 

with 50 µM feglymycin 99.0 +/- 74.5 603.3 +/- 100.2
 

[cts] = peak area measured in arbitrary units with extracted ion chromatogram (EIC) 
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For MurA and MurC a significant decrease in product formation was detected with 

LC-ESI-TOF-MS in the presence of 50 µM feglymycin, indicating that both enzymes 

MurA and MurC are likely targets of feglymycin. In case of the MurA enzyme only 

2.8 % of the product EP-UDP-GlcNAc is formed in presence of the inhibitor 

feglymycin within 2 h reaction time compared to the sample without inhibitor (17.7 +/- 

1.5 peak area [cts] compared to 622.7 +/- 100.7 peak area [cts], see Table 4.2). Also 

the [cts] of the MurA substrate UDP-GlcNAc is significantly higher in presence of the 

inhibitor than in the control sample indicating, that the enzyme reaction was nearly 

totally repressed. In case of the MurC enzyme a very similar effect is visible. Only 

2.7 % of the product UDP-MurNAc-L-Ala is formed in presence of feglymycin 

compared to the control (Table 4.2). At the same time the substrate concentration in 

presence of feglymycin is still about 30-times higher than in the control, indicating 

that the MurC reaction was nearly fully inhibited by feglymycin under the chosen 

conditions. For the other Mur enzymes, no significant changes of the product and 

substrate amount were detected in presence of feglymycin compared to the samples 

without feglymycin added. Only in case of the MurF enzyme differences between the 

samples with feglymycin and the samples without feglymycin were observed (Table 

4.2). The peak area of the product mass of the control is lower than the peak area of 

the sample with feglymycin added. Also the peak area of the substrate mass of the 

control is higher than that of the sample with feglymycin. In case of the product mass, 

however the difference is still within the standard deviation. In case of the substrate 

mass the difference is slightly higher than the standard deviation. As a promoting 

effect of the MurF enzyme reaction by feglymycin seems unlikely, the effect might be 

an outlier.  
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Figure 4.13: LC-MS chromatograms [EIC] of substrates and products of MurA E. coli enzyme reaction 

detected at the end point of the enzyme reaction with 0 µM feglymycin added (black) and with 50 µM 

feglymycin added (red) with the ESI-Triple-Quad-LC-MS in negative ionization mode. Left: EIC of 

UDP-GlcNAc ([M-H]
-
 = 606) Right: EIC of EP-UDP-GlcNAc ([M-H]

-
 = 676). 

 

Figure 4.14: LC-MS chromatograms [EIC] of substrates and products of MurB E. coli enzyme reaction 

detected at the end point of the enzyme reaction with 0 µM feglymycin added (black) and with 50 µM 

feglymycin added (red) with the ESI-Triple-Quad-LC-MS in negative ionization mode. Left: EIC of EP-

UDP-GlcNAc ([M-H]
-
 = 676) Right: EIC of UDP-MurNAc ([M-H]

-
 = 678). 
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Figure 4.15: LC-MS chromatograms [EIC] of substrates and products of MurC E. coli enzyme reaction 

detected at the end point of the enzyme reaction with 0 µM feglymycin added (black) and with 50 µM 

feglymycin added (red) with the ESI-Triple-Quad-LC-MS in negative ionization mode. Left: EIC of 

UDP-MurNAc ([M-H]
-
 = 678) Right: EIC of UDP-MurNAc-l-Ala ([M-H]

-
 = 749). 

 

Figure 4.16: LC-MS chromatograms [EIC] of substrates and products of MurD E. coli enzyme reaction 

detected at the end point of the enzyme reaction with 0 µM Feglymycin added (black) and with 50 µM 

feglymycin added (red) with the ESI-Triple-Quad-LC-MS in negative ionization mode. Left: EIC of 

UDP-MurNAc-l-Ala ([M-H]
-
 = 749) Right: EIC of UDP-MurNAc-l-Ala-d-Glu ([M-H]

-
 = 878). 
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Figure 4.17: LC-MS chromatograms [EIC] of substrates and products of MurE E. coli enzyme reaction 

detected at the end point of the enzyme reaction with 0 µM feglymycin added (black) and with 50 µM 

feglymycin added (red) with the ESI-Triple-Quad-LC-MS in negative ionization mode. Left: EIC of 

UDP-MurNAc-l-Ala-d-Glu ([M-H]
-
 = 878) Right: EIC of UDP-MurNAc-l-Ala-d-Glu-meso-Dap ([M-H]

-
 = 

1050). 

 

Figure 4.18: LC-MS chromatograms [EIC] of substrates and products of MurF E. coli enzyme reaction 

detected at the end point of the enzyme reaction with 0 µM feglymycin added (black) and with 50 µM 

feglymycin added (red) with the ESI-Triple-Quad-LC-MS in negative ionization mode. Left: EIC of 

UDP-MurNAc-l-Ala-d-Glu-meso-Dap ([M-H]
-
 = 1050) Right: EIC of UDP-MurNAc-l-Ala-d-Glu-meso-

Dap-d-Ala-d-Ala ([M-H]
-
 = 1152). 
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The LC-Triple-Quad-MS results are paralleled to the results from the ESI-TOF-LC-

MS. The peak areas of the substrates and products of the MurB, MurD, MurE and 

MurF reactions resemble strongly in form and height. Therefore no effect of 

feglymycin on the progress of these enzyme reactions can be observed. In case of 

the MurA and the MurC enzyme (Figure 4.13, Figure 4.15), however an accumulation 

of the substrate of the enzyme reaction in presence of feglymycin compared to the 

control is clearly visible.  

 

4.4  UV-Vis Assays for determination of the kinetic parameters of 
the MurA and MurC enzymes from E. coli and S. aureus 

By using a stepwise one-pot assay, a rapid screening of the Mur enzymes and their 

inhibition was facilitated. As the MurA and the MurC enzymes from E. coli were found 

to be sensitive to feglymycin a more detailed kinetic study of the inhibitory effect on 

these two enzymes was pursued. Enzyme coupling assays with UV-Vis detection 

were chosen due to the possibility to detect the enzyme reaction without having to 

stop the reaction before detection as it is necessary e.g. for LC-MS detection. As 

neither the substrate nor the product of the MurA and MurC reaction can be detected 

spectrophotometrically, the reactions were coupled to further enzyme reactions 

leading to a detectable product. In case of the MurA enzyme the reaction was 

coupled to the MurB enzyme, which catalyzes the spectrophotometrically detectable 

conversion of NADPH to NADP+ as it has been described before by Brown et al. 

(Brown et al. 1994). In case of the MurC enzyme the reaction had to be coupled with 

two enzymes that do not belong to the same pathway, pyruvate kinase (PK) and 

lactate dehydrogenase (LDH). Coupling with PK and LDH has been used 

successfully before by Jin et al. (Jin et al. 1996). When couplings of enzymes are 

used, it has to be made sure that the rate of the reaction is actually determined by the 

enzymes intended to be measured. This can be assured by using an excess of 

coupling enzymes to ensure that the enzyme reaction that should be monitored is the 

limiting step of the enzymatic cascade. Both concentrations, of the MurA and the 

MurC enzyme, as well as of the coupling enzymes were optimized to concentrations 

where the onset of the reaction mainly depended on the concentration of MurA and 

MurC. Accordingly, all kinetic parameters were determined under saturation of all 
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substrates. Hence, the monitored substrate was measured as a pseudo first order 

reaction. To prevent effects due to sudden temperature changes of the enzyme, the 

reaction mixture containing the enzymes was always preincubated at 37°C. The 

reaction was started by addition of the substrate which was monitored.  

 

4.4.1 Determination of IC50 values for MurA and MurC from E. coli 
and S. aureus 

IC50 values were determined for the MurA enzymes both from E. coli and S. aureus 

as well as for the MurC enzymes both from E. coli and S. aureus. The IC50 value of 

feglymycin for the enzymes MurA from E. coli and S. aureus were both determined in 

comparison to the IC50 value of phosphomycin and bacitracin. Phosphomycin is a 

known irreversible inhibitor of MurA (Marquardt et al. 1994) and was used as a 

positive control. Bacitracin inhibits the third stage of cell wall biosynthesis (Stone, 

Strominger 1971) but has no effect on the enzymes MurA-F and was therefore used 

as a negative control. For the MurC enzyme β-chloro-L-alanine was used as a 

positive control and bacitracin again as a negative control. The L-alanine analogue β-

chloro-L-alanine has been described before to possess inhibitory effects on the MurC 

enzyme (Liger et al. 1995). IC50 values were determined for all inhibitors with at least 

10 different inhibitor concentrations and in triplicate (Table 4.3).  

 

Table 4.3: Inhibition constants of various antibiotics on MurA and MurC. 

 IC50 

Feglymycin 

[µM] 

IC50 

Bacitracin 

[µM] 

IC50 

Phosphomycin 

[µM] 

IC50 

β-chloro-L-alanine 

[µM] 

MurA E. coli 3.4 +/- 1.1 >250 6.2 +/- 2.8 n.d.* 

MurA S. aureus 3.5 +/- 1.3 >250 0.2 +/- 0.1 n.d.* 

MurC E. coli 0.3 +/- 0.1 >250 n.d.* 53.3 +/- 8.9 

MurC S. aureus 1.0 +/- 0.6 >250 n.d.* >250 

* n.d. = not determinded.  

The IC50 value of feglymycin was found to be about 3 µM, both for the E. coli and the 

S. aureus enzyme. The IC50 values of phosphomycin were found to be 6.2 +/- 2.8 µM 

for the E. coli enzyme which lies in the range of the described Ki value (Marquardt et 

al. 1994) and 0.2 +/- 0.1 µM for the S. aureus enzyme. The S. aureus enzyme 

therefore seemed to be more sensitive to phosphomycin than the E. coli enzyme 
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under in vitro conditions. The IC50 values of feglymycin for the MurC enzymes from 

E. coli and S. aureus were significantly lower than the IC50 values for β-chloro-L-

alanine. Interestingly, β-chloro-L-alanine showed no inhibitory effect on the S. aureus 

enzyme at all. The IC50 values for feglymycin were with 0.3 +/- 0.1 µM for the E. coli 

enzyme and 1.0 +/- 0.6 µM for the S. aureus enzyme significantly lower than the IC50 

values determined for the MurA enzymes. Bactracin showed no inhibitory effect on 

the MurA or MurC enzymes, as expected.  

 

4.4.2 MurA assay 

The UV-Vis MurA assay was performed both with the MurA enzyme from E. coli and 

S. aureus. Vmax and KM values were determined in dependence of both UDP-GlcNAc 

and PEP from at least three independent measurements with each at least 10 

different substrate concentrations (Figure 4.19). Vmax and KM were calculated by non-

linear fittings of the data. An average Vmax and KM value was calculated from the Vmax 

and KM values of the independent measurements (Table 4.4).  

 

Figure 4.19: Michaelis-Menten-plot for the MurA enzyme from E. coli. The concentration of UDP-

GlcNAc was varied [0-800 µM] while PEP [400 µM] was kept at a fixed concentration.  
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Table 4.4: Kinetic parameters obtained for the MurA enzymes from E. coli and S. aureus. 

 Vmax 

 

[µM/min] 

KM  

UDP-GlcNAc  

[µM] 

KM  

PEP 

[µM] 

kcat 

 

[s
-1

] 

MurA E. coli 9.3 +/- 0.3 60.4 +/- 9.8 48.5 +/- 18.8 7.7 +/- 0.2 

MurA S. aureus 10.2 +/- 0.2 163.1 +/- 23.2 52.7 +/- 4.5 0.7 +/- 0.1 

 

The kcat value corresponds well to the values 8.9 s-1 (Dai et al. 2002) and 3.8 s-1 (Kim 

et al. 1996) previously described in the literature. The KM values were calculated as 

60.4 +/- 9.8 µM for UDP-GlcNAc and 48.5 +/- 18.8 µM for PEP. These values are 

higher than the values described before (Dai et al. 2002; Kim et al. 1996). The 

discrepancy in the KM values may be due to differences in the enzyme assay used. 

The chosen UV-Vis coupling assay might not provide the necessary sensitivity to 

measure the exceedingly slow reactions at very low substrate concentrations. For the 

MurA enzyme from S. aureus a kcat value of 0.7 +/- 0.1 s-1 was calculated. The 

enzyme was therefore found to be about 10-fold less active than the MurA enzyme 

from E. coli. The enzyme activity however corresponds to the values found by Du et 

al. for the MurA1 and MurA2 enzymes from Staphylococcus pneumonia (Du et al. 

2000). 

Inhibition type and Ki value were determined for the MurA enzyme from E. coli and 

the inhibitor feglymycin. To determine the inhibition type and Ki-values, the reaction 

mixture was preincubated with 5-6 different feglymycin concentrations around the 

IC50 value (3.4 µM). Vmax and KM values were determined in presence of the inhibitor 

in dependence of both UDP-GlcNAc and PEP from at least three independent 

measurements with each at least 10 different substrate concentrations (Figure 4.20). 
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Figure 4.20: Lineweaver-Burk plot for MurA from E. coli. The initial velocities for the MurA enzyme were measured while one substrate and the feglymycin 

concentrations were varied and the other substrate was kept at a fixed concentration. The values for the graphs were derived from non-linear regression of the 

untransformed data fitted to the Michaelis-Menten equation. The double-reciprocal values of the untransformed data are displayed on the graphs as dots. The 

reciprocal plots indicate a non-competitive inhibition toward UDP-GlcNAc (left) and PEP (right). 
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4.4.3 MurC assay 

In contrast to the MurA assay not all substrates for the MurC enzyme are 

commercially available. To be able to kinetically characterize the effect of feglymycin 

on the MurC enzyme in vitro, the substrate UDP-MurNAc however had to be 

provided. Sufficient amounts could be generated by Dipl.-Chem. Alexander Denisiuk 

and Dipl.-Chem. Marius Löhken (PhD students in the group of Prof. Roderich 

Süssmuth) applying a synthetic method published previously (Babic, Pecar 2008; 

Montoya-Peleaz et al. 2005; Takaku et al. 2006).  

The UV-Vis MurC assay was performed both with the MurC enzymes from E. coli and 

S. aureus. Vmax and KM values were determined in dependence of both UDP-

MurNAc, ATP and L-Ala from at least three independent measurements with each at 

least 10 different substrate concentrations (Figure 4.21). Vmax and KM were calculated 

by non-linear fittings of the data. An average Vmax and KM value was calculated from 

the Vmax and KM values of the independent measurements (Table 4.5).  

 

Figure 4.21: Michaelis-Menten-plot for the MurC enzyme from E. coli. The concentration of UDP-

MurNAc was varied [0-800 µM] while the ATP [400 µM] and L-Ala [400 µM] were kept at a fixed 

concentration.  
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Table 4.5: Kinetic parameters obtained for the MurC enzymes. 

 Vmax 

 

[µM/min] 

KM  

UDP-MurNAc  

[µM] 

KM  

ATP 

[µM] 

KM  

L-alanine 

[µM] 

kcat 

 

[s
-1

] 

MurC  

E. coli 

18.6 +/- 1.2 169.9 +/- 25.9 132.3 +/- 33.2 78.1 +/- 10.7 15.5 +/- 1.1 

MurC  

S. aureus 

16.3 +/- 0.5 263.1 +/- 12.9 280.2 +/- 53.8 221.6 +/- 89.0 1.4 +/- 0.1 

 

The kcat value of 15.5 +/-1.1 s-1 corresponds well to the kcat value described before by 

Emanuele of 980 +/- 40 min-1 ( = 16.3 +/- 0.7 s-1) (Emanuele, JR. et al. 1996) while 

the KM values for the MurC enzyme from E. coli are higher than the values described 

before in literature (Emanuele, JR. et al. 1996). The discrepancy in values can be 

explained in the same way as for the MurA enzyme. For the MurC enzyme from 

S. aureus, a kcat value of 1.4 +/- 0.1 s-1 was calculated. Similar to the MurA enzyme 

from S. aureus, the MurC enzyme from S. aureus was therefore found to be about 

10-fold less active than the E. coli enzyme. 

Inhibition type and Ki value were determined for the MurC enzyme from E. coli and 

the inhibitor feglymycin. To determine the inhibition type and Ki-values, the reaction 

mixture was preincubated with 5-6 different feglymycin concentrations around the 

IC50 value (0.3 µM). Vmax and KM values were determined in presence of the inhibitor 

in dependence of both UDP-MurNAc, ATP and L-Ala from at least three independent 

measurements with each at least 10 different substrate concentrations (Figure 4.22). 

 

Lineweaver-Burk plots were not created for the MurA and MurC enzymes from 

S. aureus as an analogue behaviour was expected. The similar inhibition constants 

of feglymycin towards the MurA and MurC enzymes from E. coli and S. aureus 

indicate an analogue mode of action.  
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Figure 4.22: Lineweaver-Burk plot for MurC from E. coli. The initial velocities for the MurC enzyme were measured while one substrate and the feglymycin 

concentrations were varied and the other substrates were kept at a fixed concentration. The values for the graphs were derived from non-linear regression of the 

untransformed data fitted to the Michaelis-Menten equation. The double-reciprocal values of the untransformed data are displayed on the graphs as dots. The 

reciprocal plots indicate a non-competitive inhibition toward UDP-MurNAc (left), ATP (middle) and L-Ala (right). 
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4.4.4 Time-dependence experiments with feglymycin 

Time-dependence experiments were performed to determine the rate of inhibition. 

MurA and MurC from E. coli were incubated for 1-20 min at 37 °C with a feglymycin 

concentration around the IC50 value before the reaction was started. All experiments 

reactions were performed in triplicate.  

 

Figure 4.23: Time-dependence of the MurA (E. coli) inhibition by feglymycin.  

The inhibition of MurA by feglymycin occurred within seconds. After ~2 min the 

maximal inhibitory effect is reached (Figure 4.23).  
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Figure 4.24: Time-dependence of the MurC (E. coli) inhibition by feglymycin.  

The inhibition of MurC by feglymycin occurred after few minutes. After ~5 min the 

maximal inhibitory effect is reached (Figure 4.24).  

 

4.4.5 Reversibility experiments with feglymycin 

Reversibility of the inhibition of the MurA and MurC enzymes from E. coli by 

feglymycin was tested using a comparative dilution analysis as described by 

Copeland (Copeland 2005). With the help of the comparative dilution analysis it 

should be tested if the inhibitor binds irreversibly to the enzyme, so that the enzyme 

stays inactive after contact with high concentrations of inhibitor even after dilution to a 

much lower inhibitor concentration. The MurA enzyme was incubated with 50 µM 

feglymycin and the MurC enzyme with 5 µM feglymycin. The inhibitor concentration 

therefore was chosen about 10-fold higher than the IC50 values.  After dilution of 

1/100 the feglymycin concentration was expected to decrease to 0.5 µM (in case of 

the MurA enzyme) and 0.05 µM (in case of the MurC enzyme) therefore to 

feglymycin concentrations in range of the minimal inhibitory concentrations.  
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Figure 4.25: Reversibility of the feglymycin inhibition for the MurA enzyme from E. coli. The figure 

shows the decrease of NADPH over time. Initial reaction velocities were measured for a control 

without feglymycin (20 nM MurA in MurA reaction buffer), the reversibility test (a solution containing 

2 µM MurA and 50 µM feglymycin was diluted 1/100 in MurA reaction buffer) and a control with 5 µM 

feglymycin (a solution containing 2 µM MurA and 50 µM feglymycin was diluted 1/100 in MurA reaction 

buffer with 5 µM feglymycin). The MurA-catalyzed reaction was started directly after dilution by 

addition of 400 µM UDP-GlcNAc and the initial reaction velocities detected at 20 s intervals with a UV-

Vis reader for 4 min.  

 

Table 4.6: Reversibility of the feglymycin inhibition for the MurA enzyme from E. coli. 

 Vmax 

[µM]/min 

control without feglymycin 6.0 +/- 2.1 

reversibility test* 5.5 +/- 1.2 

control with 5 µM feglymycin
* 

0.5 +/- 0.2 

* MurA was incubated in a concentration about 100-fold higher than used for the activity assay (2 µM) 

with an inhibitor concentration about 10-fold higher than the IC50 value (50 µM) for 20 min prior to 
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start of the measurement. After preincubation the enzyme was diluted 1/100 into reaction buffer 

without feglymycin (reversibility test) or with 5 µM feglymycin (control with 5 µM feglymycin). 

Subsequently the initial reaction velocities (Vmax) were calculated.  

 

The inhibition of the MurA enzyme seems to be rapidly reversible. Only about 1 min 

after the initiated strong dilution, the enzyme which had prior been incubated with a 

feglymycin concentration of 50 µM (reversibility test), reaches the same reaction 

velocity as the control without feglymycin and a much higher reaction velocity than 

the control diluted into reaction buffer containing 5 µM feglymycin (Figure 4.25, Table 

4.6).  

 

Figure 4.26: Reversibility of the feglymycin inhibition for the MurC enzyme from E. coli. The figure 

shows the decrease of NADH over time. Initial reaction velocities were measured of a control without 

feglymycin (20 nM MurC in MurC reaction buffer), the reversibility test (a solution containing 2 µM 

MurC and 5 µM feglymycin was diluted 1/100 in MurC reaction buffer) and a control with 0.5 µM 

feglymycin (a solution containing 2 µM MurC and 5 µM feglymycin was diluted 1/100 in MurC reaction 

buffer with 0.5 µM feglymycin). The MurC-catlyzed reaction was started directly after dilution by 
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addition of 400 µM UDP-MurNAc and the initial reaction velocities detected at 20 sec intervals with a 

UV-Vis reader for 4 min. Subsequently the initial reaction velocities (Vmax) were calculated.  

 

Table 4.7: Reversibility of the feglymycin inhibition for the MurC enzyme from E. coli. 

 Vmax 

[µM]/min 

control without feglymycin 15.5 +/- 1.2 

reversibility test* 15.1 +/- 1.0 

control with 0.5 µM feglymycin
*
 7.2 +/- 2.9 

* MurC was incubated in a concentration about 100-fold higher than used for the activity assay (2 µM)   

with an inhibitor concentration about 10-fold higher than the IC50 value (5 µM) for 20 min prior to start 

of the measurement. After preincubation, the enzyme was diluted 1/100 into reaction buffer without 

feglymycin (reversibility test) or reaction buffer with 0.5 µM feglymycin (control with 0.5 µM 

feglymycin).  

 

The inhibition of the MurC enzyme seems to be rapidly reversible. Only about 1 min 

after the initiated strong dilution, the enzyme which had prior been incubated with a 

feglymycin concentration of 5 µM (reversibility test), reaches the same reaction 

velocity as the control without feglymycin and a much higher reaction velocity (2-fold) 

than the control diluted into reaction buffer containing 0.5 µM feglymycin (Figure 

4.26, Table 4.7).  

The reversibility experiments were not performed with the MurA and MurC enzymes 

from S. aureus as an analogue behaviour was expected. The similar inhibition 

constants of feglymycin towards the MurA and MurC enzymes from E. coli and 

S. aureus indicate an analogue mode of action.  
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4.4.6 CD measurements of the MurA and MurC enzymes from 
E. coli 

CD spectra of MurA and MurC from E. coli were recorded in 10 mM phosphate buffer 

(pH 8.0). Additionally to the pure enzyme (16 µM MurA of E. coli and 17.5 µM MurC 

of E. coli) the enzymes were measured in presence of an equimolar concentration, a 

two-fold molar excess and a four-fold molar excess of feglymycin. As the addition of 

feglymycin to the enzymes caused a slight dilution of the enzyme solution the 

enzymes were additionally measured after a comparable dilution with phosphate 

buffer without feglymycin. In this context, it is known that trifluoroethanol (TFE) 

influences the three-dimensional structure of protein and especially promotes the 

formation of α-helices (Myers et al. 1998). The measurements were repeated in 

presence of 20 % TFE to test if the addition of TFE interferes with the effect of 

feglymycin on the three-dimensional structure of MurA and MurC. As reference, 

spectra of phosphate buffer without enzyme and feglymycin in phosphate buffer were 

recorded. Feglymycin has an α-helical structure in solution. For the used feglymycin 

concentrations the CD spectra of feglymycin were however so weak in comparison 

with the protein spectra that an unspecific additive effect of feglymycin on the protein 

spectra can be neglected. All experiments were performed twice. Additionally CD 

spectra of MurA and MurC were detected after 20 min at RT to rule out a change of 

ot fhe three-dimensional structure during the CD measurements due to temperature 

instability of the proteins.  
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Figure 4.27:  CD specta of MurA enzyme from E. coli in presence of different feglymycin concentrations. Blue: MurA (16 µM) in phosphate buffer (10 mM, 

pH 8.0), Pink: MurA (16 µM) in phosphate buffer (10 mM, pH 8.0) with an equimolar feglymycin concentration (16 µM). Orange: MurA (16 µM) in phosphate buffer 

(10 mM, pH 8.0) with a two-fold molar excess of feglymycin (32 µM). Turquoise: MurA (16 µM) in phosphate buffer (10 mM, pH 8.0) with a four-fold molar excess 

of feglymycin (64 µM).  
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Figure 4.28: CD specta of MurC from E. coli in presence of different feglymycin concentration. Blue: MurC (17.5 µM) in phosphate buffer (10 mM, pH 8.0), Pink: 

MurC (17.5 µM) in phosphate buffer (10 mM, pH 8.0) with an equimolar feglymycin concentration (17.5 µM). Orange: MurC (17.5 µM) in phosphate buffer 

(10 mM, pH 8.0) with a two-fold molar excess of feglymycin (35 µM). Turquoise: MurC (17.5 µM) in phosphate buffer (10 mM, pH 8.0) with a four-fold molar 

excess of feglymycin (70 µM). Lilac: MurC (17.5 µM) in phosphate buffer (10 mM, pH 8.0) diluted with the same volume of phosphate buffer (10 mM, pH 8.0) as 

was added for the four-fold equimolare feglymycin concentration.  
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Figure 4.29: CD specta of MurC from E. coli in presence of different feglymycin concentrations and in the presence of 20 % (v/v) trifluoroethanol. Blue: MurC 

(17.5 µM) in phosphate buffer (10 mM, pH 8.0) with 20 % (v/v) TFE, Pink: MurC (17.5 µM) in phosphate buffer (10 mM, pH 8.0) with 20 % (v/v) TFE and an 

equimolar feglymycin concentration (17.5 µM). Orange: MurC (17.5 µM) in phosphate buffer (10 mM, pH 8.0) with 20 % (v/v) TFE and a two-fold excess of 

feglymycin (35 µM). Turquoise: MurC (17.5 µM) in phosphate buffer (10 mM, pH 8.0) with 20 % (v/v) TFE and a four-fold molar excess of feglymycin (70 µM).  
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The addition of feglymycin had only a minor influence on the CD spectra and hence 

overall conformation of the MurA enzyme (Figure 4.27). In case of the MurC enzyme 

however a significant influence of feglymycin is visible. The addition of feglymycin led 

to a flattening of the CD curve and a decrease of the molar ellipticity of the maxima at 

λ = 210 nm and λ = 220 nm. This effect increases with the concentration of 

feglymycin added, indicating that feglymycin might have an alterative effect on the 

tertiary structure of the MurC enzyme (Figure 4.28).  

The addition of 20 % TFE to the MurC enzyme changes the CD spectrum. The 

absorption maximum at λ = 210 nm increases strongly and dominates the double 

maxima form of the native protein. However in presence of feglymycin a similar effect 

is visible as in absence of TFE. The addition of feglymycin leads to an increased 

flattening of the CD curve. In presence of TFE the effect is even more distinct (Figure 

4.29). TFE therefore possibly might have a supporting effect inducing a change of the 

tertiary structure by feglymycin.  
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4.5  Optimization of the feglymycin production by Streptomyces 
sp. DSM 11171  

The detection and mass spectrometric characterization of feglymycin with the LC-

Triple-Quad-MS was optimized with synthetic feglymycin provided by Dr. Anne 

Hänchen (former member of the group of Prof. Roderich Süssmuth).  

 

Figure 4.30: LC-Triple-Quad-MS detection of 50 µM synthetic feglymycin in negative ionization mode 

(injection volume 3 µl). a) total ion count (TIC), b) extracted ion chromatogram (EIC), c) mass 

spectrum recorded at Rt = 3.7 min.  
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A detection by single ion monitoring (SIM) of the two-fold charged molecular mass of 

feglymycin in negative mode ([M-2H]2- = 948.8) was found to provide the highest 

sensitivity and specificity for feglymycin (Figure 4.30, Figure 4.31).  

 

Figure 4.31: SIM-chromatogram by LC-Triple-Quad-MS detection of 50 µM synthetic feglymycin in 

negative ionization mode. The molecular mass of felgmycin 949.8 ([M-2H]
2-

 ) is detected at a retention 

time of Rt = 3.8 min.  

 

4.5.1 Production tests 

Feglymycin production was tested both on agar plates and in liquid culture in different 

Streptomyces media. For production control on agar plates the media MS, GYM, N-

Z-Amine and Paper were tested. The feglymycin producer stain was cultivated for 3 d 

at 28 °C on plate. Feglymycin was extracted from the agar plates and tested by LC-

Triple-Quad-MS with SIM-measurements.  
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Figure 4.32: SIM-MS measurements of feglymycin with LC-Triple-Quad-MS in negative ionization 

mode of extracts from agar plates. black) MS medium, red) GYM medium, green) Paper medium, 

blue) N-Z-Amine medium. For MS medium and GYM medium a peak at the characteristic retention 

time of feglymycin was detected (Rt = 3.7 min).  

 

In the agar plate extracts of both MS and GYM media a peak was detected by SIM-

measurements at the characteristic retention time of feglymycin (Rt = 3.7 min) 

indicating a preferred feglymycin production on MS and GYM plates (Figure 4.32). 

The concentration of the produced feglymycin was however too low to allow 

verification by mass fingerprinting.  

To test if feglymycin is produced in liquid culture the media GYM, E1, YEME, Paper 

and N-Z-Amine were tested. The feglymycin producer strain (Streptomyces sp. DSM 

11171) was first cultivated for 3 d at 28 °C on GYM agar plates. A 1 cm x 1 cm piece 

of agar was transferred into 50 mL liquid medium (N-Z-Amine, Paper, YEME, E1 or 

GYM) and cultivated for 3 d at 28 °C with shaking. Feglymycin was extracted from 

the bacterial culture both from the cell pellet and the supernatant and tested by LC-

Triple-Quad-MS with SIM-measurements.  
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Figure 4.33: SIM-MS measurements of feglymycin with LC-Triple-Quad-MS in negative mode of 

extracts from cell pellets of liquid bacterial culture. Liquid culture media: black) GYM medium, red) E1 

medium, yellow) YEME medium, blue) Paper medium, purple) N-Z-Amine medium. Only in E1 medium 

a peak at the characteristic retention time of feglymycin (Rt = 3.7 min) was detected.  

 

In the liquid culture extracts only in the cell pellet of Streptomyces sp. DSM 11171 

cultivated in E1 medium a peak was detected with SIM-measurements at the 

characteristic retention time of feglymycin indicating feglymycin production in E1 

medium (Figure 4.33). These results were somewhat surprising as in literature 

feglymycin production in Paper medium after 3 d was reported (Vértesy et al. 1999). 

The concentration of the produced feglymycin was however too low to allow 

verification by mass fingerprinting. The production in E1 medium was further 

optimized by cultivating the strain first on GYM agar plates for 3 d at 28 °C, then in 

TSB medium for 3 d at 28 °C. This was followed by cultivation in E1 medium (as 

main culture). Additionally different cultivations periods were tested. Feglymycin 

production in the extracts of the cell pellet and the supernatant was tested with SIM-

MS measurements and in addition quantified with SRM-MS measurements of 

feglymycin with TripleQuad LC-MS. 
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Figure 4.34: LC-Triple-Quad-MS of extracts extracted at different time points (3 d – 14 d) from cell 

pellets of Streptomyces sp. DSM 11171 cultivated in E1 medium. Displayed are EIC of the mass of the 

two-fold charged feglymycin molecular mass ([M-2H]
2-

 = 949). 

  

These experiments showed that feglymycin production increases in a late phase of 

Streptomyces growth. A strong production started after 5 d and production further 

increased until 14 d of cultivation (Figure 4.34) even though the bacteria started to 

die off after 7 d of cultivation (high number of broken cells visible in the microscope). 

The high concentration of feglymycin after 14 d of cultivation therefore might indicate 

that feglymycin is not metabolized by the bacteria and further indicates an 

unexpected stability of the antibiotic under the cultivation conditions applied.  

 

4.5.2 Mass finger printing 

The concentration of the feglymycin produced in E1 medium after 14 d of cultivation 

was high enough to allow verification of primary sequence by mass fingerprinting. 

The product ion spectra of synthetic feglymycin and wildtype extract were in excellent 

accordance (Figure 4.35). This is evidence that the Streptomyces sp. DSM 11171 is 

producing feglymycin.   
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Figure 4.35: ESI-MSMS measurement (LC-Triple-Quad-MS) of a) 50 µM synthetic feglymycin (injection volume 5 µM) and b) feglymycin extracted from the cell 

pellet of Streptomyces sp. DSM 11171 cultivated for 14 d in E1 medium. Displayed are the mass spectra detected at Rt = 3.7 min.  
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Figure 4.36: Analytical HPLC chromatogram of isolated feglymycin (detection at λ = 210, 230, 254, 280, 310). Feglymycin is detected at Rt = 3.7 min.  
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4.5.3 Isolation of preparative amounts of feglymycin 

Feglymycin was isolated from the pellet of bacterial culture after 14 d of cultivation in 

E1 medium. Feglymycin was extracted from cell pellet with 80 % MeOH and was 

fractionated by preparative RP-HPLC. From 500 mL of bacterial culture 2.5 mg 

analytically pure feglymycin were isolated. Purity was verified by analytical HPLC 

(Figure 4.36) and mass spectrometry.  

 

4.6  Annotation of the feglymycin gene cluster 

20 g cell pellet of the Streptomyces sp. DSM 11171 cultivated for 3 d in TSB medium 

was send to LG genomics (LGC Genomics GmbH, Berlin, Germany) for sequencing. 

The genomic data was analyzed by means of the artemis annotation tool (Rutherford 

et al. 2000). The biosynthesis gene cluster was traced by searching genes 

characteristic for Hpg and Dpg biosynthesis. The genes constituting the gene cluster 

were analyzed with the NCBI blast tool (Mizyed et al. 2005). The obtained gene 

cluster is expected to span nearly 100 kb and includes up to 35 open reading frames 

(ORFs) (Figure 4.37). The feglymycin gene cluster is framed by coding DNA regions 

making it difficult to determine the borders of the gene cluster. 
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Figure 4.37: Organization of the feglymycin biosynthesis gene cluster. 
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Table 4.8: ORFs that were identified in the region of the feglymycin gene cluster. 

ORF  

 

best match   

ORF 

size 

(aa) source entry proposed function 

1 531 

Streptomyces sviceus 

ATCC 29083 ZP_06920919 

secreted peptidase 

 

2 358 

Streptomyces sp. 

ACTE ZP_06273624 

Radical SAM domain 

protein 

3 147 Streptomyces sp. Mg1 ZP_04997539 

conserved 

hypothetical protein 

4 799 

Streptomyces 

avermitilis MA-4680 CAF60521 

Putative efflux 

protein 

5 225 

Saccharopolyspora 

erythraea ZP_06565737 

SAM-dependent 

methyltransferases 

6 355 

Actinoplanes 

teichomyceticus CAE53368 DAHP 

7 335 

Actinoplanes 

teichomyceticus CAE53369 

transcriptional 

regulator 

8 379 

Streptomyces 

toyocaensis AAM80552 Hmo 

9 366 

Streptomyces 

toyocaensis AAM80551 HmaS 

10 398 

Streptomyces 

toyocaensis AAM80550 Pdh 

11 969 

Actinoplanes 

teichomyceticus CAG15028 

LuxR regulatory 

protein 

12 775 

Streptomyces 

fungicidicus ABD65949 

HpgT/Hmo fusions 

protein 

13 388 

Streptomyces 

toyocaensis AAM80548 DpgA 

14 217 

Streptomyces 

toyocaensis AAM80547 DpgB 

15 435 

Streptomyces 

toyocaensis AAM80546.1 DpgC 
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ORF 

size 

(aa) source entry proposed function 

16 270 

Streptomyces 

toyocaensis AAM80545 DpgD 

17 269 Frankia sp. CcI3 YP_481545 

putative 

esterase/lipase 

18 418 Frankia sp. EuI1c YP_004015376 histidine kinase 

19 217 

Catenulispora 

acidiphila DSM 44928 YP_003117332 

Two component 

transcription regulator 

20 74 

Gordonia bronchialis 

DSM 43247 YP_003274808 

MbtH-like short 

polypeptide 

21 685 Frankia sp. CcI3 YP_481558 ABC transporter 

22 5447 

Streptomyces 

violaceusniger Tu 4113 ZP_07605823 non-ribosomal peptide synthase 

23 7911 Rhodococcus opacus B4 YP_002782356 

non-ribosomal 

peptide synthetase 

24 3407 Frankia sp. CcI3 YP_481555.1 

non-ribosomal 

peptide synthase 

25 200 

Stackebrandtia 
nassauensis 

DSM 44728 YP_003514660 hypothetical protein 

26 390 Frankia sp. EuI1c YP_004015373 peptidoglycan binding protein 

27 257 Frankia sp. EuI1c YP_004015372 ABC transporter 

28 400 Frankia sp. EuI1c YP_004015371 Putative ABC transporter 

29 277 Streptomyces sp. C ZP_07290192 D-aminopeptidase 

30 451 

Streptomyces 

flavogriseus ATCC 

33331 ZP_05803769 putative peptidase 

31 663 

Catenulispora 

acidiphila DSM 44928 YP_003117332 putative peptidase 

32 292 

Streptomyces 

coelicolor A3(2) NP_630572 LD-carboxypeptidase 

33 596 

Streptomyces 

pristinaespiralis ATCC 

25486 ZP_06913570 ABC transporter 

34 183 

Streptomyces 

griseoflavus Tu4000 ZP_07309655 acetyltransferase 

35 649 

Streptomyces 

kanamyceticus BAE95554 Tetratricopeptide 
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4.6.1 Biosynthesis of non-proteinogenic amino acids 

The biosynthesis of Hpg and Dpg has been elucidated with the help of the gene 

cluster of chloroeremomycin, another vancomycin-like glycopeptides produced by 

Amycolatopsis orientalis (Hubbard et al. 2000; Choroba et al. 2000; Chen et al. 2001; 

Li et al. 2001), with the help of the balhimycin gene cluster from Amycolatopsis 

mediterranei (Pfeifer et al. 2001) and the complestatin biosynthetic gene cluster of 

Streptomyces lavendulae (Chiu et al. 2001). Genes highly homologous to a p-

hydroxymandelate oxidase (Hmo), a p-hydroxymandelic acid synthase (Hmas), a p-

hydroxyphenylglycine aminotransferase (HpgT) and a prephenate dehydrogenase 

(Pdh) were identified in the feglymycin gene cluster (Table 4.8). Hmo, Hmas, HpgT 

and Pdh have been described before to be responsible for the supply of the non-

proteinogenic amino acid Hpg (Hubbard et al. 2000; Choroba et al. 2000; Chiu et al. 

2001). 

Both L-tyrosine and prephenate can accordingly be used as starting material for Hpg 

biosynthesis. Prephenate is converted by Pdh into p-hydroxyphenylpyurvate which in 

the next steps is transformed to L-p-hydroxymandelate by HmaS and oxidized by 

Hmo to p-hydroxybenzoylformate. L-Tyrosine and p-hydroxybenzoylformate are the 

substrate of a transamination catalyzed by HpgT generating L-p-

hydroxyphenylglycine (Hpg) and p-hydroxyphenylpyruvate. p-Hydroxyphenylpyruvate 

later can be converted to Hpg in another round (Figure 4.38). The identified Hmo, 

Hmas, HpgT and Pdh genes of the feglymycin gene cluster show a strong similarity 

with previously described Hpg-biosynthesis genes from the teicoplanin gene cluster 

(Li et al. 2004; Sosio et al. 2003), the balhimycin gene cluster (Pelzer et al. 1999), the 

complestatin gene cluster of Streptomyces lavendulae (Chiu et al. 2001) and the 

A47934 gene cluster (Pootoolal et al. 2002) (Table 4.9). 

Interestingly the HpgT protein was predicted to be an HpgT/Hmo fusion protein. The 

feglymycin gene cluster therefore consists two genes that might code for Hmo. The 

Hmo, Hmas and Pdh genes are arranged in line in the same order as described also 

for the A47934 gene cluster from S. toyocaensis (Pootoolal et al. 2002). The 

S. toyocaensis genes also possess the highest similarity to these genes. The gene 

coding for the HpgT/Hmo fusion protein is separated from the other three genes by 

one open reading frame. It shows the highest similarity with a predicted HpgT/Hmo 

fusion protein of the enduracidin producer Streptomyces fungicidicus (Yin, Zabriskie 

2006). 
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Figure 4.38: Scheme of the Hpg biosynthesis (figure according to Chiu et al. 2001). 

 

ORF 6 codes for a 3-deoxy-D-arabinose-heptulosonate-7-phosphate synthase 

(DAHP synthase). The DAHP synthase is the first enzyme of the shikimate pathway 

leading to the biosynthesis of aromatic amino acids like tyrosine. A DAHP synthase 

has also been described in the teicoplanin gene cluster and has been justified with 

the high demand of tyrosine (Li et al. 2004). Feglymycin also contains a high number 

of amino acids originated from tyrosine wherefore the existence of an additional 

DAHP synthase in the feglymycin gene cluster seems to be reasonable.  
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The Dpg biosynthesis has been investigated mainly in the balhimycin producer 

Amycolatopsis mediterranei (Pfeifer et al. 2001) and the chloroeremomycin producer 

Amycolatopsis orientalis (Chen et al. 2001; Li et al. 2001). DpgA converts malonyl-

CoA to 3,5-dihydroxyphenylacetyl-CoA which in the next step is converted to 3,5-

dihydroxyphenylglyoxylate by DpgC (Figure 4.39). DpgB and DpgD were found to 

dramatically boost the activity of DpgA (Chen et al. 2001). The last step, a 

transamination of dihydroxyphenylglyoxylate to Dpg is expected to be catalyzed by 

the HpgT protein (Figure 4.39) (Chen et al. 2001). The feglymycin gene cluster 

contains four ORFs in line coding for DpgA, DpgB, DpgC and DpgD. A gene 

inactivation mutant of the DpgD gene led to abortion of feglymycin production 

indicating the importance of the gene for feglymycin production (Figure 4.41).  

 

Figure 4.39: Scheme of the Dpg biosynthesis (figure according to Chen et al. 2001). 

 

The ORFs have the same arrangement and highest similarity to the DpgA-D genes in 

S. toyocaensis (Table 4.9) (Pootoolal et al. 2002). The absence of an additional 

HpgT gene in the feglymycin gene cluster indicates that the transamination reaction 
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in the Dpg biosynthesis might be catalyzed by the same HpgT protein as in the Hpg 

biosynthesis thus indicating an interconnection of the Hpg and Dpg biosynthesis 

pathways in Streptomyces sp. DSM 11171. Such dual function has also been 

postulated for the Pgat protein of the balhimycin gene cluster (Pfeifer et al. 2001; 

Recktenwald et al. 2002). 



147 

 

Table 4.9: ORFs that were identified in the region of the feglymycin biosynthesis gene cluster that show a strong homology to ORFs of known NRPS 

gene clusters.  

Reference  
Li et al.(Li et al. 

2004) 

Pelzer et al. 
(Pelzer et al. 

1999) 

Pootoolal et al. 
(Pootoolal et al. 

2002) 
Chiu et al. (Chiu et 

al. 2001) 

van Wageningen et al. 
(van Wageningen et al. 

1998) 
Yin et al.(Yin, Zabriskie 

2006) 

product feglymycin teichoplanin balhimycin A47934 complestatin chloroeremomycin enduracidin 

strain 
Streptomyces sp. 

DSM 11171 
Actinoplanes 

teichomyceticus 
Amycolatopsis 
balhimycina 

Streptomyces 
toyocaensis 

Streptomyces 
lavendulae Amycolatopsis orientalis 

Streptomyces 
fungicidicus 

  tei bal sta com Cep end 

DAHP ORF 6 ORF14*      

transcriptional regulator ORF 7 x bbr StaQ ComG CZA382.26 ORF24 

Hmo ORF 8 ORF29* hmo Hmo Hmo ORF22  

HmaS ORF 9 ORF28* hmaS HmaS HmaS ORF21 ORF25 

Pdh (PD) ORF 10 ORF24* Pdh Pdh PD ORF1 ORF23 

LuxR regulatory protein ORF 11 ORF16*      

HpgT/Hmo fusions protein ORF12 ORF23* pgat HpgT HpgT PCZA361.25 ORF29 

DpgA ORF13 ORF17* dpgA DpgA  ORF27  

DpgB ORF14 ORF18* dpgB DpgB  ORF28  

DpgC ORF15 ORF19* dpgC DpgC  PCZA361.8  

DpgD ORF 16 ORF20* dpgD DpgD  ORF30  

putative alpha/beta fold 
esterase/lipase ORF 17 x bhp   PCZA361.30 ORF34 

histidine kinase ORF 18 x      

two component 
transcription regulator ORF 19 x  VanRst    

MbtH-like short polypeptide ORF 20 ORF1* orf1  ComE  ORF46 

ABC transporter ORF 21 x abc StaU ComL ORF2 ORF33 

NRPS (FegA) ORF 22 teiC bpsB StaC ComC CepB  
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4.6.2 Annotation of the NRPS genes 

NPRS genes of the feglymycin biosynthesis gene cluster were analyzed with the 

NCBI blast tool (Mizyed et al. 2005) and the NRPS/PKS analysis tool of the 

University of Maryland (Bachmann, Ravel 2009a). The NRPS region spans over 

about 50 kb and includes three ORFs that are organized collinearly. The first ORF22 

contains four modules, the second one (ORF23) six modules and the last one 

(ORF24) three modules. The first module is a loading module with A-T domain 

structure, followed by 11 elongation modules and a release module with a C-terminal 

thioesterase domain. The number of modules precisely corresponds to the number of 

amino acids of feglymycin (Figure 4.40).  

Table 4.10: Predicted amino acids (according to Bachmann, Ravel 2009a) and amino acid sequence 

of feglymycin.  

module predicted amino acid specificity of 
A-domain (Bachmann, Ravel 

2009a) 

predicted 
configuration 

amino acid of 
feglymycin 

1 Tyr D D-Hpg 

2 Tyr D D-Dpg 

3 Val L L-Val 

4 Tyr D D-Dpg 

5 Hpg L L-Hpg 

6 Tyr D D-Dpg 

7 Hpg L L-Hpg 

8 Tyr D D-Dpg 

9 Val L L-Val 

10 Tyr D D-Dpg 

11 Hpg L L-Hpg 

12 Phe L L-Phe 

13 Asp L L-Asp 

 

The organization of the epimerase domains (E-domains) also corresponds to the 

organization expected from the chemical structure formula and configuration of amino 

acids of feglymycin. The stereochemical outcome of the feglymycin structure is 

reflected by the configurational sequence D-D-L-D for the first ORF, L-D-L-D-L-D for the 

second ORF and L-L-L for the last ORF. A prediction of the amino acid substrates of 

the amino adenylation domains (A-domains) with the PKS/NRPS analysis tool of the 
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University of Maryland (Bachmann, Ravel 2009a) resulted in the following sequence: 

Tyr-Tyr-Val-Tyr-Hpg-Tyr-Hpg-Tyr-Val-Tyr-Hpg-Phe-Asp.  

Except for the misconstruction of the first Hpg and all Dpg residues the results are in 

perfect agreement with the structure of feglymycin (Table 4.10). The false 

interpretation of the Dpg residues and the D-Hpg residue might be explained by the 

low occurrence of these non-natural amino acids in NRPS clusters and hence in 

current NRPS databases. The first NRPS (ORF22) has strong homologies to NRPS 

ORFs of the related clusters like the TeiC protein in the teicoplanin gene cluster of 

Actinoplanes teichomyceticus (Li et al. 2004; Sosio et al. 2004), the BpsB protein in 

the balhimycin cluster of Amycolatopsis bahimycina (Pelzer et al. 1999) and the StaC 

protein in the gene cluster of A47934 producing Streptomyces toyocaensis (Pootoolal 

et al. 2002). In comparison with the homologous NRPS the position of ORF22 in the 

elongation cycle has shifted in the feglymycin gene cluster. While the homologous 

NRPS are the second (BpsB) or third NRPS (StaC, TeiC) in the elongation cycle, the 

NRPS in feglymycin is the first in the elongation process and contains the loading 

module. The second and third NRPSs of the feglymycin gene cluster (ORF23 and 

ORF24) have no strong homologies to NRPS of the related clusters. Instead the 

second NRPS shows a strong similarity to NRPS identified from different 

Rhodococcus strains but also the gramicidin synthetase LgrB from Streptomyces 

albus (Kessler et al. 2004). The third NRPS (ORF24) possesses strong similarities to 

NPRSs identified from different Streptomyces strains and Rhodococcus strains. An 

MbtH domain protein that can be found in similar form in nearly all related gene 

clusters was identified in ORF20. MbtH-like proteins were shown to influence amino 

acid activation and to work as integral components of bacterial non-ribosomal peptide 

synthases (Felnagle et al. 2010; Zhang et al. 2010). 
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Figure 4.40: a) Ball-model of feglymycin. b) Organization of the NRPS genes and deduced biosynthesis assembly line for feglymycin. 
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4.6.3 Testing of gene inactivation mutants of the feglymycin gene 
cluster 

Gene inactivation single crossover mutants of ORF 7, ORF13 (DpgA), ORF26 and 

ORF27 were generated by Dipl.-Ing. Lara Michel Mata (Diplomarbeit, TU Berlin 2011) 

and detected for feglymycin production by SIM-measurements with LC-Triple-Quad-

MS (Figure 4.41). The wild type strain Streptomyces sp. DSM 11171 was used as 

positive control. The generated mutants possess an apramycin resistance cassette 

inserted in the corresponding position of the four genes. The gene inactivation 

mutants were therefore cultivated in E1 medium with 25 µg/mL apramycin and 

400 µg/mL phosphomycin. Phosphomycin was added both to the gene inactivation 

mutants and the wild type, as it was found that Streptomyces sp. DSM 11171 has a 

natural phosphomycin resistance. The production controls were always performed 

with two different mutants and feglymycin production was tested both in 7 d, 10 d and 

14 d old bacterial cultures. All measurements were performed in triplicate.  

 

Figure 4.41: SIM-MS measurements of feglymycin with LC-Triple-Quad-MS in negative ionization 

mode of extracts from cell pellets of wild type and gene inactivation mutants of Streptomyces sp. DSM 

11171 cultured for 10 d in E1 medium. pink) wild type, green) DpgA mutant, yellow) ORF27 mutant, 

purple) ORF26 mutant, red) ORF7 mutant. Only for the wild type strain a peak at the characteristic 

retention time of feglymycin (Rt = 3.7 min) was detected.  

 

All four mutants failed to produce feglymycin in comparison to the wild type strain, 

indicating that these four genes are essential for feglymycin production and belong to 

the feglymycin gene cluster (Figure 4.41). To rule out a possible interference of the 

antibiotic apramycin with feglymycin production the experiment was repeated without 
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adding apramycin to the main culture of the knock-out mutants. The result was 

however the same.  

 

4.6.4 Further genes identified in the feglymycin gene cluster  

The feglymycin gene cluster contains several genes that can be connected to 

regulatory functions (Table 4.8). ORF7 has strong similarities to a transcription 

regulator with a ParB domain and ORF11 to a LuxR like transcription regulator. Both 

show the highest similarity to homologues in the teicoplanin gene cluster of 

A. teichomyceticus (Li et al. 2004; Sosio et al. 2004). ORF7 additionally has strong 

similarities to the StaQ transcription regulator described in the A47934 gene cluster 

of S. toyocaensis (Pootoolal et al. 2002) and to homologues in gene clusters of 

A. balhimycina, S. lavendulae and S. fungicidicus. The strong homology of these 

putative regulators to genes in related clusters indicates a high degree of 

conservation and an important role in regulation of the feglymycin gene cluster and 

related antibiotics. Experiments with an ORF7 gene inactivation mutant proofed that 

this transcription regulator is essential for feglymycin production (Figure 4.41). 

ORF18 codes for a histidine kinase and ORF19 for a two component transcription 

regulator. Both genes possibly are also involved in regulation of the feglymycin gene 

cluster. ORF19 shows similarities to the VanRst ORF found in S. toyocaensis 

(Pootoolal et al. 2002). In S. toyocaensis VanRst is expected to be associated with 

the regulation of the VanH, VanA and VanX resistance genes (Pootoolal et al. 2002). 

The VanH, VanA and VanX genes are predicted to be responsible for host resistance 

to vancomycin-like antibiotics by conversion of D-Ala-D-Ala in the peptidoglycan layer 

to D-Ala-D-lactate (Walsh et al. 1996). By inclusion of D-Ala-D-lactate instead of D-Ala-

D-Ala in the peptidoglycan layer the inhibition of cell-wall biosynthesis due to binding 

of vancomycin-like antibiotics to the D-Ala-D-Ala motif can be bypassed. However no 

genes homologous to VanH, A and X were found in the feglymycin gene cluster nor 

in the genome sequence of Streptomyces sp. DSM 11171. The lack of the common 

host resistance cluster in Streptomyces sp. DSM 11171 corresponds to the previous 

finding, that feglymycin has a different mode of action compared to the vancomycin-

like glycopeptides and that feglymycin does not inhibit the late stages of 

peptidoglycan biosynthesis. ORF19 also possess even stronger homology to the 

CutR regulator described to be responsible for the regulation of production of the 

polyketide antibiotic and pigment actinorhodin in Streptomyces lividans (Chang et al. 
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1996) and the CutR protein from Streptomyces avermitilis MA-4680 invovled in 

copper metabolism (Tseng, Chen 1991). ORF19 might therefore not be related to 

host resistance but possess a different regulatory function. ORF4 codes for a putative 

transmembrane efflux protein possibly involved in host resistance to feglymycin. 

Interesting was the finding of a protein with a peptidoglycan binding domain in 

ORF26 in close neighborhood to the NRPS genes. Remarkably ORF26 was found to 

be essential for feglymycin production (Figure 4.41). Peptidoglycan binding domains 

can be found in enzymes involved in the degradation of the bacterial cell wall (Briers 

et al. 2007). For ORF26 however no domains with lytic activity were predicted. 

Striking is also the high number of predicted peptidases in close distance of the 

feglymycin gene cluster e.g. ORF1, ORF29-32. A connection to the feglymycin gene 

cluster is however speculative.  

Several genes were identified in the feglymycin gene cluster that might be connected 

to feglymycin transport. A predicted ABC-transporter ORF21 was found in close 

distance to the NRPS genes. ORF21 has strong homologies to a predicted ABC-

transporter in the balhimycin gene cluster from A. balhimycina and the StaC gene in 

S. toyocaensis (Pootoolal et al. 2002). Homologous genes also exist in the gene 

clusters of S. lavendulae and S. fungicidicus. Two further putative ABC transporters 

can be found downstream of the feglymycin gene cluster in ORF27 and ORF28. A 

knock-out mutant of the ORF27 gene leads to the abortion of feglymycin production 

(Figure 4.41). ORF17 codes for a putative alpha/beta fold esterase or lipase. 

Homologues exist in the balhimycin (Pelzer et al. 1999) and the enduracidin gene 

cluster (Yin, Zabriskie 2006). The function however is unclear. ORF2 codes of a 

putative radical SAM domain protein and ORF4 for a putative SAM-dependent 

methyltransferase. It is however not certain that they are connected to the feglymycin 

biosynthesis.  
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4.7  Further gene cluster discovered in the genome of 
Streptomyces sp. DSM 11171 

By searching the Streptomyces sp. DSM 11171 genome with the artemis gene 

annotation tool (Rutherford et al. 2000) for open reading frames with a size larger 

than 1000 bp five further likely NRPS and PKS gene cluster were identified. These 

gene clusters were also analyzed with the NCBI blast tool (Mizyed et al. 2005) and 

the NRPS/PKS analysis tool of the University of Maryland (Bachmann, Ravel 2009a). 

The clusters were denominated as “small NRPS cluster” (cluster II), “NRPS-PKS 

cluster” (cluster III), “small PKS clusters” (cluster IV), “siderophore cluster” (cluster V) 

and “one-modulare NRPS cluster” (cluster VI) on the basis of their most striking 

characteristics and will be referred to under this names in the following text.  

 

4.7.1 Small NRPS gene cluster (cluster II) 

The gene cluster named “small NRPS cluster” (cluster II) is expected to span over a 

region of nearly 30 kb (Figure 4.42). The gene cluster is framed by coding DNA 

regions making it difficult to precisely determine the borders of the gene cluster and 

to predict which genes belong to the biosynthesis of the expected NRPS product. 

The in the following described genes might therefore also not all be genes belonging 

to this cluster. A remarkable finding is the large number of possible tailoring 

enzymes. ORF6, ORF8 and ORF14 code for monooxygenases, two of which are 

located directly next to the NRPS encoding gene (ORF6, ORF8). ORF6 is predicted 

to be a cytochrome P450 monooxygenase which is highly homologous to previous 

identified monooxygenases e.g. in the pristinamycin gene cluster of Streptomyces 

pristinaespiralis (Mast et al. 2011). ORF8 codes for a FAD-dependent 

monooxygenase with about 40 % identity to a molybdenum-containing 

oxidoreductase found to be a tailoring oxidase in the biosynthesis of the antitumor 

antibiotic dynemicin, a member of the enediyne family produced by Micromonaspora 

chersina (Gao, Thorson 2008). Interestingly, in Streptomyces sp. DMS 11171 the 

oxidoreductase domain is linked to a possible C-domain. A further putative 

monooxygenase is located in ORF14 highly homologous to diverse F420-dependent 

oxidoreductases. 
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Figure 4.42: Arrangement of the small NRPS gene cluster (cluster II). 

 

In close distance to the NRPS gene, in ORF5, additionally a SAM-dependent 

methyltransferase is located which shares about 70 % identity with an O-

methytransferase described in the biosynthesis gene cluster of the PKS antibiotic 

rifamycin from Amycolatopsis mediterranei S699 (August et al. 1998) and the MitM 

and MitN O-methyltransferases described in the gene cluster of the antitumor 

antibiotic mitomycin C in Streptomyces lavendulae NRRL 2564 (Mao et al. 1999). N- 

and C-methylations are common modifications of nonribosomal peptides. There S-

adenosylmethionine (SAM) is often the source of the methyl-group (Schwarzer et al. 

2003). ORF15 and ORF16 both code for homocysteine S-methyltransferases. 

Homocysteine S-methyltransferases catalyse the conversion of SAM and L-

homocysteine to S-adenosyl-L-homocysteine and L-methionine and also the back 

reaction and participate in the methionine metabolism (Balish, Shapiro 1967). 

Additional homocysteine S-methyltransferases present in this cluster might be 

justified by a higher demand of SAM due to a possible methylation of the NRPS 

product. ORF3 codes for a putative short-chain dehydrogenase/reductase possibly 

also involved in tailoring of the gene cluster product (Kallberg et al. 2002).  
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Figure 4.43: Organization of the NRPS genes and predicted amino acid specificities of the A-domains 

(according to Bachmann, Ravel 2009a). 

 

The NPRS gene (ORF7) is predicted to have typical NRPS organization. The A-

domains are predicted to accept L-Ser and L-Pro as substrates (Figure 4.43). The 

predicted peptide is therefore very short and apparently only contains proteinogenic 

amino acids. The large number of possible tailoring enzymes and the possibility of an 

iterative biosynthesis, could however hint to a di-, tri- or multimerization of the 

dipeptide by the Te-domain and to a strong tailoring.  

ORF11 and ORF13 code for putative transcription regulators possibly involved in the 

regulation of the gene cluster. Beside the tailoring enzymes the small NRPS cluster 

contains further interesting enzymes (Table 4.11). E.g. a possible calcium binding 

enzyme in ORF4 with an EF hand domain. EF hand domain proteins can work as 

molecular switch and play a role in the calcium signaling in cells (Capozzi et al. 

2006). ORF9 codes for a 3-oxoacyl-[acyl-carrier-protein (ACP)]-synthase highly 

homologous to a gene in the genome of the erythromycin producer 

Saccharopolyspora erythraea (Oliynyk et al. 2007) and ORF12 for an 

isochorismatase. The 3-oxoacyl-(ACP)-synthase uses Acetyl-CoA and Malonyl-CoA 

to form oxoacyl- and catalyzes the first step in the fatty acid biosynthesis. The 

isochorismatase catalysis the formation of 2,3-dihydroxy-2,3-dihydrobenzoate and 

pyruvate from isochorismate and plays a role in the biosynthesis of 

dihydroxybenzoate containing siderophores like enterobactin (Raymond et al. 

2003a). ORF1, ORF2 and ORF10 code for highly conserved hypothetical proteins. 

The connection and interplay of all these interesting enzymes to the small NRPS 

biosynthesis is however difficult to predict.  

Remarkably, no ABC-transporters and no MbtH-like protein could be identified in the 

region of the gene cluster.  
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Table 4.11: ORFs that were identified in the region of the small NRPS gene cluster (cluster II). 

ORF   best match     

ORF 
size 
(aa) source entry proposed function 

1 266 
Streptomyces clavuligerus 

ATCC 27064 ZP_08219737 conserved hypothetical protein 

2 229 
Streptomyces griseoflavus 

Tu4000  ZP_07310245 conserved hypothetical protein 

3 306 Streptomyces sp. Mg1 ZP_04996125 putative short-chain dehydrogenase 

4 183 Streptomyces sp. Mg1 ZP_04996126 calcium-binding protein 

5 358 Streptomyces sp. Mg1 ZP_04996127 SAM dependent methyltransferase 

6 420 Streptomyces sp. Mg1 ZP_04996128 cytochrome P450 monooxygenase 

7 2463 Streptomyces sp. Mg1 ZP_04996129 non-ribosomal peptide synthetase  

8 844 
Streptomyces clavuligerus 

ATCC 27064  ZP_06771754 
probable FAD-dependent 

monooxygenase 

9 341 Streptomyces sp. Mg1 ZP_04996133 
3-oxoacyl-[acyl-carrier-protein] 

synthase 

10 219 
Streptomyces ghanaensis 

ATCC 14672 ZP_06581823  conserved hypothetical protein 

11 414 
Streptomyces clavuligerus 

ATCC 27064 ZP_06776081 putative transcriptional regulator 

12 210 Streptomyces sp. e14  ZP_06711196 isochorismatase 

13 545 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06908802 
bldA-regulated nucleotide binding 

protein 

14 307 

Streptomyces griseus 
subsp. griseus NBRC 

13350 YP_001823089 
putative F420-dependent 

oxidoreductase 

15 305 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06908798 homocysteine S-methyltransferase 

16 480 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06908798 homocysteine S-methyltransferase  

 

4.7.2 NRPS-PKS cluster (cluster III) 

The gene cluster named “NRPS-PKS cluster” is expected to span over a region of 

slightly more than 30 kb and contains four NRPS-like genes (ORF6, ORF7, ORF9, 

ORF10) and one PKS gene (ORF5) (Figure 4.44). Furthermore it contains several 

regulators, transporters and two possible peptidases and one 4-phosphopantetheinyl 

transferase (SFP, ORF2) (Table 4.12). The gene cluster is framed by coding DNA 

regions making it difficult to determine the borders of this cluster. 
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Figure 4.44: Arrangement of the NRPS-PKS gene cluster (cluster III). 

 

4'-phosphopantetheinyl transferases (SFPs) can serve for both NRPS and PKS 

biosynthesis. The SFP activates NRPS and PKS by transferring a 4-

phosphopantetheine (4’PP) cofactor from coenzyme A to the PCP (peptidyl carrier 

protein; NRPS) or ACP (acetyl carrier protein; PKS) (Lambalot, Walsh 1995). The 

putative SFP gene in ORF2 shows 45 % identity with the ovmF gene of the 

biosynthetic gene cluster of the PKS oviedomycin from Streptomyces antibioticus 

ATCC 11891 (Lombó et al. 2004). ORF1 codes for a highly conserved protein with an 

S-adenosyl methyltransferase domain. The existence of a methyltransferase might 

indicate a possible modification by methylation. Likewise, this assumption is 

supported by the presence of a homocysteine S-methyltransferase in ORF16.  
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Figure 4.45: Organization of the NRPS (ORF6, ORF7, ORF9, ORF10) and PKS (ORF5) genes and 

predicted amino acid specificities of the A-domains (Bachmann, Ravel 2009a). 

 

The PKS gene (ORF5) contains three typical PKS modules: a ketosynthase (KS) 

module, an acyltransferase (AT) module and a thioesterase (PP) module. The 

thioesterase was also predicted to be an acyl carrier protein (ACP). PKS biosynthesis 

normally requires three essential domains to form a β-keto ester intermediate: a KS, 

an AT and an ACP (Staunton, Weissman 2001). PKS biosynthesis genes can also 

contain a variety of further modifying domains like e.g. a ketoreductase (KR), a 

dehydratase (DH) and a enoyl reductase (ER) (Staunton, Weissman 2001), this is 

however not predicted for ORF5  (Figure 4.45). 



160 

 

The NRPS genes show no typical organization and the online prediction tool failed to 

predict the function of several of the NRPS modules. For the first NRPS gene two 

non-identifyable modules were predicted followed by a C-domain and a Te-domain. 

The C-domain in ORF6 was predicted to be untypically positioned directly next to the 

Te-domain. ORF7 was predicted to be a lone-standing C-domain and ORF9 two 

adjacent lone-standing Te-domains. For ORF10 the first module could not be 

identified. It might however be a C-domain as it is followed by an A-domain, predicted 

to accept Thr, and a Te-domain (Figure 4.45). ORF3, ORF11 and ORF15 are highly 

homologous to numerous putative transcription regulators and are possibly involved 

in regulation of the NRPS-PKS gene cluster. ORF14 might also be connected to 

regulation as it is predicted to be an ATP-binding protein and is about 40 % identical 

to the ecaE gene connected with gene regulation of the antibiotic actinorhodin in 

Streptomyces coelicolor (Huang et al. 2001). ORF3 and ORF12 are predicted to be 

transporters possibly involved in transport of the gene product out of the bacteria cell. 

ORF12 is about 60 % identical to a transporter identified in the gene cluster of the 

herbicide phosphinothricin tripeptide from Streptomyces viridochromogenes Tü494 

(Schwartz et al. 2004).  

ORF13 is predicted to be a possible lipase or esterase and ORF8 possesses a M18 

peptidase aspartyl aminopeptidase domain and is highly homologous to diverse 

putative aminopeptidases. The connection of these two genes in the NRPS-PKS 

gene cluster is however uncertain.  

 

  



161 

 

 

Table 4.12: ORFs that were identified in the region of the NRPS-PKS gene cluster (cluster III). 

ORF   best match     

ORF 
size 
(aa) source entry proposed function 

1 260 
Streptomyces ghanaensis 

ATCC 14672 ZP_04688780  conserved hypothetical protein 

2 414 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06907893 phosphopantetheinyl transferase 

3 367 
Streptomyces roseosporus 

NRRL 15998 ZP_04695889 LuxR family transcriptional regulator 

4 498 
Streptomyces cf. griseus 

XylebKG-1  ZP_08236170     
major facilitator superfamily 

permease 

5 1110 
Streptomyces cf. griseus 

XylebKG-1 ZP_08236171 PKS 

6 1753 
Streptomyces roseosporus 

NRRL 15998 ZP_04695885 NRPS 

7 632 

Streptomyces griseus 
subsp. griseus NBRC 

13350 YP_001823997 putative NRPS 

8 427 

Streptomyces griseus 
subsp. griseus NBRC 

13350 YP_001823998 Aspartyl aminopeptidase 

9 492 
Streptomyces cf. griseus 

XylebKG-1 ZP_08236174 thioesterase 

10 1131 
Streptomyces avermitilis 

MA-4680 NP_824375 NRPS 

11 487 
Streptomyces avermitilis 

MA-4680 NP_822883 putative transcriptional regulator 

12 424 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06908448 transmembrane transporter  

13 494 

Streptomyces 
hygroscopicus ATCC 

53653 ZP_07299637 lipolytic enzyme, G-D-S-L 

14 146 
Streptomyces roseosporus 

NRRL 15998 ZP_04697493 regulatory protein 

15 299 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06908070 transcription regulator 

16 480 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06908798 homocysteine S-methyltransferase  
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4.7.3 Small PKS cluster (cluster IV) 

The gene cluster named “small PKS cluster” is expected to span over a region of 

nearly 30 kb and is, similarly to the previous described gene clusters, framed by 

coding DNA regions. It contains one PKS gene, several genes that can be related to 

fatty acid biosynthesis, further genes possibly involved in tailoring and one 

transporter gene (Figure 4.46).  

 

Figure 4.46: Arrangement of the small PKS gene cluster (cluster IV). 

 

ORF1 codes for a putative 3-hydroxybutyryl-CoA dehydrogenase. 3-hydroxybutyryl-

CoA dehydrogenases catalyze the convertion of 3-hydroxybutanoyl-CoA to 3-

acetoacetyl-CoA using NADP+ as proton acceptor and play a role in the β-oxidation 

of fatty acids (Colby, Chen 1992) and in the formation of short-chain fatty acid like 

butyrate (Seedorf et al. 2008). ORF4 is predicted to be an oxidoreductase and 

possesses a domain characteristic for 3-hydroxyisobutyrate dehydrogenases. 3-

hydroxyisobutyrate dehydrogenases convert 3-hydroxy-2-methylpropanoate to 2-

methyl-3-oxopropanoate (Rougraff et al. 1988). The butyrate metabolism provides 

precursors for the dicarboxyl acids used for polyketide biosynthesis (Liu, Reynolds 

2001). The existence of genes connected to fatty acid biosynthesis, butyrate 

metabolism and related pathways in a PKS gene cluster therefore seems reasonable.  
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There are several genes in the gene cluster that could be involved in tailoring 

reactions of the gene product (Table 4.13). ORF2 and ORF3 are predicted to be 5-

methyltetrahydropteroyltriglutamate-homocysteine methyltransferases catalyzing the 

reaction of 5-methyltetrahydropteroyltri-L-glutamate and L-homocysteine to 

tetrahydropteroyltri-L-glutamate and L-methionine connected to methionine 

metabolism. Interestingly, both share 50 % identity with a cobalamin-independent 

methionine synthase in the plant Arabidopsis thaliana (Ravanel et al. 2004). Analysis 

with the NCBI blast tool indicates that ORF2 and ORF3 might form a single protein 

but were disrupted by default sequencing. ORF6 codes for a putative hydrolase with 

about 40 % identity with the lipE gene in the gene cluster of antibiotic friulimicin in 

Actinoplanes friuliensis (Heinzelmann et al. 2005), about 35 % identity with tailoring 

enzymes in the vancomycin producer Amycolatopsis orientalis (a non-heme 

halogenase) (van Wageningen et al. 1998) and in the bahimycin producer 

Amycolatopsis balhimycina (a putative hydrolase) (Pelzer et al. 1999).  

Three genes in the small PKS gene cluster hint to a connection to isoprenoid 

biosynthesis (Table 4.13). ORF10 is predicted to code for a polyprenyl diphosphate 

synthase and has 46 % identity with the PntB protein from Streptomyces arenae 

connected to sesquiterpenoid antibiotic pentalenolacton biosynthesis (Zhu et al. 

2011). Polyprenyl diphosphate synthases catalyze the reaction of farnesyl 

diphosphate and isopentenyl diphosphate to polyprenyl diphosphate and are 

generally involved in isoprenoid biosynthesis (Okada et al. 1996). ORF8 and ORF14 

also code for proteins that might be connected to isoprenoid biosynthesis. ORF8 is 

predicted to possess a geranyl geranyl reductase domain and ORF14 possesses 

30 % identity with a terpene synthase of Planobispora rosea (Giardina et al. 2010).  

 

Figure 4.47: Organization of the PKS gene (ORF9). 
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The PKS gene contains the three domains essential for PKS biosynthesis: KS, AT 

and PP (ACP). Additionally it contains the domains that can introduce modifications 

to the keto group: DH, ER and KR (Figure 4.47). The gene cluster contains three 

genes that might be related to host resistance. ORF5 is predicted to contain a 

nucleotidyl transferase domain similar to the one in the nucleotidyl transferase in 

Staphylococcus aureus than confers bacterial resistance to the antibiotic kanamycin 

(Sakon et al. 1993). The kanamycin nucleotidyl transferase in Staphylococcus aureus 

inactivates kanamycin by transferring a nucleotidyl residue from a nucleoside 

triphosphate like ATP, GTP or UTP onto kanamycin (Sakon et al. 1993). ORF5 might 

confer host resistance to the unknown PKS in a similar way. ORF7 codes for a highly 

conserved hypothetical protein with a glycoxalase like domain and two potential 

metal-binding domains. Glyoxalase like structure can also be found in antibiotic 

resistance proteins like in the FosA protein that confers phosphomycin resistance 

(Bernat et al. 1997). ORF11 codes for a putative ABC transporter possibly involved in 

the export of the PKS product out of the cell. ORF12, ORF13, ORF15 and ORF16 

code for conserved hypothetical proteins and there function is not clear. ORF12 is 

predicted to possess a SCP-like extracellular protein domain with unknown function 

(Yeats et al. 2003).  
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Table 4.13: ORFs that were identified in the region of the small PKS gene cluster (cluster IV). 

ORF  best match   

ORF 
size 
(aa) source entry proposed function 

1 290 Streptomyces sp. Mg1 ZP_04998790 
3-hydroxybutyryl-CoA 

dehydrogenase 

2 295 
Streptomyces clavuligerus 

ATCC 27064 ZP_06776109 

5-
methyltetrahydropteroyltriglutamate-

-homocysteine methyltransferase 

3 651 
Streptomyces roseosporus 

NRRL 11379 ZP_04712500 

5-
methyltetrahydropteroyltriglutamate-

-homocysteine methyltransferase 

4 322 
Streptomyces venezuelae 

ATCC 10712 CCA55307 putative oxidoreductase 

5 280 Streptomyces sp. Tu6071 ZP_08456800 
putative nucleotide transferase 

domain 

6 296 

Mycobacterium 
parascrofulaceum ATCC 

BAA-614 ZP_06852772 possible hydrolase 

7 247 
Streptomyces ghanaensis 

ATCC 14672 ZP_06574548 conserved hypothetical protein 

8 421 
Streptomyces 

bingchenggensis BCW-1 ADI05134 putative geranyl geranyl reductase 

9 2214 Frankia sp. EAN1pec YP_001507667 PKS 

10 364 
Streptomyces 

griseoaurantiacus M045 ZP_08287721 
putative polyprenyl diphosphate 

synthase 

11 307 
Streptomyces ambofaciens 

ATCC 23877 CAJ89729 
putative ABC transporter ATP-

binding subunit 

12 120 
Salinispora tropica CNB-

440 YP_001161048 hypothetical protein 

13 362 
Streptomyces ghanaensis 

ATCC 14672 ZP_04690390 hypothetical protein 

14 356 
Streptomyces ambofaciens 

ATCC 23877 CAJ89725 terpene synthase 

15 420 Streptomyces subtropicus ADM87299 hypothetical protein 

16 217 Streptomyces sp. Mg1 ZP_04995961 hypothetical protein 
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4.7.4 Siderophore cluster (cluster V) 

The cluster termed “siderophore cluster” (cluster V) is expected to span over ~ 34 kb 

and to comprise 23 ORFs (Figure 4.48). Striking is the high number of genes than 

can be connected to siderophore biosynthesis, transport and regulation as well as 

the high homology of large parts of the gene cluster to the gene cluster of 

griseobactin in Streptomyces sp. ATCC 700974 (Patzer, Braun 2010) (Table 4.14). 

 

Figure 4.48: Arrangement of the siderophore gene cluster (cluster V). 

 

ORF4-ORF16 are highly homologous (70-80 % identity) to genes in the gene cluster 

responsible for biosynthesis of the catechol-siderophore griseobactin (Table 4.14). 

Several genes can be connected to the biosynthesis and incorporation of 

dihydroxybenzoic acid. Dihydroxybenzoic acid possesses a catecholate moiety 

responsible for the iron complexation of the catecholate type siderophores (Raymond 

et al. 2003b). ORF7 is a predicted isochorismate synthase and ORF5 is a predicted 

isochorismatase. Isochorismate synthases catalyse the formation of isochorismate 

from chorismate and isochorismatases catalyse the cleavage of isochorismate into 

2,3-dihydroxy-2,3-dihydrobenzoate and pyruvate. 2,3-dihydroxy-2,3-dihydrobenzoate 

could further be oxidized to 2,3-dihydroxybenzoate (DHB) by ORF8, a predicted 2,3-
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dihydro-2,3-dehydroxybenzoate dehydrogenase. ORF6 is predicted to be a 2,3-

dihydroxybenzoate-AMP ligase. 2,3-dihydroxybenzoate-AMP ligase activates the 

non-proteinogenic amino acid DHB with ATP and is involved in the biosynthesis of 

catechol-siderophores like enterobactin (WALSH et al. 1991). ORF6 therefore might 

activate DHB and transfer it onto ORF4 which has high homology to the DhbG 

protein in the griseobactin cluster, a predicted aryl carrier for DHB.  

 

Table 4.14: ORFs of the siderophore gene cluster (cluster V) highly homologous to ORFs of the 

griseobactin gene cluster. 

ORFs in Streptomyces sp. DSM 
11171 gene cluster 

genes in the Streptomyes sp. 
ATCC 700974 gene cluster 

identity 

ORF4 dhbG 57/77 (74%) 

ORF5 dhbB 169/210 (80%) 

ORF6 dhbE 449/533 (84%) 

ORF7 dhbC 311/403 (77%) 

ORF8 dhbA 188/280 (67%) 

ORF9 griA 615/785 (78%) 

ORF10 griB 287/402 (71%) 

ORF11 griC 364/423 (86%) 

ORF12 griD 39/55 (71%) 

ORF13 griE 1750/2484 (70%) 

ORF14 griF 291/352 (83%) 

ORF15 griG 243/304 (80%) 

ORF16 griH 210/259 (81%) 

 

ORF9 is predicted to be an iron-siderophore uptake transporter. ORF10 is a putative 

esterase and homologous to the GriB protein of the griseobactin gene cluster. Due to 

the strong binding of iron by the catecholate siderophores iron is mostly released by 

cleavage and therefore by destruction of the siderophore. This has been shown for 

enterobactin and the Fes peptidase (Raymond et al. 2003b). ORF10 thus, is possibly 

involved in cleavage of the siderophore. ORF11 is a predicted major facilitator 

superfamily transporter potentially involved in export of the siderophore and is over 

80 % identical with the griseobactin exporter. ORF14 is predicted to belong to the 

M20 peptidase superfamily. ORF14 shares more than 80 % identity with the 

griseobactin protein GriF. GriF is expected to contribute to the release of iron from 

the siderophore together with the esterase GriB (Patzer, Braun 2010). A similar 
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function for ORF14 might therefore be expected. ORF15 and ORF16 code for a 

siderophore-binding lipoprotein and an iron-siderophore ABC transporter highly 

homologous to GriG and GriH proteins in the griseobactin gene cluster of 

Streptomyces sp. ATCC 700974. 

 

Figure 4.49: Modular organization of the NRPS gene and predicted amino acid specificities of the A-

domains.  

 

The NRPS gene in ORF13 shows over 70 % identity with the griseobactin NRPS 

gene (Patzer, Braun 2010) and 50 % identity with the bacillibactin NRPS gene from 

Bacillus subtilis responsible for the linking of 2,3-dihydroxybenzoate, glycine and 

threonine (May et al. 2001). The predicted amino acid usage is Glu or Gln for the first 

A-domain and Thr for the second A-domain (Figure 4.49). The homologous NRPS 

from Streptomyces sp. ATCC 700974 accepts arginine and threonine and forms a 

trimeric ester of 2,3-dihydroxybenzoyl-arginyl-threonine yielding griseobactin. The 

prediction of the A-domains of the griseobactin NRPS gene however wrongly resulted 

in a prediction of Gln and Thr which was explained by the low appearance of Arg in 

NRPS gene clusters. Due to the very high homology of the NRPS gene from 

Streptomyces sp. DSM 11171 with the one of Streptomyces sp. ATCC 700974 an 

identical amino acid usage of the A-domains might be expected and a likewise 

incorrect prediction of Glu/Gln instead of Arg. ORF12 codes for a putative MbtH-like 

protein. MbtH-like proteins have been found to facilitate amino acid activation in 

NRPS (Felnagle et al. 2010; Zhang et al. 2010). 
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Table 4.15: ORFs that were identified in the region of the small siderophore gene cluster (cluster V). 

ORF  best match   

ORF 
size 
(aa) source entry proposed function 

1 414 
Streptomyces venezuelae 

ATCC 10712 CCA56420 
NADH:flavin oxidoreductase/NADH 

oxidase 

2 244 Streptomyces cattleya CAD18969 putative oxidoreductase 

3 302 
Stackebrandtia 

nassauensis DSM 44728 YP_003511648 LysR family transcriptional regulator 

4 77 

Streptomyces griseus 
subsp. griseus NBRC 

13350 YP_001828242  acyl carrier for DHBA 

5 210 
Streptomyces sp. ATCC 

700974 CBA63658 isochorismatase 

6 563 
Streptomyces cf. griseus 

XylebKG-1 ZP_08240460 2,3-dihydroxybenzoate-AMP ligase 

7 402 Streptomyces sp. ACTE ZP_06271935  isochorismate synthase 

8 276 Streptomyces sp. ACTE ZP_06271936 2,3-dihydro-DHBA dehydrogenase 

9 782 
Streptomyces sp. ATCC 

700974 CBA63668 
siderophore uptake membrane 

transporter 

10 403 
Streptomyces cf. griseus 

XylebKG-1 ZP_08240464 esterase 

11 531 

Streptomyces griseus 
subsp. griseus NBRC 

13350 YP_001828249 
major facilitator superfamily 

permease 

12 65 
Streptomyces cf. griseus 

XylebKG-1 ZP_08240466  MbtH-like protein 

13 2442 
Streptomyces sp. ATCC 

700974 CBA63680 NRPS 

14 401 

Streptomyces griseus 
subsp. griseus NBRC 

13350 YP_001828252 M20/M25/M40 family peptidase 

15 334 
Streptomyces sp. ATCC 

700974 CBA63680 
putative siderophore-binding 

lipoprotein 

16 284 
Streptomyces sp. ATCC 

700974 CBA63685 

iron-siderophore uptake ABC 
transporter substrate-binding 

protein 

17 219 
Streptomyces 

bingchenggensis BCW-1 ADI07509 
two-component system response 

regulator 

18 302 Streptomyces sp. Mg1 ZP_04996507 
ABC transporter ATP-binding 

protein 
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ORF 
size 
(aa) source entry proposed function 

19 419 
Streptomyces 

bingchenggensis BCW-1 ADI07508 
two-component system sensor 

kinase 

20 282 Streptomyces sp. Mg1 ZP_04996506 hypothetical protein 

21 247 
Streptomyces griseoflavus 

Tu4000 ZP_07315002 hypothetical protein 

22 662 
Saccharopolyspora 

erythraea NRRL 2338 YP_001107449 hypothetical protein 

23 322 
Saccharopolyspora 

erythraea NRRL 2338 ZP_06567748 membrane protein 

 

The gene cluster may contain further genes involved in transport and regulation 

(Table 4.15). ORF18 codes for a putative ABC-multidrug transporter and ORF20 is a 

conserved hypothetical protein that is also predicted to contain a domain 

characteristic of ABC transporters. 

ORF3 is a predicted LysR-type transcription regulator and ORF17 and ORF19 

strongly resemble putative two-component system response regulators in different 

bacteria. These three ORF can therefore be expected to participate in regulation.  

ORF21, ORF22 and ORF23 are conserved hypothetical proteins. A possible function 

of these ORFs in the gene cluster is arguable. ORF21 is a conserved hypothetical 

protein with nearly 50 % identity to a secreted serine protease from Streptomyces 

fradia (KITADOKORO et al. 1994) and a serine protease from Streptomyces griseus 

(Read et al. 1983). ORF21 might therefore function as a secreted protease. ORF23 

possesses an exonuclease-endonuclease-phosphatase (EEP) domain. ORF1 and 

ORF2 are predicted to code for oxidoreductases. ORF1 is a putative NADH-FAD-

dependent oxidoreductase and shows over 50 % identity to an oxidoreductase in 

antifungal garbonolides producing strain Streptomyces galbus (Karki et al. 2010) and 

nearly 49 % identity with a predicted morphinone reductase in Pseudomonas 

aeruginosa PA01 (Stover et al. 2000). Morphinone reductases are expected to be 

involved in the metabolism of morphine and codeine (French, Bruce 1995). ORF2 is 

a predicted 3-ketoacyl-ACP reductase and is to 40 % identical with the CetF1 gene 

from Actinomyces sp. Lu 9419 coding for a oxidoreductase involved in the 

biosynthesis of the antitumor agent cetoniacytone A (Wu et al. 2009). The role of the 

oxidoreductases in the siderophore gene cluster is doubtful.  
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The high homology to the griseobactin gene cluster not only in the gene sequence 

but also in the organization of the genes indicates a NRPS product very similar to 

griseobactin possibly even identical to griseobactin. 

4.7.5 One-modular NRPS cluster (cluster VI) 

The cluster termed as one-modular NRPS cluster (cluster VI) is expected to span 

over a region of about 35 kb and contains two SFPs and several transporters (Figure 

4.50). 

 

Figure 4.50: Organization of the one-modulare NRPS gene cluster (cluster VI). 

 

Curiously, the cluster contains several genes that can be connected to fatty acid 

biosynthesis but no distinct PKS genes. ORF3 is a predicted enoyl-CoA hydratase. 

Enoyl-CoA hydratases play a role in the metabolism of fatty acids (Bahnson et al. 

2002). ORF4 is predicted to be a putative PKS protein. A prediction with the online 

NRPS/PKS analysis tool of the University of Maryland (Bachmann, Ravel 2009a) 

however gave no characteristic PKS domains. ORF4 also possesses 30 % identity 

with a β-ketoacyl-ACP synthase connected to haemolytic activity of group B 

Streptococci (Pritzlaff et al. 2001). ORF9 is a predicted β-ketoacyl-ACP reductase 
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and is over 60 % identical to the chain A of a β-ketoacyl-ACP reductase from 

Streptomyces coelicolor A3(2) that is expected to be shared between PKS and fatty 

acid biosynthesis (Tang et al. 2006).  

 

Figure 4.51: Organization of the NRPS gene (ORF11) and predicted amino acid specificity of the A-

domain. 

 

The NRPS gene in ORF11 contains only one module with a characteristic NRPS 

organization and is predicted to accept the amino acid Val (Figure 4.51). ORF5 and 

ORF10 are predicted SFP proteins. ORF5 shares nearly 50 % identity with a SFP in 

the tirandamycin gene cluster, an NRPS-PKS hybride antibiotic with a one-modular 

NRPS gene and three PKS genes (Carlson et al. 2010). SFP proteins are 

responsible for the activation of both NRPS and PKS.  

ORF8, ORF12, ORF13 and ORF19 are putative multi drug efflux pumps and might 

help to confer host resistance (Table 4.16). ORF12 is very small and analysis with 

the NCBI blast tool indicates that ORF12 and ORF13 might form a single gene but 

were disrupted by default sequencing. ORF17 interestingly has a domain 

characteristic for a metallo-β-lactamase. β-Lactamases are responsible for antibiotic 

resistance to β-lactam antibiotics (Jacoby 2009).  

ORF1 is a hypothetical protein with best homology to a predicted ATP-binding protein 

in Streptomyces scabiei 87.22 and also ORF6, ORF14 and ORF18 are conserved 

hypothetical proteins with unknown function. ORF2 is highly conserved predicted 

amidotransferase with nearly 80 % identity with a protein in the gene cluster of 

Streptomyces fradiae responsible for the biosynthesis of lipopeptide antibiotic 

A54145 (Miao et al. 2006). ORF7 is a predicted class II tRNA synthase with over 

30 % identity with a seryl-tRNA-synthase (Bilokapic et al. 2006). ORF15 shows high 

homology to putative glycosyl hydrolases, ORF16 is a putative serine protease and 

ORF20 a putative dehydrogenase. The role these genes might play in the 

biosynthesis of the mysterious product however is also very mysterious.  
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Table 4.16: ORFs that were identified in the region of the one-modular NRPS gene cluster. 

ORF  best match   

ORF 
size 
(aa) source entry proposed function 

1 464 
Streptomyces scabiei 

87.22 YP_003488913 hypothetical protein 

2 257 Streptomyces sp. C ZP_07288290 amidinotransferase 

3 265 
Rhodococcus equi ATCC 

33707 ZP_08156307 enoyl-CoA hydratase 

4 441 
Candidatus Kuenenia 

stuttgartiensis CAJ74368 
strongly similar to β-ketoacyl acyl 

carrier protein synthase II 

5 229 
Saccharopolyspora 

erythraea NRRL 2338 ZP_06564430 
putative SFP type 

phosphopantetheinyl transferase 

6 256 
Streptomyces flavogriseus 

ATCC 33331 ADW01574 conserved hypothetical protein 

7 291 
Bacillus cereus subsp. 
cytotoxis NVH 391-98 YP_001373541 tRNA synthetase class II 

8 495 
Verminephrobacter 

eiseniae EF01-2 YP_995818 Na
+
-driven multidrug efflux pump 

9 234 Streptomyces albus J1074 ZP_04701280 3-oxacyl-(ACP) reductase 

10 235 
Kitasatospora setae KM-

6054 BAJ28261 
putative SFP type 

phosphopantetheinyl transferase 

11 1658 
Verrucosispora maris AB-

18-03 YP_004406681 NRPS 

12 84 
Streptomyces flavogriseus 

ATCC 33331 ADW05458 multidrug resistance efflux protein 

13 350 Streptomyces sp. ACTE ZP_06274128 multidrug resistance efflux protein 

14 293 
Streptomyces flavogriseus 

ATCC 33331 ADW07485 conserved hypothetical protein 

15 634 

Streptomyces 
viridochromogenes DSM 

40736 ZP_07303857 glycosyl hydrolase 

16 654 
Streptomyces scabiei 

87.22 YP_003492078 protease 

17 362 
Streptomyces scabiei 

87.22 YP_003492077 
metallo-β-lactamase superfamily 

protein 

18 418 
Streptomyces scabiei 

87.22 YP_003492076 conserved hypothetical protein 

19 524 

Streptomyces 
viridochromogenes DSM 

40736 ZP_07302080 transmembrane efflux protein 

20 729 
Streptomyces avermitilis 

MA-4680 NP_822176 dehydrogenase 

 

The untypical organization of the one-modular NRPS gene cluster makes it difficult to 

predict a possible target or foretell if this gene cluster can be activated. Striking is 
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perhaps the high number of ORF that possess strong homologues in the genome of 

Streptomyces scabies 87-22 however to homologues not annotated to specific gene 

clusters so far (Table 4.17). The gene locus of some of the homologues in 

Streptomyces scabies are also located in direct neighborhood as are the genes in the 

feglymycin gene cluster (e.g. ORF16, ORF17, ORF18) indicating that they belong to 

one gene cluster.  

 

Table 4.17: ORFs in the one-modular NRPS gene cluster with highly homologous to ORFs in the 

genome of Streptomyces scabies 87-22. 

ORF feglymycin gene cluster gene locus of homologue genes 
in the Streptomyces scabies 87-

22 genome 

identity 

ORF1 YP_003488913   90/287 (31%) 

ORF2 YP_003486925   157/257 (61%) 

ORF5 YP_003487252 107/199 (54%) 

ORF7 YP_003485958    69/238 (29%) 

ORF9 YP_003492663    145/239 (61%) 

ORF14 YP_003486332 203/276 (74%) 

ORF16 YP_003492078 412/620 (66%) 

ORF17 YP_003492077 235/399 (59%) 

ORF18 YP_003492076 305/410 (74%) 

ORF19 YP_003493681 399/485 (82%) 

ORF20 YP_003494105    400/533 (75%) 
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4.8  Further natural products isolated from the Streptomyces sp. 
DSM 11171 strain 

4.8.1 Isolation of preparative amounts of nocardamine 

As the Streptomyces sp. DSM 11171 strain was also expected to produce 

siderophores,  the strain was additionally cultured in M9 minimal medium for different 

time periods (1-7 days), extracted with MeOH and the MeOH extract were check with 

LC-Exactive-Orbitrap-MS for production of interesting molecular masses.  

 

Figure 4.52: LC-Exactive-Orbitrap-MS measurements of a MeOH extract of Streptomyces sp. DSM 

11171 cultured for 3 d in M9 medium in positive ionization mode. a) TIC, b) EIC 601 [M+H]
+
 

(Rt = 2.48 min) nocardamine, c) EIC 587 [M+H]
+
 (Rt = 2.33 min) demethylenenocardamine.  

 

In MeOH extracts of 3 d old cultures a very high yield of the molecular masses 601 

[M+H]+ and 587 [M+H] were detected in positive ionization mode (Figure 4.52). High 

resolving ESI-MS measurements detected an exact masses of 601.3593 [M+H]+ and 

587.3438 [M+H]+ in positive mode. The addition of 10 mM FeCl2 to the MeOH 

extracts led to the formation of iron complexes. In presence of iron the yield of the 

mass 601 decreased and a signal of 654 [M+Fe]+ appeared, indicating a possible 

binding of iron accompanied by the loss of one proton (Figure 4.53).  



176 

 

 

Figure 4.53: LC-Exactive-Orbitrap-MS measurements of a MeOH extract of Streptomyces sp. DSM 

11171 cultured for 3 d in M9 medium in positive ionization mode. Mass spectrum integrated at a Rt 

range of 2.3-2.6 min. 
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Figure 4.54: LC-Exactive-Orbitrap-MS measurements of a MeOH extract of Streptomyces sp. DSM 11171 cultured for 3 d in M9 medium in positive ionization 

mode upon incubation with of 10 mM FeCl2. a) TIC, b) EIC 654 [M+Fe]
+
 Fe-nocardamine, c) EIC 601 [M+H]

+
 nocardamine, mass spectrum recorded at a Rt range 

of 2-2.5 min.  
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The molecular mass of 601.36 was calculated with the Xcalibur instrument software 

and found to correspond with a possible molecular formula of C27H49O9N6 and the 

molecular mass of 587.34 corresponds to a possible molecular formula of 

C26H47O9N6. The molecular formula of C27H49O9N6  was found in the Dictionary of 

Natural Products to correspond to the cyclic peptide siderophore nocardamine (also 

desferrioxamine E or proferrioxamine E) previously isolated from Nocardia sp. and 

different Streptomyces strains (Keller-Schierlein, Prelog 1961; Lee et al. 2005; 

Johnson et al. 2008). The molecular formula of C26H47O9N6.was found to correspond 

to the lower homologue of norcardamine, demethylenenocardamine previously 

isolated from a marine-derived Streptomyces sp. strain (Lee et al. 2005).  

 

Figure 4.55: Structures of nocardamine and demethylenenocardamine. 

 

Due to the high yield production both siderophores were isolated from the 

supernatant of bacterial culture after 2 d of cultivation in M9 medium. The 

supernatant was fractionated chromatographically with XAD-16 material. The 

nocardamine and demethylenenocardamine containing fraction was further 

fractionated by preparative RP-HPLC. From 1 L of bacterial culture about 11 mg of 

nocardamine and 2 mg demethylenenocardamine were isolated. Purity was verified 

by analytical HPLC and mass spectrometry. The isolated molecules were analyzed 

by Bahar Yanova (a PhD student in the group Prof. Roderich Süssmuth) with 1H- and 

13C-NMR spectroscopy. The NMR spectra were found to be in perfect agreement 

with the NMR spectra predicted with the NMR software for nocardamine and 

demethylenenocardamine, which is very strong evidence that the isolated 

compounds are nocardamine and demethylenenocardamine (Figure 4.55).  
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4.8.2 Annotation of the nocardamine biosynthesis gene cluster 

The nocardamine (desferoxamine E) biosynthesis was previously described to be 

coded by the des operon in S. coelicolor M145 (Barona-Gómez et al. 2004). The des 

operon contains the genes desA, desB, desC and desD, which are expected to be 

essential for the biosynthesis of desferoxamines. L-lysine is accordingly the starting 

material for desferrioxamine and converted by DesA, a decarboxylase, to cadaverine 

which is hydroxylized by DesB to N-hydroxycadaverine. DesC is expected to catalyze 

the acylation of N-hydroxycadaverine resulting in hydroxamic acid which is expected 

to be oligomerized to a trimer and cyclylized to desferrioxamine by DesD (Barona-

Gómez et al. 2004) (Figure 4.56).  

 

Figure 4.56: Scheme of the nocardamine biosynthesis (figure according to Barona-Gómez et al. 

2004).  

 

ORFs with homology to desA, desB, desC and desD were also found in the genome 

of Streptomyces sp. DSM 11171 arranged in line (ORF9-12) in a gene cluster 

denotated as nocardamine cluster (Figure 4.57). Several genes that were not 

described to be essential for nocardamine biosynthesis by Barona-Gomez et al. 
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(Barona-Gómez et al. 2004) but were found in close distance to the des operon are 

included here in the nocardamine gene cluster (ORF1-8, ORF13-14). These genes 

are listed for the sake of completeness, as a connection of these genes to 

nocardamine biosynthesis seems possible although is not certain. 

 

Figure 4.57: Organization of the nocardamine gene cluster. 

 

Next to the desD gene a gene predicted to code for a β-N-acetylhexosaminidase was 

identified (ORF13) which is in concordance with an N-acetylhexosaminidase 

identified in the des gene cluster in S. coelicolor M145 in direct neighborhood of the 

desD gene (Barona-Gómez et al. 2004). N-Acetylhexosaminidases catalyze the 

hydrolysis of N-acetyl-β-hexosaminides. How this is connected to nocardamine 

biosynthesis is however unclear.  
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Table 4.18: ORFs that were identified in the region of the nocardamine gene cluster. 

ORF  best match   

ORF size (aa) source entry proposed function 

1 209 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06911659  TetR-family transcriptional regulator 

2 397 
Streptomyces clavuligerus 

ATCC 27064 ZP_06769497  predicted membrane protein  

3 538 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06911658  
putative acetyl/propionyl CoA 
carboxylase beta subunit 

4 586 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06911657  
acetyl/propionyl CoA carboxylase 

alpha subunit 

5 312 Streptomyces sp. C ZP_07286861   hydroxymethylglutaryl-CoA lyase 

6 386 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06911655     Acyl-CoA dehydrogenase 

7 341 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06911653 ferrichrome ABC transporter  

8 289 
Streptomyces venezuelae 

ATCC 10712 CCA55855      

siderophore-interacting protein 
associated with desferrioxamine E 

biosynthesis  DesE 

9 484 
Streptomyces ghanaensis 

ATCC 14672 ZP_04688070   
desferrioxamine E biosynthesis protein 

DesA 

10 469 

Streptomyces 
pristinaespiralis ATCC 

25486 ZP_06911650  cadaverine N-monooxygenase DesB 

11 175 Streptomyces sp. Mg1 ZP_05000049    
acetyltransferase desferrioxamine E 

biosynthesis protein DesC 

12 600 

Streptomyces griseus 
subsp. griseus NBRC 

13350 YP_001826259 
 desferrioxamine E biosynthesis 

protein DesD  

13 536 
Streptomyces lividans 

TK24  ZP_05526012 β-N-acetylhexosaminidase 

14 401 
Streptomyces ghanaensis 

ATCC 14672  ZP_04688066     conserved hypothetical protein 

 

Several genes upstream of the des genes code for proteins that can be connected to 

fatty acid biosynthesis (Figure 4.57). ORF4 codes for the α-subunit and ORF3 for the 

β-subunit of a putative acetyl/propionyl CoA carboxylase. ORF5 codes for a possible 

hydroxymethylglutaryl-CoA lyase and ORF6 for an acyl-CoA dehydrogenase (Table 

4.18).  

Also the role of these enzymes in the biosynthesis of nocardamine is not totally clear. 

A connection might however be drawn from the fact that DesC is expected to use 
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acetyl-CoA as substrate for the acylation of N-hydroxycardaverine. DesC furthermore 

is expected to possess a relaxed substrate specificity and to accept also other CoA 

substrates like succinyl CoA (Barona-Gómez et al. 2004). ORF7 codes for an ABC 

transporter that might play a role in the transport of nocardamine and ORF8 a 

putative siderophore-interacting protein. ORF1 codes for a transcription regulator 

possibly involved in the regulation of the nocardamine gene cluster. ORF2 codes for 

a predicted membrane protein of unknown function and ORF14 for a conserved 

hypothetical protein. The function of these proteins in the nocardamine gene cluster 

is unknown.  

The existence of a possible nocardamine gene cluster supports the prior described 

analytical experiments. Streptomyces sp. DSM 11171 therefore besides feglymycin, 

also produces the siderophores nocardamine and demethylenenocardamine. 
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5 Discussion 
 

The peptidoglycan biosynthesis is a key step in the maturation of the bacterial cell 

wall. The Mur enzymes and the other enzymes involved in the peptidoglycan 

biosynthesis seem suitable as targets for development of antibacterials due to the 

fact that they are ubiquitous and essential (Kahne et al. 2005). Moreover these 

enzymes specifically occur in bacteria. The fact that at least the enzymes of late 

steps of this biosynthesis pathway are more easily accessible to drugs than other 

intracellular targets also favors the development of peptidoglycan biosynthesis 

inhibitors (Kahne et al. 2005). Additionally, the long history and experience of cell wall 

biosynthesis inhibitors makes the peptidoglycan biosynthesis pathway still a very 

popular and interesting research field. The ubiquitous spread of antibiotic resistant 

strains results in a strong need for development of new drug types and discovery of 

new antibiotic targets and inhibition modes for future drug development. As 

resistance against one member of a class of antibiotics due to a similar mode of 

action normally induces resistance against all members of the antibiotic class, new 

molecular targets and points of action need to be discovered.  

There are a lot of different cell wall biosynthesis inhibitors belonging to very different 

molecular classes like the β-lactam antibiotics (Brakhage et al. 2005), the 

glycopeptide antibiotics (Kahne et al. 2005), the lantibiotics (Chatterjee et al. 2005) or 

phosphomycin. Some of the peptidoglycan biosynthesis inhibitors resulted in clinically 

or industrially used antibiotics like the β-lactam antibiotics (Brakhage et al. 2005), 

phosphomycin (Hendlin et al. 1969), nisin (Rogers, Whittier 1928) and vancomycin 

(McCormick et al. 1955-1956). Vancomycin e.g. is even used as last resort antibiotics 

to treat patients suffering from infections with multi-resistant bacteria when no other 

commonly applied antibiotics shows any effect anymore. The incident and spread of 

resistant strains also against vancomycin (Chang et al. 2003), however shows that 

vancomycin can not be the final answer toward multi-resistant bacterial strains. 

Most of the known cell wall biosynthesis antibiotics target the late stages of 

peptidoglycan biosynthesis. Intensive research on the first step of peptidoglycan 

biosynthesis in the last years resulted in a detailed knowledge about the Mur 

enzymes and the biosynthetic mechanism (Schönbrunn et al. 1996; Benson et al. 

1993; Jin et al. 1996; Bertrand et al. 1997; Gordon et al. 2001; Yan et al. 2000). 

Great efforts were made to find inhibitors targeting the Mur enzymes by screening 



184 

 

(Baum et al. 2001; Eschenburg et al. 2005) and target-specific design (Emanuele, 

JR. et al. 1996; Tanner et al. 1996; Marmor et al. 2001). The most successful of 

these efforts were perhaps the synthesis of a number of phosphinate inhibitors 

targeting the MurC enzyme (Marmor et al. 2001), dioxopyrazolidines as inhibitors for 

the MurB enzyme (Yang et al. 2006) and 5-sulfonoxy-anthranilic acid as inhibitor of 

the MurA enzyme (Eschenburg et al. 2005). From these synthetic inhibitors however 

none has entered clinical phases or has been followed up in more detailed 

pharmaceutical studies to become a pharmaceutically important antibiotic (El Zoeiby 

et al. 2003). Phosphomycin, a natural inhibitor of the MurA enzyme isolated in 1969 

from Streptomycetes (Hendlin et al. 1969) is still the only pharmaceutically applied 

antibiotic targeting the first step of peptidoglycan biosynthesis.  

Commonly, antibacterial effects of new compounds are first tested in agar diffusion 

assays in vivo, which give only a relative crude and incomplete picture on the activity 

of a compound. Nevertheless, such assays have been valuable for finding cell wall 

biosynthesis inhibitors in the past (Yang et al. 2006). By testing wild-type versus wall-

less mutant bacterial strains, specific cell wall biosynthesis inhibitors can be screened 

(Trias, Yuan 1999). Also the induction of spheroplasts (Hendlin et al. 1969) and the 

accumulation of radio-labeled peptidoglycan precursors after feeding with radioactive 

amino acids (Allen et al. 1996) are indicators for the inhibition of cell wall 

biosynthesis. However, this still affords the exact determination of the molecular 

target. Additionally, whole cell assays fail to identify inhibitors that do not pass the cell 

wall or are actively effluxed. Also, in whole cell assays the susceptibility to the 

inhibitor depends mainly on the target concentration in the cell, which can strongly 

depend on the conditions applied. Cell-free assays (in vitro) might therefore be suited 

for independently finding new cell wall biosynthesis inhibitors (Trias, Yuan 1999) 

which might be later tailored for in vivo applications. However, one difficulty in 

studying particular enzymes of the peptidoglycan biosynthesis pathways in vitro is the 

availability of appropriate substrates. Except for the MurA enzyme, the substrates are 

not commercially available and need to be prepared enzymatically (Reddy et al. 

1999) or synthetically (Michio Kurosu et al. 2007). A way out is the in vitro 

reconstruction of the complete pathway toward the synthesis of Park’s Nucleotide, 

thus advantageously avoiding the isolation or synthesis of single substrates. 

Previously, cell-free high-throughput pathway screenings for the enzymes catalyzing 

the cytoplasmic steps of peptidoglycan biosynthesis have been developed using 
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radio-labeled amino acids for detection (Winn et al. 2010) or LC-ESI-MS for detection 

(El Zoeiby et al. 2001).  

In this work, these assays were further optimized in a way that allowed dereplication 

and study of every single enzyme of the pathway separately instead of testing the 

integrity of the whole pathway. LC-MS was found to be very suitable for detection of 

both substrates and products of the Mur enzymes and gave highly reproducible 

results. Thus, feglymycin was found to target the early steps of the peptidoglycan 

biosynthesis and assigned to its specific target proteins.  

Feglymycin is to our knowledge the first natural compound inhibitor of the MurC 

enzyme and shows an inhibitory effect in the low µM to upper nM range. Feglymycin 

additionally showed inhibitory effects toward the MurA enzyme, but no effect on any 

other of the Mur enzymes even in high concentrations. By testing MurA and MurC 

from E. coli but also from S. aureus it has been shown that these enzymes of gram-

negative and gram-positive bacteria are principally inhibited by feglymycin. This 

underlines that the inhibitory effect of feglymycin to the MurA and the MurC enzyme 

is rather specific.  

 

Figure 5.1: Scheme of the first stage of peptidoglycan biosynthesis and identified targets of 

feglymycin. 

 

Studies with enzymes of the late steps of the peptidoglycan biosynthesis performed 

by Dr. Tanja Schneider (member of the group of Prof. Hans-Georg Sahl at the 
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university of Bonn, unpublished data) showed that feglymycin has no effect on the 

second and third step of the pathway. Feglymycin is also the first inhibitor known so 

far specifically inhibiting two enzymes in a linear sequence of the early peptidoglycan 

biosynthesis, while showing no effect on the activity of the other Mur enzymes.  

To get a better idea of the inhibition mode of feglymycin in vitro spectroscopic assays 

with the isolated MurA and MurC enzymes both from E. coli and S. aureus were 

established. Spectroscopic assays have the advantage compared to the LC-MS 

assay that the product formation/substrate disappearance can be measured 

continuously over time without interfering into the reaction. LC-MS assays in contrast 

have to be performed as discontinuous assay or end-point assay. Before detection of 

the product formation/substrate disappearance the assay has to be stopped and the 

products/substrate needs to be extracted from the reaction mixture. This can be done 

at different time points or at a set end-point. The continuous detection of the enzyme 

reaction obviously allows a better monitoring and additionally allows generating more 

data points. A spectroscopic assay therefore seems better suitable for a more 

detailed kinetic study of the enzyme reactions and effect of the inhibitor. 

Spectroscopic assay of course also have a main drawback compared to LC-MS 

assays. In the LC-MS assay the substrate and products can be directly and 

unambiguously identified by their mass-to-charge ratio. A spectroscopic assay, in 

contrast, relies on the spectrophotometric properties of the substrates or products of 

the reaction which are less specific. If both substrates and products of a reaction do 

not undergo a change in the spectroscopic signal the reaction has to be coupled with 

a spectrophotometrically detectable reaction. However, coupled enzyme assays are 

prone to misinterpretation. At each point of the reaction it has to be made sure that 

the rate of the reaction is determined by the enzymes of interest and not by the 

coupling enzymes. Additionally of course, it has to be ruled out that the inhibitor has 

an inhibitory effect on the coupling enzymes.  

The kinetic parameters obtained for the MurA and the MurC enzymes from E. coli 

and S. aureus in the spectroscopic assay however fit very well to values previous 

described in literature which attests that the assays have been optimized to reliably 

monitor the MurA and MurC enzyme reactions. The combinatory use of both LC-MS 

assays and spectrophotometric assays can provide both: A direct proof of the activity 

of the enzymes and the inhibitory effect of the inhibitor by specific detection of the 

substrates and products of the reaction by their mass-to-charge ratio and a direct 
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spectroscopic monitoring of the course of the enzyme reaction allowing a detailed 

kinetic interpretation. The determination of the IC50 values was performed with 

negative and positive controls to verify the functionality of the assay. The IC50 value 

for feglymycin was found to be lowest for the MurC enzyme from E. coli (0.3 µM). 

The IC50 values for the MurA enzymes are about 10 fold higher. This might indicate 

that MurC rather that MurA is the main target of feglymycin. The inhibition type was 

deduced from a Lineweaver-Burk plot. The values for the graphs were derived from 

non-linear regression of the untransformed data fitted to the Michaelis-Menten 

equation. Non-linear regression is less error-prone than linear regression due to the 

fact that in linear regression data obtained with different substrate concentrations are 

differently weighted. The use of non-linear regression makes the Lineweaver-Burk 

plot less error-prone but not faultless. The result still depends strongly on the 

substrate concentration range, inhibitor concentration range and reaction times used 

to obtain the data and on the reproducibility of the assay. The Lineweaver-Burk plot 

therefore still is only an approach to get an approximation of the inhibition type. It is 

however a very easy diagnostic tool and for this reason still widely used to obtain an 

estimation of the inhibition type (Copeland 2005). The Lineweaver-Burk plots 

obtained for both, for the MurA and MurC enzyme from E. coli, indicate a non-

competitive inhibition by feglymycin towards all substrates. Non-competitive inhibitors 

show the same binding affinity towards the free enzyme and the substrate-enzyme 

complex. They therefore do not compete with substrates. As the inhibitor does not 

compete with the substrate it can be expected that inhibitor does not target the 

substrate binding pocket but another binding site. A non-competitive inhibition can be 

obtained if the binding of the inhibitor induces a conformational change of the 

enzyme that suppresses substrate conversion. The CD measurements performed 

with the MurC enzyme from E. coli in presence and absence of feglymycin, show that 

feglymycin has an alterative effect on the tertiary structure of the MurC enzyme. This 

supports the idea of a non-competitive inhibitor that induces conformational changes. 

In case of the MurA enzyme however the addition of feglymycin did not result in a 

conformational change detectable with CD spectroscopy. Possibly because the 

feglymycin concentration was too low to induce the conformational change or the 

conformational change was not severe enough to induce a visible change of the CD 

specta of MurA.  
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As a non-competitive inhibitor, possibly with an allosteric effect, is hypothesized for 

feglymycin the inhibitory effect and mode of action cannot be explained by substrate 

or transition state analogy. Likewise, structural analogies of feglymycin to one of the 

substrates or even a substrate transition state are not obvious. With regards to the 

fact that MurA uses PEP as a cosubstrate, whereas MurC uses ATP and L-alanine, 

no structural similarities or relationships can be found for these substrates. Hence, 

assuming inhibition of the ATP or L-alanine binding pocket, one would expect that 

subsequent reactions performed by MurD, MurE and MurF which are all ATP-

dependant and using amino acid substrates like MurC are also inhibited by the MurC 

inhibitor feglymycin rather than MurA. More structural resemblance can be seen in 

the UDP-substrates of MurA and MurC as the product of the MurA reaction UDP-

GlcNAc bears strong similarities with the substrate of the MurC reaction UDP-

MurNAc. Remarkably, UDP-MurNAc has been described before to possess 

regulatory function by feed-back inhibition and thus exerts an inhibitory effect on the 

MurA enzyme (Winterhalter 2000). However, assuming inhibition of the UDP-

substrate binding pocket, an inhibition of other Mur enzymes would have to be 

expected, since the UDP-motif is unifying all substrates of the MurA-MurF enzyme 

cascade. Also according to the present data no substrate dependency to any 

substrate was found. Instead an allosteric inhibition seems possible. Sequence 

alignments of MurA and MurC do not indicate a stronger relationship between the two 

proteins compared to the other Mur enzymes. In contrast, MurC shows strong 

structural similarities with the other ATP-dependent Mur ligases MurD-MurF 

(Bertrand et al. 1997; Gordon et al. 2001; Yan et al. 2000). However, it is interesting 

that both MurA and MurC have a two-domain structure while the other Mur enzymes 

show a tree-domain structure (El Zoeiby et al. 2003). MurA consists of two very 

similar domains connected by a double-stranded linker (Schönbrunn et al. 1996) 

while MurC is known to form dimers (Jin et al. 1996; Spraggon et al. 2004). 

For a non-competitive inhibitor also speaks the finding that the mirror-image peptide 

of feglymycin possesses nearly the same activity, both in vivo and in vitro, as 

feglymycin (Dr. Anne Hänchen, unpublished data, see Appendix 6.7 and 6.8 ). A 

mirror image peptide of feglymycin with the same amino acids but in inverse order 

was synthesized by Dr. Anne Hänchen (a former PhD student in the group of Prof. 

Süssmuth) and tested both in vivo against MRSA strains (in cooperation with sanofi-

aventis) and in vitro against die MurA and MurC enzymes from E. coli. Interestingly 
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the mirror image showed the same inhibitory effect on MurA and MurC as feglymycin 

and also nearly the same effect as feglymycin in the in vivo testing. In case of 

competitive inhibition the orientation of the inhibitor in the binding pocket is normally 

very important, wherefore mirror images of inhibitor often lack activity. That the 

orientation of feglymycin has no influence on the activity therefore might also hint to a 

non-competitive inhibitor.  

Non-competitive inhibitors are not commonly clinically used (Copeland 2005). Some 

non-competitive inhibitors however are in clinical use in treatment of AIDS and 

cancer e.g. the non-nucleoside reverse transcriptase inhibitor nevirapine (Peschel, 

Sahl 2006) and the MAP kinase inhibitors (Bogoyevitch, Fairlie 2007) like 

PD0325901 (Haura et al. 2010). Non-competitive inhibition is also not described for 

most of the cell wall biosynthesis inhibitors. An exception constitute the 5-sulfonoxy-

anthranilic acid inhibitors of MurA identified by Eschenburg et al. which were shown 

by co-crystallisation with the MurA enzyme from E. coli not to bind at the active 

center but to prevent conformational changes of the MurA enzyme (Eschenburg et al. 

2005). Even though the resemblance of the 5-sulfonoxy-anthranilic acid inhibitors 

(T6361R/T6362R) to feglymycin is not very strong a similar mechanism of feglymycin 

could be imagined. Further conclusions on the specific mode of action of feglymycin 

are expected from structural data obtained from crystals of protein-inhibitor 

complexes.  

With Ki values in the low µM and high nM range feglymycin shows no extremely high 

affinity. The inhibitory effect is however within the range of Ki values of other natural 

product cell wall biosynthesis inhibitors like phosphomycin (Ki 8.6 µM, E. coli MurA 

Baum et al. 2001), tunicamycin (Ki: 0.55 µM, E. coli MraY Brandish et al. 1996b) and 

vancomycin (KD 1,6 µM D-Ala-D-Ala derivatives Rao et al. 1998). Even most of the 

synthetic inhibitors of the Mur enzymes did not show significantly lower Ki or IC50 

values (e.g. MurA inhibitors by Baum et al. IC50 0.2-0.9 µM, MurA E. coli Baum et al. 

2001, MurB inhibitors by Yang et al. KD 260 nM, MurB E. coli Yang et al. 2006). 

Time-dependency and reversibility experiments showed that the inhibition occurs fast 

and is also fast reversible.  

In vivo experiments previously performed with feglymycin prove that feglymycin not 

only inhibits the peptidoglycan biosynthesis in vitro, but also shows inhibitory effects 

on MRSA strains in vivo in the low µM range (Dettner et al. 2009). No effect on gram-

negative bacteria like E. coli has been found in vivo (Dettner et al. 2009), although 
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the E. coli enzymes were found to be sensitive to feglymycin in our in vitro assay. 

Therefore, we assume that feglymycin does not pass the outer membrane of gram-

negative bacteria possibly accompanied by a lack of suitable transport/uptake 

systems as they exist for other antibacterials like for phosphomycin, which uses the 

L-α-glycerophosphate transport system (Hendlin et al. 1969). Because S. aureus was 

found to be sensitive to feglymycin, it can be assumed that feglymycin is able to 

unspecifically pass the inner cell membrane or that S. aureus possesses 

transport/uptake systems utilized by feglymycin. The inhibition of intracellular 

bacterial targets by molecules with masses >300 Da is also discussed for the 

lipoglycopeptide ramoplanin. Ramoplanin inhibits the transpeptidation reaction in the 

last extracellular stage of peptidoglycan biosynthesis but additionally targets the 

intracellular MurG enzyme in vitro. If the activity against MurG also plays a role for 

the in vivo activity is however not clear (McCafferty et al. 2002).  

In this context, the β-helical dimer structure of feglymycin which has some analogies 

to gramicidin A could accounts for a membrane crossing of feglymycin (Bunkóczi et 

al. 2005). The specific structure of gramicidin A enables the molecule to form 

channels in phospholipid membranes (Wallace 1986). Bunkóczi however did not 

expect feglymycin to form channels. He expected the feglymycin dimer to be too 

short to span the membrane and predicted that a possible channel would be 

additionally blocked by phenylalanine side chains (Bunkóczi et al. 2005). Also this 

type of membrane crossing would not explain the lack of activity in E. coli. Some 

unpublished experiments were performed focusing of the membrane penetration by 

feglymycin by Prof. Dr.Ulrich Koert and Dr. Philipp Reiß (Philipps-university Marburg, 

(a detailed description of the experiments and the results can be found in the 

appendix chapter 6.9 ). Due to similarities in structure between feglymycin and 

gramicidin A, ion channel experiments were carried out with a so called black lipid 

membrane (BLM) (Derossi et al. 1998). In these experiments two chambers with an 

electrolyte solution were separated by a lipid bilayer and a potential was applied. 

These experiments indicated a possible membrane activity of feglymycin as an 

electrical current flow could be detected hinting to an at least partial destruction of the 

membrane. An electrical current flow however was only detected for relatively high 

potentials (180 mV-200 mV) and increased in disproportional steps what is in dissent 

with the formation of stable pores in the membrane. Beside the formation of stable 

and consistent pores like in case of gramicidin A, a more unspecific membrane 



191 

 

activity of feglymycin might be possible resulting in membrane crossing but a less 

consistent weakening of the bacterial membrane.  

A membrane damaging activity as described for CAMPs (cationic antimicrobial 

peptides) (Bogoyevitch, Fairlie 2007; Magzoub et al. 2001) seems unlikely due to the 

negative character of the peptide. A model could be instead the cell penetrating 

peptides and trojan peptides as described by Derossi (Derossi et al. 1998) and 

Magzoub (Deshayes et al. 2004). For these small amphipathic peptides it was found 

that they cannot only penetrate cells but are even able to transport polypeptides, 

oligonucleotides or even full length proteins through cell membranes (Herbig et al. 

2005). Most reknown of these peptides is perhaps penetratin (pAntp) a 16 amino acid 

α-helical part of Antennapedia homeodomain protein of Drosophila (Deshayes et al. 

2004). The penetratin peptides were found to induce the formation of reverse 

micelles which allows the crossing of the membrane in an aqueous environment 

(Derossi et al. 1998) and can function also as carrier for other molecules (Lundberg, 

Langel 2003). This model might perhaps better fit to the ion channel results obtained 

for feglymycin. Bunkóczi expected from the three-dimensional structure of feglymycin 

a function as ion carrier (Bunkóczi et al. 2005). The mechanism of translocation of 

the cell penetrating peptides is however still a matter of discussion beside the 

formation of reverse micelles also endocytosis is debated (Yang et al. 2010, Yang et 

al. 2010). Additionally also for the cell penetrating peptides likewise as for the CAMPs 

a cationic charge is thought to be important.  

An alternative explanation could be that feglymycin in not able to pass the cell 

membrane but instead has an additional extracellular target responsible for its in vivo 

activity. This target however cannot belong to the second or third stage of 

peptidoglycan biosynthesis where feglymycin was found to show no effect. Further 

studies will aid in elucidation the mechanism of membrane penetration by feglymycin 

or will help to indentify alternative extracellular targets of feglymycin.  

 

The optimization of the feglymycin production by Streptomyces sp. DSM 11171 

allowed the characterization of different Streptomyces sp. DSM 11171 mutant stains 

and therefore the unequivocal identification of the feglymycin biosynthesis gene 

cluster. The gene inactivation single cross-over mutants of four ORFs of the 

feglymycin gene cluster (ORF 7, ORF13 (DpgA), ORF26 and ORF27) failed to 

produce feglymycin in comparison to the wild type strain. As all four ORFs were 
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found to be essential for feglymycin production; the experiments give no answer on 

the questions for the precise borders of the feglymycin gene cluster. To answer these 

questions further single cross-over mutants of ORFs further up- and down-stream of 

the so far tested ORFs would be required. However the experiments prove that the 

identified gene cluster is indeed responsible for feglymycin production. They also 

show that all four ORFs are very important for feglymycin production. The information 

obtained from annotation of the feglymycin biosynthesis gene cluster confirms the 

theory that feglymycin is a non-ribosomally synthesized peptide. Despite the 

differences in structure and mode of action feglymycin seems to be closely related to 

the glycopeptides of the vancomycin group of antibiotics and the glycodepsipeptide 

antibiotic enduracidin. Especially the genes coding for the biosynthesis of the non-

proteinogenic amino acids hydroxyphenylglycine (Hpg) and dihydroxyphenylglycine 

(Dpg) show a strong similarity to the genes in the gene cluster of the vancomycin 

group of antibiotics particularly to the genes of the A47934 gene cluster of 

Streptomyces toyocaensis (Pootoolal et al. 2002). Homologies were also found in 

some of the regulator genes (ORF7, ORF11, ORF19) and a gene predicted to code 

for an ABC transporter (ORF21). Due to the differences in structure however the 

NRPS genes and its modular organization show only little homology to the related 

gene clusters. Beyond that, the feglymycin gene cluster contains a lot of genes that 

have not been identified so far in any related cluster. Their function and their 

connection to the feglymycin biosynthesis remain speculative because of the lack of 

homologies in related gene clusters but they might reflect the different mechanism of 

action of feglymycin. Emphasized might be here the existence of a mysterious 

peptidoglycan binding protein (ORF26) in the feglymycin gene cluster and the high 

number of peptidases (ORF1, ORF29-32). The sequenced feglymycin cluster allows 

exploring these differences in more detail and will help to better understand the 

mechanism of feglymycin transport and host resistance und by that also the unique 

mode of action. Maybe it also contains an answer to the question how feglymycin is 

able to penetrate the cell membrane. By shedding light on the genes responsible for 

self-resistance, gene regulation and export of feglymycin also a better understanding 

of similarities and differences of feglymycin to other peptide antibiotics resulting in the 

very different mode of action could be gained.  
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Additionally to the feglymycin biosynthesis gene cluster five further NRPS and PKS 

gene clusters were identified in the feglymycin genome and also a cluster expected 

to be responsible for nocardamine production. The five NRPS and PKS clusters were 

found when searching the genome for particularly large ORFs. The nocardamine 

gene cluster in contrast was identified after detection of nocardamine production by 

Streptomyces sp. DSM 11171 and specific search for a possible nocardamine gene 

cluster. These findings support the theory that also long-known antibiotic producers 

can contain new unknown gene clusters (Bentley et al. 2002). As the whole 

Streptomyces sp. DSM 11171 genome has not been annotated so far it can be 

expected that the genomes contains further gene clusters responsible for the 

production of natural products, especially non-NRPS and non-PKS clusters (like the 

nocardamine gene cluster) that do not stick out due to the peculiar gene size of the 

NRPS or PKS genes. The finding of nocardamine production shows that the 

Streptomyces sp. DSM 11171 strain is able to produce further natural products 

beside feglymycin if facing different culture conditions. A prediction, if the additional 

NRPS and PKS gene clusters can be activated as well as a forecast of the structures 

of the possible NRPS and PKS products only from the annotation of the gene 

clusters is venturous. Only in case of the siderophore gene cluster (cluster V) a 

relatively safe prediction can be made due to the strong homology to the griseobactin 

gene cluster in Streptomyces sp. ATCC 700974 (Patzer, Braun 2010). An intensive 

and sensitive chemical screening approach with the Streptomyces sp. DSM 11171 

strain under a lot of different culture conditions however might help to identify some 

of these predicted new natural products. 

 

The work with the feglymycin and the feglymycin producer shows that natural 

products are still a very interesting and challenging topic to work on. Natural 

compounds like feglymycin outstrip most synthetic compounds in their wide range of 

efficacy and mechanistic complexity and bacterial strains like Streptomyces sp. DSM 

11171 still contain a lot of secrets that wait to be discovered. The findings for the 

antibacterial activity and the feglymycin gene cluster open the door for a lot of new 

theories but still keep many questions unanswered. Thus the saying is true “every 

answer simply leads to another question”.  
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6 Appendix  

6.1  Vector map pDrive cloning vector (Quiagen) 
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6.2  Vector map pET-24a(+) protein expression vector (Novagen) 
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6.3  Vector map pET-28a(+) protein expression vector (Novagen) 
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6.4  Vector map pET-21a(+) protein expression vector 
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6.5   Vector map pK18mob  
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6.6  Thin layer chromatography (TLC) detection of the products of 
the MurA-F reactions (Dr. Tanja Schneider) 

 
Method: 

Conversion of UDP-N-glucosamine to UDP-N-acetylmuramyl pentapeptide by the 

sequential action of staphylococcal MurA to MurF enzymes and analysis of the 

reaction products by mass spectrometry and subsequent MraY-catalysed lipid I-

synthesis. MurA-F were incubated in 50 mM Tris-Bis-propane; pH 8, 25 mM 

(NH4)SO4, 5 mM MgCl2, 5 mM, 5 mM KCl, 0.5 mM DTT, 2 mM ATP, 2 mM PEP, 2 

mM NADPH, 1 mM of each amino acid (L-Lys, D-Glu, L-Ala, D-Ala-D-Ala, 

respectively), 10% DMSO, 100 nmol UDP-GlcNAc and 15 µg MurA-F protein in a 

total volume of 125 µl for 60 min at 30°C. MraY (2.5 µg), 2.5 nmol C55P and 0.3% 

(w/v) N-lauroylsarcosine were added to the reaction mixture (31.25 µl) and incubated 

for another 60 min at 30°C. Lipid I variants were extracted from the reaction mixture 

and separated by TLC.  
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Figure 6.1: TLC detection of the products of the MurA-F reactions. 

 

In presence of feglymycin a visibly lower amount of the product of the MurA-F 

reaction can be detected.  

  

MurA-C MurA-D MurA-E MurA-F 

Product MurA-D:  C55P-MurNAc-L-Ala-D-Glu 

Product MurA-E: C55P-MurNAc-L-Ala-D-Glu-L-Lys 

MurA-F 
+ Feglymycin 

Product Mur A-F:  C55P-MurNAc-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala 
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6.7   Antimicrobial testing of feglymycin and the feglmycin mirror image against different S. aureus 
strains and other bacteria and yeast strains in cooperation with Sanofi-Aventis (Dr. Anne Hänchen, 
umpublished data) 

Table 6.1: Antimicrobial testing of feglymycin and the feglymycin mirror image against different microbial strains. 
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MRSA MSSA 

    

    
100 CFU / 

Well 

Batch Ref. IC80 µg/mL 
IC80 

µg/mL 
IC80 

µg/mL 
IC80 

µg/mL 
IC80 

µg/mL 
IC80 

µg/mL 
IC80 µg/mL IC80 µg/mL 

Feglymycin 0.31 0.65 0.54 >64 >64 >64 >64 >64 

Feglymycin-
mirror image 
(M18) 0.70 1.26 0.58 >64 >64 23.42 >64 >64 

Batch Ref. MIC µg/mL 
MIC 

µg/mL 
MIC 

µg/mL 
MIC 

µg/mL 
MIC 

µg/mL 
MIC 

µg/mL 
MIC µg/mL MIC µg/mL 

Feglymycin 0.5 1 1 >64 >64 >64 >64 >64 

Feglymycin-
mirror image 
(M18) 1 2 1 >64 >64 >64 >64 >64 
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Figure 6.2: MIC values for feglymycin and the feglymycin mirror image (“Spiegelbild”) against different 

MRSA strains. 

 
The mirror image of feglymycin shows a similar activity against different S. aureus 

strains a feglymycin.  
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6.8  Testing of feglymycin and the feglmycin mirror image against 
the MurC enzyme from E. coli (Dr. Anne Hänchen, umpublished 
data) 

Table 6.2: IC50 values for feglymycin and the feglymycin mirror image (MurC E. coli). 

MurC (E. coli)   

  feglymycin mirror image 

IC50 0.28 0.59 

standard deviation 0.14 0.41 

 
 

 
Figure 6.3: IC50 values of feglymycin and the feglymycin mirror image (MurC, E. coli). 

 

The mirror image of feglymycin shows only a slightly lower activity against the MurC 

enzyme than felgmycin.  
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6.9  Ion channel experiments performed with feglymycin 
(cooperation with Prof. Dr.Ulrich Koert and Dr. Philipp Reiß 
Philipps-university Marburg) 

 
Methods 

 

Figure 6.4: Scheme of the ion channel experiment (figure PhD thesis Dr. Anne Hänchen). 

 
Feglymycin was dissolved in methanol to prepare a stock solution. Planar lipid 

membranes were prepared by painting a solution of DPhPC or Asolectine in n-

decane (25mg / mL) over the aperture of a polystyrene cuvette with a diameter of 

0.20 mm. Feglymycin, dissolved in methanol, was added to the trans-side of the 

cuvette (final concentration in the cuvette 2,5 10-10 mol/L). The membrane was 

destroyed, reconstituted at 0 V and the designated voltage was applied. Current 

detection and recording were performed with a patch-clamp amplifier Axopatch 200B, 

a Digidata A/D converter and pClamp 10 software (Axon Instruments, Foster City, 

CA, USA). The acquisition frequency was 5 kHz. The data were filtered with a digital 

filter at 50 Hz for further analysis, applying the pClamp 10 software. 
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Figure 6.5: result of the ion channel experiment with feglymycin.  

 
The ion channel characteristics were studied using the black lipid membrane (BLM) 

technique. Feglymycin increased the conductivity of the membrane. To observe 

individual openings and closings high voltage had to be applied (180 or 200 mV), as 

the conductibility proved to be quite small. Unlike other ion channel of similar size 

(e.g. gramicidin) Feglymycin does not show opening events of a well-defined size, 

but a wide distribution, ranging from the size of the noise to a few pA. 
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