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Abstract 

We study minimal Lagrangian immersions from an indefinite real space form M?(c) into an 

indefinite complex space form M"(4é). Provided that c # é, we show that M” has to be 

flat and we obtain an explicit description of the immersion. In the case the metric is positive 

definite or Lorentzian, this result was respectively obtained by Ejiri [4] and by Kriele and the 

author [5]. In the case that c = ¢, this theorem is no longer true, see for instance the examples 
discovered in [3] by Chen and the author. 

Subject class: 53B35, 53B30 
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1 Introduction 

Whereas Lagrangian submanifolds of complex Riemannian space forms are widely studied, see a.o. 

[6] and the references contained therein, not much is known about Lagrangian submanifolds of 

indefinite complex space forms. As far as we know most results about submanifolds of indefinite 

complex space forms, see for example [1], [9] or [8] deal with complex submanifolds. In this paper 

we study minimal Lagrangian submanifolds M}(c) with constant sectional curvature of indefinite 

complex space forms M?(4é). Provided c # ¢, we obtain a complete classification and show 

amongst others that M has to be flat. The corresponding theorem for Lagrangian immersions 

in Riemannian or Lorentzian complex space forms were obtained respectively by Ejiri in [4] and 
Kriele and the author in [5] 

The paper is organized as follows. In Section 2 we recall the basic models of indefinite complex 

space forms and we give the basic formulas for Lagrangian submanifolds. In particular, We notice 

that the basic formulas are similar to those of affine hyperspheres with constant sectional curvature. 

This similarity allows us to apply the results of [10] to obtain an intrinsic characterization of these 

hypersurfaces. In Section 3, we start by recalling Reckziegel result [7] which allows us, using the 

Hopf fibration, to consider the horizontal lifts of these immersions into indefinite real space forms. 

Combining then in Section 3, Reckziegel’s result with the intrinsic characterization, we obtain 

explicit formulas for the immersion and prove the classification theorem. 

2 Indefinite complex space forms and their Lagrangian sub- 

manifolds 

In this section, we briefly recall some facts about indefinite complex space forms. For more 

details, we refer the reader to [2]. Let M7?(4¢) be a complex space form of complex dimension 
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nm and complex index k. The complex index is defined as the (complex) dimension of the largest 
complex negative definite vector space of the tangent space. The curvature tensor R of M (4é) is 
given by 

R(X, Y)Z = é( (v,w) u— (u,w) v + (Ju, w) Ju — (Ju, w) Jv +2 (u, Jv) Jw), 

where J denotes the complex structure. We refer to [2] for the construction of the standard models 
of indefinite complex space forms CP? (4é), when é > 0, CH™(4@), when é < 0 and C}. For our 
purposes it is sufficient to know that there exist pseudo-Riemannian submersions, called Hopf 
fibrations, 

IT: SoPtl(@) > CP" (48): 24 2-C 

if ¢ > 0 and if é < 0 by 

I: Hoe (@ + CH? (40): zH 2-C, 

where S347 (@) = {z € C™ |b, nai(z,z) = s} and Hitt (@) = {z € C™ |bes 1 ny (z,2) = 3 
and 6p,q is the standard Hermitian form with index p on C!. For our convenience, we will assume 
that we have chosen a basis such that the first p odd terms appear with a minus sign. 

In [2] it is shown that locally any indefinite complex space form is holomorphically isometric 
to either C?, CP? (4c), or CH? (4é). Remark that, by replacing the metric <.,. > by — <.,.>, 
we have that CH} (4é) is congruent with CP"_,(—4é@). For that purpose, we may assume that 
n — 2s > 0 and if n — 2s = 0, we only need to consider C” and CP” (4). 

Next, we consider Lagrangian submanifolds. A submanifold M of a Kahler manifold is La- 
grangian if and only if J interchanges the tangent and the normal space. Hence a Lagrangian 
submanifold of an indefinite complex space form of index s, has real index s. From now on let 
M?(4@) be a complex space form of curvature 4é. We denote by V the Levi Civita connection of 
the metric (.,.) on M"(4é). Then, the formulas of Gauss and Weingarten are respectively given 
by 

VxY¥ =VxY +h(X,Y), 

VxJY =—-AjyX + VLUY, 

defining the induced connection V, the second fundamental form h, the Weingarten operator A 
and the normal connection V+. Since J is parallel, we deduce as in the Riemannian case that 

VxeJY = JIVxY 

Ajy X = —Jh(X,Y). 

We now introduce a tensor K on M by K(X,Y) = KxY = —Jh(X,Y) = AjyX. It follows 
from the above equations that (K (X,Y), Z) is totally symmetric. A straightforward computation 
shows that the equations of Gauss, Codazzi and Ricci for Lagrangian submanifolds are equivalent 
to 

R(X,Y)Z = &((Y,Z) X —(X,Z)Y) + [Kx, Ky]Z (1) 
(Vx K)(Y, Z) = (Vy K)(X, Z) (2) 

A Lagrangian submanifold M with constant sectional curvature c is minimal if and only if 

trace Kx = 0 (3) 

for every tangent tangent vector field X. The Gauss and Codazzi equations reduce to 

[Kx,Ky]Z = a((Y, Z) X - (X,Z)Y), 
(Vx K)(Y, Z) = (Vy K)(X, Z), 

where a=c—G. 

Remark that, since V is the Levi Civita connection of the metric (.,.), this is exactly the situ- 
ation which also appears in affine differential geometry when one investigates affine hyperspheres 
with constant sectional curvature, see [10]. Therefore, applying the results of [10], we obtain in 
particular the following:



Theorem 1 Let ¢ : M"(c) + M®(4é) be a minimal, Lagrangian isometric immersion. Suppose 
that n — 2s > 0 and thatc # ¢. Then, if n—2s > 1, we must have that c < ¢. Moreover, let 

p € Mf(c). Then there exists local vectorfields {U,,Vi,...,Us,Vs, f£1,...,E,}, where r =n — 28 

such that 

  

< Um,U; >=< Van, Vj >= 0, (4) 

< Ey, Ee >= One, (5) 

< Um, V; >= Seng (6) 

< U;, Ex >=< V;, Ex >=, (7) 

where 7,m = 1,...,5 andk,@=1,...,r. Assuming now that < k andm < j, we introduce a 

multilinear map K by 

K (Um, Uj) = AmU; (8) 
K'(Um, Vj) = AmV5 (9) 

K (Um, Ex) = AmEx (10) 

EK (Vm,U3) = Am(Am — Om)U; (11) 

K (Vm; Vj) = Am(Am — Om) V; (12) 

K (Vin, Ex) = Am(Am — @m) Er (13) 

K(U;,U;) = aj;U; + V; (14) 

j-l 

K (Uj, V3) = S> (AmVm + (Am — @m)AmUm) + BjU; + 0jV; (15) 
m=1 

K(V;,V3) = %yU3 + By Vj | (16) 
K (Ex, Ee) = —peEx (17) 

s k-1 

K (Ex, Ex) = 9 (AjVj + (Ag — ag) AgU5) — So ee + (7 — bun Er, (18) 
j=1 f=1 

where the a;,0;,2;,7;,4¥k and A; are constants determined by 

3 n(n-+1)(n=1) 
Ay =A (n—2j+2)(n—25+1)(n—2j 43)? (19) 

a — 232 d;, (20) 

Bj = —4(n — 25) (n — 25 + 2)d4, (21) 
3 . 

5 = G(n — 2 + 2)°, (22) 
3 

a; = —B(n— 25 +2)(n —2j +1), (23) 
ay = a, (24) 

i = — ee (25) 
r—£ 

Mesa = a ue (26) 

Remark that in the special case that n — 2s = 1, yz is not needed and therefore can be defined 

arbitrarily. Using the fact that K is a Codazzi tensor with respect to V it is then straightforward, 

see also [10] to show the following: 

Lemma 1 Let {U,,Vi,...,Us,Vs,Wi,...,W,} be the frame constructed before. Then all connec- 
tion coefficients (with respect to V) vanish.. In particular M has flat affine metric, t.e c = 0.



3 Classification results 

Using the results of the previous section, we alréady obtain the following corollaries: 

Corollary 1 Let Mf be a minimal Lagrangian submanifold with constant sectional curvature c 
of CH? (4¢), n- 2s > 1, where é <0, thenc=é. 

Proof: Suppose that c 4 é. In that case, a # 0. Since n — 2s > 1, it follows from the previous 
theorem that a has to be negative. Since, from the previous lemma, we know that our Lagrangian 
submanifold has to be flat, we find that é is positive. This is a contradiction. i 

Of course, also in the flat case, a similar theorem can be obtained: 

Corollary 2 Let M? be a minimal Lagrangian submanifold with constant sectional curvature c 
of C?, thenc = 0. 

Proof: Suppose that c # 0. Then a 4 0. Consequently, from the previous lemma it follows that 
c = 0, which is a contradiction. a 

In general, applying the results of the previous chapters, a classification result can be proved. 
However, in order to obtain explicit equations, we first recall some basic facts from [7] which 
relate Lagrangian submanifolds of respectively CP” (4¢) and CH” (4é) to horizontal immersions in 
respectively S3”*7(@) and H3"*) (é). Here a horizontal i immersion f: M — S3"*1(@) (respectively, 
f:M- Hatt (é é)) is an immersion which satisfies if(x) | f.(T,M) for all x € M. 

Theorem 2 ([7]) Let €>0 and let Il: S3"+'(@) — CP™(4é) be the Hopf fibration. If f: M"™ 3 
53271) is a horizontal immersion, then F = Ilof: mM" — CP? (4é) is a Lagrangian immersion. 

Conversely, let M” be a simply connected manifold and let F: M”™ 3 CPP (4¢) be a Lagrangian 
immersion. Then there exist a 1-parameter family of horizontal lifts f : M > Sort ¢) such that 
F=TIlo f. Any two such lifts f; and fz are related by f; = e*? fo, where 6 is a constant. 

The analogous statement for é < 0 also holds if one replaces $3”*1(@) by Ae te ¢) and CP? (4¢) 
by CH” (4é). 

Then, if we denote by Mj (4¢) = CP? (4¢) if é > 0 and M?(4é) = CH” (4é) if @ < 0 we have 
the following result: 

Theorem 3 Let ¢: Mp (c) + M(4é) be a minimal isometric Lagrangian immersion into M”(42), 
n—2s>0. Suppose thatc #¢. Thenc=0, and ifn—2s>1 thené>0. Then, we get using the 
Hopf fibration that ¢(M}) is congruent the immersion x, inductively defined by 

t= xt 

gi iA, U1 +2(A1— ~a1)Ar% ) 1 
= (211 + Qai(nfi) “129711 — Tard) 212 2" € 

1 1 a pd tl pid; uj +i(Aj —a; A; 0; 
= (291 + sap ag TH 22s — Daj(n—DpHS1) 2427 TIT SIG), 

where the definition x*t+ depends on s. In particular ifn —2s =1 andé< 0, 

«°**(w 1) = ¢(cosh w1, sinh w;), b* = ag41. 

Ifn—2s=0,1 orr withr > 1, then x5** is repectively defined by 

  

  

+1 _. 1 
x - ~ Qs41? 

git! (w;) = amen ; e bw) b2 ~A541 

a®t(H1,..., Wr) = Teta ar (Osetra),



In the above we have that 1 <j <8, aj;, a; and lambda; are as defined before and z;; and z;2 are 

  

  

  

defined by 

21 = eilns1 Uj +(n51 —Nj2— 251051) 05) o(nj2u5+(2n5 1132-45752) v5) 

2jo = ei(51 Uj + (Fr —Nj2— 5051) V5) e— (5245 +(2nj1 32-25 N52)V5) | 

where 

mi = —9Aj(n — 27 +1) 
nj2 = $A; V/(n — 23 +.1)(n — 29 +3). 

Proof: From the previous lemma, we know that there exists coordinates u;,v1,...,Us,Us on M” 

such that 

Ui = ou (27) 
v= & (28) 

Ey = 5% (29) 

where 2 = 1,...,s andk =1,...,r. We denote the Hopf lift of the immersion of M” into M” (4é) 

by z. We then get that x is characterized by the following system of differential equations: 

Lustim = tAjLum, M>J (30) 

Lustm = tAZLven » m>Jj (31) 

Du; wr = 1Aj lu, 
(32) 

Ly;um = tr; (A; —~ Qj)Lums m>j (33) 

Lujum = tA; (A; — Cy eres m> 4 (34) 

Lo;wy = 1Ag(Aj — 5) Ly (35) 

j-l 

Bea, = 1 S- (Am@un + (Am — Om)Amfum) + 18jtu; + iajty, + ax (37) 
m=1 

Ly 50; = VYj Lu; - iBj Lu; (38) 

Lw,pw, = —ipely,, k>e (39) 

8 k-1 

tow, = iS Ojaty, + (Aj — a )Ajzeu;) — is” ely, ti(r —k)uptw, + az, (40) 
j=l é=1 

where the a;,a;,(;,7j;, Ux and A; are the constants defined earlier and where a = —é. 

In particular, we have that 

Luu, = 101fy, +12y,, (41) 

Luv, = 1PiFy, +1aiZy, + az, (42) 

Lou =IMNFuy, + iil, (43) 

From these equations we deduce that 

Luyuyur > 101 Lu, uy + tLuyv1 

= 1012u,u, — Pilu, + 101(Luj,u, — 1012y,) + iax 

= 2a1iZu,u, — (fi - a?) tu, + aziz 

We now look at the corresponding equation of degree 3, 

t? — 2ay,it? + (6, — a?)t — ai = 0. (44)



It is easy to see that (44) has one purely imaginary root, namely 1,7 and two complex roots 

iM11 — M2 and in; + Mie which are determined by 

mi = —5A1(n - 1) 

m2 = 5A (n _ 1)(n + 1). 

Using now oncemore our system of differential equations, it follows that we can write 

r= A(ui, Uj; wer + C7 (v1) 211 + Dy, (v1) 212 (45) 

where we have written 

21 = ei(ma ta +(nty —M2—e1M1)v1) o(m2ui+(2m11m12—c1mM2)r1) 

212 = ei(mita +(nty —M}2—01M11) 01) e— (maui +(2m11m2—A1M12)01) 

Substituting now the above expression (45) for x into 

Ly, = usu, ~~ A1Ty,; 

and using the fact that e1%1, z;, and z,2 are linearly independent functions, we obtain the 

following system of differential equations for A, C; and D,: 

Ay, = (Ai ~~ ay )AitA, 

(Ci)w, = 0, 

(D1), = 0, 

from which it follows that 

A= z* (ua, U2,+++,Us,Us,W1,... , wy etAr— 91) A101 

Ci (v2) = C1 

D, (v2) =D, 

A straightforward computation shows that a2 = a — 2\?(A; — a1) and 

0=A, (ni, — M2) —aymi +A (Ar — a1)m1 — @ 

0 = Ai (2m1m2 — Ome) + A1(A1 — a1) M12 

Therefore, we get that 

(Arty, + (Ar — Q1)A12u,) Fax = agr72eM mM ttAr—o1) AM 

Using the above, we obtain by substituting the found expression of x = z! into the system of 

differential equations, that x” satisfies a similar system of differential equations. 

Moreover, if we define 

  
  

1 
eA A1(2((m—1)i-— Vin? —1)u)tazn((n—-1)itVn2—1)v ppt 2(n-1)iVnFa Ayu) tay a((n=1)i— Va 2aA)v 

y= 209 n(n+1)Vn?2-1 ? y2= 2AZn(n+1)Vn?2—-1 ? 

we get that 

Cy = yi (Ain((n + 1) + ivn? — 1)U, + 2(-(n + 1) + iv n? — 1) + 2d}nVn?2 — 12), 

Dy = yo(Ain(—(n +1) +iv/n? — 1)U, +2((n + 1) +iVvn? —1)V, + 2d4?nV/n2 — 12), 
1 

— HIAL (2uz +A 1 nV}) . . 

a <a (AU — 2iV, + A?n(n — 1)x)



From this it follows that 

< C1,C1 >= 0, 

< D,,D,; > =), 

_ —l1 
<C,,Di; >= (ai(m41)? 

<C,,iD; > =0, 

< 27,C; >= 0, 

<2x?,D, >=0, 

< £7,iC; > = 0, 

< z’,iD, > =0, 
25-42 

< L’, xr ao" 

Therefore, we get that we have an orthogonal decomposition C"+! = C? @ C"—!, where Cj; and 
C2 span C? and 2? defines an immersion into C”~! which is minimal in $3”73(—az), if a, (and 

therefore also a2) is negative or in H2"3 (—a2) if a, is positive. Since x? satisfies a similar system 

of differential equations and since z’ is horizontal, it is easy to check that x? defines a flat (provided 

n — 2 > 2), minimal horizontal immersion into S3”73(—a2) or H3"73(—a2). Thus we can write 

1 _ 1 _ dl 2 tA1ui+i(A1—a1)A101 
C= (211 + 2ai(n+1) 212,711 Qai(nF1) “125% e ). 

Proceeding now by induction we can define flat horizontal immersions z’ into C’—2J+3 which 
. . In—44 . . . . In—47+5 . . Le 

are minimal in S309; (—ay) if a, is negative or in F343. 3; (—a;) if a, is positive such that 

j —(». _ 1g. ae lg G1 pidj ug +i(Aj — 05) AG 0; 
a = (zy + 2a; (n—2j+3) “529 *J1 ~ Baz(n—2j43l) “J2U "); 

where we have written 

. 2 2 
zy = et(151 Us H(151 — N52 — 4551) U5) o(nj2%j + (2nj1 52-2552); ) 

zj2 = ei(nga U5 +(F1 N32 05 51) Y5) e— (N52uj-+(2nj1. 032-25 N;2)V5)_ 

In particular, we have that the immersion r°t? satisfies the following system of differential 

equations: 

stl _ = -) st Dow, = tel, » k>L 

k-1 
+1 _ : s+l * +1 +1 Du, w,_, = 2 ) Mery, +(r—k)ipery” +as412°™, 

t=1 

where 

Qs41 = As — 2X3 + 2a,r? = a, et 

Now, we have to consider different cases depending on the value of n — 2s. If n — 2s = 0, in 

which case by the assumption a, is negative and x°*1 is a constant vector lying in S'(—a,41). 

If mn — 2s = 1 and a, < 0, we have that 2°! defines a horizontal minimal immersion into 

S?(—as41). We introduce a number b such that b? = —a,4,. It is then well known that «°+! is 
congruent with . . . 

git (w1) _ aie e thw ). 

In the case that n — 2s = 1 but a, > 0, we have that 2°t! defines a horizontal minimal immersion 

ino H?(—a,1,). We again introduce a number 6 such that b? = Gs41- Then it follows that we can 

write 

goth (w1) _ Cre" 4 Deiie™, 

W, = 6C,41e°™ — bDsyie ™.



Hence 

2Cs410°™ = bast} + WwW, 

2bDsiie = bast _— Wi, 

from which it follows that C,; and D,4 are null vectors with < C,41, D541 >= aa There- 
fore, it follows that . 

r°*)(w,) = ; (cosh wj, sinh w;). 

Finally, we consider the case that n — 2s > 1. In this case, we know that a, and thus also 
Qs41 = Qy aaa is negative. We also have that as41 = —ry?. In this case, from the system of 
differential equations satisfied by x°+!, it is clear that z+! defines a flat minimal horizontal 
immersion into Sort) (a): It is well known, see [11] that after a change of coordinates such an 

  

immersion is congruent with 

goth _— 1 4 (1 . err ere) 
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