W) Check for updates

DOI: 10.1111/jiec.13250

RESEARCH AND ANALYSIS

AN
)} JOURNAL OF

INDUSTRIAL ECOLOCY W[ LEY

Contributions of extended batch tests for assessing technical

recyclability

A case study of low-value battery flows

Paul Martin Mahlitz! |
Vera Susanne Rotter?!

1 Chair of Circular Economy and Recycling
Technology, Technische Universitat Berlin,
Berlin, Germany

2 Stiftung Gemeinsames Riicknahmesystem
Batterien, Hamburg, Germany

Correspondence

Paul Martin Mahlitz and Vera Susanne Rotter,
Chair of Circular Economy and Recycling
Technology, Technische Universitat Berlin,
StraRedes 17.Juni 135,D-10623 Berlin,
Germany.

Email: p.maehlitz@tu-berlin.de;
vera.rotter@tu-berlin.de

Editor Managing Review: Deepak Rajagopal

Fundinginformation
Stiftung Gemeinsames Riicknahmesystem

Nathalie Korf!

| Georgios Chryssos? |

Abstract

Good product recyclability is a prerequisite for the transition to a circular economy.
However, today’s product complexity and diversity in the urban mine result in het-
erogeneous and variable waste flows affecting process recycling efficiency (RE) and
thus product recyclability. For batteries, waste flow composition and subsequent RE
are determined by usage behavior, collection, and sorting into chemical battery sub-
systems. This study aims to demonstrate how extended batch tests (EBTs) can be used
as a method to (a) determine battery-specific RE and (b) derive recommendations for
assessing and improving the recyclability of batteries. Three EBTs comprising exten-
sive characterization methods were carried out with mixtures of zinc-based (AZ) and
lithium-based (LIB) batteries. The results showed that 0.20-0.27 kg/kg of the input
mass was lost through flue gas and not recyclable. The metal fraction (0.15-0.19 kg/kg)

was easily recyclable, while the mineral fractions of LIBs posed challenges for recycling

Batterien (GRS Batterien). . ) . .
and recovery (RR) due to the high elemental heterogeneity and pollutants originating

fromindividual battery subsystems. In total, 0.79 kg/kg of AZs was recyclable, whereas
0.52 kg/kg of LIBs and 0.58 kg/kg of AZLIBs (a mixture of both) were recyclable after
further treatment. In conclusion, the study demonstrated how the EBT approach can
be used to extend recyclability assessment by providing waste flow characteristics for
comparison with output quality requirements, enabling assignment of battery-specific
RE and identification of poorly recyclable battery subsystems. Thus, the EBT approach

can help improve and assess technical recyclability in the future.
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1 | INTRODUCTION

In the transition to a sustainable and circular economy (CE), recycling and waste management play a crucial role in closing material cycles and

increasing resource efficiency. The European Commission (EC) therefore recently adopted the CE Action Plan (CEAP) promoting CE measures
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for various key product value chains (European Commission, 2020b). Batteries are one example of these key products. Lithium-ion batteries, in
particular, have been designated as a key enabler of a low-carbon economy and are notable for their versatile range of uses, rising sales figures
(Eurostat, 2019; Kwade & Diekmann, 2018b), and potential fire risk (Kwade & Diekmann, 2018a). One CEAP measure to promote sustain-
able product designs is the proposal of a new regulatory framework including more systematic durability, recyclability, and recycled content
in EU Ecolabel criteria (European Commission, 2020a; European Union, 2020). The design and lifecycle of batteries are therefore becoming
the focus of sustainable product policies (European Commission, 2019b) leading to the proposal of an amended battery directive (European
Commission, 2020a).

Over the past several years, the design and composition of batteries, especially lithium-ion batteries, have evolved rapidly as a result of product
innovations in vehicles as well as in electrical and electronic equipment (EEE) technologies. The increasing demands for battery capacity, efficiency,
and cost savings have led to continuous development of new chemical battery subsystems with ever-changing chemical compositions, such as the
development from NMC111 to NMC811 (Battery University, 2021; Huisman et al., 2017; Karabelli et al., 2020). This development has resulted
in (a) reduction or substitution of cost-intensive battery material such as cobalt and nickel (Huisman et al., 2020) and (b) polymetallic subsystems
enhancing battery performance while reducing costs. The resulting product diversity, in combination with varying lifetimes for EEE-specific battery
systems (Méhlitz et al., 2020) and the hoarding of batteries by end users (Pistoia, 2005), has led to a mixture of battery subsystems in the urban
mine with high variability and heterogeneity (Huisman et al., 2017).

At the end of life (EoL), these battery mixtures require suitable treatment technologies (Mohr, Weil, et al., 2020) to meet recycling efficiency (RE)
targets and enable good recyclability (European Commission, 2019a) despite the high material heterogeneity of batteries with critical (Amato et al.,
2016) and safety-relevant elements (Huisman et al., 2020). In addition to available treatment capacities, economic and ecological trade-offs, and
regulatory requirements (Commission Regulation [EU] No.493/2012, 2012), the choice of treatment technologies is determined by the composition
of battery waste flows, which can be influenced by sorting processes. Given the increasing share of low-value lithium batteries in the main waste
flow, the separation of cobalt- and nickel-rich battery subsystems is one possible measure to increase the recovery rate of Co and Ni from the
main waste flow in established recycling processes. The result is a waste flow containing various low-value subsystems subjected to alternative and
cost-effective recycling processes, such as thermal treatment (Lombardo et al., 2020; Schwich et al., 2021).

In contrast to RE, which is limited to one process and input, recyclability is an indicator for assessing the “ability of a product to be recycled at
end of life” (DIN EN 45555, 2019). It comprises a variety of scenarios consisting of setup of processes with individual efficiencies. The recyclability
assessment (RA) results are prone to errors, since potential recyclability is based solely on product-related characteristics, such as composition, con-
struction, size as well as (type of) connections between materials and does not include such EoL scenarios and their influence on recycling efficien-
cies. However, the composition of waste flows in which the product is treated plays a key role in determining process efficiency and, consequently,
the recyclability of the waste flow and each product it contains. This influence on recyclability becomes more significant as the constitutional and
distributional heterogeneity (Gy, 1995) of the products in the flow increases.

Going beyond potential recyclability requires considering the feasibility of recovery and the respective qualities of anthropogenic resources
(UNECE, 2018) to model possible EoL scenarios for RA. Each scenario contains a combination of sorting and treatment scenarios with individual
efficiencies that depend on both waste flow composition and treatment technology. The result is an indicator that can be referred to as technical
recyclability, which permits a more realistic assessment of product design.

However, including such EoL scenarios in RAis rarely considered and is made challenging by a lack of data. This challenge of collecting harmonized
data on waste flows characteristics and process efficiencies to create EoL scenarios can be approached top down (e.g., by modeling; Donati et al.,
2020; Wagner et al., 2021) or bottom up (by collecting data on a process level with batch tests). In waste management, batch tests are an established
method for internal quality management and assessing process performances (NVMP Association, 2014; Ueberschaar et al., 2017) for waste EEE
(WEEE) (Chancerel et al., 2011, 2016; Savi et al., 2013; WEEE Forum, 2013) and EoL vehicles (ELV) (Widmer et al., 2015). Ueberschaar et al. (2017)
demonstrated how extending the scope of conventional batch tests can further increase informative value for assessment of element-specific RE
by describing the fate of elements, identifying recycling drivers or barriers, assessing output qualities, recommending process optimizations for
increased recoveries, and so on.

This study aims to demonstrate the use and design of extended batch tests (EBTs) for characterizing mixed battery waste flows and deriving rec-
ommendations to assess and improve product and waste flow recyclability. To achieve these goals, a case study comprising three batch tests with
mixtures of low-value (zinc- and lithium-based) battery systems were carried out in a full-scale thermal treatment plant. Comprehensive character-
ization of input, process, and output in combination with the specification of quality requirements for recycling and recovery serves to determine
battery-specific RE and identify battery subsystems that negatively affect RE. The methodology presented using the recycling problem for low-
material battery mixtures is applicable to other battery systems and the results can be used to derive recommendations for improved RA as well as

for separation and treatment processes of batteries.
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FIGURE 1 Basicflow scheme of the thermal treatment process and description of extensions of the batch test design, based on Ueberschaar
etal.(2017)

Recycling efflcuency and recyclablllty

2 | METHODS
2.1 | General approach

In this study, EBTs were performed based on Ueberschaar et al. (2017) to determine battery-specific RE and assess the recyclability of batter-
ies in mixed waste flows by extending the scope of conventional batch tests by four levels. Firstly, in addition to mass balancing, the EBTs included
comprehensive characterization of input and output materials supplemented by screening samples throughout the process to identify process sinks,
the fate of targeted elements, and pollutant shifts (see Figure 1). Secondly, the plausibility of the results was checked in terms of mass conservation
using mass balancing in an input-output (1/0) balance of selected target elements. Thirdly, the overall batch test RE was calculated by determining
the fraction accounting for recycling (Commission Regulation (EU) No. 493/2012, 2012) by comparing output characteristics with quality spec-
ifications for possible recycling and recovery options. Fourthly, parameters and elements that would prevent a particular recycling option were
identified and studied in terms of their occurrence in specific battery subsystems present in the waste flow. Thus, battery subsystems containing
problematic constituents can be prospectively sorted out to prevent reduction of RE and waste flow recyclability and consequently increase the

product recyclability of other battery subsystems treated jointly within this waste flow.

2.2 | Experimental design of the extended batch tests

The EBTs were carried out at a full-scale thermal treatment plant for the disposal of ammunition, explosives, and hazardous waste. Input was treated
in a ceramic-lined rotary kiln for 30—45 min. at 750—850°C. Flue gas cleaning complies with the emissions limits of the 17th Federal Emission
Control Act (Federal Ministry of Justice, 2013) and comprises spray cooling, fabric filter, threefold wet scrubber, activated carbon filter, and SNCR-
DeNOx catalyst. The burned-out solid material is discharged via a wet slag purger (WSP) and subsequently sieved on-site with a screen size of
30 mm to separate coarse components (Figure 1, S1) from the fine fraction (Figure 1, S2).

The battery mixtures for the EBTs originated from an industrial sorting plant that separates, among other things, three different battery sys-
tems with low intrinsic value. These low-value battery systems are (1) zinc-based batteries (i.e., alkali-manganese “AIMn” and zinc-carbon “ZnC”
batteries), (2) primary lithium-based batteries (“LiPrim”), and (3) secondary lithium-based batteries (“LiRecharge”). The three battery systems were
provided in 60 L barrels and mixed upon feeding into the treatment plant to simulate different sorting and treatment scenarios (EBT1-3). Under
the current battery directive (Directive 2006/66/EC on batteries and accumulators and waste batteries and accumulators and repealing Directive
91/157/EEC, 2006/26.09.2006), all three battery systems belong to the same “other batteries” group, which means that the same RE targets of
50% by mass apply, and the choice of treatment technology is primarily an economic and ecological trade-off. The first and third EBT simulated the

EoL scenario with zinc-based and lithium-based batteries treated separately, whereas the second EBT was used to evaluate the possible benefits
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FIGURE 2 Process mass balances for the batches (a) AZ, (b) AZLIB, and (c) LIB. The mass values are normalized to 100 kg input

of treating AZs and LIBs jointly in terms of RE and recyclability. In detail, the three EBT inputs were composed of the following battery systems in
percentages by mass:

EBT 1: AZ 100%, in total 9.9 Mg
EBT 2: AZLIB 50% AZ and 50% LIB, in total 10.5 Mg
EBT 3: LIB 50% LiPrim and 50% LiRecharge batteries, in total 10.8 Mg

2.3 | Characterization of input material

Since a direct chemical analysis of untreated batteries is challenging in terms of sample preparation and chemical analysis, we chose the method of
indirect waste analysis based on product count in combination with a literature review of element mass fraction in batteries. For AZs and LiPrims,
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individual samples of 3—4 L batteries were taken upon feeding into the treatment plant over the complete processing time in regular intervals.
The total sample mass corresponded to approx. 0.5% of the input quantity supplied. Cylindric, prismatic, coin cells, and pouch cells were sorted by
means of labels and imprinted nominal voltages in the subsystems such as AIMn, ZnC, LiMnO,/Li(CF), (3 V), LiSOClI, (3.6 V), LiSO, (3 V), and others.
LiRecharge batteries are built into casings, impeding the direct identification of subsystems. Separation of low-value LiRecharge batteries in the
industrial sorting plant is based on product-specific use, such as in tools or e-bikes. Thus, three-quarters of these barrels were visually categorized,
and the respective product-specific use of subsystems in such devices was researched in the literature (Huisman et al., 2020; Stiftung Gemein-
sames Riicknahmesystem Batterien, 2007; Tsiropoulos et al., 2018). The elemental composition of the battery subsystems was determined from the
literature (European Portable Battery Association [EPBA], 2007; Stiftung Gemeinsames Riicknahmesystem Batterien, 2007; Wiirfel & Teipel, 2013)
and is provided in Supporting Information S2.

2.4 | Characterization of output material
24.1 | Sampling

As shown in Figure 1, eight samples were taken in total, comprising two samples of the solid output material (S1 and S2 in duplicates), two solid
screening samples (S3 and S4), and two liquid screening samples (L1 and L2). The sampling of the flue gas path (boiler ash—S3, fabric filter ash—
S4, wet scrubber water “WSW”—L2), and wet slag purger “WSP” (L1) helped to close mass balances and assess pollutant shifts in the process (see
Figure 1). The solid output material (S1 and S2) was collected in containers behind the process sieve and sampled according to LAGA PN98 (Lander-
arbeitsgemeinschaft Abfall [LAGA], 2001). For this purpose, containers were divided into two sectors, from each of which eight individual samples
of 5 L were taken and combined to form two laboratory samples (S1a, S1b and S2a, S2b) representing approximately 1% of the total solid output
mass. Both laboratory samples were analyzed in parallel for internal quality assurance and consideration of possible uncertainties from sampling.
The screening samples were taken toward the end of each test and comprised approximately 1 kg of the solid and approximately 1 L of the liquid
samples. The detailed sampling procedure is described in Supporting Information S1.

2.4.2 | Physical characterization

After drying (DIN EN 14346, 2007), the solid output samples were sieved in a Haver EML 450 DIGITAL PLUS using sieve trays with the nominal
diameter of 0.2,0.4, 0.5, 1.0, 2.0, and 10.0 mm. The subsequent visual inspection resulted in three different grain size fractions with uniform char-
acteristics, which were merged to examine possible recycling routes and adapt further analyses: fine-grain fraction < 2 mm (FGF), medium-grain
fraction 0—10 mm (MGF), and coarse-grain fraction > 10 mm (CGF).

2.4.3 | Chemical characterization

Selection of preparation and analysis methods was based on the distinction between metal and mineral fractions. The metal fraction consisting of
battery sleeves (i.e., metallic cell casings) and magnetically separated metal occurs in the CGF and MGF, whereas the mineral fraction is present in
all three grain size fractions. The metal fraction was analyzed directly by energy-dispersive X-ray fluorescence (ED-XRF), and a larger amount of the
battery sleeve sample was analyzed indirectly by melting. After comminution to analytical size, the mineral fraction was analyzed using XRF and
wet chemical analysis (for FGF). The elements and parameters studied include Al, As, Ba, C, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, Hg, K, Li, Mo, Mg, Mn, Na, Ni,

Pb, S, Sb, Tl, Zn, cyanides, and organic compounds. The detailed method by grain size fraction is described in Supporting Information S1.

2.5 | Process and element mass balances

Mass balances were performed for input and output masses as well as for target elements. The input mass was determined at the sorting plant,
whereas the output mass is the sum of solid residues, flue gas cleaning residues, and exhaust gas emissions. The solid residues were collected in
containers. Boiler ash and filter dust were collected in BigBags and weighed on a truck scale. The mass of added lime was subtracted from the total
filter dust mass by counting spray shocks with a defined lime mass. Metal oxides in the FGF were approximated to close mass balances, assuming
the main constituents to be present as stable metal oxides (see Supporting Information S1).

Element mass balance was performed for target elements with a high mass fraction (Al, Fe, K, Mn, Zn), hazardous potential (Cd, Pb, Cr), and

higher value (Co, Cu, Ni). As shown in Equation (1), the total output mass fraction of the kth element (Cﬁutput) is the sum of the element mass share
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per fraction j (m;%) multiplied by the respective average mass fraction of element k (cj"):

n

=k _ o .7k

Coutput - Z m]% j (1)
j=1

To check the plausibility and compliance of input and output, the results of input sorting of battery subsystems were combined with elemental
battery contents from the literature (Almeida et al., 2019; Al-Thyabat et al., 2013; EPBA, 2007; Huisman et al., 2020; Mudgal et al., 2011; Tsiropoulos
etal.,, 2018; Wiirfel & Teipel, 2013).

2.6 | Calculation of recycling efficiency and recyclability

Process mass balancing and output characterization are used for calculation of overall process RE, which is legally required for battery recycling
processes (Commission Regulation [EU] No. 493/2012, 2012) and described in European Commission (2012). According to Equation (2), RE is the

sum of the output flows mqpyt accounting for recycling (recyclable content) divided by the input mass mjnp,:

Z m output

Re =
minput

- 100% (2)
In contrast to RE, which describes a treatment step for a specific waste flow and process, recyclability is an indicator that considers the proportion of
a product type in different waste flows with different EoL scenarios and efficiencies. However, calculation of recyclability is not legally established
for batteries. Following DIN EN 45555 for (W)EEE, recyclability for a specific waste flow and process can be expressed as the quotient of the sum
of recycled components of a product divided by the total mass of a product.

2.7 | Options for recycling, recovery, and disposal

The focus of recycling and recovery (RR) options was on the solid residues: FGFs, MGFs, and CGFs. No further recycling options were evaluated for
flue gas cleaning residues. Identified RR options included (1) metal recycling for pig iron, steel, and copper, (2) recycling as construction materials,
and (3) backfilling. In the case that RR is not possible, landfill criteria have been evaluated. RR requirements and limit values were researched
in regulations, literature, and through inquiries with metal recyclers that provided product- and process-specific requirements for the respective
industry. A general description of the requirements is given in Table 1. Detailed information as well as limit and reference values are provided in
Supporting Information S1 and Supporting Information S2.

If a recycling option specifies limit or allocation values, the measurement result is normalized to the limit value by dividing the measurement
result by the limit value. If the quotient is greater than 1, the limit value is exceeded. If it is less than 1, the limit value is not reached. For recy-
cling routes in which there are no limit values but instead guidance values for secondary raw materials, the qualities are compared with these

requirements.

3 | RESULTS
3.1 | Input characteristics

The manual sorting of the low-value battery systems AZ, LiPrim, and LiRecharge used to mix the EBT input resulted in the following mass fractions

of battery subsystems:

1. AZ:84% AIMn, 11% ZnC, 0.1% LiPrim, 0.2% NiCd, 0.7% NiMH, and 4% other batteries

2. LiPrim: 51% lithium-manganese-oxide (LiMn,0O4) and lithium graphite fluoride (Li(CF),,), 39% lithium thionyl chloride (LiSOCI,), 6.4% lithium
sulfur dioxide (LiSO5), 2.1% LiPrim unknown, 0.8% lithium iron disulfide (LiFeS,), 0.6% other

3. LiRecharge: 32% power tools (lithium-nickel-manganese-cobalt oxide LINiMnCoO,: NMC, lithium-manganese oxide—LiMn,0,4: LMO), 32% e-
bikes (NMC, LMO, lithium-cobalt oxide LiCoO,: LCO, lithium-iron phosphate LiFePO,: LFP), 20% round cells (NMC, lithium-nickel-cobalt-
aluminum oxide LiNiCoAlO,: NCA, lithium titanate Li4 TisO4, or Li, TiO3: LTO), 11% flat cells (Li-Polymer), 5% other
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The composition of these fractions was combined with the literature data in the earlier-mentioned mixing ratio for calculation of elemental input
composition (see Supporting Information S2).

3.2 | Process mass balance

The mass balance results were normalized to 100 kg input masses and are shown in Figure 2a-c. For all batches, 0.20—0.27 kg/kg of the input
was discharged via the flue gas cleaning system comprising of exhaust gas (0.17—0.21 kg/kg), boiler ash (0.01-0.02 kg/kg), and filter dust
(0.01—0.04 kg/kg). The metal-rich and mineral solid residues left the process via the WSP and account for 0.73—0.80 kg/kg.

After drying and sieve classification of the samples, more homogeneous grain size fractions were obtained. Extrapolated to the normalized input,
these grain size fractions account for 0.20—0.25 kg/kg FGF (<2 mm), 0.05—0.06 kg/kg MGF (2—10 mm), and 0.48—0.53 kg/kg CGF (>10 mm) in
relation to the normalized plant input (see Supporting Information S2). Comparing the three batches shows similar mass distributions of the output

fractions across both the flue gas path and the solid treatment residues. Slight differences are observed for the treatment of LIB.

3.3 | Characteristics and recyclability assessment of EBT output
3.3.1 | Coarse-grain fraction (CGF)

After treatment, the CGF contained both completely opened and cracked battery sleeves. The latter still contained their components and fine
mineral material, while volatile constituents were released to the gas phase. Subsequent manual sorting and opening of the cracked sleeves resulted
in a proportion of 0.15—0.19 kg/kg of pure battery sleeve cases (hereinafter referred to as sleeve scrap) without adhesions and 0.25—0.36 kg/kg of
sleeve content. As shown in Figure 3a, the sleeve scrap analysis showed that the AZ is comprised of low-alloyed steel with 0.98 kg/kg Fe, whereas
the LIB sleeve scrap contains more alloying elements, such as Ni (0.04 kg/kg), Cr (0.04 kg/kg), and C (0.01 kg/kg).

The sleeve contents of all battery systems contained about 0.50 kg/kg ferromagnetic constituents (Fe, Ni). The ED-XRF screening showed Mn
(0.25 kg/kg) and Zn (0.08 kg/kg) as the AZ fraction’s main constituents (see Figure 3b). Other constituents were present in low mass fractions. The
LIB sleeve content is characterized by higher material diversity with several elements in mass fractions between 0.02 and 0.04 kg/kg (Al, Cu, Fe, Zn,
Si, Ni).

Direct metal recycling of the CGF fraction is only possible considering the impact of pollutants from the more heterogeneous sleeve contents
and may require conditioning in line with subsequent use. The investigations showed that the steel qualities in AZs and LIBs are different: low-
alloy steels are used in AZ batteries, while higher-alloy steels were identified in LIBs. Joint metal recycling of the sleeve scrap is possible, accepting
a downcycling of the LIB steel fraction. Provided that S, Se, Sb, and Cu are within the acceptance range, the LIB sleeve content can be used to
produce alloy steel. Due to its high metal content, the LIB sleeve content remaining in the CGF is different from the FGF released by thermal treat-
ment and thus could be of interest for copper recycling with integrated nickel and cobalt recovery. For the AZ coarse fraction, separation of the
sleeve scrap from the remaining contents is not necessary. Based on the composition, this fraction could be used to produce a pig iron-manganese
alloy (e.g., in the DK process with zinc recovery; DK Recycling und Roheisen GmbH, 2009), provided that it contains no accompanying interfering

elements.

3.3.2 | Medium-grain fraction (MGF)

Figure 3c shows the composition of the MGF that differs strongly from the FGF. For all three batches, the magnetic separation resulted in
approximately 0.50 kg/kg ferromagnetic metals. The non-ferromagnetic fraction of AZs consists mainly of Mn and Zn (oxidized MnO, and ZnO).
Except for slightly higher Cu contents (approximately 0.01 kg/kg), the ED-XRF screening showed no significant impurity contents for the AZ
MGF. This Cu content is within the acceptance range, making direct recycling of 0.75 kg/kg of the AZ MGF possible in the DK process or steel
processing.

In contrast, the non-ferromagnetic components of the LIB MGF are present in lower mass fractions (0.12 kg/kg Mn, 0.08 kg/kg Al, 0.05 kg/kg Fe,

0.04 kg/kg Cu), which are too low and heterogeneous for recycling in one of the metal routes considered.
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FIGURE 3 Elemental mass fractions in the coarse-grain fraction (CGF): (a) sleeve scrap, (b) sleeve content as well as the (c) non-ferromagnetic
medium-grain fraction (MGF). The underlying data for this figure can be found in Supporting Information S2

3.3.3 | Fine-grain fraction (FGF)

The chemical compositions of the burned-out FGF (LOI < 0.01 kg/kg) of AZs and LIBs differ significantly from each other. AZs show higher contents
of Fe, Zn, and Mn (>0.10 kg/kg). In contrast, the LIB fine material shows a much higher material diversity. With wet chemical analysis, 0.42 kg/kg
(LIBs) to 0.74 kg/kg (AZs) of the FGF material composition could be identified (see Figure 4b,d,f). Assuming that the FGF main components are
present as stable metal oxides, calculated oxygen contents of 0.21—0.26 kg/kg are obtained (see Figure 4). The FGF main constituents in the AZ
fraction are Fe (0.24 kg/kg), Zn (0.24 kg/kg), and Mn (0.20 kg/kg) with a mass fraction above 0.20 kg/kg TS. The main constituents of LIBs are Mn
(0.16 kg/kg), Fe (0.06 kg/kg), Al (0.04 kg/kg), and Cu (0.02 kg/kg), whereas AZLIBs contained mainly Mn (0.17 kg/kg), Zn (0.11 kg/kg), Fe (0.06 kg/kg),
Al (0.04 kg/kg), and Cu (0.02 kg/kg). Organic pollutants such as PCBs, PAHs, or CHCs were not detected.

Comparing the FGF characteristics with requirements for metal recycling, construction material recycling, backfilling, and landfilling did not
reveal any clear recycling options for all batches. Figure 5 shows the FGF characteristics normalized to the specifications of LAGA M20/M19, landfill
classes (LC 0O-11), and the Stowage Ordinance for backfilling. The recyclability for metal recycling was estimated via the main components (see
Table 1) and validated by individual queries to the respective industry.

For AZs, the high content of Fe, Zn, and Mn (Figure 4a) allows for integrated recycling in pig iron production (DK process), steel recycling, or use
as a construction material. However, the limits for halogens and heavy metals in the eluate must be met as a prerequisite. The content of Zn, Ni, and
Cu exceeds the specifications (Figure 5b) for backfilling. In the eluate, exceedances of As and Cl are limiting. The DOC content is generally too high
for possible landfill. However, given possible alternatives, backfilling or landfilling for AZs is not necessary.
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FIGURE 4 Element mass fraction of the FGF for AZ (a), AZLIB (c), and LIB (e) with the respective mass share of identified elements and oxygen
(b, d, f). The underlying data for this figure can be found in Supporting Information 52

The heterogeneous composition of lithium batteries, which contain both valuable and harmful substances in low mass fractions (Figure 4c),
impedes RR options. The contents of valuable substances (such as Cu, Ni, Zn, Fe) are too low for metallurgical processes (pig iron, steel, copper;
see Supporting Information S1), whereas the allocation values for backfilling are exceeded (Figure 5b). High contents of As, Cd, F, Cl, and Mo in
the eluate and As, Cd, and Cr in the solids interfere with all RR options (Figure 5a). High contents of disturbing halogens can be traced back to
individual battery systems (e.g., F from Li(CF),, and Cl from LiSOCI,). However, the As, Cd, and Cl contents are limiting for usage as construction
materials. Under certain circumstances, recycling as construction material may be possible after further processing and immobilization or segrega-
tion of halogens and heavy metals. Use in the cement industry requires case-by-case examination and further long-term elution tests. The problem
of recovering this polymetallic and heterogeneous material is illustrated particularly well by the fact that all landfill class limits are exceeded.

Joint treatment of LIBs and AZs leads to unintended reduction of valuable substances (see Figures 3 and 4) and does not yield compliance with
limit values or RR specification. Finding appropriate RR options for AZLIBs is thus approximately as difficult as for LIBs. The complete results can
be found in Supporting Information S2.

3.4 | Input-output balance

The input-output (I/O) balancing of target elements enables us to draw a conclusion about process sinks and check the plausibility of mass conser-
vation. Elements with more than one mass percent of the total process output (Al, Co, Cr, Cu, Fe, K, Mn, Ni, Zn, Cd, and Pb) were considered. For AZs,
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0-111), and Stowage Ordinance for backfilling. Easily releasable cyanide (CN, e.r.), dissolved organic carbon (DOC), extractable lipophilic substances
(ELS), loss on ignition (LOI), phenol index (PI), total dissolved substances (TDS). The underlying data for this figure can be found in Supporting
Information S2

the results in Table 2 show the approximate match (output divided by input O/I) between the element mass in the output and the calculated input
composition. For LIBs, slight differences between input and output are observed. Lower Al and Co contents were measured, whereas the Cu, Fe,
and Mn contents matched well. Increased Cr and Ni contents in LIBs and AZLIBs can be traced back to the alloyed steel sleeves. The low Al content
can be explained, among other things, by the challenges of ED-XRF analysis for light elements in complex matrices (Mahlitz et al., 2019). The low
Co content in LIBs and AZLIBs is plausible due to the prior separation of cobalt-rich lithium subsystems. In summary, the I/O balancing proves EBT
plausibility and shows an approximate match between input and output characteristics. Thus, the EBT approach can serve as a characterization
method for complex battery flows to infer their approximate elemental composition.

As part of the revision of the Battery Directive, new measures and requirements will be imposed on lithium-ion batteries, among others, which
include, for example, element-specific recycling efficiencies and the verification of heavy metal contents (Cd, Pb) (European Commission, 2020a).
The EBT approach can provide this information as demonstrated in Table 2, which shows the element-specific recycling efficiencies of the target
elements. The minimum RE (RE,;,) considers the target element in the recyclable fraction of the output, whereas the maximum RE (RE,.,) also
considers the potentially recyclable fraction. A very low RE is observed for elements in LIB and AZLIB, which are predominantly present in the FGF
(e.g., Li).

4 | DISCUSSION

This section discusses the EBT approach’s contribution to assessing and improving recyclability and its use in characterizing mixed battery waste

flows from the urban mine.
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FIGURE 6 Proportions of recyclable, nonrecyclable, and potentially recyclable components after further treatment

4.1 | Recycling efficiency of thermal treatment

Thermal treatment allows cost-efficient and safe treatment of low-value batteries with a high explosion risk. The high temperatures crack
all sleeves, releasing the electrolyte, rendering the active material inert, and producing an inactive burned-out material comprising metal and
mineral fractions. However, in terms of high RE, 0.17—0.22 kg/kg of volatile constituents are lost in the first step via flue gas and are thus non-
recyclable (see Figure 6).

While most of the metal-rich CGF and medium-grain fraction (MGF) can be recycled in subsequent metal-recycling processes, the fine-mineral
fraction (FGF) of LIBs and AZLIBs consists of heterogeneous material mixtures bearing low contents of valuables and pollutants. The scenario of
treating AZs and LIBs jointly did not result in process or output quality improvements with constant or higher RE. Compared to the pure AZ fraction
with an overall RE of 79%, AZLIBs result in lower sleeve scrap qualities and higher material diversity of the mineral fraction that lowers RE. For all
batches, the proportion of metal scrap is the decisive material fraction relevant for determining total recyclable content and meeting mass-based
RE targets. The EBT results showed that the potentially recyclable components could be made available for recycling by subsequent crushing of
the closed battery sleeves and adjusting the screen diameter from 10 to 2 mm to separate the heterogeneous fines (FGF). Thus, RE of more than
50% by mass is achievable for lithium-based systems provided that the metal content of battery sleeves does not decrease, which is regarded as
critical in view of the low-metal battery pouch cells.

Theresultsindicate that separation and subsequent thermal treatment of low-value batteries can achieve the specified RE targets. Consequently,
the legally required RE for the low-value battery mixtures addressed in this study can be achieved with thermal treatment. Given that the mass share
of low-value batteries is expected to grow continuously (Huisman et al., 2017), separate treatment of subsystems must be the goal if subsystems are
identifiable in sorting. The scenario of separating AZs and LIBs and subsequent recycling (EBT1 and EBT3) enables better recycling and recovery

(RR) options due to more homogeneous material characteristics and increases the RE.

4.2 | EBT for recyclability assessment of batteries

The product-centric RA described in DIN EN 45555 (2019) is only applicable if a product is treated and recycled separately. As a result of available
collection and treatment infrastructures as well as product identifiability and separability into chemical battery subsystems, however, the recycla-
bility of the product is more dependent on the recyclability of the waste flows in which the products are collected.

Consequently, both easily and poorly recyclable products influence the RE and thus the recyclability of other products in the waste flow. Waste
flow characteristics and the selection of recycling processes are thus decisive factors influencing individual product recyclability. These factors
must be considered for an improved description of EoL scenarios aiming to include the technical aspects in RA (DIN EN 45555, 2019). However,
these data are not yet available on a sufficiently detailed level. EBT can help to fill necessary data gaps in RA here. Batch tests that are legally
required to determine RE (Directive 2006/66/EC on batteries and accumulators and waste batteries and accumulators and repealing Directive
91/157/EEC, 2006/26.09.2006; Commission Regulation (EU) No 493/2012, 2012) can be extended by including the product focus on the input and
evaluation of potential RR to allow characterization of mixed battery waste flows regarding technical recyclability and allocation of RE to battery
subsystems. Further, EBTs can identify battery (sub)systems containing elements such as Cl and F that prevent recycling options by exceeding limit
values. Furthermore, the detailed results of the EBT and the comparison with RR options can be used to define end-of-waste criteria (European

85U8017 SUOWILLIOD @A 181D 3|cedl[dde 8Ly Aq peusenob afe sajoe O ‘8sN JO S8|nJ oy Akeid178U1UO /8|1 UO (SUORIPUOD-PUR-SLUIBIALIO" A 1M ALRIq Ul UO//:SdNL) SUORIPUOD PUe Swie | 8U18eS *[£202/20/80] UO ARiqiauljuo A8 (1M ‘ulleg 1BeseAluN 8yasiuyoe L Aq 0GZET 98! [/TTTT 0T/I0pAu0D" A8 | M Ake.q1puluo//:Sdny Woly pepeojumod ‘€ ‘2202 ‘06260EST



) sournaLoF MAHLITZ €T AL.

mil_ Wl LEY ) INDUSTRIAL ECOLOCY

Commission, 2018) to create legal certainty and a level playing field as well as remove unnecessary administrative burdens (European Commission,
2021). However, this depth of information requires an equally higher (analytical) effort, as this study shows.

Nevertheless, representative RA results for one battery subsystem require data on the characteristics of all waste flows in which the product is
present. Data from different studies on other treatment processes must be collected in a harmonized way to determine the product recyclability
independent of a process, providing comparable results that are representative for the corresponding product (Commission Regulation (EU) No
493/2012, 2012). Making results from the EBT approach available, for example, in an urban mine knowledge database (Huisman et al., 2017; Korf
et al., 2019; Mahlitz et al., 2020) as a possible extension of the Raw Material Information System (RMIS) (EU Science Hub, 2021), is seen as a long-
term goal of improving RA. This knowledge allows the calculation of recyclability in different scenarios and the assessment and definition of targets
effectively focusing on the most (environmentally) relevant materials.

For LIBs and AZLIBs, this study showed that separating low-value batteries from the mixed lithium battery waste flow can lower the recyclability
of the waste flow. This separation results in lower RE of the considered waste flows, favoring higher RE of the better recyclable and more valuable
subsystems of the main flow. Vice versa, without separation of low-value systems from the main flow, RE is decreased in favor of meeting fixed
mass-based RE targets. Therefore, we recommended linking efficiency targets to the incoming battery waste flow’s recyclability rather than static
mass-based targets since maximum material recovery was not always favorable under environmental aspects (Mohr, Peters, et al., 2020). Thus, the
safe treatment of currently minor flows of separated low-value battery mixtures becomes feasible and legally compliant. Nevertheless, the results
from the EBT approach must be included in future RA to derive both eco-design guidance that includes technical recyclability (DIN EN 45555,2019)

and guidance for recycling processes to cope with challenging waste flows not yet properly recyclable.

4.3 | High-quality recycling

High-quality recycling is mentioned in the amended waste framework directive (WFD) (European Commission, 2018), which is an essential compo-
nent of CE measures and should be prioritized when deciding between recycling options. However, the RE calculation is based on the definition of
recycling from the WFD and does not distinguish between high quality and downcycling. At present, there are no standardized methods for evalu-
ating recycling quality. For example, environmental performance (Reuter et al., 2015), environmental relief (Geyer et al., 2016), and the cumulative
energy input of recycling processes (Schifer, 2021) are used to calculate recycling quality. A next step in weighing recycling processes would be
development of a systematic and harmonized evaluation method for high-quality recycling based on a solid database of modeling and empirical
surveys such as the EBT approach.

In terms of generating pure and defined output qualities, thermal treatment of low-value batteries does not represent high-quality recycling for
all scenarios examined here. In particular, the generated mixed mineral fraction of the LIB or AZLIB fraction must be critically considered. After
separating the remaining metal components, high-quality recycling of the mineral fraction is hindered by insufficient contents of valuable materials
and the presence of disturbing impurities. Thus, the EBT approach can be used to assess high-quality recycling by providing comprehensive output
characterization for comparison with detailed recycling specifications. Thermal treatment of the investigated battery mixtures primarily serves the
purpose of safe and legally compliant treatment to achieve mass-based RE targets. In the future, backfilling and downcycling of metal alloys will
have to be excluded as recycling options in the sense of a CE.

5 | CONCLUSION

This study demonstrates how the EBT approach was designed and can be applied to (1) determine RE, (2) approximately infer elemental input
composition, and (3) identify problematic battery subsystems that prevent recycling options.

The EBT approach encompassing three scenarios for the thermal treatment of low-value battery systems showed that 0.20—0.27 kg/kg of
battery components are lost via flue gas and about 0.15—0.19 kg/kg can be recycled as steel scrap. However, while the mineral fraction of
the zinc-based AZ fraction can be recycled (overall RE of 79%), the heterogeneous elemental composition of lithium-based batteries negatively
affects the recyclability of the mineral fraction with an overall RE of 0.52—0.58 kg/kg. In particular, individual battery subsystems contribute
to the entry of interfering substances such as halogens. Nevertheless, LIBs and AZLIBs can achieve static mass-based RE targets with further
processing.

In conclusion, the results from the EBT approach in simulating different collection and sorting scenarios for batteries can serve as the basis for
assessing and improving the recyclability of both the treated waste flow and battery subsystems. Harmonized data from sorting and treatment
trials are essential for achieving and evaluating CE measures. Furthermore, with appropriate methodological extension of such batch tests, the EoL
data generated could serve multiple purposes, such as determining technical recyclability, and should be made available for product design and

evaluation of realistically achievable RE.
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