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Abstract 

A paradigm shift towards condition-based and predictive maintenance (CBM and PM) is 

undergoing in the railway system. This will increase the maintenance efficiency and 

ultimately increase the reliability and availability of railway assets. As an essential part of 

CBM and PM, condition monitoring along with intelligent data processing algorithms 

determines the up-to-date asset conditions to support maintenance decision-making.  

Condition monitoring in railway applications usually requires real-time data processing for 

fault diagnosis. As train drivers or infrastructure operators should be immediately informed, 

once severe failures are detected. As many railway assets have not been electrified, the onsite 

infrastructure for power supply and data communication is absent. This results in further 

challenges for data processing with regard to power consumption and computational 

complexity. Furthermore, the operating conditions of railway assets vary in a large range. 

Condition variations reflect in the monitoring data and cause the distribution shift, which may 

induce the robustness problem of diagnostic models.  

To cope with these problems encountered in practice, we have conducted extensive research 

towards robust real-time condition monitoring and fault diagnosis for railway assets. We 

propose to use lightweight convolutional neural networks (LCNN) to realize real-time 

capability. During the model training, data augmentation is introduced for robustness 

enhancement. This general data processing procedure is demonstrated in two distinct railway 

applications. They have been described in three scientific publications, which constitute the 

present cumulative dissertation. 

The first application deals with wheel flat detection (WFD) for vibration monitoring on 

freight wagons, which supports wagon maintenance. As freight wagons are not electrified, the 

algorithm should be executed in real time on embedded systems powered by batteries, which 

have limited computation power. In the first paper, we propose to automatically search a one-

dimensional (1D) LCNN for real-time WFD with the optimal tradeoff between computational 

complexity and detection accuracy. In the second paper, the robustness problems induced by 

the variation of vehicle speeds, monitored wagons and track conditions are investigated. A 

novel data augmentation framework, incorporating multibody dynamic simulation for 

physical modeling and fast weighted feature-space averaging to augment simulation data, is 

proposed for robustness enhancement.  

The second application concerns track geometry monitoring, supporting track maintenance. 

Our work published in the third paper is the first attempt to use a deep learning based 

computer vision solution for track geometry monitoring. Virtual point tracking for real-time 

target-less dynamic displacement measurement is proposed to track the lateral movement of 

the wheel on the rail, in order to calculate track alignment. It is mainly realized by a 2D 

LCNN for virtual point detection within each video frame, achieving frame rates of above 30 

frames per second on edge devices. In addition, data augmentation based on image corruption 

is applied to enhance the robustness against different weather conditions and contaminations.  

Real-time requirements and robustness problems are the general topics of condition 

monitoring. The proposed methods for real-time data processing and robustness enhancement 

are not confined to the two exemplary applications. They can be adapted into similar 

scenarios. The potential for further improvement are discussed.   
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Zusammenfassung 

Im Eisenbahnsystem vollzieht sich ein Paradigmenwechsel zu zustandsbasierter und 

prädiktiver Instandhaltung. Dies zielt die Erhöhung der Wartungseffizienz und letztendlich 

der Zuverlässigkeit und Verfügbarkeit von Eisenbahnanlagen ab. Als wesentlicher Bestandteil 

ermittelt die Zustandsüberwachung mit intelligenten Datenverarbeitungsalgorithmen den 

aktuellen Zustand von Anlagen zur Unterstützung effizienter Instandhaltungsentscheidungen. 

Die Zustandsüberwachung erfordert in der Regel die Echtzeitverarbeitung der erfassten Daten 

zur Fehlerdiagnose. Da die Lokführer oder die Infrastrukturbetreiber sofort informiert werden 

sollten, sobald schwerwiegende Störungen festgestellt werden. Viele Bahnanlagen sind noch 

nicht elektrifiziert, die Infrastruktur für Stromversorgung und Datenkommunikation fehlt. 

Daraus ergeben sich weitere Herausforderungen für die Datenverarbeitung hinsichtlich 

Stromverbrauch und Rechenaufwand. Darüber hinaus variieren die Betriebsbedingungen von 

Eisenbahnanlagen in einem großen Bereich. Variationen von Betriebsbedingungen 

verursachen deren Verteilungsverschiebung der Überwachungsdaten, was das 

Robustheitsproblem der Diagnosealgorithmen hervorrufen kann. 

Um diese Probleme zu bewältigen, wurden umfangreiche Untersuchungen zur Realisierung 

robuster Echtzeit-Zustandsüberwachung und Fehlerdiagnose für Eisenbahnanlagen 

durchgeführt. Ein auf leichten faltenden neuronalen Netzen (LCNN) basierender Ansatz wird 

zur Datenverarbeitung in Echtzeit vorgestellt. Dazu werden Datenvermehrungstechniken zur 

Verbesserung der Robustheit eingesetzt. Dieses allgemeine Datenverarbeitungsverfahren wird 

in zwei Eisenbahnanwendungen demonstriert. Sie wurden in drei wissenschaftlichen 

Publikationen beschrieben, die die vorliegende kumulative Dissertation darstellen. 

Die erste Anwendung befasst sich mit der Flachstellenerkennung an Güterwagen. Da 

Güterwagen nicht elektrifiziert sind, sollte der Algorithmus in Echtzeit auf batteriebetriebenen 

eingebetteten Systemen ausgeführt werden, die über eine begrenzte Rechenleistung verfügen. 

In der ersten Publikation wurde ein eindimensionales (1D) LCNN zur Flachstellenerkennung 

hinsichtlich des optimalen Kompromiss zwischen Rechenkomplexität und Erkennungs-

genauigkeit entwickelt. In der zweiten Publikation wurde die Robustheit der Flachstellen-

erkennung durch die Variation von Fahrgeschwindigkeiten, überwachten Güterwagen und 

befahrenen Strecken untersucht. Zur Verstärkung der Robustheit wurde eine 

Datenvermehrungsmethode entwickelt, die Mehrkörpersimulation und die gewichtete 

Merkmalsraummittelung zur Erweiterung der Simulationsdaten umfasst. 

Die zweite Anwendung betrifft die Gleisgeometrieüberwachung. Eine auf 2D-LCNN 

basierender Methode zur Erkennung und Verfolgung virtueller Punkten wurde entwickelt und 

in der dritten Publikation beschrieben. Diese Methode ermöglicht die Echtzeitmessung 

seitlicher Bewegung der Räder auf den Schienen mit der Abtastfrequenz von über 30 Bildern 

pro Sekunde. Darüber hinaus wurde eine Datenvermehrungsmethode basierend auf 

Bildverfälschung zur Verstärkung der Robustheit gegenüber unterschiedlichen 

Wetterbedingungen und Verschutzungen angewendet. 

Echtzeitfähigkeit und Robustheit sind die allgemeinen Themen der Zustandsüberwachung. 

Die entwickelten Methoden können in ähnliche Szenarien zur Echtzeit-Datenverarbeitung und 

Robustheitsverbesserung verwendet werden. In vorliegender Dissertation wird dazu das 

Verbesserungspotenzial der entwickelten Methoden diskutiert.   
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1. Introduction 

Traditionally, conditions of railway assets are assessed by inspections within the maintenance 

process. The inspection interval and content limit the availability of up-to-date information on 

the condition of the individual assets. Although today’s maintenance system ensures the safe 

operation of the railway system without this information, it can hardly achieve an optimal 

trade-off between maintenance efforts and assets’ reliability as well as availability. Within the 

wave of digitalization, condition monitoring is becoming an essential part of maintenance in 

the railway system. From the monitoring data, the useful information is extracted by 

intelligent algorithms to represent the up-to-date asset conditions. This offers the opportunity 

and feasibility for sustainable optimization of maintenance, increasing the efficiency and 

quality of the railway system. Being motivated by this ultimate objective, we investigate data 

processing towards robust real-time condition monitoring and fault diagnosis for railway 

assets.  

In the following, common inspection measures within the maintenance process for rolling 

stock and tracks are presented as the research background. Their limitations are the main 

driver of railway condition monitoring applications. However, they face specific challenges 

related to real-time data processing and diagnostic robustness, which are the main focus of 

our research. These challenges will be explained in detail. Finally, the structure of the present 

dissertation is introduced.  

1.1. Inspection and maintenance of railway assets 

Maintenance is defined as the combination of all technical, administrative and managerial 

actions during the life cycle of an item intended to retain it in, or restore it to, a state in which 

it can perform the required function [1]. Inspection and monitoring are the parts of technical 

maintenance actions. In current practice in the railway system, inspection is the most common 

measure to assess the asset conditions within maintenance processes. It is worth noting that 

inspection is a conformity examination, aiming to determine whether the asset conforms with 

the requirements of safe operating. It does not determine the exact asset conditions. The 

inspection tasks and intervals heavily depend on the target assets. For instance, in the 

maintenance process of railway freight wagons, technical inspections are carried out before 

every train journey and wagon handover, after new train composition as well as loading and 

unloading. These activities usually take place every day. The technical inspections aim to 

assess the operating safety and rail worthiness of wagons, identify any failures, and take 

appropriate maintenance decisions [2]. In practice, the qualified inspectors walk along the 

train on both sides to examine each wagon primarily based on their vision, hearing and 

cognitive capabilities. Simultaneously, the inspectors conduct diverse tasks for train 

preparation, brake testing, documentation, communication, and preparation of transport paper. 

This leads to the fact that the inspectors have to assess the wagon conditions and identify the 

component failures in a very short time, typically one minute per axle [3]. However, there are 

more than a hundred failure modes on freight wagons according to the GCU failure category. 

Despite remarkable cognitive capabilities of inspectors, the probability of failure detection 

relies on their physical and mental status as well as the visibility of the components and 

failures, which could be affected by failure locations, weather conditions, darkness, and 
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contamination. In the case that a failure is detected, a wagon damage report should be filled, 

on which the failure is described with a pre-defined failure code and additional textual 

descriptions. The corresponding maintenance measure according to the failure severity has to 

be executed immediately. In the worst case, the defective wagon must be detached from the 

train and dispatched to the workshop for repair. This maintenance measure directly delays the 

train departure and increases the cost of train composition.  

The above-described inspection processes take place during the normal operation of rail 

freight transport. The successful detection of a failure triggers unscheduled maintenance, 

which corresponds to the strategy of corrective maintenance. It ensures operation safety. 

However, it disrupts normal operation. To reduce failure occurrences and unplanned 

downtimes as much as possible, corrective maintenance is combined with preventive 

maintenance. Preventive maintenance requires maintenance actions scheduled at fixed 

intervals. The intervals are usually defined in terms of time or mileage for different levels of 

scheduled maintenance based on the experience and the historical maintenance. For instance, 

light maintenance may take place every several months, which includes the technical 

inspection, lubrication, cleaning, replacement of wear components such as brake blocks and 

measurement of wheel profiles. Maintenance Level II for wheelsets (IS2) occurs typically 

every two or three years, in which wheelsets are dismounted for reprofiling and 

nondestructive testing (NDT). The wagon revision occurs every 6-8 years, in which the entire 

wagons are dissembled for examination. Due to the large interval of scheduled maintenance, 

the focus of the inspection is more on the wear status and the fatigue failures, rather than 

abrupt failures which are mostly detected in unscheduled maintenance.  

The combination of corrective and preventive maintenance constitutes today’s maintenance 

strategy for railway assets. It is not confined to rolling stock maintenance, but also applied to 

railway infrastructure maintenance. For track maintenance, inspections include regular human 

visual inspections, scheduled track geometry inspections with track recording vehicles (TRV), 

scheduled NDT of rails, scheduled running dynamics inspections, etc. Human visual 

inspections aim to detect irregularities that can be visually observed. They are carried out 

more frequently than inspections with specific measurement systems. The latter focuses more 

on wear status and fatigue failures. For instance, track geometry inspections are performed 

every several months depending on the maximum line speeds of the inspected track sections. 

The parameters of track geometry and rail profile are accurately measured and compared to 

the thresholds. 

Although the current maintenance strategy has been well implemented in practice and can 

ensure safe railway operation, it has the following limitations in maintenance efficiency. 

• Failure detection during normal operation relies on frequent visual inspections. More 

frequent inspections and a longer duration of a single inspection can certainly increase the 

probability of failure detection and the reliability of the assets. However, it increases 

higher labor costs and may also decrease the availability of the assets. 

• Failure detection by visual inspections usually triggers unplanned downtimes, decreasing 

assets’ availability. 

• Visual inspections cannot assess the exact conditions of the assets. The inspection results 

are not recorded if no failures are detected. Consequently, maintenance records merely 
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contain records of failure events. In other words, visual inspections cannot help avoid 

failure occurrences or predict wear-out points. 

• Scheduled instrumented inspections provide a comprehensive assessment of asset 

conditions. However, it cannot be performed frequently due to high costs and time-

consuming. Low-frequency data can hardly be used for accurate wear prediction.  

• Planning scheduled maintenance is guided by the standards or regulatory requirements, 

operating and maintenance experience, historical maintenance records, and results of 

scheduled inspections. Due to a lack of up-to-date information related to the conditions of 

the individual assets, the scheduled maintenance may cause waste in the life cycles of 

spare parts or be planned too late to prevent failure occurrences. 

In a summary, the main obstacle is the lack of a measure that can quantify the up-to-date 

conditions of the assets without interruption of normal operation. Condition monitoring 

techniques along with intelligent data processing algorithms can make up for this gap. On the 

one hand, condition monitoring systems can detect abrupt failures at early stages during 

normal operation. The train drivers or infrastructure operators are informed about failure 

detection so that they can take steps to avoid safety hazards and meanwhile also arrange 

maintenance actions on time. In this way, the unscheduled maintenance is turned into 

emergently scheduled maintenance. On the other hand, the cumulated monitoring data over 

time can be used for wear prediction to support the planning of scheduled maintenance, 

especially in which the worn components are replaced or reprofiled. This not only saves the 

life cycle of spare parts but also enables the optimization of spare parts inventory 

management.  

With more and more systems of condition monitoring and data analytics being employed in 

practice, a paradigm shift from corrective and preventive maintenance to condition based and 

predictive maintenance (CBM and PM) is undergoing in the railway system, as it also does in 

other industrial and transportation sectors. CBM is defined as a type of preventive 

maintenance in EN 13306 [1], which includes assessment of assets’ conditions, analysis, and 

possible follow-up maintenance actions. Although condition assessment is also conducted in 

today’s maintenance processes by visual inspections and scheduled instrumented inspections, 

it cannot change the fact that maintenance is scheduled at fixed intervals rather than based on 

assets’ conditions. The involvement of condition monitoring is the keystone of the actual 

CBM, since it fundamentally increases the quantity and quality of data related to asset 

conditions. This data facilitates advanced data analytics methods for early detection of abrupt 

failures and tracking of degradation progress. With the accumulation of monitoring data over 

time, it becomes possible to predict failures and wear-out as well as estimate the remaining 

lifetime of assets, which is the key part of PM.  

1.2. Challenges and outline 

CBM and PM require intelligent algorithms to determine the asset conditions for the 

subsequent fault diagnosis and degradation prognosis. Apart from asset conditions, planning 

and making decisions for maintenance should also take into account the available 

maintenance resources, the economic aspects, the operation plans, etc. It is an optimization 
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problem with the objective of achieving the highest reliability and availability of railway 

assets and meanwhile the lowest life cycle costs. 

The present dissertation focuses on data processing of monitoring data. Development of 

condition monitoring hardware and maintenance optimization are out of scope. To be more 

specific, we aim to tackle two challenges of data processing encountered in practice.  

First, condition monitoring in railway applications usually requires real-time processing of 

acquired data. Raw monitoring data, which occupies a large space, can hardly be transmitted 

directly to the cloud for subsequent processing. This is particularly true in railway 

applications. Many railway assets have not been electrified. The onsite infrastructure for 

power supply and data communication is absent. For instance, onboard monitoring systems on 

rolling stock have to transmit data via 2G or 4G mobile network. 4G network is not always 

available along the track. The data may have to be transmitted by 2G network with speeds of 

up to 5 kB/s. It is impossible to upload a large amount of data with such low transmission 

rates. Monitoring systems installed on infrastructure face the same problem, since data cables 

are not standard equipment installed along the track. Moreover, real-time fault diagnosis is 

highly desired, since the relevant operators should be informed immediately to take measures 

to prevent safety hazards in the event of severe failures. From the maintenance perspective, 

the entities in charge of maintenance (ECM) should also be informed immediately to plan 

maintenance actions in time. Furthermore, data processing algorithms for condition 

monitoring are commonly executed on edge devices such as embedded electronic systems, 

rather than on powerful workstations. The embedded systems have very limited computation 

power. This results in further challenges for data processing with regard to computational 

complexity.  

Second, operating conditions of railway assets in the wild outdoor environment vary in a large 

range. Variations of operating conditions reflect in monitoring data and cause distribution 

shifts thereof, which may induce robustness problems of diagnosis algorithms. For instance, 

vehicle speeds and track conditions significantly affect the results of onboard vibration 

monitoring. For optical monitoring, weather conditions are usually one of the decisive factors. 

When condition monitoring systems are deployed on different objectives, which even belong 

to the same type of assets, calibration of hardware and algorithm settings is often necessary to 

ensure meaningful monitoring results. These robustness problems have not been well studied 

in the area of machine fault diagnosis (MFD). 

To cope with these challenges, we have conducted extensive research on data processing 

towards robust real-time condition monitoring and fault diagnosis for railway assets. We take 

advantage of deep learning techniques and propose lightweight convolutional neural networks 

(LCNN) to realize real-time data processing with low computational demands. During the 

training process, we propose a novel data augmentation framework for robustness 

enhancement. The proposed approach is demonstrated in two distinct railway applications. 

The first application deals with wheel flat detection (WFD) using onboard vibration 

monitoring, which supports the maintenance of railway freight wagons. The second 

application concerns track geometry monitoring based on computer vision, aiming to support 

track maintenance. On the one hand, we demonstrate that different tasks of condition 

monitoring share the same challenges, which can be addressed by the proposed general 

approach of data processing. On the other hand, we tackle the specific unsolved problems in 
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the two applications. The problems and the previous research are detailed in Section 2. Our 

solutions for the two applications have been described in three scientific publications, which 

constitute the present cumulative dissertation. Its outline is as follows. 

In Section 2, the fundamentals of condition monitoring and fault diagnosis are first 

introduced. The topics related to the two railway applications are explained in more detail. 

For each application, the existing and emerging monitoring techniques are introduced. 

Afterward, the state-of-the-art data processing methods reported in academic publications are 

reviewed.  

In Section 3, the research questions based on the actual needs and the gaps of the previous 

studies are proposed. The research questions will be answered in the three publications, which 

are the main part of this dissertation. 

In Section 4-6, the three publications are presented. The first and second publications deal 

with the real-time capability and the robustness of the algorithm for WFD on freight wagons. 

The third publication addresses the real-time computer vision application for track geometry 

monitoring.  

In Section 7, the main findings and limitations of our work are discussed. The potential 

improvement is proposed. In addition, the potential use of the developed methods for similar 

applications is envisaged.  

In Section 8, the conclusions of the dissertation are drawn.  
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2. Scientific Background 

This section begins with a general introduction of the relevant fundamentals. As our work 

contributes to rolling stock bogie monitoring and track geometry monitoring, we dive into 

these two topics, presenting their status quo in practice and the state of the art (SOTA) in 

academia. 

2.1. Fundamentals 

Condition monitoring aims to measure relevant parameters to represent asset conditions and 

to track their changes over time [1]. In the following, the general process and the involved 

techniques of condition monitoring are first introduced, followed by a detailed explanation of 

fault diagnosis. 

2.1.1. Condition monitoring 

The main concept behind condition monitoring is to use low-cost non-invasive sensors to 

measure the indicative parameters without interrupting normal operation and analyze the 

measurement data over time for condition assessment and prediction. Condition monitoring 

has been widely applied in different industrial and transportation sectors. A representative 

application refers to vibration monitoring of rotating machines such as electric motors, 

turbines, compressors, etc. Instrumenting accelerometers for vibration monitoring is much 

more advantageous than disassembling machines for inspection of their internal conditions. 

The vibration signatures of machines’ healthy conditions are distinguishable from their faulty 

conditions with the help of frequency analysis. Other common monitoring techniques include 

lubricant analysis, acoustic emission, thermography, ultrasound and current signature 

analysis. Although their used sensing techniques and the corresponding data analytics 

methods are different, the general procedure of condition monitoring is the same as vibration 

monitoring. This procedure is standardized in the standard ISO 17359.  

Figure 1 shows the adopted condition monitoring procedure within the CBM/PM process. A 

feasibility study should be conducted at first to ascertain and decide whether condition 

monitoring is worth doing for the specific assets. Meanwhile, the key performance indicators 

(KPI), such as availability, reliability and LCC, should be defined as the objectives of 

maintenance optimization. Afterward, the target asset is analyzed by breaking down its 

components and functions. A complex system may have tens or even hundreds of 

components, each of which may have various failure modes. Condition monitoring techniques 

can hardly cover all of the components and their failure modes. Therefore, the first step of 

condition monitoring is to identify the critical components, functions and/or failures modes. A 

standard method for criticality analysis is failure mode, effects and criticality analysis 

(FMECA), which evaluates the criticality of each failure mode with regard to its probability, 

detectability and severity. The high-ranking failure modes have priorities of condition 

monitoring. Once the targets are identified, the relevant physical parameters and the 

corresponding measurement methods are reviewed for the selection of the potential condition 

monitoring techniques. Monitoring systems should have high automation, high robustness, 

low investment costs and low requirements for deployment. The monitored physical 

parameters should be able to represent the conditions of the targets. The installation locations 
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should enable data acquisition without affecting assets’ normal operation. Based on these 

requirements, suitable monitoring techniques are selected and deployed for data acquisition. 

The raw or processed data is transmitted to the cloud server, where the data is stored, further 

processed and visualized. The results of condition monitoring are fed into the maintenance 

program for planning maintenance activities. Finally, the evaluation of maintenance KPIs 

should be done and included in the annual maintenance report. In this way, the benefits of 

CBM/PM can be quantified.  

 

Figure 1 Condition monitoring within the CBM / PM process 

2.1.2. Data processing for condition monitoring 

Fault diagnosis methods broadly fall into two categories, namely the model-based and data-

driven approaches. The model-based approach evaluates the residuals between the model and 

monitoring outputs. The commonly used methods for railway applications have been 

reviewed by Strano et al. [4] and Ngigi et al. [5], such as Kalman filter and particle filter for 

estimation of suspension and wheel-rail contact parameters. The model-based methods are 

able to estimate system outputs in faulty conditions. However, these methods do not give a 

decision boundary for fault diagnosis. It is not clear how large residuals can indicate an 

occurrence of failures. Also, modeling requires known parameters of vehicle components and 

track irregularities (as system noise). These parameters are not always available in practice. 

Therefore, these methods are mostly verified with simulation data for theoretical studies. 

They have been rarely applied in practice to process the monitoring data. In this work, we 

focus on the data-driven approach. Its general procedures are introduced as follows.  

 

Figure 2 Procedures of data processing for condition monitoring 

Data processing for condition monitoring has three main purposes: abnormality detection (or 

fault detection), diagnosis of failure modes, and degradation prognosis (or prediction of 

remaining useful lifetime). Abnormality detection aims to distinguish abnormal conditions 

from normal ones. Failure mode diagnosis aims to identify the exact failure modes. 
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Degradation prognosis aims to predict degradation or wear progress. Despite different 

purposes, the procedures for data processing are similar, as presented in Figure 2. 

First, data is gathered from heterogeneous data sources and structured in the required format 

for the subsequent processing. Heterogeneous data have different formats such as numeric 

data, texts and videos. They should be pre-processed into a structured format for further use. 

Apart from the condition monitoring data, other useful data include simulation data generated 

by physical or mathematical models, weather data, and metadata related to the monitored 

assets as well as their operating environments. In this context, modeling and simulation are 

considered as a way to generate synthetic data that is complementary to monitoring data, 

rather than serve as the model-based diagnostic approach. Metadata and weather data provide 

the auxiliary information indicating the characteristics of the monitored assets and their 

operating conditions. In some cases, they can be directly used for fault diagnosis. For 

instance, the rotating speed and the geometric size of a bearing indicate the characteristic 

frequency of single-point failures such as spalling, which can be used as a diagnostic rule. In 

other cases, they merely indicate boundary conditions. For instance, the power consumption 

of railway point-operating machines is very different in summer and winter. Especially on 

snowy days, the resistance to move the switch rail is larger due to frozen ice and snow. The 

diagnostic models developed on monitoring data collected in summer are not directly 

applicable to the winter data.  

Second, signal processing is employed to highlight diagnostic information while suppressing 

noisy information. The continuous monitoring data is usually divided into short segments. 

Digital filters can be applied to eliminate stochastic noise and filter out frequency ranges that 

are not interested. The waveform time series data such as vibration and acoustic signals are 

acquired in the time domain and can be transferred into the frequency spectrum by various 

algorithms such as fast Fourier transform (FFT) and wavelet transform (WT). Especially for 

diagnosis of rotating machines, patterns of faulty signals could be more conspicuous in the 

frequency spectrum than in the time domain. For non-stationary signals, decomposition 

methods such as empirical mode decomposition (EMD) and variational mode decomposition 

decompose a complex signal into a series of modes, which contains different frequency 

components, ranging from high-frequency to low-frequency ones respectively. The noise is 

typically included in high-frequency components and can thus be filtered out. 

Third, diagnostic information is extracted from the filtered data. Monitoring or simulation 

data may have large dimensions. For instance, vibration data are typically sampled at 

thousands of Hertz. That means a segment of the several-second vibration signal contains 

over ten thousand data points. The diagnostic information may only be several numeric values 

such as the maximum value and the number of the peaks. In this sense, the most essential step 

for diagnosis is to extract the low-dimensional representatives from the high-dimensional 

data, namely feature extraction. Features refer to the representatives of the original data. 

Features can be manually defined according to domain knowledge. Features can also be 

automatically learned by deep learning algorithms, which are state-of-the-art (SOTA) 

approaches for MFD. The features may need further selection and dimension reduction to 

reduce their redundancies and improve diagnostic performance.  

Finally, diagnostic tasks are performed. The inputs for diagnostic models are the refined 

features. Depending on the diagnostic purposes, the outputs are different. For abnormality 
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detection, the output is whether the health condition is normal. From the mathematical 

perspective, this can be formulated as an outlier detection problem. For fault diagnosis, the 

output is the failure mode that the input features indicate. Fault diagnosis is a multiclass-

classification problem. Each class refers to one failure mode. The diagnostic model is a 

classifier that classifies the inputs into the corresponding classes. For degradation prognosis, 

the output could be the degradation status or a numeric health indicator. In the former case, 

degradation prognosis is formulated as a multiclass-classification problem, in which multiple 

health statuses in the assets’ life circle are defined as the classes. The model is to classify the 

inputs into the corresponding health classes. In the latter case, degradation prognosis is 

formulated as a regression problem, in which the model is to predict the defined numeric 

health indicator from the input features. 

2.1.3. Deep learning for feature extraction and diagnostic tasks 

Deep learning has become the SOTA approach for feature extraction and diagnostic tasks in 

various industrial sectors. It enables learning features adaptively from large amounts of 

heterogeneous input data. Deep learning has several variants such as deep neural network, 

deep brief network, deep reinforcement learning, etc. In the following, deep convolutional 

neural network (CNN) is introduced briefly as the theoretical basis of our research.  

CNN was firstly proposed in the 1960s from the neurobiological experiments [6]. The modern 

multilayer CNN architecture was proposed by LeCun for a computer vision application [7]. In 

his work, the supervised training based on backpropagation was also firstly applied on CNN. 

It becomes the foundation of modern CNNs. Typically, a basic CNN architecture consists of 

multiple layers of convolution, pooling and activation in a row for feature extraction as well 

as one or more subsequent fully connected layers and a softmax function for classification. 

The convolutional layer contains a series of convolutional filters (also known as “kernel”). 

The convolution is executed by sliding the filters over the input. In each sliding step, the 

filters convolve the receptive fields of the input features, which have the identical size as the 

filters, resulting in the filtered features. The convolution operation is the same as digital 

filtering. The only difference is that the weights of convolutional filters are automatically 

learned during the training process, while the weights of digital filters are manually designed. 

The pooling layer aims to downsample the input features by taking the average or maximum 

value within a neighborhood region. This not only reduces the size of the outputs but also 

increases the robustness against local shifts and small distortion. Convolution and pooling are 

linear mathematical operations with multiplication and addition. To learn a complex pattern, 

non-linearity is introduced to the network by the activation function, which is a nonlinear 

transform function such as tanh, ReLu and sigmoid function. Stacking convolutional layers, 

pooling layers and activation functions in certain order can hierarchically extract the low-

dimensional features from the input data. To perform the classification, fully connected layers 

and a softmax function are combined and placed at the end of the entire network. Apart from 

these basic elements, batch normalization has also become a standard operation within the 

modern CNN architecture. It was introduced in [8] to solve the problem of internal covariance 

shift. Batch normalization is to standardize the feature vectors within hidden layers by 

subtracting their mean value and being divided by their standard deviation.  
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Prior to the use of a CNN for feature extraction and fault diagnosis, a CNN model should be 

trained. Training a neural network is an optimization task. An optimization objective should 

be defined first, which is commonly termed loss function. For instance, a loss function can be 

mean squared errors (MSE) between the values predicted by the neural network and the true 

values. The optimization task is to minimize the loss function by adjusting the learnable 

parameters within the neural network. The most common optimization algorithm is stochastic 

gradient descent. In each training step, the gradient of the loss function with respect to the 

learnable parameters is computed in a single forward and backward pass through the network 

thanks to the so-called backpropagation algorithm. The values of the learnable parameters are 

updated towards the minimum loss. The training process usually takes a long time. Once the 

deep learning model is trained, it can be used for inference, where a single forward pass 

through the network is executed for each input. Therefore, inference costs much less 

computational time. 

In the next subsections, the SOTA condition monitoring systems and the diagnostic 

algorithms for wheel flat detection and track geometry monitoring are reviewed. 

2.2. Wheel flat detection 

Wheel flat, as one of the most common failure modes on vehicle bogies, is an oval spot on the 

wheel running surface. It forms when the wheel is locked by braking and slides along the 

track. This is caused by improper braking or a defective brake system. On freight wagons, a 

wheel flat can alse arise due to the brake shoe braking. During the traditional shunting 

operation, wagons are braked by placing brake shoes on the rail. This may induce a wheel flat 

on one wheel. Wheel flat can induce large impact forces and impulsive noises, damaging the 

axle bearing and the track as well as causing noise pollution. In the maintenance processes, 

wheel flat is detected by visual inspection. However, miss detection may occur, depending on 

the flat size and the position. Therefore, automatic wheel flat detection during normal 

operation is highly desired.  

2.2.1. Status quo in practice 

Traditionally, condition monitoring of rolling stock is implemented by detecting the most 

critical failures of the related components. It aims to ensure operation safety and does not 

support rolling stock maintenance. Only catastrophic failures are concerned, such as hot box, 

out-of-gauge and excessive/imbalanced loads. Wayside wheel impact load detectors (WILD) 

that are used to detect excessive/imbalanced loads during vehicle pass-by can detect wheel 

flat as well. An exemplary commercial WILD shown in Figure 3 uses fiber optic sensors to 

measure the vertical loads, which can be alternatively measured by strain gauges. The 

conventional WILDs are installed trackside and managed by infrastructure managers for the 

sake of safe operation. The monitoring data are not provided for rolling stock maintenance.  

Driven by the needs of CBM and PM of rolling stock, train monitoring systems are oriented 

more towards rolling stock maintenance. The new wayside train monitoring systems (WTMS) 

owned by railway undertakings are deployed where their vehicles frequently and routinely 

pass by. Consequently, more condition-related data can be collected. In WTMSs, optical 

sensing is dominated, which can visually inspect vehicle components for fault detection and 

measure the wear status of wheels as well as brake pads. The automatic inspection through 
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advanced computer vision systems can support and relieve the manual inspection processes 

described in Section 1.1. Frequent wear measurement can be used for wear prediction and 

thus optimization of maintenance schedules. Commercial computer-vision-based WTMSs are 

available on the market. For instance, the WTMS system provided by DTEC [10] acquires the 

images in vehicle-top, -bottom and -side views. The side-view cameras examine bogie 

frames, suspensions and brake pads to detect failures such as broken or missing springs, 

broken adapters, missing bearing end caps and loosened friction wedges. The bottom-view 

cameras inspect the underframe components such as wheel surfaces, brake riggings, couplers, 

lifting plates and wheel carriers. The missing, misplaced, damaged and deformed components 

as well as foreign objects can be detected. The left photo in Figure 4 presents a detected wheel 

flat by an underframe computer vision system. A representative application is the deployment 

of optical WTMSs in the shunting yards for freight wagons. The cameras are installed on a 

bridge-like frame to acquire the images of the pass-by freight wagons. The laser sensors and 

the underframe cameras are placed between the sleepers in the track. The right photo in 

Figure 4 shows a computer-vision-based WTMS used by DB cargo in a shunting yard. 

Placing WTMS in bottlenecks of the rail freight network, the coverage rate will reach approx. 

95% throughout Germany [11].  

 

Figure 3 Ansaldo STS WILD [9] 

      

Figure 4 Left: wheel flat detected by an underframe computer vision system. Right: computer-vision-based 

WTMS used by DB cargo in shunting yards [11].  

Although WTMS can involve advanced and comprehensive inspection technologies, it cannot 

assess vehicle behaviors during running. Onboard condition monitoring systems (OCMS) can 

bridge this gap. An OCMS typically consists of a centralized communication hub and 
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distributed sensor nodes. On locomotives and passenger vehicles, the communication hub 

refers to the train control and management system, which collects data for control and 

diagnosis from the sensors distributed on the train via vehicle/train bus [12]. On freight 

wagons, there were traditionally no electric systems. Recently, a so-called telematics device 

was introduced in railway industry for tracking and monitoring of freight wagons [13]. In the 

course of digitization of rail freight transport, many wagon owners in Europe have upgraded 

their fleets with telematics devices, such as DB Cargo, VTG, SAVVY, Wascosa, etc. On the 

one hand, a telematics device functions as a communication hub. It is installed on the wagon 

body and connected wirelessly or wired to the distributed sensors. The collected sensor data 

are pre-processed and transmitted further to the cloud server. The desired monitoring tasks 

can be realized by adding the corresponding sensor nodes. On the other hand, a telematics 

device internally contains an acceleration for vibration monitoring, specially designed to 

detect abnormal shock events during shunting operations [13].  

As wheel flats are mainly caused by the abnormal braking process, monitoring of the brake 

system can effectively prevent the occurrence of wheel flats. Brake monitoring is integrated in 

the brake control system on modern locomotives and passenger vehicles. The measured 

signals for brake control such as air pressures within the brake cylinder and the main brake 

pipe are also used for fault diagnosis [14]. For freight wagons, brake monitoring mostly 

serves for automatic brake testing during train preparation. A pressure sensor installed in the 

brake cylinder examines whether the pressure associated with the piston travel in the brake 

cylinder is set correctly when the locomotive sends the “apply” or “release” command for 

brake tests. In addition, the position sensors can be added to monitor the position of the 

loaded/empty lever and the handbrake lever. All sensor data from the distributed sensor nodes 

are fused in the telematics device on each wagon and forwarded to the device in the 

locomotive. In this way, the driver can receive an alert if any abnormalities are detected [15]. 

However, brake monitoring on freight wagons has not been applied for real-time diagnosis 

during the running operation.  

Once a wheel flat forms, vibration monitoring is the most effective way for WFD. Vibration 

directly represents vehicle dynamics and thus enables detection of any mechanic failures that 

induce abnormal dynamic behaviors. Also, the required accelerometers for vibration 

monitoring are very robust in harsh environments and affordable for massive deployment. 

However, Vibration monitoring has not been widely applied in practice. The current EU 

technical standard EN 15437-2 merely requires the onboard temperature monitoring of 

bearings [16]. Vibration monitoring is much more complicated than temperature monitoring 

in terms of data processing. The same vibration data can be used for different diagnostic tasks 

by means of corresponding data processing algorithms. It has attracted extensive research 

efforts from industry and academia. Commercial OCMSs are available on the market. For 

instance, the OCMS provided by SKF involves multiple sensors to measure bearing 

temperature, vehicle speeds as well as axlebox vibrations. It monitors vibration levels at 

axleboxes and detects wheel tread damages as well as early-stage bearing failures [17]. This 

monitoring system is designed for vehicle manufacturers for integration into the vehicle 

system, as certain sensors should be installed inside vehicle components and powered by the 

vehicle power supply. Its capabilities of fault diagnosis rely on the vehicle speed signal, 

which can be used, along with additional knowledge of some geometry data, to calculate fault 

characteristic frequencies (FCF) of bearings and wheels in the frequency spectrum. Another 



2. Scientific Background 

 

13 

 

type of OCMS is designed for plug and play, as shown in Figure 5. The system provided by 

Perpetuum allows easy installation at wheel level via a mechanical adapter [18]. It is self-

powered by vibration energy harvesting and monitors the temperature and vibration levels. 

The vibration levels are processed into a so-called wheel/bearing health indicator, presenting 

the health status. A wheel flat generally results in a larger value of the health indicator. 

However, the threshold for diagnosis has to be defined based on the user experience.  

These axlebox vibration monitoring devices have not been widely employed. One reason is 

the high investment costs, since each vehicle has to be equipped with eight devices at 

axleboxes. Another reason lies in maintenance logistics. During rolling stock maintenance, 

the bogie of a vehicle can be replaced with a new bogie. Unless the carbody-side 

communication hub can be automatically paired with the bogie-side sensor nodes and all the 

bogies are instrumented, the installation of alxebox sensors causes an additional management 

burden. Especially on freight wagons, operators desire to exploit the existing telematics 

devices on the carbody for WFD, avoiding additional investment on sensors [19].  

 

Figure 5 Commercial onboard vibration monitoring systems provided by Perpetuum [18] 

2.2.2. State of the art of the research 

Commercial monitoring systems provide mature technologies for data acquisition. The main 

focus of the research lies in the data processing for fault diagnosis, especially concerning 

onboard vibration monitoring. Dynamics can be studied through multibody dynamic 

simulation (MBS), which is the standard method to research railway vehicle dynamics. A 

failure is modeled by the mathematical description. The failure model is inserted into the 

vehicle MBS model for dynamic simulations under various operating conditions. The wheel 

flat is commonly described by the variation of wheel radius versus angle position. The 

mathematical formula for the radius variation may be different [20-23]. Ren [20] used a 3D 

wheel flat model and a vehicle-track coupling model to investigate the maximum dynamic 

impact force induced by a wheel flat with different geometric shapes at different running 

speeds. Bernal et al. [21] introduced a 2D rounded wheel flat into a Y25 freight wagon model 

and conducted a feasibility study of WFD using accelerations at axlebox, bogie frame, and 

carbody, respectively. Three statistic features in the envelope power spectrum and the time 

domain were defined for diagnosis. The wheel flat vibration signatures were significantly 

weakened at the bogie and carbody level, making WFD difficult with the defined features. 

Bosso et al. [22] built a freight wagon model with a wheel flat for simulation studies and 

constructed a feature based on the maximum and root mean square (RMS) value of 
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accelerations during a single wheel rotation. A validation test showed that a small wheel flat 

can hardly be detected with the proposed features. Similarly, Ye et al. [23] have built a freight 

wagon model with a rounded wheel flat. Based on the simulation results, a surrogate model 

was developed to correlate the averaged peak value of the wheel-flat signal to the flat length 

and the vehicle speed. Given the measured acceleration and the vehicle speed, this surrogate 

model can detect the presence of a wheel flat and determine its length. One prerequisite is that 

the input measurement data should be obtained while the vehicle is running at an almost 

constant speed for a while. 

Unlike simulation studies, the data-driven approach, as introduced in Section 2.1.2, can be 

directly applied to monitoring data. The majority of previous studies for WFD focus on signal 

processing to identify FCF and attempt to define a single feature based on the processed data 

for diagnosis. Baasch et al. [24] employed cepstral analysis for wheel condition monitoring. It 

was assumed that a local wheel surface failure like wheel flats induces a Dirac-impulse-like 

spike during a single wheel rotation. Given the continuous monitoring data along the track, 

cepstral analysis robustly extracted the distance between two spikes in the distance domain 

which should be equal to the wheel circumference. This “feature” can be used for diagnosis. 

Chen et al. [25] proposed a two-level adaptive chirp mode decomposition method as a time-

frequency analysis method to process axlebox accelerations at variable speeds, where the 

rotation frequencies vary over time. The recognized FCF can be used for diagnosis. Shim et 

al. [26] conducted the cepstrum analysis and cross-correlation analysis of axlebox 

accelerations for WFD. By using amplitude ratios as the feature, it was concluded that the 

cross-correlation analysis overperforms the cepstrum analysis. Jiang et al. [27] used empirical 

mode decomposition (EMD) to decompose the raw signals into several intrinsic mode 

functions that separate the wheel flat signatures from interferences. Zhao et al. [28] analyzed 

the vibration signal in the high-order spectrum that can suppress Gaussian noise. Li et al. [29] 

proposed adaptive multiscale morphological filtering for denoising. In these works, the 

proposed signal processing methods were demonstrated merely on the selected data samples, 

while a statistic evaluation on a large number of samples with certain diversities was missing. 

The used validation data were mostly obtained on the laboratory test rigs or from the 

simulations, which can hardly represent the real-world complexity. Diagnosis based on a 

single feature such as FCF can hardly be robust to real-world monitoring data, where 

unknown perturbations can distort the frequency pattern of the wheel-flat signal. Furthermore, 

these works did not define a method for diagnostic decision-making. In comparison, Gericke 

[30] performed a complete WFD procedure. First, dozens of features were manually defined 

in the time domain, the frequency spectrum, the envelope spectrum, and the cepstrum. 

Second, feature selection was conducted through the wrapper and filter methods. It was found 

that a combination of several selected features overperformed any single feature. Finally, 

several classifiers like Naive Bayes classifier, k-nearest neighbor classifier, decision tree, and 

neural network were tested based on the selected features to find the best combination of the 

features and the classifier. Similarly, Kim et al. [31] built a neural network for WFD based on 

the extracted features using wavelet packet decomposition and Hilbert transform.  

The periodic impulsive pattern of wheel flat is the typical failure pattern of rotating machines 

such as bearings and gearboxes, for which diagnostic algorithms have been more extensively 

studied. The diagnostic techniques used for rolling stock axle bearings were reviewed by 

Entezami et al. [32] and Xu et al. [33]. Liu et al. [34] and Wang et al. [35] reviewed condition 
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monitoring and fault diagnosis techniques for wind turbine bearings and gearboxes. The 

standard procedure of vibration data processing involves signal processing techniques for 

denoising, in order to spotlight FCFs. The calculated FCFs can be directly used for diagnosis 

by comparison with the theoretical FCFs, which are derived from rotating speeds and 

geometric parameters of bearings/gearboxes. A threshold of the residuals is defined for the 

diagnostic decision. In most cases, the calculated FCFs are merely defined as a part of the 

features. Other features could be the statistic indicators, such as RMS and kurtosis. After 

feature extraction, feature reduction and selection may be applied. To perform the diagnostic 

task, machine-learning-based methods are employed to train a diagnostic model based on the 

features and their ground-truth labels. However, this classical procedure needs prior 

knowledge about the monitored machines to define the appropriate features, which are 

decisive for a successful fault diagnosis. Moreover, today’s condition monitoring scenarios 

are shifting into the era of big data. Conventional machine learning models cannot meet the 

requirements to process big data [36]. To overcome these problems, deep learning techniques 

have attracted extensive research in recent years, which aim to adaptively learn the features 

from the inputs and perform an end-to-end diagnosis. Lei et al. [37], Liu et al. [38] and Zhang 

et al. [39] reviewed the deep learning applications for fault diagnosis of rotating machines. 

Variants of deep neural networks, such as autoencoder (AE), CNN and recurrent neural 

network, have been widely applied for abnormality detection, fault diagnosis and degradation 

prognosis. AE can be trained by reconstruction of the inputs without their ground-truth labels. 

Therefore, it is commonly used for unsupervised feature learning. The learned features are 

provided for further diagnostic tasks. Alternatively, the reconstruction residuals can be 

directly used for abnormality detection. When AE is trained by healthy data, feeding 

abnormal data in the trained AE model results in large residuals. Long short-term memory as 

a variant of recurrent neural network can model the long-term dependency in a series of data 

and thus is the promising way for degradation prognosis. CNN is built upon multiple layers of 

filters, which are convolved with the inputs to iteratively extract the features. This mechanism 

is similar to that of digital filters. The difference is that the weights of convolutional filters are 

adaptively learned from the inputs, rather than manually designed. CNN is typically used in 

supervised classification and has achieved state-of-the-art performance for fault diagnosis. In 

particular, 1D CNN can achieve competitive diagnostic performance as other deep learning 

methods while having much less computational complexity. Therefore, it is suitable for real-

time condition monitoring and fault diagnosis [40,41]. 

As pointed out in the relevant review papers [34-41], despite the progress of deep learning 

methods in machine fault diagnosis, several major challenges remain in applying the deep 

learning algorithms in the real-world industrial environment. First, deep learning methods 

lack interpretability. The deep learning models are commonly trained and experimentally 

validated on the limited collected data. This is unacceptable for safety-related applications. 

Risk assessment procedures should be investigated for a fair assessment of deep learning 

models. Second, deep learning models are prone to overfitting training data and may fail on 

test data whose distribution is largely different from that of training data. The distribution 

shift, also called the covariate shift, can be caused by variations of machines’ operating 

conditions. It also occurs when the models are deployed on similar but different machines. 

Therefore, the robustness and generalization ability of deep learning diagnostic models should 

be investigated and improved. Third, the real-time capability of deep learning models is 

mostly demonstrated on powerful workstations. However, many monitoring tasks are 
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conducted on embedded systems, which have limited computational power. The models 

should be lightweight and executed in real-time on the target platform. Fourth, most 

diagnostic models can only recognize the known failure modes that are defined as the classes 

and included during the training procedure. However, there could be tens of unseen failure 

modes in the real-world diagnostic task, which are not included in the training data. It is 

necessary to tackle this issue, avoiding false alarms or miss detections.  

2.3. Track geometry inspection and monitoring 

Regular assessment of track geometry is a standard task of track inspection and maintenance. 

The quality of track geometry is represented by five track geometry parameters defined in the 

standard EN 13848-1 [42], namely track gauge, cross-level, longitudinal level, lateral 

alignment, and twist. Depending on the line speeds, the corresponding track sections should 

be inspected every several months.  

2.3.1. Status quo in practice 

The standard way for track geometry inspection is based on TRVs, which are equipped with 

track geometry measurement systems (TGMS). The chord-based and inertial-sensor-based 

methods are widespread and adopted in most commercial TGMS [43].  

The chord-based method relies on a frame, i.e. chord, with transducers moving on the track. 

For a simplified illustration, Figure 6 shows the chord moves over a sinusoidal irregularity 

with amplitude 𝑌 and wavelength 𝜆 in the train-forward direction 𝑥. One transducer per rail 

measures the displacement 𝑧 between the chord and the rail surface. The measurement point 

is at a distance 𝛼𝐿  from the left-hand end. Two chord ends slide along the track. The 

measured relative displacement 𝑧(𝑥 + 𝛼𝐿) can be derived by: 

𝑧(𝑥 + 𝛼𝐿) = 𝑦(𝑥) − 𝛼[𝑦(𝑥) − 𝑦(𝑥 + 𝐿)] − y(x + 𝛼𝐿) (1) 

where 𝐿 is the chord length and 𝛼𝐿 is the distance between the measurement point and the left 

end. 

The vertical coordinate of a point 𝑦(𝑥) on the sinusoidal irregularity can be expressed by: 

𝑦(𝑥) = 𝑌𝑠𝑖𝑛(2 𝜋𝑥 𝜆⁄ ) = 𝑌𝑠𝑖𝑛𝑘𝑥 (2) 

where 𝑘 = 2 𝜋 𝜆⁄  is the wavenumber. 

Substituting eq. (2) into eq. (1), we can reach eq. (3).  

𝑧(𝑥 + 𝛼𝐿) = 𝑌𝑠𝑖𝑛𝑘𝑥(1 − 𝛼 + 𝛼𝑐𝑜𝑠𝑘𝐿 − 𝑐𝑜𝑠𝑘𝛼𝐿) + 𝑌𝑐𝑜𝑠𝑘𝑥(𝛼𝑠𝑖𝑛𝑘𝐿 − 𝑠𝑖𝑛𝑘𝛼𝐿) (3) 

It can be expressed as eq. (4) and (5) in the form where the amplitude 𝑍 and phase 𝜑 are 

functions of the wavenumber 𝑘 and the chord length 𝐿 [44]. Eq. (4) and (5) are termed the 

transfer functions of the chord-based TGMS. 

𝑍 = 𝑌[(1 − 𝛼 + 𝛼𝑐𝑜𝑠𝑘𝐿 − 𝑐𝑜𝑠𝑘𝛼𝐿)2 + (𝛼𝑠𝑖𝑛𝑘𝐿 − 𝑠𝑖𝑛𝑘𝛼𝐿)2]1 2⁄  (4) 
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𝜑 = 𝑡𝑎𝑛−1[(𝛼𝑠𝑖𝑛𝑘𝐿 − 𝑠𝑖𝑛𝑘𝛼𝐿) (1 − 𝛼 + 𝛼𝑐𝑜𝑠𝑘𝐿 − 𝑐𝑜𝑠𝑘𝛼𝐿)⁄ ] (5) 

For a given 𝜆, the amplitude 𝑌 can be calculated by the measured 𝑍 and the known 𝐿. In some 

cases, however, the amplitude 𝑌 cannot be obtained, as its amplitude gain is always zero. For 

instance, the chord length 𝐿 is an uneven multiple of the irregularity wavelength 𝜆, and the 

measurement point is at the middle of the chord, i.e. 𝛼 = 0.5. This intrinsic problem is the 

main disadvantage of chord-based TGMSs. 

Most modern chord-based TGMSs, such as the ones provided by Mermec [45], employ 

multiple non-contact laser sensors, which have no limitations on vehicle speeds. In harsh 

weather conditions, such as snow, mechanical transducers are preferred, which cannot be 

operated at very high speeds. For instance, Infranord measurement vehicles (IMV) used by 

the Swedish operator Trafikverket have two variations. IMV100 is equipped with mechanical 

transducers and operated at a maximum speed of 100km/h for snowy days. IMV200 is 

equipped with optical transducers and operated at a maximum speed of 200km/h for normal 

days [46].  

 

Figure 6 Principle of the chord-based method (modified based on [44]) 

The inertial-sensor-based TGM method determines the track geometry parameters from the 

vertical and lateral position of the rail relative to an inertial reference. The inertial reference 

refers to an inertial measurement unit (IMU), composed of accelerometers and gyroscopes for 

the measurement of accelerations and angular velocities. The IMU is commonly installed on a 

vibration-isolated platform attached to the carbody underframe. The optical sensors measure 

the relative displacement of the IMU reference relative to the rails in the vertical and lateral 

directions and scan the rail profiles simultaneously. As exemplarily shown in Figure 7, most 

commercial TGMSs have followed this measurement principle due to simple installation. The 

main supplies on the market are listed in a technical report [47], including AVANTE, DMA, 

Mermerc, etc. The TGMS used by DB Netz is more complicated. It involves two additional 

measurement units mounted on the axleboxes of the front and rear bogie, which measures the 

axlebox accelerations and the relative displacement between the wheels and the rails. The 

measurement chain between the IMU reference and the two axleboxes units has been 

established by laser sensors. In this way, the TGMS can cover longer wavelengths [48]. The 

main disadvantage of the inertial-sensor-based TGM method is that the system must be 

operated above a minimum speed, e.g. above 10-30 km/h, avoiding noise and offsets of IMU 

outputs predominated at low speeds.  
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In track maintenance practice, infrastructure managers (IM) usually employ several dedicated 

TGVs to routinely inspect the whole rail network. However, it is difficult to timetable the 

dedicated TGVs due to their non-regular schedule and track occupation. This problem is 

exacerbated by the increase in the rail traffic on the track with limited capacity. To cope with 

this problem, track geometry monitoring on in-service vehicles has been proposed, aiming to 

assess track geometry quality without interrupting the normal traffic. This will significantly 

increase the availability of track geometry data and thus increase the reliability of degradation 

prognosis for PM.  

 

Figure 7 A commercial TGMS based on IMU and laser sensors [45] 

2.3.2. State of the art of the research 

Track geometry monitoring systems should be robust and affordable for mass deployment on 

in-service vehicles. There are broadly two approaches. The first approach is to deploy 

unattended geometry measurement systems (UGMS) on in-service vehicles [49]. Most 

UGMSs have a similar measurement principle to the IMU-based TGMS, with a more compact 

and lightweight structure design. Escalona et al. [50] proposed a UGMS, comprising two 

video cameras, two laser line-projectors, an IMUS and a rotary encoder. The track geometry 

was derived based on the kinematic chain between the inertial reference and the rail position, 

using the position and orientation of the projected laser line on the railheads as well as the 

acceleration and angular velocity acquired by the IMU. Peng et al. [51] developed a similar 

UGMS with two video cameras per rail. This UGMS can obtain lateral alignment, 

longitudinal level as well as track gauge and detect rail surface defects. The main advantage 

of UGMSs is that they are compliant with EN 13848 standard series. The measured track 

geometry parameters can be used to determine track quality indicators (TQI) defined in the 

standard EN 13848-6 [52]. These TQIs form the basis for the evaluation of track geometry 

quality classes and the planning of maintenance actions in practice.  

However, the complex UGMSs require high investment and operating costs, preventing 

widespread deployment on in-service vehicles. Many studies attempted to reconstruct track 

geometry merely with vehicle dynamic responses measured by accelerometers. Axlebox 

accelerations were often used to identify the vertical rail profile by double integration of 

accelerations [49]. They usually contain much high-frequency vibration noise and offset 

drifts, resulting in accumulated integration errors. Signal processing techniques are required 

to tackle this issue. For instance, Xu et al. [53] used a high-pass filter with a very low cutting-
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off frequency to remove zero-shift of accelerations and resampled accelerations in the equally 

spaced spatial domain prior to double integration. A successful practical application is the use 

of an Intercity Express train in Germany to monitor longitudinal irregularities [54]. However, 

track alignment cannot be derived by this approach, since the wheel does not follow the 

lateral alignment exactly as in the vertical direction. Agh [55] experimentally investigated the 

correlation between the axlebox accelerations and the track geometry parameters measured by 

a TGV on a straight line. The vertical axlebox acceleration was significantly correlated with 

the second-order derivative of the decolored longitudinal level. In contrast, no significant 

statistical relationship between acceleration and alignment in the lateral direction was 

observed. To address this problem, researchers attempted to apply model-based approaches. A 

vehicle dynamic model was often used to convert the measured vehicle dynamic response into 

the estimated track geometry. Ripke et al. [56] combined acceleration measurements with an 

MBS model of the vehicle, on which the accelerometers were installed. The alignment was 

estimated by accelerations and then corrected by the MBS model using a dedicated correction 

mechanism. The estimated alignment was compared with the one measured by a TGV. 

However, this approach was vitiated by the comparison results. Rosa et al. [57] and Munoz et 

al. [58] involved a Kalman filter along with the vehicle model for alignment estimation. The 

proposed methods were validated on a vehicle running on a straight track with irregularities. 

The main obstacle of model-based approaches in practical use is the prior knowledge of the 

relevant parameters for modeling. In addition, the up-to-date wear status of the vehicle 

components, especially wheels, can hardly be considered during modeling, which has a 

significant impact on vehicle dynamic responses. In recent work [59], a deep learning 

approach based on Wasserstein generative adversarial network (GAN) was employed to 

reconstruct longitudinal and lateral irregularities from axlebox accelerations. However, this 

method was merely tested on simulation data. The abovementioned studies rely on axlebox 

accelerations to estimate the track geometry. It is difficult to maintain electrical systems on 

axleboxes which are subject to very high vibration levels. A more robust solution should have 

monitoring systems on bogies or even on carbodies [49]. However, the isolation effect of 

suspension systems prevents the intuitive double integration of accelerations. Obrien et al. 

[60] reconstructed the track longitudinal level from the vertical bogie acceleration and angular 

velocity by using cross-entropy optimization. Xiao et al. [61] designed a Kalman filter for 

estimation based on carbody accelerations. Li et al. [62] applied deep learning techniques on 

vertical carbody accelerations to estimate track longitudinal irregularities. An AE model was 

trained on irregularities to obtain latent representation, to which an additional estimator was 

trained to project carbody accelerations. In a second stage, a Bayesian deep learning model 

was trained to reconstruct irregularities from latent representation outputted by the estimator.  

The second general approach for track geometry monitoring avoids the reconstruction of 

geometry parameters. Instead, it aims either to detect discrete rail/track failures which induce 

large vehicle dynamic responses or to represent the track quality by vibration levels. Bolouchi 

et al. [63] proposed to use multi-resolution analysis based on continuous wavelet transform 

(CWT) to decompose carbody accelerations into several frequency bands. Different track or 

rail failures can be detected and distinguished according to magnitudes of frequency spectra in 

the corresponding ranges. In addition, the standard deviation of acceleration was used to 

represent track quality. Similarly, Tsunashima et al. [64] tested CWT and EMD to detect track 

faults based on carbody accelerations. Furthermore, Tsunashima [65] conducted a machine 

learning approach for the diagnosis of track geometry defects. The vertical and lateral 
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accelerations and the roll rates were acquired on the carbody. The RMS value over a short 

period of the raw data was extracted as the feature. Afterward, a support vector machine 

(SVM) was employed as the classifier for fault diagnosis. Kaewunruen [66] used RMS 

amplitudes of axlebox accelerations in the specific frequency range to inform the growth of 

rail corrugation. Chudzikiewicz et al. [67] defined an indicator, which is similar to the ride 

comfort index, based on the vertical axlebox accelerations to approximate TQI for track 

quality classification. Rosa et al. [68] proposed to train a classifier to detect large track lateral 

irregularities based on the RMS features.  

In a summary, the main research interest is to develop a robust and affordable monitoring 

system on in-service vehicles for track quality assessment. Following the existing standards 

and rules of track maintenance, the first approach aims to reconstruct track geometry 

parameters with inexpensive and robust sensors. Using Accelerometers along with advanced 

data processing techniques has become the most promising solution. The main obstacle lies in 

the geometry reconstruction in the lateral direction due to the complex lateral dynamics of 

railway vehicles. In the second approach, the research focuses on identifying a feature from 

the acceleration that can substitute TQIs for track quality assessment. In this way, the 

reconstruction of track geometry parameters can be avoided. However, this approach is not 

compliant with the existing standards. 
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3. Research Questions and Specific Objectives 

From the perspective of maintenance needs and boundary conditions in harsh railway 

environments, we have identified two challenges for condition monitoring and fault diagnosis, 

namely real-time data processing and robustness. We attempt to tackle them in the application 

scenarios of WFD and track geometry monitoring. In addition to the two general challenges, 

there are some unsolved issues in these two applications. This motivates us, on the one hand, 

to tackle the challenges related to real-time processing and model robustness. On the other 

hand, we attempt to solve application-specific issues. For WFD, our method only needs the 

carbody acceleration as the input and can be executed in real-time on embedded systems. For 

track geometry monitoring, we propose a computer-vision-based solution to support the 

reconstruction of track alignment, which only needs a cheap off-the-shelf camera per rail.  

Our research has been included in three publications, which are the main constituents of this 

dissertation. The publications will answer the following research questions.  

 

Pub 1. 

D. Shi, Y. Ye, M. Gillwald, M. Hecht (2021), “Designing a lightweight 1D 

convolutional neural network with Bayesian optimization for wheel flat detection using 

carbody accelerations”, International Journal of Rail Transportation, 9:4, 311-341, 

DOI: 10.1080/23248378.2020.1795942 

RQ 1. 

Can wheel flat be detected in real time on embedded systems using carbody 

accelerations?  

The previous studies mostly used axlebox accelerations for WFD. However, it would 

be beneficial to exploit the existing telematics devices installed on the carbody for 

WFD, despite its difficulty due to the isolation effect of suspension. Telematics devices 

as embedded systems have limited computation power, which brings additional 

challenges for real-time computing. In this sense, we propose a lightweight 1D CNN 

for the end-to-end WF, which requires much less computational complexity and can be 

executed on embedded devices. 

Pub 2. 

D. Shi, Y. Ye, M. Gillwald, M. Hecht (2022), “Robustness enhancement of machine 

fault diagnostic models for railway applications through data augmentation”, 

Mechanical Systems and Signal Processing, Volume 164, 2022, 108217, ISSN 0888-

3270, https://doi.org/10.1016/j.ymssp.2021.108217. 

RQ 2. 

Are the algorithms for wheel flat detection robust to variable railway operating 

conditions?  

The previous studies were mostly conducted on simulation and laboratory data. The 

robustness of the proposed algorithms in the real-world environment has not been 

investigated. To fill this gap, we conduct an empirical study of model robustness based 

on a large amount of field data collected on different freight wagons running under 

different operating conditions. 

RQ 3. 

How can the robustness of the diagnosis algorithms be improved? 

If the diagnosis models are not robust enough to withstand the variations of operating 

conditions, it is necessary to improve their robustness. We propose to exploit MBS to 
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generate simulation data under various operating conditions. This data can be further 

augmented and fed into the training process of diagnosis models. This data 

augmentation approach can enhance the models for wheel flat detection.  

Pub 3. 

D. Shi, et al. (2022), “Deep learning based virtual point tracking for real-time target-

less dynamic displacement measurement in railway applications”, Mechanical Systems 

and Signal Processing, Volume 166, 2022, 108482, ISSN 0888-3270, 

https://doi.org/10.1016/j.ymssp.2021.108482. 

RQ 4. 

How can track alignment be monitored in real time by using inexpensive sensors? 

The previous studies have shown that the lateral acceleration is not directly correlated 

to the track alignment. We hypothesize that the information on the lateral displacement 

of the wheel relative to the rail may complement the lateral acceleration to derive the 

track alignment. Therefore, we propose a novel method based on computer vision and 

image processing techniques to track the relative wheel movement in the lateral 

direction in real time. The used video cameras are off-the-shelf available and 

affordable for mass deployment. 

RQ 5. 

Is the proposed method based on optical sensing robust to variable railway 

operating conditions? 

The main concern of optical sensing is its robustness against severe weather 

conditions. Despite the lack of real data, we propose synthetic image corruption to 

simulate different weather conditions and use the synthetic images to augment the 

training dataset for robustness enhancement.  

 

The accepted manuscripts of the three publications are presented in Section 4, 5 and 6. The 

research questions are discussed in Section 7 based on the experiment results. 
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4. Wheel Flat Detection Using Carbody Accelerations 

This publication presents the proposed lightweight 1D CNN for real-time WFD using carbody 

accelerations. It addresses the specific challenge of WFD at the carbody level, where wheel 

flat signatures are much weaker than those on axleboxes or bogies. Furthermore, the 

publication shows the computational complexity of the designed lightweight CNN is even 

lower than that of common signal processing algorithms in terms of floating-point operations 

(FLOP). It can be executed in real time on an embedded device. The proposed method has 

been validated on the measurement data collected on a freight wagon running under normal 

operating conditions. Its superiority was verified by comparison with several SOTA 

lightweight CNN for machine fault diagnosis. In addition, the mechanism of CNN has been 

investigated by visualization of the learned interim features within the hidden layers. As 

hypothesized, CNNs work similarly to signal processing methods. It can hierarchically 

suppress noise and spotlight the periodic impulsive pattern of a wheel-flat signal. 

The accepted manuscript below is an article published by Taylor & Francis in International 

Journal of Rail Transportation on 24th July 2020, available online: 

https://doi.org/10.1080/23248378.2020.1795942 
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Abstract  

A large number of freight wagons in Europe have been recently equipped with embedded 

systems (ES) for vehicle tracking. This provides opportunities to implement real-time fault 

diagnosis algorithms on ESs without additional investment. In this paper, we design a 1D 

lightweight Convolutional Neural Network (CNN) architecture, i.e. LightWFNet, guided by 

Bayesian Optimization for wheel flat (WF) detection, which is a common failure on wheel 

surfaces. We tackle two main challenges. 1) Carbody accelerations have to be used for WF 

detection, where the signal-to-noise ratio is much lower than that on axleboxes and thus WF 

detection is much more difficult. 2) ESs have very limited computation power and energy 

supply. To verify the proposed LightWFNet, the field data measured on a tank wagon under 

operational conditions are used. In comparison to state-of-the-art lightweight CNNs, 

LightWFNet is validated for WF detection by using carbody accelerations with much lower 

computational costs. 

Keywords: Wheel Flat, Fault diagnosis, Machine Learning, Convolutional Neural Network, 

Bayesian Optimization 

1. Introduction 

1.1 Background  

In-service wheelsets are visually inspected by authorized persons during operational processes 

of freight transport. Operators do not notice that their wagons are suffering from wheel flats 

(WFs) until visual inspections are carried out. The inspection time for a wagon is very 

limited, depending on the wagon type and the axle numbers. For a 4-axle wagon, it usually 

only takes about five minutes to inspect the whole wagon, incl. loading conditions, 

completeness of the wagon, conditions of the wagon components, etc. [1]. The detection 

probability significantly depends on environmental conditions such as darkness and weather, 

physical and mental conditions of inspectors and visibility of wagon components due to 

constructive design or contamination. In this sense, it is not easy to identify WFs. Especially, 

a small WF can be hardly detected by human inspections. On the other hand, a small WF 

could be neglected even when it is found by inspectors since it does not cause any safety 

issue. According to the General Contract for Usage of wagons [2], the decisive criterion of 

wheelset maintenance is the length of wheel flats. The wheelset has to be taken when the flat 

length exceeds 60 mm (for wheel diameter greater than 840 mm). A small flat e.g. with a 

length of 20 mm could exist on the wagon for a long time, although they can result in non-

negligible negative effects such as periodic large impacts on wagons as well as track and 

pulse-shaped noises, as illustrated in Figure 1. Therefore, it is desired to use condition 
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monitoring solutions for early detection of WFs, allowing operators to optimize their 

maintenance planning and take maintenance measures as early as possible. 

 

 

Figure 1. Wheel flat on the running surface of a wheel and illustration of the impact induced by wheel flats 

However, freight wagons are not electrified. A comprehensive condition monitoring system 

that requires grid power is currently not applicable to freight wagons in practice. This 

limitation of condition monitoring applications on freight wagons is also pointed out in [3]. A 

potential solution is to use energy harvesting systems (EHS) such as axle generators from 

Schaeffler [4] and vibration energy harvesters from Perpetuum [6] to power monitoring 

systems installed on wheelsets. A four-axle vehicle is equipped with eight units of the EHS 

enabled monitoring systems. However, these commercial systems, which have been already 

applied on passenger trains, require high investment costs. Due to low margins of freight 

transport, their price is not acceptable for freight wagons.  

 

Figure 2. Example of the telematics device: (a) commercial device powered by solar energy [9]; (b) PCB 

prototype under development [10] 

In current practice, the solution is to use a compact embedded system powered by batteries or 

solar energy for the basic function of tracking and monitoring. Such a system is called 

“telematics device”, shown in Figure 2. With the trend of digitalization, more and more 

freight wagons in Germany, Switzerland and Austria are equipped with telematics devices. 

For instance, DB Cargo will equip 19,000 freight wagons with telematics devices by the end 

of 2018 and will equip the entire wagon fleet of ca. 70,000 wagons by 2020 [8]. A telematics 

device is an onboard monitoring device and usually contains a three-axle accelerometer for 

shock detection and a GPS module for wagon tracking. The whole device is controlled by a 
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microcontroller like Arduino Uno shown in the right photo of Figure 2 or a more powerful 

mini-computer like Raspberry Pi and NVIDIA Jetson Nano. A microcontroller can merely 

ensure data acquisition and communication, whereas a mini-computer enables a more 

advanced onboard data processing. This provides an opportunity to deploy a WF detection 

model for real-time WF detection with the support of existing software frameworks such as 

TensorFlow Lite and JetPack. In this paper, we focus on the development of a lightweight WF 

detection model. The hardware design and the deployment of the model are out of scope. 

1.2 State of the art 

WF detection has been investigated over the decades. In the light maintenance process, the 

condition of wheels is mostly visually inspected. During the overhaul, the entire wheelset is 

detached from the vehicle and examined by nondestructive inspection techniques in the 

workshop such as ultrasonic testing and magnetic particle inspection. In terms of the 

automatic inspection during the train operation, WFs can be detected either by wayside or 

onboard condition monitoring systems. The most common condition monitoring approaches 

for the detection of railway wheel defects are viewed by Alemi et al. [11], incl. strain gauge 

based systems, fiber bragg grating based systems, ultrasound-based systems, vibration 

monitoring, acoustic emission monitoring, laser techniques and computer vision systems. In 

practice, wayside systems are owned and installed by infrastructure managers for ensuring the 

safe operation of railway traffic. The obtained information of rolling stock failures is rarely 

shared with wagon owners for maintenance optimization of rolling stock. The information 

density in terms of one vehicle relies on the number of monitoring systems across the network 

and the operation plan of the individual wagons. Continuous monitoring of the individual 

vehicle can be hardly achieved.  

In comparison to wayside approaches, onboard approaches are more suitable for condition-

based maintenance of rolling stock. Onboard systems can continuously collect the condition 

data, enabling not only fault diagnostics but also predicting the degradation of vehicle 

components. The common onboard solution for WF detection is to install accelerometers on 

vehicles for vibration condition monitoring, due to the low price and robustness of the 

accelerometers. The accelerometers can be installed on axle bearing housing, bogie frame or 

carbody underframe. A majority of the previous studies intended to use axlebox accelerations 

for WF detection. The focuses of the research lie in three areas. (1) advanced signal 

processing methods are used to eliminate the signal interference in order to spotlight the 

faulty signal patterns of WFs. Jiang et al. [12] proposed to use empirical mode decomposition 

(EMD) to decompose the raw signal into several intrinsic mode functions that separate the 

failure signal mode from interferences. Zhao and Shi [13] analyzed the signal in the high-

order spectrum that can suppress Gaussian noise. Li et al. [14] proposed adaptive multiscale 

morphological filtering for denoising. Liang et al. [15] analyzed WF vibration signals by three 

commonly used time-frequency analysis methods, i.e. short-time Fourier transform (STFT), 

Wigner-Ville transform and wavelet transform (WT). It was concluded all three methods 

could present time-frequency information of a wheel flat. (2) The low-dimension features 

(also called as “indicators” or “health index” in some articles) are defined to represent the 

faulty signal patterns of WF. Gericke [16] constructed 27 features of axlebox accelerations in 

the time domain, FFT spectrum, envelope spectrum and Cepstrum for wheel flat detection on 

freight wagons. Apart from the generic statistic features such as RMS value, mean value, 
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skewness factor and kurtosis, a series of specific features were defined to represent the 

specific characteristics of the WF patterns at axlebox level. Bosso et al. [17] defined a WF 

severity index in the time domain, combining RMS and peak values. This index was validated 

in a field trial for axlebox accelerations. Bernal et al. [18] used the multibody dynamics 

simulation to investigate the detectability of WF for Y25 railway freight wagon using 

axlebox, bogie and carbody respectively. The proposed indicators based on time-domain 

RMS values, time-domain crest values and dominant frequency in the envelope spectrum can 

correctly reflect the abnormality caused by WF in axlebox and bogie accelerations. (3) An 

automatic diagnostic method is proposed for WF detection. The expert-system-based solution 

is to define a threshold of the defined features based on the statistic observation. In the 

machine learning (ML) approach, the diagnostic method usually refers to a classification 

algorithm. Gericke [16] tested several classification methods. Naïve Bayes classifier, k-

nearest neighbor classifier, decision tree and neural network (NN) were trained based on the 

selected features, in order to find the best combination of the features and the classifier. 

Regarding WF detection by using carbody accelerations, the methods proposed in [17] and 

[18] were proved to be less effective on carbody accelerations. In our previous work [19], 

gradient tree boosting and random forest were applied on the several specific features defined 

in the envelope spectrum and statistic features defined in the time domain, with the help of 

additional information on vehicle speeds. The trained models were tested in different speed 

ranges and have achieved an average accuracy of 82.74%.  

The majority of the previous WF detection methods work well on axlebox and bogie 

accelerations, but not on carbody accelerations. The conventional ML approach for carbody 

accelerations in [19] relies on envelope analysis and several handcrafted features, which has 

not achieved high accuracy but has a high computational cost. To tackle this issue, we 

propose to use deep learning (DL) approach, i.e. lightweight convolutional neural network 

(LCNN), to increase the diagnostic accuracy with lower computational complexity. DL has 

been rapidly developed in the ML community and widely deployed for machine fault 

diagnosis (MFD) in the last decade. For the DL applications on mobile and embedded 

devices, the resource-limited application of DL models is becoming an important research 

topic. In the ML community, the researchers have been working towards three areas, i.e. 

hardware specializing such as TPU [20], model compression [21] and lightweight network 

design. Especially for CNN, an optimized design of the LCNN architecture could 

significantly reduce the computational costs and achieve a good trade-off between 

performance and complexity.   

SqueezeNet [22], Xception [23], ShuffleNet [24] and MobileNet [25] are the most famous 

pioneers of LCNN architectures for computer vision applications. They have been further 

improved as ShuffleNet v2 [26], Mobilenet v2 [27] and Mobilenet v3 [28]. The strategies for 

lightweight NN can be summarized as follow. (1) Decreasing the parameter number in the 

network while attempting to preserve network performance. For instance, SqueezeNet 

replaced the majority of 3×3 filters with 1×1 filters and decreased the number of input 

channels to 3×3 filters by using the proposed fire module. MobileNet proposed two global 

hyper-parameters allowing scaling of the model size according to the computation resource. 

ShuffleNet used group convolution where the input channels are divided into several groups 

and convolution is performed independently for each grouped channel. (2) Using depthwise 

separable convolution (DSC) instead of the regular convolution. Xception replaced the 
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inception module with the DSC module based on the existing Inception V3 architecture. 

MobileNet built a streamlined architecture based on DSC. (3) Maximizing the network 

performance with the reduced network size. ShuffleNet proposed channel shuffle, changing 

the order of the channels, which can compensate for the reduced interaction between different 

channels due to group convolution. MobileNet V2 proposed to use linear bottlenecks to avoid 

manifold collapse caused by nonlinear ReLU, and inverted residual connection to improve 

memory efficiency. MobileNet V3 added the squeeze and excite (SE) in the residual layer to 

improve the channel interaction and use network search to automatically optimize the network 

architecture. (4) Optimizing design by taking into account other evaluation metrics. Most 

LCNN architecture design is guided by computational complexity. ShuffleNet V2 proposed to 

reduce memory access costs by keeping equal channel width of the input and output channel 

as well as carefully using group convolution, to reduce the degree of fragmentation and to 

reduce elementwise operation.  Other interesting lightweight designs can be found in [29-35], 

which followed more or less the aforementioned strategies. 

In the area of machine fault diagnosis, the researchers have been attempting to adapt the 

LCNN proposed for computer vision applications, where the input data is usually 2D metrics 

with a small width. For instance, the image size of the ImageNet dataset is 256×256. The 

CIFAR-10 dataset consists of 32×32 images. In comparison, the sensor data for MFD is 

mostly a 1D array of acceleration with a high sample frequency (over 1 kHz). To reduce the 

dimensionality of the input data, the first way is to use signal processing methods to transfer 

1D sensor data into a 2D time-frequency matrix through e.g. WT and STFT. Liu et al. [36] 

used STFT for preparing 2D input data and adapted ShuffleNet V2 with batch normalization 

and L2 regularization for feature extraction and classification. The second way is to use 1D 

CNN instead of 2D CNN [37-39]. Regarding the reduction of input array size, Ma et al. [39] 

used wavelet packet transformation (WPT) to obtain multiscale 1D wavelet coefficients as the 

input data. The different scales of wavelet coefficients were fed into LCNN as the different 

channels. The final input data is reduced to a tensor of 64×1×16 (16 denotes the number of 

channels). The proposed LCNN is a streamlined CNN, being composed of small-size filters 

(3×1 and 1×1). Similar work was presented in [38], where the activation function of CReLu 

was introduced into the DSC blocks to further reduce the number of parameters. Although the 

CNN architectures in the mentioned studies were optimized in terms of computational 

complexity, the costs of the used signal processing techniques such as WT and STFT have not 

been taken into account. The overall complexity of the diagnosis model was not discussed. In 

contrast, Wang et al. [37] directly fed the raw data with the dimension of 12800×1×2 to the 

network for remaining useful life (RUL) prediction of machinery. The proposed LCNN is 

similar to MobileNet, being composed of DSC blocks with the added SE units. Although it 

avoided signal processing, it did not take measures to reduce the size of the input raw data 

(i.e. 12800 sample points) and the large filter size. The large width of the input array and filter 

size can result in high computational costs during the convolution operations. 

1.3 Current gaps and our contributions 

Based on the literature review on WFD methods and LCNN as well as our experience with 

field data in real operating conditions, the following two gaps have been identified.  

(1) Lack of understanding on application complexity.  
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The majority of the proposed MFD methods are validated by the laboratory datasets and have 

achieved more than 99% hit rates e.g. in the CWRU bearing fault datasets, which can hardly 

represent the complexity of the real application environment. In the case of WF detection by 

using telematics devices, we are facing a two-fold complexity. The first one is related to 

pattern recognition. The telematics devices are usually placed on the wagon body so that 

carbody accelerations should be used as the input data. The vibration on the wheel is 

transferred via axle bearing to axlebox, further via primary suspension to bogie frame and 

finally via secondary suspension (e.g. centre bowl and side bearers in case of freight wagons) 

to carbody. The longer the vibration transfer path is, the lower the vibration level can be 

measured. Especially on freight wagons, the primary suspension between axlebox and bogie 

frame as well as the center bowl/side bearers between bogie frame and carbody are strongly 

nonlinear due to friction damping [40]. Due to suspension isolation, impulsive signals caused 

by WFs are damped significantly in carbody accelerations and thus could be buried in signal 

noise and disturbances. Figure 3 shows the typical vertical accelerations of WF signals in the 

time domain and envelope spectrum at axlebox, bogie and carbody at the vehicle speed of 45 

km/h respectively. The measurement was performed on a tank wagon with Y25 bogies 

running on a mainline. The peaks caused by WF in axlebox and bogie accelerations are 

clearly visible in the time domain, whereas the WF signature is almost hidden in the noise in 

carbody accelerations. In the envelope spectrum, the rotation frequency and its harmonies are 

clearly recognizable at the axlebox and bogie levels. At the carbody level, only the first and 

second-order of the rotation frequency has a much higher magnitude. This pattern is, 

however, unstable due to disturbances in the real operational conditions. For instance, 

abnormal track irregularities could result in strong vibration and thus bury the WF peaks, 

especially at the carbody level. The discrete impacts caused by e.g. rail squats, bad rail welds 

and turnouts may disturb the periodic pattern of WF within a limited time window. This 

finally results in miss detection. On the other hand, these discrete impacts form several 

consecutive peaks in the acceleration signal, being similar to WF patterns. This may cause a 

false alarm.  

The second complexity concerns the hardware restriction of the telematics device. The 

processing unit of a telematics device is a mini-computer like Raspberry Pi. For instance, the 

commonly used Raspberry Pi 3 Model B has a quad-core 1.2GHz 64bit ARM CPU and 1GB 

RAM. It allows real-time CNN inference with state-of-the-art CNN models for computer 

vision tasks. However, the power consumption increases significantly from 1.3W in the idle 

mode to around 3.5W when executing a CNN model, depending on the individual models and 

software frameworks [41]. Other components of the telematics device such as the GPS 

module, GPRS module for remote data transmission, and local wireless transmission module 

consume hundreds of milliwatts [42]. A low-profile solar panel of the size 16×10 cm for a 

telematics device can provide around 15Wh/day [42], powering the device only for about 

three hours in continuous operation. This means that the continuous measurement and 

processing of accelerations cannot be performed. A typical telematics device is designed to 

wake up, for instance, every half hour to perform a one-second measurement and the 

subsequent data processing. The raw acceleration data will be discarded. Only the essential 

parameters such as diagnosis results, GPS values and timestamps are wirelessly transmitted to 

the cloud via the mobile network. In practice, the power supply system based on the (solar) 

battery is usually designed to last one year at least, taking into account the inspection interval 

of freight wagons (which is quite different from passenger vehicles). Therefore, it is necessary 
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to design a lightweight diagnostic model, requiring less computation power and thus less 

power consumption.  

 

Figure 3. Comparison of carbody, bogie, and axlebox acceleration signals and their envelope spectrums 

 

(2) Lack of a systematic approach for designing a lightweight diagnosis method.  

A model for fault diagnosis typically contains signal processing and classification. It should 

take into account both processes to design a lightweight diagnosis method. The computational 

time complexity of several common methods for signaling processing and classification is 

listed in Table 1. The big O notation expresses the asymptotic behavior of time complexity, 

where 𝑁 is the size of the inputs. It should be noticed that the computational complexity for 

classification refers to inference complexity, rather than training complexity. It has been 

commonly thought that ML models have very high computational costs. It is true when it 

refers to training complexity. Once the models are trained and deployed, the trained models 

have much less computational complexity for inference. Its complexity is comparable to that 

of signal processing techniques, as shown in Table 1. The frequency analysis techniques like 

FFT, Hilbert transformation and EMD have even much higher complexity, especially when 

the input size is large. It is quite challenging to perform such frequency analysis on a low-

consumption embedded system. The complexity of LCNN is not listed since it significantly 

depends on its architecture. A well-designed LCNN could have less complexity than a signal 

processing method. (This will be shown in Section 4.3.) Therefore, the computational costs of 

both signal processing and classification should be considered. If the signaling processing 

could be avoided, it will save many computational resources.  

Table 1. Computational complexity of several common methods for signaling processing and classification 

Signal processing methods Computational complexity 

Fast Fourier Transformation [43] 𝑂(𝑁 𝑙𝑜𝑔(𝑁)) 
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Hilbert Transformation 𝑂(𝑁 𝑙𝑜𝑔(𝑁)) 

Continuous Wavelet Transformation [44] 𝑂(𝑁) 

Discrete Wavelet Transformation [45] 𝑂(𝑁) 

Empirical Mode Decomposition [47] 𝑂(𝑁 𝑙𝑜𝑔(𝑁)) 

Classification methods Computational complexity 

Random Forest [48] 𝑂(𝑁) 

Support Vector Machine (Kernel) [49] 𝑂(𝑁) 

Naïve Bayes [50] 𝑂(𝑁) 

To cover the gaps, we propose a process to design a LCNN architecture for MFD using 

vibration data. The designed LCNN is demonstrated for WFD by using carbody accelerations 

in this work. To be more specific, our contributions are summaries as follows.  

1. Proposing a systematic design process of LCNN. It starts with turning a simple CNN for 

the specific input data. Lightweighting is guided by the strategies that are commonly 

accepted in the ML community [51]. Bayesian optimization with Gaussian process 

(BOGP) is introduced for identifying the proper parameters and network structure. As the 

model performance may not linearly change with the linear variation of the individual 

parameters and the number of parameter combinations is too large, the conventional grid-

search-based parameter variation could not help find the best combination of parameters. 

After preliminary tuning, some parameters could be manually adjusted to achieve a better 

tradeoff between performance and computational complexity. 

2. Designing a mini-size modular LCNN architecture for WF detection, called LightWFNet. 

The state-of-the-art (SOTA) CNN blocks such as DSC, SE and bottleneck as well as the 

activation function hard swish are introduced in the architecture. Its performance and 

computational complexity are compared with the SOTA LCNN for MFD and the classic 

time-frequency analysis. 

3. Understanding the mechanism of feature extraction within CNN through visualization of 

interim layer outputs. CNN works as a combination of diverse adaptive filters to 

decompose the input data. This mechanism is visualized and compared to the standard 

frequency and time-frequency analysis. 

In the following, the theoretical basis is introduced in Section 2. Section 3 explains the design 

process and the proposed LightWFNet. The experiments based on field data and the analysis 

of the experiment results are presented in Section 4. Section 5 draws the conclusions. 

2. Convolutional neural network and Bayesian optimization 

The modern multilayer CNN architecture was proposed by LeCun for a computer vision 

application [52]. This basic CNN architecture, called as LeNet, consists of multiple layers of 

convolution, pooling and activation in a row for feature extraction as well as one or more 
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subsequent fully connected layers and a softmax function for classification. In order to learn a 

complex pattern, non-linearity is introduced by the activation function, which is a nonlinear 

transform function such as tanh, ReLu and sigmoid function. Apart from the basic elements, 

batch normalization has also become a standard operation within the modern CNN 

architecture. Batch normalization is to standardize the feature maps within hidden layers by 

subtracting the mean and then dividing the standard deviation. This was introduced in [53] to 

solve the problem of internal covariance shift within the feature maps. The arrangement of 

these standard elements is essential to design a well-performed CNN architecture. This 

section will introduce the specific core elements used in LightWFNet as well as BOGP for 

hyperparameter tuning. 

2.1 Depthwise separable convolution 

Replacing the regular convolution with depthwise separable convolution (DSC) [25] is an 

effective lightweighting strategy. DSC converts the regular convolution into a depthwise 

convolution and a pointwise convolution. The regular convolution is executed by 

simultaneously sliding a filter over all input channels and combining the results in a single 

step. In contrast, the depthwise convolution is executed by sliding a filter over each channel. 

Afterward, the pointwise convolution combines the outputs of the depthwise convolution. In 

this way, the number of convolution operations and parameters is significantly reduced. In the 

following, the operation of a regular convolution and a DSC are explained in detail. 

The regular convolution is executed by sliding the filters over the input array simultaneously 

in all channels. In each sliding step, the filter convolves the receptive fields of the input 

feature map in all channels, which have the identical size as the filter. Given a 1D multi-

channel input feature map of size 𝑁 × 1 × 𝐽 and 𝑀 convolutional filters of size 𝐾 × 1 × 𝐽, 

where 𝑁 is the array length of the input feature map, 𝐾 is the size of the filter and 𝐽 is the 

channel number, the regular convolution requires the following numbers of multiply-

accumulate (MAC) operations. 

𝑀𝐴𝐶𝑐𝑜𝑛𝑣 =  𝑀 ∙ 𝐽 ∙ 𝐾 ∙ (𝑁 − 𝐾 + 1) (1) 

The DSC separates the convolution operation into a depthwise convolution and a pointwise 

convolution. Given the input array of size 𝑁 × 1 × 𝐽, there should be J filters of size 𝐾 × 1 

for the depthwise convolution. The convolutional operations are executed by sliding each 

filter over the corresponding channel of the input array. In each sliding step, one filter 

convolves the receptive field in the corresponding channel, which has the identical size as the 

filter. The output arrays have thus the dimension of (𝑁 − 𝐾 + 1) × 1 × 𝐽. In the next step, the 

pointwise convolution is executed by using a filter of size 1 × 1 that iterates through every 

single point and linearly combines the depthwise channel. The final results meet the results of 

the regular convolutional operation. However, the DSC uses much fewer MAC operations 

than the regular convolution so that computation complexity is reduced. The MAC of DSC 

with 𝑀 pointwise filters is obtained by eq. (2). We get thus the reduction using eq. (3). 

𝑀𝐴𝐶𝐷𝑆𝐶 =  𝐽 ∙ 𝐾 ∙ (𝑁 − 𝐾 + 1) + (𝑁 − 𝐾 + 1) ∙ 𝐽 ∙ 𝑀 = (𝑁 − 𝐾 + 1) ∙ (𝑀 + 𝐾) ∙ 𝐽 (2) 

Ratio = (𝑀 + 𝐾)/(𝑀 ∙ 𝐾) (3) 
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As the filter number  𝑀 is usually much greater than 𝐾, the reduction ratio will be around 

1/𝐾. For instance, using the filters of size K=3 for the depthwise convolution, 1D DSC has 2-

3 times fewer computation costs than regular 1D convolution. 

2.2 Squeeze and excitation 

Squeeze and Excitation (SE) is an architectural unit that improves channel interdependencies 

by weighting each feature map [55]. The SE unit can be added to any CNN building block, 

causing negligible additional computational costs. Given the input feature maps 𝑋  of size 

𝑁 × 1 × 𝐶, the feature map in each channel of the input block is squeezed to a scalar value 

using global average pooling, which describes the statistical feature of each channel. 

Therefore, the complete output 𝑈 has the size 1 × 1 × 𝐶. This is the “squeeze” process. In the 

“excitation” block, two FC layers with the non-linear activation functions form a bottleneck 

structure (the first FC layer has a reduced channel of 𝐶 𝑟⁄ ), which compresses the interchannel 

information into the fewer channels and rescales it to the original channel size. As the weights 

of two FC layers are learned automatically during training, this is called adaptive recalibration 

based on the gating mechanism. The result of the “excitation” process is the scalar per 

channel. For the notation, we denote the weights of the first FC layer of size 1 × 1 × 𝐶 𝑟⁄  as 

𝑊1, the weights of the second FC layer of size 1 × 1 × 𝐶 as 𝑊2, the ReLu actication function 

as 𝛿 and the sigmoid activation function as 𝜎. The gating scales 𝑆 can be calculated by eq. (4). 

The final outputs �̃� are calculated by multiplying the input feature map with the gating scale 

in each channel, see eq. (5).  

S = 𝜎(𝑊2𝛿(𝑊1𝑈)) (4) 

𝑥�̃� = 𝑠𝑐𝑥𝑐 (5) 

2.3 Linear bottleneck block  

The skip connection in the residual network [56] has been proved to be very effective for a 

deep network. An empirical study [57] reveals that the skip connection preserves gradient 

flow by shortcutting the long paths of a deep network, instead of solving the vanishing 

gradient problem. The real effective forward path of a deep network is much shorter than the 

designed one. Shortcutting results in different possible paths during the training process, so 

that the entire network can be regarded as an ensemble of many paths, rather than a single 

deep path. This ensemble effect allows that the skip connection also has a positive effect on a 

normal network for the MFD task, which is not deep as the ones proposed for computer vision 

applications. To achieve the skip connection, the input layer must have the same 

dimensionality as the last convolution layer before the addition. The left graph in Figure 4 

illustrates the standard residual block. Given the input layer of size 𝑁 × 1 × 𝐶, there should 

be 𝐶 filters within the subsequent convolution layers (Although two convolution layers are 

shown in the graph for illustration, there could be more convolution layers). The output of the 

last convolution layer should have the same size of 𝑁 × 1 × 𝐶  (meaning that convolution 

should be executed with stride one and padding), so that it can be added with the input and 

then transformed by the activation function.  
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In order to reduce computational complexity, regular convolution layers can be replaced with 

a stack of pointwise convolution and depthwise separable convolution. The first pointwise 

convolution is used to shrink the channel numbers with the factor 𝑠. The subsequent DSP 

replaces the regular convolution. In this way, the inner blocks are narrower than the outside 

blocks, like a “bottleneck” structure. It is worth noting that the skip connection will be 

disabled if any convolution layer is executed with a stride length larger than 1. Sandler et al. 

[28] proposed using a linear bottleneck to prevent non-linearity from destroying damaging 

feature maps. The activation function is removed at the end of the bottleneck block.  

2.4 Hard version of activation function  

The activation function introduces nonlinearity in the neural network. The most accepted 

activation function is ReLu, which is a very simple piecewise function and can be defined by 

𝑓(𝑥) = max (0, 𝑥). It either returns the value of the inputs or the value of 0 if the input is a 

non-positive value. It costs less computational complexity than the classic sigmoid and tanh 

activation function and avoids the saturation problem. On the other hand, it results in the 

problem of e.g. dead neurons [58] and bias shift [59]. In recent years, new functions like 

Swish [60] and Mish [61] were proposed to replace the ReLu function. Swish has been widely 

used and significantly improves network performance, especially in deeper layers within a 

network. Swish can be defined by 𝑓(𝑥) = x ∙ σ(βx), where σ(x) = (1 + exp (−𝑧))−1 is the 

sigmoid function and β is a constant or a trainable parameter. However, the sigmoid function 

has much more computational complexity than the ReLu function. Therefore, the hard version 

of the activation function is proposed to approximate the original function by the combination 

of piecewise linear functions. The hard sigmoid function can be defined by eq. (8), while the 

hard swish function is defined by eq. (7) [28]. 

Hsigmoid = 𝑅𝑒𝐿𝑢6(𝑥 + 3) 6⁄  (6) 

Hswisℎ = 𝑥 ∙ 𝑅𝑒𝐿𝑢6(𝑥 + 3) 6⁄  (7) 

where 𝑅𝑒𝐿𝑢6  is the ReLu capped by the units at 6 and thus is defined by 𝑓(𝑥) =
min (max(0, 𝑥) , 6). 

 

Figure 4. Comparison between the residual block and linear bottleneck block 
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2.5 Bayesian optimization with Gaussian process  

Parameter tuning for neural networks is an optimization problem. Optimization is to find an 

input 𝑥∗ ∈ 𝑋, where 𝑋 ⊂ ℝ𝑑  and 𝑑 ≥ 1, within the limited steps. This input minimizes (or 

maximizes) the value of an object function 𝑓: 𝑋 → 𝑌. In the case of hyperparameter tuning, an 

input 𝑥 refers to the combination of 𝑑 parameters. The object function is the trained neural 

network with the parameter combination 𝑥 . The output value is usually the result of the 

validation loss (or accuracy). For a shadow network, grid search for each tunable 

hyperparameter can be done, where a discrete range of each parameter is defined, and the 

discrete values within the range are exhausted one by one for model training. In such a way, 

the parameter sensitivity can be investigated and the best combination of the parameters can 

be identified. In terms of a large network, grid search can hardly be done, since there are too 

many combinations of hyperparameters. In this case, BOGP can be applied. 

BOGP is composed of a surrogate model and an acquisition function. The Gaussian process is 

the most popular method to build the surrogate model. Given observations (𝑥𝑖, 𝑦𝑖 = 𝑓(𝑥𝑖)) for 

the steps 𝑖 = 1: 𝑡, where 𝑡  denotes step 𝑡 , a probabilistic surrogate model is built for the 

objective function 𝑓(𝑥). The prediction of this model at a new query point 𝑥𝑞 with a kernel 

function 𝑘𝜃 (𝜃 is a hyperparameter) is a normal distribution of 𝑦𝑞~𝒩(𝜇, 𝜎2|𝑥𝑞) with [62]: 

μ(𝑥𝑞) = 𝑘(𝑥𝑞 , 𝑋)𝐾−1𝑦 (8) 

𝜎2(𝑥𝑞) = 𝑘(𝑥𝑞 , 𝑥𝑞) − 𝑘(𝑥𝑞 , 𝑋)𝐾−1𝑘(𝑋, 𝑥𝑞) (9) 

where 𝑘(𝑥𝑞 , 𝑋) is the cross-correlation vector of the query point 𝑥𝑞 to the inputs 𝑋 and 𝐾 is 

the kernel matrix: 

K = (
𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑛)

⋮ ⋱ ⋮
𝑘(𝑥𝑛, 𝑥1) ⋯ 𝑘(𝑥𝑛, 𝑥𝑛)

) + 𝜎𝑛
2𝐼 

(10) 

where 𝜎𝑛
2 is a noise term representing stochastic functions. 

Once the surrogate model is established, the acquisition function is to specify the next sample 

𝑥𝑡+1 by maximizing the expected improvement (EI), 𝑥𝑡+1 = 𝑎𝑟𝑔 max
𝑥

𝐸𝐼(𝑥). 𝐸𝐼 is defined 

by:  

EI(𝑥) = (𝜌 − 𝜇)Φ(𝑧) + 𝜎𝜙(𝑧) (11) 

where Φ is the corresponding cumulative density function and 𝜙 is the Gaussion probability 

density function with 𝑧 = (𝜌 − 𝜇) 𝜎⁄ . (𝜇, 𝜎2) are the predicted value through eq. (9). 

3. Network design 

The modern CNN architectures are modular and built by stacking the same or similar blocks 

to extend the network depth. In the recent LCNNs for MFD [36-38], the contributions lie in 

proposing a new LCNN block by introducing one or two lightweighting measures. Instead, 
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we propose a systematic approach for designing LCNN under limited computational 

resources. The flowchart of the design process is shown in Figure 5. 

 

Figure 5. Design process of a LCNN architecture 

3.1 BOGP for parameter tuning 

Firstly, it should be considered what data is used as the input data for CNN. The input data 

pre-processed by signal processing techniques have a lower dimensionality. However, the 

computational complexity of signal processing cannot be negligible. Taking the raw 

acceleration signal as the input data avoids pre-processing and saves many computational 

resources. However, the raw data have a higher dimensionality, which should be addressed 

during the network design. We start with designing a basic 1D LeNet-like CNN with the raw 

acceleration signal as the input data. This CNN merely contains the basic elements like the 

regular convolution layer, max pooling and the ReLu activation function. In terms of training, 

we use mini-batch stochastic gradient descent with Adam optimization [63]. We apply BOGP 

for parameter tuning with 100 iterations. In this demonstration, the raw carbody acceleration 

is sampled with a frequency of 5000 Hz. The input data for CNN is a series of one-second 

data samples. Given the input of size 5000 × 1 , the tunable hyperparameters and the 

corresponding ranges are presented in Table 2.  

Table 2. Tunable hyperparameters and the corresponding ranges of the LeNet architecture 

Hyperparameter Range Optimal value Hyperparameter Range Optimal value 

Learning rate 𝑒−5 − 𝑒−2 𝑒−5 
Conv2 filter 

size 
3 - 11 11 

Batch size 16 - 64 17 
Conv3 filter 

number 
24 - 64 24 

Epoch 20 - 60 54 
Conv3 filter 

size 
3 – 11 10 

Layer number 1 - 5 4 
Conv4 filter 

number 
48 - 128 66 

Conv1 filter 

number 
6 - 16 10 

Conv4 filter 

size 
3 - 11 3 

Conv1 filter size 3 - 11 4 
Conv5 filter 

number 
96 – 256 - 

Conv2 filter 

number 
12 – 32 27 

Conv5 filter 

size 
3 - 11 - 

 

Figure 6 shows the results of hyperparameter tuning with BOGP. The results give us the 

insight that a 1D LeNet can detect WF by feeding the raw carbody acceleration. It also 
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provides a starting point for the optimization of the network architecture and parameters 

toward lightweight. The convergence plot indicates that the validation accuracy is improved 

from 84.75% to 93.53% through parameter tuning in 150 iterations. The partial dependence 

plots indicate the partial influence of each parameter on validation accuracy and the surrogate 

model for the objective function. The black points on the surrogate model refer to the sample 

points, while the red star refers to the sample point achieving the best validation result. This 

point may not be the global optimum. The partial dependencies reveal the general trend of 

parameter influences for further manual adjustment. In this demonstration, a smaller learning 

rate could achieve better accuracy. Batch size and epoch have no influence. The optimal depth 

of LeNet is four layers. A smaller number of the filters in the third layer and a larger size of 

the filters in the second layer could result in better accuracy. Based on this, the optimized 

architecture of LeNet has been determined, as shown in the left graph of Figure 7. 

3.2 Proposed LightWFNet 

In order to achieve the best tradeoff between accuracy and model complexity, the following 

lightweight strategies are considered to optimize the architecture. As the raw acceleration 

data, depending on sample frequency and length of the time window, usually has a large 

dimension, the first layers should attempt to reduce the input dimensionality. Second, the 

small size of filters could significantly reduce the number of parameters. We should fix the 

filter size of 3 × 1 and turn the structure and other parameters. Third, the regular convolution 

can be replaced with DSC with little influence on network performance. Fourth, the linear 

bottleneck bock with the skip connection can further reduce the dimensionality and improve 

the performance. Based on these considerations, the CNN structure and the parameters are 

automatically tuned by BOGP at first and then manually adjusted to achieve a better tradeoff 

between accuracy and complexity. As BOGP can only be used for parameter tuning, the 

control parameters are defined for tuning the structure, which works as the “switches” to 

enable or disable the specific structures. For instance, the parameter “SE” denotes Squeeze 

and Excitation. In case 𝑆𝐸 = 1, a SE unit is inserted into the block. 

The right graph of Figure 7 shows the architecture of LightWFNet evolved from the tuned 

LeNet. It consists of three parts for downsampling, feature extraction and classification 

respectively. The fat font indicates the main layer within the block. The parameters of the 

filter number, the filter size and the stride size for the main layer are given in the block. For 

instance, “S=2” for stride step of 2, while “3×1@8” denotes 8 filters of size 3×1.  

Part 1 attempts to reduce the dimensionality without distorting the signal patterns. We use two 

subsequent DSC blocks to smooth the noise and enhance the WF signature. The DSC block is 

composed of a DSC layer, a batch normalization layer and an activation layer. The DSC has 

almost the same effect as the regular convolution block but fewer MAC operations. The batch 

normalization layer normalizes the inputs for the subsequent layer, avoiding covariance shift 

across the entire network. As the activation function, Hard-Swish is applied to balance the 

accuracy improvement due to nonlinearities and implementation difficulty of swish-activation 

in embedded devices. Subsequently, a max-pooling layer is applied for 10-times 

downsampling, given that the input raw data has a dimension of 5000×1. This downsampling 

factor could be adjusted according to the input dimension.  
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a. Convergence plot b. Partial dependency of  learning rate, batch size 

and epoch 

 

 

 
 

c. Partial dependency of  filter number in each 

layer 

d. Partial dependency of  kernel size in layer 

  

Figure 6. Results of hyperparameter tuning with BOGP: (a) convergence plot, where y-axis stands for validation 

accuracy and x-axis for iteration step; (b) partial dependency of learning rate, batch size, epoch and layer number; 

(c) partial dependency of filter numbers in each layer; (d) partial dependency of filter size in each layer. The 

color map presents the surrogate model of the corresponding two parameters, where brighter color means higher 

accuracy and darker color means lower accuracy. The curve plot indicates the partial influence of each parameter 

on accuracy. 

The second part is to extract hierarchy features from the downsampled data by using two 

subsequent linear bottleneck blocks, which can be repeated to increase the depth of the 

network. In the case of WFD, a four-layer CNN (i.e. two bottleneck blocks) is sufficient for 

WFD according to the results of parameter tuning. Consider the multi-channel 1D input 

feature map having the dimensions 𝑁 × 1 × 𝐶 , where 𝑁  denotes the array length and 𝐶 
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denotes the channels, a bottleneck block uses 𝐶 𝑠⁄  pointwise filters to shrink the size of the 

intermediate output channels and subsequently use 𝑁-channels DSC layers to increase the 

output channels, where 𝑠 is the shrinking factor. This forces the neural network to compress 

the information into the thin bottleneck layer in order to reduce the dimensionality, reduce the 

redundant information and strength the abstract signature of multiple peaks caused by WF. 

Especially when it incorporates the SE unit to weight the features, more informative features 

will have higher weights and thus are highlighted, whereas the less activated features are 

suppressed. In the case of WF signals, that means, the amplitude of the features that represent 

peaks will be further increased. Similar to introducing hard swish, the hard version of the 

sigmoid function is used to replace the original sigmoid function within the SE unit. In the 

experiments, we have observed that the information shrinkage could result in the high 

sensitivity of the CNN model to the peaks so that the trained model is more likely to classify a 

healthy data sample as a WF data sample, i.e. a false alarm. The reason is that the model treats 

the peaks due to noise or other impulsive interference as the WF signal. This effect could be 

compensated by the skip connection (i.e. residual structure). It is worth noting that the first 

bottleneck block has the stride size of 2 for further dimension reduction and thus does not 

have the skip connection. The second bottleneck block has a stride size of 1  and thus 

incorporates the residual connection. The two variants of the linear bottleneck blocks with the 

SE units are shown in Figure 8. Finally, the array length of the outputs is further reduced by 

4×1 max pooling. 

 

Figure 7. Architecture of the tuned LeNet and the proposed LightWFNet, where BN denotes batch normalization 

layer, “S=2” for stride step of 2, “3×1@8” denotes 8 filters of size 3×1, “Hswish” for hard swish activation 

function, “SE” for squeeze and excite, “shrink=4” denotes the shrink factor within bottleneck block. 

“Conv/Separable Conv block” is a sequential stack of the convolution/DSC layer, batch normalization layer and 

the activation function. Bottleneck block is introduced in Section 2. 

So far the abstract signature of the input raw data has been extracted. In 1D CNN, each 

feature map is a 1D array in the corresponding channel. The next stage is to obtain one feature 
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value per channel as the input for the one-layer fully connected neural network (FCNN). We 

use the global average pooling (GAP) operation instead of the flatten operation. GAP 

calculates the average value of the feature arrays per channel, rather than flattening all points 

in the arrays as the features. The latter could result in overfitting and have more trainable 

parameters. This approach is firstly proposed in [64] and is commonly accepted now. Finally, 

the FCNN with softmax activation is used as the classifier.  

 

Figure 8. Architecture variants of the repeatable linear bottleneck block with the SE unit 

4. Validation experiments  

To validate the proposed LightWFNet, the WFD models are trained and tested on carbody 

accelerations obtained from a field test in real operating conditions. The CNN architectures 

are implemented in the TensorFlow framework. The trained model can be loaded on the 

embedded system for real-time WFD with the support of TensorFlow Lite. The test results are 

compared to the ones delivered by the tuned LeNet CNN, a classical ML-based method [65] 

and the SOTA LCNN for MFD [36-38] in terms of network performance and computational 

complexity. 

4.1 Data preparation  

In the field test, a tank wagon was instrumented, see Figure 9. The empty wagon was firstly 

operated on the mainline for about 140 km with a synthetic WF of 20 mm. After replacing the 

defective wheel with an intact wheel, the wagon was further operated for over 600 km in the 

empty and fully loaded conditions respectively. The journey covered tens of curves with a 

radius ranging from 200 m to over 5000 km. The vibration data was measured by Brüel & 

Kjaer type 4520 triaxial piezoelectric accelerometers with a sensitivity of 1.02 𝑚𝑣 𝑚𝑠−2⁄ . 

Table 3 gives an overview of the usable data after data cleaning, where the implausible data 

due to failures of the measurement system and the data at a stillstand or very low speeds were 
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discarded. The WF detection model is designed for a telematics device, which takes one-

second samples of discrete acceleration data. Therefore, the continuous field data is split into 

thousands of one-second data samples as the input data for CNN. Given the time window of 

1𝑠, the lowest vehicle speed 𝑣 that enables WFD can be derived from eq. (12). Therefore, the 

lowest vehicle speed for WF detection is 20.8 𝑘𝑚/ℎ. Based on this, the acceleration signals at 

vehicle speeds over 25 𝑘𝑚/ℎ are used. We use 60% of the entire data for training, 20% for 

validation and 20% for testing, regardless of running conditions.  

2 ∗ 𝜋𝑑 𝑣⁄ ≤ 𝑡 

𝑣 ≥ 2 ∗ 𝜋𝑑 𝑡⁄ = 2 ∗ 𝜋 ∗ 0.92 = 20.8 𝑘𝑚 ℎ⁄ , 
(12) 

where 𝑑 is the diameter of wheels; 𝑡 is the length of the time window. The diameter of a new 

wheel for railway freight wagons is normally 0.92𝑚. 

 

Figure 9. Field test: (a) instrumented tank wagon and position of wheel flat; (b) 20 mm synthetic wheel flat; (c) 

position of the accelerometers at axlebox and bogie; (d) position of the accelerometer at carbody 

The running speed of a freight wagon ranges from 0 to 120 km/h in practice. The WFD model 

should be robust against speed variation. The variation of vehicle speeds affects the amplitude 

of vibration signals [17], the faulty frequency [12] and thus the number of the impulses 

b 

Wheel flat 

Carbody acc 

c 

Axlebox acc 

Bogie acc 

a 

d 
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caused by WF in a fixed time window. In order to compensate for the effect that vibration 

amplitude increases with the vehicle speed, the raw acceleration data is standardized at each 

sample step using eq. (13).  

𝑥𝑠𝑡
𝑡 = (𝑥𝑡 − �̅�) 𝜎⁄  (13) 

where 𝑥𝑡  is data point at time 𝑡 , �̅�  is the mean value over the sample time and 𝜎  is the 

standard deviation over the sample time. 

Furthermore, the dataset is divided into different speed ranges to investigate the influence of 

vehicle speeds on detection accuracy. Theoretically, both very low and very high speeds have 

a negative effect on the WF pattern. At the speed of 20.8 km/h, only two WF peaks appear 

within the one-second data sample, forming a periodic pattern. This periodic pattern could be 

distorted by any interference peaks caused by e.g. rail squats, bad rail welds and turnouts. At 

very high speeds, the amplitude of WF peaks could decrease. This effect was reported in [66]. 

The WF amplitude first increases with the increase of vehicle speeds reaches the maximum at 

a so-called critical impact speed and then drops down with the further increase of speeds. The 

critical impact speed relies on the condition of the WF (i.e. width/length ratio and length). In 

the experiment, the acceleration data at speeds above 25 km/h is used for training and cross-

validation. The testing dataset is divided into different speed ranges. Table 4 presents the 

distribution of datasets. One data sample refers to 5000 data points, i.e. one-second 

acceleration with the sampling frequency of 5000 Hz. 

Table 3. Overview of the usable field data after data cleaning  

Wheel flat 

conditions 
Speed range 

Faulty data 

volume 
Normal data 

volume 
Sample 

frequency 

synthetic, 20 mm 25  – 105 km/h 10210 s 13532 s 5000 Hz 

Table 4. Dataset dimension for training, validation and testing 

Dataset Train Valid. 
Test in 

total 
Test: 25-

45 km/h 
Test: 45-

65 km/h 
Test 65-

85 km/h 
Test: 85-

105 km/h 

Num. of 

samples 
14245 4749 4748 1142 571 1509 1526 

Ratio 

faulty to 

normal 

6077: 

8168 
2034: 

2715 
2099: 

2649 
534: 608 240: 331 1034: 475 291: 1235 

4.2 Evaluation metrics  

The number of positive cases and negative cases within the dataset could be imbalanced. 

Especially in the case of fault detection, the amount of faulty data is usually much smaller 

than that of normal data. Therefore, we use balanced accuracy (bACC) to indicate the 

performance of a WF detection model, which compensates for the negative effect of 

imbalanced datasets. Recall and precision are also presented to indicate the capability of true 
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detection and to avoid false alarms. In the case of WFD, we define “wheel flat” as positive 

and “intact wheel” as negative. The number of real positive cases in the dataset is denoted by 

𝑃, while the number of real negative cases in the dataset is denoted by 𝑁. The number of 

positive cases classified correctly is denoted as 𝑇𝑃 (true positive). The number of negative 

cases classified correctly is denoted as 𝑇𝑁 (true negative). The number of false classification 

of positive cases is 𝐹𝑃 (false positive, i.e. false alarm). The number of false classification of 

negative cases is 𝐹𝑁 (false negative, i.e. miss detection). Then, precision is calculated by 

𝑇𝑃 𝑃⁄ , while recall is calculated by 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄ . A higher precision indicates fewer false 

alarms, while a higher recall means a higher capability for WFD. In practice, high precision is 

more important than high recall, since false alarms could cause additional issues such as 

wasting manpower for inspection. Furthermore, bACC is calculated by normalizing 𝑇𝑃 and 

𝑇𝑁 over 𝑃 and 𝑁 respectively: 

bACC = (𝑇𝑃 𝑃⁄ + 𝑇𝑁 𝑁)⁄ 2⁄  (14) 

For comparison of computational complexity among different CNN architectures, the total 

parameters within the network and Floating Point Operations (FLOPs) are commonly used as 

evaluation metrics. A FLOP is viewed as a basic unit of computation, denoting an addition, 

subtraction, multiplication or division of two floating-point numbers. 

4.3 Experiment results  

Detection accuracy The test results of LightWFNet are compared to those delivered by the 

tuned LeNet, a classical ML-based method and the SOTA LCNN for MFD in terms of 

accuracy and computational complexity. The SOTA LCNNs are implemented and adapted for 

our datasets, incl. deep separable convolutional network (DSCN) proposed in [37], 

lightweight deep residual convolutional neural network (LDR-CNN) proposed in [38] and 

adapted ShuffleNet V2 used in [36]. DSCN takes the raw data as the input data for CNN. 

LDR-CNN uses WPT to transfer the raw data into multi-channel 1D wavelet coefficients as 

the input data. Adapted ShuffleNet V2 uses STFT to transfer the raw data into 2D matrix. The 

same procedures for signal processing are implemented to deliver the correct input data for 

LDR-CNN and ShuffleNet V2. As the input data in the original work has different 

dimensions, the hyperparameters are tuned to identify the best parameter combination for our 

datasets. Apart from the DL-based method, the comparison also includes a classic diagnostic 

method using time-frequency-domain features and gradient boosting decision tree (GBDT) 

[65]. The WF signal within a short time window can be viewed as a quasi-stationary signal. 

Despite the vehicle speed continuously changing over time, the acceleration or deceleration of 

a freight wagon normally is around 1 𝑚 𝑠2⁄ . Its influence on the rotation frequency can be 

thus neglected. We use Hilbert-transform (HT) and CWT to highlight the rotation and 

instantaneous frequencies of the WF signal in the frequency and time-frequency domain 

respectively, as shown in Figure 3. Several statistic values like skewness and kurtosis in the 

envelope spectrum and scale-averaged wavelet power of wavelet coefficients [67] are 

calculated as the features. 

Table 5 and Figure 10 shows the testing results in terms of bACC, recall and precision. Each 

method was trained and tested ten times. The mean values of results and the standard 

deviations are presented. In general, our LightWFNet overperforms the SOTA LCNN 
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architectures and GBDT in terms of bACC. The performance of LightWFNet is stable within 

the ten-times training procedure (having very low standard deviations) in comparison to other 

LCNN architectures. LightWFNet has a much higher precision but a relatively lower recall. 

Therefore, it is not sensitive to impulsive interference and thus generates fewer false alarms. 

The traditional diagnosis method GBDT with the handcrafted features in the frequency 

domain and the time-frequency domain has achieved a poor result. This approach 

significantly relies on the quality of the defined features. Although the periodic impulsive 

patterns of WF are visible through the frequency or time-frequency analysis, it is very 

challenging to manually define the low-dimension features to represent the high-dimension 

spectral coefficients, particularly taking into account the diverse interference under the harsh 

application environment. The tuned LeNet without any specific design has achieved a good 

bACC of 91.30%, even better than ShuffleNetV2 and DSCN. It proves that a simple 

multilayer CNN can effectively extract hierarchical features from the 1D acceleration signal 

for diagnosis. It is not necessary to transform 1D sensor data to 2D matrix, as ShuffleNetV2 

does, which must result in a large increase of the computation complexity, but may not 

improve the diagnosis performance. In terms of DSCN, it is very unstable during the training 

process. Six trained models out of ten have a good bACC of over 92% with relatively high 

precision and low recall. However, the left four models have very high recall of over 92% and 

low precision of around 65%. It means that the models are very sensitive to impulsive patterns 

and treat most discrete impacts as WFs, although they could be caused by e.g. rail squats, bad 

rail welds and turnouts. LDR-CNN has achieved comparable performance with higher recall 

and a lower precision in comparison to LightWFNet. A lower precision means a higher 

possibility of false alarms, which is more critical than miss detection in the context of WF 

detection and should be avoided.  

 

Figure 10. Comparison of bACC, recall and precision between different LCNN architectures 

Computational complexity The computation complexity of a deep neural network is 

commonly measured by the number of its total learnable parameters and FLOPs. Table 6 

compares these two metrics of different LCNNs. Our LightWFNet has much less 

computational complexity than other LCNNs. The lightweight measures reduce 21 times 
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parameter number and 378 times FLOPs from LeNet to LightWFNet. DSCN has a 

comparable number of parameters, but much higher FLOPs in comparison to LightWFNet. It 

is mainly caused by the large width of the input sensor data. In the LightWFNet, Part 1 is 

specifically designed to reduce the input dimension in terms of array length and remain the 

pattern information by increasing the channel numbers, so that the subsequent blocks for 

feature extraction have the low-dimensional inputs. This has not been considered in other 

LCNNs for MFD. 

Table 5. Test results of different methods for wheel flat detection by using carbody accelerations 

Result LightWFNet GBDT LeNet LDR-CNN ShuffleNetV2 DSCN 

bACC 93.58±0.32% 75.36% 91.30±0.95% 92.86±0.41% 81.54±0.67% 88.39±6.23% 

Recall 87.06±0.56% 63.94% 87.44±1.37% 91.29±3.28% 78.74±3.43% 87.11±4.43% 

Prec. 98.24±0.82% 79.33% 92.60±0.73% 93.10±3.70% 80.08±2.27% 89.95±13.98% 

The computation complexity of a diagnosis model should also consider the costs of signal 

processing. The signal processing method could have comparable costs as an ML-based 

classification method. To have a better sense of FLOPs, FLOPs of FFT for a 5000-points 

input array are calculated using eq. (15) [43]. Surprisingly, LightWFNet merely has one-third 

of FLOPs of FFT. ShuffleNetV2 requires STFT as pre-processing, whose FLOPs can be 

calculated by eq. (16). LDR-CNN requires WPT as preprocessing, whose FLOPs can be 

calculated by eq. (17). This fact indicates that taking the raw data as the input can save a lot of 

computational power for the whole computing process. To further demonstrate the efficiency 

of LightWFNet, Figure 11 illustrates the efficiency (i.e. bACC versus FLOPs) of each 

diagnosis model, including signal processing.  

𝐹𝐿𝑂𝑃𝑠𝐹𝐹𝑇 =  2.5𝑁 log2 𝑁 = 46,237 (15) 

𝐹𝐿𝑂𝑃𝑠𝑆𝑇𝐹𝑇 =  𝑀 ∙ 2.5𝑁 log2 𝑁 = 1,895,722 (16) 

where 𝑁 is the number of data points and 𝑀 denotes the time resolution of STFT, depending 

on the segment length and overlap for STFT. In our case 𝑁 = 5000 and 𝑀 = 41 with the 

segment length of 256 and overlap of 50%. 

𝐹𝐿𝑂𝑃𝑠𝑊𝑃𝑇 =  2𝐿 ∙ N = 80,000 (17) 

where 𝐿 denotes the level of wavelet decomposition. In our case 𝐿 = 4 

Table 6. Computational complexity of different LCNN architectures 

Result LightWFNet LeNet LDR-CNN ShuffleNetV2 DSCN 

Parameters 825 15,143 6,662 808,794 1,032 

FLOPs 13,053 4,934,270 1,016,480 120,215,430 209,681 
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Figure 11. Comparison of the efficiency of between different WF detection models 

CNN mechanism The basic concept of fault diagnosis is to highlight faulty patterns by 

filtering out interference or decomposition, where the signal is convolved with the filter 

function. In Fourier transformation, the filter function is the cosines function. In wavelet 

transformation, the filter function could be different wavelet functions. In CNN, the filter 

function is the stack of convolutional filters, whose parameters are automatically learned 

during the training process. Therefore, CNN works as a combination of adaptive filters. Jia et 

al. [68] and Zhang et al. [69] attempted to visualize the filter parameters to understand the 

effect of adaptive filtering. We visualize the interim layer outputs during the forward pass 

within the trained LightWFNet to promote an intuitive understanding. Figure 12 shows the 

transformation results of the raw data through different filtering/decomposition methods. The 

raw data contains four periodic WF peaks which are visible, despite strong interference. The 

left side of Figure 12 shows the results of STFT, CWT, HT and WPT respectively. Although 

the WF patterns could be more or less recognized, the pattern information is embedded in the 

high dimensional feature map. It is still difficult to define low-dimensional features to further 

represent the pattern information, which can be used for classification. The right side of 

Figure 12 shows the evolution of the feature maps within LightWFNet. The noise is 

eliminated and the visibility of the WF peaks is strengthened layer by layer. The final feature 

map in each channel has merely 16 data points but can clearly show the abstract patterns of 

WF. From each feature map, the average value is calculated as a feature for classification. In 

this way, the representative features of the input raw data are extracted layer by layer through 

diverse filters, hierarchical structure and pooling operations within CNN. The depth of the 

layers ensures that the noise information can be filtered out and the abstract patterns of the 

input signals can be extracted. Therefore, the CNN model could be more invariant to signal 

variations, which could be caused by variations in measurement conditions such as vehicle 

speeds, track conditions, etc.  
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Figure 12. Transformation results of the raw data (in the middle) through different filtering/decomposition 

methods. The left side presents the results of STFT, CWT, HT and WPT. The right side presents the evolution of 

the feature maps within LightWFNet. 

Table 7. Test results of different methods for wheel flat detection in different speed ranges 

Speed 

ranges 
LightWFNet GBDT LeNet 

LDR-

CNN 
ShuffleNetV2 DSCN 

25-45 

km/h 
96.02% 81.85% 89.54% 95.94% 85.05% 95.87% 

45-65 

km/h 
95.17% 73.74% 90.61% 95.17% 81.52% 94.89% 

65-85 

km/h 
99.08% 77.61% 84.05% 97.50% 85.93% 97.99% 

85-105 

km/h 
67.86% 58.55% 71.24% 80.51% 63.48% 68.40% 

Influence of vehicle speed variation The one-second carbody acceleration as the input data 

for LightWFNet is significantly influenced by the vehicle speed. Figure 13 compares the WF 

signals at the carbody level and their CNN decompositions at different speeds. At low and 

medium speeds, the increase of vehicle speeds aggravates the WF pattern at the carbody level 

mainly through the increase of rotation frequency and thus the number of WF peaks within 

the fixed time window. CNN could extract the information of WF peaks. At high speeds, the 

WF pattern changes from the subsequent peaks to a zig-zag pattern which is hardly 

recognizable. A high speed could result in the fact that the time of one wheel rotation is less 

than the time of the oscillation of one WF impact. That means two adjacent WF peaks may 

overlap, which changes the WF pattern. CNN fails to follow this new pattern. To investigate 

the influence of the vehicle speed on the accuracy of the trained WF detection models, we 
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divided the test dataset into different speed ranges. Table 7 and Figure 14 shows bACC 

delivered by different models for different speed ranges. All the models show a common fact 

that detection accuracy in the highest speed range (85-105 km/h) drops dramatically. This 

confirms our observation in Figure 13 and may suggest that wheel flat detection on carbody 

should not be performed at high speeds. 

 

Figure 13. Comparison of WF signals and their CNN decomposition at different speeds 

 

Figure 14. Balanced accuracy of different models in different speed ranges 

5. Conclusions and future work 

In this paper, a systematic design process of LCNN is proposed and demonstrated for WFD. 

The generated 1D LCNN architecture is named as LightWFNet. The CNN design for a 
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specific task could start with a basic CNN structure. Thanks to Bayesian optimization, the 

CNN parameters can be automatically tuned. Afterward, lightweight is guided by the existing 

strategies and executed by BOGP to tune the parameter and the structure. Afterward, the 

tuned structures and parameters can be manually adjusted to achieve a better tradeoff between 

accuracy and complexity. In this way, LightWFNet evolves from a simple LeNet-like CNN. 

LightWFNet covers the entire chain of automatic diagnosis, being fed by raw accelerations, 

downsampling, extracting features and performing classification. On the one hand, 

LightWFNet incorporates the strategies of depthwise separable convolution, small filter size, 

downsampling at an early stage, hard version of activation functions and bottleneck structure 

for lightweight. On the other hand, LightWFNet introduces squeeze and excitation and 

residual structure to enhance network performance. In the experiments, LightWFNet 

overperforms the tuned LeNet, the state-of-the-art LCNN for MFD and a classic ML-based 

method in terms of accuracy and complexity. In particular, the results show the computational 

cost of LightWFNet is much lower than the common methods of signal processing. This 

allows LightWFNet to be deployed on the existing telematics devices for real-time diagnosis. 

Furthermore, the decomposition and filtering effect of CNN is visualized by displaying the 

interim layer outputs. It reveals the mechanism of CNN for feature extraction. The experiment 

of speed variations indicates that WF detection by using carbody accelerations is very 

challenging at high speeds (above 85 km/h). At high speeds, the WF pattern changes from the 

periodic peaks to a zig-zag pattern. All methods fail to deliver a satisfying result. In practice, 

this can be easily solved by an engineering approach. For instance, only the detection results 

at speeds between 25-85 km/h are used for maintenance decision-making. Alternatively, we 

can use the classification probability delivered by LightWFNet, rather than the label. The 

probabilities for one-day monitoring are aggregated and displayed on the dashboard for 

maintenance decision-making. The outlier points due to false diagnoses can be easily 

recognized and eliminated. 

In practice, other factors such as wagon conditions and track conditions could also have a 

great impact on the acceleration patterns. Therefore, the robustness of a WF detection model 

under different conditions should be investigated. We will continue to refine the present work 

and improve the robustness and generalization of the DL-based diagnostic model. 
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5. Robustness Enhancement of Diagnostic Models 

This publication presents the empirical study of model robustness against variable operating 

conditions encountered in normal operation. The study showed that the performance of the 

diagnosis models for WFD is significantly impaired, when vehicles run at different speed 

ranges or the diagnosis models are executed on different vehicles. To enhance model 

robustness, a novel data augmentation framework was proposed. It incorporates MBS to 

simulate arbitrary operating conditions and fast weighted feature-space averaging (FWFSA) 

to augment the simulated faulty data. The proposed MBS-FWFSA framework has been 

validated on four datasets collected on different freight wagons running under different 

conditions. Its superiority was verified by comparison with several SOTA data augmentation 

methods for machine fault diagnosis. 

The accepted manuscript below is the article published by Elsevier in Mechanical Systems 

and Signal Processing on 23rd July 2021, available online:  

https://doi.org/10.1016/j.ymssp.2021.108217 
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Abstract  

The performance of machine learning based machine fault diagnosis (MFD) models could 

be impaired due to operating condition variations encountered in the real-world industrial 

environment, such as variations of operating speeds and loads. One major reason for this 

robustness problem is a lack of adequate training data, especially faulty data, measured in 

various operating conditions. To cover this gap, we propose a novel data augmentation 

framework for robustness enhancement in railway MFD applications. First, multibody 

dynamic simulation (MBS) for physical modeling is applied to simulate arbitrary faulty and 

operating conditions. Second, fast weighted feature-space averaging (FWFSA) as a new data 

augmentation technique is developed to augment the simulated faulty data, producing infinite 

reality-augmented simulation data. The proposed MBS-FWFSA can fit in arbitrary MFD 

algorithms and transfer-learning settings with minimal effort. Moreover, an in-depth empirical 

study has been carried out to investigate the causality between condition variations and 

robustness. A new metric has been defined to evaluate robustness. The experiments also 

revealed the effect of the proposed MBS-FWFSA and its outperformance against several 

state-of-the-art augmentation methods. The code and data used in this paper have been shared 

in our GitHub repository: https://github.com/quickhdsdc/Robustness-Enhancement-of-

Machine-Fault-Diagnostic-Models.  

Keywords: Data augmentation, Machine fault diagnosis, Machine learning, Robustness, 

Covariate shift  

 

1. Introduction 

1.1 Background and motivation 

Machine learning (ML) and deep learning (DL) have been widely applied for machine fault 

diagnosis (MFD) in railway and industrial applications [1,2]. The conventional ML setting 

assumes that the test dataset follows the same data distribution as the training dataset. 

However, real-world industrial applications may not follow this assumption. Variations of 

operating conditions may result in covariate shift, which refers to the distribution shift of the 

independent variables (as the inputs for ML models) [3]. When an ML-based MFD model has 

been trained in the source domain under specific operating conditions, and the trained model 

is deployed for diagnosis in the target domain under condition variations, it may suffer from 

performance impairment due to covariate shift. This problem is regarded as a robustness 

problem. Robustness is the property that the model performance is close when tested within 

and outside the source-domain data distribution. In the area of MFD, several previous studies 

have paid attention to the robustness against Gaussian noise [4-6], variations of loads and 

speeds [7,8], and loss of sensor data [9].  

https://github.com/quickhdsdc/Robustness-Enhancement-of-Machine-Fault-Diagnostic-Models
https://github.com/quickhdsdc/Robustness-Enhancement-of-Machine-Fault-Diagnostic-Models
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Various measures have been proposed to enhance the robustness of ML and DL models. They 

broadly fall into three categories, namely network design, domain adaptation/generalization, 

and data augmentation. The specific network design aims to enhance the representation and 

generalization ability of deep neural network (DNN) and improve its robustness. Li et al. [10] 

proposed adaptive batch normalization by modulating the statistics from the source to the 

target domain. This can substitute the standard normalization layers in an arbitrary neural 

network (NN). Multiscale architectures can enhance robustness by operating across scale 

space at each convolutional NN layer, such as Multigrid Networks [11] and Multiscale Dense 

Networks [12].  

Domain adaptation/generalization is a sub-discipline of transfer learning. It aims to reduce the 

disparity between the source and target domain. Domain adaptation assumes that the 

unlabeled data in the target domain is available during the training process to align the 

covariate shift. The alignment process either occurs in the pre-processing or is directly 

included during the NN training. As a pre-processing measure, importance weighting is to 

reweight the source domain data points according to the estimated probabilities that they fall 

in the target domain data distribution. If the probability is high, a high weight is assigned to 

the corresponding point. The common solutions are kernel mean matching and Kullback-

Leblier (KL) importance estimation [3]. Alternatively, data points in the source and target 

domain can be transformed into a new representation space to minimize their distribution 

disparity. Various algorithms have been proposed to learn this transformation, such as transfer 

component adaptation and low-rank reconstruction [13]. The above methods can be involved 

as a loss function during the NN training. Qian et al. [14] introduced KL divergence in the 

loss function for unsupervised discriminative feature learning in bearing fault diagnosis. The 

disparity between the source and target domain is caused by variations of rotating speeds and 

loads. Chai et al. [15] proposed an adversarial network-based domain adaptation method to 

tackle covariate shift caused by variations of the fault size and the operating speed. In the 

domain generalization setting, multiple labeled source domains are required for training. The 

trained model can be directly deployed for the unseen target domain. Li et al. [16] and Liao et 

al. [17] proposed adversarial network based methods to extract domain-general features for 

bearing fault diagnosis under variable speeds. Zheng et al. [18] transferred the source and 

target domain data into a Grassmann manifold as the domain-general features for bearing 

diagnosis. The proposed method was validated under variations of operating speeds and 

sensor locations. 

A prerequisite of the above approaches is the availability of multiple domains. Unfortunately, 

for real-world MFD problems, collecting faulty data in different operating conditions is 

highly laborious and costly. This is particularly true in the railway sector due to additional 

operation and safety issues. Therefore, model-based approaches using multibody dynamic 

simulation (MBS) are the standard methods to investigate railway vehicles' abnormal 

behaviors under faulty conditions. However, the simulation data can hardly represent real-

world complexity and is insufficient to train a robust ML diagnostic model. We have been 

attempting to take advantage of data-driven and model-based approaches for MFD in railway 

applications [19]. In this paper, we propose a new data augmentation technique and a novel 

data augmentation framework to tackle the robustness problem from its root, i.e. lack of faulty 

data in various conditions. Next, previous work related to data augmentation is reviewed. 
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1.2 Related work 

Synthetic data can be generated by manipulation of the existing data based on domain 

knowledge. For image data, the common manipulation is geometric transformation, cropping, 

rotation and flipping [20]. Images can also be corrupted with noise, blur and compression for 

data augmentation [21]. For acoustic data, the variations of vocal track length, stochastic 

feature mapping and speech rate-distortion produce synthetic data [22]. For time series, 

similar approaches such as windows cropping, warping, flipping and noise injection can be 

applied in the time, frequency or time-frequency domain [23]. Time series averaging derives 

the average time series from the existing data and use it as the generated synthetic data. 

Forestier et al. [24] proposed weighted dynamic time warping Barycenter averaging (WDBA) 

to increase the synthetic data's diversity by weighting the individual data points in the average 

time series. For MFD, segments of faulty vibration data were stretched or cropped along the 

time axis [16]. Afterward, interpolation/extrapolation was applied on the stretched/cropped 

segments to recover the time length. This augmentation method can simulate the variation of 

operating speeds. The same concept was implemented by resampling faulty data in the time 

and frequency domain [25]. Apart from time stretching and resampling, Li et al. [26] 

empirically studied the effect of noise injection, signal translation and amplitude shifting for 

bearing fault diagnosis. These techniques introduce stochastics into the original signals, 

simulating stochastic background noise. Meng et al. [27] proposed to divide a data sample 

into multiple segments. Each sample contains data points over one rotation. The segments can 

be recombined randomly to create the synthetic data samples, having certain divergences from 

the original ones. Based on this, Yu et al. [28] applied the temporal flip of the local segments 

prior to signal recombination. 

Synthetic data can be generated by learning the existing data representation. Generative 

adversarial networks (GANs) [29] use two neural networks contesting with each other to 

generate synthetic data. GANs have been widely used to generate synthetic images, acoustic 

and time series [20-23]. For MFD, various GANs were used to address the data imbalance 

problem, such as Wasserstein GAN with gradient penalty [30], dual discriminator conditional 

GAN [31], conditional-deep convolutional GAN (C-DCGAN) [32] and conditional 

variational autoencoder GAN [33]. Apart from GANs, Han et al. [34] applied a stacked 

autoencoder (SAE) for data augmentation, where the reconstructed signals outputted by the 

SAE’s decoder were regarded as synthetic data. Regardless of different GAN or AE 

variations, the learning-based method requires a few labeled data in one domain for training 

to generate more data in the same domain. They alone are not able to generate the unseen-

domain data.  

Synthetic data can be generated by modeling and simulation. Model-based augmentation 

methods usually incorporate statistical modeling of time series data, such as Gaussian trees 

and autoregressive models [23]. The MFD tasks concern physical systems, which allow 

physical modeling. This concept is well known as the model-based approach for MFD. 

Traditionally, the model outputs are compared with the measurement outputs for diagnosis 

[35]. The compared value may be a threshold of residuals or similarities between the 

simulated and measured outputs. One outstanding advantage of the model-based approaches 

is that arbitrary operating and faulty conditions can be simulated as long as an accurate model 

has been built and validated. Intuitively, physical models can be employed for data 
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augmentation. Sobie et al. [36] built a bearing dynamics model based on second-order 

ordinary differential equations. They investigated the cross-dataset robustness, where a model 

was trained on one dataset and tested on a different one. It was found that ML MFD methods 

achieved better performance when the models were trained on the simulation dataset and 

tested on the experimental dataset than trained on one experimental dataset and tested on 

others. Gao et al. [37] combined finite element method (FEM) simulations and GAN for data 

augmentation. FEM generated simulation data for the unknown fault types that cannot be 

collected from the real world. GAN is then applied to the mixture of the simulated and 

measured faulty data for data augmentation.  

1.3 Contributions 

In light of our previous work and the above review, we propose a novel data augmentation 

framework for robustness enhancement in railway MFD applications. It mainly consists of 

MBS and fast weighted feature-space averaging (FWFSA), which is a new time series 

averaging technique developed in this work. MBS simulates arbitrary faulty and operating 

conditions, while FWFSA mimics the realistic background from a few measurement data to 

produce infinite reality-augmented simulation data (RASF).  

The intuition behind our proposal is a step forward from the existing thoughts in [36,37]. 

Sobie et al. [36] suggested training the diagnostic models on the pure simulation data. Gao et 

al. [37] suggested a mixture of the GAN-augmented simulation data and real-world data. The 

latter is closer to our proposal. The first difference is that we avoid the involvement of GAN. 

Training a GAN model requires a large amount of training data with adequate diversity and a 

high effort for hyperparameter tuning to converge the training loss. This seems paradoxical to 

simulation. Running simulations to generate sizeable training datasets is very time-

consuming. Furthermore, data generated under one simulation condition lacks diversity. The 

simulation tools typically involve stochastics by probability density function to enrich data 

diversity, such as track irregularities within the railway MBS task. This can hardly enrich the 

patterns of faulty signals. The second difference is that we add the learned realistic 

background information into the simulated faulty data instead of directly using the simulated 

faulty data for training. This process is like noise injection, where FWFSA learns the noise 

from real-world data.  

Previous work validated the proposed data augmentation methods by comparing test 

accuracies of diagnostic models with and without data augmentation. The investigated 

operating conditions mainly refer to operating speeds and loads. In this work, we 

systematically investigate the robustness problems caused by condition variations and conduct 

extensive validation experiments. Also, we propose a metric for robustness evaluation, taking 

into account several types and severities of condition variations. The experiment data was 

measured on railway freight wagons by our research team in past years. The measurements 

were conducted on different positions on different wagons running on different track lines in 

different speed ranges with different measurement systems. The obtained data can 

undoubtedly represent real-world complexity. The faulty signals are induced by wheel flat 

(WF), a flat spot on railway vehicles' wheel tread. MFD is referred to as WF detection in this 

study, i.e. a binary classification problem. Due to data availability, we did not conduct the 

study for multi-class classification. Nevertheless, the proposed data augmentation framework 

MBS-FWFSA and evaluation procedures are not limited to binary classification. Furthermore, 
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our method serves as a complement to other measures for robustness enhancement. For 

instance, domain adaptation and generalization can be applied to the synthetic domains 

produced by the proposed MBS-FWFSA to improve the model robustness further. Our 

contributions in this paper can be summarised as follows: 

1) We propose a novel data augmentation framework, combining MBS and FWFSA to 

produce infinite RASF data for robustness enhancement of MFD models. The proposed 

MBS-FWFSA outperforms three state-of-the-art methods, i.e.  C-DCGAN [32], SIM [36], 

and SIM-GAN [37]. 

2) We propose a new time series averaging method FWFSA, inspired by WDBA.  

3) We systematically investigate the robustness problem caused by condition variations and 

the effect of data augmentation through extensive experiments.  

4) We define a proper metric evaluating model robustness under several condition variations. 

5) We make our code and data available at https://github.com/quickhdsdc/Robustness-

Enhancement-of-Machine-Fault-Diagnostic-Models.  

The rest paper is structured as follows. Section 2 formulates the problem and briefly 

introduces the theoretical background. Section 3 details the proposed data augmentation 

framework MBS-FWFSA. Section 4 describes the procedures and preliminaries of the 

experiments. Section 5 presents the experiment results. Section 6 discusses the experimental 

findings. Section 7 draws the conclusions. 

2. Preliminaries 

2.1 Problem formulation 

Let 𝐷𝑠
𝑟 = {(𝑥𝑠,𝑖

𝑟 , 𝑦𝑠,𝑖
𝑟 )}

𝑖=1

𝐼
 be the source domain consisting of 𝐼  real-world data samples 

measured under one operating condition, where 𝑥𝑠,𝑖
𝑟 ∈ 𝑋𝑠

𝑁  and 𝑦𝑠,𝑖
𝑟 ∈ 𝑌𝑠

𝐶 . 𝑁  denotes the 

dimension of the data samples. 𝐶 is the number of health conditions. In our case, it concerns 

WF detection, i.e. 𝐶 = 2. The joint probability distribution 𝑝(𝑥, 𝑦) refers to the probability of 

finding the pair (𝑥, 𝑦) in the labeled feature space 𝑋 × 𝑌. It can be decomposed as 𝑝(𝑥, 𝑦) =
𝑝(𝑥)𝑝(𝑥|𝑦) , where 𝑝(𝑥)  is the marginal distribution and 𝑝(𝑥|𝑦)  is the conditional 

distribution. A diagnostic model 𝑓 is to predict 𝑦 given a data sample 𝑥. When the diagnostic 

model 𝑓(𝑥, 𝑦) is trained and tested in the same domain 𝐷𝑠
𝑟, the test accuracy is referred to as 

clean accuracy 𝐴𝐶𝐶𝐶
𝑓
. The variations of operating conditions lead to covariate shift, defined 

as the marginal distribution shift within the source domain 𝑝𝑠
𝑟(𝑥). It results in 𝑆 × 𝑇 target 

domains, i.e. 𝐷𝑡1
𝑟1, 𝐷𝑡1

𝑟2, ⋯ , 𝐷𝑡𝑉
𝑟𝑆 , where 𝑝𝑠

𝑟(𝑥) ≠ 𝑝𝑡𝑣
𝑟𝑠(𝑥) . 𝑆  denotes the number of variation 

severities, while 𝑉 is the number of variation types. The disparity between the source domain 

and a target domain can be measured by the distribution distance 𝐷𝐷(𝑝𝑠
𝑟 , 𝑝𝑡𝑣

𝑟𝑠). The diagnostic 

model 𝑓(𝑥, 𝑦) trained in the source domain 𝐷𝑠
𝑟 surfers from performance impairment, when 

𝑓(𝑥, 𝑦) is directly deployed in a target domain 𝐷𝑡𝑣
𝑟𝑠 under the 𝑣-th condition variation with the 

𝑠-th severity.  The impaired accuracy is denoted as 𝐴𝐶𝐶𝑣,𝑠
𝑓

. The robustness of 𝑓(𝑥, 𝑦) under 

this condition is 𝑅𝐵𝑣,𝑠
𝑓

, given by: 

𝑅𝐵𝑣,𝑠
𝑓

= 1 − (𝐴𝐶𝐶𝑐
𝑓

− 𝐴𝐶𝐶𝑣,𝑠
𝑓

) (1) 

https://github.com/quickhdsdc/Robustness-Enhancement-of-Machine-Fault-Diagnostic-Models
https://github.com/quickhdsdc/Robustness-Enhancement-of-Machine-Fault-Diagnostic-Models
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𝑅𝐵𝑣,𝑠
𝑓

 is a value in the range (0,1), and a higher value of 𝑅𝐵𝑣,𝑠
𝑓

 indicates the higher robustness. 

The actual robustness should be represented by its mean robustness under different condition 

variations with different severities. The mean robustness 𝑚𝑅𝐵𝑓  for the diagnostic model 

 𝑓(𝑥, 𝑦) is obtained by:  

𝑚𝑅𝐵𝑓 = ∑ ∑ 𝑅𝐵𝑣,𝑠
𝑓

𝑆

𝑠=1

𝑉

𝑣=1

(𝑉 ∙ 𝑆)⁄ (2) 

The objective of data augmentation is to generate �̃� × �̃�  synthetic source domains, i.e.  

𝐷𝑠1
𝑎1, 𝐷𝑠1

𝑎2, ⋯ , 𝐷𝑠�̃�
𝑎�̃�, in order to improve the mean robustness 𝑚𝑅𝐵𝑓. As the actual condition 

variations in practice cannot be completely simulated, it results in �̃� × �̃� ⊂ 𝑆 × 𝑇. In addition, 

the effect of data augmentation can be reflected by the distribution distance 𝐷𝐷(𝑝𝑡𝑣
𝑟𝑠, 𝑝𝑠�̃�

𝑎�̃�). An 

effective data augmentation method should generate the synthetic source domains with a 

small value of 𝐷𝐷(𝑝𝑡𝑣
𝑟𝑠, 𝑝𝑠�̃�

𝑎�̃�). 

2.2 Maximum mean discrepancy 

The distribution distance between two domains can be measured by maximum mean 

discrepancy (MMD), which is a common nonparametric kernel embedding-based distance 

measure. MMD is defined as the distance between the means of two domains’ data samples 

mapped into a reproducing kernel Hilbert space (RKHS), given by [38]: 

𝑀𝑀𝐷( 𝑝𝑠, 𝑝𝑡) = ‖𝜇[𝑝𝑠] − 𝜇[𝑝𝑡]‖ℋ (3) 

where 𝑝𝑠  is the probability distribution of the source domain, and 𝑝𝑡  is the probability 

distribution of the target domain. ℋ denotes the RKHS.  

In this work, we use the empirical estimate of MMD using Gaussian kernel for embedding, 

given by:  

𝑀𝑀𝐷( 𝑋𝑠, 𝑋𝑡) = [
1

𝑁2
∑ 𝜑(𝑥𝑠,𝑖, 𝑥𝑠,𝑗)

𝑁

𝑖,𝑗=1

−
2

𝑁𝑀
∑ 𝜑(𝑥𝑠,𝑖, 𝑥𝑡,𝑗) +

1

𝑀2
∑ 𝜑(𝑥𝑡,𝑖, 𝑥𝑡,𝑗)

𝑀

𝑖,𝑗=1

𝑁,𝑀

𝑖,𝑗=1

]

1 2⁄

(4) 

where 𝑥𝑠 ∈ 𝑋𝑠
𝑁, 𝑥𝑡 ∈ 𝑋𝑡

𝑀, and 𝜑 is the Gaussian kernel. 

2.3 Weighted dynamic time warping Barycenter Averaging 

Dynamic time warping Barycenter averaging (DBA) is a technique for averaging a set of time 

series. Let 𝑥 ∈ 𝑋𝑁 be a set of time series in the vector space 𝐸 (usually a Euclidean space) 

induced by dynamic time warping (DTW). DBA is to calculate the average time series 

iteratively �̅� from 𝑋𝑁 by minimizing (5). 

𝑎𝑟𝑔𝑚𝑖𝑛 �̅� ∈ 𝐸 ∑ 𝐷𝑇𝑊2(�̅�, 𝑥𝑖)

𝑁

𝑖=1

(5) 

This average time series �̅�  is the produced synthetic data. Weighted DBA (WDBA) was 

proposed by Forestier et al. [24] for time series data augmentation. It averages and reweights 

a series of data samples to generate averaged time series as the synthetic data. Let 𝐷 = 
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{(𝑥1, 𝑤1), … , (𝑥𝐼 , 𝑤𝐼)} be the weighted time series domain, containing 𝐼 time-series samples. 

WDBA is to minimize (6). 

𝑎𝑟𝑔𝑚𝑖𝑛 �̅� ∈ 𝐸 ∑ 𝑤𝑖 ∙ 𝐷𝑇𝑊2(�̅�, 𝑥𝑖)

𝑁

𝑖=1

(6) 

where 𝑥𝑖 is the 𝑖th time series sample within 𝐷, and 𝑤𝑖 is the 𝑖th weight. 

The initial average time series �̅�0 is the medoid of the dataset 𝐷, defined by (5). The weights 

𝑤𝑖 are defined as follows. �̅�0 is assigned with a weight of 0.5. Then, its five nearest neighbors 

with respect to the closest distance in the space 𝐸 are searched. Two out of five neighbors are 

randomly selected and assigned with a weight of 0.15, respectively. The rest data within 𝐷 

share the remaining weight of 0.2. WDBA iteratively updates the average time series �̅� in 

𝐽 × 𝐼 steps. At each step 𝑗, each data point  �̅�𝑗,𝑛within �̅�𝑗  is aligned by its DTW alignment 

(DTWA) between �̅�𝑗 and each time series sample 𝑥𝑖 within 𝑋, calculated by eq. (7). The sum 

of the weights is recorded for each step 𝑗 by (8). Each data point  �̅�𝑗,𝑛within �̅�𝑗 is finally 

calculated by (9). This process is repeated for 𝐽 times to obtain the target �̅�. 

�̅�𝑗,𝑛 = �̅�𝑗−1,𝑛 + 𝐷𝑇𝑊𝐴(�̅�𝑗−1, 𝑥𝑖)𝑛 ∙ 𝑤𝑖 (7) 

𝑤𝑗,𝑠𝑢𝑚 = ∑ ∑ 𝑤𝑖,𝑛

𝑁

𝑛=1

𝐼

𝑖=1

(8) 

�̅�𝑗,𝑛 = �̅�𝑗,𝑛 𝑤𝑗,𝑠𝑢𝑚⁄ (9) 

 

Figure 1. Procedure of the proposed MBS-FWFSA-based data augmentation framework to produce reality-

augmented simulation data 

3. The Proposed MBS-FWFSA based data augmentation framework 



5. Robustness Enhancement of Diagnostic Models 

 

62 

 

3.1 General procedure 

Figure 1 presents the proposed data augmentation framework. First, we produce an arbitrary 

amount of synthetic healthy data using FWFSA. Given a set of real-world data as the source 

domain 𝐷𝑠
𝑟, we select a specific subset 𝐷𝑠

𝑟0 of healthy data with 𝑦𝑠,𝑖
𝑟 ∈ 𝑌𝑠

0, which can reflect 

the specific real-world operating environment, such as tight curves, turnouts, severe track 

irregularities, and rail detects. Such unusual healthy data is prone to be the corner case in 

railway MFD applications, as it shows different patterns from the usual healthy data and is the 

minority of the healthy data. Applying the proposed FWFSA on the subset 𝐷𝑠
𝑟0  produces 

infinite synthetic measured healthy data 𝐷𝑠
𝑎0 = {(𝑥𝑠,𝑖

𝑎 , 𝑦𝑠,𝑖
𝑎 )}

𝑖=1

𝑚
 with 𝑦𝑠,𝑖

𝑎 ∈ 𝑌𝑠
0, which mimics 

the given dataset with sufficient diversity and enlarges the number of unusual corner cases.  

Second, we build an MBS model of a typical freight wagon with a specific failure (i.e. WF in 

our case). This physic model generates continuous vibration data under various operating 

conditions, e.g. vehicle speed, track layout, and WF size. As the simulation is very time-

consuming and the simulation data under one condition has high similarity, we simulate each 

operating condition merely for a short duration to obtain representative simulation data. To 

produce an arbitrary amount of the simulated faulty data 𝐷𝑠
𝑎1 = {(𝑥𝑠,𝑖

𝑎 , 𝑦𝑠,𝑖
𝑎 )}

𝑖=1

𝑚
 with 𝑦𝑠,𝑖

𝑎 ∈ 𝑌𝑠
1, 

we apply window cropping, sign flipping and noise injection [23] on the simulation data.  

Finally, the RASF data 𝐷𝑠
𝑎 is a combination of the 𝐷𝑠

𝑎0 and 𝐷𝑠
𝑎1 with a random pick and a 

scaling factor 𝑠. We randomly pick the 𝑖-th data sample from the normalized 𝐷𝑠
𝑎0 and 𝑗-th 

data sample from the normalized 𝐷𝑠
𝑎1. The 𝑘-th data sample within 𝐷𝑠

𝑎 can be obtained by eq. 

(10). A higher value of the scaling factor 𝑠 indicates a lower signal-to-noise ratio. We use 𝑠 =
1 in the case of WF detection using axlebox acceleration.  

𝑥𝑠,𝑘
𝑎 = 𝑥𝑠,𝑗

𝑎1 + 𝑠 ∙ 𝑥𝑠,𝑖
𝑎0 (10) 

Carrying out various simulations under different conditions, we obtain arbitrary synthetic 

source domains 𝐷𝑠1
𝑎1, 𝐷𝑠1

𝑎2, ⋯ , 𝐷𝑠�̃�
𝑎�̃� . The final training data is a mixture of synthetic and 

original source domains. It is worth noting that the original source domains typically contain 

much more healthy data than faulty data. The synthetic faulty data can compensate for the 

unbalance within the original source domains and supplement the unknown fault information 

under various operating conditions. Next, the MBS model and the FWFSA technique are 

described in detail. 

3.2 Multibody dynamic simulation model 

In our previous work [19], we built an MBS model of a tank wagon in the commercial MBS 

software SIMPACK, see Figure 2. The model comprises 15 rigid bodies: one car body, two 

bogie frames, four wheelsets and eight axleboxes. The rigid bodies are connected with 

parameterized force elements and constraints, representing the physic characteristics of spring 

and damping elements. More details of the vehicle model and the modeling parameters can be 

found in [19]. The wagon bogie is the European standard Y25 bogie for freight wagons. Its 

suspension parameters have been empirically derived from the laboratory test.  The entire 

wagon model has been validated through natural-frequency measurements in the previous 

projects, as shown in Figure 3. 
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WF is one of the most common and critical failures on the wheel tread, typically induced by 

abnormal tread braking. A fresh WF can be simplified as a chord of the wheel circle, 

illustrated as 𝐴𝑂𝐵 in Figure 4 (a). As a result of the wear process, the fresh WF becomes a 

worn WF in the short term, illustrated as 𝐴′𝑂𝐵′ in Figure 4 (a). We modeled the worn WF 

(also termed as haversine flat) by eq. (11) and (12). 

∆𝑑 = − 𝑑𝑓[1 − 𝑐𝑜𝑠(2𝜋𝑥𝑓 𝐿𝑓⁄ )] 2⁄ (11) 

𝑑𝑓 = 𝐿𝑓
2 (16𝑅)⁄ (12) 

where ∆𝑑 denotes the variation of the wheel radius, 𝐿𝑓  the WF length, 𝑑𝑓  denotes the WF 

depth, 𝑥𝑓 the longitudinal distance along the WF, and 𝑅 the wheel radius. 

(a) 

 

(b) 

 

Figure 2. MBS model of a freight wagon with Y25 bogies (a) topology diagram (b) MBS model in SIMPACK  
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(a) (b) 

  

Figure 3. (a) Laboratory measurement of Y25 suspension parameters; (b) Measurement of vertical natural 

frequencies using a wedge for model validation 

3.3 Fast weighted feature-space averaging 

The original WDBA has two problems for MFD applications. Firstly, WDBA has to calculate 

the dataset medoid using DTW. The complexity of the medoid calculation is 𝑂(𝐼2), where 𝐼 is 

the total number of time series samples within the dataset. For each sample, one DTW with 

the complexity of 𝑂(𝑁2) is repeated, where 𝑁 is the dimension of a time series sample. The 

total complexity is 𝑂(𝐼2𝑁2). For MFD problems, the input data is typically waveform time 

series sampled at high frequencies (commonly over 5 kHz), which means a large value of 𝑁 

and thus a vast computational complexity. Secondly, WDBA calculates the DTW distance 

between �̅�𝑗−1 and each data 𝑥𝑖 within the set 𝑇 at each iteration step 𝑗, as shown in (7). This is 

based on the hypothesis that each time series 𝑥𝑖 within the domain 𝐷 is similar. However, this 

hypothesis may be invalid in MFD applications. Due to strong interferences and background 

noise, the time series 𝑥𝑖 within the healthy dataset may have very different shapes and thus 

large DTW to each other. 

We propose FWFSA to solve the above issues for typical MFD input data, i.e. high-frequency 

waveform time series data. The essential intuition behind FWFSA is to use the low-

dimensional feature space as the representation of the raw time series for distance calculation. 

This vastly reduces the data dimensionality and avoids invoking DTW. The distance between 

the time series is defined as the Euclidean distance between their features. The issues caused 

by strong interferences and background noise are also avoided by using the feature 

representation instead of the raw waveform data. The pseudocode of FWFSA is given in 

Table 1. The functions for feature extraction are given in Table 2. These functions are applied 

for the raw data in the time domain, the envelope spectrum and the scale-averaged wavelet 

spectrum, generating 21 features for each time series. We choose the above-defined statistical 

features and the time-frequency analysis techniques, as they are commonly used for MFD. 

Nevertheless, the proposed FWFSA is not confined to them. 
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Table 1. FWFSA Algorithm 

Algorithm: FWFSA 

  Input: domain 𝐷 to average 

  Input: defined functions 𝑓𝑚(𝑥) for feature extraction 

  Input: number of iterations  𝐽 

  Output: averaged �̅� after  𝐽 iteration  

  𝐹 = {𝑓1(𝑥1), … , 𝑓𝑀(𝑥1), 𝑓1(𝑥2), … , 𝑓𝑀(𝑥2), … , 𝑓𝑀(𝑥𝐼)} be domain 𝐷‘s 𝑀-dimension feature space  

  �̅�0 be the initial average time series randomly selected from 𝐷 

  for 𝑗 = 1 → 𝐽 do  

        for 𝑖 = 1 → 𝐼 do 

              𝑤𝑖 = √∑ (𝑓𝑚(�̅�𝑗−1) − 𝑓𝑚(𝑥𝑖))2𝑚=𝑀
𝑚=1  be the weight for 𝑥𝑖 

        end 

        𝑤𝑖
, = [𝑤𝑖 − 𝑚𝑖𝑛 (𝑤𝑖)] [𝑚𝑎𝑥(𝑤𝑖) − 𝑚𝑖𝑛 (𝑤𝑖)]⁄  be the weights rescaled by min-max 

normalization 

        �̅�𝑗 = ∑ (𝑤𝑖
, ∙ 𝑥𝑖)𝑖=𝐼

𝑖=1  be the updated average time series 

  end 

4. Experiment design  

Condition variations lead to dataset shift, incl. covariate shift, prior probability shift and 

concept shift. If the learning task remains unchanged, the problem is usually simplified as 

covariate shift [3]. There are different types of condition variations with different severities in 

practice. How do they affect covariate shift and diagnostic performance? Can data 

augmentation compensate for covariate shift and improve diagnostic performance? To answer 

these questions, we start with quantification of covariate shift, where MMD is employed as 

the measure. Next, the diagnostic performance under different condition variations is 

investigated. Several baselines incorporating the most common signal processing and ML 

techniques are tested as the representative MFD methods. Finally, the effect of data 

augmentation is validated by examining covariate distribution and diagnostic performance. 

On the one hand, the generated synthetic data is exemplarily visualized, and its effect on 

covariate shift is visualized and measured by MMD. On the other hand, the MFD baseline 

performance is tested with and without data augmentation. In this experiment, the proposed 

MBS-FWFSA is compared with three state-of-the-art augmentation methods, i.e. C-DCGAN 

[32], SIM [36], and SIM-GAN [37].  
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(a) (b) 

  

Figure 4.  (a) Comparison between a fresh WF (𝐴𝑂𝐵) and a worn WF (𝐴′𝑂𝐵′) on a wheel; (b) Modeled fresh 

and worn (/haversine) WF (𝐿𝐴𝑂𝐵 = 20 𝑚𝑚, 𝐿𝐴′𝑂𝐵′ = 28.3 𝑚𝑚) [19] 

Table 2. Functions for feature extraction 

Features Definition Formula 

𝒇𝟏 Peak-to-Peak value 𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛 (𝑥𝑖) 

𝒇𝟐 Root Mean Square (∑ 𝑥𝑖
2

𝑁

𝑖=1
𝑁⁄ )1 2⁄  

𝒇𝟑 Kurtosis value ∑ [(𝑥𝑖 − �̅�) 𝜎⁄ ]4
𝑁

𝑖=1
𝑁⁄  

𝒇𝟒 Impulse factor 𝑚𝑎𝑥(𝑥𝑖) (∑ |𝑥𝑖|
𝑁

𝑖=1
𝑁⁄ )⁄  

𝒇𝟓 Margin factor 𝑚𝑎𝑥(𝑥𝑖) (∑ √|𝑥𝑖|
𝑁

𝑖=1
𝑁⁄ )2⁄  

𝒇𝟔 Shape factor 𝑚𝑎𝑥(|𝑥𝑖|) 𝑓2⁄  

𝒇𝟕 Crest factor 𝑚𝑎𝑥(|𝑥𝑖|) 𝑓2⁄  

The overall experiments are conducted on a railway MFD application, i.e. WF detection by 

axlebox vibration monitoring on freight wagons. The common condition variations during the 

regular railway operation are categorized into three groups. In the following subsections, the 

experimental data, the defined condition variations in railway operation, the baseline MFD 

methods, and the baseline data augmentation methods are introduced. 
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Figure 5. Field measurements. The first two measurements M1 and M2 were executed with synthetic WFs. In the 

last two measurements M3 and M4, WFs were accidentally generated in the braking process.  

Table 3. Overview of the usable field data after data cleaning 

Measurement WF conditions Speed range 
Sample 

frequency 
Sample 

number 

M1 synthetic, 20 mm 15 – 105 km/h 5000 Hz 11817 

M2 synthetic, 50 mm 15 – 45 km/h 5000 Hz 911 

M3 natural, 60 mm 15 – 85 km/h 500 Hz 7533 

M4 natural two WFs, 50 mm 15 – 55 km/h 500 Hz 231 

4.1 Field measurements on freight wagons 

The experimental data stems from four field measurements conducted on different wagons 

running on different lines in different speed ranges with different measurement systems, see 

Figure 5. The obtained data can undoubtedly represent real-world complexity. In M1 and M2, 

a single WF with different lengths was synthetically produced by grinding the wheel surface. 

M1 was performed on the mainline in regular railway freight operation for two days. M2 was 

performed in the urban area for several hours. M3 was carried out to test a newly designed 

freight wagon bogie on the mainline. A WF was occasionally generated. M4 was carried out 

for a derailment test on a shunting yard at low speeds. Two adjacent WFs were generated by 

the emergency brake. All datasets contain healthy and faulty data. Table 3 gives an overview 

of the measurement conditions. The continuous vibration data is segmented into 2.048-

seconds time-series samples without overlap. The data samples of M3 and M4 are upsampled 

to 5000 Hz by interpolation. More details of data availability in each speed range can be 

found in Table 13 in Annex I. 
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4.2 Condition variations 

The variation of vehicle speeds affects WF peaks' amplitude [45] and the faulty frequency. In 

MFD applications, the continuous raw signal is usually divided into small segments through a 

sampling time window. One segment is used as one data sample for the diagnostic models. 

Given a pre-defined length of the time window, the number of WF peaks increases with 

increased speeds. Also, the amplitude of vibrations and WF peaks increases with increased 

speeds. Figure 6 exemplarily shows two samples of the axlebox vibration signal in the time 

domain, the envelope spectrum, and the wavelet scalogram at 20 km/h and 100 km/h. The WF 

patterns, i.e. periodic peaks, are clearly visible at both low and high speeds, and significantly 

vary with the vehicle speed. 

Speed Raw data Envelope spectrum Wavelet scalogram 

20 
km/h 

 

 

 

100 

km/h 

   

Figure 6. Exemplary comparison of raw axlebox acceleration, its envelope spectrum through Hilbert-transform, 

its wavelet scalogram at 20 km/h and 100 km/h, respectively 

The variation of monitoring objects entails differences in the measured signals, relying on the 

object conditions. In the context of WF detection for railway vehicles, it mainly concerns the 

vehicle and fault conditions. The faulty condition includes WF geometry and distribution on 

the wheel surface. The vehicle condition is determined by loading conditions, wear conditions 

and vehicle characteristics such as bogie types. These conditions exert a substantial influence 

on vehicle dynamics and thus the vibration manifestation. Figure 7 exemplarily shows four 

samples in M1-M4, respectively. In M1 and M2, it concerns a single synthetic WF. In M3, a 

natural WF was generated by braking during the operation. In the case of a single WF, the 

amplitude of the WF peaks increases with the increased WF size. The two adjacent WFs in 

M4 lead to a different shape of WF peaks, where two oscillations overlap. Therefore, the 

amplitude of the individual peaks is much lower than that of a single WF of the same size. 

However, the disparities caused by object variations are visually marginal.  
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Figure 7. Exemplary comparison of raw axlebox accelerations at the same vehicle speeds in M1-M4 

respectively, representing the variation of vehicle and fault conditions 

 

Figure 8. Axlebox accelerations under different signal interferences 

The variation of signal interferences may disturb the regular patterns of healthy and faulty 

signals. The interferences are commonly induced by severe track irregularities and discrete 

rail detects. For instance, severe vertical track irregularities cause oscillatory interferences in 

the vertical axlebox acceleration, as shown in the upper right diagram in Figure 8. A discrete 

rail defect such as rail squats and broken rails or the turnout in a switch and crossing area 
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could result in an impulsive interference, as shown in the lower-left diagram. Several adjacent 

impulsive interferences form a periodic-like pattern, which may mislead the diagnostic 

models. These interferences may also disturb the WF pattern, as shown in the upper left 

diagram. 

4.3 MFD baselines 

Fault diagnosis is a classification problem in general. Deep convolutional neural network 

(CNN) has been the state-of-the-art approach for classification in various domains. In modern 

CNN architectures, the residual block in ResNet [39] has become a standard component. In 

our previous work [40], we have proven that residual blocks help WF detection. Therefore, 

we adapted a 1D ResNet [41] to an MFD baseline. The architecture of ResNet is shown in 

Figure 9 and Table 14 in Annex II. The first two convolutional blocks are composed of the 

convolution layer, batch normalization layer and activation function of ReLu, followed by the 

max-pooling layer for downsampling. The subsequent two blocks are residual blocks with the 

residual connection for feature extraction. The feature map in each channel is squeezed by 

average pooling into one scale value fed into a fully connected network for classification. 

ResNet takes the 1D raw vibration data in the time domain as the inputs. Each input sample 

has 10240 data points. 

 

Figure 9. Architecture of the modified ResNet for time series classification (modified from [41]) 

We also consider whether signal processing techniques can affect the model robustness. In the 

second baseline CWT+ResNet [42], we use the continuous wavelet transform to obtain the 

scale-averaged wavelet spectrum as the input for a 1D ResNet. Each sample has 10240 data 

points as well. Therefore, ResNet and CWT+ResNet share identical architecture. In the third 

baseline HT+ResNet [43], we use the Hilbert transform to obtain the envelope spectrum as 

the input for a 1D ResNet. Each sample has 256 data points. A dedicated ResNet has been 

designed for this input dimension. Apart from the ResNet-based baselines, a classic ML 

method using manually defined features and gradient boosting decision tree (GBDT) [44] is 

included as well. 21 statistical features are defined by applying the functions given in Table 2 

in the time domain, the envelope spectrum and the scale-averaged wavelet spectrum. The 

hyperparameters of all baselines are optimized on the M1 dataset using Bayesian optimization 

for parameter searching and five-fold cross-validation to prevent overfitting [40], ensuring a 
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high clean accuracy 𝐴𝐶𝐶𝑐
𝑓

 for the WF detection task. The fine-tuned architecture and 

hyperparameters of each ResNet and GBDT are given in Table 14, Table 15 and Table 16 in 

Annex II.  

4.4 Data augmentation baselines 

The proposed MBS-FWFSA is compared with three state-of-the-art augmentation methods, 

i.e. C-DCGAN [32], SIM [36], and SIM-GAN [37]. The original SIM uses the pure 

simulation data as the additional synthetic source domain. In our experiments, SIM is 

improved by applying window cropping, sign flipping and noise injection on the simulation 

data to produce an arbitrary number of the augmented simulation data. This augmentation 

process is actually the second part of MBS-FWFSA. Comparing MBS-FWFSA with SIM can 

be regarded as an ablation study and reveal the role of FWFSA in the entire framework. C-

DCGAN is directly applied to the original source domain to create a new synthetic source 

domain. Its architecture is adapted to our datasets by hyperparameter tuning. The re-

implemented architecture can be found in Table 17 in Annex III. SIM-GAN applies a vanilla 

GAN to the measurement and simulation data to create more data. The original GAN is 

modified as a deep convolutional GAN (DCGAN), sharing the same architecture of C-

DCGAN, but with different training settings. The details can be found in Table 18 in Annex 

III. 

(a) (b) 

  

Figure 10. (a) MMD between the source domain 𝐷𝑠
𝑟  at 15-25 km/h and the target domains 𝐷𝑡1

𝑟𝑠 at higher speeds 

in M1; (b) MMD in M3. “Good” refers to data under the healthy condition, while “Bad” refers to data with WFs. 

5. Experiment results 

5.1 Covariate shift due to condition variations 

Covariate shift is the distribution shift of the independent variables, which are the inputs for 

MFD models. We investigate the influence of speed variations, object variations, and 

interference variations on covariate shift by measuring MMD between the original and target 

domains. The high-dimensional vibration data is transferred into the envelope spectrum for 

MMD calculation.  

5.1.1 Speed variations 
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The M1 and M3 datasets are used in the experiment of speed variations. The data samples are 

grouped into several speed ranges, as shown in Table 13 in Annex I. The samples at speeds 

from 15 km/h to 25 km/h are defined as the source domain 𝐷𝑠1
𝑟 . Speed variation results in 8 

target domains in M1, i.e. 𝐷𝑡1
𝑟1, 𝐷𝑡1

𝑟2, ⋯ , 𝐷𝑡1
𝑟8, which refers to the sets of data samples in the 

speed ranges of 25-35 km/h, 35-45 km/h, ⋯, 95-105 km/h. The covariate shift is quantified by 

MMD between the source domain 𝐷𝑠
𝑟 and the corresponding target domains 𝐷𝑡1

𝑟𝑠. Figure 10. 

illustrates the calculated MMDs for the dataset M1 and M3, respectively. Both diagrams show 

that the MMD of faulty data (in red) vastly increases with the enlarged speed differences. In 

contrast, the MMD of healthy data solely has minor changes under speed variations. 

 

Figure 11. MMD between the source domain M1 and the target domains M2, M3 and M4 at speeds 25-35 km/h. 

“Good” refers to data under the healthy condition, while “Bad” refers to data with WFs. The health data is not 

available in M4. 

5.1.2 Object variations 

The covariate shift due to object variations is measured by MMD among different datasets. 

The data samples in the speed range between 25 and 35 km/h are used in this experiment, 

considering the data availability in all datasets (as shown in Table 13). M1 is defined as the 

source domain 𝐷𝑠2
𝑟 , while M2, M3 and M4 are the target domain 𝐷𝑡2

𝑟1, 𝐷𝑡2
𝑟2 and 𝐷𝑡2

𝑟3. Figure 11 

shows the calculated MMDs between 𝐷𝑠
𝑟 and 𝐷𝑡2

𝑟1, 𝐷𝑡2
𝑟2 as well as 𝐷𝑡2

𝑟3 respectively. At a first 

glance, the disparity between M1 and M2 are much lower than that between M1 and M3/M4. 

The possible reason may be that both M1 and M2 were measured on synthetic WFs and 

sampled at 5000 Hz. The measured wagons had the same bogie type, which may result in a 

similar vehicle dynamic behavior. In M3 and M4, the wagon bogies were different, WFs were 

naturally generated, and the data was sampled at 500 Hz. Furthermore, the magnitude of 

MMDs for faulty data is higher than that for healthy data, consistent with the above 

experiment. Comparing the magnitudes in Figure 11 with the ones in Figure 10, we find that 

the disparities caused by object variations are much lower than those caused by speed 

variations.  
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Figure 12. MMD caused by the variation of signal interferences. “T1_WFbad” refers to the MMD between 𝐷𝑠
𝑟1 

and 𝐷𝑡3
𝑟1. “T2_osc” refers to the MMD between 𝐷𝑠

𝑟2 and 𝐷𝑡3
𝑟2. “T3_peak” refers to the MMD between 𝐷𝑠

𝑟2 and 

𝐷𝑡3
𝑟3. “T4_per” refers to the MMD between 𝐷𝑠

𝑟2 and 𝐷𝑡3
𝑟4. 

5.1.3 Interference variations 

Four target domains are defined according to the four types of signal inferences as shown in 

Figure 8, i.e. WF signals under severe interferences as the target domain 𝐷𝑡3
𝑟1, healthy signals 

with the oscillatory interference as the target domain 𝐷𝑡3
𝑟2, healthy signals with one impulsive 

interference as the target domain 𝐷𝑡3
𝑟3, and healthy signals with several adjacent impulsive 

interferences as the target domain 𝐷𝑡3
𝑟4. As 𝐷𝑡3

𝑟1 concerns the faulty signals, the corresponding 

source domain 𝐷𝑠3
𝑟1  for MMD measure is the clean WF signal without severe signal 

inferences. The target domains 𝐷𝑡3
𝑟3, 𝐷𝑡3

𝑟3, and 𝐷𝑡3
𝑟3 concern the healty signals. Therefore, the 

corresponding source domain 𝐷𝑠3
𝑟2  for MMD measure is the clean healthy data. All data 

samples for the experiment are selected from M1 in the speed range between 35 and 75 km/h. 

Figure 12 shows the calculated MMDs caused by different signal interferences. Healthy 

signals with several adjacent impulsive interferences have the most considerable disparity 

from the ones without interferences. The corresponding MMD magnitude is even higher than 

the largest one caused by speed variations. 

5.2 Robustness problems caused by condition variations 

Model robustness is reflected by the accuracy impairment caused by condition variations. The 

baselines are trained and tested on the source domain to obtain the clean accuracy 𝐴𝐶𝐶𝑐
𝑓

. 

Afterward, the trained baseline models are tested on the target domains to obtain the impaired 

accuracies 𝐴𝐶𝐶𝑣,𝑠
𝑓

, from which the robustness of a classifier 𝑚𝑅𝐵𝑣
𝑓

 over severities can be 

derived.  

In the robustness experiments, data samples are standardized and divided into 60% training 

datasets, 20% validation datasets and 20% test datasets, where the faulty and healthy data is 

kept balanced. Class imbalance can make a classifier learn just the primary class and result in 
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inaccurate classification results. Especially in MFD, the amount of faulty data is commonly 

much smaller than that of healthy data. As the class imbalance problem is an extensive 

research topic and worth making a dedicated study, we exclude this problem from our study. 

In the training procedure, we use mini-batch stochastic gradient descent with Adam 

optimization [46] with a batch size of 32 and 30 epochs. Each baseline is trained and tested 

over ten times. The extraordinary results are excluded, as they may originate from improper 

initialization of NN weights. The mean values and the standard deviations of WF detection 

accuracy are recorded and presented. 

5.2.1 Speed variations 

The robustness against speed variations is evaluated on the M1 dataset. The most critical 

scenario is to train a diagnostic model at high speeds and test at low speeds. The data samples 

at speeds from 55 km/h to 105 km/h are defined as the source domain 𝐷𝑠1
𝑟 , ensuring sufficient 

training data. The target domains 𝐷𝑡1
𝑟1, 𝐷𝑡1

𝑟2, 𝐷𝑡1
𝑟3 and 𝐷𝑡1

𝑟4 refer to the sets of data samples in the 

speed ranges of 45-55 km/h, 35-45 km/h, 25-35 km/h and 15-25 km/h. Table 4 and Figure 13 

present the test results. At first glance, three ResNet baselines have similar robustness against 

speed variations. When the models are trained and tested in the same speed range, they 

achieve very high hit rates (over 99%). However, their performance degrades significantly 

with the decrease in vehicle speeds, regardless of pre-processing methods. In comparison, 

GBDT with the handcrafted features has much better robustness.  

Table 4. Diagnostic accuracies in different speed ranges and the mean robustness 𝑚𝑅𝐵𝑓 of the baselines  

Baseline 55-105 km/h 45-55 km/h 35-45 km/h 25-35 km/h 15-25 km/h mRB1 

ResNet 99.85 ± 0.14% 98.42 ± 0.54% 96.88 ± 1.32% 80.95 ± 4.96% 58.00 ± 4.63% 0.84 

CWT+ 
ResNet 

99.83± 0.24% 96.60 ± 0.43% 96.79 ± 1.40% 82.47 ± 6.80% 56.10 ± 4.97% 0.83 

HT+ 
ResNet 

99.28 ± 1.28% 93.59 ± 0.64% 94.21 ± 0.63% 78.57 ± 3.50% 59.93 ± 2.05% 0.82 

GBDT 99.41 ± 0.31% 95.92 ± 0.31% 96.35 ± 0.20% 92.57 ± 0.76% 88.34 ± 0.61% 0.94 

5.2.2 Object variations 

The robustness against object variations is evaluated in such a way that the baselines are 

trained on one dataset and tested on the others. All training and test data samples fall in the 

speed range between 15 and 45 km/h. The M1 dataset is defined as the source domain 𝐷𝑠2
𝑟 . 

The target domains 𝐷𝑡2
𝑟1, 𝐷𝑡2

𝑟2  and 𝐷𝑡2
𝑟3  refer to the M2, M3 and M4 dataset, respectively. 

Although the above MMD experiment indicates that the domain disparities caused by object 

variations are much smaller than those caused by speed variations, the baselines' performance 

impairment does not follow this. As shown in Table 5 and Figure 14, all baselines have a 

similar performance on M1 and M2, however appreciably different on M3 and M4. In 

particular, ResNet fails to detect WFs on M3 and delivers the opposite detection results on 

M4. Pre-processing using CWT and HT helps overcome this issue, resulting in better mean 

robustness of CWT+ResNet, HT+ResNet and GBDT. 
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Figure 13. Diagnostic accuracies of the baselines tested in different speed ranges. Red line: ResNet; gray line: 

CWT+ResNet; green line: HT+ResNet; blue line: GBDT  

Table 5. Diagnostic accuracies tested in different datasets and the mean robustness 𝑚𝑅𝐵𝑓 of the baselines  

Baseline M1 M2 M3 M4 mRB2 

ResNet 99.01 ± 0.85% 81.06 ± 2.95% 56.89 ± 5.32% 27.04 ± 5.55% 0.56 

CWT+ResNet 93.74 ± 4.04% 76.11 ± 3.24% 75.27 ± 8.09% 97.01 ± 4.61% 0.89 

HT+ResNet 97.55 ± 1.23% 76.43 ± 1.52% 91.01 ± 1.72% 86.24 ± 7.60% 0.87 

GBDT 95.72 ± 0.71% 76.21 ± 1.83% 96.66 ± 0.43% 61.72 ± 0.57% 0.82 

5.2.3 Interference variations 

The robustness against interference variations is evaluated by training the baselines on the 

clean dataset and testing the trained models on the corrupted datasets. The datasets for the 

source domains and the target domains are identical to those used in the MMD experiment. 

The experimental results are shown in Table 6. Diagnostic accuracies under different signal 

interferences and the mean robustness mRBf of the baselines and Figure 15, where T0 refers 

to the clean datasets, T1 refers to the faulty signals distorted by significant interferences, T2 

refers to the healthy signals with the oscillatory interferences, T3 refers to the healthy signals 

with the single impulsive interferences, and T4 refers to the healthy signals with the adjacent 

impulsive interferences. In general, the ResNet baselines have a similar performance against 

signal interferences. They are prone for miss detection than false alarms. Among them, 

ResNet without pre-processing has the best robustness. In contrast, GBDT based on 

handcrafted features is very sensitive to signal interferences. It fails to distinguish a signal 

interference from a WF signal.  
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Figure 14. Diagnostic accuracies of the baselines tested in different datasets. Red line: ResNet; gray line: 

CWT+ResNet; green line: HT+ResNet; blue line: GBDT 

Table 6. Diagnostic accuracies under different signal interferences and the mean robustness 𝑚𝑅𝐵𝑓 of the 

baselines 

Baseline T0 T1 T2 T3 T4 mRB3 

ResNet 98.95 ± 1.71% 89.70 ± 4.62% 99.01 ± 2.16% 98.42 ± 4.10% 98.83 ± 2.91% 0.98 

CWT+ 
ResNet 

98.20 ± 1.07% 80.77 ± 8.66% 98.07 ± 3.78% 98.61 ± 2.43% 94.70 ± 7.07% 0.94 

HT+ 
ResNet 

99.06 ± 1.12% 69.40 ± 3.53% 98.29 ± 0.84% 99.42 ± 0.43% 96.28 ± 1.58% 0.92 

GBDT 98.13 ± 0.71% 54.55 ± 2.94% 53.09 ± 2.69% 54.23 ± 2.39% 52.02 ± 1.77% 0.55 

 

Figure 15. Diagnostic accuracies of the baselines tested under different signal interferences. Red line: ResNet; 

gray line: CWT+ResNet; green line: HT+ResNet; blue line: GBDT 
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a. Our MBS-FWFSA b. SIM 

  

c. SIM-GAN  d. C-DCGAN 

  

Figure 16. Synthetic samples generated by MBS-FWFSA, SIM, SIM-GAN and C-DCGAN, towards the low-

speed target domain 

5.3 Effectiveness of data augmentation 

Data augmentation extends the diversity and thus the covariate distribution within the training 

dataset, preventing the out-of-distribution problem from the root. The proposed MBS-FWFSA 

framework produces infinitive RASF data as the additional synthetic source domains. In the 

following experiments, the effect of MBS-FWFSA on covariate shift and robustness 

enhancement is compared to three augmentation methods, i.e. C-DCGAN [33], SIM [37], and 

SIM-GAN [38]. 

5.3.1 Speed variations 

The original source domain merely contains the vibration data at high speeds. Except C-

DCGAN, our MBS-FWFSA, SIM and SIM-GAN can directly introduce low-speed simulation 

data for augmentation. The simulation data is generated by the MBS vehicle model with a 20 

mm WF running at 20, 30 and 40 km/h on a straight line with track irregularities (as described 

by ERRI B176). Figure 16 illustrates the exemplary synthetic samples generated by MBS-

FWFSA, SIM, SIM-GAN, and C-DCGAN, aiming to mimic the low-speed target domain. 

SIM generates the simulated faulty data with the injected noise. MBS-FWFSA augments the 

simulation data with the realistic interferences learned from the real healthy data. SIM-GAN 

takes both low-speed simulation data and the high-speed source domain data for training. 
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Although the generated synthetic data has an impulsive pattern, the peaks appear randomly 

without a periodic pattern. C-DCGAN generates the synthetic data solely from the high-speed 

source domain. 

Table 7. Robustness of each MFD baseline averaged over speed ranges with and without data augmentation. Red 

figures indicate improved robustness. Green figures indicate decreased robustness. 

MFD Baseline 
Orig. 

mRB1 

mRB1 after data augmentation 

MBS-FWFSA SIM SIM-GAN C-DCGAN 

ResNet 0.84 0.90 0.89 0.86 0.85 

CWT+ResNet 0.83 0.90 0.85 0.81 0.83 

HT+ResNet 0.82 0.87 0.74 0.81 0.82 

GBDT 0.94 0.92 0.92 0.92 0.91 

 

Figure 17. Effect of data augmentation on ResNet in the case of speed variations. “orig” denotes the test 

accuracy of ResNet on the original source domain. “MBS-FWFSA”, “SIM”, “SIM-GAN” and “C-CDGAN” 

denote the test accuracy of ResNet on the dataset augmented by the corresponding data augmentation methods, 

where MBS-FWFSA is our proposed approach.  

The baseline MFD methods are trained on the augmented dataset consisting of the original 

and synthetic source domains to evaluate the effect of data augmentation. The amount of 

synthetic data samples is kept balanced with the original ones. The results are summarized in 

Table 7. As the synthetic data is generated in the time domain, all the data augmentation 

methods can improve the robustness of ResNet. However, they may have no effect or even a 

negative effect on the envelope and wavelet spectrum. The WF detection accuracies of 

ResNet on each speed range are further illustrated in Figure 17. At first glance, the more 

condition varies, the better the data augmentation works. In the lowest speed range, the 

proposed MBS-FWFSA outperforms the other data augmentation methods and improves the 
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detection accuracy from 58.9% to 72.9%. SIM also achieves a considerable improvement, 

whereas SIM-GAN and C-CDGAN have negligible effects. In the speed range between 25 

and 35 km/h, all data augmentation methods improve the robustness, and SIM has a relatively 

better performance. The reason is that MBS-FWFSA and SIM controllably introduce an 

adequate amount of low-speed vibration signals into the source domain. However, the 

synthetic samples generated by SIM-GAN and C-CDGAN are randomly distributed and thus 

insufficient to force Resnet to learn the low-speed patterns. In addition, the WF patterns are 

prone to be distorted by impulsive interferences in the lowest speed range, which can be 

simulated by MBS-FWFSA and included in the synthetic source domain. Therefore, MBS-

FWFSA overperforms SIM in the speed range between 15 and 25 km/h.  

For a more in-depth analysis, we visualize the covariate distribution of the original and 

synthetic source domain as well as the target domains in Figure 18. The covariate distribution 

maps are 2D embedded space converted by t-distributed Stochastic Neighbor Embedding (t-

SNE) from the features learned by ResNet in the corresponding domains. To be more specific, 

16 features (outputted by the global average pooling layer) are learned by ResNet from the 

original 10240 data points per sample. They are further embedded by t-SNE in a 2D space. 

Figure 18 (a) shows the distribution of the original source domain (in yellow) and the target 

domains. The healthy data points (markers without the black edge), regardless of vehicle 

speeds, are aggregated well in one area. This observation is consistent with the MMD 

measure in Figure 10. Regarding the faulty data points (markers with the black edge), the 

source domain covers or is close to the target domain 35-45 km/h (in gray) and 45-55 km/h 

(in pink). Therefore, the WF detection accuracy in these two domains remains very high. 

However, the low-speed target domain 25-35 km/h (in green) and 15-25 km/h (in blue) are far 

from the original source domain. This leads to performance impairment. They are mainly 

distributed in four areas. Three of them (highlighted by three red circles) are covered by the 

synthetic source domains generated by MBS-FWFSA (in red), as shown in Figure 18 (b). The 

area highlighted by a red rectangle is very close to the healthy data and not covered by any 

source domain. It mainly consists of the blue points at 15-25 km/h. Therefore, the accuracy in 

this target domain can only be improved to 72.9% by MBS-FWFSA. To compare different 

augmentation methods, we visualize the faulty data distribution at 15-25 km/h in the target 

domain and different synthetic source domains in Figure 19. Obviously, the red points 

generated by MBS-FWFSA are the closest to the target domain in blue. As MBS-FWFSA 

stems from SIM, the red points have a small overlap with the yellow points generated by SIM. 

The points generated by the two GAN-based methods are close to each other. 

5.3.2 Object variations 

The original source domain merely contains the M1 dataset at speeds between 15 and 45 

km/h. To simulate object variation, we change some parameters of the vehicle and WF 

models, such as load conditions, suspension parameters, WF sizes and WF distributions. 

Figure 20 shows the exemplary synthetic samples generated by MBS-FWFSA, SIM, SIM-

GAN and C-DCGAN, simulating two adjacent 30mm WFs at 20 km/h. Comparing the signal 

generated by SIM in Figure 20 with that in Figure 16, we readily observe the difference 

between the single-WF signal and the two-WF signal. MBS-FWFSA adds additional 

background information to the SIM data. The SIM-GAN signals stem from the SIM data and 
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the original low-speed M1 data. C-DCGAN generates the synthetic data solely from the low-

speed M1 data. 

(a) 

 

(b) 

 

Figure 18. Covariate distribution in the case of speed variations (a) between the original source domain and the 

target domains; (b) between the synthetic source domain and the target domains. “SD” in the legend is the 

abbreviation of “source domain”. The yellow markers are the original SD. The red ones are the synthetic SD 

generated by “MBS-FWFSA”. The blue ones are the target domain for the speed range between 15 and 25 km/h. 

The green ones are for 25-35 km/h. The gray ones are for 35-45 km/h. The pink ones are for 45-55 km/h. The 

healthy signals are the markers without the edge. The faulty signals are with the black edge.  
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Figure 19. Covariate distribution of the target domain 15-25 km/h (in blue) and the different synthetic domains 

generated by MBS-FWFSA (in red), SIMGAN (in green), cDCGAN (gray) and SIM (in yellow). The displayed 

distances are the calculated MMDs between the target domain and the corresponding synthetic source domains.  

Table 8 summarizes the effect of different data augmentation methods on robustness 

enhancement for the MFD baselines under object variations. ResNet’s robustness is 

significantly improved by all data augmentation methods. Figure 21 shows the detailed 

detection accuracy of ResNet in the target domains. The proposed MBS-FWFSA outperforms 

the others in all the target domains. In particular, it improves the accuracy from 27% to 74.5% 

on the M4 dataset due to the reality-augmented simulation of the two-WF signals. Moreover, 

the detection accuracy on the M3 dataset is improved from 56.9% to 79.6% by MBS-FWFSA, 

much more than that by the others.  

Table 8. Robustness of each MFD baseline averaged over datasets with and without data augmentation. Red 

figures indicate improved robustness. Green figures indicate decreased robustness. 

MFD Baseline 
Orig. 

mRB1 

mRB2 after data augmentation 

MBS-FWFSA SIM SIM-GAN C-DCGAN 

ResNet 0.56 0.82 0.70 0.74 0.67 

CWT+ResNet 0.89 0.88 0.94 0.87 0.89 

HT+ResNet 0.87 0.90 0.89 0.93 0.91 

GBDT 0.82 0.85 0.85 0.84 0.84 

Figure 22 (a) displays the distribution of the original source domain M1 and the target 

domains. The target domain M2 is highly overlapped with the original source domain M1, in 

terms of both healthy and faulty data. Therefore, the diagnostic performance in the target 
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domain M2 remains 81.1% without data augmentation. The green M3 faulty data points are 

widely distributed, mainly in area 3 and partly in area 1 and 2, where only a few M1 points 

fall. This explains the accuracy of 56.9% in the target domain M3. In M4 (gray), only the 

faulty data is available, which is distributed in area 1 and 2. A few M1 faulty data points are 

close to or within area 1, whereas area 2 is nearly not covered. In contrast, we observe some 

M1 healthy data points in area 2. This may be the reason why ResNet trained in M1 delivers 

the opposite detection results in the target domain M4. In Figure 22 (b), the synthetic healthy 

data generated by MBS-FWFSA are very close to area 4, covering a part of the M3 healthy 

data. This reduces the possibility of false alarms in the target domain M3. The synthetic faulty 

data points mainly lie around area 2, covering a part of the M3 and M4 faulty data points. 

However, areas 1 and 3 are not covered by the synthetic data. This limits the robustness 

enhancement. Figure 23 compares the MMD between the target domain M4 and the synthetic 

source domains generated by the four data augmentation. We observe two aggregations of the 

blue M4 points. The primary aggregation lies on the left, close to the gray C-DCGAN points. 

The secondary M4 aggregation lies in the middle, covered by the red MBS-FWFSA points. In 

terms of MMD, C-DCGAN is closer to the target domain M4 than MBS-FWFSA. This result 

is not consistent with that shown in Figure 21, where C-DCGAN is the most ineffective for 

robustness enhancement of ResNet in the target domain M4. 

a. Our MBS-FWFSA b. SIM 

  

c. SIM-GAN  d. C-DCGAN 

  

Figure 20. Synthetic samples generated by MBS-FWFSA, SIM, SIM-GAN and C-DCGAN, simulating the 

variation of the wagon and WF conditions 
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Figure 21. Effect of data augmentation on ResNet in the case of object variations  

5.3.3 Interference variations 

The original source domain solely contains the clean faulty and healthy signals in the speed 

range between 35 and 75 km/h from the M1 dataset. The data augmentation setting is similar 

to that in the speed-variation experiment. The only difference is that the vehicle speeds in the 

simulations are set as 40, 55 and 70 km/h. The generated synthetic data samples are similar to 

those shown in Figure 16. Table 9 summarizes the effect of different data augmentation 

methods on robustness enhancement for the MFD baselines under interference variations. 

Three ResNet-based baselines have already high robustness against signal interferences, 

which cannot be further improved by data augmentation. GBDT has the lowest robustness. 

However, all the data augmentation methods unexpectedly have nearly no effect on GBDT.  

The distribution of GBDT features is visualized in Figure 24 (a), where 21 statistic features 

per sample are embedded by t-SNE. Several clusters of the original and synthetic source 

domains are clearly observed, representing faulty and healthy data at different vehicle speeds. 

In contrast, the four target domains are widely distributed. The healthy data points are partly 

mixed with the faulty ones from the source domain. A number of the blue T1 faulty data 

points hide among the healthy ones from other target domains, making them 

indistinguishable. This observation explains why the WF detection by GBDT fails in the 

target domains, and cannot be improved by data augmentation. For comparison, we visualize 

the distribution of HT+ResNet features in Figure 24 (b). In this case, 16 features (outputted by 

the global average pooling layer) are learned by HT+ResNet from the original 256 data points 

per sample. They are further embedded by t-SNE in a 2D space. We readily observe that the 

healthy data points from the target domains T2, T3 and T4 are aggregated in one area and 

fully covered by the original and synthetic source domains. This reflects the high diagnostic 

accuracy of HT+ResNet in these three target domains. Only a tiny part of the blue T1 points 

are mixed with the yellow source domain points. This leads to an accuracy of 69.40% without 

data augmentation. By adding the red synthetic points, we improve the HT+ResNet accuracy 
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in the target domain T1 from 69.40% to 76.91%. The rest blue points are buried in the healthy 

ones and thus can hardly be detected.  

(a) 

 

(b) 

 

Figure 22. Covariate distribution in the case of object variations (a) between the original source domain and the 

target domains; (b) between the synthetic source domain and the target domains. The yellow markers are the 

original SD. The red ones are the synthetic SD generated by “MBS-FWFSA”. The blue ones are the M2 target 

domain. The green ones are M3. The gray ones are M4. The healthy signals are the markers without the edge. 

The faulty signals are with the black edge.  

1 

2 

3 
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Figure 23. Covariate distribution of the target domain M4 (in blue) and the different synthetic domains generated 

by MBS-FWFSA (in red), SIMGAN (in green), cDCGAN (gray) and SIM (in yellow). The displayed distances 

are the calculated MMDs between the target domain and the corresponding synthetic source domains. 

The MMD distances between the blue target domain T1 and the four synthetic source 

domains are compared in Figure 25. SIMGAN is the closest to T1 and achieves the highest 

accuracy of 81.24%. The second one is MBS-FWFSA. There are three clusters of the MBS-

FWFSA red points in Figure 25, representing three simulation speeds. One of them (at 55 

km/h) is within the T1 cluster and closer than SIMGAN, although the averaged MMD of 

MBS-FWFSA is larger than SIMGAN. 

6. Discussions 

In the above experiments, the consequences of condition variations on covariate shift and 

model robustness have been empirically studied at first. Comparing the observations in 

Section 5.1 with the visualization of the exemplary signals in Figure 6-8, we conclude that the 

covariate shift measured by MMD is consistent with the visual observation of the vibration 

signals. The speed variations and severe signal interferences establish distinctions of the 

signal manifestation, resulting in a significant covariate shift between the source and target 

domain, which can be visually recognized. In comparison, the signal disparities induced by 

object variations are much smaller, and the faulty signals from different datasets look similar. 

In an MFD task, the distance between the source and target domain within one class belongs 

to the intra-class distance, while the distance between the healthy and faulty data refers to the 

inter-class distance. MFD models may not work correctly when the intra-class distance is 

larger than the inter-class distance due to covariate shift. Figure 26 compares the inter-class 

distance and the maximum intra-class distances caused by three types of condition variations. 

Based on this, speed variations and interference variations were expected to result in more 

severe diagnostic performance impairment.  
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(a) 

 

(b) 

 

Figure 24. Covariate distribution in the case of interference variations (a) 21 statistic features; (b) envelope 

features learned by HT+ResNet. The yellow markers are the original SD. The red ones are the synthetic SD 

generated by “MBS-FWFSA”. The blue ones are the T1 target domain. The green ones are T2. The gray ones are 

T3. The pink ones are T4. The healthy signals are the markers without the edge. The faulty signals are with the 

black edge.  
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Figure 25. Covariate distribution of the target domain T1 (in blue) and the different synthetic domains generated 

by MBS-FWFSA (in red), SIMGAN (in green), C-DCGAN (gray) and SIM (in yellow). The displayed distances 

are the calculated MMDs between the target domain and the corresponding synthetic source domains. 

 

Figure 26. Comparison between the inter-class distance and the intra-class distances caused by three types of 

condition variations in M1 

However, this is disproved by the mean robustness of the four MFD baselines presented in 

Table 4-6. The performance impairment does not directly correspond to the covariate shift 

measured by MMD. The minor disparities in vibration signals due to object variations may 

lead to the complete malfunction of diagnostic models. A comparable case is an adversarial 

example where an imperceptible perturbation in the data results in an incorrect prediction of a 

DL model. In contrast, the visible signal interferences have little influence on a DL model, 

even though they result in a significant covariate shift and domain disparity.  
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Table 9. Robustness of each MFD baseline averaged over interference types with and without data augmentation. 

Red figures indicate improved robustness. Green figures indicate decreased robustness. 

MFD Baseline 
Orig. 

mRB1 

mRB1 after data augmentation 

MBS-FWFSA SIM SIM-GAN C-DCGAN 

ResNet 0.98 0.98 0.98 0.90 0.98 

CWT+ResNet 0.95 0.95 0.91 0.94 0.84 

HT+ResNet 0.92 0.93 0.92 0.90 0.92 

GBDT 0.55 0.57 0.53 0.53 0.58 

Another noticeable issue arising in the robustness experiments in Section 5.2 is that an MFD 

method may have very different robustness levels against different types of condition 

variations. For instance, GBDT with the statistic features is robust against speed variations 

but fragile due to signal interferences. Therefore, the mean robustness averaged over different 

variations plays an essential role in evaluating a diagnosis model. Table 10 summarizes the 

mean robustness of each baseline. CWT+ResNet has achieved the best performance. 

Table 10. Mean robustness of each MFD baseline averaged over three condition variation types 

Baseline mRB1 mRB2 mRB3 mRB 

ResNet 0.84 0.56 0.98 0.79 

CWT+ResNet 0.83 0.89 0.94 0.89 

HT+ResNet 0.82 0.87 0.92 0.87 

GBDT 0.94 0.82 0.55 0.77 

The effect of data augmentation on the covariate distribution and robustness enhancement 

have been investigated under three types of condition variations for four MFD baselines. In 

addition, the proposed MBS-FWFSA was compared to three augmentation methods. The 

detailed analysis in Section 5.3 indicates that the synthetic data generated by an effective data 

augmentation strategy extends the source domain distribution. When the distribution of the 

combined original and synthetic source domain can cover or get closer to the target domains, 

the model robustness will be improved. The only exception occurs in object variations. C-

DCGAN has achieved the lowest accuracy improvement, but its distribution is the closest to 

the target domain. Table 15 summarizes the final comparison results. The mean robustness is 

averaged over three condition variation types and the corresponding severities. The proposed 

MBS-FWFSA achieves the robustness enhancement for all the MFD baselines and 

overperforms other data augmentation methods.  
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Table 11. Effect of the four data augmentation strategies on robustness enhancement averaged over different 

condition variation types and severities. Red figures indicate improved robustness. Green figures indicate 

decreased robustness. 

MFD Baseline Orig. mRB 
mRB after data augmentation 

MBS-FWFSA SIM SIM-GAN C-DCGAN 

ResNet 0.79 0.90 0.86 0.83 0.83 

CWT+ResNet 0.89 0.91 0.90 0.87 0.85 

HT+ResNet 0.87 0.90 0.85 0.88 0.88 

GBDT 0.77 0.78 0.77 0.80 0.78 

The computation complexity of the four methods is hardly fairly compared. Instead, Table 12 

lists the required laborious procedures of each data augmentation methods. C-DCGAN 

requires adequate real faulty data under various operating conditions to ensure the quality of 

the generated synthetic data. MBS-FWFSA, SIM and SIM-GAN rely on the simulations to 

create the synthetic faulty data. In terms of data processing, the most time-consuming step of 

MBS-FWFSA is feature extraction. As the algorithm FWFSA in Table 1 indicates, feature 

extraction is applied for the updated average time series in each updating iteration and each 

sample in the source domain 𝐷. The signal processing techniques used in this work is HT and 

CWT, both of which has the computational complexity of 𝑂(𝑁). The total complexity of 

FWFSA is 𝑂(𝐼2𝑁) , much faster than the original WDBA 𝑂(𝐼2𝑁2) , where 𝐼  is the total 

number of time series samples within the source domain 𝐷 and 𝑁 is the dimension of time 

series. FWFSA leans the healthy vibration manifestation in the railway environment. The 

procedure of FWFSA has merely to be executed for one time in the entire experiments. Once 

the learning process is done, the RASF data under various operating conditions can be 

generated by simply executing eq. (10). In the GAN-based methods, the procedures for 

hyperparameter tuning are incredibly laborious. For each operating condition, the training 

process of GAN has to be repeated, which is also time-consuming. In addition, GANs have a 

much higher requirement on the training data availability than FWFSA. The latter can work 

on an arbitrary amount of data. 

7. Conclusions 

We proposed a novel data augmentation framework MBS-FWFSA. MBS simulates the faulty 

and operating conditions, which can hardly be measured in practice. FWFSA has been 

developed by us as a new time series averaging method. It learns the realistic background 

information in the regular operating environment. Combining FWFSA and MBS can generate 

reality-augmented simulation faulty data. It extends the training data distribution and 

improves the robustness of ML-based fault diagnostic methods under various condition 

variations. The proposed FWFSA-MBS has been validated by extensive experiments based on 

the real-world measurement data in a railway application (i.e. wheel flat detection) and 

overperforms the state-of-the-art data augmentation methods.  
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Table 12. Required laborious procedures of each data augmentation methods. 

Laborious procedure 
MBS-

FWFSA 
SIM SIM-GAN C-DCGAN 

Modeling and 

simulation 
√ √ √  

Collection of adequate 

real faulty data 
  √ √ 

Feature extraction √    

Hyperparameter tuning   √ √ 

Moreover, the experiments reveal that condition variations may result in either a significant or 

imperceptible covariate shift. The former can be readily observed and quantified by a 

common discrepancy measure such as maximum mean discrepancy. The latter caused by 

object variations cannot be reflected by maximum mean discrepancy. It is more similar to an 

adversarial attack. Both significant and imperceptible covariate shifts can result in severe 

performance impairment. Since the diagnostic methods behave differently in terms of 

robustness under different condition variations, we recommend using the proposed mean 

robustness for a fair evaluation.  
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Annex I 

Table 13. Number of the available data samples in each speed range within each dataset. “Good” refers to data 

under the healthy condition, while “Bad” refers to data with wheel flats. 

Dataset 
15-25 

km/h 
25-35 

km/h 
35-45 

km/h 
45-55 

km/h 
55-65 

km/h 
65-75 

km/h 
75-85 

km/h 
85-95 

km/h 
95-105 

km/h 

M1_Good 337 637 860 514 320 257 904 1312 1802 

M1_Bad 567 337 910 184 321 382 1983 159 31 

M2_Good 264 141 38 - - - - - - 

M2_Bad 328 134 6 - - - - - - 

M3_Good 67 192 337 183 177 1994 1331 - - 

M3_Bad 234 220 273 202 454 457 1412 - - 

M4_Good - - - - - - - - - 

M4_Bad 139 55 33 4 - - - - - 

 

Annex II 

Table 14. ResNet architecture within the baseline ResNet and CWT+ResNet. “Conv” refers to the convolutional 

layer. “BN” denotes batch normalization layer. “ReLu” is the rectified linear activation function. “Route” is the 

skip connection. 

Block Type Filters Size/Stride Input Output 

0 Conv + BN +ReLu 8 3/2 10240 × 1 5120 × 8 

1 Conv + BN +ReLu 8 3/2 5120 × 8 2560 × 8 

2 Maxpooling - -/10 2560 × 8 256 × 8 

3 Conv + BN + ReLu 16 3/2 256 × 16 128 × 16 

4 Conv + BN + ReLu 16 3/2 128 × 16 64 × 16 

5 Conv + BN + ReLu 16 3/1 64 × 16 64 × 16 

6 Conv + BN + ReLu 16 3/1 64 × 16 64 × 16 

7 Route to 5 - - -  

8 Conv + BN + ReLu 16 3/1 64 × 16 64 × 16 
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9 Conv + BN + ReLu 16 3/1 64 × 16 64 × 16 

10 Route to 8 - - -  

11 Maxpooling - -/2 64 × 16 32 × 16 

12 GlobalAveragePooling - - 32 × 16 16 

13 Fully connected layer - - 16 2 

 

Table 15. ResNet architecture within the baseline HT+ResNet. “Conv” refers to the convolutional layer. “BN” 

denotes batch normalization layer. “ReLu” is the rectified linear activation function. “Route” is the skip 

connection. 

Block Type Filters Size/Stride Input Output 

0 Conv + BN +ReLu 8 3/1 256 × 1 256 × 8 

1 Conv + BN +ReLu 8 3/1 256 × 8 256 × 8 

2 Maxpooling - -/2 256 × 8 128 × 8 

3 Conv + BN + ReLu 16 3/2 128 × 16 64 × 16 

4 Conv + BN + ReLu 16 3/2 64 × 16 32 × 16 

5 Conv + BN + ReLu 16 3/1 32 × 16 32 × 16 

6 Conv + BN + ReLu 16 3/1 32 × 16 32 × 16 

7 Route to 5 - - -  

8 Conv + BN + ReLu 16 3/1 32 × 16 32 × 16 

9 Conv + BN + ReLu 16 3/1 32 × 16 32 × 16 

10 Route to 8 - - -  

11 Maxpooling - -/2 32 × 16 16 × 16 

12 GlobalAveragePooling - - 16 × 16 16 

13 Fully connected layer - - 16 2 

 

Table 16. Essential hyperparameters of the baseline GBDT  

Method Learning rate Num. of estimators Criterion Max. depth 

GBDT 0.05 200 Friedman_mse 8 
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Annex III 

Table 17. Architecture and hyperparameters of cDCGAN 

Module Learning rate Network layer Filters Size/Stride Output 

Discriminator 0.003 

Conv + BN + LeakyReLu 16 7/2 512 × 16 

Conv + BN + LeakyReLu 16 7/2 256 × 16 

Conv + BN + LeakyReLu 16 5/2 128 × 16 

Conv + BN + LeakyReLu 16 5/2 64 × 16 

Fully connected layer - - 2 

Sigmoid_output1 - - 1 

Softmax_output2 - - 1 

Generator 0.0008 

Embedding_input1 - - 50 

Fully connected 

layer_input1 
- - 64 

Reshape_input1 - - 64 × 1 

Fully connected 

layer_input2 
- - 1024 

LeakyReLu_input2 - - 1024 

Reshape_input2 - - 64 × 16 

Concatenate_input1_input2 - - 64 × 17 

Deconv+ BN + LeakyReLu 16 4/2 128 × 16 

Deconv+ BN + LeakyReLu 16 4/2 256 × 16 

Deconv+ BN + LeakyReLu 16 4/2 512 × 16 

Deconv+ BN + LeakyReLu 16 4/2 1024 × 16 

Conv + tanh 1 3/1 1024 × 1 
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Table 18. Architecture and hyperparameters of GAN 

Module Learning rate Network layer Filters Size/Stride Output 

Discriminator 0.001 

Conv + BN + 

LeakyReLu 
16 7/2 512 × 16 

Conv + BN + 

LeakyReLu 
16 7/2 256 × 16 

Conv + BN + 

LeakyReLu 
16 5/2 128 × 16 

Conv + BN + 

LeakyReLu 
16 5/2 64 × 16 

Fully connected layer - - 1 

Sigmoid - - 1 

Generator 0.0002 

Fully connected layer - - 1024 

LeakyReLu - - 1024 

Reshape - - 64 × 16 

Deconv+ BN + 

LeakyReLu 
16 4/2 128 × 16 

Deconv+ BN + 

LeakyReLu 
16 4/2 256 × 16 

Deconv+ BN + 

LeakyReLu 
16 4/2 512 × 16 

Deconv+ BN + 

LeakyReLu 
16 4/2 1024 × 16 

Conv + tanh 1 3/1 1024 × 1 
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6. Dynamic Displacement Measurement 

This publication presents the proposed virtual point tracking for real-time target-less dynamic 

displacement measurement to support track geometry monitoring. It addresses the specific 

challenge of track geometry monitoring, where track alignment cannot be accurately derived 

by pure vibration monitoring. We hypothesized that track alignment can be estimated by 

combing the lateral acceleration and displacement of the wheel on the rail. Therefore, we 

proposed to use an off-the-shelf camera to film the motion of the wheels and developed an 

intelligent algorithm to derive the lateral displacements of the wheels relative to the rails in 

real time. In addition, the general robustness problem of optical sensing was investigated 

under different weather conditions by image corruption techniques. The proposed algorithm 

was validated on three field tests under different conditions. We found that the measurement 

uncertainty of the derived lateral wheel displacement is larger than that of track alignment 

prerequired in the track inspection standard [42]. For further improvement, a new camera with 

a narrow angle of field should be applied.  

The accepted manuscript below is the article published by Elsevier in Mechanical Systems 

and Signal Processing on 6th October 2021, available online: 

https://doi.org/10.1016/j.ymssp.2021.108482 

  

https://doi.org/10.1016/j.ymssp.2021.108482


6. Dynamic Displacement Measurement 

 

99 

 

Deep Learning Based Virtual Point Tracking for Real-Time Target-less 

Dynamic Displacement Measurement in Railway Applications 

Dachuan Shi *a, Eldar Šabanovičb, Luca Rizzettoc, Viktor Skrickijb, Roberto Oliverioc, Nadia Kavianic, 

Yunguang Ye a, Gintautas Bureikab, Stefano Riccic, Markus Hechta 

a Institute of Land and Sea Transport Systems, Technical University of Berlin, Berlin 10587, Germany 

b Faculty of Transport Engineering, Vilnius Gediminas Technical University, LT-10223 Vilnius 

c Department of Buildings and Environmental Engineering, Sapienza University of Rome, 00185 Roma 

* Corresponding E-mail: dachuan.shi@tu-berlin.de, Tel.: +49 030 314 79806 and Fax: +49 030 314 22529 

Abstract  

In the application of computer-vision-based displacement measurement, an optical target is 

usually required to prove the reference. If the optical target cannot be attached to the 

measuring objective, edge detection, feature matching, and template matching are the most 

common approaches in target-less photogrammetry. However, their performance significantly 

relies on parameter settings. This becomes problematic in dynamic scenes where complicated 

background texture exists and varies over time. We propose virtual point tracking for real-

time target-less dynamic displacement measurement, incorporating deep learning techniques 

and domain knowledge to tackle this issue. Our approach consists of three steps: 1) automatic 

calibration for detection of region of interest; 2) virtual point detection for each video frame 

using deep convolutional neural network; 3) domain-knowledge based rule engine for point 

tracking in adjacent frames. The proposed approach can be executed on an edge computer in a 

real-time manner (i.e. over 30 frames per second). We demonstrate our approach for a railway 

application, where the lateral displacement of the wheel on the rail is measured during 

operation. We also implemented an algorithm using template matching and line detection as 

the baseline for comparison. The numerical experiments have been performed to evaluate our 

approach’s performance and latency in a harsh railway environment with dynamic complex 

backgrounds. We make our code and data available at https://github.com/quickhdsdc/Point-

Tracking-for-Displacement-Measurement-in-Railway-Applications. 

Keywords: Point tracking; Computer vision; Displacement measurement; Photogrammetry; 

Deep learning; Railway 

 

1. Introduction 

1.1 Background and motivation 

Thanks to the rapid advance in computer vision (CV) in the last decade, there is a noticeable 

increase in many sectors applying photogrammetry to inspect structures. A typical 

photogrammetry application is the deformation measurement of large structures such as 

bridges in civil engineering [1]. In the railway sector, Zhan et al. [2] proposed to use high-

speed line scan cameras to measure catenary geometry parameters, calibrated by a 1-D optical 

target. Li et al. [3] used CV to monitor track slab deformation. Two optical targets were 

attached to the track slab to extract region of interest (RoI). In the aforementioned 

applications, optical targets are required to provide measurement references. When optical 

targets cannot be attached to the structure, edge detection, digital image correlation, template 
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matching and template matching are the most common solutions [4,5]. However, they may 

suffer from robustness problems due to complex backgrounds. Wang et al. [6] combined a 

deep learning model and a template-matching driven tracking algorithm for recognition and 

tracking of rail profiles from laser fringe images. Jiang et al. [7] proposed a robust line 

detection workflow for the uplift measurement of railway catenary, addressing the problem 

caused by noisy background. The measurement was done in a static condition by fixing the 

camera system next to the railway. The challenge we are facing is more complex. We are 

addressing the issue of real-time target-less dynamic displacement measurement in front of 

noisy and varying backgrounds. In the context of the railway, we aim to monitor the wheels’ 

lateral motion of a railway vehicle relative to the rail in regular railway operation. It tackles an 

unsolved railway issue related to track geometry (TG) monitoring.  

 

Figure 1. (a) lateral alignment of the left rail 𝑦𝑝1 and right rail 𝑦𝑝2, where P denotes the rail reference point and 

“2” denotes the reference rail line [8]; (b) illustration of wheel/rail gauge clearance [9]; (c) schematic view of 

hunting motion [9] 

TG parameters are defined as the indicators for track maintenance in the European railway 

standard EN 13848-1 [8], namely track gauge, cross-level, longitudinal level, lateral 

alignment, twist. Based on the statistical study in a European project [10], longitudinal level 

and lateral alignment are the most critical parameters for maintenance decisions. Other 

parameters are either highly linearly correlated to longitudinal level or degrading slower than 

longitudinal level. Traditionally, TG parameters are measured by the dedicated TG inspection 

systems in regular inspections, which are typically based on high-value laser triangulation 

sensors or/and inertial measurement units (IMU). The inspection interval is usually defined as 

several months, which results in the lack of up-to-date information on track conditions [11]. 

(c) (b) 

𝑦𝑚𝑎𝑥 

(a) 
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In order to improve the information availability and enable efficient maintenance decisions, 

TG monitoring on in-service vehicles was proposed. TG monitoring has been studied 

extensively in the last two decades [12]. Accelerometers have been commonly accepted as the 

most promising sensor for TG monitoring due to their low cost and robustness. It has been 

validated in previous studies that longitudinal level can be accurately reconstructed from 

vertical accelerations [12]. However, lateral alignment cannot be accurately derived from 

lateral accelerations due to railway vehicle dynamics. As shown in Figure 1 (a), lateral 

alignment is defined as the lateral deviation 𝑦𝑝 between the actual and reference rail line in 

the horizontal plane at the point 𝑃 on the each rail, being at the position 14 mm below the top 

of the railhead for the standard rail profile UIC 60E1 [8]. It is expected that the vehicle wheels 

follow the excitation of lateral alignment in the lateral direction so that lateral alignment can 

be estimated by accelerations. However, the wheels do not follow lateral alignment exactly as 

the vertical one. One reason is that the wheel has a freedom of movement in the lateral 

direction in a clearance 𝑦𝑚𝑎𝑥, which refers to the clearance between the wheel flange and the 

railhead edge, as shown in Figure 1 (b). Another reason given by True et al. [13] is that the 

lateral irregularities simultaneously act on the lateral force and the spin torque of the wheel-

rail contact force, which are nonlinearly coupled. This indicates that lateral alignment cannot 

be accurately derived from the perspective of vehicle dynamics.  

To tackle this issue, Ripke et al. [10] combined acceleration measurements with a multi-body 

dynamic simulation (MBS) model of the vehicle, on which the accelerometers were installed. 

The alignment was estimated by accelerations and then corrected by the MBS model using a 

dedicated correction mechanism. The estimated alignment was compared with the one 

measured by a commercial TG inspection system. However, this approach was vitiated by the 

comparison results. Rosa et al. [14] proposed a model-based method, combing MBS and 

Kalman filter, to estimate lateral alignment. However, a critical issue of a model-based 

method is that the model cannot take into account the wear process of wheel profile, which 

has significant effects on vehicle dynamics. Rosa et al. [15] proposed to train a machine 

learning (ML) based classifier to detect large track lateral irregularities. From a maintenance 

perspective, two classes of alignment values have been defined by thresholding. The 

measured alignment values in class 1 indicate the normal track condition, and no specific 

maintenance measure has to be taken. Class 2 indicates severe track degradation, requiring 

short-term maintenance measures. As well known, the features as the input for the classifier 

are essential for classification performance. In [15], only standard deviations of accelerations 

were defined as the features, which may not contain abundant classification information. The 

test accuracy was under 90%. This approach also evaded the reconstruction of alignment 

values. 

Based on the previous studies, we conclude that the wheels’ lateral displacement on the rail 

(LDWR) is indispensable to estimate the accurate lateral alignment. Therefore, we propose 

deep-learning (DL) based virtual point tracking to measure LDWR in a real-time manner. 

Combined with an accelerometer, the proposed system can be used to reconstruct the 

alignment for a massive deployment on in-service trains.  

Our approach can also be used for hunting detection, as shown in Figure 1 (c), which 

indicates the dynamic instability of railway vehicles and is thus safety-relevant. The current 

detection methods are based on acceleration measurements. Detection performance may 

suffer due to alignment, particularly when detecting small-amplitude hunting instability [16]. 
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Monitoring LDWR can fundamentally solve this problem. Furthermore, monitoring LDWR is 

a central part of the active wheelset steering systems using lateral displacement control 

strategy [17]. LDWR can express the rolling radius of the wheels. If the lateral displacement 

can satisfy a specific condition, the wheelset will be in pure rolling condition, resulting in 

minimal wear in a curve.  Within the control chain, the measured LDWR provides feedback 

to the control system [16].  

1.2 Related work 

Our task is to detect and track the virtual points for target-less dynamic displacement 

measurement in front of noisy and varying backgrounds. We introduce DL approaches for 

human pose estimation (HPE) for point detection. In the following, we review the related 

work for the measurement of LDWR, photogrammetry for displacement measurement and 

DL-based HPE, respectively. 

A commercial system based on laser triangulation sensors was used to measure LDWR for 

active wheel control [18]. The laser sensors were mounted on the wheelset axle, closely 

pointing at the railhead. The accuracy of the laser sensors is of the order of 0.1 mm. However, 

the sensors are subject to high vibrations at the wheelset level, which could degrade their 

lifetime and performance. Kim [17] used a charge-coupled device camera to measure LDWR 

for active wheel control. LDWR was measured by tracking the rail line and the wheel 

template. The proposed algorithm was mainly based on conventional image processing 

techniques of filtering, edge detection, template matching and line detection. However, it 

requires parameter tuning as a part of calibration for different environmental conditions, 

which is a laborious and time-consuming process. Yamamoto [19] used a thermographic 

camera installed on the bogie frame to view the wheel-rail contact area. Despite successful 

localization, the thermographic camera has a low resolution of 320×240 pixels and thus a low 

measurement resolution in millimeters. It cannot fulfill the requirements of TG monitoring. 

Photogrammetry for displacement measurement is typically divided into five steps: camera 

calibration, RoI selection, feature extraction, visual tracking and displacement calculation. 

The applicable methods for each step have been reviewed by Baqersad et al. [4] and Dong et 

al. [5]. Edge detection and template matching algorithms are frequently applied in target-less 

photogrammetry, where structures’ inner edges or features are extracted for object detection 

and tracking. Guo et al. [20] introduced Lucas-Kanade template tracking algorithm for 

dynamic displacement measurement. This algorithm was able to process images from high-

speed cameras. However, it requires a pre-defined template that remains visually stable within 

the measurement. This prerequisite may not be fulfilled in the case of noisy and dynamic 

backgrounds. Cha et al. [21] applied a phased-based optical flow algorithm for motion 

tracking of structures. However, optical flow approaches are sensitive to the variation of 

illumination and backgrounds. Dong et al. [22] applied spatio-temporal context learning for 

RoI tracking and Taylor approximation for subpixel motion estimation. The robustness of this 

approach has been validated for small motion tracking in laboratory experiments by varying 

the illumination and humidity. Apart from the conventional image processing techniques, DL 

has been introduced in photogrammetry. Yang et al. [23] combined convolutional neural 

network (CNN) and recurrent neural network for modal analysis of the structures. A vanilla 

CNN model was used for spatial feature extraction, while a long short-term memory network 

was used to model the temporal dependency over the measurement period. The outputs were 
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the natural frequencies. In the images, the specimens were highlighted through the laser point 

of a laser vibrometer, which was intended to provide the ground-truth natural frequencies. 

This laser point may unexpectedly become the optical target and lead to success. However, 

this was not analyzed in the paper. Liu et al. [24] used CNN for vibration frequency 

measurement of bridges. The 9×9 RoI in the frames was manually selected and flattened as 

1D sequences fed into CNN as the inputs. The CNN outputted vibration frequencies. The 

manual selection of RoI played an essential role. RoI must contain an objective with clear 

edges and a clear background.  

Displacement could be measured by tracking reference points, which conventionally refer to 

optical targets. Alternatively, virtual points can be defined in measuring objectives and 

automatically detected by employing advanced CV techniques. A successful application of 

virtual point detection/tracking is HPE. HPE is a fundamental CV task, aiming to estimate the 

posture of human bodies. In the last decade, CV-based HPE has been under rapid 

development thanks to DL techniques [25]. For HPE, the virtual points are defined as a series 

of points at a human body’s kinematic joints [26], such as eyes, neck, elbows and ankles. In 

terms of problem formulation, the methods for 2D HPE fall into two categories, namely 

regression-based and detection-based methods [25]. Detection-based methods transfer the 

virtual points into 2D representations (e.g. heatmaps) and then map the input image to these 

heatmaps. This method is commonly used in the modern CNN architectures for HPE, such as 

the stacked hourglass network [27], the encoder-decoder network [28] and the high-resolution 

network [29]. In contrast, regression-based methods directly output the coordinates of the 

virtual points from a given image. It is much harder to map the input 2D image directly to the 

point coordinates than to the 2D heatmaps. Therefore, a more powerful backbone architecture 

is required. The CNN network architecture proposed by Luvizon et al. [30] consisted of 

Inception-V4 for feature extraction and multiple prediction blocks to predict the heatmap of 

each point. Finally, the Soft-argmax layer was added to regress the coordinates of a keypoint 

from the heatmap. In recent work, Bazarevsky et al. [31] combined both methods in one 

network. The network has two heads in the training process, one for prediction of the heatmap 

and the other for regression of the coordinates. Only the regression head is kept for online 

inference, while the heatmap prediction head is removed.  

1.3 Challenges and contributions 

In our railway application for dynamic displacement measurement, we are facing the 

following challenges. Firstly, it is a monitoring task, rather than an inspection. Monitoring 

devices are typically developed for massive deployment and full automation during operation. 

Therefore, Monitoring devices are expected to have high automation and low investment 

costs. Secondly, the CV system is installed on the railway vehicle facing a wheel, moving 

along the railway track. An optical target cannot be attached to the rotating wheel. The 

common target-less approaches, such as edge detection, template matching and line detection, 

are prone to performance losses in front of dynamic complex backgrounds, where complex 

textures such as ballast, sleepers and plants exist and vary over time. Thirdly, the images 

should be processed in a real-time manner, as the calculated LDWR has to be fused with the 

acceleration measurements to reconstruct track lateral alignment. To address these challenges, 

we propose a novel approach to virtual point tracking. To our best knowledge, our work is the 

first attempt to combine HPE and domain knowledge for displacement measurement.  
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In this paper, we mainly focus on the proposed algorithm for virtual point tracking. The 

calculation of displacement between the virtual points has been introduced and validated in 

[32]. The fusion of CV and accelerometers will be addressed in future work. Our main 

contributions are summarized as follows: 

1. A novel approach of virtual point tracking for target-less displacement measurement is 

proposed, consisting of RoI detection, point detection and point tracking. 

2. A lightweight CNN architecture is proposed for real-time point detection in each video 

frame. 

3. A rule engine based on railway domain knowledge is defined for point tracking. 

4. Implementation of the proposed approach for real-time edge computing 

5. We make our code and data available at https://github.com/quickhdsdc/Point-Tracking-

for-Displacement-Measurement-in-Railway-Applications 

The structure of the paper is as follows. Section 2 briefly introduces the hardware of the 

designed monitoring system. Section 3 describes the proposed approach for virtual point 

tracking in detail, the implemented baseline method, and the image corruption methods for 

data augmentation. In Section 4, extensive experiments are conducted to evaluate as well as 

validate each step in our approach and demonstrate the entire approach. In addition, 

computational complexity and robustness are discussed. Section 5 draws the conclusions. 

 

Figure 2. (a) drawing of the camera position on the bogie frame; (b) CAD model of the camera installation; (c) 

monitoring system installed on the bogie frame 

2. Hardware components of the monitoring system 

The proposed monitoring system consists of an off-the-shelf stereo camera, an air cleaning 

system, a processing unit, a lighting system, and a mounting system with dampers. The air 

cleaning system aims to clean the camera lens by blowing compressed air regularly. This is a 
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standard solution to avoid dirt in the optical systems [12]. From the software perspective, we 

enhance the robustness of the algorithm against the image’s visual corruptions. This will be 

introduced in Section 4. For optical sensing, ZED2 stereo camera is used in our system [33], 

which is configured to output videos with the resolution of 1920×1080 pixels at the sample 

rate of 30 frames per second (fps). Any comparable cameras can be used as well. The depth 

information is merely used for displacement measurement. The algorithms described in this 

are directly applicable for 2D images obtained by regular CCD cameras. As the processing 

unit, Nvidia Jetson Tx2 has 256 core NVIDIA Pascal architecture and ARMv8 6 core multi-

processor CPU complex, enabling real-time execution of DL models [34]. The mounting 

system consisting of the vibration dampers, a crossbar and a clamp can be easily installed on 

different bogies types. The camera housing is equipped with an external lighting system, 

which consists of a series of LEDs. The entire system is installed on the bottom of the bogie 

frame, facing the wheel, as shown in Figure 2. Two systems are required to monitor the 

wheel-rail pair on the left and right sides simultaneously. In the current hardware 

implementation, the cleaning system is not included. The processing unit is inside the vehicle 

cabin, connecting to and powering the camera. The hardware of the monitoring system will be 

further improved for long-term monitoring.  

3. Approach for virtual point tracking 

We formulate the task of dynamic displacement measurement to track virtual reference points 

and calculate the distance between two virtual reference points. This paper focuses on virtual 

point tracking. The displacement calculation method has been introduced and validated in our 

previous work [32]. We define three reference points on the wheel (𝑃𝑤) and rail (𝑃𝑟1 and 𝑃𝑟2) 

respectively. 𝑃𝑟1  refers to the reference point 𝑃 for lateral alignment [8], as introduced in 

Section 1.1. 𝑃𝑟2 is the symmetry point of  𝑃𝑟1 on the other side of the railhead edge. The 

distance between  𝑃𝑟1 and 𝑃𝑟2 is the width of the railhead. The lateral displacement 𝐷 of the 

wheel on the rail (LDWR) is represented by the lateral distance between 𝑃𝑤  and 𝑃𝑟1 , see 

Figure 3. The relative lateral motion of the wheel is represented by the changes of 𝐷 (i.e. ∆𝐷) 

over time, which is the output of the monitoring system. The point 𝑃𝑟2 is defined for tracking 

mechanism, which is explained in Section 3.3.  

 

Figure 3. (a) defined keypoints 𝑃𝑤, 𝑃𝑟1 and 𝑃𝑟2 illustrated in the animation; (b) marked in the real photo (right) 

 

(a) (b) 

𝑃𝑟1 𝑃𝑟2 
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Virtual point tracking consists of three steps, as shown in Figure 4. The first step is the 

calibration, executed for the first-time installation. This calibration process detects RoI, which 

refers to the wheel-rail contact area. The outputs are the coordinates of the centre point of 

RoI. Moreover, the distance between the camera and the wheel is obtained as the stereo 

camera’s depth. The distance is an input parameter for displacement calculation. In the case of 

using a CCD camera, the distance has to be manually measured. The next steps are executed 

to detect and track virtual points in real-time. Next, we will introduce each step in detail. 

 

Figure 4. Approach to track virtual points on the wheel and rail 

3.1 Step 1: Off-line automatic calibration 

As the resolution of each frame is 1920×1080 pixels, it is necessary to resize the image prior 

to feeding it to CNN. However, resizing and restoring the image cause additional 

measurement errors for point detection. To avoid the step of image resizing, we propose 

cropping the RoI from the raw image. We choose a mature object detection technique based 
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YOLOv3 [35], which is a CNN architecture and has been widely deployed for diverse 

applications. We adopt a modified version of YOLOv3 for RoI detection, called YOLOv3-

tiny. The architecture of YOLOv3-tiny is shown in Figure 4 and Table 1. The first 13 layers 

are used for feature extraction, known as Darknet. The input for Darknet is the images with 

416×416 pixels downsized from the original 1920×1080 ones. The output 1024 feature maps 

of Darknet have the dimension of 13 × 13 pixels. The layers 13-16 are to make predictions. 

YOLOv3-tiny pre-defines 3 anchor boxes to predict the objects’ bounding boxes and 

generates 6 parameters for each bounding box, i.e. x and y coordinate of its center point, its 

width and height, a prediction score, and the object class. In our case, only one class is 

defined for the wheel-rail contact area, while others are backgrounds. The 14 and 15 layers 

downsized the number of the feature maps to 18. Each 13 × 13 feature map regresses one 

parameter. The 16th layer compares the prediction with the ground truth to calculate the loss. 

The loss consists of classification loss, localization loss, and confidence loss. The detailed 

loss functions can be found in the original paper [35]. YOLOv3-tiny predicts at two different 

scales. The first scale uses the aforementioned 13 × 13 feature maps and passes the feature 

maps to the second scale, which is implemented in the layers 17-23. The outputs of YOLOv3-

tiny are the candidates of RoI with the dimension of 𝑁 × 18, where 𝑁 denotes the number of 

the candidates. The final prediction is selected by objectness score thresholding and non-

maximal suppression [35].  

Table 1. Adapted YOLOv3-tiny architecture 

Layer Index Type Filters Size/Stride Output 

0 Convolutional 16 3 × 3/1 416 × 416 

1 Maxpool  2 × 2/2 208 × 208 

2 Convolutional 32 3 × 3/1 208 × 208 

3 Maxpool  2 × 2/2 104 × 104 

4 Convolutional 64 3 × 3/1 104 × 104 

5 Maxpool  2 × 2/2 52 × 52 

6 Convolutional 128 3 × 3/1 52 × 52 

7 Maxpool  2 × 2/2 26 × 26 

8 Convolutional 256 3 × 3/1 26 × 26 

9 Maxpool  2 × 2/2 13 × 13 

10 Convolutional 512 3 × 3/1 13 × 13 

11 Maxpool  2 × 2/1 13 × 13 

12 Convolutional 1024 3 × 3/1 13 × 13 



6. Dynamic Displacement Measurement 

 

108 

 

13 Convolutional 256 1 × 1/1 13 × 13 

14 Convolutional 512 3 × 3/1 13 × 13 

15 Convolutional 18 1× 1/1 13 × 13 

16 YOLO    

17 Route 13    

18 Convolutional 128 1× 1/1 13 × 13 

19 Upsampling  2 × 2/1 26 × 26 

20 Route 19, 8    

21 Convolutional 256 3 × 3/1 26 × 26 

22 Convolutional 18 1× 1/1 26 × 26 

23 YOLO    

3.2 Step 2: On-line point detection for each frame 

Point detection is an essential step in our approach. We propose LightPointNet, a lightweight 

CNN architecture using integral regression for real-time point detection on each video frame. 

LightPointNet consists of an encoder for hierarchical feature extraction and a decoder for 

heatmap prediction. Inspired by [28,36,37], the key insights behind LightPointNet are the 

lightweight backbone, the straightforward encoder-decoder structure and integral loss.  

The architecture of LightPointNet is shown in Figure 4 and Table 2. The first 12 blocks build 

the encoder, while the last four blocks build the decoder. The whole network is built by 

stacking three building blocks. The first block “Conv” refers to a convolutional block, 

consisting of a convolutional layer, a batch normalization layer and the hard-swish function 

(HS) as the activation function for nonlinearity (NL). In this block, 16 convolutional filters 

parameterized by the weights 𝑊 ∈ ℛ3×3 are performed on the input image 𝐼 ∈ ℛ256×256×3 to 

generate the feature map 𝐹 ∈ ℛ128×128×16. Then, mini-batch normalization [38] and hard-

swish [36] are performed on the feature map 𝐹 to reduce internal corvariate shift and add 

nonlinearity. The swish function aims to solve the dead neuron problem of ReLu, which is the 

most common activation function for CNN. The hard version of the swish function reduces 

the computational complexity of the original one, defined as: 

𝐻𝑠𝑤𝑖𝑠ℎ = 𝑥 ∙ (𝑅𝑒𝐿𝑢6(𝑥 + 3)) ⁄ 6 (1) 

𝑅𝑒𝐿𝑢6 = 𝑚𝑖𝑛 (max (0, 𝑥), 6) (2) 

The convolutional block is followed by 11 blocks of inverted residual and linear bottleneck 

(Bneck) [36]. Bneck is a modified version of the original residual operation [39], which 

enables the skip connection between the input and output feature maps by following a wide-

narrow-wide bottleneck structure in terms of the channel number. Bneck uses an inverted 
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bottleneck with a narrow-wide-narrow structure. It is implemented by stacking three 

convolutional layers. The first one is 1 × 1 pointwise convolution to expand the input channel 

dimension 𝑐 by a factor 𝑒, followed by an activation function. The expanded size for each 

Bneck block is given in the column “Exp size” of Table 2. The second one is 3 × 3 depthwise 

convolution with an activation function, keeping the channel dimension unchanged. 

Replacing regular convolution with depthwise convolution is an effective lightweight 

measure. This will be further described in Section 4.6. The third one is 1 × 1  pointwise 

convolution to recover the output channel dimension to 𝑐 , allowing the identity skip 

connection between the block inputs and outputs. The third convolution layer does not 

involve an activation function and thus remains linear. Bneck can be combined with Squeeze-

and-Excite (SE) [40], which improves channel interdependencies of feature maps. The 

column “SE” indicates the presence of the SE module. The structure of SE can be found in 

[40]. We merely replace the original sigmoid activation with the hard sigmoid function, which 

is defined as: 

𝐻𝑆𝑖𝑔 = 𝑅𝑒𝐿𝑢6(𝑥 + 3) (3) 

The Bneck blocks extract hierarchical features and downsize the feature maps to 8 × 8 . 

Afterward, 3 blocks of “ConvTranspose” are stacked to upsample the feature maps to 64× 64. 

ConvTranspose consists of a transposed convolutional layer, a batch normalization layer, and 

an activation function. The final Conv block aims to output the final heatmaps 𝐻 ∈ ℛ64×64×3 

for the defined three virtual points 𝑃𝑤, 𝑃𝑟1 and 𝑃𝑟2, respectively.  

Table 2. LightPointNet architecture 

Block Type NL SE Exp size Filters Size/Stride Output 

0 Conv HS false - 16 3×3/2 128×128×16 

1 Bneck RE false 16 16 3×3/2 64×64×16 

2 Bneck RE true 72 24 3×3/2 32×32×24 

3 Bneck RE false 88 24 3×3/1 32×32×24 

4 Bneck HS false 96 40 5×5/2 16×16×40 

5 Bneck HS true 240 40 5×5/1 16×16×40 

6 Bneck HS true 240 40 5×5/1 16×16×40 

7 Bneck HS true 120 48 5×5/1 16×16×48 

8 Bneck HS true 144 48 5×5/1 16×16×48 

9 Bneck HS true 192 64 5×5/2 8×8×64 

10 Bneck HS true 384 64 5×5/1 8×8×64 

11 Bneck HS true 384 64 5×5/1 8×8×64 
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12 ConvTranspose RE false - 256 4×4/2 16×16×256 

13 ConvTranspose RE false - 256 4×4/2 32×32×256 

14 ConvTranspose RE false - 256 4×4/2 64×64×256 

15 Conv - false - 3 1×1/1 64×64×3 

The common regression-based HPE methods use mean square errors (MSE) between the 

predicted heatmaps and the ground-truth ones as the optimization objective for CNN training. 

The point coordinates are obtained using arguments of the maxima (argmax). This induces 

inevitable quantization errors. In our case, the resolution of the heatmaps is one-fourth of the 

input image. That means the quantization errors and the prediction errors at the heatmap level 

are enlarged four times. To avoid this, we use the discrete softmax function instead of 

argmax, which is differentiable and thus can be included in the training process [37]. The 

predicted point coordinates are the integration of the heatmap weights in all locations along 

the x and y-axis, respectively. In this way, the predicted point coordinates are continuous and 

thus on a subpixel level. Figure 5 exemplarily shows the prediction process of a wheel 

reference point. Finally, the loss function as the training objective, termed integral loss, is 

defined as the absolute differences between the ground-truth coordinates and the predicted 

ones using integral regression.  

 

Figure 5. Prediction process of a wheel reference point 

3.3 Step 3: On-line point tracking by a rule engine 

LightPointNet may output false detections during regular railway operation, especially in 

corner cases. For instance, as shown in the third block in Figure 4, the grass occludes the 

points 𝑃𝑤 and 𝑃𝑟1. A correct point detection is impossible on this single frame. To correct 

false detections, we propose a rule engine as the point tracker. The rule machine independent 

from CNN has two advantages in our application. Unlike the problems of object tracking and 

human pose tracking, our railway application has similar scenes, i.e. the wheels running on 

the rails. The virtual points have spatial correlations with each other under specific geometric 

constraints. This allows defining the rules based on railway domain knowledge. On the other 

hand, we have specific challenges in terms of data availability, which is a common issue for 

any domain-specific application. As in a recent work of real-time human pose tracking 

indicated [31], 85k annotated images were used to train a pose tracking network. In industrial 

practice, data collection and annotation are laborious and costly. Much fewer data obtained in 
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field tests are available to train CNN. Therefore, we combine a DL-based point detector with 

a domain-knowledge-based tracker to achieve real-time point tracking, which requires much 

less training data. Furthermore, the rule machine can automatically identify the corner cases, 

once the CV system is deployed for a long-term trial. The corresponding video frames can be 

collected to update the model for performance improvement.  

Table 3. Defined rules, indicators and thresholds in the rule engine  

Index Rules Indicators Thresholds 

 

1 Y coordinate of the detected 

points should remain constant 

in comparison to the reference 

one (which can be manually 

defined in the calibration 

process or using the detection 

result on the first frame). 

RMSE 

𝜎𝑦 =
1

3
√∑(𝑦𝑖 − 𝑦𝑟𝑒𝑓)2

3

𝑖=1

 

𝜎𝑦𝑇𝐻1
= 5 𝑚𝑚 

 

𝜎𝑦𝑇𝐻0
= 10 𝑚𝑚 

2 Y coordinate of the detected 

points should remain constant 

in the adjacent frames. 

RMSE 

𝜎𝑦𝑡 =
1

3
√∑(𝑦𝑖,𝑡 − 𝑦𝑖,𝑡−1)2

3

𝑖=1

 

𝜎𝑦𝑡𝑇𝐻1
= 5 𝑚𝑚 

 

𝜎𝑦𝑡𝑇𝐻0
= 10 𝑚𝑚 

3 The width of the rail head 

calculated by the x 

coordinates of the two rail 

reference points (𝑃𝑟1 and 𝑃𝑟2) 

should remain constant. 

Difference 

𝑑𝑥 = |𝑥𝑟1 − 𝑥𝑟2| 

𝑑𝑥𝑇𝐻1
= 5 𝑚𝑚 

 

𝑑𝑥𝑇𝐻0
= 10 𝑚𝑚 

4 The two rail reference points 

should move in the same 

lateral direction or remain 

unchanged in the adjacent 

frames. 

Boolean 

(𝑥𝑟1,𝑡 − 𝑥𝑟1,𝑡−1) ∙ 

(𝑥𝑟2,𝑡 − 𝑥𝑟2,𝑡−1) ≥ 0 

𝐵𝑇𝐻0
= 𝑇𝑟𝑢𝑒 

5 The wheel lateral 

displacement between two 

adjacent frames should be 

smaller than that calculated 

by the maximal wheel lateral 

acceleration. 

Lateral displacement 

∆𝐷 = |𝑥𝑤,𝑡 − 𝑥𝑤,𝑡−1| 

 

∆𝐷𝑇𝐻0
= 0.5 ∙ 𝑎𝑦𝑚𝑎𝑥 ∙ ∆𝑡2 

The flow chart of the rule engine is shown in Figure 4 Step 3. We define the following rules 

as well as the corresponding indicators and thresholds in Table 3. Each rule is independently 

examined. Rule 1 and 2 constrain the y-coordinates of the virtual points, which represent the 

projection of the relative vertical and longitudinal motion between the camera and the wheel 

in the horizontal plane. Three virtual points are defined at the same horizontal level, i.e. 𝑦𝑟𝑒𝑓. 
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The relative movement of rail reference points 𝑃𝑟1  and 𝑃𝑟2  does not exist. The only 

reasonable disparity of y-coordinates between the wheel and rail reference point is linked with 

wheel bounce due to a high excitation of rail irregularities. However, this is a rare event and 

can be compensated by wheel acceleration measurement. Therefore, we consider that the y-

coordinates of three points should vary by a small margin. Root mean squared error (RMSE) 

is used as the indicator for Rule 1 and 2. When 𝜎𝑦 in Rule 1 exceeds the threshold 𝜎𝑦𝑇𝐻0
, the 

detection results are regarded as unreliable. The detection results for the current frame are 

thus inherited from the previous frame. When 𝜎𝑦 lies between 𝜎𝑦𝑇𝐻0
 and 𝜎𝑦𝑇𝐻1

, a correction 

mechanism is applied to the detection results. We take the averaged coordinates of the 

previous and current frames as the corrected values. The values of the threshold 𝜎𝑦𝑇𝐻0
 and 

𝜎𝑦𝑇𝐻1
 indicate the error tolerance of the virtual point detection results. As the detection errors 

are expected to be at the level of 1 mm, we empirically define 𝜎𝑦𝑇𝐻0
= 5 and 𝜎𝑦𝑇𝐻1

= 10. 

The thresholds do not have to be changed when the monitoring system is installed on a 

different vehicle. Similarly, Rule 3 and 4 constrain the difference of x-coordinates between 

𝑃𝑟1 and 𝑃𝑟2, as it represents the railhead’s width. In practice, the rail head width may vary at a 

small margin due to wear. Rule 5 constrains the difference of x-coordinates between 𝑃𝑤 and 

𝑃𝑟1, which indicates the possible maximum lateral movement of the wheel in relative to the 

rail. It can be estimated by the maximum instantaneous lateral acceleration 𝑎𝑦𝑚𝑎𝑥  of the 

wheel in the sample period of the camera. For simplification, 𝑎𝑦𝑚𝑎𝑥 is statistically estimated 

as a constant value derived from the field measurement data.  

3.4 Image corruption for data augmentation 

As the CV system is exposed to a harsh railway environment, a solid housing and an air 

cleaning system are tailored to protect and clean the camera lenses. Apart from this, we 

propose a data augmentation procedure during DL model training to enhance the model 

robustness against possible image corruptions. Taking advantage of previous studies on image 

corruption [41,42], the relevant corruption types in Figure 6 are modeled. For a given image 

𝐼 ∈ ℛ𝑁×𝑁 , 𝐼(𝑥, 𝑦) in the range (0, 255) denotes the original pixel intensity at the position 

(𝑥, 𝑦) . Gaussian noise may arise during optical sensing. The intensity function of the 

corrupted image 𝐼𝑔𝑛(𝑥, 𝑦) injected with Gaussian noise is given by  

𝐼𝑔𝑛(x, y) = 𝐼(𝑥, 𝑦) 255⁄ + 𝑐 ∙ 𝑝 (4) 

𝐼𝑔𝑛(x, y) = {
0

𝐼𝑔𝑛(x, y) ∙ 255

255

    

𝑖𝑓 𝐼𝑔𝑛(x, y) < 0

𝑖𝑓 0 ≤ 𝐼𝑔𝑛(x, y)  ≤ 255

𝑖𝑓 𝐼𝑔𝑛(x, y) > 255

(5) 

where 𝑐 is a settable scale representing the severe level and 𝑝 is the Gaussian distribution. 

Shot noise could occur during photon counting in optical systems. The intensity function of 

the corrupted image  𝐼𝑔𝑛(𝑥, 𝑦) injected with shot noise is given by 

𝐼𝑠𝑛(x, y) = f[𝑐 ∙ 𝐼(𝑥, 𝑦) 255⁄ ]/𝑐 (6) 

𝐼𝑠𝑛(x, y) = {
0

𝐼𝑠𝑛(x, y) ∙ 255
255

    

𝑖𝑓 𝐼𝑠𝑛(x, y) < 0

𝑖𝑓 0 ≤ 𝐼𝑠𝑛(x, y)  ≤ 255

𝑖𝑓 𝐼𝑠𝑛(x, y)

(7) 
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where 𝑓 is subject to the Poisson distribution. 

The modeled impulsive noise refers to salt-and-pepper noise which could originate from sharp 

and sudden disturbances in the imaging process. The intensity function of the corrupted image 

𝐼𝑖𝑛(𝑥, 𝑦) injected with impulsive noise is given by 

𝐼𝑖𝑛(x, y) = {
0

𝐼(𝑥, 𝑦)
255

    

𝑖𝑓 𝑐 ∙ 𝛼/2
𝑖𝑓 1 − 𝑐 ∙ 𝛼
𝑖𝑓 𝑐 ∙ 𝛼/2

(8) 

where 𝛼 is the probability that a pixel is altered. 

Gaussian Noise Shot Noise Impulsive Noise Defocus Blur Motion Blur 

     

Snow Frost Fog Sunny/shady Rotation 

     

Occlusion Horizontal flip Crop and pad Position shift Persp. transform 

     

Figure 6. Synthetic images for data augmentation 

Defocus blur is when the image is out of focus, which is caused by the fact that the camera 

integrates the light over areas during sensing.  Blur is commonly modeled by convolution of 

the original image with a uniform point spread function (PSF). The defocus-blurred image 𝐼𝑑𝑏 

is given by  

𝐼𝑑𝑏 = 𝐼 ∗ 𝐾 (9) 

𝐾(𝑥, 𝑦) = {
0

1 𝜋𝑟2⁄
     

𝑖𝑓 √𝑥2 + 𝑦2 < 𝑟

𝑖𝑓 √𝑥2 + 𝑦2 ≥ 𝑟
(10) 



6. Dynamic Displacement Measurement 

 

114 

 

where 𝐾 is the parametric PSF for defocus blur and 𝑟 is the radius parameter of 𝐾 and linearly 

correlated to the severe level 𝑐. 

Motion blur occurs when the vehicle is excited by large track/rail irregularities. The linear-

motion-blurred image 𝐼𝑚𝑏 is given by 

𝐼𝑚𝑏 = 𝐼 ∗ 𝐾 (11) 

𝐾(𝑥, 𝑦) = {1 𝑟⁄
0

     
𝑖𝑓 0 ≤ 𝑥 ≤ 𝑟
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12) 

where 𝐾 is the parametric PSF for linear motion blur and 𝑟 denotes the extent of the motion 

blur, relying on the severe level 𝑐. 

In addition, several weather conditions are modeled. Snowy scenes are generated by randomly 

adding white motion-blurred particles and whitening the entire image. The image with frost is 

an overlay of the original image and several template images of frosted glass. Fog is modeled 

by plasma fractal using the diamond-square algorithm. Sunny/shady effect is simulated by 

increasing/decreasing the brightness of the original image, where the pixel intensity of the 

first channel in the HLS color space of the image is altered. Furthermore, several common 

augmentation techniques are applied, such as horizontal flip, rotation and occlusion. In 

addition, we mimic the images taken at different camera positions and orientations. For each 

original 1920×1080 image, we randomly crop the 256×256 RoI at different positions. 

Afterward, point perspective transformation is applied to simulate the variations of the 

camera’s orientation. 

4. Experiments and results 

4.1 Field tests and datasets 

We conducted three field tests under different operational conditions in Italy and Lithuania. 

The first two tests were performed for data collection and algorithm development at low 

running speeds. Afterward, the last test was carried out as the validation test at regular 

operating speeds (up to 100 km/h). In Italy, the prototype of the CV system has been installed 

on the bogie frame of Aldebaran 2.0, which is the newest track recording coach of Rete 

Ferroviaria Italiana (RFI, i.e. Italian infrastructure manager) equipped with a commercial TG 

measurement system, as shown in Figure 7. (a). The first test consisted of several runs within 

the workshop plant in Catanzaro Lido on both straight and curved track sections. The curved 

track sections correspond to two switches with a curve radius of 170 m and a tangent of 0.12. 

During the field test, the Aldebaran 2.0 coach was driven by a locomotive at low speeds 

(between 2 and 10 km/h). We test different conditions, i.e. two lateral positions of the camera 

with respect to the wheel and four camera configurations for different resolutions and sample 

rates. The video data from 3 test runs are used for model training, while 3 test runs are used 

for testing. 

In Lithuania, the second test was performed on the mainline in the vicinity of Vilnius. Two 

CV systems were installed on the bogie frame of a track recording coach operated by 

Lithuanian Railways, see Figure 7. (b). The videos for both wheels were recorded 

simultaneously. Two forward runs at speeds of around 20 km/h and one backwards run at 
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lower speeds were conducted. The camera setting remains unchanged during the test runs. 

One forward run is used for training, while the other data is used for testing. 

The last validation test was performed in Italy on the same vehicle type of Aldebaran 2.0. The 

vehicle has been operated in regular operating conditions up to 100 km/h between Rome and 

Pisa for two days.  

 

Figure 7. (a) CV system installed on a track recording coach in Italy; (b) CV system installed on a track 

recording coach in Lithuania 

The algorithm development is based on the data obtained in the first two tests. As the video 

data was sampled at 30 fps and the vehicle ran at low speeds, there are a large number of 

duplicate frames in the video. To build the dataset, we select one image per 30 frames from 

the video data collected in Lithuania, while one image per 60 frames from the video data 

collected in Italy. Other images originate from static tests at other locations and a relevant 

Youtube video [43]. In static tests, the same ZED2 stereo camera was used for image capture. 

The images of different bogies standing on the track were obtained, examples of which are 

shown in Figure 14 in Annex I. The Youtube video was filmed by a GoPro camera during a 

regular railway operation. The video frames were extracted as shown in Figure 15 in Annex I. 

The defined virtual points were manually annotated on the original images of 1920×1080 

pixels. The coordinates of the labeled points are the ground truth for CNN training. We have 

767 annotated images in total. In order to increase the amount of the annotated data, we 

generate five 256×256 images of RoI cropped at different positions on each original image. In 

this way, we have 3835 labeled images. They are split into a training dataset, a validation 

dataset and a test dataset with the ratio of 6/2/2, namely 2301 images for training and 767 

images for validation and testing respectively. We conduct extensive experiments to validate 

the proposed approach as follows. 

4.2 Training and evaluation of YOLOv3-tiny for calibration 

In YOLOv3-tiny, we merely modify the YOLO layers for RoI detection, while the first 13 

layers, i.e. Darknet, have not been changed. This allows us to transfer the pre-trained weights 

of Darknet to the modified YOLOv3-tiny. In this way, the model for RoI detection can be 

trained with fewer annotated images. Figure 8 presents the pipeline for training and evaluation 
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of YOLOv3-tiny on our datasets. YOLOv3-tiny is first pre-trained on the COCO dataset [44], 

which contains 123287 annotated images in total, incl. 3745 images related to the railway. 

The learned parameters of Darknet are transferable, while the learned parameters of the 

YOLO layers are discarded. Our training dataset consists of 800 images from static tests and 

the Youtube video. The raw 1920×1080 images are resized to the 416×416 ones, fed into 

YOLOv3-tiny. The pre-trained YOLOv3-tiny is trained with adaptive moment estimation 

(Adam) for 30 epochs, which is a gradient-descent-based optimization algorithm. Afterward, 

the trained model of YOLOv3-tiny is evaluated on 767 annotated images for keypoint 

detection. The evaluation metric is whether the labeled keypoints are inside the predicted 

bounding box within an image. YOLOv3-tiny has achieved a detection accuracy of 100%.  

 

Figure 8. Pipeline for training and evaluation of YOLOv3-tiny: (a) Pre-training on COCO dataset; (b) Fine-

tuning on our training dataset; (c) Evaluation on our test dataset 

4.3 Training and evaluation of LightPointNet 

The evaluation of LightPointNet is conducted in a two-fold way. Firstly, LightPointNet is 

trained and evaluated on the individual images randomly selected and cropped from the video 

frames. The evaluation metric is the deviation in terms of pixels between the ground-truth and 

the predicted x-coordinate of 𝑃𝑤 and 𝑃𝑟1. We compare the evaluation results of LightPointNet 

with those of the baselines. Secondly, the trained LightPointNet is applied on the video 

sequences. The evaluation metric is defined as the count that detects the predictions exceeding 

the thresholds 𝑇𝐻0 in the rule engine.  

For comparison, we implement three DL-based baselines, i.e. PoseResNet [28], ReceptionNet 

[30] and BlazePose [31], as well as a method using conventional CV techniques developed in 

our previous work [32]. PoseResNet is the representative of the detection-based HPE 

network. ReceptionNet is similar to our solution, using softmax for coordinate regression. The 

main difference lies in the encoder and decoder for feature extraction. BlazePose is a hybrid 

solution, requiring two-step training. In the first step, the network is trained on the heatmap 

branch as the common detection-based HPE networks do. In the second step, the weights in 

the heatmap branch are frozen, while the regression branch is activated for training. In the 

inference stage, the regression branch is applied to directly output the point coordinates, 

which avoids the quantization errors and reduces the computation complexity. Our previous 

method mainly uses template matching to track the wheel flange and line tracking to track the 

rail line. More details can be found in [32]. However, this method is only applicable to track 

the points in the video sequences by manually selecting the reference template and line on the 

first frame. It is not able to automatically detect the wheel and rail. 
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(a) 

 

(b) 

 

Figure 9. (a) detection errors (in pixels) for the wheel reference point; (b) detection errors (in pixels) for the rail 

reference point 

In the first evaluation experiment, LightPointNet is compared with PoseResNet, ReceptionNet 

and BlazePose. The DL networks are trained from scratch on our training dataset (incl. 2301 

256×256 images) and evaluated on the testing dataset (incl. 767 images). The validation 

dataset is used to prevent overfitting by evaluating the temporary model trained in each epoch 

during the training process. Adam with the multistage learning rate is applied to minimize the 

integral loss over 100 epochs. We repeat the training process using different random seeds 

five times and select the best models for the comparison. The main reason is that CNN 
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learnable weights are randomized at initialization and learning samples are randomized. We 

get models that perform differently with the same training conditions. The details of 

implementation and experiment settings can be found in our code repository. 

The evaluation metric is the deviation in terms of pixels between the ground-truth and the 

predicted x-coordinate of 𝑃𝑤 and 𝑃𝑟1. We divide detection errors into four groups. “0-1 pixel” 

means either no error or an error of 1 pixel. In our case, 1 pixel means 0.78 mm (depending 

on the image resolution as well as the distance between the camera and the wheel). A small 

error of 1-5 pixels is tolerable. A large error of 5-20 pixels is unacceptable. An error with 

more than 20 pixels is defined as “miss detection”. Figure 9 shows the detection errors for the 

wheel and rail reference points. Overall, LightPointNet achieves the best performance among 

the baselines. The error rate for the wheel reference point is lower than that for the rail 

reference point. Comparing LightPointNet with the baselines, we observe at first glance that 

BlazePose fails to accurately detect the wheel and rail reference point using the regression 

branch. According to our experiment results, the heatmap branch of BlazePose can achieve 

comparable performance as PoseResNet does. Switching the heatmap branch to the regression 

branch induces significant performance loss. Second, LightPointNet and ReceptionNet, which 

involve integral regression from heatmaps, deliver fewer detection errors than PoseResNet, 

which directly outputs heatmaps and thus induces the quantization errors. Third, 

LightPointNet overperforms ReceptionNet. The reason may lie in the different architectures 

of the encoder and decoder.  

Furthermore, we evaluate LightPointNet and our previous method [32] on video sequences. 

As the ground-truth points have not been manually labeled on video sequences, a rigorous 

validation comparing the prediction with the ground truth cannot be performed. In this case, 

the rule engine is used for the evaluation. The evaluation metric is defined as the count that 

detects the predictions exceeding the thresholds in the rule engine. We select several video 

sequences representing different track layouts. Table 4 compares the results of two methods, 

where the baseline refers to our previous method. The baseline and LightPointNet can achieve 

comparable results on the videos obtained in Lithuania. However, LightPointNet significantly 

overperforms the baseline in the first test in Italy. In these videos, brightness is much lower 

and the backgrounds are more complicated than those in Lithuania. The baseline almost fails 

to track the rail lines in the videos and thus fails to deliver reliable results, although much 

effort has been paid to tune the relevant parameters for pre-processing. In the last validation 

test, a part of the video sequences, named “Italy2_highspeed”, has been randomly selected, 

where the vehicle has reached the maximum speed of 100 km/h. The illumination has been 

improved during this test. LightPointNet delivers 3.51% miss detection rate, while the 

baseline has 18.49%, which is much better than that in the first test. A high speed results in 

motion blur of the complex backgrounds, which makes it easier to track the wheel temple and 

rail line. It is worth noting that the current generalization ability of the LightPointNet model 

trained on the aforementioned training dataset was not sufficient to achieve a high detection 

accuracy on a new test dataset. We randomly labeled 351 images in the validation test for 

model fine-tuning. To prevent data leakage, we avoided using any images from the test video 

sequence “Italy2_highspeed”. The number of the labeled images is merely 0.1% of the total 

frames obtained in this validation test. 
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Table 4. Test results of LightPointNet and the baseline on the representative video sequences 

Video sequence 
Frame 

number 
Model 

Implausible 

detection 

exceeding 𝑻𝑯𝟎 

Percentage of 

Implausible 

detection 

Lithuania_forward 

_straight 
4997 

LightPointNet 207 4.45% 

Baseline 245 4.90% 

Lithuania_backward 

_straight 
7996 

LightPointNet 84 1.05% 

Baseline 78 0.98% 

Italy_curve 2586 
LightPointNet 200 7.73% 

Baseline 2263 87.5% 

Italy_swtich 492 
LightPointNet 50 10.16% 

Baseline 344 69.92% 

Italy_straight 4024 
LightPointNet 233 5.79% 

Baseline 3144 78.13% 

Italy2_highspeed 14082 

LightPointNet 495 3.51% 

Baseline 2604 18.49% 

 

4.4 Evaluation of rule engine 

In order to evaluate the effectiveness of the proposed rule engine, we evaluate our approach 

with and without the rule engine on the video sequences. In the approach without the rule 

engine, LightPointNet is applied for each video frame and directly outputs the predicted 

coordinates as the final results. The percentage of implausible detection has been shown in 

Table 4. In the approach with the rule engine, LightPointNet’s outputs are fed into the rule 

engine. The corner cases are detected and the corresponding implausible results are discarded 

or corrected. Figure 10 illustrates several typical corner cases where LightPointNet fails to 

deliver a reliable detection result. The corner cases may have specific scenes in backgrounds 

like workshops and platforms. The switch and crossing zones have a unique track layout that 

may mislead the detector. A wheel bounce results in a sudden change of the y-coordinate of  

𝑃𝑤 and trigger the rule engine. It may also cause miss detection of LightPointNet due to the 

strong motion blur. Such corner cases will be added to the training dataset for further model 

training.  
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(a) (b) 

  

(c) (d) 

  

Figure 10. Corner cases detected by the rule engine: (a) switch & crossing zone; (b) workshop zone; (c) wheel 

bounce; (d) platform zone 

For evaluation of the correction mechanism, the trajectory of the LDWR over the frames is 

displayed. Figure 11 shows the trajectory with and without the rule engine calculated on the 

video sequence “Italy_straight” containing 4024 frames. The correction mechanism based on 

the rule engine uses the information of two adjacent frames to remove the coordinates' 

unreliable sudden changes, as shown by red impulses in Figure 11. Nevertheless, tracking the 

actual lateral movement of the wheel has not been affected. For instance, a sizeable lateral 

wheel movement occurs between the 2750th and 2950th frame is visible by the blue line in 

Figure 11. However, we observe that the predicted coordinates' small-scale turbulence cannot 

be smoothed by the rule engine. The data fusion with the corresponding wheel accelerations 

may cover this gap.   

4.5 Evaluation of the entire approach 

The entire algorithm is executed on the Nvidia Jetson TX2 platform in real-time. The tracking 

results on two video sequences are recorded as the demonstration videos. As the points are 

hardly visible on the raw 1920×1080 images, the demo videos merely display the 256×256 

RoI, which is automatically detected by YOLOv3-tiny at the first step of the proposed 

approach. Figure 12 shows the tracked points 𝑃𝑤 and 𝑃𝑟1 on the wheel flange and the rail edge 

in the RoI for the three field tests. These two points are used for the calculation of the lateral 
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wheel displacement. 𝑃𝑟2  is on the other side of the rail edge and provides the geometric 

information for the rule engine. It is not displayed on the demo videos.  

 

Figure 11.  Comparison of the measured lateral displacement of the wheel relative to the rail with (blue) and 

without (red) the rule engine based correction mechanism 

 

Figure 12. Real-time lateral displacement measurement of the wheel on the rail to support track geometry 

monitoring (screenshot from the demo videos https://youtu.be/it21cE87LCM, https://youtu.be/Nc1bkQdkkSM 

and https://youtu.be/K5HnUixyGxo  

Wheel’s lateral motion has been successfully tracked by tracking the virtual points. However, 

we observe slight shifts of the detected virtual points in the lateral direction, although the 

wheel's actual position does not change. It results in sudden changes of lateral displacement in 

several millimeters. This indicates a measurement uncertainty up to 2 mm based on our 

observation, which stems from point tracking and displacement calculation. In our previous 

study [32], the displacement calculation method based on two reference points have been 

tested in a laboratory, where the stereo camera was placed at different distances and view 

angles with respect to a standard gauge block. Two reference points were manually selected 

on the gauge block's left and right edge to calculate its width. The measurement uncertainty 

(i.e. in the form of standard deviation) has been determined as 0.4 mm. Therefore, we 

https://youtu.be/it21cE87LCM
https://youtu.be/Nc1bkQdkkSM
https://youtu.be/K5HnUixyGxo
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conclude that the point detection of LightPointNet induces the main uncertainty. On the one 

hand, this is due to the model's performance limitation trained on the currently collected 

training data. On the other hand, the uncertainty could originate from label noise, which 

occurs when we manually annotate the virtual points as the ground truth. Due to the complex 

background, variable illumination conditions, and labeling tool restrictions, the accurate point 

position on the wheel flange and the railhead edge can hardly be determined. An annotation 

deviation of several pixels on a similar video frame is quite common. For the 1920×1080 

resolution and the distance between the camera and the wheel, one pixel refers to 0.78 mm. 

Therefore, a measurement uncertainty of 2 mm due to manual annotation is understandable 

and can be hardly avoided. A possible solution is to increase the image resolution of RoI. In 

future work, we consider replacing the current camera with the one having a narrower field of 

view and closer focusing distance.  

4.6 Computational complexity and real-time capability 

CNN's computational complexity can be theoretically estimated by the number of parameters 

and floating-point operations (FLOPs). A regular convolution layer consists of 𝑁 

convolutional filters, each of which is parameterized by the weights 𝑊 ∈ ℛ𝐾×𝐾 , where 𝐾 

denotes the width. When it takes a feature map 𝐹𝑖𝑛 ∈ ℛ𝐷×𝐷×𝐶  as the input and outputs a 

feature map 𝐹𝑜𝑢𝑡 ∈ ℛ𝐷×𝐷×𝑁, the total parameters 𝑃𝑐  and FLOPs are given by eq. (14) and 

(15), where the parameter number of bias and the accumulated operation are neglected. 

𝑃𝑐 = 𝐾 × 𝐾 × 𝐶 × 𝑁 (13) 

𝐹𝐿𝑂𝑃𝑠𝑐 = 2𝑀𝐴𝐶 = 2 × (𝐾 × 𝐾 × 𝐶 × 𝑁 × 𝐷 × 𝐷) (14) 

In LightPointNet, regular 𝐾 × 𝐾 convolution is replaced with the combination of 1 × 1 

pointwise convolution and 𝐾 × 𝐾 depthwise convolution, which is named as the depthwise 

separable convolution (DSC). Its parameter numbers 𝑃𝐷𝑆𝐶  and FLOP𝐷𝑆𝐶  are significantly 

reduced, given by: 

𝑃𝐷𝑆𝐶 = 𝐾 × 𝐾 × 𝐶 (15) 

𝐹𝐿𝑂𝑃𝑠𝐷𝑆𝐶 = 2 × (𝐾 × 𝐾 × 𝐶 × 𝐷 × 𝐷 + 𝑁 × 𝐶 × 𝐷 × 𝐷) (16) 

The reduction ratio in parameter 𝑟𝑃 and in operation 𝑟𝐹𝐿𝑂𝑃𝑠 are given by: 

 𝑟𝑃 =
1

𝑁
(17) 

𝑟𝐹𝐿𝑂𝑃𝑠 =
1

𝑁
+

1

𝐾2
(18) 

The computational complexity of a conventional image processing algorithm can be hardly 

accurately measured. In the baseline, we mainly use a template matching algorithm for wheel 

tracking and a line tracking algorithm provided in the Visual Servoing Platform library for rail 

tracking. Its theoretical computational complexity can hardly be calculated. For a more 

accurate comparison, the actual time consumption, i.e. latency, is measured for each 

algorithm. The latency relies on the hardware and software platform. In our application, we 

implement the DL models in PyTorch 1.9 (which is an open-source DL framework) and 

deploy the models on the edge computer Nvidia Jetson TX2 for inference. The baseline is 

implemented with OpenCV libraries. We measure the time consumption on this platform and 
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calculate frame per second (FPS) averaged over the testing video sequences as the evaluation 

metric. This allows the comparison between DL models and the baseline. 

LightPointNet uses several lightweight measures to reduce the number of parameters and 

FLOPs while maintaining network performance, incl. using filters of small sizes, using DSC, 

using SE modules and linear bottleneck structure. More details of the lightweight measures 

can be found in our previous study [46]. We compare our LightPointNet with the baselines to 

show the effectiveness of lightweight. Table 5 shows the computational complexity of 

different models with a batch size of 16. Parameters and FLOPs of DL models are measured 

by a third-party tool. The third row indicates the latency in fps of the original DL models 

implemented in Pytorch. The fourth row indicates the latency of the DL models in the format 

of Nvidia TensorRT, which will be explained later. At first glance, we find that the baseline 

has a larger latency than our LightPointNet in terms of FPS. However, both are slower than 

the real-time requirement (i.e. 30 FPS). Comparing LightPointNet with PoseResnet and 

BlazePose, the latency of LightPointNet is slightly less than that of PoseResnet and 

BlazePose, although FLOPs of LightPointNet are much lower. It indicates that the platform-

dependent latency is also much affected by other factors apart from FLOPs. In terms of 

parameters, LightPointNet has almost 12-times fewer parameters than PoseResnet, which 

means much less memory usage. A Pytorch model of LightPointNet occupies 11 MB, 

whereas a PyTorch model of PoseResnet occupies 130 MB.  

Table 5. Computational complexity of LightPointNet and the baselines (M for million, G for Giga) 

Results LightPointNet PoseResnet ReceptionNet BlazePose Baseline 

Parameters 2.86 M 33.99 M 5.97 M 34.00 M - 

FLOPs 5.51 G 12.90 G 6.67 G 17.39 G - 

FPS 20 16 19 15 18 

FPS 

(TensorRT) 
39 26 35 23 

- 

We observe that none of the PyTorch models has a real-time ability on the target platform. To 

further reduce the latency, we transform the PyTorch models into the format of TensorRT, 

which speeds up the inference of a DL model on Nvidia’s GPUs. TensorRT forces the models 

for low precision inference. The learned parameters of weights and biases within a NN are 

typically represented in the format of float32, occupying 32 bits. TensorRT transforms these 

parameters into the 8-bit representation. This dramatically accelerates the inference process 

by sacrificing little accuracy. Furthermore, TensorRT optimizes the computation graph of a 

NN to accelerate the computation. More details can be found in [47]. The last row of Table 5 

shows the latency of the DL models in the TensorRT format. LightPointNet and ReceptionNet 

can satisfy the real-time requirement.  
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(a) 

 

(b)  

 

Figure 13. detection errors (in pixels) averaged over three reference points (a) when the models are trained on 

the cleaning training dataset and tested on the corrupted test dataset; (b) when the models are trained on the 

augmented training dataset and tested on the corrupted test dataset 

4.7 Data augmentation for robustness enhancement 

The model robustness plays an essential role in harsh outdoor conditions. The degradation or 

interference of sensors may result in image noise. Large vibrations induced by severe 

track/rail irregularities may result in image blur. Dirt and dust on camera lenses may result in 

occlusions in images. Varying weather conditions may result in variations of intensity 

distributions within images. Based on these types of image corruption, we build a corrupted 

testing dataset. Each image from the original test dataset containing 767 images is augmented 
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with a corruption method randomly selected from the ones shown in Figure 6. Each 

corruption method contains a severity scale 𝑐, which controls the severity of the corruption. 

The scale 𝑐  is randomly set in the range from 1 to 3. First, we investigate the model 

robustness against image corruption. LightPointNet and the baselines are trained on the clean 

training dataset without corrupted images and tested on the corrupted test dataset. Comparing 

Figure 13 (a) with Figure 9, we observe that the model performance of LightPointNet 

dramatically drops from around 70% to 23.2% of “0-1 pixel” detection errors. ReceptionNet 

achieves similar performance as LightPointNet. This indicates the insufficient robustness of 

all the DL models against the potential image corruptions in harsh outdoor conditions. 

Afterward, we investigate the effect of data augmentation by repeating the corruption process 

on the training dataset as data augmentation. The DL models are trained on the augmented 

training dataset and tested on the corrupted test dataset. Figure 13 (b) shows data 

augmentation largely reduces the miss detection rate of LightPointNet, PoseResNet and 

ReceptionNet. In particular for LightPointNet, the rate of the “0-1 pixel” errors is improved 

by 6.5%. On the one hand, this result proves the effect of data augmentation and superiority 

of LightPointNet. On the other hand, data augmentation alone is not sufficient to ensure 

robustness, since the improvement is merely a drop in the bucket in comparison to 

performance loss induced by image corruption. Other generalization measures such as domain 

generalization should be combined.  

5. Conclusions 

The virtual point tracking approach was proposed to tackle the issue of dynamic displacement 

measurement with varying and noisy backgrounds. The entire approach has been validated 

and demonstrated for lateral displacement measurement of the wheelsets on the rail tracks, in 

order to support track geometry monitoring on in-service rail vehicles. The feasibility of the 

proposed solution has been demonstrated in the field tests under regular railway operating 

conditions. It can satisfy the real-time processing requirement and achieve a measurement 

uncertainty of up to 2 mm. The core component of our approach is LightPointNet for point 

detection, which is a lightweight CNN architecture. It outperforms several baselines using 

either conventional image processing techniques or other deep learning networks. One 

unsolved issue in this work is the robustness against harsh outdoor conditions and the 

generalization ability, which are the common issue for arbitrary machine learning methods. 

They will be addressed in our future work. 
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Figure 14. Examples of static images taken on different bogies 

  

Figure 15. Examples of images from a YouTube video  
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7. Discussions 

This section discusses the raised research questions. For each research question, the results of 

the corresponding publication are discussed, the limitations of our work are explained, the 

future work for the potential improvement is proposed. In some cases, supplementary 

experiments are performed. Apart from this, the potential uses of our methods for other 

purposes are envisaged. 

7.1. Can wheel flat be detected in real time on embedded systems using 

carbody accelerations? 

Yes, the experimental results in the first publication have validated that the proposed 1D 

LCNN architecture, i.e. LightWFNet, is able to detect wheel flats by using carbody 

accelerations and can be executed in real time on embedded systems. 

The experiment was based on the following facts. The experiment data was obtained by 

creating a synthetic wheel flat with a length of 20 mm across the entire wheel surface, as 

shown in Figure 9 of Pub.1. This excludes the possibility that a wheel flat may not appear in 

the wheel-rail contact area. In other words, the wheel-flat excitation always exists. 

Furthermore, the measurement equipment, incl. accelerometers and data acquisition devices, 

used in the field test was not real condition monitoring device. The quality of the acquired 

data in terms of the signal-to-noise ratio is much better than that of a typical monitoring 

device. In addition, the employed freight wagon had a revision before the field test and thus 

had a good technical condition. A consequence of all the above facts is that the wheel-flat 

patterns do not vanish in carbody accelerations. As presented in Figure 3 of Pub.1, the 

periodic pattern is recognizable at the carbody level, although it is much weaker than that at 

the bogie and axlebox levels. This should be the prerequisite for WFD using carbody 

accelerations. Figure 10 compares the carbody acceleration with and without a wheel flat at 

the vehicle speed of 50 km/h in the time domain and the wavelet scalogram. In this speed 

range, the proposed LightWFNet can achieve a detection accuracy of 95.17%. The weak 

periodic surges can be visible in the left diagram. In the right diagram, the vibration energy in 

the wavelet scalogram is even higher due to the severe track irregularities. However, it does 

not show a periodic pattern. In comparison, detection at high speeds (over 85 km/h) is much 

harder. As shown in Figure 11, the carbody acceleration with and without wheel flats can 

hardly be distinguished. This indicates that the changes in experimental conditions may result 

in the vanishment of wheel flat patterns, making the detection infeasible. One limitation of 

our Pub.1 is that we were not able to test the proposed LightWFNet under different 

experimental conditions due to a lack of data. The decisive factor of detection feasibility was 

unclear. 

A suspicion may be raised why complicated deep learning approaches have to be used when 

the wheel flat pattern is recognizable after signal processing. As reviewed in Section 2.2, most 

of the relevant studies in industry and academia for WFD concern signal processing 

techniques for denoising and the identification of the features. This approach works on the 

typical healthy and wheel-flat signals. However, unexpected interferences in practice may 

distort the typical signal patterns. This problem has been presented in Pub.2. In comparison, 

deep learning approaches are able to adaptively filter the input data and automatically learn 
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the features in an end-to-end manner. The features learned by a deep learning model can be 

more effective to distinguish the data samples of different health conditions. In Pub.1, we 

compared these two approaches in terms of the WFD accuracies. We used HT and CWT to 

process the raw carbody accelerations and extracted several statistical features such as 

skewness and kurtosis of the envelope spectrum and scale-averaged wavelet scalogram, 

respectively. Afterward, 16 features per data sample were selected based on correlation and 

importance analysis. A classifier was built and trained based on gradient boosting decision 

tree (GBDT). This classical machine learning approach has achieved the average detection 

accuracy of 75.36%, whereas the proposed LightWFNet achieved 93.58%. To compare the 

manually defined features and the ones learned by LightWFNet, the feature distribution map 

with and without wheel flat is illustrated by t-distributed Stochastic Neighbor Embedding (t-

SNE), which converts the high-dimensional features into the 2D embeddings for 

visualization. Figure 12 and 13 show the distribution map produced from the manually 

defined features the ones learned by LightWFNet, respectively. The learned features 

conspicuously form two clusters, representing the vehicle conditions with and without wheel 

flat. Therefore, the subsequent classification layer can easily achieve a higher detection 

accuracy than that by GBDT.  

 

Figure 10 Left: detectable wheel flat signal, right: normal carbody accelerations in the time domain and the 

wavelet scalogram at the vehicle speed of 50 km/h 
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Figure 11 Left: miss detected wheel flat signal, right: normal carbody accelerations in the time domain and 

wavelet scalogram at the vehicle speed of 90 km/h 

 

Figure 12 t-SNE feature distribution map derived from the manually defined features in the speed range 25 km/h 

– 45 km/h. Blue points indicate the healthy condition. Red points indicate wheel flat. 

 

Figure 13 t-SNE feature distribution map derived from the features learned by LightWFNet in the speed range 25 

km/h – 45 km/h. Blue points indicate the healthy condition. Red points indicate wheel flat. 

In terms of real-time capability, FLOPs were used to roughly measure the computational 

complexity of a diagnosis model. A fair comparison between different deep learning models 

can be done by using one common FLOP counting function in the same software framework. 

As shown in Table 6 of Pub.1, the proposed LightWFNet costs over 10-times fewer FLOPs 

than other SOTA lightweight deep learning diagnosis models. The FLOPs of signaling 

processing methods can be theoretically estimated based on the relevant formulas in the 



7. Discussions 

 

133 

 

literature. We found that LightWFNet merely requires one-third of FFT’s FLOPs, given that 

the length of the input data sample is 5000. This indicates that LightWFNet has higher 

computational efficiency than conventional diagnosis approaches that rely on signal 

processing and feature calculation. On the other hand, the execution time highly depends on 

the software implementation and the execution platform. For onboard condition monitoring, 

the diagnosis models were assumed to be executed on embedded systems. As a 

demonstration, we have successfully tested LightWFNet on Raspberry Pi 3 Model B for real-

time inference, which is equipped with a four-core Cortex-A53 processor. However, the 

superiority of LightWFNet in computational complexity has not been revealed much. The 

inference latency of LightWFNet was not much smaller than another SOTA diagnosis model, 

although LightWFNet has 10-times fewer FLOPs. It ran slower than FFT, despite having one-

third of FLOPs. FLOPs did not translate to the real latency. This was the main limitation of 

Pub.1. We used Bayesian optimization to search for the most accurate CNN architecture and 

manually conducted several lightweight measures to reduce its FLOPs and parameter 

numbers. The on-device latency has not been involved in the design process. In the future, the 

on-device latency of each CNN component should be measured prior to the network design. 

The network architecture search should include both diagnosis accuracy and network latency 

as the optimization objective. In this way, the best tradeoff between latency and performance 

can be achieved.  

7.2. Are the algorithms for wheel flat detection robust to variable railway 

operating conditions?  

The machine learning and deep learning based diagnostic approaches highly rely on the 

quality and quantity of the training data. In Pub.1, the diagnostic model of the proposed 

LightWFNet has merely trained on one dataset collected in a single field test. Although the 

trained model has achieved outstanding performance for feature extraction and WFD, it is 

unclear whether the model can work well on other datasets without further training. This 

concern stems from a basic assumption of machine learning that the training and test data 

belong to the same feature space and follow the same probability distribution. When the 

training and test data are obtained from one field test that is performed under very similar 

operating conditions, the assumption is fulfilled. However, the limited data from a single field 

test may significantly underrepresent or misrepresent the true underlying data distributions. 

For instance, when the test wagon is replaced. the wagon runs at different speed ranges, or the 

data are measured by different devices, the data distribution may be changed. This issue is 

well known as covariate shift [69]. Therefore, an empirical study of model robustness against 

condition variations commonly encountered in normal railway operations was conducted in 

Pub.2. 

In the experiments, the axlebox accelerations measured under one condition were used for 

training, while those measured under a different condition were used for testing. The training 

dataset is termed the source domain. The test dataset is termed the target domain. The 

disparities of the feature distribution caused by speed variations, changing test wagons and 

different track irregularities were investigated by a distance measure. Also, their influences on 

diagnosis were tested by several WFD algorithms. We have found that the classical machine 

learning approach based on manually defined features was relatively robust to speed 

variations and changing test wagons, but vulnerable to severe track irregularities. As shown in 
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Figure 8 in Pub.2, severe longitudinal irregularities cause oscillatory interferences in axlebox 

accelerations. A discrete rail defect such as rail squats and broken rails or the turnout in a 

switch and crossing area could result in an impulsive interference. Several adjacent impulsive 

interferences form a periodic-like pattern. These interferences distort the frequency patterns of 

the acceleration signals and thus the extracted features. On the other hand, the deep learning 

approach was not much affected by severe track irregularities but was sensitive to speed. 

Given a fixed signal length, variations of vehicle speeds reshape the acceleration signal. The 

classifier considers that the high-speed signal is different from the low-speed one, which 

results in misclassification. The worst case is that the deep learning models are trained on a 

high-speed source domain and tested on a low-speed test domain. Changing test wagons 

refers to measuring axlebox accelerations on different wagons. As shown in Figure 7 in Pub.2, 

the wheel flat signals on different wagons look similar. Feeding the raw acceleration signals 

in the time domain directly into the deep learning model, its diagnostic performance is 

significantly impaired in the test domains. As shown in Table 5 in Pub.2, ResNet (which is a 

well-known CNN) achieved the detection accuracy of 99.01% on the source-domain dataset 

M1, 81.06% on the target-domain dataset M2 and 56.89% on the target-domain dataset M3. 

For further investigation, the feature maps learned from M2 and M3 datasets are visualized in 

Figure 14 and 15, noting that the target-domain datasets M2 and M3 are not involved in the 

training process of ResNet. In both figures, the wheel-flat signals and the healthy signals in 

the test domain can be well separated into two clusters. This indicates that ResNet is able to 

extract discriminative features from the unknown test domains. However, the cluster of M3 

healthy points (shallow green points in Figure 15) is far away from the M1 healthy cluster 

(shallow red points). In other words, the disparities between the source and target domain 

learned by ResNet are larger than those between the healthy and faulty classes within the 

target domain. Therefore, the classifier trained on the source domain is not able to correctly 

separate the two classes in the target domain.  

The robustness study conducted in Pub.2 had the worst-case assumption that the models were 

merely trained on one training domain. When the models are trained on the data with certain 

diversities, the robustness problem can be largely mitigated. Regarding speed variations, it is 

not hard in practice to collect the healthy and faulty data at different speeds. Even if data at 

extremely high or low speeds are not available, these speed ranges can be excluded from the 

diagnosis process to avoid misclassification. Regarding track irregularities, the training data 

certainly includes the information on diverse track and rail irregularities, as long as the 

training data is collected in normal rail operation. Consequently, the trained deep learning 

models are not much affected by track irregularities.  

The most critical robustness problem corresponds to the deployment of the trained diagnosis 

model on different vehicles that may have different dynamic behaviors. As training data on 

the target vehicle is mostly unavailable, the diagnosis model has to face the unseen target 

domain. When the target domain is very different from the existing source domains collected 

on other vehicles, the pre-trained diagnosis model would probably fail. The existing 

commercial condition monitoring systems avoid this issue by handing over the diagnosis 

decision to the users. Their systems typically derive a healthy indicator from the defined 

features and visualize the healthy indicator over time for the individual assets. The users have 

to define a diagnosis threshold based on the experience and historical data for the individual 

assets. This approach applies to scenarios where real-time diagnosis is not mandatory. As 
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investigated above, deep learning models can extract the discriminative features from the 

unseen target domains. These features can replace statistical features, since they are more 

robust to signal interferences caused by track irregularities. In the case of real-time fault 

diagnosis, the pre-trained diagnosis model is expected to make a correct classification for 

unknown target domains. This brings the next research question, how the robustness of the 

diagnosis algorithms can be improved. 

 

Figure 14 Features learned by ResNet on the source-domain dataset M1 and the target-domain dataset M2 

 

Figure 15 Features learned by ResNet on the source-domain dataset M1 and the target-domain dataset M3 

7.3. How can the robustness of the diagnosis algorithms be improved? 

In Pub.2, a data augmentation framework was proposed to generate synthetic data to extend 

the diversity of the source domain for model training and thus enhance the robustness of 
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diagnostic models. This data augmentation framework incorporates MBS to simulate vehicle 

failure behavior under arbitrary operating conditions and FWFSA as a new data augmentation 

technique to augment the simulated faulty data. The proposed MBS-FWFSA produces 

infinitive reality-augmented simulation data as the additional synthetic source domains. Its 

effectiveness in robustness enhancement has been experimentally validated in the cases of 

speed variations, changing test wagons and different track irregularities. Figure 16 and 17 

show the feature maps after data augmentation. ResNet was trained on the hybrid source 

domain, consisting of M1 and the synthetic data samples generated by the MBS-FWFSA 

framework. The added synthetic training data reshape the feature map learned by ResNet. 

Comparing Figure 17 with Figure 15, the green points get closer to the red points. 

Accordingly, the intra-class distance (i.e. the distance between the same-class points) is less 

than the distance between the source and target domain. This results in a significant 

improvement of detection accuracy on the target domain M3 (from 56.89% to 79.6%). 

 

Figure 16 Features learned by ResNet after data augmentation on the source-domain dataset M1 and the target-

domain dataset M2 

Nevertheless, the detection performance on the unseen target domain is still much worse than 

that on the source domain. In the previous experiments, the hybrid source domain merely 

includes M1 and the synthetic dataset. We hypothesize that more data with greater diversity 

can further improve model robustness. For instance, we include the M1, M2 and synthetic 

datasets in the source domain for training. The trained model is tested on the M3 dataset. The 

test accuracy is expected to be better than the previously achieved 79.6%. Table 6 presents the 

test results of ResNet trained on different source domains and tested on different target 

domains. The WFD accuracy on M3/M2 has not been largely increased by adding M2/M3 

into the source domain. Despite more training data, the batches of data samples were 

randomly picked and fed into the neural network without specific strategies during the 

training progress. In our case, one batch contains 32 data samples. Source domains’ 

proportion within these 32 samples are randomly determined which may cause the unbalanced 

learning progress and ultimately result in a biased diagnostic model. A classical algorithm that 

addresses this issue is known as empirical risk minimization (ERM) [70]. It averages the 
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training loss for each source domain at each training step. In other words, the proportion of 

the source domains within a single training batch should be equal. This may force ResNet to 

learn more general features of wheel flat, rather than specific domain features. 

 

Figure 17 Features learned by ResNet after data augmentation on the source-domain dataset M1 and the target-

domain dataset M3 

Table 6 Wheel flat detection accuracies of ResNet trained on different source domains and tested on different 

target domains 

Source Domain M1 M2 M3 

M1 99.01 ± 0.85% 81.06 ± 2.95% 56.89 ± 5.32% 

M1 + Syn. 97.72 ± 1.93% 86.33 ± 1.99% 79.62 ± 4.34% 

M1 + Syn. + M2 98.11 ± 1.11% - 80.67 ± 3.46% 

M1 + Syn. + M3 98.16 ± 1.44% 84.52 ± 1.74% - 

The robustness problem has been intensively studied as domain generalization during the last 

decade in the machine learning community. Apart from ERM, different algorithms have been 

proposed to incorporate the invariances across the source domains into a classifier, in hopes 

that such invariances can hold in unseen target domains for robust classification [71]. Several 

domain generalization solutions have been adopted for machine fault diagnosis [72-77]. They 

aimed at real-time and robust fault diagnosis in unseen target domains, being consistent with 

our goal for wheel flat detection. In the future, we will incorporate domain generalization 

methods into the model training procedure along with data augmentation towards robust fault 

diagnosis. 
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7.4.  How can track alignment be monitored in real time by using 

inexpensive sensors? 

The third publication stemmed from a project task, aiming to monitor the relative lateral 

displacement of the wheel on the rail (LDWR). The motivation was based on the hypothesis 

that track alignment was correlated to lateral acceleration and wheel displacement. To 

measure LDWR in real time, we have developed and validated the proposed computer vision 

solution based on the affordable off-the-shelf cameras in the third publication. However, the 

hypothesis cannot be verified due to the lack of acceleration measurement. The final 

validation test was performed under the supervision of the Italian railway infrastructure 

manager (i.e. Rete Ferroviaria Italiana). During the test preparation, the request for the 

accelerometer installation on the axlebox and bogie frame was rejected. Therefore, we cannot 

answer this research question based on the acquired data. It requires sensor fusion of wheel 

acceleration and the calculated wheel displacement. In this discussion, we mainly investigate 

the correlation between the wheel lateral displacement and track alignment. 

The test vehicle was equipped with a commercial track geometry inspection system provided 

by Mermec, as shown in Figure 18. It is based on the optical-inertial measurement principle. 

Two optical boxes (containing a laser and a high-speed camera) are used for the 

measurements of the rail profile and the rail location, while the inertial unit (incorporating 

high accuracy accelerometers and solid-state rate gyroscopes) makes available the linear and 

angular accelerations. The combination of optical and inertial data allows the determination of 

the track geometrical and rail profile parameters. The track geometry parameters measured in 

the track section between Santa Severa and Civitavecchia were provided by Mermec for 

comparison with our measurement. The Mermec system merely outputs the final processed 

parameters, which do not contain the information of wheel displacement on the rail. A direct 

comparison for the validation purpose is impossible. Instead, the correlation between the 

synchronized track alignment and wheel displacement is investigated. 

 

Figure 18 Mermec track geometry inspection system 

The synchronization between two measurements relies on timestamps and the known 

locations of the fixed points such as turnouts and level crossings. The alignments in different 

wavelength ranges and track gauge deviations measured in the synchronized track section are 
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presented in Figure 19. There are severe irregularities at around 290s and 900s, especially in 

large wavelength ranges. Comparing the calculated wheel displacement with the measured 

track alignment in the wavelength range D3, we observe that the peaks of the red curve are 

always accompanied by the blue peaks in Figure 20. This means, severe alignments 

consistently result in large lateral displacements of the wheel. However, the wheel 

displacement can occur without a large alignment. The video recordings with the calculated 

wheel displacement for this track section can be accessed at Youtube. In the video, the red 

point on the wheel refers to the wheel reference point detected by the proposed algorithm, 

while the blue point on the rail refers to the rail reference point. The lateral wheel 

displacement is the horizontal distance between these two points in the image plane. 

Observing the video, the small variation of the calculated wheel displacement could be the 

detection errors or uncertainties. This has been discussed in Section 4.5 of Pub.3. In some 

cases, (for instance between 5s-12s in the video,) the wheel movement can be clearly 

observed and has been detected by the algorithm, despite small track alignments. On the other 

hand, the wheel movement between 275s (4’35) and 305s (5’05) in the video is caused by 

large track alignments. To be more precise, we calculate the rolling windowed Pearson 

correlation coefficients, which represent the dependence of the track alignment as the 

excitation and the LDWR as the vehicle response. Figure 21 presents the color map of the 

correlation coefficients, obtained from the normalized LDWR and the normalized track 

alignment. The dark red indicates a high linear correlation, which often appears at the 

moments of large track alignments. This is consistent with our observation in Figure 20. 

 

Figure 19 Track alignment and track gauge deviation outputed by the Mermec system in the synchronized track 

section, where 𝐷1: 3𝑚 < 𝜆 ≤ 25𝑚, 𝐷2: 25𝑚 < 𝜆 ≤ 70𝑚, 𝐷3: 70𝑚 < 𝜆 ≤ 150𝑚   

https://youtu.be/yqDNkTQaOJU
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Figure 20 Comparison between the measured track alignment and the calculated wheel displacement in the 

wavelength range D3 

To derive track alignment, lateral accelerations must be measured. The envisaged hypothesis 

can be proved, as long as lateral accelerations can compensate for wheel displacements not 

caused by track alignments. This will be our future work. 

7.5. Is the proposed method based on optical sensing robust to variable 

railway operating conditions? 

The robustness of the proposed virtual point tracking algorithm mainly concerns two aspects. 

First, the generalization ability of the trained deep learning model should allow easy 

adaptation when the computer vision system is installed on different in-service vehicles. To 

examine this, we have conducted three field tests for data collection and system validation. As 

described in Section 4.1 of Pub.3, Test A was conducted within a workshop plant in Italy at 

low speeds (up to ca. 10km/h). Test B was performed on a different vehicle in Lithuania at 

speeds of around 20 km/h. Test C was carried out on the same vehicle as in Test A, however, 

in regular operating conditions on the main lines at speeds of up to 100 km/h. In each test, 

several hours of video sequences were recorded at 30 fps. Hundreds of images were randomly 

selected and annotated with the true coordinates of the defined reference points for the 

numerical experiments. When training and test data stem from the same test(s), the proposed 

LightPointNet can achieve the optimal detection accuracies, as reported in Section 4.3 of the 

third publication. However, its performance significantly degrades, when the trained 

LightPointNet model is directly applied to a different test dataset. For instance, the model 

trained on the source-domain datasets from Test A and B cannot work well on the target-

domain dataset from Test C. This generalization problem is consistent with that for WFD, as 

discussed in Section 7.3. To overcome this problem, we fine-tuned the model on a small part 
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(0.1%) of the target-domain dataset, which can be regarded as the “calibration” process. It 

requires manual annotation of the new training data. A promising way to improve the 

generalization ability and avoid the calibration process is to migrate the domain generalization 

measures into the model training process [71]. This requires the involvement of several source 

domains. In our case, only two source domains are available, which are not sufficient to force 

deep learning models to learn domain-agnostic features. More data with certain diversity 

should be collected by installing the computer vision system on different vehicles, changing 

the installation position of the cameras or using the cameras with different fields of view and 

resolutions. 

 

Figure 21 Rolling windowed Pearson correlation coefficients between wheel displacement and track alignment. 

The time window is set as 30 s. 

Second, the model is desired to work in different lighting and weather conditions, although 

optical systems are inherently sensitive to the variations of these conditions. The conventional 

track inspection systems which involve any optical sensors cannot work properly in bad 

weather such as rain, snow, sleet, etc. Apart from this, the system requires frequent cleaning, 

since the optical sensors are also vulnerable to contaminants. From the software perspective, 

this sensitivity can trace back to the fact that the image processing techniques employed in 

conventional track inspection systems rely on manually designed denoising filters, Canny 

edge detection and Hough line transform [50,51], which do not have the adaptive ability to 
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the new scenes and thus are vulnerable to condition variations. We have implemented a 

baseline method to detect and track wheel displacements based on these techniques. As shown 

in Figure 22, the pipeline mainly involves template matching for wheel detection and line 

detection for rail detection. The wheel flange’s template points and two points on the left 

railhead edge are manually selected in the calibration process. The two points on the rail are 

used to calculate the rail edge slope, while the points on the wheel are used to generate a 

wheel template. In pre-processing, the median filter is applied for noise reduction, and 

histogram equalization is applied for contrast enhancement. Canny edge detector is used with 

a Gaussian blur filter to extract the edges. Afterward, a template matching algorithm using 

correlation coefficients is used to detect the position of the wheel flange automatically. For 

line detection, several filters are stacked to emphasize the rail lines. Afterward, the 

probabilistic Hough transform is applied for line detections. A small range of the slopes is 

defined according to the pre-calculated rail line slope, allowing for selecting the desired rail 

line from the detected line candidates. Finally, the extended lines of the selected line sections 

are created, allowing to calculate the horizontal distance from the wheel reference point to the 

rail line. This baseline method works well on the video sequences from Test A and C but fails 

on the video sequences from Test B due to weak illumination.  

 

Figure 22 Pipeline of the baseline method based on conventional image processing techniques 

To further test the robustness of our LightPointNet and the baseline method against 

contaminants and different weather conditions, we generate a synthetically corrupted dataset 

by manipulating the original images. The representatives of the synthetic images can be seen 

in Figure 6 of Pub.3. Within the total 767 corrupted test images, LightPointNet achieves a 

detection accuracy of 77.9% with data augmentation and 63.4% without data augmentation, 

where the errors of the detected reference points are below 5 pixels. In contrast, the baseline 

method cannot deliver any meaningful results. Despite significant performance impairment, 

LightPointNet as a deep learning based algorithm shows certain robustness against 
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contaminants and bad weather. It has the potential to further increase its robustness by domain 

generalization. In contrast, the conventional image processing techniques highly rely on 

parameter tuning for the used filters and algorithms such as Gaussian filter, Canny edge 

detector and Hough line transform. The relevant parameters have to be calibrated manually 

for the target scenes. This calibration process requires high expertise and cannot be avoided. 

7.6. Other potential uses 

The 1D CNN proposed in Pub.1 and 2 was demonstrated for WFD. A CNN consists of an 

encoder for feature extraction and a classifier for classification. As discussed in Section 7.1-

7.3, the trained encoder can be used independently for robust feature extraction, instead of 

manually defined statistic features. By replacing the classifier with a decoder, it can be used 

for signal compression and reconstruction. This concept is well known as autoencoder [78].  

Real-time condition monitoring, especially vibration monitoring with a high sampling 

frequency, produces a large amount of data. In practice, only the extracted features and the 

metadata are transmitted wirelessly to the cloud server. The raw data is discarded due to 

limited network bandwidth or economic aspects, although it is crucial for continuous 

improvement of the data processing algorithms. General data compression techniques struggle 

to achieve high compression rates while recovering the data without losing information that 

reveals the condition of the machine. Autoencoder has been widely used for signal 

compression and reconstruction of images [79], seismic vibration data [80], inertial 

measurement data [81], and electroencephalography signals [82]. For machine fault diagnosis, 

Russel et al. [83] proposed a deep convolutional autoencoder (CAE) with local structure and 

physics-informed loss terms to compress acceleration signals. These works show the 

feasibility of CAE for task-aware data compression and construction. 

In the applications of onboard vibration monitoring, the encoder and the classifier can be 

integrated into the onboard embedded monitoring device for real-time fault diagnosis. The 

outputs of the encoder as the learned features and the diagnostic results can be transmitted to 

the cloud. The decoder is deployed on the cloud to reconstruct the raw acceleration signals 

from the received features. In this configuration, the monitoring device is able to conduct fault 

diagnosis and inform the relevant entities of the detected failures in real time. The learned 

features are used to derive a healthy indicator, revealing condition degradation over time. The 

reconstructed raw signals can be used to continuously train and update the diagnostic model, 

incl. the encoder, the decoder and the classifier. 

The virtual point tracking algorithm proposed in Pub.3 served as a part of track alignment 

monitoring. The calculated LDWR can be used for vehicle hunting detection.  

Hunting motion refers to the lateral swing of the railway vehicle (wheelset/bogie). The violent 

lateral swing above the vehicle critical speed damages tracks and wheels and may result in 

derailment. Bogie lateral accelerations are commonly adopted for hunting detection on in-

service vehicles. The standard detection algorithm relies on two manually defined features, 

namely the filtered RMS values and the counts exceeding an amplitude threshold [84]. This 

algorithm can detect the large amplitude hunting, but not the small-amplitude hunting [84]. 

Different signal processing methods and specific features have been investigated [84-87]. 

However, vibration monitoring is an indirect measurement method for hunting detection. It 
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can be interfered with by severe track irregularities and different vehicle conditions, which is 

similar to the robustness problem of WFD. In addition, it is extremely hard to validate the 

detection algorithm in practice. Even in a controlled experimental environment, a vehicle is 

hardly forced into hunting motions for measurement.  

Video recording of wheel movement is a direct measurement method. The proposed virtual 

point tracking algorithm is able to track the lateral movement of the wheel on the rail. The 

large periodic wheel displacement may indicate hunting instability. Once detected, the raw 

video data at that moment can be directly used as validation evidence.  
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8. Conclusions 

More and more condition monitoring systems are involved in the maintenance process for 

railway assets, accelerating the paradigm shift from traditional corrective and preventive 

maintenance towards efficient condition based maintenance and predictive maintenance. 

Condition monitoring aims to determine the up-to-date health conditions of the monitored 

assets for fault diagnosis and degradation prognosis. This requires intelligent algorithms for 

data processing. Especially in practical railway operation, real-time capability and robustness 

against variation of operating conditions are decisive for reliable monitoring results. 

Unreliable results such as false alarms and wear predictions can only disrupt normal 

operations. However, existing research in railway academia has not paid much attention to 

this.  

In the present cumulative dissertation, we conduct extensive research towards robust real-time 

condition monitoring and fault diagnosis for railway assets. Lightweight convolutional neural 

network (LCNN) is introduced for real-time fault diagnosis. Data augmentation is applied to 

generate synthetic data in arbitrary operating conditions, which may be difficult to obtain in 

practice. Adding the synthetic data in the training dataset can enhance the robustness of the 

trained LCNN (or other deep learning based) diagnostic models. The proposed methods are 

demonstrated in the applications of vibration monitoring for wheel flat detection (WFD) and 

video monitoring to support track geometry monitoring.  

The first accomplishment of our research is the proposed design process of LCNN for the 

given monitoring data. In different monitoring tasks, the dimension of the monitoring data as 

the input for the diagnostic model can be different. There exist no universal model applicable 

for arbitrary monitoring tasks. The proposed design process aims to automatically search for a 

suitable architecture of LCNN by Bayesian Optimization so that the identified LCNN can 

achieve an optimal diagnostic result for the given input data. Furthermore, we demonstrate the 

designed LCNN for WFD overperforms the classical diagnostic approach, which relies on the 

manually defined features, and other state-of-the-art lightweight deep learning based 

diagnostic models in terms of detection accuracy and computational complexity. As 

diagnostic algorithms for condition monitoring are commonly executed on embedded systems 

with limited computation power, the complexity of the algorithm is crucial in practical use. 

One interesting finding is that the complexity of the designed LCNN is even less than that of 

fast Fourier transform (FFT) in terms of floating point operations (FLOPs), given that the 

length of the input signal is 5000. Also, the designed LCNN can directly take the raw 

vibration signal as the input for WFD and avoid using signal processing techniques such as 

FFT. Therefore, the overall computational cost of LCNN is minimal. However, we 

experimentally found that executing an LCNN model on an embedded system takes no less 

time than executing FFT. In other words, the execution latency of a diagnostic model is also 

affected by other factors besides FLOPs. In future work, the platform-aware latency should be 

included together with the diagnostic accuracy as the optimization objective for the neural 

network search. 

Secondly, we empirically investigate the robustness of common diagnostic methods against 

the variation of vehicle speeds, monitored wagons and track conditions. The variation of 

operating conditions may cause the shift of data distribution (termed domain), which is not 
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“seen” by the diagnostic model during the training process. A fact is that the machine learning 

based models are vulnerable to the unseen domains. This has been proved in the conducted 

experiments. Adding a part of data samples from an unseen domain to the training dataset, the 

diagnostic performance for this domain will be largely increased. Therefore, the variation of 

vehicle speeds and track conditions is not a real problem in practice, as long as the training 

data can be collected at different running speeds and on different tracks. However, the 

variations of vehicle conditions may be infinite so we are not able to include all the possible 

domains in the training dataset. In practice, the diagnostic models are normally trained on the 

limited data collected in one or several field tests. Based on this fact, we propose to involve 

the synthetic data generated by the proposed data augmentation framework in the training 

dataset to enhance the robustness of the trained models. The data augmentation framework 

can take advantage of multibody dynamic simulation to mimic different vehicle dynamic 

behaviors under various operating conditions. It increases the diversity of the training dataset. 

This strategy of robustness enhancement has been validated in the experiments. However, the 

improved detection accuracy is not high as expected. Adding more data cannot result in 

further improvement, since the model may be saturated but still cannot be generalized to the 

unseen domain. By visualizing the distribution of the features learned by the trained 

diagnostic model, we find that the robustness problem mainly lies in the classifier rather than 

the featurizer. Although the model cannot achieve an optimal detection accuracy in the unseen 

domain, the featurizer within the model can still extract the discriminative features. In other 

words, the features extracted from the wheel-flat signals and the healthy signals in the unseen 

domains still form two clusters that can be easily separated. However, the distance between 

these two clusters is smaller than that between the source(/training) domain and the 

target(/test) domain. This is the reason why the classifier trained on the source domain fails to 

make a correct classification in the target domain. In future work, specific measures should be 

taken to align the domain disparities, which are studied in the research area of domain 

generalization(/adaptation). 

Thirdly, we demonstrate that a similar diagnostic approach based on LCNN and data 

augmentation can be adopted to process the image data for track geometry monitoring. The 

designed 2D LCNN can detect the virtual points defined on the wheel flange and the rail edge 

in the video. The horizontal distance between the wheel reference point and the rail reference 

point indicates the relative lateral displacement of the wheel on the rail (LDWR). We 

hypothesize that LDWR may support the reconstruction of track alignment by fusing with the 

wheel acceleration. This approach is the first attempt for track alignment estimation using a 

cheap camera and an accelerometer. The calculated LDWR can also be used as an intuitive 

indicator for hunting detection. Due to the lack of acceleration data, we cannot prove the 

proposed hypothesis for track alignment. Nevertheless, we analyze the correlation between 

LDWR and track alignment and conclude that severe alignments consistently result in large 

lateral displacements of the wheel. However, the wheel displacement can occur without a 

large alignment. To investigate the model robustness against bad weather and contamination, 

image corruption techniques are employed to generate synthetic data in the corresponding 

conditions. We compare our model to a conventional image processing approach on the raw 

images and the corrupted ones. The comparison reveals that the proposed deep learning based 

model has certain robustness against contaminants and bad weather, whereas the conventional 

image processing approach does not. However, the deep learning model still suffers from the 

generalization problem, despite data augmentation. This finding is consistent with that in the 
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application of vibration monitoring for WFD. In future work, domain generalization measures 

should be applied for robustness enhancement. Field tests in typical severe weather should be 

performed. Vibration monitoring should be applied to measure the wheel acceleration and 

synchronized with the developed computer vision system. The algorithm for data fusion 

should be developed and tested to verify the proposed hypothesis for track alignment 

estimation. 

Our research has been published in three papers. The codes of the developed methods have 

been published and accessible at GitHub. This will help other researchers who are interested 

in our work. The proposed methods for real-time data processing and robustness enhancement 

are not confined to the two exemplary applications. They can be adapted into similar 

scenarios. For instance, the algorithms for WFD can be directly applied for fault diagnosis of 

rotating machines. The algorithms for virtual point detection can be used in civil engineering, 

where the displacement of large infrastructure is measured by computer vision approaches. 
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