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Abstract

Pattern formation and the coarsening of growing surfaces htiracted wide interest
in scientific research during the last few decades.

Current fields of interest include not only the developmédrapplications in nan-
otechnology combined with the fabrication of the corregpog microscopic struc-
tures but also the explanation of a wide range of biologicamgh processes.

In the area of nanotechnology there has, in the last decae®, jparticular inter-
est in the fabrication of quantum dots, because of the unadgetronic and optical
properties of these "zero-dimensional” objects. The goihakself-organization holds
the key to the effective and cheap fabrication of such stinest Obviously the fabri-
cation of devices on an atomic scale requires rigorous #tieat observations of the
underlying processes.

Other fields in which self-organized growth is of great ietgrare biology and
medicine, where the interdisciplinary findings of both phigts and mathematicians
are increasingly providing detailed explanations of bidroal processes at a micro-
scopic level. During the last few years in particular, the aftheoretical models to
observe the development of cell tissues is becoming moreramd important for the
development of effective therapies in the treatment of eanthe aim of the present
work is to make a contribution to understanding self-orgadigrowth and to provide
the basis for a possible method of control.

We use two well established models.

First we describe epitaxial growth by means of stochasfierdintial equations in
order to manipulate the crystal growth process. To do thisehee various growth
equations and combine them with existing methods from obttieory to provide a
time-delayed feedback. This leads to the theoretical gegun of in situ influences
on the evolution of roughness, where we focus in particutathee experimentally
important early phase.

In the second part of the work we use a kinetic Monte Carlo oteto describe
the formation of cell tissues in in-vitro mono-layers. Usitihe findings of an off-
lattice model and the experimental observations of tumbs,ca simulation tool is
generated which enables one to observe the dynamics andhatogy of real size cell
populations. This tool makes possible the detailed armlysbiologically relevant
processes and their impact on growth.






Zusammenfassung

Die wissenschaftliche Untersuchung der Strukturbildungcd Wachstumsprozesse
ist seit Jahrzehnten von immenser Bedeutung.

Sowohl die Entwicklung von Anwendungen in der Nanotechgi@oserbunden
mit der Herstellung entsprechender kleinster Struktuaésrauch die Erklarung von
Wachstum in seinen verschiedenen Variationen in der Bielegnd aktuelle For-
schungsgebiete.

Im Bereich der Nanotechnologien hat sich innerhalb desdetidahrzehnts unter
anderem die Fabrikation von Quantenpunkten als eine fidler&orschungsrichtung
etabliert, nicht zuletzt durch die sehr speziellen elekchen und optischen Eigen-
schaften dieser null-dimensionalen Objekte". Die Helstgl von Strukturen auf der
atomaren Langenskala erfordert dabei entsprechendesetisebes Verstandnis der
grundlegenden Prozesse. Als sehr vielversprechendertZAfigaeine effektive und
kostenguinstige Herstellung entprechender Halbleitéesiren hat sich das Ausnut-
zen von selbstorganisiertem Wachstum herausgestellt.

Ein weiterer Bereich, in dem selbstorganisiertes Wachsinegrosse Rolle spielt,
ist die Biologie und Medizin, wobei zunehmend Kenntnisse @er Physik und Ma-
thematik interdisziplinar kombiniert werden, um biolaghsmedizinische Prozesse de-
tailliert zu beschreiben. Insbesondere das VerstandniEmatstehung von Zellgewebe
gewann in den letzten Jahren immer grossere Bedeutungef@ntivicklung effektiver
Therapien in der Krebsforschung.

Ziel der vorliegenden Arbeit ist es, einen Beitrag zum \&mghis von selbstorga-
nisierten Wachstumsprozessen zu leisten und einen Anisaine mogliche Kontrolle
dieser zu erarbeiten.

Dazu werden in den Untersuchungen zwei etablierte Modelheigzt. Zum einen
wird das epitaktische Wachstum mit Hilfe stochastischdfe@ntialgleichungen be-
schrieben, um anschliessend eine Anwendung zur geziekemussung von Kri-
stallwachstum theoretisch herzuleiten. Dazu werden fie¥dene bekannte Wachs-
tumsgleichungen numerisch geldst und anschliessend didexuKontrolltheorie be-
kannte Methode der zeitverzogerten Riuckkopplung in diacBlagen eingefluhrt.
Dies fuhrt zu einer theoretischen Beschreibung einer ' &influssnahme auf die
Rauigkeitsentwicklung, wobei besonderes Augenmerk afigi Experimente wich-
tige Anfangsphase gelegt wurde.



Im zweiten Teil der Arbeit verwenden wir eine kinetische Narlo-Methode,
um die Bildung von Zellpopulationen in in-vitro Monolayezo beschreiben. Auf der
Basis eines off-lattice Modells und von experimentellertdgsuchungen zu Tumor-
zellpopulationen wurde eine Simulation erstellt, mit dehgealistische Populations-
grossen hinsichtlich der Dynamik und der resultierendenpgiiologie beschreiben
lassen. Dabei kdnnen im Modell gezielt verschiedene bis@itgyrelevante Prozesse in
ihrem Einfluss untersucht werden.
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Preface

If you asked fifty people of various ages what were the mosbimamt advances in
technology from the last few years, you would get many ddféranswers. Some
would say computers, some the internet, photographersdvgayl the digital camera,
business people might favour the mobile phone and childiengtations.

But what most of the answers would undoubtedly have in commounld be a
relationship to the miniaturization and optimization oé&lonic or optical devices.
Based on the answers one could say that nanotechnology of tme most important
technological advance in recent years.

Since 2002 there has been a website for very small scale swatgre thenanopic-
ture of the day is choseh A lot of recent investigations into small scale science are
presented and there are also some futuristic speculationsg ¢he direction of nan-
otechnologies.

In Fig. 1 we can see one of thg
possible future applications of thi
technology. The 'nanobot’ is to be
constructed to help doctors destro
unwanted cells. As the authors sa
'this image portrays a tiny, nanome
ter sized, fully functional autonomo
robot helping to destroy a faulty red
blood cell” When we think about
the construction of such a nanobo
we need to consider the problem
involved. One major goal is to solve
:2?tﬂfleirgtr%fntizedrgﬁtg;a:z giige igure 1: Nanobot destroys a faulty red blood
small robot, where length scales arge" [Mav03].
of the order of atoms. Biological behaviour, on the otherchaa explained using
length scales of the order of biological cells. The solutsogoing to involve nanoscale
work from a lot of different scientific fields. One could bedaen for thinking that
such a robot is either impossible or will take the whole cgnta construct, but in fact
science is already beginning to solve the first part of thélera. One of the scientific
fields involved is the explanation of the properties of materon an atomic scale and,

Iht t p: / / www. nanopi cof t heday. or g
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of course, the development of the necessary experimergaledtional methods (see
Fig. 2).

In this thesis the reader will find in-
vestigations into two specific systems
where the concept ofelf-organization
generates the kind of growth system we
want to explain by statistical methods.
First we focus on the formation of struc-
tures during the spatio-temporal evolu-
tion of the roughening surface. One of
the key questions in crystal growth to-
day is the problem of fabricating the
surface in a specified way, but cheaply.

Epitaxial growth_is a WeII-estainshedFigure 2: Chromosome image: scanning
method of preparing crystals where Selfforce microscopy image [McM94].
organization plays a big role. The theo-

retical investigation of a possible in-situ influence on g¢inewth process could there-
fore be very helpful. In the second part the reader will fin@ey\different system, that
of tumor cell populations in in-vitro mono-layers. Althduthe length scale is totally
different in the two parts, the reader will find a lot of sinmitees. Both are growth
systems with their own self-organization and it was fourat #imilar concepts can be
used to model the two systems. So, coming back to the nanmlotyork contributes
in a small way to the solution of the problem: both to the prapan of small scale ap-
plications and to the explanation of biological tissues,dim being, of course, to find
effective methods of tackling tumor cells. Earlier we stiatieat work on a nanoscale
is a new field of interest for science, but nanotechnology, whsourse, used by the
ancient Greeks, as Waltet al showed in their findings [Wal06]. A 2000-year-old
recipe for hair dye shows that they had a method of permaneatburing grey hair
black. Basically this method works by biologically indugithe growth of nanocrys-
tals. Presumably the ancient Greeks neither knew why thetihod worked nor could
explain the growth of nanocrystals. Nevertheless, thesknfys could lead to new
methods of growing nanocrystals, where the challenge wilinuch greater than that
of dying hair black.
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Chapter 1

Introduction

Key words likeminiaturization nanq lab on chipare connected to some of the major
challenges in science today, those involving the undedstgrof very small scale pro-
cesses down to the atomic scale and the development of afptis which work on
that scale.

Obviously one important part in any kind of theoretical wadncerning small
scale processes is that of understanding the formatiorraétates and the interplay
of the related particles. A lot of physical, chemical andidgical processes can be
described as the spatio-temporal evolution of a systemhwiecan explain as a kind
of a growth process. The wide range of growth phenomena gxleby different
structures where we can see either very symmetric well-ei@fstructures with for
instance circular symmetries like the snow flake crystailg. (E1), or totally different
structures like for example the fire front of a burning shdepaper, where there is
a linear interface, or the growth of trees or the pattern &rom on a snail’'s shell
(Fig. 1.2 and Fig. 1.3).

Thus the consideration of growing systems in their sparogoral development is
an increasingly important field of interest in science, vetibie accurate description of

Figure 1.1: Snow crystals: capturing
snow flakes for observation with the low
temperature scanning electron microscope,
Wergin, W. P. and E. F. Erbe Electron
Microscopy Laboratory, Agricultural Re-
search Service, U.S. Department of Agri-
culture, Beltsville, MD 20705 USA 1994.




2 1.1. Crystal growth

Figure 1.2: Sample for growth: tree grow:*
on the island Hiddensee. g

Figure 1.3: Sample for growth: snail
Conus marmoreusnd behind a sim-
ulation result of the model describin
the pattern formation due to fronts (%
pigment reactions. [Mei87](see alsk

[Mei03a] for further examples) ]

the basic processes can give an explanation of the sinekaand differences between
various growth phenomena and thereby a better understaatiine basic mechanisms
in general. The microscopic picture can then lead to therge®mm of macroscopic
behaviour. We have concentrated here on two different lahgsowth, the roughening
of films in epitaxial crystal growth and the formation of getipulations in an in-vitro
environment. We shall now give short introductions to both.

1.1 Crystal growth

Current scientific work on crystal growth is focused on atitag better electronic and
opto-electronic devices. Major tasks are the developmigmeiber memory chips and
effective solar cells together with the optimal miniatation of these devices using
the newly discovered properties of materials. The fabocadf such devices was de-
veloped during the last decade on a truly atomic scale witlooiystals, quantum dots
and quantum wells. One application was to lasers. Figursliods examples of the
wide range of different crystal structures grown by ep#@hrnethods. It is obviously
not only essential to consider the properties of the deypogsared but also the related
growth processes needed for their fabrication. A wide drasfoexperimental meth-
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Figure 1.4: Examples for crystal growth: (a) cross-section of an Inddnoplet with
a Silicon nanocrystallite inside grown hyquid Phase Epitaxyl PE) [Boe99; Blo04],
(b) 'forest’ of ordered 'nanotrees’ grown byetal Organic Vapor Phase Epitaxy
(MOVPE) [Dic04], (c)14 x 14um? AFM images of amorphouS:O, films after two
days deposition at a temperaturelot= 611K grown byChemical Vapor Deposition
(CVD) [0je03] (d) silicon carbide nanobouquet grown by C\HE0P4].

ods exist for preparing materials with a well defined streetelated to the desired
and expected properties. There are a lot of experimentdlodstfor growing well de-

fined crystal structures on an atomic scale in different wayspecific applications.
Sometimes this involves the growth of highly defined strreduike single quantum
dots or single crystals, but we are going to concentratedrereughening surfaces for
film growth in experiments. Usually the experimental setbage to be tuned to get
a specific structure in thin film growth. A helpful tool woul@ lan ’in-situ’ control-
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Figure 1.5: Statistics of cancer diseases in Europe, estimated nigrfiaim cancer in
Europe and the European Union 2004,* No data for Europe fohalindividual sites
due to limitations of coding scheme employed. [BoyO4].

lable setup to check the structure during growth and themeethe conditions to get
a more precise structure without having to start the expartragain. Controlling the
roughening process would give one the opportunity of grogvarsurface with a tuned
amplitude of roughness and a tuned correlation functiohiwia well defined time.

We would like to present a first contribution to that contradgess.

1.2 Tumor growth

The most widespread disease in industrial countries tadegricer. As Fig. 1.5 shows,
there are a lot of very different types of cancers killing &db people every year.
Therapies developed during the last decades to tackléstaarge of mankindoften
have very strong side effects on the human body and are naysaleffective. Indeed
for some types of cancer there are, as yet, no effectivepglexaThe development of
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effective methods for destroying tumor cells without afileg the surrounding healthy
tissue is one of the major challenges to science today.

Scientific work in the field of understanding the mechanisrhgtvlead to these
diseases has become more and more interdisciplinary dilmengst decade. Physical
and mathematical methods have been applied to biology adicme. The develop-
ment of computers has lead to important advances in diaigsasgting, for instance,
the new image-processing methods. Physics and matheratieslso helped explain
the behaviour of individual cells and their behaviour in awgng structure.

Models developed to explain behaviour on the scale of orendlof many cells
have given us more knowledge about the behaviour of the iteli® organism and
helped in the development of effective therapies.

1.3 Structure of this work

In this work we have developed theoretical models for graavith we use two different
methods. Whereas stochastic differential equations wsguntinuous height function
are applied to problems in crystal growth, we have develapkohetic Monte Carlo
algorithm as an individual cell based model to explain tfregh of in-vitro tumor cell
monolayers.

So, this work can be seen both as a further development oésiearch on epitaxial
growth studied in our group during the last years and as a redavdi research. Our
group has been using kinetic Monte-Carlo methods for ab2yehrs now as part of
an extensive study to explain the growth of semiconductorctires. A second field
of interest is the control theory used in part of this work. tiBthe explanation of
biological structures and the study of stochastic growtleéiqns are new.

In this thesis the methods applied to crystal growth aredbffit from those applied
to tumor growth. We shall give an introduction to the expemtal setup and the
processes leading to growth in Ch. 2 and Ch. 3 and explain odefting methods.

In order to take these different systems into account, we kavhink both about
how to define the modelling conditions, and about what to fake account when
developing an effective and useful model to answer our fpegiestions.

In this context, Ch. 4 can be seen as a short guide to modetlgfoon the micro-
scopic to the macroscopic range where we show how our findiniggo this general
overview.

After these more general aspects of the work we then go furthtle first model
and growth system type, the control of the stochastic diffeal equations. We give a
detailed explanation for the stochastic differential eéouns used together with a de-
tailed description of the related processes and their sporedence to epitaxial crystal
growth (Ch. 5).

A summary of data analysis as an essential part is given inS55éd¢ogether with
the time-delayed feedback control schemes we discuss metttehapter (Ch. 6). The
combination of these first findings leads to the results fotrmdied and uncontrolled
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equations in 1+1 and 2+1 dimensions (Ch. 7). A detailed tiarieof the parame-
ters for different growth equations enables us to propoghdupossible experimental
setups.

Whereas up to now we have been working with a continuous giéiser of a grow-
ing system, we now change both the growth system and the ohigtlooder to consider
the spatio-temporal evolution of a biological system. Adtio Monte Carlo method is
used for observing the tumor growth of in-vitro cultures.eTbllowing chapter then
gives a detailed description of the individual cell basdtuta automaton model (CA)
on the unstructured lattice used in this work. Ch. 8 explamsmodel and demon-
strates the ability of the simulation tool to study very eifnt detailed mechanisms
and processes of biological interest. Thus, this chaptebeaeen in part as a manual
for the use of the simulation tool in further investigatioWe then, using extensive
simulations, demonstrate the behaviour of our model anahthiasic properties of the
lattice whereby its advantages in comparison to commoiedetiypes can be seen. We
then proceed to show in detail the mechanisms and influeriaedl properties on the
critical surface dynamics. Comparison to experimentalltegre made and the result
of these findings demonstrates our expectations for reahigtiogical systems (Ch. 9).



Chapter 2

Crystal growth

In this chapter we want to give a short introduction to the tra@snmon methods
of growing crystals. We give a detailed description of epahgrowth, on which
we have focused our model, and we look at Czochralski growtbree example of
a different method. More detailed overviews of possibleesxpental methods are
given by Scheel and Fukuda [Sch03a] and Byrappa [Byr03] eir thooks (see also
[Wil88; Pam75; Zan88]), where a more general overview ofttfe®mry can be found
[Mic04; Pim98; Bar95].

2.1 Epitaxial Growth

The theory of continuum stochastic differential equatidogether with epitaxial
growth can be seen as one single major task in the scientifestigation of crys-
tal growth. Epitaxial growth is the targeted deposition aedype of material on a
substrate of the same type of materiabihoepitaxial growthor on a different ma-
terial (heteroepitaxial growth Heteroepitaxial systems exhibit different properties
because strain effects due to lattice mismatches becontiamp.

The first findings of Volmer and Weber [Vol26] lead to the mac@pic description
by Becker and Doering [Bec35] which is still, with a few adloiits, the major theory
describing the formation of nuclei in crystal growth (segodlSch03a; Wil88]). A lot
of recent studies deal with epitaxial methods for fabriggpecific structures on an
atomic length scale, where for instance one major goal isutieeof quantum dots.
Where some techniques fabricate the dots 'manually’ byimputhe individual atoms
in the desired position [Eag90], a lot of observations shuoat self-organized growth
is a much more efficient and elegant method of growing sucbstaunctures. Probably
the first self-organized island formation in a semiconduataterial system, namely
InAs/GaAs, was observed in 1985 by Goldstetral [Gol85]. Self-organized growth
was then extensively studied and developed, starting WwéHitst quantum dots [e.g.
Mo090; Eag90] and the first quantum dot lasers were develogaetenentally in 1994



8 2.1. Epitaxial Growth

(b)

Figure 2.1: Growth modes of epitaxial growth, (a) Frank-van der Merwangh, (b)
Volmer-Weber growth, (c) Stranski-Krastanov growth.

at the Technische Universitat Berlin in collaboration wiffe Physico-Technical In-
stitute St. Petersburg [Led95].

The theory has become more and more important for applitatio information
and communication technology. Quantum dot arrays and laysti systems of quan-
tum dots are of very great interest [Bim96; Spr00; Wan044| tneoretical investiga-
tions have helped to explain the opto-electronic propedfehese devices.

2.1.1 Growth modes

Epitaxial growth is normally divided into three differentogtes, where the interfa-
cial free energy and the lattice mismatch determine the trovode [Bim99; Mar87;
Shc04a]. Fig. 2.1 shows these different mod&ank-van der Merwgrowth is charac-
terized by layer-by-layer growth or a tendency to fill theiundual monolayers [Fra49]
(Fig. 2.1 (a)). In contrasfolmer-Webegrowth is characterized by the formation of is-
land structures [Vol26] (Fig. 2.1 (b)). Ti#&transki-Krastanomode, where a phase of
building a wetting layer is followed by a nucleation of istiis an intermediate mode
[Str39] (Fig. 2.1 (c)). In lattice matched systems only fk-aan der Merwe or Volmer-
Weber growth can occur, whereas in lattice mismatched masgstems growth in the
Stranski-Krastanov mode is more favourable because ah s&iaxations [Eag90, and
references therein].

2.1.2 Processes in epitaxial growth

The growth process can be explained by different indiviéi@ic processes, namely
deposition or desorption processes and diffusion proseSmmetimes the nucleation
of islands is referred to as another process, where theatigrhecan be seen as just a
product of diffusion at the surface together with bindingmgies, which lead to island
growth.

In Fig. 2.2 we can see a scheme of the possible processes sarfaee (green
arrows show the direction of the events). Where depositiamot explicitly shown we
see desorption (Fig. 2.2 (a)) from the surface and desarftoon an island (Fig. 2.2
(d)). Fig. 2.2 (b),(c),(e) refer to different diffusion p@sses, which can be explained
by a specific probability to diffuse.



Chapter 2. Crystal growth 9

Figure 2.2: Processes at the surface in epitaxial growth: (a) desaorfroon the sur-
face, (b) diffusion along an island, (c) edge diffusion onsdand, (d) desorption from
an island, (e) free diffusion.

If we assume that the atoms behave classically, the diffiysiobability is expected
to follow Arrhenius law [Lai65]:

p= yoexp(—kBiT) (2.1)
wherev, is the so called attempt frequendyjs the energy barrier for diffusion be-
tween the two states defined by the procégds Boltzmann’s constant arild denotes
the temperature.

Depending on the initial state and on the final state aftéusidn we distinguish
here between free diffusion (Fig. 2.2 (e)), diffusion al@mgisland (Fig. 2.2 (b)) and
edge diffusion (Fig. 2.2 (¢)). In Eq. (2.1) these differeypes of diffusion refer to
different energy barrierd”. We do not make use of this theory for the stochastic
differential equations but explain Arrhenius law in moreaddor cell-cell adhesion in
the tumor growth model (Sec. 8.3.2).
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2.2 Methods in epitaxial growth

A lot of different techniques exist for making semicondudctuctures using epitaxial
methods.

2.2.1 Molecular Beam Epitaxy

As one of the leading techniques in the fabrication of cigstdolecular Beam Epi-
taxy (MBE) offers the possibility of growing structures underligefined conditions
[Fra03; Shc04b]. This method deals with growth on a surfaselting from the con-
densation of single atoms or molecules out of the gas phdmeatbmic source beams
come from the material, which is heated in evaporation cBlischanical shutters can
interrupt the atomic beam efficiently, so that it is posstbleontrol the deposit of less
than one atomic layer. Ultra High Vacuum (UHA4 10~ torr) conditions prevent
the incorporation of impurities and ensure that atoms anié@coges follow a collision
free path towards the substrate. Most MBE systems are eggiywfih several in-situ
monitoring and analysis devices. These could be a masszamaly Reflection High
Energy Electron Diffraction (RHEED), an Auger Electron 8jpescopy (AES) and/or
others. For detailed descriptions of MBE methods and insénts for the analysis of
systems grown by MBE, see the books by Parker [Par85] andwdFar95].

2.2.2 Metall Organic Chemical Vapour Deposition

Chemical vapour depositiof€VD) is used for the deposition of thin films of various
materials. In a typical CVD process the substrate is exptseme or more volatile
precursors, which react and/or decompose on the substrdéees to produce the de-
sired deposit. Volatile by-products are frequently prastitoo and are removed by gas
flow through the reaction chamber. CVD is used for a wide raigeaterial systems,
for instanceSi0,, Ge/SiandTiN. The CVD method can be divided into a wide range
of slightly different methods. One kind of chemical vapoapdsition isVetalorganic
Chemical Vapour Depositio(MOCVD). From the point of view of industrial prepa-
ration, MOCVD orMetalorganic Vapour Phase Epitaxi¥lOVPE) has the advantage
that the source material can be provided continuously [M§oBhe disadvantages, on
the other hand, are the complicated chemical processeseantians that take place
before and during deposition in the gas phase. While UHV todnig techniques can
not be applied because of the moderate pressure used in MEOY4REMS, other in-situ
techniques, such as reflectance anisotropy spectroscagmeotroscopic ellipsometry
[Ste96], are commonly used.

2.2.3 Liquid Phase Epitaxy

In contrast to the other methodsquid Phase EpitaxyLPE) is a method of growing
semiconductor crystal layers from a melt on solid subsdrakéis happens at tempera-
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tures well below the melting point of the deposited semicmtol. The semiconductor
is dissolved in the melt of another material. At conditidmattare close to the equilib-
rium between dissolution and deposition the depositiorhefdemiconductor crystal
on the substrate is slow and uniform. The equilibrium caod#g depend very much on
the temperature and on the concentration of the dissolvaiteaductor in the melt.
The growth of the layer from the liquid phase can be contddiig a forced cooling of
the melt. Impurity introduction can be strongly reduced.pidg can be achieved by
the addition of dopants. For one special system, in whichiidi€hase Epitaxy is used
to fabricate silicon crystals inside indium droplets, $8eq499; Blo04].

2.3 Other methods in crystal growth

Having explained the physical properties of epitaxial syst and the related experi-
mental methods, we would now like to refer briefly to anotleading crystal growing
technique, Czochralski growth.

2.3.1 Czochralski growth

Czochralski growth is named after Jan Czochralski, whoadisred the method in
1916. A seed crystal, mounted on a rod, is dipped into moiteos. The seed crys-
tal's rod is pulled upwards and rotated at the same time. Bjrobing the temperature
gradients, rate of pulling and speed of rotation preciselypossible to extract a large,
single-crystal, cylindrical ingot from the melt. This pess is normally performed in
an inert atmosphere, such as argon, and in an inert chamloér,as quartz. While
the largest silicon ingots produced today @@ mm in diameter and to 2 meters in
length,200 mm and300 mm diameter crystals are the standard industrial size. Thin
silicon wafers cut from these ingots (typically about5 mm thick) and polished to a
very high degree of flatness are used for creating integ@tedits. Other semicon-
ductors, such as gallium arsenide, can also be grown by thisod, although in this
case lower defect densities are obtained. So, this metHedsat precise fabrication
of semiconductor devices by a totally different method. &aletailed description of
some other methods we refer to the already mentioned boSkb@Ba; Byr03]).
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2.3. Other methods in crystal growth



Chapter 3

The biology of tumor growth

The aim of cell biology is to understand the determining psses in nature in general
and to describe the mechanisms and actions at a celluldrifeyarticular. Early
work on cell biology tried to observe the behaviour of cesaakind of rough view
of phenomenological behaviour. However, as medicine aalb@y have developed,
scientific investigations have been going deeper and déefoethe detailed structure
of the human body and of course into the details of cell biplog

Exploring the details of cell structure and mechanismsiregwa description of chem-
ical and physical actions on the cellular level. During thet ldecades the whole field
has become more and more interdisciplinary, and physio&ddy, mathematical biol-
ogy and bioinformatics are nowadays well established stiefields.

Of course the development of better microscopes has opgnaaew world of obser-
vations and helped us to understand what is happening onitnesoopic level right
down to the molecular length scale. Increasing knowleddketellular structure has
also generated more interest in exploring the basic mesimef cell growth, the aim
being to help biologists and doctors understand cell biplogieneral and in particular
to find effective new therapies.

Until the mid-seventeenth century, scientists were unaviiat cells even existed.
Probably the first observations of cell biology were made lop&t Hooke, which
he described in his 'Micrographia’ in 1665. Through his mgrope he saw that plant
tissues were divided into tiny compartments. He termed tloettulae’, which is the
Latin word for the small rooms of monks. About 200 years latgentists really began
to understand the importance of these findings, when Jakblei8en and Theodor
Schwamm found similarities between animal and plant celts@educed that all liv-
ing things are made up of cells.

Nowadays cell biology makes use of modern microscopes terebshe molecular
structure of cells and a lot of mechanisms are now well undeds Since the 80's the
major goal for cell biology has been to explain the developt@leorocesses, where cell
changes and grow. With new apparatuses and the developmemthputer science,
data analysis had a big role to play. A major step was annalimcéhe November
6, 1998 in the Washington Post : "Scientists announced gistehey had achieved
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one of the most coveted goals in biology by isolating from hurembryos and foe-
tuses a primitive kind of cell that can grow into every kindheiman tissue, including
muscle, bone and braint"Gearhart [Gea98] and Thomson et al [Tho98] had isolated
embryonic stem cells.

The major breakthrough of this work
was the fact that one could now explain
how so many kinds of different cells can
develop from only a few cells to form an
individuum. A very important field of
research today is the explanation of the
uncontrolled growth of cells or their un-
controlled division, which is currently a
very important disease&ancer Cancer
as a Latin word comes from the Greek
'karkinos’ which means a crayfish or a
Figure 3.1: Isolation of embryonic stemcrab, maybe because of the image of
cells [Tho98]. a destructive crab in the human body.
'karkinos’ is also the origin of the word carcinoma, which ans the cancer cells.
A similarly used word is tumor, meaning a medical excreseehat may be either
malignant or benign. The differences between the uses sttiwrds will now be
explained. Tumor cells in general are so called becausembaagic properties; their
uncontrolled reproduction and their invasion and colamzaof territories reserved
for other cells. As long as the growing tumor or neoplasmustgred in a single mass
the tumor is said to be benign. When the tumor cells beconmesime and occupy
surrounding tissue or gain access to the blood stream to $econdary tumors, or
metastases, the tumor is malignant and in this case the susmneralso called cancer.
However these words are often used identically in the liteea In this chapter we are
going to give a short description of cell biology and tumdissevery closely related to
our work. We are going to explain the main processes like #seclprinciples of cell
division and the structures inside and outside one indalidell in a cell population
but are not going to look into the cell on an atomic scale.

3.1 The biology of the cell

The cell is the structural and functional unit of all livingganisms, and is therefore
also called the ’building block of life’. [Alb02]. Organissnare divided into unicel-
lular and multi-cellular types. Unicellular organisms swting of a single cell are,
for instance, bacteria, whereas humans, with about 10d®msl of cells, obviously
belong to the multi-cellular group. A typical cell size i®fn 5 to 30 um in diame-

ter with typical masses arounidng. Each cell is to some extent self-contained and
self-maintaining: it can take in nutrients, convert thesg&iants into energy, carry out
specialized functions, and reproduce as necessary. Eddiares its own set of in-

Ihttp:// ww. washi ngt onpost . coml wp- srv/ nati onal / cel | 110698. ht m
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Figure 3.2: View on length scales beetween living cells and atoms whacé eart
show an image magnified by a factor of ten from a thumb to aehaftatoms part of
protein molecules, the scale, which our studies coverlerénage of).2mm and the
image of20um from cell population to an individual cell [Alb02].

structions for carrying out each of these activities. Traretwo basic kinds of cells,
prokaryotic and eukaryotic cells. Whereas eukaryoticsdedlep their DNA in a dis-
tinct membrane-bounded intracellular compartment caliedhucleus, the prokaryotes
have no such distinct nuclear compartment. Prokaryotes@araally small and often
live as unicellular organisms. According to one estimatéeast99% of prokaryotic
species remain to be classified. A new classification of abligles them into bac-
teria, achaea or archeabacteria and eukaryotes, wherribaamtd archaea build the
prokaryote, but we don’t want to go into so much detail heog (hore details see
[AIb02]). An individual cell is a very complex system and tees no place here to
describe all the details from the behaviour of the whole wethe structure of DNA.
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Eukaryate Prokaryobe

Figure 3.3: Schematic view of cells, left a typical eucaryotic cell,lriga procaryotic
cell.

Fig. 3.2 shows the different lengthscales one can get byladoaells. It is obviously
not possible to write an introduction to cell biology here.

We shall restrict ourselves here to some basic points cetatthe model we want
to construct later in this work. For very detailed descaps we refer to the well
known and best compendium of molecular cell biology, 'Theél’Gy Alberts et al
[AIb02], where one can find not only an overview but a very detadescription of
everything related to an individual cell.

3.1.1 The structure of an individual cell

An individual cell consists of molecules from four major afieal families of organic
molecules, which are the important carbon based compouhdssugars, the fatty
acids, the amino acids and the nucleotides. Linked inteelangcromolecules, these
compounds make up approximatel9% of the cell mass, wherél,O fills the re-
maining70 %. Fig. 3.3 shows a schematic eukaryotic and a prokaryotic &dme
prokaryotic cells contain important internal membraneximb compartments, but eu-
karyotic cells have a highly specialized endomembranessystharacterized by reg-
ulated traffic and transport of vesicles. All cells, whetpeskaryotic or eukaryotic,
have a membrane, which envelopes the cell, separatesit®irfrom its environment,
regulates what moves in and out, and maintains the eleatengal of the cell. Inside
the membrane, a salty cytoplasm takes up most of the celmallAll cells possess
DNA, the hereditary material of genes, and RNA, containimgihformation needed
to build various proteins such as enzymes, the cell’'s pgmaachinery.

3.1.2 The cytoskeleton

The cytoskeleton acts to organize and maintain the celéipshit anchors organelles
in place, organizes the uptake of external materials by la @etl cytokinesis, the

separation of daughter cells after cell division; and magvads of the cell during

the processes of growth and mobility. The eukaryotic cyttetbn is composed of
microfilaments, actin filaments and microtubules. Thereayeeat number of proteins
associated with them, each controlling the cell’'s struetoy directing, bundling and
aligning filaments. Fig. 3.4 shows an experimental view oéakaryotic cytoskeleton,
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Figure 3.4: Cytoskeleton: Actin filaments
are shown in red, microtubules in green,
and the nuclei are in blue.

where one can see the actin filaments (red), the microtulfgiesn) and the nuclei
(blue).

3.1.3 The cell cycle

'Where a cell arises, there must be a previous cell, just esas can only arise from
animals and plants from plants’. Rudolf Virchow stated thedl doctrine’ in 1858.
Cell division is such that new cells can only come from erigtcells. The ordered
sequence of such duplication and division is ta#l cycle the essential mechanism
for the reproduction of living cells. Cell division is theqmess by which hair, skin,
blood cells, and some internal organs are renewed. A spasidiorm of cell division
is responsible for cellular differentiation during embggmesis and morphogenesis, as
well as for the maintenance of stem cells during adult life.

The cell cycle is specific to the cell type but there are sonneusal characteristics.

It consists of four distinct phases: G1 phase, S phase, Gs&fgballectively known
as interphase) and M phase, which are schematically depictég. 3.5. The M phase
is itself composed of two tightly coupled processes: m#asi which the cell’s chro-
mosomes are divided between the two daughter cells (see®igaBd cytokinesis, in
which the cell’'s cytoplasm divides physically. The S phaseharacterized by DNA
duplication. The gap phases G1 and G2 are influenced by geling and favourable
cell conditions, whereby the length can vary in a wide rarayeltie cells. Cells that
have temporarily or reversibly stopped dividing are saibdaee entered a state of qui-
escence called GO phase, while cells that have permane¢ofped dividing due to
age or accumulated DNA damage are said to be senescent.gital tyuman cell the
interphase | normally take 23 hours in a 24 hour cycle, wisetiea M phase takes just
one hour. The molecular events that control the cell cy@deoadered and directional,
that is, each process occurs in a sequential fashion anthripisssible to reverse’ the
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Figure 3.5: Scheme of the cell cycle: N
mitosis, GO, G1, G2 the gap phases, S-
synthesis phase, GO, G1, G2 and S bt
the interphase.

Figure 3.6: Mitosis of a cell.

cycle. Regulatory molecules determine a cell’s progressutih the cell cycle: cy-
clins and cyclin-dependent kinases. Leland H. HartwellTiothy Hunt, and Paul
M. Nurse won the 2001 Nobel Prize in Physiology or Medicinetfeir discovery of
these molecules which are central to the regulation of theyele.

There has been a lot of work accorded to the cell cycle, butevét dvant to go
any further. As we will see in our model, the cell cycle is reeldi to a one step event
in which the cell divides into two daughter cells. For a moetailed description of
the cell cycle see Albertst al [AlIb02] and references therein.

3.1.4 Celltypes

The type determines the basic properties of a cell, so hexeout like to give a short
description of how cells can be characterized as animai.c€liere are basic types of
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tissue in the body of all animals and we are going to explamtiost important types.

Epithelial tissue

Tissues composed of layers of cells that cover organ swwfaeoeh as the surface of the
skin. The tissues serve for protection, secretion, andrpbeaq.

Connective tissue

As the name suggests, connective tissue holds everyttgegiter. Blood is considered
to be a connective tissue. These tissues contain an ex@exdia-cellular matrix.

Muscle tissue

Muscle cells contain contractile flaments that move pashesher and change the
size of the cell. Muscle tissue also is separated into thistandt categories: visceral
or smooth muscle, which is found in the inner linings of oigjaakeletal muscle, which
is found attached to bone in order for mobility to take plaoed cardiac muscle which
is found in the heart.

Nervous tissue

Cells forming the brain, spinal cord and peripheral nengysiem.

Areolar connective tissue

A pliable, mesh-like tissue with a fluid matrix whose functis to cushion and protect
body organs. There are also different types of tissues impla

3.1.5 Cell migration

Cell migration is the central process in the developmentmathtenance of multi-
cellular organisms. Tissue formation during embryoniced@gment, wound healing
and immune responses all require the movement of specilie ioea particular di-
rection to a specific location. Errors during this procesgehserious consequences,
including mental retardation, vascular disease, rheuishatthritis, tumor formation
and metastasis. An understanding of the mechanisms by whitshmigrate may lead
to the development of novel therapeutic strategies forrodimg, for example, inva-
sive tumor cells. In animal tissues cells often migrate spmnse to, and towards,
specific external signals, a process called chemotaxis. fuftirer information see
[Par99] [Lev06].
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Apoptosis
(Programmed Cell Death)
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Figure 3.7: Scheme of programmed cell death (Apoptosis).

3.1.6 Apoptosis and necrosis

Apoptosis is also callegrogrammed cell deattAs such, itis the process of deliberate
life relinquishment by a cell in a multi-cellular organisin.contrast to necrosis, which
is a form of cell death that results from acute cellular ipj@poptosis is carried out in
an ordered process that generally confers advantageggdamiorganism’s life cycle
[Ker72].

For example, the differentiation of human fingers in the ttgvag embryo re-
quires the cells between the fingers to initiate apoptodisatdhe fingers can separate.

Obviously such a mechanism must be well balanced, becaasauoh apoptosis
causes cell-loss disorders, whereas too little resultsaontrolled cell proliferation,
namely cancerous tumors.

Apoptosis can occur, for instance, when a cell is damagedrizkyepair, or in-
fected with a virus. The 'decision’ for apoptosis to occun came from the cell itself,
from its surrounding tissue or from a cell that is part of thieriune system. If a cell’s
capability for apoptosis is damaged (for example, by matgtior if the initiation of
apoptosis is blocked (by a virus), a damaged cell can coattividing without re-
strictions, developing into cancer. A cell undergoing apsfs shows a characteristic
morphology which can be seen in Fig. 3.7.

The cell becomes circular. The chromatin then undergoeasigal degradation and
condensation. It then undergoes further condensatiorcortypact patches against the
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nuclear envelope. At this stage, the double membrane thatusws the nucleus still
appears complete. The nuclear envelope becomes disconsiand the DNA inside it
fragments. The nucleus breaks into several discrete chioimadies or nucleosomal
units due to the degradation of DNA. The cell breaks apastsetveral vesicles called
apoptotic bodies, which are then phagocytosed.

3.2 Biology of cell populations

We now have the basic mechanisms of one individual cell. & question is how

cells work together in a cell population. Cells are often iteaind are normally de-

formable objects filled with some jelly-like medium, so somechanisms must exist
to combine them to give them the strength of the human bodye mbchanism is

similar to the game of breaking sticks one after the otheryong to break them all

together at the same time. Cells form cell-cell junctiorasjehcell-cell adhesions and
are connected by the extracellular matrix.

3.2.1 Extracellular matrix

A substantial part of cell tissues is normally extracellglpace, which is largely filled
by a network of macromolecules constituting éxtracellular matrix Produced by the
cells, this matrix composed of proteins and polysaccharigd@rganized in a mesh-
work in close association with the surface of the cell. Theamellular matrix in
connective tissues is extremely important for physicabvedur. It doesn’t determine
their behaviour but the properties of the epithelial ceipend on it.

3.2.2 Celljunctions

Cell junctions occur in all cell populations at the pointgefl-cell or cell-matrix con-
tacts. They are normally classified into three groupscluding junctionseal cells
together in the epithelium in a way that prevents even smaleoules from leaking
from one side of the epithelial sheet to the oth&nchoring junctionsnechanically
attach cells and their cytoskeletons to their neighbouits dine extracellular matrix.
Communicating junctionmediate the passage of chemical or electrical signals from
one interacting cell to its partner.

3.2.3 Cell adhesion

The connection between junctions and adhesion is the fattc#ils have to adhere
in order to build anchoring junctions. A bulky cytoskeletgdparatus must then be
assembled around the molecules that directly mediate thesaeh. This results in a
well-defined structure and different adhesions can be ifieshusing the electron mi-
croscope. For example during the last decade there has lhassf awork on cadherins
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mediatedCa** -dependent cell-cell adhesions. The study of cell adhesigart of
cell biology. Cells are often not found in isolation, butderather to stick to other
cells or to the non-cellular components of their environtnénfundamental question
is: what makes cells sticky? Cell adhesion generally ireslprotein molecules at the
surface of cells, so the study of cell adhesion involves agfiesion proteins and the
molecules that they bind to.

3.3 Carcinogenesis

Cell division (proliferation) is a physiological proce$st occurs in almost all tissues
and under many circumstances. Normally homeostasis, taadmbetween prolifer-

ation and programmed cell death, usually in the form of ap&ipt is maintained by

the tight regulation of the processes. Carcinogenesisuisathby the mutation of the
genetic material of normal cells, which upsets the norm&rizze between prolifera-

tion and cell death. This results in uncontrolled cell dmsand tumor formation. The

uncontrolled and often rapid proliferation of cells candda benign tumors; some
types of these may turn into malignant tumors (cancer). Mioa® one mutation is

necessary for carcinogenesis. In fact, a series of sevenraltions to certain classes of
genes is usually required before a normal cell is transfdrimi® a cancer cell.

3.4 Tumor cell types

Cancers are generally classified according to the tissueahtype from which they
arise. Tumor in medical language simply means swelling oypueither neoplastic,
inflammatory or other. In common language, however, it isosyymous with 'neo-
plasm’, either benign or malignant. This is inaccuratecsisome neoplasms do not
usually form tumors, for example leukaemia or carcinomatin s

Carcinoma

Tumor cells which arise from epithelial cells acarcinoma Epithelial tissues are
well connected tissue divided into epithelial sheets. Laik tightly bound and the
extracellular matrix consists of a thin mat calledasal lamina So in carcinoma cells
are attached to each other by cell-cell adhesions.

Sarcoma

A sarcoma is a cancer of the connective or supportive tigsuee( cartilage, fat, mus-
cle, blood vessels). The term comes from a Greek word meéiteshy growth’.
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Figure 3.8: Scheme of an in vitro experiment with a petri dish where atsmuof
nutrients (red) lead to a growth of a cell population monetay

Leukemias

Leukemia (or leukaemia; see spelling differences) is a@aantthe blood or of the
bone marrow characterized by an abnormal proliferation@ddb cells, usually white
blood cells (leukocytes). It is one of the broad group of asss called hematological
neoplasms.

3.5 Invitro experiments

All these cell types for tumor cell development have founaiaodf interest in cell
biology, where the determination of possible explanatisnteasible thanks to the
high resolution of modern microscopes which are able tandjsish the complexity
of the cells in a complex tissue. In vitro experiments havenbestablished as a very
successful tool for studying the mechanisms of cells in d de&fined environment
where the setup is such that unknown influences can, on theewb® neglected. A
precise change of the properties of the cultured growth B ¢kerefore makes it
possible to study the basic mechanisms of cells in detail.

Fig. 3.8 gives an impression of a possible setup for in vikweeiments - of course
real apparatuses are much more complicated.
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3.5. Invitro experiments



Chapter 4

Modeling growth phenomena

In the previous chapters we gave an overview of the systemsamé to model. Ob-
viously it is impossible to include all the details of thelrgeowth process in a useful
and effective model.

A model is, by definition, a simplification of reality, made ander to answer a
specific question about real behaviour. So of course the/érgtimportant part of the
work is to determine the limits and decide what assumpti@e lto be made, using
the questions we want to answer as guidelines. Basic taskbatimescales, length
scales and the related methods.

In this chapter we follow this guideline in order to obtaie tlules our representa-
tion have to fulfil. The method of building up the model mayKadbvious, but a closer
look at the systems we want to explain - and in our opinionthiéogrowth systems -
shows that it is important and one of the first problems toesoio this chapter may
be a help in the construction of growth models in general aaghall apply it later on
to crystal growth and cell population growth.

4.1 Getthe right view

As shown in Fig. 4.1, different length scales explore veffedent views of the system,
where each is related to individual properties of the syst&m posed in a slightly
different manner our question is, whether to look at thedgrat the individual tree or
at an individual leaf.

Here we want to describe many-particle systems in order taeagailts for the
dynamical behaviour of growth processes of as many pastasepossible. On the
other hand we want to include details of the basic actions@frndividual particles.
Thus, a well balanced description is required to ensurelacgle simulations.
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Figure 4.1: Zoom from macroscopic to microscopic view: Three differeiivs on
the same problem, (a) forest, (b) tree (c) leaf.

4.1.1 The microscopic view

A first approach could be the explanation of the most detailed. In the case of
particles such as atoms we go directly to the quantum mecéhlapotentials on the
surface. If we explain the cell as a complete system togetitérall the processes
inside one individual cell we rapidly come to the DNA struetand again to molecular
structures. All these processes are of great interest apdrtamce, firstly for the
behaviour of individual particles and thereby also for eciive behaviour.

However our questions are on a macroscopic scale. The mapasview does
not help us with our problem if we do not want to derive a motat £xplains all the
processes of nature. But nevertheless findings from theosgopic view are essential
for our model in order for us to make suitable assumptions.

4.1.2 The macroscopic view

Another way of tackling the problem is to explain the systgnmabmacroscopic view.
In case of atoms that view could be of the whole surface or ge i the cell the
grown cell population. But if we want to decide between psses which lead to this
behaviour and to model the growth itself this view seems taatb

4.1.3 The mesoscopic view

We need an approach that lies somewhere between the twopsaspproaches. This
is the mesoscopic view, where we don’t explain the struabfitbe particles but take
particles with known properties and see what happens whemaedl the processes.
So our scale for atomic behaviour is the lattice constantO(5 — 1.0 nm) and a
time scale of the order of milliseconds. For cells our sctdets with a cell size+
10 — 40pm) and a time scale of hours to days (doubling time for cells- 30 hours).
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4.2 Scaling theory

Having decided on our range for length scales, we are dtilMiéh the question of how
much information and how many assumptions to include. If coesiders a surface
where in epitaxial growth some islands arise, an importaastjon is whether we can
deduce the behaviour of the whole surface from looking at allssection of it. The
answer to that question is the conceptsohling’, where by measuring quantities on a
small section one can deduce values for bigger systems. & gypwth systems show
such relations. In our case one can find scaling laws for thgohaodogical structures
of the developing growth system.

4.2.1 Concept of self-similarity and self-affinity

As already explained, the basic concept in scaling appesachthe idea that one can
divide a big system into 'similar parts’. Similarity mearmat when one looks at two
maps with different magnifications and different measum@sef a defined quantity,
they look similar. Mathematically that is either an isotiopansformation, in which
case the system is said togaf-similar, or anisotropic transformation, which defines a
self-affinesystem. We can then extrapolate from small parts of the sy&idehaviour
on a larger scale by using tisealing lawswhich we now want to introduce.

4.2.2 Roughening and scaling in growth systems

For surface growth the main quantities that describe theldpmental processes are
the velocities and spatial dimensions of the system and aiphological structure.
Assuming either self-affinity or self-similarity we then aseire the root mean square
(rms) surface roughness given by

Lm o o
wns(Lt) = \| 7 ;[hu, t) = h(t)] (4.1)
wherelL is the system-sizé,(i, t) denotes the height function of the surface atthie
point at timet, andh(t) is its average.

It follows from this equation that the rms roughness degsrithe standard devia-
tion of the height functior (i, ¢). In Fig. 4.2 we can see an example of a rough surface.
Here the situations in 1+1 (1 spatial coord. + height) and+ifh 2 spatial coord. +
height) dimensions are depicted: In the middle a rough sarfia 2+1 in terms of a
three dimensional height profile is shown, where the meaghhes emphasized by the
green line. Under the profile a two dimensional projectioshewn, where the height
increases from black to white colors, the plane on the lefivsthe same situation in
1+1 dimensions, where the height now depends on just onélicabe.
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Figure 4.2: lllustration of a rough surface: in the middle a 2+1 dimensicsurface
with the height profile and the projected density plot of tiegght profile, on the left
the height function in 1+1 dimensions (red line), the meaghté: is shown by a green
line.

Figure 4.3: Typical temporal 4
evolution of the root mean squar
roughnessvg,s (black line, ex-
ample taken form long-time S|m-
ulations for the Molecular Beam; 2
Epitaxy equation in Sec. 7.2k
blue dash-dotted line: the satura-
tion roughness, red dashed line:

the early phase withzyss o 17, 1

green dash-dotted line denotes [ .
the crossover timeg, (double- 1o 10° 100 10 10°
logarithmic plot). t(a.u.)

If growth now starts from a flat surface with system sizethe system roughens.
In Fig. 4.3 we see a typical evolution divided into two phasesnely the roughening
and the saturation phase, divided by crossover time
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The early phase can be characterized by an expghehe so calledyrowth expo-
nent whereas the late phase can be explainedfoyighness exponent

After a certain time, depending on the spatial dimension system size, the
roughness saturates: The saturation roughnesshas been reached (blue). The ex-
ponents are then defined by the following power laws:

’LUR]WS(L, t) X tﬁ for t« ts (42)

Wsat(L) o< LY for t>1t, (4.3)

wheret, is the crossover time between the two regimes of evolutiozefy). Fig. 4.3
shows this behaviour for the Molecular Beam Epitaxy equatin2+1 dimensions.
We discuss this later in more detail (Sec. 7.2). Time in arbitrary units. We infer
the growth exponent = 1/5 from the simulated data, and then derive the roughness
exponenty = 2/3 from the amplitudes of the saturation valugsandL are linked by

a further power law.

ty < L7 (4.4)

This third exponent, the dynamic exponents not independent ak and 3, as can
easily be checked using the Family-Vicsek scaling reldtit@m85],

ijus(L,t) X Laf (%) (45)

wheref is the so-calledgcaling functiorand the exponents then obey the relation:

z== (4.6)

The scaling exponents (5 (in our case they are independent of one another) determine
theuniversality classesvhich are then related to different kinds of growth. In gahe
these methods can be applied to a wide range of systems gexglo time, wherever
one can define a height function and find self-similar growtthe system.

4.3 Lattice approaches

Once we know the relationship between the basic procesdeb@nniversality classes
we can describe the evolution of growth. For computer sitraria of growth we obvi-
ously need a well defined underlying structure to work on. \We want to introduce
different approaches to defining it. In general there are bhasic kinds, off-lattice
models and lattice models.
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Off-lattice models

Off-lattice models are normally used to describe eitheretkact position of unstruc-
tured surfaces like glassy or amorphous materials in drgstavth or the changeable
or determined position of a cell in cell populations.

The question then arises as to whether the exact positidncisioial importance
in the model or whether one can use one’s a priori knowledgnadff-lattice model
to replace it by an effective model on a defined lattice. Thaaghhere is between two
different explanatory systems. In the case of a crystal &s¢ bnderlying structure is
given by the structure of the crystal itself, namely the dise positions of the effective
atoms. The approximations for the processes are then inhthieecof the method,
where one can either try to solve the many body quantum memdigoroblems or
consider effective atoms and effective energies at thiedgpoints in order to simplify
the problem and move from the microscopic to the mesoscagie s The situation
changes if we then have an amorphous substrate where iher difficult to define
the lattice. For cell population growth the situation isatbyt different, because here the
possible positions are continuous, so a model which aineflect reality perfectly has
to be an off-lattice model. Here the lattice model is onlyfiret approximation, which
not only fixes the position in some way but also restricts therall area of the cells,
so that one can think about local changes. So these questiegain, as explained
in Sec. 4.1, the choice of including the microscopic viewtaysg on a mesoscopic
scale.

That question is obviously very important for computer expents because work-
ing on an off-lattice model structure uses much more comgirtee. So, in the case
of both crystal growth and tumor growth off-lattice or dédi quantum mechanical
approaches are normally taken for small systems, whereasraezgrained approach
with lattices and without detailed solutions of the quantaechanical wave functions
is successful for larger systems.

Lattice models

In most cases it is useful to take a well defined structure dayd growth systems.
There are a lot of different very special lattice constrmtsiand here we shall explain
the three most common.

First there is the square lattice or the cubic lattice whilalso called theon
Neumanrattice, where every point is connected in two dimensiorthéofour neigh-
bors with equal: or y values. For a three dimensional structure every point tlasn h
six neighbors (Fig. 4.4 (a)). The simplicity of this struetumakes it easy to use in
computer experiments.

Depending on the structure, it can be useful for crystal ¢now take ahexag-
onal lattice where every point has six neighbors in two dimersiand12 in three
dimensions (Fig. 4.4 (b)).



Chapter 4. Modeling growth phenomena 31

Figure 4.4: Different lattice types: (a) von Neumann neighborhood, {&Xxagonal
lattice, (c) octogonal lattice Moore neighborhood with &éors, left the projections
to twodimensional systems with the neighbors, on the rightlae neighbors in three
dimensions.

In a way similar to the cubic lattice one can also define thgahals as neighbors
which leads to a so called Moore neighborhood with eightmaigs an®6 neighbors
in three dimensions (Fig. 4.4 (c)).

All of these structures are extensively used and implentgesganodels. The prob-
lem of lattice approaches is the reflection of the latticacttire in computer experi-
ments. These artefacts can cause mistakes if they don’ttredalistic physical be-
haviour in the experiments. A new and different constructielated to the special
conditions of growing cell populations will be introduced $ec. 8.2. It has been
developed to avoid such artefacts.
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4.4 General methods

Once we have made use of the scaling concepts and chosendets#ld structure to
work on, we have to choose the method. We now explain someafitmmon methods
and model types with their advantages, disadvantages a&othsponstructions.

4.4.1 Monte Carlo approach

Monte Carlo simulations provide a very good tool for expiagngrowth. Monte Carlo
methods are numerical methods, where random numbers aréousescribe statistical
quantities. Based on the early findings of Metropolis anchJ|i&let49], who named
the method after the famous city, a variety of different Mo@arlo techniques are
nowadays widely used to solve problems in statistical pisysi

The name was chosen because of the relationship of the mettiselhuge random
number generators used in gambling. And in fact, Monte Qawdthods can still be
seen as a form of gambling, but just a little bit more advanced

Nevertheless, the basic idea of such methods goes back 18theentury to Buf-
fons’ famous needle problem to calculate the value of numbwich was solved in
1873 (A. Hall). These early experiments made use of knowhbadiities to solve in-
tegrals, and methods today still have the same rules. Moautie® Gimulations rely on
the assumption that the state of a system can be describdidteytransition probabil-
ities to reach a different state. When one knows the tramsitite of the incoming and
outgoing processes, one can then try to describe the glolmahoroscopic behaviour
of the system. In general there are two types of Monte Carlthaoaks, firstly time
independent methods which explain the equilibrium or l@cplilibrium behaviour of
the system and then time dependent methods which also tiyadlge development a
time scale.

Markov processes

Markov processes are stochastic processes which fulfividudov property So by
definition all the possible states which can be reached frgimem state depend solely
on the current state of the system and not on any past state.

A sequence of random variablé$, X,...X;_1,X,, then is called aMarkov chain
if X} justdepend oX;,_;.

Markov chains are said to le¥godic if there is a nonzero probability of reaching
any possible state of the system from any other state.

So, if we have a system in the stataith a transition probability,_.; of reaching
statej after a certain time, the probabilities for all the transitions obey the relashbip

Pi—j >0 4.7)

Assuming a given ergodic Markov chain we can describe exolun the state space
by a master equation:
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OPi(t) = [Pi(t)rj—i — Pi(t)ri_;] (4.8)
J

where P;(t)r;_.; represents the processes that reach the st P;(t)r;_.; are the
processes which leave the initial staig(¢) are the probabilities of finding the system
at timet in statez, andr;_.; is the rate of change to stafgtransition probability per
unit time).

In general all simulations which are made by kinetic Montel@€techniques rep-
resent the solution of such a master equation.

When we want to explain systems which tend to an equilibritatesthe property
of detailed balancés required [Lan05].

P,,;pi_m' = Pjpj_n- (49)
Taking the required properties into account, one can nomeéefie transition proba-
bilities which generate such Markov chains.
Classical Monte Carlo methods

The two most famous methods are

Metropolis algorithm

1 it E(j)—E@#) <0
Pied =) exp(—B(E(j) — E(7)))  otherwise
Kawasaki algorithm

1
Vi = T ep(B(E(G) — E®)))

whereg = 1/(kgT) wherekg is Boltzmann’s constant arifl the temperature.

In the simplest form of a Monte Carlo algorithm for simulafiattice dynamics, a
particle is chosen randomly and a jump direction is alsoehoandomly. If the arrival
site is empty, the probability;_.; is computed and compared with a random number
0 < rrang < 1. If the final site is occupied ofrang > p;—.; the move is rejected. The
cycle now starts from the beginning again.

The essential drawback is clear. There are always a cemantber of cycles which
do not produce new states since they are rejected, yet censumputing time. In low
temperature systems, where transition probabilities @retbo, this effect becomes
dominant.
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Continuous time Monte Carlo methods

To overcome this problem, each event needs to be chosendaugdo itsa priori

probability, anceverystep needs to be accepted. Methods based on this idea ace the s

calledtime dependent Monte Cannethods (the method used in this work), sometimes

referred to agvent based Monte Carloontinuous time Monte CarJ@KL algorithm

after Bortz, Kalos and Lebowitz [Bor75] @illespie algorithmafter Gillespie [Gil76].
Consider a system with a total number of statem the state. Labelling all states

J which may be reached fromwith k& € {1, ..., K}, the total transition rate is given

by

K
R(2) = Zri_,j = Zr(i; k).
j k=1
Here, the rate;_.; to the final statg being labeled by the numbéris described by
r(¢; k). The partial sums can be written as

R(isk) =Y r(isl).
=1
Now one specific everit can be selected by a uniformly distributed random number
0 < Frang < R(%), for which the condition

R(iS (k - 1)) < Trand < R(i§ k) (4.10)

must be met.

Under the constraint that time is incremented proportigrtalthe lifetimer (i) =
70/ R(%), a detailed balance is always ensured. One can thereforelti@dtransition
probabilities with respect to the physical needs of the ifpggroblem rather than
being restricted by the constraints mentioned above.

The time step\¢ in the event based Monte Carlo simulation is calculated lésie
[Fic91]:

1
>iDi
where¢ is a random number equidistributed[in 1) and) . p; is the sum of alll
possible eventswhich may occur at time.

We now have a situation where, instead of wasting compurtditioe on unneces-
sary rejections which do not contribute to a change of cordion, the main part of
the computing time is spent calculating total and partehsition rates. So by imple-
menting the time dependent Monte Carlo algorithm with ctve,drawbacks on the
non-time dependent algorithm can be minimized and this ateih much faster. Fi-
nally, as the last comment in this section, the differendeveen kinetic Monte Carlo
(KMC) and classical Monte Carlo should be emphasized. Wthadatter is used for
the calculation of a quantity in the thermodynamic equilibr state of a system the

At =—

In(1—¢€) (4.11)
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former describes thpath of the system towards the equilibrium state. So, by using a
KMC algorithm, we ensure not only realistic equilibrium lagiour, but also realistic
kinetic behaviour.

4.4.2 Discrete models

Discrete models of crystal growth are closely related t@kcMonte Carlo methods.
Here one defines the properties of the main processes amdyhgets different types
of models with well defined properties that can be identifigthieir critical exponents.
Because the stochastic differential equations and our tgmoowvth model work with
comparable quantities, we want to point out here the basaehygpes. In general they
differ in their definition of the deposition processes andetermining the diffusion, or
relaxation of particles on the surface, respectively. Wlibe discrete models and the
stochastic differential equations aimed to explain rounging by a height function, the
height here is discretized, normally corresponding to ttimas of effective particles,
for instance atoms in a lattice.

Ballistic deposition models

In ballistic deposition models the particles which fall pendicular onto the surface
stick to the first nearest neighbor (NN) they find, or to thetmexarest neighbor (NNN)
(see [Mea93; Mea90; Bai88; Fam85]).

Solid on Solid models

The solid on solid approximation (SOS) is an idealizatiorevelry neither bulk va-
cancy nor surface overhang is allowed to form during grow@ne also normally
neglects desorption or evaporation processes from thé fron

Random Deposition model

The easiest SOS model is the random deposition model, whemeglect diffusion
on the surface. The random deposition of particles at aipasit on a given surface
at a deposition raté” increases the height functidnx, t) locally. Obviously, by
definition, in the random deposition model no correlaticars accur without relaxation
processes.

Family model

Since most real growth systems show relaxations, a furivgldpment of the random
deposition model is theandom deposition with surface relaxatifffam86] sometimes
also referred to as the Family model. The deposited pastdtenot then stick irre-
versibly at the position, but can relax to a nearest neighttr alower height.
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Wolf-Villain model

The Wolf-Villain model determines the relaxation after dsgpion by a move to the
neighboring site, when the patrticle is thereby able to iaseethe number of bonds
[WoI90].

Das Sarma-Tamborena model

This model is just a variation of the Wolf-Villain model, wigein addition the particles
only relax if they do not have any lateral neighbors, otheethey stay in their position
[Sar91].

A variety of other dynamic relaxation models exist but a#4h models have the
problem that the relaxation process is determined by the Ervironment at the po-
sition of the deposited patrticle.

The advantage of these models is their easy implementati@computer simula-
tion with low computational demand.

4.4.3 Stochastic SOS models

The so calledstochastic Solid on Solichodels offer a more realistic modelling of
diffusion processes. The deposition of particles occuthénsame manner as in the
other models and the models are also only described by ei@ntsighboring sites.
But in contrast to the other models, here any surface atorid dmiselected at any
time for a diffusion process, not only at deposition timer Fstance a diffusion by
Arrhenius law can give the transition probabilities of seslents.

In Sec. 2.1 we described the diffusion processes in epltgriavth using Arrhe-
nius law, and we don’t want to go into the subject any furtherehout refer readers to
the publications for kinetic Monte Carlo simulations on S@&dels extensively stud-
ied in our group during the last 12 years in the framework dfZ46 ([Sch98; Bos99a;
Bos99b; Bos00; MeiOlc; MeiOla; MeiO1b; Liu01; Mei02; Met)3/1ei03b; Man03;
Els03; Wet04; ElIs04; Blo04; Els05b; ElsO5a; Kun06b; Kun@6an06c].

4.4.4 Continuum Equations

A different method of describing growth or evolutionary pesses is to use continuum
equations. Using scaling theory (see Sec. 4.2) there afereht equations related
to different universality classes. To construct such e¢antm equations one has to
expand the so called generalized equation, which inclulléseaprocesses.

Oh(x, t)
ot

whered is the generalized function depending on interface hegbdijtion and time
[Bar95]. If we now assume that the incoming flux of particlesiot constant, then

= G(h,x,t) +n(x,1t) (4.12)
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we use the termy(x, t) to describe the random deposition. This means that random
fluctuations then have zero mean and normally the second nmtos@ssumed to have
no correlations in space or time (Gaussian white noise).

(n(x,t)) = 0 (4.13)
(n(x, t)n(x',t")) = 2D (x —x)o(t — 1) (4.14)

Whereas one can also introduce correlated fluctuationsigmbrk we use white noise
as defined in Eqg. (4.13). Now the individual definition of th@dtionG characterizes
a specific growth process by a specific continuum equatior.gBmeral function can
be simplified by using the symmetry principles of roughersgstems.

Time translation invariance
The growth equation does not depend on where we define thie ofigme so
the invariance has to fulfil the relationship- t + 6,

Translation invariance along the growth direction
Growth has to be independent of the choice of h = 0 so the imwee has to
fulfil the relationh — h + 6,

Translation invariance in perpendicular growth direction
The growth has to be invariant under translation perpetali¢o growthx —
X+ 0,

Rotation and inversion symmetry about growth normal vector
Growth has to be invariant if we invert or rotate the heigtdfie about the
growth normaln.

Up/down symmetry for h
One can include a symmetry which states that interface titictos are simi-
lar with respect to the mean height, but this property is duliled by linear
equations.

Further reading about the symmetry principles can be fonmebit books [Bar95].
When we include the knowledge about growth gained from timensgtry princi-
ples, we first obtain an expansion of terms described asasllo

Oh(x,t)
ot

= (V2h)+(V*R) 4.4+ (V" R) +(V2R) (VR +... 4+ (V*h) (VR) Y 4-n(x, 1)

(4.15)
weren, k, 7 can take any positive value. For simplicity the coefficiant&ront have
not been written down explicitly. Neglecting the differaxttefficients in this expan-
sion now leads to different growth equations which are diassby different critical
exponents’, o andz.
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If the growth is self-similar and fulfils the properties ofatiag theory, then the
different growth equations extracted from the generalempgation lead to the different
universality classes described in Sec. 4.2 which can beifilss using the related
scaling exponents.
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Stochastic Differential Equations

In the last chapter we gave a general explanation of methbdsodelling growth
phenomena and stated that stochastic differential eqgatiave been established as
one of the leading methods of modelling growth. We now warddscribe this kind
of modelling in more detail, and will use it later on to contitee roughening process.

The theory of stochastic differential equations for growditso referred to as
stochastic growth equations, is based on Langevin equgation

Whereas Langevin equations were widely used earlier, Etiwvand Wilkinson
first used stochastic differential equations for the roungiggprocess in the early eight-
ies [Edw82].

With the observations of Kardar, Parisi and Zhang [Kar8&]ttieory of stochas-
tic differential growth equations became a well establistaol to explain growing
systems.

A lot of different equations have been proposed during teeld@ years to describe
different universal classes of growth, but there are stlibtaof unsolved problems.
Some of the questions arise because of the nonlinear forraroé ©f the equations
and the impossibility of solving them analytically. The a¢jons can be used as ide-
alized versions of realistic growth properties, but thatieh of realistic growth to its
corresponding universality class is not always obvious$dn. 4.4.4 we developed the
equations as the result of an expansion with the additioredfim symmetry princi-
ples and we now want to describe the specific equations thahast frequently used.
We shall explain the terms related to the different procegsgether with their specific
physical meaning.
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Figure 5.1: Behaviour of the Edwards-Wilkinson term (red dashed limeduo artificial
height profile(x, t) = exp(—x?) (black line) leads to small variation in the resulting
profile (blue dash-dotted line).

5.1 The Edwards-Wilkinson and the Kardar-Parisi-
Zhang Equation

For an explanation of the relevant terms in this work we shall discuss the hypo-
thetic generalized functiof(h, x, t) in Eq. (5.1).

Oh(x, t)
ot

= G(h,x,t) +n(x,1) (5.1)

The basic question arising from this growth equation is thestjon as to which real-
istic processes dominate the roughening.

5.1.1 The Edwards-Wilkinson equation

The easiest generalized function to think about is the Edsvayilkinson (EW) equa-
tion [Edw82],

Oih(x,t) = vV?h(x,t) + n(x, 1) (5.2)

where we take only the linear second order term from the esipariSec. 4.4.4). Orig-
inally developed to describe an Ising spin system, it aldolets some properties rel-
evant to growth phenomena.

In Fig. 5.1 we see how this term acts on a given surface profile.take a sim-
ple Gaussian height profile(z,t) = exp(—z?) and calculate the second derivative
V2h(x,t) for a pre-factors = 0.1 in one spatial dimension.



Chapter 5. Stochastic Differential Equations 41

If we now add a small variation to the height function coresging to a small
change of the function in time, we see that the Edwards-Wlkn term acts as a
smoothing term on the height profile and as a conservatiegaiibn. Surface tension
behaves similarly, which is why this term is normally caltéd surface tension term

The Edwards-Wilkinson equation is valid in the small gradliggpproximation, i.e.
in the limit |Vh| < 1.

It corresponds to the well known discrete random depositiadel with surface
relaxation [Fam86] (see also Sec. 4.4.2).

The main difference from a random deposition model with@ldxation is the
presence of correlations.

There are different ways of solving the Edwards-Wilkinsguation and calcu-
lating the scaling exponents. Both an approach using gralnd an exact solution
[Nat92] are possible. The EW equation is one of the rare btdvaquations and we
shall now show the solution. For the solution by scaling wly oequire a self-affine
interface with a height function(x,¢). As explained in Sec. 4.2, rescaling in the
horizontal and vertical directions produces interfacegctviare statistically indistin-
guishable from the original one.

x—x = bx (5.3)
h—h = b*h
When we measure the height function at different times, Weeihterfaces are also

rescalable in time.
t—t =bt (5.4)

Due to the fact that the rescaled quantities obey thesaar$atby substitution inl
dimensions we get

o' (x', t')

00— o) ) 5)
poe—* ah(@t; t) _ VbaiQVQh(X, t) + b*%*%n(x7 t) (56)
ah(a? t) VAP h(x, ) + b0 (x, ) (5.7)

and by multiplying the termh®~* on both sides we come to the rescaled height function
which is invariant under the transformation and therefat#l$ the following relations
(independent of, comparison of coefficients)

z—2 = 0 (5.8)
d =z
—5‘1‘5—06 =0 (59)
which leads to the exponents of the EW universality class,
2 — 2 —
oz:—d, b= —d, z=2 (5.10)

2 4
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Figure 5.2: Scheme of the lateral growth,
height functioni(z) (blue), lateral growth
on the surface (red dashed lines). X

whered is the spatial dimension.

So in 1+1 dimensions the exponents are= 0.5, 5 = 0.25, whereas in 2+1
dimensions the exponents for the above equationsrare0.0, 5 = 0.0 andz = 2.
This means that scaling is logarithmic in 2+1 dimensiongter Edwards-Wilkinson
equation.

Whereas we solved the equations before by scaling argunmemfghenomenologi-
cal way, this equation can be solved exactly, as shown byridenfis of Nattermanat
al [Nat92]. The Edwards-Wilkinson equation fulfils up/dowmayetry (Sec. 4.4.4).
If the growth is non-linear, the scaling has to change ansl phoperty is no longer
fulfilled. We now come to an equation where processes retatadnlinear terms play
an essential role.

5.1.2 The Kardar-Parisi-Zhang Equation

Once again we first think of the easiest nonlinear term péssithich is the(Vh)?
term. The simplest such equation is the Kardar-Parisi-gl{ii®Z) equation [Kar86]
which describes the growth of a surface in the absence of @mgecvation laws.

Oih(x,t) = vV?h(x,t) + %(Vh(x, ) + n(x,t) (5.11)

We have already explained the surface tension terithe nonlinear term determines
the strength and direction of both lateral growth and gromghmal to the interface.
The origin of the nonlinear term can be seen in Fig. 5.2. lahignrowth normal to the
interface can be described locally by a term related to thbed@prean theorem

§h? = (vot)* + (votVh)? (5.12)

wheredh is the small difference in the height function in the gengralwth direction
and (vot) the lateral growth normal to the interface. We are using thellsgradient
approximation, so one can easily see that an expansidh leds to
Oh(x,t)
ot

:v+g(Vh)2+... (5.13)
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T T T h(x,t) = €"

— = (Thf = 42 (")
« = h(x,t+dt)

Figure 5.3: Behaviour of the nonlinear KPZ term (red dashed line) on dificaal
height profile(x, t) = exp(—x?) (black line) leads to small variation in the resulting
profile (blue dash-dotted line).

and thereby exhibits the nonlinear term. The velocity ihimg but an included term
in the mean average height development of the fiuto the surface. In Fig. 5.3 we
show the behaviour of the KPZ term on the roughening surfatiea same way as we
showed it for the EW equation. Two main features are to be.sé&eowth is related
to the normal of the interface and its strength to the locatigmnt. What one can also
observe is a lost mean height, so growth is not conservetiveela the mean height
development. So, whereas we can write a continuity equé&tiothe total number of
particles for the Edwards-Wilkinson equation whgnes the particle flux.

g—? = —Vj(x,1) (5.14)
this relation is not fulfilled by the Kardar-Parisi-Zhanguatjon. The consequence
is that, although we can generally describe a growth prosgbsa constant flux to
surface which can be neglected for the continuity equatr@hanserved for growth
related to the mean height, this growth process can not lseided by a non-conserved
equation like the KPZ equation. The KPZ equation cannot hesdcanalytically be-
cause of its nonlinear character [MicO4; Bar95]. Neverhsglthere are some proposed
scaling exponents for the equation.

5.1.3 Relations beetween EW and KPZ equation

The relationship between the Edwards-Wilkinson equatind the Kardar-Paris-
Zhang equation lies in the strength of the nonlinearity. ®&tcs al demonstrated
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that fact by using an effective coupling constgndefined by the parameters of the
KPZ equation [Mos91].

2
g= )‘—5 (5.15)

14
The coupling constant is related to the fixed point of a reradization group theory
approach not discussed in this work. They describe the @thr@ughening for non-
zero nonlinearities due to a change in this coupling congtaBo, to ensure that the
behaviour we describe here is similar, we choose numeraralpeters for our 'strong
coupling’ behaviour that ensure a coupling constant in Hmesrange as that in this
paper. The critical exponents for the KPZ equation are wedkn in 1+1 dimensions
and are given by

1
_ . i 5.16
a=10.5, 5} 3 z 5 ( )

In higher dimensions, where the renormalization groupyamafails, there exist two
different competing results from numerical simulations

1 1 _2d+1

CTaxr ﬁ:2d+1’ T AT (5.17)
and p
2 1 +2
_ - —ol "% 5.18
@ d+3’ b d+2’ : d+3 ( )

which are both compatible with Eq. (5.16) fér= 1. The numerical observations of
Wolf and Kertész [Wol87] (Eg. (5.17)) and Kim and Kosterljikim89] (Eq. (5.18))
lead to the same exponents in 1+1 dimensions as given by Bd) (but they differ
for higher dimensions.

A lot of further calculations where made to determine thegmeents. The values
of calculated growth exponents vary widely in a range from itiodels below, with
4 = 0.20 from Wolf and Kertész to values close to and in between thepnedictions,
where the exact value is still an open question (for numberesailts see also [Mos91;
Ama90; Cha89; Guo90].

More recent findings by Lassig [Las98] and Chin and den Nijsi98] show the
values of the Kim-Kosterlitz model (Eqg. (5.18)). A summarytioe latter findings
together with some new numerical findings can be found in (BhaNe will see later
whether our findings without control fall within this range.

5.2 The Molecular Beam Epitaxy Equation
Molecular beam epitaxy (MBE) is a major technique in crygtawth of thin films.

Growth takes place in vacuum conditions under which pagifiom a molecular beam
are deposited on the surface (see also Sec. 2.2.1).



Chapter 5. Stochastic Differential Equations 45

Because of the growth temperature, desorption processastghbay an important
role in comparison with the diffusion processes on the setf&o models which aim
to describe a MBE process normally neglect desorption pseEse Once one neglects
them one has to take surface diffusion as the determiningegso If one now describes
the surface currentby the local chemical potentialx, ¢), it is driven by the gradient

j(x,t) &« =Vpu(x,t) (5.19)

If one explains the movement of particles as a process depgod the number of
bonds, then this number increases with the local curvatiliftee chemical potential
then depends or1/R and thereby oivV2h(x, t), which gives us a relation

u(x,t) o« =V2h(x,1) (5.20)
Combining that with the continuity equation (Eg. (5.14)) beight function is

Oh 4
i KV©h (5.21)
whereK is the strength of this diffusion term.

So we now have a growth equation describing relaxation dygidn just as we
have in epitaxial growth for Molecular Beam Epitaxy. The a&tjpn is also sometimes
referred to as the Mullins or Herring-Mullins equation, aese the first findings came
from the observations of Herring [Her50] and Mullins [Mul57To avoid confusion
with the notation of the control strength, later on we usistead ofi as the strength
of the diffusion. Equation 5.21 is deterministic. It wasaduced for MBE growth by
Wolf and Villain [Wol90]. With some additional changes itdmmes the normal type
of 'MBE growth equation’ we shall discuss later. Calculgtitne critical exponents
we arrive at [Sar91; Bar95]

4—d 4—d
a=-— b= g z=4 (5.22)
Soin 1+1 dimensions the exponents are- 1.5, § = 0.375 where in 2+1 dimensions
the exponents related to the above equations would bel, 5 = 0.25 andz = 4.
The MBE growth equation that is normally used was descrilyedah and das Sarma
[Lai91]. Also known as the conserved KPZ equation [MicO#]stequation takes an
additional term into account.

Oh(x,t)
ot

The origin of the additional term is described as arisingiftbe situation where 'par-
ticles landing at high steps (large derivatives) relax vedosteps (smaller derivatives)’
[Lai91]. The authors believe that it corresponds to 'higimperature’ regimes, where
the atoms at kink sites can break bonds and hop to steps wittales height and
a higher probability, so they propose the above equatiomeasdeal MBE growth

=~ V*h + M VE(Vh)? 4+ n(x,t) (5.23)
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equation for intermediate to high temperatures. Obviotistyexplanation includes
a variation of the nonlinear term with temperature whichriseasential factor in our
further findings. The change in this term also is quite sintdahe situation explained
for the coupling in the KPZ equation, so here we have eithengtor weak coupling
according to the different temperatures. Whereas thessiegs explain MBE growth
in an idealized way, the question arises as to what happees thle physical process
involves both surface relaxation related to deposition egadption processes and a
diffusing term like in the following equation.

h
g_t =vV?h — i V*h +n(x,t) (5.24)

The long term behaviour is obviously the behaviour of the EWagion, because
for large length scales the Laplacian either governs thatemjuor is its leading term.
The terms generate a characteristic length scale whichndetes whether the diffu-
sion term is still the leading term or whether the length isasge that the EW term is
the relevant one for the exponents.

That fact can be explained if we rescale the terms using tbeskrexponents. We
then getvb*2V2h andv, b~ *V*h. Thus forb — 0 the diffusion term dominates and
for b — oo we get Edwards-Wilkinson scaling. In terms of length sctteserm

151

L= (7)2 (5.25)

describes the behaviouf. (> L; — MBE-like, L <« L; — EW-like). So which
length scale we choose depends on the growth condition$oibrgalistic MBE con-
ditions one can normally neglect the EW term in comparisath @iffusion, and the
length scalel; is so large that one can see the MBE exponents. There are & lot o
different models and equations related to Molecular Beaiitakyp a good overview

of the discrete models and their relations to the equat®gs/en in [Sar96].

5.3 Crystal growth and stochastic differential equa-
tions

We have already discussed the behaviour of the most reflesned used equations
for growth. We are now going to have a short look at the difietgpes. There are

a few articles which try to describe experiments using suowth equations but it is

still a developing field. It is quite difficult to find crystakgwth experiments where

the growth conditions are as ideal as assumed in the gempratiens. The measured
exponents vary over a wide range for the same system andoit &asy just to measure
the roughness and then write down one of the equations.
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5.3.1 Observations by Raiblezt al

The observations of Raiblet al [Rai00a; RaiO0b; RaiOl] provide an example of a
more complicated growth equation applied to amorphousliizetiain films. Here a
specific equation is solved by numerical integration. Theatiqn

Oh(x,t)
ot

is proposed to describe growth. One can see immediatelyttisad combination of

the terms of the KPZ equation (Eq. (5.11)) and the conserved &r MBE equa-

tion (Eqg. (5.23)). Guided by the measured experimental moags evolution of
Zres Alr 5Cuqr s the equation was solved by a numerical scheme and fitted to the
experimental findings. The parameters were identified as

= a1 V2h + a;V*h + a3VZ(Vh)? + ay(VRh)? +n(x, ) (5.26)

F  =079nm/s D  =0.0174nm?*/s (5.27)
ay = —0.0826nm?/s  ay = —0.319nm*/s (5.28)
a3z =-01nm?/s ay =0.055nm/s (5.29)

The parameter;, normally identified with surface tension in the equatiossggative.
The authors explain that irritating fact by growth instélgk "due to the deflection of
the initially perpendicular incident particles caused g inter-atomic forces between
the surface atoms and the incident particles”. The instabgferred to is explained by
Villain as due to an instability on terraces in growth withiiuion bias at a crystal-
lite layer [Vil91]. A test with our numerical simulation seime shows agreement with
the findings but also shows that the numerical solution wiicdy the same param-
eters is extremely sensitive to very small changes in thedfiarameters. Although
one can easily show that small differences in the pre-fade&d to a non-convergent
growth equation, small differences between experimemsaatabe explained by this
model. Fig. 5.4 (a) shows that, with exactly the same pararseis used in the numer-
ical scheme, the evolution of roughness can be reproducactg)dy our numerical
scheme.

The authors do not explicitly report the roughness expaemhey showed the
height-difference correlation, where one can see from kbies thate should be close
to a valuea € [0.85,0.9]. We explicitely determined this quantity using the height-
height correlation (Fig. 5.4 (b)) and the height-differeorrelation function (Fig. 5.4
(c)) and got exponents = 0.88 anda = 0.87, so our numerical solution and the data
analysis are consistent with the findings of Raible (see Sektion for the method).
Whereas the determination of the correlations once agaiodeces the behaviour
found by Raible et al, one can easily check that the exporartsot related to any
one of the explained equations. Obviously a mixture of d#fifie terms can lead to
much more complicated behaviour in roughening. To sumnaaiiis quite difficult
to simulate very complex behaviour with the growth equaaod to unambiguously
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Figure 5.4: Verification of the Raible model for thin film growth: (a) héigprofile for
a400 x 400 l.s. simulation at time = 1000, (b) the height-height correlation with a
fit function, (c) the height-difference correlation furgtiwith a fit function.

identify the basic processes which lead to the experiméetadviour. For amorphous
substrates discrete modelling with, for instance, KMC datians can help to solve
these problems [EIsO5b; ElsO5a]. In general one has to lyecaeeful when explaining

the different processes.
Nevertheless, observations using the easier equationkeadrio a better knowl-

edge of complicated roughening systems.

5.4 Data analysis

For computer experiments in general, and in our work to@, ithdamentally impor-
tant to calculate the quantities in a proper way and to caosthe computer codes
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and the numerical scheme in a way most closely related tay;eial order to avoid
discretization artefacts as much as possible. It is alse®dly important to include
the parameters in a simulation in a way that makes sense. drhpating difficulty is
then nevertheless to ensure a numerical solution in an pppate real time and not to
tune the computational expense to infinity. The first stepdiata analysis is to think
about the discretization scheme to be applied to the equatand only after that can
one think about how to calculate the observed quantities.

5.4.1 Numerical scheme of solving the growth equations

The numerical solutions of the stochastic growth equatawashormally based on lat-
tice or on discretized points, for which the height functh@s to be solved. If we focus
on crystal growth, the natural approach is to identify tHféedent points with atoms in
a lattice where the spatial position on the interface isrdigcand the height function is
then quasi-continuous. The height functigix, ¢) depends on discrete points, so when
we speak about the continuum height function for the growtregion our simulations
must approximate most closely not a continuum but a diseestgon of it. The spatial
discretizationAz and the discretization of the time stefisare the discrete quantities
that determine the distance to a real growth process. Indthed case dt goes to zero,
and the minimal discretization reflects a lattice constai the case of an amorphous
substrate the normal approach is also an effective lattostant [EIsO5b; EIsO5a].

Discrete growth equation— Continuum growth equation (5.30)
dt — 0 (5.31)
Ar — a (5.32)

In our case we want to investigate the behaviour of thosetmmsawhere scaling
is dependent on the system size If we had, for instance, a system of real size
64 x 64 nm with a lattice constant of approximately).5 nm, we would havd 28 x 128
discrete points on an atomic scale. If we now simulated aegystith 256 x 256
discrete points, it would refer to a system of four times treaaand would be related
to 128 x 128 nm, or with a lattice discretiation oAz = 1 nm it would refer to
256 x 256 nm. The scaling laws are not affected. But, for good resultgiftierent
system sizes, one needs to take the same underlying spatiattzationAx as we do

in this work. This shows that the choice of spatial discedtan is not important for
the simulation itself but becomes important with its intetation for real sizes.

So a rough view of 428 x 128 nm with describing every second atom by a lattice
point of the system is an even rougher view of4ax 64 nm where all atoms are
represented by one point, but from the point of view of thewation they are the
same and in the case of scaling laws they ought to be the samese Btatements are
obviously a direct outcome of fulfilling the scaling laws.

The discretization of timelt is much more difficult. If the discretization is too
rough, the fluctuations that naturally appear in numerichkemes lead the growth
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and the results don’t explain the equations. There is norgefav to determine the
discretization that will ensure realistic behaviour. Imgeal it has to be small in com-
parison with the timescale we want to analyze.

The lower cut-off is computationally demanding, so we havietd a rule to check
our simulations. If fluctuations dominate growth, in the starase the height function
goes to infinity at a certain point. We then know that we haveseh the wrong
timescale for the simulation. That can easily be demorestrasing the algorithm. A
more difficult case occurs when the discrete version is rusecénough to the realistic
equation. We can check this by using a smaller time disa#biz, and then, if the
behaviour does not change, we know that a suitable disatetizhas been chosen.

5.4.2 Discretization scheme

We have now explained how we prepare the discretizationeofattice and of time in
our numerical scheme. We now come to our discretization @etuation by terms.
The first observations by Moser and Kertész used a normabfollvackward differ-
ences scheme on a cubic grid and integrated it using an Hglaitam [Mos91].

d

Z(V[hn‘Hfi (t) = 2hn(t) + hy—e, ()] (5.33)

i—1

At

At) = -
hy(t + At) h(t) + IN®

+%A[hn+ei (£) = hne, (D)) + OVI2ALR, (2)

While some of the newer investigations still make use of #imsple discretization
scheme, Lanet al demonstrated that in 1+1 dimensions it produces some restak
in transitions from zero nonlinear terms to nonzero. Thayasdd that the results of
individual roughness evolution produce the right exposdmit when one want to get,
for instance, the transition from the behaviour of the Edisawilkinson equation to
the KPZ equation, some numerical mistakes occur [Lam98a9d8b].

Lam et al showed in their findings that in the transition from Edwavtigkinson
(A = 0) to KPZ behaviour X > 0) a shift of the amplitude A for the saturation function
appears ([Kru92]).

AN\ 12
sat = | — L* 5.34
i = (25) (5.34)

They conclude that this conventional discretization isangenuine approximation to
the continuum KPZ equation. They propose a new discretizati 1+1 dimensions
and show in detail that their scheme is a solution of the oomitn equation that does
not produce these instabilities.

A more generalized study of the problem provides a schemehndolves these
problems for more than just the 1+1 dimensional case [Buc05b
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In order to ensure that the proposed numerical scheme i@aligs unwanted be-
haviour we want to use here the scheme from ledral instead of the older scheme of
Moser and Kertesz [Lam98b; Mos91].

So as to avoid such mistakes we use the discretization scbihaen et al, while
ensuring that the exponents are not affected.

At,

n+1 _ n n n n n
h/i,j - hz,] + (Ax)Q [le,j _'_ wii]”j _'_ wi’jfl - 4ww] (535)
ay n n \2 n n n n
LETINGE (BT — 22+ (B — W) (RY — by )

_'_(h?,j - h?—l,j>2 + (h?,j—i-l - th)Q

H(hjpn = B (R = iy y) + (Rl = b p)?]

| [#DAt,
(Az)?

a2

wiy = ahiy+ gl i b - 4] (5.36)
as n n n n n n
LETINSE (R oyy — B)? 4 (R — R (R — By )

H(hy = by )+ (B — h5)°

(i = W)y = hi_y) + (B = hit i)

Here theh}; is the discretized height function dependingzony; and timet,,. r}; is
a random number taken from a uniform distributjeti).5, 0.5).

From this general discretization we arrive at the specifiaéiqns by setting, =
0 andag = 0 for the KPZ equationd; = v, a, = A) or by settingz; = 0 anday = 0
for the MBE equationk = v; = ag, ag = \y).

5.4.3 Determination of the critical exponents

In our work the basic quantities calculated from simulagiare the critical exponents
which determine the universality classes. We are goingea@ust of different methods
so we shall explain them here. The basic measured quantitees work are the rms
roughness evolution in timer,,s(¢) and the related exponents andz. We now
present the different methods of calculating of the exptsemd we shall use almost
all of them to obtain the resulting structures.

Calculation of the growth exponentj

There are different methods of determining the growth egpof, direct and methods
using the exponents andz. A direct measurement gf can be made by tracking
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the temporal evolution of roughness and then taking theestdpghe double logarith-
mic plot which reflects the law explained in Eg. (4.2). In th&ése the roughness is
not saturated. We have already explained the rougheningephaSec. 4.2.2 so will
not explain this direct method again. The second method @afsoming the growth
exponents is by determining the other exponents, using4=g). (

Calculation of the roughness exponenty

First we have to measure the roughness exponents. Diresumesaent of the rough-
ness exponent is possible if we can reach the saturation point of the sarfac
different system sizes. Then the scaling law for saturation roughness (Eq. (4&)) c
be mapped to the curves to get the related exponent. That entheleasiest method,
but it is not the best way of obtaining the roughness expgoranive shall see later for
the tumor growth model (Sec. 9.7).

This method obviously fails for most crystal growth systemtgere saturation is
not always reached during growth. A different method assuimat, even if we do not
reach the saturation value, it is still possible to detemtire roughness exponent from
locally saturated regions of the surface. The so cdbedl width methodhen takes
the dependence of the locally saturated roughness (width)

wr(l,t) = /< [h(x, 1) — hy(x,1)]2 >4 (5.37)

whereh, is the mean height of the local window of sizeThe scaling of local rough-
ness for small is the same as for the whole system, so for smale obtain the
roughness exponent using the relation

wr(l,t) o< 1¢ (5.38)

This method works very well for saturated systems but foratursited surfaces one
has to verify that < &.
Another method is to determine the height-difference dati@n function

H(r) = V/[< (h(x) = h(x))? >« (x=x|=71) (5.39)

If we again assume a self-similar roughening system withrhaitrary factorb then

h(x) — b~ *h(bx) (5.40)

(see also Sec. 5.1), and invariance implies the relation

H(r) =b">*H(br) (5.41)
By settingb = 1/|r| it follows that

H(r) oc |r[* (5.42)
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With this relationship it is possible to determine the roogés exponent from the
height-difference correlations.
A more general correlation is the height-height-correlafunction

C'(r) = < (h(x+1)—Rh)(h(x)— D) >x (5.43)
C(T) = < O/(I‘) > r|=r (5.44)

From the radius averaged correlatioiir) we can then calculate the roughness expo-

nent using the relation:
r

C(r) = C’Oea:p(—(é_—)%‘) (5.45)

where¢, is the so called self-affine correlation length. The funwsié/ () andC(r)
are related to the correlation length by

H(r) — 2wy, g for r>¢, (5.46)
C(r)—0 for r>¢, (5.47)

The structure functioy (k, t) makes use of the power spectrum of the interface. De-
fined by

S(k,t) =< h(k, t)h(—k,t) > (5.48)
with .
hik,t) = 25 > [h(x,t) — e (5.49)

T

the Fourier transform of the height functiérx, ¢), the scaling concepts lead to the
relation

S(k,t) = k™4 2g(t/k7?) (5.50)

with the Fourier space scaling functigfw) which fulfils the relations
glu) o uPetd/z for u<1 (5.51)
g(u) = const. for u>1 (5.52)

and is quite similar to the scaling function in normal spdég. (4.5)). It allows one to
determine two of the three exponents directly.

If we now measure the slope of the log-log plot of the struetuinction we can
measure-(2a+d) directly. By then rescaling the function with the measunrgobment
we get the scaling functiomn.

Rescaling again with the expected value dbr the structure function for different
timest we end up with a data collapse where the curves match oneanptbvided
we choose the right value of

This method also indirectly measures the growth expopentt is used for the
stochastic differential equations of the tumor growth mpae we shall see later.

Although there are a lot of other methods of calculating ttoaents, in this work
we shall restrict ourselves to those we have already exqidisee [Bar95]).
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5.4. Data analysis



Chapter 6

Control of stochastic differential
equations

In the last chapter we described the equations whose uahexgonents determine the
classes of the different growth phenomena. We discusseauttiperties and influence
of the terms corresponding to the physical mechanisms ditiearoughening; we
now want to answer the question of how to influence and cogtaith.

In crystal growth normally the first step, when growing defirsructures, is to
calibrate the system. Although for a lot of systems it is eatdlifficult to measure
local conditions on the substrate, this procedure can bébtwd with an extensive
number of repeated tests, until one reaches the conditioehsrwhich growth shows
the required behaviour.

A more elegant and, of course, cheaper way is to tune the ttomsiduring growth.
So an in-situ setup that adjusts the surface roughness iy &eipful tool.

When we use stochastic differential equations in the thimalepproach, the basic
guestion is how to implement a useful control in the equationrder to tune the
roughening process.

In this chapter we want to explain how we control the roughgrsurface using
the stochastic differential equations we described prtesho We introduce the basic
concepts and then proceed to our method [BloO6b; BloO6a].

6.1 Control theory

Controllers are an essential part of daily life. Althougleanight first think of appli-
cations to engineering like the 'anti-skid system’ in a cathe automatically tuned
temperature of rooms, one of the most complex systems imglontrollers is the
human body itself.

An example of this is the 'erect posture’. We first use ourilaeind visual senses to
summarize the information from the environment. The braentacts as the complex
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Measurements

Controller

Tuning C— Comparing

Figure 6.1: General scheme of a control system with the basic actionasuanmg,
comparing, tuning.

controller which send the signals to the muscles to act ini¢/e way. If this controller
fails for any reason, the corresponding actions fail to accu

Although the design of this controller is very complicat@dhares certain univer-
sal properties with other systems.

The design of a controller like that in Fig. 6.1 can be desatiby the process of
adjusting a specific quantity, which we measure in the systéhe required value
of this quantity then gives, by comparison, the directionttoing. So the cycle of
measuring, comparing and tuning is the basic concept andahioller determines
the changes needed to reach the desired value.

The properties of the system then decide the specific design.

There are two general types of controllers, the feedbackhodeand the non-
feedback method (often called feed-forward). In this wokkenly use the feedback
method.

Yq e y(t)

Controller Plant >

¥

Measuring section

Figure 6.2: Mathematical scheme for a control of a system wjitihe desired value
of y, e the difference from the measured valugjcandy(t) the output of the system
acting together with the measuring section, the contralef the plant.
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In Fig. 6.2 we see how feedback control works. The controlesighed to tune
guantity y to the desired valug,. During the development of the system, the time
dependent quantity(¢) is measured in theneasuring sectian

It is compared to the required value and the differentegiven to thecontroller.
The controller then uses the information and responds byguthe so-calleglant,
which is the system to be controlled.

By constantly following the defined feedback loop, a propedsigned controller
will reach 4. In the ideal case goes to zero. The control has to be reset if some
disturbance: occurs in the system.

The properties of the system we want to tune help us to deettegden the various
methods of control theory. We call the adjustment of theeala quantity in a system
which doesn’'t show any chaotic behavidatassical control® However, during the
last decade, methods of controlling systems with a huge eumfunstable periodic
orbits have been developed in the field of nonlinear dynanWgsen such systems
show chaotic behaviour we have to decide between "claSsindl'chaos control'

Although the basic concepts like the choice of feedback ed{fierward methods
are similar, the systems exhibit different behaviour uratsrtrol.

6.1.1 Classical control methoods

The most important class of mathematical approaches isiciscontrol methods
is the so called’Proportional Integral Differential”(PID) controller. As the name
indicates, the controller is made up of three different ®grsome of which can be
neglected, depending on the specific problem.

These three parts determine the behaviour of the contra. PFpart works as an
amplifier of the difference, the I-part sums up the measured values ahd thereby
memorizes the development of the quantity and the D-parsuorea the gradient of
the difference.

In general these parts of a controller are well defined by tissvar from the step
response. The equatiaenfor a PID control follows directly from the transfer functio

f.

f(S) = Kp"—%—i—KDS (61)

u(t) = er—i-K[/edt—'—KD% (62)
The weights of the controller parts are the pre-factorands denotes the time interval
in which we measure the differencesu(t) is then given by the controller to the plant
of the system.
More complicated kinds of P-parts or time delay parts cannotuded. These
make the controller much more complicated. For a detaileshaosw of the concepts
of PID we refer the reader to the book by Astrom and HagglurstJA].
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Fuzzy control is a different approach to controlling a systd he basic concepts
were developed from fuzzy logic theory by Lotfi Asker ZadeHL865. Fuzzy logic
includes not only the set 'true’ or 'false’ but also logicahtes in between. Fuzzy
control then answers the question of how close the measutaste the correct value.

The detection of edges on a poor grey colored picture is ampba If we define
white to be the edge and black to be not at the edge, then maisé gioints are in
between. For further reading we suggest the book by Passth¥urkovich [Pas98].

6.1.2 Chaos control

Where normally, for classical methods, the aim is to tunesgidig quantity to a certain

target value, for fluctuating systems the aim is sometimestabilize or destabilize

certain chaotic attractors. Control then usually meansstitig the essential oscillation
properties of the system by imposing a small perturbation.

Control of complex irregular motion is one of the centrallgems in nonlinear
dynamics [Sch01; Sch04; Sch89; Sch99; Sch07].

The phase space of such systems contains a large numbertablengeriodic
orbits embedded in a chaotic attractor. Therefore a smali@# in initial conditions
can lead to a completely different evolution.

There are several different methods, which once again cdiviaked into feedback
and feed-forward methods.

An important class is calledon-invasivecontrol. Here only weak external forces
are coupled into the system. They do not change the dynarhite system com-
pletely, but stabilize an already existing orbit embedadtetthe chaotic attractor.

The mostimportant non-invasive methods are the Ott-Griebode (OGY) method
[Ott90], and the Pyragas control scheme [Pyr92], whichde &hown agime-delayed
auto-synchronizatio(TDAS). The TDAS scheme uses the time-delayed feedback of
a system variable, which is coupled back into the system.arit €asily be applied
to a great number of systems and has proved to be successkaliexperiments.
See [Ben02; Boc00; Jus03a; Sch06a], or for various classdsoretical models
[Bab02; Bec02; Fra99; Hov04; H6vO03; Jus03b; Bal05; H6vOand6; SchO6b],
and for models of semiconductor nanostructures [Sch93; 0%nama02; Sch03b;
Unk03]. A wide range of applications of this method have btssted and there
have been a great many theoretical investigations. A fudkgelopment of control
was then proposed &tended time-delayed auto-synchroniza{iEmDAS) [Soc94].
Time-delayed feedback control has also been applied teesinodiiced oscillations
[Jan04; Bal04; Sch05; Pom05; Ste06; Hiz06; Hau06; Bal06].

We have briefly discussed chaos control, but for more detaplanations of the
methods and a state of the art review of theoretical methoddtzeir experimental
applications see the book by [Sch07].
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6.2 Control in this work

In this work we use the observed methods explained aboventatahe stochastic
differential equations and thereby the behaviour of thghaming interface by means
of a time-delayed feedback control method.

6.2.1 Control variable

The main quantity for the stochastic differential equagiesithe rms-roughness. The
development of roughness is correlated to three exponehtsh determine the uni-
versality class of growth and thereby determine the growttgss. Any possible
control has to influence this evolution and so our controlaldes are restricted to the
growth exponengp, the roughness exponemtand the dynamic exponent

In order to be included in a setup, the variables have to leetijrmeasurable. We
have seen in Sec. 4.2, that, in self-affine systems, the exps@re not independent.
While it is rather difficult to determine the dynamic exponemlirectly by measuring
the crossover time, or by using the structure function, we can in general corttodh
other exponents.

For a we have to calculate the correlation functions (see Seg¢.ds.the structure
function during control. If we want our tool to be related &alistic growth, the direct
method is very complicated, because it requires the cosgranf different system-
sizes. And as already pointed out (see Sec. 5.4), a lot &systio not reach saturation
during growth. So both for the theoretical model and for apesixnent the natural
choice of control is the growth exponent

Our control variable in the roughness evolution represir@®arly phase, so for a
lot of epitaxial systems it can be measured directly fromettgyment.

6.2.2 Time delay

The determination off requires the roughness evolution to be tracked during devel
opment. According to the definition of the growth expongnbur algorithm has to
calculates in-situ by taking the slope of the roughnes&) on a logarithmic scale and
therefore requires the previous roughness values to be nesdo

For a measurement in a numerical scheme it is obviously itapbnot to measure
the growth exponent at every single time st&pin order to avoid large effects of
discretization. As control theory is widely used for a lopexkmental setups, we give
the system a time delaybefore it reacts to control tuning. So our scheme calculates
the roughness for a time interval— 7, ¢t] from the actual and the memorized value of
timet — 7 and therefore is ime-delayed feedback controlethod.
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6.2.3 Scheme of control

We have now explained the basic quantities and our conthalrse follows as a direct
result.

A 4

ry Growth equation >

P w(t-T) w(t)

-

B local

Figure 6.3: Control of the growth exponerit

As shown in Fig. 6.3, measurements from the stochasticrdiiteal equations we
have solved give the time dependent roughness, which dietesrthe behaviour. The
algorithm calculates the actual growth exponent at tifnem the roughness evolution,
compares it with the desired value @fand then changes the behaviour using a well
defined strategy.

In detail, the scheme is as follows. First we choose the e@salue of the growth
exponent,3,, and select an appropriate time delay Generating sufficiently many
samples ohi(x, t), we recordw(t — 7) andw(t) (the argumenL will be omitted from
now on). Thdocal exponeng,,..; at timet is defined as

logw(t) — logw(t — 1)

logt — log(t — 7) (6-3)

ﬁlocal (t)

Depending on the sign and value®f..;(t) — 3y, we adjust the nonlinear coupling,
of the KPZ equation, as follows. First we introduce a corfnaktion F'(¢).
Fordigital control, we define

_ )& Zf ﬁlocal < ﬁo
F(t) B {_a> Zf ﬂlocal > ﬁO (64)

where the parameterdefines the control 'bit’, i.e. the amount by whiglthanges at
each control step.
Alternatively, we also investigatedifferentialmethod for which



Chapter 6. Control of stochastic differential equations 61

F(t) = K(Bo — Brocat) (6.5)

andK sets the amplitude of the control strength. Given one ofwlechoices ofF'(t),
the control scheme kicks in at timg and acts on the nonlinear terms of the different
equations, as we will explain in more detail for each speeifjeation.

Our scheme is successful(f,..;(t) approaches), and then settles at the desired
value within a reasonable period of time after the contraglleen activated.

Control of the KPZ equation

We have already explained in Sec. 5.1 the relationship twkee KPZ equation
(Eq. (5.11)) and the EW equation (Eg. (5.2)) when we have merdinearity. The
best method of controlling the exponents is to control tlaelileg term, which is the
nonlinearity\. The value of the nonlinear term is then no longer constanirie but

changed by the control forcdg(¢) in the following way

)\0, Zf t <ty
At =Nt —7)+ F(t), if t=1, (6.6)
Atn), if t, <t<tpi

The control scheme starts at timye From then on, the nonlinearity is updated at
timest, = to + nr, n = 1,2,..., starting from an initial value\,. As we know,
zero nonlinearity leads to EW like behaviour of the growtlp@xents, where the
value Ggy = 0.25 (for 1+1 dimensions) is smaller than that for the KPZ equmatio
Brpz = 1/3.

The algorithm has to include that fact. Therefore the cdhtree is added to the
nonlinearity if the local exponent is smaller than that os$(Eq. (6.6)). This assump-
tion is valid if we look at positive nonlinearities > 0. For negative nonlinearities
the situation is just the opposite. We have to subtract ifdifferenceS;,ca; — 5o 1S
negative, showing that the KPZ equation is symmetric in $eate.

Negative lateral growth corresponds to a negative nonlitesan. Such a process
seems to be unusual in crystal growth. But there are quitédasisystems with corro-
sive behaviour at the interface which exhibit negativerkdtgrowth.

In Table 6.1 we see a typical setup for our simulations wighithtial parameters
v = 0.1 andD = 0.5 kept constant for all simulations. The parameters of therobn
Bo, T, Ao and the control strengthand K" determine the control forcg(¢).

Control of the MBE equation

The situation for controlling the MBE equation (Eq.(5.2B)jn some ways different
from the control of the KPZ equation. The MBE equation witktjthe fourth order
term has a proposed exponent®f= 0.375 in 1+1 dimensions and the exponent
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EW term (surface tension) v=0.1nm?/s

Strength of the Gaussian white noisé = 0.5 nm?/s

Initial nonlinear term Ao = 0.00...0.40 nm/s

Strength of the digital control a=0.001...0.100 nm/s

time discretization dt =0.001...0.1s

System size L = 256...16384 lattice sites (l.s.
desired value of the growth exponent, = 0.25...0.33

time delay for the feedback 7=0.1...10s

Table 6.1: Typical set of parameters for the control of the KPZ equation

Surface diffusion term vy =0.1nm*/s

Strength of the Gaussian white noisé = 0.5 nm?/s

Initial nonlinear term Ao =0.00...0.10 nm?/s
Strength of the digital control a=0.001...0.100 nm/s
Strength of the differential control K = 0.001...0.100

time discretization dt =0.001...0.1s

System size L = 256...8192 lattice sites (I.s.
desired value of the growth exponent, = 0.33...0.375

time delay for the feedback 7=0.1...10s

Table 6.2: Typical set of parameters for the control of the MBE equation

decreases with a nonzero additional term of the nonlingagit For two dimensions
the same situation occurs when the exponent for a zero reamity \; is higher.

That is essential for the control scheme. If we want to tuneféactive exponent
(o by our time-delayed feedback control scheme, we have teaser the nonlinearity
A1 to get smaller values of the exponents by increasing thetiimad, (¢). So our
control force F'(t) has to work in opposition to the force from the KPZ equation.
For simplicity we change the sign in the control scheme, Imgt could alternatively
redefine the control forces with a change of sign in Eq. (664)( If we control the
exponents using;, our control scheme has to be

)\170, Zf t <t
Al(t) = Al(t o 7_) - F(t)> Zf t=1y (67)
Al(tn), Zf t, <t< tn—i—l

where the procedure for the time delay is the same as for thed¢fpation. In Ta-
ble 6.2 we see a setup of the parameters for this type of equati
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We have now defined a control procedure for the growth egusitichich will be
applied to control the growth exponent. So the questiorearas to whether it is
possible to tunes to all the desired values if the choice is restricted to ursiakty
classes. As one would expect, the answer is no.

But if we conceive of the exponents as defined quantitied#®tdng term and long
range behaviour of the roughening surface, we can conteaténly states with a well
defined system sizé by effective exponents, so the behaviour can be different.

A second question concerns the behaviour of the roughngsmerta during
the control. o does not differ for the Edwards-Wilkinson and the KPZ equatiSo
a useful and successful control maintains these valuesgltine control, otherwise
we would leave the universality classes and the above eguaibuld not explain a
adjustment of local growth exponents within these classes.

For the MBE equation the situation changes, the roughngssexts are not the
same for the two extreme cases, but one would expéaotlie somewhere in a range
between the universality classes for the controlled eqnatilTable 6.3 sums up the
exponents of the different regimes for the equations we waoontrol by the meth-
ods explained above. The different exponents for the KPAaggu in 2+1 dimen-
sions denote the different values proposed by Wolf and Keifié/ol87] and Kim and
Kosterlitz [Kim89].

| Kardar-Parisi-Zhang equations a |
1+ 1 dimensions =0 0.25  0.50
1+ 1 dimensions > 0 0.33  0.50
2 + 1 dimensions = 0 0.00  0.00
2 + 1 dimensions > 0 0.20 0.33 Wolf-Kertesz
2 + 1 dimensions > 0 0.25 0.40 Kim-Kosterlitz
| MBE equation |
1+ 1dimensions; =0 0.375 1.50
1+ 1 dimensiong; > 0 0.33 1.00
2 + 1 dimensions; = 0 0.25 1.00
2 + 1 dimensions; > 0 0.20 0.66

Table 6.3: The critical exponents for the growth equations.

6.2.4 Relation to control methods

A short look at our control scheme shows its relationshigheogeneral methods ex-
plained above. First, of course, we have a time-delayedoBeddmethod as for the
classical control and for chaos control.

Obviously we do not control a chaotic system. On the othedenhave a system
driven by stochastic noise as noise induced rougheningmkie difference from a lot
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of chaotic systems is the absence of a chaotic attractomatisi sense it is closer to
the classical methods of tuning a developing system. Saatleer difficult to include
classical or chaos control.

The method contains not only the properties of PID contrslt®it also those of
the TDAS scheme. Our differential control scheme acts imalar way to a propor-
tional controller, in that it amplifies the difference of ttlesired exponent. The digital
scheme answers with a step on a step function.

So our scheme combines some properties and findings of betbldksical and
chaos control approaches.



Chapter 7

Simulating Stochastic Differential
Equations

In the previous chapters we showed how to control surfacghoess by adjusting
the growth exponent in the early phase of the roughening. We now apply the time-
delayed feedback control method defined in Ch. 6.2 to thetemssfor crystal growth.

7.1 The Kardar-Parisi-Zhang Equation

In case of the KPZ equation we want to tune the growth expofidayt means of the
nonlinear term\. We have to ensure that the related exponents are valid fodilren-
sions and have to check if we get similar results in comparis@revious findings for
2+1 dimensions or to the proposed exponents, respectsedytable 6.3). So we first
check our numerical scheme for this equation without anytroband then continue
with the feedback scheme.

7.1.1 The uncontrolled equation in 1+1 dimensions

For a satisfactory check of the exponents without contrellibst method is to look
at the long time behaviour of scaling. In Fig. 7.1 we provideasa collapse for the
equation in 1+1 dimensions, where we used two differenesysizes. = 1024 and
L = 4096 for the numerical scheme.

Simulations were made for long times. 'Long time’ here me#aas the roughness
is in the saturation phase as shown in Fig. 7.1. The datapsalavas made using the
Family-Vicsek relation (EqQ. (4.5)).

First the roughness(t) was rescaled by — w/L%, then the timescale was
rescaled byt — ¢/L*. If we have chosen the right values farand z, the curves
collapse into single curves, as can be seen for the threal sétups.

In all three cases: = 0.50 measured by the height-difference correlatidfr)
(see Sec. 5.4.3 for the method) and is the right value for th&tfEW universality class
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Figure 7.1: Data collapse for the KPZ equation in 1+1 dimensiand.* vs t/L?
plotted on a logarithmic scale for three different initiatigps for the nonlinearity for
systemsized, = 1024 (red lines) and. = 4096 (black lines) (i)A = 0 shifted by a
factor of4 (ii) A = 0.1 shifted by a factor of (iii) A = 0.25, insets show the height
difference correlation functiof/ () measured for < [0, L], the broken green lines
are guides to the eyes for the extracted exponertsd 3, respectively.

and the KPZ universality class. The dynamic exponethiffers and therefore so does
the growth exponent.

Three different initial nonlinearities were used. For zero nonlinearity we see that
the Edwards-Wilkinson equatiopy (= 0.25, o = 0.5 andz = 2) behaves as expected.
The other extreme case has a sufficiently strong nonlirye@yit= 0.25) to provide a
case of KPZ behavioupy(= 1/3). Here the other exponents= 0.5 andz = 3/2 stay
at the KPZ values.

The third case X = 0.1) is surprising. We find a local exponefit,.., ~ 0.30
which is neither the EW value nor the KPZ value but is nevéedgeconstant over a
range of more than two decades.
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There are several possible explanations for this behaviour

e It is possible that saturation sets in before the exponathes the KPZ value.
Alternatively the opposing processes, the rougheningepaiad early saturation,
cancel one another out to give an effective exponent.

e It is also possible, though extremely unlikely, that we heuend a totally new
universality class.

e Itis also possible that there are some difficulties with tbhearical scheme. If
this is true then the numerical scheme needs to be changed.

To get a more detailed view, we made simulations of the edrse for a wide range
of different nonlinearities\. As simulations of long time behaviour are extremely
computationally demanding, we used shorter simulatiods@ok ensemble averages.
In Fig. 7.2 we have changed the nonlinear term in the range[0.0,0.8]. The
dashed lines help one to see the limiting exponents, whielher EW (3 = 1/4) and
the KPZ value ¢ = 1/3).
For small nonlinearities we get clear effective exponewtsch seem to increase
monotonically with the value of. If A is not too large we see the behaviour we expect

X =000 III | | IIIIIII | | III,IU
1—— A=0.05 < 7
A=0.10
H—— A=0.15
A=0.20
A=0.25
A=0.40

— ||~ w,_ =050¢%
ERl:
7 l l ||||||I l l ||||||I l l ||||||_
1 10 100 1000

t (a.u.)

Figure 7.2: Early roughness evolution of the KPZ equatiof¥) vs timet with \ €
[0.0,0.8] for L = 4096 and timet = 1000 with a time discretizationlt = 0.02,
dashed lines denote the limits of the growth exponent$fer = 0.25 (orange) and
Brkpz = 1/3 (green) as guides to the eye.
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and have observed before in Fig. 7.1. For a large enoughneanlty A = 0.80 we see
a local exponent which increases and then saturates at tAevi&lBe 5 = 1/3. This
indicates that we have not found a new universality classhferequation but rather
a local regime of early development in which the growth ex@um is tunable to a
certain value.

Quite similar behaviour has been found by other authors fMip&ha06]. So we
are not proposing a new universality class, and the limithefnumerical solutions
are still within the expected range. The universality clagplains long time and,
more importantly, large scale behaviour, so our resultsa@xjpehaviour during early
development. But this behaviour could be relevant to realsetups when we have a
defined limited scale and obviously also a limited time scale
We have determined the limits and range of the KPZ equati@findimensions where
control can adjust the growth exponent
We now take a more detailed look at the calculation of the hoegs exponents for
long time behaviour. As one can see in Fig. 7.3, the methodswe already described
(see Sec. 5.4.3) do actually work. We test the calculatiamgue height-difference
correlationH (1) (Fig. 7.3 (a)), the height-height correlatiét{l) (Fig. 7.3 (b)) and the
structure functiorb (k, t) (Fig. 7.3 (c)). As expected, the exponent 0.5 is the same
in all three cases, with a zero nonlinearky= 0, a strong nonlinearity = 0.25 and
an intermediate value of = 0.10. In Fig. 7.3 (b) the simulation plots (solid lines) are
fitted (dashed lines) to the functi@ry(l) = Coexp(—(1/£)**) (see Sec. 5.4.3). For the
structure functiort (k, t) we see that all the curves match a single curve with a slope
corresponding tax = 0.5. Herek is scaled so that = 1 corresponds té = L in
phase space and we shall use this scaling in further caloosat

7.1.2 Definition of parameters for the control

The first thing to determine for control is the range of timevimch we want to apply
the control. As we can see, for our simulations in arbitramtauthe range of clear
effective exponents ise [10, 1000], where saturation normally sets in after 1000.
So, in order to avoid effects produced by the saturationgs®ccontrol should not be
applied for too long a period. We have therefore restrictedcontrol to this range for
all our simulations.

The next step is to define the time detagnd the strength of the control forces by
means of the parameteisand K from Eq. (6.4), (6.5). Because our simulations are
highly computationally demanding, we aim as far as posslestrict the range and
use the parameters as a control before starting any simmlatihis avoids both long
parameter changes and wasting too much time reaching thepagameters.

Obviously,r, a« and K are not independent of one another during control. When
we have a very small time delay, we do not take too large a cbparameter in order
to avoid numerical instabilities in the scheme. If we takargér time delay, we have
to ensure that the control force can tune the exponent todbieed! value in time, or
else we have to choose paramete@nd K that are not too small. There are limits
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to the parameters defined by the equation and the controkrdatermined above.
If we assume a limit for our control functiok(t) € [0,0.25], which is a reasonable
assumption looking at the changeable exponents in Figth&e8,we have to determine
our control using that range. To get a more generalized viemaw define a control
factor for digital control.

c, =2 (7.1)
T
From this factor we can easily calculate the maximum of ongesfor\(t) by
A)‘(t) = Ca(tc,end - tc,O) (72)

wheret. ; is the time of the beginning of control ang, is the end. So for a time delay
7 = 1 and a control step = 0.005 the range isAX ~ 0.5 which is twice the range of
A(t) and therefore a good choice. Similar possible choices wivéld ber = 10 and

(b)
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Figure 7.3: Calculation of the roughness exponentor the KPZ equation in 1+1
dimensions in the long time behaviour: (a) the height-d#fee correlation func-
tion H(l), (b) the height-height correlation functiari(/), (c) the dynamic structure
function S(k, t) for three different nonlinearities = 0.0 (black), A = 0.1 (red) and
A = 0.25 (blue) with L = 4096, t = 10%a.u. anddt = 0.01, the dashed lines show the
fit functions for calculation of the roughness exponents.
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a = 0.05or7 = 0.1 anda = 0.0005 which give the same maximu\. So the factor
C, gives general predictions as to how to set the initial patarse The best choice
then depends on the specific development of roughnesnakse control’or a control
which only changes a few times in the control range of thetionc\(¢) defines the
upper limit of time delay. A very small time delay is more séws to the fluctuations
from the numerical scheme which appear in the numericajraten. Of course one
also has to ensure that the time delay is large enough in agsopawith the time step
dt.
For differential control the control factor has a similafidgion

Cp = — (7.3)

which is obviously impossible to calculate without somsttsimulations of the initial
conditions forK andr. Thisis because it depends directly on the differemnce 5;ocq-
Digital control only reacts to the sign of this differencen this sense differential
control is more difficult to apply but, on the other hand, islpably a much faster
control method.

We now need to define either the range in which we want our ebtatrinfluence
the roughening phase or the timggor the onset of control and for the end of control.
We therefore clarify the restrictions in our numerical solee In Fig. 7.4 we see the
development up to a time = 10000 for a setup with = 4096 and a nonlinearity
value of A\ = 0.25. In the left panel we show the linear plot and the insets shaw t
the power law is relatively stable up to= 1000, with fluctuations appearing in the
range from¢ = 1000 to ¢t = 2000 and becoming very obvious at= 10000, whereas
this does not show up so clearly in the logarithmic plot.

(a) ' . (b)

3

Il
1000 1500 2000

[= L=40961s.v = 0,7 =025, dt=0.01 | [ L=40961s.v=0A=025 di=0.0 1

n ! n L n ! n L n 10 _0 + ""“"1 E— + “"""3 E—
0 2000 4000 6000 8000 10000 10 10 10° 10 10
t(a.u.) t(a.u.)

Figure 7.4: Roughening of the early time KPZ equation with = 4096, w(t) vs
t: (a) linear plot, (b) logarithmic plot with a time discredizon of dt = 0.01 and a
nonlinearity ofA = 0.25

The origin of these fluctuations can be explained both by thg sf a change
in roughening before the saturation phase and by the strdhgences of numerical
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System size L = 4096
Time of onset of control to = 10

End of control t. = 1000
Initial nonlinear term o € [0,0.25]
Time delay T € (0,1000]
Strength of the digital control a € (0,0.05]

Strength of the differential control K € (0,0.10]
desired value of the growth exponengt, € [1/4,1/3]
time discretization dt € (0,0.05]
Averages 25 realizations

Table 7.1: Parameter ranges for the control of the KPZ equation in 1srfedsions.

fluctuations. When the evolution obeys a power law, smaltdlaions in the numbers
lead to bigger changes in the local exponent for the lateeginThis is because the
absolute values of the differences between the values obtighness decrease due to
the logarithmic scale.

Of course, we also get these fluctuations for smaller valugxurs seems to be a
suitable choice for controlling roughening uptte- 1000. Up tot = 10 the roughening
depends on the initial flat surface, so we set our tigne 10.

So we now have determined our basic parameters for the tafttbe KPZ-
equation and also the range within which control of the laglonent is possible.
Table 7.1 lists a summary of these parameters.

7.1.3 Control of the KPZ equation in 1+1 dimensions

We now test our control scheme for the KPZ equation in 1+1 dsias with these
restriction on the parameters. We check how control works tanwhat extent the
scheme depends on the basic parameters for certain setups.

Influence of = on control

First we want to test the reaction on different time delay¥Ve set an initial nonlin-
earity \y = 0 and take a control strength with constant values 0.01 and K = 0.01.

The desired growth exponent is set todye= 0.29.

We now test this setup for three time delays= {0.01,0.1,1}. In order to make
the influence of the time discretizatioi as negligible as possible, we set itdb=
0.0005. This increases the simulation time but we get clear resoidtsonly depend
on7. In Fig. 7.5 we see the results of the control for a variatibthe time delay

7. In Fig. 7.5 (a) we see that digital control works for the tisday = 1 (blue)
and for a value ofr = 5 (orange), where the control adjusts the exponent a little
bit later in the second case. For the smaller values corditsl fblack, red). In the
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Figure 7.5: Influence of time delay on control for digital and differetttontrol, (a)w

vst for the digital control withu = 0.01, (b) for the differential control withi' = 0.01,

(c) A(¢t) for the digital control, (d)\(¢) for the differential control, time delay vary in

T € {0.01,0.1,1,5}, dt = 0.0005, Ay = 0.00, By = 0.29 and 25 averages for all

simulations.

corresponding control functions (Fig. 7.5 (c)) we see tlesoa for this behaviour.

Whereas for the successful control the function first ineesaand then stays nearly
constant, it fluctuates widely for smaller This is obviously a reaction to the much
faster control with the smaller time delays. So differenitem the ideal case of the

power law of roughening here lead to over-controlled betavand thereby to a larger
effective exponeng.

For differential control the situation is much more extrema general we see
similar behaviour: the control works fer= 1 and in the case af = 5 does not reach
the value of3,, but stays close t@ = 0.25. Control fails for the smaller time delays.

Because of the direct dependence of the control strengtheoalisolute value of
the difference from the desired value(gf the fluctuations are much stronger here.

In conclusion, we have found a possible control but antteigeetter tuning of
the control strength for other cases of digital control ggilifferent time delays. So
although differential control reacts faster, the digitdieme of changing the time delay
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under constant conditions offers a wider range of post#sli

Influence of control strength on control efficiency

We now take a closer look at how controllers react to a changlea strength of the
control parameterg and K. We again take setups with time delaysdof= 0.0005,
Gy = 0.29, Ay = 0 and set the time delay to a constant vatue- 1 for both types
of control. In Fig. 7.6 (a) we see that the control works forigitdl parameter of
a = 0.005 (red), but fails fora € {0.001,0.02,0.05}. The dashed line here is a fit to
the working control parameter which shows only a slighted#hce from the desired
value of the effective exponent. Obviously, too smalkdeads to a control function
which does not adjust the exponent in the given range of tifhés is because of the
absolute added value of the parameter. For parametersréhtialarge, the changes
are too large for a given difference, so the control funaiaft) fluctuate more and
the required exponent cannot be reached: the control isagiddr the system to react
normally. That can be seen from looking at the functioiig in Fig. 7.6 (c). For
differential control the behaviour is very similar: the lest valuekX = 0.001 gives a
smaller effective exponent and the control strendths: 0.02 and K = 0.05 produce
larger effective exponents than desired and also causeflarguations in the functions
A(t) (Fig. 7.6 (d)). The adjustment = 0.29 only works for X' = 0.006 (red).

So a change in the strength of control using parameteasd K leads to quite
similar behaviour in both types of control.

If we look at the introduced control factors, (Eq. (7.1)) andCx (Eq. (7.3)),
control works here for values @f, = 0.005 andC'x = 0.006.

Simulations with constantC, and Cx

We now want to take a look at these artificial parameters.

We again take our setups with time discretizationgiof= 0.0005, 3, = 0.29,

Mo = 0.00 and now set the factors at, = 0.01 andCx = 0.01, close to the values
of our previous working control. Then we change both the mdmpiarameters and the
time delay in simulations and ensure these factors stayt@oindn Fig. 7.7 show the
results for constant factors. For digital control, the roogss evolution is adjusted
perfectly for two setups; = 0.005 with = = 0.5 (orange) and = 0.002 with 7 = 0.2
(blue). For the other setups control fails. The absoluteghable range during control
using the factor’, is constant (herd\\,,.. = 0.99, (see Eq. (7.1)), the reason being
slow reaction to changes in the local effective exponent.

For the differential control method this is not the case dmetdfore all setups
show very similar behaviour. Due to the direct amplifyindgura of C'x this leads to a
working control in all cases. The inset in Fig. 7.7 (b) sholet roughness increases
slightly for higherr and K.

If we take a look at the control functions for digital contnee see that values
increase for increases inanda. In the early stage the function increases fast with
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Figure 7.6: Influence of control strength on control for digital and diféntial control,
(@) w vs t for the digital control witha € {0.001,0.005, 0.02,0.05}, (b) for the dif-
ferential control withK" € {0.001, 0.006, 0.02,0.05}, (c) A(¢) for the digital control,
(d) A(t) for the differential control, time delay in = 1, dt = 0.0005, Ay = 0.00,

Go = 0.29 and 25 averages for all simulations.

high values, whereas later, because of fluctuations, itatashecrease fast enough to
give the right exponent.

To conclude: the fast reacting differential control has @dgantage of being in-
dependent ofr and K for constant values of'x, thereby reducing the degrees of
freedom.

Simulations with nonconstantC, and C'x

Fig. 7.8 gives a summary of a wide range of possible variationr, o and K for
the setup we used before. We have classified the results astogpr code: green
squares for a very good adjustment in the radge < 0.005 aroundj,, blue squares
for a functional but imperfect control &3 < 0.01 and red squares denote a non-
functional control forAg > 0.01. For digital control we see in Fig. 7.8 (a) that the
possible control works around valuesof= 1 anda = 0.01 for small changes. In
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Figure 7.7: Influence of constant factois, = a/7 andCx = K/7 on control, (a)
roughnessu(t) vs timet for different parameters andr andC, = 0.01 by digital
control, (b) roughness(t) vs timet for different parameter&” andr andCx = 0.01
by differential control, insets show the curve in smallariga to see the differences,
(c) and (d) the corresponding control functiox(s)

comparison with the differential control in Fig. 7.8 (b)etlange is larger but generally
more limited by an upper and lower bound to bothnda. The differential control for
constant K only shows control for a smaller range d@iut does not seem to be limited
by choice ofK'. So for all K a corresponding can be found.

Nevertheless there are limits due to the fact that when snaa# of the same order
of magnitude as the time discretization and K do not lead to useful control if the
function A(¢) reacts strongly to differences.

So, as explained above, in the case of differential contelkan reduce the pa-
rameters over a wide range to the factgr which determines the efficiency of con-
trol. In the case of the initial setup gf = 0.29 and A, = 0 this control works for
Ck € [0.005,0.01].
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Figure 7.8: Influence of the constants, and C'x delay on control, digital and dif-
ferential, (a) digital control for different setups ofanda, (b) differential control

for different setups of- anda, categorization in both cases by green squares (good
working control), blue quares (working control) and redaas (no working control),
parameters in all caseg = 0.0, 5, = 0.29, dt = 0.0005 for 25 averages.

Other control setups

We have made a detailed investigation of one specific irsgalp for the time delayed
feedback and know how the method works and what influencesrdete and restrict
the ranges. It is now possible to tune the control paramaters efficiently for other
setups.

As we saw for the uncontrolled case, we can generate theafudje of exponents
between the EW and the KPZ universality classes by changingthin a range of
A € [0,0.25].

There are three different setups in which our control worksextremecases.
These cases are:

e an initially zero\q = 0 corresponding to the KPZ universality clags<£ 1/4)
to be controlled to a desire@d, = 1/3 corresponding to the KPZ universality
class

e an initially strong\q = 0.25 corresponding to the EW universality clags £
1/3) to be controlled to a desiregh = 1/4 corresponding to the KPZ universal-
ity class

o different initial Ay which stabilize the effective exponents in a rangespfc

(1/4,1/3)
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By testing these setups we showed that all other possitdgarl setups with initial
partial nonlinearities in the range between them also work.

We have already partly shown the third case of analysis ofprameters; we
now check the whole range for an initial nonlinearity)of= 0 and desired values of
Bo € {0.25;0.27;0.29;0.31;0.33}. From the simulations fofj, we know thatr ~ 1
seems to be the best choice for optimal control in both digitd differential control.

We therefore normally restrict simulationsto= 1, although we have also partly
tested setups with other time delays.

For the control strengths we use setups af {0.005,0.01} andK € {0.005;0.01}
and partly test other setups for the differential contral@produce the behaviour ex-
plained above, where control seems to depend onl§/,gnBecause simulations with
the prior time discretizatiodt = 0.0005 are too computationally demanding (a few
hours for single simulation), we reduce the time discrébraby a factor of10 to
dt = 0.005. We thereby reduce the whole simulation time from days ta$iouhich
suggests that the precision of control is slightly affected

To analyze the results we took the roughness evolution arasuned the change
in the control function\(¢) in situ starting at time, with \,. The insets in the upper
left of the diagram show the development of this functionimiyicontrol. We have
already seen slight changes in the late phase of the comrkange due to the more
important numerical fluctuations in this range and we shadl take a closer look at the
late phase of all the simulations, as shown in the lower oftite diagram (also double
logarithmic plot). The figures show the fitted effective empot in the time range after
the control has tuned it to a nearly constant value. In F@we show the results for
digital control withAq = 0, a = 0.005 and7 = 1. In general there is the possibility of
control in all cases. Whereas there is nearly perfect cbfardhe required exponent
By > 0.25 (Fig. 7.9 (b - e)), the case gf;, = 0.25 is more problematic. Normally
one would expect that, when the initial nonlinearity= 0 corresponds to this required
value, it would be easily adjustable, as the scheme justdhsimy at a zero value. In
fact we see the effects of numerical solutions, where snmahges in the roughness
evolution activate a change af So, in all cases of nonzerg which we always get
in the case of partly measured valugs;...... < 0.25, the tendency is to produce
G > 0.25. Summing gives an exponent Gf > 0.25. Changing the condition that
A > 0 does not change the problem, because negataiso leads to bigger growth
exponents due to the symmetric nature of the equation (seeql Bar95]).

As already explained, we are going neglect that case, becawxperimental se-
tups it would be difficult to change the sign of the nonlinesint corresponding to
a real physical quantity. Nevertheless we also tested thealovithout any restric-
tions on the sign of, but did not find noticeable differences, so here we only show
results that neglect such schemes. In the control functi@nsee that a small increase
in nonlinearity leads to the control behaviour, which th&abgizes for higher values
of 5. For the higher values of, the control is perfectly stable, and in the case of
Gy = 0.27 too, as can be seen in the inset, small fluctuations lead tggebiocal
exponent, which is then compensated for by the control.
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In the differential scheme we see exactly the same behawaoept in the prob-
lematic case ofj, = 0.25 (Fig. 7.10). Here we get better control behaviour with a
faster control, which gives a stable exponentict 0.254. Nevertheless fluctuations,
which are then controlled by the scheme, can also be seersicabe (inset).

If there is a problem adjusting the exponents to the EW usaléy class from a
zero nonlinearity due to the numerical behaviour descrédtsale, then other setups
usually fail to stabilize3 = 0.25. A control that works forj, > 0.25 can be seen in
Fig. 7.11. The question is whether the good working contrdahe case ofj, is only
an effect of the numerics or if it is relevant for experimesetups. We do not want
numerical fluctuations in experimental setups, so the obata setup which normally
tends to have EW-behaviour should tune the nonlinearitgto.z

A good indication that there is a numerical reason for theabur is that the
initial conditions are chosen so that the value\aftays at zero.

For the reasons already explained for the symmetric botdeta0, this behaviour
is not seen in other setups, not even in the opposite casermirg sronlinearity §, =
0.25), which can be controlled to a KPZ exponefi§ & 0.33).

We now check other setups for the control with differentiahibonlinearities. We
restrict ourselves here to setups with = 0.10 and Ay = 0.25, which mark the
important changes in the initial nonlinearity. For furthefiormation about additional
simulations see the Appendix.

Now we look at an initial nonlinearity oh = 0.10 for both the digital and the
differential control. In Figs. 7.12 and 7.13 we can see thiapsefor \y = 0.10.

As already described, control fails fo, = 0.25, but the other cases show stable
behaviour and differential control seems to be nearly jgerfeall cases.

The range in which control changes the nonlinearity is munhler than for the
case\ = 0.00. That is obviously the case for these setups, because tiad aandi-
tions are closer to those required. So, as can be seen intieenscwithout control
(Fig. 7.4), this initial setup without control produces apenent between the EW and
the KPZ class. So here it is much easier to tune the functionto the correct value.
That is why, in the case g¥, = 0.29, the range for both control types fluctuates be-
tween\(t) € [0.1,0.12], and increases in the case of higher exponents to a maximum
of A(t) ~ 0.16 for 5y = 0.33.

These values give also an indication of how the system tenldstiave in the KPZ
class. It complies with the proposed valbe- 0.25 as a "strong coupling” value.

For the setup of this strong nonlinearity we now look agairthat results. In
Fig. 7.14 we see that the control works very well for higlygrand higher control
strengths also lead to control behaviour (see appendiig.nibt surprising that when
the control works for small initial nonlinearities, it algarks for larger ones. We can
see that the function decreases slightly and then stafilizegh more fluctuations in
the late phase, but with a clearly stabilized growth exptinen
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Figure 7.9: Digital control for the KPZ equation in 1+1 dimensions witltantrol
setup: Ao = 0.00 anda = 0.005 for five different desired control values of: (&) =
0.25, (b) 5y = 0.27, (c) By = 0.29, (d) By = 0.31, (e) By = 0.33, time discretization
dt = 0.005, upper left insets show the functionst), lower right insets show the
roughness in the late phase in double logarithmic plot.
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Figure 7.10: Differential control for the KPZ equation in 1+1 dimensiamgh )\, =
0.00 and K = 0.005 for five different desired control values of: (g8) = 0.25, (b)

Bo = 0.27, () Bp = 0.29, (d) By = 0.31, (€) By = 0.33, time discretizationlt = 0.005,
upper left insets show the functionst), lower right insets show the roughness in the
late phase in double logarithmic plot.
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Figure 7.11: Digital and differential control for the KPZ equation in 1€imensions
with Ay = 0.00, a = 0.01 respectivelyK = 0.01 for three different desired control
values of: (a,b)j, = 0.27, (c,d) 5y = 0.29, (e,f) By = 0.31, time discretization
dt = 0.005, upper left insets show the functionst), lower right insets show the
roughness in the late phase in double logarithmic plot.
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Figure 7.12: Digital control for the KPZ equation in 1+1 dimensions witlt@ntrol
setup: )\ = 0.10 anda = 0.005 for five different desired control values of: (&) =
0.25, (b) 5y = 0.27, (c) By = 0.29, (d) By = 0.31, (e) By = 0.33, time discretization

dt = 0.005, upper left insets show the functionst), lower right insets show the
roughness in the late phase in double logarithmic plot.
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Figure 7.13: Differential control for the KPZ equation in 1+1 dimensiamgh )\, =
0.10 and K = 0.005 for five different desired control values of: (&) = 0.25, (b)
Bo = 0.27, () Bo = 0.29, (d) By = 0.31, (€) By = 0.33, time discretizationlt = 0.005,

upper left insets show the functionst), lower right insets show the roughness in the
late phase in double logarithmic plot.



84 7.1. The Kardar-Parisi-Zhang Equation

@) - - — (b) - - -
" _ — 1,=0253,=0.252=0005 g ‘ — A,=0.258,=0.31, a=0.005
)\?if 1 - B=0.266 A | ] --p=031
a ] IR | T L T
0.18" :

| | | ]
200 400 800 1000
t(a.u.)

— simulation curve
- - fitted curve
- idealB curve

— simulation curve
- - fitted curve
- idealB curve

w00 t(a.-l;-.). _Jo00 N AT .t.(a.-l;-.).....jmoo
10° 10" 10° 10° 10° 10" 1 10°
t(a.u.) t (a.u.)
(C) A, =0.253. = =
0.26 — A,=0.253,=0.33,a=0.005
A F ] -. p=0.331
0.22- T
018 ]

AL | | | ]
O'lﬁ 200 400 800 1000
t(a.u.)

r — simulation curve
F - - fitted curve
- idealB curve

. 600 . Tau) J1000
10° 10" 1 10°
t(a.u.)

Figure 7.14: Digital control for the KPZ equation in 1+1 dimensions witlt@ntrol
setup: \g = 0.25 anda = 0.005 for three different desired control values of: (a)
Bo = 0.25, (b) By = 0.31, (c) By = 0.33, time discretizationit = 0.005, upper left

insets show the functionst), lower right insets show the roughness in the late phase
in double logarithmic plot.
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Figure 7.15: Differential control for the KPZ equation in 1+1 dimensiomgh \q =
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7.1.4 The uncontrolled equation in 2+1 dimensions

We now want to look at the behaviour of the KPZ equation in 2#fiethsions. As
depicted in Fig. 7.16, the situation here is much more carapdd. In the 1+1 dimen-
sional case we got clear effective exponents in the earlggbat they do not appear
here. We used setups for the nonlinear terms in the equatitireirange\ € [0, 0.1]

(@) (b)

/
/ /

I o i fooo fooco 1o "foo 1600 ioooo
t (a.u.) t (a.u.)

Figure 7.16: Longtime roughness evolution of the KPZ equation in 2+1 disiens:

w Vs timet for different values of\ (A € [0.0,0.10]) for (&) L = 32 x 32 and (b)

L = 64 x 64 and timet = 1000, dashed lines denote the limits of the growth exponents
for (@) 5 ~ 0.09 (b) 5 ~ 0.07 (green) and (ap ~ 0.31 and (b)5 ~ 0.33.

with system sized = 32 x 32 [.s. (Fig. 7.16 (a)) and. = 64 x 64 [.s. (Fig. 7.16 (b)).

Although we can not determine the exponents exactly by adinethod, we can
nevertheless get an impression of the range in whighvalid for our scheme.

We can thereby check if our numerical scheme works. The ®ahdossible ex-
ponents in the early phase are denoted by the dashed linedo Y& see a wide range
of exponents over more than one decade, but on the other hartthshed lines indi-
cate that the exponents could be in the rafige[~ 0.09; ~ 0.3] for both system sizes.
This agrees with recent studies of the values of the KPZgmuan 2+1 dimensions
[Mos91]. Additionally, as in our findings for 1+1 dimensigrise local exponents and
also the roughness w(t) increase with the valug.of

This behaviour is not surprising since, as we have alreadygubout in Sec. 5.1.2,
the determination of the critical exponents of the KPZ emunein 2+1 dimensions is
still an open problem. It would be much more surprising if veelld determine them
by a simple direct method.

Most recent studies have tried to tackle this problem usiogmastic models and
Monte Carlo or Kinetic Monte Carlo methods. The renormaicramethod fails in
this case [Bar95; Mic04]. Models (see also Sec. 4.4.2) me@dor KPZ behaviour
are expected to be in the class of ballistic deposition n®@ele Sec. 4.4.2). A variety
of these models have appeared during the last decade, samgedeposition to ex-
plain crystal growth ([Sar96; Osk06; Chi99]), others désng the two type particle
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system ([Kol06]) and treating a lot of very different proime concerning growth and
fluctuation phenomena.

All these slightly different approaches make the assumgtat ballistic deposi-
tion models can explain phenomena related to the KPZ equdéscribed above. The
extracted exponents vary betwegnec [0.1,0.25] and are close to the expected ex-
ponent3 = 0.25. But the exact values remain unknown (newer findings for ifipec
problems can be found in [Hor06; Rei06; Gha06; Fog06]). Aysort analysis of
simple ballistic deposition where we implemented the sen@rsion introduced by
Meakinet al[Mea86] and later further explained by Baietlal[Bai88] can be seen in
the App. B.1. Our results agree with their findings and theoesnts are in the range
expected for the KPZ universality class.

If our numerical solution of the equation does not give thewgh exponent di-
rectly, nevertheless the control can give some indicatfots walue.

Because of the behaviour shown in Fig. 7.16 we can not ensat®ur numerical
scheme will work, so we have to strengthen the approach rigat the roughness
exponents.

For this calculation we make use of both the height-heightetation and the
height-difference correlation function. In Fig. 7.17 we $iee behaviour of the correla-
tion functions for one setup with three different initi@tions of the random generator.
We took a nonzero nonlinearity= 0.05 for a now larger system di = 128 x 128 [.s.
and we use this for the control too. Although the extractqguberntsy for the height-

(a) (b)
j T T I/////I/) T 6\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\
10r- 5’ - - fitwith C(1) = C(0)exp(-(E)™), a = 0.33 _|
I - — fitwith C(l) = CO)exp(-(E)™), o = 0.37 |
8- 4 - — fit with C(l) = C(0)exp(-(E)™), o = 0.38 _|
) I ~ |
= =
T o o
-~ fitwith H() ~ 1%, a = 0.37 | 2
e _ 2 _ B
a- N f!t Wfth H() |2u' a : 0.42 a 1
fit with H(l) ~ 1”7, a = 0.39 |
I I ' B | I ' | O AR
1 5 50 100 0 5

10
1(l.s.)

Figure 7.17: Determination of the roughness exponent for different damfor L =

128 x 128, A = 0.05 and timet = 1000, (a) height-difference correlation, dashed lines
are fits for the small length behaviour to calculatén) height-height correlation, three
initializations of the random generator were used, dasimes lare fits withC'({) =

Coexp(—(l/f)m).

height correlation give smaller values ¢ 0.35) than for the height-difference method
(o ~ 0.40) both values are in the range proposed for the KPZ model byenum
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System size L =128 x 128
Time of onset of control to =10

End of control t. = 1000

Initial nonlinear term Ao € [0,0.1]
Time delay T=1

Strength of the digital control a € (0.005 : 0.01]

Strength of the differential control K < (0, 0.10]
desired value of the growth exponeng, € [0, 1/4]
time discretization dt = 0.005
Averages 10 realizations

Table 7.2: Parameter ranges for the control of the KPZ equation in 2frfedsions.

cal solutions of the equation [Mos91] or using differentliséit deposition models
[Bai88; Bar95; Mic04; Gha06; Sar96].

We do not see clear growth exponents. That may be due to théh&dcsaturation
sets in when the nonlinear term in the equation becomes megpe for roughening.
Alternatively we see a short very early phase, also catiediom growth([Rei06]),
which then reaches the saturation phase very fast. The phdstween, called the
correlatedgrowth phase by Reis (it is responsible for the growth expon¢hen can
become very small (see [Rei06]).

In this case, control can be applied to the equation to &abtilin a given range.

7.1.5 With control in 2+1 dimensions

We now determine the range for control. We again use a rargél0, 1000]. Once
again the control sets in at tintg = 10 in order to exclude effects occurring during
the very early phase (Fig. 7.16).

The question is, if it is useful to apply our scheme here. arrinvestigations will
have to clarify what control can tell us about the behaviduhe continuum function,
but we nevertheless tried control and got surprising result

At first setups forL. = 128 x 128 [.s. with a strong initial nonlinearity\ = 0.10
were investigated, which should give largecorresponding to the KPZ class (consis-
tent with Moseret al[M0s91)).

As we can see in Fig. 7.18, the equation for the digital schehwavs control
behaviour in 2+1 dimensions, too. We tried to adjust the aepts between those
expected from the EW clasg (= 0) and the KPZ class{ ~ 0.25). Control for
£ > 0.30 failed in all cases, but we got local control f6§ < 0.25. The scheme
adjusts the lower value gi, for only a very small time range, but seems to work very
well for the desired exponenty € {0.20;0.25}.
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Looking at the insets, it can be seen that fluctuations amitles cases of, = 0.2
and g, = 0.25, where the roughness increases briefly and is then regedbitiy the
scheme to the desired exponent.

For values of3 closer to the EW class the local increase in roughness iestd-r
bilized. So if the aim is to adjust and then stabilize the galusing the time delayed
feedback, then control obviously fails in this case.

The function\(¢) shows similar behaviour as in the 1+1 dimensional case:sit fir
decreases and then stabilizes at a certain value. Whenttigsdail we observe first
an initial decrease and then a monotonic increase in theufitions of\. We had
similar problems controlling the EW value in the case of thd dimensional equa-
tion, but here this deviation is much more relevant and, mtrest to the case in 1+1
dimensions, can not be controlled. Different factors cane rise to this behaviour:

¢ the problem of a zero nonlinearity which acts as a border, where all other
lead to higher exponents (symmetry of the equation)

¢ too large fluctuations in the late time range
¢ too small system sizes, which encourage fluctuations

e the EW class exponent is generally not adjustable

The first point is partly responsible but, as we saw for 1+1atigions, its influence
can be decreased by decreasing the time discretization elfprdved that point, but
got no noticeable differences.

If those fluctuations which can not be compensated for famigmplay an essential
role, then differential control should be more stabilizaga fast reacting control (see
the results for KPZ equation in 1+1 dimensions). And in fdatje look at the results
for the same initial setups with the differential scheme, ¢bntrol is also better for
smaller exponents (see Fig. 7.19).

But there are still effects on the evolution of roughnesse tEBmdency to late rough-
ening against the control is still present.

The fourth point we can simply not prove here. If we see an aw@ment when we
change from digital time delay to differential time-deldyfeedback, it might indicate
that control is also possible for small valuesggf

However the EW class with = 0 is a special case. Here we can not see a really
stable exponent in the roughness evolution (see Fig. 79®) = 0 just means that
the roughness scales logarithmically with

Although we have not entirely solved this problem, we stigsgiggest that tests
be made with ballistic deposition models and control to sdpce the behaviour and
give further information.
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Figure 7.18: Digital control for the KPZ equation in 2+1 dimensions with= 0.10,

Bo € {0.00;0.05;0.10;0.15;0.20; 0.25}, time delayr = 1 and control strengths of

a = 0.01((a), (b), (c), (d)) and = 0.005 ((e), (f)), upper left insets show the functions
A(t), lower right insets show the roughness in the late phasedgarithmic plot.
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Figure 7.19: Differential control for the KPZ equation in 2+1 dimensiomgh \g =
0.10, By € {0.00;0.05;0.10; 0.15;0.20; 0.25}, time delayr = 1 and a control strength

of K = 0.01, upper left insets show the functiongt), lower right insets show the
roughness in the late phase in a logarithmic plot.
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We get the best results for the desired exponents aroundathesvexpected for
KPZ-behaviour §, € {0.2;0.25;0.3). Here we see really stable exponents in the
region where the control acts on the equation. This is ssingj because we do not
get such clear behaviour without control. There could beouarreasons for this.
Where the nonlinearity is the leading term in the equatioth d@pends strongly on
local gradients of the height function, then, by definitidre control acts not only to
control the equation but also to control the unwanted nurakfiuctuations.

The nonlinearity decreases briefly in all cases, and théilizess at different values
for the desired exponents. In the late phase, where nurhéltictuations are much
more in evidence, small, can not be controllled. So roughness increases again for
small 55, whereas it does not increase for the nearby KPZ exponents.

This may indicate that in this case we can control roughnedsa#so get some
information about a realistic KPZ exponent in 2+1 dimension

We now also show digital control and differential controluges for\, = 0.00 in
Fig. 7.20,

Whereas the control adjusts the exponents in the expectedow#he higher ex-
ponents, it fails for smal, (not shown). In the setups the control functios) show
behaviour similar to that observed for 1+1 dimensions. Realkinitial nonlinearities
and higher exponents the functions increase to a certaueval

So also in this case, the growth exponent seems to be onlgtallje around the
values, = 1/4, where it is very well tunable.

Nevertheless, there should be some comparable resultsfitomstance, ballistic
deposition models related to KPZ-behaviour to ensure treaaibove explanations are
indeed responsible for the behaviour.

For initial nonlinearities in between the presented valwessee very similar be-
haviour, some of the additional simulations can be seendipendix A.2.
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Figure 7.20: Digital and differential control for the KPZ equation in 2€llmen-

sions withA, = 0.0, 5, € {0.20;0.25}, time delayr = 1 and a control strength

of a = 0.01,K = 0.01, respectively. Upper figures: digital contro, lower figuréee
corresponding differential cases. Upper left insets sh@afunctions\(¢), lower right
insets show the roughness in the late phase in a logarithotic p
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7.2 The MBE Equation

We have already shown that our control scheme works for th2 &guation in 1+1
dimensions and have the impression that it could also paxhk in 2+1 dimensions.
We now want to apply our scheme to the growth equation praptwsexplain Molecu-
lar Beam Epitaxy. In general control should also be appletbthe growth exponent
in this equation. For the MBE equation with = 0 (Eq.(5.21)) and the equation with
A1 > 0 (Eqg.(5.23)) the roughness exponeatare not the same, as has already been
explained in Sec. 5.2.

The proposed exponents are:

B = 3/8 a=3/2 z=4 for A\=0
g =13 a=1 2z=3 for A>0 (7.4)

We follow the same steps as for the KPZ equation. First weyampl scheme to 1+1
dimensions.

7.2.1 Without control in 1+1 dimensions

In the case of 1+1 dimensions the fourth order term makeshieralifficult to see any
saturation in the roughness. Therefore we first use verylsystemsL = 32 [.s.
and L = 64 [.s. which obviously are not useful for control. Neverthelessytshould
show saturation and thereby help test the numerical schathéha determination of
the exponents without control by rescaling.

In Fig. 7.21 we see the data collapse from the rescaled fumeand can determine
the exponents. As before, we have used three differentsetug {0, 0.05;0.10} for
a timet = 100000. We see that the data collapse into single curves for alpsednd
we get slightly different values for the growth exponentsstent with the proposed
exponents.

We now look more closely at the early behaviour of a largetesyd, = 8192,
which appears reasonable for the control scheme. As we eaim $8g. 7.22, we get
differences that look very small on the logarithmic scaldoviously the differences
appear more clearly in the late phase between500 andt = 10000.

The zero nonlinear term gives an exponentef 0.374 close tos = 3/8 and the
nonlinear term\; = 0.08 gives a valugs = 0.336 close to the valug = 1/3.

Of course, if our solution reproduces the scaling of the MBiSs, the saturation
for this system size can not be reached in a computationsdifulitime. If we assume
an exponent oiv = 1 for nonzero nonlinearity and get a tinig from the above
simulation, the saturation then sets intat 500000 and can be clearly seen for>
10000000 with one decade saturation. For zero nonlinearities the wasild be much
more extreme. As we see in Fig. 7.21, saturation sets inflatéy ~ 5000 and with an
expected exponent of = 1.5 we would see saturation at approximateky 20 - 10°.
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0.0001" 1
t/L°

Figure 7.21: Roughening of the MBE equation in 1+1 dimensions for setufis iv=
32andL = 64, ¢t = 100000 and three different initial nonlinearitiesc {0;0.05;0.10}
with a time stepit = 0.05, setup for\ = 0.1 shifted by a factod in y-axis, setup for
A = 0.05 shifted by a factoe in y-axis,20 averages for both systems.

So it is obviously impossible to reach saturation with a danaon. The time scale
is different for the MBE equation in 1+1 dimensions so we h@vehange the time
range in which we apply the scheme of control. We can use the saset of control
time ¢, = 10 and, if early roughening from the flat surface does not intheetne
behaviour of the equation, we expand the contral.te= 10000. This is much more
computationally demanding but promises clear resultshércase of the KPZ equation
we saw that distinguishing the five different desired gro@thonentss, is quite easy,
but here we restrict ourselves to three different valueslithiting exponents, = 3/8
andf, = 1/3 and one exponent in between, = 0.35. The control results would
otherwise be speculative.

As already explained, the critical exponents depend ontiomgscaling behaviour.
To ensure scaling for the early development of the interéecerell we have to check
the roughness exponents.

Therefore we calculate the structure function. In Fig. A8see the results of
rescaling, once again using the Family-Vicsek relation.Usfed very different setups
with different system sizes € {256;1024;4096; 8192}, a nonlinearity\; = 0 and
different times. In this case not all interfaces reach saitom. In the left hand panel
we see the unrescaled functions, which in the case of sdaéing to match the others
in the descending part of the curve. After rescalingkby- kt'/? and S(k,t) —
S(k,t)k~(o+D they have to collapse into one single curve as we can see ingite
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ST |— A, =0.08,3=0.334
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T3 _
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t(a.u.)

Figure 7.22: Early roughening of the MBE equation in 1+1 dimensions foetug
with L = 8192, t = 10000 and five different initial nonlinearities € {0;0.04;0.08}
with a time stepit = 0.01.

hand panel. This rescaling only works if we use the correpbagnts, so we used
a = 3/2 andz = 4, giving a growth exponent = 3/8 (5 = «/z). Having described
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|- fewin k@ g =15 "'W _ L =1024,A, = 0.00, t = 100000
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Figure 7.23: Data collapse by structure functidgf(k,t) for the MBE equation in
1+1 dimensions for five different setups (legends): (a) thecture function, (b) the
rescaled function by the Family-Vicsek relation.

the scheme without control, we now take a look at behavioufgmall” times. In
case of the MBE equation for 1+1 dimensions we get relaticiar-cut behaviour
for the growth exponent over a wide range. In comparison¢adRZ equation, the
difference between zero and nonzero nonlineaxityappears at a much later phase
of the roughness evolution for similar values of the simalaparameters, namely
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System size L =81921.s.
Time of onset of control to =10

End of control t. = 10000

Initial nonlinear term A1 € [0,0.1]
Time delay T=1

Strength of the digital control a € (0.0005,0.002]

Strength of the differential control K < (0.0005, 0.002]
desired value of the growth exponengt, € [1/3,3/8§]
time discretization dt = 0.01
Averages 10 realizations

Table 7.3: Parameter ranges for the control of the MBE equation in 1#iedisions
L = 4096l.s., D = 0.50 andrv;, = 0.10.

7.2.2 With control in 1+1 dimensions

By tests for control with that parameters, our control seztoavork, but did not show
really clear exponents without large fluctuations (not stpw

So we have to enlarge the systemsize and the control time.

In the simulations here shown we uséd= 8192 [.s. (see appendix for further
simulations) and a larger timg = 10000. Time discretization is set tét = 0.01 in
all setups. Table 7.3 lists the used parameters for the shesutts.

In Fig. 7.24 and Fig. 7.25 we show the results for an initiallimearity of A\, ; =
0.0.

In contrast to the KPZ equation, this initialization coperds to a higher value of
the growth exponent as explained in detail in Sec. 6.2. A workontrol also has to
react in a contrasting way. This behaviour can be seen fosehgs in both digital
and differential control. In order to adjust the desiredangnts, the control functions
now increase to tune the lowgs, as predicted by the theory.

As expected we get a control behaviour for the MBE equatidhtih dimensions.
Due to the required long time simulations to clarify the elifince between the two
universality classes we here restrict to the setups showererthe uncontrolled results
and the results with digital and differential control far show, that also for other
setups one can expect working adjustment of the desirechexp® (see Appendix for
further simulations).



98 7.2. The MBE Equation
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Figure 7.24: Digital control for the MBE equation in 1+1 dimensions witltantrol
setup: Ao = 0.00 anda = 0.005 for three different desired control values of: (a)
Bo = 0.33, (b) By = 0.35, (c) By = 0.375, time discretizationit = 0.01, upper left
insets show the functionst), lower right insets show the roughness in the late phase
in a logarithmic plot.
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Figure 7.25: Differential control for the MBE equation in 1+1 dimensiomgh \; o =
0.00 and K = 0.005 for three different desired control values of: (&) = 0.33, (b)
B = 0.35, (c) By = 0.375, time discretizationit = 0.01, upper left insets show the
functionsA(t), lower right insets show the roughness in the late phasedgarithmic
plot.
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7.2.3 Without control in 2+1 dimensions

We now come to the 2+1 dimensional case. For the KPZ equati@m1 dimensions
we obtained a control that was very difficult to apply. Thetcolbehaviour was very
difficult to interpret as we could not find a clear exponenttfer roughening phase.
Obviously here the situation seems to be much easier, asecaedn from Fig. 7.26.
We used setups fabt = 32 x 32 [.s. andL = 64 x 64 [.s. for the data collapse. The

1 AL T

|

0.0001 , 1
t/L

Figure 7.26: Data collapse for the MBE equation in 2+1 dimensions with system-

sizesL x L = 32 x 32 (black) L x L = 64 x 64 (red) and with three different initial
A1,, 1 = 0.1 andD = 0.5 kept constant for all simulations.

parameters for the uncontrolled case weres {0;0.1; 0.2} with times¢ = 10000000
for the smaller system and= 1000000 for the second system size. All setups give
a data collapse for rescaling with— ¢/L* andw — w/L®. For zero nonlinearity
A1 = 0 we see that the exponents for rescaling= 1 andz = 4 agree with the
expected exponents for the equation. The strongly nonlitegen of \; = 0.2 also
produces the expected exponemts- 2/3 andz = 10/3. As for the other equations,
the third case shows clear behaviour, where exponents-0f0.82 andz ~ 3.7 lead
to a data collapse.

So the requirements for possible control are fulfilled. Weehe clear behaviour at
the limiting borders determined by the zero nonlinearity arstrong enough nonlinear
term. Additionally we see an effective exponent in betwdenlimiting borders.
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We now look at the short time behaviour of larger systdms 128 x 128 [.s..In
Fig. 7.27 we see that we can measure the different valugsvefy well in this case.
The borders are given by the critical exponents of the usaldy classes. We now

oF — T T T 7T
—_ rd
gk [—2,=00d
Al — A, =0.05
— A,=0.10
3+ A, =0.15
— A,=0.20
- 0.25
=2} |7 w~t 7
; 0.2
w~1

1Mo oo 100010000
t (a.u)

Figure 7.27: Early roughness evolution of the MBE equation in 2+1 dimensiv(t)

vs timet with A\; € [0.0,0.2] for L = 128 x 128 and timet = 1000 with a time
discretizationdt = 0.01, dashed lines denote the limits of the growth exponents for
(1 = 0.25 (violet) and, = 0.20 (green) as guides to the eye.

want to look briefly at roughening by means of the surfacecttine. In Fig. 7.28 we
compared the surface structure after 10 (upper panels) and after= 10000 (lower
panels) for\; = 0 (left) and\; = 0.20. Whereas aftet = 10 we see very similar
results with a rough surface, the structure formation osfig¢ = 10000, as can be
seen in the lower panels. Far = 0.20 we can see small clear structures overlaying
a local rough surface. These structures do not arise in thedad surface fon; =

0. Although this analysis is just visual, a more precise asialis possible using the
height-height correlations in Fig. 7.29. The results ofgkzacted exponents for =
0, ~ 0.93 and for\; = 0.2 a ~ 0.67 are close to those expected. In addition we
can see greater roughness for the nonzero nonlinearity anora pronounced first
maximum in the correlation, which indicates the mean dstdyetween the structures
that occur (note thaf'(0) = w?). Although it is quite difficult to depict this behaviour
in 1+1 dimensions, we have the impression that it could begbd experimentally by
controlling the roughening.
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Figure 7.28: Roughening in the MBE equation in 2+1 dimensions, system Giz

256 x 256 [.s., t = 10000 for two nonlinear termg\; = 0 and\; = 0.2, (a),(c) show
for zero\; the surface aftet = 10, ¢t = 10000 respectively, (b), (d) show the surface
for \; = 0.2 aftert = 10, ¢t = 10000 respectively, the images are scaled from lowest
to highest value of the height function, the roughness fer10000 are both given in
Fig. 7.29 byC'(0).
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40 ' I ' I
— L =256x256, = 0.00
— L =256x256)A, =0.20
30 -~ fit with C(1)=C(0)exp(-(1€)*”, a = 0.937
- -~ fit with C(I)=C(0)exp(-(€)*, a = 0.67 -

Figure 7.29: Correlations of roughening surfaces for the MBE equatid2tih dimen-
sions, here we used the same setups as for Fig 7.28.
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System size L = 256 x 256 [.s.
Time of insetting control to = 10

End of control t. = 1000

Initial nonlinear term Ao €10:0.2]
Time delay T=1

Strength of the digital control a € (0.005: 0.01]

Strength of the differential control K € (0.005 : 0.02]
desired value of the growth exponent, € [1/5 : 1/4]
time discretization dt = 0.04
Averages 10 realizations

Table 7.4: Parameter ranges for the control of the MBE equation in 2#iedisions.

7.2.4 With control in 2+1 dimensions

We now go on to the control of the MBE equation in 2+1 dimensioHere we use
a systeml = 256 x 256 [.s., time discretization/t = 0.04 and set the time range to
to = 10 andt, = 1000. Where the system size is chosen as large as possible, #re oth
parameters are again guided by the detailed investigatosrtbe KPZ equation and
partly tested for some setups before generally applied.

In Fig. 7.30 and Fig. 7.31 we showed solutions of the equdtipmitial \; ; = 0.0
with control strengths of = 0.005 and K = 0.005.

We get really clear control behaviour with both types of cohtor all setups .
So from a zero initial nonlinearity, the MBE equation is alable to any desired
growth exponent between the universality classgss [0.2,0.25]. The behaviour
of the control functions, well known from the other equatipis also present in the
solution. As can be seen in the other setups wWith = 0.1 and\,, = 0.2, the
function at first either increases or decreases, dependitigeadesired exponent, until
it reaches the exponent, and then stabilizes at the comdsgpvalue. For\, = 0
andf, = 0.2 we get a strong increasing functioiit) which then stabilize at a value
A ~ 0.08. for the other cases the stabilization values are lower psa&d, where the
desried value off increases.



Chapter 7. Simulating Stochastic Differential Equations

051

@) TR —o05s )
01— ‘ — Ay =00,8,=020,2=0.005 " — A, ,=0.0,3,=0.225, a= 0.006
AY) L --B=0.20 At) --p=0.218
0.06 ' T T
0.04 0.0 I
0.02 0.0: B
[ ! [
0 |200 400 800 1000 0 [200 400 800 1000
) t(a.u.)
= =
~ — simulation curv =~ 3[— ation curve T
; -~ fitted curve ; _ -~ fitted curve
1 - idealB curve <5 // - = idealp, curve|
I e 7 e
2 1 P2 2
- z,
7, - 2 7
z 7 -
[ I B 7 e [ B
100 ZOP(a u.) 600] 1000 )’ 100 ZOp(a u.) 6001 1000
PSR | PSR | AR A MR | PR | PN
0 1 3 0 3
10 10 1 10 10 1 10
t (a.u.) t(a.u.)
(C) A, ,=0.0,8,=0.25, a = 0.006
0.0 — M107 By=0252a=0.
A(Y) —- B=0.229
T T
0.0
0.0
0 [200 400 800 1000
t(a.u.)
= // T T
N— P 3[— simulation curv T A
; P - - fitted curve
_ Z - = idealB, curve
Z =
“ ~—"
1' 54 ; 3
[ Z
Z
7 s L
/ 200 {(ayp00 J1000
) ) t(a.u.p 1
0 1 3
10 10 1 10
t(a.u.)

Figure 7.30: Digital control for the MBE equation in 2+1 dimensions, = 0.0,

L = 256 x 256 L.s., dt = 0.04, () 5y = 0.2, (b) By = 0.225, (c) By = 0.25, upper left
insets show the functionst), lower right insets show the roughness in the late phase

in a logarithmic plot.
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Figure 7.31: Differential control for the MBE equation in 2+1 dimensioks, = 0.0,
L =256 x 256 I.s., dt = 0.04, (@) By = 0.2, (b) By = 0.225, (C) By = 0.25, upper left
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Figure 7.32: Digital control for the MBE equation in 2+1 dimensions, = 0.1,

L = 256 x 256 L.s., dt = 0.04, () 5y = 0.2, (b) By = 0.225, (c) By = 0.25, upper left

insets show the functionst), lower right insets show the roughness in the late phase
in a logarithmic plot.
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Figure 7.33: Differential control for the MBE equation in 2+1 dimensiohs, = 0.1,

L =256 x 256 L.s., dt = 0.04, (@) By = 0.2, (b) By = 0.225, (C) By = 0.25, upper left

insets show the functionst), lower right insets show the roughness in the late phase
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in a logarithmic plot.
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7.3 Summary for the control of the growth equations

To conclude, the stochastic differential equations, dieedrhere for modelling growth
phenomena, are adjustable, within a certain range, to satiéhe effective growth
exponents, for different universality classes.

We explained in great detail the mechanisms and considesafor the KPZ equa-
tion in 1+1 dimensions, showing the restrictions on the fpbssanges and the borders
of the possible control setups. In the case of the EW expahent /4 it is difficult to
tune the control strength due to numerical fluctuationsfdauall other setups we get
clear control behaviour.

We applied the knowledge acquired from this equation tora¢qeations. In case
of the KPZ equation in 2+1 dimensions there are indicatitva¢ the control might
also work. For the proposed KPZ valge= 1/4 we can stabilize by control the
effective exponent very well, where a control for small \sus rather difficult. In
these cases without more detailed investigations we cabenstire that the behaviour
as explained is responsible for a realistic control. Thibasause of the numerical
fluctuations, which can not be determined without contngllihe exponents. This is
not surprising as the exact values are still unknown. Outrobhere could establish a
different method to determine the right exponents, as byidigin a working control is
possible in the range between the universality classes aodworking control defines
the border and therefore the realistic exponents.

But it would be helpful to get such behaviour with a differgmge of model, such as
a Kinetic Monte Carlo method with a stochastic model, cutyainder consideration
[WUNO7].

For the MBE equation the control works in both 1+1 dimensiang 2+1 dimen-
sions.

We have demonstrated control for 1+1 dimensions for diffesetups with ex-
tensive numerical simulations restricted to a smaller ppater space than for other
equations due to the computational expense.

For 2+1 dimensions the exponents are also adjustable bettheetwo values
which determine the universality classes. For these empugticontrol of the growth
exponents’ leads to an automatic change of the roughness expanesiating to the
same universality class as the desired growth exponent.

The MBE equation is proposed to explain the correspondimgrmental setup
where also KPZ-behaviour was found in crystal growth. Thigedince between
the equations is the absence of relevant lateral growthhi@mMBE equation. KPZ-
behaviour is found for low temperature systems, where uhdgr temperatures, dif-
fusion dominates the growth and the MBE equations are qooreing.

So, where simulations by means of a Kinetic Monte Carlo netten help to
reproduce the findings of the time-delayed feedback cotfteohim then has to be a
test with experimental setups.
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7.3.1 Experiments

By our theoretical investigations we showed in detail thatase of the stochastic dif-
ferential equations a time-delayed feedback control sehean lead to an adjustment
of the growth exponent and thereby to a deliberate tunindgn@fsurface roughness.
Now we want to discuss some hyptheses, how those schemeshmapplied to ex-
periments.

While in the literature there is still a lack of comparisonsafling theory with
roughening of crystal growth systems, the work by Ojetlal [Oje00; Oje03] can
be seen as a guide and a proof that such schemes are releliant, thhe hypothetic
specific application depend on the experiment.

If we want to predict, how one can tune the roughness, we fagt ko look at the
parameters of the equation, in case of KPZ namedynd\ or v, and )y, respectively,
for the MBE equation.

The question for real-world systems then is, what is a cpoeding tunable quan-
tity. In case of crystal growth that could be first the tempa@ and then pressure
as influences from the experimental conditions and secdindaserial parameters as
intrinsic conditions.

What can we influence by temperature? Of course, the surasson is coupled
to the temperature, diffusion of particles strongly depeod the temperature and the
deposition for almost all crystal growth experiments isitetl to temperature.

Obviously we just repeated all terms we used in the equattbns the next ques-
tion has to be: Can we tune these parameters independene&admother by temper-
ature?

Ojedaet al showed in great detail in their findings that in case of a cleahviapor
deposition of silicon films, where they find exponents cqrogsling to KPZ class, it is
first possible to change the nonlinear term experimentglghange of the temperature
and second, this procedure does not affect in their setuprttomthing term of the
equation. For different temperatures they showed theritlay, different exponents
appear in response to that change.

That is exactly what we use in our setups, an independendliygdible).

Our control is related to constamandr,, so\ and\; seem to be needed indepen-
dent from the other parameters. But as we already have sho®ed. 5.1.3 the KPZ
equation can be also characterized by a fagtbepending on the equation parameters.
So in caser and ) are not independent changable by temperature, a studyrcomge
this factorg have to be the method, to characterize a control scheme efjnation.

7.3.2 Other control schemes

We have applied a control scheme which is similar to clasBiagortional-controllers
and the Time-delayed autosynchronization method in chaosa.
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If we think of Proportional-Integral-Differential contr@PID), we could possibly
improve the working adjustment by including integral pastsdifferential parts as
explained.

An integral control would average memorized values of ticallgrowth exponents
within a pre-defined time interval and then the control foneauld depend on these
values.

L
3= 1/1:2@ (7.5)
F(t) = K(8 - f) (7.6)

wheret; denote the times wher& has to be measured. The range frgno ¢; would
define an additional time delay. We tested such a schemejduobtfind noteworthy
differences to the presented setups. Some selected rasukbown in the appendix.

A additional part of the controller could also react on tharudes of the differences
to the desired value and thereby establish a D-part.

We did not test such a scheme here.

We explained the difficulties to get good results for largeeticontrol due to numer-
ical fluctuations. The absolute differences of the rougbitetween to points, where
the control acts on the development, decreases due to ther paw behaviour. So,
a possibly better control setup up could be a changed strerighe control for late
phase, especially for the differential control. We havensdleat for the MBE equa-
tion in 1+1 dimensions the enlarged time range lead to smedletrol strengths for
a working control, that may be an indication for a changedrobistrength for later
times. So this might neglect strong fluctuations in the fiomstA(#).

A further development of our findings could also be the tesa @bntrol of the
roughness exponents While for our equations such a scheme would be only mean-
ingful for the MBE equation, also in other equations it cobklinteresting to apply
methods for the other exponents.

7.3.3 Other equations

While we explained and reproduced by our numerical schermeokiservations by
Raibleet al, a time-delayed feedback could also be applied to such alearaguation.

As already explained, KPZ behaviour is proposed for low talion® temperature
behaviour, whereas the MBE universality should be obtainédgh temperature sys-
tems. So, a generalized equation, containing both sitastad the transition between
the classes would be an equation, where all terms here agglai two different equa-
tions are included. A change of the prefactors;, A and\; then would correspond
to a change of the temperature.
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We made firsts steps towards the control of the so-called iKaisamoto-Sivashinsky
equation (KS), where we just solved the equation withoutrocbn

Oih(x,t) = vV?h(x,t) + %(Vh(x, )2 — vV 4 n(x,t) (7.7)

As can be seen in Eq.7.7 the KS equation combines the ternctiof the MBE and
the KPZ equation. While the long time behaviour thus must BZHike, for early
times the exponents should depend on the strengths of thms,teso this equation
could explain the transition from low-temperature (KPZhigh-temperature (MBE)
behaviour, where a control possibly could act to tune thearsality class.

The problem of more complex equations is the fact that we atlyncan not see
a clear scaling in the early roughening due to the differenhs responsible for the
behaviour. So, control of the growth exponents here is mumteifficult and requires
extensive precending investigations of the uncontroligdagons (see appendix for
results of the uncontrolled KS equation).



Chapter 8

The Model for the evolution of cell
populations

A lot of models describing the development of cell populasibave been used during
the last few years [Mor02; Dra05a; Dra0O5b; And05]. In thiagter we introduce the
individual cell based model we used to observe the growthrabr cells in an in-vitro
environment.

Following the basic steps for modelling growth phenomenadaered in Ch. 4, we
first want to look at the system and define the underlying siredlattice) on which
our simulation has to work.

We want to describe the dynamics and surface morphologyg# lzell populations
and to include the most relevant biological properties aloel cells themselves and
their interactions at a multi-cellular level. We considee system at an individual cell
length scale that does not explicitly explain the sub-¢atlstructure and is therefore
a kind of mesoscopic view.

We have used the experiments of Btual [Bri03] as guidelines for our model. We
have also used detailed information about the off-latticeleh introduced by Drasdo
and Hoehme [DraO5b]. Here extensive simulations were usegplain cell structure
and then give information about the multi-cellular struetu

8.1 Experiment and Off-lattice model

We now want briefly to introduce the main results from the obs®ons of Bruet al
and the off-lattice model of Drasdo and Hoehme before wegwddo our model.

8.1.1 Experiments by Bruet al

In these experiments [Bru03] colonies of 15 in vitro celelinand 16 types of in vivo
cultures were extensively studied to explain the growthadyics and to study the
morphological structure of the tumor border. The cell linese grown in Petri dishes
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of diameter5 c¢m under specific conditions and analyzed by taking photogragih
24 hour intervals. Previous results needed scaling analysthads to explain the
border structure for one cell line [Bra98], but here [Bru®3y analyzed the critical
exponents for all the cell lines studied.

For the growth dynamics they found an initial exponentiakvgh law followed by
a regime, in which the cell population radius grows lineanlyime. They concluded
that a proliferating zone restricted to a rim at the tumoideoiis responsible for such
a behaviour.

For the scaling analysis they took photographs of the turooddr and analyzed
the structure. Due to their interpretation, the criticgp@xents correspond to the MBE
universality class (see Sec. 5.2) and explained this bebawy a migration at the
tumor border which depends either on the coordination nurabthe cell, or on the
number of neighboring cells.

They found these critical exponents for all cell lines angigasted a general MBE
like critical surface dynamic for tumor cell lines.

The mathematical treatment of the universality class wdgally discussed by
Buceta and Galeano [Buc05a], who concluded that the aisalyess incorrect. They
suggested that the critical exponents could belong to athefersality classes, for
instance to the KPZ universality class. We aim to clarifis ttliscrepancy and also to
explain the dynamics found in the studies.

8.1.2 The off lattice model

For our model we use the results of an off lattice model. Doasttl HOhme [Dra05b]
developed a model based on individual cells. Cells are destias sticky, elastic
particles of limited compressibility and deformability.elCdivision is modelled by
the spherical shape of the cell after division, though ibd&fs during mitosis into a
dumb-bell.

Cell adhesion is defined by adhesive bonds which are afféxtele distance be-
tween cell centers. When cell pressure and nutrient supplja&en into account, the
results for the dynamics are in good agreement with the fgedai Bru.

So our lattice model, which also aims to explain the dynarofddru, uses some
of the results from observations of that model.

8.2 The Dirichlet lattice construction

We consider a model on a lattice. We want to combine the adgamnif lattice struc-
tures without the artifacts often produced by such models. av¢ now going to in-
troduce, as an alternative construction to the commortéatyipes, the construction of
the cell structure on an irregular lattice by a Delauneyngigation.
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8.2.1 Voronoi diagrams and Delauney triangulation

We construct a lattice based on concepts of Dirichlet, Vorand Delauney. Descartes
first used Voronoi like diagrams in 1644. In the nineteentitwey Dirichlet (1850)used

Voronoi diagrams in theoretical studies (Dirchlet) and ®nused them in a study of
the Soho cholera epidemic of 1854 (John Snow) [Oka00]. Hevetildhat the people
who died lived closer to the infected pump than to any otheéemjpump. This also

illustrates one of the fields where Voronoi or Dirichlet &tstions are most often
applied, because of the properties of a Voronoi cell.

Figure 8.1: An individual Voronoi cell: seven points distributed on aotfimensional
surface define the sét/, the white point denote; and the grey area defines the
Voronoi cell (black polygon), where all interior points fav; as the closest point
of set)M.

The diagram in Fig. 8.1 demonstrates the properties of arvareell. If we have a
setM of points in a space, then the set of all points closer to atpgithan to any other
point of setM defines theVoronoi cell or’ Dirichlet domain (black polygon). If we
optimize the distributed points in an area and then definad¢heest point for cells, the
solution is a Voronoi diagram. Taking post offices as poihis dptimization problem
is very famous as the "Post Office” problem. The tessellatfqolytypes then defines
the Voronoi diagram, named after Georgy Voronoi [Vor08]. eTdual graph of the
Voronoi diagram is the Delauney triangulation. Delaunégnigulations are a well-
covered topic; for an overview of the possible applicatimmghese concepts see e.g.
[Oka00; Ber97].

!Delauney is the french pronouncation of the Sovjet mathigiaatBoris Nikolajevitch Delone
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8.2.2 The construction in our model

In our model we apply these concepts to construct a lattaishunstructured but has
a well defined distribution of the cell area. The algorithndepicted in Fig. 8.2. Our

Figure 8.2: Construction of the Dirichlet lattice in four steps: (a) tdisution of
Voronoi points (black) in the square lattice, (b) Delaunégrtgulation (red), (c) De-
launey triangulation and the corresponding dual graphytinenoi tesselation (black),
(d) the Dirichlet lattice corresponding to cells.

construction is divided into the following steps:

We take a simple square lattice of size= [ x [ points with a lattice constant All
cells here then have a cell arda= a?, where the overall area {$/ — 1)a)* (denoting
that a lattice with points hag — 1 divisions).

The second step is to distribute points randomly in everasgjuLater we briefly
discuss different ways of doing this, but for these simaolaiwe insert exactly one
point into each square. So we now hgve- 1) x (I — 1) newly constructed points as
the points of our lattice (Fig. 8.2 (a)).

We now define the neighborhood of all points by a Delaunengudation. As
the name says, we construct triangles using the selectlenwtich says that if, by
connecting the points, we produce a square, we divide tharsdputo two triangles by
the shorter connecting line (Fig. 8.2 (b)). In the case wi&oeconnections have the
same length, the choice is random [OkaOQ].
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So our lattice fulfils the basic properties of an unstrualuadtice with a well de-
fined neighborhood.

The cell structure corresponding to our construction iegivy the Voronoi graph,
which is the dual graph of the Delauney triangulation (Fig &)). If we take the
perpendicular bisector of the connecting lines from theaDeéy triangulation the in-
tersections determine our cell structure (Fig. 8.2 (d)).

The lattice given by this algorithm has the following prapes.

e lattice of (I — 1) x (I — 1) points with a well defined neighborhood of on average
six neighbors as a result of the Delaunay triangulation.

e a pre-described average cell areadof= o? with a well defined sharply peaked
distribution around the average (determined by the chdiame point in each
square)

¢ a well-defined correspondence of the lattice points to thiesteicture on the
dual graph

In order to be able to compare simulations using our lattiitk ather types of lattice
simulations, we included the possibility of loading thetit types as explained in
Sec. 4.3, namely the square lattice, the hexagonal lattidetlze octagonal lattice.
To ensure a direct comparison, we consider types with the satharea as those in
our Voronoi tessellation, where in the regular case thee & exactly the cell area
(A = A) which in our case is the mean cell area.
With this lattice construction we now proceed to explainitiedel for our growth

simulation.

8.3 Modeling the basic processes

The basic processes in a cell population growth model ar@uobly the division and
migration of cells. Additionally we here also include othretevant processes like
apoptosis, mutations and fluctuations which could be resptanfor a change in the
developmental behaviour.

8.3.1 Cell division

The lattice structure in our model does not determine angthbout the structure of
the cell, so cell division is reduced to modelling the cellleytime and its distribution.

As already explained, the cell cycle consists of distin@g@s, namely the mitosis
phase (M-phase), the DNA duplication phase (S-phase) apg&ases, in which cell
signalling and individual cell conditions determine thadi.
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Because the cell cycle is controlled by cell cycle check {0jAlb02] and exper-
iments indicate d'-like distribution, we here model the cell cycle timeusing the
discrete analogue to thédistribution, the Erlang distribution in Eq. (8.1).

N\m—1
%emp{—)\mf} (8.1)
Here)\,, = m such that ') = 7 = 1.

As can be easy seen from the equation= 0 corresponds to a Poisson distribu-
tion. So the parameten ensures a realistic distribution of the cell cycle time.

In our model cell division is the same as the occupation ofvala#ice point. We
describe the biological process of one mother cell dividirig two daughter cells by
choosing one cell to divide and then setting the new cell aightboring site on the
lattice, adjacent to the mother cell. Volume exclusion (oe# on one point) then
determines the possible choices of newly occupied cellassin Fig. 8.3. Although

f(T) = An

Figure 8.3: Division in the model: a) a dividing cell with two possibleaibes to
divide to a lattice point, b) randomly chosen point of pokesihoices is occupied.

we normally choose the point for division randomly, we alsdude different rules for
division in the model. As already explained, the cell is @blsense its environment.
If one considers a choice of position which promises the &egtonment for the cell,
for instance maximum nutrients or maximum free volume, tthenrules have to be
changed. We discuss these different choices later, but tteafpproach has to be
random choice.

Proliferating rim

By experimental observations of many tumor cell lines Btwal found a dynamics
that shows an exponential growth in the early phase of theldpment of the cell
diameter that then changes to a linear growth rate, so qgunesngly a proliferating
rim has to be included in the model. The experimental growelbaities do not agree
with a proliferating imAL = 1. Thus,AL > 1 is needed. Cells are able to divide
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inside this rim. We model this by a environment of six& for each lattice point. A
cell then is able to divide if a free lattice point is availithin a circle radiug\ L.

If there is no free point in the direct neighbourhood, we dive cell the ability to
push aside other cells in its neighborhood. This algorithone a cell to divide if, and
only if, there is at least one free neighboring site withinrale of radiusA L around
the dividing cell. We see this environment for one individegll in Fig. 8.4. A sample
simulation for641 cells shows both the cell and the lattice structure with darged
section showing the movement of cells (red cells) insideritinealong a line (green).
One interpretation is that a dividing cell is able to exeruéfisiently large force to
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Figure 8.4: Cell and Point structure in the simulation, (a) the cell stuoe by the
\Voronoi tesselation, (b) the corresponding Delauney ¢rudation with the lattice
points and the connections to the neighboring points, lijbé cells are quiescent
and the dark blue proliferating, insets show a sample fohimgscells inside the pro-
liferating rim along the greeen line.

push at mosi\ /[ cells aside in a certain direction in order to obtain freecefdar its
division. Another interpretation of this rule is that onlyimited number of cells can
be stimulated to migrate away and leave free space for aidgakll. It is noteworthy
that asAL — oo lattice asymmetries in the growth patterns disappear froegalar
(square) lattice; usuallx L./l ~ 2 — 3 already gives reasonable results [Dra05a].
To determine the growth sites we draw a circle of radiis/! around the dividing
cell and shift the neighboring cells towards the closest &ige within this circle (shifts
by more thatA /I lattice positions are prohibited). If division is permidteve place
one of the daughter cells on the site of the mother cell, aadther daughter cell on
the neighboring site that has become free as a consequetheegyevious cell shift. A
biological interpretation of the assumption of limitedfshis that a cycling cell stops
in one of the cell cycle check points if the division would uég a shift of surrounding
cells over a distance of more tha/./[ cell diameters. As a consequence, the size of
the proliferating rim within the expanding monolayer canexceedA L if the cells are
dense (as they are here), which is why we ¢all the proliferation depth. In the lattice
model AL is a free parameter, while in the off-lattice modeL is a consequence of
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the biomechanical and migrational properties of the ceil$ may be influenced by,
for example, the cell stiffness and motility [Dra0O5b].

8.3.2 Cell migration

We want to describe the dynamics and surface morphology@é leell clusters. The
migration of cells is responsible for changes in the genaeabviour. For tumor cell
populations in general, processes related to migrationgtaucial role. If a mutation
causes a cell to lose its ability to adhere to other cellsedomnes invasive. Migration
can then cause these cells to invade other parts of the huathnamd form new tu-
mors. This metastatic process is one of the most importacggses in tumor growth.

Figure 8.5: Migration in the model: a) a migrating cell with two possiloleoices to
migrate to a lattice point, b) by type of migration chosennpaif the two possible
points is occupied, where the old position is now free again.

Although it is not our aim to model the metastatic process$esvasive cells ex-
plicitly, we consider cell migration (Fig. 8.5). Bet al explained the behaviour of cell
population growth relying on the Molecular Beam Epitaxywansality class. We use
our model to explain how different migration rules change ghowth behaviour. We
consider the following types of cell migration.

Free migration

A cell moves with rates to an unoccupied neighboring site, irrespectively of thennu
ber of neighboring cells before and after its move. This oaeesponds to the case of
no cell-cell adhesion.

Border migration

Cells move with rate if by this move the cell is not isolated. This may be seen as the
easiest way to model cell-cell adhesion.
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Cell-Cell adhesion

The most complex behaviour to model is cell-cell adhesiortHeykinds of bonds
between the cells. Cells move with a ratexp{—AF/Fr} with AE = E(t + At) —
E(t), whereAt is the time stepE () is the total interaction energy of the multi-cellular
configuration,F'r ~ 10716J is a "metabolic" energy [BeyOOWE/Fr ~ O(1) —
O(10) [Dra05b]. This induces migration towards locations withaeger number of
neighboring cells. After considering the basic propertieparticle diffusion in other
systems with energies corresponding to neighboring siteslefine our energy by

E=FE,+n-Eg (8.2)

where E; is an energy normally related to the bonds to the substrates ih may
correspond to the bond to the extra-cellular matriis the number of occupied neigh-
boring cells andZ’z denote the bond energy stored in each cell-cell contact.rgdise
in simulations for crystal growth such definitions are wydesed in the application of
Arrhenius law (see Sec. 2.1), here the pre-fagtaorresponds to the frequency with
which a cell is able to perform a hopping trial.

While the findings of Bru et al suggest a migration related tolédular Beam
Epitaxy, which is a diffusion-dominated type of growth (s&ec.5.2), the above as-
sumptions should explain the migration of cells, as alsevshia the off-lattice model
[Dra05b].

8.3.3 Apoptosis of cells
Simple apoptosis

We partly include apoptosis (programmed cell death) in oadehin order to obtain
the specific dynamics for a change from no apoptotic cellsituation where cells are
undergoing development apoptosis. The simple way is tadecthe ratey at which
the cells undergo apoptosis.

Complex apoptosis

We have defined a constant rate which defines the ability afélh¢éo undergo apopto-
sis, however other rates might be needed to describe redletaviour. Carcinogene-
sis is the process whereby cells mutate into tumor cellstanaften partly associated
with a change in the rate at which cells undergo apoptosiomination of knocked-
outs of tumor suppressor genes and the suppression of amopte processes which
can lead to the uncontrolled growth of the cell populatior thérefore add to the rate
of apoptosis a probability for the suppression of apoptosis

In detail: if we have a general rate of apoptosis in a cell patmn giving a5%
rate of cells undergoing apoptosis, this rate is decreagednutation ratey,,,.
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8.3.4 Necrosis

Whereas cells dying of apoptosis die without damaging theighbors, those dying
of necrosis normally die as a result of acute injury, causirngptentially damaging
inflammatory response. In in-vitro monolayers of culturetds; destruction is an un-
wanted process and does not have to be taken into accounin Baheral necrosis
plays a role in cell populations, so we include a necrosesirabur model.

8.3.5 Mutations and fluctuations

Tumor growth in general is a result either of changes in cgtleebehaviour or of a
change in the suppression and promotion of cell conditiand,is therefore a kind of
mutated condition.

Mutation in the cell cycle

Of course, during the development of a cell population cstirgg of cells mutated and
thereby supporting the uncontrolled growth, additionatations can occur. We want
to denote a mutation of the cell cycle by a change the ratevidalwithin a certain
range around the original cell division rate.

So we randomly mutate the rateoy A7 with

Tnew = Told T+ AT (83)

whereAr is a random numbehr € [—A740 /2, ATnaz /2]

So our mutation does not show a preference for faster or sldivesions of the
individual cells, but a change in the cell population causgduch a mutation can of
course effect the dynamics.

Mutation of apoptosis rate

Whereas a mutation of the cell cycle probably has more effestthe dynamics, the
properties of cells undergoing apoptosis can also be cliaagé could have effects
on the behaviour of the cell population. We include a charfgaeapoptosis rate
similar to the mutation of the cell cycle time

Ynew = VYold + A7 (84)
Here the cell cycle mutatioA is a randomly selected number in the range

[_A'Ymaa:/2; A’ymaas/Q]-
Fluctuations of the environment

We have already included parameters for change which ta@eansideration intrin-
sic cell conditions such as mutation and apoptosis, buteheycle is also influenced
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by external properties like, for instance, the accesgyilf nutrients. So fluctuations
of the external conditions may affect the cell cycle. In owdal such fluctuations
are shown either by the underlying structure or by the katti8o we have built into
our model the possibility of defining the lattice with randfioctuations related to the
lattice sites. In our structure this leads to a local charfgbecell cycle timer. We
would like to emphasize that this is a fluctuation of the emwment in which the cells
grow as opposed to the mutation of a single cell, where cheage intrinsic property
of the cell.

8.4 The Kinetic Monte Carlo method

We have already defined our underlying structure, namelyptiauney triangulation,
and we have described the possible processes and parameteesmodel. We are
now going to describe our method of observing cell poputedjowth.

In contrast to the simulations for the crystal growth equagi we here use the Ki-
netic Monte Carlo method. This method has been describeddn44.1 and we now
describe the specific conditions for our simulation. We haiveady defined the pro-
cesses we included by mean cell cycle times and mean migratid we now include
probabilities.

The rules given in this chapter can be formalized by the masfeation

atp(Z7 t) = Z WZ’—>Zp(Z,7t) - Z WZ—>Z’p(Z7 t)' (85)

AR YA Z—7'

Herep(Z,t) denotes the multivariate probability of finding the cellsconfiguration
Z andW_.» denotes the transition rate from configuratiéio configurationZ’. A
configurationZ = {...,z;_1, x;,x;4+1, ...} consists of local variables;, = {0, 1} with
x; = 0 if lattice site: is empty, andr; = 1 if itis occupied by a cell.

The kinetic Monte Carlo method or event-based Monte Ca#da thakes use of all
possible events in the system at tit{Bor75; Gil76; Fic91]. According to the specific
probability of the event, we then step by step choose an ¢gdrappen and increase
the time by the well known time step

1
At = —In(1—¢) (8.6)

Here,¢ is a random number uniformly distributedin 1), andR = ). p; is the sum
of all transition probabilitiep; of possible events which may occur at time

We have now included all the parameters and can analyze tgrowth using our
simulation tool. For a detailed description of the optioasthe simulation tool see
Appendix C.
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8.5 Data analysis

We want to explain the development of the cell population dredcritical surface
dynamics, so our main quantities are the cell diameter gbtipeilation and the border
cells.

Gyration radius

It is obviously important to have a measurement of the sizeetell population which
is independent of the morphology. Although we can also aeeadyowth kinetics using
the cell population sizé/(¢), in this case we take the gyration radius defined by

1N
Rgyr = N Z(fz — Ry)? (8.7)

=1

Here R, = + SV r. is the position of the center of mass. For a compact

=11
circular cell aggregate (i@ = 2 dimensions),R,,, is related to the mean radius
27

R(t) = 5= [ R(p, t)dy (polar anglep) of the aggregate bt = R, /2.

Structure function

To determine the cell population border we use the strudturetion we have already
described above. For completeness we would like to pointr@uspecial conditions
needed for this approach, and for the scaling theory andatetlysis for the critical
exponents we refer the reader to sections 4.2 5.4.

Here we want to explain a roughening process that is differethe sense that we
have a circular environment. So the border is not as easytéordime as in the case of
the development of a single line by roughening. Additionale have an unstructured
lattice.

There are two basic differences from the scaling in 1+1 dsimers we described
before: the circular environment and the size of the dewetppystem. Curvature may
have an effect on the structure function and we make the gagamthat the tumor
border is large enough to avoid artifacts.

The developing system should reflect the basic propertiesaling. Although
this effect makes it difficult to observe a stable growth engrd, the assumption that
the tumor border shows scaling requires the observatian afid z by the structure
function.

S(k,t) = (R(k,t)R(—Fk, 1)) (8.8)

whereR(k, t) is the Fourier transform of the local radii&s, t) and(...) denotes the
average of the growth process over different realizatiers. (RamO00]).
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Figure 8.6: Structure extracted from simulations, red cells here detia tumor bor-
der, where the light blue cells are quiescent and the dakoliferating.

In order to determine the tumor border using an algorithm cem either use all
the cells at the border and follow the individual points @dhe border by arc length,
or use a discretization by anglésp from the center of mass. When we include both
types, we normally make use of the first method guided by thershm described in
the findings of Brwet al [Bra03].

In Fig. 8.7 we show the scheme of the simulation tool. A dethdescription of
the options can be found in App.C.
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Voronoi structure
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proliferating rim
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Initialization of lattice
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Figure 8.7: Scheme of the Kinetic Monte Carlo simulation.



Chapter 9

Simulations of the evolution of cell
populations

We now apply different parameters to our Kinetic Monte Cailaulation tool to in-
vestigate how expansion kinetics and critical surface adyosdepend on the various
properties and mechanisms. In the first part we want to tegiribperties of our model
and show how its behaviour differs from that of other typemofiel.

For all simulations we use reference time scales and lerggtles more specifi-
cally the mean cell cycle time and the mean cell ared or, for linear quantities in
space,\/j. So all quantities are multiples of these scaling factars;ifistance, the

gyration radiusR,,, is described by the mean average cell diamettef — I. For
direct comparison with experiments the quantities are teecaled, and we use these
scales to investigate generic growth behaviour in our model

9.1 Lattice artifacts

First we consider our lattice. We need to show that our cang8tm avoids lattice arti-
facts. Such lattice-induced asymmetries could signiflgatisturb the analysis of the
surface growth dynamics in circular geometries. If thddattype is chosen properly
for crystal growth, it reflects the actual lattice and therefthe actual properties of
the crystal, but here realistic behaviour is not directlymed to a regular morphology
because of the absence of a regular underlying latticetateic

Our simulation tool can decide between four different typidbe underlying struc-
ture (see Sec. 8.2.2) and we now use this to compare ourelattithe other lattice
types, namely the square lattice (von Neumann neighbojhtiwel hexagonal neigh-
borhood and the Moore neighborhood with eight neighbors.

In order to check for any possible lattice artifacts we let garameter corre-
sponding to the sharpness of the cell cycle time increase oo. This corresponds to
ad-function for the distribution where all cells divide afexactlyr , and reduces the
effects of the random nature of realistic cell cycle times.
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At large m the tumor border then becomes smoother and thertsinape reflects
the symmetry of the underlying lattice. This effect is knaxsmoise reductiofBat91].

. IE)

Figure 9.1: Lattice artifacts: (a) von Neumann neighborhood, (b) hexad neigh-
borhood with six neighbors, (c) Moore neighborhood withheigeighbors, (d) the
Dirichlet lattice construction with an average of six négrs, (e) for comparison a
simulation with the off-lattice model [Dra05a], all latisimulations with no migra-
tion AL = 0 andm = 10000 for time ¢ = 120.

In Fig. 9.1 we show the resulting morphology of the noise oedisimulations. For
the setups we used = 10000 for all lattices and let all the cell populations expand
for ¢t = 120. There was no migration and we took a proliferating thh = 0 to avoid
the effects of parameters other than

As anticipated, the three regular lattice types show thedyithg structure (Fig. 9.1
(a - ¢), whereas our lattice type (Fig. 9.1 (d)) and, of coutke off-lattice model
(Fig. 9.1 (e)) do not show any regular structure other thancilhcular shape of the
cluster.

It can be seen that, in this case, the lattice constructiamuoimodel produces a
simulation free from lattice artifacts. So the constructour model is an advance on
the regular structure based models.

There is one additional property of the regular latticesr the same simulation
times the number of cells increase with the number of neighbothe regular lat-
tice, whereas our lattice shows similar values of cell diris in comparison with the
hexagonal structure. This agrees with the fact that ourtpdiave, on average, Six
neighbors due to the triangulation procedure.
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The underlying lattice structure does not only appear asutref noise reduction
in the cell cycle. Similar behaviour can be seen in simuretifor crystal growth if we
have a large rate of diffusion at the surface and a compatatiow deposition rate
[Blo0O4].

In this case the islands that are grown normally tend to fayoases of a specific
size on a cubic lattice. The diffusion in such simulationdeéined by an Arrhenius
law with the energy difference depending on the number ajm®rs (coordination
number) as explained in Sec. 2.1.2 and as also defined in ol(Sec. 8.3.2).

Because Briet al [Bru03] suggested exactly this type of migration, we test ou
lattice type again to compare it with the others. If our tatiype has no artifacts asso-
ciated with this type of noise reduction, then it should riaivg any regular structure.

(a)

Figure 9.2: Lattice artifacts: (a) von Neumann neighborhood (squétieég, (b) the
Dirichlet lattice construction with an average of six néghs, all lattice simulations
with migration¢ = 100, AL = 0 andFE, = 1 Eg = 6 and divided cellsV = 10000
before proliferation stops.

In Fig. 9.2 we compare the square lattice (Fig. 9.2 (a)) wathstructure (Fig. 9.2
(b)). We let10000 cells divide, then stop the proliferation and let the celignate
(¢ = 100) only by means of a coordination number depending on diffusas defined
in Sec. 2.1.2. This procedure corresponds to the fast bcatilon of a conserved
model. Conservation here means that the number of pariklesnstant due to the
elimination of the division process aftéf000 divisions. If the migration is chosen
in such a way that the cells tend to adhere to a maximum nunfleher cells, then
migration could cause this tendency of equilibrium behawto reflect the underlying
structures.

The parameters for the adhesion energies in our caseate 1 and £z = 6 for
both lattice types.
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Once again we can see the underlying structure of the refaitare, which does
not appear in our construction. Obviously the underlyinmsyetry is not as clear
as for noise reduction by cell division, but whereas in tlasecthe cells can reach
local equilibrium, the probability of reaching global elijoiiium is not so large. One
therefore has to run the simulation for very long times toteeeperfect square lattice
structure, whereas we can already see the underlying steucically.

So for both types of noise reduction we have shown that oticéetyype, as opposed
to the regular type, seems to be free of any lattice artifacts

Of course we have shown extreme cases, but whereas thetartifay not be ob-
vious in other simulations, they affect the results to a @grear lesser degree and so
normally require explanations for a recalculation of theaswed quantities, if possi-
ble.
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9.2 Cell area distribution

The second major difference between our construction agulaelattice types is that
it produces a realistic cell area distribution. We demaistthe distribution our con-
struction produces using the steps that have already bg#aimed. Therefore we
make the Voronoi tessellation inside the simulation anddate the cell area by
Herons formula (see appendix for details).

Obviously for regular lattice types, like the three incldde the tool, the distribu-
tion is sharp where biologically it should vary slightly ara the average area.

1000 - I - | - |
f(A) — one point to 1x1 square
| — four points to a 2x2 square |
8000 — 16 points to a 4x4 square
total random
6000~ n
4000~ n
2000~ k i
O 1 | 1 K‘——— 1
0 1 2 3 4

Cell area A [a.u.]

Figure 9.3: Cell area distribution for different lattices: Lattice pts: 1000 x 1000
for the basic lattice construction, four different distrilons to the squares, random
distribution of 1000 x 1000 points to the square lattice (brown), 16 points t6 & 4
squares (blue), 4 points ta2ax 2 squares (red) and 1 point to each square (black)

To emphasize the nature of our algorithm for constructiomhave chosen differ-
ent methods of distributing the Voronoi points to the squaittece.

In Fig. 9.3 we see the dispersion of the cell area for our coogon with one point
in each square, giving a totally random distribution on thedlpfined lattice.

So as expected, our distribution gives a pre-describecgeewrith a sharp distribu-
tion. An upper border of the sharp distribution is of courseg by A = 4a* because
of the maximum distance between two points.

If we now distribute more points randomly to a larger area bfinition of our
construction this maximum increases and the distributispetses.

If we expect the cell area to be sharply peaked around angeoar best choice
seems to be the first (black line), whereas for very flexible fast growing cell lines
other choices might be better.
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9.3 Proof of cell cycle time distributions

We now proceed to prove the cell cycle timesing the Erlang distribution. We tested
the distribution of the cell cycle for different setups witifferentm.

400 - T - T
— M=0
f(T) A — M :3,
3000~ 5 — M=6 -
\ M=8
N = Erlang distr. M =
2000+ \ .
1000 ] .
/ \ Mo
. 1 , b
0O 1 2

T

Figure 9.4: Cell cycle time distribution for different parameters 300000 cells were
grown for the different setups, no migration aad, = 0, the dash-dotted line denote
for M = 8 the corresponding Erlang distribution.

We can see that fonn = 0 the cell cycle has a Poisson distribution and for larger
m the cell cycle becomes sharper around the average-ot for all distributions. We
show the "ideal" Erlang distribution (dash-dotted blagie)i for comparison for the
setup withm = 8.
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9.4 Expansion kinetics of cell populations

We now want to investigate the expansion kinetics of cellydaions with specific
properties. We therefore vary the basic parameters ,iigration and the proliferating
rim, for the division of cells over a wide range. Additionalve look at the dependence
of the cell cycle time distribution on the mean velocity of/deping cell populations.

9.4.1 General expansion

We first want to focus on the general growth behaviour we saé simulations with-
out mutations.

We took the simplest case, namely a simulation with = 0 m = 0 and¢ = 0.
In Fig. 9.5 (a) we see the development of the gyration radiys vs timet and in
Fig. 9.5 (b) the morphology of the developed cluster. Theegaigrowth behaviour
can be seen. After an early exponential phase the gyratthaganters a linear phase
where the velocity stay at a nearly constant value (insgt). denote the velocity of
the gyration radiusz,,, .

8 T T T T

— AL =0, t=100Q

vt =12 s t=0

20 40 60 80 100
t(a.u.)

Figure 9.5: General dynamics of cell populations, parameters: pralifeg imAL =

0, rate for proliferationl /7 = 1, rate of diffusiony = 0, (a) Gyration radius?,,, vs
time scalet/7, inset show the velocity for the Gyration radiug, = R,,,, points
denote the steps, where the clusters are depicted in (Bh¢vs the development of
the morphology of the cell cluster, dark blue: the prolifarg cells at the border, light
blue: quiescent cells in the interior.

The behaviour corresponds to the expansion observed byeBaliand also to
the findings for the off-lattice model [Dra05b]. As we shaksfor other setups, this
general behaviour is found for all simulations without nigtas.
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9.4.2 Influence of the proliferating rim

We now proceed to observe the influence of the proliferating one of the basic
parameters in our model. In experiments the proliferatingis responsible for linear
expansion in the late phase of development.

(b)

Figure 9.6: General dynamics of cell populations, parameters: pralifeg imA L =

6, rate for proliferationl /7 = 1, rate of diffusiony = 0, (a) Gyration radiusR,,, vs
time scale /7, dashed black line show the setup from Fig. 9.5, points dethet steps,
where the clusters are depicted in (b); (b) shows the demsdop of the morphology
of the cell cluster, dark blue: the proliferating cells & thorder, light blue: quiescent
cells in the interior.

We tested a change of expansion using a setup &vith= 6 and otherwise the
same conditions as before. In Fig. 9.6 we see the generadndéuof the proliferating
rim on both the velocity and the morphology. The linear plasealso be seen in this
case: under constant conditions the velocity increasdsAult and the tumor border
smoothes out, as can be seen in Fig. 9.6 (b). A larger numberotiferating cells
obviously leads to an increase in the expansion velocith@sgividing cells push their
neighbors in a direction corresponding to the local radfud 6 and this then leads to
the smoothening effect. We discuss the role of the prolifegaim in detail later.

9.4.3 Influence of free migration

The first main process in our simulation is the division oflsebut we now look at
the second main process, migration. We include here thexirgeation of cells or the
absence of any cell-cell adhesion, respectiveley.

When we look at the behaviour under conditions of free mignatwe see that
the gyration radius again increases in comparison with tis¢ $etup, but that the
behaviour of the developing cluster is slightly differemitially the morphological
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— N =100000 cellsp = 50|
—--¢=0
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Figure 9.7: General dynamics of cell populations, parameters: pralifeg imAL =

0, rate for proliferationl /= = 1, rate of diffusiony = 50, (a) Gyration radius?,, vs
time scale /7, dashed black line show the setup from Fig. 9.5, points dethet steps,
where the clusters are depicted in (b); (b) shows the dems&top of the morphology
of the cell cluster, dark blue: the proliferating cells a thorder, light blue: quiescent
cells in the interior.

structure is not a compact cluster (Fig. 9.7 (b)), but latemore cells divide, the tumor
population becomes denser. So although the linear phasgiiargo the increases of
the proliferating rim, the way it is reached is very differeffhe early development
can be described by a square root function of the gyratiomsazbrresponding to a
free migration of particles.

9.4.4 Systematic parameter variation

We have shown the influence of the basic parameters by loakKitige morphology
and the general expansion using the gyration radiys, and we now proceed to a
more systematic study using the parameters ¢, m.
Fig. 9.8 shows a systematic study of growth kinetics for fregration.

Initially, the cell population size grows exponentiallygtavith

N(t) = N(0)exp(t/rus) 9.2)

where the relationship
T = (V" = mr ™! (9.2)

is fulfilled [Dra05a].

The duration of the initial phase increases wkh and¢. The growth law for the
diameter depends an If ¢ = 0, the initial expansion of the diameter is exponentially
fast. If ¢ > 0, cells initially detach from the main cluster and the diaenejrows
diffusively, with
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L= 2\/§ng x \/A(P+ 1/7g)t (9.3)

whereA ~ 1.2 is a lattice-dependent fit constant (Fig. 9.8(a)).

o—©O

(0}

P P L
"0 10 20 30 40 50 60
m

Figure 9.8: Dynamics of tumor cell populations: (&) = R>,, /(¢ + 1/7es) VS. t/T

form = 0, AL = 1 and different values fop. (b-d): Growth in the linear expansion
regime (V ~ 10°). (b) Square of expansion velocity, vs. square of the proliferation
zone,AL? (triangles:¢ = 0, circles:¢ = 10, squaresp = 20; m = 0). (c) v? vs. ¢
(triangles:AL = 1, circles: AL = 3, squaresAL = 6, stars:AL = 10; m = 0). (d)
vvs.m (AL =1, ¢ = 0). The lines are fits using egn. (9.4).

Fort/T < 2, R, o t (Fig. 9.8(a)). This regime disappears @(0) > 1 (see
[Dra05a]). As soon as cells in the interior of the aggregageiacapable of further
division the exponential growth crosses over to a lineaaagmpn phase.

Fig. 9.8 shows? vs. (b)(AL)?, (c) ¢, and (d)m for large N (N ~ 10° cells).

The model can explain the experimentally observed velaeihge in Ref. [Bru03].

Ast — oo, L = v(m, ¢, AL)t with

v’ =~ B*([AL(AL)? /7% + ¢/Tert), (9.4)
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B =~ 1.4 (linesin Fig. 9.8b-c)AL'(AL) (=~ 1 + 0.685(AL — 1)) results from the
average over all permutations to pick boundary cells withiayer of thicknesa\ L.

FOrAL/1es < \/@/Te €QN. (9.4) has the same form as for Bigher-Kolmogorov-
Petrovskii-Piskouno(KPP) equation. (e.g. [Mor01][Mur02]). This equation ie-f
guently used to model tumor growth phenomena by continuutetsgSwa00]. Here
the FKPP equation is used to predict the distribution of tug®lls for high-grade
glioma in regions which are below the detection thresholanetical image tech-
niques. Where we can get the same velocities for expansepending on different
proliferating rims and migration and as we will see, for elifint apoptotic behaviour,
we believe, that these predictions require additionallasueement to decide the dif-
ferent biologically parameters which can lead (as we showthé same expansion
velocity.

9.4.5 Proliferating rim

Where the role of division and migration is clear, we wantxplain the role ofAL
here in more detail.

The sizeAL of the proliferating rim controls the growth velocity in Ihgtthe
off-lattice and the cellular automaton model. In the simioles we found that =
AL'/1.¢¢ wWith 7.5 ¢ = 7/w being the cell cycle time

Here AL/l ~ [1+ (AL/I — 1)0.685] andw = (2'/™ — 1)m (and thereby the ex-
pansion velocity) depends on the dispersion of cycle tirs&itution. The parameter
m € [0,1,2,...) controls the shape of the cycle time distributitf’).

Hence the larger the dispersion of the cycle time distrdsufby choosingn to
be smaller) the smaller is, and the larger are.;; and consequently the expansion
velocity v of the monolayer. At no dispersion the expansion velocithéssmallest.
The factor0.685 results from the order in which the cell divisions take pladg-
though our simulations are in two dimensions, the occuge@iithis factor can best be
understood if one considers a one-dimensional segmenta-aiimensional growing
cell population, ideally a one-cell-thick column rangimgrh the center of mass of the
monolayer until its surface.

If only the outermost cell is able to dividé\(./! = 1), the increment within is
AL. However, if the proliferation depth iAL >> [ then the order of divisions deter-
mines whether a cell is able to divide or not. To see this assammalmost precise cell
cycle length (i.e., a cycle time distribution sharply pehkér = (1) which is obtained
form > 1). Then, ifitis the innermost cell that divides first thenalls closer to the
border are still able to divide while, if it is not the innersteell that divides first, then
the innermost cell cannot divide anymore since this woutpire to shift more than
AL/l cells. So eveniff (') —~ d(7' — 7) the order at which the cells divide matters
since forAL > [ the cell divisions are not completely parallel. The factod.685 can
be calculated from investigating the expected growth imenet from all permutations
of choosing the cells in the proliferative rim for divisioNote that the factor 0.685
marks the difference between an asynchronous and a parpdate. To understand
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this first note, that since we start each simulation with glsicell, a precise length of
the cycle time would mean that all cells divide at the samatpwii time. The factor
~ 0.685 results from the asynchrony as argued above. For a paraliigte this factor
would not be expected; the expansion velocity should insbesy ~ AL/7. (Note
that in a circular geometry the expansion velocity may shgtleviate from this value
due to the boundary curvature which decreases with incrgasonolayer size aly/ R
with R being the monolayer radius.)

Note also, however, that the facter 0.685 may disappear also in asynchronous up-
dates if the choice of how cells are divided is slightly cheshglf one would assume
that a cell that once has passed the restriction point dswidth probability one that is,
if one assumes the decision on whether a cell divides or moage immediately after
its birth and not when it is chosen for division, then the dency of the velocity
upon the order at which the cell divisions in the prolifemngtrim are performed would
no longer be expected.

9.5 Comparison with experiments

Now we want to compare our model directly with the experirakdata.

Findings from the off-lattice model [Dra05b] were able tg@kin the growth ve-
locity found by Bruet al [Bru03] for the developing population, and in our simulatio
we use parameters that are consistent with these findingglpa proliferating rim
of AL =9 and a parameter for cell cycle time distributian= 60.

a) b)
2000 ————— : 4
@ exp. Bru

R[Um] - === CA lattice
[E-E] Off-lattice

| — CA lattice
i f 3 | +— Off-lattice
— Erlang distr.

1000 = 2
. 1
0 0
0 10 20 30 0.5 1 15
t[days] T/1

Figure 9.9: Dynamics of experiments:(a) Mean radi@®f the cell aggregate vs. time
t. Full circles: experimental findings for C6 rat astrocyt®gla cells ([Bru03]). (b)
Cell cycle time distributionf (') for the off-lattice model and the CA growth model
in comparison with the Erlang distributiom(= 60, AL = 9, ¢ = 0).

After the simulations we rescaled the resulting expansaameters using the real
size of the cell diameter as also used by [Dra05b] (cell 5izel 0um cell cycle time
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7 = 19h). As can be seen in Fig. 9.9 our simulation is consistent Wwath, the
experimental data and the off-lattice model.
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9.6 Cell density

We have already explained how different parameters anéfthrer different biophysi-
cal properties can lead to the same velocities in the lineas@. We now consider the
properties that determine them. A variety of mechanismsgoanthe same velocity,
one being the cell density at the tumor border. If, for example have the same ve-
locity but a different migration strength at the border, aetls are also able partly to
migrate away from the cluster, this can be determined by ureggsthe cell density.
Cell density here means the mean volume filled within a giaeius.

(a) 8 T T T ] (b)
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Figure 9.10: Comparison of cell density at the tumor border for simulagiavith

m = 0 and two different setups: proliferating rildZ, = 10.5 and migration rate
¢ =0andAL = 0 and¢ = 50, R,,, = 100 for both simulations, profiles are rescaled
to normal radius (factot/2) and shifted to recent region.

We have used simulations with the same velocity and the s#tagproliferating
rim AL = 10.5 and zero migration (black) comparedAd. = 0 and¢ = 50 (red). In
both simulationsn = 0. To make the simulations comparable, we stop the simulgaition
at a gyration radiugt,,, = 100.

At first we see the same expansion velocities (inset of Fif) €a)), but the initial
phase is different. The velocity measurement alone obiyaaoes not give us enough
information to decide between the two setups, but whenalsstithout migration are
denser, large migration rates lead to more active cellseabtrder and additionally
to unoccupied points, so the density decreases more slawhe dorder as shown in
Fig. 9.10 (b).

This setup shows that further measurement of either thealiphase or the cell
density is required for the model in order to decide betwegaesions with the same
velocity. So the relationship to the FKPP equation can nadrdene all the relevant
parameters.
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9.7 Surface dynamics

We now go further to look at the behaviour of the tumor bordeéerms of the structure
function. As already explained, different suggestionsehlagen made for the critical
surface dynamics of the tumor cell lines. Whereas Bru et gbsst an MBE like
behaviour, the critical comments by Buceta and GaleanoesigdkPZ like behaviour.
First we want to look at the behaviour of the case with no niigreand AL = 0
for different timest. In Fig. 9.11 we see the structure functions for differentets
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Figure 9.11: Dynamic structure function fo§(k, ¢) vs. k for different timest, AL =

0, » = 0 andm = 0, (b) rescaled structure functic(k, t)k***! vs. kt'/* by a = 0.5
andz = 3/2, (c) surface border for the different times.

t = 60,100,150. The slope suggests a roughness exponert 0.5. Rescaling
using the Family-Vicsek relation (see Sec. 4.2.2) we ged daliapse for the function
(Fig. 9.11). When we use= 3/2 the data collapse into a single curve, giving us clear
exponents corresponding to the KPZ universality class.
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Obviously this setup leads to very different scaling to thajgested by Brat al.

We now proceed to vary the other parameters. In Fig. 9.12éaee the behaviour
for AL = 6 under otherwise constant conditions. Here we have sinougtivhere we
calculate the structure functid®(k, t) for four different times and we can see that all
simulations show similar scaling behaviour.

In Fig. 9.12 (b) we see Arrhenius law migration with paramete= 2, £, = 1
and £z = 2 which require large migration rates and define the migradording to
the explanation of Bret al.

In Fig. 9.12 (e) we than take the same type of migration withiséc 'slower’ rates
for the parameters derived from the off-lattice model.

We also varied the sharpness of the cell cyclerby 5 (Fig. 9.12 (c)). We used a
setup with free migratiow = 100 (Fig. 9.12 (d)) For both we did not see any MBE-
like behaviour.

We have included the migration explained by Bru which shd@desponsible for
the behaviour of MBE like growth. We also tested a lot of dif& setups for the
binding energies but we did not find any MBE-like behaviouthiea structure function,
but in all simulations values for the roughness exponerstecto the KPZ universality
class valuex = 0.5. So we need to explain why we did not find MBE behaviour but
rather exponents related to KPZ-behaviour. First we wamnémand ourselves about
the behaviour for 1+1 dimensions on a single line.

Here MBE-like behaviour corresponds to a system wheregbestare deposited at
a constant rate and then relax due to diffusion on the suf2&®5; Sar96; Mic04].
MBE describes conserved growth, so, after subtracting gedeposition, the evolv-
ing height function has the same mean average height as Wjushroughens.

Physical properties eventually require some of the tevit¥s (smoothing surface
tension) or(Vh)? (lateral growth) but the critical surface dynamics can redy on
the MBE universality class for long term behaviour [Sar96¢do the non-dominant
fourth order term (see Sec. 4.4.4Sec. 5.2).

The universality class then is either EW or KPZ.

In MBE modelling the particles fall onto the surface and thellax due to diffu-
sion. Here we have a different case. The particles form ttexior of the surface.
This behaviour is similar to the deposition of particles &hlly the cells can grow
laterally. If we take a specific radius vector from the cewtemass, we find that the
cells can grow in a direction perpendicular to this line.

This behaviour corresponds to lateral growth or, in termgegiosition, to a ballistic
deposition model (see [Bar95; Mic04] and references thgehere before relaxation
particles stick to the nearest neighbor thereby producaidsvand overhangs.

Both explanations lead to KPZ-like behaviour, and we haxesaly pointed out in
Sec.7.1.4 that ballistic deposition models belong to th& KRiversality class.

These overhangs can be seen in our model and also in the atisesvof Bru
[Bru03], so it can be seen that we have included such meaharnisthe growth.

Consequently, the behaviour in our model belongs to the K&Zsc If we include
the precise mechanisms explained by Bru, then either tlcelledions of Bruet al are
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wrong or different mechanisms are causing the observed/lmha
Our results therefore agree with the critical comments bgeBa and Galeano
[BucO5a].
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9.7. Surface dynamics
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Figure 9.12: Dynamic structure function for different parameters,Ad) = 6, m = 0,

¢ = 0 for different times, ()AL = 0, m = 0, migration depending on the coordi-
nation number (Arrhenius law) with = 2, £, = 1, Eg = 2 for different times, (c)

m =5,AL =0, ¢ = 0(d) ¢ = 100 with border migration (AL = 0, m = 0, mi-
gration depending on the coordination number (Arrheniug laith » = 20, varying

E, , Eg = 10 corresponding to the energy derived from the off-latticedeipfor the
same number of cells, in all figureglenote the arclength of the border in average cell
sizes, clusters contain a cell numbér~ 3 - 10*...3 - 10° cells (Bruet al ~ 10°), s
denotes the arclength in units of average cell sizes (se8.6)g
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9.8 Apoptosis

In normal cell populations proliferation is balanced by pjosis. In tumor cells this
balance is destroyed, so although apoptosis can still ptioeiicells do not stop their
uncontrolled proliferation and the population size insesa We now want to look at
the two types of apoptosis we included in the simulation doail tinfluence on the
expansion of the monolayer.

9.8.1 Apoptosis with constant probability

10 20 30 40 50
t (a.u.

Figure 9.13: Apoptosis with constant rate. Parameteps:= 0, m = 0 and rate for
apoptosisy = 0.4, (a) R,y vst/1, (b) shows the development of the morphology of
the cell cluster, dark blue: the proliferating cells at ttoeder, light blue: quiescent
cells in the interiorg = 0, m = 0 andy = 0.4.

As we can see in Fig. 9.13, apoptosis, as expected, changeslttity of popu-
lation growth. It only affects the border at extremely largees; otherwise it leads to
smaller expansion velocities. The linear phase is reachied, lat a stage where the
rate at which cells undergo apoptosis and proliferate getess the velocity. A larger
proliferating rim would compensate for this effect, but aroaild still not determine
the expansions.

We now want to retest those setups where we expect to seertteesgansion
velocities. In Fig. 9.14 we have chosen setups for very iffeconditions both with
and without migration, neglecting apoptosis and with vagyproliferating rims.

In Fig. 9.14 we see that three setups show exactly the sanamsim velocity for
different mechanisms. So we once again see behaviour thpbss the assumption
that the velocity can not be the only parameter which deteesiihe growth conditions.
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Figure 9.14: Setups with the same velocity for five setups with and withmoiggration,
different proliferating rims and different apoptosis satéa) R, (¢), (b) the velocities
of the same setups.

9.8.2 Apoptosis with mutations

For apoptosis with constant probability we now let the ratsutate with a variation of
A~ as explained in Sec. 8.3.5. In Fig. 9.15 (a) we see the expansthe monolayers

(a)
80 |—y=04,Ay=0
| — y=04,Ay=0.2
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60k y Vi ’
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Figure 9.15: Mutation of apoptosis rate. Parametets= 0.4, ¢t = 100, m = 0 and
AL = 0, (a) Gyration radius?,,, vs time scalet/7 for different mutations of the
apoptosisAy (b) distributionf (p.) of probability to undergo apoptosis.

for three different rates of apoptosis mutatitn € {0; 0.2; 0.4} with a constant initial
rate of apoptosis = 0.4. In Fig. 9.15 (b) we have depicted the histogram of succéssfu
apoptotic processes and the corresponding rates of thedodl cells, and we can see
in both the expansion and the histogram that the velocitsegmes with the mutation
of the apoptosis rate, where, not surprisingly, the morexlayth more cells to divide
expands faster.
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Here we see a kind of competition between the cells where timatron gives
higher apoptotic rates and those with lower rates. Obwoiind cells that win have a
lower probability of dying, as can be seen in the distributio
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9.9 Mutations of the cell cycle

Tumor cells are characterized by uncontrolled proliferatind one basic mechanism
which leads to this is cell mutation. Defects in tumor suppog genes are one reason
for the behaviour. During uncontrolled proliferation clgas in the cell cycle can also
appear. If the cell cycle decreases, the DNA replicatiorspl@n also be shortened,
which makes it more difficult for the cell to repair defectdatihis again leads to
mutations. We now look at simple kinds of mutations in thé cgtle.

In Fig. 9.16 we can see that both cell dynamics and expansigngicantly change
under mutation and that the resulting morphology refleactsntlutation. Whereas in
the early phase no significant differences can be seen, ilath@hase the mutations
lead to totally different behaviour. The expansion velpaiicreases rapidly and the

t =15 Q

- t=0 o

Figure 9.16: Comparison of mutated and unmutated cell morpholegy: 0, AL =
0, and mutation of the cell cycle tim&r = 10%.

nearly round shape of the cell cluster is destroyed. We wiitita mutation equally
distributed around the average cell cycle time and by defimmo side is preferred.
But as we can see, faster cells are in the lead in the expandimgy monolayer.
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That is not really surprising, since, when faster cells Je&av cells also divide fast
and thereby overgrow the slow cells, which are then not égdastributed over the
monolayer and so don not dominate the growth conditions.

So we have a kind of competition between the initially equdistributed fast and
slow cells. The fast cells win the competition and are resjima for the behaviour
of the monolayer.. In Fig. 9.17 we see that, for differenémsgths of the mutation,

20 — A1 =25% T ALEARRRARAN RAARRARRL
-—- AT =0% / |
—- AT=10% /

150 At =10%,y=0.4 '/' -
)

Figure 9.17: Mutation of the cell cycle and apoptosis for four differeetigps, all
simulations withAL = 0, no migration andn = 0.

velocity increases with strength and apoptosis causesmgsincrease in the gyration
radius in the expansion that sets in later due to the mutation

We have now tested one specific setup, where we only variedgbptosis rate.
We took a setup wittAL = 9, m = 60 and¢ = 0, zero apoptosis angl = 0.4.
Expansion is, as expected, initially faster in the setugeit apoptosis (Fig. 9.18).
But, surprisingly, the expansion velocity of the setup vaffoptosis increases faster
and reaches the velocity of the non-apoptotic case at teesedtion point. The reason
is that, in the apoptotic case with a constant rate, the medtst and slow dividing
cells undergo apoptosis. When the fast dividing cells dateigrowth, the slow are
destroyed by apoptosis faster than in the non-apoptote cas

So under apoptosis the contest between fast dividing ameesldividing cells is
lost earlier. Until then, velocity increases more strortglgn in the non-apoptotic case
and reaches it at the intersection point shown in the figure.

9.9.1 Global fluctuations

We now want to see how growth is affected by fluctuations whiehnot intrinsic to
the individual cells but to the underlying structure. So aleta pre-described random
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Figure 9.18: Mutation and mutation with apoptosis, parameters the same 8.9,

additionally we include mutatiothr = 10% and for the second setup additionally
apoptosisy = 0.4.

distribution of the cell cycle time around the average [T — A7 /2, 7+ A7/2]. In our
simulation we change the corresponding probabilities foelbto divide at that point.
We here test different setups with and without apoptosisatiddifferent fluctuations.
We also compare our non-intrinsic mutation with the mutatiere the change of the
cell cycle is coupled to the cell.

As we can see in Fig. 9.19 (a), our change does not seems &b ditedynamics
for all setups. We take the setups with= 0.0 andy = 0.1 as references and see
that the setups with additional fluctuation&7{ = 40%, At = 5%) show the same
behaviour. A look at the velocities in Fig. 9.19 (b) confirrhstbehaviour. Although
we do not see differences in the general behaviour, a closérdt the setups with
~ = 0.1 and zero fluctuation andr = 40% shows that there are larger fluctuations in
the velocity. We conclude that a random fluctuating undegd\aell cycle distribution
has no effects on the general dynamics, as opposed to thexqaasmed before, where
an intrinsic cell cycle mutation leads to extreme changethéndynamics with the
faster cells dominating growth (shown for comparison in Bid.9 (a)).

9.10 Summary and outlook

We explained in this chapter the development of tumor celliiro monolayers under
specific growth conditions. By means of a Kinetic Monte Camethod we observed
the expansion kinetics depending on the basic processeglyndivision and migra-
tion of cells.
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Figure 9.19: Fluctuations of cell cycle depending on the individualitatsite.

We introduced a new type of lattice, which under differemids of noise reduction
opposite to a regular structure does not show any lattidaetd.

Guided by an off-lattice model the simulation can explam kinetics observed in
experiments.

A detailed analysis of the additionally determining partere@A L, ¢ and the pa-
rametermn which ensure a realistic cell cycle time distribution we @lved an asymp-
totic expansion velocity that is reminiscent of the frontoegty of the FKPP equation.

We have shown by variation of parameters that differentdgiglally relevant
mechanisms can lead to the same velocities in the develdpnenconcluded, that
the velocity in the linear phase can not be the only parametéch determine this
quantity.

Additionally one has to explain the proliferating ritnand the migration rules and
the cell density at the tumor border to get indications, Whitechanisms lead to the
expansion.

We then included different kinds of apoptosis as a relevantipeter and again
showed setups, where very different mechansims lead t@the selocity in the linear
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expansion. Here, a detailed view in experiments to the earhgquired to decide
between the different mechanisms.

Guided by the experiments of Bet al and additionally motivated by the critical
comments of Buceta and Galeano, we explained in detail theatisurface dynamics
of the tumor border. By use of the scaling theory for selfrafftypes of growth we
calculated the three critical exponentss andz. Therefore we varied the growth con-
ditions in a wide range. In particular we also introducedrthgration rules proposed
by Bru et alto be responsible for the tumor growth of different cell Bne

While Bru et al claimed a MBE-like critical surface dynamics by these niigra
rules, we did not find by parameter variation any MBE-like &a&bur but, opposite to
their findings, a KPZ-like behaviour for all setups.

Thus, our observations assert the critical comments of tAuared Galeano.

We then additionally implemented different kinds of mutas and fluctuations of
the cell cycle and explained how mutated cells affect thetikis and the morphology.
We found that randomly distributed non-intrinsic fluctoas (fluctuations of the cell
cycle time due to conditions depending on the underlyingcstire) don’ t lead to
significant changes, but just to a more strongly fluctuatielgaeity.

We have shown that a special type of the underlying strudéa@s to an absence
of lattice artifacts, which in comparison can be clearlyrst regular lattice types.

We included a realistic cell cycle time distribution by thdaag distribution. So
our cell cycle has a predefined distribution around the me#rycle time.

Guided by the experiments and by use of results from an tiftéamodel we could
reproduce the dynamics for tumor cells observed in expetigne

Our model can explain and distinguish a variety of biololiyoglevant actions for
the developing system and give the ability to observe thaldehr without unknown
influences.

We explained the expansion kinetics and the dependenceoof tihe determin-
ing parameter proliferating rim\ L, the strength of migrationp and the parametern
related to the sharpness of the cell cycle distribution.

We now want to briefly explain some other possible furthereokstions, which
could be made by use of the developed simulation tool.

9.10.1 Limited mutation of the cell cycle

We described the mutation of the cell cycle as a variatioh@fprobability for division
equally distributed corresponding to the variation of te# cycle time (see Sec. 9.9).
This mutation generally include the possibility of the sétl mutate to a regime, where
the cells divide very fast. If we take into regard that theasi$ phasel( ~ 2h) in
comparison to the whole cell cycle-(24h, in experiments for the expansidafh) is
very small, then this approach appropiate for a model. A noetailed assumption
would be the inclusion of a lower border for the cells to dexid
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Mutations to lower cell cycle times lead to the reductionhef interphase, so there
is less time for the cell to activate their repair mechanisisvertheless there is a
minimum time, which the cell need to duplicate.
In Fig. 9.20 we show a setup with such a minimum time for thésdeldivide.
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Figure 9.20: Mutation with limiting lower borderr,,;, setups used for00000 cells,
without mutations, with cell cycle mutatiahr = 10%

If we consider also the upper border, such an assumptiont sorevident and may
be not realistic, since the cells can enlarge their gap phasewide range [Alb02].

The nondominating nature of the cells with larger cell cyotees in our model we
have already shown for the mutations without borders, whisefast dividing cells
dominate the expansion kinetics and the slower cells doffettahe growth.

The same behaviour we get by a limiting border. In Fig. 9.20M@ see, that the
cell cycle distribution has changed to faster dividing €ellso for the setup with a
limiting minimum cell cycle time ofr,,,;, = 2/37 (Fig. 9.20 (b)). Then the expansion
velocity increase in comparison to the unmutated case, dmiHower velocity than
the case of mutation without limiting borders (Fig. 9.20)(b)

9.10.2 Correlated global fluctuations

We defined before the influence of the nonintrinsic fluctustimtally randomly on the
lattice and see as a result no general changes in the expdaséaiics but a stronger
fluctuation in the velocity as expected. A further developtred thes concept would
be the inclusion of nonrandom fluctuations, but defined pattsy which the cell cycle
change due to fluctuations of the environment which coulddipéagned by differently

distributed nutrient supply.

9.10.3 Different rules for division

The most important process is obviously the division of teksc We used a division
which includes a random selection of the new place in therenment for one of
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the daugther cells, where the mother cell stay on the oldipasiFor a cell in the
proliferating rim, the cell select the shortest way to pusé tells in this direction.
This leads to a shift along this cell pushing path for thescell

Where cells are able to sense their environment, this ruldifasion could differ.
Possible non-random divisions could be the selection oithgest distance motivated
by the aim to get as much volume for the cell as possible. Asratlay to reach this
aim is to make the algorithm able to count the coordinatiomioer and to select the
position which as less as possible neighbors.

By these different division rules we can define different eidglpes which could
lead to very different expansion kinetics. In particular mweluded 5 different divi-
sions.

e 0 random selection of the new cell, shift to the shortest distansideA L

1 random selection of the new cell, shift to direction of a rmccell insideA L

2 selection of the new cell by the longest distance, shifd@ai L to the longest
distance

3 selection of the daughter cell by the minimum coordinatiomber, shift to
the cell insideA L with the lowest coordination number

4 selection of the daughter cell by the maximum coordinatiomber, shift to
the cell insideA L with the highest coordination number
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Figure 9.21: Expansion kinetics for different division rules fo®0000 cells, ()AL =
0in all cases, (bAL = 6 in all cases, simulations without migration.

In Fig. 9.21 we see that the expansion kinetics differ depeah the division rule. We
do not see different velocities for the first three types apdaodiferating rimAL = 1.
However the rule depending on the coordination number atmihgre the kinetics.
That is not surprising, since the the rules here just affeztells, which are inside the
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proliferating rim and not at the border. For a larger proateng rim all expansion ki-
netics differ, where not only the linear phase is changetialso the initial expansion.
So defining these rules, we can investigate by the simlatioldifferent model types
for the division guided by the assumption, that cells coelase their environment.

9.10.4 Different rules for migration

Before, we used different migration rules, where we inctuffee migration, free mi-
gration at the tumor border and a migration depending ondbedtnation number by
an Arrhenius law. In Fig. 9.22 we show that by all of theseat#ht migrations defining
different types of model one can reach the same expansionitiek as for the exper-
iments of Bru [Bru98]. Here the velocity (Fig. 9.22 (b)) isjim /days corresponding
to the shown development of the radius in Fig. 9.22 (a). THecuty is consistent
with the experimentally observed velocity= 2.9.m/h for C6 rat astrocyte glioma
[Bru9s].
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Figure 9.22: Expansion kinetics for different migration rules for (a) Meradiusk

of the cell aggregate vs. time Full black circles experimental findings for C6 rat
astrocyte glioma cells ([Bru03]), three different migeatirules, free migration (green),
to border restricted free migration (violet) and Arrhernaws migration (light blue) (b)
expansion velocity for the same setups.

In case of the coordination number dependent rule, the ehaidifferent setups
is thereby possible by definition of the 'binding energiesieh define theA E' in the
Arrhenius law. For particles in crystal growth, namely effee atoms, the effective
binding is always positive. We have normally a surface lgdind a neighbor binding.
In case of cells, which we inlcude as points, the behaviour vaay. If we assume a
cell-cell adhesion to the tissue, the cells could neveggseby sensing tend to migrate
to position with more free volume. This could be included bgluding the cells to
migrate preferently to positions with less neighbors. In algorithm, that is just a
setting of the different sign of the neighbor binding.
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In conclusion here we also have shown some possibilitiestwtiie simulation
tool additionally offer for further investigations.



Chapter 10

Conclusions and Outlook

In this work the self-organized growth was extensively sddor two different types
of systems.

First we modeled epitaxial crystal growth by use of the vesilablished stochastic
differential equations. Additionally we applied the theaf time-delayed feedback
methods to develop a tool to study the control of the rougigephase of surfaces by
time-delayed feedback control. For different growth etret we showed, how the
corresponding growth exponefittould be adjusted by such a scheme.

In the second part a powerful model for simulation of cell pagion growth by
means of a Kinetic Monte Carlo method was developed. Aimeadddel the growth
of tumor cells in an in-vitro monolayer, the tool includesagge variety of properties
of biological relevance. By extensive simulations we haweestigated the generic
kinetical behaviour and have shown that our single celléhas#iular automaton model
reproduces the kinetics of experimental studies and cataiexfhe critical surface
dynamics of the tumor borders.

In both parts we made use of the well-established scalingryhevhich gives for
self-affine types of growth phenomena the ability to detemhe surface roughness
evolution by means of three exponents, namely the growtbrexmt, the roughness
exponenty and the dynamic exponentwhere only two of those are independent.

For the crystal growth we additionally established a newetgpcontrol method
to adjust the growth exponent. For the tumor growth we deaddca simulation tool
which combines advantages of lattice models and off-attodels by definition of
an irregular lattice free of artefacts.

o o

In particular by numerical schemes we solved the stochgstigth equations, namely
the Kardar-Parisi-Zhang and the Molecular Beam Epitaxyagqn in 1+1 and 2+1
dimensions. Detailed analysis lead to observations ofttteetcritical exponents, «
andz which determine the universality classes for the growth.
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We could exactly reproduce by our scheme the exponentsédviBE equation in
both dimensions, but for the KPZ equation we get stable gatundy for 1+1 dimen-
sions and some indications during control for the 2+1 direrad case.

We then defined a time-delayed feedback method to contrakdhly roughness
evolution by adjusting the growth exponghtluring the roughening process.

Our method in particular includes two different schemesgigital control, which
acts by a control step on the sign of the difference to the desired exponent and a
differential controlwhich contains an amplification factdt, which determines the
control forceF'.

We explained in detail, how one can define, restrict and tatieparameters which
could be useful for control.

The control after that gave precise results for two typesatrol with predictions
for possible experiments. Indications for possible setupie explained by compari-
son with recent experiments [Oje00; Oje03]. Here, for a gpexystem, the relation
between the nonlinear terinfrom the KPZ equation to the temperature is explained
in detail and it is shown that one can tune it by changing theperature.

A lot of additional observations identify the KPZ equatiaralevant for low tem-
perature behaviour in experiments due to the nonlinear vdnioh is related to lateral
growth. In high temperature systems, diffusion proceseasihte the growth process,
so the MBE equation then is responsible for the universafithe growth.

For both types of behaviour, the tuning of temperature camgé the behaviour
and a relation to the theory could be given by experimentsetiee exponents depen-
dent on temperature have to be measured.

While further explanations by experimental setups havepoaduce the theoreti-
cal investigations, the method could then give predictloms the roughness develop-
ment can be tuned by time-delayed feedback.

We have explained in detail limits of control for both theithgjand the differential
scheme. These findings should also be reproduced by diffeypas of methods,
namely a Kinetic Monte Carlo method for a solid-on-solid epgmation of crystal
growth.

o o~ o
o o o

For the single cell based tumor growth model we explainecttaitthe dynamics and
the surface morphology depending on different parameters.

We have defined a new lattice type consisting of Voronoi agellsted to the bio-
logical cells. A construction by a Delauney triangulatioveg a well defined average
cell size with a well defined sharp distribution around theamarea.

The relation of the cell cycle to an Erlang distribution umbéd in the model ensures
realistic cell cycle time distributions.

By extensive simulations we observed the expansion kimefitumor cell in-vitro
monolayers.

By the special lattice construction we ensured that our mizdfee from any
lattice artefacts. So the model establishes a tool whereombines the advantage of
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off-lattice models which are independent from any undedyattice structure and the
advantage of well-defined neighborhood which leads to afastnulation.

We have shown that the expansion kinetics covers the findibgsrved in experi-
ments and the observations made by an off-lattice modelstiwdetail explained that
very different biological actions included in our model daad to the same expansion
velocities in growth. Recently, mathematical models baseithe Fisher-Kolmogorov-
Petrovskii-Piskounov (FKPP) equation were used to pradedistribution of tumor
cells for high-grade glioma in regions which are below thied&on threshold of med-
ical image techniques [Swa00]. We found that the asymp&goansion velocity has
a form that is reminiscent of the front velocity of the FKPRiatijon, nevertheless the
same expansion velocity can be obtained for different coations of the migration
and division activities of the cell and of the cycle time dlsition.

So in conclusion we believe such predictions must fail sitheeFKPP equation
lacks some important parameters such as the proliferagpthdvhich is why it is not
sensitive to relative contributions of the proliferatiogpth and free migration.

We observed in our simulations that these relative cortinbs in fact determine
the cell density profile at the tumor-medium interface: gér the fraction of free
migration is, the wider is the front profile even if the avexagxpansion velocity is
constant.

We additionally included apoptosis with different rulesisstent with biological
interpretations of that process and again determined thanskon kinetics, where we
showed in detail that a large variety of different mecharlgasls to the same velocities
in the linear regime of the expansion.

We found the determining processes and thus can give sugue$or possible
experiments to decide these different cell actions, falmimse the measurement of the
cell density at the tumor border or the migration activitytloe early phase to observe
large apoptosis rates.

By additional inclusion of various intrinsic mutations dietcell cycle and nonin-
trinisic fluctuations of the underlying structure we theowkd scenarios which could
determine the kinetics in cell lines under strong mutatibehaviour.

For these observations by construction we don not prefeatious to fast or slow
dividing cells, nevertheless we see a strong regime, inlwaiter a certain time range
the faster cells always dominate the growth and thus deterthie expansion.

Bru et al propose the cell lines, they investigated to show univessaling related
to the MBE universality class, we included a calculationhef torresponding critical
exponents. For a wide range of different setups under irius the migration pro-
posed by Briet alto be responsible for this type of universality class, werthdfind
any MBE-like behaviour, but strong KPZ-like critical belawr. Our findings thereby
comply with the critical comment of Buceta and Galeano.

We here stronlgy suggest further experimental investgati

o o
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So in conclusion we investigated two systems related to éaagrowth phenomena,
where in both parts scaling theory played an essential rde stochastic differential
equations applied to epitaxial growth we established a nethad of a time-delayed
feedback control and gave predictions, how possible expgarial setups have to act
to tune the roughness evolution 'in situ’.

In addition, these findings could in general be applied to system, which be-
long to the explained equations, where one then has to dégnelation between the
equation parameters and the growth phenomena.

For the second system, the tumor growth of an in-vitro moyeave explained in
detail how the biological actions on the scale of an indiaidtell determine both the
expansion kinetics and the critical surface dynamics.

We could reproduce the kinetics in consitstency with anlattice model and with
experiments. However, our investigations for the unividssalass of tumor growth
don not comply with previous interpretations of the expemts and require new ex-
perimental investigations.

o o o
o o o

Thus we investigated problems on the nanometer scale farralstgrown by epitaxial
methods and cell behaviour from the length scale of an iddai cell to large cell
populations and hopefully contributed in some way to thébf@m of the 'nanobot’
outlined in the preface.



Appendix A

Simulations of stochastic growth
equations

A.1 Additional simulations KPZ 1+1

In Fig. A.1 and Fig. A.2 we show the control for a larger sys@me . = 32768. In
Fig. A.1 the results for three initial setupg = 0 andj3, = 0.33 (black),\o = 0.1 and
By = 0.29 (red), and\, = 0.25 and 3, = 0.25 (blue) are shown, the digital (Fig. A.1
(a)) and the differential (Fig. A.1 (b)). The roughness atioh shows, that all setups
can be controlled and the evolution of the nonlineaxity) show the general properties
of the control method, increase of the function for the fiegtup (black), nearly stable
function for the second setup (red) and a decrease for tteegbtiup (blue).

In Fig. A.2 the results for three initial setupg = 0 and 5, = 0.29 (black),
XA = 0.1 andjg, = 0.29 (red), and)\, = 0.25 and 3, = 0.29 (blue) are shown,
the digital (Fig. A.1 (a)) and the differential (Fig. A.2 {b)The roughness evolution
shows, that all setups can be adjusted to the same desiredeap, = 0.29 (quide
to the eyes: green).

In Fig. A.3 - A.6 we show the results for the KPZ equation in Iithensions for
digital and differential control with initial nonlienar@s Ao = 0.05 and A\ = 0.15.
As for the results shown in Sec. 7.1.3 (Fig. 7.9 - 7.15), fivese with differents,
for each control type and nonlinearity are chosen. The tgstbw again the general
behaviour of the control methods.
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Figure A.1: Control for the KPZ equation in 1+1 dimensions with L = 32768ree
setups for the digital and the differential contigl = 0 and g, = 0.33 (black), Ay =
0.1 andj, = 0.29 (red), and\, = 0.25 and 3, = 0.25 (blue). (a) digital control with
a = 0.01, (b) differential control withK' = 0.02, time discretization/t = 0.01 for all
setups, upper left insets show the functios..
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Figure A.2: Control for the KPZ equation in 1+1 dimensions with L = 32768ree
setups for the digital and the differential control with stant3, = 0.29, Ay = 0
(black), A\g = 0.1 (red), and\q = 0.25 (blue). (a) digital control withu = 0.01, (b)
differential control withK' = 0.02, time discretizationit = 0.01 for all setups, upper
left insets show the functiong(t).
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Figure A.3: Digital control for the KPZ equation in 1+1 dimensions witlt@ntrol
setup: Ao = 0.05 anda = 0.005 for five different desired control values of: (&) =
0.25, (b) By = 0.27, (c) By = 0.29, (d) By = 0.31, (e) By = 0.33, time discretization
dt = 0.005, upper left insets show the functionst), lower right insets show the
roughness in the late phase in double logarithmic plot.
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Figure A.4: Digital control for the KPZ equation in 1+1 dimensions witlt@ntrol
setup:\y = 0.05 and K = 0.005 for five different desired control values of: (&) =
0.25, (b) 5y = 0.27, (c) By = 0.29, (d) By = 0.31, (e) By = 0.33, time discretization
dt = 0.005, upper left insets show the functionst), lower right insets show the
roughness in the late phase in double logarithmic plot.
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Figure A.5: Digital control for the KPZ equation in 1+1 dimensions witlt@ntrol
setup: Ao = 0.15 anda = 0.005 for five different desired control values of: (&) =
0.25, (b) By = 0.27, (c) By = 0.29, (d) By = 0.31, (e) By = 0.33, time discretization
dt = 0.005, upper left insets show the functionst), lower right insets show the
roughness in the late phase in double logarithmic plot.
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Figure A.6: Digital control for the KPZ equation in 1+1 dimensions witlt@ntrol
setup:\g = 0.15 and K = 0.005 for five different desired control values of: (&) =
0.25, (b) By = 0.27, (c) By = 0.29, (d) By = 0.31, (e) By = 0.33, time discretization
dt = 0.005, upper left insets show the functionst), lower right insets show the
roughness in the late phase in double logarithmic plot.



170

A.2 Additional simulations KPZ 2+1

A.2. Additional simulations KPZ 2+1

In Fig. A.7 we show the control of the KPZ equation in 2+1 dirsiens with an initial
nonlinearity\, = 0.05. The left figures (Fig. A.7 (a,c,e)) show the digital contia
three values of the desired exponéhtwith « = 0.005, the right figures (Fig. A.7
(b,d,f)) show the control with the same setups for= 0.005. The results show the
same behaviour as for the control with other initial nordinges.
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Figure A.7: Control for the KPZ equation in 2+1 dimensions with a consetup:
Ao = 0.05, a = 0.005 for digital and K = 0.005 for differential control, three desired
control values of: (a,bJ, = 0.15, (c,d) 3, = 0.20, (e,f) 3, = 0.25, time discretization
dt = 0.005, upper left insets show the functionst), lower right insets show the

roughness in the late phase in double logarithmic plot.
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A.3 Additional simulations MBE 1+1

In Fig. A.8 we show the results for the control of the MBE eguain 1+1 dimensions
with an initial nonlinearity\, o, = 0.05. The left figures (Fig. A.8 (a,c,e)) show the
digital control for three values of the desired exponénwith « = 0.0005, the right

figures (Fig. A.8 (b,d,f)) show the control with the same pstfor X' = 0.0005.
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Figure A.8: Digital control for the MBE equation in 1+1 dimensions witlttantrol
setup: A1 = 0.05, a = 0.0005 for digital and X = 0.0005 for differential control,
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discretizationdt = 0.01, upper left insets show the functions$t), lower right insets
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The results show the same general properties as explaingdfo
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A.4 Noisy Kuramoto-Sivashinsky equation

With the time-delayed feedback method we investigated thg Knd the MBE equa-
tion. An equation combining the terms of both and possibép alontrollable is the
noisy Kuramoto-Sivashinsky equation. Fig. A.9 show for Jarid 2+1 dimensions
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Figure A.9: Solutions of the noisy KS equation in 1+1 and 2+1 dimensioitis three
different parameter setupgs:= 1, A = 1 andv; = 1 (blue),r =0, A =l andy; =1
(red), andv = 1, A = 1 andr, = 1 (black), (a) in 1+1 dimensions with local exponents
[ as guides to the eye, (b) in 2+1 dimensions.

solutions for different initial terme (EW term). In 1+1 dimensions we show, that
different phases of roughening appear. Further investigatould make a control as
in this work explained possible also for this type of equatio
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Appendix B

Deposition models

B.1 Ballistic deposition

In Fig. B.1 we show the results of the simple ballistic deposiin 1+1 dimensions.
The rule for the deposited particles is to stick on the firgtrast neighbor [Bar95].

The ballistic deposition is often used to get a relation f&atid-on-solid models to
the KPZ equation. In Fig. B.1 we show that the effective exgma¥ ~ 0.3 is close to

the KPZ exponent{ = 1/3) as expected.
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Figure B.1: Roughness evolution in the simple ballistic deposition el@edth nearest
neighbor sticking rule [Bar95] fof. = 131072 andt = 1000.
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Figure B.2: Roughness evolution in the random deposition model, (aystacdensity
plot of the height profile from lower values (blue) to highelwes (green), (b) show
the roughness vs timefor a system o256 x 2561.s..

B.2 Random deposition

In Fig. B.2 we show the results for a random deposition @btax 2561.s. system. We
get the well-known exponerit = 0.50 and do not see any correlations in the density
plot (B.2 (a)) as expected.



Appendix C

Simulation tool for the tumor model

C.1 Short manual

Table C.1 and table C.2 give short descriptions for the ogtaf the simulation tool.

| Option Description

-h

show the help

load lattice file (see options z, w)

the probability for division (corresponding to the rate
the probability for migration (corresponding to the na
the proliferating rimA L

the factorr /value by which the cell cyle time mutates
the parameter for the Erlang distribution (sharpness
of the cell cycle time

the probability for a cell to undergo apoptosis

the probability for a mutation of the cell cyle time
depending on the lattice point

the number of averages

time

le

animation flag for graphic output

Table C.1: Short manual for the usage of the tool for cell population@von
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| Option Description

-D Type of migration
0 free migration
1 free migration restricted to the border
2 Arrhenius law migration
3 Arrhenius law migration just depending on the migratin) ce
4 Arrhenius law migration restricted to the border
-M Type of division
0 migration to randomly selected free points, shift
to shortest distance
1 migration and shift to randomly selected free points
2 migration and shift to the free points with the longestatise
3 migration and shift to the free point with the
lowest coordination number
4 migration and shift to the free point with the
highest coordination number

-N prefactor for Arrhenius migration

-E E, for Arrhenius migration

-B E'g for Arrhenius migration

-Z size of lattice to creatd (0 for 100 x 100 lattice)
-W type of lattice to create

4 square lattice
6 hexagonal lattice
8 octagonal lattice

-C Maximum of cells

-U Maximum of Gyration radius

-Z the factor of mutation of the apoptosis probability

-T maximum of the probability to divide under mutation
(corresponds to an average minimum of the cell cycle time

-K probability to knock out apoptosis

-S seed for random number generator

-0 Output rate

-n number of divisions

Table C.2: Short manual for the usage of the tool for cell population@von
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