
Interaction on
Human-Centric Communication Platforms:

Modelling and Analysis using
Algebraic High-Level Nets and Processes

vorgelegt von
Dipl.-Inform.

Karsten Gabriel
aus Berlin

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

– Dr.-Ing. –

genehmigte Dissertation.

Promotionsausschuss:

Vorsitzender: Prof. Dr. Stefan Jähnichen
Gutachter: Prof. Dr. Hartmut Ehrig

Prof. Dr. Ina Schieferdecker
Prof. Dr. Julia Padberg

Tag der wissenschaftlichen Aussprache: 14. Januar 2014

Berlin 2014
D83

Abstract

Human-centric communication platforms, like social networks such as Facebook or Twitter,
weblogs, Wiki-systems or Apache Wave, are systems that support humans to communicate,
collaborate interactively, and exchange content. Over the last years, modern communication
systems have evolved to provide different more interactive ways of communication, where
several users have the possibility to concurrently contribute to the communication at the
same time. These non-sequential ways of communication lead to new requirements for the
modelling and analysis of the interactive communication of users on communication platforms,
where it does not suffice to model the communication platform itself, but it is also necessary
to be able to model scenarios and histories of interactions on a platform. Up to now there are
no adequate techniques for the formal modelling of these kinds of communication platforms
and the interactions of users on these platforms that could serve as a basis for their formal
analysis.

In this thesis, in order to close this gap, we present a modelling framework for communica-
tion platforms and scenarios that is an integration of Petri net, algebraic data type, process
and graph transformation techniques. Within this framework, we obtain main conceptual
results concerning communication platforms and scenarios of interactions that rely on techni-
cal results concerning the modelling and evolution of algebraic high-level nets and -processes.
Based on the formal modelling of communication platforms and scenarios in our integrated
framework, we obtain the following main analysis results:

Employing general results from the categorical framework of M-adhesive categories, we
are able to analyse the independence of different evolutions of communication platforms, and
to analyse and synthesise parallel as well as concurrent evolutions of platforms. Based on
these main results for the analysis of communication platforms, we develop corresponding
technical results that on the conceptual layer allow also the analysis of scenario evolutions,
and the investigation of user interactions on communication platforms. Due to our inte-
grated framework, we are also able to analyse the compatibility of scenario and platform
evolutions. Further, a comprehensive concept of different levels of abstraction of scenarios
allows to investigate a whole set of coinciding scenarios at once, and we show that all concrete
realisations of an abstract scenario can be obtained as solutions of a term equation system.
The implementation of our algebraic high-level net and process editor (APE) is in progress
and will support the modelling and analysis of communication platforms and scenarios using
the modelling and analysis results in this thesis.

The practical application of all results concerning the modelling and analysis of communi-
cation platforms and scenarios are exemplified in the context of the communication platform
Apache Wave which serves as a running example throughout the thesis.

Zusammenfassung

Kommunikationsplattformen, die auf die Bedürfnisse von Menschen ausgerichtet sind, wie die
sozialen Netzwerke Facebook und Twitter, Weblogs, Wiki-Systeme oder Apache Wave, sind
Systeme, die Menschen dabei unterstützen, zu kommunizieren, interaktiv zusammenzuarbei-
ten und Inhalte auszutauschen. In den letzten Jahren haben sich die Kommunikationssysteme
stetig dahingehend weiter entwickelt, neue interaktivere Methoden der Kommunikation zu
unterstützen. Dabei ist es oft möglich, dass mehrere Teilnehmer gleichzeitig etwas zur Kom-
munikation beitragen. Diese nicht-sequentiellen Arten der Kommunikation von Benutzern
auf Kommunikationsplattformen führen zu neuen Anforderungen bei der Modellierung und
Analyse der interaktiven Kommunikation zwischen Nutzern der Plattformen. Hierbei reicht
es nicht, nur die Kommunikationsplattform selbst zu modellieren, sondern es ist erforderlich
auch Szenarien von Interaktionen und die Kommunikationsverläufe auf den Plattformen zu
modellieren. Bisher gibt es noch keine geeigneten Techniken für die formale Modellierung
dieser Arten von Kommunikationsplattformen und der Benutzerinteraktionen auf den Platt-
formen, die als Basis für deren formaler Analyse dienen könnten.

Um diese Lücke zu schließen, stellen wir in dieser Dissertation ein Modellierungsframe-
work für Kommunikationsplattformen und Szenarien vor, welches durch die Verknüpfung von
Petrinetzen, algebraischen Datentypen, Prozessen und Graphtransformation entsteht. Inner-
halb dieses Frameworks erhalten wir konzeptuelle Resultate für Kommunikationsplattformen
und Interaktionsszenarien, welche auf technischen Resultaten der Modellierung und Evolution
von algebraischen High-Level-Netzen und -Prozessen aufbauen. Basierend auf der formalen
Modellierung von Kommunikationsplattformen und Szenarien in unserem integrierten Fra-
mework erhalten wir die folgenden Analyse-Resultate:

Unter Verwendung allgemeiner Resultate des kategoriellen Frameworks derM-adhäsiven
Kategorien sind wir in der Lage, die Unabhängigkeit verschiedenener Evolutionen von Kom-
munikationsplattformen zu anlysieren, sowie parallele und nebenläufige Plattformevolutionen
zu analysieren und zu synthetisieren. Basierend auf diesen Hauptresultaten für die Analyse
von Kommunikationsplattformen entwickeln wir entsprechende technische Resultate, die auf
konzeptueller Ebene die Analyse der Evolutionen von Szenarien und die Untersuchung von
Benutzerinteraktionen auf Kommunikationsplattformen erlauben. Dank unseres integrierten
Frameworks sind wir zudem in der Lage, die Kompatibilität von Szenario- und Plattforme-
volutionen zu analysieren. Desweiteren stellen wir ein umfangreiches Konzept verschiedener
Abstraktionsebenen von Szenarien vor, welches es erlaubt, eine Sammlung übereinstimmender
Szenarien zugleich zu untersuchen, und wir zeigen, dass es möglich ist, alle konkreten Realisie-
rungen eines abstrakten Szenarios als Lösungen eines Termgleichungssystems zu berechnen.
Die Implementierung unseres Algebraischen High-Level-Netz- und Prozess-Editors (APE)
befindet sich in Arbeit. Dieser wird die Modellierung und Analyse von Kommunikations-
plattformen und Szenarien unter Verwendung der Modellierungs- und Analyseergebnisse in
dieser Arbeit unterstützen.

Die praktische Anwendung aller Modellierungs- und Analyseergebnisse für Kommunikati-
onsplattformen und Szenarien wird im Rahmen der Kommunikationsplattform Apache Wave
veranschaulicht, welche uns durch die gesamte Arbeit hindurch als Beispiel dient.

Acknowledgements

First of all, I want to thank my supervisor Hartmut Ehrig for all his support. During my work
at the TFS (Theoretische Informatik/Formale Spezifikation) research group at Technische
Universität Berlin, he gave me the opportunity to learn a lot in the interesting research areas
of Petri nets, graph transformation and category theory. I had the freedom to explore and
focus on my own fields of interest, while at the same time he made sure that I do not get too
far off the path towards my overall goals. I am deeply grateful for that.

I also want to thank my supervisor Ina Schieferdecker for agreeing to supervise my thesis,
and for giving me valuable insights in other research fields during my employment at the
Fraunhofer FOCUS.

Furthermore, I want to thank the referee Julia Padberg for agreeing to examine my thesis.

Moreover, this work was made possible due to the support of the Integrated Graduate
Program in Human-Centric Communication (IGP H-C3) by granting me a PhD scholarship
for three years, and the DFG-research project “Formal modeling and analysis of flexible pro-
cesses in mobile ad-hoc networks” (forMAlNET) at the TFS group.

I was never alone with my work, thanks to all the nice fellow workers in the TFS research
group. In particular, I want to thank Tony Modica for all the fruitful and inspiring discus-
sions. Further, I want to thank the rest of the TFS research group Claudia Ermel, Frank
Hermann, Mascha Maximova, Olga Runge and Hanna Schölzel.

Last but not least, I owe special thanks to my parents, my wife Antje and my son Juri
for always supporting me and for keeping me motivated.

Contents

1 Introduction 11

1.1 Aim of the Thesis . 12

1.2 Main Results . 13

1.3 Structure of the Thesis . 15

2 Requirements for Communication Platforms and Scenarios 19

2.1 Communication Platforms and Scenarios . 19

2.2 Case Study: Apache Wave . 22

2.3 Requirements for the Modelling . 24

2.4 Analysis Problems . 27

2.5 Formal Techniques for Modelling and Analysis 27

2.6 Algebraic High-Level Nets and Processes for Modelling and Analysis 29

3 Modelling and Evolution of Communication Platforms 31

3.1 Modelling of Communication Platforms Using Algebraic High-Level Nets . . . 31

3.2 Structural Evolution of Platforms . 38

3.3 Data Evolution and Abstraction of Platforms 45

3.4 Structure and Semantics of Platforms by Skeleton and Flattening 49

4 Modelling and Evolution of Scenarios 57

4.1 Modelling of Abstract Scenarios Using Algebraic High-Level Processes 57

4.2 Evolution of Abstract Scenarios . 62

4.3 Modelling of Concrete Scenarios Using Instantiations 69

4.4 Data Evolution and Abstraction of Concrete Scenarios 73

4.5 Restriction and Amalgamation of Scenarios 79

4.6 Structural Evolution of Concrete Scenarios 88

4.7 Modelling and Evolution of Histories . 95

4.8 Evolution of Scenarios Based on Platform Evolution 101

4.8.1 Extension of Scenarios . 101

4.8.2 Abstract Scenario Evolution Based on Platform Evolution 103

4.8.3 Concrete Scenario Evolution Based on Platform Evolution 110

5 Analysis of Platforms and Scenarios 117

5.1 Independence of Platform Evolutions . 117

5.2 Independence of Scenario Evolutions . 125

5.3 Concrete Realisations of Abstract Scenarios 134

6 Tool Support 141

6.1 Requirements for a Tool Support for the Modelling and Analysis of Commu-
nication Platforms and Scenarios . 141

6.2 Available Tool Support for the Modelling and Analysis of High-Level Petri Nets142

6.3 Algebraic High-Level Net and Process Editor APE 144

6.3.1 Tool Architecture . 144

6.3.2 Signatures and Algebras in Prolog . 147

6.3.3 Visual Editing of Net Models . 150

6.3.4 Calculation of Realisations for Abstract Scenarios 151

6.3.5 Current Development Status . 152

7 Related Work 153

7.1 Formal Modelling of Communication Platforms and Apache Wave 153

7.2 Petri Nets . 155

7.3 Graph and Model Transformation . 157

7.4 Other Modelling Techniques . 158

8 Conclusion 159

8.1 Realisation of Modelling Requirements . 159

8.2 Results for Analysis Problems . 162

8.3 Categorical Results . 165

8.3.1 Functor Creations and Cocreations of Petri Net Categories 165

8.3.2 Pullbacks of Petri Net Categories . 166

8.4 Future Work . 168

8.4.1 Conflicts and Independence of User Interactions 168

8.4.2 Application Conditions . 170

8.4.3 Analysis of Safety and Security Problems 172

8.4.4 Other Case Studies and Application Domains 173

A Appendix 175

A.1 Category Theoretical Basics . 175

A.1.1 Basics . 175

A.1.2 Indexed Categories and Grothendieck Categories 176

A.1.3 M-Adhesive Categories . 177

A.1.4 Functor Creations and Cocreations . 178

A.1.5 Pullbacks of Categories . 187

A.2 Initial Pushouts and Categorical Gluing Condition 190

A.3 Disjoint Union and Parallel Productions . 192

A.4 E-M′ Factorisation and E ′-M′ Pair Factorisation 199

A.5 Instantiations: Technical Details . 205

A.6 Functor Creations and Cocreations of Processes and Instantiations 218

A.7 Minor Technical Results . 226

B Detailed Proofs 231

B.1 Proof of Fact 3.4.4 (Skeleton Functor) . 231

B.2 Proof of Fact 3.4.8 (Natural Inclusion) . 232

B.3 Proof of Fact 3.4.9 (Natural Projection) . 233

B.4 Proof of Fact 3.4.11 (Flattening Functors) . 234

B.5 Proof of Fact 4.2.6 (Gluing of AHL-Process Nets) 238

B.6 Proof of Theorem 4.2.11 (Direct Transformation of AHL-Process Nets) 243

B.7 Proof of Theorem 4.5.13 (Amalgamation Theorem for AHL-Processes) 247

B.8 Proof of Theorem 4.6.8 (Direct Transformation of Instantiations Using Ab-
stract Productions) . 250

B.9 Proof of Fact 4.6.13 (Equivalence of Consistent Creation Condition and In-
stantiation Condition) . 251

B.10 Proof of Theorem 4.8.4 (Extension of AHL-Process based on AHL-Net Trans-
formation) . 253

B.11 Proof of Theorem 4.8.14 (Process Evolution based on Action Evolution) . . . 254

B.12 Proof of Theorem 5.2.4 (Local Church-Rosser Theorem for AHL-Process Net
Transformations) . 258

B.13 Proof of Theorem 5.2.14 (Concurrency Theorem for AHL-Process Net Trans-
formations) . 260

B.14 Proof of Fact 5.2.15 (Construction of Strongly E-Related AHL-Process Net
Transformations) . 261

B.15 Proof of Theorem 5.3.3 (Concrete Realisation of AHL-Process) 262

Bibliography 265

Index 279

1
Introduction

A starting point for the subject matter of this thesis is the research on human-centric com-
munication platforms and their interactions within the Integrated Graduate Program on
Human-Centric Communication (IGP H-C3)1 at Technische Universität Berlin, including
works in the fields of, electrical engineering, computer graphics, human-computer interfaces
and theoretical computer science. This work is a contribution to the modelling and analysis
of human-centric communication platforms and their interactions.

Human-centric communication platforms are systems that support humans to commu-
nicate, collaborate interactively, and exchange content. Prominent examples for this are
social networks, like Facebook [Fac13] or Twitter [Twi13], weblogs, Wiki-systems [Wik13b,
Wik13a], or communication software and services, like Skype [Sky13] and Apache Wave
[Wav13a, Wav13b].

We use the notion of communication platform in analogy to that of a hardware platform:
While the type and condition of a hardware platform determines the capabilities of programs
that run on that platform, a communication platform determines the capabilities of users
that interact on that platform.

Conventional means of communication via computers, like e-mail and chat, are usually
unidirectional and sequential. This means that at a specific moment in time, only one single
person is contributing something to the communication. Another person can receive that con-
tribution and in turn contribute something else at a later point. The result of this sequential
communication is a document that is incrementally growing over the time.

This way of communication is not really natural for humans, and therefore, modern
communication systems provide different more interactive ways of communication, where
several users have the possibility to concurrently contribute to the communication at the
same time. Considering this non-sequential way to communicate, the communication data
does not grow in a linear way, but instead it is interactively changing, and the result of the
communication may not even contain all previous contributions. Accordingly, these non-
sequential ways of communication lead to new requirements for the modelling and analysis
of the interactive communication of users on communication platforms, where it does not
suffice to model the communication platform itself, but it is also necessary to be able to
model scenarios and histories of interactions on a platform.

Formal techniques for the modelling of systems have been clearly proved to be successful
in many different fields of computer science, including also a variety of particular aspects of
communicating systems. There are unquestionable benefits of the formal modelling, since
they are a necessary basis for well-grounded static and dynamic analysis, validation, simu-
lation and testing of systems – which are of increasing importance, due to the ever-growing
complexity of systems and corresponding problems in all areas of computer science. However,
considering communication platforms in their entirety, there is not really an integrated for-

1IGP H-C3 website – www.h-c3.org/IGP/index_en.html

www.h-c3.org/IGP/index_en.html

12 1 Introduction

mal approach that covers the majority of their important aspects and characteristics, except
for e. g. [Mod12] that introduces an integrated framework of algebraic higher-order nets with
individual tokens (AHOI nets) for the modelling, simulation and validation of communication
platforms like Skype [Sky13].

1.1 Aim of the Thesis

The main goal of this thesis is the development of a framework of formal techniques for
the modelling and analysis of interactions on human-centric communication platforms. The
focus on human-centric communication platforms means that we concentrate on the com-
munication between humans rather than on the communication between machines. This has
important consequences on the requirements for suitable modelling and analysis techniques.
Whereas the communication between machines, programs or devices usually has a functional
behaviour that relies on specific deterministic algorithms and protocols, the outcome of the
communication between humans is always to some extent uncertain and non-deterministic,
due to the human participant’s free will. This has to be taken into account, when modelling
human-centric communication platforms. A human-centric communication platform provides
means for the communication and interaction between users without predetermining when or
how they are used exactly. Nonetheless, it is an aim of this thesis to provide means for the
modelling of abstract patterns of user behaviour.

There are formal modelling techniques, like Petri nets [Pet62, Roz87, Rei85, MM90], that
allow the modelling of systems with an essentially non-deterministic operational behaviour.
Moreover, modelling techniques for processes allow the modelling of scenarios with concurrent
behaviour that is crucial for a suitable modelling of interaction scenarios. Apart from their
dynamic behaviour, these modelling techniques usually have a static structure. Considering
the fact that modern communication platforms are permanently advancing, it is important
to model also evolutions of communication platforms and corresponding scenarios. So, it is
a goal of this thesis, to combine suitable modelling techniques for communication platforms
and scenarios with formal techniques for the reconfiguration of systems, like rule-based graph
transformation [Ehr79, Roz97, EHKPP91a, EEPT06b].

Considering the vast number of possible scenarios of different interactions in a commu-
nication platform, it is important for the analysis of scenarios to provide means to unify
scenarios that share a similar form. Therefore, an aim of this thesis is the development of a
mechanism for different levels of abstraction for scenarios, where on a lower level it is possible
to consider the single concrete scenarios, and on a higher level, we have abstract patterns
that represent a set of different scenarios with a common structure. It is intended to also
provide ways to switch between these levels of abstraction. For a concrete scenario it should
be possible to obtain an abstraction of that scenario, and vice versa, for each abstraction it
should be possible to compute the set of all its concrete realisations.

Regarding the growing complexity of modern communication platforms, a further goal of
this thesis are techniques to provide different views on communication platforms. This shall
allow to concentrate only on those parts of a communication platform that are of a particular
interest, while masking out all other parts. Accordingly, considering a specific view on a
communication platform, we also want to provide a way to obtain a corresponding view on
scenarios of that platform. Moreover, it is an aim to develop techniques to combine differ-
ent views on communication platforms and scenarios to a larger view that encompasses all
aspects of the smaller views. Views on communication platforms are particularly interesting
in the context of cross-platform communication, where users on different platforms might
communicate with each other. In this case, we are interested in a view that sees the different

1.2 Main Results 13

single platforms as one integrated communication platform, and scenarios of cross-platform
interaction are scenarios of that platform.

An integrated framework that is based on the combination of existing well-researched
techniques may already provide several techniques for the analysis of models and their evo-
lutions. We intend to apply existing analysis techniques to the models of communication
platforms and scenarios, and otherwise extend the techniques, where this is possible, or de-
velop new techniques. Considering the evolutions of communication platforms and scenarios,
respectively, we are primarily interested in techniques to answer the question whether differ-
ent evolutions are in conflict with each other. Two evolutions can be in conflict with each
other, if they can only be performed exclusively, or maybe if they can only be performed in
a specific order. Otherwise, we can say that the evolutions are independent. In the case of
the evolution of communication platforms, independent evolutions correspond to compatible
updates of a platform. Non-independent evolutions, on the other hand, may indicate that
the communication platform has to be updated with great care, because it is possible that
one evolution is not applicable to a later state of the platform. In the case of the evolution
of scenarios, independent evolutions may correspond to compatible interactions, and depen-
dent evolutions may indicate that there are conflicts between interactions. Considering the
possibility of non-atomic evolutions that correspond to different changes at once, we are also
interested in ways to analyse complex evolutions into smaller ones, in order to allow the
analysis and refinement of these smaller evolutions. Vice versa, we are also interested in the
synthesis of complex evolutions from compatible smaller ones, in order to analyse also the
independence of more complex updates or interactions, respectively.

Moreover, considering existing scenarios of evolved communication platforms, it is an
aim of this thesis to analyse the compatibility of scenarios and platform evolutions. We are
interested in techniques to analyse whether a scenario of a communication platform is still
consistent with that platform if the corresponding platform has evolved. On the other hand,
we are interested in ways to evolve scenarios consistently to the evolution of the corresponding
platform, in order to obtain again a valid scenario, where all modifications to the platform
are also reflected in corresponding modifications on interactions in the scenario.

All techniques for the modelling and analysis of communication platforms have to be ap-
plied to an actual existing communication platform, in order to verify their practical benefits.
As a case study of a communication platform, we choose the open-source project Apache Wave
[Wav13a]. It consists of many properties of a typical modern communication platform that we
are interested in, like non-sequentiality and the possibility for cross-platform communication.

Finally, we plan to provide a tool support for the modelling and analysis of communication
platforms and scenarios, using the techniques that are developed and investigated in this
thesis.

1.2 Main Results

In this section, we give a brief overview on the results of this thesis. For a comprehensive
overview on the modelling results of this thesis, we refer to Section 8.1, and the analysis
results are summarised in Section 8.2.

Modelling and Evolution of Communication Platforms For the modelling of commu-
nication platforms, we use the well-researched modelling technique of algebraic high-
level (AHL-)nets [EPR92, PER95]. This is an integration of Petri nets and data types
in the sense of algebraic specification [EM85]. It allows the modelling of the structure
of a communication platform together with an operational behaviour.

14 1 Introduction

The structural evolution of communication platforms is modelled by rule-based transfor-
mation of AHL-nets in the sense of graph transformation [Ehr79, Roz97]. The resulting
transformation system fits into the abstract categorical framework of M-adhesive cat-
egories [EGH10], allowing to employ a large set of already available analysis techniques
[EEPT06b, EGH10] for the analysis of communication platforms. Moreover, for the
evolution of the data type part of a communication platform, we introduce the concept
of data-images of AHL-nets.

Modelling and Evolution of Scenarios With regard to the targeted levels of abstraction
for scenarios, mentioned in the previous section, we distinguish between the modelling
of abstract, concrete and semi-concrete scenarios. Abstract scenarios specify a logical
and causal relation of interactions, but they do not specify any concrete data values that
are used during the interaction. For the modelling of abstract scenarios, we use AHL-
processes [EHP+02, Ehr05] that conform to an AHL-net model of the corresponding
communication platform. Furthermore, concrete scenarios capture a logical and causal
relation of interactions together with all the concrete data values that are used during
the process of interaction. This is modelled using instantiated AHL-processes [Ehr05,
Gab10]. Semi-concrete scenarios lie between abstract and concrete scenarios, in the
sense that data values are abstractly specified. For this purpose, we introduce the
new concept of abstract instantiations, and semi-concrete scenarios are modelled as
abstractly instantiated AHL-processes.

For the modelling of the evolution of scenarios, we extend the concepts of rule-based
transformation and data-images of AHL-nets to corresponding concepts that allow also
the structural and data evolution of AHL-processes and instantiations.

Modelling of User Behaviour Abstract patterns for the behaviour of users can be mod-
elled as sequential productions for instantiated AHL-processes. Histories and current
states of a communication can be modelled as special cases of scenarios. Accordingly,
the application of the abstract behavioural patterns, that corresponds to the progres-
sion of the history and an adaptation of the current state of a communication, can be
performed as a special case of rule-based transformation of instantiated AHL-processes.

Levels of Abstraction Our approach for the modelling of abstract, semi-concrete and con-
crete scenarios establishes relations of abstraction and concretisation between different
levels of abstraction of scenarios. The abstraction of Semi-concrete and concrete scenar-
ios can be obtained by the underlying AHL-process model. Moreover, the concretisation
of semi-concrete scenarios is based on the concept of data-images, and concrete reali-
sations of abstract scenarios can be obtained as solutions of a term equation system.

Views on Communication Platforms and Scenarios Based on the modelling of com-
munication platforms using algebraic high-level nets, it is possible to model the view on
a platform as an embedding of an AHL-net into a larger context. We introduce tech-
niques for the restriction and amalgamation of AHL-processes along these embeddings,
allowing to restrict the view on a scenario to a corresponding view of the associated
communication platform or combine views on scenarios according to the composition
of platforms.

Compatibility of Platform Evolutions Due to the fact that our modelling approach for
communication platforms using AHL-nets fits into the framework ofM-adhesive trans-
formation systems, we obtain suitable analysis techniques for the independence of plat-
form evolutions by instantiation of corresponding general results from the abstract

1.3 Structure of the Thesis 15

categorical framework [EGH10, EEPT06b]. We also get techniques for the analysis and
synthesis of complex evolutions.

Compatibility of Scenario Evolutions The modelling of scenarios using (instantiated)
AHL-processes does not satisfy the requirements of anM-adhesive transformation sys-
tem. However, we extend the results that are used for the analysis of platform evolutions
such that they are also applicable to the analysis of scenario evolutions. Since user in-
teractions are modelled as special cases of scenario evolutions, the results can also be
used to analyse conflicts and independence of user interactions.

Compatibility between Scenarios and Platform Evolutions The concept of the ex-
tension of a scenario can be used to model the case that the scenario of a platform is
still in compliance to the result of an evolution of that platform. One result of this the-
sis are sufficient and necessary conditions for the extension of scenarios along platform
evolutions. Another result concerns the evolution of scenarios based on the evolution
of platforms, allowing to transfer modifications of a communication platform also to
corresponding modifications of scenarios of that platform.

Note that preliminary versions of the results presented in this thesis, we have published
already in the following papers: The modelling of AHL-processes with instantiations, relying
on a given set of initial markings, in [EHGP09, Gab09] can be seen as a technical starting
point for this thesis. In [EG11, Gab11], we have shown that AHL-nets and AHL-processes can
be used to model the former communication platform Google Wave that was a predecessor
of Apache Wave, and in [EG11] we also presented techniques concerning the independence
of AHL-net transformations, and the amalgamation of AHL-processes. Further, in [Gab12a],
we introduced the extension of AHL-processes, and in [GE12a] we introduced an approach
for the evolution of abstract scenarios based on the evolution of single actions of a platform.
This approach was extended to the evolution of abstract scenarios based on the evolution
of multiple actions of a platform in [Gab12b]. In [GE12b] we outlined the modelling of
communication platforms like Apache Wave, using the framework of AHL-nets and -processes
presented in this thesis. The technical details of these works can be found in corresponding
technical reports.

1.3 Structure of the Thesis

The thesis is structured as follows:

Chapter 2 (Requirements for Communication Platforms and Scenarios) In this
chapter, we discuss the requirements for the modelling and analysis of communication
platforms and scenarios. First, in Section 2.1 we specify our understanding and focus
on the notion of communication platforms and discuss some prominent examples. As a
concrete example of a communication platform we introduce in Section 2.2 our Apache
Wave case study which serves as a running example throughout the main part of this
thesis. All results concerning the modelling and analysis of communication platforms
and scenarios are exemplified in the context of this case study. Further, in Section 2.3 we
discuss the requirements that have to be met by a suitable approach for the modelling of
communication platforms and scenarios, and in Section 2.4 we give an overview on the
several analysis problems that are of interest in the focus of this thesis. In Section 2.5
we review different modelling techniques that might be appropriate for the modelling
of communication platforms and scenarios. Finally, in Section 2.6 we give an outlook

16 1 Introduction

on the integrated framework of algebraic high-level nets and processes that is used in
the subsequent chapters for the modelling of communication platforms and scenarios.

Chapter 3 (Modelling and Evolution of Communication Platforms) This chapter
consists of a presentation of the modelling technique of algebraic high-level (AHL-)nets
in Section 3.1, and we show how AHL-nets can be used to model communication plat-
forms. Further, in Section 3.2 we present the rule-based transformation of AHL-nets
in the sense of graph transformation that can be used for the structural evolution of
communication platforms, followed by the introduction of mechanisms in Section 3.3
that can be used for the data evolution and abstraction of communication platforms.
As a last point in this chapter, in Section 3.4 we review the skeleton and flattening func-
tors that yield different low-level place/transition nets from AHL-nets. These functors
can be used to extract the structure and flat semantics, respectively, of an AHL-net,
and they are of vital importance for the definition of instantiations in the subsequent
chapter.

Chapter 4 (Modelling and Evolution of Scenarios) First, in Section 4.1 we present
the modelling technique of AHL-processes based on AHL-process nets, and we show how
this technique can be used for the modelling of abstract scenarios. Then, in Section 4.2
we extend the rule-based transformation of AHL-nets to support also the rule-based
transformation of AHL-process nets and -processes, allowing the structural evolution
of abstract scenarios. Moreover, the concept of instantiations and instantiated AHL-
processes in Section 4.3 is used to model also concrete and semi-concrete scenarios.
In the subsequent Section 4.4, we extend the mechanisms for the data evolution and
abstraction of AHL-nets to corresponding mechanisms for AHL-process nets, -processes
and instantiations, yielding also a concept of different levels of abstraction for scenar-
ios. The restriction and amalgamation techniques for (instantiated) AHL-processes,
presented in Section 4.5, support the restriction and union of views on scenarios based
on underlying embeddings and composition, respectively, of communication platforms.
Further, in Section 4.6 we present the rule-based transformation of instantiations, and,
in combination with the rule-based transformation of AHL-processes, an integrated ap-
proach of the rule-based transformation of instantiated AHL-processes. This can be
used to model also the structural evolution of concrete and semi-concrete scenarios.
The modelling techniques for histories and user behaviour, presented in Section 4.7,
are special cases of the techniques for the modelling respectively evolution of concrete
scenarios. Finally, in Section 4.8 we introduce the evolution of scenarios based on
communication platform evolutions. This includes the extension of scenarios as well
as techniques to evolve abstract and concrete scenarios according to evolutions of the
underlying communication platform.

Chapter 5 (Analysis of Platforms and Scenarios) In this chapter, we present techni-
ques for the analysis of communication platforms and scenarios. The Local Church-
Rosser, Parallelism and Concurrency Theorems for AHL-nets in Section 5.1 are in-
stantiations of corresponding general analysis results in the categorical framework of
M-adhesive categories. These techniques can be used for the analysis of independent
platform evolutions, and they provide means for the analysis and synthesis of parallel
as well as concurrent evolutions of communication platforms. Moreover, in Section 5.2,
we introduce corresponding extensions of the Local Church-Rosser, Parallelism and
Concurrency Theorems that adequately support the analysis of scenario evolutions. In
Section 5.3, we present the construction of a term equation system for the model of

1.3 Structure of the Thesis 17

an abstract scenario, and we show that there is a 1-to-1 correspondence between con-
crete realisations of the abstract scenario and the solutions of the corresponding term
equation system.

Chapter 6 (Tool Support) In Section 6.1, we give an overview on the requirements for a
suitable tool support that allows the modelling and analysis of communication platforms
using the techniques presented in this thesis. This is followed in Section 6.2 by a review
of already available modelling tools that might be adequate starting points for the
implementation of a tool support for AHL-nets and -processes. In Section 6.3, we
present our implementation of an algebraic high-level net and process editor (APE).
This includes an overview on the implementation details as well as on the capabilities
of the current development status, and an outlook on future extensions.

Chapter 7 (Related Work) In this chapter we give an overview on related work, concern-
ing the different technical and conceptual aspects of this thesis. First, in Section 7.1 we
review other contributions to the formal modelling of communication platforms. Then,
in Section 7.2 we give an overview on related work on the formal modelling using the
modelling technique of Petri nets, as it is the basis for the modelling of communication
platforms and scenarios in this thesis. Moreover, considering the fact that structural
evolution of platforms and scenarios in this work are modelled using rule-based trans-
formation in the sense of graph transformation, in Section 7.3 we review related work
in the field of graph and model transformation. Finally, in Section 7.4 we review other
modelling techniques that are related to the techniques used in this thesis.

Chapter 8 (Conclusion) This chapter concludes the thesis with a summary of the results
and an outlook on future research. In Section 8.1, we give an overview on the realisations
of the modelling requirements for communication platforms and scenarios, as discussed
in Section 2.3. This is followed in Section 8.2 by an overview of techniques for solving the
analysis problems, discussed in Section 2.4. Section 8.3 is concerned with additional
abstract categorical results of this thesis. Finally, in Section 8.4 we discuss further
aspects of research that remain for future work.

The Appendix A contains a variety of technical details that are of use for the results
in the main part of this thesis, whereas they are not of an immediate conceptual relevance.
Moreover, most of the facts and theorems in the main part of this thesis are only accompa-
nied with a proof-idea, and the complete detailed proofs can be found in Appendix B. The
bibliography and an index of important and frequently used notions can be found at the end
of this thesis.

18 1 Introduction

2
Requirements for Communication Platforms

and Scenarios

In this chapter, we discuss the requirements for the modelling and analysis of communication
platforms and scenarios. First, in Section 2.1 we specify our understanding and focus on the
notion of communication platforms and discuss some prominent examples.

As a concrete example of a communication platform we introduce in Section 2.2 our
Apache Wave case study which serves as a running example throughout the main part of this
thesis. All results concerning the modelling and analysis of communication platforms and
scenarios are exemplified in the context of this case study.

Further, in Section 2.3 we discuss the requirements that have to be met by a suitable
approach for the modelling of communication platforms and scenarios, and in Section 2.4 we
give an overview on the several analysis problems that are of interest in the focus of this
thesis.

In Section 2.5 we review different modelling techniques that might be appropriate for the
modelling of communication platforms and scenarios, and in Section 2.6 we give an outlook
on the integrated framework of algebraic high-level nets and processes that is used in the
subsequent chapters for the modelling of communication platforms and scenarios.

2.1 Communication Platforms and Scenarios

The notion of a platform is usually used to describe the basic architecture that allows a
specific set of developments or activities. For instance, a computing platform can denote
a specific hardware architecture like a personal computer or a mobile telephone, but it can
also denote a software architecture such as an operating system like Windows or Linux, or a
software framework like the Java Platform or the .NET framework. A platform determines
a specific set of applications or even other platforms that can be launched on the platform.

The notion of a communication platform is also used in different ways, denoting hard-
ware architectures like ethernet or wireless techniques, or software architectures such as
client-server, peer-to-peer (P2P) or ad-hoc networks. These usages of the notion are rather
technology- or machine-centric as a client, a server or a peer usually denotes a specific hard-
ware component or computer program. Accordingly, such a machine-centric communication
platform determines the ability of machines to communicate with each other.

In contrast, a human-centric communication platform should describe the ability of hu-
mans to communicate with each other. Of course, the ability of humans to communicate using
computer systems depends on the abilities of the used technology. However, with today’s om-
nipresence of the internet, the different kinds of user-interaction are usually not determined
by the used technology, but rather by the used services. Regardless whether someone is using
a personal computer with an ethernet connection or a mobile phone with UMTS, the user can

20 2 Requirements for Communication Platforms and Scenarios

access the same (web-based) services as long as there is an internet-browser or an alternative
application installed on the device.

Thus, for human-centric communication platforms, we use the term in the sense of [Mod12]
where a communication platform is defined as

a (possibly Internet-based) service with the main or only purpose to allow humans
to communicate with each other. Essentially, the users are the only perceivable
actors in these systems and thus every reaction of the system is triggered directly
by the users’ actions. Usually, the users can set preferences regarding their privacy
and availability to communication, which are respected by the system.

There are several popular internet-based examples of communication platforms, most of
them serving different main purposes such as social interaction and networking, telecommu-
nication, collaboration, sharing of knowledge, planning or organization.

Facebook Facebook [Fac13] is the most well-known example of a social networking website
with over one billion active users. The website offers users the ability to connect with
their friends on-line, and to communicate via private messages, via text, voice or video
chat, or by posting messages on the so-called timeline of the own or another profile.
Messages on the timeline of a profile can contain text, images or videos. Depending on
privacy settings, most of the recent interactions of connected users are aggregated in a
news feed.

Twitter Another example of a social networking service is Twitter [Twi13] which is a mi-
croblogging service. This means that Twitter allows to send text-based messages of up
to 140 characters, so-called tweets, which by default are publicly visible. Tweets can be
restricted to be read only by subscribers (followers) of the sender.

Skype Skype [Sky13] is a telephone software application. It offers users the ability to perform
voice calls to other users, but also text chatting, video conferences and direct file transfer
to other users are possible. The communication software Skype is comprehensively
investigated in [Mod12].

Apache Wave Originally developed by the company Google2 as Google Wave, the project
was handed over in 2010 to the Apache Software Foundation3 for further development
as Apache Wave [Wav13a]. The communication platform allows users to communicate
and collaborate via so-called waves. A wave is like a document that can be accessed for
reading and modification by different users at the same time. Changes to a wave can
be recognized by other users almost immediately (near-real-time). For this reason, in
Apache Wave for every communication there is a history allowing the user to stepwise
replay interactions of the communication. Due to the fact that Apache Wave is open
source, there are different independent derivations of the project, like Wave in a box
[Wav13b], Google Walkaround [Wal13], Rizzoma [Riz13] or Co-meeting [Cm13]. Apache
Wave is considered in more detail in Section 2.2.

Wikis A wiki is a website that allows users to modify its contents. The first wiki was the
website WikiWikiWeb[Wik13b], created in 1995, while the most popular example of a
wiki is the encyclopaedia Wikipedia[Wik13a]. Wikis are widely used for information

2Google website – http://www.google.com
3Apache Software Foundation website – http://www.apache.org/

http://www.google.com
http://www.apache.org/

2.1 Communication Platforms and Scenarios 21

(a) Co-meeting

(b) Rizzoma

(c) Wave in a box

Figure 2.1: Apache Wave implementations

management and note-taking, but they are also used for instance in intranets of organ-
isations for planning the distribution of resources between co-workers. Control over a
wiki can be permitted to different levels of access, e. g. only some users may change,
add or delete material while the content can be accessed for reading by all users.

Facebook and Skype are proprietary closed-source communication platforms, while there
are open-source Twitter, Wave and Wiki projects that can be used by anyone to build an own
customized communication platform. One aspect that all these examples have in common is
that they all offer a variety of different means of interactions to the users.

Moreover, all of the above examples have evolved over the years and are constantly evolv-
ing by adding or changing features. A particularly interesting evolution is the introduction
of the Facebook-timeline in 2012 which changed the way, the profile of a user is displayed.
Before introduction of the timeline, users could only post messages on their profile which
were dated to the present, while the timeline also offers the ability to post messages about
events in the past. Since there was a possible impact on the privacy of the users, the users
were not forced to use the new timeline, but instead, users could choose if they wanted to
switch to the new timeline, or using the old profile instead. Due to the different feature sets
in Facebook with or without timeline, this can be seen as two different Facebook platforms

22 2 Requirements for Communication Platforms and Scenarios

running in parallel, allowing users on both platforms to communicate with each other.

2.2 Case Study: Apache Wave

In this section we introduce our main case study Apache Wave which is a communication
platform that was originally developed by the company Google as Google Wave. Google
itself has stopped the development of Google Wave, but the development is continued by the
Apache Software Foundation as Apache Wave.

One of the most interesting aspects of Apache Wave is the possibility to make changes on
previous contributions. Therefore, in contrast to email, text chat or forums, due to possible
changes the resulting data of the communication does not necessarily give a comprehensive
overview on all interactions of the communication. For this reason, in Google Wave for
every communication there was a history allowing the users to replay interactions of the
communication step by step. Unfortunately, the playback feature is currently not included
in any of the Apache Wave implementations, but it is planned that the feature returns in
some of the projects. Taking this feature into account, for the modelling of Apache Wave
it is necessary that we do not only model the systems and the communication but also the
history of the communication.

We have chosen Apache Wave as running example for this thesis because it includes
typical modern features of many other communication systems, such as near-real-time com-
munication. This means that different users can simultaneously edit the same document, and
changes of one user can be seen almost immediately by the other users.

In Apache Wave users can communicate and collaborate via so-called waves. A wave
is like a document which can contain diverse types of data that can be edited by different
invited users. The changes that are made to a wave can be simultaneously recognized by the
other participating users. In order to keep track of the changes that have been made, every
wave contains also a history of all the actions in that wave.

Apache Wave supports different types of extensions which are divided into gadgets and
robots. The extensions are programs that can be used inside of a wave. The difference
between gadgets and robots is that gadgets are not able to interact with their environment
while robots can be seen as automated users that can independently create, read or change
waves, invite users or other robots, and so on. This allows robots for example to do real-time
translation or highlighting of texts that are written by different users of a wave. Clearly, it
is intended to use different robots for different tasks and it is desired that multiple robots
interact without conflicts. This makes the modelling and analysis of Apache Wave very
important in order to predict possible conflicts or other undesired behaviour of robots.

Figure 2.2 shows a small example of the structure of a basic Apache Wave platform. In
order to keep the example simple, we focus only on actions that operate on one single wave.
The platform contains basic features like the creation of new waves, modifications to existing
waves, and the invitation of users to a wave.

A wavelet is a part of a wave that contains a user ID, a list of XML documents and a
set of users which are invited to modify the wavelet. For simplicity we model in our example
only the simple case that every wavelet contains only one single document and the documents
contain only plain text. In order to obtain a more realistic model one has to extend the model
accordingly.

Figure 2.3 shows an example of a concrete scenario of interactions in a wave. The scenario
starts with the creation of a wavelet with id 0 by user Alice. Then, while user Alice insert
some text into the previously created wavelet, user Bob creates another wavelet with id 1.
Afterwards, Alice invites Bob to participate in the wavelet 0, and Bob changes the wavelet

2.2 Case Study: Apache Wave 23

Actions:

creates a new wavelet with the given freeId,

computes and returns the next free id,

the creator is automatically invited

inserts the text t at position p in wavelet w,

but only if the user u is invited in the wavelet w

removes text from position start to position

end in wavelet w,

but only if the user u is invited in the wavelet w

invites user u2 to the wavelet w,

but only if the user u1 is invited in the wavelet w

New Wavelet(User creator, Number freeId)

Insert Text(User u, Wavelet w, Number p, Text t)

Remove Text(User u, Wavelet w, Number start, Number end)

Invite User(User u1, User u2, Wavelet w)

Resources:

Users

Wavelets

Free Ids

Apache Wave Platform

Figure 2.2: Resources and actions of a basic Apache Wave platform

by removing a part of the text. Finally, Bob inserts another text into the wavelet 1, where
only he is invited.

User Alice

invites Bob in

wavelet with

id 0

User Bob

creates wavelet

with id 1

User Alice

creates wavelet

with id 0

User Alice inserts text

"Hello Bob!" into

wavelet with id 0

User Bob removes

text " Bob!" from

wavelet with id 0

User Bob inserts text

"Hello World!" into

wavelet with id 1

Time

Figure 2.3: Concrete scenario of interactions in a wave

Note that subsequent events on the time line in Figure 2.2 are considered to happen one
after another and in no other causal relation. On the other hand, the two events of Alice
inserting the text ‘‘Hello Bob’’ and Bob creating the wavelet with id 1 are considered to
happen simultaneously. Due to the network communication the events in the communication
platform are only perceived in near -real time by the system and the other users. Therefore,
it may be wise to consider events not only as simultaneous, if they actually happen at the

24 2 Requirements for Communication Platforms and Scenarios

exact same time, but also, if they can happen at the same time. This includes all events
for which it is possible that they can occur in every possible order, e. g. it is not important
whether Bob creates the wavelet a few milliseconds before Alice inserts the text into the other
wavelet, or if it is the other way around.

An abstraction of the concrete scenario is depicted in Figure 2.4, where the correct order
of actions from the concrete scenario is retained, but we do not consider the concrete values
for the different resources like users, texts and ids.

User A

invites B in

wavelet with

id X

User B creates

wavelet with

id Y

User A creates

wavelet with id X

User A inserts some

text into wavelet with

id X

User B removes

some text from

wavelet with id X

User B inserts some

text into wavelet

with id Y

Time

Figure 2.4: Abstract scenario of interactions in a wave

Another interesting aspect of the modelling of Apache Wave are dynamic changes to
the structure of the platform. Since Apache Wave is open-source, it can be expected that
platforms are constantly modified by potentially different developers.

Figure 2.5 shows a possible modification of the platform presented in Figure 2.2. In this
platform, it is not possible to change a wavelet directly, but instead it is possible to modify
the copy of a wavelet, because the actions Insert Text and Remove Text have been replaced
by the action Modify Copy.

Since it is possible that the communication platform is modified at runtime there may
already exist some waves that correspond to the old version of the platform. In some cases
that correspondence could be violated by the modification of the platform.

An intuitive solution is to apply the modification of the platform also to the wave, re-
placing all occurrences of the old features with corresponding new ones if possible, or remove
them otherwise. In the case of our scenario in Figure 2.3 and the platform evolution de-
scribed above, this leads to new concrete and abstract scenarios depicted in Figure 2.6 and
Figure 2.7, where the two occurrences of text insertions as well as the occurrence of removing
a text have been replaced by occurrences of the modify copy action.

2.3 Requirements for the Modelling

From the given examples in Section 2.1, we can derive a number of requirements for the
modelling of modern communication platforms.

Platforms For the modelling of the platforms, it is important to allow the modelling of the
users as well as all sorts of data that is product of the communication between these
users. Moreover, the model of a wave has to contain possibly different types of actions
that can be used by the users to communicate with each other.

2.3 Requirements for the Modelling 25

Actions:

creates a new wavelet with the given freeId,

computes and returns the next free id,

the creator is automatically invited

creates a copy w2 of wavelet w,

removes text from position start to position end in

wavelet w2, and inserts text at position start,

but only if the user u is invited in the wavelet w

invites user u2 to the wavelet w,

but only if the user u1 is invited in the wavelet w

New Wavelet(User creator, Number freeId)

Modify Copy(User u, Wavelet w, Number start, Number end,

 Text t)

Invite User(User u1, User u2, Wavelet w)

Resources:

Users

Wavelets

Free Ids

Apache Wave Platform 2

Figure 2.5: Modified Apache Wave platform

User Alice

invites Bob in

wavelet with

id 0

User Bob

creates wavelet

with id 1

User Alice

creates wavelet

with id 0

User Alice modifies a

copy of wavelet 0 with

text "Hello Bob!" at start

0 and end 0

User Bob modifies a copy of

wavelet 0 with text " Bob!"

at start 6 and end 10

User Bob modifies a copy

of wavelet 0 with text

"Hello World!" at start 0

and end 0

Time

Figure 2.6: Modified concrete scenario of a wave

In some cases such as the different manifestations of Apache Wave, there may be dif-
ferent platforms with a different set of actions or data, but users on different platforms
may still communicate with each other due to a common communication protocol.
This means that the modelling of communication platforms should be compositional,
allowing to view a combination of platforms as a platform.

Evolution of Platforms As we have seen in the examples above it should also be possible
model the evolution of platforms, changing the actions and/or data of the platform.

Scenarios Since we want to investigate the interactions of human-centric communication
platforms, we need a way to model these interactions. As the interactions usually

26 2 Requirements for Communication Platforms and Scenarios

User A invites

B in wavelet

with id X

User B creates

wavelet with

id Y

User A creates

wavelet with id X

User A modifies

copy of wavelet X

Time

User B modifies

copy of wavelet X

User B modifies

copy of wavelet Y

Figure 2.7: Modified abstract scenario of a wave

are performed by humans, we have to consider different scenarios of interactions on
a platform. A scenario contains a number of actions performed by users, and these
actions have to be in compliance with the actions and data that can be used on the
corresponding platform. The model of a scenario should reflect the causal relation of
subsequent actions, but it should also be possible to model the concurrent occurrence
of actions, since usually it is possible that different users perform actions independently
at the same time (see also the discussion on page 23 about a tolerant interpretation of
simultaneity in near-real time communication).

Histories With a modelling technique for scenarios of interactions fulfilling these require-
ments, it should also be possible to adequately model the histories of waves.

Evolution of Scenarios Similar to the evolution of communication platforms it should be
possible to model also the evolution of scenarios. Considering histories as special scenar-
ios this should include the modelling of the progression of histories by user interactions.

Levels of Abstraction In order to identify and investigate specific patterns of interactions,
we need a way to model different levels of abstraction, allowing us to consider concrete
scenarios with the different concrete data values and users that are involved, as well as
abstract scenarios, where the data and users are not fixed a priori. It should then be
possible to relate abstract and concrete scenarios, if the first is an abstraction of the
latter, or equivalently, the latter is a concrete realization of the first one.

Views on Scenarios Regarding the compositionality of platforms described above, it should
also be possible to restrict scenarios to the current view on the platform. This is par-
ticularly interesting in the context of cross-platform communication, where different
platforms together form a common larger platform.

Behaviour of Users (Robots) Analysing the interactions in human-centric communica-
tion platforms, we require not only a formal model of the platform, but also a suitable
model of the behaviour of the users. This includes the behaviour of humans, and,
considering robots as a special case of automated users, also the behaviour of robots.
Formalisation of behavioural patterns should allow to analyse possible conflicts or de-
pendencies in the interaction of humans and/or robots, making it possible to detect
and prevent potential problems at the design-time of the platform.

2.4 Analysis Problems 27

2.4 Analysis Problems

Modelling techniques satisfying the requirements in the previous section may be used to
address the following analysis problems concerning communication platforms and scenarios:

Compatibility and Composability of Platform Evolutions Especially in the case of
open-source platforms, it can happen that outgoing from one platform there are different
evolutions of that platform, introducing or removing features or resources, respectively.
Considering two of these evolutions, it is an interesting question if the evolutions exclude
or depend on each other. If this is not the case, it may be possible that the evolutions
are compatible with each other, in the sense that one evolution can also be applied to
the resulting platform of the other one and vice versa. In that case there should be a
way to unite the different evolutions and obtain one evolution, consisting of the benefits
of either of the single evolutions, but with the difference that the platform evolves in a
single step. In the case of dependencies on the other hand, the preferred result would
be a composition of the evolutions in the right order, assuring that no conflicts occur
during the cumulative evolution of the platform.

The other way around, it could be helpful to decompose complex evolutions of platforms
into smaller parts. Then the analysis of dependencies of the single parts with each other
could allow to change the order of single changes in order to increase the performance,
or to exclude undesired parts of the evolution.

Compatibility between Scenarios and Platform Evolutions Moreover, due to the fact
that platforms can evolve, we need a way to check if scenarios of the original platform
are still in compliance with the result of the modification. Otherwise, it is an interest-
ing question, if scenarios can be adapted appropriately, in order to obtain a consistent
scenario corresponding to the new platform.

Conflicts between Interactions Considering interactive (near-)real-time communication
using modern platforms it is possible that many users perform different action at the
same time. In the case that they are using the same resources this may lead to conflicts.
This can especially be a problem when a variety of different robots is involved in the
communication. It would be helpful to detect these conflicts at design-time to prevent
problems that may occur during the communication.

Concrete Realisations of Abstract Scenarios Considering abstract scenarios without
any specific data or users, the question arises if there are at all concrete values that can
be used to obtain a concrete scenario that is a realization of the abstract scenario.

Cross-Platform Communication Another interesting aspect for the analysis is the possi-
bility of communication participants on different platforms to communicate with each
other. Considering the communication interface it may be necessary to exchange spe-
cific resources in order to ensure that the communication works correctly.

2.5 Formal Techniques for Modelling and Analysis

Based on the requirements for the modelling of communication platforms as identified in the
previous section, we investigate different modelling techniques to which extent they meet
these requirements.

Platforms The Unified Modelling Language (UML) provides a large set of different graphical
and textual techniques for the modelling of object-oriented systems [BRJ98, BJR99].

28 2 Requirements for Communication Platforms and Scenarios

For instance, class diagrams describe the static structure of a system by describing the
relation between different classes, object diagrams are graphs of instances, describing
the static state of a system, whereas collaboration diagrams model the dynamic changes
of states.

Moreover, the UML offers a variety of techniques for describing the behaviour of sys-
tems, such as sequence diagrams, use case diagrams and activity diagrams. The main
drawback of the UML languages is that – although there have been some efforts for a
formalisation of single parts of the UML [BHH+97, GPP98, BCD+06] – there does not
exist a consistent formal semantics for the whole UML framework.

Another well-known visual modelling technique are Petri nets that have been started
by Carl Adam Petri in [Pet62]. In the basic approach of low-level place/transition
(P/T) nets [Roz87, Rei85, MM90], the nets consist of places and transitions. The
operational semantics of P/T nets, the so-called token-game, involves a marking of
indistinguishable tokens that can be present on places, and the marking can be changed
by firing transitions under certain conditions.

High-level nets based on low-level P/T nets and data types have been studied in [GL81,
Gen87] as Predicate/Transition nets, and with data types in the programming language
ML in [Jen91, JR91, Jen97a] as coloured Petri nets, providing the modeller with various
verification techniques [Jen97b] and comprehensive tool-support that has been used in
many different application areas [Jen97c].

The combination of Petri nets and algebraic specifications[EM85] was mainly initiated
by Krämer [Krä87, Krä89] and extended in [Hum89, Rei90, DHP91, EPR92, ER97]
leading to the notion of algebraic high-level (AHL) nets. The mathematical formalisa-
tion of structuring techniques like the gluing or restriction of algebraic high-level nets
allow the compositional modelling and analysis of complex systems [Lil91, GE00].

Evolution of Platforms A very powerful and well researched technique for the evolution
of graphs is rule-based graph transformation [Ehr79, Roz97]. There are several general
frameworks such as the framework of adhesive [LS04], weak adhesive HLR [EEPT06b]
and M-adhesive transformation systems [EGH10], allowing to apply the idea of rule-
based transformation not only to pure graphs but to a large set of different graph-
like structures. This includes for instance the evolution of UML diagrams [GPP98,
KGKK02], of AHL-nets [PER95, Pra07], and even AHL-systems, that is, AHL-nets
together with markings [Pra08, MGE+10, MGH10].

Besides the general applicability of the frameworks, they have the benefit to offer results
and analysis techniques like the Local Church-Rosser, Local Confluence, Parallelism,
Extension and Embedding Theorems, and Critical Pair Analysis.

Scenarios Considering the fact that a scenario has to be in compliance with the respective
platform it corresponds to, it may a good idea to regard a scenario as a typed object
or graph[EEPT06a, EEPT06b], in the sense that the scenario contains resources (like
data elements or users) as well as actions that are instances of corresponding elements
that are present in the platform model.

In the case of Petri nets, there is a special notion of typed objects, called Petri net pro-
cesses. A low-level Petri net process [GR83, Roz87, DMM89, Eng91, MMS97, BCEH01]
p : K → N of a net N consists of a special conflict-free and acyclic Petri net K typed
over N , modelling up to concurrency a specific firing sequence of transitions that is
compatible with the causal relation of N .

2.6 Algebraic High-Level Nets and Processes for Modelling and Analysis 29

Accordingly, there is a corresponding notion of algebraic high-level (AHL-) processes
[EHP+02, Ehr05] defined as special nets typed over an algebraic high-level net. It is
important to note that in contrast to the low-level case, one high-level process does not
necessarily model a single (concurrent) firing sequence, due to possibly different data-
elements that can be involved. A concrete choice of data-elements in a process can be
fixed using the notion of instantiations [Ehr05]. Another interesting aspect is that there
are also results regarding the composition and rule-based transformation of algebraic
high-level processes [EHGP09, EG11, Gab12b]. Moreover, there are several results
regarding the views on typed objects, using restriction and amalgamation of typed
objects [SEM+12], open low-level Petri net processes [BCEH01] and AHL-processes
[EG11].

Another family of techniques for the formal modelling of concurrent systems are the
process algebras or process calculi. One example of a process calculus is the Calculus of
Communication Systems (CCS) by R. Milner [Mil80]. It allows to model communication
process between two participants, and contains basic combinators for the description
of parallel composition, choices between actions and scope restriction. Communicating
Sequential Processes (CSP) by C.A.R. Hoare [Hoa85] can be used to model independent
component processes that interact with each other through message passing. In contrast
to these modelling techniques, where the processes have a static topology, the π-calculus
[Mil99] allows to dynamically change the network structure of the processes.

2.6 Algebraic High-Level Nets and Processes for Modelling and Analysis

For the formal modelling of communication platforms we choose the modelling technique of
algebraic high-level (AHL-)nets [EPR92, PER95]. An AHL-net is a special kind of Petri net
[Pet62]. Petri nets can be seen as directed hypergraphs, where the nodes are called places
and the edges are called transitions. The places represent local states or resources of the
modelled system, and they can equip a number of tokens, meaning that the corresponding
state is active, or the resource is present or occupied, respectively. The operational semantics
of Petri nets is given by the so-called token-game, where tokens on all places in the predomain
(the source) of a transition are consumed, while on all places in the postdomain (the target)
of that transition tokens are produced. We then say that the transition fired.

In contrast to classical low-level place/transition (P/T) nets, an AHL-net consists of an
algebraic data type part [EM85]. This means that the tokens are data values rather than
indistinguishable “black tokens”, and the transitions have firing conditions, allowing the firing
of a transition only if the tokens that are to be consumed on firing satisfy the conditions of
that transition. Considering the platform as the basis of all communication processes, the
formal model of a platform has to describe all the resources and actions that are available
on that platform. The modelling of communication platforms using AHL-nets is described in
Section 3.1.

The rule-based transformation of AHL-nets in the sense of graph transformation [Ehr79,
Roz97] is well researched [PER95, Pra07]. Since AHL-nets fit into the general frameworks of
weak adhesive high-level replacement [EEPT06b] and M-adhesive systems [EGH10], there
are even powerful analysis techniques like the Local Church-Rosser, Local Confluence, Par-
allelism, Extension and Embedding Theorems, and Critical Pair Analysis [EEPT06b] that
can be used for the analysis of AHL-nets. Therefore, we choose to model the evolution
of communication platforms using rule-based transformation of AHL-nets, as described in
Section 3.2.

As modelling technique for waves and scenarios of interactions in platforms, we choose

30 2 Requirements for Communication Platforms and Scenarios

Apache Wave

Platform

Wave

Algebraic High-

Level Net

Algebraic High-

Level Process

Net

Instantiation

AHL-Process

(AHL-morphism)

Platform:

possible resources and

actions of the

communication system

Wave-Process:

(abstract scenario/history)

possible (concurrent)

sequence of actions in

the system;

causal and logical

relationship between

actions

Instantiation:

(concrete scenario)

marking of all places;

consistent assignments

for all transitions;

Figure 2.8: Modelling of communication platforms and scenarios with AHL-nets and -
processes

algebraic high-level (AHL-)processes with instantiations. An instantiated AHL-process mod-
els up to concurrency a specific sequence of actions in an AHL-net. Since the components of
an AHL-process are AHL-nets, we can in principal use the same structuring techniques for
scenarios as for AHL-nets, however, with some additional requirements in order to preserve
the process character of the models. The modelling and evolution of scenarios is described
in Chapter 4.

All in all, we obtain an integrated framework for the modelling of communication plat-
forms and scenarios using algebraic high-level nets and instantiated AHL-processes (see Fig-
ure 2.8). For an overview over all realisations of modelling requirements, we refer to Sec-
tion 8.1, and for an overview over the corresponding analysis results see Section 8.2.

3
Modelling and Evolution of Communication

Platforms

In Section 3.1 we review the modelling framework of algebraic high-level (AHL-)nets [EPR92,
PER95, EEPT06b] which are an integration of (low-level) Petri nets [Pet62] and algebraic
specification techniques [EM85]. Moreover, in Section 3.2 we review the rule-based reconfig-
uration of AHL-nets in the sense of graph transformation [Roz97, PER95]. We show how
AHL-nets can be used to model Apache Wave platforms, and we demonstrate the evolution
of these platforms by rule-based transformation of the respective AHL-nets.

3.1 Modelling of Communication Platforms Using Algebraic High-Level
Nets

In this section we review the concepts of low-level place/transition and algebraic high-level
Petri nets. As net formalism we use place/transition nets following the notation of “Petri
nets are Monoids” in [MM90], where X⊕ is the free commutative monoid over the set X.
Note that s ∈ X⊕ is a formal sum s =

∑n
i=1 λixi with λi ∈ N and xi ∈ X meaning that we

have λi copies of xi in s and for s′ =
∑n

i=1 λ
′
ixi we have s⊕ s′ =

∑n
i=1 (λi + λ′i)xi.

Definition 3.1.1 (Place/Transition Net). A place/transition (P/T) net N = (P, T, pre, post)
consists of sets P and T of places and transitions respectively, and pre- and post domain
functions pre, post : T → P⊕ where P⊕ is the free commutative monoid over P .

A P/T-net morphism f : N1 → N2 is given by f = (fP , fT) with functions fP : P1 → P2

and fT : T1 → T2 satisfying

f⊕P ◦ pre1 = pre2 ◦ fT and f⊕P ◦ post1 = post2 ◦ fT

where the extension f⊕P : P⊕1 → P⊕2 of fP : P1 → P2 is defined by f⊕P (
∑n

i=1 ki · pi) =∑n
i=1 ki · fP (pi). A P/T-net morphism f = (fP , fT) is called injective if fP and fT are

injective and is called isomorphism if fP and fT are bijective.
The category defined by P/T-nets and P/T-net morphisms is denoted by PTNets where

the composition of P/T-net morphisms is defined componentwise for places and transitions.
4

Definition 3.1.2 (Marking, Firing Behaviour of Place/Transition Nets). A marking M =∑n
i=1 λipi ∈ P⊕ means that of a P/T net N means that place pi contains λi tokens. Given

a P/T net N with marking M , then a transition t ∈ T is enabled under M , if pre(t) ≤ M .
In this case, the transition can be fired and the follower marking M ′ is given by

M ′ = M 	 pre(t)⊕ post(t)

4

32 3 Modelling and Evolution of Communication Platforms

Example 3.1.3 (Place/Transition Net). An example of place/transition net is shown in
Figure 3.1. The P/T net LLPlatform is a low-level is P/T net representation of our Apache
Wave platform example in Section 2.2 (see Figure 2.2), modelling the resources and actions of
the platform. The P/T net consists of places u, w and id, modelling users, wavelets and IDs,
respectively. Moreover, for each action of the platform, there is a corresponding transition in
the P/T net. The pre domain of each transition contains all the resources the corresponding
action is using, e. g. the new wavelet transition uses an ID and a user, the creator of the
new wavelet. The post domain contains all resources that are produced by the corresponding
action. In the case of the transition new wavelet this is the next free ID, the newly created
wavelet and also the creator of the wavelet (because the user is still present in the system).

wu

new wavelet

id

invite user

2
2

LLPlatform

insert

remove

Figure 3.1: Place/transition net LLPlatform

Let us consider a marking

M = 2u⊕ id⊕ w

of the P/T net LLPlatform, meaning that there are two users, an ID and a wavelet in the
platform. The transition insert is enabled, because we have

pre(insert) = u⊕ w ≤ 2u⊕ id⊕ w = M

Thus, the transition insert can be fired and we obtain a new marking

M ′ = M 	 pre(insert)⊕ post(insert) = 2u⊕ id⊕ w 	 (u⊕ w)⊕ u⊕ w = M

♦

The example of a firing step above illustrates that there is something missing in the for-
malism of P/T nets in order to adequately model our communication platform. Although we
fire the insert transition which models the Insert Text action from our platform in Figure 2.2,
the resulting state of the platform (the follower marking) equals the original state before fir-
ing. This is due to the fact, that we do not have any modelling of the data in our P/T net
platform model, and therefore, one wavelet is indistinguishable from another wavelet.

In the following we review the definition of algebraic high-level nets from [PER95, Ehr05,
EHP+02], extending the above definition of place/transition nets by integration of algebraic
data types.

Definition 3.1.4 (Algebraic High-Level Net). An algebraic high-level (AHL-) net

AN = (Σ, P, T, pre, post, cond, type,A)

consists of

3.1 Modelling of Communication Platforms Using Algebraic High-Level Nets 33

• a signature Σ = (S,OP ;X) with additional variables X;

• a set of places P and a set of transitions T ;

• pre- and post domain functions pre, post : T → (TΣ(X)⊗ P)⊕;

• firing conditions cond : T → Pfin(Eqns(Σ;X));

• a type of places type : P → S and

• a Σ-algebra A

where the signature Σ = (S,OP) consists of sorts S and operation symbols OP , TΣ(X) is
the set of terms with variables over X,

(TΣ(X)⊗ P) = {(term, p)|term ∈ TΣ(X)type(p), p ∈ P}

and Eqns(Σ;X) are all equations over the signature Σ with variables X. 4

The algebra as well as the variables of an AHL-net depend on the corresponding signa-
ture. So in order to allow mappings between AHL-nets with different data type parts, we
need constructions that allow the mapping of algebras and sorted sets dependent on a cor-
responding mapping of signatures. For this purpose a suitable framework are Grothendieck
categories based on the notion of indexed categories, because there are general categorical
results for the construction of limits and colimits in Grothendieck categories [TBG91, Gog06].
For details on Grothendieck categories, we refer to Subsection A.1.2.

The following definition AHL-morphisms is very similar to the one in [PER95]. However,
for the mapping of the variables in an AHL-net, we use a SigSets-morphisms as defined in
Definition A.1.8.

Definition 3.1.5 (AHL-Morphism and Category AHLNets). An AHL-net morphism f :
AN1 → AN2 is given by f = (fΣ, fP , fT , fA), where

• fΣ = (fσ, fX) is a SigSets-morphism (see Definition A.1.8) with fσ = (fS , fOP) :
Σ1 → Σ2 being a signature morphism4 and fX = (fX,s)s∈S1 : X1 → X2 a mapping of
the variables, where we additionally require that for all t ∈ T1 the restriction fX |V ar(t) :
V ar(t)→ V ar(fT (t)) of fX to variables of t is (componentwise) bijective,

• fP : P1 → P2 and fT : T1 → T2 are functions, and

• (fσ, fA) : (Σ1, A1) → (Σ2, A2) is a generalised algebra homomorphism (see Exam-
ple A.1.7), i. e. fA : A1 → Vfσ(A2) is a Σ1-homomorphism,

satisfying the following conditions5:

(1) (f#
Σ ⊗ fP)⊕ ◦ pre1 = pre2 ◦ fT and

(f#
Σ ⊗ fP)⊕ ◦ post1 = post2 ◦ fT ,

(2) cond2 ◦ fT = Pfin(f#
Σ) ◦ cond1 and

(3) type2 ◦ fP = fΣ ◦ type1.

4We will occasionally refer to fΣ as signature morphism, despite the fact that it contains an additional
part fX .

5f#
Σ is the free extension of fΣ to terms and equations (see [EM85])

34 3 Modelling and Evolution of Communication Platforms

Pfin(Eqns(Σ1))

(2)Pfin(f#
Σ)

��

T1

(1)

cond1oo

fT

��

pre1 //
post1

// (TOP1(X1)⊗ P1)⊕

(f#
Σ ⊗fP)⊕

��

P1

(3)

type1 //

fP

��

S1

fS

��
Pfin(Eqns(Σ2)) T2

cond2

oo
pre2 //
post2

// (TOP2(X2)⊗ P2)⊕ P2 type2
// S2

The category defined by AHL-nets and AHL-net morphisms is denoted by AHLNets
where the composition and identities are defined componentwise. For a given data type part
(Σ, A), we define the subcategory AHLNets(Σ,A) of AHL-nets with data type part (Σ, A)
and AHL-morphisms with identical data type part (idΣ, idA). 4

Remark 3.1.6 (Algebraic High-Level Nets and Morphisms). There are different variants of
high-level nets and morphisms in the literature. In the past, the data type of high-level nets
consisted not only of a signature Σ but of an algebraic specification SP . However, every
signature Σ can be considered as a special case of an algebraic specification SP = (Σ, ∅) with
an empty set of equations.

Moreover, for AHL-morphisms it was often required that the homomorphism fA : A1 →
VfΣ

(A2) is an isomorphism (see Definition 4.6 in [PER95]), in order to allow rule-based trans-
formation (see Section 3.2) to change not only the structure but also the specification part
of an AHL-net. We drop this restriction and consider arbitrary generalised homomorphisms.
On the one hand, with our definition of AHL-morphisms it is not possible to modify the data
type part of an AHL-net using rule-based transformation, but on the other hand, it allows
more general application of productions, since the data type part of the production does
not have to be isomorphic to the data type part of an AHL-net to which the production is
applied. 4

The firing behaviour of AHL-nets is defined analogously to the firing behaviour of low-
level nets. The difference is that in the high-level case all tokens are equipped with data
values. Moreover, for the activation of a transition t, we additionally need an assignment v of
the variables V ar(t) in the environment of the transition, such that the assigned pre domain
is part of the given marking and the firing conditions of the transition are satisfied. This
assignment is then used to compute the follower marking, obtained by firing of transition t
with assignment v.

Definition 3.1.7 (Marking, Firing Behaviour). A marking

M =

n∑
i=1

λi(ai, pi) ∈ (A⊗ P)⊕

of an AHL-net AN means that place pi contains λi ∈ N data tokens ai ∈ Atype(pi). Given
an AHL-net AN with marking M . Then a transition t ∈ T is enabled under M and an
assignment v : V ar(t) → A, if all firing conditions cond(t) are satisfied in A for v and we
have enough tokens in the pre domain of t, i. e. preA(t, v) ≤M , where

preA(t, v) =
n∑
i=1

(v∗(termi), pi) for pre(t) =
n∑
i=1

(termi, pi)

with termi ∈ TOP (X) and v∗(termi) is the evaluation of termi under v. In this case the
follower marking M ′ is given by

M ′ = M 	 preA(t, v)⊕ postA(t, v).

4

3.1 Modelling of Communication Platforms Using Algebraic High-Level Nets 35

Concept 3.1.8 (Modelling of Communication Platforms). A communication platform can be
modelled as an algebraic high-level net. The resources, including the users and communication-
related data are structurally modelled as places while the concrete types and data values along
with available data operations are given as an algebra.

The possible actions that are provided by the platform are modelled as transitions. Re-
sources that are used or required by an action are contained in the pre conditions of the
corresponding action, while the post conditions of transitions consist of those resources that
are produced or retained by the corresponding action. The concrete data operations that
are performed by each action are implemented in the firing conditions of the corresponding
transition. 4

Example 3.1.9 (Modelling of Apache Wave Platform as Algebraic High-Level Net). The
model of an Apache Wave platform depicted in Figure 3.2 is an AHL-net

Platform = (Σ-Wave, P, T, pre, post, cond, type,A)

where the signature Σ-Wave is shown in Table 3.1 and the Σ-Wave-algebra A is shown in
Table 3.2. This signature and algebra is also used for all the following examples.

w :

wavelet

u :

user

new wavelet

n = new(user,free)

next = next(free)
id : nat

invite user

invited(o, user1) = true

n = addUser(user2, o)

user

user

user

user

user1 7 user2

user1 7 user2

n
n

o

o
n

free

next

Platform

insert

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

remove

rng: range

invited(o, user) = true

n = remText(o, rng)

user

user
o

n

Figure 3.2: AHL-net Platform

The AHL-net Platform has the same structure as the low-level P/T net LLPlatform in
Figure 3.1, but additionally it has a data type part, further specifying the type of resources
and the semantics of the transitions. The places u, w and id have types user, wavelet and
nat, respectively. Moreover, each transition has a set of equations (firing conditions), and
there are terms on the pre and post arcs, constraining the resources consumed and produced
by firing of the transition.

Let us consider a marking

M = (Alice, u)⊕ (Bob, u)⊕ (1, id)⊕ ((0, {Alice,Bob}, ε), w)

of the AHL-net platform in Figure 3.2 which means that we have two users Alice and Bob
on the place u, a free ID 1 and an empty wavelet with ID 0 on place w where Alice and Bob
are invited.

36 3 Modelling and Evolution of Communication Platforms

Considering all variables in the environment of the transition insert, we have a set of
variables V ar(insert) = {user, txt, pos, o, n}. An assignment v : V ar(insert) → A with
v(user) = Alice, v(txt) = Hello Bob, v(pos) = 0, v(o) = (0, {Alice,Bob}, ε) and v(n) =
(0, {Alice,Bob},Hello Bob) satisfies the firing conditions of the transition insert , because

v∗(invited(o, user)) = invitedA(v(o), v(user))

= invitedA((0, {Alice,Bob}, ε),Alice)

= trueA

= v∗(true)

and

v∗(n) = (0, {Alice,Bob},Hello Bob)

= insTextA((0, {Alice,Bob}, ε),Hello Bob, 0)

= insTextA(v(o), v(txt), v(pos))

= v∗(insText(o, txt, pos))

means that v satisfies all equations in cond(insert), and we have

preA(insert, v) = (v(user), u)⊕ (v(o), w)

= ((Alice, u)⊕ (0, {Alice,Bob}, ε) ≤M

By firing the transition insert with assignment v we obtain the follower marking

M ′ = (Alice, u)⊕ (Bob, u)⊕, (1, id)⊕ ((0, {Alice,Bob},Hello Bob), w)

where the assigned text Hello Bob has been inserted at position 0 into the assigned wavelet.
♦

Table 3.1: Signature Σ-Wave

sorts: bool, nat, range, text, user, wavelet

opns: true, false : → bool zero : → nat

next : nat → nat start: range → nat

toRange : nat nat → range new : user nat → wavelet

addUser : user wavelet → wavelet invited : wavelet user → bool

len : text → nat sub : text range → text

insText : wavelet text nat → wavelet remText : wavelet range → wavelet

empty : → text

vars: free, next : nat rng : range

txt : text user, user1, user2 : user

o, n, r : wavelet

Fact 3.1.10 (AHL-Morphisms Preserve Firing Behaviour). Given an AHL-net morphism
f : AN1 → AN2 , the firing behaviour is preserved by f . That is, for an assignment v1 :

V ar(t)→ A1 and a marking M1 with firing step M1
t,v1−→M ′1 in AN1, there is corresponding

firing step (fA ⊗ fP)⊕(M1)
fT (t),v2−→ (fA ⊗ fP)⊕(M2) in AN2 with v2 = fA ◦ v1 ◦ (fX |V ar(t))−1.

3.1 Modelling of Communication Platforms Using Algebraic High-Level Nets 37

Table 3.2: Σ-Wave-algebra A

Abool = {T, F} Anat = N
Auser = {a, . . . , z, A, . . . , Z}∗ Atext = {a, . . . , z, A, . . . , Z, . . . }∗
Awavelet = Anat × P(Auser)×Atext Arange = Anat ×Anat

trueA = T ∈ Abool

falseA = F ∈ Abool

startA : Arange → Anat

(s, l) 7→ s

toRangeA : Anat ×Anat → Arange

(s, l) 7→ (s, l)

zeroA = 0 ∈ Anat

nextA : Anat → Anat

n 7→ n+ 1

newA : Auser ×Anat → Awavelet

(u, id) 7→ (id, {u}, ε)
addUserA : Auser ×Awavelet → Awavelet

(u, (id, uset, t) 7→ (id, uset ∪ {u}, t)
invitedA : Awavelet ×Auser → Abool

(u, (id, uset, t)) 7→

{
T , if u ∈ uset;
F , else.

lenA : Atext → Anat

t 7→

{
0 , if t = ε;

1 + lenA(t1 . . . tn) , if t = t0 . . . tn.

subA : Atext ×Arange → Atext

(t, (s, l)) 7→

{
ε , if l = 0 or lenA(t) ≤ s;
ts . . . tn , if l 6= 0, s < m, t = t0 . . . tm, and n = min(m, s+ l).

insTextA : Awavelet ×Atext ×Anat → Awavelet

((id, uset, t), nt, pos) 7→ (id, uset, subA(t, (0, pos)).nt.subA(t, (pos, lenA(t))))

remTextA : Awavelet ×Arange → Awavelet

((id, uset, t), (s, l)) 7→ (id, uset, subA(t, (0, s)).subA(t, (s+ l, lenA(t))))

emptyA = ε ∈ Atext

Proof. This is shown in the proof for Remark 2.10 in [Ehr05] for a slightly different definition
of AHL-morphisms (see Remark 3.1.6), but the proof works also for our definition.

Remark 3.1.11 (AHL-Nets with Individual Tokens). In contrast to the firing behaviour defined
in Definition 3.1.7 it is also possible to define a marking over a set I of individuals and a
marking function m : I → A⊗ P assigning each individual to a pair of a data element and a
place. This makes it possible to distinguish the single tokens of a marking.

In order to fire a transition under a given marking it is then necessary to specify a token
selection (M,m,N, n) where M ⊆ I is the set of individuals which are consumed by the
transition, N is a set of newly created individuals with (I \M)∩N = ∅ and m : M → A⊗P ,
n : N → A⊗P are corresponding marking functions. If a selection together with a consistent
transition assignment (t, asg) meets the token selection condition:

∑
i∈M

m(i) = preA(t, asg) and
∑
i∈N

n(i) = postA(t, asg)

38 3 Modelling and Evolution of Communication Platforms

then t is asg-enabled and the follower marking (I ′,m′) can be computed by

I ′ = (I \M) ∪N, m′ : I ′ → A⊗ P with m′(x) =

{
m(x), if x ∈ I \M ;

n(x), if x ∈ N.

Although this individual token approach is more complicated than the collective token
approach in Definition 3.1.7 it has some benefits like the possibility to formulate transforma-
tion rules which can not only change the net structure but also the marking of an AHL-net.
For more details we refer to [MGE+10, Mod12]. However, in this thesis we concentrate more
on the process semantics of AHL-nets rather than on single markings and the firing of single
transitions. 4

3.2 Structural Evolution of Platforms

Due to the possibility to evolve the Apache Wave platforms by adding, removing or changing
features we need also techniques that make it possible to evolve the corresponding model of a
platform. For this reason we introduce rule-based AHL-net transformations [PER95] in the
sense of graph transformations [Roz97].

A production (or transformation rule) for AHL-nets specifies a local modification of an
AHL-net. It consists of a left-hand side, an interface which is the part of the left-hand side
which is not deleted and a right-hand side which additionally contains newly created net
parts.

Definition 3.2.1 (Productions for AHL-Nets). A production for AHL-nets is a span % : L
l←

I
r→ R ∈ MAHL, where MAHL is the class of all injective AHL-morphisms with isomorphic

data type part. We call L the left-hand side, I the interface, and R the right-hand side of
the production %. In most examples l and r are inclusions. 4

Remark 3.2.2 (Productions withM-Morphisms). Note that the restriction of rule morphisms
toMAHL-morphisms with isomorphic data type part in the definition above is not necessary.
In [PER95] productions for AHL-nets are defined via morphisms in a class

MAHLNET = {f = (fSPEC , fP , fT , fA) | fSPEC strict injective and fP , fT injective}

however, with the overall restriction that all AHL-morphisms are required to have an isomor-
phic algebra part (see Remark 3.1.6). A specification morphism fSPEC : SP1 → SP2 is called
strict, if all equations in SP2 can be derived from equations in SP1. With that definition
of productions for AHL-nets, it is possible to change not only the structure but also the
specification part of an AHL-net using rule-based transformation.

Although the adaptation of the signature part is not possible with our definition, the
restriction of rule-morphisms to MAHL-morphisms has several advantages. The main ad-
vantage is the fact that with our definition we obtain an M-adhesive transformation system
(see Subsection A.1.3) with a variety of useful results. In [EGH10] it is shown that all re-
sults for weak adhesive HLR systems [EEPT06b] are also valid for the slightly more general
framework ofM-adhesive categories. These results include the Local Church-Rosser and Par-
allelism Theorems which are concerned with independent transformations, the Concurrency
theorem which is concerned with dependent transformations, the Completeness of Critical
Pairs which describes that we can find a set of critical pairs that completely describe all
conflicts that occur in a given transformation system, the Local Confluence Theorem, stating
that a transformation system is locally confluent if all its critical pairs are strictly confluent,
where the strictness condition enhances standard local confluence in a certain way, and the

3.2 Structural Evolution of Platforms 39

Embedding, Extension and Restriction Theorems. The latter three theorems are concerned
with the embedding of transformations in a greater context. They are described in more
detail further below in Remark 3.2.15.

Moreover, in Definition 3.3.1 on page 45 at the end of this section, we present an alter-
native solution for the modification of the data type part of AHL-nets, called data-images of
AHL-nets. 4

Example 3.2.3 (Production for Platform Evolution). In Section 2.2 we presented an example
of a platform evolution, where in the platform in Figure 3.2 we replaced the actions Insert
Text and Remove Text by a new action Modify Copy. Considering our AHL-net model of
the first platform in Example 3.1.9, this means that we want to replace the corresponding
transitions insert and remove with a new transition modify copy.

A production that describes this replacement is shown in Figure 3.3. The left-hand side
L of the production % contains the two transitions that are to be removed together with the
places u and w in their environment. The interface I contains only the two places that are
not changed by application of the production. The right-hand side R contains the transition
modify copy that shall be inserted, connected to the retained environment of the original
transitions in the left-hand side. The morphisms l : I → L and r : I → R are inclusions. ♦

insert

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

remove

rng: range

invited(o, user) = true

n = remText(o, rng)

RL

w : wavelet

u : user

user

user

n
o

user

user

on

modify copy

txt: text, rng: range

invited(o,user) = true

r = remText(o,rng)

n = insText(r,txt,start(rng))

user

user

o 7 n
o

w : wavelet

u : userI

l r

u : user

w : wavelet

Figure 3.3: AHL-net production % for the evolution of platforms

In order to add the new parts as specified in the right-hand side of a production to an
AHL-net we define a gluing construction based on the gluing of its place and transition
components in the category Sets of sets and functions in the following sense:

Definition 3.2.4 (Gluing of Sets). Given sets A,B and C, and functions f1 : A → B,
f2 : A→ C. The gluing D of B and C along A (or more precisely along f1 and f2), written
D = B +A C, is defined as the quotient D = (B] C)/≡ where ≡ is the smallest equivalence
relation containing the relation

∼ = {(f1(a), f2(a)) | a ∈ A}.

This means that we transitively identify all those elements in B] C which are commonly
mapped by the same interface element. Moreover, we obtain functions g1 : B → D and
g2 : C → D with g1(b) = [b]≡ for all b ∈ B, and g2(c) = [c]≡ for all c ∈ C.

A
f1 //

f2

��

B

g1

��
C g2

// D

(PO)

4

40 3 Modelling and Evolution of Communication Platforms

Fact 3.2.5 (Pushout of Sets). The diagram (PO) in Definition 3.2.4 is a pushout diagram
in the category Sets (see Definition A.1.2 for the definition of pushouts).

Proof. See Fact 2.17 in [EEPT06b].

The gluing of AHL-nets over a given interface can be defined as the componentwise gluing
in Sets and Algs6. Due to the fact that the gluing in Sets is also a pushout, we obtain also
unique induced pre, post, condition and type functions, leading to a well-defined AHL-net.

Definition 3.2.6 (Gluing of AHL-Nets). Given two AHL-net morphisms f1 : AN0 → AN1

and f2 : AN0 → AN2 with f1 ∈ MAHL, the gluing AN3 of AN1 and AN2 along f1 and f2,
written AN3 = AN1 +(AN0,f1,f2) AN2, with ANx = (Σx, Px, Tx, prex, postx, condx, typex, Ax)
for x = 0, 1, 2, 3 is constructed as follows:

• T3 = T1 +T0 T2 with f ′1,T and f ′2,T as pushout (2) in Figure 3.4 of f1,T and f2,T in
Sets,

• P3 = P1 +P0 P2 with f ′1,P and f ′2,P as pushout (3) in Figure 3.4 of f1,P and f2,P in
Sets,

• (Σ3, A3) = (Σ1, A1) +(Σ0,A0) (Σ2, A2) with (f ′1,Σ, f
′
1,A) and (f ′2,T , f

′
2,A) as the (trivial)

pushout (4) in Figure 3.4 of isomorpism (f1,Σ, f1,A) and morphism (f2,Σ, f2,A) in Algs,

• pre3(t) =

{
(f ′#1,Σ ⊗ f ′1,P)⊕ ◦ pre1(t1) , if f ′1,T (t1) = t;

(f ′#2,Σ ⊗ f ′2,P)⊕ ◦ pre2(t2) , if f ′2,T (t2) = t.

• post3(t) =

{
(f ′#1,Σ ⊗ f ′1,P)⊕ ◦ post1(t1) , if f ′1,T (t1) = t;

(f ′#2,Σ ⊗ f ′2,P)⊕ ◦ post2(t2) , if f ′2,T (t2) = t.

• cond3(t) =

{
Pfin(f ′1,Σ) ◦ cond1(t1) , if f ′1,T (t1) = t;

Pfin(f ′2,Σ) ◦ cond2(t2) , if f ′2,T (t2) = t.

• type3(p) =

{
f ′1,S ◦ type1(p1) , if f ′1,P (p1) = p;

f ′2,S ◦ type2(p2) , if f ′2,P (p2) = p.

• f ′1 = (f ′1,Σ, f
′
1,P , f

′
1,T , f

′
1,A) and f ′2 = (f ′2,Σ, f

′
2,P , f

′
2,T , f

′
2,A).

4

Fact 3.2.7 (Pushout of AHL-Nets). The diagram (1) in Figure 3.4 constructed as in Def-
inition 3.2.6 is a pushout diagram in the category AHLNets (see Definition A.1.2 for the
definition of pushouts).

Proof. In [Pra07] it is shown that the pushouts in AHLNets can be constructed componen-
twise by pushouts (2)-(4) in Figure 3.4 in Sets and Algs, respectively, using product and
general comma category construction. The pre, post, cond and type functions are the unique
functions induced by the corresponding pushouts in Sets.

6for the gluing (amalgamation) of algebras see [EM85]

3.2 Structural Evolution of Platforms 41

AN0

f2

��

f1 //

(1)

AN1

f ′1
��

AN2
f ′2

// AN3

T0

f2,T

��

f1,T //

(2)

T1

f ′1,T
��

T2
f ′2,T

// T3

P0

f2,P

��

f1,P //

(3)

P1

f ′1,P
��

P2
f ′2,P

// P3

(Σ0, A0)

(f2,Σ,f2,A)

��

(f1,Σ,f1,A)
//

(4)

(Σ1, A1)

(f ′1,Σ,f
′
1,A)

��
(Σ2, A2)

(f ′2,Σ,f
′
2,A)
// (Σ3, A3)

Figure 3.4: Construction of gluing in AHLNets

Concept 3.2.8 (Composition of Communication Platforms). In some cases such as the
different manifestations of Apache Wave, there may be different platforms with a different
set of actions or data, but users on different platforms may still communicate with each other
due to a common communication protocol. This means that the modelling of communication
platforms should be compositional, allowing to view a combination of platforms as a platform.

The composition of communication platforms can be modelled by gluing of the corre-
sponding AHL-nets (see Concept 3.1.8). The resulting platform contains all resources and
actions from both of the original platforms, where the interface of the gluing specifies the
parts of the platforms that are identified in the composed platform. An example of the gluing
of Apache Wave platforms is given in the following Example 3.2.9. 4

Example 3.2.9 (Evolution of Apache Wave Platform). Figure 3.5a shows the gluing of AHL-
nets R and Platform0 over an interface I, where all morphisms r, k, n and e are inclusions.
The AHL-net R contains a transition modify copy , connected to places u and w that are also
contained in the interface I. The AHL-net Platform0 consists of transitions new wavelet and
invite user, both of them connected to the common places u and w, and an additional place
id, connected to new wavelet.

The result of the gluing of R and Platform0 is the AHL-net Platform ′ in the lower right
of Figure 3.5a. The gluing contains all elements that are contained in each of the glued nets,
where all the common elements from the interface are identified. Note that in this example
the result of the gluing could also be achieved by a componentwise union of the sets of places
and transitions. However, in our approach, the gluing does not depend from the naming of
the elements in respective nets. This means that we would gain the same result even if for
instance the place u in the net R would be called u′. Also, the result of the gluing would
contain two copies of the place u, if the two u places would not be matched by a corresponding
interface element.

Another example of a gluing of AHL-nets L and Platform0 over the same interface I is
depicted in Figure 3.5b. Analogously to the transition modify copy in the previous example,
in this example the transitions insert and remove are glued into the same environment. The
combination of these two gluings is a direct transformation of the AHL-net Platform using the
production % in Figure 3.3 as defined in the following, leading to the AHL-net Platform ′. ♦

The application of a production, called direct transformation of AHL-nets, is defined

by two gluings of AHL-nets: Given a production % : L
l← I

r→ R and a match morphism
m : L → AN , first, the net AN is decomposed, leading to a context net C such that AN is
the gluing of L and C over the interface I. Afterwards, the context net C and the right-hand
side R are glued over the interface I, leading to the result AN ′ of the direct transformation.

42 3 Modelling and Evolution of Communication Platforms

R
modify copy

txt: text, rng: range

invited(o,user) = true

r = remText(o,rng)

n = insText(r,txt,start(rng))

user

user

o 7 n

o

w : waveletu : userI

r u : user

w : wavelet

w :

wavelet
u :

user

new wavelet

n = new(user,free)

next = next(free)
id : nat

invite user

invited(o, user1) = true

n = addUser(user2, o)

user
user

user1 7 user2

user1 7 user2

n

on

free

next

Platform0

w :

wavelet

u :

user

new wavelet

n = new(user,free)

next = next(free)

modify copy

txt: text, rng: range

invited(o,user) = true

r = remText(o,rng)

n = insText(r,txt,start(rng))

id : nat

invite user

invited(o, user1) = true

n = addUser(user2, o)

user

user

user

user

user1 7 user2

user1 7 user2

n

o 7 n

o

o
n

free

next

Platform'

n

k

e

(a) Gluing of AHL-nets R and Platform0

w : waveletu : user
I

l

w :

waveletu :

user

new wavelet

n = new(user,free)

next = next(free)

id : nat

invite user

invited(o, user1) = true

n = addUser(user2, o)

user
user

user1 7 user2

user1 7 user2

n

on

free

next

Platform0

m

k

e

w :

wavelet

u :

user

new wavelet

n = new(user,free)

next = next(free)
id : nat

invite user

invited(o, user1) = true

n = addUser(user2, o)

user

user

user

user

user1 7 user2

user1 7 user2

n
n

o

o
n

free

next

Platform

insert

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

remove

rng: range

invited(o, user) = true

n = remText(o, rng)

user

user
o
n

w :

wavelet

u :

user

user

user

n

oinsert

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

remove

rng: range

invited(o, user) = true

n = remText(o, rng)

user

user
o

n

L

(b) Gluing of AHL-nets L and Platform0

Figure 3.5: Gluings of AHL-nets

3.2 Structural Evolution of Platforms 43

Definition 3.2.10 (Direct Transformation of AHL-Nets). Given a production % : L
l← I

r→
R and a (match) morphism m : L → AN in AHLNets. Then a direct transformation

AN
(%,m)⇒ AN ′ in AHLNets is given by pushouts (1) and (2) in Figure 3.6. A transformation

of AHL-nets is a sequence AN0
(%1,m1)⇒ AN1 · · ·

(%n,mn)⇒ ANn of direct transformations, written
AN0 ⇒∗ ANn. 4

L

m
��

(1)

I
loo r //

c
��

(2)

R

n
��

AN C
doo e // AN ′

Figure 3.6: Direct transformation of an AHL-net

In order to delete parts of an AHL-net, we need pushout complements. That is, given
morphisms l : I → L and m : L→ G, an object C together with morphisms g and c as shown
in Figure 3.7 is a pushout complement of m and l, if the diagram (1) is a pushout. In the
following, we review the construction of pushout complements in Sets which is used in the
corresponding definition for AHL-nets.

Definition 3.2.11 (Gluing Condition in Sets). Let l : I → L and m : L→ G be morphisms
in Sets with l ∈ M. We define the set of identification points as IP = {x ∈ L | ∃x′ 6= x :
m(x) = m(x′)}, and the set of gluing points as GP = l(I). We say that l and f satisfy the
gluing condition if IP ⊆ GP . 4

L

m
��

I
loo

g

��
G Cc
oo

(1)

Figure 3.7: Pushout Complement in Sets

The following lemma provides a set-theoretical construction of pushout complements in
the category Sets. The pushout complement C is obtained as a subset of G that consists
only of those elements in the image of m that also have a preimage in I.

Lemma 3.2.12 (Pushout Complement in Sets). Let l : I → L and m : L→ G be morphisms
in Sets. There is a pushout complement C of l and m, if l and m satisfy the gluing condition.
If a pushout complement exists it can be computed by

C = (G \m(L)) ∪m(l(I))

together with inclusion c : C ↪→ G and a morphism g : I → C with g(x) = m(l(x)) for every
x ∈ I (see Figure 3.7).

Proof. This is shown in Lemma A.6 in [MGE+10].

This construction above can be extended to the construction of pushout complements in
the category AHLNets. The pushout complement C is then constructed by computing the
pushout complements of the sets of places and transitions, while all other parts are derived
from AHL-net G (see Figure 3.7). For the existence of the pushout complement in AHLNets,
we need a gluing condition for AHL-nets that is presented in Definition 3.2.13 below.

44 3 Modelling and Evolution of Communication Platforms

The following gluing condition is a necessary and sufficient condition for the existence of a
direct transformation of AHL-nets (see also [PER95]). In order to satisfy the gluing condition
by a production % under a match m some of the places and transitions in the AHL-net AN
in the codomain of m must not be deleted by application of the production. The preimages
of these elements in the left-hand side of the production are called identification points and
dangling points.

The identification points are the preimages of places and transitions which are mapped
non-injectively by the match m. The dangling points are the preimages of places which occur
in the pre or post conditions of a transition which is matched, and therefore cannot be deleted
by application of the production.

Definition 3.2.13 (Gluing Condition for AHL-Nets). Given a production % : L
l← I

r→ R
for AHL-nets and an AHL-morphism m : L → AN (see Figure 3.8). We define the set of
identification points7

IP = {x ∈ PL | ∃x′ 6= x : mP (x) = mP (x′)} ∪ {x ∈ TL | ∃x′ 6= x : mT (x) = mT (x′)}

the set of dangling points8

DP = {p ∈ PL | ∃t ∈ TAN \mT (TL), term ∈ TΣ(X)type(p) :

(term,mP (p)) ≤ preAN (t)⊕ postAN (t)}

and the set of gluing points9

GP = lP (PI) ∪ lT (TI)

We say that % and m satisfy the gluing condition, if IP ∪DP ⊆ GP . 4

L
m �� (1)

I
loo

c���
�

r // R
n���

�

AN AN 0
d

oo_ _ _ _ //____ AN ′
(2)

Figure 3.8: Gluing condition and direct transformation of AHL-nets

Fact 3.2.14 (Direct Transformation of AHL-Nets). Given a production for AHL-nets % =

(L
l← I

r→ R) and a match m : L → AN (see Figure 3.8). The production % is applicable
on match m, i. e. there exists a context AHL-net AN 0 in the diagram below, such that (1) is
pushout, iff % and m satisfy the gluing condition in AHLNets. Then AN 0 is called pushout
complement of l and m. Moreover, we obtain a unique AN ′ as pushout object of the pushout
(2) in AHLNets.

Proof. The fact that our gluing condition is sufficient and necessary for the existence of the
pushouts follows from the proofs of Fact 4.13 and Lemma 4.14 in [PER95], where due to
a slightly different definition of AHL-morphisms (see Remark 3.1.6) additionally a gluing
condition for signatures as well as a dangling condition for the terms is considered. However,
these conditions are satisfied since the signature and algebra part of the rule morphisms are
isomorphisms.

7i. e. all elements in L that are mapped non-injectively by m
8i. e. all places in L that would leave a dangling arc, if deleted
9i. e. all elements in L that have a preimage in I

3.3 Data Evolution and Abstraction of Platforms 45

Remark 3.2.15 (Embedding of Transformations). Consider again the modification Platform ⇒
Platform ′ (see Figure 3.5). A realistic model of a communication platform should be much
larger, consisting of more different resources and actions. Nonetheless, the models in Fig-
ure 2.2 and Figure 2.5 can be considered as a clipping of a larger platform model, containing
all relevant parts for the presented modification, and one can think of an embedding in :
Platform ↪→ PlatformLarge of our platform into a larger and more complex platform model.
Assuming that this embedding in is consistent with the transformation Platform ⇒ Platform ′

(which basically means that the transformation does not modify anything that is needed in
the greater context of PlatformLarge), we can use the Embedding Theorem (Theorem 6.14
in [EEPT06b]) to obtain a corresponding modification PlatformLarge ⇒ Platform ′Large , per-
forming the same replacement of transitions insert and remove by modify copy in the larger
model.

Vice versa, given the modification in the larger context, using the Restriction Theorem
(Theorem 6.18 in [EEPT06b]), we obtain the corresponding transformation in the smaller
context. Consequently, the restriction to relevant parts of the model and the embedding of
transformations in the original context can be used to minimise the effort for the rule-based
modelling and analysis of AHL-nets. 4

In Section A.2 we additionally present a categorical characterization for the existence of
direct transformations of AHL-nets, and we show that the categorical gluing condition is in
fact equivalent to the set-theoretical gluing condition in Definition 3.2.13.

Concept 3.2.16 (Structural Evolution of Communication Platforms). Changing the struc-
ture of a communication platform includes adding, removing or changing resources or actions,
as well as changing the correlation between actions and resources. The structural evolution of
communication platforms can be modelled as transformation of the corresponding AHL-nets
(see Concept 3.1.8). The gluing condition for AHL-nets (see Definition 3.2.13) ensures that
the result of the evolution is always well-formed, for instance, by guaranteeing that we do not
remove resources that are needed by retained actions. An example of the structural evolution
of a communication platform is shown in Example 3.2.17. 4

Example 3.2.17 (Evolution of Apache Wave Platform (revisited)). The gluings of AHL-nets
depicted in Figure 3.5 describe a direct transformation of AHL-nets Platform ⇒ Platform ′

using production % from Example 3.2.3 at inclusion match m. The diagram in Figure 3.5b
corresponds to the pushout (1) and the diagram in Figure 3.5a corresponds to pushout (2)
in Fact 3.2.14. ♦

3.3 Data Evolution and Abstraction of Platforms

As already pointed out in Remark 3.1.6, with our definition of AHL-morphisms we can use
rule-based transformation in the sense of graph transformation to modify the structure of an
AHL-net, but not for the data type part. A way to modify the data of a net with respect to a
given generalised algebra homomorphism, is presented in the following definition. The data-
image of an AHL-net along a generalised homomorphism yields another AHL-net with the
same structure, but the algebraic data part is replaced by the codomain of the homomorphism.
Moreover, we obtain an AHL-morphism from the original net to the new one.

Definition 3.3.1 (Data-Image of Algebraic High-Level Net). Given an AHL-net AN1 = (Σ1,
P1, T1, pre1, post1, cond1, type1, A1) and a generalised algebra homomorphism f = (fΣ, fA) :
(Σ1, A1) → (Σ2, A2). We define the data-image f̄ : AN1 → AN2 of AN1 along f in the
following way:

46 3 Modelling and Evolution of Communication Platforms

• AN2 = (Σ2, P2, T2, pre2, post2, cond2, type2, A2) is an AHL-net with

– P1 = P2 and T1 = T2,

– pre2 = (f#
Σ ⊗ id)⊕ ◦ pre1,

– post2 = (f#
Σ ⊗ id)⊕ ◦ post1,

– cond2 = Pfin(f#
Σ) ◦ cond1, and

– type2 = fΣ ◦ type1;

• f̄ : AN1 → AN2 = (f̄Σ, f̄P , f̄T , f̄A) is an AHL-morphism with f̄Σ = fΣ, f̄A = fA, and
f̄P and f̄T are identities.

We call f̄ : AN1 → AN2 a basic data-image, if fΣ is an identity, i. e. if f̄ is a data-image along
a (non-generalised) Σ1-homomorphism fA : A1 → A2. 4

Well-definedness. The fact that f̄ is a well-defined AHL-morphism follows directly from the
definitions of AN2 and f̄ .

Concept 3.3.2 (Data Evolution of Communication Platforms). The data type part of a com-
munication platform is modelled by the signature and algebra of the corresponding AHL-net
(see Concept 3.1.8). So, since the relation between different data type parts can be expressed
by a generalised homomorphism, the evolution of the data type part of a communication plat-
form can be modelled using the data-image construction with the corresponding AHL-net (see
Concept 3.1.8) along a generalised algebra homomorphism. The construction basically re-
places the previous data type part with the target of the homomorphism. An example of the
data evolution of a communication platform is shown in Example 3.3.3. 4

Example 3.3.3 (Data Evolution of Communication Platforms). In Example 3.2.9 we changed
some actions of our example platform, but the newly introduced action used the same data
structures and operations that were already present in the data type part of the original
platform. With the construction above, it is also possible to introduce new data structures
and corresponding operations, or to change existing ones.

For instance, consider a signature Σ-Wave ′ that extends the signature Σ-Wave in Ta-
ble 3.1 by a new operation removeUser : user wavelet → wavelet . Moreover, let A′ be a
Σ-Wave ′-algebra that coincides with A in all carrier sets and functions, and additionally:

excludeA′ : A′user ×A′wavelet → A′wavelet

(u, (id, uset, t)) 7→ (id, uset \ {u}, t)
There is an inclusion in : (Σ-Wave, A) ↪→ (Σ-Wave ′, A′), and we can compute the data-image
of the AHL-net Platform in Figure 3.2 along in, leading to a new AHL-net Platform ′ with
(Σ-Wave ′, A′) as data type part. Furthermore, we obtain a relationship between Platform
and Platform ′ in form of an AHL-morphism in : Platform → Platform ′. Based on this data-
evolution, it is then possible to introduce a new exclude transition into the platform net,
allowing to exclude previously invited users from participation in a wavelet. ♦

Fact 3.3.4 (Compatibility of Structural and Data Evolution). Given a direct transformation

of AHL-nets AN1
%,m
=⇒ AN ′1 and a data-image f : AN1 → AN2. Then there exists an AHL-net

AN ′2 with direct transformation AN2
%,f◦m
=⇒ AN ′2 and data-image f ′ : AN ′1 → AN ′2.

AN1
%,m +3

f
��

AN ′1
f ′��

AN2
%,f◦m

+3 AN ′2

3.3 Data Evolution and Abstraction of Platforms 47

Proof. Given the direct transformation consisting of pushouts (1) and (2) below, and a data-
image f : AN1 → AN2. By Fact A.6.10 we know that data-images are Data-cocreations,

and by Fact A.1.35 we know that there is a Data-shifting of the span AN1
d1← AN0

e1→ AN ′1
along f . According to Definition A.1.34, the Data-shifting is given by pushouts (3) and (4)
below, where k′ and f ′ are Data-cocreations and hence data-images. Thus, by composition

of pushouts (1)+(3) and (2)+(4), we have a direct transformation AN ′1
%,f◦m
=⇒ AN ′2, and

data-image f ′ : AN ′1 → AN ′2.

L

m
��

I
loo r //

k ��(1) (2)

R

n��
AN1

f
��

AN0
d1oo e1 //

(3) (4)k′ ��

AN ′1
f ′��

AN2 AN ′0
d2oo e2 // AN ′2

Definition 3.3.5 (Basic Data-Preimages of Algebraic High-Level Nets). Given an AHL-net
AN2 = (Σ2, P2, T2, pre2, post2, cond2, type2, A2) and a Σ2-homomorphism fA : A1 → A2. We
define the basic data-preimage f : AN1 → AN2 of AN2 along fA by (Σ2, P2, T2, pre2, post2,
cond2, type2, A1), and f = (idΣ2 , idP2 , idT2 , fA). 4

Corollary 3.3.6 (Basic Data-Preimages and Images). Every basic data-preimage f : AN1 →
AN2 of AN2 along fA : A1 → A2 is also a basic data-image of AN1 along fA, and vice versa.

Proof. This follows directly from the definitions of basic data-images and -preimages, as both
constructions do nothing else than replacing the algebra of the AHL-net with the domain
respectively codomain of the homomorphism fA, and the AHL-morphism f consists in both
cases of fA as its algebra part and identities for the other components.

Remark 3.3.7 (Data-Preimages of Algebraic High-Level Nets). In the case of generalised ho-
momorphisms, the construction of (non-basic) data-preimages requires to check the existence
of a well-defined result, similar to the dangling and identification points of the data type
part in the gluing condition in [PER95]. This is necessary because the preimage construction
may remove parts of the signature that are used as a type, or inside arc inscriptions or firing
conditions in the AHL-net. However, in this thesis we do not offer a detailed definition of a
non-basic preimage construction. 4

Changing the signature part of an AHL-net as in Example 3.3.3 using data-images, we
can change the data types and operations that can be used in the AHL-net. Changing the
algebra part on the other hand, changes the concrete data values that can occur in the firing
behaviour of the net. Considering the fact that the firing behaviour of AHL-nets relies on
the evaluation of terms and equations, it is interesting to note that homomorphisms preserve
terms and equations (see Theorems 3.3.2 and 4.12.2 in [EM85]). This means that given
assignments vA : X → A and vB : X → B and a homomorphism f : A → B such that
f ◦ vA = vB, by Theorem 3.3.2 in [EM85] we also have f ◦ v∗A = v∗B (which especially means
that (fA ◦ vA)∗ = fA ◦ v∗A), and if (A, vA) satisfies an equation e, then by Theorem 4.12.2 in
[EM85] also (B, vB) = (B, f ◦ vA) satisfies that equation. Consequently, we obtain that basic
data-images preserve firing steps as shown in Corollary A.7.2 on page 227, giving rise to the
following conceptual definition of abstraction:

Concept 3.3.8 (Levels of Abstraction of Communication Platforms). In order to identify
and investigate specific patterns of interactions, we need a way to model different levels of

48 3 Modelling and Evolution of Communication Platforms

abstraction. Since we model communication platforms using AHL-nets (see Concept 3.1.8),
the actions in a platform are modelled by transitions, and the exact behaviour of an action
is determined by the firing behaviour of the corresponding transition (see Definition 3.1.7).
Note that both the marking and the consistent transition assignment used in a firing step are
highly dependent from the concrete data type part of the AHL-net. So, replacing the data
type part with a more abstract one, like for instance a term algebra, results in an abstraction
of the firing behaviour.

The data-images of AHL-nets along homomorphisms induce a quasi-order / of abstraction
respectively concretisation of the data in communication platforms. Given a basic data-image
f̄ : AN1 → AN2 along a Σ-homomorphism f : A1 → A2, we can write AN1 / AN2, meaning
that AN1 is an abstraction of AN2, and AN2 is a concretisation of AN1.

The level of abstraction of a communication platform has an impact on the existence of
possible scenarios in that platform. On a more abstract level, it can be expected that we
may have a lower number of different scenarios than on a more concrete level. This means
that abstraction can possibly be used to lower the effort of testing and analysis of a platform,
however, with the risk of missing cases that only occur on the more concrete level. This is
also discussed in the following example. 4

Example 3.3.9 (Levels of Abstraction of Communication Platforms). Consider again our
platform model Platform in Figure 3.2. Let Platform ′′ be a modification where we replace
algebra A with a term algebra TΣ-Wave(Y)10 with Yuser = {a, b} and Ywavelet = {w0}. Since
two terms are equal if and only if they are syntactically equal, it is not possible to find a
marking such that any of the transitions the AHL-net is enabled, because it is not possible
to satisfy the corresponding firing conditions. However, we can formulate firing schemes like
for instance

a⊕ b⊕ w0
invite user,v−→ a⊕ b⊕ addUser(b, w0)

where v : X → Y is a valuation with v(user1) = a, v(user2) = b, v(o) = w0 and v(n) =
addUser(b, w0). This firing scheme can be concretised to different firing steps in the AHL-
net Platform, considering Platform as a concretisation of Platform ′′ along a homomorphism
h1 : TΣ-Wave(Y)→ A that can be given by a valuation of variables asg : Y → A. For example,
we can map a to Alice, b to Bob, and w0 to the empty wavelet with id 0 where only Alice is
invited. Then we obtain a concrete firing step

Alice⊕ Bob⊕ (0, {Alice}, ε) invite user,asg◦v−→ Alice⊕ Bob⊕ (0, {Alice,Bob}, ε)

where Alice invites Bob. Analogously it is possible with another valuation to concretise the
firing scheme to a firing step where Bob invites Alice. This idea can be extended to the
abstractions of whole scenarios as demonstrated in Example 4.4.6.

Another rather simple example of an abstraction is given by an AHL-net Platform ′ with
algebra A′ which is identical to A, except for the carrier set A′user = {Alice,Bob}. There is
an inclusion h : A′ ↪→ A such that Platform ′ can be considered as an abstraction of Platform.
This abstraction can be helpful for testing because we restrict the infinite set of users to
a quite small set with only two elements, nevertheless with the drawback that we cannot
consider cases in this abstraction that occur only with more than two users.

Note that there is also a homomorphism h2 : TΣ-Wave(Y)→ A′ given by valuation asg′ :
Y → A′ which maps everything exactly as asg. This means that Platform ′′ is also an

10Note that the variable family Y must not be confused with the family X of additional variables in
Σ = (S,OP ;X). The term algebra TΣ-Wave(X) is used for the syntax of the AHL-net, whereas the term
algebra TΣ-Wave(Y) now specifies the semantics of the net.

3.4 Structure and Semantics of Platforms by Skeleton and Flattening 49

abstraction of Platform ′, and we have a chain Platform ′′ / Platform ′ / Platform of different
levels of abstraction. ♦

The following fact states that it is not important on which abstraction level we perform
structuring constructions using pushouts and pullbacks, because all results can be shifted
or lifted along corresponding data-images. Note that this also includes compatibility of
abstraction with direct transformation, since direct transformations are the result of pushout
constructions.

Theorem 3.3.10 (Compatibility of Abstraction and Structuring). Given the commutative
cube of AHL-nets below with f,m ∈ MAHL, where all vertical morphisms are the result of a
basic data-image. Then the top of the cube is a pushout (pullback) if and only if the bottom
is a pushout (pullback).

AN0f
qqddddddddd g

--ZZZZZZZZZZZZZZZZZZZZZZZ

��

AN1
n

--ZZZZZZZZZZZZZZZZZZZZZZZ

��

AN2
mqqddddddddd

��

AN3

��

AN ′0f ′

rreeeeeeeee g′

YYYYYYYYYYY

,,YYYYYYYYYYYAN ′1

n′ ,,YYYYYYYYYYYYYYYYYYYYYYYY

AN ′2
m′

rreeeeeeeee
AN ′3

Proof. From Fact A.6.10 we know that all vertical morphisms are Data-cocreations which
by Corollary A.1.33 implies that all side faces of the cube are pushouts. Assuming that the
top of the cube is a pushout, by pushout composition we have that the top and right front
face together form a pushout, and thus, the left back and bottom face form a pushout. So
by pushout decomposition we obtain that the bottom is a pushout.

Now, let us assume that the bottom is a pushout. Due to componentwise construction
of pushouts in AHLNets, we have that the P - and T -components of the bottom form
pushouts in Sets. According to the definition of basic data-images we have identical P - and
T -components in the top. Moreover, due to f and m being MAHL-morphisms, they have an
isomorphic data type part, and thus also the data type part of the top face form a trivial
pushout in Algs. Hence, by componentwise construction of pushouts in AHLNets we can
conclude that the top face is also a pushout.

The proof for pullbacks works dually, using the fact that pushouts along M-morphisms
are also pullbacks, and M-morphisms are closed under pushouts.

3.4 Structure and Semantics of Platforms by Skeleton and Flattening

There are different ways to obtain a low-level place/transition (P/T) net from an algebraic
high-level net. The skeleton of an AHL-net “forgets” the data part of the net, leading to a
low-level P/T net with the same structure as the AHL-net but, however, not with the same
firing behaviour. The flattening construction for AHL-nets also leads to a corresponding
P/T net, but instead of forgetting the data part, all high-level information is encoded in the
places and transitions. The new contribution of this thesis is that we consider skeletons and
flattenings of AHL-nets where we do not fix the data type part to a specific signature or
algebra in general.

Definition 3.4.1 (Skeleton). Given an AHL-net AN = (Σ, P, T, pre, post, cond, type,A) then
the skeleton Skel(AN) is defined by Skel(AN) = (P, T, preS , postS) with

preS(t) =
n∑
i=1

pi for pre(t) =

n∑
i=1

(termi, pi)

50 3 Modelling and Evolution of Communication Platforms

and similar for postS : T → P⊕. Given an AHL-morphism f : AN 1 → AN 2 with f = (fP , fT)
then the skeleton of f is defined by Skel(f) = (fP : P1 → P2, fT : T1 → T2).

For the special case that we have a given fixed data type part (Σ, A), we denote the
skeleton as Skel(Σ,A) : AHLNets(Σ,A)→ PTNets. 4

Concept 3.4.2 (Structure of Platforms). The skeleton of an AHL-net modelling a commu-
nication platform describes the structure of the platform. Accordingly, in a first step of the
modelling process of a platform, a low-level P/T net N can abstractly describe the resources
and possible actions in the platform. In a second step the P/T net can then be enriched
with high-level data types, firing conditions and arc inscriptions, leading to a corresponding
algebraic high-level net AN such that Skel(AN) = N . 4

Example 3.4.3 (Skeleton). The P/T net LLPlatform presented in Example 3.1.3 on page 32
is the skeleton of the AHL-net Platform in Figure 3.2 on page 35. ♦

The skeleton constructions for AHL-nets and AHL-morphisms form a functor from the
category of AHL-nets to the category of P/T nets.

Fact 3.4.4 (Skeleton Functor). The skeleton construction of AHL-nets and AHL-morphisms
defined in Definition 3.4.1 is a functor Skel : AHLNets → PTNets that maps MAHL-
morphisms to MPT -morphisms and preserves coproducts and also pushouts and pullbacks
along MAHL.

Proof-Idea. The fact that the flattening Skel(f) of an AHL-morphism f is a well-defined
P/T-morphism follows from the preservation of pre and post domains by morphisms in both
categories. Further, since an MAHL-morphism f consists of injective functions fP and fT ,
implying that the skeleton Skel(f) = (fP , fT) is an injective MPT -morphism. Finally, the
preservation of coproducts, and of pushouts and pullbacks along MAHL follows from the
fact that these constructions can be performed componentwise in AHLNets as well as in
PTNets. For the detailed proof see Section B.1.

Definition 3.4.5 (Flattening and Weak Flattening of AHL-Nets). Given an AHL-net AN =
(Σ, P, T, pre, post, cond, type,A), then the weak flattening wFlat(AN) is defined by a P/T net
wFlat(AN) = (CP, TA, preA, postA) with

• CP = A⊗ P = {(a, p) | a ∈ Atype(p), p ∈ P},

• TA = {(t, v) | t ∈ T, v : V ar(t)→ A}, and

• preA, postA : TA→ CP⊕ are the assigned pre and post domains (see Definition 3.1.7).

Given an AHL-morphism f : AN 1 → AN 2 then the weak flattening of f is given by

wFlat(f) = (fA ⊗ fP : CP1 → CP2, fC : TA1 → TA2)

where

• fA ⊗ fP (a, p) = (fA(a), fP (p)), and

• fC(t, v) = (fT (t), fA ◦ v ◦ (fX |V ar(t))−1).

Moreover, the flattening Flat(AN) of AN is defined by a P/T net

Flat(AN) = (CP,CT, preA, postA)

3.4 Structure and Semantics of Platforms by Skeleton and Flattening 51

with CP , preA and postA as given above, and

CT = {(t, v) | t ∈ T, v : V ar(t)→ A such that cond(t) is valid in A under v}.

Given an AHL-morphism f : AN 1 → AN 2, the flattening of f is defined by the restriction

Flat(f) = wFlat(f)|Flat(AN1) : Flat(AN1)→ Flat(AN2).

For the special case that we have a given fixed data type part (Σ, A), we denote the
flattenings as Flat(Σ,A), wF lat(Σ,A) : AHLNets(Σ,A)→ PTNets. 4

Concept 3.4.6 (Type Conformity and Flat Semantics of Platforms). The weak flattening of
an AHL-net modelling a communication platform (see Concept 3.1.8) is a P/T-net, modelling
a type conform “black box” semantics of the platform. This means that for every type
conform assignment of the variables in an action, however, without regarding the concrete
firing conditions, we have a corresponding occurrence of that action in the weak flattening,
representing the case that the action is executed using the specified assignment. In contrast,
the flattening is a P/T-net that models the actual flat semantics of the platform, taking also
into account the firing conditions of each action. This means that the flattening consists
only of realistic occurrences of action executions that could occur in an actual scenario of
interactions in that platform. Note that apart from its flat semantics, an AHL-net consists
also of a process semantics as presented in Section 4.1. 4

Example 3.4.7 ((Weak) Flattening). In the case of infinitely large carrier sets like in our
example algebra in Table 3.2, also the flattening construction yields an infinitely large P/T
net. So for our example, we consider the net AN1 in Figure 3.9, where we restrict the carrier
set Anat to the natural numbers between 0 and 3. Also, we assume that the signature consists
of an operation lt : nat nat → bool with algebraic semantics ltA(x, y) = true if x is lower
than y, and false otherwise.

AN1

increase

lt(current,next) = true id : nat
current

next

Figure 3.9: AHL-net AN1

Then with this finite carrier set we also obtain a finite P/T net Flat(AN1), depicted
in Figure 3.10, where we have four places – one for each of the possible natural numbers
that can be put as a token on the place id in the AHL-net AN1. Moreover, the flat-
tened net consists of six transitions, as there are six different consistent assignments for
the transition increase, given by possible assignments such that the assigned value for next is
greater than the assigned value for current . The pre and post domains of the transitions in
Flat(AN1) are determined by applying the specified assignments to the pre and post domain
of the transition increase. For instance, due to the pre domain pre(increase) = (current , id)
and the assignment v1(current) = 0, the pre domain of transition (increase, v1) is given by
preA(increase, v1) = (v1(current), id) = (0, id).

Considering the weak flattening, we are not only interested in consistent assignments but
in all possible assignments. This means that the weak flattening wFlat(AN1) additionally
contains “reflexive” transitions, where current and next are assigned to the same value, and
correspondingly, there is the same place (x, id) for x = 0, ..., 3 in the pre and post domain of
each of these transitions. Further, for every transition in Flat(AN1) there is a corresponding
“inverse” transition in wFlat(AN1) with swapped pre and post domain and assignments. ♦

52 3 Modelling and Evolution of Communication Platforms

Flat(AN1)

(increase,v1)

current ↦ 0, next ↦ 1

(0, id) (1, id) (2, id)

(increase,v2)

current ↦ 1, next ↦ 2

(3, id)

(increase,v3)

current ↦ 2, next ↦ 3

(increase,v4)

current ↦ 0, next ↦ 2

(increase,v5)

current ↦ 1, next ↦ 3
(increase,v6)

current ↦ 0, next ↦ 3

Figure 3.10: Flattening of AHL-net AN1

Fact 3.4.8 (Natural Inclusion). There is a natural inclusion w : Flat ⇒ wFlat, i. e. for
every AHL-net AN there is an inclusion w(AN) : Flat(AN) ↪→ wFlat(AN) such that w :
Flat⇒ wFlat is a natural transformation.

Moreover, for a given fixed data type part (Σ, A), the transformation w(Σ,A) : Flat(Σ,A) ⇒
wFlat(Σ,A) is cartesian, i. e. for every AHL-morphism f : AN1 → AN2 in AHLNets(Σ,A)
the naturality square (1) in Figure 3.11 is a pullback. Since for f ∈ MAHL the data type
(fΣ, fA) is isomorphic, this especially implies that w : Flat ⇒ wFlat is M-cartesian, i. e.
the diagram (1) in Figure 3.11 is also a pullback for w : Flat⇒ wFlat and f ∈MAHL.

Flat(AN1)
Flat(f) //

w(AN1)

��

Flat(AN2)

w(AN2)

��
wFlat(AN1)

wFlat(f)
// wFlat(AN2)

(1)

Figure 3.11: Naturality square of w

Proof Idea. The existence of the inclusion follows directly from the definitions of Flat and
wFlat. For the fact that diagram (1) is a pullback it basically suffices to show that the
T -component of the square is a pullback, since due to similar P -components in Flat and
wFlat, the P -components trivially form a pullback. For the complete proof, we refer to
Section B.2.

Fact 3.4.9 (Natural Projection). There is a natural projection wproj : wFlat ⇒ Skel, i. e.
for every AHL-net AN there is a projection wproj(AN) : wFlat(AN)→ Skel(AN) with

• wproj(AN)P (a, p) = p, and

• wproj(AN)T (t, v) = t,

such that wproj : wFlat⇒ Skel is a natural transformation. Moreover, for a given fixed data
type part (Σ, A) and projections for components P, T : PNets → Sets, the transformations
P (wproj(Σ,A)) : P ◦ wFlat(Σ,A) ⇒ P ◦ Skel(Σ,A) and T (wproj(Σ,A)) : T ◦ wFlat(Σ,A) ⇒
T ◦ Skel(Σ,A) are cartesian, i. e. for every AHL-morphism f : AN1 → AN2 with fixed data
type part (idΣ, idA) the diagrams (1) and (2) in Figure 3.12 are pullbacks.

Since for f ∈ MAHL the data type (fΣ, fA) is isomorphic and Skel(f) ∈ MPT , this
especially implies that wproj : wFlat ⇒ Skel is M-cartesian, i. e. for f ∈ MAHL the
diagram (3) in Figure 3.13 is a pullback in PTNets.

Proof Idea. This can be shown by explicitly by verification of the universal property of pull-
backs in Sets for the diagrams (1) and (2). For the complete proof see Section B.3.

3.4 Structure and Semantics of Platforms by Skeleton and Flattening 53

A1 ⊗ P1
idA⊗fP//

wproj(Σ,A)(AN1)P
��

A2 ⊗ P2

wproj(Σ,A)(AN2)P
��

P1
fP

// P2

(1)

(a) Pullback of places

TA1
fC //

wproj(Σ,A)(AN1)T
��

TA2

wproj(Σ,A)(AN2)T
��

T1
fT

// T2

(2)

(b) Pullback of transitions

Figure 3.12: Naturality squares of P (wproj(Σ,A)) and T (wproj(Σ,A))

wFlat(AN1)
wFlat(f) //

wproj(AN1)

��

wFlat(AN2)

wproj(AN2)

��
Skel(AN1)

Skel(f)
// Skel(AN2)

(3)

Figure 3.13: Naturality square of wproj with f ∈MAHL

Corollary 3.4.10 (Natural Projection). There is a natural projection proj : Flat ⇒ Skel
given by proj = wproj ◦ w such that for a given data type part (Σ, A) and projections for
components P, T : PNets → Sets, the transformations P (proj(Σ,A)) : P ◦ Flat(Σ,A) ⇒
P ◦ Skel(Σ,A) and T (proj(Σ,A)) : T ◦ Flat(Σ,A) ⇒ T ◦ Skel(Σ,A) are cartesian, i. e. diagrams
(1) and (2) in Figure 3.14 are pullbacks in Sets.

A1 ⊗ P1
idA⊗fP//

proj(Σ,A)(AN1)P
��

A2 ⊗ P2

proj(Σ,A)(AN2)P
��

P1
fP

// P2

(1)

(a) Pullback of places

CT1
fC //

proj(Σ,A)(AN1)T
��

CT2

proj(Σ,A)(AN2)T
��

T1
fT

// T2

(2)

(b) Pullback of transitions

Figure 3.14: Naturality squares of P (proj(Σ,A)) and T (proj(Σ,A))

Since for f ∈ MAHL the data type (fΣ, fA) is isomorphic and Skel(f) ∈ MPT , this
especially implies that proj : Flat ⇒ Skel is M-cartesian, i. e. for f ∈ MAHL the diagram
(3) in Figure 3.15 is a pullback in PTNets.

Flat(AN1)
Flat(f) //

proj(AN1)

��

Flat(AN2)

proj(AN2)

��
Skel(AN1)

Skel(f)
// Skel(AN2)

(3)

Figure 3.15: Naturality square of proj with f ∈MAHL

Proof. The projection proj is obtained as composition of natural transformations proj =
wproj ◦w where wproj and w are the natural transformations from Fact 3.4.8 and Fact 3.4.9
such that P (wproj(Σ,A)), T (wproj(Σ,A)) and w(Σ,A) are cartesian. Since the natural inclusion
w(Σ,A) consists of injective morphisms as components, and pullbacks along injective mor-
phisms can be constructed componentwise in PTNets, by composition of pullbacks we obtain

54 3 Modelling and Evolution of Communication Platforms

that also P (proj(Σ,A)) = P (wproj(Σ,A) ◦ w(Σ,A)) and T (proj(Σ,A)) = T (wproj(Σ,A) ◦ w(Σ,A))
are cartesian.

Fact 3.4.11 (Flattening Functors). The flattening constructions of AHL-nets and AHL-
morphisms defined in Definition 3.4.5 are functors wFlat, F lat : AHLNets → PTNets
that map MAHL-morphisms to MPT -morphisms and preserve pullbacks along MAHL. More-
over, the restricted functors wFlat(Σ,A), F lat(Σ,A) : AHLNets(Σ,A) → PTNets preserve
pushouts along MAHL.

AN0
f //

g

��

AN1

g′

��
AN2

f ′
// AN3

(1)

(a) Pullback
or pushout in
AHLNets

Flat(AN0)
Flat(f)//

Flat(g)

��

Flat(AN1)

Flat(g′)
��

Flat(AN2)
Flat(f ′)

// Flat(AN3)

(2)

wFlat(AN0)
wFlat(f)//

wFlat(g)

��

wFlat(AN1)

wFlat(g′)
��

wFlat(AN2)
wFlat(f ′)

// wFlat(AN3)

(3)

(b) Pullbacks or pushouts in PTNets

Figure 3.16: Preservation of pullbacks and pushouts along MAHL

Proof-Idea. For the well-definedness of the flattening there is a proof in [Ehr05] which is still
valid for the more general notion of AHL-morphisms used in this thesis. The preservation
of M-morphisms, pushouts and pullbacks can be shown explicitly, considering the exact
definitions of Flat and wFlat. For the complete proof, we refer to Section B.4.

Remark 3.4.12 (Counterexample for General Preservation of Pushouts). Note that the func-
tors Flat and wFlat do not preserve pushouts along MAHL in general, if the data type part
of the respective other morphism is not isomorphic. For a counterexample for the functor
Flat consider the pushout of AHL-nets in Figure 3.17 where the AHL-nets AN0 and AN1

have the data type part (Σ, TΣ), and the AHL-nets AN2 and AN3 have the data type part
(Σ, A) where Anat = N, and ltA(x, y) is true if x is lower than y and false otherwise. Now,
since AN0 and AN1 contain no transitions, there are also no consistent transition assign-
ments, i. e. CT0 = CT1 = ∅. Furthermore, we also have that CT2 = ∅, because there is no
assignment such that the left- and right-hand side of the equation lt(current,next) = true
become (syntactically) equal. But, in contrast, the set of consistent transition assignments
CT3 = {(increase, v) | v(current) < v(next)} is not empty. Hence, we do not have a pushout
CT3 = CT1 +CT0CT2 in Sets, which by componentwise construction of pushouts in PTNets
implies that we do not have a pushout Flat(AN3) = Flat(AN1) +Flat(AN0) Flat(AN2) in
PTNets.

For a counterexample for the functor wFlat we consider the case that AN0 and AN1 have
a data type part (Σ, B) with Bnat = {0} and the AHL-nets AN2 and AN3 have the data
type part (Σ, C) with Cnat = {0, 1}. Also in this case the sets TA0 and TA1 of transition
assignments of AN0 and AN1, respectively, are empty, because they have no transitions. For

3.4 Structure and Semantics of Platforms by Skeleton and Flattening 55

AN1

increase

lt(current,next) = true id : nat
current

next

AN0

id : nat

AN2

id : nat

increase

lt(current,next) = true id : nat
current

next

AN3

f

f'

g g'

Figure 3.17: Pushout of AHL-nets

the net AN1 there is one transition assignment mapping current and next to 0, but for the
net AN3 there are four transition assignments for all combinations of mappings to 0 and 1.
Thus, we do not have a pushout TA3 = TA1 +TA0 TA2 in Sets and therefore no pushout of
the corresponding weak flattenings. 4

56 3 Modelling and Evolution of Communication Platforms

4
Modelling and Evolution of Scenarios

This chapter concerns techniques for the modelling and evolution of interaction scenarios.
First, in Section 4.1 we present the modelling technique of AHL-processes based on AHL-
process nets, and we show how this technique can be used for the modelling of abstract
scenarios.

Then, in Section 4.2 we extend the rule-based transformation of AHL-nets, presented in
Section 3.2, to support also the rule-based transformation of AHL-process nets and -processes,
allowing the structural evolution of abstract scenarios.

Moreover, the concept of instantiations and instantiated AHL-processes in Section 4.3 is
used to model also concrete and semi-concrete scenarios. In the subsequent Section 4.4, we
extend the mechanisms for the data evolution and abstraction of AHL-nets in Section 3.3 to
corresponding mechanisms for AHL-process nets, -processes and instantiations, yielding also
a concept of different levels of abstraction for scenarios.

The restriction and amalgamation techniques for (instantiated) AHL-processes, presented
in Section 4.5, support the restriction and union of views on scenarios based on underlying
embeddings and composition, respectively, of communication platforms.

Further, in Section 4.6 we present the rule-based transformation of instantiations, and, in
combination with the rule-based transformation of AHL-processes, an integrated approach
of the rule-based transformation of instantiated AHL-processes. This can be used to model
also the structural evolution of concrete and semi-concrete scenarios.

The modelling techniques for histories and user behaviour, presented in Section 4.7, are
special cases of the techniques for the modelling respectively evolution of concrete scenar-
ios. Finally, in Section 4.8 we introduce the evolution of scenarios based on communication
platform evolutions. This includes the extension of scenarios as well as techniques to evolve
abstract and concrete scenarios according to evolutions of the underlying communication
platform.

4.1 Modelling of Abstract Scenarios Using Algebraic High-Level Processes

Now, we introduce AHL-process nets based on low-level occurrence nets (see [GR83]) and
AHL-processes according to [Ehr05, EHP+02]. The net structure of a high-level occurrence
net has similar properties like a low-level occurrence net, but it captures a set of different
concurrent computations due to different initial markings. In fact, high-level occurrence nets
can be considered to have a set of initial markings for the input places, whereas there is only
one implicit initial marking of the input places for low-level occurrence nets.

Moreover, in a low-level occurrence net with an initial marking there is for any complete
order of transitions compatible with the causal relation a corresponding firing sequence once
there is a token on all input places. This is a consequence of the fact that in an occurrence
net the causal relation is finitary. In the case of high-level occurrence nets an initial marking
additionally contains data values and in general some of the firing conditions in a complete

58 4 Modelling and Evolution of Scenarios

order of transitions are not satisfied. Hence, even in the case that the causal relation is
finitary, we cannot expect to have complete firing sequences.

In order to ensure a complete firing sequence in a high-level occurrence net there has
to be an instantiation of the occurrence net (see [Ehr05] and Section 4.3) In the following
definition of AHL-process nets, in contrast to occurrence nets, we omit the requirement that
the causal relation has to be finitary, because this is not a meaningful requirement for our
application domain.

Definition 4.1.1 (Algebraic High-Level Process Net). An algebraic high-level (AHL-) pro-
cess net K is an AHL -net

K = (Σ, P, T, pre, post, cond, type,A)

such that for all t ∈ T with pre(t) =
∑n

i=1(termi, pi) and notation •t = {p1, . . . , pn} and
similarly t• we have

1. (Unarity): •t, t• are sets rather than multisets for all t ∈ T , i.e. for •t the places
p1 . . . pn are pairwise distinct. Hence | • t| = n and the arc from pi to t has a unary
arc-inscription termi.

2. (No Forward Conflicts): •t ∩ •t′ = ∅ for all t, t′ ∈ T, t 6= t′

3. (No Backward Conflicts): t • ∩t′• = ∅ for all t, t′ ∈ T, t 6= t′

4. (Partial Order): the causal relation <K⊆ (P × T) ∪ (T × P) defined by the transitive
closure of {(p, t) ∈ P × T | p ∈ •t} ∪ {(t, p) ∈ T × P | p ∈ t•} is a strict partial order,
i. e. the partial order is irreflexive.

AHL-process nets together with AHL-net morphisms between AHL-process nets form the full
subcategory AHLPNets ⊆ AHLNets. 4

Remark 4.1.2 (AHL-occurrence Nets). Note that an AHL-process net with a finitary causal
relation is an AHL-occurrence net as defined in [Ehr05], and consequently, also a finite AHL-
process net is an AHL-occurrence net. 4

We define the sets of input and output places of an AHL-process nets as the sets of places
which are not in the post respectively pre domain of a transition:

Definition 4.1.3 (Input and Output Places of AHL-Process Net). Given an AHL-process net
K. We define the set IN(K) of input places of K as IN(K) = {p ∈ PK | @t ∈ TK : p ∈ t•},
and similar the set OUT (K) of output places of K as OUT (K) = {p ∈ PK | @t ∈ TK : p ∈
•t}. 4

Corollary 4.1.4 (Data-Image of AHL-Process Net). For the data-image f : K1 → K2 of an
AHL-process net K1 along homomorphism (fΣ, fA), we have that K2 is also an AHL-process
net.

Proof. This follows from the fact that the requirements of AHL-process nets only depend on
the structure of the net, and the structure remains unchanged by the data-image construction.

An AHL-process of an AHL-net AN is defined as an AHL-morphism from an AHL-
process net K into the net AN . Note that from the preservation of firing behaviour by
AHL-morphisms (see Fact 3.1.10) it follows that a firing sequence in K corresponds to a
firing sequence in AN . Thus, due to the conflict-free and acyclic structure of AHL-process

4.1 Modelling of Abstract Scenarios Using Algebraic High-Level Processes 59

nets, an AHL-process mp of an AHL-net AN models a part of the semantics of AN which
– up to concurrency and possibly different data values – does not contain any branches or
iterations.

Definition 4.1.5 (AHL-Process). An algebraic high-level (AHL-) process of an AHL-net AN
is an AHL-net morphism mp : K → AN where K is an AHL-process net. An AHL-process
mp is called strict , if it has an isomorphic data type part (mpΣ,mpA).

The category Proc(AN) of AHL-processes of an AHL-net AN is defined as the full
subcategory of the slice category AHLNets \AN such that the objects are AHL-processes.
This means that the objects of Proc(AN) are AHL-processes mp : K → AN and the
morphisms of the category are AHL-net morphisms f : K1 → K2 such that diagram (1)
below commutes.

The category AHLProcs of all AHL-processes is defined as full subcategory of the arrow
category AHLNets→ such that the objects are AHL-processes, and the morphisms are pairs
(f∗, f) of AHL-process net morphisms and AHL-morphisms such that diagram (2) below
commutes.

K1
f //

mp1 ""FFFFF K2

mp2||xxxxx

AN

(1)

K1
f∗ //

mp1 ��

K2

mp2��
AN1

f
//

(2)

AN2

4

Remark 4.1.6 (Strict AHL-Processes and Equivalent Representations). In previous works on
AHL-processes, only AHL-nets with fixed data type part (in the category AHLNets(Σ,A))
were considered, instead of the more general category definition of AHL-nets and morphisms
in this work. This means that all results regarding the behaviour of AHL-processes [Ehr05]
only apply to the notion of strict AHL-processes.

However, applying the data-image construction of AHL-nets (see Definition 3.3.1) to
AHL-process nets, every AHL-process mp : K → AN can be factorized into AHL-processes
k : K → K̄ and m̄p : K̄ → AN , where m̄p is a strict AHL-process with the same structure as
mp. The morphism k is obtained from the data-image, and m̄p is induced by the fact that
data-images are Data-cocreations (see Fact A.6.10).

Moreover, we regard AHL-processes as equivalent if the factorization above leads to the
same result, i. e. if the AHL-processes have the same structure and therefore share the same
“normal form” of a strict AHL-process. In this case we have data-images k : K → K̄ and
k′ : K ′ → K̄. According to Theorem 3.3.10, we know that any structuring using pushouts
or pullbacks can be transferred to a corresponding structuring of the respective other AHL-
process.

The only difference between the AHL-processes lies in the different data type part, but
since an AHL-process (without additional information) does not specify any concrete data
values that are used during the process, the data type part is rather irrelevant at this point
of view. However, the concrete data type part of an AHL-process becomes important when
we consider instantiated AHL-processes in Section 4.3, where we enrich the AHL-processes
with information about concrete data values. 4

Concept 4.1.7 (Modelling of Abstract Scenarios). Since we want to investigate the interac-
tions of human-centric communication platforms, we need a way to model these interactions.
As the interactions usually are performed by humans, we have to consider different scenarios
of interactions on a platform. A scenario contains a number of actions performed by users,

60 4 Modelling and Evolution of Scenarios

and these actions have to be in compliance with the actions and data that can be used on the
corresponding platform. The model of a scenario reflects the causal relation of subsequent
actions, but it is also possible to model the concurrent occurrence of actions, since usually
it is possible that different users perform actions independently at the same time (see also
the discussion on page 23 about a tolerant interpretation of simultaneity in near-real time
communication).

An abstract scenario of interactions in a communication platform can be modelled as
an algebraic high-level process mp : K → AN of the AHL-net AN corresponding to the
communication platform (see Concept 3.1.8). The required morphism mp ensures that the
scenario actually conforms to the resources and actions provided by the platform.

The scenario modelled by an AHL-process is an abstract scenario in the sense that we do
not specify any concrete data values. Note that in Concept 4.4.5 we introduce a concept of
levels of abstraction of scenarios. In that context, the abstract scenarios modelled by AHL-
processes can be seen as top-level abstract scenarios. An example of an abstract scenario is
given in the following Example 4.1.8. 4

Example 4.1.8 (Modelling of Abstract Scenario as Algebraic High-Level Process). Con-
sider again the abstract scenario of interactions in the Apache Wave platform presented in
Section 2.2, depicted in Figure 2.4. An AHL-process wave : Wave → Platform modelling
this abstract scenario is shown in Figure 4.1. The mappings of the AHL-morphism wave
are illustrated by the notation element : mapping, e. g. id1 : id means that place id1 in
AHL-process net Wave is mapped to place id in the AHL-net Platform (see Figure 3.2),
and new1 : new wavelet means that the transition new1 is mapped to the platform transi-
tion new wavelet . We also say that id1 is an occurrence of id and new1 is an occurrence of
new wavelet in the AHL-process wave.

remove1

: remove

invite1

: invite user

new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user user

o

u3 : u

w2 : w

user

n

u4 : u

user2
user1

o

u6 : uu5 : u

w3 : w

user2
user1

n

user

o

w4 : w

n

user

new2

: new wavelet

free

id3 : id

next

u8 : u

user

user

insert2

: insert

user

u9 : uw5 : w

n o

user

w6 : w

n

id2 : id

u7 : u

Wave

Figure 4.1: AHL-process model of an abstract scenario

Note that, although not visible in the figure, each place of the AHL-process has a type,
and the transitions have firing conditions, but these are not explicitly depicted because they
can be derived from the corresponding mapping. For instance, the place id1 has the same type
nat as the place id it is mapped to, and the transition new1 has the same firing conditions
as the transition new wavelet in the AHL-net Platform in Figure 3.2.

In Example 3.1.9 we introduced the modelling of the Apache Wave platform as AHL-net
Platform, where resources of the platform are modelled as places, and actions are modelled as

4.1 Modelling of Abstract Scenarios Using Algebraic High-Level Processes 61

transitions. Accordingly, in our AHL-process model of an abstract scenario, the occurrences
of resources and actions in the scenario are represented by corresponding occurrences of places
and transitions in the AHL-process. As a result, the causal relation of events is not given as
a time line, but instead, it results from the (transitive) connections of transitions and places.

The initial state of the abstract scenario can be seen at the input places IN(Wave) =
{id1, u1, u8} of the AHL-process net, i. e. initially there is a (free) id and two users. If we
assume that there is a suitable marking on each of these three input places, the only transition
that could be fired first, is the transition new1 , because all other transitions have at least one
place in their pre domain which is not an input place. Further, assuming that the transition
new1 can fire, we obtain a new marking where we have tokens on the places w1, u2, id2

and u8. In this situation we have two candidates for firing next: the transition insert1 with
w1 and u2 in its pre domain, and the transition new2 with id2 and u8 in its pre domain.
When we proceed with this practice, we obtain that there are two possible sequences of firing
transitions (provided that there are suitable data values):

Sequence 1 : new1 ; insert1 ; new2 ; invite1 ; remove1 ; insert2

Sequence 2 : new1 ; new2 ; insert1 ; invite1 ; remove1 ; insert2

It is not necessary to assume the existence of suitable data values, if we consider the low-
level skeleton of the AHL-process net (see Definition 3.4.1), i. e. if we omit all high-level
components of the net. However, the high-level net Wave is more expressive than its low-
level skeleton. For instance, the transition invite1 has two different user places in its pre
domain. Observing the firing conditions of transition invite user , we know that the user
bound by variable user1 is inviting the user bound by variable user2 and not the other way
around. Taking into account only the low-level structure of the net, we do not know if a user
on place u3 is inviting a user on place u4 or the other way around, while the high-level arc
inscriptions tell us that the inviter has to come from place u3 and the invitee from place u4.

As one can see, the actions insert1 and new2 can happen in different order. Considering
the truly concurrent behaviour of Petri nets, this means that these transitions could happen
at the same time11, and thus, the possible behaviour modelled by the AHL-process coincides
with the abstract scenario in Figure 2.4. ♦

Since every AHL-process conforms to a specific AHL-net, the question arises, what hap-
pens to the AHL-process, if we change the data of the corresponding AHL-net, e. g. by
abstraction or concretisation. In the following fact we show that AHL-processes are in fact
compatible with data evolution and abstraction in the sense that we can always get an AHL-
process in correspondence to the changes of the data type. Note that the first and second
part of the fact are also applicable to concretisation, since concretisation is a special case of
data evolution.

Fact 4.1.9 (Compatibility of AHL-Processes with Data Evolution and Abstraction).

(Data Evolution) Given an AHL-process mp1 : K1 → AN1 and a data-image f : AN1 →
AN2 of AN1 along (fΣ, fA) : (Σ1, A1) → (Σ2, A2), then there exists an AHL-process
mp2 : K1 → AN2, called extension of mp1 along f , with mp2 = f ◦mp1.

(Strict Data Evolution) Given a strict AHL-process mp1 : K1 → AN1 and a data-image
f : AN1 → AN2 of AN1 along (fΣ, fA) : (Σ1, A1)→ (Σ2, A2), then there exists a strict
AHL-process mp2 : K2 → AN2 with f ′ : K1 → K2 being the data-image of K1 along
(fΣ, fA) and diagram (1) in Figure 4.2b is a pushout.

11Technically this can be achieved by firing of a parallel transition insert2 + new2.

62 4 Modelling and Evolution of Scenarios

(Abstraction) Given an AHL-process mp2 : K2 → AN2 and a basic data-preimage f :
AN1 → AN2 of AN2 along a Σ-homomorphism fA : A1 → A2, then there exists an
AHL-process mp1 : K1 → AN1 such that diagram (1) in Figure 4.2b commutes, where
f ′ : K1 → K2 is a basic data-preimage of K2 along f ′A : A′1 → A′2, obtained by pullback
(2) in Figure 4.2c in Alg(Σ).

K1

mp1
��

mp2

&&MMMMMMMMM

AN1
f
// AN2

(a) Compatibility with
data evolution

K1

mp1
��

f ′ // K2

mp2
��

AN1
f
// AN2

(1)

(b) Compatibility with ab-
straction

A′1
mp1,A

��

f ′A // A′2
mp2,A

��
A1

fA
// A2

(2)

(c) Pullback of Σ-algebras

Figure 4.2: Compatibility of AHL-processes with data evolution and abstraction

Proof. 1. This follows directly from the fact that also the composition f ◦mp1 : K1 → AN2

is an AHL-process, because K1 is an AHL-process net.

2. Given strict AHL-process mp1 : K1 → AN1, we can w. l. o. g. assume that K1 and AN1

have the same data type part, allowing us to construct the data-image f ′ : K1 → AN1

along (fΣ, fA). By Corollary 4.1.4 we have that K2 is an AHL-process net. From
Fact A.6.10 we know that data-image f ′ is a data-cocreation, and therefore by Corol-
lary A.1.33 the trivial pushout along (fΣ, fA) and identities in Algs induces a unique
mp2 : K2 → AN2 such that diagram (1) in Figure 4.2b becomes a pushout.

3. Let mp2 : K2 → AN2 be an AHL-process and f : AN1 → AN2 of AN2 be a basic
data-preimage along Σ-homomorphism fA : A1 → A2. Since Alg(Σ) is complete, we
can construct the pullback (2) in Figure 4.2c. Using Definition 3.3.5, we construct
the data-preimage f ′ : K1 → K2 of K2 along f ′ : A′1 → A′2. Note that the P -, T -
and Σ-components of K1 and AN1 are identical with the P -, T - and Σ-components in
K2 and AN2, respectively. Therefore, we obtain a well-defined AHL-morphism mp1 :
K1 → AN1 as mp1 = (mp2,Σ,mp2,P ,mp2,T ,mp1,A) such that diagram (1) in Figure 4.2b
commutes, due to pullbacks in the underlying categories.

The question of the compatibility of AHL-processes with structural changes of the corre-
sponding AHL-nets is more complicated and is therefore discussed separately in Section 4.5
and Section 4.8.

4.2 Evolution of Abstract Scenarios

Now, we extend our framework by the gluing and transformation of AHL-process nets and
AHL-processes. For this purpose we define productions for AHL-process nets where the left
and right hand side and the interface of the production are AHL-process nets.

Definition 4.2.1 (Production for AHL-Process Nets). A production for AHL-process nets

% : L
l← I

r→ R is a span of AHLPNets-morphisms l : I → L, r : I → R ∈MAHL. 4

4.2 Evolution of Abstract Scenarios 63

Definition 4.2.2 (Gluing and Transformation of AHL-Process Nets). Given AHL-process
nets K0, K1 and K2 together with morphisms f : K0 → K1 and g : K0 → K2. Then the
gluing of AHL-nets K3 = K1 +K0,f,g K2 is called gluing of AHL-process nets if K3 is an
AHL-process net.

Further, given an AHL-net K and a production for AHL-process nets % : L
l← I

r→ R
together with a match m : L → K. Then, a direct transformation of AHL-nets K

%,m
=⇒ K ′

with pushouts (1) and (2) below is called transformation of AHL-process nets if (1) and (2)
are gluings of AHL-process nets.

L

(1)m ��

I

c��

loo r // R

n��(2)

K C
d

oo
e

// K ′

4

Remark 4.2.3 (Gluing and Transformation of AHL-Process Nets). Note that every pushout
in the category AHLNets is a gluing of AHL-nets, whereas we consider a pushout in the
category AHLPNets only as a gluing of AHL-process nets if it is also a gluing of AHL-nets.
To understand the reason for this decision, consider the diagram in Figure 4.3a, where the
mappings are indicated by indices of the elements in the depicted AHL-process nets.

K1

increase2

gt(current,next) = true

id4 : nat

current next

K0

id3 : nat

K2

id13 : nat

f

f'

g g'

id3 : nat

increase1

gt(current,next) = true

id2 : nat

current next

id1 : nat

increase12

gt(current,next) = true

id24 : nat

current next

id13 : nat K3

id1 : nat

(a) Pushout (1)

K0
f //

g
��

K1

g′

��
K2

f ′
// K3

(1)

K0
f //

f ′◦g
��

K1

g′

��
K3

id
// K3

(2)

(b) Pushouts (1) and (2)

Figure 4.3: Pushouts in AHLPNets but not in AHLNets

The diagram is not a gluing of AHL-process nets, because it is not a pushout in AHLNets,
since according to the interface only the places p1 and p2 have to be identified. Instead, also
the transitions and the places p2 and p4 are identified. Nonetheless, the diagram is a pushout
in the category AHLPNets. The diagram commutes, and for every AHL-process net K ′3
with morphisms h1 : K1 → K ′3 and h2 : K2 → K ′3 such that h1 ◦ f = h2 ◦ g there is a
single place p = h1(id1) = h2(id13) = h1(id2) in K ′3, and since K ′3 does not have any forward
conflicts, there has to be a single transition t = h1(increase1) = h1(increase2) with p in
its pre domain, and with a single place h1(id2) = h1(id4) in its post domain since K ′3 also
does not have backward conflicts. Therefore, there exists a unique morphism h : K3 → K ′3
satisfying the universal pushout property.

So considering all pushouts of AHL-process nets would be quite unintuitive since for
AHL-process nets being special kinds of AHL-nets, one would expect that the gluing of
AHL-process nets is the same as gluing the respective AHL-nets.

Regarding the transformation of AHL-process nets there is another technical reason for
our decision to consider only gluings of AHL-nets. From the pushout in Figure 4.3a it

follows that K0
g→ K2

f ′→ K3 is a pushout complement of K0
f→ K1

g′→ K3. Using a similar

64 4 Modelling and Evolution of Scenarios

argumentation as above, we obtain that also diagram (2) in Figure 4.3b is a pushout in
AHLPNets.

The diagram commutes and for every AHL-process net K ′′3 with morphisms k1 : K1 → K ′′3
and k2 : K3 → K ′′3 such that k1 ◦ f = k2 ◦ f ′ ◦ g there is a single place p = k1(id1) =
k2(id13) = k1(id2) in K ′′3 . So, assuming that there are two different transitions k1(increase1)
and k2(increase2) would mean that there is a forward conflict in p which contradicts the fact
that K ′′3 is an AHL-process net. Thus, we have k1(increase1) = k2(increase2). Then by the
fact that AHL-morphisms preserve pre and post conditions, we obtain that there is a single
place p′ ≤ postK′′3 (increase1) = postK′′3 (increase2) such that k1(id2) = p′ and k1(id4) = p′.
Hence, any comparison object K ′′3 contains a substructure isomorphic to K3, allowing to
define a unique morphism k : K3 → K ′′3 , embedding K3 into that structure, and satisfying
the universal pushout property.

This implies that pushout complements in AHLPNets alongMAHL are not unique since
we have f ∈ MAHL. In contrast, from Fact A.1.11 we know that (AHLNets,MAHL) is an
M-adhesive category and therefore has unique pushout complements (see [EEPT06b]). So
with our decision to consider only gluings of AHL-nets for the transformation of AHL-process
nets, we ensure that we also have unique transformation results for AHL-process nets. 4

The gluing of AHL-nets may produce forward or backward conflicts as well as cycles in
the causal relation. So for the gluing of two AHL-process nets via pushout construction the
AHL-process nets have to be composable in order to obtain again an AHL-process net as a
result of the gluing. Composability of AHL-process nets with respect to an interface means
that the result of the gluing does not violate the process net properties in Definition 4.1.1.

A span of AHLPNets-morphisms i1 : I → K1 and i2 : I → K2 induces a causal relation
between the elements of the interface I. This relation consists of the causal relation between
elements in K1 and K2 and additionally between those elements in both of the AHL-process
nets which is obtained by gluing over the interface.

Definition 4.2.4 (Induced Causal Relation). Given three AHL-process nets I, K1 and K2,
and two AHL-net morphisms i1 : I → K1 and i2 : I → K2. The induced causal relation
<(i1,i2) is defined as the transitive closure of the relation ≺(i1,i2) defined by

≺(i1,i2)= {(x, y) ∈ (PI] TI)× (PI] TI) | i1(x) <K1 i1(y) or i2(x) <K2 i2(y)}.

4

Definition 4.2.5 (Composability of AHL-Process Nets). Given three AHL-process nets I,
K1 and K2, and two AHL-net morphisms i1 : I → K1 and i2 : I → K2 with i1 ∈ MAHL.
Then (K1,K2) are composable w. r. t. (I, i1, i2) if

1. (No Cycles) the induced causal relation <(i1,i2) is a strict partial order,

2. (Non-Injective Gluing)

• for all p1 6= p2 ∈ IN(I) with i2(p1) = i2(p2) there is
i1(p1) ∈ IN(K1) or i1(p2) ∈ IN(K1),

• for all p1 6= p2 ∈ OUT (I) with i2(p1) = i2(p2): there is
i1(p1) ∈ OUT (K1) or i1(p2) ∈ OUT (K1), and

3. (No Conflicts)

• for all p ∈ IN(I) : i1(p) /∈ IN(K1)⇒ i2(p) ∈ IN(K2),

• for all p ∈ OUT (I) : i1(p) /∈ OUT (K1)⇒ i2(p) ∈ OUT (K2).

4.2 Evolution of Abstract Scenarios 65

4

The composability of AHL-process nets is a sufficient and necessary condition for the
existence of the gluing of AHL-process nets along MAHL-morphisms.

Fact 4.2.6 (Gluing of AHL-Process Nets). Given AHL-process nets I, K1, K2 and AHL-net
morphisms i1 : I → K1 and i2 : I → K2 where i1 ∈ MAHL. Then there exists the gluing
K of K1 and K2 along i1 and i2, written K = K1 +(I,i1,i2) K2, if and only if (K1,K2) are
composable w. r. t. (I, i1, i2).

Extension to Processes. In order to extend this gluing construction for AHL-processes
in the category Proc(AN) (see Definition 4.1.5) one additionally requires AHL-morphisms
mp1 : K1 → AN and mp2 : K2 → AN with mp1 ◦ i1 = mp2 ◦ i2. The pushout (PO)
in AHLNets then provides a unique morphism mp : K → AN such that (PO) is also a
pushout in Proc(AN).

I
i1 //

i2
��

(PO)

K1

i′1
�� mp1

��

K2
i′2

//

mp2 ++

K

mp
DDDD

""DDD

AN

Proof-Idea. In order to show that the diagram (PO) constructed as pushout in AHLNets is
also a pushout in the full subcategory AHLPNets ⊆ AHLNets it suffices to show that the
pushout object K is an AHL-process net. The fact that the gluing does not produce conflicts
or cycles is ensured by the corresponding items 1 and 3 of the required composability of K1

and K2. Furthermore, item 2 ensures that there are no conflicts or violations of the unarity
condition created by non-injective gluing.

The other way around it can be shown that the conditions of the composability can be
derived from the fact that K satisfies the requirements of an AHL-process net. For a detailed
proof see Section B.5.

Concept 4.2.7 (Composition of Abstract Scenarios). For different scenarios it may be de-
sirable to combine them, in order to obtain a new integrated scenario, where the single
subcomponents are run parallel, sequentially, or that they are synchronised at some points
and run otherwise in parallel. The composition of abstract scenarios can be modelled as glu-
ing of the corresponding ahl-processes, where the interface defines all synchronisation points
of the composition. If the interface is empty, the gluing leads to a new scenario, where the
original scenarios run completely parallel. An example of the composition of two abstract
scenarios is given in the following Example 4.2.8 4

Example 4.2.8 (Composition of Abstract Scenarios). The composition of two scenarios
wave1 : Wave1 → Platform and wave2 : Wave2 → Platform is shown in Figure 4.4. The
interface of the gluing contains three places id2, u4 and u7 and the AHL-morphisms i1 : I →
Wave1 and i2 : I →Wave2 are inclusions.

In the result wave : Wave → Platform of the gluing, the two scenarios are “glued”
together at the specified interface places. Consequently, the new scenario consists of both of
the scenarios which are synchronised at the interface places. ♦

We define a gluing relation for the transformation of AHL-process nets which is induced
by a production % for AHL-process nets and a match m. The gluing relation is a relation
between the interface elements of % which consists of the causal relation between elements

66 4 Modelling and Evolution of Scenarios

remove1

: remove

invite1

: invite user

new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user user

o

u3 : u

w2 : w

user

n

u4 : u

user2

user1

o

u6 : uu5 : u

w3 : w

user2user1

n

user

o

w4 : w

n

user

new2

: new wavelet

free

id3 : id

next

u8 : u

user

user

insert2

: insert

user

u9 : uw5 : w

n o

user

w6 : w

n

id2 : id

u7 : u

Wave

remove1

: remove

invite1

: invite user

new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user user

o

u3 : u

w2 : w

user

n

u4 : u

user2

user1

o

u6 : uu5 : u

w3 : w

user2user1

n

user

o

w4 : w

n

user

id2 : id

u7 : u

new2

: new wavelet

free

id3 : id
next

u8 : u
user

user

insert2

: insert

u9 : u

w5 : w
n

o

user

w6 : w

n

id2 : id

u4 : u

u7 : u

user

Wave2

id2 : id

u4 : u

u7 : u

Wave1I

i1

i2

Figure 4.4: Gluing of AHL-processes

in the codomain of m that are preserved by application of % and the causal relation of the
right hand side of the production, and additionally it consists of the causal relations that are
obtained by gluing over the interface.

Definition 4.2.9 (Gluing Relation for Transformations). Given a production for AHL-

process nets % : L
l← I

r→ R and a match m : L→ K we define the relations

≺(K,m)= {(x, y) ∈ (PK × (TK \mT (TL)))] ((TK \mT (TL))× PK) | x ∈ •y}

and <(K,m) as the transitive closure of ≺(K,m). Furthermore we define

≺(%,m)= {(x, y) ∈ (PI × TI)] (TI × PI) | m ◦ l(x) <(K,m) m ◦ l(y) ∨ r(x) <R r(y)}

The transitive closure <(%,m) of ≺(%,m) is called gluing relation of production % under match
m. 4

For the transformation of AHL-process nets we define a transformation condition which
is a necessary and sufficient condition that the direct transformation of an AHL-process nets
exists. The satisfaction of the transformation condition by a production % and a match m
requires that the gluing condition for AHL-nets (see Definition 3.2.13) is satisfied. Moreover,
it requires that the gluing condition is irreflexive and that the application of the production
does neither produce any conflicts nor violates the unarity condition of AHL-process nets.

Definition 4.2.10 (Transformation Condition for AHL-Process Nets). Given a production

for AHL-process nets % : L
l← I

r→ R and an AHL-process net K. Then % satisfies the
transformation condition under a (match) morphism m : L→ K if

4.2 Evolution of Abstract Scenarios 67

1. (Gluing Condition) the gluing condition is satisfied (see Definition 3.2.13),

2. (No Cycles) the gluing relation <(%,m) of % under m is a strict partial order,

3. (Non-Injective Gluing)

• for all p1 6= p2 ∈ IN(I) with m ◦ l(p1) = m ◦ l(p2) we have
r(p1) ∈ IN(R) or r(p2) ∈ IN(R),

• for all p1 6= p2 ∈ OUT (I) with m ◦ l(p1) = m ◦ l(p2) we have
r(p1) ∈ OUT (R) or r(p2) ∈ OUT (R),

4. (No Conflicts) for the sets of in and out places of the match

InP = {x ∈ IN(I) | l(x) ∈ IN(L) and m ◦ l(x) /∈ IN(K)}, and

OutP = {x ∈ OUT (I) | l(x) ∈ OUT (L) and m ◦ l(x) /∈ OUT (K)}

there is

r(InP) ⊆ IN(R) and r(OutP) ⊆ OUT (R).

4

Theorem 4.2.11 (Direct Transformation of AHL-Process Nets). Given a production for

AHL-process nets % : L
l← I

r→ R and an AHL-process net K together with a morphism
m : L → K. Then the direct transformation of AHL-process nets with pushouts (1) and (2)
in AHLPNets exists if and only if % satisfies the transformation condition for AHL-process
nets under m.

Extension to processes. In order to extend this construction for AHL-processes in
the category Proc(AN) one additionally requires AHL-morphisms mp : K → AN and rp :
R → AN with mp ◦m ◦ l = rp ◦ r. Then by composition of AHL-morphisms we obtain an
AHL-process cp = mp ◦ d : C → AN and the pushout (1) in AHLPNets is also a pushout
of mp ◦m and cp in Proc(AN). Moreover, the pushout (2) in AHLNets provides a unique
morphism mp′ : K ′ → AN such that mp′ is pushout of cp and rp in Proc(AN) according to
Fact 4.2.6.

L

(1)m ��

I

c��

loo r // R

n��(2)

K C
d

oo
e

// K ′

Proof-Idea. Satisfaction of the transformation condition for AHL-process nets means that
the gluing condition for AHL-nets is satsfied which by Fact 3.2.14 implies that pushouts (1)
and (2) can be constructed in AHLNets. Due to Lemma A.7.1 the process net properties in
Definition 4.1.5 are reflected by injective AHL-morphisms, implying that C is an AHL-process
net and (1) is also a pushout in AHLPNets. Finally, it can be shown that the satisfaction
of the transformation condition implies that C and R are composable w. r. t. (I, c, r), i. e. the
pushout (2) in AHLNets is also a pushout in AHLPNets.

Vice versa, given pushouts (1) and (2) in AHLNets, we have that the gluing condition for
AHL-nets is satisfied because it is sufficient for transformation of AHL-nets. The satisfaction
of the rest of the transformation condition can be obtained by composability of C and R
w. r. t. (I, c, r) by pushout (2) in AHLPNets, and the construction of pushout complement
C. For a detailed proof see Section B.6.

68 4 Modelling and Evolution of Scenarios

Remark 4.2.12 (Direct Transformation of AHL-Processes). Note that the extension of the
direct transformation defined in Theorem 4.2.11 to AHL-processes requiring an AHL-process
rp : R → AN is only the required minimum. Alternatively it is possible to equip also the
other parts of the production with corresponding morphisms lp : L→ AN and ip : I → AN
such that lp ◦ l = ip and rp ◦ r = ip. The production is then called a production for AHL-
processes of AHL-net AN . For a match m : L→ K and AHL-process mp : K → AN , there
is then a corresponding direct transformation mp⇒ mp′ in Proc(AN) if the transformation
condition is satisfied and we have mp ◦m = lp. 4

Concept 4.2.13 (Structural Evolution of Abstract Scenarios). In Concept 3.2.16 we dis-
cussed the structural evolution of communication platforms that can be modelled using
rule-based transformation of the corresponding AHL-nets. As the structural evolution of
communication platforms involves adding, removing or changing resources and actions, ac-
cordingly it is possible that a scenario evolves by adding, removing or changing occurrences
of the resources and actions in the scenario. The structural evolution of abstract scenarios of
interactions in a communication platform can be modelled using rule-based transformation of
the corresponding AHL-process (see Concept 4.1.7). An example of the structural evolution
of an abstract scenario is given in Example 4.2.14, where we change the order of two action
occurrences in our abstract scenario presented in Example 4.1.8. 4

Example 4.2.14 (Evolution of Abstract Scenario as Transformation of AHL-Process). A
production %1 for AHL-processes of the AHL-net Platform in Figure 3.2 is shown in Figure 4.5.
The production takes two occurrences of actions insert and invite and swaps their positions
in the way that the user who originally inserted some text now invites another user and vice
versa. There is only one place that is removed, namely w2 in L1, and one place that is newly
inserted, namely w′′2 in R1.

invite1

: invite user

insert1

: insert

u2 : u

w1 : w

user

o

u3 : u

w2 : w

user

n

u4 : u

user2
user1

o

u5 : u

w3 : w

user1

n

u6 : u

user2

w2' : w

u3' : u

invite1

: invite user

insert1

: insert

u2 : u

w1 : w

u3 : u

w2'' : w

u4 : u u5 : u

w3 : w

u6 : u

w2' : w

u3' : u

o
n

user user
user2

user2
user1

user1

o
n

u2 : u

w1 : w

u3 : u

u4 : u u5 : u

w3 : w

u6 : u

w2' : w

u3' : u

l1 r1

L1 I1 R1

Figure 4.5: Production %1 for AHL-processes of the Platform net

Considering our abstract scenario Wave in example Example 4.1.8, depicted in Figure 4.1
on page 60, we can find two different matches m1,m2 : L1 →Wave that are compatible with
the AHL-process wave : Wave → Platform and the AHL-processes defined in the production.

The first match m1 maps insert1 to insert1 in Wave, and the second match m2 maps
insert1 to insert2, while both of them map invite1 to invite1. The places are matched
accordingly to the environments of the connected transitions. As for match m1 we have
identification points w2, w′2, u3 and u′3 (see Definition 3.2.13), but place w2 is not a gluing
point since it is deleted by the rule. Hence, the production is not applicable with match m1,
because the gluing condition for AHL-nets is not satisfied. Another violation of the gluing
condition would be that w2 is also a dangling point, and therefore, removing w2 would cause
the o-inscribed arc in the pre domain of invite1 in Wave to be a dangling arc.

4.3 Modelling of Concrete Scenarios Using Instantiations 69

Now, in the case of match m2 we do not have any identification points, and matching
place w2 to w6, we have that w2 is no dangling point. So the gluing condition for AHL-nets is
satisfied and by Fact 3.2.14 we know that we can apply %1 with match m2 to obtain a direct
transformation of AHL-nets. But for the direct transformation of AHL-process net Wave, we
additionally need that the transformation condition in Definition 4.2.10 is satisfied, requiring
that the gluing relation <(%1,m2) is a strict partial order (see Definition 4.2.9).

In the relation ≺(Wave,m2) we have that u6 is a predecessor of remove1 which in turn is a
predecessor of u7, and thus in the transitive closure <(Wave,m2) the place u6 is a predecessor
of u7. This means that place u6 is a predecessor of u2 in I1 in ≺(%1,m2), since m2 ◦ l1(u2) = u7.
Further, considering the causal relation of R1, we have that u2 <R1 u6, and therefore also
u2 ≺(%1,m2) u6. Thus, in the gluing relation <(%1,m2) which is the transitive closure of ≺(%1,m2),
we have u6 <(%1,m2) u6. Hence, the gluing relation is not irreflexive which means that it is
not a strict partial order. So the transformation condition is not satisfied, and %1 can not be
used for a direct transformation at match m2.

invite1

: invite user

insert1

: insert

u2 : u

w1 : w

user

o

u3 : u

w2 : w

user

n

u4 : u

user2
user1

o

u5 : u

w3 : w

user1

n

u6 : u

user2

invite1

: invite user

insert1

: insert

u2 : u

w1 : w

u3 : uu4 : u u5 : u

w3 : w

u6 : u

w2' : w

o
n

user user
user2

user2
user1

user1

o
n

u2 : u

w1 : w

u3 : u

u4 : u

u5 : u

w3 : w

u6 : u

l2 r2

L2 I2 R2

Figure 4.6: Production %2 for AHL-processes of the Platform net

Another production %2 for AHL-processes of AHL-net Platform is depicted in Figure 4.6.
The production describes rather the same modification as production %1, with the exception
that the two transitions insert1 and insert2 are connected via places w2 and u3. Consequently,
there is only one possible match m3 : L2 → Wave into the our Wave model with m3 being
an inclusion. The gluing condition is satisfied, since there are no identification points and all
dangling points are preserved by the production.

Observing the result Wave2 in Figure 4.7 of the direct transformation Wave ⇒ Wave2

using production %2 at match m3, one can see that the resulting net is indeed an AHL-process
net. By Theorem 4.2.11 we know that the transformation condition for AHL-process nets is
not only sufficient but also necessary. Thus, we know that the transformation condition is
satisfied by %2 and m3 without the need for explicit verification of the condition. Moreover,
the AHL-process wave : Wave → Platform and the corresponding processes specified in the
production are consistent as required for the extension to AHL-processes in Theorem 4.2.11
(see also Remark 4.2.12), implying that there is also an AHL-process wave2 : Wave2 →
Platform as depicted in Figure 4.7, and we have a direct transformation of AHL-processes
wave

%2,m2
=⇒ wave. ♦

4.3 Modelling of Concrete Scenarios Using Instantiations

Based on the skeleton and flattening constructions presented in Section 3.4, instantiations of
AHL-processes were defined in [Ehr05]. In [Ehr05], an instantiation of an AHL-occurrence
net K was defined as a subnet L of the flattening Flat(K), i. e. there is an inclusion in :
L ↪→ Flat(K), such that the composition proj(K) ◦ in : L → Skel(K) is an isomorphism.
Intuitively, this means that L is a section of the over-all behaviour of K with the same

70 4 Modelling and Evolution of Scenarios

remove1

: remove
invite1

: invite user

new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user user1

o

u3 : u

w2 : w

user1

n

u4 : u

user2 user

o

u6 : u

u5 : u

w3 : w

user2

user

n

user

o

w4 : w

n

user

new2

: new wavelet

free

id3 : id

next

u8 : u

user

user

insert2

: insert

user

u9 : uw5 : w

n o

user

w6 : w

n

id2 : id

u7 : u

Wave2

Figure 4.7: Modified abstract scenario Wave2

structure as K itself. As shown in [Ehr05] an instantiation of an AHL-occurrence net K
bijectively corresponds, up to concurrency, to exactly one complete firing sequence in K that
is compatible with the causal relation.

In this section, we introduce a slightly different definition of instantiations, taking also into
account our new definition of weak flattenings. Moreover, we do not restrict our definition
to AHL-process nets, but we give a general definition of instantiations for AHL-nets. Note
that apart from the generalisation, our definition of instantiations is equivalent to the one in
[Ehr05].

Definition 4.3.1 ((Weak) Instantiations of Algebraic High-Level Nets). Given an AHL-net
AN , a concrete instantiation, or short instantiation, Inst of AN is a pair

Inst = (inst : Skel(AN)→ Flat(AN), AN)

such that proj(AN)◦inst = idSkel(AN). Moreover, given two instantiations Insti = (insti, ANi)
for i = 1, 2, an instantiation morphism f : Inst1 → Inst2 is an AHL-morphism f : AN1 →
AN2 such that Flat(f)◦ inst1 = inst2 ◦Skel(f), i. e. diagram (1) below commutes. We define
the category Inst with instantiations and instantiation morphisms, where composition and
identities are defined as composition and identities in AHLNets.

Skel(AN1)
inst1 //

Skel(f)

��

Flat(AN1)

Flat(f)

��
Skel(AN2)

inst2
// Flat(AN2)

(1)

Skel(AN1)
winst1//

Skel(f)

��

wFlat(AN1)

wFlat(f)

��
Skel(AN2)

winst2
// wFlat(AN2)

(2)

Further, the category wInst of weak instantations is defined analogously using the functor
wFlat instead of Flat as illustrated in diagram (2) above. A weak instantiation (inst, AN)
is called abstract instantiation, if the net AN has a term algebra (Σ, TΣ(X)) as data type
part.12 4

12Note that in general the variable family X is different from the additional variable family that is used for
arc inscriptions and firing conditions inside the AHL-net.

4.3 Modelling of Concrete Scenarios Using Instantiations 71

The definition of inst as section of proj corresponds exactly to the intuitive meaning of
instantiations, described above. Moreover, we shall sometimes refer to the P/T-morphism
inst : Skel(AN) → Flat(AN) as instantiation of AN , if the AHL-net AN in question is
clear.

Remark 4.3.2 (Generalisation of Instantiations). Note that the generalisation of the definition
of instantiations from AHL-occurrence nets to AHL-nets is only relevant for technical aspects.
On the conceptual layer, we are only considering instantiations of AHL-process nets and AHL-
processes as defined in the following Definition 4.3.3. The benefits of loosening the definition
should become clear in the next Section 4.6, when we consider the evolution of instantiations.
In the previous Section 4.2, we defined the evolution of AHL-process nets and AHL-processes
in dependence of the corresponding evolution of AHL-nets, which allows us to benefit from
the fact that there is an adequateM-adhesive category of AHL-nets, although this is not the
case for AHL-process nets and AHL-processes. Similarly, there is no suitable M-adhesive
category of instantiations of AHL-process nets or processes, but as shown in Fact A.5.9,
we obtain an M-adhesive category, considering instantiations of AHL-nets. This is a great
advantage for the theory of the evolution of instantiations, regarding that each AHL-process
net is also an AHL-net. 4

Definition 4.3.3 ((Weakly) Instantiated AHL-Processes). The categories of (weak) instan-
tiations of AHL-process nets are defined as full subcategories PInst ⊆ Inst and wPInst ⊆
wInst where the high-level net parts of the objects are AHL-process nets.

Moreover, we define categories ProcInst and wProcInst of (weak) instantiations of
AHL-processes, also called (weakly) instantiated AHL-processes. The objects of these cate-
gories are pairs (inst,mp), where mp : K → AN is an AHL-process and inst : Skel(K) →
Flat(K) is a (weak) instantiation of K. The morphisms of these categories are AHL-process
morphisms (see Definition 4.1.5). 4

Remark 4.3.4 (Short Notation). We sometimes use a short notation for instantiated AHL-
processes: For an instantiated AHL-process (inst,mp : K → AN) we write mp : InstK →
AN where InstK = (inst,K) is the corresponding instantiated AHL-process net. 4
Remark 4.3.5 (Equivalence of Definitions). In Fact A.5.1 we show that our definition of
instantiated AHL-process nets is in fact equivalent to the definition in [Ehr05], where an
instantiation of an AHL-occurrence net K was defined as a subnet L of the flattening Flat(K)
with inclusion in : L ↪→ Flat(K) such that the composition proj(K) ◦ in : L → Skel(K)
is an isomorphism. The explicit representation of L was useful in order to bijectively relate
instantiations with initial markings in order to ensure that there is exactly one “run” specified
for each initial state. However, in the context of communication platforms as considered in
this thesis, it can be expected that outgoing from one initial state of a platform there can
happen a variety of different interactions represented by different instantiations with the
same initial marking. Therefore we omit the explicit representation of L since it is already
implicitly given by the skeleton to which it is isomorphic. 4

Concept 4.3.6 (Modelling of Concrete Scenarios). In Concept 4.1.7 we already introduced
the concept of abstract scenarios which abstractly specifies a possibly concurrent sequence of
actions in a communication platform, however, without consideration of specific data values.
In contrast to an abstract scenario, a concrete scenario specifies concrete data values that are
used and present throughout the runtime of the scenario.

Concrete scenarios of interactions in a communication platform can be modelled using
instantiated strict AHL-processes. The causal and logical structure of resources and actions
in the scenario is captured by the structure of the corresponding AHL-process. The concrete

72 4 Modelling and Evolution of Scenarios

data-values of the resources that are used or produced by the actions of the scenario are
specified in the corresponding instantiation of the strict AHL-process net which has the same
data type part as the underlying model of the corresponding communication platform. An
example of the modelling of a concrete scenario is given in Example 4.3.7, where we model
the concrete scenario presented in Figure 2.3 on page 23.

It is interesting to note that we always obtain an abstract scenario model (see Con-
cept 4.1.7) whenever we are creating a concrete scenario model using our modelling framework
of instantiated AHL-processes.

Further, note that abstract instantiations can be used to model semi-concrete scenarios,
i. e. scenarios which are partially abstract. In that case, instead of concrete values, the
instantiation part of the model specifies terms for the resources that serve as place holders
for a set of different possible values. Concrete realisations of the abstractly defined values (i. e.
the terms) can be determined by assignments of the variables, occurring in the terms, into
the data type part of the corresponding AHL-net representing the communication platform.
The concept of semi-concrete scenarios is discussed further in Concept 4.4.5 and illustrated
in Example 4.4.6. 4

Example 4.3.7 (Modelling of Concrete Scenario as Instantiated AHL-Process). Consider
again the model Wave of an abstract scenario, presented in Figure 4.1. An instantiation
Inst = (inst,Wave) of the AHL-process net Wave is shown in Figure 4.8. Instead of ex-
plicitly depicting the AHL-morphism inst : Skel(Wave) → Flat(Wave) which is rather
impossible due to the fact that the flattening Flat(Wave) is infinitely large, we use an inte-
grated visualisation based on the fact that the domain Skel(Wave) has the same structure
as the AHL-process net Wave.

remove1

user ↦ B

o ↦ (0,{A,B},Hello Bob)

rng ↦ (5,4)

n ↦ (0,{A,B},Hello)

invite1
user1 ↦ A

user2 ↦ B

o ↦ (0,{A},Hello Bob)

n ↦ (0,{A,B},Hello Bob)

new1

user ↦ A

free ↦ 0

next ↦ 1

n ↦ (0,{A},e)

insert1
user ↦ A

o ↦ (0,{A},e)

txt ↦ Hello Bob

pos ↦ 0

n ↦ (0,{A},Hello Bob)

u1=A

id1=0

user

free

next

u2=A

w1=(0,fAg,e)

n

user
user

o

u3=A

w2=(0,fAg,Hello Bob)

user

n

u4=B

user2
user1

o

u6=Bu5=A

w3=(0,fA,Bg,Hello Bob)

user2
user1

n

user

o

w4=(0,fA,Bg,Hello)

n

user

new2

user ↦ B

free ↦ 1

next ↦ 2

n ↦ (1,{A},e)

free

id3=2

next

u8=B

user

user
insert2

user ↦ B

o ↦ (1,{B},e)

txt ↦ Hello World!

pos ↦ 0

n ↦ (0,{B},Hello World!)

user u9=B

w5=(1,fBg,e)

n o
user

w6=(1,fBg,Hello World!)

n

id2=1

u7=B

Inst

Figure 4.8: Instantiation Inst of AHL-process net Wave

The mappings of places are illustrated by a notation place = value, indicating that the
place in the skeleton is mapped to the corresponding pair (value, place) in the flattening.

4.4 Data Evolution and Abstraction of Concrete Scenarios 73

For instance, id1 = 0 in the upper left corner of Figure 4.8 indicates that the place id1 in
Skel(Wave) is mapped to the place (0, id1) in Flat(Wave), where 0 is an element of type
type(id1) = nat in the algebra A (see Table 3.2).

Moreover for the mapping instT (t) = (t, v) of a transition, the variable assignment v is
denoted element-wise inside the transition, e. g. the transition new1 is mapped to an assign-
ment v1 with v1(user) = A, v1(free) = 0, and so on, where A and B are abbreviations for
Alice and Bob, respectively.

Note that the skeleton is a low-level P/T net which does not consist of arc inscriptions,
but in our visualisation we include the arc inscriptions of the corresponding AHL-process net
for a better comprehensibility of the data flow inside the instantiation.

As pointed out in Example 4.1.8, the AHL-process wave : Wave → Platform models
exactly the abstract scenario presented in Figure 2.4 on page 24. Combining the AHL-process
wave and the instantiation Inst of the AHL-process net Wave, we obtain an instantiated
AHL-process (inst,wave).

Now, taking into account the assigned values on the places and the consistent transition
assignments, the scenario becomes concrete. For instance, the abstract action new1 which is
an occurrence of the action new wavelet in our platform is now bound to be used by user
Alice with id 0. The output of the action is a new empty wavelet, where Alice is invited,
and the next free id is the natural number 1. In fact, regarding all values and assignments,
one can see that the instantiated AHL-process is a model of the concrete scenario depicted
in Figure 2.3 on page 23. ♦
Remark 4.3.8 (Unique Representation of Instantiations as Weak Instantiations). According
to Fact A.5.3 and Lemma A.5.4, for every instantiation (inst, AN) there are interchange-
able representations (inst, AN) in Inst and W (inst, AN) in wInst which can be uniquely
obtained from one another. Due to this fact, we shall often refer to instantiations in their
representation as weak instantiations, i. e. as objects of the category wInst, where inst is a
P/T-morphism with codomain wFlat(AN), despite the fact that instantiations by definition
are P/T-morphisms with codomain Flat(AN). 4

4.4 Data Evolution and Abstraction of Concrete Scenarios

Based on the data-image of AHL-nets presented in Definition 3.3.1, we define also an data-
image of corresponding instantiations. While the data-image construction of AHL-nets does
nothing else than replacing the data type part in the AHL-net with another one, the data-
image construction for instantiations replaces also the values occurring in the instantia-
tion with values from the target data types. The existence of the data-images is shown
in Lemma A.5.15.

Definition 4.4.1 (Data-Image of Instantiations). Given an instantiation (inst1, AN1) of an
AHL-net AN1 = (Σ1, P1, T1, pre1, post1, cond1, type1, A1), and a generalised algebra homo-
morphism f = (fΣ, fA) : (Σ1, A1) → (Σ2, A2). We define the data-image f̄ : (inst1, AN1) →
(inst2, AN2) of (inst1, AN1) along f in the following way:

• f̄ : AN1 → AN2 is the data-image of AN1 along f as defined in Definition 3.3.1, and

• inst2 = Flat(f̄) ◦ inst1.

We call f̄ : (inst1, AN1)→ (inst2, AN2) a basic data-image, if fΣ is an identity, i. e. if f̄ is a
data-image along a non-generalised Σ1-homomorphism fA : A1 → A2.

Analogously to the definition of data-images of concrete instantiations above, the data-
image of a weak instantiation (winst1, AN1) along f is defined as (winst2, AN2) where
winst2 = wFlat(f̄) ◦ winst1. 4

74 4 Modelling and Evolution of Scenarios

Remark 4.4.2 (Data-Preimages of Instantiations). As pointed out in Remark 3.3.7, data-
preimages of AHL-nets only exist if certain conditions are satisfied. In the case of instanti-
ations this applies even to the existence of basic data-preimages. For instance, consider the
instantiation Inst in Figure 4.8 and a homomorphism h : TΣ-Wave(Y)→ A with Yuser = ∅. In
order to obtain a basic data-preimage h′ : Inst′ → Inst of Inst along h, it would b necessary
to replace all data values of algebra A occurring in Inst with corresponding data values of
term algebra TΣ-Wave(Y). But since there are no generating ground terms for the sort user,
because there are no constructors providing users in Σ-Wave, and there are also no variables
of that sort, we have that TΣ-Wave(Y)user = ∅. Thus, there is, for instance, no suitable data
value for the place u1, and therefore we cannot find even a weak instantiation Inst′ such that
Inst is the basic data-image of Inst′ along h.

Furthermore, let us consider the case that we have Ynat = {n} and hnat(n) = 0. Then
the data value 0 on place id1 in Inst could be replaced by variable n as well as by the
constructor zero, because we also have hnat(zero) = zeroA = 0. This means that even if the
data-preimage would exist, it may be the case that we have several different candidates to
be the result of a data-preimage construction. 4

As morphisms between AHL-processes of one AHL-net AN are required to be in the
slice category AHLNets \ AN (see Definition 4.1.5), for the data evolution of instantiated
AHL-processes it is required that the corresponding homomorphism is in the slice category
Algs \ (ΣAN , AAN) over the data type part of the respective AHL-net.

Fact 4.4.3 (Data-Image of Instantiated AHL-Process). Given an instantiated AHL-process
(inst,mp : K → AN), and generalised algebra homomorphisms (fΣ, fA) : (ΣK , AK) →
(Σ′K , A

′
K) and (gΣ, gA) : (Σ′K , A

′
K) → (ΣAN , AAN) such that diagram (1) below commutes.

Then the data-image f : (inst,K)→ (inst′,K ′) of (inst,K) along (fΣ, fA) induces a unique
AHL-process mp : K ′ → AN such that diagram (2) below commutes and Data(mp′) =
(gΣ, gA).

(ΣK , AK)
(fΣ,fA) //

(mpΣ,mpA) ''OOOOOOOOOOO
(Σ′K , A

′
K)

(gΣ,gA)wwooooooooooo

(ΣAN , AAN)

(1)

K
f //

mp !!DDDDDDDD K ′

mp′||zzzzzzzz

AN

(2)

Proof. Given the commuting diagram (1) of generalised algebra homomorphisms and the
data-image f : (inst,K) → (inst′,K ′) of (inst,K) along (fΣ, fA). By Definition 4.4.1 we
have that AHL-morphism f : K → K ′ is the data-image of K along (fΣ, fA) which according
to Fact A.6.10 means that f is Data-cocreation of (fΣ, fA) via K. Thus, due to the universal
property of cocreations, the homomorphism (gΣ, gA) implies a unique AHL-morphism mp′ :
K ′ → AN such that diagram (2) commutes and Data(mp′) = (gΣ, gA).

Concept 4.4.4 (Data Evolution of Scenarios). In Concept 3.3.2 we already discussed the
possibility to evolve the data type part of a communication platform. Since it is possible
that we already specified concrete scenarios of the original communication platform, it would
be desirable to evolve also the concrete scenario accordingly. This can be achieved using the
data-image construction for AHL-process nets in Definition 4.4.1.

It is easy to see that using the data-image construction for instantiations, the first two
items of Fact 4.1.9 can also be transferred to instantiated (strict) AHL-processes. This
especially means that if we have a concrete scenario of a communication platform, and we
evolve the data type part of that communication platform, the data evolution can be applied
accordingly to the concrete scenario, and we obtain a corresponding concrete scenario by

4.4 Data Evolution and Abstraction of Concrete Scenarios 75

replacing all occurrences of concrete values in the instantiation with the corresponding values
of the new data type part.

Moreover, since concretisation of communication platforms are a special case of data
evolution, it makes sense to consider also the data evolution of semi-concrete scenarios of
communication platforms with a more abstract data type part (like a term algebra). Using
data evolution to replace the abstract data type part of a platform with a more concrete one,
the corresponding data evolution of a semi-concrete scenario of the original platform may
result in a concrete scenario of the resulting platform.

The example of a data-image construction from abstract instantiation AInst to instanti-
ation Inst in Example 4.4.6 can be considered as a data-evolution of a semi-concrete scenario
of a platform with term algebra as data type part to a concrete scenario of the platform
presented in Example 3.1.9. 4

As the data-image construction for instantiations is an extension of the data-image con-
struction for AHL-nets (Definition 3.3.1) to instantiations, also the concept of levels of ab-
stractions (Concept 3.3.8) can be extended to scenarios.

Concept 4.4.5 (Levels of Abstraction of Scenarios). In Concept 4.1.7 we introduced the
modelling of abstract scenarios using AHL-processes, and in Concept 4.3.6 we introduced
the modelling of concrete scenarios using instantiated AHL-processes. We already pointed
out, that using abstract instantiations, we can also model semi-concrete scenarios, where we
determine only a part of the concrete values in a scenario, while the rest remains abstract.
Based on these concepts, we obtain a mechanism of different levels of abstractions for scenarios
analogously to the level of abstractions for communication platforms in Concept 3.3.8.

Due to the possibility to extend processes on more concrete communication platforms (see
Fact 4.1.9), we have the following cases of concretisation:

(Realisation) A (semi-) concrete scenario (inst,mp : K → AN) is a concretisation of the
abstract scenario mp : K → AN .

(Extension) A (semi-)concrete scenario (inst,mp : K → AN) is a concretisation of (inst,mp′ :
K → AN ′) if mp is an extension of mp′ along a basic data-image f : AN → AN ′ (see
Fact 4.1.9).

(Data-Image) A (semi-)concrete scenario (inst,mp : K → AN) is a concretisation of
(inst,mp′ : K ′ → AN ′), if there is a basic data-image f : (inst,K) → (inst,K ′), and
there is a corresponding basic data-image f ′ : AN → AN ′ such that mp′ ◦ f = f ′ ◦mp.
Note that each identity idAN : AN → AN is a data-image along the identity of AN ’s
algebra, implying that also data-images of instantiated AHL-processes as described in
Fact 4.4.3 are concretisations of instantiations.

(Transitive Closure) If scenario a is a concretisation of scenario b, and b is a concretisation
of scenario c, then a is also a concretisation of c.

We say that scenario a is an abstraction of scenario b, if b is a concretisation of a. The
possible different levels of abstraction that can be generated by a single homomorphism are
illustrated in Figure 4.9.

We consider a homomorphism h : TΣ(Y) → A, mapping an abstract term algebra into
another algebra. If we consider an (abstract) communication platform AN ′ with algebra part
TΣ(Y), according to Concept 3.3.8 we can obtain a concretisation AN of the communication
platform by a basic data-image f : AN ′ → AN along homomorphism h.

76 4 Modelling and Evolution of Scenarios

algebra TS(Y)

algebra A

AHL-net AN

AHL-net AN'

concretisation of

(f: AN'!AN along h)

strict AHL-process

mp1: K1 ! AN conforms

to

Communication

Platforms

Data Type

Parts

Abstract

Scenarios

(Semi-)Concrete

Scenarios

strict AHL-process

mp2': K2 ! AN'

equivalent

conforms

to

instantiated strict

AHL-process

(inst, mp1)
concretisation

of

abstract instantiated

AHL-process

(inst2, mp2)

concretisation of

concretisation

of

AHL-process

mp2: K2 ! AN

conforms to

extension of

(along f)

concretisation

of

abstract instantiated

AHL-process

(inst2, mp2')

concretisation of

homomorphism h

Figure 4.9: Levels of abstraction induced by single homomorphism h : TΣ(Y)→ A

Moreover, if we consider a strict AHL-process mp′2 : K2 → AN ′ of the platform AN ′,
this scenario can be extended along f to a new AHL-process mp2 : K2 → AN that is
obtained as composition mp2 = f ◦mp′2. Note that these two processes describe the same
abstract scenario, and we merely changed the context of the scenario from the more abstract
version of the communication platform AN ′ to the more concrete version AN . Changing
also the algebra part of the AHL-process net K2 to the algebra A, we obtain an equivalent
AHL-process mp1 : K1 → AN (see Remark 4.1.6). We consider none of the changes on the
abstract scenario layer as concretisations, because the algebra part that is contained in an
AHL-process net is not used without having any additional context. This changes when we
consider also instantiations of the AHL-processes.

Assuming an instantiation (inst2,mp
′
2) of the AHL-process mp′2 : K2 → AN ′, this in-

stantiation is definitely abstract, because we K2 has the term algebra TΣ(Y) as algebra part,
and thus, the instantiated AHL-process (inst2,mp

′
2) specifies a semi-concrete scenario. This

is quite expectable since the instantiated AHL-process specifies a scenario of the abstract
communication platform AN ′. Due to the extension mp2 of mp′2, we automatically have a
corresponding instantiated AHL-process (inst2,mp2) which is a concretisation of (inst2,mp

′
2).

Just like on the abstract scenario layer, we changed only the context of the scenario, but the
difference is that this time we possibly have some (more or less) concrete values, and changing
the context also changes the interpretation of these values. For instance, let us assume that
the signature Σ is the signature Σ-Wave in Table 3.1 on page 36, and A is the algebra in

4.4 Data Evolution and Abstraction of Concrete Scenarios 77

Table 3.2 on page 37. Then a term value zero occurring in the instantiation inst2, in the
context of the AHL-process mp2 is always evaluated in the algebra A, and therefore this
value always stands for the concrete value 0. In contrast, the same term in the context of
the AHL-process mp′2 does not yet have a definite interpretation, because the algebra part
is the term algebra which can also be mapped to a different algebra B, where the constant
zero has a completely different meaning as in A.

So the instantiated AHL-process (inst2,mp2) is more concrete than (inst2,mp
′
2), and

it can be even further concretised by computing the basic data-image f ′ : (inst2,mp
′
2) →

(inst1,mp1) along homomorphism h, replacing all abstract data values from term algebra
TΣ(Y) by concrete ones from algebra A. Note that this does not necessarily lead to a concrete
instantiation, since it is possible that the concrete values for variables in the environment of
some transition occurring in the process do not satisfy some of the firing conditions of that
transition. So all of the firing conditions have to be checked in order to ensure that the
resulting scenario is indeed a concrete realisation of the abstract scenario. If all transition
assignments are consistent (i. e. if they satisfy the respective firing conditions), then we have
a concrete scenario of interactions in our concrete communication platform AN .

Furthermore, all of the abstract scenarios in Figure 4.9 are abstractions of the respective
(semi-)concrete scenarios that are build upon the corresponding AHL-processes. Moreover,
note that all these levels of abstractions are based on this single homomorphism h, and it
may be possible that there are other homomorphisms h′ : TΣ(Y ′) → TΣ leading again to a
hierarchy of abstractions as shown in Figure 4.9. This means that we can obtain step-wise
more abstract or concrete scenarios along this chain of homomorphisms. For instance, a
data value can be specified as a variable in TΣ(Y ′), then as a ground term in TΣ(Y), and
finally as a concrete value in A. An example for the abstraction of scenarios is given in
Example 4.4.6. 4

Example 4.4.6 (Levels of Abstraction Using Abstract Instantiations). We consider a slight
alteration Wave∗ of the AHL-process net Wave, where instead of the algebra A, the net
Wave∗ consists of a term algebra TΣ-Wave(Y), where Y is a variable family with Yuser = {a, b},
Ynat = {p1, p2}, Yrange = {r}, Ytext = {t1, t2}, and Ywavelet = {w1, ..., w6}. Since two terms are
only equal if they are syntactically equal, the only equations that hold in a term algebra are
equations of the form x = x. This means that there are no consistent transition assignments
for any of the transitions in Wave∗, and thus the AHL-process net Wave∗ does not have any
instantiations.

However, since for weak instantiations it is not required that the transition assignments
are consistent, there are possible abstract instantiations.13 One example of an abstract
instantiation AInst is illustrated in Figure 4.10.

The abstract instantiation AInst is an abstraction of the instantiation Inst : The places
representing wavelets are assigned with meaningless variables that are named after the cor-
responding places, and the user places are assigned with variables a and b instead of the
concrete users Alice and Bob. Also, the transition assignments do not map the variables to
concrete values, but to other variables, consistently with the pre and post domains where
the variables occur. The exception are the natural numbers, representing ids, which are not
assigned to variables, but id1 is mapped to the constant zero, and id2 and id3 are mapped
to the ground terms next(zero) and next(next(zero)), respectively. According to the inter-
pretation of the operation symbols zero and next in the algebra A, this mapping has the
meaning of fixing the ids to the values 0, 1 and 2.

13According to Definition 4.3.1, weak instantiations of Wave∗ can be called abstract instantiations, because
the net has a term algebra as data type part.

78 4 Modelling and Evolution of Scenarios

remove1

user ↦ b

o ↦ w3

rng ↦ r

n ↦ w4

invite1
user1 ↦ a

user2 ↦ b

o ↦ w2

n ↦ w3

new1

user ↦ a

free ↦ zero

next ↦ next(zero)

n ↦ w1

insert1

user ↦ a

o ↦ w1

txt ↦ t1

pos ↦ p1

n ↦ w2

u1=a

id1=zero

user

free

next

u2=a

w1=w1

n

user user

o

u3=a

w2=w2

user

n

u4=b

user2
user1

o

u6=bu5=a

w3=w3

user2
user1

n

user

o

w4=w4

n

user

new2

user ↦ b

free ↦ next(zero)

next ↦ next(next(zero))

n ↦ w5

free

id3=next(next(zero))

next

u8=b

user

user
insert2

user ↦ b

o ↦ w5

txt ↦ t2

pos ↦ p2

n ↦ w6

user u9=b

w5=w5

n
o

user

w6=w6

n

id2=next(zero)

u7=b

AInst

Figure 4.10: Abstract instantiation AInst of AHL-process net Wave∗

The instantiation Inst is a concretisation of AInst , in the sense that there is a homomor-
phism h : TΣ-Wave(Y)→ A such that Inst is the basic data-image of AInst along h as defined
in Definition 4.4.1. Intuitively, this means that we can obtain Inst from AInst by applying
the homomorphism h to all data elements of algebra TΣ-Wave(Y), occurring in AInst .

Table 4.1: Variable assignment asg : Y → A

a 7→ Alice b 7→ Bob

p1 7→ 0 p2 7→ 0

t1 7→ Hello Bob t2 7→ Hello World!

r 7→ (5, 4) w1 7→ (0, {Alice}, ε)
w2 7→ (0, {Alice}, Hello Bob) w3 7→ (0, {Alice,Bob}, Hello Bob)

w4 7→ (0, {Alice,Bob}, Hello) w5 7→ (1, {Bob}, ε)
w6 7→ (1, {Bob}, Hello World!)

Since TΣ-Wave(Y) is a term algebra, the homomorphism h can be completely described
by a variable assignment asg : Y → A as shown in Table 4.1.

We can obtain a further abstraction by defining a variable family Y ′ with Y ′ = Y ∪ {z}
that is otherwise identical to Y . We can define an assignment asg′ : Y ′ → Y with asg(z) =
zero and all other values are matched identical. Then this assignment induces a unique
homomorphism h′ : Y ′ → Y , where all occurrences of z in a term are replaced by the
constant zero. In fact, we can also define an instantiation AInst ′ that is obtained from AInst
by applying the reverse term replacement to the terms occurring in AInst , i. e. by replacing
occurrences of zero with z. Then AInst ′ is a concretisation of AInst , where the ids of the
wavelet are not fixed to the values 0, 1 and 2, but instead, they are fixed to three consecutive
but otherwise variable values.

4.5 Restriction and Amalgamation of Scenarios 79

Finally, we obtain an abstraction where the values have no restriction (apart from their
type14), by omitting the instantiation part and considering only the AHL-process Wave∗, or
equivalently Wave, where no concrete data values are specified. ♦

4.5 Restriction and Amalgamation of Scenarios

In [EG11] we already defined the restriction and extension of AHL-processes with a fixed
data type part. The restriction of an AHL-process mp2 : K2 → AN2 to a subnet AN1 ⊆ AN2

(or, more generally, along an MAHL-morphism f : AN1 → AN2) yields a new AHL-process
mp1 : K1 → AN1 that contains only those parts of mp2 that are also part of the subnet AN1.
The extension of an AHL-process mp : K → AN to a larger net AN ′ (or, more generally,
along an AHL-morphism f : AN → AN ′) is an AHL-process mp′ : K → AN ′ that has exactly
the same behaviour as mp, however, with respect to the given larger net. In the following we
define the restriction and extension also for our more general notion of AHL-process, and we
show the existence of these constructions for arbitrary AHL-processes.

Definition 4.5.1 (Restriction and Extension of AHL-Processes).

(Restriction) Given an AHL-process mp2 : K2 → AN2 and an MAHL-morphism f : AN1 →
AN2. An AHL-process mp1 : K1 → AN1 is called restriction of mp2 along f , if there exists
an AHL-morphism f ′ : K1 → K2 such that diagram (1) in Figure 4.11a is a pullback in
AHLNets.

(Extension) Given an AHL-process mp : K → AN and an AHL-morphism f : AN → AN ′.
An AHL-process mp′ : K → AN ′ is called extension of mp along f , if the diagram (2) in
Figure 4.11b commutes.

4

K1
f ′ //

mp1

��

K2

mp2

��
AN1

f
// AN2

(1)

(a) Restriction of AHL-
process

K

mp

��

mp′

��
AN

f
// AN ′

(2)

(b) Extension of
AHL-process

Figure 4.11: Restriction and extension of AHL-processes

Fact 4.5.2 (Restriction and Extension of AHL-Processes).

(Restriction) Given an AHL-process mp2 : K2 → AN2 and an MAHL-morphism f : AN1 →
AN2. Then there exists (up to isomorphism) a unique AHL-process mp1 : K1 → AN1 such
that mp1 is restriction of mp2 along f .

(Extension) Given an AHL-process mp : K → AN and an AHL-morphism f : AN → AN ′.
Then there exists a unique AHL-process mp′ : K → AN ′ such that mp′ is the extension of
mp along f .

Proof.

14Every possible data value in a scenario corresponds either to a place or to a term occurring in the firing
conditions of a transitions. Places and terms always have a type, and each value for one of these elements has
to be of the corresponding type.

80 4 Modelling and Evolution of Scenarios

(Restriction) Given an AHL-process mp2 : K2 → AN2 and an MAHL-morphism f : AN1 →
AN2. Since AHLNets is M-adhesive, there exists a pullback (1) along f ∈ MAHL as
shown in Figure 4.11a in AHLNets, and it follows that f ′ ∈ MAHL, because MAHL-
morphisms are closed under pullback. Then using Lemma A.7.1, we obtain that K1 is an
AHL-process net, because K2 is an AHL-process net and f ′ ∈MAHL is transition-injective.
Hence, mp1 is an AHL-process that is a restriction of mp2 along f . The uniqueness follows
from uniqueness of pullbacks.

(Extension) Given an AHL-process mp : K → AN and an AHL-morphism f : AN → AN ′.
We obtain an extension mp′ : K → AN ′ of mp along f by composition mp′ := f ◦ mp.
Clearly, mp′ is unique, because for every extension mp : K → AN ′ of mp along f , we have
mp = f ◦mp = mp′.

Analogously to the restriction of AHL-processes, we can also define the restriction of
instantiations. Similar to the restriction of AHL-processes we define the restriction of instan-
tiations along MAHL-morphisms. Note that the definition can be extended to non-injective
AHL-morphisms with an isomorphic data type part, but since we use the restriction of (weak)
instantiations in combination with the restriction of AHL-processes, we consider it only in
the context of MAHL-morphisms.

Definition 4.5.3 (Restriction of Instantiations and Weak Instantiations). Given a (weak)
instantiation (inst2, AN2) and anMAHL-morphism f : AN1 → AN2. A (weak) instantiation
(inst1, AN1) is called restriction of (inst2, AN2) along f , if the diagram (1) respectively (2)
below is a pullback in PTNets. 4

Skel(AN1)
inst1 //

Skel(f)

��

Flat(AN1)

Flat(f)

��
Skel(AN2)

inst2
// Flat(AN2)

(1)

Skel(AN1)
inst1 //

Skel(f)

��

wFlat(AN1)

wFlat(f)

��
Skel(AN2)

inst2
// wFlat(AN2)

(2)

Fact 4.5.4 (Restriction of (Weak) Instantiations).

1. Given a (weak) instantiation morphism f : Inst1 → Inst2 with f ∈MAHL, then Inst1
is a restriction of Inst2 along f .

2. Given a (weak) instantiation (inst2, AN2), and an MAHL-morphism f : AN1 → AN2,
then there exists a unique restriction (inst1, AN1) of (inst2, AN2) along f .

Proof. We show the fact w. l. o. g. only for instantiations and not for weak instantiations,
since Flat and wFlat as well as proj and wproj share the same properties that are required
for the proof.

1. Given an instantiation morphism f : (inst1, AN1)→ (inst2, AN2) with f ∈ MAHL, we
have that diagram (1) and the outer triangles in Figure 4.12 commute. Moreover, due
to Fact 3.4.9, diagram (2) is a pullback, and together with the trivial pullback in the
outer square, we obtain by pullback decomposition that also (1) is a pullback. Hence,
(inst1, AN1) is a restriction of (inst2, AN2) along f .

2. Given an instantiation (inst2, AN2), and an MAHL-morphism f : AN1 → AN2, again
we have the pullback (2) and commuting outer square in Figure 4.12. Thus, the univer-
sal pullback property implies a unique P/T-morphism inst1 : Skel(AN1)→ Flat(AN1)
such that diagram (1) and the upper triangle in Figure 4.12 commute. These com-
mutativities mean that (inst1, AN1) is an instantiation and that f : (inst1, AN1) →

4.5 Restriction and Amalgamation of Scenarios 81

Skel(AN1)
inst1

//

Skel(f)

��

id
,,

Flat(AN1)
proj(AN1)

//

Flat(f)

��

Skel(AN1)

Skel(f)

��
Skel(AN2)

inst2 //

id

22Flat(AN2)
proj(AN2)//

(1) (2)

Skel(AN2)

Figure 4.12: Restriction of instantiation

(inst2, AN2) is an instantiation morphism, and according to item 1, we have that
(inst1, AN1) is a restriction of (inst2, AN2) along f .

Based on the restriction and extension of AHL-processes (Definition 4.5.1) without in-
stantiations, and the restriction of instantiations in Definition 4.5.3, we can also define the
restriction and extension of instantiated AHL-processes.

Definition 4.5.5 (Restriction and Extension of (Weakly) Instantiated AHL-Processes).

(Restriction) Given a (weakly) instantiated AHL-process (inst2,mp2 : K2 → AN2) and
an AHL-morphism f : AN1 → AN2 ∈ MAHL. A (weakly) instantiated AHL-process
(inst1,mp1 : K1 → AN1) is called restriction of (inst2,mp2) along f , if mp1 is a restriction
of mp2 along f with corresponding f ′ : K1 → K2 (see Definition 4.5.1), and (inst1,K1) is
a restriction of (inst2,K2) along f ′ (see Definition 4.5.3).

(Extension) Given a (weakly) instantiated AHL-process (inst,mp : K → AN) and an AHL-
morphism f : AN → AN ′. A (weakly) instantiated AHL-process (inst,mp′ : K → AN ′) is
called extension of (inst,mp) along f , if mp′ is an extension of mp (see Definition 4.5.1).

4

Fact 4.5.6 (Restriction and Extension of (Weakly) Instantiated AHL-Processes).

(Restriction) Given a (weakly) instantiated AHL-process (inst2,mp2) and an AHL-morphism
f : AN1 → AN2 ∈ MAHL. Then there exists (up to isomorphism) a unique restriction
(inst1,mp1) of (inst2,mp2) along f .

(Extension) Given a (weakly) instantiated AHL-process (inst,mp) and an AHL-morphism
f : AN → AN ′. Then there exists a unique extension (inst,mp′) of (inst,mp) along f .

Proof.

(Restriction) Given a (weakly) instantiated AHL-process (inst2,mp2 : K2 → AN2) and an
AHL-morphism f : AN1 → AN2 ∈MAHL, due to Fact 4.5.2 there exists up to isomorphism
a unique restriction mp1 of mp2 along f with corresponding f ′ : K1 → K2. Then due to
Fact 4.5.4, we obtain a unique restriction (inst1,K1) of (inst2,K2) along f ′ which means
that (inst1,mp1) is a restriction of (inst2,mp2) along f .

(Extension) This follows directly from the existence of unique extensions of AHL-processes
(Fact 4.5.2).

In the following we consider the amalgamation of instantiated AHL-processes, that is, we
want to glue instantiated AHL-processes according to a gluing of the respective platforms to

82 4 Modelling and Evolution of Scenarios

which the processes conform. The gluing of AHL-processes was already introduced in Sec-
tion 4.2. It remains to consider the gluing of instantiated AHL-processes which is introduced
in the following definition.

Definition 4.5.7 (Gluing and Composability of Instantiated AHL-Process Nets). Given
instantiations Inst0, Inst1 and Inst2 and instantiation morphisms f : Inst0 → Inst1, g :
Inst0 → Inst2 with f ∈ MAHL. An instantiation Inst3 with morphisms g′ : Inst1 → Inst3
and f ′ : Inst2 → Inst3 is called gluing of Inst1 and Inst2 over the interface Inst0, written
Inst3 = Inst1 +Inst0 Inst2, if diagram (1) below is a pushout in Inst (see Fact A.5.8 on
page 209 for the construction).

Inst0
f //

g

��
(1)

Inst1

g′

��
Inst2

f ′
// Inst3

Moreover, let Inst0 = (inst0,K0), Inst1 = (inst1,K1) and Inst2 = (inst2,K2) be instan-
tiated AHL-process nets. The gluing Inst3 = Inst1 +Inst0 Inst2 is a gluing of instantiated
AHL-process nets if Inst3 is an instantiated AHL-process net. We say that Inst1 and Inst2
are composable w. r. t. (Inst0, f, g) if K1 and K2 are composable w. r. t. (K0, f, g) (see Defi-
nition 4.2.5). 4

Fact 4.5.8 (Gluing of Instantiated AHL-Process Nets). Given instantiations Inst0, Inst1
and Inst2 and instantiation morphisms f : Inst0 → Inst1, g : Inst0 → Inst2 with f ∈
MAHL. The gluing of instantiations Inst3 = Inst1 +Inst0 Inst2 is a gluing of instantiated
AHL-process nets if and only if Inst1 and Inst2 are composable w. r. t. (Inst0, f, g).

Proof. It suffices to show that the underlying gluing of the AHL-net parts of the instantiations
leads to a gluing of AHL-process nets if and only if the instantiated AHL-process nets are
composable. This follows directly from Fact 4.2.6, since composability of instantiated AHL-
process nets means composability of the underlying AHL-process nets.

Concept 4.5.9 (Composition of Concrete Scenarios). For different scenarios it may be de-
sirable to combine them, in order to obtain a new integrated scenario, where the single
subcomponents are run parallel, sequentially, or that they are synchronised at some points
and run otherwise in parallel. The composition of concrete scenarios can be modelled as
gluing of the corresponding instantiated ahl-processes, where the interface defines all syn-
chronisation points of the composition. If the interface is empty, the gluing leads to a new
scenario, where the original scenarios run completely parallel. An example of the composition
of two concrete scenarios is given in Example 4.5.16. Note that the AHL-processes wave1 and
wave2 in the example correspond to different platforms. However, by composition g1 ◦wave1

and g2 ◦ wave2, we obtain AHL-processes of the same platform Platform3. 4

Based on the restriction and gluing constructions of (instantiated) AHL-processes defined
above, we can define a suitable condition under which we can continue the composition of
AHL-nets via a span of MAHL-morphisms f1 : AN0 → AN1 and f2 : AN0 → AN2 to a
composition of their processes. Two processes mp1 and mp2 of AN1 and AN2, respectively,
“agree” on the net AN0 if we can construct a common restriction of the processes leading to
a process mp0 of AN0 which can be used as a composition interface for mp1 and mp2.

Definition 4.5.10 (Agreement of AHL-Processes). Given two AHL-processes mp1 : K1 →
AN1 and mp2 : K2 → AN2 and two MAHL-morphisms f1 : AN0 → AN1, f2 : AN0 → AN2.
The processes mp1 and mp2 agree on mp0 if there exist restrictions (mp0, φi) of mpi along

4.5 Restriction and Amalgamation of Scenarios 83

fi for i ∈ {1, 2} such that for mp0 : K0 → AN0 the AHL-process nets K1 and K2 are
composable w. r. t. (K0, φ1, φ2) (see Definition 4.2.5). (mp0, φ1) and (mp0, φ2) are called
agreement restrictions for mp1 and mp2.

K0

mp0
��φ1

}}zzzzzzzzzzzzzzzzz

φ2

!!DDDDDDDDDDDDDDDDD

AN0
f1

||yyyyyyy f2

""EEEEEEE
(PB) (PB)

K1 mp1

// AN1 AN2 K2mp2

oo

(a) without instantiations

Inst0

mp0
��φ1

||yyyyyyyyyyyyyyyyy

φ2

""EEEEEEEEEEEEEEEEE

AN0
f1

||yyyyyyy f2

""EEEEEEE
(PB) (PB)

Inst1mp1

// AN1 AN2 Inst2mp2

oo

(b) with instantiations

Figure 4.13: Agreement restrictions of AHL-processes

Accordingly, if mp1 : Inst1 → AN1 and mp2 : Inst2 → AN2 are instantiated AHL-
processes15, they agree if there exists an instantiated AHL-process mp0 : Inst0 → AN0

that is the common restriction of mp1 and mp2 along f1 and f2, respectively, as shown in
Figure 4.13b, and we have that Inst1 and Inst2 are composable w. r. t. (Inst0, φ1, φ2) (see
Definition 4.5.7). 4

If two processes mp1 of AN1 and mp2 of AN2 agree, then they can be amalgamated. This
means that they are composed to a process mp3 of AN3 which is the composition of AN1

and AN2, such that mp1 and mp2 are restrictions of mp3.

Definition 4.5.11 (Amalgamation of AHL-Processes). Let AN3 be the gluing of AHL-nets
AN1 and AN2 over MAHL-morphisms f1 and f2 as shown in diagram (PO) of Figure 4.14a,
and mpi : Ki → ANi be AHL-processes for i ∈ {0, 1, 2, 3} such that mp1 and mp2 agree
on mp0. This means that (1) and (2) are pullbacks, and K1 and K2 are composable w. r. t.
(K0, φ1, φ2), i. e. there is a gluing of AHL-process nets K3 = K1 +K0K2 as shown in the outer
square of Figure 4.14a.

Then an AHL-process mp3 : K3 → AN3 is called amalgamation of mp1 and mp2 along
mp0, written mp3 = mp1 +mp0 mp2, if there exist restrictions (mp1, ψ1) and (mp2, ψ2) of mp3

along g1 and g2 in (3) and (4).
Accordingly, an instantiated AHL-process mp3 : Inst3 → AN3 is called amalgamation of

agreeing instantiated AHL-processes mp1 : Inst1 → AN1 and mp2 : Inst2 → AN2, if Inst3
is the gluing of Inst1 and Inst2 as shown in the outer square of Figure 4.14b, and mp1 and
mp2 are restrictions of mp3 along g1 and g2, respectively. 4

The results of amalgamation composition (by gluing) and decomposition (by restriction)
constructions are unique up to isomorphism. In order to capture the bijective correspon-
dence of these constructions we define isomorphism classes of AHL-processes and spans of
AHL-processes analogously to isomorphism classes of open net processes and spans of these
processes in [BCEH01].

An isomorphism between processes mp : K → AN and mp′ : K ′ → AN of an AHL-net
AN is an isomorphism iso : K → K ′ in the category AHLNets which is also a morphism in
Proc(AN), i. e. diagram (1) in Figure 4.15 commutes. We denote the isomorphism class of
a process mp as the set [mp] = {mp′ | mp′ ∼= mp} of all processes which are isomorphic to
mp.

15Note that here and in the following we use a short-hand notation for instantiated AHL-processes as
described in Remark 4.3.4. The notation mp1 : Inst1 → AN1 means that we have an instantiated AHL-
process (inst1,mp1 : K1 → AN1) such that Inst1 = (inst1,K1) is an instantiated AHL-process net.

84 4 Modelling and Evolution of Scenarios

K0

mp0
��φ1

}}zzzzzzzzzzzzzzzzz

φ2

!!DDDDDDDDDDDDDDDDD

AN0
f1

||yyyyyyy f2

""EEEEEEE
(1) (2)

K1 mp1

//

ψ1

!!DDDDDDDDDDDDDDDDD AN1

g1 ""EEEEEEE AN2

g2||yyyyyyy
K2mp2

oo

ψ2

}}zzzzzzzzzzzzzzzzz

AN3(3) (4)

(PO)

K3

mp3

OO

(a) without instantiations

Inst0

mp0
��φ1

||yyyyyyyyyyyyyyyyy

φ2

""EEEEEEEEEEEEEEEEE

AN0
f1

||yyyyyyy f2

""EEEEEEE
(PB) (PB)

Inst1mp1

//

ψ1

""EEEEEEEEEEEEEEEEE AN1

g1 ""EEEEEEE AN2

g2||yyyyyyy
Inst2mp2

oo

ψ2

||yyyyyyyyyyyyyyyyy

AN3(PB) (PB)

(PO)

Inst3

mp3

OO

(b) with instantiations

Figure 4.14: Amalgamation of AHL-processes

K
iso //

mp !!DDDDDDDD K ′

mp′||zzzzzzzz

AN

(1)

Figure 4.15: Isomorphism of Processes

An isomorphism of spans of processes (mp1
φ1← mp0

φ2→ mp2) ∼= (mp′1
φ′1← mp′0

φ′2→ mp′2)
means that there are process isomorphisms isoi : mpi → mp′i such that the diagram in
Figure 4.16 commutes.

K1
iso1

uulllllllllllll

mp1

�������������
K0

iso0

uulllllllllllll

mp0

�������������φ1

oo
φ2

// K2
iso2

uulllllllllllll

mp2

�������������

K ′1

mp′1 ""EEEEE
K ′0

mp′0 ""EEEEEφ′1

oo
φ′2

// K ′2

mp′2 ""EEEEE

AN1 AN0
f1

oo
f2

// AN2

Figure 4.16: Isomorphism of spans of processes

Definition 4.5.12 (Sets of Isomorphism Classes). The set of all isomorphism classes of
processes of a given AHL-net AN is defined as

Proc(AN) = {[mp] | mp : K → AN is an AHL-process }

The set of all isomorphism classes of spans of agreeing AHL-processes with respect to a given
span of AHL-morphisms is defined as

Proc(AN1
f1← AN0

f2→ AN2) =

{
[
mp1

φ1← mp0
φ2→ mp2

]
| φ1, φ2 are agreement projections of mp1,mp2 along f1, f2}

4

Theorem 4.5.13 (Amalgamation Theorem for AHL-Processes). Given the gluing (pushout)
AN3 = AN1 +AN0 AN2 of AHL-nets in (PO) of Figure 4.14 with MAHL-morphisms f1 and
f2, then we have:

4.5 Restriction and Amalgamation of Scenarios 85

1. Composition Construction. Let mpi : Ki → ANi be AHL-processes for i ∈ {0, 1, 2}
such that mp1 and mp2 agree on mp0, then the amalgamation mp3 = mp1 +mp0 mp2

exists and is an AHL-process mp3 : K3 → AN3.

2. Decomposition Construction. Let mp3 : K3 → AN3 be an AHL-process and let
mp1, mp2 be restrictions of mp3 along g1 respectively g2, and mp0 restriction of mp1

along f1. Then mp3 can be represented as amalgamation mp3 = mp1 +mp0 mp2.

3. Bijective Correspondence. There are composition and decomposition functions

Comp : Proc(AN1
f1← AN0

f2→ AN2)→ Proc(AN)

and

Decomp : Proc(AN)→ Proc(AN1
f1← AN0

f2→ AN2)

establishing a bijective correspondence between Proc(AN) and Proc(AN1
f1← AN0

f2→
AN2).

4. Instantiations. There exist corresponding composition and decomposition construc-
tions for instantiated AHL-processes, similarly establishing a bijective correspondence.

Proof Idea. 1. Agreement of mp1 and mp2 on mp0 impies that mp0 exists in Figure 4.14
such that (1) and (2) are pullbacks and the outer diagram can be constructed as pushout
of AHL-nets leading to an AHL-process net K3. The universal pushout property implies
a unique mp3 : K3 → AN3 such that (3) and (4) commute. Finally, the (horizontal)
VK-property for the weak adhesive HLR category (AHLNets,M) implies that (3)
and (4) are pullbacks such that mp1 and mp2 become restrictions of mp3 along g1

respectively g2 leading to the amalgamation mp3 = mp1 +mp0 mp2.

2. In this case we have given in Figure 4.14 the inner pushout (PO) and mp3 : K3 → AN3.
Now mp1, mp2, mp0 are constructed as pullbacks in (3), (4) and (1), respectively,
and (2) can be shown to become pullback such that K1 and K2 are composable w. r. t.
(K0, φ1, φ2). Finally, the (horizontal) VK-property in Figure 4.14 implies that the outer
diagram is pushout such that mp3 = mp1 +mp0 mp2 becomes the amalgamation of mp1

and mp2 along mp0.

3. Follows from uniqueness (up to isomorphism) of pushout and pullback constructions.

4. Follows from the fact that we have corresponding definitions for the restriction, agree-
ment and amalgamation of instantiated AHL-processes that are based on the underlying
constructions for AHL-processes.

For the detailed proof see Section B.7 on page 247.

Theorem 4.5.13 implies that we have a compositional process semantics of AHL-nets in
the following sense.

Theorem 4.5.14 (Compositional Process Semantics of AHL-Nets). Given AHL-nets ANi

(i = 0, 1, 2, 3) with AN3 = AN1 +AN0 AN2 gluing (pushout) object in (PO) of Figure 4.14.
Then each process mp3 : K3 → AN3 of AN3 is uniquely (up to isomorphism) represented by
a pair of (instantiated) AHL-processes (mp1, mp2) of AN1 and AN2, respectively which agree
on process mp0 of AN0 obtained as common restriction of mp1 and mp2. This means that the
process semantics of AN3, defined by all processes mp3 over AN3, is completely determined
by the process semantics of the components AN1 and AN2 with shared AN0.

86 4 Modelling and Evolution of Scenarios

Concept 4.5.15 (Views on Scenarios). Regarding the compositionality of platforms, it
should also be possible to restrict scenarios to the current view on the platform. This is
particularly interesting in the context of cross-platform communication, where different plat-
forms together form a common larger platform.

Due to the modelling of communication platforms using AHL-nets (see Concept 3.1.8), it
is possible to model the embedding of parts of a communication platform into a larger context
usingMAHL-morphisms. The injectivity of anMAHL-morphisms f : Platform1 → Platform2

ensures that Platform1 is indeed a sub net of Platform2, and the isomorphic data type part
ensures that the smaller platform operates on the same data as the super net.

We can model the restriction of abstract and concrete scenarios of communication plat-
forms to smaller parts of that platform using the restriction of AHL-processes and instantiated
AHL-processes, respectively. Moreover, scenarios that operate only on a part of a commu-
nication platform can be extended to scenarios of the whole platform using the extension of
(instantiated) AHL-processes along the embedding of the platform.

Regarding the gluing of communication platforms, using amalgamation of (instantiated)
AHL-processes, it is possible to restrict scenarios of the gluing to scenarios of the single
parts. Vice versa, it is possible to combine scenarios of the single parts to a new scenario
of the gluing, provided that the scenarios agree on the interface of the gluing. This can
be used for different purposes. On one hand, the gluing of communication platforms can
represent the assembly of one platform from different subcomponents. The amalgamation
of scenarios over such a gluing corresponds to different views on one scenario, where either
we consider only a particular subset of resources and actions that corresponds to one of the
subcomponents, or we consider the whole scenario corresponding to the whole platform. On
the other hand, the gluing of communication platforms can represent the gluing of completely
different communication platforms, forming a new communication platform that represents
the communication options of both of the single platforms as well as, depending on the
interface, the cross-platform communication between them.

Examples of the restriction, extension and amalgamation of scenarios are given in Exam-
ple 4.5.16. 4

Example 4.5.16 (Views on Scenarios). An example of the amalgamation of instantiated
AHL-processes is shown in Figure 4.17, where the interfaces are in the top-left area and
the results of the gluings are depicted in the bottom-right area of the figure. The AHL-net
Platform1 consists of a single action new wavelet and its environment, whereas the AHL-net
Platform2 consists of a single action insert and its environment. The actions correspond the
the actions with the same name in our AHL-net Platform introduced in Example 3.1.9. The
interface of the gluing of these two platforms contains the resources u (users) and w (wavelets).
The result of the gluing is an AHL-net Platform3, consisting of actions new wavelet and insert
operating on a common set of resources of users and wavelets.

A scenario of Platform3 is depicted in the bottom-right of Figure 4.17. Note that for
the sake of brevity we combined the graphical notations used for AHL-processes and in-
stantiations. An example of the amalgamation of AHL-processes without instantiations can
be obtained by simply removing all annotations that describe the assignment of values and
transition assignments.

The scenario Wave3 describes the subsequent creation of new wavelets with IDs 0 and
1, respectively, and the insertion of the text “Hello Bob” into the wavelet with ID 0 that
happens parallel to the creation of the second wavelet with ID 1. The scenarios Wave1

and Wave2 are restrictions of the scenario Wave3 to the sub-nets Platform1 and Platform2,
respectively, of Platform3. These scenarios consist only of those elements that are “visible” (or
present) on the respective corresponding communication platform. Thus, the scenario Wave1

4.5 Restriction and Amalgamation of Scenarios 87

new1:new wavelet

user ↦ A
free ↦ 0
next ↦ 1
n ↦ (0,{A},e)

insert1:insert

user ↦ A
o ↦ (0,{A},e)
txt ↦ Hello Bob
pos ↦ 0
n ↦ (0,{A},Hello Bob)

u1:u=A

id1:id=0

user

free

next

u2:u=A

w1:w=(0,fAg,e)

n

user user

o

u3:u=A

w2:w=(0,fAg,Hello Bob)

user

n

u4:u=B
new2:new wavelet

user ↦ B
free ↦ 1
next ↦ 2
n ↦ (1,{A},e)

free

id3:id=2
next

u8:u=B

user

user

w5:w=(1,fBg,e)n

id2:id=1

Wave3

Ã1

insert1:insert

user ↦ A
o ↦ (0,{A},e)
txt ↦ Hello Bob
pos ↦ 0
n ↦ (0,{A},Hello Bob)

u1:u=A

u2:u=A

w1:w=(0,fAg,e)

user

o

u3:u=A

w2:w=(0,fAg,Hello Bob)

user

n

u4:u=B

u8:u=B w5:w=(1,fBg,e)

Wave2

Ã2

new1:new wavelet

user ↦ A
free ↦ 0
next ↦ 1
n ↦ (0,{A},e)

u1:u=A

id1:id=0

user

free

next

u2:u=A

w1:w=(0,fAg,e)

n

user

u3:u=A

w2:w
=(0,fAg,Hello Bob)

u4:u=B
new2:new wavelet

user ↦ B
free ↦ 1
next ↦ 2
n ↦ (1,{A},e)

free

id3:id=2
next

u8:u=B
user

w5:w
=(1,fBg,e)n

id2:id=1

Wave1

u1:u=A

u2:u=A

w1:w=(0,fAg,e)

u3:u=A

w2:w=(0,fAg,Hello Bob)

u4:u=B

u8:u=B
w5:w=(1,fBg,e)

Wave0

Á2

Á1

user

Platform3

w : waveletu : user

user

user

n

o

Platform2

insert

txt: text, pos: nat
invited(o,user) = true
n = insText(o,txt,pos)

new wavelet

n = new(user,free)
next = next(free)

id : nat
Platform1

w : waveletu : user

Platform0

f1

f2

g2

g1

u : user
user

user

w : wavelet

n

free next

w : wavelet
u : user

user

user

n
o

insert

txt: text, pos: nat
invited(o,user) = true
n = insText(o,txt,pos)

new wavelet

n = new(user,free)
next = next(free)

id : nat

user

user
n

free

next

wave0 wave1

wave2 wave3

Figure 4.17: Amalgamation of scenarios

contains only occurrences of the new wavelet action, whereas the scenario Wave2 contains
only the occurrence of the insert action. Moreover, the scenario Wave2 does not contain
any values for free IDs, since this resource is not present in the corresponding platform. The

88 4 Modelling and Evolution of Scenarios

values for user and wavelet resources are retained in both of the sub-scenarios, since these
resources are part of the interface. The two scenarios agree on the interface in the scenario
Wave0 which is the common restriction of Wave1 and Wave2 to the interface Platform0. The
scenario Wave3 is the gluing of scenarios Wave1 and Wave2 over the interface Wave0.

Note that we also have extensions of scenarios g1 ◦ wave1 : Wave1 → Platform3 and
g2 ◦ wave2 : Wave2 → Platform3 that are scenarios of the AHL-net Platform3, but the
scenarios are restricted views of the scenario wave3 that contain only those parts that are
present in the respective smaller platform.

The amalgamation can be seen as model for the cross-platform communication between
two different platforms. On one platform, it is only possible to create wavelets, but it is not
possible to modify them. On the other platform, one can insert text into wavelets, but it is
not possible to create new ones. There are two types of resources both of the two platforms
know of: users and wavelets. Together these two platforms can be seen as a super-platform
that allows the creation of new wavelets as well as the insertion of text. For the realisation
of scenario Wave3 it is necessary to use the exclusive feature of each of the platforms. So, if
we restrict the scenario to the Platform2, we do not see the creation of new wavelets, because
this action is unknown on the platform. But since the platforms knows the resource w (the
wavelets), we can see the result of the creation of wavelets16. Then the first new wavelet can
be used on Platform2 to insert the text “Hello Bob”, resulting also in a new wavelet with that
text on Platform1, because wavelets (represented by the place w) are part of the interface,
whereas it is not visible on that platform how the insertion of the text has happened, because
this action is unknown on Platform1. Considering the super-platform Platform3, we know
of all involved resources and actions, and therefore the amalgamated scenario Wave3 is a
complete description of the overall process of interactions on the single platforms. ♦

4.6 Structural Evolution of Concrete Scenarios

An approach for the rule-based transformation of instantiations of AHL-processes was already
presented in [Gab09], but in that work we considered only AHL-nets and processes with a
fixed data type part. For this reason, a major drawback of that approach was that the
applicability of the transformation was highly dependent on the concrete data values and
assignments in the original instantiation. In this work, we introduced the new concept of
weak instantiations (see Definition 4.3.1) that can be used to define abstractly instantiated
rules for instantiated AHL-(process) nets and processes, covering an abstract set of possible
data values and assignments.

Definition 4.6.1 (Production for Instantiations). A production for instantiations is given

by a span % : InstL
l← InstI

r→ InstR of weak instantiation morphisms l, r ∈ MAHL. The
production is called abstract, if InstL, InstI and InstR are abstract instantiations17, and the
production is called concrete, if InstL, InstI and InstR are concrete instantiations18.

We say that % is a production for instantiated AHL-process nets, if the AHL-net part

Net(%) : L
l← I

r→ R is a production for AHL-process nets. 4

Example 4.6.2 (Production for Instantiations). An example of an abstract production %
for instantiations is shown in Figure 4.18, where the AHL-net part Net(%) of the production
is the production %2 for AHL-processes in Figure 4.6 on page 69. The data type part of

16Of course, for this to work, the resources probably have to be submitted over a network somehow, but we
do not concentrate on the corresponding technical details in this work.

17A weak instantiation is called abstract, if it has a term algebra TΣ(Y) as algebra part (see Definition 4.3.1).
18In a concrete instantiation all transition assignments are consistent transition assignments.

4.6 Structural Evolution of Concrete Scenarios 89

all components in the production is a Σ-Wave-term algebra TΣ-Wave(X%) with X%,user =
{u1, u2}, X%,wavelet = {w1, w2, w3}, X%,text = {t} and X%,nat = {p}.

invite1

user1 ↦ u1

user2 ↦ u2

o ↦ w2

n ↦ w3

insert1

user ↦ u1

o ↦ w1

txt ↦ t

pos ↦ p

n ↦ w2

u2=u1

w1=w1

user

o

u3=u1

w2=w2

user

n

u4=u2

user2
user1

o

u5=u1

w3=w3

user1

n

u6=u2

user2

invite1
user1 ↦ u1

user2 ↦ u2

o ↦ w1

n ↦ addUser(u2,w1)

insert1
user ↦ u1

o ↦ addUser(u2,w1)

txt ↦ t

pos ↦ p

n ↦ w3

u2=u1

w1=w1

u3=u1u4=u2 u5=u1

w3=w3

u6=u2

w2'=addUser(u2,w1)

o n

user
useruser2

user2user1
user1

o n

u2=u1

w1=w1

u3=u1

u4=u2

u5=u1

w3=w3

u6=u2

l2 r2

InstL InstI InstR

Figure 4.18: Abstract production for instantiations

As pointed out in Example 4.2.14, the production %2 is a pattern for changing the order of
subsequent occurrences of insert and invite user actions (see Figure 3.2 on page 35). In our
abstract production % for instantiations, we enrich this pattern with information about what
happens with the data when we permute the actions. Considering the invite1 transition, the
given information is rather superfluous: The user determined by the arc inscription user1

invites the user determined by arc inscription user2 into the wavelet bound by arc inscription
o. The users do not change from left- to right-hand side, but the wavelet is a different one,
since in the left-hand side we already inserted some text into the wavelet, while this did not
yet happen in the right-hand side due to the changed order of actions.

Now, considering the transition insert1, the information about the data is quite important,
since the transition consists of two variables txt and pos in its firing conditions that do not
occur as arc inscriptions in the environment of the transition. Therefore the values of these
variables are not determined by values for surrounding places, and thus, it is possible to
change the values for these variables – effectively changing the inserted text or its position.
With the assignments given for transitions insert1 in the left- and right-hand side we specify
that we do not wish to change the inserted text or its position, but we want to insert exactly
the same text t at exactly the same position p, regardless of the order of actions.

invite1

user1 ↦ A

user2 ↦ B

o ↦ (0,{A},Hello Bob)

n ↦ (0,{A,B},Hello Bob)

insert1

user ↦ A

o ↦ (0,{A},e)

txt ↦ Hello Bob

pos ↦ 0

n ↦ (0,{A},Hello Bob)

u2=A

w1=(0,{A},e)

user

o

u3=A

w2=(0,{A},Hello Bob)

user

n

u4=B

user2user1

o

u5=A

w3=(0,{A,B},Hello Bob)

user1

n

u6=B

user2

invite1
user1 ↦ A

user2 ↦ B

o ↦ (0,{A},e)

n ↦ (0,{A,B},e)

insert1
user ↦ A

o ↦ (0,{A,B},e)

txt ↦ Hello Bob

pos ↦ 0

n ↦ (0,{A,B},Hello Bob)

u2=A

w1=(0,{A},e)

u3=Au4=B u5=A

w3=(0,{A,B},Hello Bob)

u6=B

w2'=(0,{A,B},e)

o n

user
useruser2

user2user1
user1

o n

u2=A

w1=(0,{A},e)

u3=A

u4=B

u5=A

w3=(0,{A,B},Hello Bob)

u6=B

l2 r2

InstL' InstI' InstR'

Figure 4.19: Concrete production for instantiations

Furthermore, a concrete production %′ for instantiations is depicted in Figure 4.19. The

90 4 Modelling and Evolution of Scenarios

AHL-net part of this production is also the production %2 in Figure 4.6, but instead of the
term algebra it has the algebra A in Table 3.2 as data type part. While the left-hand side of
the abstract production % specifies the abstract case that some user u1 inserts some arbitrary
text into a wavelet and afterwards invites another user u2, in the left-hand side of the concrete
production %′ we specify that the user Alice (A) inserts the text “Hello Bob” into an empty
wavelet and afterwards invites the user Bob (B). In the right-hand side of the production
%′, Alice does the same but in a different order, i. e. first she invites Bob and afterwards she
inserts the text “Hello Bob”. ♦

Since in general the components of a production for instantiations are weak instantiations,
we perform direct transformations as double-pushouts in the category of weak instantiations.
For the transformation of concrete instantiations it is then additionally required that the
original, context net and result are concrete instantiations.

Definition 4.6.3 (Direct Transformation of (Weak) Instantiations). Given a production

for instantiations % : InstL
l← InstI

r→ InstR, a weak instantiation Inst and a (match)

morphism m : InstL → Inst. Then a direct transformation of weak instantiations Inst
(%,m)
=⇒

Inst′ in wInst is given by pushouts (1) and (2) in Figure 4.20 in the category wInst of

weak instantiations. We say that Inst
(%,m)
=⇒ Inst′ is a direct transformation of (concrete)

instantiations if Inst, Inst0 and Inst′ are concrete instantiations. 4

InstL% :

m

��
(1)

InstI
loo r //

c

��
(2)

InstR

n
��

Inst Inst0
doo e // Inst′

Figure 4.20: Direct transformation Inst⇒ Inst′ using production % at match m

Remark 4.6.4 (Direct Transformation of (Weak) Instantiations). Note that the notion of weak
instantiations is the broadest notion of instantiations. Abstract and concrete instantiations
can be both considered as weak instantiations. Further, the categories wInst of weak instan-
tiations and Inst of concrete instantiations are bothM-adhesive categories (see Fact A.5.9 on
page 211), and pushouts of weak and concrete instantiations can be constructed via pushout
of the underlying AHL-nets. Therefore, it is easy to see that the direct transformation of
weak instantiations exists if and only if the direct transformation of underlying AHL-nets via
the AHL-net part of the production exists, as shown in Fact A.5.11 on page 213.

Moreover, a direct transformation of a concrete instantiation using a concrete production
means that all objects in Figure 4.20 are concrete instantiations, and thus, since Inst is a
full subcategory of wInst, in that case diagrams (1) and (2) are pushouts in Inst. Hence,
also the direct transformation of concrete instantiations using a concrete production exists
if and only if the underlying transformation of AHL-nets exists, as shown in Fact A.5.12 on
page 214.

However, the most interesting case of transformation is the one where we consider the
direct transformation of a concrete instantiation using an abstract production. We use the
data-shifting of abstract productions defined in the following to “instantiate” the abstract
production, leading to a production with the same data type part as the matched concrete
instantiation. 4

In the following we define the data-shifting of abstract productions for instantiations. An
abstract production can be shifted along a match with the effect of replacing the original data

4.6 Structural Evolution of Concrete Scenarios 91

type part of the production in the sense of the data-image construction for instantiations (see
Definition 4.4.1) along the generalised homomorphism part of the match.

Definition 4.6.5 (Data-Shifting of Abstract Productions for Instantiations). Given an ab-

stract production for instantiations % : InstL
l← InstI

r→ InstR and a match m : InstL →
Inst. We call a production for instantiations %′ : Inst′L

l′← Inst′I
r′→ Inst′R together with

m′ : L′ → Inst the data-shifting of % along m, if

1. InstL, InstI and InstR are data-images of InstL, InstI and InstR, respectively, along
the data type part of m,

2. diagrams (1) and (2) in Figure 4.21 are pushouts in wInst,

3. diagram (3) in Figure 4.21 commutes, and

4. the data type part of m′ is an isomorphism.

4

InstL

sL
��

m

&&

(1)

InstI
loo r //

sI
��

(2)

InstR

sR
��

Inst′L

m′
��

(3) Inst′Il′
oo

r′
// Inst′R

Inst

Figure 4.21: Data-shifting of abstract production

Note that the data-shifting of abstract productions exists along all matches, as shown in
Fact A.5.16 on page 216. Moreover, for every direct transformation of weak instantiations
Inst

%,m
=⇒ Inst′ and data-shifting %′ with match m′ along m, there exists a corresponding

direct transformation of weak instantiations Inst
%′,m′
=⇒ Inst′, as shown in Lemma A.5.17 on

page 217.

Example 4.6.6 (Data-Shifting of Abstract Productions for Instantiations). For the abstract
production % for instantiations in Figure 4.18 we can find a match m : InstL → Inst into the
instantiation Inst in Figure 4.1 on page 72 that is an inclusion on the AHL-net part, i. e. we
map the left-hand side to the environments of insert1 and invite1 in Inst. The data-shifting
of % along m is given by the production %′ in Figure 4.19.

The left-hand side Inst′L coincides exactly with the image of m. Note that this is only
the case because m is an injective morphism. In general, for each non-injectively matched
element, Inst′L contains a copy of its image in m. Further, Inst′I is the restriction of Inst′L
to the AHL-net part I of InstI . This is always the case, because according to the definition
of data-shifting there are morphisms sL : InstL → Inst′L and sI : InstI → Inst′I , such
that Inst′I is a pushout complement sL and l. As pointed out in Fact A.5.11, the pushout
complement of (weak) instantiations can be obtained as restriction along the corresponding
AHL-part.

The right-hand side Inst′R contains some new values that are obtained by evaluation of
the terms occurring in InstR using the data type part of m. In the right-hand side, Alice (A)
invites Bob (B) first, and then inserts the text “Hello Bob” into the empty wavelet where
Bob is now invited. ♦

92 4 Modelling and Evolution of Scenarios

While abstract productions specify abstract patterns for modifications of instantiations,
these abstract patterns can be instantiated to a given instantiation using the data-shifting
along a match. This allows us to formulate the following instantiation condition which is
satisfied if the result of the data-shifting is a concrete production. Then in the following
Theorem 4.6.8 we show that the instantiation condition is a sufficient and necessary condition
for the direct transformation of instantiations using abstract productions.

Definition 4.6.7 (Instantiation Condition for Abstract Productions). Given an abstract

production for instantiations % : InstL
l← InstI

r→ InstR, a concrete instantiation Inst and
a match m : InstL → Inst. We say that % and m satisfy the instantiation condition for
abstract productions if the data-shifting of % along m is a concrete production. 4

Theorem 4.6.8 (Direct Transformation of Concrete Instantiations Using Abstract Pro-

ductions). Given an abstract production for instantiations % : (instL, L)
l← (instI , I)

r→
(instR, R), an instantiation (inst, AN) and a (match) morphism m : (instL, L)→ (inst, AN).

There exists a direct transformation of instantiations (inst, AN)
(%,m)
=⇒ (inst′, AN ′), iff %

and m satisfy the instantiation condition for abstract productions and there exists a direct

transformation of AHL-nets AN
Net(%),m

=⇒ AN ′ using the underlying production for AHL-nets

Net(%) : L
l← I

r→ R.

Given that % is a production for instantiated AHL-process nets and we have a match
m : (instL, L) → (inst,K) into an instantiated AHL-process net. Then there exists a direct

transformation of instantiated AHL-process nets (inst,K)
(%,m)
=⇒ (inst′,K ′) iff % and m satisfy

the instantiation condition for abstract productions and there exists a direct transformation

of AHL-process nets K
Net(%),m

=⇒ K ′ using the underlying production for AHL-process nets

Net(%) : L
l← I

r→ R. Accordingly, the extension to AHL-processes has the same requirements
as specified in Theorem 4.2.11.

InstL

sL
��

m

%%

(1)

InstI
loo r //

sI
��

(2)

InstR

sR
��

Inst′L

m′
��

(3)

(4)

Inst′Il′
oo

r′
//

k
��

(5)

Inst′R

n′
��

Inst Inst0
d

oo
e

// Inst′

Proof-Idea. As shown in Fact A.5.16, the data-shifting %′ of % along m with pushouts (1)
and (2) above and match m′ : (inst′L, L

′) → (inst, AN) exists. So, let % and m satisfy the

instantiation condition and let there be a direct transformation AN
Net(%),m

=⇒ AN ′ using the

underlying production for AHL-nets Net(%) : L
l← I

r→ R. Then according to Fact A.5.12

there exists a direct transformation of weak instantiations (inst, AN)
%,m
=⇒ (inst′, AN ′),

and by Lemma A.5.17 there is also a direct transformation (inst, AN)
%′,m
=⇒ (inst′, AN ′).

Then from the fact that %′ is a concrete production and by Fact A.5.12 we obtain that

(inst, AN)
%′,m
=⇒ (inst′, AN ′) is a direct transformation of concrete instantiations, leading to

a direct transformation (inst, AN)
%,m
=⇒ (inst′, AN ′) by pushout composition.

Now, the other way around, given a direct transformation of concrete instantiations
(inst, AN)

%,m
=⇒ (inst′, AN ′) with pushouts (1)+(4) and (2)+(5), we obtain pushouts (4) and

(5) by pushout decomposition which are also pullbacks due to the fact that l′, r′ ∈ MAHL,

4.6 Structural Evolution of Concrete Scenarios 93

because l, r ∈ MAHL and MAHL-morphisms are closed under pushouts. This means that
l′ and r′ and also m′ have an isomorphic data type part, and by underlying pushouts and
pullbacks in Algs we can derive that all morphisms in (4) and (5) have an isomorphic data
type part. Hence, according to Fact A.6.9, the morphisms m′, k and n′ are W -creations,
leading to concrete instantiations Inst′L, Inst′I and Inst′R (see Remark 4.3.8).

The proof for instantiated AHL-process nets works completely similar due to the fact that
direct transformations of AHL-process nets are also direct transformations of AHL-nets. For
the detailed proof see Section B.8 on page 250.

Concept 4.6.9 (Structural Evolution of Concrete Scenarios). In Concept 3.2.16 we discussed
the structural evolution of communication platforms that can be modelled using rule-based
transformation of the corresponding AHL-nets. As the structural evolution of communica-
tion platforms involves adding, removing or changing resources and actions, accordingly it
is possible that a scenario evolves by adding, removing or changing occurrences of the re-
sources and actions in the scenario. The structural evolution of concrete scenarios can be
modelled using direct transformations of the corresponding instantiated AHL-process (see
Concept 4.3.6). An example of the structural evolution of a concrete scenario is given in Ex-
ample 4.6.10, where we change the order of two subsequent actions occurring in the concrete
scenario presented in Example 4.3.7. 4

Example 4.6.10 (Structural Evolution of Concrete Scenarios). Consider the concrete sce-
nario Inst in Figure 4.8 on page 72 and the abstract production for instantiations shown in
Figure 4.18. As described in Example 4.6.6, there is a match m : InstL → Inst, matching
the left-hand side of % to the environments of insert1 and invite1 in Inst. The data-shifting
%′ of % along m shown in Figure 4.19 is a concrete production. This means that % and m
satisfy the instantiation condition.

Moreover, the AHL-net part Net(%) of % is exactly the production %2 for AHL-process
nets in Figure 4.6 on page 69. As presented in Example 4.2.14, there is a direct transfor-
mation Wave

%2,m2
=⇒ Wave2, and we have that Wave is the AHL-net part of Inst and m2

corresponds exactly to the match morphism m. Hence, according to Theorem 4.6.8 there is
also a corresponding direct transformation Inst

%,m
=⇒ Inst2 with the concrete instantiation

Inst2 shown in Figure 4.22 as result.

The direct transformation changes the order of the subsequent occurrences of the insert
and invite user action occurrences in the instantiation. While in the instantiation Inst the
empty wavelet is first changed to contain the text “Hello Bob” and afterwards the user Bob
is invited to that wavelet, in the instantiation Inst2, first the user Bob is invited to the
wavelet that is still empty, and afterwards the text is inserted into that wavelet.

Note that there are also corresponding AHL-processes wave : Wave → Platform and
wave2 : Wave2 → Platform with a direct transformation of AHL-processes wave

%2,m2
=⇒ wave2.

From obvious combination of the direct transformations of the processes and instantiations we
obtain a direct transformation of instantiated AHL-processes (inst, wave)

%,m
=⇒ (inst2, wave2).

♦

As the example suggests, for the data-shifting of an abstract production along a match
with concrete instantiation as codomain, it is always the case that the left-hand side and
interface of the data-shifting are concrete instantiations. This is quite reasonable, since for
the modification of a concrete instantiation, it should not be necessary to check whether
the original was in fact a concrete instantiation. Instead, it should be sufficient to check
only the newly created parts of the instantiation, if these parts are consistent with the given
instantiation. This is expressed in the following consistent creation condition which is also a

94 4 Modelling and Evolution of Scenarios

remove1

user ↦ B

o ↦ (0,{A,B},Hello Bob)

rng ↦ (5,4)

n ↦ (0,{A,B},Hello)

new1

user ↦ A

free ↦ 0

next ↦ 1

n ↦ (0,{A},e)

u1=A

id1=0

user

free

next

u2=A

w1=(0,fAg,e)

n

user user1

o

u3=A

w2=(0,fA,Bg,e)

user1

n

u4=B

user2 user

o

u6=B

u5=A

w3=(0,fA,Bg,Hello Bob)

user2

user

n

user

o

w4=(0,fA,Bg,Hello)

n

user

new2

user ↦ B

free ↦ 1

next ↦ 2

n ↦ (1,{A},e)

free

id3=2

next

u8=B

user

user
insert2

user ↦ B

o ↦ (1,{B},e)

txt ↦ Hello World!

pos ↦ 0

n ↦ (0,{B},Hello World!)

user u9=B

w5=(1,fBg,e)

n o
user

w6=(1,fBg,Hello World!)

n

id2=1

u7=B

Inst2

invite1
user1 ↦ A

user2 ↦ B

o ↦ (0,{A},e)

n ↦ (0,{A,B},e)

insert1
user ↦ A

o ↦ (0,{A,B},e)

txt ↦ Hello Bob

pos ↦ 0

n ↦ (0,{A,B},Hello Bob)

Figure 4.22: Concrete instantiation Inst2

sufficient and necessary condition for the direct transformation of instantiations, since it is
equivalent to the instantiation condition.

Definition 4.6.11 (Consistent Creation Condition for Abstract Productions). Given an

abstract production for instantiations % : (instL, L)
l← (instI , I)

r→ (instR, R), where the
data type part of l and r are identities, a concrete instantiation (inst, AN) and a match
m : (instL, L) → (inst, L) with m = (mΣ,mP ,mT ,mA). We say that % and m satisfy the
consistent creation condition if for all transitions t ∈ TR \ rT (TI) and instR,T (t) = (t, v) we
have:19

mA ◦ v ◦ (mX |V ar(t))−1 � Pfin(m#
Σ)(condR(t)),

i. e. all equations in Pfin(m#
Σ)(condR(t)) are valid under assignment mA ◦ v ◦ (mX |V ar(t))−1.

4

Remark 4.6.12 (Consistent Creation Condition). Note that if the production already has the
right signature part, i. e. if mΣ is an identity, then the consistent creation condition becomes
much simpler to verify. Then for all transitions t ∈ TR \ rT (TI) and instR,T (t) = (t, v) we
require that mA ◦ v � condR(t).

Moreover, the consistent creation condition can be generalised to productions where the
morphisms l and r do not have an identical data type part. Since the morphisms are required
to beMAHL-morphisms, we achieve the same result (see Fact 4.6.13 below) by replacing mA

in the condition with mA ◦ lA ◦ r−1
A , and similar replacements of mX and mΣ. 4

Fact 4.6.13 (Equivalence of Consistent Creation Condition and Instantiation Condition).

Given an abstract production for instantiations % : (instL, L)
l← (instI , I)

r→ (instR, R),

19Note that mX is the variable part of SigSets-morphism mΣ = (mσ,mX) (see Definition 3.1.5).

4.7 Modelling and Evolution of Histories 95

where the data type part of l and r are identities, a concrete instantiation (inst, AN) and a
match m : (instL, L) → (inst, AN). Then % and m satisfy the consistent creation condition
if and only if they satisfy the instantiation condition.

Proof. Given the data-shifting %′ of % along m, it can be shown that (inst, AN) being a
concrete instantiation is sufficient for (inst′L, L

′) and (inst′I , I
′) to be concrete instantiations

as well. Moreover, we can show that the consistency of assignments in (inst′R, R
′) that corre-

spond to images of transitions in TR \ rT (TI) follows from the consistent creation condition,
and vice versa. Finally, the consistency of all other transition assignments can be derived
from consistency of the corresponding preimages in (inst′I , I

′). For the detailed proof we refer
to Section B.9 on page 251.

4.7 Modelling and Evolution of Histories

In this section we consider the modelling of histories of waves (see Section 2.2), and also the
modelling of the progression of histories, i. e. the evolution of histories based on interactions.

Definition 4.7.1 (Input and Output Places of Instantiated AHL-Process Net). Given an
instantiation Inst = (inst,K) with inst : Skel(K) → Flat(K), we define the sets of input
places IN (Inst) = instP (IN (K)) and output places OUT (Inst) = instP (OUT (K)) (see
Definition 4.1.3 for definition of the input and output places of AHL-process nets). 4

The following fact states the correspondence between instantiations and firing sequences
in the codomain and domain of the corresponding AHL-process. The fact is based on the
corresponding results in [Ehr05] for AHL-occurrence nets, and the preservation of firing be-
haviour by AHL-morphisms.

Fact 4.7.2 (Finite Strict AHL-Processes, Instantiations and Firing Behaviour). Given a
finite strict AHL-process mp : K → AN . We call a firing sequence in K complete, if it visits
each transition in K exactly once. Then, we have the following:

1. For each complete firing sequence s : M →∗ M ′ in K, there is an instantiation Inst =

(inst,K) with IN(Inst) = M and OUT (Inst) = M ′, and for each firing step Mn
(t,v)−→

Mn+1 in s, there is instT (t) = (t, v).

2. For each instantiation Inst = (inst,K) and place (a, p) ∈ instP (PK) respectively tran-
sition (t, v) ∈ instT (TK), there is at least one complete firing sequence s : IN(Inst)→∗
OUT (Inst) in K that visits (a, p) respectively (t, v) exactly once, where the order of
transitions in s is compatible with the causal relation <K .

3. For each firing sequence s : M0
(t0,v0)−→ M1

(t1,v1)−→ · · · (tn,vn)−→ Mn+1 in K there is a corre-

sponding firing sequence mp(s) : (id⊗mpP)⊕(M0)
(fT (t0),v0)−→ (id⊗mpP)⊕(M1)

(fT (t1),v1)−→
· · · (fT (tn),vn)−→ (id⊗mpP)⊕(Mn+1) in AN .

Proof. 1. Since the AHL-process mp : K → AN is finite, the AHL-process net K is also
an AHL-occurrence net. Therefore, the existence of the corresponding instantiation for
a complete firing sequence in K follows from Fact 3.5 in [Ehr05].

2. Analogously, from Fact 3.5 we obtain a complete firing sequence s : IN(Inst) → M
that corresponds to instantiation Inst. Since K is finite, from Fact 3.6 in [Ehr05] we
obtain that M = OUT (Inst).

96 4 Modelling and Evolution of Scenarios

3. This is a direct consequence of the fact that AHL-morphisms preserve firing behaviour
(Fact 3.1.10), taking into account that mp is strict, and thus, (mpΣ,mpA) is an identity.

Concept 4.7.3 (Modelling of Histories). A history of a wave is a description of previous states
and the current state of the wave as well as of all interactions that leaded from one state to
another one. So, basically a history is a finite concrete scenario that uses the actual data types
and values of the corresponding platform. Accordingly, a history can be modelled as a finite
and strict instantiated AHL-process. Given a history wave : (inst,Wave) → Platform, the
current state of the wave can be obtained as the marking OUT (inst ,Wave), i. e. the output
places of the AHL-process net Wave equipped with their corresponding data values. 4

Example 4.7.4 (Modelling of Histories). The concrete scenario model wave : (inst ,Wave)→
Platform in Example 4.3.7 on page 72 is finite and can be seen as the history of a wave. The
initial state of the wave can be derived from the input places:

IN (inst ,Wave) = (0, id1)⊕ (A, u1)⊕ (B, u8)

which means that initially there are only two users A (Alice) and B (Bob) and a free id
0. Outgoing from this state, the history describes that first a new wavelet with id 0 was
created by Alice. Afterwards, Alice inserted the text “Hello Bob” into the wavelet, and Bob
created another wavelet with id 1. The fact that the corresponding transitions in the AHL-
process net can fire independently, means that these two actions occurred simultaneously, or,
if we consider a near-real-time system such as Apache Wave (see Section 2.2), it is possible
that one action occurred shortly before or after the other one, but we still consider this as
simultaneous. After that, user Alice invited Bob to the first wavelet, who then removed the
text “ Bob” from that wavelet. Finally, Bob inserts the text “Hello World!” to the wavelet
with id 1. The resulting current state of the wave can be derived from the output places:

OUT (inst ,Wave) =(2, id3)⊕ (A, u5),⊕(B, u9)

⊕ ((0, {A,B}, Hello), w4)⊕ ((1, {B}, Hello World!), w6)

This means that the next free id is 2, and the wave now has two wavelets, one where Alice
and Bob are invited, and another one where only Bob is invited. ♦

In order to model the progression of histories based on interactions, we need a way to
append a scenario of interactions to the end of a history. In [EHGP09], the sequential
composition of AHL-occurrence nets was defined. We transfer that definition to the sequential
composition of AHL-process nets. Sequential composition means that at most output places
of one net are glued to input places of the other one.

Definition 4.7.5 (Sequential and Parallel Composition of AHL-Processes). Given three
AHL-process nets I, K1 and K2, and two injective AHL-net morphisms i1 : I → K1 and
i2 : I → K2 with i2 ∈ MAHL. Then (K1,K2) are sequentially composable w. r. t. (I, i1, i2) if
TI = ∅, i1(PI) ⊆ OUT (K1) and i2(PI) ⊆ IN(K2).

If (K1,K2) are sequentially composable w. r. t. (I, i1, i2), then the gluing K3 = K1 +I K2

is called a sequential composition, and if i2(PI) = IN(K2), then the composition is called
strictly sequential. Moreover, if I is an empty net, then the composition is called a parallel
composition.

Given AHL-processes mp1 : K1 → AN and mp2 : K2 → AN , then (mp1,m2) are sequen-
tially composable w. r. t. (I, i1, i2) if (K1,K2) are sequentially composable w. r. t. (I, i1, i2)
and mp1 ◦ i1 = mp2 ◦ i2. In this case also the composition of AHL-processes is called (strict)
sequential or parallel, respectively. 4

4.7 Modelling and Evolution of Histories 97

Fact 4.7.6 (Sequential and Parallel Composition of AHL-Processes). Given three AHL-
process nets I, K1 and K2, and two injective AHL-net morphisms i1 : I → K1 and i2 : I → K2

with i2 ∈ MAHL, such that (K1,K2) are sequentially composable w. r. t. (I, i1, i2). Then
(K2,K1) are composable w. r. t. (I, i2, i1).

Proof. Let (K1,K2) be sequentially composable w. r. t. (I, i1, i2). We have that i2 ∈ MAHL,
and it remains to show that the four composability requirements are satisfied:

1. (No cycles) For p1, p2 ∈ PI we have i1(p1), i1(p2) ∈ OUT (K1) which means that both
of the images do not have a successor and thus i1(p1) 6<K1 i1(p2). Analogously, we have
i2(p1), i2(p2) ∈ IN(K2) which means that these images do not have a predecessor and
thus i2(p1) 6<K2 i2(p2). Hence, the induced causal relation <(i1,i2) (see Definition 4.2.4)
is empty, and therefore it is a strict partial order.

2. (Non-injective gluing) This requirement is trivially satisfied, because i1 is injective.

3. (No conflicts) For all p ∈ PI the implication i2(p) /∈ IN(K2)⇒ ii(p) ∈ IN(K1) holds,
because its premise is forbidden by sequential composability. Moreover, for all p ∈ PI
the implication i2(p) /∈ OUT (K2)⇒ i1(p) ∈ OUT (K1) holds, because its conclusion is
satisfied by sequential composability.

For instantiated AHL-processes it is shown in Fact 4.5.8 it is shown that the gluing
exists if and only if the underlying AHL-processes are composable. Moreover, as shown
in Fact 4.7.6, the parallel and sequential composition of AHL-processes is just a special
case of the composition of AHL-processes. Therefore, the notions of parallel and sequential
composition of instantiated AHL-processes follow directly from these results: A composition
of instantiated AHL-processes can be called parallel or sequential composition of instantiated
AHL-processes, if the underlying composition of AHL-process nets is parallel respectively
sequential.

Note that the composition of AHL-processes is a special case of a non-deleting direct
transformation of AHL-processes. Due to the restriction that the interface I of a sequential
composition does not have any transitions, and the requirement that for a strictly sequential
composition we also have that all places in I are exactly the input places of the posterior
net, for every AHL-process mp : K → AN , we can define a production for AHL-process nets,
such that the application of that production with a suitable match corresponds exactly to
the strictly sequential composition, where we append AHL-process mp to another one:

Definition 4.7.7 (Sequential Production for AHL-Process). Given an AHL-process mp :

K → AN , the sequential production
→
mp of mp is defined by a production for AHL-processes

→
mp: (mpI

id←− mpI
r−→ mp), where mpI : I → AN is defined by

• I = (ΣK , IN(K), ∅, ∅, ∅, ∅, typeI , AK) with typeI = typeK |IN(K),

• r : I ↪→ K ∈MAHL is an inclusion, and

• mpI = mp ◦ r.

For an AHL-process mp1 : K1 → AN , an injective morphism m : mpI → mp1 is called
sequential match for production

→
mp, if m(PI) ⊆ OUT (K1). 4

Fact 4.7.8 (Sequential Transformation of AHL-Processes). Given an AHL-process mp : K →
AN with sequential production

→
mp: (mpI

id←− mpI
r−→ mp), and AHL-process mp1 : K1 →

AN , and a sequential match m : mpI → mp1. Then there exists a direct transformation of

AHL-processes mp1

→
mp,m
=⇒ mp2.

98 4 Modelling and Evolution of Scenarios

Proof. Since the left-hand side of the production
→
mp is an identity, it suffices to show that

the gluing of mp and mp1 along r and m exists. Due to the fact that all morphisms are
Proc(AN)-morphisms, we already have compatibility of the AHL-processes, and it only
remains to show that the gluing of AHL-process nets K and K1 along r and m exists.
By definition of

→
mp we have r(PI) = IN(K), and since m is a sequential match, we also

have m(PI) ⊆ OUT (K1). This means that (K,K1) are (strictly) sequentially composable
w. r. t. (I, r,m), and thus, by Fact 4.7.6 and Fact 4.2.6, we have that the composition of

K2 = K +(I,r,m) K1 exists. Hence, there is a direct transformation mp1

→
mp,m
=⇒ mp2.

The construction of sequential productions for AHL-processes above can be extended to
a corresponding construction for instantiated AHL-processes, and we obtain similar result.

Definition 4.7.9 (Sequential Production for Instantiated AHL-Process). Given a weakly

instantiated AHL-process mp : (inst,K) → AN , the sequential production
→
mp of mp is

defined by a production for instantiated AHL-processes
→
mp: (mpI

id←− mpI
r−→ mp), where

mpI : (instI , I)→ AN is defined by

• I and r are obtained by construction of sequential production
→
mp′ for AHL-process

mp′ = I → AN (see Definition 4.7.7), and

• (instI , I) is the restriction of (inst,K) along r (see Definition 4.5.3).

For an instantiated AHL-process mp1 : (inst1,K1)→ AN , an injective morphism m : mpI →
mp1 is called sequential match for production

→
mp, if m(PI) ⊆ OUT (K1). 4

Fact 4.7.10 (Sequential Transformation of Instantiated AHL-Processes). Given an instan-

tiated AHL-process mp : (inst,K)→ AN with sequential production
→
mp: (mpI

id←− mpI
r−→

mp), and instantiated AHL-process mp1 : (inst1,K1) → AN , and a sequential match m :

mpI → mp1. Then there exists a direct transformation of instantiated AHL-processes mp1

→
mp,m
=⇒

mp2 if and only if
→
mp and m satisfy the instantiation condition.

Proof. Similar to the proof of Fact 4.7.8, we already have compatibility of the AHL-processes,
and it suffices to show that the direct transformation of the corresponding instantiated AHL-
process nets exists. According to Theorem 4.6.8, the direct transformation of instantiated
AHL-process net (inst1,K1) exists if and only if

→
mp and m satisfy the instantiation condition

and the underlying direct transformation of AHL-process nets exists. From Fact 4.7.8 we
know that the underlying direct transformation of AHL-process nets K1 ⇒ K2 always exists,
and thus, the direct transformation (inst1,K1)⇒ (inst2,K2) exists if and only if

→
mp and m

satisfy the instantiation condition.

Concept 4.7.11 (Modelling Progression of Histories and Behaviour of Users and Robots).
The progression of the history of a wave means that outgoing from the current state of the
wave, we perform more interactions, extending the history of the wave by these interactions
and leading to a new current state. This can be modelled by the sequential transformation of
the instantiated AHL-process model of the history, using a finite sequential production that
describes the newly performed interactions. The preconditions of a production is described
by its left-hand side. In a sequential production, the left-hand side consists exactly of the
input places of the process of interactions that is to be added. Moreover, since the sequen-
tial transformation requires a sequential match, it is ensured that the pre-conditions of the
sequential production are existent in the output places of the progressing history – which
describes exactly the current state of the wave, as pointed out in Concept 4.7.3.

4.7 Modelling and Evolution of Histories 99

A robot can be seen as a special kind of user that interacts with waves in an automated
way. The behaviour of a user or a robot can be modelled as a set of sequential productions for
instantiated AHL-processes. The left-hand side of the productions describe the pre-conditions
under which the user can perform the corresponding interaction, and the right-hand side
describes these interactions that are performed and added to the history of a wave. An
example of the progression of a history based on the behaviour of a robot is given in the
following Example 4.7.12. 4
Example 4.7.12 (Progression of History based on the Behaviour of a Robot). In this example
we describe the progression of the history of a wave based on the behaviour of a simple robot
that finds and corrects typographical errors (or short typos). Note that for the “installation”
of a more complex robot on a platform, it may be necessary to evolve the data or structure
of the platform. In the case of our typo robot, we extend the data type part of our running
example Platform (see Table 3.1 on page 36 for the signature and Table 3.2 on page 37 for
the algebra) by the signature Σ-Typo in Table 4.2 and corresponding algebra B in Table 4.3.

Table 4.2: Signature Σ-Typo

sorts: text, typodict, user

opns: typoText : typodict → text

correctText : typodict → text

typoRobot : → user

Table 4.3: Σ-Typo-algebra B

Atext = {a, . . . , z, A, . . . , Z, . . . }∗
Atypodict = {(teh, the), (THe, The), (adn, and), (of of, of), . . . }

typoTextA : Atypodict → Atext

(t, c) 7→ t

correctTextA : Atypodict → Atext

(t, c) 7→ c

typoRobotA = TR ∈ Auser

The extension of the data type part consists of a dictionary of commonly occurring typos
together with their correction. Moreover, the extension contains a new user constant that
identifies the typo robot in the platform. The algebras (Σ-Wave, A) and (Σ-Typo, B) can
be integrated by pushout of algebras over their common parts, leading to a new algebra
(Σ-Wave ′, A′) and also a generalised homomorphism h : (Σ-Wave, A) → (Σ-Wave ′, A′). In
the following all AHL-processes are processes over the data-image Platform ′ of the running
example Platform along h.

The behaviour of the typo robot is described by the single abstract sequential production
%typo in Figure 4.23. The left-hand side of the rule contains a wavelet and a user place, where
the user place is denoted with the constant that is bound to the typo robot in algebra A′.
Further, note that the term on the wavelet place can be evaluated in A′ to any wavelet that
contains one of the typos in the dictionary and where the typo robot is invited.For simplicity
the typo robot does a very naive detection of typos, whereas in practice it would be much
better to use for instance regular expressions for the detection of typos. The right-hand side
of the rule describes the performance of the deletion of the found typo and the insertion of
the corresponding correct text by the typo robot itself.

Now, consider the instantiated AHL-process InstTypo in Figure 4.24 that models a history
of a wave that has a typo in it. In the wave, a user A (Alice) creates a new wavelet with

100 4 Modelling and Evolution of Scenarios

remove1 : remove

user ↦ typoRobot

o ↦ insText(rest, typoText(t), p)

rng ↦ toRange(p, len(typoText(t)))

n ↦ addUser(typoRobot,w)

insert1 : insert
user ↦ typoRobot

o ↦ addUser(typoRobot,w)

txt ↦ correctText(t)

pos ↦ p

n ↦ insText(addUser(

 typoRobot,w), correctText(t),p)

w2:w=addUser(typoRobot,w)

user

o

w3:w=insText(addUser(typoRobot,w),correctText(t),p)

user

n

user

o

n

user

w1:w=insText(addUser(typoRobot,w),typoText(t),p)

u1:u=typoRobot u2:u=typoRobot u3:u=typoRobot

w1:w=

insText(addUser(

typoRobot,w),

typoText(t),p)

u1:u=typoRobotu1:u=typoRobot
L I R

w1:w=

insText(addUser(

typoRobot,w),

typoText(t),p)

Figure 4.23: Sequential production %typo of the typo robot

new1

user ↦ A

free ↦ 0

next ↦ 1

n ↦ (0,{A},e)

u1:u=A

id1:id=0

user

free

next

u2:u=A

w1:w=(0,fAg,e)

n

user user1

o

u3:u=A

w2:w=(0,fA,TRg,e)

user1

n

u4:u=TR

user2

user

o

u6:u=TR

u5:u=A

w3:w=(0,fA,TRg,PhD tehsis)

user2

user

n

id2:id=1

InstTypo

invite1
user1 ↦ A

user2 ↦ TR

o ↦ (0,{A},e)

n ↦ (0,{A,TR},e)

insert1
user ↦ A

o ↦ (0,{A,TR},e)

txt ↦ PhD tehsis

pos ↦ 0

n ↦ (0,{A,TR},PhD tehsis)

Figure 4.24: History InstTypo of a wave with a typo

id 0, then invites the typo robot to that wavelet, and afterwards she inserts the incorrectly
written text “PhD tehsys” to the wavelet. The resulting current state of the wave is that
we have the two users Alice and the typo robot, and a wavelet with id 0, containing the text
“PhD tehsys”.

There is a sequential matchm : L→ InstTypo withm(w1) = w3 andm(u1) = u6. The data
type part (mΣ,mA) with mΣ being the identity on Σ-Wave ′ and mA : TΣ-Wave′(XTypo)→ A′

induces an assignment v : XTypo → A′ by restriction of mA to the variables occurring in
%Typo . The assignment v maps the variable w to the wavelet (0, {A}, PhD sys), the variable
p to the natural number 4, and the variable t to the entry (teh, the) in the typo dictionary.20

There is a sequential transformation InstTypo ⇒ InstCorrect via %Typo , and the result is
depicted in Figure 4.25. The data-image of the right-hand side along (mΣ,mA) is appended
to the history, extending it by the deletion of the incorrect text part “teh” and insertion
of the correction “the” at the same position. Consequently, we have a new current state of
the corresponding wave, where we still have the two users Alice and the typo robot, but the
wavelet with id 0 now contains the text “PhD thesis”. Moreover, the correction of the typo

20Note that due to non-injectivity of the function addUserA′ it is also possible to map the variable w to the
wavelet (0, {A, TR}, PhD sys). However, this would not change anything in the example, since the variable w
is always used in the context addUser(typoRobot, w), having the same result for both choices of values for w.

4.8 Evolution of Scenarios Based on Platform Evolution 101

new1

user ↦ A

free ↦ 0

next ↦ 1

n ↦ (0,{A},e)

u1:u=A

id1:id=0

user

free

next

u2:u=A

w1:w=(0,fAg,e)

n

user user1

o

u3:u=A

w2:w=(0,fA,TRg,e)

user1

n

u4:u=TR

user2

user

o

u6:u=TR

u5:u=A

w3:w=(0,fA,TRg,PhD tehsis)

user2

user

n

id2:id=1

InstCorrect

invite1

user1 ↦ A

user2 ↦ TR

o ↦ (0,{A},e)

n ↦ (0,{A,TR},e)

insert1

user ↦ A

o ↦ (0,{A,TR},e)

txt ↦ PhD tehsis

pos ↦ 0

n ↦ (0,{A,TR},PhD tehsis)

remove1 : remove

user ↦ TR

o ↦ (0,{A,TR},PhD tehsis)

rng ↦ (4,3)

n ↦ (0,{A,TR},PhD sis)

insert2 : insert

user ↦ TR

o ↦ (0,{A,TR},PhD sis)

txt ↦ the

pos ↦ 4

n ↦ (0,{A,TR},PhD thesis)

w2:w=(0,{A,TR},PhD sis)

user

o

w3:w=(0,{A,TR},PhD thesis)

user

n

user

o

n

user

u2:u=TR u3:u=TR

Figure 4.25: History InstCorrect of a wave where a typo was corrected

by occurrences of the remove and insert actions is now part of the history of the wave. ♦

4.8 Evolution of Scenarios Based on Platform Evolution

In Section 3.2 we presented the rule-based transformation of AHL-nets, and in Section 4.2 and
Section 4.6 we presented the rule-based transformation of AHL-processes and instantiations.
As pointed out in Concept 3.2.16, the transformation of AHL-nets can be used to model the
evolution of communication platforms, and in Concept 4.2.13 and Concept 4.6.9 we described
how transformation of (instantiated) AHL-processes can be used to model the evolution of
abstract and concrete scenarios.

In this section we consider two ways to handle existing scenarios that correspond to a
platform that is being modified. The extension of a scenario, on the hand, means that the
unchanged scenario is still valid in the new modified platform. On the other hand, the
scenario evolution based on platform is a modification of the scenario, where all changes of
the platform are applied correspondingly to the scenario.

4.8.1 Extension of Scenarios

As mentioned in Section 2.3, it is possible that a communication platform is modified at
runtime and there may already exist some scenarios that correspond to the old version of the
platform. So we have the case that there is an AHL-process wave : Wave → Platform and
a direct transformation of AHL-nets Platform ⇒ Platform ′. In this section we show under
which conditions the scenario wave can be extended to a scenario wave ′ : Wave → Platform ′

of the new platform.
We regard wave ′ as an extension of wave if the two processes “agree” in the context net

of the direct transformation Platform ⇒ Platform ′ in the following sense.

Definition 4.8.1 (Extension of AHL-Process based on AHL-Net Transformation). Given an

AHL-net AN and an AHL-process mp : K → AN . Let AN
%,m⇒ AN ′ be a direct transfor-

mation with pushouts (1) and (2) in AHLNets as depicted in Figure 4.26. Then we call
mp′ : K → AN ′ an extension of mp if there exists mp0 : K → AN0 with f ◦mp0 = mp and
g ◦mp0 = mp′. 4

Remark 4.8.2 (Extension of Instantiated AHL-Processes). Note that we do not explicitly
consider instantiated AHL-processes in this section. However, the extension of an AHL-
process as defined above leaves the domain of the process unchanged, and thus, an instantiated

102 4 Modelling and Evolution of Scenarios

L

(1)m
��

I

k��

loo r // R

n��(2)

AN AN0
f

oo
g

// AN ′

K
mp

iiSSSSSSSSSSSSS
mp0

OO

mp′

55kkkkkkkkkkkkk

Figure 4.26: Extension of AHL-Process

AHL-process (inst,wave) can be extended to to an instantiated AHL-process (inst,wave ′),
if and only if AHL-process wave can be extended to wave ′. 4

The following extension condition is a sufficient and necessary condition for the extension
mp′ of an AHL-process mp based on an AHL-net transformation. In order to satisfy the
extension condition, the transformation must not delete any place or transition that have an
occurrence in the AHL-process mp.

Definition 4.8.3 (Extension Condition). Given an AHL-net AN , an AHL-process mp : K →
AN and a direct transformation AN

%,m⇒ AN ′. We define the the set PP of process points as

PP = {x ∈ PL | ∃p ∈ PK : mpP (p) = mP (x)} ∪ {x ∈ TL | ∃t ∈ TK : mpT (t) = mT (x)}

We say that mp and %,m satisfy the extension condition if all process points are gluing points
(see Definition 3.2.13), i. e. PP ⊆ GP . 4

Theorem 4.8.4 (Extension of AHL-Process based on AHL-Net Transformation). Given an

AHL-net AN , an AHL-process mp : K → AN and a direct transformation AN
%,m⇒ AN ′ with

pushouts (1) and (2) in AHLNets as depicted in Figure 4.26. There exists an extension
mp′ : K → AN ′ of mp if and only if mp and %,m satisfy the extension condition.

Proof-Idea. If the extension condition is satisfied, it can be explicitly shown that there exists
a well-defined morphism mp0 : K → AN0 defined by mp0 = f−1 ◦mp. Then the extension
mp′ : K → AN ′ is obtained by composition mp′ = g ◦mp0, satisfying the required properties.
Vice versa, the existence of an extension mp′ : K → AN ′ implies the existence of a suitable
morphism mp0 : K → AN0 which can be used to show that all process points are gluing
points. For a detailed proof see Section B.10 on page 253.

Concept 4.8.5 (Extension of Scenarios based on Platform Evolution). As pointed out in
Section 2.4, due to the fact that platforms can evolve, we need a way to check if scenarios of
the original platform are still in compliance with the result of the modification. Using our
results from Theorem 4.8.4, we know that this can checked using the extension condition.
If the extension condition is satisfied for a given scenario and a platform evolution, the
scenario can be extended to a new scenario complying to the result of the platform evolution.
According to Remark 4.8.2 this works for abstract scenarios as well as for concrete scenarios,
because the extension of an instantiated AHL-processes does not change the corresponding
AHL-process net or instantiation, and therefore, it coincides exactly with the extension of
the corresponding AHL-process. 4

Example 4.8.6 (Extension of Scenarios based on Platform Evolution). Figure 4.27 shows
an AHL-process w : W → Platform of our example platform presented in Example 3.1.9. In
Example 3.2.17 we presented a direct transformation Platform ⇒ Platform ′, using production
% shown in Figure 3.3 with inclusion match m. Considering this AHL-net transformation,

4.8 Evolution of Scenarios Based on Platform Evolution 103

our set of process points PP contains all elements that have an occurrence in W . So, we
have PP = {u,w}. According to Definition 3.2.13, the set of gluing points is GP = {u,w},
because u and w are preserved by %. Hence, we have PP ⊆ GP which means that w can be
extended to a new AHL-process w′ : W → Platform ′. The graphical representation of the
new AHL-process corresponds exactly to the one depicted in Figure 4.27, due to the fact that
the transformation Platform ⇒ Platform ′ did not involve any renaming of elements.

invite1

: invite user

new1

: new wavelet

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user

w2 : w

u4 : u

user2
user1

o

u5 : u

user2

user1

n

new2

: new wavelet

free

id3 : id

next

u7 : u

user

user w3 : w

n

id2 : id

W

u6 : u

Figure 4.27: Extension of AHL-process

In Example 4.1.8 we introduced another AHL-process wave : Wave → Platform that is
shown in Figure 4.1 on page 60. Since the AHL-process wave also contains occurrences of the
actions insert and remove which are matched by m, the process points regarding this scenario
are given by PP = {u,w, insert , remove}. This means that we have PP 6⊆ GP = {u,w} and
hence, the scenario modelled by AHL-process wave cannot be extended to a scenario of the
result of the platform evolution Platform ′. ♦

4.8.2 Abstract Scenario Evolution Based on Platform Evolution

In [GE12a] we presented a general construction for the modification of scenarios based on a
special kind of platform evolution, replacing one single action at a time. In this section we
present a more general construction that allows for the replacement of multiple actions at a
time. In order to formulate the reconfiguration of AHL-processes, we need productions and
the direct transformation of AHL-processes.

Definition 4.8.7 (Transformation of AHL-Processes). A production for AHL-processes is a

span (%∗, %) : mpL
(l∗,l)←− mpI

(r∗,r)−→ mpR of componentwise injective AHLProcs-morphisms

with isomorphic data type parts as shown in the top of Figure 4.28b. We call %∗ : L∗
l∗← I∗

r∗→
R∗ the process part and % : L

l← I
r→ R the system part of (%∗, %).

Given a production % : mpL
(l∗,l)←− mpI

(r∗,r)−→ mpR for AHL-processes and a (match) mor-

phism (m∗,m) : mpL → mp. Then a direct transformation of AHL-processes mp
(%∗,%),(m∗,m)

=⇒
mp′ is given by the commuting cube in Figure 4.28b where the front and back faces are direct
transformations of AHL-nets and AHL-process nets, respectively. 4

104 4 Modelling and Evolution of Scenarios

K

mp

��

%∗,m∗ +3 K ′

mp′

��

(%∗,%),(m∗,m) +3

AN %,m
+3 AN ′

(a) Transformation of AHL-
process

L∗

m∗

��

mpL
##HHHH I∗

��

l∗oo r∗ //
mpI
$$JJJJJ R∗

mpR
$$IIII

��
L

m

��

I
loo r //

��

R

��
K

mp ""
EEEE K0

mp0
##GGG

oo // K ′

mp′ ##
GGG

AN AN0
oo // AN ′

(b) Commuting Cube

Figure 4.28: Transformation of AHL-process

In the following we show how to construct productions for processes from a special type of
production for AHL-nets, called action evolution. An action evolution is a direct transforma-
tion of AHL-nets that uses a special kind of production which in addition to the production for
AHL-nets consists of a pattern describing the changes that should be made in corresponding
processes in order to keep them consistent with the changes made in the system.

Definition 4.8.8 (Action Evolution Pattern for AHL-Processes). A production %∗ : L∗
l∗←

I∗
r∗→ R∗ for AHL-process nets is called a single action evolution pattern for AHL-processes

if it satisfies the following:

1. (Single Action) L∗ contains only one transition and its environment, i. e. TL∗ = {t%∗}
and for all p ∈ PL∗ : p ∈ •t%∗ ∪ t%∗•,

2. (Preserved Environment) %∗ is non-deleting on places, i. e. PL∗ = l∗P (PI∗), and

3. (Preserved Input and Output) % preserves input and output places, i. e. for all p ∈ PI∗ :
l∗(p) ∈ IN(L∗)⇒ r∗(p) ∈ IN(R∗) and l∗(p) ∈ OUT (L∗)⇒ r∗(p) ∈ OUT (R∗).

Moreover, a production % for AHL-process nets is called a (multi) action evolution pattern for
AHL-processes, if it is a parallel production (i. e. the componentwise coproduct) %∗ =

∐
i∈I %

∗
i

of single action evolution patterns for AHL-processes (%∗i)i∈I , where I is a finite index set. 4

Now, an action evolution is a special kind of transformation of AHL-nets, where the
production that is used for the transformation is required to be adequately equipped with
an action evolution pattern. Adequate means that for each transition (action) that is in the
left-hand side of the system part of the production, the action evolution pattern consists
of exactly one corresponding single action evolution pattern that describes the modification
of occurrences of the action in question. Moreover, it is required that a pattern removes
occurrences of actions if and only if the corresponding action is removed in the system part
by the production. Finally, for the match that is used, we require that it is injective on
transitions.

Definition 4.8.9 (Action Evolution). A production (%∗, %) for AHL-processes as shown in
Figure 4.29 is called a production for action evolution if

1. (Action Evolution Pattern) the process part %∗ is an action evolution pattern for AHL-
processes,

2. (Complete and Consistent Patterns) the transition-component mpL,T of the left-hand
side is a bijection, and

3. (Consistent Removal) diagram (1) is a pullback.

4.8 Evolution of Scenarios Based on Platform Evolution 105

Given a production for action evolution (%∗, %), an AHL-net AN and a transition-injective

match m : L→ AN (i. e. mT is injective), then a direct transformation AN
%,m
=⇒ AN ′ is called

action evolution with pattern %∗.

L∗

(1)mpL ��

I∗

mpI��

l∗oo r∗ // R∗

mpR��(2)

L I
l

oo
r

// R

Figure 4.29: Production for action evolution

4

Example 4.8.10 (Action Evolution). A production for action evolution (%∗, %) is depicted
in Figure 4.30. The system part % of the production is exactly the production for platform
evolution presented in Example 3.2.3, describing the replacement of two actions insert and
mathitremove by a new action modify copy that allows the insertion and removal of text
while working on a copy of a wavelet.

insert

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

remove

rng: range

invited(o, user) = true

n = remText(o, rng)

RL

w : wavelet

u : user

user

user

n

o

user
user

o
n

modify copy

txt: text, rng: range

invited(o,user) = true

r = remText(o,rng)

n = insText(r,txt,start(rng))

useruser

o 7 no

w : wavelet

u : user

I

l r

u : user

w : wavelet

w1 : w

u1 : u

o
l* r*

L* I*

insert

: insert

remove

: remove

w3 : w

u3 : u

o

w2 : w

u2 : u

w4 : w

u4 : u

user

n

n

w1 : w

u1 : u

w3 : w

u3 : u

w2 : w

u2 : u

w4 : w

u4 : u

w1 : w

u1 : u

o

R*

modify1

: modify copy

modify2

: modify copy

w3 : w

u3 : u

o

w2 : w

u2 : u

w4 : w

u4 : u

n

n

w5 : w

o

w6 : w

o

mpL mpI mpR

L1
*

L2
* R2

*

R1
*I1

*

I2
*

user

user

user

user

user user

user

Figure 4.30: Production for action evolution (%∗, %)

The process part of the production is an action evolution pattern containing two single
action evolution patterns – one for the action insert and one for the action remove. Both of
these patterns specify the removal of the original action occurrence and the introduction of

106 4 Modelling and Evolution of Scenarios

a new occurrence of the new modify copy action, connected to the preserved environment of
the removed occurrence.

Note that the illustration of the production %∗ is slightly inaccurate in the following sense:
The parallel production %∗ is constructed as componentwise coproduct of AHL-process nets
which according to Fact A.3.6 is constructed as disjoint union of AHL-nets. According to
Definition A.3.1, the disjoint union of AHL-nets has as data type part the coproduct of
the data type parts of all its elements. Assuming that both of the single action evolution
patterns %∗1 and %∗2 have the signature Σ-Wave as signature part, the parallel production has
Σ-Wave + Σ-Wave as signature part. Therefore, for instance, instead of the variable user
occurring in the environment of the transitions, there are actually copies (user, 1) in the
environment of insert and modify1, and (user, 2) in the environment of remove and modify2.
However, in the illustration we omit these indices for a better readability.

Considering the platform evolution presented in Example 3.2.17, we have an action evo-
lution Platform

%,m
=⇒ Platform ′ with pattern %∗. Note that it is possible to specify different

patterns. For instance, it is possible to specify that one or both of the actions is not replaced
but rather removed. Further note that the single action requirement in Definition 4.8.8 is
only required for the left-hand side of each of the single action evolution patterns, but not for
the right-hand side. Therefore, an occurrence of a single action can be replaced by a complex
process consisting of a multitude of actions. If we want to use actions that are already present
in the original AHL-net, it is necessary to include these actions in the left-hand side, interface
and right-hand side of the system part of the production. ♦

Remark 4.8.11 (Single Action Evolution). Note that each single action evolution pattern %
can also be considered as multi action evolution pattern, because it can be considered as
coproduct % =

∐
i∈I %i with I = {0} and %0 = %.

In [GE12a] we defined a construction for the transformation of scenarios based on single
action evolutions of platforms. An important restriction of that construction was the require-
ment that the evolution of the platform can only change one single action. Since we aim to
replace two actions insert and remove in our example above, it is not possible to use that
construction. Moreover, the scenario evolution based on single action evolution only allows to
insert occurrences of actions in the scenario that have been newly introduced to the platform.
Therefore, even an iterated application of that construction cannot be used for our example,
since both of the actions should be replaced by the same action modify copy which would
already exist after the first iteration. 4

In order to determine how the action evolution pattern of a production for action evolution
has to be used for the evolution of a corresponding AHL-process net, we have to make a choice
of matches as defined in the following. Note, however, that in a “proper” high-level net with a
sufficiently complex data type part, like our example in Figure 3.2, it is possible to determine
the “role” of each place by using distinctive term inscriptions for different places in the pre
respectively post domain of a transition. In that case there is only one possible choice of
matches for the elements of an action evolution to their occurrences in a corresponding AHL-
process net, and therefore, there is only one possible interpretation for the handling of these
occurrences, provided that the match has at least an injective signature part.

Definition 4.8.12 (Action Occurrences and Choices of Matches). Given an action evolution

AN
%,m
=⇒ AN ′ with pattern %∗ =

∐
i∈I %

∗
i , and a process mp : K → AN . The family

occ = (occi)i∈I of all action occurrences is defined by

occi = {t ∈ TK | mp(t) = m ◦mpL ◦ ιLi (t%∗i)}

4.8 Evolution of Scenarios Based on Platform Evolution 107

for all i ∈ I, where ιLi is the coproduct injection ιLi : L∗i → L∗ and t%∗i is the single transition
in TL∗i (see item 1 in Definition 4.8.8).

An AHL-morphism mi,o : L∗i → K is called match for occurrence o if mi,o(t%∗i) = o and

mi,o is compatible with m and mp, i. e. mp ◦mi,o = m ◦mpL ◦ ιLi .
A choice of matches for occurrences is a family (mi,o : L∗i → K)i∈I,o∈occi such that for

every i ∈ I and o ∈ occi we have that mi,o is a match for occurrence o.

L∗i
ιLi //

mi,o

��

L∗
mpL // L

m

��
K mp

// AN

4

Remark 4.8.13 (Set of Action Occurrences). Due to the fact that each single action evo-
lution pattern contains exactly one single transition, the set occi of action occurrences in
Definition 4.8.12 is isomorphic to the set

{(t, t%∗i) ∈ TK × TL∗i | mp(t) = m ◦mpL ◦ ιLi (t%i)}

This means that according to the standard construction of pullbacks in Sets and due to
uniqueness of pullbacks up to isomorphism, the set of occurrences can be constructed as
pullback over mpT and mT ◦mpL,T ◦ ιLi,T in Sets. 4

Theorem 4.8.14 (Process Evolution based on Action Evolution). Given an action evolution

AN
%,m
=⇒ AN ′ with pattern %∗ =

∐
i∈I %

∗
i , and a process mp : K → AN .

Then for every choice of matches for occurrences (mi,o : L∗i → K)i∈I,o∈occi (see Defini-
tion 4.8.12) there exists a production (%+, %) for AHL-processes and a direct transformation

mp
(%+,%)
=⇒ mp′ as depicted in Figure 4.31. In this case, mp

(%+,%)
=⇒ mp′ is called process evolution

of mp based on action evolution AN
%,m
=⇒ AN ′ with pattern %∗.

L∗i

mi,o

((

µLi,o
��

ιLi
SSSSS

))SSS
I∗i

��

l∗ioo
r∗i //

ιIi
SSSSSS

))SSS
R∗i

ιRi
SSSSS

))SSS

��

%∗i_ _ _ _ _ _ _ _ _ _ _

L∗

mpL

��

I∗
l∗oo r∗ //

mpI

��

R∗

mpR

��

%∗_ _ _ _ _ _

L+

m+

��

mp+
L))

I+

��

l+oo r+
//

mp+
I))

R+

mp+
R))

��

%+_ _ _ _ _ _ _ _ _ _ _

L
m

��

I
loo r //

k

��

R
n

��

%_ _ _ _ _ _ _

K
mp

SSSS

))SSS
K0

mp0))

f ′oo g′ // K ′
mp′

))
AN AN0

f
oo

g
// AN ′

Figure 4.31: Process evolution based on action evolution

Construction and Proof-Idea.

1. The action evolution pattern %+ is constructed as parallel production (componentwise

coproduct) %+ = L+ l+← I+ r+

→ R+ =
∐
i∈I

∐
o∈occi %

∗
i with coproduct injections µXi,o :

X∗i → X+ for X ∈ {L, I,R}, which together with morphisms mpX ◦ ιXi induce unique

morphisms mp+
X : X+ → X such that (%+, %) = mp+

L

(l+,l)← mp+
I

(r+,r)→ mp+
R is a

production for AHL-processes (see Definition 4.8.7).

108 4 Modelling and Evolution of Scenarios

2. A match m+ is induced by coproduct L+ =
∐
i∈I

∐
o∈occi L

∗
i and matches mi,o.

3. Then, using Lemma A.7.3, we obtain a direct transformation K
%+,m+

=⇒ K ′ of AHL-
process nets in the lower back of Figure 4.31.

4. The process mp0 : K0 → AN0 can be obtained by construction of K0 as pullback in the
left bottom of Figure 4.31, and the process mp′ : K ′ → AN ′ is induced by universal
property of the pushout in the lower right back of the cube.

For the detailed proof see Section B.11 on page 254.

Remark 4.8.15 (Process Evolution based on Action Evolution). The application of production
%+ with match m+ realises exactly the changes described by the single action evolution
patterns %∗i on every corresponding occurrence in the AHL-process. 4

Concept 4.8.16 (Abstract Scenario Evolution based on Platform Evolution).

In Concept 4.8.5 we already considered existing abstract scenarios of a platform that is being
modified. In the case that the extension condition is satisfied by the AHL-process modelling
the given scenario, the scenario can be extended to the new modified platform. An extension
of a scenario means that the unchanged scenario can also be considered as a scenario of
the new platform as it is. Since it is possible that the extension condition is not satisfied,
we need a way to adapt the scenario in order to make it again consistent with the changes
that have been made to the corresponding platform. This can be done using the process
evolution based on action evolution in Theorem 4.8.14, if the evolution of the platform only
involves changes of actions. For this purpose, it is necessary that the production that is used
for evolution of the platform is equipped with additional patterns that abstractly describe
corresponding changes to the occurrences of each action. Given a choice of matches for all
action occurrences, these patterns are then applied to the scenario, modifying the scenario
according to the modification of the platform, and leading to a new scenario consistent with
the new platform. An example of the evolution of abstract scenarios based on platform
evolution is shown in Example 4.8.17. 4

Example 4.8.17 (Abstract Scenario Evolution based on Platform Evolution). As mentioned

in Example 4.8.10, the direct transformation Platform
%,m
=⇒ Platform ′ in Example 3.2.17 can

be considered as action evolution with pattern %∗, where the action evolution pattern (%∗, %)
is depicted in Figure 4.30 on page 105.

Now, consider the AHL-process wave : Wave → Platform in Figure 4.1 on page 60,
modelling a scenario of the original platform of the action evolution. For the set of action
occurrences regarding the action evolution and scenario, we have two occurrences of the
insert action and one occurrence of the remove action. This means that we have occ1 =
{insert1, insert2} and occ2 = {remove1} as the first pattern contained in %∗ is a pattern
for the insert action, and the second pattern describes changes to occurrences of the remove
action.

Since the single components %∗i of %∗ and the AHL-process Wave share the same signature
part Σ-Wave, for each index i ∈ 1, 2 and each occurrence o ∈ occi there is exactly one choice
of matches mi,o : L∗i → Wave into the scenario, because the matching of each transition is
completely determined by the different arc inscriptions.

Following the construction in Theorem 4.8.14, we obtain a production %+ as depicted
in Figure 4.32. For each index of a single action evolution pattern and each occurrence of
that pattern, the production %+ consists of a copy of the corresponding pattern. Hence, %+

4.8 Evolution of Scenarios Based on Platform Evolution 109

w5 : w

u7 : u

user

o

l+ r+

insert2

: insert

remove1

: remove

w3 : w

u6 : u

user

o

w6 : w

u9 : u

w4 : w

u7 : u

user

n

n

w5 : w

u7 : u

w3 : w

u6 : u

w6 : w

u9 : u

w4 : w

u7 : u

w5 : w

u7 : u

user

o

modify2

: modify copy

modify3

: modify copy

w3 : w

u6 : u

user

o

w6 : w

u9 : u

w4 : w

u7 : u

n

n

w6' : w

o

w4' : w

o
user

user

user

w1 : w

u2 : u

user

o

L+ I+

insert1

: insert

w2 : w

u3 : u

user

n
w1 : w

u2 : u

w2 : w

u3 : u

w1 : w

u2 : u

user

o

R+

modify1

: modify copy

w2 : w

u3 : u

n

w2' : w

o
user

Figure 4.32: Production %+ for abstract scenario evolution based on action evolution

contains two copies of the insert pattern and one copy of the remove pattern. For illustration
of the induced match m+ we renamed all elements in %+ such that m+ becomes an inclusion.

From Theorem 4.8.14 we know that %+ is applicable with match m+, leading to a direct

transformation of AHL-processes wave
(%+,%),(m+,m)

=⇒ wave. The result wave ′ of the transfor-
mation is shown in Figure 4.33.

modify2

: modify copy

invite1

: invite user

new1

: new wavelet

modify1

: modify copy

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user user

o

u3 : u

w2 : w

user

n

u4 : u

user2
user1

o

u6 : uu5 : u

w3 : w

user2
user1

n

user

o

w4 : w

n

user

new2

: new wavelet

free

id3 : id

next

u8 : u

user

user

modify3

: modify copy

user

u9 : uw5 : w

n o

user

w6 : w

n

id2 : id

u7 : u

Wave'

w7 : w

o

w8 : w

o

w9 : w

o

Figure 4.33: Scenario wave ′

In the scenario wave ′ the two occurrences of action insert and the occurrence of action
remove have been replaced by new occurrences of the newly created action modify copy . The
occurrences are connected to the places that formed the environments of the old action occur-
rences, as this was specified by the action evolution pattern (%∗, %). Hence, the replacement
of the two actions insert and remove by the action modify copy on the platform layer has
been successfully transferred to the abstract scenario layer. ♦

110 4 Modelling and Evolution of Scenarios

4.8.3 Concrete Scenario Evolution Based on Platform Evolution

In the previous Subsection 4.8.2, we presented an approach to transfer changes to actions of
a platform also to existing abstract scenarios of that platform, leading to a new consistent
scenario of the resulting platform, where all occurrences of modified actions are modified as
well. In this subsection we extend our approach to allow the same also for concrete scenarios.

Remark 4.8.18. Note that in this subsection we make extensive use of the short notation for
instantiated AHL-morphisms introduced in Remark 4.3.4, i. e. we often write mp : InstK →
AN for an instantiated AHL-process (inst,mp), where InstK = (inst,K) is an instantiated
AHL-process net and mp : K → AN is an AHL-process. 4

Definition 4.8.19 (Transformation of Instantiated AHL-Processes). A production for in-

stantiated AHL-processes is a span (%∗, %) : mpL
(l∗,l)←− mpI

(r∗,r)−→ mpR of injective ProcInst-
morphisms with isomorphic data type parts as shown in the top of Figure 4.28b. We call

%∗ : Inst∗L
l∗← Inst∗I

r∗→ Inst∗R the process part and % : L
l← I

r→ R the system part of (%∗, %).

Given a production % : mpL
(l∗,l)←− mpI

(r∗,r)−→ mpR for instantiated AHL-processes and a
(match) morphism (m∗,m) : mpL → mp. Then a direct transformation of instantiated AHL-

processes mp
(%∗,%),(m∗,m)

=⇒ mp′ is given by the commuting double-cube in Figure 4.34b where
the front and back faces are direct transformations of AHL-nets and instantiated AHL-process
nets, respectively. 4

InstK

mp

��

%∗,m∗ +3 Inst′K

mp′

��

(%∗,%),(m∗,m) +3

AN %,m
+3 AN ′

(a) Transformation of instanti-
ated AHL-process

Inst∗L

m∗

��

mpL
%%LLLL

Inst∗I

��

l∗oo r∗ //
mpI
&&MMMMM

Inst∗R mpR
&&MMMM

��
L

m

��

I
loo r //

��

R

��
InstK

mp %%KKKK InstK0

mp0
&&MMM

oo // InstK′

mp′ &&
LLLL

AN AN0
oo // AN ′

(b) Commuting Cube

Figure 4.34: Transformation of instantiated AHL-process

Definition 4.8.20 (Action Evolution Pattern for Instantiated AHL-Processes). An abstract

production %∗ : InstL∗
l∗← InstI∗

r∗→ InstR∗ for instantiated AHL-process nets is called a
single action evolution pattern for instantiated AHL-processes if the underlying production

PNet(%∗) : L∗
l∗← I∗

r∗→ R∗ for AHL-process nets is a single action evolution pattern for
AHL-processes (see Definition 4.8.8).

Moreover, a production %∗ for instantiated AHL-process nets is called a (multi) action
evolution pattern for instantiated AHL-processes, if it is a parallel production (i. e. the com-
ponentwise coproduct) %∗ =

∐
i∈I %

∗
i of single action evolution patterns for instantiated AHL-

processes (%∗i)i∈I , where I is a finite index set. 4

Corollary 4.8.21 (Action Evolution Pattern is Abstract Production). Every (multi) action
evolution pattern for instantiated AHL-processes is an abstract production.

Proof. Every single action evolution pattern for instantiated AHL-processes is by definition
an abstract production. So, since a (multi) action evolution pattern is defined as parallel
production, Lemma A.3.10 implies that also (multi) action evolution patterns are abstract.

4.8 Evolution of Scenarios Based on Platform Evolution 111

Definition 4.8.22 (Action Evolution with Instantiated Pattern). A production (%∗, %) for
instantiated AHL-processes as shown in Figure 4.35 is called a production for action evolution
with instantiated pattern if the underlying production for AHL-processes Proc(%∗, %) is a
production for action evolution (see Definition 4.8.9).

Given a production for action evolution (%∗, %) with instantiated pattern, an AHL-net
AN and a transition-injective match m : L → AN (i. e. mT is injective), then a direct

transformation AN
%,m
=⇒ AN ′ is called action evolution with instantiated pattern %∗.

Inst∗L
(1)mpL ��

Inst∗I
mpI��

l∗oo r∗ // Inst∗R
mpR��

(2)

L I
l

oo
r

// R

Figure 4.35: Production for action evolution

4

Example 4.8.23 (Action Evolution with Instantiated Pattern). A production (%∗, %) for
action evolution with instantiated pattern is shown in Figure 4.36. Note that the underly-
ing production for AHL-processes is exactly the production for action evolution in Exam-
ple 4.8.10. In this example, the action evolution pattern is instantiated with abstract values
and transition assignments with respect to a term algebra. As already discussed in Exam-
ple 4.8.10, the parallel production %∗ is constructed as componentwise coproduct of %∗1 and %∗2
which means that we also have coproducts of the data type part. This does not only apply
to the signature, but also to the algebra – which in the case of abstract productions %∗1 and
%∗2 are term algebras. In this example we choose the variable families X%∗1

and X%∗2
in the

way that for each sort in the signature the corresponding sets are disjoint. Therefore, we do
not need to annotate the elements with indices, because the coproduct (disjoint union) of the
variable sets are isomorphic to the respective union.

Further note that all components of the production % for the platform transformation is
equipped with our Σ-Wave in Table 3.1 on page 36 and algebra A in Table 3.2 on page 37.
So despite the fact that the production % has an abstract data type part (i. e. term algebras),
the interpretation of the abstract data values is clear, due to the generalised homomorphism
(mpL,Σ,mpL,A) that is the data type part of AHL-morphism mpL, and also the data type
parts of mpI , and mpR.

In the instantiated pattern, we specify that the new occurrences of action modify copy
do exactly the same as the original occurrences of insert and remove, respectively, that are
replaced by it. The single action evolution pattern %∗1 describes that an insertion of text t
at position p by user a in a wavelet v is replaced by a modification by the same user in the
same wavelet, where we replace the range (p, zero) with text t. Considering the equations in
transition modify copy , this means that we remove an empty range of length zero, and insert
the text t at position p. So the only difference to the replaced action occurrence is that we
also produce a copy of the original wavelet.

The single action evolution pattern %∗2 describes that the deletion of text at range rng
by user b in a wavelet x is replaced by a modification by the same user in the same wavelet,
where we replace the range rng with an empty text (using the empty string ε). So also in
the case of the replacement of remove with modify2, we keep almost the same semantics with
the only difference that we produce a copy of the original wavelet.

Considering this production (%∗, %) for action evolution with instantiated pattern and the
platform evolution in Example 3.2.17 using the system part % of our production, the platform

112 4 Modelling and Evolution of Scenarios

insert

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

remove

rng: range

invited(o, user) = true

n = remText(o, rng)

RL

w : wavelet

u : user

user

user

n

o

user
user

o
n

modify copy

txt: text, rng: range

invited(o,user) = true

r = remText(o,rng)

n = insText(r,txt,start(rng))

useruser

o 7 no

w : wavelet

u : user

I

l r

u : user

w : wavelet

w1:w=v

u1:u=a

o

l* r*

L* I*

insert

:insert

user ↦ a

o ↦ v

txt ↦ t

pos ↦ p

n ↦ w

remove

:remove

user ↦ b

o ↦ x

rng ↦ r

n ↦ yw3:w=x

u3:u=b

o

w2:w=w

u2:u=a

w4:w=y

u4:u=b

user

n

n

w1:w=v

u1:u=a

w3:w=x

u3:u=b

w2:w=w

u2:u=a

w4:w=y

u4:u=b

w1:w=v

u1:u=a

o

R*

modify1

:modify copy

user ↦ a

o ↦ v

txt ↦ t

rng ↦

 toRange(p,zero)

n ↦ w

w3:w=x

u3:u=b

o

w2:w=w

u2:u=a

w4:w=y

u4:u=b

n

n

w5:w=v

o

w6:w=x

o

mpL mpI mpR

L1
*

L2
* R2

*

R1
*I1

*

I2
*

user

user

user
modify2

:modify copy

user ↦ b

o ↦ x

txt ↦ empty

rng ↦ r

n ↦ y

user
user

user
user

Inst

Inst

Inst

Inst

Inst

Inst

Inst Inst Inst

Figure 4.36: Production (%∗, %) for action evolution with instantiated pattern

evolution Platform
%,m
=⇒ Platform ′ can be seen as an action evolution with instantiated pattern

%∗. An example of the application of the pattern is given in Example 4.8.27. ♦

Definition 4.8.24 (Choice of Matches for Instantiated Pattern). Given an action evolution

AN
%,m
=⇒ AN ′ with instantiated pattern %∗ =

∐
i∈I %

∗
i , and an instantiated process mp :

InstK → AN .

A weak instantiation morphism mi,o : InstL∗i → InstK is called match for occurrence
o ∈ occi (see Definition 4.8.12) if mi,o(t%i) = o and mi,o is compatible with m and mp, i. e.
mp ◦mi,o = m ◦mpL ◦ ιLi .

A choice of matches for occurrences is a family (mi,o : InstL∗i → InstK)i∈I,o∈occi such
that for every i ∈ I and o ∈ occi we have that mi,o is a match for occurrence o. 4

Theorem 4.8.25 (Evolution of Instantiated Processes based on Action Evolution). Given

an action evolution AN
%,m
=⇒ AN ′ with instantiated pattern %∗ =

∐
i∈I %

∗
i , and an instantiated

process mp : InstK → AN .

Then for every choice of matches for occurrences (mi,o : InstL∗i → InstK)i∈I,o∈occi
such that %∗i and mi,o satisfy the instantiation condition for abstract productions (see Def-
inition 4.6.7), there exists a production (%+, %) and a direct transformation of instantiated

4.8 Evolution of Scenarios Based on Platform Evolution 113

AHL-processes mp
(%+,%)
=⇒ mp′ as depicted in Figure 4.31. In this case, mp

(%+,%)
=⇒ mp′ is called

process evolution of mp based on action evolution AN
%,m
=⇒ AN ′ with instantiated pattern %∗.

InstL∗i

mi,o

��

µLi,o

��

ιLi
UUUUU

**UU
InstI∗i

��

l∗ioo
r∗i //

ιIi
UUUUU

**UU
InstR∗i

ιRi
UUUUU

**UU

��
InstL∗

mpL

��

InstI∗
l∗oo r∗ //

mpI

��

InstR∗
mpR

��
InstL+

m+

��

mp+
L

VVVVV

**VVV

InstI+

��

l+oo r+
//

mp+
I

VVVV

**VVVV
InstR+

mp+
R

VVVV

**VVV

��
L
m

��

I
loo r //

k

��

R
n

��
InstK

mp
UUU

**UUUUU
InstK0

mp0
UUU

**UUUU

f ′oo g′ // InstK′
mp′

**UUUUUU

AN AN0
f

oo
g

// AN ′

Figure 4.37: Evolution of instantiated processes based on action evolution

Construction and proof.

1. The production %+ is constructed as coproduct %+ =
∐
i∈I

∐
o∈occi %

∗
i . Then, by

Fact A.3.8 we have that Net(%+) =
∐
i∈I

∐
o∈occi Net(%

∗
i) which means that the AHL-

net part of %+ is constructed similar to the corresponding construction in Theorem 4.8.14.

2. Accordingly, we obtain unique morphisms m+, mp+
L , mp+

I and mp+
R, induced by coprod-

ucts InstL+ , InstI+ and InstR+ , that coincide with the corresponding AHL-morphisms
in the construction in Theorem 4.8.14.

3. The construction for all missing AHL-net parts in the cube is shown in Theorem 4.8.14.

4. The corresponding constructions for weak instantiations is obtained using Fact A.5.11,

leading to a direct transformation of weakly instantiated AHL-processes mp
%+,m+

=⇒ mp′.

5. Since all single action evolution patterns %∗i with matches mi,o (i ∈ I, o ∈ occi) are
required to satisfy the instantiation condition, by Fact A.3.12 we have that also the par-
allel production %+ with induced match m+ satisfy the instantiation condition. Hence,

using Theorem 4.6.8 we have that InstK
%+,m+

=⇒ InstK′ is a direct transformation of con-

crete instantiations, and thus, mp
%+,m+

=⇒ mp′ is a direct transformation of instantiated
AHL-processes.

Concept 4.8.26 (Concrete Scenario Evolution based on Platform Evolution). In Con-
cept 4.8.16 we already discussed the evolution of abstract scenarios based on the evolution of
platforms. For the case that we have concrete scenarios of the original platform of a platform
evolution, it does not suffice to transfer the evolution of the AHL-net model to the corre-
sponding AHL-process model, but we also need a way to “translate” also the data values
and assignments of the corresponding instantiation. This can be done using the evolution of
instantiated processes based on action evolution in Theorem 4.8.25, if the evolution of the
platform only involves changes of actions. For this purpose, it is required that the production
that is used for the platform evolution is also equipped with additional information regarding
the occurrences of actions in an instantiated AHL-process. Given a choice of matches for
all action occurrences, these patterns are then applied to the concrete scenario, modifying
the scenario according to the modification of the platform, and leading to a new scenario

114 4 Modelling and Evolution of Scenarios

consistent with the new platform. Note that in contrast to the evolution of abstract sce-
narios, the evolution of concrete scenarios based on platform evolution additionally requires
that each pattern and every corresponding match in the given choice of matches satisfy the
instantiation condition. An example of the evolution of concrete scenarios based on platform
evolution is shown in Example 4.8.27. 4

Example 4.8.27 (Concrete Scenario Evolution based on Platform Evolution). As mentioned
in Example 4.8.23, considering the production (%∗, %) for action evolution with instantiated
pattern in Figure 4.36, and the platform evolution in Example 3.2.17 on page 45 using the
system part % of our production, the platform evolution Platform

%,m
=⇒ Platform ′ can be seen

as an action evolution with instantiated pattern %∗.

w1:w

=(0,{A},e)

u1:u=A

o

L1'

insert

:insert

user ↦ A

o ↦ (0,{A},e)

txt ↦ Hello

 Bob

pos ↦ 0

n ↦ (0,{A},

 Hello Bob)

remove

:remove

user ↦ B

o ↦ (0,{A,B},

 Hello Bob)

rng ↦ (5,4)

n ↦ (0,{A,B},

 Hello)

w3:w

=(0,{A,B},

Hello Bob)

u3:u=B

o

w2:w

=(0,{A},

Hello Bob)

u2:u=A

w4:w

=(0,{A,B},

Hello)

u4:u=B

user

n

n

w1:w

=(0,{A},e)

u1:u=A

w3:w

=(0,{A,B},

Hello Bob)

u3:u=B

w2:w

=(0,{A},

Hello Bob)

u2:u=A

w4:w

=(0,{A,B},

Hello)

u4:u=B

w1:w

=(0,{A},e)

u1:u=A

o

modify1

:modify copy

user ↦ A

o ↦ (0,{A},e)

txt ↦ Hello

 Bob

rng ↦ (0,0)

n ↦ (0,{A},

 Hello Bob)

w3:w

=(0,{A,B},

Hello Bob)

u3:u=B

o

w2:w

=(0,{A},

Hello Bob)

u2:u=A

w4:w

=(0,{A,B},

Hello)

u4:u=B

n

n

w5:w

=(0,{A},e)

o

w6:w

=(0,{A,B},

Hello Bob)

o

user

user

user

modify2

:modify copy

user ↦ B

o ↦ (0,{A,B},

 Hello Bob)

txt ↦ e

rng ↦ (5,4)

n ↦ (0,{A,B},

 Hello)

user
user

user

user

Inst Inst Inst

w1:w

=(1,{B},e)

u1:u=B

o

insert

:insert

user ↦ B

o ↦ (1,{B},e)

txt ↦ Hello

 World

pos ↦ 0

n ↦ (1,{B},

 Hello World)

w2:w

=(1,{B},

Hello World)

u2:u=B

user

n
w1:w

=(1,{B},e)

u1:u=B

w2:w

=(1,{B},

Hello World)

u2:u=B

w1:w

=(1,{B},e)

u1:u=B

o

modify1

:modify copy

user ↦ B

o ↦ (1,{B},e)

txt ↦ Hello

 World

rng ↦ (0,0)

n ↦ (1,{B},

 Hello World)

w2:w

=(1,{B},

Hello World)

u2:u=B

n

w5:w

=(1,{B},e)

o

user

user

user

l2' r2'

l1'' r1''

l1' r1'

I1' R1'

L1''Inst Inst InstI1'' R1''

L2'Inst Inst InstI2' R2'

Figure 4.38: Data-shiftings of single action evolution patterns along choice of matches

Moreover, consider the instantiated AHL-process wave : Inst → Platform introduced
in Example 4.3.7 on page 72. We have action occurrences occ1 = {insert1, insert2} of the
first single action evolution pattern, and action occurrences occ2 = {remove1} for the second
single action evolution pattern contained in our instantiated multi action evolution pattern.

Since the single components %∗i of %∗ and the instantiated AHL-process net Inst share the
same signature part Σ-Wave, for each index i ∈ 1, 2 and each occurrence o ∈ occi there is
exactly one choice of matches mi,o : InstL∗i → Inst into the scenario, because the matching
of each transition is completely determined by the different arc inscriptions.

In order to check whether we can apply our result in Theorem 4.8.25 to the given action

4.8 Evolution of Scenarios Based on Platform Evolution 115

evolution, we have to check that each single action evolution pattern and corresponding
match in the choice of matches satisfy the instantiation condition, i. e. the data-shiftings
of the patterns along the matches have to be concrete productions. The data-shiftings are
shown in Figure 4.38, where %′1 at the top is the data-shifting of %∗1 along m1,insert1 , %′′1 at the
centre is the data-shifting of %∗1 along m1,insert2 , and %′2 at the bottom is the data-shifting of
%∗2 along m2,remove1 . Taking into account the firing conditions of the transitions which can
be seen in Figure 4.36, we can see that the data-shiftings are concrete productions, since the
firing conditions of the transitions are satisfied by the assignments given in the instantiations.
In fact, as mentioned in Section 4.6, it is already clear that the left-hand sides and interfaces
are concrete instantiations, because Inst is a concrete instantiation, and therefore it suffices
to check that the assignments in the right-hand sides are consistent.

w1:w=v1

u1:u=a1

o

l+ r+

L+ I+

insert1

:insert

user ↦ a1

o ↦ v1

txt ↦ t1

pos ↦ p1

n ↦ w1

remove1

:remove

user ↦ b

o ↦ x

rng ↦ r

n ↦ yw3:w=x

u3:u=b

o

w2:w=w1

u2:u=a1

w4:w=y

u4:u=b

user

n

n

w1:w=v1

u1:u=a1

w3:w=x

u3:u=b

w2:w=w1

u2:u=a1

w4:w=y

u4:u=b

w1:w=v1

u1:u=a1

o

R+

modify1

:modify copy

user ↦ a1

o ↦ v1

txt ↦ t1

rng ↦

toRange(p1,zero)

n ↦ w1

w3:w=x

u3:u=b

o

w2:w=w1

u2:u=a1

w4:w=y

u4:u=b

n

n

w5:w=v1

o

w6:w=x

o

user

user

user
modify3

:modify copy

user ↦ b

o ↦ x

txt ↦ empty

rng ↦ r

n ↦ y

user
user

user
user

w1:w=v2

u1:u=a2

o

insert2

:insert

user ↦ a2

o ↦ v2

txt ↦ t2

pos ↦ p2

n ↦ w2 w2:w=w2

u2:u=a2

user

n

w1:w=v2

u1:u=a2

w2:w=w2

u2:u=a2

w1:w=v2

u1:u=a2

o

modify2

:modify copy

user ↦ a2

o ↦ v2

txt ↦ t2

rng ↦

toRange(p2,zero)

n ↦ w2 w2:w=w2

u2:u=a2

n

w5:w=v2

o

user

user
user

Inst Inst Inst

Figure 4.39: Production %+ for concrete scenario evolution based on action evolution

So, since the instantiation condition is satisfied by all single action evolution patterns and
corresponding matches, we follow the construction in Theorem 4.8.25, leading to a parallel
production %+ shown in Figure 4.39, consisting of copies of the single action evolution patterns
for each corresponding action occurrence. Analogously to the previous examples, we do not
explicitly denote the different copies of sorts, operation symbols or variables in the signature
parts of the productions (e. g. in each component of %+ are three different copies of the
variable user – one for each copy of a pattern), but we denote only the different copies of
variables in the algebra part (e. g. in %+ are two copies a1 and a2 of the variable a from the
algebra part of %∗1, as %+ contains two copies of that pattern).

Moreover, the construction of the parallel production %+ as componentwise coproduct
induces a unique match morphism m+ : InstL+ → Inst that is compatible with the single
matches mi,o from our choice of matches. Further, note that the parallel production of the

116 4 Modelling and Evolution of Scenarios

three productions in Figure 4.38 is isomorphic to the data-shifting of %+ along m+, and
since that parallel production is a concrete production, we know that %+ can be applied
to Inst at match m+ with result Inst ′ shown in Figure 4.40. We also obtain an AHL-
process wave ′ : Wave ′ → Platform ′ that corresponds exactly to the AHL-process wave ′ in
Example 4.8.17, and we have that Inst and wave together form an instantiated AHL-process.

modify2
user ↦ B

o ↦ (0,{A,B},Hello Bob)

rng ↦ (5,4)

txt ↦ e

r, n ↦ (0,{A,B},Hello)

invite1
user1 ↦ A

user2 ↦ B

o ↦ (0,{A},Hello Bob)

n ↦ (0,{A,B},Hello Bob)

new1

user ↦ A

free ↦ 0

next ↦ 1

n ↦ (0,{A},e)

modify1
user ↦ A

o, r ↦ (0,{A},e)

txt ↦ Hello Bob

rng ↦ (0,0)

n ↦ (0,{A},Hello Bob)

u1=A

id1=0

user

free

next

u2=A

w1=(0,fAg,e)

n

user
user

o

u3=A

w2=(0,fAg,Hello Bob)

user

n

u4=B

user2user1

o

u6=Bu5=A

w3=(0,fA,Bg,Hello Bob)

user2
user1

n

user

o

w4=(0,fA,Bg,Hello)

n

user

new2

user ↦ B

free ↦ 1

next ↦ 2

n ↦ (1,{A},e)

free

id3=2

next

u8=B

user

user
modify3

user ↦ B

o, r ↦ (1,{B},e)

txt ↦ Hello World!

rng ↦ (0,0)

n ↦ (0,{B},Hello World!)

user u9=B

w5=(1,fBg,e)

n o
user

w6=(1,fBg,Hello World!)

n

id2=1

u7=B

Inst'

o

w7=(0,fAg,e) w8=(0,fA,Bg,Hello Bob)

o

w9=(1,fBg,e)

o

Figure 4.40: Instantiation Inst ′

In the resulting scenario all occurrences of action insert and remove have been replaced
with modify copy as specified by our production for action evolution with instantiated pat-
tern. The new action occurrences have almost the same semantics as the previous action
occurrences they replaced, with the only difference that they create a copy of the origi-
nal wavelet. Hence, the replacement of the two actions insert and remove by the action
modify copy on the platform layer has been successfully transferred to the concrete scenario
layer. ♦

5
Analysis of Platforms and Scenarios

In this chapter, we present techniques for the analysis of communication platforms and sce-
narios. The Local Church-Rosser, Parallelism and Concurrency Theorems for AHL-nets in
Section 5.1 are instantiations of corresponding general analysis results in the categorical
framework of M-adhesive categories (see Subsection A.1.3). These techniques can be used
for the analysis of independent platform evolutions, and they provide means for the analysis
and synthesis of parallel as well as concurrent evolutions of communication platforms.

Moreover, in Section 5.2, we introduce corresponding extensions of the Local Church-
Rosser, Parallelism and Concurrency Theorems that adequately support the analysis of sce-
nario evolutions.

Finally, in Section 5.3, we present the construction of a term equation system for the
model of an abstract scenario, and we show that there is a 1-to-1 correspondence between
concrete realisations of the abstract scenario and the solutions of the corresponding term
equation system.

5.1 Independence of Platform Evolutions

Due to the fact that Apache Wave is open source it is possible that different developers
perform their own evolutions outgoing from one platform. It is an interesting aspect to
analyse whether such different evolutions are compatible with each other in the sense that
each one of the evolutions can be also applied to the result of the respective other one leading
to the same result as demonstrated in the following example.

Example 5.1.1 (Compatible Platform Evolutions). In Example 3.2.17 we presented an evo-
lution outgoing from AHL-net Platform in Figure 3.2 on page 35 using the production % in
Figure 3.3 on page 39. Another production %2 for AHL-nets is shown in Figure 5.1. The
production describes that a transition new wavelet that is connected to user , wavelet and id
places is deleted together with the connected id place.

R2L2

w : wavelet

u : user

useruser

n

w : wavelet

u : user

I2

l2 r2new wavelet

n = new(user,free)

next = next(free)
id : nat

free

next

w : wavelet

u : user

Figure 5.1: Production %2 for AHL-nets

The production %2 is also applicable to the AHL-net Platform, leading to another result

118 5 Analysis of Platforms and Scenarios

Platform2 shown in Figure 5.2. In the figure, the production % is called %1 and correspondingly
the resulting AHL-net Platform ′ from Example 3.2.17 is called Platform1.

w :

wavelet

u :

user

new wavelet

n = new(user,free)

next = next(free)
id : nat

invite user

invited(o, user1) = true

n = addUser(user2, o)

user

user

user

user

user1 7 user2

user1 7 user2

n
n

o

o

n

free

next

Platform

insert

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

remove

rng: range

invited(o, user) = true

n = remText(o, rng)

user

user
o
n

w :

wavelet

u :

user

new wavelet

n = new(user,free)

next = next(free)

modify copy

txt: text, rng: range

invited(o,user) = true

r = remText(o,rng)

n = insText(r,txt,start(rng))

id : nat

invite user

invited(o, user1) = true

n = addUser(user2, o)

user
user

user

user

user1 7 user2

user1 7 user2

n

o 7 n

o

o
n

free

next

Platform1

w :

wavelet

u :

user

invite user

invited(o, user1) = true

n = addUser(user2, o)

user

user

user1 7 user2

user1 7 user2

n

o

o
n

insert

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

remove

rng: range

invited(o, user) = true

n = remText(o, rng)

user

user
o
n

Platform2

w :

wavelet

u :

user

modify copy

txt: text, rng: range

invited(o,user) = true

r = remText(o,rng)

n = insText(r,txt,start(rng))

invite user

invited(o, user1) = true

n = addUser(user2, o)

user

user

user1 7 user2

user1 7 user2

o 7 n

o

o
n

Platform3

%1,m1

%1,m1'

%2,m2'%2,m2

Figure 5.2: Compatible platform evolutions

As illustrated in Figure 5.2, it is also possible to apply each of the productions also
on the result of the transformation using the respective other productions: Removing the
new wavelet action does not impede the replacement of the insert and remove actions with
the modify copy action, and vice versa. Moreover, it is not only the case that the productions
are still applicable after application of the respective other production, but we also obtain
the same result, regardless of which production we apply first. So, the platform evolutions
can be seen as compatible, or independent from each other. ♦

For the investigation of independent platform evolutions it proves to be useful that we
model platforms using the well-researched modelling technique of algebraic high-level nets.
Since we know that the category AHLNets together with the class MAHL of injective
AHL-morphisms with isomorphic data type part is M-adhesive (see Fact A.1.11 in Sub-
section A.1.3), due to the results in [EGH10] we know that we can apply all analysis results
from [EEPT06b] for weak adhesive HLR categories also forM-adhesive categories, and thus,
also for our category of AHL-nets.

One of these results is the Local Church-Rosser Theorem (Theorem 5.12 in [EEPT06b]).
In the following we show that direct transformations can be applied in any order (see The-
orem 5.1.4), provided that they are parallel independent in the following sense as defined in
[EEPT06b]:

Definition 5.1.2 (Parallel and Sequential Independence of AHL-Net Transformations). Two

direct transformations of AHL-nets AN0
%1,m1
=⇒ AN1 and AN0

%2,m2
=⇒ AN2 are called parallel

5.1 Independence of Platform Evolutions 119

independent if there exist morphisms i : L1 → C2 and j : L2 → C1 such that f2 ◦ i = m1 and
f1 ◦ j = m2.

R1

n1

��

I1r1oo

k1

��

l1 // L1

m1

::::::

��::: i

%%

L2

m2
������

�����j

yy

I2l2oo

k2

��

r2 // R2

n2

��
AN1 C1g1oo f1

// AN0 C2f2
oo g2 // AN2

Moreover, two direct transformations of AHL-nets AN0
%1,m1
=⇒ AN1

%2,m2
=⇒ AN2 are called

sequentially independent if there exist morphisms i : R1 → C2 and j : L2 → C1 such that
f2 ◦ i = n1 and g1 ◦ j = m2.

L1

m1

��

I1l1oo

k1

��

r1 // R1

n1

::::::

��::: i

%%

L2

m2
������

�����j

yy

I2l2oo

k2

��

r2 // R2

n2

��
AN0 C1f1

oo g1 // AN1 C2f2
oo g2 // AN2

4

Remark 5.1.3. 1. (Characterization of Parallel Independence) Parallel independence
is equivalent to the fact that the matches only overlap in gluing points, i. e. m1(L1) ∩
m2(L2) ⊆ l1(m1(I1)) ∩ l2(m2(I2)).

2. (Relationship between Parallel and Sequential Independence) Note thatAN0
p1⇒

AN1
p2⇒ AN2 are sequentially independent if and only if AN0

p−1
1⇐ AN1

p2⇒ AN2 are par-
allel independent.

4
In the following we review the Local Church-Rosser Theorem for weak adhesive HLR

categories from [EEPT06b], instantiated for our special case of AHL-nets.

Theorem 5.1.4 (Local Church-Rosser Theorem for AHL-Net Transformations). Given two

parallel independent direct transformations AN0
%1,m1
=⇒ AN1 and AN0

%2,m2
=⇒ AN2 of AHL-

nets, then there is an AHL-net AN3 together with direct transformations AN1
%2,m′2=⇒ AN3

and AN2
%1,m′1=⇒ AN3 such that AN0

%1,m1
=⇒ AN1

%2,m′2=⇒ AN3 and AN0
%2,m2
=⇒ AN2

%1,m′1=⇒ AN3 are
sequentially independent.

Given two sequentially independent direct transformations AN0
%1,m1
=⇒ AN1

%2,m′2=⇒ AN3 of

AHL-nets, there are an AHL-net AN2 and direct transformations AN0
%2,m2
=⇒ AN2

%1,m′1=⇒ AN3

such that AN0
%1,m1
=⇒ AN1 and AN0

%2,m2
=⇒ AN2 are parallel independent.

AN 0
%2,m2

 (IIIII
IIIII%1,m1

v~ uuuuu
uuuuu

AN 1

%2,m′2
 (IIIII

IIIII
AN 2

%1,m′1
v~ uuuuu

uuuuu

AN 3

Proof. The Local Church-Rosser Theorem has originally been shown for graph transformation
systems in [ER76] and it is shown in [EEPT06b] in the categorical framework of “high-level
replacement systems” based on weak adhesive HLR categories. In [EGH10] it is shown that
the theorem is also valid in M-adhesive categories, and the category (AHLNets,MAHL) is
anM-adhesive category (see Fact A.1.11). Hence, the Local Church-Rosser Theorem is also
valid for AHL-net transformations.

120 5 Analysis of Platforms and Scenarios

Concept 5.1.5 (Independent Platform Evolutions). We say that two platform evolutions
are independent if they can be applied in any order leading to the same result. The question
whether two platform evolutions are independent can be analysed by investigating whether
the corresponding AHL-net transformations are parallel or sequentially independent. Using
the result in Theorem 5.1.4, we know for independent platform evolutions that the evolutions
can be performed in any order leading to the same result. Note that this also implies an
analysis of the existence of conflicts between the platform evolutions. If the platform evo-
lutions are not independent, then there is some conflict between them. Conflicts between
direct transformations in anM-adhesive transformation system (like the transformation sys-
tem of AHL-nets) are usually expressed and analysed using critical pairs. The general theory
of critical pairs for weak adhesive HLR categories (which is also applicable to M-adhesive
categories, see [EGH10]) is presented in Section 6.3 of [EEPT06b]. 4

Example 5.1.6 (Independent Platform Evolutions). The compatible platform evolutions
from Example 5.1.1 shown in Figure 5.2 are an example of independent platform evolutions,
because the corresponding AHL-net transformations are parallel and sequentially independent
direct transformations. ♦

One of the benefits of sequentially independent direct transformations is the possibility
to synthesise a parallel production such that the application of that production has the same
effect as the sequential application of the transformations in an arbitrary order. Vice versa, it
is possible to analyse a direct transformation using a parallel production into sequentially in-
dependent direct transformations which means that the direct transformation can be divided
into smaller steps, allowing to consider particular portions of the modification separately.

This is shown for the general case of weak adhesive HLR categories in the Parallelism
Theorem in [EEPT06b]. In the following we review the Parallelism Theorem for our special
case of AHL-net transformations.

Theorem 5.1.7 (Parallelism Theorem for AHL-Net Transformations).

1. (Synthesis) Given a sequentially independent direct transformation sequence AN0 ⇒
AN1 ⇒ AN3 via productions %1 and %2, then there is a construction leading to a par-
allel transformation AN0 ⇒ AN3 via parallel production %1 + %2

21, called a synthesis
construction.

2. (Analysis) Given a parallel transformation AN0 ⇒ AN3 via %1 + %2, then there is a
construction leading to two sequentially independent transformation sequences AN0 ⇒
AN1 ⇒ AN3 via %1 and %2, and AN0 ⇒ AN2 ⇒ AN3 via %2 and %1, called an analysis
construction.

3. (Bijective correspondence) The synthesis and analysis constructions are inverse to each
other up to isomorphism:

AN 0
%2,m2

 (IIIII
IIIII%1,m1

v~ uuuuu
uuuuu

%1+%2

��

AN 1

%2,m′2
 (IIIII

IIIII
AN 2

%1,m′1
v~ uuuuu

uuuuu

AN 3

21With %1 + %2 we denote the binary case of a parallel production
∐
i∈{1,2} %i as defined in Definition A.3.4.

5.1 Independence of Platform Evolutions 121

Proof. The Parallelism Theorem is shown in [EEPT06b] in the categorical framework of
“high-level replacement systems” based on weak adhesive HLR categories. In [EGH10] it is
shown that the theorem is also valid inM-adhesive categories, and the category (AHLNets,
MAHL) is anM-adhesive category (see Fact A.1.11). The Parallelism Theorem in [EEPT06b]
requires that the weak adhesive HLR categories has coproducts compatible with M, i. e. for
morphisms f, g ∈M it is required that also f+g ∈M. This is necessary for the well-defined
construction of parallel productions. The well-definedness of parallel productions for AHL-
nets (Definition A.3.4) is shown in Fact A.3.5. Hence, the Parallelism Theorem is also valid
for AHL-net transformations.

Example 5.1.8 (Parallel Platform Evolution). Consider the sequential independent trans-

formation sequence Platform
%1,m1
=⇒ Platform1

%2,m′2=⇒ Platform3 in Figure 5.2 on page 118. The
production %1 is shown in Figure 3.3 on page 39 and the production %2 is shown in Figure 5.1
on page 117. Using the synthesis construction from Theorem 5.1.7, we obtain a parallel pro-
duction %1 + %2 as shown in Figure 5.3, and we know that there is a direct transformation
Platform ⇒ Platform3 via production %1 + %2.

insert

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

remove

rng: range

invited(o, user) = true

n = remText(o, rng)

R1+R2L1+L2

w1 : wavelet

u1 : user

user

user

n
o

user

user

on

modify copy

txt: text, rng: range

invited(o,user) = true

r = remText(o,rng)

n = insText(r,txt,start(rng))

user

user

o 7 n
o

w1 : wavelet

u1 : user

I1+I2

l r

u1 : user

w1 : wavelet

w2 : wavelet

u2 : user

useruser

n

w2 : wavelet

u2 : user

new wavelet

n = new(user,free)

next = next(free)
id : nat

free

next

w2 : wavelet

u2 : user

Figure 5.3: Parallel production %1 + %2

From item 2 of Theorem 5.1.7 we know that the parallel production can again be anal-

ysed into sequential independent transformation sequences Platform
%1,m1
=⇒ Platform1

%2,m′2=⇒
Platform3 and Platform

%2,m2
=⇒ Platform2

%1,m′1=⇒ Platform3 as shown in Figure 5.2. ♦

As we have seen, independence of platform evolutions allows us to change the order of
application of the evolutions as well as to perform the evolutions as one parallel evolution at
once. This has several benefits for the modelling of the evolution of platforms. On the one
hand, it is possible to merge several different evolutions into one update of a platform. On
the other hand, it is possible to split an update of a platform into several evolutions, allowing
us to investigate and exclude problematic parts.

Of course, there are also platform evolutions that are not independent. In the case
that two evolutions are parallel dependent, this means that we have to choose one of the
evolutions, because the application of one evolution prevents the application of the other
one. In the case the the evolutions are sequential dependent, it means that it is possible to
apply both evolutions, but it is not possible to change the order of applications. However,

122 5 Analysis of Platforms and Scenarios

it would still be desirable to have also the possibility to synthesise or analyse concurrent
evolutions that correspond to the sequential application of different sequentially dependent
platform evolutions. An example of sequentially dependent platform evolutions is given in
the following.

Example 5.1.9 (Sequentially Dependent Platform Evolutions). Consider again the produc-
tion % in Figure 3.3 on Figure 3.3, and also the production %3 in Figure 5.4. The production
describes the deletion of a transitions invite user and modify copy and the introduction of a
new transition modify copy ′ that is almost equal to the modify copy transition, apart from the
fact that it does not require the involved user to be invited in the wavelet the user modifies.

R3L3

w : wavelet

u : user

user
user

o 7 n

o

modify copy

txt: text, rng: range

invited(o,user) = true

r = remText(o,rng)

n = insText(r,txt,start(rng))

user

user

o 7 n
o

w : wavelet

u : userI3

l3 r3

u : user

w : wavelet

modify copy'

txt: text, rng: range

r = remText(o,rng)

n = insText(r,txt,start(rng))

invite user

invited(o, user1) = true

n = addUser(user2, o)

user1 7 user2

user1 7 user2

o

n

Figure 5.4: Production %3 for platform evolution

The production can be applied to the AHL-net Platform1 in Figure 5.2 at an inclusion

match m3. The result of the direct transformation Platform1
%3,m3
=⇒ Platform4 is depicted in

Figure 5.5.

w :

wavelet

u :

user

new wavelet

n = new(user,free)

next = next(free)

modify copy

txt: text, rng: range

r = remText(o,rng)

n = insText(r,txt,start(rng))

id : nat

invite user

invited(o, user1) = true

n = addUser(user2, o)

user

user

user

user

user1 7 user2

user1 7 user2

n

o 7 n

o

o

n

free

next

Platform4

Figure 5.5: AHL-net Platform4

Considering also the top row of Figure 5.2, we have a sequence of sequentially dependent
direct transformations Platform

%1,m1
=⇒ Platform1

%3,m3
=⇒ Platform4. This can be seen by the

simple fact that the production %3 is not applicable to the AHL-net Platform, because the
original platform does not consist of an action modify copy . The application of production
%3 depends on the previous application of the production %1 which can be expressed using
the following notion of E-dependency relations which were presented in [EEPT06b] for the
general framework of weak adhesive HLR categories with E ′-M′ pair factorisations (see also
Definition A.4.2). ♦

Definition 5.1.10 (E-Dependency Relation of AHL-Net Transformations). Given the class
E ′ of pairs of jointly epimorphic AHL-morphisms, and let %1 and %2 be two productions for

AHL-nets with %i = Li
li← Ii

ri→ Ri for i = 1, 2. An AHL-net E with AHL-morphisms

5.1 Independence of Platform Evolutions 123

e1 : R1 → E and e2 : L2 → E is an E-dependency relation for %1 and %2 if (e1, e2) ∈ E ′ and
the pushout complements (1) and (2) below exist:

L1 I1
l1oo r1 //

��

R1
e1

$$IIIIIIIII L2
e2

zzuuuuuuuuu
I2

l2oo r2 //

��

R2

C1
//

(1)

E C2
oo

(2)

4

Definition 5.1.11 (E-Concurrent Production and E-Related Transformation of AHL-Nets).
Given an E-dependency relation (e1, e2) ∈ E ′ for the productions %1 and %2, the E-concurrent

production %1 ∗E %2 is defined by %1 ∗E %2 = L
l◦i1←− I r◦i2−→ R as shown in the following diagram,

where (3) and (4) are pushouts and (5) is a pullback:

L1

��

I1
l1oo r1 //

��

R1
e1

$$IIIIIIIII L2
e2

zzuuuuuuuuu
I2

l2oo r2 //

��

R2

��
L

(3)

C1
l

oo //

(1)

E

(5)

C2 r
//oo

(2)

R

(4)

I
i1

jjUUUUUUUUUUUUUUUUUUU i2

44jjjjjjjjjjjjjjjjjjj

A transformation sequence AN
%1,m1
=⇒ AN1

%2,m2
=⇒ AN ′ is called E-related if there exists

h : E → AN1 with h ◦ e1 = n1 and h ◦ e2 = m2 and there are morphisms c1 : C1 → D1 and
c2 : C2 → D2 such that (6) and (7) commute and (8) and (9) are pushouts:

L1

m1

��

I1
l1oo r1 //

$$IIIIIIIII

��

R1

n1

$$

e1

%%KKKKKKKKK L2
e2

yysssssssss
m2

{{

I2
l2oo r2 //

zzuuuuuuuuu

��

R2

n2

��

C1
//

(1)

(6)

c1zzuuuuuuuu
E

h
��

C2
oo

(2)

(7)

c2 $$IIIIIIII

AN D1
oo // AN1

(8) (9)

D2
oo // AN ′

4

The following Concurrency Theorem for AHL-net transformations is an instantiation of
the Concurrency Theorem for weak adhesive HLR categories in [EEPT06b].

Theorem 5.1.12 (Concurrency Theorem for AHL-Net Transformations). Let R1
e1→ E

e2← L2

be an E-dependency relation for the productions for AHL-nets %1 and %2, and %1 ∗E %2 the
corresponding E-concurrent production.

1. (Synthesis) Given an E-related transformation sequence AN ⇒ AN1 ⇒ AN ′ via %1 and
%2, then there is a synthesis construction leading to a direct transformation AN ⇒ AN ′

via %1 ∗E %2.

2. (Analysis) Given a direct transformation AN ⇒ AN ′ via %1 ∗E %2, then there is an
analysis construction leading to an E-related transformation sequence AN ⇒ AN1 ⇒
AN ′ via %1 and %2.

3. (Bijective correspondence) The synthesis and analysis constructions are inverse to each
other up to isomorphism.

Proof. The Concurrency Theorem is shown in [EEPT06b] in the categorical framework of
“high-level replacement systems” based on weak adhesive HLR categories. In [EGH10] it is
shown that the theorem is also valid inM-adhesive categories, and the category (AHLNets,
MAHL) is an M-adhesive category (see Fact A.1.11). Therefore, the items 1 and 2 follow

124 5 Analysis of Platforms and Scenarios

directly from the corresponding items in the Concurrency Theorem in [EEPT06b]. For the
third item, in [EEPT06b] it is required that the morphism class E ′ consists only of jointly epi-
morphic pairs which is the case for our choice of morphism class E ′. Hence, the Concurrency
Theorem is valid for AHL-net transformations.

Fact 5.1.13 (Construction of E-Related AHL-Net Transformations). For each pair of direct

transformations AN
%1,m1
=⇒ AN1

%2,m2
=⇒ AN ′ we have an E-dependency relation E such that

AN
%1,m1
=⇒ AN1

%2,m2
=⇒ AN ′ is E-related. Given the comatch n1 : R1 → AN1 of AN

%1,m1
=⇒

AN1, the E-dependency relation is obtained as E ′-M′AHL pair factorisation (see Fact A.4.4)
(e1, e2) ∈ E ′ and h ∈M′AHL of n1 and m2.

Proof. The construction of E-related transformations is shown in Fact 5.29 of [EEPT06b]
for weak adhesive HLR categories that have the M-M′ pushout-pullback decomposition
property. The M-adhesive category (AHLNets,MAHL) satisfies all HLR properties that
are required for the proof, and we have shown in Fact A.4.11 that (AHLNets,MAHL) with
the class M′AHL of all monomorphisms has the M-M′ pushout-pullback decomposition
property. Hence, the construction works also for E-related transformations of AHL-nets.

Example 5.1.14 (Concurrent Platform Evolution). Consider again the sequentially depen-

dent transformation sequence Platform
%1,m1
=⇒ Platform1

%3,m3
=⇒ Platform4 from Example 5.1.9.

We can use the construction Fact 5.1.13 to obtain an E-dependency relation (e1, e2) ∈ E ′
for %1 and %3. The construction of the E-dependency relation and the corresponding E-
concurrent production is depicted in Figure 5.6, where all morphisms are inclusions, and we
omitted all transition assignments. Note that the production %1 and %2 as well as the plat-
forms all have the signature Σ-Wave in Table 3.1 and the algebra A in Table 3.2 as data type
part. So all AHL-nets involved in the construction do also have the same data type part.

R3L3

w : wavelet

u : user

user
user

o 7 n
o

modify

copy

user
user

o 7 n
o

w : wavelet

u : userI3

l3 r3

u : user

w : wavelet

modify copy'invite

user

user17user2

user17user2

o
n

insert remove

R1L1

w : wavelet

u : user

user

user

n
o

user

user

o
n

modify copy

useruser

o 7 n
o

w : wavelet

u : userI1
u : user

w : wavelet

l1 r1

E

w : wavelet

u : user

user
user

o 7 n
o

modify

copy
invite

user

user17user2

user17user2

o
n

e1 e2

C1

w : wavelet

u : user

invite

user

user17user2

user17user2

o
n

w : wavelet

u : userC3 R
user

user

o 7 n
o

u : user

w : wavelet

modify copy'
insert remove

L

w : wavelet

u : user

user

user

n
o

user

user

o
n

invite

user

user17user2

user17user2

o
n

w : waveletu : userI

Figure 5.6: Construction of E-concurrent production %1 ∗E %3

The coproduct R1 + L2 contains one instance of the invite user transition and two in-
stances of the modify copy transition, because it is the disjoint union of R1 and L2. Since both
of the modify copy transitions in R1 and L2 are mapped to the same transition in Platform1

by n1 and m2, respectively, in the E-M′AHL factorisation of [n1,m2] : R1 +L2 → Platform1,

5.2 Independence of Scenario Evolutions 125

the two transitions are identified. As a result, the morphism e2 is an identity. Therefore, by
pushout complement of e2 and l3 and consecutive pushout over I3 → C3 and r3, we obtain
trivial pushouts where all vertical morphisms are identities.

The pushout complement of e1 and r1 yields an AHL-net where the transition modify copy
has been removed from E, because the transition is matched by n1, but it does not have a
preimage in I1. Then the pushout construction over I1 → C1 and l1 leads to an AHL-net
where L1 and C1 are merged at the common places u and w. So the result L contains all
three transitions insert , remove and invite user , connected to u and w.

Finally, the pullback over C1 → E and C3 → E consists only of the places u and w, since
there are no common transitions shared by C1 and C3. The E-concurrent production %1 ∗E %3

is obtained by composition L← I → R of all morphisms along the bottom of Figure 5.6. The
E-concurrent production describes the deletion of transitions insert , remove and invite user
and the creation of a new transition modify copy ′.

It can be verified that Platform ⇒ Platform4 is an E-related transformation that can be
obtained as a single direct transformation via %1 ∗E %4 without the intermediate creation and
deletion of transition modify copy . ♦

5.2 Independence of Scenario Evolutions

In the previous section, we reviewed the Local Church-Rosser, Parallelism and Concurrency
Theorems for weak adhesive HLR and M-adhesive categories [EEPT06b, EGH10], and we
showed that these results can also be used for the analysis of the evolution of communication
platforms. In this section we show that the same results, however, with some additional
conditions, are also applicable to the evolution of scenarios.

Remark 5.2.1 (Analysis Results forM-adhesive Categories). The Local Church-Rosser, Par-
allelism and Concurrency Theorems as well as the construction of E-related transformations,
presented in Section 5.1, are shown in [EEPT06b] in the general framework of weak adhe-
sive HLR categories. In [EGH10] it is shown that the results are also valid for M-adhesive
categories (C,M), provided that the following additional requirements are satisfied:

1. For the Parallelism Theorem it is required that (C,M) has binary coproducts compat-
ible with M (see Definition A.3.2).

2. For the bijective correspondence of analysis and synthesis construction in the Concur-
rency Theorem it is required that every morphism pair (e1, e2) ∈ E ′ is jointly epimorphic,
i. e. for each C-morphisms f and g with f ◦ e1 = g ◦ e1 and f ◦ e2 = g ◦ e2 it follows
that f = g.

3. For the construction of E-related transformations it is required that (C,M) has E ′-
M′ pair factorisations (see Definition A.4.2) such that the M-M′ pushout-pullback
decomposition property holds (see Definition A.4.10).

Unfortunately there are no suitable classes M of monomorphisms such that the categories
of (instantiated) AHL-processes become M-adhesive categories. However, AHL-processes
can be regarded as a special kind of typed AHL-nets, i. e. for each AHL-net AN the cate-
gory Proc(AN) is a subcategory of the slice category AHLNets \ AN , and the category
AHLProcs is a subcategory of the arrow category AHLNets→. Since M-adhesive cate-
gories as well as weak adhesive HLR categories are closed under slice and functor category
construction22 (see Theorem 4.15 in [EEPT06b]), the categories (AHLNets \ AN,MAHL)

22The arrow category AHLNets→ is isomorphic to the functor category [2,AHLNets], where 2 is the
small category • → • with two objects and one non-trivial morphism between them.

126 5 Analysis of Platforms and Scenarios

and (AHLNets→,M→AHL) areM-adhesive categories, whereM→AHL = {(m1,m2) |m1,m2 ∈
MAHL}.

Moreover, the categories (wInst,MAHL) and (Inst,MAHL) of (weak) instantiations are
M-adhesive categories as shown in Fact A.5.9, and we have the following additional proper-
ties:

1. Coproducts in the slice category AHLNets \ AN can be constructed in AHLNets,
and therefore are compatible with MAHL (see Fact A.3.3).

Coproducts in the arrow category (functor category) AHLNets→ can be constructed
point-wise in AHLNets which by definition ofM→AHL and compatibility of coproducts
in AHLNets withMAHL implies that coproducts in AHLNets→ are compatible with
M→AHL.

Coproducts in wInst and Inst are compatible with MAHL as shown in Fact A.3.8.

2. For the categories AHLNets \ AN , wInst and Inst, the class E ′ can be chosen as
the class of all jointly epimorphic AHL-morphisms. For the category AHLNets→ we
choose the class E ′→ = {(e1, e2) | e1, e2 ∈ E ′} which is a class of jointly epimorphic
AHLNets→-morphisms.

3. As shown in Fact A.4.7, the category AHLNets \AN has E-M′AHL factorisations for
the classes E of all epimorphisms and M′AHL of all monomorphisms in AHLNets,
and the category AHLNets→ has E→-M′→AHL factorisations for the classes E→ of all
epimorphisms and M′→AHL of all monomorphisms in AHLNets→.

Due to the fact that AHLNets \ AN and AHLNets→ have coproducts, this means
that AHLNets\AN has E ′-M′AHL pair factorisations that can be constructed similar
to the E ′-M′AHL pair factorisations in AHLNets (see Fact A.4.4), and analogously
AHLNets→ has E ′→-M′→AHL pair factorisations. The fact that wInst and Inst have
E ′-M′AHL pair factorisations is shown in Fact A.4.6.

Furthermore, in Fact A.4.11 it is shown that for classesMAHL andM′AHL the pushout
pullback decomposition property holds. Since pushouts and pullbacks in AHLNets→

are constructed componentwise in AHLNets, the property also holds for M→AHL and
M′→AHL with each component being an MAHL respectively M′→AHL-morphism.

Hence, the analysis results presented in Section 5.1 for theM-adhesive category of AHL-
nets (AHLNets,MAHL) can also be applied to theM-adhesive categories (AHLNets\AN,
MAHL) for all AHL-nets AN , (AHLNets→,M→AHL), (wInst,MAHL) and (Inst,MAHL).

Transformations of (instantiated) AHL-processes are merely special cases of transforma-
tions in the categories above with the additional requirement that the AHL-process net prop-
erties (see Definition 4.1.1) are not violated by the (corresponding part of the) transformation.
Thus, in order to make the analysis results also applicable to (instantiated) AHL-processes,
it suffices to investigate the analysis of transformations of AHL-process nets, as we do in the
following. 4

For the parallel independence of AHL-net transformations, it is required that the left-
hand side of each production can be also matched into the context net of the transformation
using the respective other production. For the parallel independence of AHL-process nets, it
is additionally required that the induced match into the result of the respective other trans-
formation satisfies the transformation condition for AHL-process nets (see Definition 4.2.10
on page 66). Analogously, also for the sequential independence, we additionally require the
satisfaction of the transformation condition for the corresponding matches.

5.2 Independence of Scenario Evolutions 127

Definition 5.2.2 (Strong Parallel and Sequential Independence of AHL-Process Net Trans-

formations). Two direct transformations of AHL-process nets K
%1,m1
=⇒ K1 and K

%2,m2
=⇒ K2

are called strongly parallel independent if there exist morphisms i : L1 → C2 and j : L2 → C1

such that f2 ◦ i = m1 and f1 ◦ j = m2, and we have that %1 and g2 ◦ i as well as %2 and g1 ◦ j
satisfy the transformation condition for AHL-process nets.

R1

n1

��

I1r1oo

k1

��

l1 // L1

m1

666666

��666 i

%%

L2

m2
������

�����j

yy

I2l2oo

k2

��

r2 // R2

n2

��
K1 C1g1oo f1

// K C2f2
oo g2 // K2

Moreover, two direct transformations of AHL-nets K
%1,m1
=⇒ K1

%2,m2
=⇒ K2 are called strongly

sequentially independent if there exist morphisms i : R1 → C2 and j : L2 → C1 such that
f2 ◦ i = n1 and g1 ◦ j = m2, and we have that %−1

1 and g2 ◦ i as well as %2 and f1 ◦ j satisfy
the transformation condition for AHL-process nets.

L1

m1

��

I1l1oo

k1

��

r1 // R1

n1

888888

��888 i

%%

L2

m2
������

�����j

yy

I2l2oo

k2

��

r2 // R2

n2

��
K C1f1
oo g1 // K1 C2f2

oo g2 // K2

4

Remark 5.2.3 (Relationship between Strictly Parallel and Sequential Independence). Note

that AN0
p1⇒ AN1

p2⇒ AN2 are strongly sequentially independent if and only if AN0
p−1

1⇐
AN1

p2⇒ AN2 are strongly parallel independent. 4

Theorem 5.2.4 (Local Church-Rosser Theorem for AHL-Process Net Transformations).

Given two strongly parallel independent direct transformations K
%1,m1
=⇒ K1 and K

%2,m2
=⇒ K2 of

AHL-process nets, then there is an AHL-process net K ′ together with direct transformations

K1
%2,m′2=⇒ K ′ and K2

%1,m′1=⇒ K ′ of AHL-process nets such that K
%1,m1
=⇒ K1

%2,m′2=⇒ K ′ and

K
%2,m2
=⇒ K2

%1,m′1=⇒ K ′ are strongly sequentially independent.

Given two strongly sequentially independent direct transformations K
%1,m1
=⇒ K1

%2,m′2=⇒ K ′

of AHL-process nets, there are an AHL-process net K2 and direct transformations K
%2,m2
=⇒

K2
%1,m′1=⇒ K ′ of AHL-process nets such that K

%1,m1
=⇒ K1 and K

%2,m2
=⇒ K2 are strongly parallel

independent.

K
%2,m2

�%
CCCCC

CCCCC%1,m1

y� {{{{{
{{{{{

K1

%2,m′2
�%

CCCC
CCCC

K2

%1,m′1
y� {{{{

{{{{

K ′

Proof-Idea. The proof works very similar to the corresponding proof of the Local Church-
Rosser Theorem for weak adhesive HLR categories in [EEPT06b]. The fact that the result-
ing transformations are direct transformations of AHL-process nets is ensured by satisfac-
tion of the transformation condition due to the fact that the independences are strong (see
Definition 5.2.2). Strictness of the resulting independences follows from the fact that the
transformation condition is not only sufficient but also necessary for the existence of direct
transformations of AHL-process nets. For the detailed proof we refer to Section B.12 on
page 258.

128 5 Analysis of Platforms and Scenarios

Remark 5.2.5 (Local Church-Rosser Diagram of AHL-Process Net Transformations). In the
proof of Theorem 5.2.4 we show that the matches that are used for the synthesised direct
transformations are exactly those morphisms for which we require the satisfaction of the
transformation conditions in the definitions of strongly parallel and strongly sequentially
independent transformations. Since satisfaction of the transformation condition is not only
a sufficient but also a necessary condition for the direct transformation of AHL-process nets,
this means that given a local Curch-Rosser diagram of parallel and sequentially independent
transformations of AHL-process nets as in Theorem 5.2.4, then the transformations are also
strong parallel and strong sequentially independent. 4

Concept 5.2.6 (Independent Scenario Evolutions). We say that two scenario evolutions are
independent if they can be applied in any order leading to the same result. The question
whether two scenario evolutions are independent can be analysed by investigating whether the
corresponding AHL-process net transformations are strongly parallel or strongly sequentially
independent. Using the result in Theorem 5.2.4 and the considerations in Remark 5.2.1, we
know for independent scenario evolutions that the evolutions can be performed in any order
leading to the same result. Note that this also implies an analysis of the existence of conflicts
between the platform evolutions. If the platform evolutions are not independent, then there
is some conflict between them. Conflicts between direct transformations in an M-adhesive
transformation system (like the transformation system of AHL-nets) are usually expressed
and analysed using critical pairs. The general theory of critical pairs for weak adhesive HLR
categories (which is also applicable to M-adhesive categories, see [EGH10]) is presented in
Section 6.3 of [EEPT06b]. 4

Example 5.2.7 (Independent Scenario Evolutions). Consider the productions %1 and %2 in
Figure 5.7 that are productions for AHL-processes of the AHL-net Platform in Figure 3.2 on
page 35. Figure 5.8 shows two direct transformations W0

%1,m1
=⇒ W1 and W0

%2,m2
=⇒ W2 of an

AHL-process w0 : W0 → Platform via %1 and %2, respectively, at inclusion matches.

insert1

: insert

u2 : u

w1 : w

user

o

u3 : u

w2 : w

user

nl1

L1 I1 R1

u2 : u

w1 : w

u2 : u

w1 : w

r1

new2

: new wavelet

u8 : u

id2 : id

user

o

u4 : u

w5 : w

user

n
l2

L2 I2 R2

u8 : u

id2 : id

u8 : u

id2 : id

r2

id3 : id

next

Figure 5.7: Productions %1 and %2 for AHL-processes of AHL-net Platform

Since the productions %1 and %2 are non-deleting, the required morphisms i : L1 → C2

and j : L2 → C1 for the parallel independence of the productions exist, because we have
C2
∼= W0

∼= C1, and accordingly i and j are isomorphic to m1 and m2, respectively. Moreover,
since %1 and m1 as well as %2 and m2 satisfy the transformation condition, the same holds for
%1 and i, and %2 and j. Thus, the direct transformations are not only parallel independent,
but strongly parallel independent.

This means that there are also direct transformations W1 =⇒W3 and W2 =⇒W3 via %2

and %1, respectively, as shown in Figure 5.8, and we have that the transformation sequences
W0 ⇒W1 ⇒W3 and W0 ⇒W2 ⇒W3 both are strongly sequentially independent. ♦

5.2 Independence of Scenario Evolutions 129

new1

: new wavelet

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user

u8 : u

id2 : id

W0

new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user
user

o

u3 : u

w2 : w

user

n

u8 : u

id2 : id

W1

new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user
user

o

u3 : u

w2 : w

user

n

u4 : u

new2

: new wavelet

free

id3 : id

next

u8 : u

user

user w5 : w

n

id2 : id

W3

new1

: new wavelet

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user

u4 : u

new2

: new wavelet

free

id3 : id

next

u8 : u

user

user w5 : w

n

id2 : id

W2

%1,m1

%1,m1'

%2,m2 %2,m2'

Figure 5.8: Compatible scenario evolutions via productions %1 and %2

Theorem 5.2.8 (Parallelism Theorem for AHL-Process Net Transformations).

1. (Synthesis) Given a sequentially independent direct transformation sequence of AHL-
process nets K0 ⇒ K1 ⇒ K3 via productions %1 and %2, then there is a construction
leading to a parallel transformation of AHL-process nets K0 ⇒ K3 via parallel produc-
tion %1 + %2, called a synthesis construction.

2. (Analysis) Given a parallel transformation of AHL-process nets K0 ⇒ K3 via %1 + %2

at match [m1,m2]23such that %1 and m1 satisfy the transformation condition for AHL-
process nets (Definition 4.2.10), then there is a construction leading to a sequentially
independent transformation sequence of AHL-process nets K0 ⇒ K1 ⇒ K3 via %1 and
%2, called an analysis construction.

3. (Bijective correspondence) The synthesis and analysis constructions are inverse to each
other up to isomorphism:

K1
%2,m2

�%
CCCC

CCCC

K0

%1,m1
9A{{{{

{{{{

%1+%2

+3 K3

23[m1,m2] denotes a mediating morphism for m1 : L1 → K0 and m2 : L2 → K0 such that for coproduct
injections ι1 : L1 → L1 + L2 and ι2 : L2 → L1 + L2: [m1,m2] ◦ ι1 = m1 and [m1,m2] ◦ ι2 = m2. Note that
for every morphism m : L1 + L2 → K0, we obtain a corresponding pair of morphisms m1 and m2 such that
m = [m1,m2] by composition of m with the coproduct injections.

130 5 Analysis of Platforms and Scenarios

Proof. 1. (Synthesis) This follows directly from item 1 of Theorem 5.1.7 and the fact that
K3 is an AHL-process net.

2. (Analysis) From item 2 of Theorem 5.1.7 we obtain a sequentially independent trans-
formation sequence of AHL-nets K0 ⇒ K1 ⇒ K3 via %1 at match m1 and %2 at match
m2. Then, %1 and m1 satisfying the transformation condition for AHL-process nets by
Theorem 4.2.11 implies that K0 ⇒ K1 is a transformation of AHL-process nets, and
together with the fact that also K3 is an AHL-process net we obtain that also K1 ⇒ K3

is a transformation of AHL-process net.

3. (Bijective correspondence) The synthesis and analysis constructions in Theorem 5.1.7
are inverse to each other. Moreover, given a sequentially independent direct transfor-
mation sequence of AHL-process nets K0 ⇒ K1 ⇒ K3 via productions %1 and %2 at
matches m1 and m2, respectively, by Theorem 4.2.11 we have that %1 and m1 satisfy
the transformation condition for AHL-process nets which is necessary to analyse the
corresponding synthesised parallel transformation.

Corollary 5.2.9 (Parallelism Theorem for AHL-Process Nets and Strong Independence).

1. (Strong Independence: Synthesis) Given a strongly sequentially independent direct trans-
formation sequence of AHL-process nets K0 ⇒ K1 ⇒ K3 via productions %1 and %2, then
the synthesis construction in Theorem 5.2.8 provides a direct transformation K0 ⇒ K3

via %1 + %2 at match [m1,m2] such that %1 and m1 as well as %2 and m2 satisfy the
transformation condition for AHL-process nets.

2. (Strong Independence: Analysis) Given a direct transformation K0 ⇒ K3 via %1 + %2

at match [m1,m2] such that %1 and m1 as well as %2 and m2 satisfy the transformation
condition for AHL-process nets, then the analysis construction in Theorem 5.2.8 pro-
vides two strongly sequentially independent transformation sequences K0 ⇒ K1 ⇒ K3

via %1 and %2, and K0 ⇒ K2 ⇒ K3 via %2 and %1.

K0
%2,m2

�%
CCCC

CCCC%1,m1

y� {{{{
{{{{

%1+%2

��

K1

%2,m′2
�%

CCCC
CCCC

K2

%1,m′1
y� {{{{

{{{{

K3

Proof. Note that given a parallel transformation of AHL-process nets K0 ⇒ K3 via %1 + %2

at match m1 +m2 such that %2 and m2 satisfy the transformation condition for AHL-process
nets, then the analysis construction in Theorem 5.2.8 provides also a sequentially independent
transformation sequence of AHL-process nets K0 ⇒ K2 ⇒ K3 via %2 at match m2 and %1 at
match m1. This follows from the fact that coproducts are commutative up to isomorphism,
i. e. for parallel production %1 + %2 and match m1 + m2, we have %1 + %2

∼= %2 + %1 and
m1 +m2

∼= m2 +m1.

1. (Strong Independence: Synthesis) It suffices to show that %1 and m1 as well as %2 and m2

satisfy the transformation condition for AHL-process nets. In the general proof of the
Parallelism Theorem (Theorem 5.18 of [EEPT06b]) it is shown that the match [m1,m2]
of the synthesised parallel transformation corresponds to the matches m1 and m2 of
parallel independent transformations K0 ⇒ K1 via %1 and K0 ⇒ K2 via %2, obtained
by the Local Church-Rosser Theorem (see Theorem 5.1.4). Due to the fact that the

5.2 Independence of Scenario Evolutions 131

sequentially independence of the transformation sequence K0 ⇒ K1 ⇒ K3 is strong,
by Theorem 5.2.4 we have that the transformations K0 ⇒ K1 via %1 and K0 ⇒ K2 via
%2 are strongly parallel independent direct transformations of AHL-process nets which
in turn by Theorem 4.2.11 implies that %1 and m1 as well as %2 and m2 satisfy the
transformation condition.

2. (Strong Independence: Analysis) Using the symmetry shown above, we can use the
analysis construction in Theorem 5.2.14 to obtain two sequentially independent trans-
formation sequences K0 ⇒ K1 ⇒ K3 via %1 and %2, and K0 ⇒ K2 ⇒ K3 via %2

and %1, and as pointed out in Remark 5.2.5 the transformation sequences are strongly
sequentially independent.

Example 5.2.10 (Parallel Scenario Evolution). Consider again the independent scenario
evolutions in Example 5.2.7, modelled by strongly sequentially direct transformations of AHL-
process nets W0 ⇒ W1 ⇒ W3 via productions %1 and %2 depicted in Figure 5.7, and W0 ⇒
W2 ⇒W3 via %2 and %1.

insert1

: insert

u2 : u

w1 : w

user

o

u3 : u

w2 : w

user

n

l1+l2

L1+L2 I1+I2 R1+R2

u2 : u

w1 : w

u2 : u

w1 : w

r1+r2

new2

: new wavelet

u8 : u

id2 : id

user

o

u4 : u

w5 : w

user

n

u8 : u

id2 : id

u8 : u

id2 : id

id3 : id

next

Figure 5.9: Parallel scenario production %1 + %2

The parallel production %1+%2 is shown in Figure 5.9, and there is a direct transformation

of AHL-process nets W0
%1+%2
=⇒ W3. ♦

In the following we apply also the Concurrency Theorem to transformations of AHL-
process nets. In order to do this, it is necessary to introduce a notion of strong E-dependency
relations as defined below.

Definition 5.2.11 (Strong E-Dependency Relation of AHL-Process Net Transformations).
Given the class E ′ of pairs of jointly epimorphic AHL-morphisms, and let %1 and %2 be two

productions for AHL-process nets with %i = Li
li← Ii

ri→ Ri for i = 1, 2. An AHL-process net
E with AHL-morphisms e1 : R1 → E and e2 : L2 → E is a strong E-dependency relation
for %1 and %2 if (e1, e2) ∈ E ′, and %−1

1 and e1 as well as %2 and e2 satisfy the transformation
condition for AHL-process nets.

An E-related transformation, where the E-dependency relation is strong, is called a
strongly E-related transformation.

L1 I1
l1oo r1 // R1

e1

$$JJJJJJJJ L2
e2

zzuuuuuuuuu
I2

l2oo r2 // R2

E 4

132 5 Analysis of Platforms and Scenarios

Remark 5.2.12 (Strong E-Dependency Relation and E-Concurrent Production).

1. Note that a strong E-dependency relation for AHL-process nets is also an E-dependency
relation for AHL-nets. The satisfaction of the transformation condition for AHL-process
nets by Theorem 4.2.11 that direct transformations of E via %−1

1 , e1 and %2, e2 exist,
and this means that there are also corresponding pushout complements of r1 and e1 as
well as l2 and e2.

2. Further note that for a strong E-dependency relation (e1, e2) the E-concurrent produc-
tion %1 ∗E %2 (see Definition 5.1.11 again is a production for AHL-process nets. The fact
that L and R are AHL-process nets follows from the fact that %−1

1 , e1 and %2, e2 sat-
isfy the transformation condition, and therefore, the direct transformations of E with
pushout (1)-(4) below lead to AHL-process nets. Moreover, MAHL-morphism l ◦ i1 is
transition-injective which by Lemma A.7.1 implies that also I is an AHL-process net.

L1

��

I1
l1oo r1 //

��

R1
e1

$$IIIIIIIII L2
e2

zzuuuuuuuuu
I2

l2oo r2 //

��

R2

��
L

(3)

C1
l

oo c1 //

(1)

E

(5)

C2 r
//c2oo

(2)

R

(4)

I
i1

jjUUUUUUUUUUUUUUUUUUU i2

44jjjjjjjjjjjjjjjjjjj 4

Definition 5.2.13 (Strongly E-Concurrent AHL-Process Net Transformations). Given a
strong E-dependency relation (e1, e2) ∈ E ′ for the productions for AHL-process nets %1 and
%2, and the E-concurrent production %1 ∗E %2 with pushouts (1)-(4) below. A direct trans-
formation K ⇒ K ′ via %1 ∗E %2 with pushouts (6) and (7) is called strongly E-concurrent
transformation, if E and K0 are composable w. r. t. (I, k, c1 ◦ i1):

L1

��

I1
l1oo r1 //

��

R1
e1

&&MMMMMMMMM L2
e2

xxqqqqqqqqq I2
l2oo r2 //

��

R2

��
L

(3)

��

C1
l

oo c1 //
(1)

E

(5)

C2 r
//c2oo

(2)

R

��

(4)

I
i1

kkVVVVVVVVVVVVVVVVVVV i2

33hhhhhhhhhhhhhhhhhhh

k��
K

(6)

K0
oo // K ′

(7)

4

Theorem 5.2.14 (Concurrency Theorem for AHL-Process Net Transformations). Let R1
e1→

E
e2← L2 be a strong E-dependency relation for the productions for AHL-process nets %1 and

%2, and %1 ∗E %2 the corresponding E-concurrent production.

1. (Synthesis) Given a strongly E-related transformation sequence of AHL-process nets
K ⇒ K1 ⇒ K ′ via %1 and %2, then there is a synthesis construction leading to a
strongly E-concurrent direct transformation of AHL-process nets K ⇒ K ′ via %1 ∗E %2.

2. (Analysis) Given a strongly E-concurrent direct transformation of AHL-process nets
K ⇒ K ′ via %1 ∗E %2, then there is an analysis construction leading to a strongly
E-related transformation sequence of AHL-process nets K ⇒ K1 ⇒ K ′ via %1 and %2.

3. (Bijective correspondence) The synthesis and analysis constructions are inverse to each
other up to isomorphism.

5.2 Independence of Scenario Evolutions 133

Proof-Idea. Since direct transformations of AHL-process nets are also direct transformations
of AHL-nets, the constructions of the required direct transformations work similar to the ones
for AHL-nets in Theorem 5.1.12. It remains to show that the resulting direct transformations
are in fact direct transformations of AHL-process nets, and the result of the synthesis con-
struction is a strongly E-concurrent direct transformation. The fact that the context nets of
the direct transformations are AHL-process nets can mainly be derived from the horizontal
MAHL-morphisms of the direct transformations which have AHL-process nets as codomains,
using Lemma A.7.1. The fact that the synthesis construction provides an E-concurrent di-
rect transformation follows from the fact that composability is a necessary condition for the
gluing of AHL-process nets. For the detailed proof we refer to Section B.13 on page 260.

Fact 5.2.15 (Construction of Strongly E-Related AHL-Process Net Transformations). For

each pair of direct transformations of AHL-process nets K
%1,m1
=⇒ K1

%2,m2
=⇒ K ′ we have a

strong E-dependency relation E such that K
%1,m1
=⇒ K1

%2,m2
=⇒ K ′ is strongly E-related. Given

the comatch n1 : R1 → K1 of K
%1,m1
=⇒ K1, the strong E-dependency relation is obtained as

E ′-M′AHL pair factorisation (see Fact A.4.4) (e1, e2) ∈ E ′ and h ∈M′AHL of n1 and m2.

Proof-Idea. Given a sequence of direct transformations of AHL-process nets K
%1,m1
=⇒ K1

%2,m2
=⇒

K ′, using Fact A.4.4 we can construct the E ′-M′AHL pair factorisation (e1, e2) ∈ E ′ and
h ∈M′AHL of n1 and m2 with h ◦ e1 = n1 and h ◦ e2 = m2.

Moreover, by subsequent constructions of pullbacks and using the fact that (AHLNets,
MAHL) withM′AHL has theM-M′ pushout-pullback decomposition property (Fact A.4.11),
we obtain direct transformations of AHL-process nets E ⇒ L via %−1

1 at match e1, and E ⇒ R
via %2 at match e2. Then, by Theorem 4.2.11 we obtain that %−1

1 and e1 as well as %2 and e2

satisfy the transformation condition of AHL-process nets which by Definition 5.2.11 means
that (e1, e2) is a strong E-dependency relation such K

%1,m1
=⇒ K1

%2,m2
=⇒ K ′ is strongly E-related.

For the detailed proof we refer to Section B.14 on page 261.

Remark 5.2.16. Note that for the application of the Concurrency Theorem to direct trans-
formations of AHL-process nets it is required to consider strong E-dependency relations.
However, as we have shown in Fact 5.2.15 this is not a restriction for the applicability of
the Concurrency Theorem, since for every sequence of direct transformations of AHL-process
nets we obtain a strong E-dependency relation E such that the transformation sequence is
strongly E-related.

The restriction to strongly E-concurrent transformations, on the other hand, actually
restricts the analysis of E-concurrent transformations of AHL-process nets. Nonetheless,
for an E-concurrent transformation K ⇒ K ′ via E-related production %1 ∗E %2 that is not
strongly E-concurrent, from the proof of item 2 of Theorem 5.2.14 we can derive that for an
analysis K

%1⇒ K1
%2⇒ K ′ of K ⇒ K ′, we have that K1 is not an AHL-process net, because

composability is a necessary condition of the gluing of AHL-process nets. This means that
the restriction to strongly E-concurrent transformations is a restriction to exactly those
E-concurrent transformations that can actually be analysed into a proper sequence of AHL-
process net transformations. 4

Example 5.2.17 (Concurrent Scenario Evolutions). Consider the production %1 in Figure 5.7
on page 128 and the scenario w4 : W4 → Platform depicted in the top-left of Figure 5.10.

We can apply the inverse rule %−1
1 : R1

r1← I1
l1→ L1 to the AHL-process w4 and obtain a

new AHL-process w5 : W5 → Platform, and a subsequent application of %1 yields again the
AHL-process w4.

134 5 Analysis of Platforms and Scenarios

new1

: new wavelet

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user

id2 : id

W5

new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user
user

o

u3 : u

w2 : w

user

n

id2 : id

W4

%1,m2'

%1
-1,m1new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user
user

o

u3 : u

w2 : w

user

n

id2 : id

new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user user

o

u3 : u

w2 : w

user

n

id2 : id

W6

insert2

: insert

u3 : u

w2 : w

o

user
n

user

%1,m2

%1
-1,m1'

W4

Figure 5.10: Not strongly sequentially independent direct transformations

The sequence of direct transformations of AHL-process nets W4
%−1

1 ,m1
=⇒ W5

%1,m2
=⇒ W4 is

sequentially independent which can be seen by the fact that we can also apply %1 with a
corresponding match to AHL-process w4, leading to a typed AHL-net w6 : W6 → Platform,
and another application of %−1

1 to w6 leads again to the AHL-process w4. However, the direct

transformation sequence W4
%−1

1 ,m1
=⇒ W5

%1,m2
=⇒ W4 is not strongly sequentially independent

which can be seen by the fact that W6 is not an AHL-process net, because it has forward
conflicts at places w1 and u2, and thus, typed AHL-net w6 is not an AHL-process.

Following the construction of strong E-dependency relations and E-concurrent produc-

tions, we obtain the production %−1
1 ∗E %1 = (L

l◦i1←− I
r◦i2−→ R) as depicted in Figure 5.11.

The resulting production removes an occurrence of an insert transition and inserts a new
occurrence at the same position.

A direct transformation W4
%−1

1 ∗E%1
=⇒ W4 is shown in the bottom of Figure 5.11. It can be

seen that the direct transformation is strongly E-concurrent, because the gluing of W0 and E
via (I, c1 ◦ i1, k) leads to the AHL-process net W0, implying that W0 and E are composable

w. r. t. (I, c1 ◦ i1, k). This means that the direct transformation W4
%−1

1 ∗E%1
=⇒ W4 can again be

analysed into the strongly E-related transformation sequence W4
%−1

1 ,m1
=⇒ W5

%1,m2
=⇒ W4. ♦

5.3 Concrete Realisations of Abstract Scenarios

In Chapter 4 we presented the modelling of abstract and concrete scenarios using AHL-
processes and instantiated AHL-processes, respectively. For a concrete scenario model it is
quite simple to obtain an abstraction, omitting the instantiation part of the instantiated
AHL-process net. The other way around it is not that simple. In order to obtain a realistic
concretisation – a realisation – of an abstract scenario, we cannot just enrich the AHL-process

5.3 Concrete Realisations of Abstract Scenarios 135

E

e1 e2

c1

C2

I
i1 i2

insert1

: insert

u2 : u

w1 : w

user

o

u3 : u

w2 : w

user

n

l1

L1 I1
R1

u2 : u

w1 : w

u2 : u

w1 : w

r1

u2 : u

w1 : w

u2 : u

w1 : w

c2

insert1

: insert

u2 : u

w1 : w

user

o

u3 : u

w2 : w

user

n

R

r

w1 : w u2 : u

insert1

: insert

u2 : u

w1 : w

user

o

u3 : u

w2 : w

user

n

l1
-1

L1
-1I1

-1R1
-1

u2 : u

w1 : w

u2 : u

w1 : w

r1
-1

C1

u2 : u

w1 : w

insert1

: insert

u2 : u

w1 : w

user

o

u3 : u

w2 : w

user

n
l

L

new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user
user

o

u3 : u

w2 : w

user

n

id2 : id

W4

new1

: new wavelet

u1 : u

id1 : id

user

free

next

u2:u

w1 : w

n

user

id2:id

W0

new1

: new wavelet

insert1

: insert

u1 : u

id1 : id

user

free

next

u2 : u

w1 : w

n

user
user

o

u3 : u

w2 : w

user

n

id2 : id

W4
k

nm

Figure 5.11: Construction of E-concurrent production and strongly E-concurrent transfor-
mation

with arbitrary data values and assignments, because it is important that the assignments are
consistent. In the following we introduce realisation variables and conditions, that can be
used to obtain all realisations of an abstract scenario.

Remark 5.3.1 (Mathematical Constructions).

1. In the following we use a construction V∪ that turns a (free commutative) sum into a
set, i. e. for a sum S =

∑n
i=1 si we have V∪(S) := {s1, . . . , sn}.

2. Note that for a set of variables X = (Xs)s∈S and a signature S = (S,OP), there
is a family of inclusions in : X ↪→ TΣ(X). Thus, for each family of functions f =
(fs : X1,s → X2,s)s∈S , there is a corresponding assignment in ◦ f : X1 → TΣ(X2).
Accordingly, we can define a free extension of variable mappings f : X1 → X2 to
homomorphisms f∗ := (f ◦ in)∗ : TΣ(X1) → TΣ(X2). In the following, we use this
extension also for equations, in the way that f∗(el, er) := (f∗(el), f

∗(er)).

4

Definition 5.3.2 (Realisation Variables and Conditions for AHL-Process). Given an AHL-
process net K with data type part (Σ, A) with Σ = (S,OP ;X). We define the family of

136 5 Analysis of Platforms and Scenarios

realisation variables (X̂s)s∈S by

X̂s =
⊎
t∈TK

V ar(t)s] PK,s (s ∈ S)

with coproduct injections dt,s : V ar(t)s →
⊎
t∈T V ar(t)s, and sorted sets of places PK,s =

{p ∈ PK | typeK(p) = s}.
Further, we define the set of realisation conditions RealK by

RealK = CondK ∪ PreK ∪ PostK ⊆ Pfin(Eqns(Σ;TΣ(X̂)))

where the sets of equations CondK , PreK and PostK are defined by

CondK =
⋃
t∈TK

Pfin(d∗t)(condK(t)),

PreK =
⋃
t∈TK

V∪((d∗t ⊗ idPK)⊕(preK(t))), and

PostK =
⋃
t∈TK

V∪((d∗t ⊗ idPK)⊕(postK(t))).

An assignment v̂ : X̂ → A of the realisation variables is called solution for the realisation
conditions, if (A, v̂) � RealK . 4

The following theorem states that for each AHL-process net K, we can compute the set
of all its concrete instantiations as solutions of a term equation system.

Theorem 5.3.3 (Concrete Realisation of AHL-Process). Given an AHL-process net K with
data type part (Σ, A), then we have the following:

1. (Synthesis) For each solution v̂ : X̂ → A for the realisation conditions RealK there
exists a concrete instantiation (inst,K).

2. (Analysis) For each concrete instantiation (inst,K) there exists a solution v̂ : X̂ → A
for the realisation conditions RealK .

3. (Bijective correspondence) Given the sets Inst(K) of all concrete instantiations of
K and Sol(K) of all solutions of the realisation conditions of K, the construction
of solutions from instantiations and vice versa establish a bijective correspondence
Inst(K) ∼= Sol(K).

Proof-Idea.

1. (Instantiation) Given a solution for the realisation conditions v̂ : X̂ → A, we can define
a P/T-morphism inst : Skel(K)→ Flat(K) by

• instP (p) = (v̂(p), p), and

• instT (t) = (t, v̂ ◦ dt).

It can be shown that (inst,K) is a concrete instantiation.

2. (Solution) Given a concrete instantiation (inst,K), an assignment v̂ : X̂ → A can be
defined as follows:

• For p ∈ PK,s with instP (p) = (a, p) let v̂(p) = a, and

5.3 Concrete Realisations of Abstract Scenarios 137

• for x̂ ∈
⊎
t∈TK V ar(t)s with t ∈ TK and x ∈ V ar(t)s such that dt,s(x) = x̂ and

instT (t) = (t, v), let v̂(x̂) = v(x).

It can be shown that v̂ is a solution for the realisation conditions.

3. (Bijective correspondence) The constructions above are inverse to each other, establish-
ing a bijective correspondence Inst(K) ∼= Sol(K).

For the detailed proof we refer to Section B.15 on page 262.

Example 5.3.4 (Concrete Realisation of Abstract Scenario). Consider the abstract sce-
nario wave : Wave → Platform in Figure 5.12 that we already presented in Example 4.1.8,
where the corresponding platform is modelled by the AHL-net Platform in Figure 3.2 on
page 35. The scenario consists of 6 transitions new1, new2, insert1,insert2, invite1 and
remove1, and for each of these transitions there is a family of injections dt = (dt,s : V ar(t)s ∈
]t∈TV ar(t)s)s∈S . For instance, for the transition new1, we have

V ar(new1)nat = {free, next},
V ar(new1)user = {user},

V ar(new1)wavelet = {n}

and empty functions for the sorts bool , range and text (see Table 3.1 on page 36 for the
signature Σ-Wave). So, for example the injection dnew1 ,nat maps variables dnew1,nat(free) =
(free,new1) and dnew1,nat(next) = (next,new1).

remove1

rng: range

invited(o, user) = true

n = remText(o, rng)

invite1

invited(o, user1) = true

n = addUser(user2, o)

new1

n = new(user,free)

next = next(free)

insert1

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

u1 : user

id1 : nat

user

free

next

u2 : user

w1 : wavelet

n

user

user

o

u3 : user

w2 : wavelet

user

n

u4 : user

user2user1

o

u6 : user
u5 : user

w3 : wavelet

user2

user1

n

user

o

w4 : wavelet

n

user

new2

n = new(user,free)

next = next(free)

free

id3 : nat

next

u8 : user

user

user

insert2

txt: text, pos: nat

invited(o,user) = true

n = insText(o,txt,pos)

user

u9 : userw5 : wavelet

n o

user

w6 : wavelet

n

id2 : nat

u7 : user

Wave

Figure 5.12: AHL-process model of an abstract scenario

The family X̂ = (X̂s)s∈S of realisation variables consists of all images of variables occur-
ring in the environment of a transition w. r. t. to dt, and all places, sorted by their types. Note
that the set of places is disjoint from the set of renamed transition variables which means that
it is not necessary to rename the places to obtain a disjoint union of the transition variables

138 5 Analysis of Platforms and Scenarios

and places:

X̂nat = {(free,new1), (next ,new1), (free,new2), (next ,new2),

(pos, insert1), (pos, insert2), id1, id2, id3}
X̂user = {(user ,new1), (user ,new2), (user , insert1), (user , insert2),

(user1, invite1), (user2, invite1), (user , remove1), u1, . . . , u9}
X̂wavelet = {(n,new1), (n,new2), (o, insert1), (n, insert1), (o, insert2), (n, insert2),

(o, invite1), (n, invite1), (o, remove1), (n, remove1), w1, . . . , w6}
X̂text = {(txt, insert1), (txt, insert2)}

X̂range = {(rng, remove1)}

The set of realisation conditions RealWave is given by the union of condition sets CondWave ,
PreWave and PostWave with

CondWave = {(n,new1) = new((user ,new1), (free,new1)),

(next ,new1) = next((free,new1)),

(n,new2) = new((user ,new2), (free,new2)),

(next ,new2) = next((free,new2)),

invited((o, insert1), (user , insert2)) = true,

(n, insert1) = insText((o, insert1), (txt , insert1), (pos, insert1)),

invited((o, insert2), (user , insert2)) = true,

(n, insert2) = insText((o, insert2), (txt , insert2), (pos, insert2)),

invited((o, invite1), (user1, invite1)) = true,

(n, invite1) = addUser((user2, invite1), (o, invite1)),

invited((o, remove1), (user , remove1)) = true,

(n, remove1) = remText((o, remove1), (rng , remove1))}
PreWave = {(free,new1) = id1, (user ,new1) = u1,

(free,new2) = id2, (user ,new2) = u8,

(o, insert1) = w1, (user , insert1) = u2,

(o, insert2) = w5, (user , insert2) = u7,

(o, invite1) = w2, (user1, invite1) = u3, (user2, invite1) = u4,

(o, remove1) = w3, (user , remove1) = u6}
PostWave = {(next ,new1) = id2, (user ,new1) = u2, (n,new1) = w1,

(next ,new2) = id3, (user ,new2) = u4, (n,new2) = w5,

(n, insert1) = w2, (user , insert1) = u3,

(n, insert2) = w6, (user , insert2) = u9,

(n, invite1) = w3, (user1, invite1) = u5, (user2, invite1) = u6,

(n, remove1) = w4, (user , remove1) = u7}

From Theorem 5.3.3 we know that for every assignment v̂ : X̂ → A that satisfies all equations
in RealWave , called solution for the realisation conditions, there is a corresponding instantia-
tion of the AHL-process net Wave and vice versa. An example of a solution for the realisation
conditions that corresponds to the instantiation Inst = (inst ,Wave) in Figure 5.13 is given
in the following:

5.3 Concrete Realisations of Abstract Scenarios 139

remove1

user ↦ B

o ↦ (0,{A,B},Hello Bob)

rng ↦ (5,4)

n ↦ (0,{A,B},Hello)

invite1
user1 ↦ A

user2 ↦ B

o ↦ (0,{A},Hello Bob)

n ↦ (0,{A,B},Hello Bob)

new1

user ↦ A

free ↦ 0

next ↦ 1

n ↦ (0,{A},e)

insert1
user ↦ A

o ↦ (0,{A},e)

txt ↦ Hello Bob

pos ↦ 0

n ↦ (0,{A},Hello Bob)

u1=A

id1=0

user

free

next

u2=A

w1=(0,fAg,e)

n

user
user

o

u3=A

w2=(0,fAg,Hello Bob)

user

n

u4=B

user2
user1

o

u6=Bu5=A

w3=(0,fA,Bg,Hello Bob)

user2
user1

n

user

o

w4=(0,fA,Bg,Hello)

n

user

new2

user ↦ B

free ↦ 1

next ↦ 2

n ↦ (1,{A},e)

free

id3=2

next

u8=B

user

user
insert2

user ↦ B

o ↦ (1,{B},e)

txt ↦ Hello World!

pos ↦ 0

n ↦ (0,{B},Hello World!)

user u9=B

w5=(1,fBg,e)

n o
user

w6=(1,fBg,Hello World!)

n

id2=1

u7=B

Inst

Figure 5.13: Realisation of the AHL-process net Wave

v̂nat :X̂nat → Anat

(free,new1) 7→ 0, (next ,new1) 7→ 1, (free,new2) 7→ 1, (next ,new2) 7→ 2,

(pos, insert1) 7→ 0, (pos, insert2) 7→ 0, id1 7→ 0, id2 7→ 1, id3 7→ 2

v̂user :X̂user → Auser

(user ,new1) 7→ A, (user ,new2) 7→ B, (user , insert1) 7→ A, (user , insert2) 7→ B,

(user1, invite1) 7→ A, (user2, invite1) 7→ B, (user , remove1) 7→ B

u1 7→ A, u2 7→ A, u3 7→ A, u4 7→ B, u5 7→ A, u6 7→ B, u7 7→ B, u8 7→ B, u9 7→ B

v̂wavelet :X̂wavelet → Awavelet

(n,new1) 7→ (0, {A}, ε), (n,new2) 7→ (1, {B}, ε),
(o, insert1) 7→ (0, {A}, ε), (n, insert1) 7→ (0, {A}, Hello Bob),

(o, insert2) 7→ (1, {B}, ε), (n, insert2) 7→ (1, {B}, Hello World!),

(o, invite1) 7→ (0, {A}, Hello Bob), (n, invite1) 7→ (0, {A,B}, Hello Bob),

(o, remove1) 7→ (0, {A,B}, Hello Bob), (n, remove1) 7→ (0, {A,B}, Hello),

w1 7→ (0, {A}, ε), w2 7→ (0, {A}, Hello Bob),

w3 7→ (0, {A,B}, Hello Bob), w4 7→ (0, {A,B}, Hello),

w5 7→ (1, {B}, ε), w6 7→ (1, {B}, Hello Bob)

v̂text :X̂text → Atext

(txt , insert1) 7→ Hello Bob, (txt , insert2) 7→ Hello World!

v̂range :X̂range → Arange

(rng , remove1) 7→ (5, 4)

For each assignment of a variable (x, t) with transition t and x ∈ V ar(t), in the consistent

140 5 Analysis of Platforms and Scenarios

transition assignment (t, v) in Inst , we have v(x) = v̂(x, t). Moreover, for each variable in X̂
that corresponds to a place p in Wave, we have a coloured place (v̂(p), p) in Inst .

Note that the construction of the term equation system and the construction of instanti-
ations for found solutions can be done with our tool, as described in Chapter 6. ♦

6
Tool Support

In this chapter we present the implementation of a tool support for our framework for the
modelling and analysis of communication platforms using algebraic high-level nets and pro-
cesses. First, in Section 6.1 we consider the requirements for the tool support. In Section 6.2
we review a number of tools that are already available for the modelling of high-level Petri
nets. In Section 6.3 we present the current development status of our own tool.

6.1 Requirements for a Tool Support for the Modelling and Analysis of
Communication Platforms and Scenarios

Based on the requirements for the modelling of communication platforms described in Sec-
tion 2.3 and the analysis problems described in Section 2.4, we have the following requirements
for a tool support, considering the corresponding realisations and results of this thesis:

Modelling of Communication Platforms As pointed out in Concept 3.1.8, communica-
tion platforms can be modelled as algebraic high-level (AHL-)nets. An AHL-net is a
Petri net with a high-level data type part. Since Petri nets are graph-like structures, a
suitable tool-support should be a visual editor for “drawing” the graphical components
like places, transitions, and the arcs between them. Moreover, there have to be means
to formally describe the data type part of the net, and to annotate the structures to
corresponding visual elements in the net, i. e. to define the types of places, the firing
conditions of transitions and the inscriptions on arcs.

Modelling of Scenarios According to Concept 4.1.7, abstract scenarios can be modelled
using AHL-processes, and according to Concept 4.3.6, concrete scenarios can be mod-
elled using instantiated AHL-processes. Since AHL-process nets are a special kind of
AHL-nets, for the modelling of these nets it may suffice to enable the user to check
whether an AHL-net satisfies the requirements of being an AHL-process net in Defi-
nition 4.1.1. For the modelling of instantiations, the user has to have the ability to
annotate each place of a net with a data value of the corresponding type, and each
transition with a (consistent) assignment of all variables in the environment of the
transition.

Evolution of Communication Platforms and Scenarios For the structural evolution
of communication platforms (Concept 3.2.16) and of scenarios (Concept 4.2.13 and
Concept 4.6.9), we need an implementation of the rule-based transformation of AHL-
nets. For the transformation of scenarios it is additionally required that the transfor-
mation condition for AHL-process nets in Definition 4.2.10 can be checked, and for
the transformation of instantiations using abstract productions, it is required that the
instantiation condition in Definition 4.6.7 can be checked.

142 6 Tool Support

Analysis of Communication Platforms and Scenarios For the Local Church-Rosser
Theorems of AHL-nets and AHL-processes, the tool has to be able to check for two
direct transformations of the same net whether these transformations are (strongly)
parallel independent, and for a sequence of two subsequent direct transformation it
has to be possible to check whether these transformations are (strongly) sequentially
independent.

Moreover, for the Parallelism Theorems of AHL-nets and AHL-processes, the tool has
to provide means for the synthesis and analysis of parallel productions, whereas for the
Concurrency Theorems, the tool has to enable the synthesis and analysis of (strongly)
E-related transformations and the construction of (strong) E-dependency relations.

Finally, regarding the concrete realisations of abstract scenarios in Section 5.3, there has
to be a way to compute the realisation variables and conditions of an AHL-process net,
and to check whether there are solutions of these conditions. If for an AHL-process net
there are solutions for the realisation conditions, the tool should be able to construct
the corresponding instantiation.

6.2 Available Tool Support for the Modelling and Analysis of High-Level
Petri Nets

There are already several tools for the modelling and analysis of Petri nets and other graph-
structures. In the following we review some of these tools that are possible candidates for
our modelling approach.

CPN Tools The CPN Tools24 is a visual editor for the modelling of Coloured Petri nets
(CPNs) [Jen91, JR91]. CPNs are a high-level Petri net variant that uses data types in
the programming language CPN ML which is an extension of the well-known functional
programming language Standard ML. The CPN Tools offer a variety of techniques for
the simulation, verification and analysis of CPNs [Jen97b].

The functional programming paradigm fits in with the concept of data types based
on signatures and algebras [EM85], however, the main difference between algebraic
high-level and coloured Petri nets is the fact that CPNs do not allow to specify firing
conditions for transitions, but instead, the data type part is only used for arc inscrip-
tions.

In Theorem 4.3 in [PER95] it is shown that each AHL-net AN also defines a correspond-
ing CPN CN . However, the resulting CPN CN corresponds merely to the flattening
Flat(AN) of the AHL-net AN . Thus, on the transfer from the AHL-net to the CPN
modelling technique, we completely lose the high-level structure of the AHL-net which
is vital for the modelling of communication platforms. Therefore, the CPN Tools are
not a suitable tool support for the modelling and analysis of AHL-nets in the application
domain of communication platforms.

RONEditor The RONEditor25 is a visual editor for the modelling of reconfigurable object
nets (RONs) and is described in [BEHM07]. RONs are based on the idea of algebraic
higher-order (AHO-)nets that are algebraic high-level nets, where the tokens are (low-
level) Petri nets (called object nets) and productions for the rule-based transformation
of the nets (called rules). Instead of firing conditions for transitions, the RON-approach
offers four kinds of transitions with fixed semantics, like the firing of an object net or

24CPN Tools – http://cpntools.org/
25RONEditor – http://www.user.tu-berlin.de/o.runge/tfs/projekte/roneditor/

6.2 Available Tool Support for the Modelling and Analysis of High-Level Petri Nets 143

the application of a rule on an object net. For simulation of the behaviour of RONs, the
RONEditor converts the net models to attributed typed graphs [EEPT06b] and uses
the AGG graph transformation engine (see below).

AHLI-Net Editor and CPEditor The RONEditor described above evolved into the Mu-
vitorKit [MBE09], an abstract framework for the rapid implementation of visual editors.
Based on the MuvitorKit, the Eclipse Modeling Framework (EMF)26 and the Graphical
Editing Framework (GEF)27, an editor for AHL-nets with individual tokens (AHLI-nets,
see Remark 3.1.11) was implemented in the diploma thesis [Fis10]. The AHLI-net ed-
itor consists of an editor for the definition of signatures that is based on the Eclipse
Xtext framework, and corresponding algebras for signatures can be implemented as
Java classes. Moreover, the editor allows the visual modelling of AHLI nets that use
the previously specified data type part, and also the simulation of the firing behaviour
using the AGG graph transformation engine on attributed typed graphs constructed
from the AHLI-nets.

In the diploma thesis [Pas12] the AHLI-net editor has been extended to support also the
rule-based transformation of AHLI-nets. The editor supports also nested application
conditions [HP05] and multi-amalgamated rules [BFH85, GEH10, Gol11]. Similar to
the simulation of the firing behaviour, the transformation of AHLI-nets is based on
the conversion to graphs and graph-transformation rules and using the AGG graph
transformation engine.

Based on the implementations of the AHLI-net editor, in [Mod12] the CPEditor, a
visual tool for the design, simulation and validation of communication platforms was
developed. The editor supports the usage of signatures in the same format as in [Fis10],
and correspondingly algebras can defined as Java classes that have to be registered in
the plugin information of the CPEditor. Apart from the possibility to design and trans-
form AHLI-net models, the CPEditor provides verification techniques to investigate the
independence of two single firing steps, transformation rules or a combination of a fir-
ing step and a transformation rule (see [Mod12]). Analogously to the simulation of the
firing behaviour and the transformation steps, the verification of independence is based
on a conversion to typed attributed graphs, using the API functions of the AGG tool
for independence of graph transformations.

AGG Graph Transformation Engine The Attributed Graph Grammar (AGG)28 system
is a development environment for transformation systems of (typed) attributed graphs
[Tae04, EEPT06b]. The tool consists of a graphical user interface for the modelling
of graphs and graph transformation rules. Moreover, it supports a variety of analysis
techniques for graph transformation systems presented in [EEPT06b], like the analysis
of critical pairs, graph parsing or the investigation of termination criteria for layered
graph transformation systems.

The graph transformation engine is the internal model of the AGG system, and it can
be used without the graphical user interface by a Java API. The AGG API is used in the
AHL-net editor and the CPEditor for the simulation of firing behaviour and rule-based
reconfiguration, as mentioned above. The formal basis for the usage of the AGG graph
transformation engine is a result in [MEE10], where a functor F : PTINets|Minj

→
AGraphsPNTG from P/T nets with individual tokens (PTI nets) restricted to injective

26EMF project – http://www.eclipse.org/emf
27GEF project – http://www.eclipse.org/gef
28Attributed Graph Grammar System – http://user.cs.tu-berlin.de/ gragra/agg/

144 6 Tool Support

morphisms to attributed graphs typed over a specific type graph is investigated. It is
shown that the functor F is anM-functor. This implies that the functor preserves and
creates productions, matches and direct transformations, i. e. they can be transferred
along the functor in each direction. As pointed out in [MEE10, MEE12], the functor
F cannot be extended to a functor that maps also non-injective morphisms, and up to
now it is unknown whether there is a suitable M-functor for the conversion between
Petri net and typed attributed graph transformation systems with arbitrary morphisms.
As a result, the RONEditor, AHLI-net editor and CPEditor only support rule-based
transformation with injective matching.

6.3 Algebraic High-Level Net and Process Editor APE

In order to support the modelling and analysis of communication platforms and scenarios
using the integrated framework presented in this thesis, we implement a tool called Algebraic
High-Level Net and Process Editor (APE). In the following we describe the architecture of
the tool and its currently implemented functions. Subsection 6.3.5 gives an overview over the
current status of the implementation that is still in progress.

The tool is not based on one of the available tools presented in Section 6.2. As already
mentioned, the CPN Tools are not suitable for the editing of algebraic high-level nets, since
the conversion of AHL-nets into coloured Petri nets destroys the high-level nature of the
nets. The AHLI-net editor and the CPEditor are visual editors for the modelling of a kind
of AHL-nets, but there are two main reasons why we do not build our tool as an extension
of these tools.

The first reason is the fact that the tools do not support non-injective morphisms, due to
the fact that they rely on the conversion of nets into attributed typed graphs. Considering
the importance of AHL-processes in this thesis which are AHL-morphisms that are in gen-
eral non-injective, this is an unacceptable restriction for our framework for the modelling of
communication platforms and scenarios.

The second reason is the fact that in the AHLI-net editor and CPEditor the semantics of
algebras is implemented in the programming language Java. The way the Java expressions
are used as firing conditions in these tools follows the paradigm of imperative programming,
effectively imposing a strict order of computation for the single expressions. Considering
the firing behaviour of AHL-nets, this is not a problem as long as it is ensured that the
pre conditions of transitions are inscribed with all necessary input parameters, which is a
restriction for the modelling in the aforementioned tools. In this thesis, however, we consider
not only the firing semantics but also the process semantics of AHL-nets, and we consider
instantiations of AHL-processes. In Section 5.3 we have shown that all instantiations of an
AHL-process net can be computed as solutions for a system of term equations. The strength
of this result relies on the fact that the computation does not depend on the causal order
of places or transitions inside the net, allowing to use constraint solving strategies for the
solution of the equation system. Therefore, we use the logic programming language Prolog
to implement the semantics of the data type part of the AHL-nets, as described in full detail
in Subsection 6.3.2.

6.3.1 Tool Architecture

The APE tool mainly consists of two parts: A visual editor that is being implemented
in the object-oriented programming language Java29, and a back-end for the modelling and

29Oracle Java – http://www.java.com/

6.3 Algebraic High-Level Net and Process Editor APE 145

computations of the data type part in the logic programming language Prolog. As interpreter
for the Prolog language we use the open-source implementation SWI-Prolog30 which is widely
used in reseach, education and commercial applications. The communication between the two
parts is based on JPL31, a bidirectional interface between Java and SWI-Prolog.

APE Visual Editor
SWI-Prolog

Data module

Net module

JPL

Signature

Algebra

User-defined

modules

Java/Prolog

Converter,

Parser

Model

Generic net model

P/T-nets

AHL-nets

Instantiations
View

Model views

Project view

Property view

Controller

Menus

Toolbars

Device

bindings

Actions,

Commands

invoke

manipulate

invoke

notify

Tree view

Figure 6.1: Architecture of the APE tool

The implementation follows the Model-View-Controller (MVC) pattern, where the Con-
troller is mediating between the Model and the View, as shown in Figure 6.1.

Model The Model part of the editor consists exactly only of classes for the models such as
AHL-nets or instantiations as described in the previous sections of this thesis. Sup-
ported are classes for low-level P/T-nets, algebraic high-level nets and instantiations of
AHL-nets. The fact that all these Petri net classes basically follow the same concept of
“Petri nets are monoids” [MM90] allows the definition of an abstract generic class Net
that is the superclass of all concrete Petri net classes, and all manipulations of nets like
the creation or deletion of net elements such as places, transitions and arcs is already
abstractly implemented in the class Net.

The abstract model is basically a bipartite directed simple graph (a graph with at most
one edge between a source and a target node) between sets of places and transitions.
Moreover, each edge of the simple graph, called ArcCollection consists of a bundle of
single arcs, called ArcElements with the same source and target. This definition is owed
to the dichotomy between mathematical definition and visual representation of Petri
nets: While the entirety of all ArcElements with the same transition as target or source
node correspond to the monoid sum that is the pre or post domain, respectively, of that
transition, each ArcCollection corresponds to an arrow in the visual representation
of the net. Figure 6.2 shows an example of an AHL-net, where we have pre(t) =
(a, p)⊕ (b, p) and post(t) = (x, p)⊕ (y, p). In the graphical representation that is used
throughout this thesis and other literature, depicted in the left of Figure 6.2 for our
example, there is a single arrow from p to t and from t to p, respectively. Each of
these arrows corresponds to an ArcCollection. Alternatively, it is possible to draw

30SWI-Prolog – http://www.swi-prolog.org
31JPL interface – http://www.swi-prolog.org/packages/jpl

146 6 Tool Support

an arrow for each element in the pre respectively post domain of t, like depicted in the
right of Figure 6.2, where each of the arrows corresponds to an ArcElement. Therefore,
since it is possible to manipulate both, the ArcCollections and the ArcElements with
implications to the respective other component, the Net class provides a good support
to work with the nets from the mathematical as well as from a – for the user more
convenient – visual perspective.

p : nat

t

add(a,b) = add(x,y)

a7b
x7y

p : nat

t

add(a,b) = add(x,y)

a
b
x

y

Figure 6.2: ArcElements and ArcCollections

The implementation of the concrete net classes as subclasses of the abstract Net class
resembles the idea of parametrised net classes in [Pad96, PE01]. For subclasses of the
generic net model it suffices to define the additional data of places, transitions and arc
elements. In the case of P/T-nets, the additional data is for all three element types
empty. In the case of AHL-nets, each place consists of a type, each transition consists of
a set of equations, and each arc element consists of a term. Moreover, an instantiation
is an extension of an AHL-net, where additionally each place is equipped with a data
value, and each transition has a data assignment for all variables in its environment.
For a better usability of the tool, it allows instantiations to be partial, i. e. it is possible
to omit data values of places and the transition assignments can be partial functions,
but it also offers the possibility to check if an instantiation is complete and consistent.

`

1

2

3

4

5

6

Figure 6.3: User interface of the APE tool

6.3 Algebraic High-Level Net and Process Editor APE 147

View The view of the tool defines the visible user interface, as shown in Figure 6.3. The
view contains a menu (1) in the top, that is used for instance to create new projects
or models, and to save or load them. Moreover, it consists of a project view (2) in
the left, that shows all loaded models organised into projects. At the top-center of
the view is a toolbar (3) that has buttons for the selection and manipulation of the
models. The model view (4) in the center shows the currently selected model that can
be edited by the user. Behind the model view there is a separate view model for each of
the (domain) models that contain all the visual informations for those models, like the
positions of elements. These informations are strictly separated from the domain model,
because they are only present for the convenience of the user, but they do not belong
to the underlying mathematical model. The tree view (5) at the top-right organises all
elements of the currently edited model in a tree. This is to help finding elements in
larger models, and gives an overview over the elements and structure that is independent
from the graphical representation in the model view. Finally, the property view (6) at
the bottom-right shows the properties of the currently selected model, project or model
element. It can also be used to change properties, if they are editable, like the name of
an element or its position.

Controller The controller is responsible to handle all user input of the tool. This can be for
instance a mouse click on one of the visual components of the visual editor or a device
binding like pressing a key on the keyboard or using the mouse wheel. Interactions
with visual components invoke actions, while device bindings invoke commands. The
main difference between actions and commands is that an action is always active in the
same context, while a command can be registered for different device bindings. Actions
and commands can manipulate the models and/or notify the view of changes that have
to be made in response to the user input, like updating the visual representation of a
changed model, or change the view because of a new selection.

6.3.2 Signatures and Algebras in Prolog

The idea of using Prolog for the implementation of tools for high-level Petri nets is not new. In
the late 1980s a compiler and simulator for Open Petri Nets (OPNs) was implemented using
the Prolog solving engine [Dib88]. The aim of the work was the analysis of the functional
behaviour of telecommunication systems. In order to avoid the development of a graphical
user interface for the editor that was only text-based, the developers changed the used Petri
net class towards Hierarchical Coloured Petri nets [Jen97a], allowing them to use the CPN
Tools editor, as pointed out in [CDH99]. As already mentioned above, our graphical user
interface is implemented in the object-oriented programming language Java, and we use
Prolog only as a text-based back-end for the data types.

Prolog is a logic programming language with only a single data type – the term that can
be of one of the following forms:

Atom An atom is a single word that starts with a small letter, like x, or an arbitrary text
string in single quotes, like ’an Atom’. An atom is an entity without any inherent
meaning.

Numbers A number can be an integer, like 1, or a floating point number, like 1.0.

Variables A variable is a single word starting with a capital letter or an underscore that con-
tains only letters, digits and underscores, like Var 1. Variables have the same meaning
as variables in mathematics, i. e. they serve as place-holders for arbitrary terms.

148 6 Tool Support

Compound Terms A compound term consists of an atom called functor, and a number of
terms that are the arguments of the functor, like functor(arg1,Arg2). The number
of the arguments is called arity of the term. A special case of compound terms are lists
that are denoted with square brackets, like [] for the empty list, and elements of the
list are separated by commas, like in [1,2,3].

The functors represent predicates or relations and their meaning is specified by facts or
rules. A fact has the form

functor(Arguments).

and means that the the property represented by the functor is true for the arguments. Rules
are of the form

functor(Arguments) :- Body.

where the :- resembles an implication arrow to the left (←), and the property represented
by the functor is true for the arguments if the body of the rule is true. The body can
consist of terms, concatenated by commas, denoting conjunction, or by semicolons, denoting
disjunction.

We implemented a data module (see Figure 6.1) that allows to define signatures and
algebras in Prolog. The signature Σ-Wave in Table 3.1 can be specified as follows:

Listing 1: Definition of signature in Prolog (excerpt)

% Sorts:

:- type(bool).
:- type(nat).
:- type(range).

% Operations:

:- op(true, [bool]).

:- op(false , [bool]).

:- op(start , [range ,nat]).

:- op(toRange , [nat ,nat ,range]).

:- op(next , [nat ,nat]).

Note the special use of the rule syntax without a functor left to the :-. This kind of
rule does not depend on a functor, and the body of the rule is automatically evaluated when
the corresponding module is loaded by the interpreter. A new sort can be defined using the
functor type, resulting in a new functor with the name of the defined type and an arity of
1. This functor can then be used for the definition of the corresponding carrier sets in an
algebra, as shown in the code listing below. For instance, the functor bool is defined to
be true for elements within the finite domain {0, 1}, representing the Boolean values false
and true. The functor nat is defined to be true for natural numbers within the finite domain
{0, ..., 16}. This is not exactly the same as in our algebra A in Table 3.2, where the carrier set
Anat contains all natural numbers. However, it is advised to restrict the number of elements
in a carrier set, if possible, in order to increase the performance of calculations.

Moreover, for an operation f : s1 . . . sn → s of a signature, the corresponding operation
is specified in our Prolog implementation with op(f, [s1,...,sn,s]). This results in the
declaration of a new functor f with arity n + 1. The corresponding function in an algebra
can be defined by specifying the semantics of an automatically constructed functor f A, as
demonstrated in the code listing below. A call of the functor f has the effect that it is checked

6.3 Algebraic High-Level Net and Process Editor APE 149

whether the arguments adhere to the types specified in the signature, and if this is the case,
then the function f A is called with the given arguments. Our automatic type check of the
variables is done by calling the corresponding functor, i. e. for an argument N that has to be
a natural number, nat(N) is called. This also has the effect that if N is an unbound variable
it is set or constrained (see Remark 6.3.1) to the corresponding type.

Note that the logic programming language Prolog does not provide a concept of functions,
and therefore it is important to consider all functions

fA : As1 × ...×Asn → As

in an algebra as a relation

fA ⊆ As1 × ...×Asn ×As

corresponding to a functor f A, where the first n arguments are the arguments of the function,
and the last argument is the result. Further note that this has the effect that a constant is not
a single value, but instead it is a unary relation that is true for exactly one value. Accordingly,
for instance the functor true A that corresponds to the constant trueA = T in the algebra
A, is defined as a functor that is true for the single element 1.

Listing 2: Definition of algebra in Prolog (excerpt)

% Carrier sets:

bool(B) :- B in 0..1.

nat(N) :- nat_upper_bound(B), N in 0..B.

nat_upper_bound (16).

range ([R1,R2]) :- nat(R1), nat(R2).

% Operations:

true_A (1).

false_A (0).

start_A ([N,_],N).

toRange_A(N1,N2 ,[N1,N2]).

next_A(N1 ,N2) :- N2 #= N1 + 1.

Remark 6.3.1 (Finite Domain Constraint Programming). The type definitions that we use
are not pure Prolog definitions, but we make use of the Constraint Logic Programming over
Finite Domain (clpfd) library of SWI-Prolog. Alternatively to the definition of the functor
nat above, it would be possible to define natural numbers between 0 and 16 using the built-
in predicate between(0,16,B). The difference would be, that if we call the functor nat(N)

– which happens whenever an argument of a called operation has the type nat – then the
variable N is set to a definite integer value between 0 and 16 until Prolog’s backtracking
mechanism fails and it is set to another value in the range. In contrast, using the constraint
logic expression N in 0..16 leaves the variable N unbound, but it sets the domain of possible
values for the variable. Accordingly, also the operation #= in the body of next A is not
an assignment, but a constraint, that restricts variables N1 and N2 to be successors, even if
they are not bound to specific values. Taking into account the domains from the nat type
definition, this restricts the domain of N1 to be between 0 and 15, and the domain of N2 to

150 6 Tool Support

be between 1 and 16, and if one of the two variables is set to a definite value (which may
happen later), then the respective other one is automatically set to its predecessor respectively
successor.

Extensive use of constraint programming can have an immense impact on the performance
of an algorithm, like the one for the computation of concrete realisations for abstract scenarios
(see Subsection 6.3.4), because it may prevent a lot of unnecessary backtracking. 4

The fact that we have to encode functions as functors in Prolog does also have ramifica-
tions for the modelling of arc inscriptions and firing conditions of AHL-nets. Since there are
no functions but only functors (predicates) in Prolog, there is also no notion of composition,
like the composition g ◦ f of functions f and g, and accordingly there are no complex terms
of the form g(f(...)). Thus, transferring terms and equations from the pure algebra to
Prolog, one has to consider the following:

1. For arc inscriptions we have the restriction that we only allow variables as arc in-
scriptions. This does not limit the modelling possibilities, since each complex term
inscription term can be replaced by a variable x, and we obtain the same semantics if
we add the equation term = x to the firing conditions of the corresponding transition.

2. The same holds for more complex terms in equations: If we have an equation of the
form f(x1, ...xn) = x, and x1,...,xn or x is not a variable, then the complex sub-term is
replaced by a variable and we add a corresponding equation as described in the previous
item.

3. An equation f(x1, ...xn) = x, where x1,...,xn and x are variables, corresponds to a
Prolog term f(x1,...,xn, x).

The model of an AHL-net in Figure 6.3 demonstrates the modelling of the AHL-net
Platform in Figure 3.2 on page 35 in our tool, where all arc inscriptions and firing equations
are modelled as Prolog terms. Note that due to technical reasons the variables of the data
type part of the AHL-net are not encoded as Prolog variables, but as Prolog atoms, and
accordingly, an assignment is not a binding of variables, but a mapping of the corresponding
atoms to values (see Remark 6.3.2 in Subsection 6.3.4 for more details).

6.3.3 Visual Editing of Net Models

The APE tool allows the visual modelling of P/T nets, AHL-nets and instantiations. The
visual user interface of the tool is shown in Figure 6.3. A new model can be created via
the menu (1). For the placement of new places, transitions or arcs, the user can select the
corresponding tool in the toolbar (3) and then place the net elements in the model view (4).
Newly created net elements first have default values, e. g. places are named Place 1, Place
2, and so on, and arcs of AHL-nets are initially inscribed with an x. In order to ensure the
existence of a default type of places our data module provides a default type void with a
single element empty. The default values of selected net elements can be changed using the
property view (6) or keyboard shortcuts. Moreover, a set of selected net elements can be
deleted with a button on the toolbar (3). If a place or a transition is deleted, then also all
connected arcs are deleted, in order to avoid dangling arcs without source or target. The
models (together with the corresponding visual information) can be saved alone or as the
whole project via the menu (1) in the file format ApeML, a human-readable XML-variant.

6.3 Algebraic High-Level Net and Process Editor APE 151

6.3.4 Calculation of Realisations for Abstract Scenarios

In Section 5.3 we presented a result that describes how instantiations of an AHL-process net
can be computed via solutions of a term equation system. For the realisation of this result in
our tool, we implemented a net module in Prolog, that allows also the definition of AHL-net
models in the Prolog language. Using the corresponding menu entry in the APE tool, for the
model of an AHL-net that has been created in the visual editor, the corresponding Prolog
model is constructed automatically. Moreover, outgoing from that Prolog net model, the
net module provides functionality for the construction and solving of the corresponding term
equations as described in Section 5.3.

Figure 6.4: Computed realisation of an abstract scenario

An example of a computed realisation of the AHL-process net Wave in Figure 4.1 on
page 60 is shown in Figure 6.4. Note that in our implementation of the algebra A, tuples are
implemented as lists, and words (strings) are implemented as lists of integers to benefit from
the constraint programming mechanisms described in Remark 6.3.1. The presented instanti-
ation is the result of the first found solution. It is always possible to start the computation
and visualisation of the next solution as long as there are still variable assignments left that
are not found or already discarded by the algorithm.

It is possible to instantiate the AHL-net partially before starting to compute the (com-
plete) realisation. This means that it is possible to define some of the data values for the
places and also partial variable assignments for the transitions. The partial instantiation is
taken into account by the computation of the complete instantiation, effectively constraining
the solutions to assignments that comply with the predefined values. This can be used to
lower processing effort of the computation, but also to restrict the results to a set of scenar-
ios that is of particular interest, like scenarios for a given marking of the input places, or
scenarios that contain a specific action with predefined values.

Remark 6.3.2 (Representation of Variables in Prolog). As already pointed out in Subsec-
tion 6.3.2, the variables occurring in an AHL-net are not encoded as Prolog variables, but
as atoms. The main technical reason for this lies in the functionality of the computation
of realisations for abstract scenarios. According to Definition 5.3.2 the realisation variables
consist of a disjoint union of all variables occurring in the environments of transitions. In

152 6 Tool Support

the realisation conditions, each variable x that originally occurs in a firing condition of a
transition t, is replaced by its distinct realisation variable representative that corresponds to
transition t which can be expressed as a pair (x, t). If we encode the variable x by a Prolog
variable X and the transition t by some element t, then (x, t) corresponds to a Prolog list
[X,t]. But [X,t] is not a variable and can only be unified to terms of the form [Y,t], where
Y is an arbitrary term. So replacing X by [X,t] in a term that represents a firing condition
does not have the desired effect of replacing the variable with its corresponding realisation
variable. Instead, it is necessary to relate the pair [X,t] to another fresh variable X and
then use X for the term replacement. When Prolog has solved the term equation system,
the variable X is unified with a value J XK in the (Prolog representation of the) algebra, and
the relation between [X,t] and J XK corresponds to a part of a solution v̂ : X̂ → A with
v̂(x, t) = J XK. So, the variable X is not (and never should be) replaced by any value, and
therefore, it is better to represent this immutable entity as an atom. 4

6.3.5 Current Development Status

The APE tool is currently still under development, and not all intended features are already
implemented. In the following we give a short overview over the current status and what is
still to be done, considering the requirements presented in Section 6.1:

Modelling of Communication Platforms The APE tool enables the modelling of P/T-
nets, AHL-nets and instantiations, based on a generic net model that can be easily
extended to other support also other types Petri nets. We intend to implement also
net class transformations that allow for instance to turn an AHL-net into a P/T-net
(along the skeleton functor), and to lift P/T-nets into an AHL-net corresponding to
the DataPT-functor in [Tav02, Urb03]. This should support the user to concentrate on
different aspects of the modelling. Signatures and algebras for the AHL-nets can be
implemented in Prolog using the functors provided by our Prolog data module.

Modelling of Scenarios The modelling of AHL-nets and instantiations principally enables
the user also to model (instantiated) AHL-process nets, because they are special cases
of AHL-nets and instantiations. We plan to the current implementation to allow also
to check whether an AHL-net is an AHL-process net. Moreover, it is planned to allow
also the modelling of AHL-processes that relate a model of an AHL-process net with
the model of an AHL-net in form of an AHL-morphism.

Evolution of Communication Platforms and Scenarios The evolution of communica-
tion platforms and scenarios in the sense of rule-based transformation is not yet imple-
mented. The editor has to be extended to allow also the modelling of productions and
to provide functionality for their applications.

Analysis of Communication Platforms and Scenarios Since the rule-based evolution
is not yet implemented, there are also no analysis techniques for the Local Church-
Rosser, Parallelism and Concurrency Theorems at the present. For the computation of
realisations of abstract scenarios, the tool offers the functionality described in Subsec-
tion 6.3.4.

7
Related Work

In this chapter we give an overview on the related work of this thesis. First, in Section 7.1
we review other contributions to the formal modelling of communication platforms. Then, in
Section 7.2 we give an overview on related work on the formal modelling using the modelling
technique of Petri nets, as it is the basis for the modelling of communication platforms and
scenarios in this thesis. Moreover, considering the fact that structural evolution of platforms
and scenarios in this work are modelled using rule-based transformation in the sense of
graph transformation, in Section 7.3 we review related work in the field of graph and model
transformation. Finally, in Section 7.4 we review other modelling techniques that are related
to the techniques used in this thesis.

7.1 Formal Modelling of Communication Platforms and Apache Wave

In this section we review some of the related work concerning the formal modelling of commu-
nication platforms. Although, there exists a lot of literature about the modelling of all kinds
of communication systems, most of the literature has a different focus and different aims
concerning more technical aspects of the communication, like a specific hardware or software
architecture or the communication protocol. The investigation of human behaviour, on the
other hand, does usually not involve the application of formal mathematical techniques. One
important exception is the work of Tony Modica in [Mod12] that we discuss in the following.

Communication platforms in [Mod12] The work on the formal modelling, simulation
and validation of communication platforms by Tony Modica [Mod12] is closely related
to this thesis, considering the focus on communication platforms as well as the formal
techniques. The main intersection between this thesis and [Mod12] is the fact that both
works employ an integration of algebraic high-level (AHL-)nets and graph transforma-
tion techniques for the modelling and evolution of communication platforms. There
are, however, major differences in the focus of the works.

On the conceptual layer, [Mod12] is focussed on the realisation of technical communi-
cation aspects like direct calls, multi-user chats, conferences, multicasting of data, and
communication platform constraints, mainly inspired by a case study of the telephony
software Skype [Sky13]. On the technical layer, the work is highly focussed on the op-
erational firing semantics and rule-based transformation of AHL-nets. For this reason,
the work is mainly based on the concept of algebraic high-level nets with individual
tokens (AHLI-nets, see also [MGE+10, MGH10]).

User actions are modelled as single firing steps, or firing steps that trigger the appli-
cation of a handler, resembling the idea of graph transformation units [Kus98, KK99]
or ActiGras [EGLT11], extended by a concept of prioritisation of productions. It is
important to note that the triggering firing step of a user action in the sense of [Mod12]

154 7 Related Work

models a single atomic action like a mouse click or a keystroke. Complex user interac-
tions have to be modelled by different user action models, and dependencies between
different user interactions are difficult to verify, because the outcome of a user action
depends on the result of the corresponding handler. For this reason, it is important for
the results concerning independence of user actions in [Mod12] that the user actions
have a functional behaviour. Moreover, the associated handler of a user action models
the internal consequences of that user action on the platform, like the establishment
or removal of communication channels. This means that each user action potentially
changes the communication platform model that models not only the capabilities of
the communication platform but also the current states of all communications on the
platform.

In contrast, on the conceptual layer, this thesis is more focussed on a high-level per-
spective on user interactions on communication platforms, and, taking into account the
potential uncertainty of human behaviour, we do not assume functional behaviour of
complex user interactions. Consequently, on the technical layer, we focus mainly on the
process semantics of AHL-nets that is based on the nets’ firing semantics. The main
advantage of this technical approach is the fact that we are not restricted to consider
only single atomic user actions, but the approach of (instantiated) AHL-processes in-
herently supports the modelling of complex scenarios of user interaction. Accordingly,
we model changes of the current state of a communication by potentially complex
user interactions as applications of single productions. This allows us to analyse the
independence of complex user behaviour by analysis of the corresponding direct trans-
formations, whereas following the modelling approach in [Mod12], the consideration of
complex interactions is only possible by dissection of the complex user action models
into atomic pieces. This requires the simulation of each user action handler, because it
is not possible to know a priori which part of a handler is actually executed in a specific
situation.

Another important benefit of our modelling approach for interaction scenarios as AHL-
processes is the fact that we obtain a clear distinction between the current state of
the communication platform and the states of communications on the platform. While
user actions in the sense of [Mod12] trigger modifications on the platform model, in our
modelling approach modifications that concern only the communication can be modelled
on the technical layer as transformations of AHL-processes which, in general, leave the
AHL-net model of the corresponding underlying communication platform unchanged.
Modifications to the capabilities of a communication platform, on the other hand, can be
considered independently from the current states of communications on that platform.
This distinction allows, for instance, to analyse the compatibility of platform evolutions
with interactions on the platform.

Aside from the differences between the modelling approach in [Mod12] and in this
thesis, the agreement of the modelling approaches in the modelling technique of al-
gebraic high-level nets may serve as a starting point for the development of a unified
integrated approach that benefits from the results of both of the works. Considering
the two-layered modelling using algebraic higher-order (AHOI-)nets in [Mod12], this
could be achieved in at least two different ways. Firstly, it is possible to consider an
algebraic higher-order nets with AHL-nets and (instantiated) -processes together with
corresponding productions for their rule-based transformations as tokens, serving as
a control structure for the modelling of communication platforms and scenarios. Sec-
ondly, since an AHOI-net is a special case of an AHLI-net with a data type part that

7.2 Petri Nets 155

again operates on AHLI-nets, one can think of a modelling of communication platforms
and scenarios in the sense of this thesis, however, with the difference that the data type
part of the AHL-net models is implemented as reconfigurable AHLI-nets in the sense
of [Mod12].

Communication platforms in other literature Due to the importance and ubiquity of
computer-supported communication there is a lot of different literature about models
of communication platforms. However, many of the works about communication plat-
forms are more focussed on the technical aspects of communication like the hardware
architecture, the network topology or the different communication protocols. Accord-
ingly, the notion of a platform is often used in the sense of a hardware architecture,
like in [MSM97, Sie04, JLT09]. In [SV01], a platform is defined as an abstraction
layer for hardware or software systems, and [LNW03] introduces relations between
platforms in form of functions that resemble our approach of abstraction and realisa-
tion in Section 3.3. The Open Data platform in [LTB+12] encompasses architecture
as well as software aspects of a point for publishing and sharing data. In the area
of multi-agent systems, [SMM+08] presents a communication platform as an organi-
sational structure of agents that provides trust and anonymity for mobile agents, and
[Nov08] discusses requirements for suitable communication platforms supporting multi-
agent and multi-robot systems. The aim of the framework of I-centric communication
in [AvdMSPZ01, Arb03, Ste03] is the modelling of the entire communication behaviour
of humans via I-centric services and service platforms.

Due to the fact that Apache Wave is an open-source project, there are various re-
sources available, including for instance specifications of the underlying Google Wave
Federation Protocol [BBB+09] for the server-to-server communication and the Google
Wave Conversation Model [GN09] that specifies the internal structure of waves and
their blips. An overview on the resources can be found at [Pro13]. [Yon10] presents the
formal modelling and analysis of parts of the former communication platform Google
Wave that preceded Apache Wave, using the π-calculus modelling framework. The main
focus of that work lies on technical aspects concerning the underlying server-to-server
and client-to-server protocols.

7.2 Petri Nets

The modelling technique of algebraic high-level nets used in this thesis is based on the general
notion of Petri nets that was first introduced by Carl Adam Petri in [Pet62] and has been
further researched in numerous publications, like e. g. [Roz87, Rei85, MM90].

Open Petri Nets and Processes The composition of AHL-processes presented in Chap-
ter 4 is mainly inspired by the compositional modelling of open net processes [BCEH01,
BCE+07]. Open nets are place/transition (P/T) nets with a distinguished set of places,
representing the interface of the net towards the external world. The idea of open nets
is partly inspired by the Petri Box Calculus (PBC) [BDH92, KEB94], where a set
of process algebra-like operators allows to build complex nets from basic net compo-
nents. Another inspiration for the open Petri net approach are Petri nets with interface
[NPS95, PW98]. The interface consists of an input part (places) and an output part
(transitions), and is used to compose different nets. A high-level variant that combines
the idea of open Petri nets and algebraic specification [EM85] is presented in [UP08].

High-Level Petri Nets and Processes There are several extensions of Petri nets with

156 7 Related Work

data type parts such as Predicate/Transition nets [GL81, Gen87], and Coloured Petri
nets (CPNs) [Jen91, JR91, Jen97a] with data types in the programming language ML.

The combination of Petri nets and algebraic specifications [EM85] was mainly initiated
by Krämer [Krä87, Krä89] and extended in [Hum89, Rei90, DHP91, EPR92, ER97]
leading to the notion of algebraic high-level (AHL-)nets.

Based on the notion of low-level processes of place/transition nets, algebraic high-level
(AHL-)processes were defined in [EHP+02] and further investigated in [Ehr05, EHGP09,
Gab09].

Moreover, the idea of Petri nets as token objects [Val98, Val01] led to the modelling
technique of algebraic higher-order (AHO-)nets [HM03, HEM05, Hof06] that are AHL-
nets with nets and rules as tokens.

Petri Nets with Dynamically Changing Behaviour Other extensions of the Petri net
approach concern dynamic changes of the firing behaviour of the nets. In dynamic
Petri nets [Val78], arc inscriptions in the predomain of a transition may denote places
that specify the number of consumed tokens. Communicative Nets and Cooperative
Nets [SB91, SB94] allow to model systems as a collection of nets that can interact
using message sending. In recursive Petri nets [HP99, HP00, HB08] some transitions
can initiate a new token game within the same net. The approach of nets-within-nets
[KR07] can be used as a mechanism for dynamic transition refinement. Moreover, in
mobile Petri nets[AB09], the tokens are names for places and the name of a consumed
token on firing can be used to specify a destination for the production of new tokens.

Timed Petri Nets There are many different approaches for extending Petri nets by time.
In Time Petri nets (TPNs) [BD91], two labels are assigned to each transition, denoting
the time that has to pass before the transition can fire after being enabled (earliest
firing time), and the maximal time it may be enabled until it has to fire (latest firing
time). The time nets can be analysed using a state space approach [GLMR05].

Deterministic timed Petri nets [BH07] introduce a delay between removal and creation
of tokens. In addition, each place has a designated delay, denoting the time before a
created token can be consumed from that place. Deterministic timed Petri nets are
based on timed marked graphs [CCCS92], a subclass of Petri nets, where each place of
a marked graph has exactly one input edge and one output edge.

In time environment-relationship (TER) nets [GMMP91], time is considered as token
attribute (chronos) with special behaviour. Token timestamps are set by specific ac-
tion relations associated to transitions, which also require time monotonicity of firing
sequences. This approach has inspired the definition of graph transformation systems
with time [GVH04], since considering time as attribute one may re-use the formal
framework of attributed graph transformation.

The modelling approach of timed Coloured Petri nets (timed CPNs) [JK09] extends
the high-level Petri net variant CPNs [Jen97a] by assigning a duration to a transition
and so-called timestamps to each token, indicating the earliest point in time when a
token can be used by a transition. A transition that fires adds the duration time of the
transition to each created token’s timestamp, so that in general, these tokens cannot
be used immediately, but only after the time the transition takes has passed.

Finally, the algebraic approach of timed place/transition (P/T) nets [GLE12] is based on
the approach of timed CPNs, but it is not an extension of CPNs, but instead it extends
an algebraic approach of classical P/T nets in the sense of [MM90]. An extension of

7.3 Graph and Model Transformation 157

timed P/T nets to timed AHL-nets in analogy to the extension of classical P/T nets to
AHL-nets is outlined in [LGM12].

Parametrised Petri Net Classes Based on the fact that many different Petri net classes
share some fundamental similarities, in [Pad96, PE01], a unified approach for Petri
nets is introduced, that allows the formalisation of many different Petri net classes
by actualisation of net structure and data type parameters. This leads to common
abstraction of a wide range of Petri net classes, like e. g. elementary nets, low-level P/T
nets, AHL-nets and CPNs, as parametrised net classes. Considering the fact that there
are also different net classes relevant for this thesis, this inspired the implementation
of a generic net model for our tool support that is used as superclass for the actual
concrete net class models (see Subsection 6.3.1). The extended notion of universal
parametrised net classes offers an abstract categorical theory of rule-based structuring
of different Petri net classes.

7.3 Graph and Model Transformation

The theory of rule-based graph transformation has been introduced in the seventies [EPS73,
Ehr79], resulting in a large variety of different approaches [Roz97]. A break-through for
the double-pushouts (DPO) approach used in this thesis was the introduction of general
categorical frameworks like adhesive [LS04], adhesive high-level replacement (HLR), and weak
adhesive HLR [EHKPP91a, EEPT06b] categories, requiring the existence of pushouts and
pullbacks along (a suitable class of) monomorphisms, and the satisfaction of a so-called
(weak) Van Kampen property which describes a form of compatibility between pushouts
and pullbacks. Almost all main results have been formulated in these abstract frameworks,
including the Local Church-Rosser, Parallelism, and Concurrency Theorems, the Embedding
and Extension Theorems, Completeness of Critical Pairs, and the Local Confluence Theorem
[EEPT06b].

Prominent examples of adhesive categories are the categories of sets and graphs, but it
turned out that for instance the category of P/T nets is not an adhesive category which led
to the generalisations of adhesive HLR and weak adhesive HLR categories in [EEPT06b].
Moreover, in [EGH10] it is shown that all the main results from [EEPT06b] are also valid
in the more general framework of M-adhesive categories. The category of P/T nets as well
as the categories of AHL-nets and instantiations together with suitable classes of monomor-
phisms areM-adhesive categories (see Subsection A.1.3). Another generalisation of adhesive
categories is given by the framework of partial VK square adhesive categories in [Hei10], and
a comparison of the different categorical frameworks can be found in [EGH10].

Transformation of Petri Nets The rule-based transformation of Petri nets have been in-
troduced for low-level P/T nets in [Pad92] and for AHL-nets in [EPR92, PER95]. Note
that the rule-based transformation in the DPO-approach depends highly on the defi-
nition of the morphisms in the corresponding category. Therefore, transformation of
AHL-nets presented in this thesis is slightly different from the one in previous works,
due to an alteration of the definition of AHL-morphisms as pointed out in Remark 3.1.6.

M-adhesive transformation systems of low-level P/T have been introduced in [EHPP07,
EHP+07] and extended toM-adhesive transformation systems algebraic high-level nets
in [Pra07, PEHP08, Pra08]. The rule-based transformation of P/T- and AHL-systems
(i. e. nets together with markings) does not allow to change the markings without
replacement of the corresponding places with new ones. To overcome this restrictions,
the approaches of low- and high-level Petri nets with individual tokens were introduced

158 7 Related Work

in [MGE+10, MGH10, Mod12], leading to an M-adhesive transformation systems of
marked Petri nets, where it is also possible to modify the markings by transformations
(see also Remark 3.1.11).

Application Conditions The application of a production usually depends on the left-hand
side of the production and a match morphism from the left-hand side into the corre-
sponding object that is to be transformed. A way to further restrict the applicability
of productions are application conditions that are introduced for graph grammars in
[EH86, HHT95], and extended to weak adhesive HLR systems in [EEHP04]. Moreover,
the notion of application conditions has been extended to nested application conditions
in [HP05] that allow to specify more complex conditions using Boolean expressions,
leading to expressions that are equivalent to first order logic on graphs (or the objects
of the corresponding M-adhesive category, respectively).

Application conditions for the rule-based transformation of AHL-nets and instantiated
AHL-processes are not considered in this thesis, but their inclusion in our framework
is an interesting aspect for future research (see Subsection 8.4.2).

7.4 Other Modelling Techniques

The Unified Modelling Language is a large framework of different techniques for the modelling
of object-oriented systems [BRJ98, BJR99] that are mainly defined informal or semi-formal.
There have been several efforts for the formalisation of single parts of the UML [BHH+97,
GPP98, BCD+06], but there does not exist a consistent formal semantics for the whole
framework.

Another prominent technique for the formal modelling of concurrent communicating sys-
tems are process calculi or process algebras [Mil73, Hen88] like the Calculus of Communica-
tion Systems (CCS) [Mil80], the Algebra of Communicating Processes (ACP) [BK84, BK85],
Communicating Sequential Processes (CSP) [Hoa85], and the π-calculus [Mil99]. In contrast
to the integrated modelling framework of algebraic high-level nets and -processes used in this
work, in the process calculi there is usually no explicit distinction between the modelling of
a process and the system, where the process is running.

8
Conclusion

In this chapter we summarise the results of this thesis, and we give an outlook on future
work. The results encompass realisations of the modelling requirements from Section 2.3
using our integrated modelling framework of algebraic high-level (AHL-)nets and processes,
as described in Section 8.1. Moreover, in Section 8.2 we review our results for the analysis
problems in Section 2.4. In Section 8.3 we review some general categorical results that are
used for the modelling and analysis in this thesis, and that can also be used for different
modelling techniques and application domains. Finally, in Section 8.4 we give an overview
over the future work.

8.1 Realisation of Modelling Requirements

In this section we review the realisation of the requirements for the modelling of communica-
tion platforms and scenarios that we discussed in Section 2.3 using our integrated framework
of algebraic high-level (AHL-)nets and processes. Note that each realisation of a modelling
concept is accompanied by a corresponding example concerning our Apache Wave case study
in Section 2.2. An overview over the realisations is given in Table 8.1. The realisation of
modelling requirements includes adequate modelling techniques for communication platforms
and scenarios, as well as techniques for the evolution of these models. Moreover, our concept
for the modelling of scenarios is also suitable for the modelling of histories.

Modelling of Platforms As pointed out in Section 2.3, for the modelling of the platforms,
it is important to allow the modelling of the users as well as all sorts of data that is
product of the communication between these users. Moreover, the model of a has to
provide actions that can be used by the users to communicate with each other. In
Concept 3.1.8 we describe that AHL-nets are a suitable modelling technique for the
modelling of communication platforms. This is exemplified in Example 3.1.9, where an
Apache Wave platform is modelled as an AHL-net.

In some cases such as the different manifestations of Apache Wave, there may be dif-
ferent platforms with a different set of actions or data, but users on different platforms
may still communicate with each other due to a common communication protocol. This
means that the modelling of communication platforms should be compositional, allow-
ing to view a combination of platforms as a platform. As described in Concept 3.2.8,
the composition of communication platforms can be modelled by the gluing of the cor-
responding AHL-net models. Moreover, in Theorem 4.5.14 we have shown that the
process semantics of AHL-nets is compositional. Examples of the composition of dif-
ferent Apache Wave platforms are given in Example 3.2.9.

Evolution of Platforms Another requirement for the modelling of communication plat-
forms is the possibility to model also their evolution, allowing to change resources, data

160 8 Conclusion

Table 8.1: Realisation of modelling requirements in this thesis

Concept Realisation

Modelling of platforms Concept 3.1.8: Algebraic high-level nets

Composition of plat-
forms

Concept 3.2.8, Fact 3.2.7: Gluing of AHL-nets
Theorem 4.5.14: Compositional process semantics of AHL-nets

Evolution of platforms Concept 3.2.16, Fact 3.2.14: Rule-based transformation of AHL-
nets,
Concept 3.3.2: Data-evolution of AHL-nets

Abstract and semi-
abstract scenarios

Concept 4.1.7: Algebraic high-level processes,
Concept 4.3.6: Abstract instantiations of AHL-processes

Concrete scenarios Concept 4.3.6: Concrete instantiations of AHL-processes

Levels of abstraction Concept 3.3.8: Levels of abstraction of communication platforms,
Concept 4.4.5: Levels of abstraction of scenarios,
Theorem 3.3.10: Compatibility of abstraction and structuring

Composition of scenar-
ios

Concept 4.2.7, Fact 4.2.6: Gluing of AHL-processes,
Concept 4.5.9, Fact 4.5.8: Gluing of instantiated AHL-processes

Evolution of scenarios Concept 4.2.13, Theorem 4.2.11: Transformation of AHL-
processes
Concept 4.6.9, Theorem 4.6.8: Transformation of instantiated
AHL-processes,
Concept 4.4.4, Fact 4.4.3: Data evolution of scenarios

Views on scenarios Concept 4.5.15, Theorem 4.5.13: Restriction and Amalgamation
of AHL-processes and instantiations

Modelling of histories Concept 4.7.3: Finite and strict instantiated AHL-processes

Progression of histories Concept 4.7.11, Fact 4.7.10: Sequential transformation of instan-
tiated AHL-processes

Behaviour of robots Concept 4.7.11: Sets of sequential productions for instantiated
AHL-processes

or actions of the platform. In Concept 3.2.16 we describe how the structural evolution
of communication platforms can be modelled by rule-based transformation of the cor-
responding AHL-nets. This allows to change the resources and actions of the platform.
In Example 3.2.17 we consider an example of the structural evolution of an Apache
Wave platform.

Moreover, in Concept 3.3.2 we present the modelling of the evolution of the data types
of a communication platform by data-images of the corresponding AHL-nets along
generalised algebra homomorphisms. Example 3.3.3 contains an example of the data-
evolution of an Apache Wave platform.

Modelling of Scenarios Concerning the interactions of human-centric communication plat-
forms, a modelling technique for different scenarios of interactions on a platform is

8.1 Realisation of Modelling Requirements 161

required. A scenario contains a number of actions performed by users, and these ac-
tions have to be in compliance with the actions and data that can be used on the
corresponding platform. The model of a scenario should reflect the causal relation of
subsequent actions, but it should also be possible to model the concurrent occurrence
of actions, since usually it is possible that different users perform actions independently
at the same time (see also the discussion on page 23 about a tolerant interpretation of
simultaneity in near-real time communication).

These requirements are fulfilled by the modelling technique of AHL-processes that can
be used for the modelling of abstract scenarios as described in Concept 4.1.7. An ab-
stract scenarios captures the causal and logical relations between actions and resources,
but it does not contain any definite data values that are used or present throughout
the scenario. An example of an abstract scenario in an Apache Wave platform is given
in Example 4.1.8.

Further, concrete scenarios that consist also of specific data values that are used or
present throughout the scenario can be modelled as instantiated AHL-process as de-
scribed in Concept 4.3.6. This includes also the modelling of semi-concrete scenarios,
i. e. it is possible to specify the data values by terms that may be instantiated to dif-
ferent concrete values. Examples of concrete and semi-concrete scenarios in an Apache
Wave platform are given in Example 4.3.7 and Example 4.4.6.

Modelling of Histories As pointed out in Concept 4.7.3, histories as a finite special case
of concrete scenarios can also be modelled by finite instantiated AHL-processes.

Evolution of Scenarios Analogously to the evolution of communication platforms it is
possible to model also the structural evolution of scenarios by rule-based transformation
of the corresponding models. The evolution of abstract scenarios is modelled as rule-
based transformation of AHL-processes, as described in Concept 4.2.13. The evolution
of concrete and semi-concrete scenarios can be modelled as rule-based transformation of
instantiated AHL-processes, as described in Concept 4.6.9. Examples of the structural
evolution of scenarios of an Apache Wave platform are given in Example 4.2.14 and
Example 4.6.10. Moreover, not only the data-evolution of communication platforms,
but also the data-evolution of scenarios can be modelled by data-images, as pointed out
in Concept 4.4.4.

Moreover, the progression of histories by user interactions can be modelled as rule-
based transformation of instantiated AHL-processes using sequential productions as
described in Concept 4.7.11. An example of the progression of the history of a wave by
interactions of a robot is considered in Example 4.7.12.

Levels of Abstraction The possibility to model abstract, semi-concrete as well as concrete
scenarios allows the modelling of different levels of abstractions for scenarios. Moreover,
the different possible abstraction levels of a scenario can be formally related as described
in Concept 4.4.5. Levels of abstraction for scenarios of an Apache Wave platform are
considered in Example 4.4.6.

This can not only be done for single scenarios, but according to Concept 3.3.8 it is also
possible to consider different abstraction levels of whole communication platforms. Dif-
ferent abstraction levels of an Apache Wave platform are considered in Example 3.3.9.
Moreover, in Theorem 3.3.10 it is shown that our abstraction mechanism is compatible
with structuring of the models.

162 8 Conclusion

Views on Scenarios Regarding the compositionality of platforms described above, it should
also be possible to restrict scenarios to the current view on the platform. This is par-
ticularly interesting in the context of cross-platform communication, where different
platforms together form a common larger platform. The views on scenarios can be mod-
elled by restriction and amalgamation of (instantiated) AHL-processes as described in
Concept 4.5.15. An example of different views on models of scenarios of Apache Wave
platforms is given in Example 4.5.16.

Behaviour of Users and Robots Analysing the interactions in human-centric communi-
cation platforms, we require not only a formal model of the platform, but also a suitable
model of the behaviour of the users. This includes the behaviour of humans, and, con-
sidering robots as a special case of automated users, also the behaviour of robots. The
behaviour of users and robots can be modelled as sets of sequential productions for
instantiated AHL-processes as described in Concept 4.7.11. In Example 4.7.12 we de-
scribe the modelling of the behaviour of a robot that detects and corrects typographical
errors.

8.2 Results for Analysis Problems

Based on our modelling approach for communication platforms and scenarios, we developed
techniques that allow the analysis of different problems. Considering the analysis problems
discussed in Section 2.4, this thesis provides several results, as described in the following.
An overview over the analysis results can be seen in Table 8.2. The analysis results concern
for instance the independence of platform as well as scenario evolutions, the compatibility
between platform evolutions and existing scenarios, and the set of all concrete realisations
that exist for a given abstract scenarios.

Compatibility and Composability of Platform Evolutions Especially in the case of
open-source platforms, it can happen that outgoing from one platform there are different
evolutions of that platform, introducing or removing features or resources, respectively.
Considering two of these evolutions, it is an interesting question if the evolutions exclude
or depend on each other. If this is not the case, it may be possible that the evolutions
are compatible with each other, in the sense that one evolution can also be applied to
the resulting platform of the other one and vice versa. This problem can be analysed by
investigating the independence of the corresponding rule-based transformations of AHL-
nets, as stated in Concept 5.1.5, and shown in the the Local Church-Rosser Theorem for
AHL-nets (Theorem 5.1.4). Note that the Local Church-Rosser Theorem for AHL-nets
is based on the more general Local Church-Rosser Theorem for weak adhesive high-level
replacement (HLR) systems in [EEPT06b] that we instantiated to the special case of
AHL-nets. An example of independent evolutions of Apache Wave platforms is given
in Example 5.1.1.

In the case that we have independent platform evolutions, there should be a way to unite
the different evolutions and obtain one evolution, consisting of the benefits of either of
the single evolutions, but with the difference that the platform evolves in a single step.
This can be achieved using the Parallelism Theorem for AHL-nets (Theorem 5.1.7)
that is an instantiation of the Parallelism Theorem for weak adhesive HLR systems
in [EEPT06b] to AHL-nets. An example of the parallel evolution of Apache Wave
platforms is given in Example 5.1.8.

In the case of dependencies on the other hand, the preferred result would be a compo-
sition of the evolutions in the right order, assuring that no conflicts occur during the

8.2 Results for Analysis Problems 163

Table 8.2: Analysis of problems in this thesis

Concept Result

Independence of platform
evolutions

Concept 5.1.5, Theorem 5.1.4: Local Church-Rosser Theo-
rem [EEPT06b] for AHL-nets

Parallel platform evolutions Theorem 5.1.7: Parallelism Theorem [EEPT06b] for AHL-
nets

Concurrent platform evolu-
tions

Theorem 5.1.12: Concurrency Theorem [EEPT06b] for
AHL-nets

Cross-platform communica-
tion

Theorem 4.5.13 Restriction and Amalgamation of AHL-
processes

Independence of scenario
evolutions

Concept 5.2.6, Theorem 5.2.4: Local Church-Rosser Theo-
rem for AHL-process nets

Parallel scenario evolutions Theorem 5.2.8: Parallelism Theorem for AHL-process nets

Concurrent scenario evolu-
tions

Theorem 5.2.14: Concurrency Theorem for AHL-process
nets

Compatibility between sce-
narios and platform evolu-
tions

Concept 4.8.5, Theorem 4.8.4: Extension of AHL-processes
Concept 4.8.16, Theorem 4.8.14: AHL-process evolution
based on action evolution,
Concept 4.8.26, Theorem 4.8.25: Evolution of instantiated
AHL-processes based on action evolution

Concrete realisations of ab-
stract scenarios

Theorem 5.3.3: Realisation conditions for AHL-process nets

cumulative evolution of the platform. For this problem, we provide the Concurrency
Theorem for AHL-nets (Theorem 5.1.12) that is as well an instantiation of the cor-
responding result for weak adhesive HLR systems in [EEPT06b]. An example of the
concurrent evolution of Apache Wave platforms is shown in Example 5.1.14.

Compatibility between Scenarios and Platform Evolutions Moreover, due to the fact
that platforms can evolve, we need a way to check if scenarios of the original platform
are still in compliance with the result of the modification. Otherwise, it is an interest-
ing question, if scenarios can be adapted appropriately, in order to obtain a consistent
scenario corresponding to the new platform.

The Extension Theorem for AHL-processes (Theorem 4.8.4) provides a sufficient and
necessary condition that allows to analyse whether an AHL-process can be extended
along a transformation of the corresponding system net. As described in Concept 4.8.5
this allows the analysis of the compatibility of scenarios with platform evolutions, and
it provides a mechanism to obtain a valid scenario for the evolved platform if they are
compatible. Note that despite the fact that the Extension Theorem is only formulated
for AHL-processes, it is also applicable to instantiated AHL-processes, as pointed out
in Remark 4.8.2, and thus, the result can be applied not only to abstract but also to
concrete scenarios. An example of the extension of a scenario based on the evolution
of an Apache Wave platform is shown in Example 4.8.6.

164 8 Conclusion

Moreover, for cases of platform evolutions, where it is necessary to adapt the scenario in
order to obtain compliance with the result of the evolution, we introduced the concept
of action evolution patterns. In Theorem 4.8.14 and Theorem 4.8.25 we show under
which conditions we obtain an evolution of (instantiated) AHL-processes that is based
on an action evolution with a given pattern. In Concept 4.8.16 we describe how this
can be used for the evolution of abstract scenarios based on platform evolutions, and
similar, Concept 4.8.26 describes the evolution of concrete scenarios based on platform
evolution. The results are exemplified for an abstract scenario of an Apache Wave
platform in Example 4.8.17, and for a concrete scenario of an Apache Wave platform
in Example 4.8.27.

Concrete Realisations of Abstract Scenarios Considering abstract scenarios without
any specific data or users, the question arises if there are at all concrete values that can
be used to obtain a concrete scenario that is a realization of the abstract scenario. Ac-
cording to Concept 4.4.5, the model of the realisation of an abstract scenario modelled
by an AHL-process mp is a corresponding instantiation (inst,mp). In Theorem 5.3.3 we
show how all concrete realisations of an abstract scenario can be computed as solutions
of a term equation system. This result applied to an abstract scenario of an Apache
Wave platform in Example 5.3.4.

Conflicts between Interactions Considering interactive (near-)real-time communication
using modern platforms it is possible that many users perform different action at the
same time. In the case that they are using the same resources this may lead to conflicts.
This can especially be a problem when a variety of different robots is involved in the
communication. It would be helpful to detect these conflicts at design-time to prevent
problems that may occur during the communication.

As described in Concept 4.7.11, user interactions can be modelled via sequential trans-
formations of instantiated AHL-processes, a special case of the modelling technique for
the evolution of concrete scenarios. In Section 5.2 we transfer the results concerning the
analysis of platform productions to corresponding results for the analysis of scenarios.
Note that the general Local Church-Rosser, Parallelism and Concurrency Theorems for
weak adhesive HRL systems in [EEPT06b] are also valid for the more general categorical
framework of M-adhesive categories (see [EGH10]), and therefore, they are also appli-
cable to instantiations and typed AHL-nets, as pointed out in Remark 5.2.1. Due to
the fact that (instantiated) AHL-processes are a special case of typed AHL-nets, where
the domain is an (instantiated) AHL-process net, in Section 5.2 we concentrate only on
the analysis of AHL-process nets. The application of the analysis results to instantiated
AHL-processes is only a matter of trivially combining all results for AHL-process nets,
instantiations and typed AHL-nets.

For the Local Church-Rosser Theorem for AHL-process nets (Theorem 5.2.4, we intro-
duced the notion of strong independence of AHL-process net transformations that can
be used to describe the independence of scenario evolutions, as stated in Concept 5.2.6.
An example of independent scenario evolutions on an Apache Wave platform is shown
in Example 5.2.7. Given independent scenario evolutions, it is also possible to synthe-
sise and analyse a parallel production that performs the same scenario evolutions in a
single step, using the Parallelism Theorem for AHL-process nets in Theorem 5.2.8. An
example of the parallel evolution of scenarios in an Apache Wave platform is given in
Example 5.2.10. The synthesis and analysis of direct transformations that correspond
to non-independent scenario evolutions is shown in the Concurrency Theorem for AHL-

8.3 Categorical Results 165

process nets (Theorem 5.2.14). Example 5.2.17 shows an example of concurrent scenario
evolutions in an Apache Wave platform.

Note that considering the modelling of interactions as instantiated AHL-processes, the
independence of scenario evolution is a quite strict criterium. It remains an interesting
aspect for future work to consider weaker notions of the independence of scenarios, as
we discuss in Subsection 8.4.1.

Cross-Platform Communication Another interesting aspect for the analysis is the possi-
bility of communication participants on different platforms to communicate with each
other. Considering the communication interface it may be necessary to exchange spe-
cific resources in order to ensure that the communication works correctly.

In our modelling framework, the communication over different platforms can be ex-
pressed by interactions on the composition of the different platform models. This
corresponds to an amalgamated scenario in the sense of Concept 4.5.15. Accordingly
the ability to join different scenarios on different platforms for a cross-platform com-
munication can be checked via agreement of the corresponding AHL-processes, because
as shown in Theorem 4.5.13, every amalgamated AHL-process bijectively corresponds
to an agreement over the interface. It remains open to investigate possibilities for the
case that we do not have an agreement on the interface.

8.3 Categorical Results

In this section we review some general categorical results that have been researched in this
thesis. These results are used for some of the main results, and they may serve as a basis for
interesting future extension, like the introduction of application conditions for AHL-net and
-process transformations (see Subsection 8.4.2), or a generalised categorical theory of non-
M-adhesive transformation systems of AHL-process nets and -processes with and without
(weak) instantiations.

8.3.1 Functor Creations and Cocreations of Petri Net Categories

A functor creation, or F -creation, as defined in Definition A.1.12 is a construction that for a
functor F : C → D and a morphism f : A → F (B) in D yields an object Ā and morphism
f̄ : Ā → B in C such that F (Ā) = A and F (f̄) = f , and the morphism satisfies a universal
property (see Definition A.1.12 for details).

The notion of F -creations resembles the idea of cofree constructions, with the difference
that a cofree construction f∗ : A∗ → B of a D-morphism f : A→ F (B) depends only on f ,
while the F -creation f̄ : Ā → B of f via C-object B depends on both, f and B. In fact, as
shown in Fact A.1.18, an F -creation via an object B is a cofree construction, although not
with respect to functor F , but with respect to the so-called slice functor F \B.

Moreover, F -creations can be characterised by cartesian (or prone) morphisms, as shown
in Fact A.1.15. The notion of cartesian morphisms is usually used in a rather pure mathemat-
ical context. Therefore, it is often formulated in higher category theory, and exemplified by
mathematical examples like groups, rings and topological spaces, making it difficult to access
the theory from a computer scientific perspective. For this reason, we define F -creations as
a general construction rather than an abstract mathematical property.

In Section A.6 we show that there are several functor creations along functors between
different Petri net classes that are relevant for this thesis, like the functor Sys : Procs →
AHLNets that maps a process mp : K → AN to the system net AN , or the functor

166 8 Conclusion

Net : Inst → AHLNet that maps an instantiation (inst, AN) to the corresponding AHL-
net AN . The abstract categorical functor creations also have concrete counterparts that
are relevant in the conceptual main part of the thesis. For instance, a Sys-creation of an
AHL-morphism f via an AHL-process mp is exactly the restriction of the AHL-process mp
along f , and a Net-creation of an AHL-morphism f via an instantiation Inst is exactly the
restriction of Inst along f .

Further, in Subsection A.1.4 we show some general results for functor creations of which
the most important one is that they create pullbacks (see Fact A.1.27). This is for example
used in the proof of Theorem 4.8.14, where we use the fact that the horizontal AHL-morphisms
of the construction are T -creations with T : AHLNets→ Sets being the functor the projects
an AHL-net to its set of transitions. Creations along the injection W : Inst → wInst that
maps concrete instantiations to their representation as weak instantiation are used to show
the reflection of concrete instantiations along AHL-morphisms with isomorphic data type
part in Lemma A.5.5. This in turn is used for the proof of the equivalence of the consistent
creation condition and instantiation condition in Fact 4.6.13. Moreover, the existence of
Net- and wNet-creations allows to easily extend the construction of E-M′AHL factorisations
of AHL-nets to a corresponding construction for (weak) instantiations in Fact A.4.5. This is
the basis for the construction of E ′-M′AHL factorisations of instantiations that is necessary
for applying the Concurrency Theorem also to the categories of (weak) instantiations (see
Remark 5.2.1).

In Definition A.1.28 we define the dual notion of F -cocreations, and for each of the results
for F -creations, we obtain a dual result for F -cocreations, like the fact that F -cocreations
create pushouts (see Corollary A.1.33). The most important examples of functor cocreations
in this thesis are the Data-cocreations with Data : AHLNets→ Algs being the projection
from AHL-nets and -morphisms to their data type part, and the InstData-cocreations with
InstData = Data◦Net being the corresponding projection for instantiations. The Data- and
InstData-cocreations correspond exactly to the data-images of AHL-nets and instantiations,
respectively. This is for instance useful for the proof of Theorem 4.6.8, because the data-
shifting of a production for instantiations is based on pushouts created by functor creations.
Moreover, Data- and InstData-cocreations are categorical generalisations of our abstraction
and data evolution techniques for AHL-nets and instantiations, respectively. Thus, the cre-
ation of pushouts by Data- and InstData-cocreations is a key factor in the proofs for the
compatibility of structural and data evolution (Fact 3.3.4), of abstraction and structuring
(Theorem 3.3.10), and also the compatibility of AHL-processes with data evolution and ab-
straction (Fact 4.1.9). Additionally, the universal property of cocreations allows to easily
extend to data-image construction of instantiations also to a corresponding construction for
instantiated AHL-processes (Fact 4.4.3).

Despite the fact that the general theory of functor creations and cocreations has already
been useful in the course of this thesis, it may also help for future research. One possible
application area are application conditions for the rule-based transformation of instantiations,
as discussed further in Subsection 8.4.2.

8.3.2 Pullbacks of Petri Net Categories

The categorical notion of pullbacks is used in this thesis mainly for the mathematical for-
malisation of restriction constructions for AHL-processes and instantiations in Section 4.5.
Since it is possible to define a quasi-category Cat of all categories, where the objects are all

8.3 Categorical Results 167

categories and the morphisms are all functors,32 it is also possible to apply the idea of the
pullback construction also to pullbacks over co-spans of functors.

wProcInst
wProc

uullllllllllllll
wInst

((RRRRRRRRRRRRR ProcInst
W1oo

Inst

''OOOOOOOOOOO

(PB)

Procs
� _

In0

��

π1

))SSSSSSSSSSSSSS wPInst
wPNet

vvlllllllllllll � _

wIn2

��

PInst
W0oo

In2

��

AHLPNets
� _

In1��

(PB)

(PB) (PB)

AHLNets→
π→1

// AHLNets wInst
wNet
oo Inst

W
oo

(PB)

Figure 8.1: Pullback diagrams of Petri net categories

In Subsection A.1.5 we show that almost all Petri net and process categories that are used
throughout this thesis together with suitable functors between them form pullback diagrams
of categories, as depicted in Figure 8.1. This gives us an interesting picture of how the Petri
net and process categories are connected to each other.

An important strength of the general categorical framework of M-adhesive categories is
the fact that they are closed under several categorical constructions like product, comma or
functor categories. This allows to show the required properties of an M-adhesive category
only for some basic categories and then obtain the same results also for the large variety
of their more complex compositions. For instance, the proof of the fact that the category
(Inst,MAHL) is in M-adhesive (Fact A.5.9) is mainly based on the fact that the category
(AHLNets,MAHL) isM-adhesive, and the category Inst is a full subcategory of the comma
category Skel ↓ Flat.

Unfortunately, there is no suitable class M of monomorphisms such that the category
AHLPNets of AHL-process nets is anM-adhesive category. However, in Section 4.2 we still
obtain a useful transformation system of AHL-process nets by considering only those gluings
of AHL-process nets that are also pushouts in the category AHLNets, and accordingly, we
consider only direct transformations of AHL-process nets that are also direct transformations
of AHL-nets.

One can say that we consider only those direct transformations that can be translated
and created by the functor In1 : AHLPNets→ AHLNets in the sense of [MEE12], where
in contrast to this work, M-functors between M-adhesive categories are considered that
translate and create all direct transformations. So, in order to obtain a general categorical
framework for transformation systems of process categories, it may be worth investigating
the translation of transformations along functors with weaker assumptions.

A first step in this direction is the fact that functor creations and cocreations are closed
under pullback categories, as shown in Fact A.1.39 and Corollary A.1.40, respectively, leading
to the fact that all functors in Figure 8.1 have creations for certain classes of morphisms, as
shown in Section A.6. It remains an open task for future research to use this knowledge for
the definition of a general categorical framework of transformation systems for processes that
rely on the transformation systems of underlying net categories. Such a framework may allow
the formalisation of one general mechanism for transferring results for the transformation of

32A category usually has a class of objects. The collection of all categories, however, is no proper class in
the sense of axiomatic set theory, and therefore, Cat is not a proper category.

168 8 Conclusion

basic categories to the transformation of more complex categories constructed as a pullback
of categories. Up to now, this is not done in a unified way, but separately for each single
case.

8.4 Future Work

In this section we present some aspects for future research that remains to be done outgoing
from the results of this thesis. In Subsection 8.4.1, we give an outlook on additional techniques
for the analysis of the independence of user interactions. Moreover, in Subsection 8.4.2, we
discuss the extension of the evolution of AHL-nets, -processes and instantiations by a control
mechanism called application conditions. In Subsection 8.4.3, we briefly discuss the modelling
and analysis of safety and security properties, using the techniques presented in this thesis.
Finally, in Subsection 8.4.4, we discuss the application of our framework for the modelling
and analysis of communication platforms to other case studies and application domains.

8.4.1 Conflicts and Independence of User Interactions

In Section 4.7 we presented the modelling of user behaviour as sequential transformations of
finite AHL-process nets. Since this is a special kind of direct transformations of AHL-process
nets, it allows the analysis of the independence of user interactions, using the corresponding
results for strong independence of direct transformations of AHL-process nets in Section 5.2.
However, as the name suggests, the strong independence of AHL-process net transformations
is a quite strong condition, restricting the analysis of independence to a subset of all cases
that might be of interest. Interpreting the output places of an instantiated AHL-process net
that models a history of a wave as the resources that are available in the current state of the
wave, strong parallel independence of two sequential transformations requires that none of the
transformations consumes resources that are needed by the respective other one. Strong se-
quential independence, on the other hand, requires that the second sequential transformation
does not require resources that are created by the first one. Given strong parallel or sequen-
tial independence, the Local Church-Rosser Theorem for AHL-process nets (Theorem 5.2.4)
implies that the user interactions that correspond to the sequential transformations can be
applied in different order, leading to the exact same history and state of the wave. A weaker
notion of independence may allow that one of the sequential transformations to uses or cre-
ates resources that are needed for the other one, and vice versa, but only if after (or before)
the first transformation there are still suitable other resources that can be used by the other
transformation instead.

Considering a case of a weaker parallel independence, for sequential transformations
K

%1,m1⇒ K1 and K
%2,m2⇒ K2 this can be expressed by AHL-morphisms a1 : D → R1 and

a2 : D → R2 in Figure 8.2, where the dependency relation L1 ← D → L2 is constructed as
pullback (PB), and we require that a1(PD) ⊆ OUT (R1) and a2(PD) ⊆ OUT (R2).33

The AHL-net D contains a representative for each pair of places p1 ∈ L1 and p2 ∈ L2 that
are matched to the exact output place in K, indicating a conflict over a resource that is used
by both of the transformations.34 Now, the AHL-morphisms a1 : D → R1 and a2 : D → R2

express alternative matchings for the conflicting elements, allowing us to bypass the conflict

33The dependency relation L1 ← D → L2 must not be confused with an E-dependency relation L1 → E ←
L2 of %−1

1 and %2 as used in the Concurrency Theorems. In fact, this kind of dependency relation was used in
an early version of a Concurrency Theorem for high-level replacement systems in [EHKPP91b, EHKPP91c].

34Note that this resource-conflict is different from a delete-use conflict in the sense of graph transformation.
The fact that a resource is used does not mean that there is anything deleted in the net, but it only means
that the matched place will probably not remain an output place.

8.4 Future Work 169

D
o1

xxx
||xx o2

FFF

""FF
a1

vv

a2

((
(PB)R1

n1

��

I1r1oo

k1

��

l1 // L1

n1

666666

��666

L2

m2
������

�����

I2l2oo

k2

��

r2 // R2

n2

��
K1 C1g1oo f1

// K C2f2
oo g2 // K2

Figure 8.2: Weak parallel independence of sequential transformations

by definition of matches m′1 : L1 → K2 and m′2 : L2 → K1 with

m′1(x) :=

{
g2 ◦ f−1

2 ◦m1(x) , if x /∈ o1(D);

n2 ◦ a(x) , if x ∈ o1(D).

and an analogous definition of m′2. Note that the matches are well-defined, because the
sequential productions are non-deleting, and thus, f1 and f2 are isomorphisms. So instead
of requiring that the same resources are still available in the result of the respective other
transformation, we require that there is at least some resource that is either retained or
produced by the other production.

Of course, using these constructed matches, it cannot be expected that we obtain the
same result as with the original match. However, it would be desirable that applying the
transformations in different order, we still obtain equal states of the wave, although it cannot
be expected that the resulting histories are equal. Instead, we may require that there is
some sort of equivalence between the resulting histories, requiring that it contains similar
occurrences of actions, but possibly in a different order.

The sequential transformation of instantiated AHL-processes is inspired by the sequential
composition of instantiated AHL-processes (based on AHL-occurrence nets instead of AHL-
process nets) in [EHGP09, Gab10], where we already defined notions of the equivalence of
instantiated AHL-occurrence nets and AHL-processes, and independence of their sequential
composition. An equivalence e between two instantiated AHL-processes (inst1,mp1) and
(inst2,mp2) is a pair (eP , eT) of bijections between the sets of places and transitions, re-
spectively, that does not necessarily constitute an AHL-morphism, but satisfies the following
conditions:35

1. The functions eP and eT are compatible with the AHL-processes, i. e. it is required that
mp2,P ◦ eP = mp1,P and m2,T ◦ eT = mp1,T .

2. A place p is an input or output place of the first AHL-process with inst1,P (p) = (a, p),
if and only if eP (p) is an input respectively output place of the second AHL-process
with inst2,P (eP (p)) = (a, eP (p)).

Independence, on the other hand is a property of sequential compositions of instantiations
(Inst1, Inst2) w. r. t. (Inst0, i1, i2) and (Inst2, Inst1) w. r. t. (Inst0, i3, i4). For the sake of
brevity, we do not recall the definition of independence, but we refer to [EHGP09, Gab10] for
the full details. In [EHGP09, Gab10] it is shown that independent sequential transformations
lead to equivalent results.

35In [EHGP09, Gab10] only AHL-nets and -morphisms with a fixed data type part (Σ, A) are considered.
A generalisation of the notion of equivalence to AHL-process nets with different data type part may require
an extension with the involvement of components (eΣ, eA) for the data type part.

170 8 Conclusion

It is an interesting task to transfer this idea of independence from compositions to sequen-
tial transformations of AHL-processes, in order verify if we obtain equivalent transformation
results. The question if different orders of transformations with alternative matches, as de-
fined above, lead to equivalent results, according to the Concurrency Theorem is equivalent
to the question if applications of the E-concurrent production %1 ∗E1 %2 of %1 and %2 via m1

and m′2, and the E-concurrent production %2 ∗E2 %1 of %2 and %1 via m2 and m′1 lead to
equivalent results. Since the sequential productions %1 and %2 are non-deleting, %1 ∗E1 %2 and
%2 ∗E2 %1 should have isomorphic left-hand sides. So, taking into account the construction of
E-related AHL-net transformations in Fact 5.1.13, we conjecture that we obtain equivalent
transformation results if we have independent compositions of instantiations, corresponding
to compositions of AHL-process nets (R1, R2) w. r. t. (D, r1 ◦ l−1

1 ◦ o1, a2) and (R2, R1) w. r. t.
(D, a1, r2 ◦ l−1

2 ◦ o2). A detailed formalisation of all the required theory and a formal proof of
the conjecture is an open task for future research.

8.4.2 Application Conditions

Application conditions, that are introduced for graph grammars in [EH86, HHT95], and
extended to weak adhesive HLR systems in [EEHP04], are a mechanism that allow to control
the applicability of productions for rule-based transformation. The notion of application
conditions has been extended to nested application conditions in [HP05] that allow to specify
more complex conditions using Boolean expressions, leading to expressions that are equivalent
to first order logic on graphs (or the objects of the corresponding M-adhesive category,
respectively). Nested conditions acP over an object P are inductively defined as follows:

• true is a nested condition over P .

• For every morphism a : P → C and nested condition acC over C, ∃(a, acC) is a nested
condition over P .

• A nested condition can also be a Boolean formula over nested conditions, i. e. for nested
conditions acP and (acP,i)i∈I also ¬acP , ∨i∈IacP,i and ∧i∈IacP,i are nested conditions
over P .

An application condition for a production % : L
l← I

r→ R is a nested condition acL over
L. The application of a production usually depends on the left-hand side of the production
and a match morphism from the left-hand side into the corresponding object that is to be
transformed. If a production has a nested application condition acL, the production is only
applicable at a given match m, if m also satisfies the application condition. Satisfaction of a
nested condition acP over P by a morphism m : P → G, written m � acP , is given if:

• acP = true,

• acP = ∃(a, acC) with a : P → C and there exists q : C → G ∈ M such that q ◦ a = m,
and q � acC (see Figure 8.3),

• acP = ¬ac′P and m 6� ac′P ,

• acP = ∨i∈IacP,i and m � acP,i for some i ∈ I, or

• acP = ∧i∈IacP,i and m � acP,i for all i ∈ I.

Nested application conditions are well-researched in the context of M-adhesive trans-
formation systems [EGH+12a, EGH+12b], including analysis results for parallelism, concur-
rency, embedding, critical pairs and local confluence for transformation systems with nested

8.4 Future Work 171

C

q∈M

��@@@@@@@@@@@@@@@@acC . P
aoo

m

��
G

(=)

Figure 8.3: Satisfaction of nested condition

application conditions. The category AHLNets of AHL-nets that is used for the modelling
of communication platforms in this thesis, together with the classMAHL of monomorphisms
with isomorphic data type part forms an M-adhesive category. This means that there is al-
ready a large variety of techniques for the modelling and analysis of AHL-net transformations
with nested application conditions available. The same holds for the categories of instantia-
tions and weak instantiations, since we show in Fact A.5.9 that they form also M-adhesive
categories. Unfortunately, the general theory forM-adhesive transformation systems cannot
be applied directly to transformation systems of AHL-processes.

In the case of AHL-process nets and AHL-processes we do not have suitableM-adhesive
categories that would allow to use the general results forM-adhesive transformation systems
with nested application conditions. However, the category AHLPNets of AHL-process nets
is a full subcategory of the category AHLNets of AHL-nets, and direct transformations of
AHL-process nets are defined as a special case of direct transformations of AHL-nets. Accord-
ingly, in principal it is possible to use a theory for nested application conditions for AHL-net
transformations also for nested application conditions for AHL-process net transformations.
This would mean that we equip productions for AHL-process nets with nested application
conditions for AHL-nets. Considering the fact that injective AHL-morphisms reflect the prop-
erty of being an AHL-process net (Lemma A.7.1), this means that an application condition
of the form ∃(a, acC) with a : L → C is only satisfied by a match m : L → K into an AHL-
process net K, if also C is an AHL-process net. Effectively, we obtain that an AHL-net that
is not an AHL-process net that occurs somewhere in the nesting of a condition, implies that
the corresponding component of the condition is never satisfied. Hence, it would make sense
to restrict application conditions for AHL-process nets to be built up only over AHL-process
nets. Considering the fact that the general framework for the analysis of M-adhesive trans-
formation systems with nested application conditions involves structuring techniques like the
shifting of conditions over morphisms or productions, a satisfactory approach for the anal-
ysis of AHL-process net transformations with nested application conditions should provide
corresponding results for these structuring techniques with the requirement that they result
only in proper application conditions that contain only AHL-process nets.

Another more subtle problem concerning also nested application conditions of AHL-nets
and instantiations is caused by the fact that all morphisms in the class MAHL have an
isomorphic data type part. Considering the morphism q in Figure 8.3 that has to be inMAHL

in the case of AHL-nets or instantiations, we obtain that all nets that occur in the nesting
of an application condition must have the same data type part as a matched net, in order
to satisfy the application condition. Especially in the case of productions for instantiations
this would mean a serious restriction, because it means that effectively we cannot specify
satisfiable nested application conditions for abstract productions which, in general, have a
data type part that is different from the data type part of the concrete instantiations the
productions are applied to (see Definition 4.6.1).

172 8 Conclusion

A similar problem occurs in the context of AHL-nets with individual tokens (AHLI-nets),
as pointed out in [Mod12], leading to the notions of variable application conditions (VACs)
and structural satisfaction. A variable application condition contains only AHLI-nets with
a term algebra as data type part, similar to abstract instantiations which also are required
to have a term algebra as data type part. Then, structural satisfaction of a VAC is defined
analogously to the classical satisfaction, but with the difference that for conditions of the form
∃(a, acC) the required morphism q as in Figure 8.3 does not have to be an M-morphism,
but can be almost injective, meaning that only the structural part needs to be injective,
and it can have an arbitrary data type part. Using a mechanism called data shifting, the
structural satisfaction of variable applications is successfully related in [Mod12] to the classical
satisfaction of nested application conditions, which allows to transfer results for the classical
satisfaction also to the special case of structural satisfaction.

The data shifting construction is based on a data-structure factorisation construction
f = fS ◦ fD of AHL-morphisms f , and a data extension f+h of AHL-morphisms f along
Σ-homomorphisms h. It can be shown that the data extension f+h of an AHL-morphism
f : ANI1 → ANI2 along homomorphism h is a DataAHLI -cocreation of h via ANI1 along
functor DataAHLI : AHLINets→ Alg(Σ) that projects AHLI-nets and -morphisms to their
data type part. Moreover, it can be shown that for a data-structure factorisation f = fS ◦fD
of an AHLI-morphism f : ANI1 → ANI2, we have that fD is the DataAHLI -cocreation
of DataAHLI (f) via ANI1 and fS is induced by the universal cocreation-property of fD.
Accordingly, the data shifting of an AHLI-morphism a : P → C is a pushout created by
DataAHLI -cocreations (Corollary A.1.33).

In fact, the introduction of functor cocreations in this thesis is strongly inspired by the idea
of generalising this approach. So, it should be possible to lift the theory of variable application
conditions and their structural satisfaction from the concrete case of AHLI-nets to a general
theory based on functor cocreations. Considering the fact that we have Data-, InstData- and
wInstData-cocreations, we already have everything that we need to instantiate this general
approach again for nested application conditions for AHL-nets and (weak) instantiations.

An alternative approach in [HCE12] instantiates rules and negative application conditions
by componentwise extremal E-M factorisations. This may also be a promising approach for
a theory of application conditions with abstract data type, since the category AHLNets
has extremal E-MAHL factorisations, as we have shown in Corollary A.4.9. Constructions
for extremal E-MAHL factorisations in the categories of (weak) instantiations should work
analogously. Otherwise, we can obtain constructions for finite (weak) instantiations, using
the general results for finitary M-adhesive categories in [BEGG10, GBEG12].

8.4.3 Analysis of Safety and Security Problems

In this thesis we concentrate mostly on conflicts and compatibility of evolutions of platforms
as well as scenarios. For these problems, it is sufficient that we have a quite high-level perspec-
tive on the platforms, where we do not concentrate on the low-level technical details. Other
interesting problems concerning for instance safety properties, like the persistence of impor-
tant resources, or security properties, like compliance to access restrictions, should require to
move the focus away from the high-level perspective to the actual technical circumstances,
like properties of the used hardware, or the communication protocol.

This seems to be particularly important in the course of current events, regarding the
news about ubiquitous surveillance activities by intelligence services, like the US-American
NSA and British GCHQ. Considering the possibility to compromise the security of propri-
etary encryption techniques by secret built-in back doors, it can be expected that in the

8.4 Future Work 173

near future there will emerge an increasing demand for open software that supports secure
communication. Due to the increasing complexity of communication platforms as well the
corresponding security measures, the openness of the software alone may not be sufficient to
fully comprehend its functionality, and accordingly, it is not sufficient to verify whether it is
really secure. It remains an open question for future investigation, to which extent our mod-
elling framework can support the analysis of safety and security properties of communication
platforms and the underlying techniques.

8.4.4 Other Case Studies and Application Domains

In this thesis we developed a comprehensive framework for the modelling and analysis of
communication platforms and scenarios, and we successfully applied it to our Apache Wave
case study (see Section 2.2). Indeed, in order to avoid unnecessary complications that could
impair the overview and understanding, we restricted the case study to cases of quite basic
platforms, like the one modelled in Example 3.1.9. For instance, an actual wave has a tree-
structure and may contain complex data elements like images, tables, maps, and so on, while
in our modelling examples, we restricted waves to contain only plain text. So, for a more
realistic model, it would be necessary to extend our platform models by a more complex
structure of waves, and more sophisticated resources and actions that are provided by the
platform.

It is an interesting question which additional modelling requirements may emerge that
are necessary in order to support the comprehensive modelling of all features. This is also
a good motivation for the investigation of other case studies in the future. In principal, it
should be possible to model also the other examples of communication platforms discussed
in Section 2.1, since our modelling approach is not in any way restricted by assumptions that
are based on our case study: Our concept for the modelling of communication platforms (see
Concept 3.1.8) is only based on the assumption that a communication platform consists of
resources, data types, and actions that use these resources and data types, but we do not
require that the resources, data types, or actions are of any peculiar form. Thus, the modelling
of other communication platforms can be done by modelling an AHL-net that consists of the
resources, data types, and actions that are provided by that platform. Moreover, our concepts
for the modelling of scenarios (see Concept 4.1.7 for abstract scenarios, and Concept 4.3.6
for the semi-concrete and concrete scenarios) is only based on the assumption that a scenario
contains occurrences of resources and actions that are used throughout the scenario, and in in
the concrete case the resources have specific data values. In our Apache Wave case study, the
scenarios model interactions of users and robots in waves. In the case of Wiki-systems, the
scenarios may model the interactions of editors on wiki pages, and in the case of Facebook, the
scenarios may model the sharing and commenting of posts on the user’s timelines. A suitable
modelling of the news feed in Facebook, which aggregates posts of different timelines, may
require an extension of the concept of views, considering the fact that the Facebook news feed
usually does not contain the entirety of current posts, but instead it is based on algorithms
that supposedly try to filter out posts that are less interesting or not important for the user.
However, following the modelling concepts presented in this thesis, it should in principal be
possible to model the main aspects of most communication platforms and their scenarios
without the necessity to extend our modelling approach.

174 8 Conclusion

A
Appendix

A.1 Category Theoretical Basics

In this section we give an overview on some of the category theoretical concepts used in this
thesis. Category theory is a relatively young branch of mathematics that was initiated in the
1940s [EM45]. It is an abstract framework that considers objects and relations (morphisms)
between them without regard to their internal details. In Subsection A.1.1 we recall some
of the definitions from category theory that are of importance for this thesis, but for a
comprehensive introduction to the category theory, we refer to [AM75, AHS90, BW90].

A.1.1 Basics

In this subsection, we review the definitions of some of the category theoretical concepts
that are used in this thesis. The following notion of monomorphisms corresponds to that of
injective functions in the category Sets of sets, and to injective morphisms in the Petri net
categories PTNets and AHLNets. By reversing the direction of all arrows (morphisms) in
the definition, we obtain the dual notion of epimorphisms.

Definition A.1.1 (Monomorphism). Given a morphism f : A → B in a category C. Then
f is called a monomorphism, if for all morphisms g, h : C → A in C with f ◦ g = f ◦ h we
have g = h. 4

C
h
//

g // A
f // B

The following definition of pushouts is used for gluing constructions in the categories of
sets and AHL-nets in the main part of this thesis.

Definition A.1.2 (Pushout). Given diagram (1) below in a category C, then (1) is a pushout
if (1) commutes and has the following universal property: For all objects X and morphisms
h1 : B → X, h2 : C → X with h1 ◦ f1 = h2 ◦ f2 in C, there exists a unique h : D → X with
h ◦ g1 = h1 and h ◦ g2 = h2.

If (1) is a pushout, we also say that D is a pushout of B and C over the interface A.
Also, we call C a pushout complement of f1 and g1, and B a pushout complement of f2 and
g2. 4

A

f1
??�����

f2 ��?????

B

g1 ��?????
h1

**TTTTTTTTTTTTTTTTT

C

g2
??����� h2

44jjjjjjjjjjjjjjjjj

D(1) h // X

176 A Appendix

The definition of pullbacks is dual to the definition of pushouts. In the main part of
this thesis, pullback constructions correspond mainly to constructions of restrictions along
morphisms.

Definition A.1.3 (Pullback). Given diagram (2) below in a category C, then (2) is a pullback
if (2) commutes and has the following universal property: For all objects X and morphisms
h1 : X → B, h2 : X → C with g1 ◦ h1 = g2 ◦ h2 in C, there exists a unique h : X → D with
f1 ◦ h = h1 and f2 ◦ h = h2. 4

X

h1

44jjjjjjjjjjjjjjjjj

h2 **TTTTTTTTTTTTTTTTT h // A
f1

??�����

f2

��?????

B
g1

��?????

C
g2

??�����

D(2)

The following definition has the meaning of a disjoint union in the category Sets of sets.
In the main part of the thesis, coproduct constructions are mainly used for the definition of
parallel productions, that can be seen as a disjoint union of productions.

Definition A.1.4 (Coproduct). Given objects (Ai)i∈I for some index set I in a category C.
For an object A and morphisms (ιi : Ai → A)i∈I , we say that (A, (ιi)i∈I) is a coproduct of
(Ai)i∈I , written A =

∐
i∈I Ai, if for all (fi : Ai → B)i∈I there exists a unique f : A → B

such that f ◦ ιi = fi for all i ∈ I. 4

Ai
ιi //

fi AAAAAAA A

f
��
B

A.1.2 Indexed Categories and Grothendieck Categories

In this subsection we review the notions of indexed categories and Grothendieck categories
[Gro57, Joh02], and we introduce the category of signature sorted sets as an example of
a Grothendieck category that is used for the families of variables in AHL-nets (see Defini-
tion 3.1.4 and Definition 3.1.5).

Definition A.1.5 (Indexed Category). Given a category I, called index category, an indexed
category is a functor F : Iop → Cat, where Cat denotes the category of all categories. 4

Definition A.1.6 (Grothendieck Category). The Grothendieck category Gr(F) of an indexed
category F : Iop → Cat has as objects pairs (i, A) with i ∈ I and A ∈ F (i). A morphism
(i1, A1)→ (i2, A2) is a pair (f, g) with f : i1 → i2 in I and g : A1 → F (f)(A2) in F (i).

Given morphisms (f, g) : (i1, A1) → (i2, A2) and (f ′, g′) : (i2, A2) → (i3, A3), the compo-
sition is defined by

(f ′, g′) ◦ (f, g) = (f ′ ◦ f, F (f)(g′) ◦ g)

For an object (i, A), the identity id(i,A) is given by (idi, idA). 4

A.1 Category Theoretical Basics 177

Example A.1.7 (Grothendieck Categories). One example of a Grothendieck category is
given by the category Algs of algebras and generalised algebra homomorphisms, where the
indexed category is the contravariant functor V : Sigsop → Cat with V (Σ) = Alg(Σ) and
V (f : Σ1 → Σ2) = Vf : Alg(Σ2) → Alg(Σ1) being the forgetful functor that provides a
Σ1-reduct of a Σ2-algebra (see [EM85]).

The objects of the category are pairs (Σ, A) of a signature Σ together with a Σ-algebra A.
The morphisms of the category are generalised algebra homomorphisms (fΣ, fA) : (Σ1, A1)→
(Σ2, A2), where fΣ : Σ1 → Σ2 is a signature morphism and fA : A1 → VfΣ

(A2) is a Σ1-
homomorphism. For more details we refer to [EM85].

Another example is given by the category SSets of many-sorted sets (S,X) where S is
an (index) set and X = (Xs)s∈S is a family of sets indexed over S. The index category is
SSet : Setsop → Cat with SSet(S) = SetsS (the category of S-indexed sets), and SSet(f :
S1 → S2) = Vf : SetsS2 → SetsS1 is the forgetful functor for families of sets, working
analogously to the reduct of algebras on the respective carrier sets. That is, for SetsS2-
objects X = (Xs)s∈S2 we have Vf (X) = (Xf(s))s∈S1 . For SetsS2-morphisms g : X1 → X2

with (gs : X1,s → X2,s)s∈S2 we have Vf (g) = (gf(s) : X1,f(s) → X2,f(s))s∈S1 . For more details
on many-sorted sets, we refer to [TBG91]. ♦

Since every signature consists of a set of sorts, and every signature morphism contains
a sort component function, it is possible to define analogously to the category SSets of
many-sorted sets indexed over sets, a category SigSets of many-sorted sets indexed over
signatures.

Definition A.1.8 (Signature-Sorted Sets). The category SigSets of signature-sorted sets
is defined as Grothendieck category over the index category SigSet : Sigsop → Cat with
SigSet(Σ) = SSet(S) for objects Σ = (S,OP), and SigSet(fΣ) = SSet(fS) for morphisms
fΣ = (fS , fOP) : Σ1 → Σ2 (see Example A.1.7 above for the definition of SSet : Setsop →
Cat). 4

A.1.3 M-Adhesive Categories

An M-adhesive category [EGH10] consists of a category C together with a class M of
monomorphisms stable under pushouts and pullbacks as defined below. The concept of M-
adhesive categories generalizes that of adhesive [LS04], adhesive HLR [EHPP06], and weak
adhesive HLR categories [EEPT06b].

Definition A.1.9 (M-Adhesive Category). AnM-adhesive category is a pair (C,M), where
C is a category and M a class of monomorphisms with

1. M is closed under composition, decomposition and isomorphisms,

2. C has pushouts and pullbacks along M-morphisms,

3. M-morphisms are closed under pushouts and pullbacks, and

4. pushouts in C along M are M-Van Kampen (VK) squares. A pushout (1) along
m ∈ M is an M-VK square if for any commutative cube (2) with (1) in the bottom
and all vertical morphisms inM, and where the back faces are pullbacks, the following
statement holds: The top face is a pushout if and only if the front faces are pullbacks.

178 A Appendix

A
f

~~}}}}} m

 AAAAA

(1)C

n AAAAA B

g~~}}}}}

D

A′f ′

rreeeeeeeeeeeeee m′

))RRRRRR

a

��

C ′

n′
((RRRRRR

c

��

B′

g′ffffffffff
rrfff

b

��

D′

d

��

(2)

A

(1)

f
rr

m
))

C
n))SSSSSS B

grreeeeeeeeeeeeee

D

4

Remark A.1.10 (Adhesive and (Weak) Adhesive HLR Categories). The framework of M-
adhesive categories is a generalization of the framework of weak adhesive high-level replace-
ment (HLR) categories [EEPT06b]. For weak adhesive HLR category (C,M), the Van Kam-
pen (VK) square property has to hold for all pushouts along m ∈M where either all vertical
or all horizontal morphisms of the cube are inM. In contrast, in an adhesive HLR category,
the property has to hold for all cubes where only m is required to be an M-morphism. All
these definitions are based on the notion of adhesive categories [LS04] which is an adhesive
HLR category where the class M contains all monomorphisms in C. 4

The most prominent examples of M-adhesive categories are the category (Sets,MS) of
sets and functions where the class MS consists of all injective functions, and the category
(Graphs,MG) of graphs and graph monomorphisms where the classMG contains all injec-
tive graph morphisms. There are also suitable classesM for the Petri net categories used in
this paper such that these categories are also M-adhesive, as stated in the following fact:

Fact A.1.11 (M-Adhesive Petri Net Categories). The categories (PTNets,MPT) with
MPT being the class of all injective P/T morphisms, as well as (AHLNets(Σ,A),MAHL)
and (AHLNets,MAHL) with the class MAHL of injective AHL-morphisms with isomorphic
data type part are M-adhesive categories.

Proof. In [Pra08] it is shown that the categories are weak adhesive HLR categories which
implies that they are also M-adhesive categories.

A.1.4 Functor Creations and Cocreations

In this subsection we introduce the notion of functor creations, and we show some very
useful properties that we can use for various functors between categories of AHL-processes
and instantiations. Note that our notion of functor creations is equivalent to the notion
of cartesian (or prone) morphisms [Gro71, Gir71, Joh02], and thus, readers familiar with
cartesian morphisms and their properties can skip most of this subsection. However, the
notion of cartesian morphisms is mostly used in a purely mathematical context. Therefore,
the theory of cartesian morphisms is often formulated in higher category theory and rarely
motivated by examples from a computer scientific context. Moreover, as computer scientists
we are interested rather in a constructive than a descriptive perspective. The notion of
cartesian morphisms is rather a property of a morphism, whereas a functor creation is the
result of a construction, yielding a cartesian morphism.

Definition A.1.12 (F -Creations). Given a functor F : C→ D, objects B in C and A in D,
and a morphism f : A→ F (B) in D. A morphism fB : AB → B in C is called F -creation of
f via B, if

• F (AB) = A,

A.1 Category Theoretical Basics 179

• F (fB) = f , and

• (universal property) for all objects C with morphisms g : C → B in C and h : F (C)→ A
in D with F (g) = f◦h there exists a unique morphism h∗ : D → AB such that F (h∗) = h
and fB ◦ h∗ = g.

C //

g

��3
333333333333

!h∗

%%KKKKKK F (C)

F (g)

��99999999999999 h

((PPPPPPPP

AB //

fB
��

A

f

��
B // F (B)

C

�
�
�
�
�
�
�
�
�
�
�

D
We say that F has creations (or C has F -creations), if for every B in C and f : A→ F (B)

in D there is an F -creation of f via B. Given a class D of D-morphism, we say that F has
creations along D, if for all f : A→ F (B) ∈ D there is an F -creation of f via B. 4

Remark A.1.13. The notations AB and fB for the created object and morphism, respectively,
is not mandatory, but we use it only to underline the fact that the construction depends on
the object B. In the following we shall often use the notations Ā and f̄ instead, because the
object B is implicitly given by the codomain of the F -creation. Moreover, for a C-morphism
f : A → B, if we just say that f is an F -creation then it implicitly means that f is an
F -creation of its image F (f) via its codomain B. 4

The definition of F -creations is closely related to the definition of cartesian morphisms
(also sometimes called prone morphisms) and Grothendieck fibrations [Gro71, Gir71, Joh02].
Therefore we recall the following definition of cartesian morphisms:

Definition A.1.14 (Cartesian Morphism). Given a functor F : C → D. A morphism
f : A→ B in C is cartesian (w. r. t. F) if for any morphisms g : C → B in C and h : F (C)→
F (A) in D such that F (f) ◦ h = F (g), there exists a unique morphism h∗ : C → A such that
f ◦ h∗ = g and F (h∗) = h. 4

Fact A.1.15 (Characterization by Cartesian Morphism). Given a functor functor F : C→
D. A morphism f : A→ B is an F -creation of F (f) via B iff f is cartesian w. r. t. F .

Proof. This follows directly from the definitions of F -creations (Definition A.1.12) and carte-
sian morphisms (Definition A.1.14).

The definition of F -creations can also be reduced to the definition of cofree constructions,
although the construction is not completely “free” as it depends on the C-object B which is
a necessary information for the “typing” of the construction. A categorical way to describe
typed objects is the use of a slice category C \X where C is a category, X is an object in
C and C \ X consists of all C-objects typed over X, and morphisms compatible with the
typing. That is, the objects in C \X are C-morphisms a : A→ X, and a C \X-morphism f
between objects a : A→ X and b : B → X is a C-morphism f : A→ B such that f ◦ b = a.

For every functor F : C → D and objects X in C we obtain a corresponding functor,
mapping C-objects typed over X to D-objects typed over F (X), called slice functor of F
over X.

Definition A.1.16 (Slice Functor). Given a functor F : C→ D and an object X in C. The
slice functor F \X : C \X → D \ F (X) of F over X is defined by

180 A Appendix

• F (a : A→ X) = F (a) : F (A)→ F (X) for objects a : A→ X, and

• F (f : A→ B) = F (f) : F (A)→ F (B) for morphisms f : A→ B in C \X.

A
f //

a @@@@@@@ B

b~~}}}}}}}

X

=

F (A)
F (f) //

F (a) ##HHHHHHHHH
F (B)

F (b){{vvvvvvvvv

F (X)

=

4

Lemma A.1.17 (Composition of Slice Functors). Given functors F : B→ C and G : C→
D. Then for every object X in B we have (G \ F (X)) ◦ (F \X) = (G ◦ F) \X.

Proof. Note that F and G have types F \X : B\X → C\F (X) and G\F (X) : C\F (X)→
D \ G(F (X)), and thus we have compatible types for the compositions (G \ F (X)) ◦ (F \
X), (G ◦ F) \X : B \X → D \G(F (X)).

Moreover, given an object a : A→ X in B, then by Definition A.1.16 we have

(G \ F (X)) ◦ (F \X)(a) = (G \ F (X)) ◦ F (a) = G(a) = ((G ◦ F) \X)(a)

Analogously, given a morphism f : A→ B, we have

(G \ F (X)) ◦ (F \X)(f) = (G \ F (X)) ◦ F (f) = G(f) = ((G ◦ F) \X)(f)

Hence, we have (G \ F (X)) ◦ (F \X) = (G ◦ F) \X.

Fact A.1.18 (Characterization of F -Creations by Cofree Constructions). Given a functor
F : C→ D, an object B in C and a morphism f : A→ F (B) in D. Then f̄ : Ā→ B is an
F -creation of f via B if and only if f̄ is a cofree construction with respect to functor F \ B
and counit idA.

Proof. If. Let f̄ : Ā→ B be a cofree construction of f : A→ F (B) with respect to functor
F \ B and counit idA : A → A. We have to show that f̄ is an F -creation of f via B.
Let g : C → B in C and h : F (C) → A in D such that f ◦ h = F (g). Then we have
that g : C → B is a C \ B-object and that h is a D-morphism h : F (g) → f . Thus,
by the fact that f̄ is a cofree construction of f , there exists a unique C \ B-morphism
h∗ : g → f̄ such that idA ◦ F \ B(h∗) = h. This means that we have a unique C-
morphism h∗ : C → Ā with f̄ ◦ h∗ = g and F (h∗) = F \ B(h∗) = idA ◦ F \ B(h∗) = h.
Hence, f̄ is an F -creation of f via B.

Only If. Let f̄ : Ā → B be an F -creation of f via B. We have to show that f̄ is a cofree
construction of f w. r. t. F \B and counit idA : A→ A. Let g : C → B be an object in
C\B and h : F (g)→ f a morphism in D\F (B). Then we have that h is a D-morphism
h : F (C)→ A with f ◦h = F (g) which by F -creation f̄ of f via B implies that there is
a unique C-morphism h∗ : C → Ā with F (h∗) = h and f̄ ◦ h∗ = g. This means that h∗

is a unique C \B-morphism h∗ : g → f̄ with idA ◦F \B(h∗) = F \B(h∗) = F (h∗) = h.
Hence, f̄ is a cofree construction of f w. r. t. functor F \B and counit idA.

Corollary A.1.19 (Uniqueness of F -Creations). F -creations are unique up to isomorphism.
That is, for a functor F : C → D, an object B in C and a morphism f : A → F (B) in D
with F -creation f̄ : Ā→ B of f via B, we have the following:

A.1 Category Theoretical Basics 181

1. If there is a morphism f̄ ′ : Ā′ → B and an isomorphism i : Ā→ Ā′ such that f̄ ′ ◦ i = f̄ ,
then also f̄ ′ is an F -creation of f via B.

2. If there is an F -creation f̄ ′ : Ā′ → B of f via B, then there is an isomorphism i : Ā→ Ā′

such that f̄ ′ ◦ i = f̄ .

Proof. This follows directly from Fact A.1.18 and the uniqueness of cofree constructions.

Corollary A.1.20 (Creations and Functor Composition). Given a functor F : B→ C that
has creations along a class C of C-morphisms, and a functor G : C → D that has creations
along D of D-morphisms, where G-creations of D-morphisms are C-morphisms. Then also
G ◦ F : B→ D has creations along D.

The G ◦ F -creation f̄ of a D-morphism f : A → G ◦ F (B) ∈ D via B-object B is given
by F -creation of f̂ : Â→ F (B) via B, where f̂ is the G-creation of f via F (B).

Proof. The construction of f̄ given above is well-defined because the G-creation f̂ of f ∈ D
is a C-morphism and F has creations along C. Moreover, due to Fact A.1.18 we know that f̂
is cofree construction w. r. t. slice functor G \F (B) : C \F (B)→ D \G(F (B)), and that f̄ is
cofree construction w. r. t. slice functor F \B : B \B → C \ F (B). Thus, by composition of
cofree constructions, we obtain that f̄ is cofree construction w. r. t. slice functor (G ◦ F) \B
(see Lemma A.1.17). Hence, by Fact A.1.18 we have that f̄ is G ◦ F -creation.

In the following definition we consider functors of the form H : Cop×D, called correspon-
dence from C to D in [Lur09]. The definition of a general connection category corresponds
to the definition of the definition of the category C ∗H D in [Lur09] (Section 2.3.1). The name
of the category is in analogy to [Ehr71], where it is called a Verbindungskategorie (German
for connection cateogory). The objects and morphisms of a general connection category of a
functor H : Cop×D are the disjoint unions of objects and morphisms, respectively, in C and
D, but additionally the general connection category consists of morphisms between C- and
D-objects given by the image of H.

Definition A.1.21 (General Connection Catgory). Given a functor H : Cop ×D → Sets,
the connection category CC(H) over H is defined by

• ObCC(H) = ObC]ObD as objects,

• MorCC(H)(A,B) = MorC(A,B) for objects A,B in C,

• MorCC(H)(A,B) = MorD(A,B) for objects A,B in D,

• MorCC(H)(A,B) = H(A,B) for objects A in C and B in D,

• MorCC(H)(A,B) = ∅ for objects A in D and B in C, and

• the composition is defined by composition in C and D for objects in C and D, respec-
tively, and given morphisms f ∈ MorC(A,B), g ∈ H(B,C) and h ∈ MorD(C,D) the
composition h ◦ g ◦ f : A→ D is defined by

h ◦ g ◦ f = H(f, h)(g)

4

Given a functor F : C → D, the Mor-functor (sometimes also called hom-functor)
Mor(F ,) is a correspondence from C to D in the sense of [Lur09]. Accordingly, we define
the connection category of F as the general connection category of Mor(F ,).

182 A Appendix

Definition A.1.22 (Connection Category). Given a functor F : C→ D, we define

ConCat(F) = CC(Mor(F ,))

where Mor(F ,) is the hom-set functor Mor(F ,) : Cop → D, leading to the following
choice of objects and morphisms:

• ObConCat(F) = ObC]ObD as objects,

• MorConCat(F)(A,B) = MorC(A,B) for objects A,B in C,

• MorConCat(F)(A,B) = MorD(A,B) for objects A,B in D,

• MorConCat(F)(A,B) = MorD(F (A), B) for objects A in C and B in D,

• MorConCat(F)(A,B) = ∅ for objects A in D and B in C, and

• the composition is defined by composition in C and D for objects in C and D, re-
spectively, and given morphisms f ∈ MorC(A,B), g ∈ Mor(F ,)(B,C) and h ∈
MorD(C,D) the composition h ◦ g ◦ f : A→ D is defined by

h ◦ g ◦ f = Mor(F ,)(f, h)(g) = Mor(F (f), h)(g) = h ◦ g ◦ F (f)

We also call ConCat(F) the connection category of F . 4

Definition A.1.23 (F -Identity). Given functor F : C→ D and object C in C. A morphism
f : C → F (C) is called an F -identity if there is f = idF (C) ∈ Mor(F (C), F (C)). Note that
an F -identity is not an identity in the category ConCat(F). 4

Fact A.1.24 (Characterization of F -Creations by Pullbacks). Given functor F : C → D,
an object B in C and morphism f : A → F (B) in D. Then f̄ : Ā → B is an F -creation
of f via B if and only if diagram (1) below is a pullback in ConCat(F) where a and b are
F -identities.

Ā
a //

f̄
��

A

f
��

B
b
// F (B)

(1)

Proof. If. Let f̄ : Ā → B be an F -creation of f via B. Then we have that F (Ā) = A and
F (f̄) = f . So there are morphisms a : Ā → A and b : B → F (B) being F -identities
and we have b ◦ f̄ = idF (B) ◦F (f̄) = f = f ◦ idA = f ◦ a which means that the diagram
(1) above exists in ConCat(F) and it commutes. We have to show that it also satisfies
the universal property of pullbacks.

C

c
11

g --

h // Ā
a

??������

f̄

��??????

A
f

��??????

B
b

??�����

F (B)(1)

So let C in ConCat(F) together with morphisms c : C → A and g : C → B such that
f ◦ c = b ◦ g. Then from the fact that B is in C and MorConCat(F)(D,B) = ∅ for all D

A.1 Category Theoretical Basics 183

in D, it follows that C is a C-object, and thus g is a C-morphism. Moreover, morphism
c : C → A with C in C and A in D corresponds to a morphism c∗ : F (C)→ A with

f ◦ c∗ = f ◦ c = b ◦ g = idF (B) ◦ F (g) = F (g)

Hence, the universal property of F -creation f̄ implies a unique morphism h : C → Ā
such that F (h) = c∗ and f̄ ◦h = g. Then F (h) is the required unique morphism because
a ◦ h = idA ◦ F (h) = idA ◦ c∗ = c.

Only If. Let (1) be a pullback in ConCat(F) with a and b being F -identities, mean-
ing that F (Ā) = A and F (f̄) = idF (B) ◦ F (f̄) = b ◦ f̄ = f ◦ a = f ◦ idA = f .

C

g

��/
//////////////

h∗

��

c

**VVVVVVVVVVVVVVVVVVVVVVVVVVV F (C)

h

$$HHHHHHHHHH

Ā
a //

f̄
��

A

f
��

B
b

// F (B)

(1)

Now, let C in C together with morphisms g : C → B in C and h : F (C)→ A in D such
that f ◦ h = F (g). Then given by h : F (C) → A we also have a morphism c : C → A
in ConCat(F) with c = h. Thus, we have f ◦ c = f ◦ h = F (g) = idF (B) ◦ F (g) = b ◦ g
which by pullback (1) implies a unique h∗ : C → Ā in ConCat(F) such that a ◦h∗ = c
and f̄ ◦ h∗ = g. Due to the fact that the codomain Ā of h∗ is a C-object, we obtain
that h∗ is a C-morphism. Hence, h∗ : C → Ā is the required unique morphism because
a ◦ h∗ = c means F (h∗) = idA ◦ F (h∗) = a ◦ h∗ = c = h.

Lemma A.1.25 (Target Pullbacks are Pullbacks in Connection Category). Given a functor
F : C→ D and pullback (1) below in D. Then (1) is also a pullback in ConCat(F).

A
g′ //

f ′

��

B

f
��

C g
// D

(1)

Proof. The universal pullback property naturally holds for all D-objects, but it remains to
show that it holds also for C-objects. So let E in C with k : E → B, h : E → C such that
f ◦ k = g ◦ h. This means that we have D-morphisms k : F (E) → B, h : F (E) → C with
f ◦ k = g ◦ h, implying a unique D-morphism m : F (E) → A such that g′ ◦ m = k and
f ′ ◦m = h that can be interpreted as unique ConCat(F)-morphism m : E → A with this
property. Hence, (1) is a pullback in ConCat(F).

Lemma A.1.26 (Pullbacks in Connection Category are Source Pullbacks). Given a functor
F : C → D and pullback (1) below in ConCat(F) with all objects and morphisms in C.
Then (1) is also a pullback in C.

A
g′ //

f ′

��

B

f
��

C g
// D

(1)

184 A Appendix

Proof. This follows immediately from the fact that (1) is a diagram in C and the unique
induced morphism for all objects E and morphisms k : E → B, h : E → C in C also is in C,
since MorConCat(F)(E,A) = MorC(E,A) for all E and A in C.

Fact A.1.27 (Creation of Pullbacks). Given a functor F : C → D that has creations along
D, morphism m : C → D in C and pullback (1) below in D with f, g ∈ D. Then there exist
F -creations f̄ : B̄ → D and ḡ : Ā→ C of f via D and g via C, respectively, and a morphism
n∗ : Ā→ B̄ with F (n∗) = n in C, such that (2) is a pullback in C.

A
n //

g

��

B

f
��

F (C)
F (m)

// F (D)

(1)

Ā
n∗ //

ḡ
��

B̄

f̄
��

C m
// D

(2)

Proof. Since F has creations along D, and we have f, g ∈ D, we can construct F -creations f̄
and ḡ, leading to pullbacks (3) and (4) below in ConCat(F) by Fact A.1.24.

Ā
a //

ḡ

��

A

g

��
C c

// F (C)

(3)

B̄
b //

f̄
��

B

f
��

D
d
// F (D)

(4)

Then, morphisms m ◦ ḡ : Ā → D in C and n : A → B in D with f ◦ n = F (m) ◦ g =
F (m) ◦ F (g) = F (m ◦ g) due to F -creation f̄ implies a unique morphism n∗ : Ā → B̄ such
that F (n∗) = n and diagram (2) above commutes. So we have the commuting cube in
ConCat(F) below, where the right face is pullback (1) in D, the left face is diagram (2) in
C, the back and front faces are pullbacks (3) and (4) in ConCat(F), respectively. Note that
due to Lemma A.1.25 the pullback (1) in D is also a pullback in ConCat(F). So, by pullback
composition we also have pullback (3)+(1) in the right back, and thus also pullback (2)+(4) in
the front left of the commuting cube. Hence, by pullback decomposition of pullbacks (2)+(4)
and (4), we obtain that (2) is a pullback in ConCat(F), and using the fact that all objects
and morphisms in (2) are in C, by Lemma A.1.26 we obtain that (2) is a pullback in C.

Ā
a //

ḡ

��

n∗

((QQQQQQQQQQ A
n

**TTTTTTTTTTTTT

g

��

B̄
b //

f̄

��

B

f

��

C
m

((PPPPPPPPPP c
// F (C)

F (m)))TTTTTTTTTT

D
d

// F (D)

The creation along a functor F : C→ D requires that there is a morphism f : A→ F (B)
in D. Dually, we define the cocreation along functors that works in similar fashion for
morphisms f : F (B)→ A.

Definition A.1.28 (F -Cocreations). Given a functor F : C → D, objects A in C and B
in D, and a morphism f : F (A) → B in D. A morphism fA : A → BA in C is called
F -cocreation of f via A, if

• F (BA) = B,

• F (fA) = f , and

A.1 Category Theoretical Basics 185

• (universal property) for all objects C with morphisms g : A→ C in C and h : B → F (C)
in D with F (g) = h◦f there exists a unique morphism h∗ : BA → D such that F (h∗) = h
and h∗ ◦ fA = g.

A

g

���������������
//

fA
��

F (A)

F (g)

����������������
f

��
BA

!h∗yyssssss
// B

hvvnnnnnnnn

C // F (C)

C

�
�
�
�
�
�
�
�
�
�
�

D
We say that F has cocreations (or C has F -cocreations), if for every A in C and f :

F (A)→ B in D there is an F -cocreation of f via A. Given a class D of D-morphism, we say
that F has cocreations along D, if for all f : F (A) → B ∈ D there is an F -cocreation of f
via A. 4

Fact A.1.29 (Duality of Creations and Cocreations). Given a functor F : C → D, a C-
object A and a D-morphism f : F (A) → B. A morphism f̄ : A → B̄ is an F -cocreation of
f via A iff f̄ is an F op-creation of Dop-morphism f : B → F (A) via Dop-object A, where
F op : Cop → Dop is the dual functor that maps objects and morphisms exactly as F does.

Proof. It is easy to see that the definition of F -cocreations can be obtained from the definition
of F -creations by inverting all arrows in the categories C and D, and vice versa.

Remark A.1.30 (Duality of Creations and Cocreations). Note that for every functor F :
C→ D we have (F op)op = F , and thus, using Fact A.1.29 we can freely switch between the
representation as F -creations and F -cocreations by inversion of all arrows in the categories
C and D. Due to this fact, all the results for F -creations above can be transferred to
corresponding results for F -cocreations by dualisation of all used notions in both of the
categories. 4

In particular, this means that F -cocreations are unique up to isomorphism in the sense
of Corollary A.1.19, since the notion of isomorphism is dual to itself.

Corollary A.1.31 (Uniqueness of F -Cocreations). F -cocreations are unique up to isomor-
phism. That is, for a functor F : C→ D, an object A in C and a morphism f : F (A)→ B
in D with F -cocreation f̄ : A→ B̄ of f via A, we have the following:

1. If there is a morphism f̄ ′ : A→ B̄′ and an isomorphism i : B̄ → B̄′ such that f̄ ′ = i◦ f̄ ,
then also f̄ ′ is an F -cocreation of f via A.

2. If there is an F -cocreation f̄ ′ : A → B̄′ of f via A, then there is an isomorphism
i : B̄ → B̄′ such that f̄ ′ = i ◦ f̄ .

Further, F -cocreations are closed under functor composition as shown for F -creations in
Corollary A.1.20.

Corollary A.1.32 (Cocreations and Functor Composition). Given a functor F : B → C
that has cocreations along a class C of C-morphisms, and a functor G : C → D that has
cocreations along D of D-morphisms, where G-cocreations of D-morphisms are C-morphisms.
Then also G ◦ F : B→ D has cocreations along D.

The G ◦ F -cocreation f̄ of a D-morphism f : G ◦ F (A)→ B ∈ D via B-object A is given
by F -cocreation of f̂ : F (A)→ B̂ via A, where f̂ is the G-cocreation of f via F (A).

186 A Appendix

Moreover, due to duality of pushouts and pullbacks, we obtain the following fact for the
creation of pushouts by dualisation of Fact A.1.27.

Corollary A.1.33 (Creation of Pushouts by F -Cocreations). Given a functor F : C → D
that has cocreations along D, morphism m : C → D in C and pushout (1) below in D with
f, g ∈ D. Then there exist F -cocreations f̄ : B → C̄ and ḡ : A→ D̄ of f via A and g via B,
respectively, and a morphism n∗ : C̄ → D̄ with F (n∗) = n in C, such that (2) is a pushout
in C.

F (A)
F (m) //

f
��

F (B)

g

��
C n

// D

(1)

A
m //

f̄
��

B

ḡ
��

C̄
n∗
// D̄

(2)

Definition A.1.34 (F -Shifting of Spans by Cocreation). Given a functor F : C → D that

has cocreations. Further, let be a span L
l← I

r→ R of C-morphisms such that F (l) and

F (r) are isomorphisms, and m : L → G an arbitrary C-morphism. A span L′
l′← I ′

r′→ R′

of C-morphisms together with a morphism m′ : L′ → G is called F -shifting of L
l← I

r→ R
along m if

1. sL, sI and sR are F -cocreations,

2. diagrams (1) and (2) in Figure A.1 are pushouts in C,

3. diagram (3) in Figure A.1 commutes, and

4. F (m′) is an isomorphism

L

sL
��

m

**

(1)

I
loo r //

sI
��

(2)

R

sR
��

L′

m′
��

(3) I ′
l′

oo
r′

// R′

G

Figure A.1: F -shifting of span by cocreation

4

Fact A.1.35 (Existence of F -Shifting of Spans by Cocreation). Given a functor F : C→ D

that has cocreations. Further, let be a span L
l← I

r→ R of C-morphisms such that F (l)
and F (r) are isomorphisms, and m : L→ G an arbitrary C-morphism. Then the F -shifting

L′
l′← I ′

r′→ R′ of L
l← I

r→ R along m exists.

Proof. Due to the fact that F (l) and F (r) are isomorphisms, there exist inverse isomor-
phisms F (l)−1 and F (r)−1, and we have the following trivial pushouts (4) and (5) in D:

F (L)

F (m)

��
(4)

F (I)
F (l)oo F (r) //

F (l)◦F (m)

��
(5)

F (R)

F (m)◦F (l)◦F (r)−1

��
F (G) F (G)

id
oo

id
// F (G)

A.1 Category Theoretical Basics 187

So, given the fact that F has cocreations, by Corollary A.1.33 there exist pushouts (1) and (2)
in C as shown in Figure A.1, where sL, sI and sR are F -cocreations. Moreover, due to mor-
phism m : L→ G in C and idF (G) in D, the F -cocreation sL of F (m) via L implies a unique
morphism m′ : L′ → G such that diagram (3) in Figure A.1 commutes and F (m′) = idF (G)

is an isomorphism. Hence, L′
l′← I ′

r′→ R′ together with m′ is an F -shifting of L
l← I

r→ R
along m.

A.1.5 Pullbacks of Categories

The categorical notion of pullbacks is used in this thesis mainly for the mathematical for-
malisation of restriction constructions for AHL-processes and instantiations in Section 4.5.
Since it is possible to define a quasi-category Cat of all categories, where the objects are all
categories and the morphisms are all functors,36 it is also possible to apply the idea of the
pullback construction also to pullbacks over co-spans of functors.

Definition A.1.36 (Pullback of Categories). Given categories B, C and D and functors
F : B→ D, G : C→ D. A category A together with functors F ′ : A→ C and G′ : A→ B
is a pullback of categories B and C along functors F and G, written A = B×F,G C or short
A = B×D C, if it satisfies the universal property of pullbacks in the quasi-category Cat of
categories: The diagram (PB) in Figure A.2 commutes, and for all categories A′ and functors
H : A′ → B, K : A′ → C with F ◦H = G ◦K there exists a unique functor M : A′ → A
such that G′ ◦M = H and F ′ ◦M = K. 4

A′

H
11

K --

M____ //____ A

G′

??������

F ′ ��?????

B
F

��?????

C
G

??������

D(PB)

Figure A.2: Pullback of Categories

Remark A.1.37 (Strict Pullback of Categories). The definition of pullbacks of categories
defined above can be seen as a definition for strict pullbacks, whereas non-strict pullbacks are
defined using isomorphism instead of equalities, i. e. for the diagram (PB) in Figure A.2 it is
only required that G◦F ′ ∼= F ◦G′ and analogously for a comparison object it is only required
that F ◦H ∼= G ◦K.

Obviously, the (strict) pullback of categories in the quasi-category Cat has the same
properties as pullbacks in any other category, such as uniqueness up to isomorphism or
composition and decomposition properties. 4

Fact A.1.38 (Construction of Pullback of Categories). Given categories B, C and D and
functors F : B → D, G : C → D. The pullback A = B ×F,G C can be constructed as
subcategory A ⊆ B×C such that A contains all objects (B,C) in B×C with F (B) = G(C),
and A contains all pairs of morphisms (f, g) with F (f) = G(g). The functors G′ : A → B
and F ′ : A→ C are the obvious projections.

Proof. Let the category A and functors F ′ and G′ be defined as above, for objects (A,B) in
A we have F (G′(A,B)) = F (A) = G(B) = G(F ′(A,B)) and analogously for morphisms.

36A category usually has a class of objects. The collection of all categories, however, is no proper class in
the sense of axiomatic set theory, and therefore, Cat is not a proper category.

188 A Appendix

Further, let A′ be a category and H : A′ → B, K : A′ → C functors with F ◦ H =
G ◦ K. Then we define a functor M : A′ → A with M(X) = (H(X),K(X)) for objects
X in A′ and M(f) = (H(f),K(f)) for morphisms f in A′. This mapping is well-defined,
since F (H(X)) = G(K(X)) implies (H(X),K(X)) in A and analogously for the morphisms.
Moreover, it is a functor, because given morphisms f : X → Y and g : Y → Z in A′, we have

M(g ◦ f) = (H(g ◦ f),K(g ◦ f)) = (H(g) ◦H(f),K(g) ◦K(f))

= (H(g),K(g)) ◦ (H(f),K(f)) = M(g) ◦M(f)

and given an object X in A′, we have

M(idX) = (H(idX),K(idX)) = (idH(X), idK(X)) = id(H(X),K(X)) = idM(X)

Furthermore, for objects X in A′, we have

G′ ◦M(X) = G′(H(X),K(X)) = H(X)

and analogously F ′ ◦M(X) = K(X), and we obtain also the same commutativity for mor-
phisms. It remains to show that M is unique, so let M ′ : A′ → A be a functor such that
G′ ◦M ′ = H and F ′ ◦M ′ = K. Then for an object X in A′ and M ′(X) = (A,B), we have
A = G′(A,B) = G′ ◦M ′(X) = H(X) and B = F ′(A,B) = F ′ ◦M ′(X) = K(X) and thus
M ′(X) = (A,B) = (H(X),K(X)) = M(X). The proof for the morphism component of M
works analogously, which means that M is unique and A′ is pullback of B and C along F
and G.

Fact A.1.39 (Functors with Creations are Closed Under Pullbacks of Categories). Given a
pullback (PB) of categories as shown in Figure A.2. If the functor F has creations along a
class D of D-morphisms, then F ′ has creations along a class C of C-morphisms defined by
C = G−1(D).

Assuming that A is constructed as in Fact A.1.38, the F ′-creation f̄ of f : A → F (B)
in C via B in A can be obtained as f̄ = (f̂ , f) : (Â, A) → B, where f̂ : Â → G′(B) is the
F -creation of G(f) via G′(B).

Proof. Given pullback (PB) of categories as shown in Figure A.2, where F has creations
along D, we assume w. l. o. g. that the category A and functors F ′, G′ are constructed as in
Fact A.1.38.

We have to show that the functor F ′ has creations along C = G−1(D). So let B be an
object in A and f : A → F ′(B) ∈ C a morphism in C. Then we have an object G′(B) in B
with F (G′(B)) = G(F ′(B)) in D, and thus G(f) : G(A)→ F (G′(B)) ∈ C which means that
there is an F -creation f̂ : Â → G′(B) of G(f) via G′(B) in B. Then we have F (Â) = G(A)
and F (f̂) = G(f). By construction of A this means that there is an object (Â, A) and
morphism (f̂ , f) : (Â, A)→ B in A, and we have F ′(Â, A) = A and F ′(f̂ , f) = f .

In order to show that f̄ = (f̂ , G(f)) is an F ′-creation, we have to show that it satisfies the
universal property in Definition A.1.12. So let C be an object and g : C → B a morphism
in A, and h : F ′(C) → A a morphism in C such that f ◦ h = F ′(g). Then in B, we
have an object G′(C) and morphism G′(g) : G′(C) → G′(B), and there is a morphism
G(h) : F (G′(C)) → G(A) such that G(f) ◦ G(h) = G(f ◦ h) = G(F ′(g)) = F (G′(g)). So
the F -creation f̂ of G(f) via G′(B) implies a unique morphism h′ : G′(C) → Â such that
F (h′) = G(h) and f̂ ◦ h′ = G′(g).

Due to the construction of pullback (PB) as in see Fact A.1.38, there is h∗ = (h′, h) : C →
(Â, A) in A, and we have F ′(h∗) = F ′(h′, h) = h and f̄ ◦h∗ = (f̂ , f)◦ (h′, h) = (f̂ ◦h′, f ◦h) =
(G′(g), F ′(g)) = g.

A.1 Category Theoretical Basics 189

For the uniqueness, let (k′, k) : C → (Â, A) be a morphism with F ′(k′, k) = h and
f̄ ◦ (k′, k) = g. Then we already have that k = F ′(k′, k) = h. Moreover, we have F (k′) =
F (G′(k′, k)) = G(F ′(k′, k)) = G(h) and

f̂ ◦ k′ = G′(f̄) ◦G′(k′, k) = G′(f̄ ◦ (k′, k)) = G′(g)

which by uniqueness of h′ w. r. t. the universal property of F -creation f̂ implies that k′ = k
and thus (k′, k) = (h′, h) which means that h∗ = (h′, h) is unique.

Corollary A.1.40 (Functors with Cocreations are Closed Under Pullbacks of Categories).
Given a pullback (PB) of categories as shown in Figure A.2. If the functor F has cocreations
along a class D of D-morphisms, then F ′ has cocreations along a class C of C-morphisms
defined by C = G−1(D).

Assuming that A is constructed as in Fact A.1.38, the F ′-cocreation f̄ of f : F (A)→ B
in C via A in A can be obtained as f̄ = (f̂ , f) : A → (B̂, B), where f̂ : G′(A) → B̂ is the
F -cocreation of G(f) via G′(A).

Proof. According to Fact A.1.29 this follows from dualisation of Fact A.1.39.

Fact A.1.41 (Pullbacks of Process and Instantiation Categories). The diagrams (1)-(3) in
Figure A.3 are pullbacks of categories, where the vertical functors are inclusions, and we have
the following projection functors:

• π→1 : AHLNets→ → AHLNets maps object ob : AN1 → AN2 to AN1 and morphism
(f, g) to f ,

• Net : Inst→ AHLNets maps object (inst, AN) to AN and morphism f to f ,

• π1 : Procs→ AHLPNets maps object mp : K → AN to K and morphism (f, g) to f ,

• PNet : Inst→ AHLPNets maps object (inst,K) to K and morphism f to f ,

• Proc : ProcInst→ Procs maps object (inst,mp) to mp and morphism f to f .

ProcInst
Proc

vvlllllllllllll
Inst

''OOOOOOOOOOO

Procs
� _

In0

��

π1

((RRRRRRRRRRRRR PInst
PNet

wwooooooooooo � _

In2

��

AHLPNets
� _

In1��

(3)

(1) (2)

AHLNets→
π→1

// AHLNets Inst
Net
oo

Figure A.3: Pullback diagrams of process and instantiation categories

Proof.

Pullback (1). According to Fact A.1.38, the pullback of AHLNets→ and AHLPNets
along π→1 and In can be constructed as subcategory P0 ⊆ AHLNets→×AHLPNets
such that for objects (ob : AN1 → AN2,K) we have AN1 = K and for morphisms

190 A Appendix

((f : AN1 → AN ′1, g : AN2 → AN ′2), h : K → K ′) we have f = h. So, we can define
functors I1 : Procs→ P1 with I1(mp : K → AN) = (mp,K) and I1(f, g) = ((f, g), f),
and J1 : P1 → Procs with J1(ob,K) = ob and J1((f, g), f) = (f, g). It is easy to
see that I1 and J1 are well-defined and they establish an isomorphism of categories
P1
∼= Procs. Thus, (1) is pullback.

Pullback (2). Using again Fact A.1.38, we obtain the pullback object as subcategory
P2 ⊆ Inst × AHLPNets such that for objects ((inst, AN),K) we have AN = K,
and for morphisms (f, g) we have f = g. So obviously, we obtain inverse isomorphisms
I2 : PInst → P2 with I2(inst,K) = ((inst,K),K) and I2(f) = (f, f), and J2 : P2 →
PInst with J2((inst,K),K) = (inst,K) and J2(f, f) = f . Hence, also (2) is a pullback.

Pullback (3). Again, by Fact A.1.38, we obtain the pullback object as subcategory P3 ⊆
PInst × Procs such that for objects ((inst,K),mp : K ′ → AN) we have K = K ′,
and for morphisms (f, (g, h)) we have f = g. Clearly, this means that there are inverse
isomorphisms I3 : ProcInst→ P3 with I3(inst,mp : K → AN) = ((inst,K),mp) and
I3(f, g) = (f, (f, g)), and J3 : P3 → ProcInst with J3((inst,K),mp) = (inst,mp) and
J3(f, (f, g)) = (f, g). Hence, also (3) is a pullback.

Corollary A.1.42 (Pullbacks of Process and Weak Instantiation Categories). The diagrams
(4)-(7) in Figure A.4 are pullbacks of categories, where the functors and categories are the
weak counterparts of the functors and categories, respectively, in Fact A.1.41.

wProcInst
wProc

uullllllllllllll
wInst

((RRRRRRRRRRRRR ProcInst
W1oo

Inst

''OOOOOOOOOOO

(7)

Procs
� _

In0

��

π1

))SSSSSSSSSSSSSS wPInst
wPNet

vvlllllllllllll � _

wIn2

��

PInst
W0oo

In2

��

AHLPNets
� _

In1��

(5)

(1) (4)

AHLNets→
π→1

// AHLNets wInst
wNet
oo Inst

W
oo

(6)

Figure A.4: Pullback diagrams of process and weak instantiation categories

Proof. Since all the properties of instantiations used in the proof of Fact A.1.41 do also hold
for weak instantiations, we also have that the diagrams (4) and (5) in Figure A.4 are pullbacks
of categories.

Moreover, consider the diagrams (6) and (7). Clearly, we have that the diagrams (6) and
(7) commute, and thus due to pullback decomposition, they are also pullbacks.

A.2 Initial Pushouts and Categorical Gluing Condition

Additionally to the set-theoretical gluing condition for AHL-nets in Definition 3.2.13, there
is also a categorical way to characterize the existence of direct transformations, using initial
pushouts as defined in [EEPT06b]:

A.2 Initial Pushouts and Categorical Gluing Condition 191

Definition A.2.1 (Boundary, Initial Pushout). Given a morphism m : L → G in an M-
adhesive category (C,M), a morphism b : B → L with b ∈M is called the boundary over m
if there is a pushout complement of m and b such that (1) is a pushout which is initial over
m. Initiality of (1) over m means, that for every pushout (2) with b′ ∈M there exist unique
morphisms b∗ : B → D and c∗ : C → E with b∗, c∗ ∈ M such that b′ ◦ b∗ = b, c′ ◦ c∗ = c and
(3) is a pushout. B is then called the boundary object and c the context with respect to m.

4

B

��

b // L

m
��

C c
// G

(1)

B

��

b∗ //
b

))
D

��

b′ // L

m
��

C c∗ //

c

55E

(3)

c′ // G

(2)

Figure A.5: Initial pushout

As shown in Fact A.1.11, the category (AHLNets,MAHL) is M-adhesive. Moreover,
the category AHLNets has initial pushouts that can be constructed as pushout complement
over so-called boundary, that is, the minimal AHL-net consisting of all identification and
dangling points (see Definition 3.2.13).

Fact A.2.2 (Boundary and Initial Pushout in AHLNets). Given an AHL-morphism m :
L→ AN , we define the boundary b : B ↪→ L of m as

• B = (ΣB, PB, TB, preB, postB, condB, typeB, AB), where

• (ΣB, AB) = (ΣL, AL),

• PB = DP ∪ IPP ∪ {p ∈ PL | ∃t ∈ IPT : p ∈ •t ∪ t•} with DP being the dangling points
in Definition 3.2.13, and IPP and IPT being the sets of identification points restricted
to places and transitions, respectively,

• TB = IPT , and

• preB, postB, condB and typeB are restrictions of the corresponding functions in L.

Then the context c : C ↪→ AN together with a morphism B → C can be obtained as pushout
complement of b and m, and diagram (1) in Figure A.5 is an initial pushout.

Proof. This is shown in Fact 3.10 in [MGE+10] for AHL-nets with individual tokens (AHLI-
nets), and AHL-nets can be considered as special AHLI-nets with an empty set I of individ-
uals.

Using initial pushouts, it is possible to formulate a categorical gluing condition for M-
adhesive categories [EEPT06b], and it can be shown that this categorical gluing condition is
also sufficient and necessary for the existence of pushout complement which are needed for
the construction of direct transformations.

Definition A.2.3 (Categorical Gluing Condition). Let l : I → L ∈ M and m : L → G be
morphisms in a given M-adhesive category (C,M) with initial pushouts.
We say that l and m satisfy the categorical gluing condition if for the initial pushout (1) over
m there exists a morphism b∗ : B → I such that l ◦ b∗ = b.

192 A Appendix

B

g

��

b
//
b∗

((L

m
��

I
l

oo
r
// R

C c
// G

(1)

Given a production % = (L
l← I

r→ R), we say % and m satisfy the categorical gluing
condition, iff l and m satisfy the categorical gluing condition. 4

Fact A.2.4 (Categorical Gluing Condition). Given an M-adhesive category (C,M) with
initial pushouts, a match m : L→ G satisfies the categorical gluing condition with respect to

l : K → L ∈ M (or a production % = (L
l← I

r→ R), respectively) if and only if the context
object D exists, i. e. there is a pushout complement (2) of l and m.

B

g

��

b
//
b∗

((L

m
��

I
l

oo

k
��

r
// R

C
c //

c∗

55G

(1)

D
doo

(2)

If it exists, the context object D is unique up to isomorphism.

Proof. This is shown in Theorem 6.4 in [EEPT06b] for weak adhesive HLR categories, and
the proof is also valid for M-adhesive categories.

Corollary A.2.5 (Equivalence of Gluing Conditions in AHLNets). Given a production

% : L
l← I

r→ R in AHLNets and a match m : L → AN . Then % and m satisfy the gluing
condition for AHL-nets (Definition 3.2.13) if and only if it satisfies the categorical gluing
condition for M-adhesive categories (Definition A.2.3).

Proof. This follows directly from the fact that both of the conditions are sufficient and nec-
essary for the existence of a direct transformation AN

%,m
=⇒ AN ′, as shown in Fact 3.2.14 and

Fact A.2.4.

A.3 Disjoint Union and Parallel Productions

A special case of the gluing of different AHL-nets is the disjoint union, where no elements
of the different nets are identified. Note that for sets (Si)i∈I , the disjoint union S is defined
as S =

⋃
i∈I(Si × {i}), which means that an element s ∈ Si for some i ∈ I is uniquely

represented in S by an element (s, i). Furthermore, the disjoint union of sets is a coproduct
in the category Sets . We define the disjoint union of AHL-nets not only for the binary but
for the general case.

Definition A.3.1 (Disjoint Union of Algebraic High-Level Nets). Given AHL-nets (ANi)i∈I ,
the disjoint union AN of (ANi)i∈I , written AN =

⊎
i∈I ANi, is defined as AHL-net

AN = (Σ, P, T, pre, post, cond, type,A)

with

• (Σ, A) =
∐
i∈I(Σi, Ai) is the coproduct of (Σi, Ai)i∈I with injections

(ιΣ,i, ιA,i) : (Σi, Ai)→ (Σ, A) in Algs,

• P =
∐
i∈I Pi is the coproduct of (Pi)i∈I with injections ιP,i : Pi → P in Sets,

A.3 Disjoint Union and Parallel Productions 193

• T =
∐
i∈I Ti is the coproduct of (Ti)i∈I with injections ιT,i : Ti → T in Sets,

• pre(t) = (ι#Σ,i ⊗ ιP,i)⊕ ◦ prei(t′) for t = ιT,i(t
′),

• post(t) = (ι#Σ,i ⊗ ιP,i)⊕ ◦ posti(t′) for t = ιT,i(t
′),

• cond(t) = Pfin(ι#Σ,i) ◦ condi(t′) for t = ιT,i(t
′),

• type(p) = ιΣ,i ◦ typei(p′) for p = ιP,i(p
′);

and inclusions (ιi : ANi ↪→ AN)i∈I defined by ιi = (ιΣ,i, ιP,i, ιT,i, ιA,i). 4

Well-definedness. The coproduct (Σ, A) with injections (ιΣ,i, ιA,i)i∈I in Algs exists because
Algs is co-complete, as shown in [TBG91] (where the category Algs is called Flat(ALG)).
Further, the coproducts P and T with injections (ιP,i)i∈I and (ιT,i)i∈I exist since also Sets
has coproducts that can be constructed as disjoint union. Then by jointly surjectivity of
injections (ιT,i)i∈I , for every t ∈ T there exists i ∈ I and t′ ∈ Ti such that t = ιT,i(t

′), and t′

is unique due to the fact that T is a disjoint union. Thus, the functions pre, post and cond,
and analogously type, are well-defined. The well-definedness of AHL-morphisms ιi follows
directly from the definition of the pre, post, cond and type functions.

Definition A.3.2 (Coproduct Compatible withM). Given anM-adhesive category (C,M),
then C has coproducts compatible with M if C has coproducts and, for all M-morphisms
(fi : Ai → Bi)i∈I , the coproduct morphism is also inM, i. e.

∐
i∈I fi :

∐
i∈I Ai →

∐
i∈I Bi ∈

M. 4

Fact A.3.3 (Coproduct of Algebraic High-Level Nets). The category AHLNets has co-
products that can be constructed as disjoint union as defined in Definition A.3.1. Moreover,
coproducts in AHLNets are compatible with the classes MAHL of all monomorphisms with
isomorphic data type part.

Proof. Given AHL-nets (ANi)i∈I , we can construct the disjoint union AN with injections
(ιi : ANi → AN)i∈I as defined in Definition A.3.1. We have to show that AN satisfies the
universal property of coproducts. So let AN ′ be an AHL-net and (fi : ANi → AN ′)i∈I AHL-
morphism. We define an AHL-morphism f : AN → AN ′ = (fΣ, fP , fT , fA) with (fΣ, fA), fP ,
fT being the unique morphisms induced by coproducts (Σ, A), P and T (see Definition A.3.1)
and generalised homomorphisms (fi,Σ, fi,A)i∈I , and functions (fi,P)i∈I , (fi,T)i∈I . We have
to show that f is well-defined. So let t ∈ TAN . As shown in the well-definedness proof
of Definition A.3.1 there is an i ∈ I and t′ ∈ TANi such that ιT,i(t

′) = t. Thus, using
compositionality of (⊗)⊕ shown in the appendix of [MGE+10], we obtain

(f#
Σ ⊗ fP)⊕ ◦ preAN (t) = (f#

Σ ⊗ fP)⊕ ◦ (ι#Σ,i ⊗ ιP,i)
⊕ ◦ preANi(t′)

= ((fΣ ◦ ιΣ,i)# ⊗ (fP ◦ ιP,i))⊕ ◦ preANi(t′)

= (f#
i,Σ ⊗ fi,P)⊕ ◦ preANi(t′)

= preAN ′ ◦ fi,T (t′)

= preAN ′ ◦ fT ◦ ιT,i(t′)
= preAN ′ ◦ fT (t)

194 A Appendix

The proof for compatibility of the post function works analogously. Moreover, for the cond
function, using compositionality of Pfin(#), shown in [MGE+10], we obtain

Pfin(f#
Σ) ◦ condAN (t) = Pfin(f#

Σ) ◦ Pfin(ι#Σ,i) ◦ condANi(t
′)

= Pfin((fΣ ◦ ιΣ,i)#) ◦ condANi(t′)

= Pfin(f#
i,Σ) ◦ condANi(t′)

= condAN ′ ◦ fi,T (t′)

= condAN ′ ◦ fT ◦ ιT,i(t′)
= condAN ′ ◦ fT (t)

Finally, considering the type function, let p ∈ PAN and analogously to the transitions, we
have p′ ∈ PANi such that ιP,i(p

′) = p, and we have

fΣ ◦ typeAN (p) = fΣ ◦ ιΣ,i ◦ typeANi(p′)
= fi,Σ ◦ typeANi(p′)
= typeAN ′ ◦ fi,P (p′)

= typeAN ′ ◦ fP ◦ ιi,P (p′)

= typeAN ′ ◦ fP (p)

Hence, f is a well-defined AHL-morphism. The uniqueness of f and the required commuta-
tivity follows immediately from uniqueness and commutativity of the components.

It remains to show that coproducts in AHLNets are compatible with the class MAHL

of all monomorphisms with isomorphic data type part. Let (fi : ANi → AN ′i)i∈I be a
family of M′AHL-morphisms. The fact that the morphism

∐
i∈I fi is has injective P - and

T -components follows from injectivity of the P - and T -components of all fi, because due to
the construction of disjoint unions we have the same injective mappings between the disjoint
copies of places and transitions in the respective disjoint unions of AHL-nets. Moreover,
the data type part of the disjoint union of AHL-nets is constructed as coproduct in Algs.
Then MAHL-morphisms fiimply that we have isomorphisms fi,A : Ai

∼→ A′i which due to
the uniqueness of coproducts up to isomorphism means that we also have a corresponding
isomorphism

∐
i∈I fi :

∐
i∈I Ai

∼→
∐
i∈I A

′
i. Hence,

∐
i∈I fi is an MAHL-morphism.

Based on the disjoint union of AHL-nets, we define also the disjoint union of productions,
called parallel production as in [EEPT06b]. As the name suggests, the application of a
parallel production corresponds to parallel application of all its single parts.

Definition A.3.4 (Parallel Production for Algebraic High-Level Nets). Given productions

(%i : Li
li← Ii

ri→ Ri)i∈I for AHL-nets. The parallel production %+ : L+ l+← I+ r+

→ R+ of

(%i : Li
li← Ii

ri→ Ri)i∈I , written %+ =
⊎
i∈I %i or %+ =

∐
i∈I %i, is defined by the componen-

twise disjoint union X+ =
⊎
i∈I Xi for X ∈ {L, I,R}. The morphisms l+ and r+ are the

unique morphisms induced by coproduct I+ (see Fact A.3.3) and morphisms ιLi ◦ l and ιRi ◦ r,
respectively.

Li

ιLi ��

Ii

ιIi ��

loo r // Ri

ιRi ��
L+ I+

l+
oo

r+
// R+

4

A.3 Disjoint Union and Parallel Productions 195

Fact A.3.5 (Parallel Production is Production for AHL-Nets). Given productions (%i : Li
li←

Ii
ri→ Ri)i∈I for AHL-nets. Then the parallel production%+ =

⊎
i∈I %i is a production for

AHL-nets.

Proof. It is already shown above that the disjoint union of AHL-nets again leads to a well-
defined AHL-net. The well-definedness of AHL-morphisms l+ and r+ follows from the fact
that the disjoint union is a coproduct in AHLNets as shown in Fact A.3.3. It remains to
show that the morphisms l+ and r+ are MAHL-morphisms which follows from the fact that
coproducts in AHLNets are compatible with MAHL.

In the following we show that the disjoint union of AHL-process nets leads to a coproduct
in the category AHLPNets, and that the disjoint union of productions for AHL-process
nets (i. e. the parallel production) again is a production for AHL-process nets.

Fact A.3.6 (Coproduct of AHL-Process Nets). The category AHLPNets has coproducts
that can be constructed as disjoint union of AHL-nets as defined in Definition A.3.1.

Proof. Given AHL-process nets (Ki)i∈I , we construct the disjoint union K =
⊎
i∈I Ki, and

we have to show that K is a coproduct in AHLPNets. For this, it is necessary to show
that K is an AHL-process net. Due to construction of the disjoint union in Definition A.3.1,
the places and transitions of K are disjoint unions of the places and transitions, respectively,
of the AHL-process nets Ki. Moreover, the pre and post conditions of a transition in K is
directly inherited from its corresponding transition in one of the nets Ki for some i ∈ I.
Therefore, the net K satisfies the unarity and conflict-freeness conditions which only depend
on the pre and post domain functions, since all the single nets Ki satisfy these conditions.
Further, due to the disjoint construction, the causal relation <K is obtained as disjoined
union of the irreflexive causal relations <Ki , and thus, also <K is irreflexive and therefore a
strict partial order. Hence, the disjoint union K is an AHL-process net.

According to Fact A.3.3, K is a coproduct of (Ki)i∈I in AHLNets, and thus it is also a
coproduct in the full subcategory AHLPNets ⊆ AHLNets.

Corollary A.3.7 (Parallel Production for AHL-Process nets). Given productions (%i : Li
li←

Ii
ri→ Ri)i∈I for AHL-process nets. Then the parallel production %+ : L+ l+← I+ r+

→ R+ =
]i∈I%i as defined in Definition A.3.4 is a production for AHL-process nets.

Proof. Using Fact A.3.6, we have that the componentwise coproducts L+, I+ and R+ are
AHL-process nets, and since AHLPNets is a full subcategory of AHLNets, l+ : I+ →
L+, r+ : I+ → R+ ∈MAHL are AHLPNets-morphisms.

Finally, we also show that the categories of (weak) instantiations have coproducts, allowing
us to define also parallel productions for instantiations. Moreover, we show that the parallel
production of an abstract production again is an abstract production, and that the satisfaction
of the instantiation condition by the parallel production depends only on satisfaction by all
its single components.

Fact A.3.8 (Coproduct of Instantiations). The categories Inst and wInst have coproducts
that can be constructed by disjoint union of the underlying AHL-nets (see Definition A.3.1
and Fact A.3.3).

Proof. We show the proof w. l. o. g. only for coproducts in Inst. Let (insti, ANi)i∈I be in-
stantiations. We construct the coproduct AN =

∐
i∈I ANi according to Fact A.3.3, with

injections ιi : ANi → AN . Then by Fact 3.4.4 we also have a corresponding coproduct

196 A Appendix

Skel(AN) =
∐
i∈I Skel(ANi). Thus, due to P/T-morphisms Flat(ιi) ◦ insti : Skel(ANi) →

Flat(AN), the universal coproduct property implies a unique inst : Skel(AN)→ Flat(AN)
such that inst ◦ Skel(ιi) = Flat(ιi) ◦ insti.

Also, by universal coproduct property, the identity idSkel(AN) is the unique endomorphism
x : Skel(AN)→ Skel(AN) such that x ◦Skel(ιi) = idSkel(AN) ◦Skel(ιi) for all i ∈ I. So due
to the fact that proj(AN)◦inst◦Skel(ιi) = proj(AN)◦Flat(ιi)◦insti = Skel(ιi)◦proj(ANi)◦
insti = Skel(ιi) for all i ∈ I, it follows that proj(AN) ◦ inst = x = Skel(AN) which means
that (inst, AN) is an instantiation and the injections ιi are instantiation morphisms.

It remains to show that (inst, AN) satisfies the universal property of coproduct, but
since all instantiation morphisms are also AHL-morphisms, the satisfaction of the universal
property in Inst can easily be derived from the universal coproduct property of AN in
AHLNets.

Definition A.3.9 (Parallel Production for Instantiations). Given productions (%i : Li
li←

Ii
ri→ Ri)i∈I for instantiations. The parallel production %+ : L+ l+← I+ r+

→ R+ of (%i : Li
li←

Ii
ri→ Ri)i∈I , written %+ =

⊎
i∈I %i or %+ =

∐
i∈I %i, is defined by the componentwise disjoint

union X+ =
⊎
i∈I Xi for X ∈ {L, I,R}. The morphisms l+ and r+ are the unique morphisms

induced by coproduct I+ (see Fact A.3.8) and morphisms ιLi ◦ l and ιRi ◦ r, respectively.

Li

ιLi ��

Ii

ιIi ��

loo r // Ri

ιRi ��
L+ I+

l+
oo

r+
// R+

4

Lemma A.3.10 (Parallel Production of Abstract Productions is Abstract). Given abstract
productions for instantiations (%i)i∈I , the parallel production % =

∐
i∈I %i is an abstract

production.

Proof. It suffices to show that the coproduct of term algebras (Σi, TΣi(Xi)) again is a term
algebra. In this proof we partly consider algebras as the corresponding signature-sorted sets
(see Definition A.1.8) that are obtained by forgetting all operations and considering only the
carrier sets.

We show that the coproduct (Σ, C) =
∐
i∈I(Σi, TΣi(Xi)) together with coproduct injec-

tions (ηi, µi) : (Σi, TΣi(Xi)) → (Σ, C) is equal to the term algebra (Σ, TΣ(X)), where X is
obtained as coproduct (Σ, X) =

∐
i∈I(Σi, Xi) with injections (ηi, ξi) : (Σi, Xi)→ (Σ, X).

We do the proof by showing that algebra C is free over X in Alg(Σ).

Since all variables in Xi are also contained in TΣi(Xi), there are inclusions ini : (Σi, Xi)→
(Σi, TΣ(Xi)). Further, due to (ηi, µi) ◦ ini : (Σi, Xi)→ (Σ, C), the coproduct (Σ, X) implies
a unique morphism in : (Σ, X) → (Σ, C) such that (ηi, µi) ◦ ini = in ◦ (ηi, ξi), i. e. the outer
diagram below commutes.

Now, let (Σ, A) be an arbitrary Σ-algebra, and v : X → A be an assignment. Then
there are also assignments Vηi(v) : Xi → Vηi(A) which by freeness of TΣi(Xi) over Xi in
Alg(Σi) implies unique Σi-homomorphisms xi : TΣi(Xi)→ Vηi(A) such that xi◦ini = Vηi(v).
Note that a Σi-homomorphism xi : TΣi(Xi)→ Vηi(A) can be interpreted as Algs-morphism
(ηi, xi) : (Σi, TΣi(Xi)) → (Σ, A). So, the coproduct (Σ, C) implies that there is a unique
Algs-morphism (id, y) : (Σ, C)→ (Σ, A) such that y ◦ (ηi, µi) = (ηi, xi).

A.3 Disjoint Union and Parallel Productions 197

(Σi, Xi)

(ηi,ξi)

��

ini //

(id,Vηi (v))

&&NNNNNNNNNNN
(Σi, TΣi(Xi))

(id,xi)

vvnnnnnnnnnnnn

(ηi,xi)

~~}}}}}}}}}}}}}}}}}}}}

(ηi,µi)

��

(Σi, Vηi(A))

��
(=)

(=)

(=)(Σ, A)

(Σ, X)

(id,v)
88ppppppppppp

in
// (Σ, C)

(id,y)
hhPPPPPPPPPPPP

Using the commutativities in the diagram above, we obtain for every i ∈ I:

(id, y) ◦ in ◦ (ηi, ξi) = (id, y) ◦ (ηi, µi) ◦ ini
= (ηi, xi) ◦ ini
= (id, xi) ◦ ini
= (id, Vηi(v))

= (id, v) ◦ (ηi, ξi)

which by jointly surjective coproduct injections (ηi, ξi) implies that (id, y) ◦ in = (id, v).
Hence, C is free over X in Alg(Σ) which by uniqueness of free constructions implies that C
is the term algebra TΣ(X).

Lemma A.3.11 (Cocreations and Jointly Epic Morphisms). Given a functor F : C → D,
jointly epic morphisms (ai : Ai → A)i∈I in C, and commuting diagrams (Di)i∈I below, where
(bi)i∈I are jointly epic. Moreover, let f̄ : A → B̄ be the F -cocreation of f via A, f̄i the
F -cocreation of fi via Ai for all i ∈ I, and b∗i : Bi → B the unique repective morphism such
that diagram (Ci) below commutes and F (b∗i) = bi. Then also (b∗i)i∈I are jointly epic.

Ai
ai //

f̄i
��

A

f̄
��

B̄i
b∗i

// B̄

(Ci)

F (Ai)
F (ai) //

fi
��

F (A)

f

��
Bi

bi
// B

(Di)

Proof. We have to show that (b∗i)i∈I are jointly epic C-morphisms. So, let g, h : B̄ → C be
morphisms such that g ◦ bi = h ◦ bi for all i ∈ I, then we have to show that g = h. For all
i ∈ I we have

F (g) ◦ bi = F (g) ◦ F (b∗i) = F (g ◦ b∗i) = F (h ◦ b∗i) = F (h) ◦ F (b∗i) = h ◦ bi

which implies that F (g) = F (h) because (bi)i∈I are jointly epic.

Now, due to the fact that f̄ is an F -cocreation of f via A, there exists a unique x : B̄ → C
such that x ◦ f̄ = g ◦ f̄ and F (x) = F (g). Moreover, we have for all i ∈ I that

g ◦ f̄ ◦ ai = g ◦ bi ◦ fi = h ◦ bi ◦ fi = h ◦ f̄ ◦ ai

which by jointly epic (ai)i∈I implies that g ◦ f̄ = h ◦ f̄ . Thus, from uniqueness of x it follows
that g = x = h. Hence, (b∗i)i∈I are jointly epic.

198 A Appendix

Fact A.3.12 (Instantiation Condition and Parallel Productions). Given abstract productions

(%i : Li
li← Ii

ri→ Ri)i∈I for instantiations, and let %+ =
⊎
i∈I %i : L+ l+← I+ r+

→ R+ be a
parallel production with injections ιCi : Ci → C+ for C ∈ {L, I,R}. Moreover, let Inst an
instantiation, and (mi : Li → Inst)i∈I , m+ : L+ → Inst matches such that m+ ◦ ιLi = mi for
all i ∈ I. Then %+ and m+ satisfy the instantiation condition for abstract productions if and
only if for all i ∈ I we have that %i and mi satisfy the instantiation condition for abstract
productions.

Proof. First, note that due to abstract productions (%i)i∈I by Lemma A.3.10 we have that
%+ also is an abstract production. Since the rule-morphisms are MAHL-morphisms that are
isomorphic on the data type part, we can w. l. o. g. assume that all components of %i (for
each i ∈ I) have a common data type part (Σi, TΣi(Xi)), and all components of %+ have a
common data type part (Σ+, TΣ+(X+)).

Further, let %̄+ be the data-shifting of %+ along m+, and (%̄i)i∈I the data-shiftings of all
%i along mi. Then for (Σ, A) being the data type part of Inst, we have that the diagram in
Figure A.6b commutes. Thus, due to InstData-cocreations sCi (for C ∈ {L, I,R} and i ∈ I),
there exist unique morphisms uCi : C̄i → C̄+ for every C ∈ {L, I,R} and i ∈ I, such that
uCi ◦ sCi = tC ◦ ιCi and Data(uCi) = id(Σ,A).

We have that the coproduct injections (ιCi)i∈I for every component C ∈ {L, I,R} are
jointly epic AHL-morphisms, since the coproducts in wInst are constructed via coproduct
in AHLNets (see Fact A.3.8). Also, we have that (id(Σ,A))i∈I are jointly epic, because
id(Σ,A) is an epimorphism. Moreover, the fact that all %̄i and %̄+ are data-shiftings of %i and
%+, respectively, means that they are wInstData-images. This in turn, according to Defi-
nition 4.4.1, means that the corresponding AHL-morphisms sCi and tC are Data-cocreations
for all C ∈ {L, I,R} and i ∈ I. Thus, using Lemma A.3.11 we obtain that also (uCi)i∈I are
jointly epic AHL-morphisms for all C ∈ {L, I,R}, and thus, they are jointly surjective.

Li
ιLi

��

 sLi
""EEEE Ii

ιIi ����

������

sIi
!!CCCC

lioo ri // Ri
ιRi

��

sRi
""FFFF

L̄i
uLi

����������
Īi

l̄ioo r̄i //

uIi

����������
R̄i
uRi

��

L+

tL
##GGGG I+

tI
""FFFF

l+oo r+
// R+

tR
##HHHH

L̄+ Ī+l̄+oo r̄+
// R̄+

(a) Data-shiftings

(Σi, TΣi(Xi))
Data(ιLi)

����������� Data(sLi)
''OOOOO

(Σ, A)

id||yyyyyyyyy
(Σ+, TΣ+(X+))

Data(tL)
%%KKK

(Σ, A)

(b) Algebras

Figure A.6: Data-shiftings of productions

Now, we consider the two directions of the proof separately.

If. Let %i and mi satisfy the instantiation condition for all i ∈ I. Then we have that the
data-shiftings %̄i for all i ∈ I are concrete productions, meaning that their components
are concrete instantiations. As shown above, there are jointly surjective morphisms
uCi : C̄i → C̄+ for every component C ∈ {L, I,R} which by Lemma A.5.6 implies that
also L̄+, Ī+ and R̄+ are concrete instantiations. Hence, %̄+ is a concrete production,
which means that %+ and m+ satisfy the instantiations condition.

Only If. Now, let %+ and m+ satisfy the instantiations condition. Then we have that %̄+ is
a concrete production which means that L̄+, Ī+ and R̄+ are concrete instantiations. As
shown above, there are morphisms uCi : C̄i → C̄+ for every component C ∈ {L, I,R}

A.4 E-M′ Factorisation and E ′-M′ Pair Factorisation 199

such that Data(uCi) = id(Σ,A), i. e. all of these morphisms have an isomorphic data
type part. Thus, according to Fact A.6.9, each C̄i (i ∈ I) is the W -creation of C̄+

(C ∈ {L, I,R}) which means that they are concrete instantiations. Hence, %̄i is a
concrete production for every i ∈ I, implying that %i and mi satisfy the instantiation
condition for all i ∈ I.

A.4 E-M′ Factorisation and E ′-M′ Pair Factorisation

Two construction that are often needed in the context of M-adhesive categories are E-M′
factorisations and E ’-M′ pair factorisations as defined in the following. The intuitive idea of
the morphism class E is that of epimorphic morphisms, while the idea of the morphism class
E ’ is that of jointly epimorphic morphism pairs. The idea of the morphism class M′ is that
of monomorphic morphisms that does not need to be included in the class M.

Definition A.4.1 (E-M′ Factorisation). Given anM-adhesive category (C,M) and classes
of morphisms E and M′. We say that C has E-M′ factorisations, if for each morphism
f : A→ B there exist an object C and morphisms e : A→ C ∈ E and m : C → B ∈M′ such
that f = m ◦ e.

A
f //

e %%KKKKKKKKK B

C
m

99sssssssss

4

Definition A.4.2 (E ′-M′ Pair Factorisation). Given anM-adhesive category (C,M), a class
E ′ of morphism pairs with the same codomain and a class M′ of morphisms. We say that C
has E ′-M′ pair factorisations, if for each pair of morphisms f1 : A1 → B and f2 : A2 → B
there exist an object C and morphisms e1 : A1 → C, e2 : A2 → C and m : C → B with
(e1, e2) ∈ E ′ and m ∈M′ such that m ◦ e1 = f1 and m ◦ e2 = f2.

A1 f1

%%e1 %%KKKKKKKKK

C m // B

A2 f1

99
e2

99sssssssss

4

Fact A.4.3 (E-M′AHL-Factorisation of AHL-Nets). The M-adhesive category of AHL-nets
(AHLNets,MAHL) has E-M′AHL factorisations for the class E of all epimorphisms and
the class M′AHL of all monomorphisms. Given an AHL-morphism f : AN1 → AN2, the
E-M′AHL factorisation e : AN1 → AN0 and m : AN0 → AN2 of f can be constructed as
componentwise image factorisation with AN0 = f(AN1).

Proof. We have to show that there are well-defined image factorisations of AHL-nets. Let
f : AN1 → AN2, we obtain the image AN0 = f(AN1) as AHL-net

AN0 = (Σ0, P0, T0, pre0, post0, cond0, type0, A0)

constructed as componentwise image:

• Σ0 = fΣ(Σ1),

200 A Appendix

• P0 = fP (P1),

• T0 = fT (T1),

• A0 = fA(A1),

• pre0 = (fA ⊗ fP)⊕ ◦ pre1,

• post0 = (fA ⊗ fP)⊕ ◦ post1,

• cond0 = Pfin(f#
Σ) ◦ cond1, and

• type0 = fΣ ◦ type1.

The image construction of functions fP and fT is an epi-mono factorisation of sets, leading to
unique functions eP : P1 → P0 and mP : P0 → P2 such that mP ◦ eP = fP , and eT : T1 → T0

and mT : T0 → T2 such that mT ◦ eT = fT , and we have that eP and eT are surjections and
mP and mT are inclusions.

For the signature Σ0 = (S0, OP0;X0), we obtain S0 also as epi-mono factorisation of
function fS , implying a surjection eS : S1 → S0 and an inclusion mS : S0 ↪→ S2. Note that
we have eS(s) = fS(s).

For each op : s1...sn → s in OP1 we have fOP (op) : fS(s1)...fS(sn) → fS(s) in OP0.
This means that there is also a surjection eOP : OP1 → OP0 with eOP (op) = fOP (op), and
eσ = (eS , eOP) is a surjective signature morphism which follows directly from the construction
of OP0. Moreover, there is an inclusion mOP : OP0 ↪→ OP2 such that we have a signature
inclusion mσ = (mS ,mOP).

Further, for each variable x ∈ Xs we have fX(x) ∈ XfS(s). This means that there is also
a surjection eX : X1 → X0 such that eΣ = (eσ, eX) is a surjective SigSets-morphisms (see
Definition A.1.8) which follows directly from the construction of X0. Moreover, there is an
inclusion mX : X0 ↪→ X2 such that we obtain a SigSets-inclusion mΣ = (mσ,mX).

The image A0 of algebra A1 can be constructed analogously to the homomorphic image
defined in Definition 4.9 in [EM85]. For each s0 ∈ S0 there exists an s ∈ S1 with fS(s) = s0.
So, for the carrier sets, we have componentwise images AfS(s) = fA,s(A1,s) of functions
fA,s, implying that we have surjections eA,s : A1,s → AfS(s) with eA,s(a) = fA,s(a) and
inclusions mA,s : AfS(s) ↪→ A2,fS(s) for all s ∈ S1. For all constant symbols c :→ s in OP1

we have fOP (c)A0 = cA1 , and for all operations op : s1...sn → s in OP1 we have fOP (op)A0 :
fA,s1(A1,s1)×...×fA,sn(A1,sn)→ fA,s(A1,s) with fOP (op)A0(x1, ..., xn) = fOP (op)A2(x1, ..., xn)
for xi ∈ fA,si(A1,si) and i = 1, ..., n.

Then, since for each s ∈ S1 the functions eA,s map everything exactly in the same
way as fA,s, it follows from the construction of A0 that for eA = (eA,s)s∈S1 we have that
(eΣ, eA) : (Σ1, A1) → (Σ0, A0) is a generalised homomorphism. Moreover, by definition
mA = (mA,s)s∈S1 we obtain an generalised algebra homomorphism (mΣ,mA) : (Σ0, A0) ↪→
(Σ2, A2).

Hence, by defining e = (eΣ, eP , eT , eA) we obtain that e : AN1 → AN0 is a well-defined
AHL-morphism: The required compatibility of pre, post, cond and type functions follow
immediately from the definition of these functions in AN0 and the fact that the components
of e map everything exactly in the same way as f does. Moreover, by definition m =
(mΣ,mP ,mT ,mA) we obtain a well-defined AHL-morphism m : AN0 → AN2 which follows
simply from the fact that all components of m are inclusions. Note that all components of e
are surjective which means that e is an epimorphism, and all components of m are inclusions
and therefore injective which means that m is a monomorphism.

A.4 E-M′ Factorisation and E ′-M′ Pair Factorisation 201

Fact A.4.4 (E ′-M′AHL Pair Factorisation of AHL-Nets). TheM-adhesive category of AHL-
nets (AHLNets,MAHL) has E ′-M′AHL pair factorisations for the class E ′ of all pairs of
jointly epimorphic morphisms and the class M′ of all monomorphisms.

AN1

ι1
��

f1

""

e1 ++WWWWWWWWWWWWW

C
m

UUUUU

**UUUU
AN1 +AN2 f //

e
33ggggggggg

AN3

AN2

ι2

OO

f1

::

e2

99sssssssssssssss

Construction and proof. Given two morphisms f1 : AN1 → AN3 and f2 : AN2 → AN3, then
the E ′-M′AHL pair factorisation of f1 and f2 can be obtained in the following way:

1. The coproduct AN1 + AN2 is constructed leading to jointly epic coproduct injections
ι1 : AN1 → AN1 +AN2 and ι2 : AN2 → AN1 +AN2, and a unique induced morphism
f : AN1 +AN2 → AN3 such that f ◦ ι1 = f1 and f ◦ ι2 = f2.

2. Using Fact A.4.3, the morphism f can be factorised into an AHL-net C, E-morphism
e : AN1 +AN2 → C and M′AHL-morphism m : C → AN3 such that m ◦ e = f .

3. We define e1 := e ◦ ι1 and e2 := e ◦ ι2. Since e ∈ E , it is an epimorphism, and thus, the
compositions e1 and e2 are jointly epimorphic. Hence, (e1, e2) ∈ E ′.

Fact A.4.5 (E-M′AHL Factorisation of Instantiations). TheM-adhesive categories of (weak)
instantiations (wInst,MAHL) and (Inst,MAHL) have E-M′AHL factorisations for the classes
E of all epimorphisms andM′AHL of all monomorphisms. Given a (weak) instantiation mor-
phism f : (inst1, AN1) → (inst2, AN2), the factorisation f = m ◦ e with e : (inst1, AN1) →
(inst0, AN0) ∈ E and m : (inst0, AN0)→ (inst2, AN2) ∈M′AHL is obtained as follows:

1. The AHL-morphism f : AN1 → AN2 is factorised into AN1
e→ AN0

m→ AN2 using
Fact A.4.3 with e ∈ E and m ∈M′AHL.

2. The instantiation (inst0, AN0) with morphism m : (inst0, AN0)→ (inst2, AN2) is con-
structed as wNet- respectively Net-creation of m : AN0 → AN1 via (inst1, AN1),
implying that also e : (inst1, AN1) → (inst0, AN0) is a (weak) instantiation morphism
(see Fact A.6.5).

Proof. Given a (weak) instantiation morphism f : (inst1, AN1) → (inst2, AN2). The exis-
tence of the E-M′AHL factorisation f = m ◦ e follows from Fact A.4.3 such that e : AN1 →
AN0 ∈ morE and m : AN0 → AN2 ∈ M′AHL. According to Fact A.6.5, the functor
wNet : wInst → AHLNets and Net : Inst → AHLNets have creations, and the wNet-
respectively Net-creation of m via AN2 can be obtained as m : (inst0, AN1)→ (inst2, AN2),
where (inst0, AN1) is the restriction of (inst2, AN2) along m (see Definition 4.5.3).

Then, by universal property of functor creation m, due to AHL-morphism e : AN1 → AN2

and (weak) instantiation morphism f : (inst1, AN1) → (inst2, AN2) with commutativity
m◦e = f in AHLNets, we have that e : (inst1, AN1)→ (inst0, AN0) is a (weak) instantiation
morphism (see Fact A.6.5).

Hence, we have that (inst1, AN1)
e→ (inst0, AN0)

m→ (inst2, AN2) is an E-M′AHL factori-
sation of f in wInst respectively Inst.

Fact A.4.6 (E ′-M′AHL Pair Factorisation of Instantiations). The M-adhesive categories
(wInst,MAHL) and (Inst,MAHL) have E ′-M′AHL pair factorisations for the class E ′ of all
pairs of jointly epimorphic morphisms and the class M′ of all monomorphisms.

202 A Appendix

Proof. The construction and proof of this fact works completely analogously to Fact A.4.4.

In the following we transfer the results for AHL-nets above also to typed AHL-nets. A
typed AHL-net is an AHL-morphism mp : K → AN , and we say that the AHL-net is typed
over AN . Given an AHL-net AN , a morphism between typed AHL-nets mp1 : K1 → AN
and mp2 : K2 → AN is given by an AHL-morphism f : K1 → K2 such that mp2 ◦ f = mp1.
Typed AHL-nets over the same AHL-net AN and morphisms between them form the slice
category AHLNets \AN .

Moreover, given typed AHL-nets mp1 : K1 → AN1 and mp2 : K2 → AN2, a morphism
between mp1 and mp2 is given by a pair (fK : K1 → K2, fAN : AN1 → AN2) of AHL-nets
such that mp2 ◦ fK = fAN ◦mp1. Typed AHL-nets over different AHL-nets and morphisms
between them form the arrow category AHLNets→.

K1
f //

mp1 ""FFFFF K2

mp2||xxxxx

AN

(1)

K1
f∗ //

mp1 ��

K2

mp2��
AN1

f
//

(2)

AN2

Fact A.4.7 (E-M′AHL Factorisation of Typed AHL-Nets).

1. For all AHL-nets AN the slice category AHLNets \ AN of AHL-nets typed over AN
has E-M′AHL factorisations that can be constructed as E-M′AHL factorisation of the
corresponding AHL-morphisms.

2. The category AHLNets→ of all typed AHL-nets has E→-M′→AHL factorisations. The
classes E→ is the class of all epimorphisms in AHLNets→, given by the class of
AHLNets→-morphisms (e1, e2) such that e1 and e2 are epimorphisms. Analogously,
M′→AHL of all monomorphisms in AHLNets→, given by the class of AHLNets→-
morphisms (m1,m2) such that m1 and m2 are monomorphisms.

The factorisation can be constructed in the following way: Given an AHLNets→-
morphism (fK , fAN) : mp1 → mp2, the E-M′AHL factorisation is constructed as e =
(eK , eAN) : mp1 → mp0 and m = (mK ,mAN) : mp0 → mp2, where fK = mK ◦ eK
and fAN = mAN ◦ eAN are obtained as E-M′AHL factorisations in AHLNets, and the
typed AHL-net mp0 : K0 → AN0 is defined as composition mp0 := m−1

AN ◦mp2 ◦mK .

K1
f //

e
&&MMMMMMMMMM

mp1

��;;;;;;;;;;;;;;; K2

mp2

�����������������

K0

m

88qqqqqqqqqq

mp0
��

AN

K1
fK //

eK

��>>>>>>>>>>>>>>>
mp1
��

K2

mp2
��

AN1

eAN

��>>>>>>>>>>>>>>>
fAN // AN2

K0

mK

@@���������������

mp0
��

AN0

mAN

@@���������������

Proof. 1. Given an AHL-net AN AHLNets \ AN -objects mp1 : K1 → AN and mp2 :
K2 → AN and a morphism f : mp1 → mp2. By definition of AHLNets \ AN , we
have that f is an AHL-morphism f : K1 → K2 such that mp2 ◦ f = mp1. Using
Fact A.4.3, we obtain an E-M′AHL factorisation f = m ◦ e with e : K1 → K0 ∈ E and
m : K0 → K2 ∈M′AHL.

A.4 E-M′ Factorisation and E ′-M′ Pair Factorisation 203

Moreover, by composition mp0 := mp2 ◦m we obtain a typed AHL-net mp0 : K0 →
AN0, where it additionally holds that mp0 ◦ e = mp2 ◦ ◦e = mp2 ◦ f = mp1. Hence, we
have AHLNets \ AN -morphisms e : mp1 → mp0 ∈ E and m : mp0 → mp2 ∈ M′AHL
with f = m ◦ e.

2. Given an AHLNets→-morphism (fK , fAN) : mp1 → mp2, we define e := (eK , eAN)
and m := (mK ,mAN), where fK = mK ◦ eK and fAN = mAN ◦ eAN are obtained as
E-M′AHL factorisations in AHLNets.

Now, we define mp0 = m−1
AN ◦ mp2 ◦ mK , and we have to show that mp0 is well-

defined. So, since mAN is a monomorphism and hence injective, it suffices to show that
for every element x in K0 there exists a corresponding element y in AN0 such that
mp2 ◦mK(x) = mAN (y). Let x ∈ PK0 . Then, since eK is an epimorphism and hence
surjective, there is x′ ∈ PK1 with eK(x′) = x. Moreover, we have y = e◦mp1(x′) ∈ PAN0

with

mp2 ◦mK(x) = mp2 ◦mK ◦ eK(x′) = mp2 ◦ fK(x′)

= fAN ◦mp1(x′) = mAN ◦ eAN ◦mp1(x′)

= mAN (y)

which means that y is the required element such that mp0(x) = y is a well-defined
mapping of places. The proof for the other components works analogously. The fact
that mp0 is a well-defined AHL-morphism can be derived from the fact that mAN ,
mp2 and mK are AHL-morphisms. The fact that m = (mK ,mAN) is a AHLNets→-
morphism follows directly from definition of mK . Moreover, for e = (eK , eAN , we have

mp0 ◦ eK = m−1
AN ◦mp2 ◦mK ◦ eK = m−1

AN ◦mp2 ◦ fK
= m−1

AN ◦ fAN ◦mp1 = m−1
AN ◦mAN ◦ eAN ◦mp1

= eAN ◦mp1

which means that also e is a AHLNets→-morphism.

It remains to show that m is a monomorphism and e is an epimorphism in AHLNets→.
The arrow category AHLNets→ is isomorphic to the functor category [2,AHLNets],
where 2 is the small category • → • with two objects and one non-trivial morphism be-
tween them. A natural transformation in a functor category [C,D] is a monomorphism
or epimorphism, if it is componentwise monomorphism or epimorphism, respectively, in
D. Thus, e is an epimorphism, because its components are epimorphisms in AHLNets,
and m is a monomorphism, since its components are monomorphisms in AHLNets.

Fact A.4.8 (E2-MAHL-Factorisation of AHL-Nets). The M-adhesive category (AHLNets,
MAHL) has E2-MAHL factorisations for the class

E2 = {e = (eΣ, eP , eT , eA) | eP and eT are surjective}

Given an AHL-morphism f : AN1 → AN2, the E2-M factorisation is obtained in the following
way:

1. An E-M′AHL factorisation e0 : AN1 → C0 and m0 : C0 → AN2 of f can be constructed
according to Fact A.4.3.

204 A Appendix

2. An AHL-morphism m̄ : C0 → C is obtained as data-image of C0 along m0, inducing a
unique morphism m : C → AN2 such that Data(m) = idAAN2

and m ◦ m̄ = m0.

3. The E2-MAHL factorisation of f is given by AHL-net C and AHL-morphisms e =
m̄ ◦ e0 ∈ E2 and m ∈MAHL.

AN1
f //

e0

%%KKKKKKKKKK

e

��8888888888888888 AN2

C0

m0

99ssssssssss

m̄

��
C

m

BB����������������

Proof. We have to show that the construction above is well-defined and does in fact lead to
an E-MAHL factorisation.

1. In Fact A.4.3 it is shown that AHLNets has E-M′AHL factorisations.

2. Using the construction of data-images in Definition 3.3.1, we obtain an AHL-net C
together with an AHL-morphism m̄ : C0 → C. Moreover, by Fact A.6.10 we know
that the data-image m̄ is a Data-cocreation of m0 via C0. Hence, due to generalised
homomorphism idAAN2

: AAN2 → AAN2 the universal property of cocreations induces a
unique morphism m : C → AN2 such that Data(m) = idAAN2

and m ◦ m̄ = m0.

3. The morphisms e := m̄ ◦ e0 and m are a factorisation of f , because we have f =
m0 ◦ e0 = m ◦ m̄ ◦ e0 = m ◦ e. According to the construction of data-images, we have
that the P - and T -components of m̄ are identities. Together with the fact that e0 is a
surjective AHL-morphism, we have that the composition e = m̄ ◦ e0 also has surjective
P - and T -components. Thus, we have that e ∈ E2.

Moreover, due to the universal cocreation-property, we have that Data(m) = idAAN2
,

i. e. m has an isomorphic data-type part. According to Fact A.6.10, we have that m =
(idΣAN2

,m0,P ,m0,T , idAAN2
) which together with the fact that m0 is a monomorphism

implies that also m is a monomorphism. Hence, we have that m ∈MAHL which means
that e and m are an E2-MAHL factorisation of f .

Corollary A.4.9 (Extremal E-MAHL-Factorisation). The class E2 in Fact A.4.8 is the class
of all extremal morphisms w. r. t. MAHL. An AHL-morphism e is called extremal w. r. t.
MAHL, if for all AHL-morphisms m and f with m ◦ f = e: m ∈ MAHL implies that m is
an isomorphism. Hence, the E2-MAHL factorisation in Fact A.4.8 is an extremal E-MAHL

factorisation.

Proof. Let e ∈ E2 and AHL-morphisms m and f such that m ◦ f = e and m ∈ MAHL.
Then by definition of morphism class MAHL we know that the data type part (mΣ,mA) of
m already is an isomorphism. Moreover, by definition of morphism class E2, we have that
eP and eT are surjective functions, and due to componentwise composition of morphisms we
have mP ◦ fP = eP and mT ◦ fT = eT . Thus, by decomposition of surjective functions we
obtain that also mP and mT are surjective. Since m ∈MAHL we also know that mP and mT

are injective, and thus bijective. Hence, all components of m are isomorphisms which means
that m is an isomorphism, and therefore, e is an extremal morphism w. r. t. MAHL.

A.5 Instantiations: Technical Details 205

Definition A.4.10 (M-M′ PO-PB Decomposition Property). AnM-adhesive category (C,
M) with a morphism classM′ has theM-M′ pushout-pullback decomposition property if the
following holds. Given the following commutative diagram with l ∈ M and w ∈ M′, and
where (1)+(2) is a pushout and (2) a pullback, then (1) and (2) are pushouts and also
pullbacks:

A
k //

l
��

B
r //

s
��

(1) (2)

E

v
��

C u
// D w

// F

4

Fact A.4.11 (M-M′ PO-PB Decomposition Property of AHL-Nets). The M-adhesive cat-
egory (AHLNets,MAHL) with the class M′ of all monomorphisms has the M-M′ PO-PB
decomposition property.

Proof. Given the commutative diagram in Definition A.4.10 with l ∈MAHL and w ∈M′AHL,
where (1)+(2) is a pushout and (2) is a pullback. Due to closure ofMAHL-morphisms under
pushouts and pullbacks, we also have s, v ∈ MAHL. Then in the data type part of the
diagram all vertical morphisms are isomorphisms which means that the data type parts of
(1) and (2) are trivial pushouts and pullbacks in Algs. Moreover, the P - and T -components
of l and w are injective functions, and thus l, w ∈ MS . Hence, we obtain that the P -
and T -components of (1) and (2) are pushouts and pullbacks, due to M pushout-pullback
decomposition lemma in Theorem 4.26.2 of [EEPT06b] which holds forM-adhesive category
(Sets,MS). So, by componentwise construction of pushouts and pullbacks in AHLNets,
we also have that (1) and (2) are pushouts and pullbacks in AHLNets, due to corresponding
pushouts and pullbacks in all underlying categories.

A.5 Instantiations: Technical Details

The definition of instantiations in this thesis differs from the previous definition of instan-
tiations in [Ehr05]. However, considering instantiations of AHL-process net, the definitions
are equivalent in the sense that an instantiation can be uniquely transformed from one of the
representations into the other one.

Fact A.5.1 (Equivalence of Definitions). Our definition of instantiations for AHL-process
nets is equivalent to the definition of instantiations in [Ehr05]. In fact, there is a bijective
correspondence between the two representations: For every inclusion in : L ↪→ Flat(K)
such that proj(K) ◦ in is an isomorphism, there exists a unique corresponding instantiation
(inst,K) in PInst, and vice versa.

Proof. Consider an AHL-occurrence net K and a P/T net L together with an inclusion in :
Flat(K) ↪→ Skel(K) such that proj(K)◦in is an isomorphism. Then we have an instantiation
Inst = (in ◦ (proj(K) ◦ in)−1,K), because for in ◦ (proj(K) ◦ in)−1 : Skel(K) → Flat(K)
we have

proj(K) ◦ in ◦ (proj(K) ◦ in)−1 = idSkel(K)

Vice versa, consider an instantiation Inst = (inst,K) of an AHL-occurrence net. Per-
forming an image factorization, we obtain a P/T net L = inst(Skel(K)) together with an
inclusion in : L ↪→ Flat(K) and an epimorphism e : Skel(K) → L such that inst = in ◦ e.
Then we have

proj(K) ◦ in ◦ e = proj(K) ◦ inst = idSkelK

206 A Appendix

and

e ◦ proj(K) ◦ in ◦ e = e ◦ proj(K) ◦ inst = e

which by epimorphism e implies e ◦ proj(K) ◦ in, which means that proj(K) ◦ in and e are
inverse isomorphisms.

Corollary A.5.2 (Instantiations are Injective). Given a (weak) instantiation (inst, AN),
then we have inst ∈MPT where MPT is the class of all injective P/T-morphisms.

Proof. Due to the requirement that proj(AN) ◦ inst = idSkel(AN) (respectively wproj(AN) ◦
inst = idSkel(AN)), we have that inst is a coretraction and thus a monomorphism in PTNets.
Since monomorphisms in PTNets are injective, we have inst ∈MPT .

For every instantiation (inst, AN) there is a corresponding weak instantiation (winst, AN)
such that the image of inst is a subnet of winst. Therefore, the category Inst can be seen
as a (full) subcategory of wInst, however, only up to isomorphism.

Fact A.5.3 (Correspondence Between Instantiations and Weak Instantiations). There is a
functor W : Inst→ wInst, defined by

• W (inst, AN) = (w(AN) ◦ inst, AN) for objects (inst, AN), and

• W (f) = f for morphisms f : (inst1, AN1)→ (inst2, AN2),

and also functors W0 : PInst → wPInst and W1 : ProcInst → wProcInst, defined
analogously. The functors W , W0 and W1 are fully injective.

Proof. First we show that W is a well-defined functor. Given an instantiation (inst, AN),
the image W (inst, AN) = (winst, AN) with winst = w(AN) ◦ inst is a weak instantiation,
because due to the equation proj(AN) = wproj(AN) ◦ w(AN) (see Corollary 3.4.10), we
have

wproj(AN) ◦ winst = wproj(AN) ◦ w(AN) ◦ inst = proj(AN) ◦ inst = idSkel(AN)

Moreover, given an instantiation morphism f : (inst1, AN1)→ (inst2, AN2), we have that f
is an AHL-morphism f : AN1 → AN2 with inst2 ◦ Skel(f) = Flat(f) ◦ inst1. It follows that
W (f) = f : W (inst1, AN1)→W (inst2, AN2) is a weak instantiation morphism, because due
to natural transformation w : Flat⇒ wFlat, we have

w(AN2) ◦ inst2 ◦ Skel(f) = w(AN2) ◦ Flat(f) ◦ inst1 = wFlat(f) ◦ inst1

It remains to show that W is full and injective. W being full means that for every
weak instantiation morphism f : W (inst1, AN1) → W (inst2, AN2) there is an instantiation
morphism f̄ : (inst1, AN1) → (inst2, AN2) with W (f̄) = f . Given a weak instantiation
morphism f : W (inst1, AN1) → W (inst2, AN2), then we have that f : AN1 → AN2 is an
AHL-morphism with

w(AN2) ◦ ◦Flat(f) ◦ inst1 = wFlat(f) ◦ w(AN1) ◦ inst1 = w(AN2) ◦ inst2 ◦ wFlat(f)

and thus, since w(AN2) is a monomorphism in PTNets, it follows that Flat(f) ◦ inst1 =
inst2 ◦wFlat(f). Hence, f : (inst1, AN1)→ (inst2, AN2) is also an instantiation morphisms
with W (f) = f , and we have that W is full.

A.5 Instantiations: Technical Details 207

Further, we have thatW is injective, because given instantiations (inst1, AN1), (inst2, AN2)
with W (inst1, AN1) = W (inst2, AN2), then we have AN1 = AN2 and w(AN1) ◦ inst1 =
w(AN1) ◦ inst2 which by monomorphism w(AN1) implies inst1 = inst2. For morphisms f
and g with W (f) = W (g), we trivially have f = W (f) = W (g) = g. Hence, W is also
injective.

The proofs for W0 and W1 work analogously.

Lemma A.5.4 (Weak Instantiations as Instantiations). Let (winst, AN) be a weak instanti-
ation. If winstT (TAN) ⊆ CTAN , where CTAN is the set of consistent transition assignments
of AN (see Definition 3.4.5), then there exists a unique instantiation (inst, AN) such that
W (inst, AN) = (winst, AN).

Proof. Let (winst, AN) be a weak instantiation such that winstT (TAN) ⊆ CTAN . Then we
can define a P/T-morphism inst : Skel(AN) → Flat(AN) with inst = (winstP , winstT).
The morphism is well-defined, because winstP (PAN) ⊆ A⊗P = PFlat(AN) and winstT (TAN) ⊆
CTAN = TFlat(AN), and the compatibility of pre and post domains follows from P/T-
morphism winst and the fact that Flat and wFlat have similar pre and post domains. Since
inst maps all places and transitions exactly in the same way as winst, we have for the in-
clusion w(AN) that w(AN) ◦ inst = winst, and hence we have W (inst, AN) = (winst, AN).
The uniqueness of (inst, AN) follows from injectivity of W .

Lemma A.5.5 (Reflection of Concrete Instantiations). Given a weak instantiation morphism
f : Inst1 → Inst2 with isomorphic data type part. If Inst2 is a concrete instantiation, then
so is Inst1.

Proof. Let Inst1 = (winst1, AN1) and Inst2 = (winst2, AN2) be weak instantiations. If
Inst2 is concrete, this means that there is a a concrete instantiation (inst2, AN2) such that
W (inst2, AN2) = (winst2, AN2) (see Remark 4.3.8 on page 73). As shown in Fact A.6.9, the
functorW : Inst→ wInst has creations along weak instantiation morphisms with isomorphic
data type part. Thus, there is a concrete instantiation (inst1, AN1) with W (inst1, AN1) =
(winst1, AN1), meaning that (winst1, AN1) is a concrete instantiation.

Lemma A.5.6 (Preservation of Concrete Instantiations). Given weak instantiations (Insti)i∈I
and Inst2 and jointly surjective weak instantiation morphisms (fi : Insti → Inst2)i∈I . If all
(Insti)i∈I are concrete instantiations, then so is Inst2.

Proof. Let (Insti = (winsti, ANi))i∈I be concrete instantiations and Inst2 = (winst2, AN2)
a weak instantiation, and let (fi : Insti → Inst2)i∈I be jointly surjective weak instantiation
morphisms. In order to show that Inst2 is concrete, according to Lemma A.5.4, it suffices to
show that winstT (TAN2) ⊆ CTAN2 .

So, let tv2 ∈ winst2,T (TAN2) be an arbitrary assignment of Inst2. Due to injectivity of
winst2 (Corollary A.5.2) there is a unique transition t2 ∈ TAN2 with winst2,T (t2) = tv2,
and since the morphisms fi are jointly surjective, there exists a j ∈ I and tj ∈ TANj such
fj,T (tj) = t2. Then, Instj being an instantiation means that winstj,T (tj) = tvj is a consistent
transition assignment. This implies that for tvj = (tj , vj) there is a firing step

prej,A(tj , vj)
tj ,vj−→ postj,A(tj , vj)

in ANj . Using preservation of firing behaviour by AHL-morphisms (Fact 3.1.10), we obtain
a firing step

(fj,A ⊗ fj,P)⊕ ◦ prej,A(tj , vj)
fj,T (tj),v2−→ (fj,A ⊗ fj,P)⊕ ◦ postj,A(tj , vj)

208 A Appendix

in AN2, where v2 = fj,A ◦ vj ◦ (fj,X |V ar(tj))−1.

We have v2 ◦ fj,X |V ar(tj) = fj,A ◦ vj ◦ (fj,X |V ar(tj))−1 ◦ fj,X |V ar(tj) = fj,A ◦ vj . Thus, by

freeness of TΣj (V ar(tj)) over V ar(tj), we have v∗2 ◦ f
#
j,Σ = (fj,A ◦ vj)∗ = fj,A ◦ v∗j .

V ar(tj)� _

��
vj

''

fj,X |V ar(tj)
// V ar(fT (tj))� _

��

(fj,X |V ar(tj))−1

oo

v2

ww

TΣj (V ar(tj))

v∗j
��

f#
j,Σ

// TΣ2(V ar(fT (tj)))

v∗2
��

(=)

Aj
fj,A

// A2

(=)

So, let prej(tj) =
∑n

i=1(termi, pi), then we have

(fj,A ⊗ fj,P)⊕ ◦ prej,A(tj , vj) = (fj,A ⊗ fj,P)⊕(
n∑
i=1

(v∗1(termi), pi))

=
n∑
i=1

(fj,A ◦ v∗j (termi), fj,P (pi)) =
n∑
i=1

(v∗2 ◦ f
#
j,Σ(termi), fj,P (pi))

= ((v∗2 ◦ f
#
j,Σ)⊗ fj,P)⊕(

n∑
i=1

(termi, pi)) = (v∗2 ⊗ id)⊕ ◦ (f#
j,Σ ⊗ fj,P)⊕ ◦ prej(tj)

= (v∗2 ⊗ id)⊕ ◦ pre2(fj,T (tj)) = pre2,A(fj,T (tj), v2) = pre2,A(t2, v2)

and analogously we obtain (fj,A ⊗ fj,P)⊕ ◦ postj,A(tj , vj) = post2,A(t2, v2), leading to a firing
step

pre2,A(t2, v2)
t2,v2−→ post2,A(t2, v2)

in AN2. Thus, (t2, v2) is a consistent transition assignment. Finally, we have

tv2 = winstT (t2) = winstT (fj,T (tj)) = wFlat(fj)T (winstj,T (tj)) = wFlat(fj)T (tvj)

= wFlat(fj)T (tj , vj) = (fj,T (tj), fj,A ◦ vj ◦ (fj,X |V ar(tj))
−1) = (t2, v2)

which means that tv2 ∈ CTAN2 . Since this holds for all assignments of Inst2, we have that
Inst2 is a concrete instantiation.

The following fact states that the category of instantiations is – up to isomorphism – a
subcategory of a comma category. Given two functors F : A→ C and G : B→ C, a comma
category F ↓ G consists of objects (A,B, op) with A in A, B in B and op : F (A) → G(B)
in C, and morphisms (fA : A → A′, fB : B → B′) : (A,B, op) → (A′, B′, op′) such that
op′ ◦ F (fA) = G(fB) ◦ op.

Fact A.5.7 (Instantiations are Comma Category). The category Inst is isomorphic to a
category SubCom ⊆ Skel ↓ Flat where SubCom is the subcategory of the comma category
such that for objects (A,B, op) in SubCom we have A = B and proj(A) ◦ op = idSkel(A),
and for morphisms (f, g) in SubCom we have f = g. Analogously, we have wInst ∼= D ⊆
Skel ↓ wFlat where for objects in wSubCom it is required that wproj(A) ◦ op = idSkel(A).

Proof. It is easy to see that there is a bijective mapping between objects (inst, AN) in Inst
and (AN,AN, inst) in SubCom, and morphisms f : AN1 → AN2 in Inst and (f, f) in

A.5 Instantiations: Technical Details 209

SubCom, where the compatibility property of morphisms in Inst and Skel ↓ Flat (and
therefore also in SubCom) are defined analogously. Hence, we have Inst ∼= SubCom ⊆
Skel ↓ Flat.

One of the benefits of comma categories is the inheritance of M-adhesiveness from un-
derlying M-adhesive categories (see [EEPT06b, EGH10]). This can also be used for our
categories of instantiations.

Fact A.5.8 (Pushouts and Pullbacks of Instantiations).

1. Given a span (inst1, AN1)
m← (inst0, AN0)

f→ (inst2, AN2) of (weak) instantiation
morphisms with m ∈MAHL, the pushout of m and f can be constructed as pushout (1)
in AHLNets, and inst3 : Skel(AN3)→ Flat(AN3) is uniquely induced by the pushout
in the top of the cube in Figure A.7b.

2. Given a cospan (inst1, AN1)
g→ (inst3, AN3)

n← (inst2, AN2) of (weak) instantiation
morphisms with n ∈MAHL, the pullback of g and n can be constructed as pullback (1)
in AHLNets, inst0 : Skel(AN0) → Flat(AN0) is uniquely induced by the pullback in
the bottom of the cube in Figure A.7b.

AN0
m //

f
��

AN1

g

��
AN2 n

// AN3

(1)

(a) Pushout or pull-
back in AHLNets

Skel(AN0)

inst0

��

Skel(f)

vvmmmmmmmmmm Skel(m)
--\\\\\\\\\\\\\\\\\\\\\\

Skel(AN1)

inst1

��

Skel(g)

vvmmmmmmmmmm
Skel(AN2)

inst2

��

Skel(n)
--\\\\\\\\\\\\\\\\\\\\\\

Skel(AN3)

inst3

��

Flat(AN0)

Flat(f)vvmmmmmmmmmm Flat(m)
\\\\\\\\\\\

--\\\\\\\\\\\
Flat(AN1)

Flat(g)vvmmmmmmmmmm
Flat(AN2)

Flat(n) --\\\\\\\\\\\\\\\\\\\\\\

Flat(AN3)

(b) Pushout or pullback in Inst

Figure A.7: Pushouts or pullbacks in AHLNets and Inst

Proof. We show the existence of pushouts and pullbacks only for instantiation, because the
corresponding proof works analogously for weak instantiation, since the used facts for Flat
do also hold for wFlat.

1. Let Inst1
m← Inst0

f→ Inst2 be a span of instantiation morphisms with m ∈ MAHL.

This means that we have a corresponding span AN1
m← AN0

f→ AN2 in AHLNets, and
due to Fact A.1.11 there exists the pushout (1) in AHLNets, shown in Figure A.7a.

Using Fact A.5.7, the span Inst1
m← Inst0

f→ Inst2 in Inst can be interpreted as a span

(AN1, AN1, inst1)
(m,m)← (AN0, AN0, inst0)

(f,f)→ (AN2, AN2, inst2)

in Skel ↓ Flat, and by componentwise pushout construction in comma categories (under
the condition that Skel preserves pushouts, which is satisfied as shown in Fact 3.4.4;
see Fact A.43 in [EEPT06b]), we obtain a pushout object (AN3, AN3, inst3) such that

210 A Appendix

the cube shown in Figure A.7b in PTNets commutes, and inst0 is induced by the
pushout in the top of the cube.

Now, for (inst3, AN3) being an instantiation, it remains to show that proj(AN3) ◦
inst3 = idSkel(AN3). Note that due to universal property of the Skel-pushout in the
top of the cube, the identity idSkel(AN3) is the unique endomorphism x : Skel(AN3)→
Skel(AN3) such that x ◦ Skel(n) = Skel(n) and x ◦ Skel(g) = Skel(g). This implies
that proj(AN3) ◦ inst3 = idSkel(AN3), because using commutativity of the cube and the
fact that inst1 and inst2 are instantiations, we obtain

proj(AN3) ◦ inst3 ◦ Skel(n) = proj(AN3) ◦ Flat(n) ◦ inst2
= Skel(n) ◦ proj(AN2) ◦ inst2
= Skel(n) ◦ idSkel(AN2)

= Skel(n)

and, analogously

proj(AN3) ◦ inst3 ◦ Skel(g) = proj(AN3) ◦ Flat(g) ◦ inst1
= Skel(g) ◦ proj(AN1) ◦ inst1
= Skel(g) ◦ idSkel(AN1)

= Skel(g)

Hence, the pushout object (AN3, AN3, inst3) in the comma category corresponds to a
pushout object (inst3, AN3) in the subcategory Inst (see Fact A.5.7).

2. For the proof of the existence of pullbacks consider a cospan Inst1
g→ Inst3

n← Inst2 of
instantiations. Due to Fact A.1.11, we have the pullback (1) shown in Figure A.7a in

AHLNets, and using again Fact A.5.7, the cospan Inst1
g→ Inst3

n← Inst2 corresponds
to a cospan

(AN1, AN1, inst1)
(g,g)→ (AN0, AN0, inst0)

(n,n)← (AN2, AN2, inst2)

in Skel ↓ Flat. In Fact A.43 in [EEPT06b] it is shown that pullbacks in the comma
category can be constructed componentwise if Flat preserves pullbacks. Since n ∈
MAHL, and by Fact 3.4.11 Flat preserves pullbacks alongMAHL, we obtain a pullback
object (AN0, AN0, inst0) such that the cube in Figure A.7b commutes, and inst0 is the
unique morphism induced by the pullback in the bottom of the cube.

It remains to show that inst0 is an instantiation, i. e. that we have proj(AN0)◦ inst0 =
idSkel(AN0). According to Fact 3.4.4, we have that the top face in the cube in Figure A.7b
is a pullback, because Skel preserves pullbacks along MAHL. Moreover, due to the
universal pullback property, idSkel(AN0) is the unique endomorphism x : Skel(AN0)→
Skel(AN0) such that Skel(f) ◦ x = Skel(f) and Skel(m) ◦ x = Skel(m). This implies
that proj(AN0) ◦ inst0 = idSkel(AN0), because we have

Skel(f) ◦ proj(AN0) ◦ inst0 = proj(AN2) ◦ Flat(f) ◦ inst0
= proj(AN2) ◦ inst2 ◦ Skel(f)

= idSkel(AN2) ◦ Skel(f)

= Skel(f)

and analogously Skel(m) ◦ proj(AN0) ◦ inst0 = Skel(m). Hence, the pullback object
(AN0, AN0, inst0) corresponds to a pullback object (inst0, AN0) in the subcategory
Inst (see Fact A.5.7).

A.5 Instantiations: Technical Details 211

Fact A.5.9 (Instantiations areM-Adhesive). The categories (Inst,MAHL) of instantiations
and (wInst,MAHL) of weak instantiations are M-adhesive, where MAHL is the class of
injective AHL-morphisms with isomorphic data type part.

Proof. We have to show that (Inst,MAHL) and (wInst,MAHL) satisfy the properties ofM-
adhesive categories in Definition A.1.9. We consider w. l. o. g. only the category (Inst,MAHL).

1. The class MAHL is closed under composition, decomposition and isomorphism by
Fact A.1.11.

2. The fact that Inst has pushouts and pullbacks along MAHL is shown in Fact A.5.8.

3. The fact thatMAHL-morphisms are closed under pushouts and pullbacks, follows from
the construction of underlying pushouts and pullbacks in AHLNets, and the fact that
MAHL is closed under pushouts and pullbacks in AHLNets.

4. Consider a commutative cube of instantiations as shown in Figure A.8a. Since in-
stantiation morphisms are special AHL-morphisms, there is a corresponding cube in
AHLNets, depicted in Figure A.8b. Moreover, due to Fact A.5.7 we also obtain a
corresponding cube in Skel ↓ Flat as depicted in Figure A.8c.

(inst′0, AN
′
0)

a

��

f ′

zzuuuuuuu m′,,ZZZZZZZZ

(inst′1, AN
′
1)

b

��

g′

zzuuuuuuu
(inst′2, AN

′
2)

c

��

n′,,ZZZZZZZZ

(inst′3, AN
′
3)

d

��

(inst0, AN0)

fzzuuuuuuu m
ZZZZ

,,ZZZZ
(inst1, AN1)

gzzuuuuuuu
(inst2, AN2)

n ,,ZZZZZZZZ

(inst3, AN3)

(a) Commutative cube in Inst

AN ′0

a

��

f ′

{{wwwwwww m′
,,YYYYYYYYYYYYYY

AN ′1

b

��

g′

{{wwwwwww
AN ′2

c

��

n′
,,YYYYYYYYYYYYYY

AN ′3

d

��

AN0

fzztttttt m
ZZZZZZZ

,,ZZZZZZZ
AN1

gzztttttt
AN2

n ,,ZZZZZZZZZZZZZZ

AN3

(b) Commutative cube in AHLNets

(AN ′0, AN
′
0, inst

′
0)

(a,a)

��

(f ′,f ′)

uullllllllll (m′,m′)
--\\\\\\\\\\\\\\\\\

(AN ′1, AN
′
1, inst

′
1)

(b,b)

��

(g′,g′)

uullllllllll
(AN ′2, AN

′
2, inst

′
2)

(c,c)

��

(n′,n′)
--\\\\\\\\\\\\\\\\\

(AN ′3, AN
′
3, inst

′
3)

(d,d)

��

(AN0, AN0, inst0)

(f,f)uullllllllll (m,m)
\\\\\\\\

--\\\\\\\\
(AN1, AN1, inst1)

(g,g)uullllllllll
(AN2, AN2, inst2)

(n,n) --\\\\\\\\\\\\\\\\\

(AN3, AN3, inst3)

(c) Commutative cube in Skel ↓ Flat

Figure A.8: Commutative cubes

Now, due to Fact A.5.8 and the componentwise construction of pushouts and pullbacks
in comma categories, we know that if one of the faces of the cube in Figure A.8a is a
pushout or a pullback, then the corresponding faces of the cubes in Figure A.8b and

212 A Appendix

Figure A.8c are also pushouts or pullbacks, respectively. Vice versa, given a pushout
or pullback in one of the faces of the cube in Figure A.8c, there are corresponding
pushouts or pullback, respectively, in corresponding faces of the other cubes. This
implies that the satisfaction of the vertical Van-Kampen cube property in Inst can be
directly inherited from the fact that Skel ↓ Flat isM-adhesive (see Theorem 4.15.4 in
[EEPT06b]).

Fact A.5.10 (Pushouts and Pullbacks of Instantiations as Weak Instantiations). The functor
W : Inst→ wInst preserves and creates pushouts as well as pullbacks, i. e.

1. (Preservation of pushouts) If diagram (1) is pushout in Inst, then diagram (2) is
pushout in wInst, where W (insti, ANi) = (winsti, ANi) for i ∈ {0, . . . , 3}.

2. (Preservation of pullbacks) If diagram (1) is pullback in Inst, then diagram (2) is
pullback in wInst, where W (insti, ANi) = (winsti, ANi) for i ∈ {0, . . . , 3}.

3. (Creation of pushouts) If diagram (2) is pushout in wInst with W (insti, ANi) =
(winsti, ANi) for i ∈ {0, . . . , 2}, then there exists an instantiation (inst3, AN3) and
morphisms g and n such that (1) is pushout in Inst and W (inst3, AN3) = (winst3, AN3).

4. (Creation of pullbacks) If diagram (2) is pullback in wInst with W (insti, ANi) =
(winsti, ANi) for i ∈ {1, . . . , 3}, then there exists an instantiation (inst0, AN0) and
morphisms f and m such that (1) is pullback in Inst and W (inst0, AN0) = (winst0, AN0).

(inst0, AN0)
m //

f
��

(inst1, AN1)

g

��
(inst2, AN2) n

// (inst3, AN3)

(1)

(a) Pushout or pullback in Inst

(winst0, AN0)
m //

f
��

(winst1, AN1)

g

��
(winst2, AN2) n

// (winst3, AN3)

(2)

(b) Pushout or pullback in wInst

Figure A.9: Pushout or pullback of instantiations as weak instantiations

Proof. 1. (Preservation of pushouts) Given pushout (1) in Inst, according to Fact A.5.8
we have the upper commutative cube in Figure A.10, where the top face is a pushout.
Moreover, due to the fact that w : Flat ⇒ wFlat is a natural transformation, we also
have the lower commutative cube in Figure A.10. By Fact A.5.8, the pushout (2) can
be obtained as (winst3, AN3) such that winst3 : Skel(AN3) → wFlat(AN3) is the
unique morphism induced by the pushout in the top of the cube in Figure A.10. Due
to the uniqueness of this morphism together with the fact that the front faces of the
cube commute, we have that winst3 = w(AN3) ◦ inst3, and thus W (inst3, AN3) =
(winst3, AN3).

2. (Preservation of pullbacks) This proof works analogously to the one for item 1.

3. (Creation of pushouts) Given pushout (2) in wInst with W (insti, ANi) = (winsti, ANi)
for i ∈ {0, . . . , 2}, by Fact A.5.8 we obtain pushout (1) in Inst such that the upper cube
in Figure A.10 commutes. Analogously to item 1 above we have that w(AN3) ◦ inst3 is
the unique morphism winst3 : Skel(AN3) → wFlat(AN3) induced by the pushout in
the top of the cube, and hence we have W (inst3, AN3) = (winst3, AN3).

A.5 Instantiations: Technical Details 213

Skel(AN0)

inst0

��

Skel(f)

uukkkkkkkkkk Skel(m)
--\\\\\\\\\\\\\\\\\\\\\\\\\

Skel(AN1)

inst1

��

Skel(g)

uukkkkkkkkkk
Skel(AN2)

inst2

��

Skel(n)
--\\\\\\\\\\\\\\\\\\\\\\\\\

Skel(AN3)

inst3

��

Flat(AN0)

w(AN0)

��

Flat(f)uukkkkkkkkkk Flat(m)
\\\\\\\\\\\\

--\\\\\\\\\\\\
Flat(AN1)

w(AN1)

��

Flat(g)uukkkkkkkkkk
Flat(AN2)

w(AN2)

��

Flat(n) --\\\\\\\\\\\\\\\\\\\\\\\\\

Flat(AN3)

w(AN3)

��

wFlat(AN0)

wFlat(f)uukkkkkkkkkk wFlat(m)
\\\\\\\\\\\

--\\\\\\\\\\\
wFlat(AN1)

wFlat(g)uukkkkkkkkkk
wFlat(AN2)

wFlat(n) --\\\\\\\\\\\\\\\\\\\\\\\

wFlat(AN3)

Figure A.10: Commutative cube of instantiations and weak instantiations

4. (Creation of pullbacks) This proof works analogously to item 3.

The following fact states that the existence of direct transformations of weak instantiations
depends only on the existence of a corresponding transformation of the underlying AHL-net
part. This is also useful for concrete instantiations, since every concrete instantiation can be
seen as a special weak instantiation.

Fact A.5.11 (Direct Transformation of Weak Instantiations). Given a production for in-

stantiations % : (winstL, L)
l← (winstI , I)

r→ (winstR, R), a weak instantiation (winst, AN)
and a (match) morphism m : (winstL, L) → (winst, AN). There exists a direct trans-

formation of weak instantiations (winst, AN)
(%,m)
=⇒ (winst′, AN ′), iff there exists a direct

transformation of AHL-nets AN
Net(%),m

=⇒ AN ′ using the underlying production for AHL-nets

Net(%) : L
l← I

r→ R.

(winstL, L)% :

m

��
(1)

(winstI , I)
loo r //

c

��
(2)

(winstR, R)

n

��
(winst, AN) (winst0, AN0)

doo e // (winst′, AN ′)

(a) Direct transformation of weak instantiations

LNet(%) :

m
��

(3)

I
loo r //

c
��

(4)

R

n
��

AN AN0
doo e // AN ′

(b) Direct transformation of AHL-nets

Figure A.11: Direct transformation of weak instantiations and AHL-nets

Proof. If. Let AN
Net(%),m

=⇒ AN ′ be a direct transformation of AHL-nets with pushouts
(3) and (4) in AHLNets as depicted in Figure A.11b. According to Fact 4.5.4, we
can construct the restriction (winst0, AN0) of (winst, AN) along d, leading to the
commutative cube shown in Figure A.12 in PTNets. Due to pushout (3) and Fact 3.4.4,
the top of the cube is a pushout in PTNets. Moreover, winst is the unique morphism
induced by the pushout in the top such that the front faces of the cube commute, and

214 A Appendix

hence, diagram (1) is a pushout in wInst according to the construction of pushouts of
weak instantiations in Fact A.5.8. Finally, by Fact A.5.8 pushout (2) can be constructed
in wInst which means that we have a direct transformation of weak instantiations
(winst, AN)

%,m
=⇒ (winst′, AN ′).

Skel(I)

winstI

��

Skel(c)

wwnnnnnnnnn Skel(l)
--[[[[[[[[[[[[[[[[[[[[[

Skel(L)

winstL

��

Skel(m)

wwnnnnnnnnn
Skel(AN0)

winst0

��

Skel(d)
--[[[[[[[[[[[[[[[[[[[

Skel(AN)

winst

��

Flat(I)

Flat(c)wwnnnnnnnnn Flat(l)
[[[[[[[[[[

--[[[[[[[[[[
Flat(L)

Flat(m)wwnnnnnnnnn
Flat(AN0)

Flat(d) --[[[[[[[[[[[[[[[[[[[

Flat(AN)

Figure A.12: Commuting cube in PTNets

Only If. Now, let (winst, AN)
%,m
=⇒ (winst′, AN ′) be a direct transformation of weak instan-

tiations with pushouts (1) and (2) in wInst shown in Figure A.11a. Then by Fact A.5.8
there are corresponding pushouts (3) and (4) in AHLNets shown in Figure A.11b which

means that there is a direct transformation of AHL-nets AN
Net(%),m

=⇒ AN ′.

Analogously to the direct transformation of weak instantiations above, also the existence
of direct transformations of concrete instantiations depend only on the existence of the corre-
sponding direct transformation in AHLNets, if the used production is a concrete production.

Fact A.5.12 (Direct Transformation of Instantiations Using Concrete Production). Given

a concrete production for instantiations % : (instL, L)
l← (instI , I)

r→ (instR, R), an instan-
tiation (inst, AN) and a (match) morphism m : (instL, L) → (inst, AN). There exists a

direct transformation of instantiations (inst, AN)
(%,m)
=⇒ (inst′, AN ′), iff there exists a direct

transformation of AHL-nets AN
Net(%),m

=⇒ AN ′ using the underlying production for AHL-nets

Net(%) : L
l← I

r→ R.

(instL, L)% :

m

��
(1)

(instI , I)
loo r //

c

��
(2)

(instR, R)

n

��
(inst, AN) (inst0, AN0)

doo e // (inst′, AN ′)

(a) Direct transformation of instantiations

LNet(%) :

m
��

(3)

I
loo r //

c
��

(4)

R

n
��

AN AN0
doo e // AN ′

(b) Direct transformation of AHL-
nets

Figure A.13: Direct transformation of instantiations using concrete production

Proof. The construction and proof for this fact work completely analogously to the ones of
Fact A.5.11, due to similar construction of pushouts in the categories wInst and Inst (see
Fact A.5.8).

A.5 Instantiations: Technical Details 215

Fact A.5.13 (Special Morphisms Between Instantiations). Given a (weak) instantiation mor-
phism f : (inst1, AN1) → (inst2, AN2), then f is a monomorphism (resp. isomorphism) in
Inst respectively wInst iff f is a monomorphism (resp. isomorphism) in AHLNets.

Proof. We show the fact only for instantiation morphisms, since the proof for weak instan-
tiation morphisms works completely analogously. So let f : (inst1, AN1) → (inst2, AN2) be
an instantiation morphism.

First, we consider the case that f is a monomorphism in AHLNets. Then for instantia-
tion morphisms g, h : (inst0, AN0) → (inst1, AN1) with f ◦ g = f ◦ h we have that g and h
are AHL-morphisms g, h : AN0 → AN1, and thus, due to the fact that f is monomorphism
in AHLNets, f ◦ g = f ◦ h implies g = h.

Now, let f be a monomorphism in Inst, and let g, h : AN0 → AN1 be AHL-morphisms
with f ◦ g = f ◦ h. We can construct the restrictions (inst0, AN0) and (inst′0, AN0) of
(inst1, AN1) along g and h, respectively. Due to Fact 4.5.4 we know that (inst1, AN1) is a
restriction of (inst2, AN2) along f . Then by definition of restrictions as pullbacks (Defini-
tion 4.5.3), and using pullback composition, we obtain that (inst0, AN0) and (inst′0, AN0)
are restrictions of (inst2, AN2) along f ◦ g = f ◦h. Thus, by uniqueness of pullbacks we have
that (inst0, AN0) = (inst′0, AN0), and we have instantiation morphisms g, h : (inst0, AN0)→
(inst1, AN1). Now, from f ◦ g = f ◦ h and the fact that f is a monomorphism in Inst, it
follows that g = h.

Next, we consider the case that f is an isomorphism in AHLNets. Then there exists
an inverse isomorphism g : AN2 → AN1 in AHLNets, and since functors preserve isomor-
phisms, we have

Flat(g) ◦ inst2 = Flat(g) ◦ inst2 ◦ idSkel(AN2)

= Flat(g) ◦ inst2 ◦ Skel(idAN2)

= Flat(g) ◦ inst2 ◦ Skel(f ◦ g)

= Flat(g) ◦ inst2 ◦ Skel(f) ◦ Skel(g)

= Flat(g) ◦ Flat(f) ◦ inst1 ◦ Skel(g)

= Flat(g ◦ f) ◦ inst1 ◦ Skel(g)

= Flat(idAN1) ◦ inst1 ◦ Skel(g)

= inst1 ◦ Skel(g)

which means that g is an instantiation morphism. Hence, f and g are also inverse isomor-
phisms in Inst.

Now, let f be an isomorphism in Inst. Then there is an inverse isomorphism g in Inst,
and since f and g are AHL-morphisms, they are also isomorphisms in AHLNets.

Fact A.5.14 (Restriction of Instantiation as Weak Instantiation). Given an instantiation
(inst2, AN2) and an AHL-morphism f : AN1 → AN2. Then, for the restrictions (inst1, AN1)
of (inst2, AN2) along f , and (winst1, AN1) of W (inst2, AN2) along f , we have W (inst1, AN1) =
(winst1, AN1).

Proof. By Fact 4.5.4 and restriction (inst1, AN1) of (inst2, AN2) we have pullback (1) in Fig-
ure A.14, and by Fact 3.4.8 we have pullback (2) in Figure A.14. So, by pullback composition
we have pullback (1)+(2) which by uniqueness of pullbacks means that w(AN1) ◦ inst1 is
the restriction of W (inst2, AN2) along f . Hence, we have w(AN1) ◦ inst1 = winst1 and thus
W (inst1, AN1) = (winst1, AN1).

216 A Appendix

Skel(AN1)
inst1

//

Skel(f)

��

winst1
,,

Flat(AN1)
w(AN1)

//

Flat(f)

��

wFlat(AN1)

wFlat(f)

��
Skel(AN2)

inst2
// Flat(AN2)

w(AN2)
//

(1) (2)

wFlat(AN2)

Figure A.14: Restriction of instantiation as weak instantiation

Lemma A.5.15 (Existence of Data-Images of Instantiations). Given a (weak) instantiation
(inst1, AN1) of an AHL-net AN1 = (Σ1, P1, T1, pre1, post1, cond1, type1, A1), and a gener-
alised algebra homomorphism f = (fΣ, fA) : (Σ1, A1) → (Σ2, A2). Then the data-image
f̄ : (inst1, AN1) → (inst2, AN2) of (inst1, AN1) along f exists and (inst1, AN1) is a (weak)
instantiation.

Proof. For the well-definedness of the construction, we have to show that (inst2, AN2) is an
instantiation, and that f̄ : (inst1, AN1) → (inst2, AN2) is an instantiation morphism. Due
to Definition 3.3.1, for the P/T net Skel(AN2) = (P2, T2, pre2,S , post2,S) we have P2 = P1,
T2 = T1, pre2,S = pre1,S and post2,S = post1,S which means that Skel(AN2) = Skel(AN1).

Moreover, for the morphism f̄ = (f̄Σ, f̄P , f̄T , f̄A), we have that f̄P and f̄T are identities
which by definition of Skel(f̄) implies that Skel(f̄) = (f̄P , f̄T) = (idP1 , idT1) = idSkel(AN1).
Thus, using the facts that proj is a natural transformation and that (inst1, AN1) is an
instantiation, we obtain

proj(AN2) ◦ inst2 = proj(AN2) ◦ Flat(f̄) ◦ inst1
= Skel(f̄) ◦ proj(AN1) ◦ inst1
= idSkel(AN1) ◦ proj(AN1) ◦ inst1
= idSkel(AN1)

= idSkel(AN2)

which means that (inst2, AN2) is an instantiation. Further, we have

inst2 ◦ Skel(f̄) = Flat(f̄) ◦ inst1 ◦ idSkel(AN1) = Flat(f̄) ◦ inst1

which means that f̄ : (inst1, AN1)→ (inst2, AN2) is an instantiation morphism.

The proof for the data-images of weak instantiations works completely analogously.

Fact A.5.16 (Existence of Data-Shifting of Abstract Productions for Instantiations). Given

an abstract production for instantiations % : InstL
l← InstI

r→ InstR and a match m :
InstL → Inst, then the data-shifting %′ of % along m as defined in Definition 4.6.5 exists.

Proof. As shown in Corollary A.6.12, the functor wInstData : wInst→ Algs has cocreations
that are given by the data-image defined in Definition 4.4.1. Thus, according to Fact A.1.35,
we have the existence of wInstData-shiftings of wInst-spans with isomorphic data type
part. Since the rule-morphisms l and r are required to be MAHL-morphisms, they have an
isomorphic data type part, and therefore the wInstData-shifting of % along m exists.

Moreover, the definition of data-shiftings in Definition 4.6.5 is a special case of F -shiftings
defined in Definition A.1.34 on page 186 using the functor F = wInstData. Hence, by
Fact A.1.35 the data-shifting %′ of % along m exists.

A.5 Instantiations: Technical Details 217

Lemma A.5.17 (Data-Shifting and Direct Transformation). Given an abstract production

for instantiations % : InstL
l← InstI

r→ InstR, a match m : InstL → Inst, and let %′

together with m′ be the data-shifting of % along m as defined in Definition 4.6.5. Then for
every direct transformation of weak instantiations Inst

%,m
=⇒ Inst′ there exists a corresponding

direct transformation of weak instantiations Inst
%′,m′
=⇒ Inst′.

Proof. Given the abstract production for instantiations % : (instL, L)
l← (instI , I)

r→ (instR, R),
an instantiation (inst, AN) and a (match) morphism m : (instL, L) → (inst, AN). More-

over, let (inst, AN)
%,m
=⇒ (inst′, AN ′) be a direct transformation of weak instantiation given

by pushouts (1) and (2) below.

(instL, L)

m

��
(1)

(instI , I)
loo r //

c

��
(2)

(instR, R)

n

��
(inst, AN) (inst0, AN0)

doo e // (inst′, AN ′)

Further, let %′ : (inst′L, L
′)

l′← (inst′I , I
′)

r′→ (inst′R, R
′) together with a match morphism

m′ : (inst′L, L
′)→ (inst, AN) be the data-shifting of % along m. Then we also have pushouts

(3) and (4) in wInst below, and m′ ◦ sL = m.

(instL, L)

sL
��

m

��

(3)

(instI , I)

c

��

loo r //

sI
��

(4)

(instR, R)

n

��

sR
��

(inst′L, L
′)

m′

��

(inst′I , I
′)

l′
oo

r′
// (inst′R, R

′)

(inst, AN) (inst0, AN0)
doo e // (inst′, AN ′)

Now, since we have l, r ∈ MAHL and MAHL-morphisms are closed under pushouts, we
also have l′, r′, d, e ∈ MAHL which means that their data type parts are isomorphisms. This
means that we also have a generalised algebra homomorphism c̄ : wInstData(inst′I , I

′) →
wInstData(inst0, AN0) given by c̄ = wInstData(d)−1 ◦wInstData(m′) ◦wInstData(l′). A
pushout in wInst means that there is a corresponding pushout of the underlying AHL-nets
in AHLNets which in turn means that there is a corresponding pushout of the underlying
data type part. Therefore we have

c̄ ◦ wInstData(sI) = wInstData(d)−1 ◦ wInstData(m′) ◦ wInstData(l′) ◦ wInstData(sI)

= wInstData(d)−1 ◦ wInstData(m′) ◦ wInstData(sL) ◦ wInstData(l)

= wInstData(d)−1 ◦ wInstData(m) ◦ wInstData(l)

= wInstData(d)−1 ◦ wInstData(d) ◦ wInstData(c)

= wInstData(c)

So, due to the fact that sI is a wInstData-cocreation, and there are morphisms c :
(instI , I) → (inst0, AN0) in wInst and c̄ : wInstData(inst′I , I

′) → wInstData(inst0, AN0)
in Algs with c̄◦wInstData(sI) = wInstData(c) the universal property of cocreations implies
a unique morphism c′ : (inst′I , I

′)→ (inst0, AN0) such that c′◦sI = c and wInstData(c′) = c̄.

The universal property of cocreation sI also implies that there is a unique morphism x :
(inst′I , I

′)→ (inst, AN) such that x◦sI = m′◦l′◦sI and wInstData(x) = wInstData(m′◦l′).

218 A Appendix

Clearly, we have that x = m′ ◦ l′. Moreover, by commutativity of pushouts (1) and (3) we
obtain

d ◦ c′ ◦ sI = d ◦ c = m ◦ l = m′ ◦ l′ ◦ sI

and by definition of morphism c̄ we obtain

wInstData(d ◦ c′) = wInstData(d) ◦ wInstData(c′)

= wInstData(d) ◦ c̄
= wInstData(d) ◦ wInstData(d)−1 ◦ wInstData(m′) ◦ wInstData(l′)

= wInstData(m′) ◦ wInstData(l′)

= wInstData(m′ ◦ l′)

Thus, by uniqueness of x we have d ◦ c′ = x = m′ ◦ l′ which means that diagram (5) below
commutes.

In a similar way, we obtain a morphism n′ : (inst′R, R
′)→ (inst′, AN ′) such that n′◦sR = n

and (6) commutes.

(instL, L)

sL
��

m

��

(3)

(instI , I)
c

��

loo r //

sI
��

(4)

(instR, R)
n

��

sR
��

(inst′L, L
′)

m′
��

(5)

(inst′I , I
′)

l′
oo

r′
//

c′
��

(6)

(inst′R, R
′)

n′
��

(inst, AN) (inst0, AN0)
doo e // (inst′, AN ′)

Now, we have equalities of diagrams (1)=(3)+(5) and (2)=(4)+(6) where diagrams (1)-
(4) are pushouts. Thus, by pushout decomposition we obtain that also diagrams (5) and (6)

are pushouts. Hence, there is a direct transformation of weak instantiations (inst, AN)
%′,m′
=⇒

(inst′, AN ′).

A.6 Functor Creations and Cocreations of Processes and Instantiations

In this section we present concrete examples of functor creations in process and instantiation
categories. Note that we show all facts only for instantiations and instantiated AHL-process,
but not for weak instantiations and weakly instantiated AHL-processes. However, since
instantiations and their weak counterparts share the same results which are used for the
facts in this section, these facts do also hold for weak instantiations and weakly instantiated
AHL-processes.

Fact A.6.1 (Creations in Arrow Categories). Given a category C and the arrow category
C→. Then the projection functor π1 : C→ → C has creations given by forward translation:
The π1-creation f̄ of a C-morphism f : A → B via C→-object b : B → B′ is given by
f̄ = (f, idB′) : b ◦ f → b (see diagram (1) in Figure A.15).

If C has pullbacks (along M), then π2 : C→ → C has creations (along M) given by
backward translation: The π2-creation f̄ of a C-morphism f ′ : A′ → B′ via C→-object
b : B → B′ is given by f̄ = (f, f ′) : a → b, where a and f are obtained by pullback (2) C,
shown in Figure A.15.

Proof. Creations along π1. Given a C-morphism f : A→ B and C→-object b : B → B′.
We have to show that f̄ = (f, idB′) : idA → b is a π1-creation of f via b. We have

A.6 Functor Creations and Cocreations of Processes and Instantiations 219

A
f //

b◦f
��

B

b
��

B′
id
// B′

(1)

(a) π1-creation

A
f //

a
��

B

b
��

A′
f ′
// B′

(2)

(b) π2-creation

Figure A.15: Creations along projections of arrow category

π1(b ◦ f) = A and π1(f̄) = f , and we have to show the universal property. So let c :
C → C ′ be a C→-object with morphism g : c→ b, and let h : C → A be a C-morphism
such that f ◦ h = π1(g). We define a C→-morphism h∗ : c → b ◦ f by h∗ = (h, π2(g)).
The morphism h∗ is a well-defined C→-morphism, because due to the fact that g is
a C→-morphism, we have b ◦ f ◦ h = b ◦ π1(g) = π2(g) ◦ c. Moreover, we have that
π1(h∗) = h and f̄ ◦h∗ = (f, idB′) ◦ (h, π2(g)) = (f ◦h, idB′ ◦π2(g)) = (π1(g), π2(g)) = g.

It remains to show that h∗ is unique. So let k : c → b ◦ f be a C→-morphism such
that π1(k) = h and f̄ ◦ k = g. Then we have π2(g) = π2(f̄ ◦ k) = π2(f̄) ◦ π2(k) =
idB′ ◦ π2(k) = π2(k) which together with π1(k) = h implies that k = (h, π2(g)) = h∗.
Hence, h∗ is unique and thus f̄ is a π1-creation of f via b.

Creation along π2. Given category C that has pullbacks (along M), and a morphism
f ′ : A′ → B′ (inM). We construct the pullback (2) as in Figure A.15 in C, and define
a C→ morphism f̄ = (f, f ′) as above. We have to show that f̄ is a π2-creation. So
let c : C → C ′ be a C→-object with morphism g : c → b, and let h′ : C ′ → A′ be a
C-morphism such that f ′ ◦ h′ = π2(g). Then due to the fact that g is C→-morphism,
we have b ◦π1(g) = π2(g) ◦ c = f ′ ◦h′ ◦ c which by pullback (2) implies that there exists
a unique morphism h : C → A such that a ◦ h = h′ ◦ c and f ◦ h = π1(g). This means
that h∗ : c → a, defined by h∗ = (h, h′), is a well-defined C→-morphism, and we have
π2(h∗) = h′ and f̄ ◦h∗ = (f, f ′)◦(h, h′) = (f ◦h, f ′ ◦h′) = (π1(g), π2(g)) = g. It remains
to show that h∗ is unique, so let k : c→ a be a C→-morphism such that π2(k) = h′ and
f̄ ◦k = g. Then, by the fact that k is C→-morphism, we have a◦π1(k) = π2(k)◦c = h′◦c,
and from f̄◦k = g it follows that f◦π1(k) = π1(f̄)◦π1(k) = π1(f̄◦k) = π1(g). Thus, from
uniqueness of h it follows that π1(k) = h, and hence k = (π1(k), π2(k)) = (h, h′) = h∗.

Analogously to the image construction based on the data type part of AHL-morphisms,
we introduce a preimage construction based on the transition component.

Definition A.6.2 (T -Preimage of Algebraic High-Level Net). Given an AHL-net AN2 = (Σ2,
P2, T2, pre2, post2, cond2, type2, A2) and an injective function fT : T1 → T2. Then we define
the T -preimage f : AN1 → AN2 of AN2 along fT in the following way:

• AN1 = (Σ1, P1, T1, pre1, post1, cond1, type1, A1) is an AHL-net with

– Σ1 = Σ2, P1 = P2, A1 = A2,

– op1 = op2 ◦ fT for op ∈ {pre, post, cond}, and

– type1 = type2;

• f : AN1 → AN2 = (fΣ, fP , fT , fA) is an AHL-morphism with fΣ, fP and fA being
identities.

220 A Appendix

4

Proof of Well-definedness.

Well-definedness of AN1. Due to the definition of P1 = P2 and Σ1 = Σ2, we have well-
defined functions pre1 = pre2 ◦ fT : T1 → TΣ1(X1) ⊗ P⊕1 , post1 = post2 ◦ fT : T1 →
TΣ1(X1)⊗P⊕1 , cond1 = cond1 ◦fT : T1 → Pfin(Eqns(Σ1;X1)), and also type1 = type2 :
P1 → S1. Thus, AN1 is a well-defined AHL-net.

Well-definedness of f . We have to show that f satisfies the properties of an AHL-
morphism in Definition 3.1.5.

1. By definition of fΣ and fP as identities and pre1 = pre2 ◦ fT , we obtain

(f#
Σ ⊗ fP)⊕ ◦ pre1 = (id#

Σ2
⊗ idP2)⊕ ◦ pre2 ◦ fT = pre2 ◦ fT

and the same for the compatibility of the post domain functions.

2. Using fΣ = idΣ2 and cond1 = cond2 ◦ fT , we obtain

cond2 ◦ fT = cond1 = Pfin(id#
Σ2

) ◦ cond1 = Pfin(f#
Σ) ◦ cond1

3. Using again fΣ = idΣ2 and fP = idP2 , we have

type2 ◦ fP = type2 = type1 = idΣ2 ◦ type1 = fΣ ◦ type1

Fact A.6.3 (T -Creations of Algebraic High-Level Nets). The functor T : AHLNets →
Sets, mapping to the transition-component of AHL-nets and morphisms, has creations along
the class MS of all injective functions. The T -creation of a function fT : T1 → T2 via
AHL-net AN2 is given by the T -preimage f : AN1 → AN2 of AN2 along fT as defined in
Definition A.6.2. For an AHL-morphism g : AN0 → AN2 and function hT : T (AN0) → T1

such that fT ◦ hT = T (g), the induced AHL-morphism h : AN0 → AN1 is given by h =
(hΣ, hP , hT , hA) with hΣ = gΣ, hP = gP and hA = gA.

Proof. Let AN0 be an AHL-net with AHL-morphism g : AN0 → AN2 and function hT :
T (AN0)→ T1 such that fT ◦hT = T (g). We define an AHL-morphism h = (hΣ, hP , hT , hA) :
AN0 → AN1 with hΣ = gΣ, hP = gP and hA = gA. The domain and codomain of the single
components of h fit to its definition, and we have to show that h satisfies the AHL-morphism
properties in Definition 3.1.5.

1. Due to the fact that f and g are AHL-morphisms, we have

(h#
Σ ⊗ hP)⊕ ◦ pre0 = (g#

Σ ⊗ gP)⊕ ◦ pre0 = pre2 ◦ gT = pre2 ◦ fT ◦ hT
= (f#

Σ ⊗ fP)⊕ ◦ pre1 ◦ hT = (id#
Σ2
⊗ idP2)⊕ ◦ pre1 ◦ hT = pre1 ◦ hT

The proof for the post domain works analogously.

2. For the conditions, we have cond1 ◦ hT = cond2 ◦ fT ◦ hT = cond2 ◦ gT = cond0.

3. And for the type functions, we have type1 ◦ hP = type2 ◦ gP = gΣ ◦ type0 = hΣ ◦ type0.

A.6 Functor Creations and Cocreations of Processes and Instantiations 221

Hence, h is a well-defined AHL-morphism, and we have T (h) = hT . It remains to show the
uniqueness of h. So let h′ : AN0 → AN1 = (h′Σ, h

′
P , h

′
T , h

′
A) be an AHL-morphism such that

T (h′) = hT and f ◦ h′ = g. So, we already have that h′T = hT , and due to the fact that
the Σ-, P - and A-components of f are identities, and due to the fact that commutativity
f ◦ h′ = g implies commutativity of its components, we obtain that h′ = h.

Fact A.6.4 (Representatives of T -Creations). Given an AHL-morphism f : AN1 → AN2 ∈
MAHL with an isomorphic place-component fP . Then f is a T -creation (see Fact A.6.3).

Proof. Since T has creations, and f ∈ MAHL implies that fT is injective, by Fact A.6.3
there is a T -creation f̄ : AN1 → AN2 of T (f) via AN2 with f̄Σ, f̄P and f̄A being identities,
and f̄T = T (f) = fT . Thus, since fΣ, fP and fA are isomorphisms, we can define an
AHL-morphism i : AN1 → AN1 = (iΣ, iP , iT , iA) with iΣ = f−1

Σ , iP = f−1
P , iT = idT1 and

iA = f−1
A . We have to show that i is a well-defined AHL-morphism:

1. Considering the pre domains, and using compositionality of (# ⊗)⊕ shown in the
appendix of [MGE+10], we obtain

(i#Σ ⊗ iP)⊕ ◦ pre1̄ = ((f−1
Σ)# ⊗ f−1

P)⊕ ◦ pre2 ◦ fT = ((f−1
Σ)# ⊗ f−1

P)⊕ ◦ (f#
Σ ⊗ fP)⊕ ◦ pre1

= ((f−1
Σ ◦ fΣ)# ⊗ (f−1

P ◦ fP))⊕ ◦ pre1 = (id#
Σ1
⊗ idP1)⊕ ◦ pre1

= pre1 ◦ idT1 = pre1 ◦ iT

and the same for the post domain functions.

2. Considering the firing conditions, and using compositionality of Pfin(#) shown in the
appendix of [MGE+10], we obtain

cond1 ◦ iT = cond1 = Pfin(id#
Σ1

) ◦ cond1 = Pfin((f−1
Σ ◦ fΣ)#) ◦ cond1

= Pfin((f−1
Σ)#) ◦ Pfin(f#

Σ) ◦ cond1 = Pfin((f−1
Σ)#) ◦ cond2 ◦ fT

= Pfin((f−1
Σ)#) ◦ cond1̄ = Pfin(i#Σ) ◦ cond1̄

3. Finally, considering the type functions, we obtain

type1 ◦ iP = type1 ◦ f−1
P = f−1

Σ ◦ fΣ ◦ type1 ◦ f−1
P = f−1

Σ ◦ type2 ◦ fP ◦ f−1
P

= f−1
Σ ◦ type2 = iΣ ◦ type1̄

Hence, i is a well-defined AHL-morphism, and since all its components are isomorphisms, it
is an isomorphism in AHLNets. Thus, using Corollary A.1.19 it follows that also f is a
T -creation of fT via AN2.

Fact A.6.5 (Net-Creations of Instantiations). The functors Net : Inst → AHLNets and
wNet : wInst → AHLNets, mapping (weak) instantiations and (weak) instantiation mor-
phisms to their high-level net-component, have creations along the class MAHL of injective
AHL-morphisms with isomorphic data type part. The Net- respectively wNet-creation of
an MAHL-morphism f : AN1 → AN2 via (weak) instantiation (inst2, AN2) is given by
f : (inst1, AN1) → (inst2, AN2), where (inst1, AN1) is the restriction of (inst2, AN2) along
f (see Definition 4.5.3). Given a (weak) instantiation (inst0, AN0) together with instantia-
tion morphism g : (inst0, AN0) → (inst2, AN2) and AHL-morphism h : AN0 → AN1 such
that g = f ◦ h, the required unique instantiation morphism is given by h : (inst0, AN0) →
(inst1, AN1).

222 A Appendix

Proof. We prove the fact w. l. o. g. only for the functor Net, because the proof for wNet
works analogously. Given an MAHL-morphism f : AN1 → AN2 together with an instanti-
ation (inst2, AN2). Due to Fact 4.5.4, there exists up to isomorphism a unique restriction
(inst1, AN1) of (inst2, AN2) along f , such that we have pullback (1) shown in Figure A.16 in
PTNets, and f is an instantiation morphism with Net(f) = f and Net(inst1, AN1) = AN1.
Moreover, using the fact that g and f are instantiation morphisms, we have

Flat(f) ◦ Flat(h) ◦ inst0 = Flat(f ◦ h) ◦ inst0 = Flat(g) ◦ inst0
= inst2 ◦ Skel(g) = inst2 ◦ Skel(f ◦ h)

= inst2 ◦ Skel(f) ◦ Skel(h) = Flat(f) ◦ inst1 ◦ Skel(h)

which by monomorphism Flat(f) (see Fact 3.4.11) implies that Flat(h) ◦ inst0 = inst1 ◦
Skel(h), i. e. h : (inst0, AN0) → (inst1, AN1) is an instantiation morphism. The fact that
Net(h) = h and the uniqueness of h are trivially satisfied.

Skel(AN0)
inst0

//

Skel(h)

��
Skel(g)

��

Flat(AN0)

Flat(h)

��
Flat(g)

��

Skel(AN1)
inst1

//

Skel(f)

��

Flat(AN1)

Flat(f)

��
Skel(AN2)

inst2
// Flat(AN2)

(1)

Figure A.16: Net-creation of instantiation

Fact A.6.6 (Creation of Processes and Instantiations). Consider the functors in Figure A.17.

1. The functors π→1 , π1 and Inst have creations,

2. the functors Net and PNet have creations along MAHL (see Fact A.1.11),

3. the functor Proc has creations along MAHL
→, where MAHL

→ = {(f, g) | f ∈MAHL},

4. the inclusion In1 and the inclusion In2 have creations along the class
T = {f = (fΣ, fP , fT , fA) | fT is injective }, and

5. the inclusion In0 has creations along the class T → = {(f, g) | f ∈ T }.

ProcInst
Proc

sshhhhhhhhhhhhh Inst

**TTTTTTTTTTT

Procs
� _

In0

��

π1

++VVVVVVVVVVVV PInst
PNet
ttjjjjjjjjjj � _

In2

��

AHLPNets
� _

In1��

(3)

(1) (2)

AHLNets→
π→1

// AHLNets Inst
Net
oo

Figure A.17: Pullback diagrams of process and instantiation categories

A.6 Functor Creations and Cocreations of Processes and Instantiations 223

Proof. 1. The fact that π→1 has creations follows from Fact A.6.1. Thus, due to Fact A.1.39
and pullbacks (1) and (2) (see Fact A.1.41) also the functors π1 and Inst have creations.

2. The fact that Net has creations along MAHL is shown in Fact A.6.5. Thus, due to
Fact A.1.39 and pullback (2) (see Fact A.1.41) the functor PNet has creations along
In−1

1 (MAHL) ⊆MAHL.

3. Analogously, due to pullback (3) the functor Proc has creations along π−1
1 (MAHL) =

MAHL
→.

4. Since In1 is a full inclusion and due to Lemma A.7.1, the In1-creation of an AHL-
morphism f : AN → K ∈ T via AHL-process net K is trivially given by itself. Hence,
due to pullback (2) also the inclusion In2 has creations along Net−1(T) = T .

5. Finally, since In1 has creations along T , due to pullback (1) also the inclusion In0 has
creations along π→−1

1 (T) = T →.

Fact A.6.7 (Sys-Creations of AHL-Processes). The projection functor Sys : Procs →
AHLNets, mapping AHL-processes mp : K → AN to their system part AN and AHL-
process morphisms (f ′, f) to f , has creations along the class MAHL of injective AHL-mor-
phisms with isomorphic data type part. The Sys-creation of an AHL-morphism f : AN1 →
AN2 via AHL-process mp2 : K2 → AN2 is given by the restriction of mp2 along f (see
Definition 4.5.1). Given an AHL-process mp0 : K0 → AN0 together with an AHL-process
morphism (g′, g) : mp0 → mp2 and AHL-morphism h : AN0 → AN1 such that g = f ◦ h, the
required unique AHL-process morphism h∗ : mp0 → mp1 is given by h∗ = (h′, h) where h′ is
induced by the pullback (1) in Figure A.18 that is obtained by restriction mp1 of mp2.

K0

g′

**
h′

//

mp0

��

K1
f ′

//

mp1

��

K2

mp2

��
AN0

g

44
h // AN1

f //

(1)

AN2

Figure A.18: Sys-creation of AHL-process

Proof. Using Fact A.6.1 and the fact that AHLNets has pullbacks along MAHL, we obtain
that the projection π→2 : AHLNets→ → AHLNets has creations along MAHL that can be
constructed via pullback in AHLNets. Since MAHL-morphisms are closed under pullback,
we have that the creation of an MAHL-morphism is an MAHL

→-morphism, and we have
MAHL

→ ⊆ T →, where MAHL
→ = {(f, g) | f ∈ MAHL} and T → = {(f, g) | fT is injective}

(see Fact A.6.6). Moreover, from Fact A.6.6 we know that the inclusion In0 : Procs →
AHLNets→ has creations along T →. Thus, using Corollary A.1.20 we have that Sys =
In0 ◦ π→2 has creations along MAHL. Finally, the construction of creations along π2 in an
arrow category (Fact A.6.1) corresponds exactly to the construction of the restriction of
processes as pullback in AHLNets (Definition 4.5.1).

Fact A.6.8 (SysNet-Creations of Instantiated AHL-Processes). The projection functor
SysNet : ProcInst → AHLNets, mapping instantiated AHL-processes (inst,mp : K →
AN) to their system part AN and instantiated AHL-process morphisms (f ′, f) to f , has

224 A Appendix

creations along the class MAHL of injective AHL-morphisms with isomorphic data type part.
The SysNet-creation of an instantiated AHL-morphism f : AN1 → AN2 via instantiated
AHL-process (inst2,mp2 : K2 → AN2) is given by the restriction of (inst2,mp2) along f (see
Definition 4.5.5).

Proof. From Fact A.6.7 we know that the projection functor Sys : Proc → AHLNets has
creations along MAHL that can be constructed as restriction of AHL-processes. Due to the
fact that MAHL-morphisms are closed under pullbacks, it follows that Sys-creation of an
MAHL-morphism is an MAHL

→-morphism, where MAHL
→ = {(f, g) | f ∈ MAHL}. Thus,

since the functor Proc : ProcInst→ Procs has creations alongMAHL
→, by Corollary A.1.20

we obtain that the composition SysNet = Sys ◦ Proc has creations along MAHL that are
constructed as Proc-creation of a Sys-creation. According to Fact A.6.7 the Sys-creation of
an AHL-morphism f via AHL-process mp can be constructed as restriction of mp along f .
Moreover, considering the pullbacks (3)+(2) in Figure A.3 (see also Fact A.1.41), according
to Fact A.1.39 a Proc-creation of an AHL-process morphism (f ′ : K1 → K2, f : AN1 → AN2)
via instantiated AHL-process (inst2,mp2 : K2 → AN2) is given by (f ′, f) : (inst1,mp1) →
(inst2,mp2) where f ′ : (inst1,K1)→ (inst2,K2) is the Net-creation (see Fact A.6.5) of f ′ via
K2 (taking into account the isomorphism I3 in Fact A.1.41). According to Fact A.6.5, Net-
creations can be constructed as restriction of instantiations, and hence, the SysNet-creation
is constructed as restriction of instantiated AHL-process as defined in Definition 4.5.5.

Fact A.6.9 (W -Creations of Weak Instantiations). The functors W : Inst → wInst, W0 :
PInst → wPInst and W1 : ProcInst → wProcInst from Fact A.5.3 have creations along
the morphism classes I respectively I→, where I is the class of all AHL-morphisms with
isomorphic data-type part, and I→ is the class of pairs of AHL-morphisms (f, g) where f ∈ I.

Proof. According to Fact A.1.39 and due to pullbacks (6) and (7) in Corollary A.1.42, it
suffices to show that W has creations along I. So let (inst2, AN2) be an instantiation and
f : (winst1, AN1) → W (inst1, AN2) be a weak instantiation morphism with f ∈ I. This
means that f has an isomorphic data type part and w. l. o. g. we can assume that the data
type part of f is an identity, i. e. f can be considered to be an AHLNets(Σ,A)-morphism
for a given data type part (Σ, A).

Then, we have that all faces in the diagram below commute, and since the right front
face is a pullback by Fact 3.4.8, we obtain a unique induced inst1 : Skel(AN1)→ Flat(AN1)
such that the whole cube commutes which means that f : (inst1, AN1)→ (inst2, AN2) is an
instantiation morphism. Moreover, f satisfies the universal property of being a W -creation
of itself, and its uniqueness is guaranteed by injectivity of W .

Skel(AN1)
Skel(f) //

id

��

inst1))

Skel(AN2)
inst2

))RRRRRRRRRR

id

��

Flat(AN1)
Flat(f) //

� _

w(AN1)

��

Flat(AN2)� _

w(AN1)

��

Skel(AN1)
Skel(f) //

winst1))RRRRRRRRRR
Skel(AN2)

w(AN1)◦inst2))RRRRRRRRRR

wFlat(AN1)
wFlat(f)

// wFlat(AN2)

Fact A.6.10 (Data-Cocreation of AHL-Nets). The projection functor Data : AHLNets→
Algs, that maps AHL-nets and AHL-morphisms to their data type part, has cocreations.

A.6 Functor Creations and Cocreations of Processes and Instantiations 225

Given an AHL-net AN1 and a generalised algebra homomorphism f : Data(AN1)→ (Σ2, A2),
the Data-cocreation f̄ : AN1 → AN2 of f via AN1 is given by the data-image of AN1 along
f (see Definition 3.3.1). For an AHL-net AN3 with AHL-morphism g = (gΣ, gP , gT , gA) :
AN1 → AN3 and generalised algebra homomorphism h = (hΣ, hA) : (Σ2, A2) → Data(AN3)
such that h ◦ f = Data(g), the unique AHL-morphism h∗ : AN2 → AN3 is given by h∗ =
(hΣ, gP , gT , hA).

Proof. Let AN1 be an AHL-net with Data(AN1) = (Σ1, A1) and f : (Σ1, A1) → (Σ2, A2) a
generalised algebra homomorphism. We have to show that the data-image f̄ : AN1 → AN2

of AN1 along f is a Data-cocreation. So let AN3 be an AHL-net with Data(AN3) = (Σ3, A3)
together with an AHL-morphism g : AN1 → AN3 and a generalised algebra homomorphism
h : (Σ2, A2) → (Σ3, A3) such that h ◦ f = Data(g). We define h∗ = (h∗Σ, h

∗
P , h

∗
T , h

∗
A) with

h∗Σ = hΣ, h∗P = gP , h∗T = gT and h∗A = hA, and we have to show that h∗ : AN2 → AN3 is
a well-defined AHL-morphism. Note that h ◦ f = Data(g) implies that hΣ ◦ fΣ = gΣ and
hA ◦fA = gA. Using the fact that g is an AHL-morphism, and that (#⊗)⊕ is compositional
as shown in Lemma A.2 in [MGE+10], we obtain for the pre conditions:

pre3 ◦ h∗T = pre3 ◦ gT = (g#
Σ ⊗ gP)⊕ ◦ pre1 = ((hΣ ◦ fΣ)# ⊗ (gP ◦ idP1))⊕ ◦ pre1

= ((h∗Σ ◦ f̄Σ)# ⊗ (h∗P ◦ f̄P))⊕ ◦ pre1 = (h∗#Σ ⊗ h
∗
P)⊕ ◦ (f̄#

Σ ⊗ f̄P)⊕ ◦ pre1

= (h∗#Σ ⊗ h
∗
P)⊕ ◦ pre2 ◦ f̄T = (h∗#Σ ⊗ h

∗
P)⊕ ◦ pre2

The proof for the compatibility of the post conditions works analogously. Moreover, using
the compositionality of Pfin(#) shown in Lemma A.3 in [MGE+10], we obtain for the firing
conditions:

cond3 ◦ h∗T = cond3 ◦ gT = Pfin(g#
Σ) ◦ cond1 = Pfin((hΣ ◦ fΣ)#) ◦ cond1

= Pfin(h#
Σ) ◦ Pfin(f#

Σ) ◦ cond1 = Pfin(h#
Σ) ◦ Pfin(f̄#

Σ) ◦ cond1

= Pfin(h#
Σ) ◦ cond2 ◦ f̄T = Pfin(h∗#Σ) ◦ cond2

Finally, for the type functions, due to compositionality of the free extension #, we have

type3 ◦ h∗P = type3 ◦ gP = g#
Σ ◦ type1 = (hΣ ◦ fΣ)# ◦ type1 = (h∗Σ ◦ f̄Σ)# ◦ type1

= h∗#Σ ◦ f̄
#
Σ ◦ type1 = h∗#Σ ◦ type2 ◦ f̄P = h∗#Σ ◦ type2

Hence, h∗ is a well-defined AHL-morphism. It remains to show that h∗ is the unique required
morphism to satisfy the universal property of F -cocreations. We have

h∗ ◦ f̄ = (h∗Σ, h
∗
P , h

∗
T , h

∗
A) ◦ (f̄Σ, f̄P , f̄T , f̄A) = (hΣ, gP , gT , hA) ◦ (fΣ, idP1 , idT1 , fA)

= (hΣ ◦ fΣ, gP ◦ idP1 , gT ◦ idT1 , hA ◦ fA) = (gΣ, gP , gT , gA) = g

In order to show the uniqueness of h∗, let h′ : AN2 → AN3 be an AHL-morphism with
Data(h′) = h and h′ ◦ f̄ = g. Then we have (h∗Σ, h

∗
A) = Data(h∗) = h = Data(h′) = (h′Σ, h

′
A)

and since f̄P and f̄T are identities, it also follows that h∗P = gP = h′P and h∗T = gT = h′T .
Hence, h∗ is unique and satisfies the universal property which means that f̄ is a Data-
cocreation.

Fact A.6.11 (Net-Cocreations of Instantiations). The functors Net : Inst → AHLNets
and wNet : wInst → AHLNets have cocreations along Data-cocreations. Given an in-
stantiation (inst1, AN1) and an AHL-morphism f : AN1 → AN2 that is a Data-cocreation,
then the Net-cocreation of f via (inst1, AN1) is given by the data-image f : (inst1, AN1)→
(inst2, AN2) of (inst1, AN1) along Data(f) (see Definition 4.4.1). Similar, the wNet-cocrea-
tion of a weak instantiation can be obtained as a data-image.

226 A Appendix

Proof. Let (inst1, AN1) be an instantiation and f : AN1 → AN2 an AHL-morphism that is a
Data-cocreation. Due to the uniqueness of cocreations, we have that f is the Data-cocreation
of Data(f) which means that f : AN1 → AN2 itself is the data-image of AN1 along Data(f).
Moreover, according to Definition 4.4.1, inst2 is defined by inst2 = Flat(f) ◦ inst1.

Let (inst3, AN3) be an instantiation with an instantiation morphism g : (inst1, AN1) →
(inst3, AN3) and an AHL-morphism h : AN2 → AN3 such that h ◦ f = g. Clearly, the
unique required instantiation morphism h∗ : (inst2, AN2)→ (inst3, AN3) is given by h∗ = h,
because we have

Flat(h) ◦ inst2 = Flat(h) ◦ Flat(f) ◦ inst1 = Flat(h ◦ f) ◦ inst1
= Flat(g) ◦ inst1 = inst3 ◦ Skel(g)

= inst3 ◦ Skel(h ◦ f) = inst3 ◦ Skel(h) ◦ Skel(f) = inst3 ◦ Skel(h)

which means that h is an instantiation morphism.

Corollary A.6.12 (InstData-Cocreation of Instantiations). The functors InstData = Data◦
Net : Inst→ Algs and wInstData = Data◦wNet : wInst→ Algs have cocreations. Given
an instantiation (inst1, AN1) and a generalised algebra homomorphism f : Data(AN1) →
(Σ2, A2), then the InstData-cocreation of f via (inst1, AN1) is given by the data-image
f̄ : (inst1, AN1) → (inst2, AN2) of (inst1, AN1) along f (see Definition 4.4.1). Similar,
the wInstData-cocreation of a weak instantiation can also be obtained as data-image.

Proof. Since Data has cocreations and Net has cocreations along Data-cocreations, due to
Corollary A.1.32 the composition InstData = Data ◦Net has cocreations. The construction
as data-image corresponds to the construction of Net-cocreations (Fact A.6.11) of Data-
cocreations (Fact A.6.10).

A.7 Minor Technical Results

The properties of AHL-process nets are reflected by AHL-morphisms with an injective tran-
sition part, as stated in the following lemma.

Lemma A.7.1 (Reflection of AHL-Process Nets). Given an AHL-morphism f : K1 → K2 =
(fΣ, fP , fT , fA) where fT is injective. If K2 is an AHL-process net then also K1.

Proof. Given an AHL-morphism f : K1 → K2 = (fΣ, fP , fT , fA) where fT is injective, and
an AHL-process net K2. In order to show that K1 is an AHL-process net we have to show
that it is unary, there are no forward or backward conflicts and the causal relation <K1 is a
strict partial order.

Unarity. Let us assume that K1 is not unary, i. e. there are p ∈ PK1 , t ∈ TK1 with

(term1, p)⊕ (term2, p) ≤ preK1(t) or (term1, p)⊕ (term2, p) ≤ postK1(t)

Let (term1, p)⊕ (term2, p) ≤ preK1(t).
Since AHL-morphisms preserve pre conditions there is

(f]Σ ⊗ fP)⊕ ◦ preK1(t) = preK2(fT (t))

and hence

(f]Σ(term1), fP (p))⊕ (f]Σ(term2), fP (p)) = (f]Σ ⊗ fP)⊕((term1, p)⊕ (term2, p))

≤ preK2(fT (t))

A.7 Minor Technical Results 227

This implies that K2 is not unary, contradicting the fact that K2 is an AHL-process
net.
The case that (term1, p)⊕(term2, p) ≤ postK1(t) works analogously. Hence K1 is unary.

No forward conflict. Let us assume that K1 has a forward conflict, i. e. there is p ∈
PK1 , t1 6= t2 ∈ TK1 with p ∈ •t1 ∩ •t2. This means that there are term1, term2 ∈
TOP (X)type(p) such that

(term1, p) ≤ preK1(t1) and (term2, p) ≤ preK1(t2)

and since AHL-morphisms preserve pre and post conditions we obtain

(f]Σ(term1), fP (p)) = (f]Σ ⊗ fP)⊕(term1, p)

≤ preK2(fT (t1))

and

(f]Σ(term2), fP (p)) = (f]Σ ⊗ fP)⊕(term2, p)

≤ preK2(fT (t2))

In the case that fT (t1) 6= fT (t2) the fact that fP (p) ∈ •fT (t1)∩ •fT (t2) means that K2

has a forward conflict, contradicting the fact that K2 is an AHL-process net. In the
case that fT (t1) = fT (t2), the injectivity of fT implies that t1 = t2, contradicting the
assumption that t1 6= t2.

Hence K1 has no forward conflict.

No backward conflict. The proof for this case works analogously to the one for forward
conflicts because AHL-morphisms preserve post as well as pre conditions and K2 has
no backward conflicts.

Strict partial order. We have to show that <K1 is irreflexive. So, let us assume that <K1

is not irreflexive, i. e. there exists a cycle x <K1 x. This implies f(x) <K2 f(x) because
AHL-morphisms preserve pre and post conditions. This contradicts the fact that <K2

is irreflexive because it is an AHL-process net.

Hence, also <K1 is also irreflexive and thus it is an AHL-process net.

Considering the fact that the firing behaviour of AHL-nets relies on the evaluation of terms
and equations, it is interesting to note that homomorphisms preserve terms and equations
(see Theorems 3.3.2 and 4.12.2 in [EM85]). This means that given assignments vA : X → A
and vB : X → B and a homomorphism f : A→ B such that f ◦ vA = vB, by Theorem 3.3.2
in [EM85] we also have f ◦v∗A = v∗B (which especially means that (fA ◦vA)∗ = fA ◦v∗A), and if
(A, vA) satisfies an equation e, then by Theorem 4.12.2 in [EM85] also (B, vB) = (B, f ◦ vA)
satisfies that equation.

Corollary A.7.2 (Basic Data-Images Preserve Firing Steps). Given a basic data-image f :

AN1 → AN2 along a Σ-homomorphism fA : A1 → A2 and a firing step M1
(t,v)−→M2 in AN1.

Then there is a corresponding firing step (fA ⊗ idP)⊕(M1)
(t,fA◦v)−→ (fA ⊗ idP)⊕(M2) in AN2.

228 A Appendix

Proof. Due to firing step M1
(t,v)−→M2 in AN1, we have pre1,A(t, v) ≤M1. Note that we have

fT (t) = t, and by Definition 3.1.7 we have pre1,A(t, v) =
∑n

i=1(v∗(termi), pi) for pre1(t) =∑n
i=1 pi = pre2(t). Thus, using Theorem 3.3.2 in [EM85], we have

pre2,A(t, fA ◦ v) =

n∑
i=1

(fA ◦ v∗(termi), pi)

= (fA ⊗ idP)⊕(
n∑
i=1

(v∗(termi), pi))

= (fA ⊗ idP)⊕(pre1,A(t, v)) ≤ (fA ⊗ idP)⊕(M1)

which means that (t, fA ◦ v) is enabled under (fA ⊗ idP)⊕(M1). Moreover, using Theorem
4.12.2 in [EM85], we know that (A2, fA ◦v) satisfies all equations in cond2(t), because (A1, v)
satisfies all equations in cond1(t), and we have cond1(t) = cond2(t). Finally, using again
Theorem 3.3.2 in [EM85] and the fact that post2(t) = post1(t), we obtain analogously to
above that post2,A(t, fA ◦ v) = (fA ⊗ idP)⊕(post1,A(t, v)). Thus, we get the follower marking

(fA ⊗ idP)⊕(M2) = (fA ⊗ idP)⊕(M1 	 pre1,A(t, v)⊕ post1,A(t, v))

= (fA ⊗ idP)⊕(M1)	 (fA ⊗ idP)⊕(pre1,A(t, v))⊕ (fA ⊗ idP)⊕(post1,A(t, v))

= (fA ⊗ idP)⊕(M1)	 pre2,A(t, fA ◦ v)⊕ post2,A(t, fA ◦ v)

and, hence, we have a firing step (fA ⊗ idP)⊕(M1)
(t,fA◦v)−→ (fA ⊗ idP)⊕(M2) in AN2.

Lemma A.7.3 (Application of Action Evolution Pattern). Given an action evolution pattern

% : L
l← I

r→ R for AHL-processes, an AHL-process net K and a match m : L → K, where
mT is injective. Then there exists a direct transformation K

%,m
=⇒ K ′ of AHL-process nets.

Proof. First, we show that the direct transformation exists for single action evolution pat-

terns. So let % : L
l← I

r→ R be a single action evolution pattern together with an AHL-process
net K and a match m : L → K. In order to show that the direct transformation exists, ac-
cording to Theorem 4.2.11 we have to show that % satisfies the transformation condition in
Definition 4.2.10 under match m.

1. Gluing Condition. We have to show that all dangling points DP and identification
points IP are also gluing points GP (see Definition 3.2.13). Note that all dangling
points are places, and since % is non-deleting on places, we have DP ⊆ lP (PI) ⊆ GP .
Moreover, since mT is injective, also all identification points are places, and therefore
we also have IP ⊆ lP (PI) ⊆ GP , and thus the gluing condition is satisfied.

2. No Cycles. We have to show that the gluing condition <(%,m) is a strict partial order,
i. e. it is irreflexive. For this purpose we show that for the causal relations of the left-
and right-hand side of % the following implication holds:

∀x, y ∈ PI] TI : r(x) <R r(y)⇒ l(x) <L l(y)

Let x, y ∈ PI] TI with r(x) <R r(y). We distinguish the following cases:

Case 1. x ∈ PI , y ∈ TI .
From the single action condition in Definition 4.8.8 we know that TL = {t%} which
means that y ∈ TI implies TI = {y} with l(y) = t% because l is injective. Moreover,
r(x) <R r(y) means that r(x) /∈ OUT (R) which by contraposition of condition 3
in Definition 4.8.8 implies that l(x) /∈ OUT (L). Then, since all places of L are in
the environment of t%, we obtain that l(x) ∈ •t% = l(y) and thus l(x) <L l(y).

A.7 Minor Technical Results 229

Case 2. x ∈ TI , y ∈ PI .
This case works analogously to the first case.

Case 3. x, y ∈ TI .
As pointed out in the first case, the single action condition of action evolution
patterns implies that there is at most one transition in I which means that we
have x = y and thus r(x) = r(y) which together with r(x) <R r(y) contradicts
the fact that <R is irreflexive because R is an AHL-process net.

Case 4. x, y ∈ PI .
Then from r(x) <R r(y) we know that r(x) /∈ OUT (R) and r(y) /∈ IN(R) which
by contraposition of condition 3 in Definition 4.8.8 implies that l(x) /∈ OUT (L)
and l(y) /∈ IN(L). Thus by condition 1 in Definition 4.8.8 we have that l(x) ∈ •t%
and l(y) ∈ t%• which by transitivity of <L implies that l(x) <L l(y).

So the above statement holds for all x, y ∈ PI] TI .
Now, let

≺K= {(x, y) ∈ (PK × TK)] (PK × TK) | x ∈ •y}

and consider the relation ≺(%,m) with

≺(%,m)= {(x, y) ∈ (PI × TI)] (TI × PI) | m ◦ l(x) <(K,m) m ◦ l(y) ∨ r(x) <R r(y)}

defined in Definition 4.2.9. By definition of ≺(K,m) as

≺(K,m)= {(x, y) ∈ (PK × (TK \mT (TL)))] ((TK \mT (TL))× PK) | x ∈ •y}

in Definition 4.2.9, we have for x, y ∈ PI] TI with m ◦ l(x) <(K,m) m ◦ l(y) that
m ◦ l(x) <K m ◦ l(x), because <(K,m) is the transitive closure of ≺(K,m) and <K is the
transitive closure of ≺K . Moreover, as shown above, we have for x, y ∈ PI] TI with
r(x) <R r(y) that we have also l(x) <L l(y), and since AHL-morphisms preserve pre
and post conditions, we also have m◦ l(x) <K m◦ l(y). Therefore, for any x, y ∈ PI]TI
with x ≺(%,m) y, it follows that we also have m ◦ l(x) <K m ◦ l(y), and since <(%,m) is
the transitive closure of ≺(%,m), the same follows if we have x <(%,m) y.

So, let us assume that <(%,m) is not irreflexive. Then there is x ∈ PI]TI with x <(%,m) x,
implying m ◦ l(x) <K m ◦ l(x), contradicting the fact that <K is irreflexive, beause K
is an AHL-process net. Hence, <(%,m) is a strict partial order.

3. Non-injective Gluing. We have to show that for all p1 6= p2 ∈ IN(I) with m◦l(p1) =
m ◦ l(p2) we have r(p1) ∈ IN(R) or r(p2) ∈ IN(R). So let p1 6= p2 ∈ IN(I) with
m ◦ l(p1) = m ◦ l(p2) and let us assume that r(p1), r(p2) /∈ IN(R). Then from contra-
position of condition 3 in Definition 4.8.8 we obtain that l(p1), l(p2) /∈ IN(L) which by
condition 1 in Definition 4.8.8 implies that l(p1), l(p2) ∈ •t%, i. e. there are terms term1

and term2 such that (term1, lP (p1)) ⊕ (term2, lP (p2)) ≤ preL(t%). Due to the fact

that AHL-morphisms preserve pre conditions, we obtain (m#
Σ (term1),mP (lP (p1))) ⊕

(m#
Σ (term2),mP (lP (p2))) ≤ preK(mT (t%)), which together with the fact that m ◦

l(p1) = m ◦ l(p2) implies that K is not unary. This is a contradiction because K
is an AHL-process net. Hence, we have r(p1) ∈ IN(R) or r(p2) ∈ IN(R).

The proof that for all p1 6= p2 ∈ OUT (I) with m ◦ l(p1) = m ◦ l(p2) we have r(p1) ∈
OUT (R) or r(p2) ∈ OUT (R) works analogously.

230 A Appendix

4. No Conflicts. For every place x ∈ InP we have l(x) ∈ IN(L) which by condition 3 of
Definition 4.8.8 implies that r(x) ∈ IN(R), and thus r(InP) ⊆ IN(R). Accordingly,
we obtain that r(OutP) ⊆ OUT (R).

So the single action evolution pattern % satisfies the transformation condition under match
m which by Theorem 4.2.11 implies that the direct transformation K

%,m
=⇒ K ′ exists.

Now, we consider % to be a (multi) action evolution pattern, i. e. there are single action

evolution patterns (%i : Li
l← Ii

r→ Ri)i∈I such that % =
∐
i∈I %i with coproduct injections

ιXi : Xi → X for X ∈ {L, I,R}. Due to the fact that for every i ∈ I there is TLi = {t%i} it is
clear that all ιLi,T are injective and therefore also (m ◦ ιLi)T is injective. Therefore, as shown

above, we know that all %i are applicable with match m ◦ ιLi . According to the parallelism
theorem for weak adhesive HLR categories (see Theorem 5.18 in [EEPT06b]) which also holds
forM-adhesive categories [EGH10], for the existence of a direct transformation via a parallel
production, it suffices to show that the direct transformations via the single productions are
sequentially independent. Further, due to the local Church-Rosser theorem (see Theorem 5.12
in [EEPT06b]), sequential independence is equivalent to the case that there are corresponding
parallel independent direct transformations.

Let %1, %2 be an arbitrary selection of two single action evolution patterns in (%i : Li
l←

Ii
r→ Ri)i∈I . Parallel independence of two direct transformations K

m◦ιL1=⇒ K1 and K
m◦ιL2=⇒ K2

means that there are morphisms i1 : L1 → C2 and i2 : L2 → C1 into the context net of the
respective other transformation as shown below such that f2 ◦ i1 = m◦ ιL1 and f1 ◦ i2 = m◦ ιL2 .

R1

n1

��

I1r1oo

k1

��

l1 // L1

m◦ιLi
66666

��66 i1

%%

L2

m◦ιL2
�����

����
i2

yy

I2l2oo

k2

��

r2 // R2

n2

��
K1 C1g1oo f1

// K C2f2
oo g2 // K2

Due to symmetry it suffices to show the existence of i1. For the places, due to the fact that
%2 is non-deleting on places by condition 2 in Definition 4.8.8, and thus for every p ∈ PL1 and
m ◦ ιL1 (p) ∈ PK there is also p′ ∈ PC2 such that f2(p′) = m ◦ ιL1 (p). Moreover, by l2 ∈MAHL

we also have f2 ∈ MAHL which means that f2,P is injective and thus p′ ∈ PC2 is unique
such that f2(p′) = m ◦ ιL1 (p). So, we obtain a well-defined function i1,P : PL1 → PC2 with
i1,P (p) = p′.

Further, due to the single action condition in Definition 4.8.8 there is TL1 = {t%1} and
TL2 = {t%2}, and due to construction of the coproducts as disjoint union, we have ιL1 (t%1) 6=
ιL2 (t%2), and since mT is required to be injective, we also have m◦ ιL1 (t%1) 6= m◦ ιL2 (t%2). Thus,
the transition m ◦ ιL1 (t%1) is not deleted by %2, and can be matched in the subnet C2 ⊆ K
such that we obtain an AHL-morphism i1 : L1 → C2 with f2 ◦ i1 = m ◦ ιL1 . Hence, the direct

transformations K
m◦ιL1=⇒ K1 and K

m◦ιL2=⇒ K2 are parallel independent.
So we have that all single action evolution patterns are applicable with match m◦ ιLi , and

all single direct transformations via (%i)i∈I are pairwise parallel independent. Using the local
Church-Rosser theorem, we know that all sequences of direct transformations via all single
action evolution patterns (%i)i∈I lead to the same result which is an AHL-process net as shown
above. Moreover, using iterated construction of parallel productions and the parallelism
theorem, we obtain that also the direct transformation via the parallel production % leads to
that exact same result which is an AHL-process net. For a direct transformation of AHL-
process nets, it remains to show that also the context net C of the direct transformation is
an AHL-process net. This follows from the fact that there is anMAHL-morphism f : C → K
using Lemma A.7.1.

B
Detailed Proofs

B.1 Proof of Fact 3.4.4 (Skeleton Functor)

We have to show that the Skel construction for AHL-nets and -morphisms in Definition 3.4.1
form a functor Skel : AHLNets→ PTNets that preserves MAHL-morphisms and coprod-
ucts as well as pushouts and pullbacks along MAHL-morphisms.

Skel is functor. We have to show that for an AHL-morphism f : AN1 → AN2 the image
Skel(f) is a P/T-morphism Skel(f) : Skel(AN1) → Skel(AN2). Let t ∈ T1 with
pre1(t) =

∑n
i=1(termi, pi), then by definition of AHL-morphisms we have

pre2(fT (t)) = (f#
Σ ⊗fP)⊕(pre1(t)) = (f#

Σ ⊗fP)⊕(
n∑
i=1

(termi, pi)) =
n∑
i=1

(f#
Σ (termi), fP (pi))

which implies

pre2,S(Skel(f)T (t)) =
n∑
i=1

(fP (pi)) = f⊕P (
n∑
i=1

(pi)) = f⊕P (pre1,S(t))

Hence, Skel(f) preserves the pre domain of t. The proof for the post domain works
analogously.

Moreover, Skel preserves identities and is compositional since identities as well as com-
position of morphisms are defined componentwise in AHLNets and PTNets. Hence,
Skel is a functor.

Mapping of MAHL-morphisms. Given a functor f = (fΣ, fP , fT , fA) ∈ MAHL, we have
that fP and fT are injective functions, and, thus, Skel(f) = (fP , fT) ∈MPT .

Preservation of pushouts alongMAHL. Given pushout (1) in Figure B.1a in AHLNets
with f ∈ MAHL, we have to show that (2) in Figure B.1b is pushout in PTNets.
By componentwise construction of pushouts along MAHL in AHLNets we have also
pushouts (3) and (4) in Figure B.1c in Sets. As shown above, f ∈ MAHL implies
Skel(f) ∈ MPT , and by componentwise construction of pushouts along MPT in
PTNets we also have that (2) is a pushout.

Preservation of coproducts. This follows from the previous item since coproducts are
pushouts over an initial object which in AHLNets and PTNets are the empty nets,
and we have that the skeleton of an empty AHL-net is an empty P/T net.

Preservation of pullbacks alongMAHL. Given pullback (1) in Figure B.1a in AHLNets
with f ∈MAHL, we have to show that (2) in Figure B.1b is pullback in PTNets. This

232 B Detailed Proofs

A
f //

g

��

B

g′

��
C

f ′
// D

(1)

(a) Pushout in
AHLNets

Skel(A)
Skel(f)//

Skel(g)

��

Skel(B)

Skel(g′)
��

Skel(C)
Skel(f ′)

// Skel(D)

(2)

(b) Pushout in PTNets

PA
fP //

gP
��

PB

g′P
��

PC
f ′P

// PD

(3)

TA
fT //

gT
��

TB

g′T
��

TC
f ′T

// TD

(4)

(c) Pushouts in Sets

Figure B.1: Preservation of pushouts along MAHL by Skel

proof works analogously to the proof for pushouts above, due to the componentwise
construction of pullbacks along MAHL and MPT in AHLNets and PTNets, respec-
tively.

B.2 Proof of Fact 3.4.8 (Natural Inclusion)

Given an AHL-net AN , the existence of the inclusion w(AN) : Flat(AN) ↪→ wFlat(AN)
follows directly from the definitions of Flat(AN) and wFlat(AN). Moreover, given an AHL-
morphism f : AN1 → AN2 ∈ MAHL. Since the data type part of MAHL-morphisms
is an inclusion, we can w. l. o. g. assume that it is an identity and we have that f is in
AHLNets(Σ,A). We have to show that naturality square (1) in Figure B.2 is a pullback.

Flat(Σ,A)(AN1)
Flat(Σ,A)(f)

//

w(Σ,A)(AN1)

��

Flat(Σ,A)(AN2)

w(Σ,A)(AN2)

��
wFlat(Σ,A)(AN1)

wFlat(Σ,A)(f)
// wFlat(Σ,A)(AN2)

(1)

Figure B.2: Naturality square of w(Σ,A)

Since w(Σ,A)(AN2) is an inclusion and pullbacks in PTNets along injective morphisms
can be constructed componentwise, we have to show that (2) and (3) in Figure B.3 are
pullbacks in Sets. Due to Definition 3.4.5 we have the trivial pullback (2) in Figure B.3a of
places, and it remains that diagram (3) in Figure B.3b is a pullback in Sets.

CP1
fP //

id
��

CP2

id
��

CP1
fP
// CP2

(2)

(a) Pullback of
places

CT1
fC //

w(Σ,A)T
(AN1)T

��

CT2

w(Σ,A)T
(AN2)T

��
TA1

fC
// TA2

(3)

(b) Pullback of transitions

Figure B.3: Cartesian transformation w(Σ,A)

Let X be a set with functions g1 : X → TA1 and g2 : X → CT2, we define a function
g : X → CT1 with g(x) = g1(x) with wFlat(Σ,A)(f) ◦ g1 = w(Σ,A) ◦ g2. In order to show that
g is a well-defined function it suffices to show that for every x there is g1(x) ∈ CT1, since g1

is a function and with this definition g satisfies the universal property. Let g1(x) = (t1, v1)

B.3 Proof of Fact 3.4.9 (Natural Projection) 233

and g2(x) = (t2, v2). We have (t1, v1) ∈ CT1 if v1 : V ar(t1) → A is valid under A. Since
we have AN1, AN2 ∈ AHLNets(Σ,A), there is fA = idA and fX |V ar(t1) = idX which

implies fC(t1, v1) = (fT (t1), fA ◦ v1 ◦ fX |−1
V ar(t1)) = (fT (t1), v1). Thus, by commutativity

wFlat(Σ,A)(f) ◦ g1 = w(Σ,A) ◦ g2 and the fact that w(Σ,A)(AN2) is an inclusion, we have

(fT (t1), v1) = fC(t1, v1) = wFlat(Σ,A)(f)T (t1, v1) = wFlat(Σ,A)(f)T (g1(x)) = g2(x) = (t2, v2)

Hence, we know that v1 = v2 is a valid assignment which means that g1(x) = (t1, v1) ∈ CT1

and therefore g is well-defined.

B.3 Proof of Fact 3.4.9 (Natural Projection)

We show the universal property of (1) in Figure B.4a, so let X be a set with functions
g1 : X → P1 and g2 : X → A2 ⊗ P2 such that fP ◦ g1 = wproj(Σ,A)(AN2)P ◦ g2.

A1 ⊗ P1
idA⊗fP//

wproj(Σ,A)(AN1)P
��

A2 ⊗ P2

wproj(Σ,A)(AN2)P
��

P1
fP

// P2

(1)

(a) Pullback of places

TA1
fC //

wproj(Σ,A)(AN1)T
��

TA2

wproj(Σ,A)(AN2)T
��

T1
fT

// T2

(2)

(b) Pullback of transitions

Figure B.4: Naturality squares of P (wproj(Σ,A)) and T (wproj(Σ,A))

We define a function g : X → A1 ⊗ P1 with

g(x) = (a2, p1) for g1(x) = p1 and g2(x) = (a2, p2)

The function g is well-defined because g1 and g2 are functions. Moreover, we have

wproj(Σ,A)(AN1)P ◦ g(x) = wproj(Σ,A)(AN1)P (a2, p1) = p1 = g1(x)

and, since fP ◦ g1 = wproj(Σ,A)(AN2)P ◦ g2 there is fP (p1) = p2 and thus

(idA ⊗ fP) ◦ g(x) = idA ⊗ fP (a2, p1) = (a2, fP (p1)) = (a2, p2) = g2(x)

Let us assume that there is g′ : X → A1 ⊗ P1 with wproj(Σ,A)(AN1)P ◦ g′ = g1 and (idA ⊗
fP) ◦ g′ = g2, and let x ∈ X with g1(x) = p1, g2(x) = (a2, p2), and g′(x) = (a, p). Then we
have

p = wproj(Σ,A)(AN1)P (a, p) = wproj(Σ,A)(AN1)P ◦ g′(x) = g2(x) = p1

and

(a2, p2) = g2(x) = (idA ⊗ fP) ◦ g′(x) = (idA ⊗ fP)(a, p) = (a, fP (p))

which means that a = a2 and thus g(x) = g′(x). Hence, g is unique, and we have that (1) is
a pullback.

For the universal property of (2) in Figure B.4b let Y be a set with functions h1 : Y → T1

and h2 : Y → TA2 such that fT ◦ h1 = wproj(Σ,A)(AN2)T ◦ h2. We can define a function
h : X → TA1 with

h(x) = (t1, v2) for h1(x) = t1 and h2(x) = (t2, v2)

The proof that h is the required morphism for the universal property of pullback (2) works
completely analogously to the proof for g. Hence, also (2) is a pullback.

234 B Detailed Proofs

B.4 Proof of Fact 3.4.11 (Flattening Functors)

Flat is functor. The well-definedness of the functor Flat has been shown in [Ehr05] for a
slightly different definition of AHL-nets and morphisms (see Remark 3.1.6). The proof
is also valid for our definition of AHL-morphisms, since it makes no use of the restriction
that the algebra part of the morphisms in [Ehr05] have to be isomorphisms.

Mapping of MAHL-morphisms. Given f : AN1 → AN2 ∈ MAHL, we have to show that
wFlat(f), F lat(f) ∈MPT . The function fA⊗fP is injective since fA is an isomorphism
and fP is injective. Let (t, v) ∈ TA. Since fA is an isomorphism, and fX |V ar(t) :
V ar(t) → V ar(fT (t)) and therefore also (fX |V ar(t))−1 is a bijection by definition of
AHL-morphisms, there is a bijective correspondence between v and fA◦v◦(fX |V ar(t))−1.
Hence, also fC with fC(t, v) = (fT (t), fA ◦ v ◦ (fX |V ar(t))−1) is injective because fT
is injective, and we have wFlat(f) ∈ MPT , and since injectivity is not violated by
restricting the domain of a morphism, we also have that Flat(f) ∈MPT .

AN0
f //

g

��

AN1

g′

��
AN2

f ′
// AN3

(1)

(a) Pullback
or pushout in
AHLNets

Flat(AN0)
Flat(f)//

Flat(g)
��

Flat(AN1)

Flat(g′)
��

Flat(AN2)
Flat(f ′)

// Flat(AN3)

(2)

wFlat(AN0)
wFlat(f)//

wFlat(g)
��

wFlat(AN1)

wFlat(g′)
��

wFlat(AN2)
wFlat(f ′)

// wFlat(AN3)

(3)

(b) Pullbacks or pushouts in PTNets

Figure B.5: Preservation of pullbacks and pushouts along MAHL

Preservation of pullbacks alongMAHL. Given pullback (1) in Figure B.5a in AHLNets
with f ′ ∈MAHL, we have to show that diagrams (2) and (3) in Figure B.5b are pullbacks
in PTNets. Due to componentwise construction of pullbacks along MAHL, we have
pullbacks (4),(5) in Figure B.6a in Sets and (6) in Figure B.6b in Algs, and since
wFlat(f ′) ∈MPT , for the functor wFlat it suffices to show that we have pullbacks (7)
and (8) in Figure B.7 in Sets.

P0
fP //

gP
��

P1

g′P
��

P2
f ′P

// P3

(4)

T0
fT //

gT
��

T1

g′T
��

T2
f ′T

// T3

(5)

(a) Pullbacks in Sets

(Σ0, A0)
(fΣ,fA)//

(f ′Σ,f
′
A)

��

(Σ1, A1)

(g′Σ,g
′
A)

��
(Σ2, A2)

(f ′Σ,f
′
A)
// (Σ3, A3)

(6)

(b) Pullback in Algs

Figure B.6: Preservation of pullbacks along MAHL – Pullbacks in Sets and Algs

B.4 Proof of Fact 3.4.11 (Flattening Functors) 235

A0 ⊗ P0
fA⊗fP//

gA⊗gP
��

A1 ⊗ P1

g′A⊗g
′
P

��
A2 ⊗ P2

f ′A⊗f
′
P

// A3 ⊗ P3

(7)

(a) Pullback of places

TA0
fC //

gC
��

TA1

g′C
��

TA2
f ′C

// TA3

(8)

(b) Pullbacks of tran-
sitions

Figure B.7: Preservation of pullbacks along MAHL – Pullbacks in Sets

First, we show the universal property for pullback (7). Since Flat(f) is a functor, by
commutative diagram (1) we have commutative diagram (2) and therefore we know
that (7) commutes, but we cannot directly use that the product × is compatible with
pullbacks, because A0⊗P0 (A0×P0. So let X be a set with functions h1 : X → A1⊗P1

and h2 : A2 ⊗ P2 such that (g′A ⊗ g′P) ◦ h1 = (f ′A ⊗ f ′P) ◦ h2. We define a function
h : X → A0 ⊗ P0 with

h(x) = (fA ⊗ fP)−1(h1(x)).

In order to show that h is well-defined, let x ∈ X. We have to show that h(x) ∈ A0⊗P0.
Since f ′ ∈ MAHL and MAHL-morphisms are closed under pullback, there is also f ∈
MAHL. So we have that fA is an isomorphism and fP is injective which means that
(fA ⊕ fP) is injective, and therefore it suffices to show that there is (a0, p0) ∈ A0 ⊗ P0

such that (fA ⊗ fP)(a0, p0) = h1(x) =: (a1, p1). Let h2(x) = (a2, p2), then we have

g′A ⊗ g′P (a1, p1) = g′A ⊗ g′P (h1(x)) = f ′A ⊗ f ′P (h2(x)) = f ′A ⊗ f ′P (a2, p2)

which means that g′P (p1) = f ′P (p2). By universal property of pullback (4) there is a
place p0 ∈ P0 with fP (p0) = p1 and gP (p0) = p2.

Furthermore, (a1, p1) ∈ A1 ⊗ P1 means that a1 ∈ A1,type1(p1). Let a0 = f−1
A (a1) ∈

A0,f−1
S (type1(p1)). We have that

f−1
S (type1(p1)) = f−1

S (type1(fP (p0))) = f−1
S (fS(type0(p0))) = type0(p0)

and thus a0 ∈ A0,type0(p0) which means that (a0, p0) ∈ A0 ⊗ P0.

Moreover, we have (fA ⊗ fP) ◦ h(x) = (fA ⊕ fP) ◦ (fA ⊕ fP)−1(h1(x)) = h1(x), and by
commutativity of (7) we have

(f ′A ⊗ f ′P) ◦ (gA ⊗ gP) ◦ h(x) = (f ′A ⊗ f ′P) ◦ (gA ⊗ gP) ◦ (fA ⊕ fP)−1(h1(x))

= g′A ⊗ g′P (h1(x)) = f ′A ⊗ f ′P (h2(x))

which by injectivity of f ′A ⊗ f ′P implies gA ⊗ gP ◦ h(x) = h2(x).

Let h′ : X → A0 ⊗P0 with (fA ⊗ fP) ◦ h′ = h1 and (gA ⊗ gP) ◦ h′ = h2. Then for every
x ∈ X, we have

(fA ⊗ fP) ◦ h′(x) = h1(x) = (fA ⊗ fP)((fA ⊗ fP)−1(h1(x))) = (fA ⊗ fP) ◦ h(x)

which by injectivity of (fA ⊗ fP) implies h′(x) = h(x) and thus h′ = h which means
that h is unique and (7) is a pullback.

236 B Detailed Proofs

Now we consider diagram (8) which also commutes due to commutativity of diagram (2).
We have to show the universal property. So let Y be a set with functions k1 : Y → TA1

and k2 : Y → TA2 such that g′C ◦ k1 = f ′C ◦ k2. We define a function k : Y → TA0 with

k(x) = (f−1
T (t), f−1

A ◦ v ◦ fX |V ar(f−1
T (t))) for k1(x) = (t, v)

We have to show that k is well-defined. By f ∈ MAHL we have that fT is injective
and fA is an isomorphism which means that the mapping of k leads to unique results.
It remains to show that for every x ∈ Y and (t1, v1) ∈ TA1 with k1(x) = (t1, v1) there
is t0 ∈ T0 with fT (t0) = t1. For every x ∈ Y and (t1, v1) ∈ TA1 with k1(x) = (t1, v1)
there is also (t2, v2) ∈ TA2 with k2(x) = (t2, v2) and we have

(g′T (t1), g′A ◦ v1 ◦ (g′X |V ar(t1))
−1) = g′C(t1, v1)

= g′C ◦ k1(x)

= f ′C ◦ k2(x)

= f ′C(t2, v2)

= (f ′T (t2), f ′A ◦ v2 ◦ (f ′X |V ar(t2))
−1)

which implies that g′T (t1) = f ′T (t2). Thus, by pullback (5) in Sets there is t0 ∈ T0 with
fT (t0) = t1 and gT (t0) = t2. Thus, k is well-defined. The required commutativity and
uniqueness of k follows analogously to the case of h. Hence, (8) is pullback in Sets and
therefore (2) is a pullback in PTNets.

It remains to show that (3) is a pullback in PTNets. Consider the cube in Figure B.8
where the bottom is (2) pullback from Figure B.5b, the side faces commute by natural
transformation w : Flat ⇒ wFlat and the top commutes by functor Flat. Due to
f, f ′ ∈ MAHL by Fact 3.4.8 we have that the left front and the right back face are
pullbacks because w is M-cartesian. Thus, by composition of pullbacks, the right
back face and the bottom together form a pullback, which by commutativity of the
cube implies that the top and the left front face together form a pullback. Hence, by
decomposition of pullbacks, the top face which is the diagram (3) in Figure B.5b is a
pullback in PTNets.

Flat(AN0)

w(AN0)
��

Flat(g)
rreeee Flat(f)

,,YYYYYYYYYYYYYYYYYYY
Flat(AN1)

w(AN1)

��

Flat(f ′)

,,YYYYYYYYYYYYYYYYYYY
Flat(AN2)

w(AN2)

��

Flat(g′)
rreeee

Flat(AN3)

w(AN3)
��

wFlat(AN0)
wFlat(g)
rreee wFlat(f)

YYYYYYYY

,,YYYYYYYYwFlat(AN1)
wFlat(f ′)

,,YYYYYYYYYYYYYYYYY
wFlat(AN2)

wFlat(g′)
rreee

wFlat(AN3)

Figure B.8: Commutative cube

Preservation of pushouts along MAHL. Given pushout (1) in Figure B.5a in category
AHLNets(Σ,A) with f ∈ MAHL. We have to show that (2) and (3) in Figure B.5b
are pushouts in PTNets. Consider the cube in Figure B.9 where for a better overview
we omitted the indices (Σ, A). Since Flat, wFlat and Skel are functors, and w as well
as wproj are natural transformations, the cube commutes. Moreover, by Fact 3.4.4, the

B.4 Proof of Fact 3.4.11 (Flattening Functors) 237

Flat(AN0)

w(AN0)
��

Flat(g)
rreeee Flat(f)

,,YYYYYYYYYYYYYYYYYYY
Flat(AN1)

w(AN1)

��

Flat(f ′)

,,YYYYYYYYYYYYYYYYYYY
Flat(AN2)

w(AN2)

��

Flat(g′)
rreeee

Flat(AN3)

w(AN3)
��

wFlat(AN0)

wproj(AN0)
��

wFlat(g)
rreee wFlat(f)

YYYYYYYY

,,YYYYYYYYwFlat(AN1)

wproj(AN1)

��

wFlat(f ′)

,,YYYYYYYYYYYYYYYYY
wFlat(AN2)

wproj(AN2)

��

wFlat(g′)
rreee

wFlat(AN3)

wproj(AN3)
��

Skel(AN0)
Skel(g)
rreeee Skel(f)

YYYYYYYYY

,,YYYYYYYYYSkel(AN1)
Skel(f ′)

,,YYYYYYYYYYYYYYYYYYY
Skel(AN2)

Skel(g′)
rreeee

Skel(AN3)

Figure B.9: Commutative cube of flattenings and skeletons

bottom of the cube is a pushout, and by Fact 3.4.8, the upper side faces are pullbacks
in PTNets.

Further, consider the corresponding cubes of place and transition components in Fig-
ure B.10. Due to Fact 3.4.4 the MAHL-morphism f implies that Skel(f) ∈MPT , and
due to the fact that w is an inclusion, we also have that w(ANi) ∈MPT for i = 1, ..., 3.
Thus, by componentwise construction of pushouts and pullbacks along MPT , also the
bottoms of the cubes in Figure B.10 are pushouts, and the upper side faces are pull-
backs. Moreover, due to Fact 3.4.9 we know that the lower side faces of the cubes are
pullbacks.

A0 ⊗ P0

��

ssgg

++WWWWWWWWWWWW
A1 ⊗ P1

��

++WWWWWWWWWWWW
A2 ⊗ P2

��

ssgg
A3 ⊗ P3

��

A0 ⊗ P0

��

ssgg WWWWWW

++WWWWWWA1 ⊗ P1

��

++WWWWWWWWWWWW
A2 ⊗ P2

��

ssgg
A3 ⊗ P3

��

P0
ssggggggg

WWWWWWWW

++WWWWWWWWP1

++WWWWWWWWWWWWWWWWW
P2

ssggggggg
P3

(a) P -components

CT0

��

ttiiii

**UUUUUUUUUUUU
CT1

��

**UUUUUUUUUUUU
CT2

��

ttiiii
CT3

��

TA0

��

ttiiii UUUUUU

**UUUUUUTA1

��

**UUUUUUUUUUUU
TA2

��

ttiiii
TA3

��

T0
ttiiiiii

UUUUUUU

**UUUUUUUT1

**UUUUUUUUUUUUUU
T2

ttiiiiii
T3

(b) T -components

Figure B.10: Commutative cubes of place and transition components

Now, since by Skel(f) ∈ MPT the components Skel(f)P and Skel(f)T are monomor-
phisms in Sets, and by Theorem 4.6 in [EEPT06b] the category Sets is not only M-
adhesive but adhesive, the (general) van Kampen cube property (see Remark A.1.10)
implies that the middle and top faces of the cubes in Figure B.10 are pushouts in Sets.

Finally, as shown above, f ∈MAHL implies that also Flat(f), wF lat(f) ∈MPT which
by componentwise construction of pushouts along MPT implies that the middle and
top face of the cube in Figure B.9 are pushouts.

238 B Detailed Proofs

B.5 Proof of Fact 4.2.6 (Gluing of AHL-Process Nets)

In order to prove Fact 4.2.6, we have to show that the composability of AHL-process nets
in Definition 4.2.5 is a sufficient and necessary condition for the gluing of AHL-nets (see
Definition 4.2.2), i. e., we have to show that the diagram (PO) below is a gluing of AHL-
process nets if and only if K1 and K2 are composable w. r. t. (I, i1, i2).

I
i1 //

i2
��

(PO)

K1

i′1
�� mp1

��

K2
i′2

//

mp2 ++

K

mp
DDDD

""DDD

AN
If. Given the AHL-process nets K1,K2 and I and morphisms i1, i2 as above we construct
the pushout (PO) in the category AHLNets.

In order to show that (PO) is also a pushout in the full subcategory AHLPNets it suffices
to show that the AHL-net K is an AHL-process net, i. e. K is unary, it has no forward or
backward conflicts, and the causal relation <K is a strict partial order.

Unarity. Let us assume that K is not unary, i. e. there are p ∈ PK , t ∈ TK with

(term1, p)⊕ (term2, p) ≤ preK(t) or (term1, p)⊕ (term2, p) ≤ postK(t)

Let us consider the case that (term1, p) ⊕ (term2, p) ≤ preK(t). Due to the universal
property of pushout (PO) there is a ∈ {1, 2} and t′ ∈ TKa with i′a,T (t′) = t and since
AHL-morphisms preserve pre and post conditions there is

preK(t) = (idTOP (X) ⊗ i′a,P)⊕ ◦ preKa(t′).

So the fact that (term1, p)⊕ (term2, p) ≤ preK(t) implies

(term1, p1)⊕ (term2, p2) ≤ preKa(t′)

with i′a(p1) = p = i′a(p2).

• Case 1. There is a = 1.
The fact that i′1(p1) = p = i′1(p2) by pushout (PO) implies that there are x1, x2 ∈
PI with i1(x1) = p1, i1(x1) = p2 and i2(x1) = i2(x2). Moreover, (term1, p1) ⊕
(term2, p2) ≤ preK1(t′) means i1(x1), i1(x2) /∈ OUT (K1).

– Case 1.1. There are x1, x2 ∈ OUT (I).
Then by composability of K1 and K2 w. r. t. (I, i1, i2) we have that i1(x1) ∈
OUT (K1) or i1(x2) ∈ OUT (K1), contradicting the fact that i1(x1), i1(x2) /∈
OUT (K1).

– Case 1.2. There is x1 /∈ OUT (I).
This means that there is t0 ∈ TI with (term0, x1) ≤ preI(t0). By the fact
that AHL-morphisms preserve pre conditions, we obtain (term0, i1(x1)) ≤
preK1(i1(t0)). This implies that i1(t0) = t′ because K1 is an AHL-process net
which does not have any forward conflicts. Moreover, we have term0 = term1.
So, using again the fact that AHL-morphisms preserve pre conditions, we ob-
tain (term2, x2) ∈ preI(t0) and furthermore (term1, i2(x1))⊕(term2, i2(x2)) ≤
preK2(i2(t0)). Hence, by the fact that i2(x1) = i2(x2) we have that K2 is not
unary. This is a contradiction because K2 is an AHL-process net.

B.5 Proof of Fact 4.2.6 (Gluing of AHL-Process Nets) 239

– Case 1.3. There is x2 /∈ OUT (I).
Analogously to Case 1.2 this case leads to a contradiction because AHL-
morphisms preserve post as well as pre conditions and AHL-process net K1

does also have no backward conflicts.

• Case 2. There is a = 2.
Since i1 is injective, also i′2 is injective, because injective AHL-morphisms are
closed under pushouts. Thus, we have p1 = p2, which means that K2 is not unary.
This is a contradiction to the fact that K2 is an AHL-process net.

The case (term1, p)⊕ (term2, p) ≤ postK(t) works analogously. Hence, K is unary.

No forward conflicts. Let us assume that K has a forward conflict, i. e. there are p ∈ PK
and t1 6= t2 ∈ TK with p ∈ •t1 ∩ •t2.

• Case 1: There is a ∈ {1, 2} such that t1, t2 ∈ i′a,T (TKa).
Then we have t′1 6= t′2 ∈ TKa with

i′a,T (t′1) = t1 and i′a,T (t′2) = t2

and there are p1, p2 ∈ PKa with

i′a,P (p1) = p = i′a,P (p2) and p1 ∈ •t′1, p2 ∈ •t′2

because AHL-morphisms preserve pre conditions.

• Case 1.1 p1 = p2.
This means that Ka has a forward conflict which contradicts the fact that Ka is
assumed to be an AHL-process net.

• Case 1.2 p1 6= p2.
Since i′2 is injective, this implies that a = 1. Then, i′1(p1) = p = i′1(p2) implies
x1, x2 ∈ PI with i1(x1) = p1, i1(x2) = p2 and i2(x1) = i2(x2). Moreover, i1(x1) =
p1 ∈ •t′1 means that p1 /∈ OUT (K1), and i1(x2) = p2 ∈ •t′2 means that p2 /∈
OUT (K1).

Case 1.2.1. There is x1, x2 ∈ OUT (I).
Then by composability of K1 and K2 w. r. t. (I, i1, i2) it follows that i1(x1) ∈
OUT (I) or i1(x2) ∈ OUT (K1), contradicting the fact that i1(x1), i1(x2) /∈
OUT (K1).

Case 1.2.2. There is x1 /∈ OUT (I), x2 ∈ OUT (I).
By the fact that x2 ∈ OUT (I) and i1(x2) /∈ OUT (K1) the composability of
K1 and K2 w. r. t. (I, i1, i2) implies i2(x2) ∈ OUT (K2).
Furthermore, the fact that x1 /∈ OUT (I) means that there is some t0 ∈ TI with
(term0, x1) ≤ preI(t0). By the fact that AHL-morphisms preserve pre condi-
tions, we obtain (term0, i1(x1)) ≤ preK1(i1(t0)). This implies that i1(t0) = t′1
because K1 is an AHL-process net which does not have any forward con-
flicts. Moreover, we have term0 = term1. Using again the fact that AHL-
morphisms preserve pre conditions, we obtain (term1, i2(x1)) ∈ preK2(i2(t0))
which means that i2(x1) = i2(x2) /∈ OUT (K2), contradicting the fact that
i2(x2) ∈ OUT (K2).

Case 1.2.3. There is x1 ∈ OUT (I), x2 /∈ OUT (I).
This case is similar to Case 1.2.2.

240 B Detailed Proofs

Case 1.2.4. There is x1, x2 /∈ OUT (I). Then we have transitions t0, t
′
0 ∈ TI

with (term0, x1) ≤ preI(t0) and (term′0, x2) ≤ preI(t
′
0). Analogously to Case

1.2.2 we obtain that i1(t0) = t′1 and i1(t′0) = t′2, and using the fact that
AHL-morphisms preserve pre conditions, we have i2(x1) ≤ preK2(i2(t0)) and
i2(x1) = i2(x2) ≤ preK2(i2(t′0)). Since K2 is an AHL-process net, it does not
have any forward conflicts, implying that i2(t0) = i2(t′0). Thus, we have

t1 = i′1(t′1) = i′1(i1(t0)) = i′2(i2(t0)) = i′2(i2(t′0)) = i′1(i1(t′0)) = i′1(t′2) = t2

which contradicts the fact that t1 6= t2.

• Case 2: There is t1 ∈ i1(TK1) and t2 ∈ i2(TK2).
Then we have t′1 ∈ TK1 , t

′
2 ∈ TK2 with

i′1(t′1) = t1 and i′2(t′2) = t2

and since AHL-morphisms preserve pre conditions there are p1 ∈ PK1 , p2 ∈ PK2

with

i′1(p1) = p, p1 ∈ •t′1 and i′2(p2) = p, p2 ∈ •t′2.

By the fact that K is a pushout object of (PO) this implies a place p0 ∈ PI with

i1(p0) = p1 and i2(p0) = p2.

• Case 2.1: There is p0 ∈ OUT (I).
Due to the fact that p1 ∈ •t′1, we have i1(p0) /∈ OUT (K1), which by the compos-
ability of (K1,K2) w. r. t. (I, i1, i2) implies that i2(p0) ∈ OUT (K2) contradicting
the fact that i2(p0) = p2 ∈ •t′2.

• Case 2.2: There is p0 /∈ OUT (I).
This means that there is t0 ∈ TI with p0 ∈ •t0. By the fact that i1 is an AHL-
morphism which preserves pre conditions we have p1 ∈ •i1(t0) which together with
the fact that p1 ∈ •t′1 means that i1(t0) = t′1 because K1 has no forward conflicts.
Analogously, due to the fact that also K2 has no forward conflict we obtain that
i2(t0) = t′2. Thus, by commutativity of (PO) we have

t1 = i′1(t′1) = i′1(i1(t0)) = i′2(i2(t0)) = i′2(t′2) = t2

which contradicts the assumption that t1 6= t2.

Hence, all cases lead to a contradiction which means that K has no forward conflict.

No backward conflicts. The proof that K does not have any backward conflicts works
analogously to the proof concerning the forward conflicts, because AHL-morphisms
preserve post as well as pre conditions, and the definition of the composability consists
of corresponding conditions for input as well as for output places.

Strict partial order. Since <K is defined as a transitive closure, it suffices to show that
<K is irreflexive. Due to the fact that AHL-morphisms preserve pre and post conditions
we obtain the causal relation of <K as the transitive closure of⋃

a∈{1,2}

{(i′a(x), i′a(y)) | x, y ∈ PKa] TKa , x <Ka y}

B.5 Proof of Fact 4.2.6 (Gluing of AHL-Process Nets) 241

This means that elements which are causally related in K1 or K2 are also causally
related in K. Additionally it is possible that elements in the net K are related due to
the gluing of one or more elements.
Moreover, if for two interface elements x0, y0 ∈ PI]TI the images of these elements are
causally related in K, i. e. we have the following Statement (A):

∀x0, y0 ∈ PI] TI : i′1(i1(x0)) <K i′1(i1(y0))⇒ x0 <(i1,i2) y0

We prove this statement because we need it in the following:
Let x0, y0 ∈ PI] TI with i′1(i1(x0)) <K i′1(i1(y0)). Then there is a ∈ {1, 2} such
that either there is ia(x0) <Ka ia(y0) or there is z0 ∈ PI] TI with ia(x0) <Ka ia(z0)
and i′1(i1(x0)) <K i′1(i1(z0)) <K i′1(i1(y0)). This recursively leads to the fact that
x0 <(i1,i2) y0 because the induced causal relation is transitive.

Let us now assume that <K is not irreflexive, i. e. there exists x ∈ PK]TK s.t. x <K x.

• Case 1. There is no element z ∈ PI] TI with x <K i′1(i1(z)) <K x.
Then there is a ∈ {1, 2} and y ∈ PKa] TKa s.t. i′a(y) = x. Since there are no
images of interface elements in the causal relation between x and x, the causal
relation is completely obtained from causal relations in Ka, i. e. we have y <Ka y.
This contradicts the fact that <Ka is irreflexive because Ka is an AHL-process
net.

• Case 2. There is an element z ∈ PI] TI with x <K i′1(i1(z)) <K x.
Due to the transitivity of <K there is i′1(i1(z)) <K i′1(i1(z)) because

i′1(i1(z)) <K x <K i′1(i1(z)).

By statement (A) this implies z <(i1,i2) z, contradicting the fact that by the
composability of K1 and K2 w. r. t. (I, i1, i2) the induced causal relation <(i1,i2) is
irreflexive.

Hence, <K is irreflexive.

Only If. Given the pushout diagram (PO) in the category AHLNets with K3 being an
AHL-process net. We have to show that (K1,K2) are composable w. r. t. (I, i1, i2).

No cycles. Let x, y ∈ PI] TI with x ≺(i1,i2) y.
Then by the definition of ≺(i1,i2) there is

i1(x) <K1 i1(y) or i2(x) <K2 i2(y)

and by the fact that i′1 ◦ i1 = i′2 ◦ i2, we have

i′1 ◦ i1(x) <K i′1 ◦ i1(y)

because AHL-morphisms preserve pre and post conditions.
Since <K is transitive, we have also for the transitive closure <(i1,i2) of ≺(i1,i2), that
x <(i1,i2) y implies i′1 ◦ i1(x) <K i′1 ◦ i1(y).

Now, let us assume that <K is not irreflexive, i. e. there is x ∈ PI]TI with x <(i1,i2) x.
Then there is

i′1 ◦ i1(x) <K i′1 ◦ i1(x)

contradicting the fact that <K is irreflexive. Hence, <(i1,i2) is irreflexive.

242 B Detailed Proofs

Non-injective gluing. We have to show that for all p1 6= p2 ∈ IN(I) with i2(p1) = i2(p2)
there is i1(p1) ∈ IN(K1) or i1(p2) ∈ IN(K1).

So let p1 6= p2 ∈ IN(I) with i2(p1) = i2(p2) and let us assume that i1(p1) /∈ IN(K1)
and i1(p2) /∈ IN(K2). This means that there are t1, t2 ∈ TK1 and terms term1, term2 ∈
TΣ(X) with (term1, i1(p1)) ≤ postK1(t1) and (term2, i1(p2)) ≤ postK1(t2).

Since AHL-morphisms preserve post conditions, we have

(term1, i
′
1(i1(p1))) ≤ postK(i′1(t1)) and (term2, i

′
1(i1(p2))) ≤ postK(i′1(t2))

Moreover, by commutativity of pushout (PO) we have

i′1(i1(p1)) = i′2(i2(p1)) = i′2(i2(p2)) = i′1(i1(p2))

We distinguish the following two cases.

Case 1. There is i′1(t1) = i′1(t2).
Then we have (term1, i

′
1(i1(p1)))⊕ (term2, i

′
1(i1(p1))) ≤ postK(i′1(t1)), contradict-

ing unarity of AHL-process net K.

Case 2. There is i′1(t1) 6= i′1(t2).
Then (term1, i

′
1(i1(p1))) ≤ postK(i′1(t1)) and (term1, i

′
1(i1(p1))) ≤ postK(i′1(t2))

means that AHL-process net K has a backward conflict, which is also a contra-
diction.

Thus, we have i1(p1) ∈ IN(K1) or i1(p2) ∈ IN(K1).

The fact that for all p1 6= p2 ∈ OUT (I) with i2(p1) = i2(p2) there is i1(p1) ∈ OUT (K1)
or i1(p2) ∈ OUT (K1) follows analogously because AHL-morphisms preserve pre as well
as post conditions and AHL-process net K also does not have any forward conflicts.

No conflicts. We have to show that ∀x ∈ IN(I) : i1(x) /∈ IN(K1)⇒ i2(x) ∈ IN(K2). Let
x ∈ IN(I) with i1(x) /∈ IN(K1) and let us assume that there is i2(x) /∈ IN(K2).

Then i1(x) and i2(x) both are in the post domain of transitions, i. e. there are t1 ∈ TK1

and t2 ∈ TK2 such that i1(x) ∈ t1• and i2(x) ∈ t2•. Since AHL-morphisms preserve
post conditions there is

i′1(i1(x)) ∈ i′1(t1) • and i′2(i2(x)) ∈ i′1(t2)•

and due to the fact that (PO) commutes there is i′1(i1(x)) = i′2(i2(x)) which implies

i′1(i1(x)) ∈ i′1(t1) • ∩i′2(t2) • .

Since K is an AHL-process net it has no backward conflict implying that i′1(t1) = i′2(t2).
So due to the pushout property there is t0 ∈ TI with

i1(t0) = t1 and i2(t0) = t2

Then by the fact that i1(x) ∈ i1(t0)• together with the fact that i1 is an AHL-morphism
which preserves post domains it follows that x ∈ t0•. This contradicts the fact that
x ∈ IN(I). Hence, there is i2(x) ∈ IN(K2).

Now, we show that ∀x ∈ OUT (I) : i1(x) /∈ OUT (K1) ⇒ i2(x) ∈ OUT (K2). Let
x ∈ OUT (I) with i1(x) /∈ OUT (K1) and let us assume that there is i2(x) /∈ OUT (K2).

B.6 Proof of Theorem 4.2.11 (Direct Transformation of AHL-Process Nets) 243

Then i1(x) and i2(x) both are in the pre domain of transitions, i. e. there are t1 ∈ TK1

and t2 ∈ TK2 such that i1(x) ∈ •t1 and i2(x) ∈ •t2. Since AHL-morphisms preserve pre
conditions there is

i′1(i1(x)) ∈ •i′1(t1) and i′2(i2(x)) ∈ •i′1(t2)

and by commutativity of (PO) we have i′1(i1(x)) = i′2(i2(x)) which implies

i′1(i1(x)) ∈ •i′1(t1) ∩ •i′2(t2)

Since K is an AHL-process net it has no forward conflict implying that i′1(t1) = i′2(t2).
So due to the pushout property there is t0 ∈ TI with

i1(t0) = t1 and i2(t0) = t2

Then by the fact that i1(x) ∈ •i1(t0) together with the fact that i1 is an AHL-morphism
which preserves pre domains it follows that x ∈ •t0. This contradicts the fact that
x ∈ OUT (I). Hence, there is i2(x) ∈ OUT (K2).

Extension to Processes.
Given the pushout (PO) and additional AHL-morphisms mp1 : K1 → AN and mp2 :

K2 → AN with mp1 ◦ i1 = mp2 ◦ i2.

I
i1 //

i2
��

(PO)

K1

i′1
�� mp1

��

K2
i′2

//

mp2 ++

K

mp
DDDD

""DDD

AN
Then we also have a morphism mp0 : I → AN defined by mp0 := mp1 ◦ i1 = mp2 ◦ i2.

Moreover the pushout property of (PO) implies a unique morphism mp : K → AN such
that (PO) is also a pushout in the slice category AHLNets \ AN . As shown above the
composability of K1 and K2 w. r. t. (I, i1, i2) implies that K is an AHL-process net. Hence,
mp : K → AN is an AHL-process which implies that (PO) is also pushout in the full
subcategory Proc(AN) ⊆ AHLNets \AN of AHL-processes.

B.6 Proof of Theorem 4.2.11 (Direct Transformation of AHL-Process Nets)

Given a production for AHL-process nets % : L
l← I

r→ R and an AHL-process net K together
with a morphism m : L → K. In order to prove Theorem 4.2.11, we have to show that the
direct transformation of AHL-process nets with pushouts (1) and (2) in AHLPNets exists
if and only if % satisfies the transformation condition for AHL-process nets under m.

L

(1)m ��

I

c��

loo r // R

n��(2)

K C
d

oo
e

// K ′

First, we prove the following lemma which states the equivalence of the gluing relation
for a given production and match and the induced causal relation of the right-hand side of
the production and the context net in AHLNets.

Lemma B.6.1 (Gluing Relation Lemma). Given a production for AHL-process nets % : L
l←

I
r→ R, a match m : L→ K where K is an AHL-process net, and pushout (1) in AHLNets.

244 B Detailed Proofs

Then the gluing relation <(%,m) is exactly the induced causal relation of C and R w. r. t.
(I, c, r), i. e. <(%,m) = <(c,r).

L

m
��

(1)

I
loo

c
��

r // R

K C
d
oo

Proof. We define a relation ≺C⊆ (PC × TC)] (TC × PC) as follows:

≺C= {(p, t) ∈ PC × TC | p ∈ •t} ∪ {(t, p) ∈ TC × PC | p ∈ t•}

The relation ≺C describes the direct causal relationship of the elements in C, i. e. the causal
relation <C is the transitive closure of ≺C . We show that for the relation ≺(K,m) in Defini-
tion 4.2.9 we have ≺(K,m)=≺C , by showing that there is a subset relation in both directions.

Direction 1 (≺(K,m)⊆≺C). Let x, y ∈ PK] (TK \mT (TL)) with x ≺(K,m) y. Due to the
bipartite structure of Petri nets there are two possible cases:

• Case 1. There is x ∈ PK and y ∈ TK \mT (TL).
Due to the construction of C there is y ∈ TC . Furthermore there is term ∈
TOP (X)typeK(x) such that

(term, x) ≤ preK(y) ⇔ (term, x) ≤ preK |TC (y)

⇔ (term, x) ≤ preC(y)

and hence x ≺C y.

• Case 2. There is x ∈ TK \mT (TL) and y ∈ PK .
In this case we have x ∈ TC and there is term ∈ TOP (X)typeK(x) such that

(term, y) ≤ postK(x) ⇔ (term, y) ≤ postK |TC (x)

⇔ (term, y) ≤ postC(x)

and hence x ≺C y.

Direction 2 (≺C⊆≺(K,m)). Let x, y ∈ PC]TC with x ≺C y. Again we distinguish the two
possible cases:

Case 1. There is x ∈ PC and y ∈ TC .
Then there is term ∈ TOP (X)typeC(x) such that (term, x) ≤ preC(y). Since AHL-
morphisms preserve pre conditions and d is an inclusion we have

(term, x) ≤ preC(y) ⇔ (term, x) ≤ d⊕ ◦ preC(y)

⇔ (term, x) ≤ preK(d(y))

⇔ (term, x) ≤ preK(y)

So the fact that TC = TK \mT (TL) implies x ≺(K,m) y.

Case 2. There is x ∈ TC and y ∈ PC .
Then there is term ∈ TOP (X)typeC(x) such that (term, x) ≤ postC(y). Since AHL-
morphisms preserve not only pre but also post conditions we obtain analogously
to Case 1 that x ≺(K,m) y.

B.6 Proof of Theorem 4.2.11 (Direct Transformation of AHL-Process Nets) 245

So we have that ≺(K,m)=≺C and since <(K,m) is the transitive closure of ≺(K,m) and
<C is the transitive closure of ≺C it follows that <(K,m)=<C .
Furthermore we can use the inclusion d to obtain from the commutativity of (1) that

m ◦ l(x) = d ◦ c(x) = c(x).

So let ≺(c,r)⊆ (PI × TI)] (TI × PI) be the relation defined by

≺(c,r) = {(x, y) | c(x) <C c(y) ∨ r(x) <R r(y)}

then we have

≺(%,m) = {(x, y) ∈ (PI × TI)] (TI × PI) | m ◦ l(x) <(K,m) m ◦ l(y) ∨ r(x) <R r(y)}
= {(x, y) ∈ (PI × TI)] (TI × PI) | c(x) <C c(y) ∨ r(x) <R r(y)}
= {(x, y) ∈ (PI × TI)] (TI × PI) | r(x) <R r(y) ∨ c(x) <C c(y)}
= ≺(r,c)

and since <(%,m) is the transitive closure of ≺(%,m) and <(r,c) is the transitive closure of
≺(r,c) we have <(%,m) = <(r,c).

Now we show that the gluings of AHL-nets (1) and (2) below exist if and only if the
production p under m satisfies the transformation condition for AHL-process nets.

L

m
��

(1)

I
loo r //

c
��

(2)

R

n
��

K C
doo e // K ′

If. Given production % : L
l← I

r→ R satisfying the transformation condition for AHL-
processes under match m. Since this implies that % satisfies the the gluing condition for
AHL-nets by Fact 3.2.14 there exist pushouts (1) and (2) in AHLNets. We have to show
that (1) and (2) are also pushouts in the category AHLPNets of AHL-process nets.

Pushout (1). Since MAHL-morphisms are closed under pushouts, the fact that we have
l ∈ MAHL implies that also d ∈ MAHL. From AHL-process net K and injective AHL-
morphism d : C → K it follows by Lemma A.7.1 that also C is an AHL-process net.
So we have that all objects and morphisms in pushout (1) are in the full subcategory
AHLPNets ⊆ AHLNets which means that (1) is also a pushout in AHLPNets.

Pushout (2). We have to show that (R,C) are composable w. r. t. (I, r, c) (see Defini-
tion 4.2.5).

No cycles. The fact that the gluing relation <(%,m) of % und m is a strict partial order
implies that the induced causal relation <(r,c) is a strict partial order because by
Lemma B.6.1 there is x <(%,m) y ⇔ x <(r,c) y.

Non-injective gluing. From pushout (1) in AHLPNets of morphisms l and c it
follows by Fact 4.2.6 that (L,C) are composable w. r. t. (I, l, c).

Let p1 6= p2 ∈ IN(I) with c(p1) = c(p2). Then we have

m ◦ l(p1) = d ◦ c(p1) = d ◦ c(p2) = m ◦ l(p2)

246 B Detailed Proofs

which by the fact that % and m satisfy the transformation condition implies that
r(p1) ∈ IN(R) or r(p2) ∈ IN(R).

Analogously, we obtain for p1 6= p2 ∈ OUT (I) with c(p1) = c(p2) that there is
r(p1) ∈ OUT (R) or r(p2) ∈ OUT (R).

No conflicts. Let x ∈ IN(I) and c(x) /∈ IN(C) then by the composability of (L,C)
w. r. t. (I, l, c) follows that l(x) ∈ IN(L). The fact that c(x) /∈ IN(C) implies
t ∈ TC with c(x) ∈ t• and d ◦ c(x) ∈ d(t)• because AHL-morphisms preserve post
conditions. Due to the commutativity of (1) there is m ◦ l(x) = d ◦ c(x) which
means that m ◦ l(x) /∈ IN(K) because m ◦ l(x) ∈ d(t)•.
So there is x ∈ InP and the fact that production % and match m satisfy the
transformation condition for AHL-processes implies that r(x) ∈ IN(R).

Now, let x ∈ OUT (I) and c(x) /∈ OUT (C) then by the composability of (L,C)
w. r. t. (I, l, c) follows that l(x) ∈ OUT (L). The fact that c(x) /∈ OUT (C) implies
t ∈ TC with c(x) ∈ •t and d ◦ c(x) ∈ •d(t) because AHL-morphisms preserve pre
conditions. Due to the commutativity of (1) there is m ◦ l(x) = d ◦ c(x) which
means that m ◦ l(x) /∈ OUT (K) because m ◦ l(x) ∈ •d(t).
So there is x ∈ OutP and the fact that production % and match m satisfy the
transformation condition for AHL-processes implies that r(x) ∈ OUT (R).

Thus, (R,C) are composable w. r. t. (I, r, c) leading to the existence of pushout (2) in
AHLPNets.

Only If. Given pushouts (1) and (2) in AHLNets and AHLPNets. We have to show
that the transformation condition for AHL-process nets (see Definition 4.2.10) is satisfied by
production % under match m.

Gluing condition. Due to pushouts (1) and (2) in AHLNets by Fact 3.2.14 we have that
the gluing condition is satisfied.

No cycles. By Fact 4.2.6 pushout (2) in AHLPNets implies that (R,C) are composable
w. r. t. (I, r, c) which means that <(r,c) is a strict partial order. Due to Lemma B.6.1 we
know that there is <(r,c)=<(%,m) which means that also <(%,m) is a strict partial order.

Non-injective gluing. Let p1 6= p2 ∈ IN(I) with m◦ l(p1) = m◦ l(p2). Since l is injective,
p1 6= p2 implies l(p1) 6= l(p2). Then due to the fact that (1) is a pushout, there is p ∈ PC
with c(p1) = p = c(p2). Thus, by composability of (R,C) w. r. t. (I, r, c) it follows that
r(p1) ∈ IN(R) or r(p2) ∈ IN(R).

Analogously, we obtain for p1 6= p2 ∈ OUT (I) with m ◦ l(p1) = m ◦ l(p2) that r(p1) ∈
OUT (R) or r(p2) ∈ OUT (R).

No conflicts. Let x ∈ InP which means that x ∈ IN(I) with l(x) ∈ IN(L) and m ◦ l(x) /∈
IN(K). The fact that m◦ l(x) /∈ IN(K) implies that there is t ∈ TK with m◦ l(x) ∈ t•.
Let us assume that there is t′ ∈ TL with mT (t′) = t. Then from the fact that m is
an AHL-morphism, it follows that l(x) ∈ t′• because AHL-morphisms preserve post
conditions. This contradicts the fact that l(x) ∈ IN(K) and thus t /∈ mT (TL) which
means that t ∈ TK \mT (TL). Then by the construction of pushout complement TC in
AHLNets it follows that t ∈ TC .

Moreover, we have c(x) = m ◦ l(x) ∈ t• which means that c(x) /∈ IN(C). This implies
that r(x) ∈ IN(R) due to the composability of (R,C) w. r. t. (I, r, c) given by pushout
(2) in AHLPNets and Fact 4.2.6.

B.7 Proof of Theorem 4.5.13 (Amalgamation Theorem for AHL-Processes) 247

Now, let x ∈ OutP which means that x ∈ OUT (I) with l(x) ∈ OUT (L) and m ◦ l(x) /∈
OUT (K). Then m ◦ l(x) /∈ OUT (K) implies that there is t ∈ TK with m ◦ l(x) ∈ •t.
Again, the assumption that t′ ∈ TL with mT (t′) = t leads to a contradiction which
means that t ∈ TK \ mT (TL). Then by the construction of TC follows that t ∈ TC
and we have c(x) = m ◦ l(x) ∈ •t which means that c(x) /∈ OUT (C) and hence
r(x) ∈ OUT (R) by composability of (R,C) w. r. t. (I, r, c).

Extension to Processes.
Given pushouts (1) and (2) in AHLNets and AHLPNets and additional morphisms

mp : K → AN and rp : R→ AN with mp ◦m ◦ l = rp ◦ r.
L

m �� (1)

I
loo r //

c �� (2)

R
n �� rp

��

K

mp --

C
doo e // K ′

AN
Since L, C and I are AHL-process nets we obtain AHL-processes by composition of AHL-

morphisms lp := mp◦m : L→ AN , cp := mp◦d : C → AN and ip := mp◦m◦ l = mp◦d◦c :
I → AN such that (1) is a commuting diagram in Proc(AN).

By construction of pushouts in slice categories the pushout (1) in AHLNets is also a
pushout in AHLNets\AN . Hence, due to the fact that lp, cp, ip and mp are AHL-processes
we have that (1) is a pushout in the full subcategory Proc(AN) ⊆ AHLNets \AN .

Finally, we have

cp ◦ c = mp ◦ d ◦ c = mp ◦m ◦ l = rp ◦ r

which by Fact 4.2.6 implies a unique morphism mp′ : K ′ → AN such that (2) is also a
pushout in Proc(AN).

B.7 Proof of Theorem 4.5.13 (Amalgamation Theorem for AHL-Processes)

1. Composition Construction. The fact that (mp0, φ1) and (mp0, φ2) are agreement
restrictions for mp1 and mp2 implies that (K1,K2) are composable w. r. t. (K0, φ1, φ2)
which by Fact 4.2.6 implies that the composition K3 = K1 +(K0,φ1,φ2) K2 exists and is
an AHL-process net. According to Definition 4.2.2 the gluing of AHL-process nets is
also a pushout in AHLNets, and we have

g1 ◦mp1 ◦ φ1 = g2 ◦mp2 ◦ φ2

Thus, the pushout property of pushout (PO) in AHLNets implies a unique AHL-
morphism mp3 : K3 → AN3 such that (3) and (4) below commute.

K0

mp0

��φ1

||xxxxxxxxxxxxxxxxxxxxx

φ2

""FFFFFFFFFFFFFFFFFFFFF

AN0

f1

{{wwwwwwww
f2

##GGGGGGGG
(1) (2)

K1 mp1

//

ψ1

""FFFFFFFFFFFFFFFFFFFFF AN1

g1 ##GGGGGGGG AN2

g2{{wwwwwwww
K2mp2

oo

ψ2

||xxxxxxxxxxxxxxxxxxxxx

AN3(3) (4)

(PO)

K3

mp3

OO

248 B Detailed Proofs

From the fact that f1, f2 ∈MAHL it follow that also φ1 and φ2 are MAHL-morphisms,
because MAHL-morphisms are closed under pullbacks. Moreover, due to closure under
pushouts it follows that we also have g1, g2, ψ1, ψ2 ∈ MAHL. This means that the
above diagram is a weak Van Kampen cube with pushouts as top and bottom faces
and pullbacks as back faces, where all horizontal morphisms are MAHL-morphisms.
Since (AHLNets,MAHL) is a weak adhesive HLR category (see [EEPT06b]), the Van
Kampen-property (see Definition A.1.9) implies that also the front faces (3) and (4) are
pullbacks and hence mp3 is the amalgamation mp3 = mp1 +m0 mp2.

2. Decomposition Construction. Given restrictions (mp1, ψ1) and (mp2, ψ2), we have
pullbacks (3) and (4) below in AHLNets.

AN0

f1

{{wwwwwwww
f2

##GGGGGGGG

K1 mp1

//

ψ1

""FFFFFFFFFFFFFFFFFFFFF AN1

g1 ##GGGGGGGG AN2

g2{{wwwwwwww
K2mp2

oo

ψ2

||xxxxxxxxxxxxxxxxxxxxx

AN3(3) (4)

(PO)

K3

mp3

OO

Then we obtain the restriction (mp0, φ1) of mp1 along f1 as pullback (1) below in
AHLNets. Furthermore there is

g2 ◦ f2 ◦mp0 = g1 ◦ f1 ◦mp0 = g1 ◦mp1 ◦ φ1 = mp3 ◦ ψ1 ◦ φ1

which by the pullback property of (2) implies that there is a unique AHL-morphism
φ2 : K0 → K2 such that diagram (2) and the outer square below commute.

K0

mp0

��φ1

||xxxxxxxxxxxxxxxxxxxxx

φ2

""FFFFFFFFFFFFFFFFFFFFF

AN0

f1

{{wwwwwwww
f2

##GGGGGGGG
(1) (2)

K1 mp1

//

ψ1

""FFFFFFFFFFFFFFFFFFFFF AN1

g1 ##GGGGGGGG AN2

g2{{wwwwwwww
K2mp2

oo

ψ2

||xxxxxxxxxxxxxxxxxxxxx

AN3(3) (4)

(PO)

K3

mp3

OO

By composition of pullbacks we have that (1)+(3) is a pullback. Since (PO) and the
outer square commute there is (1)+(3) = (2)+(4) which implies that (2)+(4) is a
pullback, and hence by pullback decomposition (2) is a pullback.

So we have that the above cube is a weak Van Kampen cube where all side faces are
pullbacks and the bottom is a pushout. Hence, the Van Kampen property implies
that the top face (i. e. the outer square) is a pushout in AHLNets. Since K3 and its
restrictions K0,K1 and K2 all are AHL-process nets, the outer square in the diagram
which is a pushout in AHLNets is also a gluing of AHL-process nets which by Fact 4.2.6
implies that K1 and K2 are composable w. r. t. (K0, φ1, φ2). Hence, (mp0, φ1) and

B.7 Proof of Theorem 4.5.13 (Amalgamation Theorem for AHL-Processes) 249

(mp0, φ2) are agreement restrictions for mp1 and mp2 which means that mp3 is an
amalgamation of mp1 and mp2.

3. Bijective Correspondence. We define

Comp(
[
mp1

φ1← mp0
φ2→ mp2

]
) = [mp3]

where the AHL-process net K3 is obtained as composition of AHL-process nets K3 =
K1 +(K0,φ1,φ2)K2 and the morphism mp3 : K3 → AN3 is the unique morphism induced
by the pushout property of the corresponding pushout in AHLNets. Hence, mp3 =
mp1 ◦φ1,φ2 mp2 is unique up to isomorphism which means that the function Comp is
well-defined. Moreover, we define

Decomp([mp3]) =
[
mp1

φ1← mp0
φ2→ mp2

]
where mp1

φ1← mp0
φ2→ mp2 is the amalgamation decomposition of mp3 constructed as

given in item 2 above. The amalgamation decomposition constructed via pullbacks
(1)-(4) in AHLNets is unique up to isomorphism due to the uniqueness of pullbacks.
Thus, the function Decomp is well-defined.

K0

mp0

��φ1

||xxxxxxxxxxxxxxxxxxxxx

φ2

""FFFFFFFFFFFFFFFFFFFFF

AN0

f1

{{wwwwwwww
f2

##GGGGGGGG
(1) (2)

K1 mp1

//

ψ1

""FFFFFFFFFFFFFFFFFFFFF AN1

g1 ##GGGGGGGG AN2

g2{{wwwwwwww
K2mp2

oo

ψ2

||xxxxxxxxxxxxxxxxxxxxx

AN3(3) (4)

(PO)

K3

mp3

OO

Given an agreeing span mp1
φ1← mp0

φ2→ mp2 with respect to pushout (PO). Then
by definition of agreement restrictions diagrams (1) and (2) above are pullbacks in
AHLNets. The composition mp3 : K3 → AN3 is constructed via the pushout which is
the outer square in the diagram above. Then the pushout (PO) is a weak Van Kampen
square implying that (3) and (4) are pullbacks in AHLNets. Since the decomposition
of mp3 is constructed via pullback (1)-(4) and pullbacks are unique up to isomorphism

the result is isomorphic to mp1
φ1← mp0

φ2→ mp2, i. e.

Decomp(Comp(
[
mp1

φ1← mp0
φ2→ mp2

]
)) =

[
mp1

φ1← mp0
φ2→ mp2

]
Vice versa, given an AHL-process mp3 : K3 → AN3 the amalgamation decomposition

mp1
φ1← mp0

φ2→ mp2 of mp3 is constructed via pullbacks (1)-(4) leading to the fact that
(PO) is a weak Van Kampen square. This implies that the outer square is a pushout

which defines exactly the composition of mp1
φ1← mp0

φ2→ mp2. Since pushouts are
unique up to isomorphism there is

Comp(Decomp([mp3])) = [mp3]

250 B Detailed Proofs

Hence, Comp and Decomp are inverse to each other which means that they are bijec-
tions.

4. Instantiations. The proof for instantiated AHL-processes works completely analo-
gously. Note that the restriction and gluing constructions for instantiations of AHL-
process nets imply corresponding restriction or gluing of the underlying AHL-process
net. Moreover, according to Fact 4.5.6, the restriction of an instantiated AHL-process
is unique up to isomorphism. The uniqueness is also the case for the gluing of instan-
tiated AHL-process nets as pushout which exists if and only if the corresponding span
of AHL-process nets is composable (see Definition 4.5.7).

B.8 Proof of Theorem 4.6.8 (Direct Transformation of Instantiations Using
Abstract Productions)

Given an abstract production for instantiations % : (instL, L)
l← (instI , I)

r→ (instR, R), an
instantiation (inst, AN) and a (match) morphism m : (instL, L) → (inst, AN). We have to

show that there exists a direct transformation of instantiations (inst, AN)
(%,m)
=⇒ (inst′, AN ′),

if and only if % and m satisfy the instantiation condition for abstract productions and there

exists a direct transformation of AHL-nets AN
Net(%),m

=⇒ AN ′ using the underlying production

for AHL-nets Net(%) : L
l← I

r→ R.

We show the two directions of the proof separately.

If. Let % and m satisfy the instantiation condition for abstract productions and let exist a

direct transformation of AHL-nets AN
Net(%),m

=⇒ AN ′ using the underlying production

for AHL-nets Net(%) : L
l← I

r→ R. Then, according to Fact A.5.11 there exists a

direct transformation (inst, AN)
%,m
=⇒ (inst′, AN ′) of weak instantiations with pushouts

(1) and (2) in wInst below.

(instL, L)

m

��
(1)

(instI , I)
loo r //

c

��
(2)

(instR, R)

n

��
(inst, AN) (inst0, AN0)

doo e // (inst′, AN ′)

According to Lemma A.5.17 there is a direct transformation of weak instantiations

(inst, AN)
%′,m′
=⇒ (inst′, AN ′) using the data-shifting %′ of % along m.

Then, due to the fact that the data-shifting %′ of % along m is required to be a concrete
production of instantiations, according to Fact A.5.12 there exists a direct transforma-

tion of instantiations (inst, AN)
%′,m′
=⇒ (inst′, AN ′) that coincides with the correspond-

ing transformation of weak instantiations (see Fact A.5.10). Hence, (inst0, AN0) and
(inst′, AN ′) are concrete instantiations which means that the direct transformation

(inst, AN)
%,m
=⇒ (inst′, AN ′) given by pushouts (1) and (2) also is a direct transforma-

tion of concrete instantiations.

Only If.

Now, let there be a direct transformation of instantiations (inst, AN)
(%,m)
=⇒ (inst′, AN ′).

This means that there are pushouts (1) and (2) below in wInst which by construction
of pushouts in wInst implies that there are corresponding pushouts (3) and (4) in

AHLNets. Hence, there is a direct transformation AN
Net(%),m

=⇒ AN ′ of AHL-nets.

B.9 Proof of Fact 4.6.13 (Equivalence of Consistent Creation Condition and Instantiation
Condition) 251

% : (instL, L)

m

��
(1)

(instI , I)
loo r //

c

��
(2)

(instR, R)

n

��
(inst, AN) (inst0, AN0)

doo e // (inst′, AN ′)

Net(%) : L

m

��
(3)

I
loo r //

c

��
(4)

R

n
��

AN AN0
doo e // AN ′

According to Lemma A.5.17 there is a direct transformation of weak instantiations

(inst, AN)
%′,m′
=⇒ (inst′, AN ′) using the data-shifting %′ of % along m, given by pushouts

(5) and (6) below.

(inst′L, L
′)

m′

��
(5)

(inst′I , I
′)

l′oo r′ //

c′

��
(6)

(inst′R, R
′)

n′

��
(inst, AN) (inst0, AN0)

doo e // (inst′, AN ′)

Due to the fact that %′ together with m′ is a data-shifting, according to Definition 4.6.5
the data type part wInstData(m′) of m′ is an isomorphism. Moreover, pushout (5)
along MAHL-morphism l′ is also pullback. Since the construction of pushouts and
pullbacks of weak instantiations implies the corresponding construction of pushouts
and pullbacks in AHLNets and thus also in Algs, we obtain that also wInstData(c′)
and wInstData(n′) are isomorphisms. So, using Fact A.6.9, we obtain W -creations
of m′, c′ and n′ via (inst, AN), (inst0, AN0) and (inst′, AN ′), respectively, which are
trivially given by m′, c′ and n′, respectively. The domains of these morphisms are
the unique instantiations corresponding to (inst′L, L

′), (inst′I , I
′) and (inst′R, R

′) (see
Remark 4.3.8). Hence, the data-shifting %′ of % along m is a concrete production, and
thus % and m satisfy the instantiation condition.

The proof for the instantiated AHL-process nets follows immediately from combination of
the proof above and the fact that direct transformations of AHL-process nets are also direct
transformations of AHL-nets.

B.9 Proof of Fact 4.6.13 (Equivalence of Consistent Creation Condition
and Instantiation Condition)

Given an abstract production for instantiations % : (instL, L)
l← (instI , I)

r→ (instR, R),
where the data type part of l and r are identities, a concrete instantiation (inst, AN) and a
match m : (instL, L) → (inst, AN). We have to show that % and m satisfy the consistent
creation condition if and only if they satisfy the instantiation condition.

Let %′ together with m′ as depicted below be the data-shifting of % along m. Then accord-
ing to Definition 4.6.5 morphism m′ has an isomorphic data type part which by Lemma A.5.5
implies that (inst′L, L) is a concrete instantiation. Moreover, by pushout (1) and l ∈ MAHL

we also have that l′ ∈ MAHL. So we also have that l′ has an isomorphic data type part and
hence using again Lemma A.5.5 we obtain that also (inst′I , I) is a concrete instantiation. So
the question whether or not the instantiation condition is satisfied can be reduced to the
question if the right-hand side of the data-shifting is a concrete instantiation.

252 B Detailed Proofs

(instL, L)

m

''

sL
��

(1)

(instI , I)
loo r //

sI
��

(2)

(instR, R)

sR
��

: %

(inst′L, L
′)

m′
��

(3) (inst′I , I
′)

l′
oo

r′
// (inst′R, R

′) : %′

(inst, AN)

Further, due to the fact that sL : (instL, L) → (inst′L, L
′) is the data-image of weak

instantiation (instL, L) along m, we have by Definition 4.4.1 that sL : L → L′ is the data-
image of AHL-net L along m, and thus by Definition 3.3.1 sL has (mΣ,mA) as data type
part. Then by Fact A.5.8 the pushouts (1) and (2) imply corresponding underlying pushouts
in AHLNets which by componentwise construction of pushouts in AHLNets means that
there are also pushouts in the Algs-component. So, since l and r have an identical data type
part, the pushouts in Algs imply that also sI and sR have (mΣ,mA) as data type parts.

Moreover, by Definition 3.3.1 we know that

condR′ = Pfin(m#
Σ)(condR)

and by Definition 4.4.1 we know that inst′R = wFlat(sR) ◦ instR37 which means that for
(t, v) ∈ instR,T (TR) we have

(sR,T (t),mA ◦ v ◦ (mX |V ar(t))−1) = wFlat(sR)T (t, v) ∈ inst′R,T (TR′)

Now we distinguish between the two directions of the fact:

If. We consider the case that % and m satisfy the instantiation condition. Then we have
that (inst′R, R

′) is a concrete instantiation which means that all transition assignment
in the instantiation are consistent assignments, i. e. for all (t′, v′) ∈ inst′R,T (TR′) we
have that v′ � condR′(t′).

Now, let t ∈ TR \ rT (TI) with instR,T (t) = (t, v). As shown above we know that
(sR,T (t),mA ◦ v ◦ (mX |V ar(t))−1) ∈ inst′R,T (TR′), and thus, since all transition assign-
ments in (inst′R, R

′) are consistent, we know that

mA ◦ v ◦ (mX |V ar(t))−1 � condR′(sR,T (t))

Due to the fact that sR is a data-image, it has an identical T -component which means
that sR,T (t) = t. So, as we have shown above, for the conditions we know that

condR′(sR,T (t)) = condR′(t) = Pfin(m#
Σ (condR))

Hence, we have that

mA ◦ v ◦ (mX |V ar(t))−1 � condR′(sR,T (t)) � Pfin(m#
Σ (condR))

and since this holds for all t ∈ TR \ rT (TI), we have that % and m satisfy the consistent
creation condition.

Only If. We consider the case that % and m satisfy the consistent creation condition. Note
that the argumentation in the If-case works also in the other direction, i. e. the fact that

37In Definition 4.4.1 we consider only the case of concrete instantiations, where we use Flat instead of
wFlat, but the construction works analogously for weak instantiations using wFlat.

B.10 Proof of Theorem 4.8.4 (Extension of AHL-Process based on AHL-Net
Transformation) 253

the consistent creation condition is satisfied implies that the images of the transition
assignments of transitions t ∈ TR \ rT (TI) are consistent assignments.

It remains to investigate all other transition assignments for transitions that are not in
the image sR,T (TR \ rT (TI)). For all t ∈ TR with t ∈ rT (TI) there exists a transition
t0 ∈ TI with rT (t0) = t, and also a t′ ∈ TI′ with sI,T (t0) = t′. Then by commutativity
of diagram (2) we have that sR,T (t) = r′T (t′). Moreover, due to the fact that (2) is a
pushout, there is also an underlying pushout of the T -component, which means that
sR,T and r′T are jointly surjective. Hence, for all transitions in TR′ that do not have a
preimage in TR \ rT (TI), we know that the transition has a preimage in TI′ .

So let t ∈ TR′ and t′ ∈ TI′ such that r′T (t′) = t. For inst′I,T (t′) = (t′, v′) we know that
(t′, v′) is a consistent transition assignment, because (inst′I , I

′) is a concrete instanti-
ation. Furthermore, since r has an identical data type part, the Algs-component of
pushout (2) implies that the morphism r′ has an isomorphic data type part and we can
w. l. o. g. assume that the data type part (r′Σ, r

′
A) is an identity.

Then by the fact that AHL-morphisms preserve firing conditions, we obtain that

condR′(t) = condR′(r
′
T (t′) = Pfin(r#

Σ)(condI′(t
′)) = condI′(t

′)

Moreover, using the fact that r′T is a weak instantiation morphism, we obtain

inst′R,T (t) = inst′R,T (r′T (t′)) = inst′R,T (Skel(r′)T (t′))

= wFlat(r′)T (inst′I,T (t′)) = wFlat(r′)T (t′, v′)

= (r′T (t′), v′) = (t, v′)

This means that the image t of t′ has the same assignment v′.

Now, the fact that (t′, v′) is a consistent transition assignment means that v′ satisfies
condI′(t

′), and since condI′(t
′) = condR′(t), we have that also (t, v′) is a consistent

transition assignment. Due to injectivity of inst′R, the assignment v′ is the only as-
signment that corresponds to t, and since this holds for all t ∈ r′T (TI′), we know that
all transition assignments in (inst′R, R

′) are consistent. Hence, (inst′R, R
′) is a concrete

instantiation which together with the fact that also (inst′L, L
′) and (inst′I , I

′) are con-
crete instantiations means that %′ is a concrete production, and thus the instantiation
condition is satisfied.

B.10 Proof of Theorem 4.8.4 (Extension of AHL-Process based on AHL-
Net Transformation)

Given an AHL-net AN , an AHL-process mp : K → AN and a direct transformation AN
%,m⇒

AN ′ with pushouts (1) and (2) in AHLNets as depicted in Figure 4.26 on page 102. We
have to show that there exists an extension mp′ : K → AN ′ of mp if and only if mp and %,m
satisfy the extension condition.

If. Let mp and p,m satisfy the extension condition. We define mp0 : K → AN0 as
mp0 = f−1 ◦mp. Since f is injective, for the well-definedness of mp0 it suffices to show
that for all elements x in in K there exists an element y in AN0 with f(y) = mp(x).
Let p ∈ PK .

Case 1. There exists x ∈ PL with m(x) = mp(p).
Then there is x ∈ PP and since mp and %,m satisfy the extension condition, we
have x′ ∈ PI with l(x′) = x. Thus, we have y = k(x′) with f(y) = f(k(x′)) =
m(l(x′)) = m(x) = mp(p).

254 B Detailed Proofs

Case 2. There exists no x ∈ PL with m(x) = mp(p).
Then by construction of pushout complements in AHLNets there exists y ∈ AN0

with f(y) = mp(p).

The proof for the existence of the transitions works analogously. Injectivitiy of f implies
that we have a well-defined morphismmp0 : K → AN0 with f◦mp0 = f◦f−1◦mp = mp,
and we obtain the required extension mp′ : K → AN ′ by composition mp′ = g ◦mp0.

Only If. Let mp′ : K → AN ′ be the extension of mp, i. e. there is mp0 : K → AN0 with
f ◦mp0 = mp and g ◦mp0 = mp′. We have to show that all process points are gluing
points. So, let x ∈ PP and let w. l. o. g. x ∈ PL. Then there is p ∈ PK with mp(p) =
m(x). Moreover, we have y = mp0(p) ∈ PAN0 with f(y) = f(mp0(p)) = mp(p) = m(x).
Since (1) is pushout in AHLNets, this implies that there is x0 ∈ PI with k(x0) = y
and l(x0) = x. Hence, we have x ∈ GP .

B.11 Proof of Theorem 4.8.14 (Process Evolution based on Action Evolu-
tion)

Given an action evolution AN
%,m
=⇒ AN ′ via production (%∗, %) with %∗ =

∐
i∈I %

∗
i , and a

process mp : K → AN .

We have to show that for every choice of matches for occurrences (mi,o : L∗i → K)i∈I,o∈occi
(see Definition 4.8.12) there exists a production (%+, %) for AHL-processes and a direct trans-

formation mp
(%+,%)
=⇒ mp′ as depicted in Figure 4.31.

Construction:

1. The action evolution pattern %+ is constructed as parallel production (componentwise

coproduct) %+ = L+ l+← I+ r+

→ R+ =
∐
i∈I

∐
o∈occi %

∗
i with coproduct injections µXi,o :

X∗i → X+ for X ∈ {L, I,R}, which together with morphisms mpX ◦ ιXi induce unique

morphisms mp+
X : X+ → X such that (%+, %) = mp+

L

(l+,l)← mp+
I

(r+,r)→ mp+
R is a

production for AHL-processes (see Definition 4.8.7).

2. A match m+ is induced by coproduct L+ =
∐
i∈I

∐
o∈occi L

∗
i and matches mi,o.

3. Then, using Lemma A.7.3, we obtain a direct transformation K
%+,m+

=⇒ K ′ of AHL-
process nets in the lower back of Figure 4.31.

4. The process mp0 : K0 → AN0 can be obtained by construction of K0 as pullback in the
left bottom of Figure 4.31, and the process mp′ : K ′ → AN ′ is induced by universal
property of the pushout in the lower right back of the cube.

We have to show that the construction above is well-defined.

1. Due to the fact that all productions %i for i ∈ I are single action evolution patterns,

the parallel production %+ = L+ l+← I+ r+

→ R+ =
∐
i∈I

∐
o∈occi %

∗
i is an action evolution

pattern. Then, due to morphisms mpX ◦ ιXi for X ∈ {L, I,R}, the universal coproduct
property of X+ implies a unique mp+ : X+ → X such that mp+ ◦ µXi,o = mpX ◦ ιXi .

It remains to show that (%+, %) = mp+
L

(l+,l)← mp+
I

(r+,r)→ mp+
R is a production for AHL-

processes (see Definition 4.8.7), i. e. that we have mp+
L ◦ l+ = l ◦mp+

I and mp+
R ◦ r+ =

r ◦mp+
I .

B.11 Proof of Theorem 4.8.14 (Process Evolution based on Action Evolution) 255

L∗i

mi,o

((

µLi,o
��

ιLi
SSSSS

))SSS
I∗i

��

l∗ioo
r∗i //

ιIi
SSSSSS

))SSS
R∗i

ιRi
SSSSS

))SSS

��
L∗

mpL

��

I∗
l∗oo r∗ //

mpI

��

R∗

mpR

��
L+

m+

��

mp+
L

TTTTT

))TT

I+

��

l+oo r+
//

mp+
I

TTTT

))TTT
R+

mp+
R

TTTT

))TT

��
L
m

��

I
loo r //

k

��

R
n

��
K

mp
SSSS

))SSS
K0

mp0
SSS

))SSS

f ′oo g′ // K ′
mp′

SS

))SSSS

AN AN0
f

oo
g

// AN ′

Figure B.11: Process evolution based on action evolution

Considering the left-hand side, for all i ∈ I and o ∈ occi we have

mp+
L ◦ l

+ ◦ µIi,o = mp+
L ◦ µ

L
i,o ◦ l∗i = mpL ◦ ιLi ◦ l∗i

= mpL ◦ l∗ ◦ ιIi = l ◦mpI ◦ ιIi
= l ◦mp+

I ◦ µ
I
i,o

which by jointly epic µIi,o implies mp+
L ◦ l+ = l ◦mp+

I , and analogously we obtain also

mp+
R ◦ r+ = r ◦mp+

I .

2. By universal coproduct property of L+ and morphisms mi,o : L∗i → K, we obtain a
unique morphism m+ : L+ → K such that m+ ◦ µLi,o = mi,o.

3. In order to use Lemma A.7.3, we have to show that m+ is transition-injective, i. e. that
m+
T is injective. For this purpose we show that the diagram (1) below, corresponding

to the transition-component of the lower left face in Figure B.11, is a pullback.

TL+

mp+
L,T //

m+
T
��

TL

mT
��

TK mpT
// TAN

(1)

w � //
_

��

u_

��
t � // mpT (t)

Using standard construction of pullbacks in Sets, in order to show that TL+ is a pullback
of K and L, we have to show that

TL+
∼= {(t, u) ∈ TK × TL | mpT (t) = mT (u)}

First we show that for (t, u) ∈ TK × TL with mpT (t) = mT (u) there is w ∈ TL+ such
that m+(w) = t and mp+

L (w) = u. So let t ∈ TK and u ∈ TL∗ which by bijection
mpL,T implies that there is a unique u′ ∈ TL∗ with mpL,T (u′) = u. Then by mpT (t) =
mT (u) = mT ◦ mpT (u′), there is an i ∈ I such that TL∗i = {v} and ιLi (v) = u′, and
therefore there is a match unique match mi,o : L∗i → K with mi,o(v) = t because
(mi,o)i∈I,o∈occi is a choice of matches. This implies that we also have w ∈ TL+ with
w = µLi,o(v) such that

mp+
L (w) = mp+

L ◦ µ
L
i,o(v) = mpL ◦ ιLi (v) = mpL(u′) = u

256 B Detailed Proofs

and

m+(w) = m+ ◦ µLi,o(v) = mi,o(v) = t

Due to construction of L+ as coproduct, the transition w is uniquely determined by i
and o.

Moreover, we show that the diagram commutes. Given w ∈ TL+ , there is i ∈ I and
o ∈ occi such that w = µLi,o(v) for v being the single transition in TL∗i . Let t ∈ TK with
t = m+(w) and u ∈ TL with u = mp+(w), then we have

mp(t) = mp ◦m+(w) = mp ◦m+ ◦ µLi,o(v) = mp ◦mi,o(v) = m ◦mpL ◦ ιLi (v)

= m ◦mp+
L ◦ µ

L
i,o(v) = m ◦mp+

L (w) = m(u)

Hence, (1) is a pullback in Sets.

Since it is required for an action evolution to have a transition-injective match m (see
Definition 4.8.9), we have that mT is injective and thus a monomorphism in Sets. So,
by closure of monomorphisms under pullbacks, it follows that also m+

T is injective.

Therefore, using Lemma A.7.3, we obtain a direct transformation K
%+,m+

=⇒ K ′ of AHL-
process nets in the lower back of Figure B.11.

4. In order to show that the left bottom face of Figure B.11 is a pullback, we first show
that the diagram (2)+(1) below is a pullback in Sets.

TI+

mp+
I,T //

l+T
��

TI

lT
��

TL+

mp+
L,T //

m+
T
��

TL

mT
��

(2)

TK mpT
// TAN

(1)

Using again standard construction of pullbacks in Sets, we have to show that

TI+
∼= {(t, u) ∈ TK × TI | mpT (t) = mT ◦ lT (u)}

So let t ∈ TK and u ∈ TI with mpT (t) = mT ◦ lT (u). Then for u′ = lT (u) ∈ TL
we have that mpT (t) = mT (u′) which by pullback (1) shown in item 3 implies that
there is v ∈ TL+ with m+

T (v) = t and mp+
L,T (v) = u′. Then by construction of L+ as

coproduct, there is i ∈ I and o ∈ occi such that we have w ∈ TL∗i with µi,o,T (w) = v

and mi,o(w) = m+
T ◦ µi,o,T (w) = m+

T (v) = t.

Now, consider diagram (3) below, corresponding to the upper left front face of Fig-
ure B.11 which is required to be a pullback by Definition 4.8.9. Due to componentwise
construction of pullbacks along MAHL and the fact that l ∈ MAHL, we also have that
diagram (4) below is a pullback in Sets.

I∗i l∗i

//

ιIi
��

L∗i

ιLi
��

I∗
l∗
//

mpI
��

L∗

mpL
��

I
l //

(3)

L

TI∗i l∗i,T

//

ιIi,T
��

TL∗i

ιLi,T
��

TI∗
l∗T

//

mpI,T

��

TL∗

mpL,T

��
TI

lT //

(4)

TL

x′_

��

� // w_

��
x � //

_

��

w′_

��
u � // u′

B.11 Proof of Theorem 4.8.14 (Process Evolution based on Action Evolution) 257

So, by w′ = ιLi,T (w) ∈ TL∗ and u ∈ TI with

mpL,T (w′) = mpL,T ◦ ιLi,T (w) = mp+
L,T ◦ µ

L
i,o,T (w)

= mp+
L,T (v) = u′ = lT (u)

due to pullback (4) there is x ∈ TI∗ with l∗T (x) = w′ and mpI,T (x) = u. Then, since
l∗T is a coproduct

∐
i∈I l

∗
i,T , it follows that there is also x′ ∈ TI∗i with ιIi,T (x′) = x and

l∗i,T (x′) = w. Thus, there is also y ∈ TI+ with µIi,o,T (x′) = y, and we have

l+T (y) = l+T ◦ µ
I
i,o,T (x′) = µLi,o,T ◦ l∗i,T (x′) = µLi,o,T (w) = v

Hence, we have

m+
T ◦ l

+
T (y) = m+

T (v) = t

and

mp+
I,T (y) = mp+

I,T ◦ µi,o,T (x′) = mpI,T ◦ ιIi (x′) = mpI,T (x) = u

which means that y ∈ TI+ is the required transition corresponding to (t, u). Due to
construction of I+ as coproduct, y is uniquely determined by i and o.

Now, we construct TK0 as pullback in the bottom of the cube shown in Figure B.12
in Sets, inducing a unique morphism k+

T : TI+ → TK0 such that the cube commutes
because

mpT ◦m+
T ◦ l

+
T = mT ◦mp+

L,T ◦ l
+
T

= mT ◦ lT ◦mp+
I,T

= fT ◦ kT ◦mp+
I,T

Due to componentwise construction of pushouts in AHLNets along MAHL, we have
that the front face, corresponding to the transition-component of the pushout in the left
bottom of Figure B.11, is a pushout. Moreover, the left face is the pullback (1) shown
in item 3, and the top face is the diagram (2) which is a pullback by decomposition of
pullbacks (1) and (1)+(2). Then by commutativity of the cube also the bottom and
right face of the cube form a pullback which by decomposition of pullbacks implies that
also the right face is a pullback. Hence, with monomorphism lT and the fact that Sets
is adhesive (see Remark A.1.10, and Theorem 4.6 in [EEPT06b]), the Van Kampen
property (see Definition A.1.9 and Remark A.1.10) implies that the back face of the
cube is a pushout in Sets.

Further, the back of the cube in Figure B.12 corresponds to the transition-component of
the pushout in the bottom-left back face in Figure B.11 because the pushout along l+ ∈
MAHL can be constructed componentwise, and Sets has unique pushout complements.
Now, since M-morphisms are closed under pushouts and l ∈ MAHL, we have that
f ∈ MAHL, and by componentwise construction of pushouts and the fact that lP is
a bijection, we also have that fP is a bijection. Thus, using Fact A.6.4 we obtain
that f is a T -creation of fT via AN which by the commuting square in the bottom of
Figure B.12 implies that there exists a unique AHL-morphism mp0 : K0 → AN0 such
that f ◦mp0 = mp ◦ f ′ and T (mp0) = mp0,T . Analogously to f also f ′ is a T -creation

258 B Detailed Proofs

TL+

m+
T

��

mp+
L,T

TT

))TTT
TI+

��

l+Too
mp+

I,T

TT

))TTT
TL
mT

��

TI
lToo

kT

��
TK

mpT
SSSS

))SSS
TK0

mp0,T
SSS

))SS

f ′Too

TAN TAN0fT
oo

Figure B.12: Cube in Sets

and thus using Fact A.1.27 we obtain that the left bottom of the cube in Figure B.11
is a pullback.

Finally, due to commutativity of all squares in the cube, the pushout in the bottom-
right back of Figure B.11 implies a unique mp′ : K ′ → AN ′ such that also the two new
squares commute. Hence, by the fact that K ′ is an AHL-process net, we have a direct

transformation mp
(%+,%)
=⇒ mp′.

B.12 Proof of Theorem 5.2.4 (Local Church-Rosser Theorem for AHL-
Process Net Transformations)

The proof works very similar to the general proof for weak adhesive HLR categories in
[EEPT06b]. However, we need to recall the construction in order to check that the re-
sulting transformations are in fact direct transformations of AHL-process nets and that the
resulting independences are strong.

1. Given two strongly parallel independent direct transformationsK0
%1,m1
=⇒ K1 andK0

%2,m2
=⇒

K2 of AHL-process nets, then there exist morphisms i : L1 → C2 and j : L2 → C1 such
that f2 ◦ i = m1 and f1 ◦ j = m2, and we have that %1 and g2 ◦ i as well as %2 and g1 ◦ j
satisfy the transformation condition for AHL-process nets.

L1

m1

��

I1
l1oo

k1

��

r1 // R1

n1

��
K

(1)

C1
f1

oo
g1

// K1

(2)

L2

m2

��

I2
l2oo

k1

��

r2 // R2

n2

��
K

(3)

C2
f2

oo
g2

// K2

(4)

We combine the pushouts (1) and (3) in AHLNets as in the left diagram below. Then,
by construction of the pullback (5) in the right diagram below, we obtain morphisms
e1 : I1 → D and e2 : I2 → D such that c1 ◦ e1 = k1 and c2 ◦ e2 = k2, and diagrams (6)
and (7) commute.

Now, by l1, l2 ∈MAHL and pushouts (1) and (3) we also have that f1, f2 ∈MAHL. Fur-
ther, by MAHL-morphisms l1 and f2, pushout (6)+(5) and pullback (5) in AHLNets
by Fact A.4.11 (and MAHL ⊆ M′AHL) it follows that (6) and (5) are pushouts and
pullbacks, and analogously, that (7) is a pushout and a pullback.

B.12 Proof of Theorem 5.2.4 (Local Church-Rosser Theorem for AHL-Process Net
Transformations) 259

I2

k2

��

l2 // L2

j
��

I1
k1 //

l1
��

C1

f1

��
L1 i

// C2
f2

// K

I2

e2
��

l2 // L2

j
��

I1
e1 //

l1
��

D
c1 //

c2
��

(7)

(5)(6)

C1

f1

��
L1 i

// C2
f2

// K

Now, we construct the pushouts (8) over e1 and r1 ∈MAHL, (9) over e2 and r2 ∈MAHL

and (10) over c1, c2 ∈MAHL in AHLNets.

I2

e2

��

r2 // R2

t2
��

I1
e1 //

r1

��

D
c′1 //

c′2
��

(9)

(10)(8)

C ′1

h1

��
R1 t1

// C ′2 h2

// K ′

I1

e1

��

r1 // R1

t1
��

D
c′2 //

c1

��

(8)

(11)

C ′2

s1

��
C1 g1

// K1

I2

e2

��

r2 // R2

t2
��

D
c′1 //

c2

��

(9)

(12)

C ′1

s2

��
C2 g2

// K2

From pushout (8), we obtain a morphism s1 : C ′2 → K1 such that (11) commutes
and (2)=(8)+(11), and due to pushout decomposition we obtain that (11) is pushout.
Analogously we obtain pushout (12) in AHLNets.

Combining all these pushouts, we obtain direct transformations of AHL-nets K1
%2⇒ K ′

and K2
%1⇒ K ′:

L2

j

��

I2

e2

��

r2 //l2oo R2

t2
��

C1

g1

��

D
c1oo

c′1 //

c′2
��

(7) (9)

(10)(11)

C ′1

h1

��
K1 C ′2 h2

//
s1
oo K ′

L1

i
��

I1

e1

��

r1 //l1oo R1

t1
��

C2

g2

��

D
c2oo

c′2 //

c′1
��

(6) (8)

(10)(12)

C ′2

h2

��
K1 C ′1 h1

//
s2
oo K ′

Due to the fact that the parallel independence is strong, we have that %2 and g1 ◦ j
as well as %1 and g2 ◦ i satisfy the transformation condition. Thus, by Theorem 4.2.11
we have that K1

%2⇒ K ′ and K2
%1⇒ K ′ are direct transformations of AHL-process nets.

The morphisms into the context net of the respected other direct transformation that is
required for sequential independence are given by t1 : R1 → C ′2 with s1◦t1 = n1, because
(8)+(11)=(2), and t2 : R2 → C ′2 with s2◦t2 = n2, because (9)+(12)=(4). Note that the

pushouts above also represent direct transformations of AHL-process nets K ′
%−1

2⇒ K1

at match h1 ◦ t1 and K ′
%−1

1⇒ K2 at match h2 ◦ t2. Since by Theorem 4.2.11 satisfaction
of the transformation condition is necessary for the existence direct transformations
of AHL-process nets, we have that %−1

2 and h1 ◦ t1 as well as %−1
1 and h2 ◦ t2 satisfy

the transformation condition. Hence, we have strongly sequentially independent direct
transformations K ⇒ K1 ⇒ K ′ and K ⇒ K2 ⇒ K ′.

260 B Detailed Proofs

2. Given two strongly sequentially independent direct transformations K
%1,m1
=⇒ K1

%2,m′2=⇒ K ′

of AHL-process nets with comatches n1 and n′2 respectively, using Remark 5.2.3 we

obtain strongly parallel independent direct transformations K
%−1

1 ,n1⇐= K1
%2,m′2=⇒ K ′. Then

by part 1 of the proof there are strongly sequentially independent direc transformations

K1
%−1

1 ,n1
=⇒ K

%2,m2
=⇒ K2 and K1

%2,m′2=⇒ K ′
%−1

1 ,n′1=⇒ K2. Applying again Remark 5.2.3 to
the first transformation means that K1

%1,n1⇐= K
%2,m2
=⇒ K2 are the required parallel

independent direct transformations.

K
%2,m2

�%
CCCCC

CCCCC9A%−1
1 ,n1

{{{{{
{{{{{

K1

%2,m′2
�%

CCCC
CCCC

K29A

%−1
1 ,n′1

{{{{
{{{{

K ′

B.13 Proof of Theorem 5.2.14 (Concurrency Theorem for AHL-Process
Net Transformations)

We have to show that the synthesis and analysis constructions for strong E-dependency rela-
tions (E, e1, e2) in Theorem 5.2.14 exist, and that they establish a bijective correspondence.

1. (Synthesis) Given an E-related transformation sequence of AHL-process nets K ⇒
K1 ⇒ K ′ via %1 and %2, by Definition 4.2.2 the direct transformations are also direct
transformations of AHL-nets. Moreover, according to Remark 5.2.12 the strong E-
dependency relation (E, e1, e2) is also a an E-dependency relation. Thus, by item 1 of
Theorem 5.1.12 we obtain direct transformation of AHL-nets K ⇒ K ′ via %1 ∗E %2 such
that we have pushouts (1)-(8)in AHLNets, and also the squares in front of (5) and (6)
are pushouts:

L1

��<<<<<<<<

m1

��

I1
l1oo r1 //

��?????????

��

(3)

R1

n1

��

e1

��????????? L2

e2

�����������
m2

��

I2
l2oo r2 //

�����������

��

(4)

R2

n2

��

����������

L

�����������
C1

loo c1 //

(1)

c1
�����������

E

h

��

I
i1

llZZZZZZZZZZZZZZZZZZZZZZ i2

55kkkkkkkkk

��

C2
c2oo

(2)

c2
��>>>>>>>>>

r // R

��<<<<<<<<<

K D1
d1

oo //

(7)

K1

(5) (6)

K0
f1

mm[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[f2

22eeeeeeeeeeeeeeee

D2
oo

d2

//

(8)

K ′

Since K and K ′ already are AHL-process nets by assumption, it suffices to show that
K0 is an AHL-process net, in order to show that K ⇒ K ′ is a transformation of AHL-
process nets. From l ◦ i1 ∈ MAHL and the pushout in front of pushout (5) composed
with pushout (7), we obtain that also d1 ◦ f1 ∈ MAHL which means that d1 ◦ f1 is
transition-injective, and thus, by Lemma A.7.1 we have that K0 is an AHL-process net.

Further, by composition of pushout (5) and the pushout in front of it, we have that
AHL-process net K1 is the gluing of E and K0 over (I, k, c1 ◦ i1) which by Fact 4.2.6
implies that E and K0 are composable w. r. t. (I, k, c1◦i1). Hence, K ⇒ K ′ is a strongly
E-concurrent direct transformation of AHL-process nets.

2. (Analysis) Given a strongly E-concurrent direct transformation of AHL-process nets
K ⇒ K ′ via %1 ∗E %2, from Definition 4.2.2 we know that K ⇒ K ′ is also a direct

B.14 Proof of Fact 5.2.15 (Construction of Strongly E-Related AHL-Process Net
Transformations) 261

transformation of AHL-nets. Thus, by item 2 of Theorem 5.1.12 we obtain again the
diagram above with pushouts (1)-(8)in AHLNets. Due to closure of M-morphisms
under pushouts, from l1, r2 ∈ MAHL we obtain d1, d2 ∈ MAHL which means that d1

and d2 are transition-injective and thus by Lemma A.7.1 we have that D1 and D2 are
AHL-process nets. Since K ⇒ K ′ is a strongly E-concurrent direct transformation of
AHL-process nets, we have that E and K0 are composable w. r. t. (I, k, c1 ◦ i1). Then,
from composition of pushout (5) and the pushout in front of it, and the uniqueness of
pushouts, we obtain that K1 is the gluing of AHL-process nets E +I K0, and thus it is
also an AHL-process net (see Fact 4.2.6).

Hence, with K, D1, K0, D2 and K ′ being AHL-process nets, we have a direct transfor-
mation of AHL-process nets K ⇒ K1 via %1 with pushouts (3)+(7) and (1)+(5), and a
direct transformation of AHL-process nets K1 ⇒ K ′ via %2 with pushouts (2)+(6) and
(4)+(8).

3. (Bijective correspondence) The synthesis and analysis constructions lead to exactly the
same AHL-nets as the corresponding constructions in Theorem 5.1.12, and thus, by
item 3 of Theorem 5.1.12 the constructions are inverse to each other.

B.14 Proof of Fact 5.2.15 (Construction of Strongly E-Related AHL-Process
Net Transformations)

We have to show that for each pair of direct transformations of AHL-process nets K
%1,m1
=⇒

K1
%2,m2
=⇒ K ′ we have a strong E-dependency relation E such that K

%1,m1
=⇒ K1

%2,m2
=⇒ K ′ is

strongly E-related. The proof works very similar to the corresponding proof of Fact 5.29
in [EEPT06b]. However, we need to extend the proof in order to verify that the resulting
E-dependency relation is strong.

Given a sequence of direct transformations of AHL-process netsK
%1,m1
=⇒ K1

%2,m2
=⇒ K ′, using

Fact A.4.4 we can construct the E ′-M′AHL pair factorisation (e1, e2) ∈ E ′ and h ∈M′AHL of
n1 and m2 with h ◦ e1 = n1 and h ◦ e2 = m2.

Now, we construct the pullbacks (8) and (9) below. Since h ◦ e1 ◦ r1 = n1 ◦ r1 = g1 ◦ k1,
from universal property of pullback (8) we obtain a unique AHL-morphism f1 : I1 → C1

such that (1) and (6) commute. Then, since h ∈ M′AHL, r1 ∈ MAHL, (8) is pullback
and (1)+(8) is a pushout, from the fact that (AHLNets,MAHL) with M′AHL has the M-
M′ pushout-pullback decomposition property (Fact A.4.11) it follows that (1) and (8) are
pushouts. Analogously, we obtain from pullback (9) a morphism f2 : I2 → C2 such that (7)
commutes and (2) and (9) are pushouts.

L1

m1

��

I1
l1oo r1 //

f1

""FFFFFFF

k1

��

R1

n1

""

e1

""FFFFFFF L2
e2

||yyyyyyy
m2

||

I2
l2oo r2 //

f2

||yyyyyyy

k2

��

R2

n2

��

C1
//

(1)

(6)

c1||yyyyyyy
E

h
��

C2
oo

(2)

(7)

c2 ""EEEEEEE

K D1
d1

oo
g1

// K1

(8) (9)

D2g2

oo
d2

// K ′

The construction above can be repeated, constructing pullbacks (10) and (11), leading
to AHL-morphisms a1 : L1 → L such that (3) and (12) commute, and a2 → R2 → R such
that (4) and (13) commute. By monomorphism h and pullbacks (8) and (9), we also have
monomorphisms c1, c2 ∈M′AHL, and thus, we obtain pushouts (3), (10), (4) and (11), using
the M-M′ pushout-pullback decomposition property (Fact A.4.11).

262 B Detailed Proofs

L1

m1

��

a1

!!CCCCCCC I1
l1oo r1 //

f1

""FFFFFFF

k1

��

R1

n1

""

e1

""FFFFFFF L2
e2

||yyyyyyy
m2

||

I2
l2oo r2 //

f2

||yyyyyyy

k2

��

R2

n2

��

a2

}}zzzzzzz

L

b1}}{{{{{{{
(12)

(1)

C1
//

(1)

oo

c1||yyyyyyy
E

h
��

C2
oo

(2)

//

c2 ""EEEEEEE R

b2 !!DDDDDDD(13)

(4)

K D1
d1

oo
g1

//

(10)

K1

(8) (9)

D2g2

oo
d2

//

(11)

K ′

Further, due to pullbacks (10) and (11) and monomorphisms c1 and c2, we also obtain
monomorphisms b1 and b2. Then from the fact that all AHL-nets in the bottom row of
the diagram above are AHL-process nets, due to transition-injective AHL-morphisms b1,
c1, h, c2 and b2 by Lemma A.7.1 we have that also L, C1, E, C2 and R are AHL-process
nets. This means that diagrams (1) and (3) correspond to a direct transformation of AHL-
process nets E ⇒ L via %−1

1 at match e1, and diagrams (2) and (4) correspond to a direct
transformation of AHL-process nets E ⇒ R via %2 at match e2. Hence, by Theorem 4.2.11 we
have that %−1

1 and e1 as well as %2 and e2 satisfy the transformation condition of AHL-process
nets which by Definition 5.2.11 means that (e1, e2) is a strong E-dependency relation such

K
%1,m1
=⇒ K1

%2,m2
=⇒ K ′ is strongly E-related.

B.15 Proof of Theorem 5.3.3 (Concrete Realisation of AHL-Process)

1. (Instantiation) Let v̂ : X̂ → A be a solution for the realisation conditions of K. We
define a P/T-morphism inst : Skel(K)→ Flat(K) by

• instP (p) = (v̂(p), p), and

• instT (t) = (t, v̂ ◦ dt).

We have for all p ∈ PK that v̂(p) ∈ As for s = typeK(p) and therefore instP (p) ∈ A⊗PK .
Moreover, the composition of dT : V ar(t) →

⊎
t∈TK V ar(t) ⊆ X̄ and v̂ : X̄ → A yields

an assignment v̂ ◦ dT : V ar(t) → A. In order to show that instT is well-defined it
remains to show that the defined assignments are consistent. So let t ∈ TK with
instT (t) = (t, v), and let (el, er) ∈ condK(t). We have to show that v∗(el) = v∗(er).
Due to the fact that (el, er) ∈ condK(t), there is (d∗t (el), d

∗
t (er)) ∈ CondK ⊆ RealK ,

and since v̂ is a solution for the realisation conditions, we have v̂∗(d∗t (el) = v̂∗(d∗t (er)).
Thus, we have

v∗(el) = (v̂ ◦ dt)∗(el) = v̂∗(d∗t (el) = v̂∗(d∗t (er))

= (v̂ ◦ dt)∗(er) = v∗(er)

which means that v is a consistent assignment, and hence instT is well-defined.

In order to show that inst is a P/T-morphism, we have to show that inst is compatible
with pre and post domains. So, for the pre domains, we have to show that for all
t ∈ TK : inst⊕P ◦ preSkel(K)(t) = preFlat(K) ◦ instT (t). Let t ∈ TK with preK(t) =∑n

i=1(termi, pi). Due to unarity of AHL-process net K, all pi in preK(t) are pairwise
distinct, and therefore, it suffices to show that for all pi we have for instP (pi) = (a, pi)
and instT (t) = (t, v) that a = v∗(termi). According the the definition of inst above,
we have a = v̂(p), and v∗(termi) = (v̂ ◦dt)∗(termi) = v̂∗(d∗t (termi)). Together with the
fact that (termi, pi) ≤ preK(t), we have that

(d∗t (termi), pi) ∈ V∪((d∗t ⊗ idPK)⊕(preK(t))) ⊆ PreK ⊆ RealK

B.15 Proof of Theorem 5.3.3 (Concrete Realisation of AHL-Process) 263

and since v̂ is a solution for the realisation conditions of K, we have

v∗(termi) = v̂∗(d∗t (termi)) = v̂∗(pi) = a

The compatibility of the post domains holds analogously, and hence, inst is a well-
defined P/T-morphism.

Finally, the fact that proj(K) ◦ inst = idSkel(K) can be easily seen in the definitions of
instP and instT above. Hence, inst is a concrete instantiation of K.

2. (Solution) Let (inst,K) be a concrete instantiation. We define an assignment v̂ : X̂ → A
as follows:

• For p ∈ PK,s with instP (p) = (a, p) let v̂(p) = a, and

• for x̂ ∈
⊎
t∈TK V ar(t)s with t ∈ TK and x ∈ V ar(t)s such that dt,s(x) = x̂ and

instT (t) = (t, v), let v̂(x̂) = v(x).

Note that for every x̂ ∈
⊎
t∈TK V ar(t)s there exists a unique t ∈ TK and x ∈ V ar(t)s

such that dt,s(x) = x̂ due to the fact that
⊎
t∈TK V ar(t)s is a disjoint union. Further-

more, x ∈ V ar(t)s with dt,s(x) = x̂ is unique because dt,s is an injection. Moreover, for
every t ∈ TK , we have for all x ∈ V ar(t) and instT (t) = (t, v) that v̂(dt(x)) = v(x),
and thus

v̂ ◦ dt = v.

We have to show that the assignment v̂ is a solution for the realisation conditions,
i. e. that (A, v̂) � RealK which means that for all equations (el, er) ∈ RealK there is
v̂∗(el) = v̂∗(er).

Case 1. (el, er) ∈ CondK .

Then there exists at least one transition t ∈ TK such that (el, er) = (d∗T (e′l), d
∗
T (e′r))

and (e′l, e
′
r) ∈ condK(t). Moreover, there is (t, v) = instT (t) with v : V ar(t) → A

such that (A, v) � condK(t), because inst is a concrete instantiation, and especially
we have that (A, v) � (e′l, e

′
r), i. e. v∗(e′l) = v∗(e′r). Further, we know that all

variables in e′l and e′r are in V ar(t), and thus all variables in el and er are in
dT (V ar(t)). Now, this implies

v̂∗(el) = v̂∗(d∗T (e′l)) = (v̂ ◦ dT)∗(e′l) = v∗(e′l)

= v∗(e′r) = (v̂ ◦ dT)∗(e′r) = v̂∗(d∗T (e′r))

= v̂∗(er)

which means that (A, v̂) � (el, er).

Case 2. (el, er) ∈ PreK .

Then there is er = p for some p ∈ PK,s and el = d∗t,s(term) for some t ∈ TK and
term ∈ TΣ(V ar(t))s such that (term, p) ≤ preK(t). By the fact that (term, p) ≤
preK(t), we have that p ≤ preSkel(K)(t). Due to the fact that inst : Skel(K) →
Flat(K) is a P/T-morphism that is compatible with pre and post domains of
transitions, we have

inst⊕P ◦ preSkel(K)(t) = preFlat(K) ◦ instT (t)

= preFlat(K)(t, v) = preA(t, v)

264 B Detailed Proofs

for some v : V ar(t) → A such that instT (t) = (t, v). Since K is an AHL-process
net, it is unary, implying that for term′ with (term′, p) ≤ preK(t) we have term′ =
term. Accordingly for any (a, p) ≤ preA(t, v) there is a = v∗(term) and (a, p) =
instP (p).

So, according to the definition of v̂ above, we have

v̂∗(er) = v̂∗(p) = v̂(p) = a for (a, p) = instP (p)

for the right-hand side, and

v̂∗(el) = v̂∗(d∗t (term)) = (v̂ ◦ dt)∗(term)

= v∗(term) = a

for the left-hand side. Thus, we have v̂∗(el) = a = v̂∗(er).

Case 3. (el, er) ∈ PostK .

This case works analogously to case 2.

3. (Bijective correspondence) The construction from instantiations to solutions in item 2
can be interpreted as a function s : Inst(K) → Sol(K), and the construction from
solutions to instantiations as a function i : Sol(K) → Inst(K). We show that s and i
are inverse isomorphisms.

Let (inst,K) ∈ Inst(K) be an instantiation and v̂ = s(inst,K). As stated in item
2, for all p ∈ PK and instP (p) = (a, p) we have v̂(p) = a, and for all t ∈ TK and
instT (t) = (t, v) we have v̂ ◦ dt = v.

Further, let (inst′,K) = i(v̂) = i(s(inst,K)). Then, according to the definition of inst′

in item 1, we have for all p ∈ PK :

inst′P (p) = (v̂(p), p) = (a, p) = instP (p)

and for all t ∈ TK :

inst′T (t) = (t, v̂ ◦ dt) = (t, v) = instT (t)

Hence, we have i(s(inst,K)) = (inst,K) for all (inst,K) ∈ Inst(K), and thus i ◦ s =
idInst(K).

Now, let v̂ ∈ Sol(K) be a solution for the realisation conditions of K, and (inst,K) =
i(v̂). Then we have instP (p) = (v̂, p) for all p ∈ PK , and instT (t) = (t, v̂ ◦ dt) for all
t ∈ TK .

Further, let v̂′ = s(inst,K) = s(i(v̂)). Then for p ∈ PK with instP (p) = (a, p) we have
v̂′(p) = a, and since instP (p) = (v̂(p), p), we have v̂′(p) = v̂(p).

Moreover, for t ∈ TK with instT (t) = (t, v) we have v̂′ ◦ dt = v as stated in item 2.
This means that we have v̂′ ◦ dt = v = v̂ ◦ dt, and since coproduct injections (dt)t∈TK
are jointly epic, we have v̂′ = v̂. Hence, we also have s(i(v̂)) = v̂ for all v̂ ∈ Sol(K),
and thus s ◦ i = idSol(K), meaning that s and i are inverse isomorphisms, establishing
a bijection of sets Inst(K) ∼= Sol(K).

Bibliography

[AB09] Andrea Asperti and Nadia Busi. Mobile petri nets. Mathematical Struc-
tures in Computer Science, 19:1265–1278, 12 2009.

[AHS90] Jǐŕı Adámek, Horst Herrlich, and George E. Strecker. Astract and Con-
crete Categories. Series in Pure And Applied Mathematics. John Wiley
and Sons, 1990.

[AM75] Michael A. Arbib and Ernest G. Manes. Arrows, Structures and Functors:
The Categorical Imperative. Academic Press, New York, 1975.

[Arb03] Stefan Arbanowski. I-Centric Communications. PhD thesis, Technische
Universität Berlin, 2003.

[AvdMSPZ01] Stefan Arbanowski, Sven van der Meer, Stephan Steglich, and Radu
Popescu-Zeletin. The Human Communication Space: Towards I-centric
Communications. Personal Ubiquitous Comput., 5(1):34–37, January
2001.

[BBB+09] Anthony Baxter, Jochen Bekmann, Daniel Berlin, Joe Gregorio,
Soren Lassen, and Sam Thorogood. Google Wave Federation Proto-
col Over XMPP. http://wave-protocol.googlecode.com/hg/spec/

federation/wavespec.html, July 2009.

[BCD+06] Manfred Broy, Michelle L. Crane, Juergen Dingel, Alan Hartman, Bern-
hard Rumpe, and Bran Selic. 2nd UML 2 semantics symposium: formal
semantics for UML. In Proceedings of the 2006 international conference
on Models in software engineering, MoDELS’06, pages 318–323, Berlin,
Heidelberg, 2006. Springer-Verlag.

[BCE+07] Paolo Baldan, Andrea Corradini, Hartmut Ehrig, Reiko Heckel, and Bar-
bara Knig. Bisimilarity and behaviour-preserving reconfigurations of open
petri nets. In Till Mossakowski, Ugo Montanari, and Magne Haveraaen,
editors, Algebra and Coalgebra in Computer Science, volume 4624 of Lec-
ture Notes in Computer Science, pages 126–142. Springer Berlin Heidel-
berg, 2007.

[BCEH01] Paolo Baldan, Andrea Corradini, Hartmut Ehrig, and Reiko Heckel. Com-
positional Modeling of Reactive Systems Using Open Nets. In CONCUR
’01: Proceedings of the 12th International Conference on Concurrency
Theory, pages 502–518, London, UK, 2001. Springer.

[BD91] Bernard Berthomieu and Michael Diaz. Modeling and verification of time
dependent systems using time petri nets. IEEE Transactions on Software
Engineering, 17, 1991.

http://wave-protocol.googlecode.com/hg/spec/federation/wavespec.html
http://wave-protocol.googlecode.com/hg/spec/federation/wavespec.html

266 Bibliography

[BDH92] Eike Best, Raymond Devillers, and JonG. Hall. The box calculus: A new
causal algebra with multi-label communication. In Grzegorz Rozenberg,
editor, Advances in Petri Nets 1992, volume 609 of Lecture Notes in
Computer Science, pages 21–69. Springer Berlin Heidelberg, 1992.

[BEGG10] Benjamin Braatz, Hartmut Ehrig, Karsten Gabriel, and Ulrike Golas.
Finitary M-Adhesive Categories. In Hartmut Ehrig, Arend Rensink,
Grzegorz Rozenberg, and Andy Schürr, editors, Graph Transformations,
volume 6372 of Lecture Notes in Computer Science, pages 234–249.
Springer Berlin Heidelberg, 2010.

[BEHM07] Enrico Biermann, Claudia Ermel, Frank Hermann, and Tony Modica. A
Visual Editor for Reconfigurable Object Nets based on ECLIPSE Graph-
ical Editor Framework. In Gabriel Juhás and Jörg Desel, editors, Proc.
14th Workshop on Algorithms and Tools for Petri Nets (AWPN’07), 2007.

[BFH85] Paul Boehm, Harald-Reto Fonio, and Annegret Habel. Amalgamation
of graph transformations with applications to synchronization. In Hart-
mut Ehrig, Christiane Floyd, Maurice Nivat, and James Thatcher, ed-
itors, Mathematical Foundations of Software Development, volume 185
of Lecture Notes in Computer Science, pages 267–283. Springer Berlin
Heidelberg, 1985.

[BH07] MengChu Zhou Branislav Hruz. Modeling and Control of Discrete-event
Dynamic Systems: with Petri Nets and Other Tools. Springer, 2007.

[BHH+97] Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel Klein, Barbara
Paech, Bernhard Rumpe, and Veronika Thurner. Towards a formalization
of the Unified Modeling Language. In Mehmet Akşit and Satoshi Mat-
suoka, editors, ECOOP’97 Object-Oriented Programming, volume 1241
of Lecture Notes in Computer Science, pages 344–366. Springer Berlin
Heidelberg, 1997.

[BJR99] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 1999.

[BK84] Jan A. Bergstra and Jan W. Klop. Process algebra for synchronous
communication. Inform. and Control, pages 109–137, 1984.

[BK85] Jan A. Bergstra and Jan W. Klop. Algebra of communicating processes
with abstraction. Theoretical Computer Science, 37(0):77 – 121, 1985.

[BRJ98] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Model-
ing Language User Guide. Addison-Wesley Professional, Reading, Mas-
sachusetts etc., September 1998.

[BW90] Michael Barr and Charles Wells. Category Theory for Computing Science.
Series in Computer Science. Prentice Hall International, London, 1990.

[CCCS92] Javier Campos, Giovanni Chiola, José-Manuel Colom, and Manuel Silva.
Properties and performance bounds for timed marked graphs. Circuits
and Systems I: Fundamental Theory and Applications, IEEE Transac-

Bibliography 267

tions on, 39(5):386–401, 1992.

[CDH99] Carla Capellmann, Heinz Dibold, and Uwe Herzog. Using high-level petri
nets in the field of intelligent networks. In Jonathan Billington, Michel
Diaz, and Grzegorz Rozenberg, editors, Application of Petri Nets to Com-
munication Networks, volume 1605 of Lecture Notes in Computer Science,
pages 1–36. Springer Berlin Heidelberg, 1999.

[Cm13] Co-meeting. http://www.co-meeting.com/, September 2013.

[DHP91] Christian Dimitrovici, Udo Hummert, and Laure Petrucci. Composition
and Net Properties of Algebraic High-Level Nets. Advances of Petri Nets,
Lecture Notes in Computer Science, 483, 1991.

[Dib88] Heinz Dibold. A method for the support of specifying the requirements
of telecommunication systems. In Digital Communications, 1988. Map-
ping New Applications onto New Technologies, 1988 International Zurich
Seminar on, pages 115–122, 1988.

[DMM89] Pierpaolo Degano, José Meseguer, and Ugo Montanari. Axiomatizing
Net Computations and Processes. In Proc. on Logic in Computer Science
(LICS), pages 175–185. IEEE Computer Society, 1989.

[EEHP04] Hartmut Ehrig, Karsten Ehrig, Annegret Habel, and Karl-Heinz Penne-
mann. Constraints and application conditions: From graphs to high-level
structures. In Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce,
and Grzegorz Rozenberg, editors, Graph Transformations, volume 3256
of Lecture Notes in Computer Science, pages 287–303. Springer Berlin
Heidelberg, 2004.

[EEPT06a] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamental Theory for Typed Attributed Graphs and Graph Transfor-
mation based on Adhesive HLR Categories. Fundam. Inf., 74(1):31–61,
October 2006.

[EEPT06b] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. EATCS Monographs
in TCS. Springer, 2006.

[EG11] Hartmut Ehrig and Karsten Gabriel. Transformation of Algebraic High-
Level Nets and Amalgamation of Processes with Applications to Commu-
nication Platforms. Festschrift in Honour of Manfred Broy’s 60th Birth-
day. International Journal of Software and Informatics, 5(1-2,Part1),
2011.

[EGH10] Hartmut Ehrig, Ulrike Golas, and Frank Hermann. Categorical Frame-
works for Graph Transformation and HLR Systems based on the DPO
Approach. Bulletin of the EATCS, 102:111–121, 2010.

[EGH+12a] Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers, and Fer-
nando Orejas. M-Adhesive Transformation Systems with Nested Appli-
cation Conditions. Part 1: Parallelism, Concurrency and Amalgamation.

http://www.co-meeting.com/

268 Bibliography

Mathematical Structures in Computer Science, 2012. To appear.

[EGH+12b] Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers, and Fer-
nando Orejas. M-Adhesive Transformation Systems with Nested Appli-
cation Conditions. Part 2: Embedding, Critical Pairs and Local Conflu-
ence. Fundamenta Informaticae, 118(1-2):35 – 63, 2012.

[EGLT11] Claudia Ermel, Jürgen Gall, Leen Lambers, and Gabriele Taentzer. Mod-
eling with plausibility checking: inspecting favorable and critical signs for
consistency between control flow and functional behavior. In Proceedings
of the 14th international conference on Fundamental approaches to soft-
ware engineering: part of the joint European conferences on theory and
practice of software, FASE’11/ETAPS’11, pages 156–170, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[EH86] Hartmut Ehrig and Annegret Habel. Graph grammars with application
conditions. In The Book of L, pages 87–100. Springer Berlin Heidelberg,
1986.

[EHGP09] Hartmut Ehrig, Kathrin Hoffmann, Karsten Gabriel, and Julia Padberg.
Composition and Independence of High-Level Net Processes. In Pro-
ceedings of the First Workshop on Formal Methods for Wireless Systems
(FMWS 2008), volume 242(2) of Electronic Notes in Theoretical Com-
puter Science, pages 59–71, 2009.

[EHKPP91a] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, and Francesco
Parisi-Presicce. From graph grammars to high level replacement systems.
In Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, edi-
tors, Graph Grammars and Their Application to Computer Science, vol-
ume 532 of Lecture Notes in Computer Science, pages 269–291. Springer
Berlin Heidelberg, 1991.

[EHKPP91b] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, and Francesco
Parisi-Presicce. From graph grammars to high level replacement systems.
In Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, edi-
tors, Graph Grammars and Their Application to Computer Science, vol-
ume 532 of Lecture Notes in Computer Science, pages 269–291. Springer
Berlin Heidelberg, 1991.

[EHKPP91c] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, and Francesco
Parisi-Presicce. Parallelism and concurrency in high-level replacement
systems. Mathematical Structures in Computer Science, 1:361–404, 11
1991.

[EHP+02] Hartmut Ehrig, Kathrin Hoffmann, Julia Padberg, Paolo Baldan, and
Reiko Heckel. High-Level Net Processes. In Formal and Natural Com-
puting, volume 2300 of LNCS, pages 191–219. Springer, 2002.

[EHP+07] Hartmut Ehrig, Kathrin Hoffmann, Julia Padberg, Ulrike Prange, and
Claudia Ermel. Independence of net transformations and token firing
in reconfigurable place/transition systems. In Jetty Kleijn and Alex

Bibliography 269

Yakovlev, editors, Petri Nets and Other Models of Concurrency ICATPN
2007, volume 4546 of Lecture Notes in Computer Science, pages 104–123.
Springer Berlin Heidelberg, 2007.

[EHPP06] Hartmut Ehrig, Annegret Habel, Julia Padberg, and Ulrike Prange. Ad-
hesive High-Level Replacement Systems: A New Categorical Framework
for Graph Transformation. Fundamenta Informaticae, 74(1):1–29, 2006.

[EHPP07] Hartmut Ehrig, Kathrin Hoffmann, Ulrike Prange, and Julia Padberg.
Formal foundation for the reconfiguration of nets. Technical report, Tech-
nische Universität Berlin, 2007.

[Ehr71] Hartmut Ehrig. Übertragung universeller und spezieller Probleme in F-
Morphismendarstellung. PhD thesis, Technische Universität Berlin, 1971.

[Ehr79] Hartmut Ehrig. Introduction to the Algebraic Theory of Graph Gram-
mars (A Survey). In Volker Claus, Hartmut Ehrig, and Grzegorz Rozen-
berg, editors, Graph Grammars and Their Application to Computer Sci-
ence and Biology, Lecture Notes in Computer Science, No. 73, pages 1–69.
Springer, 1979.

[Ehr05] Hartmut Ehrig. Behaviour and Instantiation of High-Level Petri Net
Processes. Fundamenta Informaticae, 65(3):211–247, 2005.

[EM45] Samuel Eilenberg and Saunders MacLane. General Theory of Natu-
ral Equivalences. Transactions of the American Mathematical Society,
58(2):231–294, 1945.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification
1. Springer, 1985.

[Eng91] Joost Engelfriet. Branching Processes of Petri Nets. Acta Informatica,
28(6):575–591, 1991.

[EPR92] Hartmut Ehrig, Julia Padberg, and Leila Ribeiro. Algebraic High-
Level Nets: Petri Nets Revisited. In Hartmut Ehrig, editor, COM-
PASS/ADT, volume 785 of Lecture Notes in Computer Science, pages
188–206. Springer, 1992.

[EPS73] H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An alge-
braic approach. In Switching and Automata Theory, 1973. SWAT ’08.
IEEE Conference Record of 14th Annual Symposium on, pages 167–180,
1973.

[ER76] Hartmut Ehrig and Barry K. Rosen. Commutativity of Independent
Transformations on Complex Objects. Technical Report RC 6251, IBM
Research, 1976.

[ER97] Hartmut Ehrig and Wolfgang Reisig. An Algebraic View on Petri Nets.
Bulletin of the EATCS, 61:52–58, February 1997.

[Fac13] Facebook. http://www.facebook.com/, September 2013.

http://www.facebook.com/

270 Bibliography

[Fis10] Winzent Fischer. Entwicklung einer Werkzeugumgebung für Algebrais-
che High-Level Netze mit Anwendung auf ein Szenario zur Einsatzs-
teuerung bei der Berliner Feuerwehr. Diploma thesis, Technische Uni-
versität Berlin, 2010.

[Gab09] Karsten Gabriel. Composition and Transformation of High Level Petri
Net-Processes. Diploma thesis, Technische Universität Berlin, 2009.

[Gab10] Karsten Gabriel. Algebraic High-Level Nets and Processes Applied to
Communication Platforms. Technical Report 2010/14, Technische Uni-
versität Berlin, 2010.

[Gab11] Karsten Gabriel. Modelling of Google Wave Using Transformation of
High-Level Petri Nets and their Processes. In G. E. Lasker and T. Soboll,
editors, Proceedings of the Symposium on Multiagent Systems, Robotics
and Cybernetics, volume IV. The International Institute for Advanced
Studies in Systems Research and Cybernetics, 2011.

[Gab12a] Karsten Gabriel. Formal Modelling and Consistency of Apache Wave
Platform Evolutions and Waves. In Proceedings of the Symposium on
Multiagent Systems and Cybernetics, volume V, 2012.

[Gab12b] Karsten Gabriel. Process Evolution based on Transformation of Alge-
braic High-Level Nets with Applications to Communication Platforms.
In Proceedings of the 5th International Workshop on Petri Nets, Graph
Transformation and other Concurrency Formalisms (PNGT 2012), ECE-
ASST 51, 2012.

[GBEG12] Karsten Gabriel, Benjamin Braatz, Hartmut Ehrig, and Ulrike Golas.
Finitary M-Adhesive Categories. Mathematical Structures in Computer
Science, 2012. To appear.

[GE00] Maike Gajewsky and Claudia Ermel. Transition Invariants in Algebraic
High-Level Nets, 2000.

[GE12a] Karsten Gabriel and Hartmut Ehrig. Modelling Evolution of Communi-
cation Platforms and Scenarios Based on Transformations of High-Level
Nets and Processes. Theor. Comput. Sci., 429:87–97, April 2012.

[GE12b] Karsten Gabriel and Hartmut Ehrig. Modelling of Communication Plat-
forms Using Algebraic High-Level Nets and Their Processes. Software
Service and Application Engineering, LNCS 7365:10–25, 2012.

[GEH10] Ulrike Golas, Hartmut Ehrig, and Annegret Habel. Multi-amalgamation
in adhesive categories. In Hartmut Ehrig, Arend Rensink, Grzegorz
Rozenberg, and Andy Schürr, editors, Graph Transformations, volume
6372 of Lecture Notes in Computer Science, pages 346–361. Springer
Berlin Heidelberg, 2010.

[Gen87] Hartmann J. Genrich. Predicate/transition nets. In Wilfried Brauer,
Wolfgang Reisig, and Grzegorz Rozenberg, editors, Petri Nets: Central
Models and Their Properties, volume 254 of Lecture Notes in Computer

Bibliography 271

Science, pages 207–247. Springer Berlin Heidelberg, 1987.

[Gir71] Jean Giraud. Cohomologie non abélienne. Springer, Berlin, 1971.

[GL81] Hartmann J. Genrich and Kurt Lautenbach. System modelling with high-
level Petri nets. Theoretical Computer Science, 13(1):109 – 135, 1981.
Special Issue Semantics of Concurrent Computation.

[GLE12] Karsten Gabriel, Pascal Lingnau, and Claudia Ermel. Algebraic approach
to timed petri nets. In Proceedings of the 11th International Workshop on
Graph Transformation and Visual Modeling Techniques (GTVMT 2012),
ECEASST 47, 2012.

[GLMR05] Guillaume Gardey, Didier Lime, Morgan Magnin, and Olivier H. Roux.
Romo: A tool for analyzing time petri nets. In Proc. CAV’05, volume
3576 of LNCS, pages 418–423. Springer, 2005.

[GMMP91] Carlo Ghezzi, Dino Mandrioli, Sandro Morasca, and Mauro Pezzè. A
unified high-level petri net formalism for time-critical systems. IEEE
Trans. Softw. Eng., 17:160–172, 1991.

[GN09] Joe Gregorio and Alex North. Google Wave Conversation Model.
http://wave-protocol.googlecode.com/hg/spec/conversation/

convspec.html, October 2009.

[Gog06] Joseph A. Goguen. Information Integration in Institutions. Jon Barwise
Memorial Volume, 2006.

[Gol11] Ulrike Golas. Analysis and Correctness of Algebraic Graph and Model
Transformations. PhD thesis, Technische Universität Berlin, 2011.

[GPP98] Martin Gogolla and Francesco Parisi-Presicce. State Diagrams in UML:
A Formal Semantics using Graph Transformations - or Diagrams are nice,
but graphs are worth their price. In University of Munich, pages 55–72,
1998.

[GR83] Ursula Goltz and Wolfgang Reisig. The Non-sequential Behavior of Petri
Nets. Information and Control, 57(2/3):125–147, 1983.

[Gro57] Alexander Grothendieck. Sur quelques points d’algèbre homologique, I.
Tôhoku Math. J., 9(2):119–221, 1957.

[Gro71] Alexander Grothendieck. Catégories fibrées et descente, Revêtements
étales et groupe fondamental, Séminaire de Géométrie Algébrique du
Bois-Marie 1960/61 (SGA 1),Exposé VI, 3rd ed. Institut des Hautes
Études Scientifiques, Paris, 1963; reprint. Lecture Notes in Mathematics,
vol. 224:145–194, 1971.

[GVH04] Szilvia Gyapay, Dniel Varró, and Reiko Heckel. Graph transformation
with time. Fundamenta Informaticae, 58:1–22, 2004.

[HB08] Awatef Hicheur and Kamel Barkaoui. Modelling collaborative workflows
using recursive ecatnets. In Proceedings of the 8th international confer-

http://wave-protocol.googlecode.com/hg/spec/conversation/convspec.html
http://wave-protocol.googlecode.com/hg/spec/conversation/convspec.html

272 Bibliography

ence on New technologies in distributed systems, NOTERE ’08, pages
36:1–36:11, New York, NY, USA, 2008. ACM.

[HCE12] Frank Hermann, Andrea Corradini, and Hartmut Ehrig. Analysis of
Permutation Equivalence in M-adhesive Transformation Systems with
Negative Application Conditions. Mathematical Structures in Computer
Science, 2012. To appear.

[Hei10] Tobias Heindel. Hereditary pushouts reconsidered. In Hartmut Ehrig,
Arend Rensink, Grzegorz Rozenberg, and Andy Schrr, editors, Graph
Transformations, volume 6372 of Lecture Notes in Computer Science,
pages 250–265. Springer Berlin Heidelberg, 2010.

[HEM05] Kathrin Hoffmann, Hartmut Ehrig, and Till Mossakowski. High-level nets
with nets and rules as tokens. In Gianfranco Ciardo and Philippe Daron-
deau, editors, Applications and Theory of Petri Nets 2005, volume 3536
of Lecture Notes in Computer Science, pages 268–288. Springer Berlin
Heidelberg, 2005.

[Hen88] Matthew Hennessy. Algebraic theory of processes. MIT Press, Cambridge,
MA, USA, 1988.

[HHT95] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars
with negative application conditions. Fundamenta Informaticae, 26:287–
313, 1995.

[HM03] Kathrin Hoffmann and Till Mossakowski. Algebraic higher-order nets:
Graphs and petri nets as tokens. In Martin Wirsing, Dirk Pattinson,
and Rolf Hennicker, editors, Recent Trends in Algebraic Development
Techniques, volume 2755 of Lecture Notes in Computer Science, pages
253–267. Springer Berlin Heidelberg, 2003.

[Hoa85] Charles A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[Hof06] Kathrin Hoffmann. Formal Approach and Applications of Algebraic
Higher-Order Nets. PhD thesis, Technische Universität Berlin, 2006.

[HP99] Serge Haddad and Denis Poitrenaud. Theoretical aspects of recursive
petri nets. In Susanna Donatelli and Jetty Kleijn, editors, Application
and Theory of Petri Nets 1999, volume 1639 of Lecture Notes in Computer
Science, pages 228–247. Springer Berlin Heidelberg, 1999.

[HP00] Serge Haddad and Denis Poitrenaud. Modelling and analyzing systems
with recursive petri nets. In R. Boel and G. Stremersch, editors, Dis-
crete Event Systems, volume 569 of The Springer International Series in
Engineering and Computer Science, pages 449–458. Springer US, 2000.

[HP05] Annegret Habel and Karl-Heinz Pennemann. Nested constraints and ap-
plication conditions for high-level structures. In Hans-Jörg Kreowski,
Ugo Montanari, Fernando Orejas, Grzegorz Rozenberg, and Gabriele
Taentzer, editors, Formal Methods in Software and Systems Modeling,

Bibliography 273

volume 3393 of Lecture Notes in Computer Science, pages 293–308.
Springer Berlin Heidelberg, 2005.

[Hum89] Udo Hummert. Algebraische High-Level Netze. PhD thesis, Technische
Universtät Berlin, 1989.

[Jen91] Kurt Jensen. Coloured Petri Nets: A High-level Language for System
Design and Analysis. In Grzegorz Rozenberg, editor, Advances in Petri
Nets 1990, volume 483 of LNCS, pages 342–416. Springer, 1991.

[Jen97a] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Monographs in Theoretical
Computer Science. Springer-Verlag, 1997.

[Jen97b] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 2, Analysis Methods. Monographs in Theoretical
Computer Science. Springer-Verlag, 1997.

[Jen97c] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods
and Practical Use. Volume 3, Practical Use. Monographs in Theoretical
Computer Science. Springer-Verlag, 1997.

[JK09] Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets - Mod-
elling and Validation of Concurrent Systems. Springer, 2009.

[JLT09] Hung-Chin Jang, Yao-Nan Lien, and Tzu-Chieh Tsai. Rescue informa-
tion system for earthquake disasters based on MANET emergency com-
munication platform. In Proceedings of the 2009 International Confer-
ence on Wireless Communications and Mobile Computing: Connecting
the World Wirelessly, IWCMC ’09, pages 623–627, New York, NY, USA,
2009. ACM.

[Joh02] Peter T. Johnstone. Sketches of an Elephant - A Topos Theory Com-
pendium. Volume 1. Clarendon Press, Oxford, 2002.

[JR91] Kurt Jensen and Grzegorz Rozenberg, editors. High-Level Petri Nets.
Theory and Application. Springer-Verlag, 1991.

[KEB94] Maciej Koutny, Javier Esparza, and Eike Best. Operational semantics for
the petri box calculus. In Bengt Jonsson and Joachim Parrow, editors,
CONCUR ’94: Concurrency Theory, volume 836 of Lecture Notes in
Computer Science, pages 210–225. Springer Berlin Heidelberg, 1994.

[KGKK02] Sabine Kuske, Martin Gogolla, Ralf Kollmann, and Hans-Jörg Kreowski.
An Integrated Semantics for UML Class, Object and State Diagrams
Based on Graph Transformation. In Michael Butler, Luigia Petre, and
Kaisa Sere, editors, Integrated Formal Methods, volume 2335 of Lecture
Notes in Computer Science, pages 11–28. Springer Berlin Heidelberg,
2002.

[KK99] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units with
interleaving semantics. In Formal Aspects of Computing, pages 11–6,

274 Bibliography

1999.

[KR07] Michael Köhler and Heiko Rölke. Dynamic transition refinement. Elec-
tron. Notes Theor. Comput. Sci., 175(2):119–134, June 2007.

[Krä87] Bernd Krämer. SEGRAS – a formal and semigraphical language combin-
ing Petri nets and abstract data types for the specification of distributed
systems. In Proceedings of the 9th international conference on Software
Engineering, ICSE ’87, pages 116–125, Los Alamitos, CA, USA, 1987.
IEEE Computer Society Press.

[Krä89] Bernd Krämer. Concepts, Syntax and semantics of Segras, a specifica-
tion language for distributed systems. PhD thesis, Technische Universtät
Berlin, 1989.

[Kus98] Sabine Kuske. More about control conditions for transformation units.
In Proc. Theory and Application of Graph Transformations, volume 1764
of Lecture Notes in Computer Science, pages 323–337, 1998.

[LGM12] Pascal Lingnau, Karsten Gabriel, and Tony Modica. An algebraic ap-
proach to timed petri nets with applications to communication networks
– extended version. Technical report, Technische Universität Berlin, 2012.

[Lil91] Johan Lilius. On the Compositionality and Analysis of Algebraic High-
Level Nets. In Research Report A16, Digital Systems Laboratory, 1991.

[LNW03] Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. Actor-
oriented design of embedded hardware and software systems. Journal of
Circuits, Systems, and Computers, 12:231–260, 2003.

[LS04] Stephen Lack and Pawel Sobociński. Adhesive Categories. In Proc. FOS-
SACS 2004, volume 2987 of LNCS, pages 273–288. Springer, 2004.

[LTB+12] Evanela Lapi, Nikolay Tcholtchev, Louay Bassbouss, Florian Marienfeld,
and Ina Schieferdecker. Identification and Utilization of Components for a
Linked Open Data Platform. 2012 IEEE 36th Annual Computer Software
and Applications Conference Workshops, 0:112–115, 2012.

[Lur09] Jacob Lurie. Higher Topoi. Princeton University Press, 2009.

[MBE09] Tony Modica, Enrico Biermann, and Claudia Ermel. An eclipse frame-
work for rapid development of rich-featured gef editors based on emf
models. In Stefan Fischer, Erik Maehle, and Rdiger Reischuk, editors,
GI Jahrestagung, volume 154 of LNI, pages 2972–2985. GI, 2009.

[MEE10] Maria Maximova, Hartmut Ehrig, and Claudia Ermel. Formal relation-
ship between petri net and graph transformation systems based on func-
tors between m-adhesive categories. ECEASST, 40, 2010.

[MEE12] Maria Maximova, Hartmut Ehrig, and Claudia Ermel. Transfer of local
confluence and termination between petri net and graph transformation
systems based on m-functors. ECEASST, 51, 2012.

Bibliography 275

[MGE+10] Tony Modica, Karsten Gabriel, Hartmut Ehrig, Kathrin Hoffmann, Sha-
reef Shareef, Claudia Ermel, Ulrike Golas, Frank Hermann, and Enrico
Biermann. Low- and High-Level Petri Nets with Individual Tokens. Tech-
nical Report 2009/13, Technische Universität Berlin, 2010.

[MGH10] Tony Modica, Karsten Gabriel, and Kathrin Hoffmann. Formalization of
Petri Nets with Individual Tokens as Basis for DPO Net Transformations.
ECEASST, 40, 2010.

[Mil73] Robin Milner. Processes: a mathematical model of computing agents. In
Logic Colloquium, 1973.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lec-
ture Notes in Computer Science. Springer, 1980.

[Mil99] Robin Milner. Communicating and Mobile Systems: The Pi-Calculus.
Cambridge University Press, 1999.

[MM90] José Meseguer and Ugo Montanari. Petri Nets Are Monoids. Information
and Computation, 88(2):105–155, 1990.

[MMS97] José Meseguer, Ugo Montanari, and Vladimiro Sassone. On the Semantics
of Place/Transition Petri Nets. Mathematical Structures in Computer
Science, 7(4):359–397, 1997.

[Mod12] Tony Modica. Formal Modeling, Simulation, and Validation of Commu-
nication Platforms. PhD thesis, Technische Universität Berlin, 2012.

[MSM97] Naoto Makinae, Hikaru Suzuki, and Satoshi Minamoto. Communication
Platform for Service Operations Systems in Advanced Intelligent Net-
work. In ICC (2), pages 872–877, 1997.

[Nov08] Peter Novák. Communication platform for open heterogeneous mass.
Technical Report IfI-08-13, TU Clausthal, 2008.

[NPS95] Mogens Nielsen, Lutz Priese, and Vladimiro Sassone. Characterizing
behavioural congruences for petri nets. In Insup Lee and ScottA. Smolka,
editors, CONCUR ’95: Concurrency Theory, volume 962 of Lecture Notes
in Computer Science, pages 175–189. Springer Berlin Heidelberg, 1995.

[Pad92] Julia Padberg. Theory of High-Level-Replacement Systems and its Ap-
plications to Petri-Nets. Diploma thesis, Technische Universität Berlin,
1992.

[Pad96] Julia Padberg. Abstract Petri Nets - Uniform Approach and Rule-Based
Refinement. PhD thesis, Technische Universität Berlin, 1996.

[Pas12] Marcus Pascal. Konzeption und implementierung eines werkzeugs zur
rekonfiguration von algebraischen high-level-netzen. Diploma thesis,
Technische Universität Berlin, 2012.

[PE01] Julia Padberg and Hartmut Ehrig. Parameterized Net Classes: A Uni-
form Approach to Petri Net Classes. In Hartmut Ehrig, Julia Padberg,

276 Bibliography

Gabriel Juhás, and Grzegorz Rozenberg, editors, Unifying Petri Nets, vol-
ume 2128 of Lecture Notes in Computer Science, pages 173–229. Springer
Berlin Heidelberg, 2001.

[PEHP08] Ulrike Prange, Hartmut Ehrig, Kathrin Hoffmann, and Julia Padberg.
Transformations in reconfigurable place/transition systems. In Pierpaolo
Degano, Rocco Nicola, and Jos Meseguer, editors, Concurrency, Graphs
and Models, volume 5065 of Lecture Notes in Computer Science, pages
96–113. Springer Berlin Heidelberg, 2008.

[PER95] Julia Padberg, Hartmut Ehrig, and Leila Ribeiro. Algebraic High-Level
Net Transformation Systems. Mathematical Structures in Computer Sci-
ence, 80:217–259, 1995.

[Pet62] Carl A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für
instrumentelle Mathematik, Universität Bonn, 1962.

[Pra07] Ulrike Prange. Algebraic High-Level Nets as Weak Adhesive HLR Cate-
gories. ECEASST, 2:1–13, 2007.

[Pra08] Ulrike Prange. Towards Algebraic High-Level Systems as Weak Adhesive
HLR Categories. In Hartmut Ehrig, Jochen Pfalzgraf, and Ulrike Prange,
editors, Proceedings of the ACCAT workshop at ETAPS 2007, volume 203
/ 6 of Electronic Notes in Theoretical Computer Science, pages 67–88,
Amsterdam, 2008. Elsevier.

[Pro13] Google Wave Protocol. http://www.waveprotocol.org/, September
2013.

[PW98] Lutz Priese and Harro Wimmel. A uniform approach to true-concurrency
and interleaving semantics for petri nets. Theoretical Computer Science,
206(1–2):219–256, 1998.

[Rei85] Wolfgang Reisig. Petrinetze, Eine Einführung. Springer Verlag, Berlin,
1985.

[Rei90] Wolfgang Reisig. Petri Nets and Algebraic Specifications. Technische
Universität München, SFB-Bericht 342/1/90 B, March, 1990.

[Riz13] Rizzoma. https://rizzoma.com/, September 2013.

[Roz87] Grzegorz Rozenberg. Behaviour of Elementary Net Systems. In Petri
Nets: Central Models and Their Properties, Advances in Petri Nets, vol-
ume 254 of LNCS, pages 60–94. Springer, 1987.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Com-
puting by Graph Transformation, Vol 1: Foundations. World Scientific,
Singapore, 1997.

[SB91] Christophe Sibertin-Blanc. Cooperative objects for the conceptual mod-
elling of organizational information systems. In Van Assche, F., Moulin,
B., and Rolland, C., editors, The Object-Oriented Approach in Informa-
tion Systems, IFIP TC8 Conference, 28-31 October 1991, pages 275–296.

http://www.waveprotocol.org/
https://rizzoma.com/

Bibliography 277

North-Holland, 1991.

[SB94] Christophe Sibertin-Blanc. Cooperative nets. In Proceedings of 15th
International Conference on the Application and Theory of Petri Nets,
Lecture Notes in Computer Science 815, pages 471–490. Springer-Verlag,
1994.

[SEM+12] Hanna Schölzel, Hartmut Ehrig, Maria Maximova, Karsten Gabriel, and
Frank Hermann. Satisfaction, Restriction and Amalgamation of Con-
straints in the Framework of M-Adhesive Categories. In ACCAT, pages
83–104, 2012.

[Sie04] Frank Siegemund. A Context-Aware Communication Platform for Smart
Objects. In Alois Ferscha and Friedemann Mattern, editors, Pervasive
Computing, volume 3001 of Lecture Notes in Computer Science, pages
69–86. Springer Berlin Heidelberg, 2004.

[Sky13] Skype. http://www.skype.com/, September 2013.

[SMM+08] Krzysztof Szczypiorski, Igor Margasiński, Wojciech Mazurczyk, Krzysztof
Cabaj, and Pawe lRadziszewski. Trustmas: Trusted communication plat-
form for multi-agent systems. In Robert Meersman and Zahir Tari, edi-
tors, On the Move to Meaningful Internet Systems: OTM 2008, volume
5332 of Lecture Notes in Computer Science, pages 1019–1035. Springer
Berlin Heidelberg, 2008.

[Ste03] Stephan Steglich. I-Centric User Interaction. PhD thesis, Technische
Universität Berlin, 2003.

[SV01] Alberto Sangiovanni-Vincentelli. Platform-based design. In IEEE Design
e Test, 18(6):23 33, Novembro, 2001.

[Tae04] Gabriele Taentzer. Agg: Agraph transformation environment for mod-
eling and validation of software. In John L. Pfaltz, Manfred Nagl, and
Boris Böhlen, editors, Applications of Graph Transformations with In-
dustrial Relevance, volume 3062 of Lecture Notes in Computer Science,
pages 446–453. Springer Berlin Heidelberg, 2004.

[Tav02] Ahmad R. K. Tavakoli. Transformation of Open and Algebraic High-
Level Peti Net Classes. Technical Report 2002-24, Technische Universtät
Berlin, 2002.

[TBG91] Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some funda-
mental algebraic tools for the semantics of computation: Part 3. indexed
categories. Theoretical Computer Science, 91(2):239 – 264, 1991.

[Twi13] Twitter. http://www.twitter.com/, September 2013.

[UP08] Conny Ullrich and Julia Padberg. Reconfigurable open algebraic high-
level systems. ECEASST, 14, 2008.

[Urb03] Milan Urbasek. Net Transformations for Petri Net Technology. Bulletin
of EATCS, Formal Specification Column, 80:77–94, June 2003.

http://www.skype.com/
http://www.twitter.com/

278 Bibliography

[Val78] Rüdiger Valk. Self-modifying nets, a natural extension of petri nets. In
Giorgio Ausiello and Corrado Böhm, editors, Automata, Languages and
Programming, volume 62 of Lecture Notes in Computer Science, pages
464–476. Springer Berlin Heidelberg, 1978.

[Val98] Rüdiger Valk. Petri nets as token objects. In Jörg Desel and Manuel Silva,
editors, Application and Theory of Petri Nets 1998, volume 1420 of Lec-
ture Notes in Computer Science, pages 1–24. Springer Berlin Heidelberg,
1998.

[Val01] Rüdiger Valk. Concurrency in communicating object petri nets. In
Gul A. Agha, Fiorella Cindio, and Grzegorz Rozenberg, editors, Con-
current Object-Oriented Programming and Petri Nets, volume 2001 of
Lecture Notes in Computer Science, pages 164–195. Springer Berlin Hei-
delberg, 2001.

[Wal13] Google Walkaround. http://wavereactor.appspot.com/, September
2013.

[Wav13a] Apache Wave. http://incubator.apache.org/wave/, September 2013.

[Wav13b] Wave in a box. http://waveinabox.net/, September 2013.

[Wik13a] Wikipedia. http://www.wikipedia.org/, September 2013.

[Wik13b] WikiWikiWeb. http://c2.com/cgi/wiki?WikiWikiWeb/, September
2013.

[Yon10] Tsvetelina Yonova. Formal Description and Analysis of Distributed On-
line Collaboration Platforms. Bachelor thesis, Technische Universität
Berlin, 2010.

http://wavereactor.appspot.com/
http://incubator.apache.org/wave/
http://waveinabox.net/
http://www.wikipedia.org/
http://c2.com/cgi/wiki?WikiWikiWeb/

Index

Symbols⊎
, 192
•, 58∐

, 176
⊕, 31
⊗, 33

A

Abstraction
of communication platforms, 47
of scenarios, 75

Action evolution, 105
with instantiated pattern, 111

Action evolution pattern, 104, 110
Action occurrence, 106, 112
Agreement of AHL-processes, 82
Agreement restriction, 83
AHL-net, see Algebraic high-level net
AHL-occurrence net, 58
AHL-process, see Algebraic high-level process
AHL-process net, see Algebraic high-level pro-

cess net
Algebraic high-level net, 28, 32, 156

Category, 34
Firing, 34, 36
Marking, 34
Morphism, 33–34, 36
with individual tokens, 37

Algebraic high-level process, 59
strict, 59

Algebraic high-level process net, 58
Amalgamation of AHL-processes, 83

B

Backward conflict, 58
Boundary, 191

C

Cartesian morphism, 179
Category

Adhesive, 178

AHLNets, 34

AHLPNets, 58

AHLProcs, 59

Algs, 177

Graphs, 178

Grothendieck, 176–177

Indexed, 176

Inst, 70

M-adhesive, 177–178

PInst, 71

Proc(AN), 59

ProcInst, 71

PTNets, 31

Sets, 39, 178

SigSets, 177

Weak adhesive HLR, 178

wInst, 70

wPInst, 71

wProcInst, 71

Causal relation, 58, 64

Choice of matches, 106, 112

Cocreation, see Functor cocreation

Coloured Petri net, 28

Communication platform, 19, 35

Apache Wave, 20, 22–24

Facebook, 20

Google Wave, 22

Human-centric, 20

Skype, 20

Twitter, 20

Wikis, 20

Composability

of AHL-process nets, 64

of instantiated AHL-process nets, 82

Composition

of communication platforms, 41

Concretisation

of communication platforms, 47

of scenarios, 75

Concurrency Theorem, 123, 132

280 Index

Connection category, 181

Consistent creation condition for abstract pro-
ductions, 94

Coproduct, 176

compatible with M, 193

of AHL-nets, 193

of AHL-process nets, 195

of instantiations, 195

of sets, 192

Creation, see Functor creation

D

Dangling points, 44

Data evolution

of communication platforms, 46

of scenarios, 74

Data-image

of AHL-nets, 45

of instantiations, 73

Data-preimage

of AHL-nets, 47

of instantiations, 74

Data-shifting of abstract productions, 91

Disjoint union

of AHL-nets, 192

of sets, 192

E

E ′, 122, 131

E ′-M′ pair factorisation, 199

of AHL-nets, 201

of instantiations, 201

E-concurrent production, 123, 132

E-concurrent transformation, 123

strongly, 132

E-dependency relation, 122

strong, 131

E-M′ factorisation, 199

of AHL-nets, 199, 203

of instantiations, 201

of typed AHL-nets, 202

E-related transformation, 123

strongly, 131

Equivalence

of AHL-processes, 59

Extension

of AHL-process, 61, 79, 101

of instantiated AHL-process, 81

of scenarios, 86, 102

Extension condition, 102

Extremal E-M-factorisation, 204

F

F -identity, 182

F -shifting of spans, 186

Flattening, 50

Forward conflict, 58

Free commutative monoid, 31

Functor

Data, 224

Flat, 54

InstData, 226

Net, 189, 221, 222, 225

PNet, 189

Proc, 189, 222

Skel, 50

Sys, 223

SysNet, 223

Vf (Σ-reduct), 177

W , 206, 224

wFlat, 54

Functor cocreation, 184

Functor creation, 178

G

Gluing

of AHL-nets, 40

of AHL-process nets, 63

of AHL-processes, 65

of instantiated AHL-process nets, 82

of instantiations, 82

of sets, 39

Gluing condition

Categorical, 191

for AHL-nets, 44

for sets, 43

Gluing points, 44

Gluing relation, 66

Grothendieck category, 176

I

Identification points, 43, 44

IN , see Input places

Independence

of platform evolutions, 120, 128

Parallel, 118

Sequential, 118

Strict parallel, 127

Index 281

Strict sequential, 127
Indexed category, 176
Induced causal relation, 64
Initial pushout, 191
Input places, 58
Instantiation

Morphism, 70
of AHL-net, 70
of AHL-process, 71

Instantiation condition for abstract produc-
tions, 92

L

Levels of abstraction
of communication platforms, 47
of scenarios, 75

Local Church-Rosser Theorem, 119, 127

M

M-adhesive category, 177–178
M-M′ PO-PB decomposition property, 205

of AHL-nets, 205
M-morphism, 177
MAHL, 38, 178
M→AHL, 126
MG , 178
MPT , 178
MS , 178

M-Van Kampen square, 177
Monomorphism, 175

N

Natural inclusion, 52
Natural projection, 52, 53

O

Open Petri nets, 155
OUT , see Output places
Output places, 58

P

P/T Net, see Place/Transition net
Parallel composition

of AHL-processes, 96
Parallel production

for AHL-nets, 194
for AHL-process nets, 195
for instantiations, 196
of abstract productions, 196

Parallelism Theorem, 120, 129

Partial order, 58

Petri net, 28

Place/Transition net, 28, 31

Category, 31

Firing, 31

Marking, 31

Predicate/Transition net, 28

Process evolution based on action evolution,
107, 112

Process points, 102

Production

for action evolution, 104

for action evolution with instantiated pat-
tern, 111

for AHL-nets, 38

for AHL-process nets, 62

for AHL-processes, 103

for instantiated AHL-processes, 110

for instantiations, 88

proj, see Natural projection

Pullback, 176

of categories, 187

of instantiations, 209

Pushout, 175

Initial pushout, 191

of AHL-nets, 40

of instantiations, 209

of sets, 40

Pushout complement, 175

of AHL-nets, 43, 44

of sets, 43

R

Realisation conditions, 135

Realisation variables, 135

Restriction

of (weak) instantiation, 80

of AHL-process, 79

of instantiated AHL-process, 81

of scenarios, 86

Rule-based transformation, 28

S

Scenario

Abstract, 60

Concrete, 71

Semi-Concrete, 72

Scenario Evolution based on platform evolu-
tion

282 Index

Abstract, 108
Concrete, 113

Sequential composability
of AHL-processes, 96

Sequential composition
of AHL-processes, 96

Sequential match, 97, 98
Sequential production

for AHL-process, 97
for instantiated AHL-process, 98

Sequential transformation
of AHL-process, 97
of instantiated AHL-process, 98

Signature-sorted sets, 177
Skeleton, 49
Slice Functor, 179
Solution for realisation conditions, 135
Strictly sequential composition

of AHL-processes, 96
Structural evolution

of abstract scenarios, 68
of communication platforms, 45
of concrete scenarios, 93

T

T -preimage of AHL-net, 219
Timed Petri nets, 156
Transformation

of AHL-nets, 43, 44
of AHL-process nets, 63, 67
of AHL-processes, 67, 68, 103
of concrete instantiations, 90, 92, 214
of instantiated AHL-processes, 110
of weak instantiations, 90, 213

Transformation condition, 66

U

UML, 27
Unarity, 58

V

Van Kampen square, 178
V∪, 135
Views on scenarios, 86

W

w, see Natural inclusion
Weak flattening, 50
Weak instantiation

of AHL-net, 70

of AHL-process, 71
wproj, see Natural projection

	Introduction
	Aim of the Thesis
	Main Results
	Structure of the Thesis

	Requirements for Communication Platforms and Scenarios
	Communication Platforms and Scenarios
	Case Study: Apache Wave
	Requirements for the Modelling
	Analysis Problems
	Formal Techniques for Modelling and Analysis
	Algebraic High-Level Nets and Processes for Modelling and Analysis

	Modelling and Evolution of Communication Platforms
	Modelling of Communication Platforms Using Algebraic High-Level Nets
	Structural Evolution of Platforms
	Data Evolution and Abstraction of Platforms
	Structure and Semantics of Platforms by Skeleton and Flattening

	Modelling and Evolution of Scenarios
	Modelling of Abstract Scenarios Using Algebraic High-Level Processes
	Evolution of Abstract Scenarios
	Modelling of Concrete Scenarios Using Instantiations
	Data Evolution and Abstraction of Concrete Scenarios
	Restriction and Amalgamation of Scenarios
	Structural Evolution of Concrete Scenarios
	Modelling and Evolution of Histories
	Evolution of Scenarios Based on Platform Evolution
	Extension of Scenarios
	Abstract Scenario Evolution Based on Platform Evolution
	Concrete Scenario Evolution Based on Platform Evolution

	Analysis of Platforms and Scenarios
	Independence of Platform Evolutions
	Independence of Scenario Evolutions
	Concrete Realisations of Abstract Scenarios

	Tool Support
	Requirements for a Tool Support for the Modelling and Analysis of Communication Platforms and Scenarios
	Available Tool Support for the Modelling and Analysis of High-Level Petri Nets
	Algebraic High-Level Net and Process Editor APE
	Tool Architecture
	Signatures and Algebras in Prolog
	Visual Editing of Net Models
	Calculation of Realisations for Abstract Scenarios
	Current Development Status

	Related Work
	Formal Modelling of Communication Platforms and Apache Wave
	Petri Nets
	Graph and Model Transformation
	Other Modelling Techniques

	Conclusion
	Realisation of Modelling Requirements
	Results for Analysis Problems
	Categorical Results
	Functor Creations and Cocreations of Petri Net Categories
	Pullbacks of Petri Net Categories

	Future Work
	Conflicts and Independence of User Interactions
	Application Conditions
	Analysis of Safety and Security Problems
	Other Case Studies and Application Domains

	Appendix
	Category Theoretical Basics
	Basics
	Indexed Categories and Grothendieck Categories
	M-Adhesive Categories
	Functor Creations and Cocreations
	Pullbacks of Categories

	Initial Pushouts and Categorical Gluing Condition
	Disjoint Union and Parallel Productions
	E-M' Factorisation and E'-M' Pair Factorisation
	Instantiations: Technical Details
	Functor Creations and Cocreations of Processes and Instantiations
	Minor Technical Results

	Detailed Proofs
	Proof of Fact 3.4.4 (Skeleton Functor)
	Proof of Fact 3.4.8 (Natural Inclusion)
	Proof of Fact 3.4.9 (Natural Projection)
	Proof of Fact 3.4.11 (Flattening Functors)
	Proof of Fact 4.2.6 (Gluing of AHL-Process Nets)
	Proof of Theorem 4.2.11 (Direct Transformation of AHL-Process Nets)
	Proof of Theorem 4.5.13 (Amalgamation Theorem for AHL-Processes)
	Proof of Theorem 4.6.8 (Direct Transformation of Instantiations Using Abstract Productions)
	Proof of Fact 4.6.13 (Equivalence of Consistent Creation Condition and Instantiation Condition)
	Proof of Theorem 4.8.4 (Extension of AHL-Process based on AHL-Net Transformation)
	Proof of Theorem 4.8.14 (Process Evolution based on Action Evolution)
	Proof of Theorem 5.2.4 (Local Church-Rosser Theorem for AHL-Process Net Transformations)
	Proof of Theorem 5.2.14 (Concurrency Theorem for AHL-Process Net Transformations)
	Proof of Fact 5.2.15 (Construction of Strongly E-Related AHL-Process Net Transformations)
	Proof of Theorem 5.3.3 (Concrete Realisation of AHL-Process)

	Bibliography
	Index

