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Abstract

Pattern formation and the coarsening of growing surfaces have attracted wide interest
in scientific research during the last few decades.

Current fields of interest include not only the development of applications in nan-
otechnology combined with the fabrication of the corresponding microscopic struc-
tures but also the explanation of a wide range of biological growth processes.

In the area of nanotechnology there has, in the last decade, been particular inter-
est in the fabrication of quantum dots, because of the uniqueelectronic and optical
properties of these "zero-dimensional" objects. The concept of self-organization holds
the key to the effective and cheap fabrication of such structures. Obviously the fabri-
cation of devices on an atomic scale requires rigorous theoretical observations of the
underlying processes.

Other fields in which self-organized growth is of great interest are biology and
medicine, where the interdisciplinary findings of both physicists and mathematicians
are increasingly providing detailed explanations of biomedical processes at a micro-
scopic level. During the last few years in particular, the use of theoretical models to
observe the development of cell tissues is becoming more andmore important for the
development of effective therapies in the treatment of cancer. The aim of the present
work is to make a contribution to understanding self-organized growth and to provide
the basis for a possible method of control.

We use two well established models.
First we describe epitaxial growth by means of stochastic differential equations in
order to manipulate the crystal growth process. To do this wesolve various growth
equations and combine them with existing methods from control theory to provide a
time-delayed feedback. This leads to the theoretical description of in situ influences
on the evolution of roughness, where we focus in particular on the experimentally
important early phase.

In the second part of the work we use a kinetic Monte Carlo method to describe
the formation of cell tissues in in-vitro mono-layers. Using the findings of an off-
lattice model and the experimental observations of tumor cells, a simulation tool is
generated which enables one to observe the dynamics and morphology of real size cell
populations. This tool makes possible the detailed analysis of biologically relevant
processes and their impact on growth.





Zusammenfassung

Die wissenschaftliche Untersuchung der Strukturbildung durch Wachstumsprozesse
ist seit Jahrzehnten von immenser Bedeutung.

Sowohl die Entwicklung von Anwendungen in der Nanotechnologie verbunden
mit der Herstellung entsprechender kleinster Strukturen,als auch die Erklärung von
Wachstum in seinen verschiedenen Variationen in der Biologie sind aktuelle For-
schungsgebiete.

Im Bereich der Nanotechnologien hat sich innerhalb des letzten Jahrzehnts unter
anderem die Fabrikation von Quantenpunkten als eine führende Forschungsrichtung
etabliert, nicht zuletzt durch die sehr speziellen elektronischen und optischen Eigen-
schaften dieser null-dimensionalen Objekte". Die Herstellung von Strukturen auf der
atomaren Längenskala erfordert dabei entsprechendes theoretisches Verständnis der
grundlegenden Prozesse. Als sehr vielversprechender Ansatz für eine effektive und
kostengünstige Herstellung entprechender Halbleiterstrukturen hat sich das Ausnut-
zen von selbstorganisiertem Wachstum herausgestellt.

Ein weiterer Bereich, in dem selbstorganisiertes Wachstumeine grosse Rolle spielt,
ist die Biologie und Medizin, wobei zunehmend Kenntnisse aus der Physik und Ma-
thematik interdisziplinär kombiniert werden, um biologisch-medizinische Prozesse de-
tailliert zu beschreiben. Insbesondere das Verständnis der Entstehung von Zellgewebe
gewann in den letzten Jahren immer grössere Bedeutung für die Entwicklung effektiver
Therapien in der Krebsforschung.

Ziel der vorliegenden Arbeit ist es, einen Beitrag zum Verständnis von selbstorga-
nisierten Wachstumsprozessen zu leisten und einen Ansatz für eine mögliche Kontrolle
dieser zu erarbeiten.

Dazu werden in den Untersuchungen zwei etablierte Modelle genutzt. Zum einen
wird das epitaktische Wachstum mit Hilfe stochastischer Differentialgleichungen be-
schrieben, um anschliessend eine Anwendung zur gezielten Beeinflussung von Kri-
stallwachstum theoretisch herzuleiten. Dazu werden verschiedene bekannte Wachs-
tumsgleichungen numerisch gelöst und anschliessend die aus der Kontrolltheorie be-
kannte Methode der zeitverzögerten Rückkopplung in die Gleichungen eingeführt.
Dies führt zu einer theoretischen Beschreibung einer ’in situ’ Einflussnahme auf die
Rauigkeitsentwicklung, wobei besonderes Augenmerk auf die für Experimente wich-
tige Anfangsphase gelegt wurde.



Im zweiten Teil der Arbeit verwenden wir eine kinetische Monte-Carlo-Methode,
um die Bildung von Zellpopulationen in in-vitro Monolayernzu beschreiben. Auf der
Basis eines off-lattice Modells und von experimentellen Untersuchungen zu Tumor-
zellpopulationen wurde eine Simulation erstellt, mit der sich realistische Populations-
grössen hinsichtlich der Dynamik und der resultierenden Morphologie beschreiben
lassen. Dabei können im Modell gezielt verschiedene biologisch relevante Prozesse in
ihrem Einfluss untersucht werden.
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Preface

If you asked fifty people of various ages what were the most important advances in
technology from the last few years, you would get many different answers. Some
would say computers, some the internet, photographers would say the digital camera,
business people might favour the mobile phone and children play stations.

But what most of the answers would undoubtedly have in commonwould be a
relationship to the miniaturization and optimization of electronic or optical devices.
Based on the answers one could say that nanotechnology is oneof the most important
technological advance in recent years.

Since 2002 there has been a website for very small scale images where thenanopic-
ture of the day is chosen1. A lot of recent investigations into small scale science are
presented and there are also some futuristic speculations about the direction of nan-
otechnologies.

In Fig. 1 we can see one of the

Figure 1: Nanobot destroys a faulty red blood
cell [Mav03].

possible future applications of this
technology. The ’nanobot’ is to be
constructed to help doctors destroy
unwanted cells. As the authors say,
’this image portrays a tiny, nanome-
ter sized, fully functional autonomous
robot helping to destroy a faulty red
blood cell.’ When we think about
the construction of such a nanobot,
we need to consider the problems
involved. One major goal is to solve
the problem of the materials needed
for the electronic devices in such a
small robot, where length scales are
of the order of atoms. Biological behaviour, on the other hand, is explained using
length scales of the order of biological cells. The solutionis going to involve nanoscale
work from a lot of different scientific fields. One could be forgiven for thinking that
such a robot is either impossible or will take the whole century to construct, but in fact
science is already beginning to solve the first part of the problem. One of the scientific
fields involved is the explanation of the properties of materials on an atomic scale and,

1http://www.nanopicoftheday.org
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of course, the development of the necessary experimental observational methods (see
Fig. 2).

In this thesis the reader will find in-

Figure 2: Chromosome image: scanning
force microscopy image [McM94].

vestigations into two specific systems
where the concept ofself-organization
generates the kind of growth system we
want to explain by statistical methods.
First we focus on the formation of struc-
tures during the spatio-temporal evolu-
tion of the roughening surface. One of
the key questions in crystal growth to-
day is the problem of fabricating the
surface in a specified way, but cheaply.
Epitaxial growth is a well-established
method of preparing crystals where self-
organization plays a big role. The theo-
retical investigation of a possible in-situ influence on thegrowth process could there-
fore be very helpful. In the second part the reader will find a very different system, that
of tumor cell populations in in-vitro mono-layers. Although the length scale is totally
different in the two parts, the reader will find a lot of similarities. Both are growth
systems with their own self-organization and it was found that similar concepts can be
used to model the two systems. So, coming back to the nanobot,our work contributes
in a small way to the solution of the problem: both to the preparation of small scale ap-
plications and to the explanation of biological tissues, the aim being, of course, to find
effective methods of tackling tumor cells. Earlier we stated that work on a nanoscale
is a new field of interest for science, but nanotechnology was, of course, used by the
ancient Greeks, as Walteret al showed in their findings [Wal06]. A 2000-year-old
recipe for hair dye shows that they had a method of permanently colouring grey hair
black. Basically this method works by biologically inducing the growth of nanocrys-
tals. Presumably the ancient Greeks neither knew why their method worked nor could
explain the growth of nanocrystals. Nevertheless, these findings could lead to new
methods of growing nanocrystals, where the challenge will be much greater than that
of dying hair black.
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Chapter 1

Introduction

Key words likeminiaturization, nano, lab on chipare connected to some of the major
challenges in science today, those involving the understanding of very small scale pro-
cesses down to the atomic scale and the development of applications which work on
that scale.

Obviously one important part in any kind of theoretical workconcerning small
scale processes is that of understanding the formation of structures and the interplay
of the related particles. A lot of physical, chemical and biological processes can be
described as the spatio-temporal evolution of a system which we can explain as a kind
of a growth process. The wide range of growth phenomena exhibit very different
structures where we can see either very symmetric well-defined structures with for
instance circular symmetries like the snow flake crystals (Fig. 1.1), or totally different
structures like for example the fire front of a burning sheet of paper, where there is
a linear interface, or the growth of trees or the pattern formation on a snail’s shell
(Fig. 1.2 and Fig. 1.3).

Thus the consideration of growing systems in their spatio-temporal development is
an increasingly important field of interest in science, where the accurate description of

Figure 1.1: Snow crystals: capturing
snow flakes for observation with the low
temperature scanning electron microscope,
Wergin, W. P. and E. F. Erbe Electron
Microscopy Laboratory, Agricultural Re-
search Service, U.S. Department of Agri-
culture, Beltsville, MD 20705 USA 1994.



2 1.1. Crystal growth

Figure 1.2: Sample for growth: tree grown
on the island Hiddensee.

Figure 1.3: Sample for growth: snail
Conus marmoreusand behind a sim-
ulation result of the model describing
the pattern formation due to fronts of
pigment reactions. [Mei87](see also
[Mei03a] for further examples) .

the basic processes can give an explanation of the similarities and differences between
various growth phenomena and thereby a better understanding of the basic mechanisms
in general. The microscopic picture can then lead to the description of macroscopic
behaviour. We have concentrated here on two different kindsof growth, the roughening
of films in epitaxial crystal growth and the formation of cellpopulations in an in-vitro
environment. We shall now give short introductions to both.

1.1 Crystal growth

Current scientific work on crystal growth is focused on obtaining better electronic and
opto-electronic devices. Major tasks are the development of better memory chips and
effective solar cells together with the optimal miniaturization of these devices using
the newly discovered properties of materials. The fabrication of such devices was de-
veloped during the last decade on a truly atomic scale with nanocrystals, quantum dots
and quantum wells. One application was to lasers. Figure 1.4shows examples of the
wide range of different crystal structures grown by epitaxial methods. It is obviously
not only essential to consider the properties of the devicesprepared but also the related
growth processes needed for their fabrication. A wide branch of experimental meth-
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Figure 1.4: Examples for crystal growth: (a) cross-section of an Indiumdroplet with
a Silicon nanocrystallite inside grown byLiquid Phase Epitaxy(LPE) [Boe99; Blo04],
(b) ’forest’ of ordered ’nanotrees’ grown byMetal Organic Vapor Phase Epitaxy
(MOVPE) [Dic04], (c)14 × 14µm2 AFM images of amorphousSiO2 films after two
days deposition at a temperature ofT = 611K grown byChemical Vapor Deposition
(CVD) [Oje03] (d) silicon carbide nanobouquet grown by CVD [Ho04].

ods exist for preparing materials with a well defined structure related to the desired
and expected properties. There are a lot of experimental methods for growing well de-
fined crystal structures on an atomic scale in different waysfor specific applications.
Sometimes this involves the growth of highly defined structures like single quantum
dots or single crystals, but we are going to concentrate hereon roughening surfaces for
film growth in experiments. Usually the experimental setupshave to be tuned to get
a specific structure in thin film growth. A helpful tool would be an ’in-situ’ control-
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Figure 1.5: Statistics of cancer diseases in Europe, estimated mortality from cancer in
Europe and the European Union 2004,* No data for Europe for all the individual sites
due to limitations of coding scheme employed. [Boy04].

lable setup to check the structure during growth and then retune the conditions to get
a more precise structure without having to start the experiment again. Controlling the
roughening process would give one the opportunity of growing a surface with a tuned
amplitude of roughness and a tuned correlation function within a well defined time.
We would like to present a first contribution to that control process.

1.2 Tumor growth

The most widespread disease in industrial countries today is cancer. As Fig. 1.5 shows,
there are a lot of very different types of cancers killing a lot of people every year.
Therapies developed during the last decades to tackle this’scourge of mankind’often
have very strong side effects on the human body and are not always effective. Indeed
for some types of cancer there are, as yet, no effective therapies. The development of
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effective methods for destroying tumor cells without affecting the surrounding healthy
tissue is one of the major challenges to science today.

Scientific work in the field of understanding the mechanisms which lead to these
diseases has become more and more interdisciplinary duringthe last decade. Physical
and mathematical methods have been applied to biology and medicine. The develop-
ment of computers has lead to important advances in diagnostics using, for instance,
the new image-processing methods. Physics and mathematicshave also helped explain
the behaviour of individual cells and their behaviour in a growing structure.

Models developed to explain behaviour on the scale of one cell and of many cells
have given us more knowledge about the behaviour of the cellsin an organism and
helped in the development of effective therapies.

1.3 Structure of this work

In this work we have developed theoretical models for growthand we use two different
methods. Whereas stochastic differential equations usinga continuous height function
are applied to problems in crystal growth, we have developeda kinetic Monte Carlo
algorithm as an individual cell based model to explain the growth of in-vitro tumor cell
monolayers.

So, this work can be seen both as a further development of the research on epitaxial
growth studied in our group during the last years and as a new field of research. Our
group has been using kinetic Monte-Carlo methods for about 12 years now as part of
an extensive study to explain the growth of semiconductor structures. A second field
of interest is the control theory used in part of this work. Both the explanation of
biological structures and the study of stochastic growth equations are new.

In this thesis the methods applied to crystal growth are different from those applied
to tumor growth. We shall give an introduction to the experimental setup and the
processes leading to growth in Ch. 2 and Ch. 3 and explain our modelling methods.

In order to take these different systems into account, we have to think both about
how to define the modelling conditions, and about what to takeinto account when
developing an effective and useful model to answer our specific questions.

In this context, Ch. 4 can be seen as a short guide to model growth from the micro-
scopic to the macroscopic range where we show how our findingsfit into this general
overview.

After these more general aspects of the work we then go further to the first model
and growth system type, the control of the stochastic differential equations. We give a
detailed explanation for the stochastic differential equations used together with a de-
tailed description of the related processes and their correspondence to epitaxial crystal
growth (Ch. 5).

A summary of data analysis as an essential part is given in Sec. 5.4 together with
the time-delayed feedback control schemes we discuss in thenext chapter (Ch. 6). The
combination of these first findings leads to the results for controlled and uncontrolled
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equations in 1+1 and 2+1 dimensions (Ch. 7). A detailed variation of the parame-
ters for different growth equations enables us to propose further possible experimental
setups.

Whereas up to now we have been working with a continuous description of a grow-
ing system, we now change both the growth system and the method in order to consider
the spatio-temporal evolution of a biological system. A kinetic Monte Carlo method is
used for observing the tumor growth of in-vitro cultures. The following chapter then
gives a detailed description of the individual cell based cellular automaton model (CA)
on the unstructured lattice used in this work. Ch. 8 explainsour model and demon-
strates the ability of the simulation tool to study very different detailed mechanisms
and processes of biological interest. Thus, this chapter can be seen in part as a manual
for the use of the simulation tool in further investigations. We then, using extensive
simulations, demonstrate the behaviour of our model and theintrinsic properties of the
lattice whereby its advantages in comparison to common lattice types can be seen. We
then proceed to show in detail the mechanisms and influences of cell properties on the
critical surface dynamics. Comparison to experimental results are made and the result
of these findings demonstrates our expectations for realistic biological systems (Ch. 9).



Chapter 2

Crystal growth

In this chapter we want to give a short introduction to the most common methods
of growing crystals. We give a detailed description of epitaxial growth, on which
we have focused our model, and we look at Czochralski growth as one example of
a different method. More detailed overviews of possible experimental methods are
given by Scheel and Fukuda [Sch03a] and Byrappa [Byr03] in their books (see also
[Wil88; Pam75; Zan88]), where a more general overview of thetheory can be found
[Mic04; Pim98; Bar95].

2.1 Epitaxial Growth

The theory of continuum stochastic differential equationstogether with epitaxial
growth can be seen as one single major task in the scientific investigation of crys-
tal growth. Epitaxial growth is the targeted deposition of one type of material on a
substrate of the same type of material (homoepitaxial growth) or on a different ma-
terial (heteroepitaxial growth). Heteroepitaxial systems exhibit different properties
because strain effects due to lattice mismatches become important.

The first findings of Volmer and Weber [Vol26] lead to the macroscopic description
by Becker and Doering [Bec35] which is still, with a few additions, the major theory
describing the formation of nuclei in crystal growth (see also [Sch03a; Wil88]). A lot
of recent studies deal with epitaxial methods for fabricating specific structures on an
atomic length scale, where for instance one major goal is theuse of quantum dots.
Where some techniques fabricate the dots ’manually’ by putting the individual atoms
in the desired position [Eag90], a lot of observations show that self-organized growth
is a much more efficient and elegant method of growing such nanostructures. Probably
the first self-organized island formation in a semiconductor material system, namely
InAs/GaAs, was observed in 1985 by Goldsteinet al [Gol85]. Self-organized growth
was then extensively studied and developed, starting with the first quantum dots [e.g.
Mo90; Eag90] and the first quantum dot lasers were developed experimentally in 1994
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Figure 2.1: Growth modes of epitaxial growth, (a) Frank-van der Merwe growth, (b)
Volmer-Weber growth, (c) Stranski-Krastanov growth.

at the Technische Universität Berlin in collaboration withIoffe Physico-Technical In-
stitute St. Petersburg [Led95].

The theory has become more and more important for applications to information
and communication technology. Quantum dot arrays and multilayer systems of quan-
tum dots are of very great interest [Bim96; Spr00; Wan04], and theoretical investiga-
tions have helped to explain the opto-electronic properties of these devices.

2.1.1 Growth modes

Epitaxial growth is normally divided into three different modes, where the interfa-
cial free energy and the lattice mismatch determine the growth mode [Bim99; Mar87;
Shc04a]. Fig. 2.1 shows these different modes.Frank-van der Merwegrowth is charac-
terized by layer-by-layer growth or a tendency to fill the individual monolayers [Fra49]
(Fig. 2.1 (a)). In contrastVolmer-Webergrowth is characterized by the formation of is-
land structures [Vol26] (Fig. 2.1 (b)). TheStranski-Krastanovmode, where a phase of
building a wetting layer is followed by a nucleation of islands, is an intermediate mode
[Str39] (Fig. 2.1 (c)). In lattice matched systems only Frank-van der Merwe or Volmer-
Weber growth can occur, whereas in lattice mismatched material systems growth in the
Stranski-Krastanov mode is more favourable because of strain relaxations [Eag90, and
references therein].

2.1.2 Processes in epitaxial growth

The growth process can be explained by different individualatomic processes, namely
deposition or desorption processes and diffusion processes. Sometimes the nucleation
of islands is referred to as another process, where the nucleation can be seen as just a
product of diffusion at the surface together with binding energies, which lead to island
growth.

In Fig. 2.2 we can see a scheme of the possible processes on thesurface (green
arrows show the direction of the events). Where deposition is not explicitly shown we
see desorption (Fig. 2.2 (a)) from the surface and desorption from an island (Fig. 2.2
(d)). Fig. 2.2 (b),(c),(e) refer to different diffusion processes, which can be explained
by a specific probabilityp to diffuse.



Chapter 2. Crystal growth 9

Figure 2.2: Processes at the surface in epitaxial growth: (a) desorption from the sur-
face, (b) diffusion along an island, (c) edge diffusion on anisland, (d) desorption from
an island, (e) free diffusion.

If we assume that the atoms behave classically, the diffusion probability is expected
to follow Arrhenius law [Lai65]:

p = ν0exp(− E

kBT
) (2.1)

whereν0 is the so called attempt frequency,E is the energy barrier for diffusion be-
tween the two states defined by the process,kB is Boltzmann’s constant andT denotes
the temperature.

Depending on the initial state and on the final state after diffusion we distinguish
here between free diffusion (Fig. 2.2 (e)), diffusion alongan island (Fig. 2.2 (b)) and
edge diffusion (Fig. 2.2 (c)). In Eq. (2.1) these different types of diffusion refer to
different energy barriersE. We do not make use of this theory for the stochastic
differential equations but explain Arrhenius law in more detail for cell-cell adhesion in
the tumor growth model (Sec. 8.3.2).
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2.2 Methods in epitaxial growth

A lot of different techniques exist for making semiconductor structures using epitaxial
methods.

2.2.1 Molecular Beam Epitaxy

As one of the leading techniques in the fabrication of crystals, Molecular Beam Epi-
taxy (MBE) offers the possibility of growing structures under well defined conditions
[Fra03; Shc04b]. This method deals with growth on a surface resulting from the con-
densation of single atoms or molecules out of the gas phase. The atomic source beams
come from the material, which is heated in evaporation cells. Mechanical shutters can
interrupt the atomic beam efficiently, so that it is possibleto control the deposit of less
than one atomic layer. Ultra High Vacuum (UHV,≈ 10−11 torr) conditions prevent
the incorporation of impurities and ensure that atoms and molecules follow a collision
free path towards the substrate. Most MBE systems are equipped with several in-situ
monitoring and analysis devices. These could be a mass analyzer, a Reflection High
Energy Electron Diffraction (RHEED), an Auger Electron Spectroscopy (AES) and/or
others. For detailed descriptions of MBE methods and instruments for the analysis of
systems grown by MBE, see the books by Parker [Par85] and Farrow [Far95].

2.2.2 Metall Organic Chemical Vapour Deposition

Chemical vapour deposition(CVD) is used for the deposition of thin films of various
materials. In a typical CVD process the substrate is exposedto one or more volatile
precursors, which react and/or decompose on the substrate surface to produce the de-
sired deposit. Volatile by-products are frequently produced too and are removed by gas
flow through the reaction chamber. CVD is used for a wide rangeof material systems,
for instanceSi02, Ge/Si andT iN . The CVD method can be divided into a wide range
of slightly different methods. One kind of chemical vapour deposition isMetalorganic
Chemical Vapour Deposition(MOCVD). From the point of view of industrial prepa-
ration, MOCVD orMetalorganic Vapour Phase Epitaxy(MOVPE) has the advantage
that the source material can be provided continuously [Moo96]. The disadvantages, on
the other hand, are the complicated chemical processes and reactions that take place
before and during deposition in the gas phase. While UHV monitoring techniques can
not be applied because of the moderate pressure used in MOVPEsystems, other in-situ
techniques, such as reflectance anisotropy spectroscopy orspectroscopic ellipsometry
[Ste96], are commonly used.

2.2.3 Liquid Phase Epitaxy

In contrast to the other methods,Liquid Phase Epitaxy(LPE) is a method of growing
semiconductor crystal layers from a melt on solid substrates. This happens at tempera-
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tures well below the melting point of the deposited semiconductor. The semiconductor
is dissolved in the melt of another material. At conditions that are close to the equilib-
rium between dissolution and deposition the deposition of the semiconductor crystal
on the substrate is slow and uniform. The equilibrium conditions depend very much on
the temperature and on the concentration of the dissolved semiconductor in the melt.
The growth of the layer from the liquid phase can be controlled by a forced cooling of
the melt. Impurity introduction can be strongly reduced. Doping can be achieved by
the addition of dopants. For one special system, in which Liquid Phase Epitaxy is used
to fabricate silicon crystals inside indium droplets, see [Boe99; Blo04].

2.3 Other methods in crystal growth

Having explained the physical properties of epitaxial systems and the related experi-
mental methods, we would now like to refer briefly to another leading crystal growing
technique, Czochralski growth.

2.3.1 Czochralski growth

Czochralski growth is named after Jan Czochralski, who discovered the method in
1916. A seed crystal, mounted on a rod, is dipped into molten silicon. The seed crys-
tal’s rod is pulled upwards and rotated at the same time. By controlling the temperature
gradients, rate of pulling and speed of rotation precisely,it is possible to extract a large,
single-crystal, cylindrical ingot from the melt. This process is normally performed in
an inert atmosphere, such as argon, and in an inert chamber, such as quartz. While
the largest silicon ingots produced today are400 mm in diameter and1 to 2 meters in
length,200 mm and300 mm diameter crystals are the standard industrial size. Thin
silicon wafers cut from these ingots (typically about0.75 mm thick) and polished to a
very high degree of flatness are used for creating integratedcircuits. Other semicon-
ductors, such as gallium arsenide, can also be grown by this method, although in this
case lower defect densities are obtained. So, this method offers a precise fabrication
of semiconductor devices by a totally different method. Fora detailed description of
some other methods we refer to the already mentioned books ([Sch03a; Byr03]).
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Chapter 3

The biology of tumor growth

The aim of cell biology is to understand the determining processes in nature in general
and to describe the mechanisms and actions at a cellular level in particular. Early
work on cell biology tried to observe the behaviour of cells as a kind of rough view
of phenomenological behaviour. However, as medicine and biology have developed,
scientific investigations have been going deeper and deeperinto the detailed structure
of the human body and of course into the details of cell biology.
Exploring the details of cell structure and mechanisms requires a description of chem-
ical and physical actions on the cellular level. During the last decades the whole field
has become more and more interdisciplinary, and physical biology, mathematical biol-
ogy and bioinformatics are nowadays well established scientific fields.
Of course the development of better microscopes has opened up a new world of obser-
vations and helped us to understand what is happening on the microscopic level right
down to the molecular length scale. Increasing knowledge ofthe cellular structure has
also generated more interest in exploring the basic mechanisms of cell growth, the aim
being to help biologists and doctors understand cell biology in general and in particular
to find effective new therapies.
Until the mid-seventeenth century, scientists were unaware that cells even existed.
Probably the first observations of cell biology were made by Robert Hooke, which
he described in his ’Micrographia’ in 1665. Through his microscope he saw that plant
tissues were divided into tiny compartments. He termed them’cellulae’, which is the
Latin word for the small rooms of monks. About 200 years laterscientists really began
to understand the importance of these findings, when Jakob Schleiden and Theodor
Schwamm found similarities between animal and plant cells and deduced that all liv-
ing things are made up of cells.

Nowadays cell biology makes use of modern microscopes to observe the molecular
structure of cells and a lot of mechanisms are now well understood. Since the 80’s the
major goal for cell biology has been to explain the developmental processes, where cell
changes and grow. With new apparatuses and the development of computer science,
data analysis had a big role to play. A major step was announced in the November
6, 1998 in the Washington Post : "Scientists announced yesterday they had achieved
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one of the most coveted goals in biology by isolating from human embryos and foe-
tuses a primitive kind of cell that can grow into every kind ofhuman tissue, including
muscle, bone and brain."1 Gearhart [Gea98] and Thomson et al [Tho98] had isolated
embryonic stem cells.

The major breakthrough of this work

Figure 3.1: Isolation of embryonic stem
cells [Tho98].

was the fact that one could now explain
how so many kinds of different cells can
develop from only a few cells to form an
individuum. A very important field of
research today is the explanation of the
uncontrolled growth of cells or their un-
controlled division, which is currently a
very important disease,cancer. Cancer
as a Latin word comes from the Greek
’karkinos’ which means a crayfish or a
crab, maybe because of the image of
a destructive crab in the human body.

’karkinos’ is also the origin of the word carcinoma, which means the cancer cells.
A similarly used word is tumor, meaning a medical excrescence that may be either
malignant or benign. The differences between the uses of these words will now be
explained. Tumor cells in general are so called because of two basic properties; their
uncontrolled reproduction and their invasion and colonization of territories reserved
for other cells. As long as the growing tumor or neoplasm is clustered in a single mass
the tumor is said to be benign. When the tumor cells become invasive and occupy
surrounding tissue or gain access to the blood stream to formsecondary tumors, or
metastases, the tumor is malignant and in this case the tumors are also called cancer.
However these words are often used identically in the literature. In this chapter we are
going to give a short description of cell biology and tumor cells, very closely related to
our work. We are going to explain the main processes like the basic principles of cell
division and the structures inside and outside one individual cell in a cell population
but are not going to look into the cell on an atomic scale.

3.1 The biology of the cell

The cell is the structural and functional unit of all living organisms, and is therefore
also called the ’building block of life’. [Alb02]. Organisms are divided into unicel-
lular and multi-cellular types. Unicellular organisms consisting of a single cell are,
for instance, bacteria, whereas humans, with about 100 trillions of cells, obviously
belong to the multi-cellular group. A typical cell size is from 5 to 30 µm in diame-
ter with typical masses around1 ng. Each cell is to some extent self-contained and
self-maintaining: it can take in nutrients, convert these nutrients into energy, carry out
specialized functions, and reproduce as necessary. Each cell stores its own set of in-

1http://www.washingtonpost.com/wp-srv/national/cell110698.htm
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Figure 3.2: View on length scales beetween living cells and atoms where each part
show an image magnified by a factor of ten from a thumb to a cluster of atoms part of
protein molecules, the scale, which our studies cover, are the image of0.2mm and the
image of20µm from cell population to an individual cell [Alb02].

structions for carrying out each of these activities. Thereare two basic kinds of cells,
prokaryotic and eukaryotic cells. Whereas eukaryotic cells keep their DNA in a dis-
tinct membrane-bounded intracellular compartment calledthe nucleus, the prokaryotes
have no such distinct nuclear compartment. Prokaryotes arenormally small and often
live as unicellular organisms. According to one estimate, at least99% of prokaryotic
species remain to be classified. A new classification of cellsdivides them into bac-
teria, achaea or archeabacteria and eukaryotes, where bacteria and archaea build the
prokaryote, but we don’t want to go into so much detail here (for more details see
[Alb02]). An individual cell is a very complex system and there is no place here to
describe all the details from the behaviour of the whole cellto the structure of DNA.
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Figure 3.3: Schematic view of cells, left a typical eucaryotic cell, right a procaryotic
cell.

Fig. 3.2 shows the different lengthscales one can get by a look on cells. It is obviously
not possible to write an introduction to cell biology here.

We shall restrict ourselves here to some basic points related to the model we want
to construct later in this work. For very detailed descriptions we refer to the well
known and best compendium of molecular cell biology, ’The Cell’ by Alberts et al
[Alb02], where one can find not only an overview but a very detailed description of
everything related to an individual cell.

3.1.1 The structure of an individual cell

An individual cell consists of molecules from four major chemical families of organic
molecules, which are the important carbon based compounds,the sugars, the fatty
acids, the amino acids and the nucleotides. Linked into large macromolecules, these
compounds make up approximately30% of the cell mass, whereH2O fills the re-
maining70 %. Fig. 3.3 shows a schematic eukaryotic and a prokaryotic cell. Some
prokaryotic cells contain important internal membrane-bound compartments, but eu-
karyotic cells have a highly specialized endomembrane system characterized by reg-
ulated traffic and transport of vesicles. All cells, whetherprokaryotic or eukaryotic,
have a membrane, which envelopes the cell, separates its interior from its environment,
regulates what moves in and out, and maintains the electric potential of the cell. Inside
the membrane, a salty cytoplasm takes up most of the cell volume. All cells possess
DNA, the hereditary material of genes, and RNA, containing the information needed
to build various proteins such as enzymes, the cell’s primary machinery.

3.1.2 The cytoskeleton

The cytoskeleton acts to organize and maintain the cell’s shape; it anchors organelles
in place, organizes the uptake of external materials by a cell, and cytokinesis, the
separation of daughter cells after cell division; and movesparts of the cell during
the processes of growth and mobility. The eukaryotic cytoskeleton is composed of
microfilaments, actin filaments and microtubules. There area great number of proteins
associated with them, each controlling the cell’s structure by directing, bundling and
aligning filaments. Fig. 3.4 shows an experimental view of aneukaryotic cytoskeleton,
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Figure 3.4: Cytoskeleton: Actin filaments
are shown in red, microtubules in green,
and the nuclei are in blue.

where one can see the actin filaments (red), the microtubules(green) and the nuclei
(blue).

3.1.3 The cell cycle

’Where a cell arises, there must be a previous cell, just as animals can only arise from
animals and plants from plants’. Rudolf Virchow stated this’cell doctrine’ in 1858.
Cell division is such that new cells can only come from existing cells. The ordered
sequence of such duplication and division is thecell cycle, the essential mechanism
for the reproduction of living cells. Cell division is the process by which hair, skin,
blood cells, and some internal organs are renewed. A specialized form of cell division
is responsible for cellular differentiation during embryogenesis and morphogenesis, as
well as for the maintenance of stem cells during adult life.

The cell cycle is specific to the cell type but there are some universal characteristics.
It consists of four distinct phases: G1 phase, S phase, G2 phase (collectively known

as interphase) and M phase, which are schematically depicted in Fig. 3.5. The M phase
is itself composed of two tightly coupled processes: mitosis, in which the cell’s chro-
mosomes are divided between the two daughter cells (see Fig 3.6), and cytokinesis, in
which the cell’s cytoplasm divides physically. The S phase is characterized by DNA
duplication. The gap phases G1 and G2 are influenced by cell signalling and favourable
cell conditions, whereby the length can vary in a wide range for the cells. Cells that
have temporarily or reversibly stopped dividing are said tohave entered a state of qui-
escence called G0 phase, while cells that have permanently stopped dividing due to
age or accumulated DNA damage are said to be senescent. In a typical human cell the
interphase I normally take 23 hours in a 24 hour cycle, whereas the M phase takes just
one hour. The molecular events that control the cell cycle are ordered and directional;
that is, each process occurs in a sequential fashion and it isimpossible to ’reverse’ the
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Figure 3.5: Scheme of the cell cycle: M
mitosis, G0, G1, G2 the gap phases, S the
synthesis phase, G0, G1, G2 and S build
the interphase.

Figure 3.6: Mitosis of a cell.

cycle. Regulatory molecules determine a cell’s progress through the cell cycle: cy-
clins and cyclin-dependent kinases. Leland H. Hartwell, R.Timothy Hunt, and Paul
M. Nurse won the 2001 Nobel Prize in Physiology or Medicine for their discovery of
these molecules which are central to the regulation of the cell cycle.

There has been a lot of work accorded to the cell cycle, but we don’t want to go
any further. As we will see in our model, the cell cycle is reduced to a one step event
in which the cell divides into two daughter cells. For a more detailed description of
the cell cycle see Albertset al [Alb02] and references therein.

3.1.4 Cell types

The type determines the basic properties of a cell, so here wewould like to give a short
description of how cells can be characterized as animal cells. There are basic types of
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tissue in the body of all animals and we are going to explain the most important types.

Epithelial tissue

Tissues composed of layers of cells that cover organ surfaces such as the surface of the
skin. The tissues serve for protection, secretion, and absorption.

Connective tissue

As the name suggests, connective tissue holds everything together. Blood is considered
to be a connective tissue. These tissues contain an extensive extra-cellular matrix.

Muscle tissue

Muscle cells contain contractile filaments that move past each other and change the
size of the cell. Muscle tissue also is separated into three distinct categories: visceral
or smooth muscle, which is found in the inner linings of organs; skeletal muscle, which
is found attached to bone in order for mobility to take place;and cardiac muscle which
is found in the heart.

Nervous tissue

Cells forming the brain, spinal cord and peripheral nervoussystem.

Areolar connective tissue

A pliable, mesh-like tissue with a fluid matrix whose function is to cushion and protect
body organs. There are also different types of tissues in plants.

3.1.5 Cell migration

Cell migration is the central process in the development andmaintenance of multi-
cellular organisms. Tissue formation during embryonic development, wound healing
and immune responses all require the movement of specific cells in a particular di-
rection to a specific location. Errors during this process have serious consequences,
including mental retardation, vascular disease, rheumatoid arthritis, tumor formation
and metastasis. An understanding of the mechanisms by whichcells migrate may lead
to the development of novel therapeutic strategies for controlling, for example, inva-
sive tumor cells. In animal tissues cells often migrate in response to, and towards,
specific external signals, a process called chemotaxis. Forfurther information see
[Par99] [Lev06].



20 3.1. The biology of the cell

Figure 3.7: Scheme of programmed cell death (Apoptosis).

3.1.6 Apoptosis and necrosis

Apoptosis is also calledprogrammed cell death. As such, it is the process of deliberate
life relinquishment by a cell in a multi-cellular organism.In contrast to necrosis, which
is a form of cell death that results from acute cellular injury, apoptosis is carried out in
an ordered process that generally confers advantages during an organism’s life cycle
[Ker72].

For example, the differentiation of human fingers in the developing embryo re-
quires the cells between the fingers to initiate apoptosis sothat the fingers can separate.

Obviously such a mechanism must be well balanced, because too much apoptosis
causes cell-loss disorders, whereas too little results in uncontrolled cell proliferation,
namely cancerous tumors.

Apoptosis can occur, for instance, when a cell is damaged beyond repair, or in-
fected with a virus. The ’decision’ for apoptosis to occur can come from the cell itself,
from its surrounding tissue or from a cell that is part of the immune system. If a cell’s
capability for apoptosis is damaged (for example, by mutation), or if the initiation of
apoptosis is blocked (by a virus), a damaged cell can continue dividing without re-
strictions, developing into cancer. A cell undergoing apoptosis shows a characteristic
morphology which can be seen in Fig. 3.7.

The cell becomes circular. The chromatin then undergoes an initial degradation and
condensation. It then undergoes further condensation intocompact patches against the
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nuclear envelope. At this stage, the double membrane that surrounds the nucleus still
appears complete. The nuclear envelope becomes discontinuous and the DNA inside it
fragments. The nucleus breaks into several discrete chromatin bodies or nucleosomal
units due to the degradation of DNA. The cell breaks apart into several vesicles called
apoptotic bodies, which are then phagocytosed.

3.2 Biology of cell populations

We now have the basic mechanisms of one individual cell. The next question is how
cells work together in a cell population. Cells are often motile and are normally de-
formable objects filled with some jelly-like medium, so somemechanisms must exist
to combine them to give them the strength of the human body. The mechanism is
similar to the game of breaking sticks one after the other or trying to break them all
together at the same time. Cells form cell-cell junctions, have cell-cell adhesions and
are connected by the extracellular matrix.

3.2.1 Extracellular matrix

A substantial part of cell tissues is normally extracellular space, which is largely filled
by a network of macromolecules constituting theextracellular matrix. Produced by the
cells, this matrix composed of proteins and polysaccharides is organized in a mesh-
work in close association with the surface of the cell. The extracellular matrix in
connective tissues is extremely important for physical behaviour. It doesn’t determine
their behaviour but the properties of the epithelial cells depend on it.

3.2.2 Cell junctions

Cell junctions occur in all cell populations at the points ofcell-cell or cell-matrix con-
tacts. They are normally classified into three groups.Occluding junctionsseal cells
together in the epithelium in a way that prevents even small molecules from leaking
from one side of the epithelial sheet to the other.Anchoring junctionsmechanically
attach cells and their cytoskeletons to their neighbours orto the extracellular matrix.
Communicating junctionsmediate the passage of chemical or electrical signals from
one interacting cell to its partner.

3.2.3 Cell adhesion

The connection between junctions and adhesion is the fact that cells have to adhere
in order to build anchoring junctions. A bulky cytoskeletalapparatus must then be
assembled around the molecules that directly mediate the adhesion. This results in a
well-defined structure and different adhesions can be identified using the electron mi-
croscope. For example during the last decade there has been alot of work on cadherins
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mediatedCa2+ -dependent cell-cell adhesions. The study of cell adhesionis part of
cell biology. Cells are often not found in isolation, but tend rather to stick to other
cells or to the non-cellular components of their environment. A fundamental question
is: what makes cells sticky? Cell adhesion generally involves protein molecules at the
surface of cells, so the study of cell adhesion involves celladhesion proteins and the
molecules that they bind to.

3.3 Carcinogenesis

Cell division (proliferation) is a physiological process that occurs in almost all tissues
and under many circumstances. Normally homeostasis, the balance between prolifer-
ation and programmed cell death, usually in the form of apoptosis, is maintained by
the tight regulation of the processes. Carcinogenesis is caused by the mutation of the
genetic material of normal cells, which upsets the normal balance between prolifera-
tion and cell death. This results in uncontrolled cell division and tumor formation. The
uncontrolled and often rapid proliferation of cells can lead to benign tumors; some
types of these may turn into malignant tumors (cancer). Morethan one mutation is
necessary for carcinogenesis. In fact, a series of several mutations to certain classes of
genes is usually required before a normal cell is transformed into a cancer cell.

3.4 Tumor cell types

Cancers are generally classified according to the tissue andcell type from which they
arise. Tumor in medical language simply means swelling or lump, either neoplastic,
inflammatory or other. In common language, however, it is synonymous with ’neo-
plasm’, either benign or malignant. This is inaccurate, since some neoplasms do not
usually form tumors, for example leukaemia or carcinoma in situ.

Carcinoma

Tumor cells which arise from epithelial cells arecarcinoma. Epithelial tissues are
well connected tissue divided into epithelial sheets. Cells are tightly bound and the
extracellular matrix consists of a thin mat called abasal lamina. So in carcinoma cells
are attached to each other by cell-cell adhesions.

Sarcoma

A sarcoma is a cancer of the connective or supportive tissue (bone, cartilage, fat, mus-
cle, blood vessels). The term comes from a Greek word meaning’fleshy growth’.
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Figure 3.8: Scheme of an in vitro experiment with a petri dish where a solution of
nutrients (red) lead to a growth of a cell population monolayer.

Leukemias

Leukemia (or leukaemia; see spelling differences) is a cancer of the blood or of the
bone marrow characterized by an abnormal proliferation of blood cells, usually white
blood cells (leukocytes). It is one of the broad group of diseases called hematological
neoplasms.

3.5 In vitro experiments

All these cell types for tumor cell development have found a lot of interest in cell
biology, where the determination of possible explanationsis feasible thanks to the
high resolution of modern microscopes which are able to distinguish the complexity
of the cells in a complex tissue. In vitro experiments have been established as a very
successful tool for studying the mechanisms of cells in a well defined environment
where the setup is such that unknown influences can, on the whole, be neglected. A
precise change of the properties of the cultured growth of cells therefore makes it
possible to study the basic mechanisms of cells in detail.

Fig. 3.8 gives an impression of a possible setup for in vitro experiments - of course
real apparatuses are much more complicated.
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Chapter 4

Modeling growth phenomena

In the previous chapters we gave an overview of the systems wewant to model. Ob-
viously it is impossible to include all the details of the real growth process in a useful
and effective model.

A model is, by definition, a simplification of reality, made inorder to answer a
specific question about real behaviour. So of course the firstvery important part of the
work is to determine the limits and decide what assumptions have to be made, using
the questions we want to answer as guidelines. Basic tasks are the timescales, length
scales and the related methods.

In this chapter we follow this guideline in order to obtain the rules our representa-
tion have to fulfil. The method of building up the model may look obvious, but a closer
look at the systems we want to explain - and in our opinion all other growth systems -
shows that it is important and one of the first problems to solve. So this chapter may
be a help in the construction of growth models in general and we shall apply it later on
to crystal growth and cell population growth.

4.1 Get the right view

As shown in Fig. 4.1, different length scales explore very different views of the system,
where each is related to individual properties of the system. So posed in a slightly
different manner our question is, whether to look at the forest, at the individual tree or
at an individual leaf.

Here we want to describe many-particle systems in order to get results for the
dynamical behaviour of growth processes of as many particles as possible. On the
other hand we want to include details of the basic actions of the individual particles.
Thus, a well balanced description is required to ensure large scale simulations.
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(a) (b) (c)

Figure 4.1: Zoom from macroscopic to microscopic view: Three differentviews on
the same problem, (a) forest, (b) tree (c) leaf.

4.1.1 The microscopic view

A first approach could be the explanation of the most detailedview. In the case of
particles such as atoms we go directly to the quantum mechanical potentials on the
surface. If we explain the cell as a complete system togetherwith all the processes
inside one individual cell we rapidly come to the DNA structure and again to molecular
structures. All these processes are of great interest and importance, firstly for the
behaviour of individual particles and thereby also for collective behaviour.

However our questions are on a macroscopic scale. The microscopic view does
not help us with our problem if we do not want to derive a model that explains all the
processes of nature. But nevertheless findings from the microscopic view are essential
for our model in order for us to make suitable assumptions.

4.1.2 The macroscopic view

Another way of tackling the problem is to explain the system by a macroscopic view.
In case of atoms that view could be of the whole surface or in case of the cell the
grown cell population. But if we want to decide between processes which lead to this
behaviour and to model the growth itself this view seems too blunt.

4.1.3 The mesoscopic view

We need an approach that lies somewhere between the two previous approaches. This
is the mesoscopic view, where we don’t explain the structureof the particles but take
particles with known properties and see what happens when wemodel the processes.
So our scale for atomic behaviour is the lattice constant (∼ 0.5 − 1.0 nm) and a
time scale of the order of milliseconds. For cells our scale starts with a cell size (∼
10− 40µm) and a time scale of hours to days (doubling time for cells10− 30 hours).
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4.2 Scaling theory

Having decided on our range for length scales, we are still left with the question of how
much information and how many assumptions to include. If oneconsiders a surface
where in epitaxial growth some islands arise, an important question is whether we can
deduce the behaviour of the whole surface from looking at a small section of it. The
answer to that question is the concept of’scaling’, where by measuring quantities on a
small section one can deduce values for bigger systems. A lotof growth systems show
such relations. In our case one can find scaling laws for the morphological structures
of the developing growth system.

4.2.1 Concept of self-similarity and self-affinity

As already explained, the basic concept in scaling approaches is the idea that one can
divide a big system into ’similar parts’. Similarity means that when one looks at two
maps with different magnifications and different measurements of a defined quantity,
they look similar. Mathematically that is either an isotropic transformation, in which
case the system is said to beself-similar, or anisotropic transformation, which defines a
self-affinesystem. We can then extrapolate from small parts of the system to behaviour
on a larger scale by using thescaling lawswhich we now want to introduce.

4.2.2 Roughening and scaling in growth systems

For surface growth the main quantities that describe the developmental processes are
the velocities and spatial dimensions of the system and its morphological structure.
Assuming either self-affinity or self-similarity we then measure the root mean square
(rms) surface roughness given by

wRMS(L, t) =

√

√

√

√

1

L

L
∑

i=1

[h(i, t) − h(t)]2 (4.1)

whereL is the system-size,h(i, t) denotes the height function of the surface at thei-th
point at timet, andh(t) is its average.

It follows from this equation that the rms roughness describes the standard devia-
tion of the height functionh(i, t). In Fig. 4.2 we can see an example of a rough surface.
Here the situations in 1+1 (1 spatial coord. + height) and in 2+1 (2 spatial coord. +
height) dimensions are depicted: In the middle a rough surface in 2+1 in terms of a
three dimensional height profile is shown, where the mean height is emphasized by the
green line. Under the profile a two dimensional projection isshown, where the height
increases from black to white colors, the plane on the left shows the same situation in
1+1 dimensions, where the height now depends on just one coordinate.



28 4.2. Scaling theory

Figure 4.2: Illustration of a rough surface: in the middle a 2+1 dimensional surface
with the height profile and the projected density plot of the height profile, on the left
the height function in 1+1 dimensions (red line), the mean heighth is shown by a green
line.

Figure 4.3: Typical temporal
evolution of the root mean square
roughnesswRMS (black line, ex-
ample taken form long-time sim-
ulations for the Molecular Beam
Epitaxy equation in Sec. 7.2),
blue dash-dotted line: the satura-
tion roughness, red dashed line:
the early phase withwRMS ∝ tβ,
green dash-dotted line denotes
the crossover timetx (double-
logarithmic plot).
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If growth now starts from a flat surface with system sizeL, the system roughens.
In Fig. 4.3 we see a typical evolution divided into two phases, namely the roughening
and the saturation phase, divided by crossover timetx.
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The early phase can be characterized by an exponentβ, the so calledgrowth expo-
nent, whereas the late phase can be explained by aroughness exponentα.

After a certain time, depending on the spatial dimension andsystem size, the
roughness saturates: The saturation roughnesswsat has been reached (blue). The ex-
ponents are then defined by the following power laws:

wRMS(L, t) ∝ tβ for t ≪ tx (4.2)

wsat(L) ∝ Lα for t ≫ tx (4.3)

wheretx is the crossover time between the two regimes of evolution (green). Fig. 4.3
shows this behaviour for the Molecular Beam Epitaxy equation in 2+1 dimensions.
We discuss this later in more detail (Sec. 7.2). Timet is in arbitrary units. We infer
the growth exponentβ = 1/5 from the simulated data, and then derive the roughness
exponentα = 2/3 from the amplitudes of the saturation values.tx andL are linked by
a further power law.

tx ∝ Lz (4.4)

This third exponentz, thedynamic exponent, is not independent ofα andβ, as can
easily be checked using the Family-Vicsek scaling relation[Fam85],

wRMS(L, t) ∝ Lαf

(

t

Lz

)

(4.5)

wheref is the so-calledscaling functionand the exponents then obey the relation:

z =
α

β
(4.6)

The scaling exponentsα, β (in our case they are independent of one another) determine
theuniversality classes, which are then related to different kinds of growth. In general
these methods can be applied to a wide range of systems developing in time, wherever
one can define a height function and find self-similar growth in the system.

4.3 Lattice approaches

Once we know the relationship between the basic processes and the universality classes
we can describe the evolution of growth. For computer simulations of growth we obvi-
ously need a well defined underlying structure to work on. We now want to introduce
different approaches to defining it. In general there are twobasic kinds, off-lattice
models and lattice models.
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Off-lattice models

Off-lattice models are normally used to describe either theexact position of unstruc-
tured surfaces like glassy or amorphous materials in crystal growth or the changeable
or determined position of a cell in cell populations.

The question then arises as to whether the exact position is of crucial importance
in the model or whether one can use one’s a priori knowledge ofan off-lattice model
to replace it by an effective model on a defined lattice. The choice here is between two
different explanatory systems. In the case of a crystal the best underlying structure is
given by the structure of the crystal itself, namely the discrete positions of the effective
atoms. The approximations for the processes are then in the choice of the method,
where one can either try to solve the many body quantum mechanical problems or
consider effective atoms and effective energies at the lattice points in order to simplify
the problem and move from the microscopic to the mesoscopic scale. The situation
changes if we then have an amorphous substrate where it is rather difficult to define
the lattice. For cell population growth the situation is totally different, because here the
possible positions are continuous, so a model which aims to reflect reality perfectly has
to be an off-lattice model. Here the lattice model is only thefirst approximation, which
not only fixes the position in some way but also restricts the overall area of the cells,
so that one can think about local changes. So these questionsare again, as explained
in Sec. 4.1, the choice of including the microscopic view or staying on a mesoscopic
scale.

That question is obviously very important for computer experiments because work-
ing on an off-lattice model structure uses much more computer time. So, in the case
of both crystal growth and tumor growth off-lattice or detailed quantum mechanical
approaches are normally taken for small systems, whereas a coarse-grained approach
with lattices and without detailed solutions of the quantummechanical wave functions
is successful for larger systems.

Lattice models

In most cases it is useful to take a well defined structure for large growth systems.
There are a lot of different very special lattice constructions and here we shall explain
the three most common.

First there is the square lattice or the cubic lattice which is also called thevon
Neumannlattice, where every point is connected in two dimensions tothe four neigh-
bors with equalx or y values. For a three dimensional structure every point then has
six neighbors (Fig. 4.4 (a)). The simplicity of this structure makes it easy to use in
computer experiments.

Depending on the structure, it can be useful for crystal growth to take ahexag-
onal lattice where every point has six neighbors in two dimensions and12 in three
dimensions (Fig. 4.4 (b)).
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Figure 4.4: Different lattice types: (a) von Neumann neighborhood, (b)hexagonal
lattice, (c) octogonal lattice Moore neighborhood with 8 neighbors, left the projections
to twodimensional systems with the neighbors, on the right are the neighbors in three
dimensions.

In a way similar to the cubic lattice one can also define the diagonals as neighbors
which leads to a so called Moore neighborhood with eight neighbors and26 neighbors
in three dimensions (Fig. 4.4 (c)).

All of these structures are extensively used and implemented as models. The prob-
lem of lattice approaches is the reflection of the lattice structure in computer experi-
ments. These artefacts can cause mistakes if they don’t reflect realistic physical be-
haviour in the experiments. A new and different construction related to the special
conditions of growing cell populations will be introduced in Sec. 8.2. It has been
developed to avoid such artefacts.
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4.4 General methods

Once we have made use of the scaling concepts and chosen a welldefined structure to
work on, we have to choose the method. We now explain some of the common methods
and model types with their advantages, disadvantages and special constructions.

4.4.1 Monte Carlo approach

Monte Carlo simulations provide a very good tool for explaining growth. Monte Carlo
methods are numerical methods, where random numbers are used to describe statistical
quantities. Based on the early findings of Metropolis and Ulam [Met49], who named
the method after the famous city, a variety of different Monte Carlo techniques are
nowadays widely used to solve problems in statistical physics.

The name was chosen because of the relationship of the methodto the huge random
number generators used in gambling. And in fact, Monte Carlomethods can still be
seen as a form of gambling, but just a little bit more advanced.

Nevertheless, the basic idea of such methods goes back to the18th century to Buf-
fons’ famous needle problem to calculate the value of numberπ, which was solved in
1873 (A. Hall). These early experiments made use of known probabilities to solve in-
tegrals, and methods today still have the same rules. Monte Carlo simulations rely on
the assumption that the state of a system can be described by all its transition probabil-
ities to reach a different state. When one knows the transition rate of the incoming and
outgoing processes, one can then try to describe the global or macroscopic behaviour
of the system. In general there are two types of Monte Carlo methods, firstly time
independent methods which explain the equilibrium or localequilibrium behaviour of
the system and then time dependent methods which also try to give the development a
time scale.

Markov processes

Markov processes are stochastic processes which fulfil theMarkov property. So by
definition all the possible states which can be reached from agiven state depend solely
on the current state of the system and not on any past state.

A sequence of random variablesX0,X1,...Xk−1,Xn then is called aMarkov chain,
if Xk just depend onXk−1.

Markov chains are said to beergodic, if there is a nonzero probability of reaching
any possible state of the system from any other state.

So, if we have a system in the statei with a transition probabilitypi→j of reaching
statej after a certain timet, the probabilities for all the transitions obey the relationship

pi→j > 0 (4.7)

Assuming a given ergodic Markov chain we can describe evolution in the state space
by a master equation:
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∂tPi(t) =
∑

j

[Pj(t)rj→i − Pi(t)ri→j] (4.8)

wherePj(t)rj→i represents the processes that reach the statei andPi(t)ri→j are the
processes which leave the initial state.Pi(t) are the probabilities of finding the system
at timet in statei, andri→j is the rate of change to statej (transition probability per
unit time).

In general all simulations which are made by kinetic Monte Carlo techniques rep-
resent the solution of such a master equation.

When we want to explain systems which tend to an equilibrium state, the property
of detailed balanceis required [Lan05].

Pipi→j = Pjpj→i (4.9)

Taking the required properties into account, one can now define the transition proba-
bilities which generate such Markov chains.

Classical Monte Carlo methods

The two most famous methods are

Metropolis algorithm

pi→j =

{

1 if E(j) − E(i) < 0

exp(−β(E(j) − E(i))) otherwise

Kawasaki algorithm

pi→j =
1

1 + exp(β(E(j) − E(i)))
,

whereβ = 1/(kBT ) wherekB is Boltzmann’s constant andT the temperature.
In the simplest form of a Monte Carlo algorithm for simulating lattice dynamics, a

particle is chosen randomly and a jump direction is also chosen randomly. If the arrival
site is empty, the probabilitypi→j is computed and compared with a random number
0 < rrand ≤ 1. If the final site is occupied orrrand > pi→j the move is rejected. The
cycle now starts from the beginning again.

The essential drawback is clear. There are always a certain number of cycles which
do not produce new states since they are rejected, yet consume computing time. In low
temperature systems, where transition probabilities are low too, this effect becomes
dominant.
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Continuous time Monte Carlo methods

To overcome this problem, each event needs to be chosen according to itsa priori
probability, andeverystep needs to be accepted. Methods based on this idea are the so-
calledtime dependent Monte Carlomethods (the method used in this work), sometimes
referred to asevent based Monte Carlo, continuous time Monte Carlo, BKL algorithm
after Bortz, Kalos and Lebowitz [Bor75] orGillespie algorithmafter Gillespie [Gil76].

Consider a system with a total number of statesN in the statei. Labelling all states
j which may be reached fromi with k ∈ {1, . . . , K}, the total transition rate is given
by

R(i) =
∑

j

ri→j =

K
∑

k=1

r(i; k) .

Here, the rateri→j to the final statej being labeled by the numberk is described by
r(i; k). The partial sums can be written as

R(i; k) =

k
∑

l=1

r(i; l) .

Now one specific eventk can be selected by a uniformly distributed random number
0 < r̃rand ≤ R(i), for which the condition

R(i; (k − 1)) < r̃rand ≤ R(i; k) (4.10)

must be met.
Under the constraint that time is incremented proportionally to the lifetimeτ(i) =

τ0/R(i), a detailed balance is always ensured. One can therefore model the transition
probabilities with respect to the physical needs of the specific problem rather than
being restricted by the constraints mentioned above.

The time step∆t in the event based Monte Carlo simulation is calculated as follows
[Fic91]:

∆t = − 1
∑

i pi

ln(1 − ξ) (4.11)

whereξ is a random number equidistributed in[0, 1) and
∑

i pi is the sum of all
possible eventsi which may occur at timet.

We now have a situation where, instead of wasting computation time on unneces-
sary rejections which do not contribute to a change of configuration, the main part of
the computing time is spent calculating total and partial transition rates. So by imple-
menting the time dependent Monte Carlo algorithm with care,the drawbacks on the
non-time dependent algorithm can be minimized and this method is much faster. Fi-
nally, as the last comment in this section, the difference between kinetic Monte Carlo
(KMC) and classical Monte Carlo should be emphasized. Whilethe latter is used for
the calculation of a quantity in the thermodynamic equilibrium state of a system the
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former describes thepathof the system towards the equilibrium state. So, by using a
KMC algorithm, we ensure not only realistic equilibrium behaviour, but also realistic
kinetic behaviour.

4.4.2 Discrete models

Discrete models of crystal growth are closely related to kinetic Monte Carlo methods.
Here one defines the properties of the main processes and thereby gets different types
of models with well defined properties that can be identified by their critical exponents.
Because the stochastic differential equations and our tumor growth model work with
comparable quantities, we want to point out here the basic model types. In general they
differ in their definition of the deposition processes and indetermining the diffusion, or
relaxation of particles on the surface, respectively. Where the discrete models and the
stochastic differential equations aimed to explain roughening by a height function, the
height here is discretized, normally corresponding to the actions of effective particles,
for instance atoms in a lattice.

Ballistic deposition models

In ballistic deposition models the particles which fall perpendicular onto the surface
stick to the first nearest neighbor (NN) they find, or to the next nearest neighbor (NNN)
(see [Mea93; Mea90; Bai88; Fam85]).

Solid on Solid models

The solid on solid approximation (SOS) is an idealization whereby neither bulk va-
cancy nor surface overhang is allowed to form during growth.One also normally
neglects desorption or evaporation processes from the front.

Random Deposition model

The easiest SOS model is the random deposition model, where we neglect diffusion
on the surface. The random deposition of particles at a position x on a given surface
at a deposition rateF increases the height functionh(x, t) locally. Obviously, by
definition, in the random deposition model no correlations can occur without relaxation
processes.

Family model

Since most real growth systems show relaxations, a further development of the random
deposition model is therandom deposition with surface relaxation[Fam86] sometimes
also referred to as the Family model. The deposited particles do not then stick irre-
versibly at the position, but can relax to a nearest neigbor with a lower height.
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Wolf-Villain model

The Wolf-Villain model determines the relaxation after deposition by a move to the
neighboring site, when the particle is thereby able to increase the number of bonds
[Wol90].

Das Sarma-Tamborena model

This model is just a variation of the Wolf-Villain model, where in addition the particles
only relax if they do not have any lateral neighbors, otherwise they stay in their position
[Sar91].

A variety of other dynamic relaxation models exist but all these models have the
problem that the relaxation process is determined by the local environment at the po-
sition of the deposited particle.

The advantage of these models is their easy implementation in a computer simula-
tion with low computational demand.

4.4.3 Stochastic SOS models

The so calledstochastic Solid on Solidmodels offer a more realistic modelling of
diffusion processes. The deposition of particles occurs inthe same manner as in the
other models and the models are also only described by eventsto neighboring sites.
But in contrast to the other models, here any surface atom could be selected at any
time for a diffusion process, not only at deposition time. For instance a diffusion by
Arrhenius law can give the transition probabilities of suchevents.

In Sec. 2.1 we described the diffusion processes in epitaxial growth using Arrhe-
nius law, and we don’t want to go into the subject any further here but refer readers to
the publications for kinetic Monte Carlo simulations on SOSmodels extensively stud-
ied in our group during the last 12 years in the framework of Sfb 296 ([Sch98; Bos99a;
Bos99b; Bos00; Mei01c; Mei01a; Mei01b; Liu01; Mei02; Mei03c; Mei03b; Man03;
Els03; Wet04; Els04; Blo04; Els05b; Els05a; Kun06b; Kun06a; Kun06c].

4.4.4 Continuum Equations

A different method of describing growth or evolutionary processes is to use continuum
equations. Using scaling theory (see Sec. 4.2) there are different equations related
to different universality classes. To construct such continuum equations one has to
expand the so called generalized equation, which includes all the processes.

∂h(x, t)

∂t
= G(h,x, t) + η(x, t) (4.12)

whereG is the generalized function depending on interface height,position and time
[Bar95]. If we now assume that the incoming flux of particles is not constant, then



Chapter 4. Modeling growth phenomena 37

we use the termη(x, t) to describe the random deposition. This means that random
fluctuations then have zero mean and normally the second moment is assumed to have
no correlations in space or time (Gaussian white noise).

〈η(x, t)〉 = 0 (4.13)

〈η(x, t)η(x′, t′)〉 = 2Dδd(x − x′)δ(t − t′) (4.14)

Whereas one can also introduce correlated fluctuations, in this work we use white noise
as defined in Eq. (4.13). Now the individual definition of the functionG characterizes
a specific growth process by a specific continuum equation. The general function can
be simplified by using the symmetry principles of rougheningsystems.

Time translation invariance
The growth equation does not depend on where we define the origin of time so
the invariance has to fulfil the relationshipt → t + δt

Translation invariance along the growth direction
Growth has to be independent of the choice of h = 0 so the invariance has to
fulfil the relationh → h + δh

Translation invariance in perpendicular growth direction
The growth has to be invariant under translation perpendicular to growthx →
x + δx

Rotation and inversion symmetry about growth normal vector
Growth has to be invariant if we invert or rotate the height profile about the
growth normaln.

Up/down symmetry for h
One can include a symmetry which states that interface fluctuations are simi-
lar with respect to the mean height, but this property is onlyfulfilled by linear
equations.

Further reading about the symmetry principles can be found in text books [Bar95].
When we include the knowledge about growth gained from the symmetry princi-

ples, we first obtain an expansion of terms described as follows

∂h(x, t)

∂t
= (∇2h)+(∇4h)+...+(∇2nh)+(∇2h)(∇h)2+...+(∇2kh)(∇h)2j +η(x, t)

(4.15)
weren, k, j can take any positive value. For simplicity the coefficientsin front have
not been written down explicitly. Neglecting the differentcoefficients in this expan-
sion now leads to different growth equations which are classified by different critical
exponentsβ, α andz.
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If the growth is self-similar and fulfils the properties of scaling theory, then the
different growth equations extracted from the generalizedequation lead to the different
universality classes described in Sec. 4.2 which can be classified using the related
scaling exponents.
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Stochastic Differential Equations

In the last chapter we gave a general explanation of methods of modelling growth
phenomena and stated that stochastic differential equations have been established as
one of the leading methods of modelling growth. We now want todescribe this kind
of modelling in more detail, and will use it later on to control the roughening process.

The theory of stochastic differential equations for growth, also referred to as
stochastic growth equations, is based on Langevin equations.

Whereas Langevin equations were widely used earlier, Edwards and Wilkinson
first used stochastic differential equations for the roughening process in the early eight-
ies [Edw82].

With the observations of Kardar, Parisi and Zhang [Kar86] the theory of stochas-
tic differential growth equations became a well established tool to explain growing
systems.

A lot of different equations have been proposed during the last 20 years to describe
different universal classes of growth, but there are still alot of unsolved problems.
Some of the questions arise because of the nonlinear form of some of the equations
and the impossibility of solving them analytically. The equations can be used as ide-
alized versions of realistic growth properties, but the relation of realistic growth to its
corresponding universality class is not always obvious. InSec. 4.4.4 we developed the
equations as the result of an expansion with the addition of certain symmetry princi-
ples and we now want to describe the specific equations that are most frequently used.
We shall explain the terms related to the different processes together with their specific
physical meaning.
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Figure 5.1: Behaviour of the Edwards-Wilkinson term (red dashed line) on an artificial
height profileh(x, t) = exp(−x2) (black line) leads to small variation in the resulting
profile (blue dash-dotted line).

5.1 The Edwards-Wilkinson and the Kardar-Parisi-
Zhang Equation

For an explanation of the relevant terms in this work we shallnow discuss the hypo-
thetic generalized functionG(h,x, t) in Eq. (5.1).

∂h(x, t)

∂t
= G(h,x, t) + η(x, t) (5.1)

The basic question arising from this growth equation is the question as to which real-
istic processes dominate the roughening.

5.1.1 The Edwards-Wilkinson equation

The easiest generalized function to think about is the Edwards-Wilkinson (EW) equa-
tion [Edw82],

∂th(x, t) = ν∇2h(x, t) + η(x, t) (5.2)

where we take only the linear second order term from the expansion (Sec. 4.4.4). Orig-
inally developed to describe an Ising spin system, it also exhibits some properties rel-
evant to growth phenomena.

In Fig. 5.1 we see how this term acts on a given surface profile.We take a sim-
ple Gaussian height profileh(x, t) = exp(−x2) and calculate the second derivative
∇2h(x, t) for a pre-factorν = 0.1 in one spatial dimension.
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If we now add a small variation to the height function corresponding to a small
change of the function in time, we see that the Edwards-Wilkinson term acts as a
smoothing term on the height profile and as a conservative relaxation. Surface tension
behaves similarly, which is why this term is normally calledthesurface tension term.

The Edwards-Wilkinson equation is valid in the small gradient approximation, i.e.
in the limit |∇h| ≪ 1.

It corresponds to the well known discrete random depositionmodel with surface
relaxation [Fam86] (see also Sec. 4.4.2).

The main difference from a random deposition model without relaxation is the
presence of correlations.

There are different ways of solving the Edwards-Wilkinson equation and calcu-
lating the scaling exponents. Both an approach using scaling and an exact solution
[Nat92] are possible. The EW equation is one of the rare solvable equations and we
shall now show the solution. For the solution by scaling we only require a self-affine
interface with a height functionh(x, t). As explained in Sec. 4.2, rescaling in the
horizontal and vertical directions produces interfaces which are statistically indistin-
guishable from the original one.

x → x′ ≡ bx (5.3)

h → h′ ≡ bαh

When we measure the height function at different times, the two interfaces are also
rescalable in time.

t → t′ ≡ bzt (5.4)

Due to the fact that the rescaled quantities obey these relations, by substitution ind
dimensions we get

∂h′(x′, t′)

∂t′
= ν∇2h′(x′, t′) + η(x′, t′) (5.5)

bα−z ∂h(x, t)

∂t
= νbα−2∇2h(x, t) + b−

d

2
− z

2 η(x, t) (5.6)

∂h(x, t)

∂t
= νbz−2∇2h(x, t) + b−

d

2
+ z

2
−αη(x, t) (5.7)

and by multiplying the termbα−z on both sides we come to the rescaled height function
which is invariant under the transformation and therefore fulfils the following relations
(independent ofb, comparison of coefficients)

z − 2 = 0 (5.8)

−d

2
+

z

2
− α = 0 (5.9)

which leads to the exponents of the EW universality class,

α =
2 − d

2
, β =

2 − d

4
, z = 2 (5.10)
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Figure 5.2: Scheme of the lateral growth,
height functionh(x) (blue), lateral growth
on the surface (red dashed lines).

vδt

δh

h(x)

x

whered is the spatial dimension.
So in 1+1 dimensions the exponents areα = 0.5, β = 0.25, whereas in 2+1

dimensions the exponents for the above equations areα = 0.0, β = 0.0 andz = 2.
This means that scaling is logarithmic in 2+1 dimensions forthe Edwards-Wilkinson
equation.

Whereas we solved the equations before by scaling argumentsin a phenomenologi-
cal way, this equation can be solved exactly, as shown by the findings of Nattermannet
al [Nat92]. The Edwards-Wilkinson equation fulfils up/down symmetry (Sec. 4.4.4).
If the growth is non-linear, the scaling has to change and this property is no longer
fulfilled. We now come to an equation where processes relatedto nonlinear terms play
an essential role.

5.1.2 The Kardar-Parisi-Zhang Equation

Once again we first think of the easiest nonlinear term possible, which is the(∇h)2

term. The simplest such equation is the Kardar-Parisi-Zhang (KPZ) equation [Kar86]
which describes the growth of a surface in the absence of any conservation laws.

∂th(x, t) = ν∇2h(x, t) +
λ

2
(∇h(x, t))2 + η(x, t) (5.11)

We have already explained the surface tension termν. The nonlinear term determines
the strength and direction of both lateral growth and growthnormal to the interface.
The origin of the nonlinear term can be seen in Fig. 5.2. Lateral growth normal to the
interface can be described locally by a term related to the Pythagorean theorem

δh2 = (vδt)2 + (vδt∇h)2 (5.12)

whereδh is the small difference in the height function in the generalgrowth direction
and(vδt) the lateral growth normal to the interface. We are using the small gradient
approximation, so one can easily see that an expansion ofδh leads to

∂h(x, t)

∂t
= v +

v

2
(∇h)2 + ... (5.13)
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Figure 5.3: Behaviour of the nonlinear KPZ term (red dashed line) on an artificial
height profileh(x, t) = exp(−x2) (black line) leads to small variation in the resulting
profile (blue dash-dotted line).

and thereby exhibits the nonlinear term. The velocity is nothing but an included term
in the mean average height development of the fluxF to the surface. In Fig. 5.3 we
show the behaviour of the KPZ term on the roughening surface in the same way as we
showed it for the EW equation. Two main features are to be seen. Growth is related
to the normal of the interface and its strength to the local gradient. What one can also
observe is a lost mean height, so growth is not conserved relative to the mean height
development. So, whereas we can write a continuity equationfor the total number of
particles for the Edwards-Wilkinson equation wherej is the particle flux.

∂h

∂t
= −∇j(x, t) (5.14)

this relation is not fulfilled by the Kardar-Parisi-Zhang equation. The consequence
is that, although we can generally describe a growth processwith a constant flux to
surface which can be neglected for the continuity equation and conserved for growth
related to the mean height, this growth process can not be described by a non-conserved
equation like the KPZ equation. The KPZ equation cannot be solved analytically be-
cause of its nonlinear character [Mic04; Bar95]. Nevertheless there are some proposed
scaling exponents for the equation.

5.1.3 Relations beetween EW and KPZ equation

The relationship between the Edwards-Wilkinson equation and the Kardar-Paris-
Zhang equation lies in the strength of the nonlinearity. Moser et al demonstrated
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that fact by using an effective coupling constantg defined by the parameters of the
KPZ equation [Mos91].

g =
λ2D

ν3
(5.15)

The coupling constant is related to the fixed point of a renormalization group theory
approach not discussed in this work. They describe the changed roughening for non-
zero nonlinearities due to a change in this coupling constant g. So, to ensure that the
behaviour we describe here is similar, we choose numerical parameters for our ’strong
coupling’ behaviour that ensure a coupling constant in the same range as that in this
paper. The critical exponents for the KPZ equation are well known in 1+1 dimensions
and are given by

α = 0.5, β =
1

3
, z =

3

2
(5.16)

In higher dimensions, where the renormalization group analysis fails, there exist two
different competing results from numerical simulations

α =
1

d + 1
, β =

1

2d + 1
, z =

2d + 1

d + 1
(5.17)

and

α =
2

d + 3
, β =

1

d + 2
, z = 2

d + 2

d + 3
(5.18)

which are both compatible with Eq. (5.16) ford = 1. The numerical observations of
Wolf and Kertész [Wol87] (Eq. (5.17)) and Kim and Kosterlitz[Kim89] (Eq. (5.18))
lead to the same exponents in 1+1 dimensions as given by Eq. (5.16) but they differ
for higher dimensions.

A lot of further calculations where made to determine these exponents. The values
of calculated growth exponents vary widely in a range from the models below, with
β = 0.20 from Wolf and Kertész to values close to and in between the twopredictions,
where the exact value is still an open question (for numerical results see also [Mos91;
Ama90; Cha89; Guo90].

More recent findings by Lässig [Läs98] and Chin and den Nijs [Chi99] show the
values of the Kim-Kosterlitz model (Eq. (5.18)). A summary of the latter findings
together with some new numerical findings can be found in [Gha06]. We will see later
whether our findings without control fall within this range.

5.2 The Molecular Beam Epitaxy Equation

Molecular beam epitaxy (MBE) is a major technique in crystalgrowth of thin films.
Growth takes place in vacuum conditions under which particles from a molecular beam
are deposited on the surface (see also Sec. 2.2.1).
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Because of the growth temperature, desorption processes donot play an important
role in comparison with the diffusion processes on the surface. So models which aim
to describe a MBE process normally neglect desorption processes. Once one neglects
them one has to take surface diffusion as the determining process. If one now describes
the surface currentj by the local chemical potentialµ(x, t), it is driven by the gradient

j(x, t) ∝ −∇µ(x, t) (5.19)

If one explains the movement of particles as a process depending on the number of
bonds, then this number increases with the local curvature.The chemical potential
then depends on−1/R and thereby on∇2h(x, t), which gives us a relation

µ(x, t) ∝ −∇2h(x, t) (5.20)

Combining that with the continuity equation (Eq. (5.14)) our height function is

∂h

∂t
= −K∇4h (5.21)

whereK is the strength of this diffusion term.
So we now have a growth equation describing relaxation by diffusion just as we

have in epitaxial growth for Molecular Beam Epitaxy. The equation is also sometimes
referred to as the Mullins or Herring-Mullins equation, because the first findings came
from the observations of Herring [Her50] and Mullins [Mul57]. To avoid confusion
with the notation of the control strength, later on we useν1 instead ofK as the strength
of the diffusion. Equation 5.21 is deterministic. It was introduced for MBE growth by
Wolf and Villain [Wol90]. With some additional changes it becomes the normal type
of ’MBE growth equation’ we shall discuss later. Calculating the critical exponents
we arrive at [Sar91; Bar95]

α =
4 − d

2
, β =

4 − d

8
, z = 4 (5.22)

So in 1+1 dimensions the exponents areα = 1.5, β = 0.375 where in 2+1 dimensions
the exponents related to the above equations would beα = 1, β = 0.25 andz = 4.
The MBE growth equation that is normally used was described by Lai and das Sarma
[Lai91]. Also known as the conserved KPZ equation [Mic04], this equation takes an
additional term into account.

∂h(x, t)

∂t
= −ν1∇4h + λ1∇2(∇h)2 + η(x, t) (5.23)

The origin of the additional term is described as arising from the situation where ’par-
ticles landing at high steps (large derivatives) relax to lower steps (smaller derivatives)’
[Lai91]. The authors believe that it corresponds to ’high temperature’ regimes, where
the atoms at kink sites can break bonds and hop to steps with a smaller height and
a higher probability, so they propose the above equation as the ideal MBE growth
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equation for intermediate to high temperatures. Obviouslythe explanation includes
a variation of the nonlinear term with temperature which is an essential factor in our
further findings. The change in this term also is quite similar to the situation explained
for the coupling in the KPZ equation, so here we have either strong or weak coupling
according to the different temperatures. Whereas these equations explain MBE growth
in an idealized way, the question arises as to what happens when the physical process
involves both surface relaxation related to deposition or desorption processes and a
diffusing term like in the following equation.

∂h

∂t
= ν∇2h − ν1∇4h + η(x, t) (5.24)

The long term behaviour is obviously the behaviour of the EW equation, because
for large length scales the Laplacian either governs the equation or is its leading term.
The terms generate a characteristic length scale which determines whether the diffu-
sion term is still the leading term or whether the length is solarge that the EW term is
the relevant one for the exponents.

That fact can be explained if we rescale the terms using the known exponents. We
then getνbα−2∇2h andν1b

α−4∇4h. Thus forb → 0 the diffusion term dominates and
for b → ∞ we get Edwards-Wilkinson scaling. In terms of length scalesthe term

L1 =
(ν1

ν

)2

(5.25)

describes the behaviour (L ≫ L1 → MBE-like, L ≪ L1 → EW-like). So which
length scale we choose depends on the growth conditions, butfor realistic MBE con-
ditions one can normally neglect the EW term in comparison with diffusion, and the
length scaleL1 is so large that one can see the MBE exponents. There are a lot of
different models and equations related to Molecular Beam Epitaxy, a good overview
of the discrete models and their relations to the equations is given in [Sar96].

5.3 Crystal growth and stochastic differential equa-
tions

We have already discussed the behaviour of the most referenced and used equations
for growth. We are now going to have a short look at the different types. There are
a few articles which try to describe experiments using such growth equations but it is
still a developing field. It is quite difficult to find crystal growth experiments where
the growth conditions are as ideal as assumed in the generic equations. The measured
exponents vary over a wide range for the same system and it is not easy just to measure
the roughness and then write down one of the equations.
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5.3.1 Observations by Raibleet al

The observations of Raibleet al [Rai00a; Rai00b; Rai01] provide an example of a
more complicated growth equation applied to amorphous metallic thin films. Here a
specific equation is solved by numerical integration. The equation

∂h(x, t)

∂t
= a1∇2h + a2∇4h + a3∇2(∇h)2 + a4(∇h)2 + η(x, t) (5.26)

is proposed to describe growth. One can see immediately thatit is a combination of
the terms of the KPZ equation (Eq. (5.11)) and the conserved KPZ or MBE equa-
tion (Eq. (5.23)). Guided by the measured experimental roughness evolution of
Zr65Al7.5Cu27.5 the equation was solved by a numerical scheme and fitted to the
experimental findings. The parameters were identified as

F = 0.79 nm/s D = 0.0174nm4/s (5.27)

a1 = −0.0826nm2/s a2 = −0.319nm4/s (5.28)

a3 = −0.1 nm3/s a4 = 0.055nm/s (5.29)

The parametera1, normally identified with surface tension in the equations,is negative.
The authors explain that irritating fact by growth instabilities "due to the deflection of
the initially perpendicular incident particles caused by the inter-atomic forces between
the surface atoms and the incident particles". The instability referred to is explained by
Villain as due to an instability on terraces in growth with a diffusion bias at a crystal-
lite layer [Vil91]. A test with our numerical simulation scheme shows agreement with
the findings but also shows that the numerical solution with exactly the same param-
eters is extremely sensitive to very small changes in the fitted parameters. Although
one can easily show that small differences in the pre-factors lead to a non-convergent
growth equation, small differences between experiments cannot be explained by this
model. Fig. 5.4 (a) shows that, with exactly the same parameters as used in the numer-
ical scheme, the evolution of roughness can be reproduced exactly by our numerical
scheme.

The authors do not explicitly report the roughness exponents. They showed the
height-difference correlation, where one can see from the plots, thatα should be close
to a valueα ∈ [0.85, 0.9]. We explicitely determined this quantity using the height-
height correlation (Fig. 5.4 (b)) and the height-difference correlation function (Fig. 5.4
(c)) and got exponentsα = 0.88 andα = 0.87, so our numerical solution and the data
analysis are consistent with the findings of Raible (see nextSection for the method).
Whereas the determination of the correlations once again reproduces the behaviour
found by Raible et al, one can easily check that the exponentsare not related to any
one of the explained equations. Obviously a mixture of different terms can lead to
much more complicated behaviour in roughening. To summarize, it is quite difficult
to simulate very complex behaviour with the growth equationand to unambiguously
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Figure 5.4: Verification of the Raible model for thin film growth: (a) height profile for
a 400 × 400 l.s. simulation at timet = 1000, (b) the height-height correlation with a
fit function, (c) the height-difference correlation function with a fit function.

identify the basic processes which lead to the experimentalbehaviour. For amorphous
substrates discrete modelling with, for instance, KMC simulations can help to solve
these problems [Els05b; Els05a]. In general one has to be very careful when explaining
the different processes.

Nevertheless, observations using the easier equations canlead to a better knowl-
edge of complicated roughening systems.

5.4 Data analysis

For computer experiments in general, and in our work too, it is fundamentally impor-
tant to calculate the quantities in a proper way and to construct the computer codes
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and the numerical scheme in a way most closely related to reality, in order to avoid
discretization artefacts as much as possible. It is also extremely important to include
the parameters in a simulation in a way that makes sense. The competing difficulty is
then nevertheless to ensure a numerical solution in an appropriate real time and not to
tune the computational expense to infinity. The first step in adata analysis is to think
about the discretization scheme to be applied to the equations, and only after that can
one think about how to calculate the observed quantities.

5.4.1 Numerical scheme of solving the growth equations

The numerical solutions of the stochastic growth equationsare normally based on lat-
tice or on discretized points, for which the height functionhas to be solved. If we focus
on crystal growth, the natural approach is to identify the different points with atoms in
a lattice where the spatial position on the interface is discrete and the height function is
then quasi-continuous. The height functionh(x, t) depends on discrete points, so when
we speak about the continuum height function for the growth equation our simulations
must approximate most closely not a continuum but a discreteversion of it. The spatial
discretization∆x and the discretization of the time stepsdt are the discrete quantities
that determine the distance to a real growth process. In the ideal case dt goes to zero,
and the minimal discretization reflects a lattice constanta. In the case of an amorphous
substrate the normal approach is also an effective lattice constant [Els05b; Els05a].

Discrete growth equation→ Continuum growth equation (5.30)

dt → 0 (5.31)

∆x → a (5.32)

In our case we want to investigate the behaviour of those equations where scaling
is dependent on the system sizeL. If we had, for instance, a system of real size
64×64 nm with a lattice constanta of approximately0.5 nm, we would have128×128
discrete points on an atomic scale. If we now simulated a system with 256 × 256
discrete points, it would refer to a system of four times the area and would be related
to 128 × 128 nm, or with a lattice discretiation of∆x = 1 nm it would refer to
256 × 256 nm. The scaling laws are not affected. But, for good results fordifferent
system sizes, one needs to take the same underlying spatial discretization∆x as we do
in this work. This shows that the choice of spatial discretization is not important for
the simulation itself but becomes important with its interpretation for real sizes.

So a rough view of a128× 128 nm with describing every second atom by a lattice
point of the system is an even rougher view of a64 × 64 nm where all atoms are
represented by one point, but from the point of view of the simulation they are the
same and in the case of scaling laws they ought to be the same. These statements are
obviously a direct outcome of fulfilling the scaling laws.

The discretization of timedt is much more difficult. If the discretization is too
rough, the fluctuations that naturally appear in numerical schemes lead the growth
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and the results don’t explain the equations. There is no general law to determine the
discretization that will ensure realistic behaviour. In general it has to be small in com-
parison with the timescale we want to analyze.

The lower cut-off is computationally demanding, so we have to find a rule to check
our simulations. If fluctuations dominate growth, in the worst case the height function
goes to infinity at a certain point. We then know that we have chosen the wrong
timescale for the simulation. That can easily be demonstrated using the algorithm. A
more difficult case occurs when the discrete version is not close enough to the realistic
equation. We can check this by using a smaller time discretization, and then, if the
behaviour does not change, we know that a suitable discretization has been chosen.

5.4.2 Discretization scheme

We have now explained how we prepare the discretization of the lattice and of time in
our numerical scheme. We now come to our discretization of the equation by terms.
The first observations by Moser and Kertész used a normal forward-backward differ-
ences scheme on a cubic grid and integrated it using an Euler algorithm [Mos91].

hn(t + ∆t) = h(t) +
∆t

∆x2

d
∑

i−1

(ν[hn+ei
(t) − 2hn(t) + hn−ei

(t)] (5.33)

+
1

8
λ[hn+ei

(t) − hn−ei
(t)]2) + δ

√
12∆tRn(t)

While some of the newer investigations still make use of thissimple discretization
scheme, Lamet al demonstrated that in 1+1 dimensions it produces some mistakes
in transitions from zero nonlinear terms to nonzero. They showed that the results of
individual roughness evolution produce the right exponents, but when one want to get,
for instance, the transition from the behaviour of the Edwards-Wilkinson equation to
the KPZ equation, some numerical mistakes occur [Lam98a; Lam98b].

Lam et al showed in their findings that in the transition from Edwards-Wilkinson
(λ = 0) to KPZ behaviour (λ > 0) a shift of the amplitude A for the saturation function
appears ([Kru92]).

wsat =

(

A

12

)1/2

Lα (5.34)

They conclude that this conventional discretization is nota genuine approximation to
the continuum KPZ equation. They propose a new discretization in 1+1 dimensions
and show in detail that their scheme is a solution of the continuum equation that does
not produce these instabilities.

A more generalized study of the problem provides a scheme which solves these
problems for more than just the 1+1 dimensional case [Buc05b].
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In order to ensure that the proposed numerical scheme reallyavoids unwanted be-
haviour we want to use here the scheme from Lamet al instead of the older scheme of
Moser and Kertesz [Lam98b; Mos91].

So as to avoid such mistakes we use the discretization schemeof Lam et al, while
ensuring that the exponents are not affected.

hn+1
i,j = hn

i,j +
∆tn

(∆x)2
[wn

i+1,j + wn
i−1,j + wn

i,j−1 − 4wn
i,j] (5.35)

+
a4

3(∆x)2
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Here thehn
i,j is the discretized height function depending onxi, yj and timetn. rn

i,j is
a random number taken from a uniform distribution[−0.5, 0.5).

From this general discretization we arrive at the specific equations by settinga2 =
0 anda3 = 0 for the KPZ equation (a1 = ν, a4 = λ) or by settinga1 = 0 anda4 = 0
for the MBE equation (K = ν1 = a2, a3 = λ1).

5.4.3 Determination of the critical exponents

In our work the basic quantities calculated from simulations are the critical exponents
which determine the universality classes. We are going to use a lot of different methods
so we shall explain them here. The basic measured quantitiesin our work are the rms
roughness evolution in timewRMS(t) and the related exponentsα β andz. We now
present the different methods of calculating of the exponents, and we shall use almost
all of them to obtain the resulting structures.

Calculation of the growth exponentβ

There are different methods of determining the growth exponentβ, direct and methods
using the exponentsα andz. A direct measurement ofβ can be made by tracking
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the temporal evolution of roughness and then taking the slope of the double logarith-
mic plot which reflects the law explained in Eq. (4.2). In thiscase the roughness is
not saturated. We have already explained the roughening phase in Sec. 4.2.2 so will
not explain this direct method again. The second method of measuring the growth
exponents is by determining the other exponents, using Eq. (4.6).

Calculation of the roughness exponentα

First we have to measure the roughness exponents. Direct measurement of the rough-
ness exponentα is possible if we can reach the saturation point of the surface for
different system sizesL. Then the scaling law for saturation roughness (Eq. (4.3)) can
be mapped to the curves to get the related exponent. That may be the easiest method,
but it is not the best way of obtaining the roughness exponent, as we shall see later for
the tumor growth model (Sec. 9.7).

This method obviously fails for most crystal growth systemswhere saturation is
not always reached during growth. A different method assumes that, even if we do not
reach the saturation value, it is still possible to determine the roughness exponent from
locally saturated regions of the surface. The so calledlocal width methodthen takes
the dependence of the locally saturated roughness (width)

wL(l, t) =
√

< [h(x, t) − hl(x, t)]2 >x (5.37)

wherehl is the mean height of the local window of sizel. The scaling of local rough-
ness for smalll is the same as for the whole system, so for smalll we obtain the
roughness exponent using the relation

wL(l, t) ∝ lα (5.38)

This method works very well for saturated systems but for unsaturated surfaces one
has to verify thatl ≪ ξ||.

Another method is to determine the height-difference correlation function

H(r) =
√

[< (h(x) − h(x′))2 >x] (|x − x′| = r) (5.39)

If we again assume a self-similar roughening system with an arbitrary factorb then

h(x) → b−αh(bx) (5.40)

(see also Sec. 5.1), and invariance implies the relation

H(r) = b−2αH(br) (5.41)

By settingb = 1/|r| it follows that

H(r) ∝ |r|2α (5.42)
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With this relationship it is possible to determine the roughness exponent from the
height-difference correlations.

A more general correlation is the height-height-correlation function

C ′(r) = < (h(x + r) − h)(h(x) − h) >x (5.43)

C(r) = < C ′(r) >|r|=r (5.44)

From the radius averaged correlationC(r) we can then calculate the roughness expo-
nent using the relation:

C(r) = C0exp(−(
r

ξa

)2α) (5.45)

whereξa is the so called self-affine correlation length. The functionsH(r) andC(r)
are related to the correlation length by

H(r) → 2w2
RMS for r ≫ ξa (5.46)

C(r) → 0 for r ≫ ξa (5.47)

The structure functionS(k, t) makes use of the power spectrum of the interface. De-
fined by

S(k, t) =< h(k, t)h(−k, t) > (5.48)

with

h(k, t) =
1

Ld/2

∑

x

[h(x, t) − h]eik·x (5.49)

the Fourier transform of the height functionh(x, t), the scaling concepts lead to the
relation

S(k, t) = k−d−2αg(t/k−z) (5.50)

with the Fourier space scaling functiong(u) which fulfils the relations

g(u) ∝ u(2α+d)/z for u ≪ 1 (5.51)

g(u) = const. for u ≫ 1 (5.52)

and is quite similar to the scaling function in normal space (Eq. (4.5)). It allows one to
determine two of the three exponents directly.

If we now measure the slope of the log-log plot of the structure function we can
measure−(2α+d) directly. By then rescaling the function with the measured exponent
we get the scaling functionu.

Rescaling again with the expected value ofz for the structure function for different
timest we end up with a data collapse where the curves match one another, provided
we choose the right value ofz.

This method also indirectly measures the growth exponentβ. It is used for the
stochastic differential equations of the tumor growth model, as we shall see later.

Although there are a lot of other methods of calculating the exponents, in this work
we shall restrict ourselves to those we have already explained (see [Bar95]).
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Chapter 6

Control of stochastic differential
equations

In the last chapter we described the equations whose universal exponents determine the
classes of the different growth phenomena. We discussed theproperties and influence
of the terms corresponding to the physical mechanisms of realistic roughening; we
now want to answer the question of how to influence and controlgrowth.

In crystal growth normally the first step, when growing defined structures, is to
calibrate the system. Although for a lot of systems it is rather difficult to measure
local conditions on the substrate, this procedure can be combined with an extensive
number of repeated tests, until one reaches the conditions under which growth shows
the required behaviour.

A more elegant and, of course, cheaper way is to tune the conditions during growth.
So an in-situ setup that adjusts the surface roughness is a very helpful tool.

When we use stochastic differential equations in the theoretical approach, the basic
question is how to implement a useful control in the equationin order to tune the
roughening process.

In this chapter we want to explain how we control the roughening surface using
the stochastic differential equations we described previously. We introduce the basic
concepts and then proceed to our method [Blo06b; Blo06a].

6.1 Control theory

Controllers are an essential part of daily life. Although one might first think of appli-
cations to engineering like the ’anti-skid system’ in a car or the automatically tuned
temperature of rooms, one of the most complex systems involving controllers is the
human body itself.

An example of this is the ’erect posture’. We first use our tactile and visual senses to
summarize the information from the environment. The brain then acts as the complex
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Figure 6.1: General scheme of a control system with the basic actions, measuring,
comparing, tuning.

controller which send the signals to the muscles to act in theright way. If this controller
fails for any reason, the corresponding actions fail to occur.

Although the design of this controller is very complicated,it shares certain univer-
sal properties with other systems.

The design of a controller like that in Fig. 6.1 can be described by the process of
adjusting a specific quantity, which we measure in the system. The required value
of this quantity then gives, by comparison, the direction for tuning. So the cycle of
measuring, comparing and tuning is the basic concept and thecontroller determines
the changes needed to reach the desired value.

The properties of the system then decide the specific design.
There are two general types of controllers, the feedback method and the non-

feedback method (often called feed-forward). In this work we only use the feedback
method.

Figure 6.2: Mathematical scheme for a control of a system withyd the desired value
of y, e the difference from the measured value toyd andy(t) the output of the system
acting together with the measuring section, the controllerand the plant.
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In Fig. 6.2 we see how feedback control works. The control is designed to tune
quantityy to the desired valueyd. During the development of the system, the time
dependent quantityy(t) is measured in themeasuring section.

It is compared to the required value and the differencee is given to thecontroller.
The controller then uses the information and responds by tuning the so-calledplant,
which is the system to be controlled.

By constantly following the defined feedback loop, a properly designed controller
will reach yd. In the ideal casee goes to zero. The control has to be reset if some
disturbancez occurs in the system.

The properties of the system we want to tune help us to decide between the various
methods of control theory. We call the adjustment of the value of a quantity in a system
which doesn’t show any chaotic behaviour"classical control". However, during the
last decade, methods of controlling systems with a huge number of unstable periodic
orbits have been developed in the field of nonlinear dynamics. When such systems
show chaotic behaviour we have to decide between "classical" and"chaos control".

Although the basic concepts like the choice of feedback or feed-forward methods
are similar, the systems exhibit different behaviour undercontrol.

6.1.1 Classical control methoods

The most important class of mathematical approaches in classical control methods
is the so called"Proportional Integral Differential" (PID) controller. As the name
indicates, the controller is made up of three different terms, some of which can be
neglected, depending on the specific problem.

These three parts determine the behaviour of the control. The P-part works as an
amplifier of the differencee, the I-part sums up the measured values ofe and thereby
memorizes the development of the quantity and the D-part measures the gradient of
the difference.

In general these parts of a controller are well defined by the answer from the step
response. The equationu for a PID control follows directly from the transfer function
f .

f(s) = KP +
KI

s
+ KD s (6.1)

u(t) = KP e + KI

∫

e dt + KD
de

dt
(6.2)

The weights of the controller parts are the pre-factorsK, ands denotes the time interval
in which we measure the differencese. u(t) is then given by the controller to the plant
of the system.

More complicated kinds of P-parts or time delay parts can be included. These
make the controller much more complicated. For a detailed overview of the concepts
of PID we refer the reader to the book by Åstrom and Hägglund [Åst95].
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Fuzzy control is a different approach to controlling a system. The basic concepts
were developed from fuzzy logic theory by Lotfi Asker Zadeh in1965. Fuzzy logic
includes not only the set ’true’ or ’false’ but also logical states in between. Fuzzy
control then answers the question of how close the measurement is to the correct value.

The detection of edges on a poor grey colored picture is an example. If we define
white to be the edge and black to be not at the edge, then most ofthe points are in
between. For further reading we suggest the book by Passino and Yurkovich [Pas98].

6.1.2 Chaos control

Where normally, for classical methods, the aim is to tune a specific quantity to a certain
target value, for fluctuating systems the aim is sometimes tostabilize or destabilize
certain chaotic attractors. Control then usually means adjusting the essential oscillation
properties of the system by imposing a small perturbation.

Control of complex irregular motion is one of the central problems in nonlinear
dynamics [Sch01; Sch04; Sch89; Sch99; Sch07].

The phase space of such systems contains a large number of unstable periodic
orbits embedded in a chaotic attractor. Therefore a small change in initial conditions
can lead to a completely different evolution.

There are several different methods, which once again can bedivided into feedback
and feed-forward methods.

An important class is callednon-invasivecontrol. Here only weak external forces
are coupled into the system. They do not change the dynamics of the system com-
pletely, but stabilize an already existing orbit embedded in the chaotic attractor.

The most important non-invasive methods are the Ott-Grebogi-Yorke (OGY) method
[Ott90], and the Pyragas control scheme [Pyr92], which is also known astime-delayed
auto-synchronization(TDAS). The TDAS scheme uses the time-delayed feedback of
a system variable, which is coupled back into the system. It can easily be applied
to a great number of systems and has proved to be successful inreal experiments.
See [Ben02; Boc00; Jus03a; Sch06a], or for various classes of theoretical models
[Bab02; Bec02; Fra99; Höv04; Höv03; Jus03b; Bal05; Höv05; Yan06; Sch06b],
and for models of semiconductor nanostructures [Sch93; Ama03; Ama02; Sch03b;
Unk03]. A wide range of applications of this method have beentested and there
have been a great many theoretical investigations. A further development of control
was then proposed asextended time-delayed auto-synchronization(ETDAS) [Soc94].
Time-delayed feedback control has also been applied to noise-induced oscillations
[Jan04; Bal04; Sch05; Pom05; Ste06; Hiz06; Hau06; Bal06].

We have briefly discussed chaos control, but for more detailed explanations of the
methods and a state of the art review of theoretical methods and their experimental
applications see the book by [Sch07].
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6.2 Control in this work

In this work we use the observed methods explained above to control the stochastic
differential equations and thereby the behaviour of the roughening interface by means
of a time-delayed feedback control method.

6.2.1 Control variable

The main quantity for the stochastic differential equations is the rms-roughness. The
development of roughness is correlated to three exponents,which determine the uni-
versality class of growth and thereby determine the growth process. Any possible
control has to influence this evolution and so our control variables are restricted to the
growth exponentβ, the roughness exponentα and the dynamic exponentz.

In order to be included in a setup, the variables have to be directly measurable. We
have seen in Sec. 4.2, that, in self-affine systems, the exponents are not independent.
While it is rather difficult to determine the dynamic exponent z directly by measuring
the crossover timetx or by using the structure function, we can in general controlboth
other exponents.

For α we have to calculate the correlation functions (see Sec. 5.4) or the structure
function during control. If we want our tool to be related to realistic growth, the direct
method is very complicated, because it requires the comparison of different system-
sizes. And as already pointed out (see Sec. 5.4), a lot of systems do not reach saturation
during growth. So both for the theoretical model and for an experiment the natural
choice of control is the growth exponentβ.

Our control variable in the roughness evolution representsthe early phase, so for a
lot of epitaxial systems it can be measured directly from development.

6.2.2 Time delay

The determination ofβ requires the roughness evolution to be tracked during devel-
opment. According to the definition of the growth exponentβ, our algorithm has to
calculateβ in-situ by taking the slope of the roughnessw(t) on a logarithmic scale and
therefore requires the previous roughness values to be memorized.

For a measurement in a numerical scheme it is obviously important not to measure
the growth exponent at every single time stepdt in order to avoid large effects of
discretization. As control theory is widely used for a lot experimental setups, we give
the system a time delayτ before it reacts to control tuning. So our scheme calculates
the roughness for a time interval[t − τ, t] from the actual and the memorized value of
time t − τ and therefore is atime-delayed feedback controlmethod.



60 6.2. Control in this work

6.2.3 Scheme of control

We have now explained the basic quantities and our control scheme follows as a direct
result.

Figure 6.3: Control of the growth exponentβ.

As shown in Fig. 6.3, measurements from the stochastic differential equations we
have solved give the time dependent roughness, which determines the behaviour. The
algorithm calculates the actual growth exponent at timet from the roughness evolution,
compares it with the desired value ofβ and then changes the behaviour using a well
defined strategy.

In detail, the scheme is as follows. First we choose the desired value of the growth
exponent,β0, and select an appropriate time delayτ . Generating sufficiently many
samples ofh(x, t), we recordw(t− τ) andw(t) (the argumentL will be omitted from
now on). Thelocal exponentβlocal at timet is defined as

βlocal(t) ≡
log w(t) − log w(t − τ)

log t − log(t − τ)
(6.3)

Depending on the sign and value ofβlocal(t)−β0, we adjust the nonlinear coupling,λ,
of the KPZ equation, as follows. First we introduce a controlfunctionF (t).

Fordigital control, we define

F (t) ≡
{

a, if βlocal ≤ β0

−a, if βlocal > β0

(6.4)

where the parametera defines the control ’bit’, i.e. the amount by whichλ changes at
each control step.

Alternatively, we also investigate adifferentialmethod for which
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F (t) ≡ K(β0 − βlocal) (6.5)

andK sets the amplitude of the control strength. Given one of the two choices ofF (t),
the control scheme kicks in at timet0 and acts on the nonlinear terms of the different
equations, as we will explain in more detail for each specificequation.

Our scheme is successful ifβlocal(t) approachesβ0 and then settles at the desired
value within a reasonable period of time after the control has been activated.

Control of the KPZ equation

We have already explained in Sec. 5.1 the relationship between the KPZ equation
(Eq. (5.11)) and the EW equation (Eq. (5.2)) when we have zerononlinearity. The
best method of controlling the exponents is to control the leading term, which is the
nonlinearityλ. The value of the nonlinear term is then no longer constant intime but
changed by the control forceF (t) in the following way

λ(t) =











λ0, if t < t0

λ(t − τ) + F (t), if t = tn

λ(tn), if tn < t < tn+1

(6.6)

The control scheme starts at timet0. From then on, the nonlinearityλ is updated at
times tn ≡ t0 + nτ , n = 1, 2, ..., starting from an initial valueλ0. As we know,
zero nonlinearity leads to EW like behaviour of the growth exponentβ, where the
valueβEW = 0.25 (for 1+1 dimensions) is smaller than that for the KPZ equation
βKPZ = 1/3.

The algorithm has to include that fact. Therefore the control force is added to the
nonlinearity if the local exponent is smaller than that desired (Eq. (6.6)). This assump-
tion is valid if we look at positive nonlinearitiesλ > 0. For negative nonlinearities
the situation is just the opposite. We have to subtract if thedifferenceβlocal − β0 is
negative, showing that the KPZ equation is symmetric in thatsense.

Negative lateral growth corresponds to a negative nonlinear term. Such a process
seems to be unusual in crystal growth. But there are quite similar systems with corro-
sive behaviour at the interface which exhibit negative lateral growth.

In Table 6.1 we see a typical setup for our simulations with the initial parameters
ν = 0.1 andD = 0.5 kept constant for all simulations. The parameters of the control
β0, τ , λ0 and the control strengtha andK determine the control forceF (t).

Control of the MBE equation

The situation for controlling the MBE equation (Eq.(5.23))is in some ways different
from the control of the KPZ equation. The MBE equation with just the fourth order
term has a proposed exponent ofβ = 0.375 in 1+1 dimensions and the exponent
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EW term (surface tension) ν = 0.1 nm2/s
Strength of the Gaussian white noiseD = 0.5 nm4/s
Initial nonlinear term λ0 = 0.00 . . . 0.40 nm/s
Strength of the digital control a = 0.001 . . . 0.100 nm/s
time discretization dt = 0.001 . . . 0.1 s

System size L = 256 . . . 16384 lattice sites (l.s.)
desired value of the growth exponentβ0 = 0.25 . . . 0.33
time delay for the feedback τ = 0.1 . . . 10 s

Table 6.1: Typical set of parameters for the control of the KPZ equation.

Surface diffusion term ν1 = 0.1 nm4/s
Strength of the Gaussian white noiseD = 0.5 nm4/s
Initial nonlinear term λ1,0 = 0.00 . . . 0.10 nm3/s
Strength of the digital control a = 0.001 . . . 0.100 nm/s
Strength of the differential control K = 0.001 . . .0.100
time discretization dt = 0.001 . . . 0.1 s

System size L = 256 . . . 8192 lattice sites (l.s.)
desired value of the growth exponentβ0 = 0.33 . . . 0.375
time delay for the feedback τ = 0.1 . . . 10 s

Table 6.2: Typical set of parameters for the control of the MBE equation.

decreases with a nonzero additional term of the nonlinearity λ1. For two dimensions
the same situation occurs when the exponent for a zero nonlinearityλ1 is higher.

That is essential for the control scheme. If we want to tune aneffective exponent
β0 by our time-delayed feedback control scheme, we have to increase the nonlinearity
λ1 to get smaller values of the exponents by increasing the function λ1(t). So our
control forceF (t) has to work in opposition to the force from the KPZ equation.
For simplicity we change the sign in the control scheme, but one could alternatively
redefine the control forces with a change of sign in Eq. (6.4) (6.5). If we control the
exponents usingλ1, our control scheme has to be

λ1(t) =











λ1,0, if t < t0

λ1(t − τ) − F (t), if t = tn

λ1(tn), if tn < t < tn+1

(6.7)

where the procedure for the time delay is the same as for the KPZ equation. In Ta-
ble 6.2 we see a setup of the parameters for this type of equation.
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We have now defined a control procedure for the growth equations which will be
applied to control the growth exponent. So the question arises as to whether it is
possible to tuneβ to all the desired values if the choice is restricted to universality
classes. As one would expect, the answer is no.

But if we conceive of the exponents as defined quantities for the long term and long
range behaviour of the roughening surface, we can control the early states with a well
defined system sizeL by effective exponents, so the behaviour can be different.

A second question concerns the behaviour of the roughness exponentα during
the control.α does not differ for the Edwards-Wilkinson and the KPZ equation. So
a useful and successful control maintains these values during the control, otherwise
we would leave the universality classes and the above equation would not explain a
adjustment of local growth exponents within these classes.

For the MBE equation the situation changes, the roughness exponents are not the
same for the two extreme cases, but one would expectα to lie somewhere in a range
between the universality classes for the controlled equation. Table 6.3 sums up the
exponents of the different regimes for the equations we wantto control by the meth-
ods explained above. The different exponents for the KPZ equation in 2+1 dimen-
sions denote the different values proposed by Wolf and Kertész [Wol87] and Kim and
Kosterlitz [Kim89].

Kardar-Parisi-Zhang equationβ α

1 + 1 dimensionsλ = 0 0.25 0.50
1 + 1 dimensionsλ > 0 0.33 0.50
2 + 1 dimensionsλ = 0 0.00 0.00
2 + 1 dimensionsλ > 0 0.20 0.33 Wolf-Kertesz
2 + 1 dimensionsλ > 0 0.25 0.40 Kim-Kosterlitz

MBE equation

1 + 1 dimensionsλ1 = 0 0.375 1.50
1 + 1 dimensionsλ1 > 0 0.33 1.00
2 + 1 dimensionsλ1 = 0 0.25 1.00
2 + 1 dimensionsλ1 > 0 0.20 0.66

Table 6.3: The critical exponents for the growth equations.

6.2.4 Relation to control methods

A short look at our control scheme shows its relationship to the general methods ex-
plained above. First, of course, we have a time-delayed feedback method as for the
classical control and for chaos control.

Obviously we do not control a chaotic system. On the other hand we have a system
driven by stochastic noise as noise induced roughening. Themain difference from a lot
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of chaotic systems is the absence of a chaotic attractor and in this sense it is closer to
the classical methods of tuning a developing system. So it israther difficult to include
classical or chaos control.

The method contains not only the properties of PID controllers but also those of
the TDAS scheme. Our differential control scheme acts in a similar way to a propor-
tional controller, in that it amplifies the difference of thedesired exponent. The digital
scheme answers with a step on a step function.

So our scheme combines some properties and findings of both the classical and
chaos control approaches.



Chapter 7

Simulating Stochastic Differential
Equations

In the previous chapters we showed how to control surface roughness by adjusting
the growth exponentβ in the early phase of the roughening. We now apply the time-
delayed feedback control method defined in Ch. 6.2 to the equations for crystal growth.

7.1 The Kardar-Parisi-Zhang Equation

In case of the KPZ equation we want to tune the growth exponentβ by means of the
nonlinear termλ. We have to ensure that the related exponents are valid for 1+1 dimen-
sions and have to check if we get similar results in comparison to previous findings for
2+1 dimensions or to the proposed exponents, respectively (see table 6.3). So we first
check our numerical scheme for this equation without any control and then continue
with the feedback scheme.

7.1.1 The uncontrolled equation in 1+1 dimensions

For a satisfactory check of the exponents without control the best method is to look
at the long time behaviour of scaling. In Fig. 7.1 we provide adata collapse for the
equation in 1+1 dimensions, where we used two different system sizesL = 1024 and
L = 4096 for the numerical scheme.

Simulations were made for long times. ’Long time’ here meansthat the roughness
is in the saturation phase as shown in Fig. 7.1. The data collapse was made using the
Family-Vicsek relation (Eq. (4.5)).

First the roughnessw(t) was rescaled byw → w/Lα, then the timescale was
rescaled byt → t/Lz. If we have chosen the right values forα and z, the curves
collapse into single curves, as can be seen for the three initial setups.

In all three casesα = 0.50 measured by the height-difference correlationH(r)
(see Sec. 5.4.3 for the method) and is the right value for boththe EW universality class
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Figure 7.1: Data collapse for the KPZ equation in 1+1 dimensionsw/Lα vs t/Lz

plotted on a logarithmic scale for three different initial setups for the nonlinearityλ for
systemsizesL = 1024 (red lines) andL = 4096 (black lines) (i)λ = 0 shifted by a
factor of4 (ii) λ = 0.1 shifted by a factor of2 (iii) λ = 0.25, insets show the height
difference correlation functionH(r) measured forr ∈ [0, L], the broken green lines
are guides to the eyes for the extracted exponentsα andβ, respectively.

and the KPZ universality class. The dynamic exponentz differs and therefore so does
the growth exponentβ.

Three different initial nonlinearitiesλ were used. For zero nonlinearity we see that
the Edwards-Wilkinson equation (β = 0.25, α = 0.5 andz = 2) behaves as expected.
The other extreme case has a sufficiently strong nonlinearity (λ = 0.25) to provide a
case of KPZ behaviour (β = 1/3). Here the other exponentsα = 0.5 andz = 3/2 stay
at the KPZ values.

The third case (λ = 0.1) is surprising. We find a local exponentβlocal ∼ 0.30
which is neither the EW value nor the KPZ value but is nevertheless constant over a
range of more than two decades.
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There are several possible explanations for this behaviour.

• It is possible that saturation sets in before the exponent reaches the KPZ value.
Alternatively the opposing processes, the roughening phase and early saturation,
cancel one another out to give an effective exponent.

• It is also possible, though extremely unlikely, that we havefound a totally new
universality class.

• It is also possible that there are some difficulties with the numerical scheme. If
this is true then the numerical scheme needs to be changed.

To get a more detailed view, we made simulations of the early phase for a wide range
of different nonlinearitiesλ. As simulations of long time behaviour are extremely
computationally demanding, we used shorter simulations and took ensemble averages.

In Fig. 7.2 we have changed the nonlinear term in the rangeλ ∈ [0.0, 0.8]. The
dashed lines help one to see the limiting exponents, which are the EW (β = 1/4) and
the KPZ value (β = 1/3).

For small nonlinearities we get clear effective exponents,which seem to increase
monotonically with the value ofλ. If λ is not too large we see the behaviour we expect
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Figure 7.2: Early roughness evolution of the KPZ equationw(t) vs timet with λ ∈
[0.0, 0.8] for L = 4096 and timet = 1000 with a time discretizationdt = 0.02,
dashed lines denote the limits of the growth exponents forβEW = 0.25 (orange) and
βKPZ = 1/3 (green) as guides to the eye.
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and have observed before in Fig. 7.1. For a large enough nonlinearityλ = 0.80 we see
a local exponent which increases and then saturates at the KPZ valueβ = 1/3. This
indicates that we have not found a new universality class forthe equation but rather
a local regime of early development in which the growth exponentβ is tunable to a
certain value.

Quite similar behaviour has been found by other authors [Mos91; Gha06]. So we
are not proposing a new universality class, and the limits ofthe numerical solutions
are still within the expected range. The universality classexplains long time and,
more importantly, large scale behaviour, so our results explain behaviour during early
development. But this behaviour could be relevant to realistic setups when we have a
defined limited scale and obviously also a limited time scale.
We have determined the limits and range of the KPZ equation in1+1 dimensions where
control can adjust the growth exponentβ.
We now take a more detailed look at the calculation of the roughness exponents for
long time behaviour. As one can see in Fig. 7.3, the methods wehave already described
(see Sec. 5.4.3) do actually work. We test the calculation using the height-difference
correlationH(l) (Fig. 7.3 (a)), the height-height correlationC(l) (Fig. 7.3 (b)) and the
structure functionS(k, t) (Fig. 7.3 (c)). As expected, the exponentα = 0.5 is the same
in all three cases, with a zero nonlinearityλ = 0, a strong nonlinearityλ = 0.25 and
an intermediate value ofλ = 0.10. In Fig. 7.3 (b) the simulation plots (solid lines) are
fitted (dashed lines) to the functionC(l) = C0exp(−(l/ξ)2α) (see Sec. 5.4.3). For the
structure functionS(k, t) we see that all the curves match a single curve with a slope
corresponding toα = 0.5. Herek is scaled so thatk = 1 corresponds tol = L in
phase space and we shall use this scaling in further calculations.

7.1.2 Definition of parameters for the control

The first thing to determine for control is the range of time inwhich we want to apply
the control. As we can see, for our simulations in arbitrary units the range of clear
effective exponents ist ∈ [10, 1000], where saturation normally sets in aftert = 1000.
So, in order to avoid effects produced by the saturation process, control should not be
applied for too long a period. We have therefore restricted our control to this range for
all our simulations.

The next step is to define the time delayτ and the strength of the control forces by
means of the parametersa andK from Eq. (6.4), (6.5). Because our simulations are
highly computationally demanding, we aim as far as possibleto restrict the range and
use the parameters as a control before starting any simulation. This avoids both long
parameter changes and wasting too much time reaching the right parameters.

Obviously,τ , a andK are not independent of one another during control. When
we have a very small time delay, we do not take too large a control parameter in order
to avoid numerical instabilities in the scheme. If we take a larger time delay, we have
to ensure that the control force can tune the exponent to the desired value in time, or
else we have to choose parametersa andK that are not too small. There are limits
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to the parameters defined by the equation and the control range determined above.
If we assume a limit for our control functionλ(t) ∈ [0, 0.25], which is a reasonable
assumption looking at the changeable exponents in Fig. 7.2,then we have to determine
our control using that range. To get a more generalized view we now define a control
factor for digital control.

Ca =
a

τ
(7.1)

From this factor we can easily calculate the maximum of our range forλ(t) by

∆λ(t) = Ca(tc,end − tc,0) (7.2)

wheretc,0 is the time of the beginning of control andtc,0 is the end. So for a time delay
τ = 1 and a control stepa = 0.005 the range is∆λ ∼ 0.5 which is twice the range of
λ(t) and therefore a good choice. Similar possible choices wouldthen beτ = 10 and
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Figure 7.3: Calculation of the roughness exponentα for the KPZ equation in 1+1
dimensions in the long time behaviour: (a) the height-difference correlation func-
tion H(l), (b) the height-height correlation functionC(l), (c) the dynamic structure
functionS(k, t) for three different nonlinearitiesλ = 0.0 (black),λ = 0.1 (red) and
λ = 0.25 (blue) withL = 4096, t = 106a.u. anddt = 0.01, the dashed lines show the
fit functions for calculation of the roughness exponents.
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a = 0.05 or τ = 0.1 anda = 0.0005 which give the same maximum∆λ. So the factor
Ca gives general predictions as to how to set the initial parameters. The best choice
then depends on the specific development of roughness. A’coarse control’or a control
which only changes a few times in the control range of the function λ(t) defines the
upper limit of time delay. A very small time delay is more sensitive to the fluctuations
from the numerical scheme which appear in the numerical integration. Of course one
also has to ensure that the time delay is large enough in comparison with the time step
dt.

For differential control the control factor has a similar definition

CK =
K

τ
(7.3)

which is obviously impossible to calculate without some ’test’ simulations of the initial
conditions forK andτ . This is because it depends directly on the differenceβ0−βlocal.
Digital control only reacts to the sign of this difference. In this sense differential
control is more difficult to apply but, on the other hand, is probably a much faster
control method.

We now need to define either the range in which we want our control to influence
the roughening phase or the timest0 for the onset of control and for the end of control.
We therefore clarify the restrictions in our numerical scheme. In Fig. 7.4 we see the
development up to a timet = 10000 for a setup withL = 4096 and a nonlinearity
value ofλ = 0.25. In the left panel we show the linear plot and the insets show that
the power law is relatively stable up tot = 1000, with fluctuations appearing in the
range fromt = 1000 to t = 2000 and becoming very obvious att = 10000, whereas
this does not show up so clearly in the logarithmic plot.
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Figure 7.4: Roughening of the early time KPZ equation withL = 4096, w(t) vs
t: (a) linear plot, (b) logarithmic plot with a time discretization of dt = 0.01 and a
nonlinearity ofλ = 0.25

The origin of these fluctuations can be explained both by the start of a change
in roughening before the saturation phase and by the strong influences of numerical
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System size L = 4096
Time of onset of control t0 = 10
End of control te = 1000
Initial nonlinear term λ0 ∈ [0, 0.25]
Time delay τ ∈ (0, 1000]
Strength of the digital control a ∈ (0, 0.05]
Strength of the differential control K ∈ (0, 0.10]
desired value of the growth exponentβ0 ∈ [1/4, 1/3]
time discretization dt ∈ (0, 0.05]
Averages 25 realizations

Table 7.1: Parameter ranges for the control of the KPZ equation in 1+1 dimensions.

fluctuations. When the evolution obeys a power law, small fluctuations in the numbers
lead to bigger changes in the local exponent for the later times. This is because the
absolute values of the differences between the values of theroughness decrease due to
the logarithmic scale.

Of course, we also get these fluctuations for smaller values,but ours seems to be a
suitable choice for controlling roughening up tot = 1000. Up tot = 10 the roughening
depends on the initial flat surface, so we set our timet0 = 10.

So we now have determined our basic parameters for the control of the KPZ-
equation and also the range within which control of the localexponent is possible.
Table 7.1 lists a summary of these parameters.

7.1.3 Control of the KPZ equation in 1+1 dimensions

We now test our control scheme for the KPZ equation in 1+1 dimensions with these
restriction on the parameters. We check how control works and to what extent the
scheme depends on the basic parameters for certain setups.

Influence of τ on control

First we want to test the reaction on different time delaysτ . We set an initial nonlin-
earityλ0 = 0 and take a control strength with constant valuesa = 0.01 andK = 0.01.
The desired growth exponent is set to beβ0 = 0.29.
We now test this setup for three time delaysτ ∈ {0.01, 0.1, 1}. In order to make
the influence of the time discretizationdt as negligible as possible, we set it todt =
0.0005. This increases the simulation time but we get clear resultsthat only depend
on τ . In Fig. 7.5 we see the results of the control for a variation of the time delay
τ . In Fig. 7.5 (a) we see that digital control works for the timedelayτ = 1 (blue)
and for a value ofτ = 5 (orange), where the control adjusts the exponent a little
bit later in the second case. For the smaller values control fails (black, red). In the
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Figure 7.5: Influence of time delay on control for digital and differential control, (a)w
vst for the digital control witha = 0.01, (b) for the differential control withK = 0.01,
(c) λ(t) for the digital control, (d)λ(t) for the differential control, time delay vary in
τ ∈ {0.01, 0.1, 1, 5}, dt = 0.0005, λ0 = 0.00, β0 = 0.29 and 25 averages for all
simulations.

corresponding control functions (Fig. 7.5 (c)) we see the reason for this behaviour.
Whereas for the successful control the function first increases and then stays nearly
constant, it fluctuates widely for smallerτ . This is obviously a reaction to the much
faster control with the smaller time delays. So differencesfrom the ideal case of the
power law of roughening here lead to over-controlled behaviour and thereby to a larger
effective exponentβ.

For differential control the situation is much more extreme. In general we see
similar behaviour: the control works forτ = 1 and in the case ofτ = 5 does not reach
the value ofβ0, but stays close toβ = 0.25. Control fails for the smaller time delays.

Because of the direct dependence of the control strength on the absolute value of
the difference from the desired value ofβ0, the fluctuations are much stronger here.

In conclusion, we have found a possible control but anticipate better tuning of
the control strength for other cases of digital control using different time delays. So
although differential control reacts faster, the digital scheme of changing the time delay
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under constant conditions offers a wider range of possibilities.

Influence of control strength on control efficiency

We now take a closer look at how controllers react to a change in the strength of the
control parametersa andK. We again take setups with time delays ofdt = 0.0005,
β0 = 0.29, λ0 = 0 and set the time delay to a constant valueτ = 1 for both types
of control. In Fig. 7.6 (a) we see that the control works for a digital parameter of
a = 0.005 (red), but fails fora ∈ {0.001, 0.02, 0.05}. The dashed line here is a fit to
the working control parameter which shows only a slight difference from the desired
value of the effective exponent. Obviously, too small ana leads to a control function
which does not adjust the exponent in the given range of time.This is because of the
absolute added value of the parameter. For parameters that are too large, the changes
are too large for a given difference, so the control functions λ(t) fluctuate more and
the required exponent cannot be reached: the control is too fast for the system to react
normally. That can be seen from looking at the functionsλ(t) in Fig. 7.6 (c). For
differential control the behaviour is very similar: the lowest valueK = 0.001 gives a
smaller effective exponent and the control strengthsK = 0.02 andK = 0.05 produce
larger effective exponents than desired and also cause large fluctuations in the functions
λ(t) (Fig. 7.6 (d)). The adjustmentβ0 = 0.29 only works forK = 0.006 (red).

So a change in the strength of control using parametersa andK leads to quite
similar behaviour in both types of control.

If we look at the introduced control factorsCa (Eq. (7.1)) andCK (Eq. (7.3)),
control works here for values ofCa = 0.005 andCK = 0.006.

Simulations with constantCa and CK

We now want to take a look at these artificial parameters.
We again take our setups with time discretizations ofdt = 0.0005, β0 = 0.29,

λ0 = 0.00 and now set the factors atCa = 0.01 andCK = 0.01, close to the values
of our previous working control. Then we change both the control parameters and the
time delay in simulations and ensure these factors stay constant. In Fig. 7.7 show the
results for constant factors. For digital control, the roughness evolution is adjusted
perfectly for two setups,a = 0.005 with τ = 0.5 (orange) anda = 0.002 with τ = 0.2
(blue). For the other setups control fails. The absolute changeable range during control
using the factorCa is constant (here∆λmax = 0.99, (see Eq. (7.1)), the reason being
slow reaction to changes in the local effective exponent.

For the differential control method this is not the case and therefore all setups
show very similar behaviour. Due to the direct amplifying nature ofCK this leads to a
working control in all cases. The inset in Fig. 7.7 (b) shows that roughness increases
slightly for higherτ andK.

If we take a look at the control functions for digital controlwe see that values
increase for increases inτ anda. In the early stage the function increases fast with
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Figure 7.6: Influence of control strength on control for digital and differential control,
(a) w vs t for the digital control witha ∈ {0.001, 0.005, 0.02, 0.05}, (b) for the dif-
ferential control withK ∈ {0.001, 0.006, 0.02, 0.05}, (c) λ(t) for the digital control,
(d) λ(t) for the differential control, time delay inτ = 1, dt = 0.0005, λ0 = 0.00,
β0 = 0.29 and 25 averages for all simulations.

high values, whereas later, because of fluctuations, it cannot decrease fast enough to
give the right exponent.

To conclude: the fast reacting differential control has theadvantage of being in-
dependent ofτ and K for constant values ofCK , thereby reducing the degrees of
freedom.

Simulations with nonconstantCa and CK

Fig. 7.8 gives a summary of a wide range of possible variations for τ , a andK for
the setup we used before. We have classified the results usinga color code: green
squares for a very good adjustment in the range∆β < 0.005 aroundβ0, blue squares
for a functional but imperfect control at∆β < 0.01 and red squares denote a non-
functional control for∆β > 0.01. For digital control we see in Fig. 7.8 (a) that the
possible control works around values ofτ = 1 anda = 0.01 for small changes. In
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Figure 7.7: Influence of constant factorsCa = a/τ andCK = K/τ on control, (a)
roughnessw(t) vs timet for different parametersa andτ andCa = 0.01 by digital
control, (b) roughnessw(t) vs timet for different parametersK andτ andCK = 0.01
by differential control, insets show the curve in smaller range to see the differences,
(c) and (d) the corresponding control functionsλ(t)

comparison with the differential control in Fig. 7.8 (b), the range is larger but generally
more limited by an upper and lower bound to bothτ anda. The differential control for
constant K only shows control for a smaller range ofτ but does not seem to be limited
by choice ofK. So for allK a correspondingτ can be found.

Nevertheless there are limits due to the fact that when smallτ are of the same order
of magnitude as the time discretization ,τ andK do not lead to useful control if the
functionλ(t) reacts strongly to differences.

So, as explained above, in the case of differential control we can reduce the pa-
rameters over a wide range to the factorCK which determines the efficiency of con-
trol. In the case of the initial setup ofβ0 = 0.29 andλ0 = 0 this control works for
CK ∈ [0.005, 0.01].
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Figure 7.8: Influence of the constantsCa andCK delay on control, digital and dif-
ferential, (a) digital control for different setups ofτ and a, (b) differential control
for different setups ofτ anda, categorization in both cases by green squares (good
working control), blue quares (working control) and red squares (no working control),
parameters in all casesλ0 = 0.0, β0 = 0.29, dt = 0.0005 for 25 averages.

Other control setups

We have made a detailed investigation of one specific initialsetup for the time delayed
feedback and know how the method works and what influences determine and restrict
the ranges. It is now possible to tune the control parametersmore efficiently for other
setups.

As we saw for the uncontrolled case, we can generate the full range of exponents
between the EW and the KPZ universality classes by changingλ within a range of
λ ∈ [0, 0.25].

There are three different setups in which our control works for extremecases.
These cases are:

• an initially zeroλ0 = 0 corresponding to the KPZ universality class (β = 1/4)
to be controlled to a desiredβ0 = 1/3 corresponding to the KPZ universality
class

• an initially strongλ0 = 0.25 corresponding to the EW universality class (β =
1/3) to be controlled to a desiredβ0 = 1/4 corresponding to the KPZ universal-
ity class

• different initial λ0 which stabilize the effective exponents in a range ofβ0 ∈
(1/4, 1/3)
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By testing these setups we showed that all other possible relevant setups with initial
partial nonlinearities in the range between them also work.

We have already partly shown the third case of analysis of theparameters; we
now check the whole range for an initial nonlinearity ofλ = 0 and desired values of
β0 ∈ {0.25; 0.27; 0.29; 0.31; 0.33}. From the simulations forβ0 we know thatτ ∼ 1
seems to be the best choice for optimal control in both digital and differential control.

We therefore normally restrict simulations toτ = 1, although we have also partly
tested setups with other time delays.

For the control strengths we use setups ofa ∈ {0.005, 0.01} andK ∈ {0.005; 0.01}
and partly test other setups for the differential control toreproduce the behaviour ex-
plained above, where control seems to depend only onCK . Because simulations with
the prior time discretizationdt = 0.0005 are too computationally demanding (a few
hours for single simulation), we reduce the time discretization by a factor of10 to
dt = 0.005. We thereby reduce the whole simulation time from days to hours, which
suggests that the precision of control is slightly affected.

To analyze the results we took the roughness evolution and measured the change
in the control functionλ(t) in situ starting at timet0 with λ0. The insets in the upper
left of the diagram show the development of this function during control. We have
already seen slight changes in the late phase of the control time range due to the more
important numerical fluctuations in this range and we shall now take a closer look at the
late phase of all the simulations, as shown in the lower rightof the diagram (also double
logarithmic plot). The figures show the fitted effective exponent in the time range after
the control has tuned it to a nearly constant value. In Fig. 7.9 we show the results for
digital control withλ0 = 0, a = 0.005 andτ = 1. In general there is the possibility of
control in all cases. Whereas there is nearly perfect control for the required exponent
β0 > 0.25 (Fig. 7.9 (b - e)), the case ofβ0 = 0.25 is more problematic. Normally
one would expect that, when the initial nonlinearityλ = 0 corresponds to this required
value, it would be easily adjustable, as the scheme just has to stay at a zero value. In
fact we see the effects of numerical solutions, where small changes in the roughness
evolution activate a change ofλ. So, in all cases of nonzeroλ, which we always get
in the case of partly measured valuesβeffective < 0.25, the tendency is to produce
β > 0.25. Summing gives an exponent ofβ > 0.25. Changing the condition that
λ ≥ 0 does not change the problem, because negativeλ also leads to bigger growth
exponents due to the symmetric nature of the equation (see [Mos91; Bar95]).

As already explained, we are going neglect that case, because in experimental se-
tups it would be difficult to change the sign of the nonlinear term corresponding to
a real physical quantity. Nevertheless we also tested the control without any restric-
tions on the sign ofλ, but did not find noticeable differences, so here we only show
results that neglect such schemes. In the control functionswe see that a small increase
in nonlinearity leads to the control behaviour, which then stabilizes for higher values
of β0. For the higher values ofβ0 the control is perfectly stable, and in the case of
β0 = 0.27 too, as can be seen in the inset, small fluctuations lead to a bigger local
exponent, which is then compensated for by the control.
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In the differential scheme we see exactly the same behaviour, except in the prob-
lematic case ofβ0 = 0.25 (Fig. 7.10). Here we get better control behaviour with a
faster control, which gives a stable exponent ofβ = 0.254. Nevertheless fluctuations,
which are then controlled by the scheme, can also be seen in this case (inset).

If there is a problem adjusting the exponents to the EW universality class from a
zero nonlinearity due to the numerical behaviour describedabove, then other setups
usually fail to stabilizeβ = 0.25. A control that works forβ0 > 0.25 can be seen in
Fig. 7.11. The question is whether the good working control in the case ofβ0 is only
an effect of the numerics or if it is relevant for experimental setups. We do not want
numerical fluctuations in experimental setups, so the control of a setup which normally
tends to have EW-behaviour should tune the nonlinearity to zero.

A good indication that there is a numerical reason for the behaviour is that the
initial conditions are chosen so that the value ofλ stays at zero.

For the reasons already explained for the symmetric border at λ = 0, this behaviour
is not seen in other setups, not even in the opposite case of a strong nonlinearity (λ0 =
0.25), which can be controlled to a KPZ exponent (β0 = 0.33).

We now check other setups for the control with different initial nonlinearities. We
restrict ourselves here to setups withλ0 = 0.10 and λ0 = 0.25, which mark the
important changes in the initial nonlinearity. For furtherinformation about additional
simulations see the Appendix.

Now we look at an initial nonlinearity ofλ = 0.10 for both the digital and the
differential control. In Figs. 7.12 and 7.13 we can see the setups forλ0 = 0.10.
As already described, control fails forβ0 = 0.25, but the other cases show stable
behaviour and differential control seems to be nearly perfect in all cases.

The range in which control changes the nonlinearity is much smaller than for the
caseλ = 0.00. That is obviously the case for these setups, because the initial condi-
tions are closer to those required. So, as can be seen in the scheme without control
(Fig. 7.4), this initial setup without control produces an exponent between the EW and
the KPZ class. So here it is much easier to tune the functionλ(t) to the correct value.
That is why, in the case ofβ0 = 0.29, the range for both control types fluctuates be-
tweenλ(t) ∈ [0.1, 0.12], and increases in the case of higher exponents to a maximum
of λ(t) ∼ 0.16 for β0 = 0.33.

These values give also an indication of how the system tends to behave in the KPZ
class. It complies with the proposed valueλ = 0.25 as a "strong coupling" value.

For the setup of this strong nonlinearity we now look again atthe results. In
Fig. 7.14 we see that the control works very well for higherβ0 and higher control
strengths also lead to control behaviour (see appendix). Itis not surprising that when
the control works for small initial nonlinearities, it alsoworks for larger ones. We can
see that the function decreases slightly and then stabilizes, with more fluctuations in
the late phase, but with a clearly stabilized growth exponent.
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Figure 7.9: Digital control for the KPZ equation in 1+1 dimensions with acontrol
setup:λ0 = 0.00 anda = 0.005 for five different desired control values of: (a)β0 =
0.25, (b) β0 = 0.27, (c) β0 = 0.29, (d) β0 = 0.31, (e)β0 = 0.33, time discretization
dt = 0.005, upper left insets show the functionsλ(t), lower right insets show the
roughness in the late phase in double logarithmic plot.
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Figure 7.10: Differential control for the KPZ equation in 1+1 dimensionswith λ0 =
0.00 andK = 0.005 for five different desired control values of: (a)β0 = 0.25, (b)
β0 = 0.27, (c) β0 = 0.29, (d) β0 = 0.31, (e)β0 = 0.33, time discretizationdt = 0.005,
upper left insets show the functionsλ(t), lower right insets show the roughness in the
late phase in double logarithmic plot.
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Figure 7.11: Digital and differential control for the KPZ equation in 1+1dimensions
with λ0 = 0.00, a = 0.01 respectivelyK = 0.01 for three different desired control
values of: (a,b)β0 = 0.27, (c,d) β0 = 0.29, (e,f) β0 = 0.31, time discretization
dt = 0.005, upper left insets show the functionsλ(t), lower right insets show the
roughness in the late phase in double logarithmic plot.
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Figure 7.12: Digital control for the KPZ equation in 1+1 dimensions with acontrol
setup:λ0 = 0.10 anda = 0.005 for five different desired control values of: (a)β0 =
0.25, (b) β0 = 0.27, (c) β0 = 0.29, (d) β0 = 0.31, (e)β0 = 0.33, time discretization
dt = 0.005, upper left insets show the functionsλ(t), lower right insets show the
roughness in the late phase in double logarithmic plot.



Chapter 7. Simulating Stochastic Differential Equations 83

10
0

10
1

10
2

10
3

t (a.u.)

1

w
(t

)

λ
0
 = 0.1, β

0
 = 0.25, K = 0.005

β = 0.264

600 1000t (a.u.)

2

w
(t

)

simulation curve
fitted curve
ideal β

0
 curve

0 200 400 800 1000
t (a.u.)

0.08

0.06

0.04

0.1
λ(t)

(a)

10
0

10
1

10
2

10
3

t (a.u.)

1

w
(t

)

λ
0
 = 0.1, β

0
 = 0.27, K = 0.005

β = 0.274

600 1000t (a.u.)

2

w
(t

)

simulation curve
fitted curve
ideal β

0
 curve

0 200 400 800 1000
t (a.u.)

0.08

0.06

0.1

0.12
λ(t)

(b)

10
0

10
1

10
2

10
3

t (a.u.)

1

w
(t

)

λ
0
 = 0.1, β

0
 = 0.29, K = 0.005

β = 0.290

600 1000t (a.u.)

2

w
(t

)

simulation curve
fitted curve
ideal β

0
 curve

0 200 400 800 1000
t (a.u.)

0.08

0.1

0.12

0.14
λ(t)

(c)

10
0

10
1

10
2

10
3

t (a.u.)

1
w

(t
)

λ
0
 = 0.1, β

0
 = 0.31, K = 0.005

β = 0.310

600 1000t (a.u.)

2w
(t

)

simulation curve
fitted curve
ideal β

0
 curve

0 200 400 800 1000
t (a.u.)

0.1

0.12

0.14
λ(t)

(d)

10
0

10
1

10
2

10
3

t (a.u.)

1

w
(t

)

λ
0
 = 0.1, β

0
 = 0.33, K = 0.005

β = 0.328

600 1000t (a.u.)

2

w
(t

)

simulation curve
fitted curve
ideal β

0
 curve

0 200 400 800 1000
t (a.u.)

0.1

0.12

0.16

0.14
λ(t)

(e)

Figure 7.13: Differential control for the KPZ equation in 1+1 dimensionswith λ0 =
0.10 andK = 0.005 for five different desired control values of: (a)β0 = 0.25, (b)
β0 = 0.27, (c) β0 = 0.29, (d) β0 = 0.31, (e)β0 = 0.33, time discretizationdt = 0.005,
upper left insets show the functionsλ(t), lower right insets show the roughness in the
late phase in double logarithmic plot.
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Figure 7.14: Digital control for the KPZ equation in 1+1 dimensions with acontrol
setup: λ0 = 0.25 anda = 0.005 for three different desired control values of: (a)
β0 = 0.25, (b) β0 = 0.31, (c) β0 = 0.33, time discretizationdt = 0.005, upper left
insets show the functionsλ(t), lower right insets show the roughness in the late phase
in double logarithmic plot.
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Figure 7.15: Differential control for the KPZ equation in 1+1 dimensionswith λ0 =
0.25 andK = 0.005 for five different desired control values of: (a)β0 = 0.25, (b)
β0 = 0.27, (c) β0 = 0.29, (d) β0 = 0.31, (e)β0 = 0.33, time discretizationdt = 0.005,
upper left insets show the functionsλ(t), lower right insets show the roughness in the
late phase in double logarithmic plot.
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7.1.4 The uncontrolled equation in 2+1 dimensions

We now want to look at the behaviour of the KPZ equation in 2+1 dimensions. As
depicted in Fig. 7.16, the situation here is much more complicated. In the 1+1 dimen-
sional case we got clear effective exponents in the early phase but they do not appear
here. We used setups for the nonlinear terms in the equation in the rangeλ ∈ [0, 0.1]
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Figure 7.16: Longtime roughness evolution of the KPZ equation in 2+1 dimensions:
w vs time t for different values ofλ (λ ∈ [0.0, 0.10]) for (a) L = 32 × 32 and (b)
L = 64×64 and timet = 1000, dashed lines denote the limits of the growth exponents
for (a)β ∼ 0.09 (b) β ∼ 0.07 (green) and (a)β ∼ 0.31 and (b)β ∼ 0.33.

with system sizesL = 32× 32 l.s. (Fig. 7.16 (a)) andL = 64× 64 l.s. (Fig. 7.16 (b)).
Although we can not determine the exponents exactly by a direct method, we can

nevertheless get an impression of the range in whichβ is valid for our scheme.
We can thereby check if our numerical scheme works. The bounds of possible ex-

ponents in the early phase are denoted by the dashed lines. Wedo not see a wide range
of exponents over more than one decade, but on the other hand the dashed lines indi-
cate that the exponents could be in the rangeβ ∈ [∼ 0.09;∼ 0.3] for both system sizes.
This agrees with recent studies of the values of the KPZ-equation in 2+1 dimensions
[Mos91]. Additionally, as in our findings for 1+1 dimensions, the local exponents and
also the roughness w(t) increase with the value ofλ.

This behaviour is not surprising since, as we have already pointed out in Sec. 5.1.2,
the determination of the critical exponents of the KPZ equation in 2+1 dimensions is
still an open problem. It would be much more surprising if we could determine them
by a simple direct method.

Most recent studies have tried to tackle this problem using stochastic models and
Monte Carlo or Kinetic Monte Carlo methods. The renormalization method fails in
this case [Bar95; Mic04]. Models (see also Sec. 4.4.2) proposed for KPZ behaviour
are expected to be in the class of ballistic deposition models (see Sec. 4.4.2). A variety
of these models have appeared during the last decade, some using deposition to ex-
plain crystal growth ([Sar96; Osk06; Chi99]), others describing the two type particle
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system ([Kol06]) and treating a lot of very different problems concerning growth and
fluctuation phenomena.

All these slightly different approaches make the assumption that ballistic deposi-
tion models can explain phenomena related to the KPZ equation described above. The
extracted exponents vary betweenβ ∈ [0.1, 0.25] and are close to the expected ex-
ponentβ = 0.25. But the exact values remain unknown (newer findings for specific
problems can be found in [Hor06; Rei06; Gha06; Fog06]). A very short analysis of
simple ballistic deposition where we implemented the simple version introduced by
Meakinet al [Mea86] and later further explained by Baiodet al [Bai88] can be seen in
the App. B.1. Our results agree with their findings and the exponents are in the range
expected for the KPZ universality class.

If our numerical solution of the equation does not give the growth exponent di-
rectly, nevertheless the control can give some indication of its value.

Because of the behaviour shown in Fig. 7.16 we can not ensure that our numerical
scheme will work, so we have to strengthen the approach by looking at the roughness
exponents.

For this calculation we make use of both the height-height correlation and the
height-difference correlation function. In Fig. 7.17 we see the behaviour of the correla-
tion functions for one setup with three different initializations of the random generator.
We took a nonzero nonlinearityλ = 0.05 for a now larger system ofL = 128×128 l.s.
and we use this for the control too. Although the extracted exponentsα for the height-
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Figure 7.17: Determination of the roughness exponent for different samples forL =
128× 128, λ = 0.05 and timet = 1000, (a) height-difference correlation, dashed lines
are fits for the small length behaviour to calculateα (b) height-height correlation, three
initializations of the random generator were used, dashed lines are fits withC(l) =
C0exp(−(l/ξ)2α).

height correlation give smaller values (α ∼ 0.35) than for the height-difference method
(α ∼ 0.40) both values are in the range proposed for the KPZ model by numeri-
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System size L = 128 × 128
Time of onset of control t0 = 10
End of control te = 1000
Initial nonlinear term λ0 ∈ [0, 0.1]
Time delay τ = 1
Strength of the digital control a ∈ (0.005 : 0.01]
Strength of the differential control K ∈ (0, 0.10]
desired value of the growth exponentβ0 ∈ [0, 1/4]
time discretization dt = 0.005
Averages 10 realizations

Table 7.2: Parameter ranges for the control of the KPZ equation in 2+1 dimensions.

cal solutions of the equation [Mos91] or using different ballistic deposition models
[Bai88; Bar95; Mic04; Gha06; Sar96].

We do not see clear growth exponents. That may be due to the fact that saturation
sets in when the nonlinear term in the equation becomes responsible for roughening.
Alternatively we see a short very early phase, also calledrandom growth([Rei06]),
which then reaches the saturation phase very fast. The phasein between, called the
correlatedgrowth phase by Reis (it is responsible for the growth exponent), then can
become very small (see [Rei06]).

In this case, control can be applied to the equation to stabilize it in a given range.

7.1.5 With control in 2+1 dimensions

We now determine the range for control. We again use a ranget ∈ [10, 1000]. Once
again the control sets in at timet0 = 10 in order to exclude effects occurring during
the very early phase (Fig. 7.16).

The question is, if it is useful to apply our scheme here. Further investigations will
have to clarify what control can tell us about the behaviour of the continuum function,
but we nevertheless tried control and got surprising results.

At first setups forL = 128 × 128 l.s. with a strong initial nonlinearityλ = 0.10
were investigated, which should give largerβ corresponding to the KPZ class (consis-
tent with Moseret al [Mos91]).

As we can see in Fig. 7.18, the equation for the digital schemeshows control
behaviour in 2+1 dimensions, too. We tried to adjust the exponents between those
expected from the EW class (β = 0) and the KPZ class (β ∼ 0.25). Control for
β > 0.30 failed in all cases, but we got local control forβ0 ≤ 0.25. The scheme
adjusts the lower value ofβ0 for only a very small time range, but seems to work very
well for the desired exponentsβ0 ∈ {0.20; 0.25}.
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Looking at the insets, it can be seen that fluctuations arise in the cases ofβ0 = 0.2
andβ0 = 0.25, where the roughness increases briefly and is then restabilized by the
scheme to the desired exponent.

For values ofβ closer to the EW class the local increase in roughness is not resta-
bilized. So if the aim is to adjust and then stabilize the values using the time delayed
feedback, then control obviously fails in this case.

The functionλ(t) shows similar behaviour as in the 1+1 dimensional case: it first
decreases and then stabilizes at a certain value. When the setups fail we observe first
an initial decrease and then a monotonic increase in the fluctuations ofλ. We had
similar problems controlling the EW value in the case of the 1+1 dimensional equa-
tion, but here this deviation is much more relevant and, in contrast to the case in 1+1
dimensions, can not be controlled. Different factors couldgive rise to this behaviour:

• the problem of a zero nonlinearityλ which acts as a border, where all otherλ
lead to higher exponents (symmetry of the equation)

• too large fluctuations in the late time range

• too small system sizes, which encourage fluctuations

• the EW class exponent is generally not adjustable

The first point is partly responsible but, as we saw for 1+1 dimensions, its influence
can be decreased by decreasing the time discretization dt. We proved that point, but
got no noticeable differences.

If those fluctuations which can not be compensated for fast enough play an essential
role, then differential control should be more stabilizingas a fast reacting control (see
the results for KPZ equation in 1+1 dimensions). And in fact,if we look at the results
for the same initial setups with the differential scheme, the control is also better for
smaller exponents (see Fig. 7.19).

But there are still effects on the evolution of roughness. The tendency to late rough-
ening against the control is still present.

The fourth point we can simply not prove here. If we see an improvement when we
change from digital time delay to differential time-delayed feedback, it might indicate
that control is also possible for small values ofβ0.

However the EW class withβ = 0 is a special case. Here we can not see a really
stable exponent in the roughness evolution (see Fig. 7.16).Soβ = 0 just means that
the roughness scales logarithmically witht.

Although we have not entirely solved this problem, we strongly suggest that tests
be made with ballistic deposition models and control to reproduce the behaviour and
give further information.
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Figure 7.18: Digital control for the KPZ equation in 2+1 dimensions withλ0 = 0.10,
β0 ∈ {0.00; 0.05; 0.10; 0.15; 0.20; 0.25}, time delayτ = 1 and control strengths of
a = 0.01 ((a), (b), (c), (d)) anda = 0.005 ((e), (f)), upper left insets show the functions
λ(t), lower right insets show the roughness in the late phase in a logarithmic plot.
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Figure 7.19: Differential control for the KPZ equation in 2+1 dimensionswith λ0 =
0.10, β0 ∈ {0.00; 0.05; 0.10; 0.15; 0.20; 0.25}, time delayτ = 1 and a control strength
of K = 0.01, upper left insets show the functionsλ(t), lower right insets show the
roughness in the late phase in a logarithmic plot.
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We get the best results for the desired exponents around the values expected for
KPZ-behaviour (β0 ∈ {0.2; 0.25; 0.3). Here we see really stable exponents in the
region where the control acts on the equation. This is surprising, because we do not
get such clear behaviour without control. There could be various reasons for this.
Where the nonlinearity is the leading term in the equation and depends strongly on
local gradients of the height function, then, by definition,the control acts not only to
control the equation but also to control the unwanted numerical fluctuations.

The nonlinearity decreases briefly in all cases, and then stabilizes at different values
for the desired exponents. In the late phase, where numerical fluctuations are much
more in evidence, smallβ0 can not be controllled. So roughness increases again for
smallβ0, whereas it does not increase for the nearby KPZ exponents.

This may indicate that in this case we can control roughness and also get some
information about a realistic KPZ exponent in 2+1 dimensions.

We now also show digital control and differential control setups forλ0 = 0.00 in
Fig. 7.20,

Whereas the control adjusts the exponents in the expected way for the higher ex-
ponents, it fails for smallβ0 (not shown). In the setups the control functionsλ(t) show
behaviour similar to that observed for 1+1 dimensions. For small initial nonlinearities
and higher exponents the functions increase to a certain value.

So also in this case, the growth exponent seems to be only adjustable around the
valueβ0 = 1/4, where it is very well tunable.

Nevertheless, there should be some comparable results from, for instance, ballistic
deposition models related to KPZ-behaviour to ensure that the above explanations are
indeed responsible for the behaviour.

For initial nonlinearities in between the presented valueswe see very similar be-
haviour, some of the additional simulations can be seen in the Appendix A.2.
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Figure 7.20: Digital and differential control for the KPZ equation in 2+1dimen-
sions withλ0 = 0.0, β0 ∈ {0.20; 0.25}, time delayτ = 1 and a control strength
of a = 0.01,K = 0.01, respectively. Upper figures: digital contro, lower figures: the
corresponding differential cases. Upper left insets show the functionsλ(t), lower right
insets show the roughness in the late phase in a logarithmic plot.
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7.2 The MBE Equation

We have already shown that our control scheme works for the KPZ equation in 1+1
dimensions and have the impression that it could also partlywork in 2+1 dimensions.
We now want to apply our scheme to the growth equation proposed to explain Molecu-
lar Beam Epitaxy. In general control should also be applicable to the growth exponent
in this equation. For the MBE equation withλ1 = 0 (Eq.(5.21)) and the equation with
λ1 > 0 (Eq.(5.23)) the roughness exponentsα are not the same, as has already been
explained in Sec. 5.2.

The proposed exponents are:

β = 3/8 α = 3/2 z = 4 for λ1 = 0

β = 1/3 α = 1 z = 3 for λ1 > 0 (7.4)

We follow the same steps as for the KPZ equation. First we apply our scheme to 1+1
dimensions.

7.2.1 Without control in 1+1 dimensions

In the case of 1+1 dimensions the fourth order term makes it rather difficult to see any
saturation in the roughness. Therefore we first use very small systemsL = 32 l.s.
andL = 64 l.s. which obviously are not useful for control. Nevertheless they should
show saturation and thereby help test the numerical scheme and the determination of
the exponents without control by rescaling.

In Fig. 7.21 we see the data collapse from the rescaled functions and can determine
the exponents. As before, we have used three different setups,λ1 ∈ {0, 0.05; 0.10} for
a timet = 100000. We see that the data collapse into single curves for all setups and
we get slightly different values for the growth exponent consistent with the proposed
exponents.

We now look more closely at the early behaviour of a larger system L = 8192,
which appears reasonable for the control scheme. As we can see in Fig. 7.22, we get
differences that look very small on the logarithmic scale. Obviously the differences
appear more clearly in the late phase betweent ∼ 500 andt = 10000.

The zero nonlinear term gives an exponent ofβ = 0.374 close toβ = 3/8 and the
nonlinear termλ1 = 0.08 gives a valueβ = 0.336 close to the valueβ = 1/3.

Of course, if our solution reproduces the scaling of the MBE class, the saturation
for this system size can not be reached in a computationally useful time. If we assume
an exponent ofα = 1 for nonzero nonlinearity and get a timetx from the above
simulation, the saturation then sets in att ∼ 500000 and can be clearly seen fort >
10000000 with one decade saturation. For zero nonlinearities the case would be much
more extreme. As we see in Fig. 7.21, saturation sets in laterfor tx ∼ 5000 and with an
expected exponent ofα = 1.5 we would see saturation at approximatelyt ∼ 20 · 106.
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Figure 7.21:Roughening of the MBE equation in 1+1 dimensions for setups with L =
32 andL = 64, t = 100000 and three different initial nonlinearitiesλ ∈ {0; 0.05; 0.10}
with a time stepdt = 0.05, setup forλ = 0.1 shifted by a factor4 in y-axis, setup for
λ = 0.05 shifted by a factor2 in y-axis,20 averages for both systems.

So it is obviously impossible to reach saturation with a simulation. The time scale
is different for the MBE equation in 1+1 dimensions so we haveto change the time
range in which we apply the scheme of control. We can use the same onset of control
time t0 = 10 and, if early roughening from the flat surface does not influence the
behaviour of the equation, we expand the control tote = 10000. This is much more
computationally demanding but promises clear results. In the case of the KPZ equation
we saw that distinguishing the five different desired growthexponentsβ0 is quite easy,
but here we restrict ourselves to three different values: the limiting exponentsβ0 = 3/8
andβ0 = 1/3 and one exponent in between,β0 = 0.35. The control results would
otherwise be speculative.

As already explained, the critical exponents depend on longtime scaling behaviour.
To ensure scaling for the early development of the interfaceas well we have to check
the roughness exponents.

Therefore we calculate the structure function. In Fig. 7.23we see the results of
rescaling, once again using the Family-Vicsek relation. Weused very different setups
with different system sizesL ∈ {256; 1024; 4096; 8192}, a nonlinearityλ1 = 0 and
different times. In this case not all interfaces reach saturation. In the left hand panel
we see the unrescaled functions, which in the case of scalinghave to match the others
in the descending part of the curve. After rescaling byk → kt1/z andS(k, t) →
S(k, t)k−(2α+1) they have to collapse into one single curve as we can see in theright
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hand panel. This rescaling only works if we use the correct exponents, so we used
α = 3/2 andz = 4, giving a growth exponentβ = 3/8 (β = α/z). Having described
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Figure 7.23: Data collapse by structure functionS(k, t) for the MBE equation in
1+1 dimensions for five different setups (legends): (a) the structure function, (b) the
rescaled function by the Family-Vicsek relation.

the scheme without control, we now take a look at behaviour for "small" times. In
case of the MBE equation for 1+1 dimensions we get relativelyclear-cut behaviour
for the growth exponent over a wide range. In comparison to the KPZ equation, the
difference between zero and nonzero nonlinearityλ1 appears at a much later phase
of the roughness evolution for similar values of the simulation parameters, namely
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System size L = 8192 l.s.
Time of onset of control t0 = 10
End of control te = 10000
Initial nonlinear term λ1,0 ∈ [0, 0.1]
Time delay τ = 1
Strength of the digital control a ∈ (0.0005, 0.002]
Strength of the differential control K ∈ (0.0005, 0.002]
desired value of the growth exponentβ0 ∈ [1/3, 3/8]
time discretization dt = 0.01
Averages 10 realizations

Table 7.3: Parameter ranges for the control of the MBE equation in 1+1 dimensions

L = 4096l.s., D = 0.50 andν1 = 0.10.

7.2.2 With control in 1+1 dimensions

By tests for control with that parameters, our control seemed to work, but did not show
really clear exponents without large fluctuations (not shown).

So we have to enlarge the systemsize and the control time.
In the simulations here shown we usedL = 8192 l.s. (see appendix for further

simulations) and a larger timete = 10000. Time discretization is set todt = 0.01 in
all setups. Table 7.3 lists the used parameters for the shownresults.

In Fig. 7.24 and Fig. 7.25 we show the results for an initial nonlinearity ofλ1,0 =
0.0.

In contrast to the KPZ equation, this initialization corresponds to a higher value of
the growth exponent as explained in detail in Sec. 6.2. A working control also has to
react in a contrasting way. This behaviour can be seen for thesetups in both digital
and differential control. In order to adjust the desired exponents, the control functions
now increase to tune the lowerβ0, as predicted by the theory.

As expected we get a control behaviour for the MBE equation in1+1 dimensions.
Due to the required long time simulations to clarify the difference between the two
universality classes we here restrict to the setups shown, where the uncontrolled results
and the results with digital and differential control forλ1 show, that also for other
setups one can expect working adjustment of the desired exponents (see Appendix for
further simulations).
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Figure 7.24: Digital control for the MBE equation in 1+1 dimensions with acontrol
setup: λ1,0 = 0.00 anda = 0.005 for three different desired control values of: (a)
β0 = 0.33, (b) β0 = 0.35, (c) β0 = 0.375, time discretizationdt = 0.01, upper left
insets show the functionsλ(t), lower right insets show the roughness in the late phase
in a logarithmic plot.
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Figure 7.25: Differential control for the MBE equation in 1+1 dimensionswith λ1,0 =
0.00 andK = 0.005 for three different desired control values of: (a)β0 = 0.33, (b)
β0 = 0.35, (c) β0 = 0.375, time discretizationdt = 0.01, upper left insets show the
functionsλ(t), lower right insets show the roughness in the late phase in a logarithmic
plot.
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7.2.3 Without control in 2+1 dimensions

We now come to the 2+1 dimensional case. For the KPZ equation in 2+1 dimensions
we obtained a control that was very difficult to apply. The control behaviour was very
difficult to interpret as we could not find a clear exponent forthe roughening phase.
Obviously here the situation seems to be much easier, as can be seen from Fig. 7.26.
We used setups forL = 32 × 32 l.s. andL = 64 × 64 l.s. for the data collapse. The
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Figure 7.26: Data collapse for the MBE equation in 2+1 dimensions with twosystem-
sizesL × L = 32 × 32 (black)L × L = 64 × 64 (red) and with three different initial
λ10

, ν1 = 0.1 andD = 0.5 kept constant for all simulations.

parameters for the uncontrolled case wereλ1 ∈ {0; 0.1; 0.2} with timest = 10000000
for the smaller system andt = 1000000 for the second system size. All setups give
a data collapse for rescaling witht → t/Lz andw → w/Lα. For zero nonlinearity
λ1 = 0 we see that the exponents for rescalingα = 1 and z = 4 agree with the
expected exponents for the equation. The strongly nonlinear term of λ1 = 0.2 also
produces the expected exponentsα = 2/3 andz = 10/3. As for the other equations,
the third case shows clear behaviour, where exponents ofα ∼ 0.82 andz ∼ 3.7 lead
to a data collapse.

So the requirements for possible control are fulfilled. We have a clear behaviour at
the limiting borders determined by the zero nonlinearity and a strong enough nonlinear
term. Additionally we see an effective exponent in between the limiting borders.
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We now look at the short time behaviour of larger systemsL = 128 × 128 l.s..In
Fig. 7.27 we see that we can measure the different values ofβ very well in this case.
The borders are given by the critical exponents of the universality classes. We now
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Figure 7.27: Early roughness evolution of the MBE equation in 2+1 dimensionsw(t)
vs time t with λ1 ∈ [0.0, 0.2] for L = 128 × 128 and timet = 1000 with a time
discretizationdt = 0.01, dashed lines denote the limits of the growth exponents for
β1 = 0.25 (violet) andβ2 = 0.20 (green) as guides to the eye.

want to look briefly at roughening by means of the surface structure. In Fig. 7.28 we
compared the surface structure aftert = 10 (upper panels) and aftert = 10000 (lower
panels) forλ1 = 0 (left) andλ1 = 0.20. Whereas aftert = 10 we see very similar
results with a rough surface, the structure formation differs att = 10000, as can be
seen in the lower panels. Forλ1 = 0.20 we can see small clear structures overlaying
a local rough surface. These structures do not arise in the left hand surface forλ1 =
0. Although this analysis is just visual, a more precise analysis is possible using the
height-height correlations in Fig. 7.29. The results of theextracted exponents forλ1 =
0, α ∼ 0.93 and forλ1 = 0.2 α ∼ 0.67 are close to those expected. In addition we
can see greater roughness for the nonzero nonlinearity and amore pronounced first
maximum in the correlation, which indicates the mean distance between the structures
that occur (note thatC(0) = w2). Although it is quite difficult to depict this behaviour
in 1+1 dimensions, we have the impression that it could be changed experimentally by
controlling the roughening.
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Figure 7.28: Roughening in the MBE equation in 2+1 dimensions, system size L =
256 × 256 l.s., t = 10000 for two nonlinear termsλ1 = 0 andλ1 = 0.2, (a),(c) show
for zeroλ1 the surface aftert = 10, t = 10000 respectively, (b), (d) show the surface
for λ1 = 0.2 after t = 10, t = 10000 respectively, the images are scaled from lowest
to highest value of the height function, the roughness fort = 10000 are both given in
Fig. 7.29 byC(0).
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Figure 7.29: Correlations of roughening surfaces for the MBE equation in2+1 dimen-
sions, here we used the same setups as for Fig 7.28.
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System size L = 256 × 256 l.s.
Time of insetting control t0 = 10
End of control te = 1000
Initial nonlinear term λ1,0 ∈ [0 : 0.2]
Time delay τ = 1
Strength of the digital control a ∈ (0.005 : 0.01]
Strength of the differential control K ∈ (0.005 : 0.02]
desired value of the growth exponentβ0 ∈ [1/5 : 1/4]
time discretization dt = 0.04
Averages 10 realizations

Table 7.4: Parameter ranges for the control of the MBE equation in 2+1 dimensions.

7.2.4 With control in 2+1 dimensions

We now go on to the control of the MBE equation in 2+1 dimensions. Here we use
a systemL = 256 × 256 l.s., time discretizationdt = 0.04 and set the time range to
t0 = 10 andte = 1000. Where the system size is chosen as large as possible, the other
parameters are again guided by the detailed investigationsfor the KPZ equation and
partly tested for some setups before generally applied.

In Fig. 7.30 and Fig. 7.31 we showed solutions of the equationfor initial λ1,0 = 0.0
with control strengths ofa = 0.005 andK = 0.005.

We get really clear control behaviour with both types of control for all setups .
So from a zero initial nonlinearity, the MBE equation is adjustable to any desired
growth exponent between the universality classesβ0 ∈ [0.2, 0.25]. The behaviour
of the control functions, well known from the other equations, is also present in the
solution. As can be seen in the other setups withλ1,0 = 0.1 andλ1,0 = 0.2, the
function at first either increases or decreases, depending on the desired exponent, until
it reaches the exponent, and then stabilizes at the corresponding value. Forλ0 = 0
andβ0 = 0.2 we get a strong increasing functionλ(t) which then stabilize at a value
λ ∼ 0.08. for the other cases the stabilization values are lower as expected, where the
desried value ofβ increases.
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Figure 7.30: Digital control for the MBE equation in 2+1 dimensionsλ1,0 = 0.0,
L = 256 × 256 l.s., dt = 0.04, (a)β0 = 0.2, (b) β0 = 0.225, (c) β0 = 0.25, upper left
insets show the functionsλ(t), lower right insets show the roughness in the late phase
in a logarithmic plot.
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Figure 7.31: Differential control for the MBE equation in 2+1 dimensionsλ1,0 = 0.0,
L = 256 × 256 l.s., dt = 0.04, (a)β0 = 0.2, (b) β0 = 0.225, (c) β0 = 0.25, upper left
insets show the functionsλ(t), lower right insets show the roughness in the late phase
in a logarithmic plot.
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Figure 7.32: Digital control for the MBE equation in 2+1 dimensionsλ1,0 = 0.1,
L = 256 × 256 l.s., dt = 0.04, (a)β0 = 0.2, (b) β0 = 0.225, (c) β0 = 0.25, upper left
insets show the functionsλ(t), lower right insets show the roughness in the late phase
in a logarithmic plot.
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Figure 7.33: Differential control for the MBE equation in 2+1 dimensionsλ1,0 = 0.1,
L = 256 × 256 l.s., dt = 0.04, (a)β0 = 0.2, (b) β0 = 0.225, (c) β0 = 0.25, upper left
insets show the functionsλ(t), lower right insets show the roughness in the late phase
in a logarithmic plot.
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Figure 7.34: Digital control for the MBE equation in 2+1 dimensionsλ1,0 = 0.2,
L = 256 × 256 l.s., dt = 0.04, (a)β0 = 0.2, (b) β0 = 0.225, (c) β0 = 0.25, upper left
insets show the functionsλ(t), lower right insets show the roughness in the late phase
in a logarithmic plot.
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Figure 7.35: Differential control for the MBE equation in 2+1 dimensionsλ1,0 = 0.2,
L = 256 × 256 l.s., dt = 0.04, (a)β0 = 0.2, (b) β0 = 0.225, (c) β0 = 0.25, upper left
insets show the functionsλ(t), lower right insets show the roughness in the late phase
in a logarithmic plot.
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7.3 Summary for the control of the growth equations

To conclude, the stochastic differential equations, described here for modelling growth
phenomena, are adjustable, within a certain range, to values of the effective growth
exponentβ0 for different universality classes.

We explained in great detail the mechanisms and considerations for the KPZ equa-
tion in 1+1 dimensions, showing the restrictions on the possible ranges and the borders
of the possible control setups. In the case of the EW exponentβ = 1/4 it is difficult to
tune the control strength due to numerical fluctuations, butfor all other setups we get
clear control behaviour.

We applied the knowledge acquired from this equation to other equations. In case
of the KPZ equation in 2+1 dimensions there are indications that the control might
also work. For the proposed KPZ valueβ = 1/4 we can stabilize by control the
effective exponent very well, where a control for small values is rather difficult. In
these cases without more detailed investigations we can notbe sure that the behaviour
as explained is responsible for a realistic control. This isbecause of the numerical
fluctuations, which can not be determined without controlling the exponents. This is
not surprising as the exact values are still unknown. Our control here could establish a
different method to determine the right exponents, as by definition a working control is
possible in the range between the universality classes and anonworking control defines
the border and therefore the realistic exponents.

But it would be helpful to get such behaviour with a differenttype of model, such as
a Kinetic Monte Carlo method with a stochastic model, currently under consideration
[Wün07].

For the MBE equation the control works in both 1+1 dimensionsand 2+1 dimen-
sions.

We have demonstrated control for 1+1 dimensions for different setups with ex-
tensive numerical simulations restricted to a smaller parameter space than for other
equations due to the computational expense.

For 2+1 dimensions the exponents are also adjustable between the two values
which determine the universality classes. For these equations, control of the growth
exponentsβ leads to an automatic change of the roughness exponentα relating to the
same universality class as the desired growth exponent.

The MBE equation is proposed to explain the corresponding experimental setup
where also KPZ-behaviour was found in crystal growth. The difference between
the equations is the absence of relevant lateral growth for the MBE equation. KPZ-
behaviour is found for low temperature systems, where underhigh temperatures, dif-
fusion dominates the growth and the MBE equations are corresponding.

So, where simulations by means of a Kinetic Monte Carlo method can help to
reproduce the findings of the time-delayed feedback controlthe aim then has to be a
test with experimental setups.
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7.3.1 Experiments

By our theoretical investigations we showed in detail that in case of the stochastic dif-
ferential equations a time-delayed feedback control scheme can lead to an adjustment
of the growth exponent and thereby to a deliberate tuning of the surface roughness.
Now we want to discuss some hyptheses, how those schemes could be applied to ex-
periments.

While in the literature there is still a lack of comparison ofscaling theory with
roughening of crystal growth systems, the work by Ojedaet al [Oje00; Oje03] can
be seen as a guide and a proof that such schemes are relevant, where the hypothetic
specific application depend on the experiment.

If we want to predict, how one can tune the roughness, we first have to look at the
parameters of the equation, in case of KPZ namelyν andλ or ν1 andλ1, respectively,
for the MBE equation.

The question for real-world systems then is, what is a corresponding tunable quan-
tity. In case of crystal growth that could be first the temperature and then pressure
as influences from the experimental conditions and second, all material parameters as
intrinsic conditions.

What can we influence by temperature? Of course, the surface tension is coupled
to the temperature, diffusion of particles strongly depends on the temperature and the
deposition for almost all crystal growth experiments is related to temperature.

Obviously we just repeated all terms we used in the equations, thus the next ques-
tion has to be: Can we tune these parameters independent fromeach other by temper-
ature?

Ojedaet alshowed in great detail in their findings that in case of a chemical vapor
deposition of silicon films, where they find exponents corresponding to KPZ class, it is
first possible to change the nonlinear term experimentally by change of the temperature
and second, this procedure does not affect in their setup thesmoothing termν of the
equation. For different temperatures they showed thereby,that different exponents
appear in response to that change.

That is exactly what we use in our setups, an independently changableλ.
Our control is related to constantν andν1, soλ andλ1 seem to be needed indepen-

dent from the other parameters. But as we already have shown in Sec. 5.1.3 the KPZ
equation can be also characterized by a factorg depending on the equation parameters.
So in caseν andλ are not independent changable by temperature, a study concerning
this factorg have to be the method, to characterize a control scheme of theequation.

7.3.2 Other control schemes

We have applied a control scheme which is similar to classical Proportional-controllers
and the Time-delayed autosynchronization method in chaos control.
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If we think of Proportional-Integral-Differential control (PID), we could possibly
improve the working adjustment by including integral partsor differential parts as
explained.

An integral control would average memorized values of the local growth exponents
within a pre-defined time interval and then the control forcewould depend on these
values.

β = 1/L
L

∑

i=1

βi (7.5)

F (t) = K(β − β0) (7.6)

whereti denote the times whereβi has to be measured. The range fromt1 to tL would
define an additional time delay. We tested such a scheme, but did not find noteworthy
differences to the presented setups. Some selected resultsare shown in the appendix.

A additional part of the controller could also react on the changes of the differences
to the desired value and thereby establish a D-part.

We did not test such a scheme here.
We explained the difficulties to get good results for large time control due to numer-

ical fluctuations. The absolute differences of the roughness between to points, where
the control acts on the development, decreases due to the power law behaviour. So,
a possibly better control setup up could be a changed strength of the control for late
phase, especially for the differential control. We have seen, that for the MBE equa-
tion in 1+1 dimensions the enlarged time range lead to smaller control strengths for
a working control, that may be an indication for a changed control strength for later
times. So this might neglect strong fluctuations in the functionsλ(t).

A further development of our findings could also be the test ofa control of the
roughness exponentsα. While for our equations such a scheme would be only mean-
ingful for the MBE equation, also in other equations it couldbe interesting to apply
methods for the other exponents.

7.3.3 Other equations

While we explained and reproduced by our numerical scheme the observations by
Raibleet al, a time-delayed feedback could also be applied to such a complex equation.

As already explained, KPZ behaviour is proposed for low to medium temperature
behaviour, whereas the MBE universality should be obtainedin high temperature sys-
tems. So, a generalized equation, containing both situations and the transition between
the classes would be an equation, where all terms here explained in two different equa-
tions are included. A change of the prefactorsν, ν1, λ andλ1 then would correspond
to a change of the temperature.
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We made firsts steps towards the control of the so-called noisy Kuramoto-Sivashinsky
equation (KS), where we just solved the equation without control.

∂th(x, t) = ν∇2h(x, t) +
λ

2
(∇h(x, t))2 − ν1∇4h + η(x, t) (7.7)

As can be seen in Eq.7.7 the KS equation combines the terms of both, the MBE and
the KPZ equation. While the long time behaviour thus must be KPZ-like, for early
times the exponents should depend on the strengths of the terms, so this equation
could explain the transition from low-temperature (KPZ) tohigh-temperature (MBE)
behaviour, where a control possibly could act to tune the universality class.

The problem of more complex equations is the fact that we normally can not see
a clear scaling in the early roughening due to the different terms responsible for the
behaviour. So, control of the growth exponents here is much more difficult and requires
extensive precending investigations of the uncontrolled equations (see appendix for
results of the uncontrolled KS equation).



Chapter 8

The Model for the evolution of cell
populations

A lot of models describing the development of cell populations have been used during
the last few years [Mor02; Dra05a; Dra05b; And05]. In this chapter we introduce the
individual cell based model we used to observe the growth of tumor cells in an in-vitro
environment.

Following the basic steps for modelling growth phenomena explained in Ch. 4, we
first want to look at the system and define the underlying structure (lattice) on which
our simulation has to work.

We want to describe the dynamics and surface morphology of large cell populations
and to include the most relevant biological properties about the cells themselves and
their interactions at a multi-cellular level. We consider the system at an individual cell
length scale that does not explicitly explain the sub-cellular structure and is therefore
a kind of mesoscopic view.

We have used the experiments of Bruet al [Brú03] as guidelines for our model. We
have also used detailed information about the off-lattice model introduced by Drasdo
and Hoehme [Dra05b]. Here extensive simulations were used to explain cell structure
and then give information about the multi-cellular structure.

8.1 Experiment and Off-lattice model

We now want briefly to introduce the main results from the observations of Bruet al
and the off-lattice model of Drasdo and Hoehme before we proceed to our model.

8.1.1 Experiments by Bruet al

In these experiments [Brú03] colonies of 15 in vitro cell lines and 16 types of in vivo
cultures were extensively studied to explain the growth dynamics and to study the
morphological structure of the tumor border. The cell lineswere grown in Petri dishes
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of diameter5 cm under specific conditions and analyzed by taking photographs at
24 hour intervals. Previous results needed scaling analysis methods to explain the
border structure for one cell line [Brú98], but here [Brú03]they analyzed the critical
exponents for all the cell lines studied.

For the growth dynamics they found an initial exponential growth law followed by
a regime, in which the cell population radius grows linearlyin time. They concluded
that a proliferating zone restricted to a rim at the tumor border is responsible for such
a behaviour.

For the scaling analysis they took photographs of the tumor border and analyzed
the structure. Due to their interpretation, the critical exponents correspond to the MBE
universality class (see Sec. 5.2) and explained this behaviour by a migration at the
tumor border which depends either on the coordination number of the cell, or on the
number of neighboring cells.

They found these critical exponents for all cell lines and suggested a general MBE
like critical surface dynamic for tumor cell lines.

The mathematical treatment of the universality class was critically discussed by
Buceta and Galeano [Buc05a], who concluded that the analysis was incorrect. They
suggested that the critical exponents could belong to otheruniversality classes, for
instance to the KPZ universality class. We aim to clarify this discrepancy and also to
explain the dynamics found in the studies.

8.1.2 The off lattice model

For our model we use the results of an off lattice model. Drasdo and Höhme [Dra05b]
developed a model based on individual cells. Cells are described as sticky, elastic
particles of limited compressibility and deformability. Cell division is modelled by
the spherical shape of the cell after division, though it deforms during mitosis into a
dumb-bell.

Cell adhesion is defined by adhesive bonds which are affectedby the distance be-
tween cell centers. When cell pressure and nutrient supply are taken into account, the
results for the dynamics are in good agreement with the findings of Bru.

So our lattice model, which also aims to explain the dynamicsof Bru, uses some
of the results from observations of that model.

8.2 The Dirichlet lattice construction

We consider a model on a lattice. We want to combine the advantage of lattice struc-
tures without the artifacts often produced by such models. We are now going to in-
troduce, as an alternative construction to the common lattice types, the construction of
the cell structure on an irregular lattice by a Delauney triangulation.
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8.2.1 Voronoi diagrams and Delauney triangulation

We construct a lattice based on concepts of Dirichlet, Voronoi and Delauney1. Descartes
first used Voronoi like diagrams in 1644. In the nineteenth century Dirichlet (1850)used
Voronoi diagrams in theoretical studies (Dirchlet) and Snow used them in a study of
the Soho cholera epidemic of 1854 (John Snow) [Oka00]. He showed that the people
who died lived closer to the infected pump than to any other water pump. This also
illustrates one of the fields where Voronoi or Dirichlet tessellations are most often
applied, because of the properties of a Voronoi cell.

Figure 8.1: An individual Voronoi cell: seven points distributed on a twodimensional
surface define the setM , the white point denotexi and the grey area defines the
Voronoi cell (black polygon), where all interior points have xi as the closest point
of setM .

The diagram in Fig. 8.1 demonstrates the properties of a Voronoi cell. If we have a
setM of points in a space, then the set of all points closer to a point xi than to any other
point of setM defines the ’Voronoi cell’ or ’ Dirichlet domain’ (black polygon). If we
optimize the distributed points in an area and then define thenearest point for cells, the
solution is a Voronoi diagram. Taking post offices as points this optimization problem
is very famous as the "Post Office" problem. The tessellationof polytypes then defines
the Voronoi diagram, named after Georgy Voronoi [Vor08]. The dual graph of the
Voronoi diagram is the Delauney triangulation. Delauney triangulations are a well-
covered topic; for an overview of the possible applicationsfor these concepts see e.g.
[Oka00; Ber97].

1Delauney is the french pronouncation of the Sovjet mathematician Boris Nikolajevitch Delone
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8.2.2 The construction in our model

In our model we apply these concepts to construct a lattice that is unstructured but has
a well defined distribution of the cell area. The algorithm isdepicted in Fig. 8.2. Our

Figure 8.2: Construction of the Dirichlet lattice in four steps: (a) distribution of
Voronoi points (black) in the square lattice, (b) Delauney triangulation (red), (c) De-
launey triangulation and the corresponding dual graph, theVoronoi tesselation (black),
(d) the Dirichlet lattice corresponding to cells.

construction is divided into the following steps:
We take a simple square lattice of sizeL = l×l points with a lattice constanta. All

cells here then have a cell areaA = a2, where the overall area is((l − 1)a)2 (denoting
that a lattice withl points hasl − 1 divisions).

The second step is to distribute points randomly in every square. Later we briefly
discuss different ways of doing this, but for these simulations we insert exactly one
point into each square. So we now have(l − 1) × (l − 1) newly constructed points as
the points of our lattice (Fig. 8.2 (a)).

We now define the neighborhood of all points by a Delauney triangulation. As
the name says, we construct triangles using the selection rule, which says that if, by
connecting the points, we produce a square, we divide the square into two triangles by
the shorter connecting line (Fig. 8.2 (b)). In the case wheretwo connections have the
same length, the choice is random [Oka00].
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So our lattice fulfils the basic properties of an unstructured lattice with a well de-
fined neighborhood.

The cell structure corresponding to our construction is given by the Voronoi graph,
which is the dual graph of the Delauney triangulation (Fig. 8.2 (c)). If we take the
perpendicular bisector of the connecting lines from the Delauney triangulation the in-
tersections determine our cell structure (Fig. 8.2 (d)).

The lattice given by this algorithm has the following properties.

• lattice of(l−1)× (l−1) points with a well defined neighborhood of on average
six neighbors as a result of the Delaunay triangulation.

• a pre-described average cell area ofA = a2 with a well defined sharply peaked
distribution around the average (determined by the choice of one point in each
square)

• a well-defined correspondence of the lattice points to the cell structure on the
dual graph

In order to be able to compare simulations using our lattice with other types of lattice
simulations, we included the possibility of loading the lattice types as explained in
Sec. 4.3, namely the square lattice, the hexagonal lattice and the octagonal lattice.
To ensure a direct comparison, we consider types with the same cell area as those in
our Voronoi tessellation, where in the regular case their size is exactly the cell area
(A = A) which in our case is the mean cell area.

With this lattice construction we now proceed to explain themodel for our growth
simulation.

8.3 Modeling the basic processes

The basic processes in a cell population growth model are obviously the division and
migration of cells. Additionally we here also include otherrelevant processes like
apoptosis, mutations and fluctuations which could be responsible for a change in the
developmental behaviour.

8.3.1 Cell division

The lattice structure in our model does not determine anything about the structure of
the cell, so cell division is reduced to modelling the cell cycle time and its distribution.

As already explained, the cell cycle consists of distinct phases, namely the mitosis
phase (M-phase), the DNA duplication phase (S-phase) and Gap phases, in which cell
signalling and individual cell conditions determine the time.
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Because the cell cycle is controlled by cell cycle check points [Alb02] and exper-
iments indicate aΓ-like distribution, we here model the cell cycle timeτ using the
discrete analogue to theΓ distribution, the Erlang distribution in Eq. (8.1).

f(τ ′) = λm
(λmτ ′)m−1

(m − 1)!
exp{−λmτ ′} (8.1)

Hereλm = m such that〈τ ′〉 ≡ τ = 1.
As can be easy seen from the equation,m = 0 corresponds to a Poisson distribu-

tion. So the parameterm ensures a realistic distribution of the cell cycle time.
In our model cell division is the same as the occupation of a new lattice point. We

describe the biological process of one mother cell dividinginto two daughter cells by
choosing one cell to divide and then setting the new cell at a neighboring site on the
lattice, adjacent to the mother cell. Volume exclusion (onecell on one point) then
determines the possible choices of newly occupied cell as shown in Fig. 8.3. Although

Figure 8.3: Division in the model: a) a dividing cell with two possible choices to
divide to a lattice point, b) randomly chosen point of possible choices is occupied.

we normally choose the point for division randomly, we also include different rules for
division in the model. As already explained, the cell is ableto sense its environment.
If one considers a choice of position which promises the bestenvironment for the cell,
for instance maximum nutrients or maximum free volume, thenthe rules have to be
changed. We discuss these different choices later, but the first approach has to be
random choice.

Proliferating rim

By experimental observations of many tumor cell lines Bruet al found a dynamics
that shows an exponential growth in the early phase of the development of the cell
diameter that then changes to a linear growth rate, so correspondingly a proliferating
rim has to be included in the model. The experimental growth velocities do not agree
with a proliferating rim∆L = 1. Thus,∆L > 1 is needed. Cells are able to divide
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inside this rim. We model this by a environment of size∆L for each lattice point. A
cell then is able to divide if a free lattice point is available within a circle radius∆L.

If there is no free point in the direct neighbourhood, we givethe cell the ability to
push aside other cells in its neighborhood. This algorithm allows a cell to divide if, and
only if, there is at least one free neighboring site within a circle of radius∆L around
the dividing cell. We see this environment for one individual cell in Fig. 8.4. A sample
simulation for641 cells shows both the cell and the lattice structure with an enlarged
section showing the movement of cells (red cells) inside therim along a line (green).
One interpretation is that a dividing cell is able to exert a sufficiently large force to

Figure 8.4: Cell and Point structure in the simulation, (a) the cell structure by the
Voronoi tesselation, (b) the corresponding Delauney triangulation with the lattice
points and the connections to the neighboring points, lightblue cells are quiescent
and the dark blue proliferating, insets show a sample for pushing cells inside the pro-
liferating rim along the greeen line.

push at most∆L/l cells aside in a certain direction in order to obtain free space for its
division. Another interpretation of this rule is that only alimited number of cells can
be stimulated to migrate away and leave free space for a dividing cell. It is noteworthy
that as∆L → ∞ lattice asymmetries in the growth patterns disappear from aregular
(square) lattice; usually∆L/l ∼ 2 − 3 already gives reasonable results [Dra05a].

To determine the growth sites we draw a circle of radius∆L/l around the dividing
cell and shift the neighboring cells towards the closest free site within this circle (shifts
by more that∆L/l lattice positions are prohibited). If division is permitted, we place
one of the daughter cells on the site of the mother cell, and the other daughter cell on
the neighboring site that has become free as a consequence ofthe previous cell shift. A
biological interpretation of the assumption of limited shifts is that a cycling cell stops
in one of the cell cycle check points if the division would require a shift of surrounding
cells over a distance of more than∆L/l cell diameters. As a consequence, the size of
the proliferating rim within the expanding monolayer cannot exceed∆L if the cells are
dense (as they are here), which is why we call∆L the proliferation depth. In the lattice
model∆L is a free parameter, while in the off-lattice model∆L is a consequence of
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the biomechanical and migrational properties of the cells and may be influenced by,
for example, the cell stiffness and motility [Dra05b].

8.3.2 Cell migration

We want to describe the dynamics and surface morphology of large cell clusters. The
migration of cells is responsible for changes in the generalbehaviour. For tumor cell
populations in general, processes related to migration play a crucial role. If a mutation
causes a cell to lose its ability to adhere to other cells, it becomes invasive. Migration
can then cause these cells to invade other parts of the human body and form new tu-
mors. This metastatic process is one of the most important processes in tumor growth.

Figure 8.5: Migration in the model: a) a migrating cell with two possiblechoices to
migrate to a lattice point, b) by type of migration chosen point of the two possible
points is occupied, where the old position is now free again.

Although it is not our aim to model the metastatic processes of invasive cells ex-
plicitly, we consider cell migration (Fig. 8.5). Bruet alexplained the behaviour of cell
population growth relying on the Molecular Beam Epitaxy universality class. We use
our model to explain how different migration rules change the growth behaviour. We
consider the following types of cell migration.

Free migration

A cell moves with rateφ to an unoccupied neighboring site, irrespectively of the num-
ber of neighboring cells before and after its move. This rulecorresponds to the case of
no cell-cell adhesion.

Border migration

Cells move with rateφ if by this move the cell is not isolated. This may be seen as the
easiest way to model cell-cell adhesion.
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Cell-Cell adhesion

The most complex behaviour to model is cell-cell adhesion bythe kinds of bonds
between the cells. Cells move with a rateφ exp{−∆E/FT} with ∆E = E(t + ∆t) −
E(t), where∆t is the time step,E(t) is the total interaction energy of the multi-cellular
configuration,FT ∼ 10−16J is a "metabolic" energy [Bey00],∆E/FT ∼ O(1) −
O(10) [Dra05b]. This induces migration towards locations with a larger number of
neighboring cells. After considering the basic propertiesof particle diffusion in other
systems with energies corresponding to neighboring sites,we define our energy by

E = Es + n · EB (8.2)

whereEs is an energy normally related to the bonds to the substrate, here it may
correspond to the bond to the extra-cellular matrix,n is the number of occupied neigh-
boring cells andEB denote the bond energy stored in each cell-cell contact. Whereas
in simulations for crystal growth such definitions are widely used in the application of
Arrhenius law (see Sec. 2.1), here the pre-factorφ corresponds to the frequency with
which a cell is able to perform a hopping trial.

While the findings of Bru et al suggest a migration related to Molecular Beam
Epitaxy, which is a diffusion-dominated type of growth (seeSec.5.2), the above as-
sumptions should explain the migration of cells, as also shown in the off-lattice model
[Dra05b].

8.3.3 Apoptosis of cells

Simple apoptosis

We partly include apoptosis (programmed cell death) in our model in order to obtain
the specific dynamics for a change from no apoptotic cells to asituation where cells are
undergoing development apoptosis. The simple way is to include the rateγ at which
the cells undergo apoptosis.

Complex apoptosis

We have defined a constant rate which defines the ability of thecell to undergo apopto-
sis, however other rates might be needed to describe realistic behaviour. Carcinogene-
sis is the process whereby cells mutate into tumor cells and it is often partly associated
with a change in the rate at which cells undergo apoptosis. A combination of knocked-
outs of tumor suppressor genes and the suppression of apoptosis are processes which
can lead to the uncontrolled growth of the cell population. We therefore add to the rate
of apoptosis a probability for the suppression of apoptosis.

In detail: if we have a general rate of apoptosis in a cell population giving a5%
rate of cells undergoing apoptosis, this rate is decreased by a mutation rateγko.
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8.3.4 Necrosis

Whereas cells dying of apoptosis die without damaging theirneighbors, those dying
of necrosis normally die as a result of acute injury, causinga potentially damaging
inflammatory response. In in-vitro monolayers of cultured cells, destruction is an un-
wanted process and does not have to be taken into account. Butin general necrosis
plays a role in cell populations, so we include a necrosis rate in our model.

8.3.5 Mutations and fluctuations

Tumor growth in general is a result either of changes in cell cycle behaviour or of a
change in the suppression and promotion of cell conditions,and is therefore a kind of
mutated condition.

Mutation in the cell cycle

Of course, during the development of a cell population consisting of cells mutated and
thereby supporting the uncontrolled growth, additional mutations can occur. We want
to denote a mutation of the cell cycle by a change the rate to divide within a certain
range around the original cell division rate.

So we randomly mutate the rateτ by ∆τ with

τnew = τold + ∆τ (8.3)

where∆τ is a random number∆τ ∈ [−∆τmax/2, ∆τmax/2].
So our mutation does not show a preference for faster or slower divisions of the

individual cells, but a change in the cell population causedby such a mutation can of
course effect the dynamics.

Mutation of apoptosis rate

Whereas a mutation of the cell cycle probably has more effects on the dynamics, the
properties of cells undergoing apoptosis can also be changed and could have effects
on the behaviour of the cell population. We include a change of the apoptosis rateγ
similar to the mutation of the cell cycle timeτ .

γnew = γold + ∆γ (8.4)

Here the cell cycle mutation∆γ is a randomly selected number in the range
[−∆γmax/2; ∆γmax/2].

Fluctuations of the environment

We have already included parameters for change which take into consideration intrin-
sic cell conditions such as mutation and apoptosis, but the cell cycle is also influenced
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by external properties like, for instance, the accessibility of nutrients. So fluctuations
of the external conditions may affect the cell cycle. In our model such fluctuations
are shown either by the underlying structure or by the lattice. So we have built into
our model the possibility of defining the lattice with randomfluctuations related to the
lattice sites. In our structure this leads to a local change of the cell cycle timeτ . We
would like to emphasize that this is a fluctuation of the environment in which the cells
grow as opposed to the mutation of a single cell, where changeis an intrinsic property
of the cell.

8.4 The Kinetic Monte Carlo method

We have already defined our underlying structure, namely theDelauney triangulation,
and we have described the possible processes and parametersin the model. We are
now going to describe our method of observing cell population growth.

In contrast to the simulations for the crystal growth equations, we here use the Ki-
netic Monte Carlo method. This method has been described in Sec. 4.4.1 and we now
describe the specific conditions for our simulation. We havealready defined the pro-
cesses we included by mean cell cycle times and mean migration and we now include
probabilities.

The rules given in this chapter can be formalized by the master equation

∂tp(Z, t) =
∑

Z′→Z

WZ′→Zp(Z ′, t) −
∑

Z→Z′

WZ→Z′p(Z, t). (8.5)

Herep(Z, t) denotes the multivariate probability of finding the cells inconfiguration
Z andWZ→Z′ denotes the transition rate from configurationZ to configurationZ ′. A
configurationZ = {..., xi−1, xi, xi+1, ...} consists of local variablesxi = {0, 1} with
xi = 0 if lattice sitei is empty, andxi = 1 if it is occupied by a cell.

The kinetic Monte Carlo method or event-based Monte Carlo then makes use of all
possible events in the system at timet [Bor75; Gil76; Fic91]. According to the specific
probability of the event, we then step by step choose an eventto happen and increase
the time by the well known time step

∆t = − 1

R
ln(1 − ξ) (8.6)

Here,ξ is a random number uniformly distributed in[0, 1), andR =
∑

i pi is the sum
of all transition probabilitiespi of possible events which may occur at timet.

We have now included all the parameters and can analyze tumorgrowth using our
simulation tool. For a detailed description of the options for the simulation tool see
Appendix C.
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8.5 Data analysis

We want to explain the development of the cell population andthe critical surface
dynamics, so our main quantities are the cell diameter of thepopulation and the border
cells.

Gyration radius

It is obviously important to have a measurement of the size ofthe cell population which
is independent of the morphology. Although we can also analyze growth kinetics using
the cell population sizeN(t), in this case we take the gyration radius defined by

Rgyr =

√

√

√

√

1

N

N
∑

i=1

(ri − R0)
2 (8.7)

Here R0 = 1
N

∑N
i=1 ri is the position of the center of mass. For a compact

circular cell aggregate (ind = 2 dimensions),Rgyr is related to the mean radius
R(t) = 1

2π

∫ 2π

0
R(ϕ, t)dϕ (polar angleϕ) of the aggregate byR = Rgyr

√
2.

Structure function

To determine the cell population border we use the structurefunction we have already
described above. For completeness we would like to point outthe special conditions
needed for this approach, and for the scaling theory and dataanalysis for the critical
exponents we refer the reader to sections 4.2 5.4.

Here we want to explain a roughening process that is different in the sense that we
have a circular environment. So the border is not as easy to determine as in the case of
the development of a single line by roughening. Additionally we have an unstructured
lattice.

There are two basic differences from the scaling in 1+1 dimensions we described
before: the circular environment and the size of the developing system. Curvature may
have an effect on the structure function and we make the assumption that the tumor
border is large enough to avoid artifacts.

The developing system should reflect the basic properties ofscaling. Although
this effect makes it difficult to observe a stable growth exponent, the assumption that
the tumor border shows scaling requires the observation ofα andz by the structure
function.

S(k, t) = 〈R(k, t)R(−k, t)〉 (8.8)

whereR(k, t) is the Fourier transform of the local radiusR(s, t) and〈...〉 denotes the
average of the growth process over different realizations (e.g. [Ram00]).
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Figure 8.6: Structure extracted from simulations, red cells here denote the tumor bor-
der, where the light blue cells are quiescent and the dark blue proliferating.

In order to determine the tumor border using an algorithm, wecan either use all
the cells at the border and follow the individual points along the border by arc length,
or use a discretization by angles∆φ from the center of mass. When we include both
types, we normally make use of the first method guided by the algorithm described in
the findings of Bruet al [Brú03].

In Fig. 8.7 we show the scheme of the simulation tool. A detailed description of
the options can be found in App.C.
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Figure 8.7: Scheme of the Kinetic Monte Carlo simulation.
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Simulations of the evolution of cell
populations

We now apply different parameters to our Kinetic Monte Carlosimulation tool to in-
vestigate how expansion kinetics and critical surface dynamics depend on the various
properties and mechanisms. In the first part we want to test the properties of our model
and show how its behaviour differs from that of other types ofmodel.

For all simulations we use reference time scales and length scales, more specifi-
cally the mean cell cycle timeτ and the mean cell areaA or, for linear quantities in
space,

√
A. So all quantities are multiples of these scaling factors; for instance, the

gyration radiusRgyr is described by the mean average cell diameterA
1/2

= l. For
direct comparison with experiments the quantities are thenrescaled, and we use these
scales to investigate generic growth behaviour in our model.

9.1 Lattice artifacts

First we consider our lattice. We need to show that our construction avoids lattice arti-
facts. Such lattice-induced asymmetries could significantly disturb the analysis of the
surface growth dynamics in circular geometries. If the lattice type is chosen properly
for crystal growth, it reflects the actual lattice and therefore the actual properties of
the crystal, but here realistic behaviour is not directly coupled to a regular morphology
because of the absence of a regular underlying lattice structure.

Our simulation tool can decide between four different typesof the underlying struc-
ture (see Sec. 8.2.2) and we now use this to compare our lattice to the other lattice
types, namely the square lattice (von Neumann neighborhood), the hexagonal neigh-
borhood and the Moore neighborhood with eight neighbors.

In order to check for any possible lattice artifacts we let the parameterτ corre-
sponding to the sharpness of the cell cycle time increasem → ∞. This corresponds to
a δ-function for the distribution where all cells divide afterexactlyτ , and reduces the
effects of the random nature of realistic cell cycle times.
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At large m the tumor border then becomes smoother and the tumor shape reflects
the symmetry of the underlying lattice. This effect is knownasnoise reduction[Bat91].

Figure 9.1: Lattice artifacts: (a) von Neumann neighborhood, (b) hexagonal neigh-
borhood with six neighbors, (c) Moore neighborhood with eight neighbors, (d) the
Dirichlet lattice construction with an average of six neighbors, (e) for comparison a
simulation with the off-lattice model [Dra05a], all lattice simulations with no migra-
tion ∆L = 0 andm = 10000 for time t = 120.

In Fig. 9.1 we show the resulting morphology of the noise reduced simulations. For
the setups we usedm = 10000 for all lattices and let all the cell populations expand
for t = 120. There was no migration and we took a proliferating rim∆L = 0 to avoid
the effects of parameters other thanm.

As anticipated, the three regular lattice types show the underlying structure (Fig. 9.1
(a - c), whereas our lattice type (Fig. 9.1 (d)) and, of course, the off-lattice model
(Fig. 9.1 (e)) do not show any regular structure other than the circular shape of the
cluster.

It can be seen that, in this case, the lattice construction ofour model produces a
simulation free from lattice artifacts. So the construction our model is an advance on
the regular structure based models.

There is one additional property of the regular lattices. For the same simulation
times the number of cells increase with the number of neighbors in the regular lat-
tice, whereas our lattice shows similar values of cell divisions in comparison with the
hexagonal structure. This agrees with the fact that our points have, on average, six
neighbors due to the triangulation procedure.



Chapter 9. Simulations of the evolution of cell populations 131

The underlying lattice structure does not only appear as a result of noise reduction
in the cell cycle. Similar behaviour can be seen in simulations for crystal growth if we
have a large rate of diffusion at the surface and a comparatively low deposition rate
[Blo04].

In this case the islands that are grown normally tend to form squares of a specific
size on a cubic lattice. The diffusion in such simulations isdefined by an Arrhenius
law with the energy difference depending on the number of neighbors (coordination
number) as explained in Sec. 2.1.2 and as also defined in our tool (Sec. 8.3.2).

Because Bruet al [Brú03] suggested exactly this type of migration, we test our
lattice type again to compare it with the others. If our lattice type has no artifacts asso-
ciated with this type of noise reduction, then it should not show any regular structure.

Figure 9.2: Lattice artifacts: (a) von Neumann neighborhood (square lattice), (b) the
Dirichlet lattice construction with an average of six neighbors, all lattice simulations
with migrationφ = 100, ∆L = 0 andEs = 1 EB = 6 and divided cellsN = 10000
before proliferation stops.

In Fig. 9.2 we compare the square lattice (Fig. 9.2 (a)) with our structure (Fig. 9.2
(b)). We let10000 cells divide, then stop the proliferation and let the cells migrate
(φ = 100) only by means of a coordination number depending on diffusion, as defined
in Sec. 2.1.2. This procedure corresponds to the fast equilibration of a conserved
model. Conservation here means that the number of particlesis constant due to the
elimination of the division process after10000 divisions. If the migration is chosen
in such a way that the cells tend to adhere to a maximum number of other cells, then
migration could cause this tendency of equilibrium behaviour to reflect the underlying
structures.

The parameters for the adhesion energies in our case areEs = 1 andEB = 6 for
both lattice types.
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Once again we can see the underlying structure of the regularlattice, which does
not appear in our construction. Obviously the underlying symmetry is not as clear
as for noise reduction by cell division, but whereas in this case the cells can reach
local equilibrium, the probability of reaching global equilibrium is not so large. One
therefore has to run the simulation for very long times to seethe perfect square lattice
structure, whereas we can already see the underlying structure locally.

So for both types of noise reduction we have shown that our lattice type, as opposed
to the regular type, seems to be free of any lattice artifacts.

Of course we have shown extreme cases, but whereas the artifacts may not be ob-
vious in other simulations, they affect the results to a greater or lesser degree and so
normally require explanations for a recalculation of the measured quantities, if possi-
ble.
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9.2 Cell area distribution

The second major difference between our construction and regular lattice types is that
it produces a realistic cell area distribution. We demonstrate the distribution our con-
struction produces using the steps that have already been explained. Therefore we
make the Voronoi tessellation inside the simulation and calculate the cell area by
Herons formula (see appendix for details).

Obviously for regular lattice types, like the three included in the tool, the distribu-
tion is sharp where biologically it should vary slightly around the average area.
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Figure 9.3: Cell area distribution for different lattices: Lattice points: 1000 × 1000
for the basic lattice construction, four different distributions to the squares, random
distribution of1000 × 1000 points to the square lattice (brown), 16 points to a4 × 4
squares (blue), 4 points to a2 × 2 squares (red) and 1 point to each square (black)

To emphasize the nature of our algorithm for construction, we have chosen differ-
ent methods of distributing the Voronoi points to the squarelattice.

In Fig. 9.3 we see the dispersion of the cell area for our construction with one point
in each square, giving a totally random distribution on the predefined lattice.

So as expected, our distribution gives a pre-described average with a sharp distribu-
tion. An upper border of the sharp distribution is of course given byA = 4a2 because
of the maximum distance between two points.

If we now distribute more points randomly to a larger area by definition of our
construction this maximum increases and the distribution disperses.

If we expect the cell area to be sharply peaked around an average, our best choice
seems to be the first (black line), whereas for very flexible and fast growing cell lines
other choices might be better.
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9.3 Proof of cell cycle time distributions

We now proceed to prove the cell cycle timeτ using the Erlang distribution. We tested
the distribution of the cell cycle for different setups withdifferentm.
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Figure 9.4: Cell cycle time distribution for different parametersm: 300000 cells were
grown for the different setups, no migration and∆L = 0, the dash-dotted line denote
for M = 8 the corresponding Erlang distribution.

We can see that form = 0 the cell cycle has a Poisson distribution and for larger
m the cell cycle becomes sharper around the average ofτ = 1 for all distributions. We
show the "ideal" Erlang distribution (dash-dotted black line) for comparison for the
setup withm = 8.
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9.4 Expansion kinetics of cell populations

We now want to investigate the expansion kinetics of cell populations with specific
properties. We therefore vary the basic parameters ,i.e., migration and the proliferating
rim, for the division of cells over a wide range. Additionally we look at the dependence
of the cell cycle time distribution on the mean velocity of developing cell populations.

9.4.1 General expansion

We first want to focus on the general growth behaviour we see inall simulations with-
out mutations.

We took the simplest case, namely a simulation with∆L = 0 m = 0 andφ = 0.
In Fig. 9.5 (a) we see the development of the gyration radiusRgyr vs time t and in
Fig. 9.5 (b) the morphology of the developed cluster. The general growth behaviour
can be seen. After an early exponential phase the gyration radius enters a linear phase
where the velocity stay at a nearly constant value (inset).vgyr denote the velocity of
the gyration radiusRgyr.

0 20 40 60 80 100
t (a.u.)

0

20

40

60

80

R
gy

r(t
)

∆L = 0, t = 100

0 20 40 60 80 100
t (a.u.)

0,3
0,4
0,5
0,6
0,7
0,8
0,9

v gy
r(t

)

(a)

Figure 9.5: General dynamics of cell populations, parameters: proliferating rim∆L =
0, rate for proliferation1/τ = 1, rate of diffusionφ = 0, (a) Gyration radiusRgyr vs
time scalet/τ , inset show the velocity for the Gyration radiusvgyr = Ṙgyr, points
denote the steps, where the clusters are depicted in (b); (b)shows the development of
the morphology of the cell cluster, dark blue: the proliferating cells at the border, light
blue: quiescent cells in the interior.

The behaviour corresponds to the expansion observed by Bruet al and also to
the findings for the off-lattice model [Dra05b]. As we shall see for other setups, this
general behaviour is found for all simulations without mutations.
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9.4.2 Influence of the proliferating rim

We now proceed to observe the influence of the proliferating rim, one of the basic
parameters in our model. In experiments the proliferating rim is responsible for linear
expansion in the late phase of development.
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Figure 9.6: General dynamics of cell populations, parameters: proliferating rim∆L =
6, rate for proliferation1/τ = 1, rate of diffusionφ = 0, (a) Gyration radiusRgyr vs
time scalet/τ , dashed black line show the setup from Fig. 9.5, points denote the steps,
where the clusters are depicted in (b); (b) shows the development of the morphology
of the cell cluster, dark blue: the proliferating cells at the border, light blue: quiescent
cells in the interior.

We tested a change of expansion using a setup with∆L = 6 and otherwise the
same conditions as before. In Fig. 9.6 we see the general influence of the proliferating
rim on both the velocity and the morphology. The linear phasecan also be seen in this
case: under constant conditions the velocity increases with ∆L and the tumor border
smoothes out, as can be seen in Fig. 9.6 (b). A larger number ofproliferating cells
obviously leads to an increase in the expansion velocity as the dividing cells push their
neighbors in a direction corresponding to the local radius of ∆L and this then leads to
the smoothening effect. We discuss the role of the proliferating rim in detail later.

9.4.3 Influence of free migration

The first main process in our simulation is the division of cells, but we now look at
the second main process, migration. We include here the freemigration of cells or the
absence of any cell-cell adhesion, respectiveley.

When we look at the behaviour under conditions of free migration, we see that
the gyration radius again increases in comparison with the first setup, but that the
behaviour of the developing cluster is slightly different.Initially the morphological
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Figure 9.7: General dynamics of cell populations, parameters: proliferating rim∆L =
0, rate for proliferation1/τ = 1, rate of diffusionφ = 50, (a) Gyration radiusRgyr vs
time scalet/τ , dashed black line show the setup from Fig. 9.5, points denote the steps,
where the clusters are depicted in (b); (b) shows the development of the morphology
of the cell cluster, dark blue: the proliferating cells at the border, light blue: quiescent
cells in the interior.

structure is not a compact cluster (Fig. 9.7 (b)), but later,as more cells divide, the tumor
population becomes denser. So although the linear phase is similar to the increases of
the proliferating rim, the way it is reached is very different. The early development
can be described by a square root function of the gyration radius corresponding to a
free migration of particles.

9.4.4 Systematic parameter variation

We have shown the influence of the basic parameters by lookingat the morphology
and the general expansion using the gyration radiusRgyr, and we now proceed to a
more systematic study using the parameters∆L, φ, m.
Fig. 9.8 shows a systematic study of growth kinetics for freemigration.

Initially, the cell population size grows exponentially fast with

N(t) = N(0)exp(t/τeff) (9.1)

where the relationship
τ−1
eff = (21/m − 1)mτ−1 (9.2)

is fulfilled [Dra05a].
The duration of the initial phase increases with∆L andφ. The growth law for the

diameter depends onφ. If φ = 0, the initial expansion of the diameter is exponentially
fast. If φ > 0, cells initially detach from the main cluster and the diameter grows
diffusively, with
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L ≡ 2
√

2Rgyr ∝
√

A(φ + 1/τeff)t (9.3)

whereA ≈ 1.2 is a lattice-dependent fit constant (Fig. 9.8(a)).
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Figure 9.8: Dynamics of tumor cell populations: (a)Y = R2
gyr/(φ + 1/τeff) vs. t/τ

for m = 0, ∆L = 1 and different values forφ. (b-d): Growth in the linear expansion
regime (N ∼ 105). (b) Square of expansion velocity,v2, vs. square of the proliferation
zone,∆L2 (triangles:φ = 0, circles:φ = 10, squares:φ = 20; m = 0). (c) v2 vs. φ
(triangles:∆L = 1, circles:∆L = 3, squares:∆L = 6, stars:∆L = 10; m = 0). (d)
v vs. m (∆L = 1, φ = 0). The lines are fits using eqn. (9.4).

For t/τ ≤ 2, Rgyr ∝ t (Fig. 9.8(a)). This regime disappears forN(0) ≫ 1 (see
[Dra05a]). As soon as cells in the interior of the aggregate are incapable of further
division the exponential growth crosses over to a linear expansion phase.
Fig. 9.8 showsv2 vs. (b)(∆L)2, (c) φ, and (d)m for largeN (N ∼ 105 cells).

The model can explain the experimentally observed velocity-range in Ref. [Brú03].
As t → ∞, L = v(m, φ, ∆L)t with

v2 ≈ B2([∆L′(∆L)]2/τ 2
eff + φ/τeff), (9.4)
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B ≈ 1.4 (lines in Fig. 9.8b-c).∆L′(∆L) (≈ 1 + 0.685(∆L − 1)) results from the
average over all permutations to pick boundary cells withina layer of thickness∆L.

For∆L/τeff ≪
√

φ/τeff eqn. (9.4) has the same form as for theFisher-Kolmogorov-
Petrovskii-Piskounov(FKPP) equation. (e.g. [Mor01][Mur02]). This equation is fre-
quently used to model tumor growth phenomena by continuum models [Swa00]. Here
the FKPP equation is used to predict the distribution of tumor cells for high-grade
glioma in regions which are below the detection threshold ofmedical image tech-
niques. Where we can get the same velocities for expansions depending on different
proliferating rims and migration and as we will see, for different apoptotic behaviour,
we believe, that these predictions require additionally measurement to decide the dif-
ferent biologically parameters which can lead (as we show) to the same expansion
velocity.

9.4.5 Proliferating rim

Where the role of division and migration is clear, we want to explain the role of∆L
here in more detail.

The size∆L of the proliferating rim controls the growth velocity in both, the
off-lattice and the cellular automaton model. In the simulations we found thatv ≈
∆L′/τeff with τeff = τ/ω being the cell cycle time

Here∆L′/l ≈ [1 + (∆L/l − 1)0.685] andω = (21/m − 1)m (and thereby the ex-
pansion velocity) depends on the dispersion of cycle time distribution. The parameter
m ∈ [0, 1, 2, ...) controls the shape of the cycle time distributionf(τ ′).

Hence the larger the dispersion of the cycle time distribution (by choosingm to
be smaller) the smaller isω, and the larger areτeff and consequently the expansion
velocityv of the monolayer. At no dispersion the expansion velocity isthe smallest.
The factor0.685 results from the order in which the cell divisions take place. Al-
though our simulations are in two dimensions, the occurrence of this factor can best be
understood if one considers a one-dimensional segment of a two-dimensional growing
cell population, ideally a one-cell-thick column ranging from the center of mass of the
monolayer until its surface.

If only the outermost cell is able to divide (∆L/l = 1), the increment withinτ is
∆L. However, if the proliferation depth is∆L ≫ l then the order of divisions deter-
mines whether a cell is able to divide or not. To see this assume an almost precise cell
cycle length (i.e., a cycle time distribution sharply peaked atτ = 〈τ〉 which is obtained
for m ≫ 1). Then, if it is the innermost cell that divides first then allcells closer to the
border are still able to divide while, if it is not the innermost cell that divides first, then
the innermost cell cannot divide anymore since this would require to shift more than
∆L/l cells. So even iff(τ ′) →∼ δ(τ ′ − τ) the order at which the cells divide matters
since for∆L > l the cell divisions are not completely parallel. The factor∼ 0.685 can
be calculated from investigating the expected growth increment from all permutations
of choosing the cells in the proliferative rim for division.Note that the factor∼ 0.685
marks the difference between an asynchronous and a parallelupdate. To understand
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this first note, that since we start each simulation with a single cell, a precise length of
the cycle time would mean that all cells divide at the same point of time. The factor
∼ 0.685 results from the asynchrony as argued above. For a parallel update this factor
would not be expected; the expansion velocity should instead bev ≈ ∆L/τ . (Note
that in a circular geometry the expansion velocity may slightly deviate from this value
due to the boundary curvature which decreases with increasing monolayer size as1/R
with R being the monolayer radius.)
Note also, however, that the factor∼ 0.685 may disappear also in asynchronous up-
dates if the choice of how cells are divided is slightly changed. If one would assume
that a cell that once has passed the restriction point divides with probability one that is,
if one assumes the decision on whether a cell divides or not ismade immediately after
its birth and not when it is chosen for division, then the dependency of the velocity
upon the order at which the cell divisions in the proliferating rim are performed would
no longer be expected.

9.5 Comparison with experiments

Now we want to compare our model directly with the experimental data.
Findings from the off-lattice model [Dra05b] were able to explain the growth ve-

locity found by Bruet al [Brú03] for the developing population, and in our simulation
we use parameters that are consistent with these findings, namely a proliferating rim
of ∆L = 9 and a parameter for cell cycle time distributionm = 60.
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Figure 9.9: Dynamics of experiments:(a) Mean radiusR of the cell aggregate vs. time
t. Full circles: experimental findings for C6 rat astrocyte glioma cells ([Brú03]). (b)
Cell cycle time distributionf(τ ′) for the off-lattice model and the CA growth model
in comparison with the Erlang distribution (m = 60, ∆L = 9, φ = 0).

After the simulations we rescaled the resulting expansion parameters using the real
size of the cell diameter as also used by [Dra05b] (cell sizel = 10µm cell cycle time
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τ = 19h). As can be seen in Fig. 9.9 our simulation is consistent withboth, the
experimental data and the off-lattice model.
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9.6 Cell density

We have already explained how different parameters and therefore different biophysi-
cal properties can lead to the same velocities in the linear phase. We now consider the
properties that determine them. A variety of mechanisms cangive the same velocity,
one being the cell density at the tumor border. If, for example, we have the same ve-
locity but a different migration strength at the border, andcells are also able partly to
migrate away from the cluster, this can be determined by measuring the cell density.
Cell density here means the mean volume filled within a given radius.

0 5 10 15 20 25 30
t/τ

0

50

100

150

200

R
gy

r(t
)

∆L = 10.5
N = 100000 cells, φ = 50

0 5 10 15 20
t/τ

0

2

4

6

8
v gy

r

(a)

120 160140
R

0

0,5

1

f(
R

)
φ = 0
φ = 50
average radius (R

gyr
 = 100)

(b)

Figure 9.10: Comparison of cell density at the tumor border for simulations with
m = 0 and two different setups: proliferating rim∆L = 10.5 and migration rate
φ = 0 and∆L = 0 andφ = 50, Rgyr = 100 for both simulations, profiles are rescaled
to normal radius (factor

√
2) and shifted to recent region.

We have used simulations with the same velocity and the setupof a proliferating
rim ∆L = 10.5 and zero migration (black) compared to∆L = 0 andφ = 50 (red). In
both simulationsm = 0. To make the simulations comparable, we stop the simulations
at a gyration radiusRgyr = 100.

At first we see the same expansion velocities (inset of Fig. 9.10 (a)), but the initial
phase is different. The velocity measurement alone obviously does not give us enough
information to decide between the two setups, but when clusters without migration are
denser, large migration rates lead to more active cells at the border and additionally
to unoccupied points, so the density decreases more slowly at the border as shown in
Fig. 9.10 (b).

This setup shows that further measurement of either the initial phase or the cell
density is required for the model in order to decide between expansions with the same
velocity. So the relationship to the FKPP equation can not determine all the relevant
parameters.
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9.7 Surface dynamics

We now go further to look at the behaviour of the tumor border in terms of the structure
function. As already explained, different suggestions have been made for the critical
surface dynamics of the tumor cell lines. Whereas Bru et al suggest an MBE like
behaviour, the critical comments by Buceta and Galeano suggest a KPZ like behaviour.
First we want to look at the behaviour of the case with no migration and∆L = 0
for different timest. In Fig. 9.11 we see the structure functions for different times
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Figure 9.11: Dynamic structure function forS(k, t) vs. k for different timest, ∆L =

0, φ = 0 andm = 0, (b) rescaled structure functionS(k, t)k2α+1 vs. kt1/z by α = 0.5
andz = 3/2, (c) surface border for the different times.

t = 60, 100, 150. The slope suggests a roughness exponentα = 0.5. Rescaling
using the Family-Vicsek relation (see Sec. 4.2.2) we get data collapse for the function
(Fig. 9.11). When we usez = 3/2 the data collapse into a single curve, giving us clear
exponents corresponding to the KPZ universality class.
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Obviously this setup leads to very different scaling to thatsuggested by Bruet al.
We now proceed to vary the other parameters. In Fig. 9.12 (a) we see the behaviour

for ∆L = 6 under otherwise constant conditions. Here we have simulations where we
calculate the structure functionS(k, t) for four different times and we can see that all
simulations show similar scaling behaviour.

In Fig. 9.12 (b) we see Arrhenius law migration with parameters ν = 2, Es = 1
andEB = 2 which require large migration rates and define the migrationaccording to
the explanation of Bruet al.

In Fig. 9.12 (e) we than take the same type of migration with realistic ’slower’ rates
for the parameters derived from the off-lattice model.

We also varied the sharpness of the cell cycle bym = 5 (Fig. 9.12 (c)). We used a
setup with free migrationφ = 100 (Fig. 9.12 (d)) For both we did not see any MBE-
like behaviour.

We have included the migration explained by Bru which shouldbe responsible for
the behaviour of MBE like growth. We also tested a lot of different setups for the
binding energies but we did not find any MBE-like behaviour inthe structure function,
but in all simulations values for the roughness exponent close to the KPZ universality
class valueα = 0.5. So we need to explain why we did not find MBE behaviour but
rather exponents related to KPZ-behaviour. First we want toremind ourselves about
the behaviour for 1+1 dimensions on a single line.

Here MBE-like behaviour corresponds to a system where particles are deposited at
a constant rate and then relax due to diffusion on the surface[Bar95; Sar96; Mic04].
MBE describes conserved growth, so, after subtracting the mean deposition, the evolv-
ing height function has the same mean average height as when it just roughens.

Physical properties eventually require some of the terms∇2h (smoothing surface
tension) or(∇h)2 (lateral growth) but the critical surface dynamics can not rely on
the MBE universality class for long term behaviour [Sar96] due to the non-dominant
fourth order term (see Sec. 4.4.4Sec. 5.2).

The universality class then is either EW or KPZ.
In MBE modelling the particles fall onto the surface and thenrelax due to diffu-

sion. Here we have a different case. The particles form the interior of the surface.
This behaviour is similar to the deposition of particles andlocally the cells can grow
laterally. If we take a specific radius vector from the centerof mass, we find that the
cells can grow in a direction perpendicular to this line.

This behaviour corresponds to lateral growth or, in terms ofdeposition, to a ballistic
deposition model (see [Bar95; Mic04] and references therein) where before relaxation
particles stick to the nearest neighbor thereby producing voids and overhangs.

Both explanations lead to KPZ-like behaviour, and we have already pointed out in
Sec.7.1.4 that ballistic deposition models belong to the KPZ universality class.

These overhangs can be seen in our model and also in the observations of Bru
[Brú03], so it can be seen that we have included such mechanisms in the growth.

Consequently, the behaviour in our model belongs to the KPZ class. If we include
the precise mechanisms explained by Bru, then either the calculations of Bruet al are
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wrong or different mechanisms are causing the observed behaviour.
Our results therefore agree with the critical comments by Buceta and Galeano

[Buc05a].
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Figure 9.12:Dynamic structure function for different parameters, (a)∆L = 6, m = 0,
φ = 0 for different times, (b)∆L = 0, m = 0, migration depending on the coordi-
nation number (Arrhenius law) withν = 2, Es = 1 , EB = 2 for different times, (c)
m = 5, ∆L = 0, φ = 0 (d) φ = 100 with border migration (e)∆L = 0, m = 0, mi-
gration depending on the coordination number (Arrhenius law) with ν = 20, varying
Es , EB = 10 corresponding to the energy derived from the off-lattice model, for the
same number of cells, in all figuress denote the arclength of the border in average cell
sizes, clusters contain a cell numberN ∼ 3 · 104 . . . 3 · 105 cells (Bruet al∼ 105), s
denotes the arclength in units of average cell sizes (see Fig.8.6).
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9.8 Apoptosis

In normal cell populations proliferation is balanced by apoptosis. In tumor cells this
balance is destroyed, so although apoptosis can still occur, the cells do not stop their
uncontrolled proliferation and the population size increases. We now want to look at
the two types of apoptosis we included in the simulation and their influence on the
expansion of the monolayer.

9.8.1 Apoptosis with constant probability
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Figure 9.13: Apoptosis with constant rate. Parameters:φ = 0, m = 0 and rate for
apoptosisγ = 0.4, (a)Rgyr vs t/τ , (b) shows the development of the morphology of
the cell cluster, dark blue: the proliferating cells at the border, light blue: quiescent
cells in the interior.φ = 0, m = 0 andγ = 0.4.

As we can see in Fig. 9.13, apoptosis, as expected, changes the velocity of popu-
lation growth. It only affects the border at extremely largerates; otherwise it leads to
smaller expansion velocities. The linear phase is reached later, at a stage where the
rate at which cells undergo apoptosis and proliferate determines the velocity. A larger
proliferating rim would compensate for this effect, but onecould still not determine
the expansions.

We now want to retest those setups where we expect to see the same expansion
velocities. In Fig. 9.14 we have chosen setups for very different conditions both with
and without migration, neglecting apoptosis and with varying proliferating rims.

In Fig. 9.14 we see that three setups show exactly the same expansion velocity for
different mechanisms. So we once again see behaviour that supports the assumption
that the velocity can not be the only parameter which determines the growth conditions.
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Figure 9.14: Setups with the same velocity for five setups with and withoutmigration,
different proliferating rims and different apoptosis rates: (a)Rgyr(t), (b) the velocities
of the same setups.

9.8.2 Apoptosis with mutations

For apoptosis with constant probability we now let the rateγ mutate with a variation of
∆γ as explained in Sec. 8.3.5. In Fig. 9.15 (a) we see the expansion of the monolayers
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Figure 9.15: Mutation of apoptosis rate. Parameters:γ = 0.4, t = 100, m = 0 and
∆L = 0, (a) Gyration radiusRgyr vs time scalet/τ for different mutations of the
apoptosis∆γ (b) distributionf(pγ) of probability to undergo apoptosis.

for three different rates of apoptosis mutation∆γ ∈ {0; 0.2; 0.4} with a constant initial
rate of apoptosisγ = 0.4. In Fig. 9.15 (b) we have depicted the histogram of successful
apoptotic processes and the corresponding rates of the individual cells, and we can see
in both the expansion and the histogram that the velocity increases with the mutation
of the apoptosis rate, where, not surprisingly, the monolayer with more cells to divide
expands faster.
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Here we see a kind of competition between the cells where the mutation gives
higher apoptotic rates and those with lower rates. Obviously the cells that win have a
lower probability of dying, as can be seen in the distribution.
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9.9 Mutations of the cell cycle

Tumor cells are characterized by uncontrolled proliferation and one basic mechanism
which leads to this is cell mutation. Defects in tumor suppressor genes are one reason
for the behaviour. During uncontrolled proliferation changes in the cell cycle can also
appear. If the cell cycle decreases, the DNA replication phase can also be shortened,
which makes it more difficult for the cell to repair defects and this again leads to
mutations. We now look at simple kinds of mutations in the cell cycle.

In Fig. 9.16 we can see that both cell dynamics and expansionssignificantly change
under mutation and that the resulting morphology reflects the mutation. Whereas in
the early phase no significant differences can be seen, in thelate phase the mutations
lead to totally different behaviour. The expansion velocity increases rapidly and the

Figure 9.16: Comparison of mutated and unmutated cell morphology:φ = 0, ∆L =
0, and mutation of the cell cycle time∆τ = 10%.

nearly round shape of the cell cluster is destroyed. We startwith a mutation equally
distributed around the average cell cycle time and by definition no side is preferred.
But as we can see, faster cells are in the lead in the expandingtumor monolayer.
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That is not really surprising, since, when faster cells lead, new cells also divide fast
and thereby overgrow the slow cells, which are then not equally distributed over the
monolayer and so don not dominate the growth conditions.

So we have a kind of competition between the initially equally distributed fast and
slow cells. The fast cells win the competition and are responsible for the behaviour
of the monolayer.. In Fig. 9.17 we see that, for different strengths of the mutation,
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Figure 9.17: Mutation of the cell cycle and apoptosis for four different setups, all
simulations with∆L = 0, no migration andm = 0.

velocity increases with strength and apoptosis causes a strong increase in the gyration
radius in the expansion that sets in later due to the mutation.

We have now tested one specific setup, where we only varied theapoptosis rate.
We took a setup with∆L = 9, m = 60 andφ = 0, zero apoptosis andγ = 0.4.
Expansion is, as expected, initially faster in the setup without apoptosis (Fig. 9.18).
But, surprisingly, the expansion velocity of the setup withapoptosis increases faster
and reaches the velocity of the non-apoptotic case at the intersection point. The reason
is that, in the apoptotic case with a constant rate, the mutated fast and slow dividing
cells undergo apoptosis. When the fast dividing cells dominate growth, the slow are
destroyed by apoptosis faster than in the non-apoptotic case.

So under apoptosis the contest between fast dividing and slower dividing cells is
lost earlier. Until then, velocity increases more stronglythan in the non-apoptotic case
and reaches it at the intersection point shown in the figure.

9.9.1 Global fluctuations

We now want to see how growth is affected by fluctuations whichare not intrinsic to
the individual cells but to the underlying structure. So we take a pre-described random
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Figure 9.18: Mutation and mutation with apoptosis, parameters the same as in 9.9,
additionally we include mutation∆τ = 10% and for the second setup additionally
apoptosisγ = 0.4.

distribution of the cell cycle time around the averageτ ∈ [τ−∆τ/2, τ +∆τ/2]. In our
simulation we change the corresponding probabilities for acell to divide at that point.
We here test different setups with and without apoptosis andwith different fluctuations.
We also compare our non-intrinsic mutation with the mutation where the change of the
cell cycle is coupled to the cell.

As we can see in Fig. 9.19 (a), our change does not seems to affect the dynamics
for all setups. We take the setups withγ = 0.0 andγ = 0.1 as references and see
that the setups with additional fluctuations (∆τ = 40%, ∆τ = 5%) show the same
behaviour. A look at the velocities in Fig. 9.19 (b) confirms this behaviour. Although
we do not see differences in the general behaviour, a closer look at the setups with
γ = 0.1 and zero fluctuation and∆τ = 40% shows that there are larger fluctuations in
the velocity. We conclude that a random fluctuating underlying cell cycle distribution
has no effects on the general dynamics, as opposed to the caseexplained before, where
an intrinsic cell cycle mutation leads to extreme changes inthe dynamics with the
faster cells dominating growth (shown for comparison in Fig. 9.19 (a)).

9.10 Summary and outlook

We explained in this chapter the development of tumor cell in-vitro monolayers under
specific growth conditions. By means of a Kinetic Monte Carlomethod we observed
the expansion kinetics depending on the basic processes, namely division and migra-
tion of cells.
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Figure 9.19: Fluctuations of cell cycle depending on the individual lattice site.

We introduced a new type of lattice, which under different kinds of noise reduction
opposite to a regular structure does not show any lattice artifacts.

Guided by an off-lattice model the simulation can explain the kinetics observed in
experiments.

A detailed analysis of the additionally determining parameters∆L, φ and the pa-
rameterm which ensure a realistic cell cycle time distribution we observed an asymp-
totic expansion velocity that is reminiscent of the front velocity of the FKPP equation.

We have shown by variation of parameters that different biologically relevant
mechanisms can lead to the same velocities in the development and concluded, that
the velocity in the linear phase can not be the only parameterwhich determine this
quantity.

Additionally one has to explain the proliferating rim∆ and the migration rules and
the cell density at the tumor border to get indications, which mechanisms lead to the
expansion.

We then included different kinds of apoptosis as a relevant parameter and again
showed setups, where very different mechansims lead to the same velocity in the linear
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expansion. Here, a detailed view in experiments to the earlyis required to decide
between the different mechanisms.

Guided by the experiments of Bruet al and additionally motivated by the critical
comments of Buceta and Galeano, we explained in detail the critical surface dynamics
of the tumor border. By use of the scaling theory for self-affine types of growth we
calculated the three critical exponentsα, β andz. Therefore we varied the growth con-
ditions in a wide range. In particular we also introduced themigration rules proposed
by Bru et al to be responsible for the tumor growth of different cell lines.

While Bru et al claimed a MBE-like critical surface dynamics by these migration
rules, we did not find by parameter variation any MBE-like behaviour but, opposite to
their findings, a KPZ-like behaviour for all setups.

Thus, our observations assert the critical comments of Buceta and Galeano.
We then additionally implemented different kinds of mutations and fluctuations of

the cell cycle and explained how mutated cells affect the kinetics and the morphology.
We found that randomly distributed non-intrinsic fluctuations (fluctuations of the cell
cycle time due to conditions depending on the underlying structure) don’ t lead to
significant changes, but just to a more strongly fluctuating velocity.

We have shown that a special type of the underlying structureleads to an absence
of lattice artifacts, which in comparison can be clearly seen for regular lattice types.

We included a realistic cell cycle time distribution by the Erlang distribution. So
our cell cycle has a predefined distribution around the mean cell cycle time.

Guided by the experiments and by use of results from an off-lattice model we could
reproduce the dynamics for tumor cells observed in experiments.

Our model can explain and distinguish a variety of biologically relevant actions for
the developing system and give the ability to observe the behaviour without unknown
influences.

We explained the expansion kinetics and the dependence of iton the determin-
ing parameter proliferating rim∆L, the strength of migrationφ and the parameterm
related to the sharpness of the cell cycle distribution.

We now want to briefly explain some other possible further observations, which
could be made by use of the developed simulation tool.

9.10.1 Limited mutation of the cell cycle

We described the mutation of the cell cycle as a variation of the probability for division
equally distributed corresponding to the variation of the cell cycle time (see Sec. 9.9).
This mutation generally include the possibility of the cells to mutate to a regime, where
the cells divide very fast. If we take into regard that the mitosis phase (1 ∼ 2h) in
comparison to the whole cell cycle (∼ 24h, in experiments for the expansion19h) is
very small, then this approach appropiate for a model. A moredetailed assumption
would be the inclusion of a lower border for the cells to divide.
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Mutations to lower cell cycle times lead to the reduction of the interphase, so there
is less time for the cell to activate their repair mechanisms. Nevertheless there is a
minimum time, which the cell need to duplicate.
In Fig. 9.20 we show a setup with such a minimum time for the cells to divide.
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Figure 9.20: Mutation with limiting lower borderτmin setups used for100000 cells,
without mutations, with cell cycle mutation∆τ = 10%

If we consider also the upper border, such an assumption is not so evident and may
be not realistic, since the cells can enlarge their gap phases in a wide range [Alb02].

The nondominating nature of the cells with larger cell cycletimes in our model we
have already shown for the mutations without borders, wherethe fast dividing cells
dominate the expansion kinetics and the slower cells do not affect the growth.

The same behaviour we get by a limiting border. In Fig. 9.20 (a) we see, that the
cell cycle distribution has changed to faster dividing cells also for the setup with a
limiting minimum cell cycle time ofτmin = 2/3τ (Fig. 9.20 (b)). Then the expansion
velocity increase in comparison to the unmutated case, but has a lower velocity than
the case of mutation without limiting borders (Fig. 9.20 (b)).

9.10.2 Correlated global fluctuations

We defined before the influence of the nonintrinsic fluctuations totally randomly on the
lattice and see as a result no general changes in the expansion kinetics but a stronger
fluctuation in the velocity as expected. A further development of thes concept would
be the inclusion of nonrandom fluctuations, but defined pattern, by which the cell cycle
change due to fluctuations of the environment which could be explained by differently
distributed nutrient supply.

9.10.3 Different rules for division

The most important process is obviously the division of the cells. We used a division
which includes a random selection of the new place in the environment for one of
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the daugther cells, where the mother cell stay on the old position. For a cell in the
proliferating rim, the cell select the shortest way to push the cells in this direction.
This leads to a shift along this cell pushing path for the cells.

Where cells are able to sense their environment, this rule for division could differ.
Possible non-random divisions could be the selection of thelongest distance motivated
by the aim to get as much volume for the cell as possible. Another way to reach this
aim is to make the algorithm able to count the coordination number and to select the
position which as less as possible neighbors.

By these different division rules we can define different model types which could
lead to very different expansion kinetics. In particular weincluded 5 different divi-
sions.

• 0 random selection of the new cell, shift to the shortest distance inside∆L

• 1 random selection of the new cell, shift to direction of a random cell inside∆L

• 2 selection of the new cell by the longest distance, shift inside∆L to the longest
distance

• 3 selection of the daughter cell by the minimum coordination number, shift to
the cell inside∆L with the lowest coordination number

• 4 selection of the daughter cell by the maximum coordination number, shift to
the cell inside∆L with the highest coordination number
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Figure 9.21:Expansion kinetics for different division rules for100000 cells, (a)∆L =
0 in all cases, (b)∆L = 6 in all cases, simulations without migration.

In Fig. 9.21 we see that the expansion kinetics differ depending on the division rule. We
do not see different velocities for the first three types and aproliferating rim∆L = 1.
However the rule depending on the coordination number changes here the kinetics.
That is not surprising, since the the rules here just affect the cells, which are inside the
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proliferating rim and not at the border. For a larger proliferating rim all expansion ki-
netics differ, where not only the linear phase is changed, but also the initial expansion.
So defining these rules, we can investigate by the simlation tool different model types
for the division guided by the assumption, that cells could sense their environment.

9.10.4 Different rules for migration

Before, we used different migration rules, where we included free migration, free mi-
gration at the tumor border and a migration depending on the coordination number by
an Arrhenius law. In Fig. 9.22 we show that by all of these different migrations defining
different types of model one can reach the same expansion velocities as for the exper-
iments of Bru [Brú98]. Here the velocity (Fig. 9.22 (b)) is inµm/days corresponding
to the shown development of the radius in Fig. 9.22 (a). The velocity is consistent
with the experimentally observed velocityv = 2.9µm/h for C6 rat astrocyte glioma
[Brú98].
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Figure 9.22: Expansion kinetics for different migration rules for (a) Mean radiusR
of the cell aggregate vs. timet. Full black circles experimental findings for C6 rat
astrocyte glioma cells ([Brú03]), three different migration rules, free migration (green),
to border restricted free migration (violet) and Arrheniuslaw migration (light blue) (b)
expansion velocity for the same setups.

In case of the coordination number dependent rule, the choice of different setups
is thereby possible by definition of the ’binding energies’ which define the∆E in the
Arrhenius law. For particles in crystal growth, namely effective atoms, the effective
binding is always positive. We have normally a surface binding and a neighbor binding.
In case of cells, which we inlcude as points, the behaviour may vary. If we assume a
cell-cell adhesion to the tissue, the cells could nevertheless by sensing tend to migrate
to position with more free volume. This could be included by including the cells to
migrate preferently to positions with less neighbors. In our algorithm, that is just a
setting of the different sign of the neighbor binding.
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In conclusion here we also have shown some possibilities which the simulation
tool additionally offer for further investigations.



Chapter 10

Conclusions and Outlook

In this work the self-organized growth was extensively studied for two different types
of systems.

First we modeled epitaxial crystal growth by use of the well-established stochastic
differential equations. Additionally we applied the theory of time-delayed feedback
methods to develop a tool to study the control of the roughening phase of surfaces by
time-delayed feedback control. For different growth equations we showed, how the
corresponding growth exponentβ could be adjusted by such a scheme.

In the second part a powerful model for simulation of cell population growth by
means of a Kinetic Monte Carlo method was developed. Aimed tomodel the growth
of tumor cells in an in-vitro monolayer, the tool includes a large variety of properties
of biological relevance. By extensive simulations we have investigated the generic
kinetical behaviour and have shown that our single cell based cellular automaton model
reproduces the kinetics of experimental studies and can explain the critical surface
dynamics of the tumor borders.

In both parts we made use of the well-established scaling theory, which gives for
self-affine types of growth phenomena the ability to determine the surface roughness
evolution by means of three exponents, namely the growth exponentβ, the roughness
exponentα and the dynamic exponentz, where only two of those are independent.

For the crystal growth we additionally established a new type of control method
to adjust the growth exponent. For the tumor growth we developed a simulation tool
which combines advantages of lattice models and off-lattice models by definition of
an irregular lattice free of artefacts.

In particular by numerical schemes we solved the stochasticgrowth equations, namely
the Kardar-Parisi-Zhang and the Molecular Beam Epitaxy equation in 1+1 and 2+1
dimensions. Detailed analysis lead to observations of the three critical exponentsβ, α
andz which determine the universality classes for the growth.
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We could exactly reproduce by our scheme the exponents for the MBE equation in
both dimensions, but for the KPZ equation we get stable values only for 1+1 dimen-
sions and some indications during control for the 2+1 dimensional case.

We then defined a time-delayed feedback method to control theearly roughness
evolution by adjusting the growth exponentβ during the roughening process.

Our method in particular includes two different schemes, thedigital control, which
acts by a control stepa on the sign of the difference to the desired exponent and a
differential controlwhich contains an amplification factorK, which determines the
control forceF .

We explained in detail, how one can define, restrict and calculate parameters which
could be useful for control.

The control after that gave precise results for two types of control with predictions
for possible experiments. Indications for possible setupswere explained by compari-
son with recent experiments [Oje00; Oje03]. Here, for a specific system, the relation
between the nonlinear termλ from the KPZ equation to the temperature is explained
in detail and it is shown that one can tune it by changing the temperature.

A lot of additional observations identify the KPZ equation as relevant for low tem-
perature behaviour in experiments due to the nonlinear termwhich is related to lateral
growth. In high temperature systems, diffusion processes dominate the growth process,
so the MBE equation then is responsible for the universalityof the growth.

For both types of behaviour, the tuning of temperature can change the behaviour
and a relation to the theory could be given by experiments where the exponents depen-
dent on temperature have to be measured.

While further explanations by experimental setups have to reproduce the theoreti-
cal investigations, the method could then give predictionshow the roughness develop-
ment can be tuned by time-delayed feedback.

We have explained in detail limits of control for both the digital and the differential
scheme. These findings should also be reproduced by different types of methods,
namely a Kinetic Monte Carlo method for a solid-on-solid approximation of crystal
growth.

For the single cell based tumor growth model we explained in detail the dynamics and
the surface morphology depending on different parameters.

We have defined a new lattice type consisting of Voronoi cellsrelated to the bio-
logical cells. A construction by a Delauney triangulation gives a well defined average
cell size with a well defined sharp distribution around the mean area.

The relation of the cell cycle to an Erlang distribution included in the model ensures
realistic cell cycle time distributions.

By extensive simulations we observed the expansion kinetics of tumor cell in-vitro
monolayers.

By the special lattice construction we ensured that our model is free from any
lattice artefacts. So the model establishes a tool where onecombines the advantage of
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off-lattice models which are independent from any underlying lattice structure and the
advantage of well-defined neighborhood which leads to a faster simulation.

We have shown that the expansion kinetics covers the findingsobserved in experi-
ments and the observations made by an off-lattice model. It was in detail explained that
very different biological actions included in our model canlead to the same expansion
velocities in growth. Recently, mathematical models basedon the Fisher-Kolmogorov-
Petrovskii-Piskounov (FKPP) equation were used to predictthe distribution of tumor
cells for high-grade glioma in regions which are below the detection threshold of med-
ical image techniques [Swa00]. We found that the asymptoticexpansion velocity has
a form that is reminiscent of the front velocity of the FKPP equation, nevertheless the
same expansion velocity can be obtained for different combinations of the migration
and division activities of the cell and of the cycle time distribution.

So in conclusion we believe such predictions must fail sincethe FKPP equation
lacks some important parameters such as the proliferation depth which is why it is not
sensitive to relative contributions of the proliferation depth and free migration.

We observed in our simulations that these relative contributions in fact determine
the cell density profile at the tumor-medium interface: the larger the fraction of free
migration is, the wider is the front profile even if the average expansion velocity is
constant.

We additionally included apoptosis with different rules consistent with biological
interpretations of that process and again determined the expansion kinetics, where we
showed in detail that a large variety of different mechanimsleads to the same velocities
in the linear regime of the expansion.

We found the determining processes and thus can give suggestions for possible
experiments to decide these different cell actions, for instance the measurement of the
cell density at the tumor border or the migration activity orthe early phase to observe
large apoptosis rates.

By additional inclusion of various intrinsic mutations of the cell cycle and nonin-
trinisic fluctuations of the underlying structure we then showed scenarios which could
determine the kinetics in cell lines under strong mutational behaviour.

For these observations by construction we don not prefer mutations to fast or slow
dividing cells, nevertheless we see a strong regime, in which after a certain time range
the faster cells always dominate the growth and thus determine the expansion.

Bru et al propose the cell lines, they investigated to show universalscaling related
to the MBE universality class, we included a calculation of the corresponding critical
exponents. For a wide range of different setups under inclusion of the migration pro-
posed by Bruet al to be responsible for this type of universality class, we didnot find
any MBE-like behaviour, but strong KPZ-like critical behaviour. Our findings thereby
comply with the critical comment of Buceta and Galeano.

We here stronlgy suggest further experimental investigations.
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So in conclusion we investigated two systems related to complex growth phenomena,
where in both parts scaling theory played an essential rule.For stochastic differential
equations applied to epitaxial growth we established a new method of a time-delayed
feedback control and gave predictions, how possible experimental setups have to act
to tune the roughness evolution ’in situ’.

In addition, these findings could in general be applied to anysystem, which be-
long to the explained equations, where one then has to define the relation between the
equation parameters and the growth phenomena.

For the second system, the tumor growth of an in-vitro monolayer, we explained in
detail how the biological actions on the scale of an individual cell determine both the
expansion kinetics and the critical surface dynamics.

We could reproduce the kinetics in consitstency with an off-lattice model and with
experiments. However, our investigations for the universality class of tumor growth
don not comply with previous interpretations of the experiments and require new ex-
perimental investigations.

Thus we investigated problems on the nanometer scale for materials grown by epitaxial
methods and cell behaviour from the length scale of an individual cell to large cell
populations and hopefully contributed in some way to the problem of the ’nanobot’
outlined in the preface.



Appendix A

Simulations of stochastic growth
equations

A.1 Additional simulations KPZ 1+1

In Fig. A.1 and Fig. A.2 we show the control for a larger systemsizeL = 32768. In
Fig. A.1 the results for three initial setupsλ0 = 0 andβ0 = 0.33 (black),λ0 = 0.1 and
β0 = 0.29 (red), andλ0 = 0.25 andβ0 = 0.25 (blue) are shown, the digital (Fig. A.1
(a)) and the differential (Fig. A.1 (b)). The roughness evolution shows, that all setups
can be controlled and the evolution of the nonlinearityλ(t) show the general properties
of the control method, increase of the function for the first setup (black), nearly stable
function for the second setup (red) and a decrease for the third setup (blue).

In Fig. A.2 the results for three initial setupsλ0 = 0 and β0 = 0.29 (black),
λ0 = 0.1 andβ0 = 0.29 (red), andλ0 = 0.25 and β0 = 0.29 (blue) are shown,
the digital (Fig. A.1 (a)) and the differential (Fig. A.2 (b)). The roughness evolution
shows, that all setups can be adjusted to the same desired exponentβ0 = 0.29 (guide
to the eyes: green).

In Fig. A.3 - A.6 we show the results for the KPZ equation in 1+1dimensions for
digital and differential control with initial nonlienarities λ0 = 0.05 andλ0 = 0.15.
As for the results shown in Sec. 7.1.3 (Fig. 7.9 - 7.15), five setups with differentβ0

for each control type and nonlinearity are chosen. The results show again the general
behaviour of the control methods.
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Figure A.1: Control for the KPZ equation in 1+1 dimensions with L = 32768:Three
setups for the digital and the differential controlλ0 = 0 andβ0 = 0.33 (black),λ0 =
0.1 andβ0 = 0.29 (red), andλ0 = 0.25 andβ0 = 0.25 (blue). (a) digital control with
a = 0.01, (b) differential control withK = 0.02, time discretizationdt = 0.01 for all
setups, upper left insets show the functionsλ(t)..
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Figure A.2: Control for the KPZ equation in 1+1 dimensions with L = 32768:Three
setups for the digital and the differential control with constantβ0 = 0.29, λ0 = 0
(black),λ0 = 0.1 (red), andλ0 = 0.25 (blue). (a) digital control witha = 0.01, (b)
differential control withK = 0.02, time discretizationdt = 0.01 for all setups, upper
left insets show the functionsλ(t).
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Figure A.3: Digital control for the KPZ equation in 1+1 dimensions with acontrol
setup:λ0 = 0.05 anda = 0.005 for five different desired control values of: (a)β0 =
0.25, (b) β0 = 0.27, (c) β0 = 0.29, (d) β0 = 0.31, (e)β0 = 0.33, time discretization
dt = 0.005, upper left insets show the functionsλ(t), lower right insets show the
roughness in the late phase in double logarithmic plot.
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Figure A.4: Digital control for the KPZ equation in 1+1 dimensions with acontrol
setup:λ0 = 0.05 andK = 0.005 for five different desired control values of: (a)β0 =
0.25, (b) β0 = 0.27, (c) β0 = 0.29, (d) β0 = 0.31, (e)β0 = 0.33, time discretization
dt = 0.005, upper left insets show the functionsλ(t), lower right insets show the
roughness in the late phase in double logarithmic plot.



168 A.1. Additional simulations KPZ 1+1

10
0

10
1

10
2

10
3

t (a.u.)

1

w
(t

)

λ
0
 = 0.15, β

0
 = 0.25, a = 0.005

β = 0.263

600 1000t (a.u.)

2

w
(t

)

simulation curve
fitted curve
ideal β

0
 curve

0 200 400 800 1000
t (a.u.)

0.06

0.1

0.14
λ(t)

(a)

10
0

10
1

10
2

10
3

t (a.u.)

1

w
(t

)

λ
0
 = 0.15, β

0
 = 0.27, a = 0.005

β = 0.278

600 1000t (a.u.)

2

w
(t

)

simulation curve
fitted curve
ideal β

0
 curve

0 200 400 800 1000
t (a.u.)

0.06

0.1

0.16
λ(t)

(b)

10
0

10
1

10
2

10
3

t (a.u.)

1

w
(t

)

λ
0
 = 0.15, β

0
 = 0.29, a = 0.005

β = 0.294

600 1000t (a.u.)

2

w
(t

)

simulation curve
fitted curve
ideal β

0
 curve

0 200 400 800 1000
t (a.u.)

0.1

0.18

0.14

λ(t)

(c)

10
0

10
1

10
2

10
3

t (a.u.)

1
w

(t
)

λ
0
 = 0.15, β

0
 = 0.31, a = 0.005

β = 0.314

600 1000t (a.u.)
2

w
(t

)

simulation curve
fitted curve
ideal β

0
 curve

0 200 400 800 1000
t (a.u.)

0.1

0.18

0.14

λ(t)

(d)

10
0

10
1

10
2

10
3

t (a.u.)

1

w
(t

)

λ
0
 = 0.15, β

0
 = 0.33, a = 0.005

β = 0.331

600 1000t (a.u.)

w
(t

)

simulation curve
fitted curve
ideal β

0
 curve

0 200 400 800 1000
t (a.u.)

0.2

0.1

0.14

λ(t)

(e)

Figure A.5: Digital control for the KPZ equation in 1+1 dimensions with acontrol
setup:λ0 = 0.15 anda = 0.005 for five different desired control values of: (a)β0 =
0.25, (b) β0 = 0.27, (c) β0 = 0.29, (d) β0 = 0.31, (e)β0 = 0.33, time discretization
dt = 0.005, upper left insets show the functionsλ(t), lower right insets show the
roughness in the late phase in double logarithmic plot.
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Figure A.6: Digital control for the KPZ equation in 1+1 dimensions with acontrol
setup:λ0 = 0.15 andK = 0.005 for five different desired control values of: (a)β0 =
0.25, (b) β0 = 0.27, (c) β0 = 0.29, (d) β0 = 0.31, (e)β0 = 0.33, time discretization
dt = 0.005, upper left insets show the functionsλ(t), lower right insets show the
roughness in the late phase in double logarithmic plot.
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A.2 Additional simulations KPZ 2+1

In Fig. A.7 we show the control of the KPZ equation in 2+1 dimensions with an initial
nonlinearityλ0 = 0.05. The left figures (Fig. A.7 (a,c,e)) show the digital controlfor
three values of the desired exponentβ0 with a = 0.005, the right figures (Fig. A.7
(b,d,f)) show the control with the same setups forK = 0.005. The results show the
same behaviour as for the control with other initial nonlinearities.
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Figure A.7: Control for the KPZ equation in 2+1 dimensions with a controlsetup:
λ0 = 0.05, a = 0.005 for digital andK = 0.005 for differential control, three desired
control values of: (a,b)β0 = 0.15, (c,d)β0 = 0.20, (e,f)β0 = 0.25, time discretization
dt = 0.005, upper left insets show the functionsλ(t), lower right insets show the
roughness in the late phase in double logarithmic plot.
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A.3 Additional simulations MBE 1+1

In Fig. A.8 we show the results for the control of the MBE equation in 1+1 dimensions
with an initial nonlinearityλ1,0 = 0.05. The left figures (Fig. A.8 (a,c,e)) show the
digital control for three values of the desired exponentβ0 with a = 0.0005, the right
figures (Fig. A.8 (b,d,f)) show the control with the same setups forK = 0.0005.
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Figure A.8: Digital control for the MBE equation in 1+1 dimensions with acontrol
setup:λ1,0 = 0.05, a = 0.0005 for digital andK = 0.0005 for differential control,
three desired control values of: (a,b)β0 = 0.33, (c,d)β0 = 0.35, (e,f)β0 = 0.375, time
discretizationdt = 0.01, upper left insets show the functionsλ(t), lower right insets
show the roughness in the late phase in double logarithmic plot.
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The results show the same general properties as explained for λ1,0.
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A.4 Noisy Kuramoto-Sivashinsky equation

With the time-delayed feedback method we investigated the KPZ and the MBE equa-
tion. An equation combining the terms of both and possibly also controllable is the
noisy Kuramoto-Sivashinsky equation. Fig. A.9 show for 1+1and 2+1 dimensions
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Figure A.9: Solutions of the noisy KS equation in 1+1 and 2+1 dimensions with three
different parameter setups:ν = 1, λ = 1 andν1 = 1 (blue),ν = 0, λ = 1 andν1 = 1
(red), andν = 1, λ = 1 andν1 = 1 (black), (a) in 1+1 dimensions with local exponents
β as guides to the eye, (b) in 2+1 dimensions.

solutions for different initial termsν (EW term). In 1+1 dimensions we show, that
different phases of roughening appear. Further investigations could make a control as
in this work explained possible also for this type of equation.
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Appendix B

Deposition models

B.1 Ballistic deposition

In Fig. B.1 we show the results of the simple ballistic deposition in 1+1 dimensions.
The rule for the deposited particles is to stick on the first nearest neighbor [Bar95].
The ballistic deposition is often used to get a relation formSolid-on-solid models to
the KPZ equation. In Fig. B.1 we show that the effective exponentβ ∼ 0.3 is close to
the KPZ exponent (β = 1/3) as expected.
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Figure B.1: Roughness evolution in the simple ballistic deposition model with nearest
neighbor sticking rule [Bar95] forL = 131072 andt = 1000.
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Figure B.2: Roughness evolution in the random deposition model, (a) shows a density
plot of the height profile from lower values (blue) to higher values (green), (b) show
the roughness vs timet for a system of256 × 256l.s..

B.2 Random deposition

In Fig. B.2 we show the results for a random deposition on a256×256l.s. system. We
get the well-known exponentβ = 0.50 and do not see any correlations in the density
plot (B.2 (a)) as expected.



Appendix C

Simulation tool for the tumor model

C.1 Short manual

Table C.1 and table C.2 give short descriptions for the options of the simulation tool.

Option Description
-h show the help
-i load lattice file (see options z, w)
-v the probability for division (corresponding to the rate)
-f the probability for migration (corresponding to the rate)
-k the proliferating rim∆L
-a the factorτ/value by which the cell cyle time mutates
-m the parameter for the Erlang distribution (sharpness)

of the cell cycle time
-c the probability for a cell to undergo apoptosis
-G the probability for a mutation of the cell cyle time

depending on the lattice point
-x the number of averages
-y time
-A animation flag for graphic output

Table C.1: Short manual for the usage of the tool for cell population evolution
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Option Description
-D Type of migration

0 free migration
1 free migration restricted to the border
2 Arrhenius law migration
3 Arrhenius law migration just depending on the migrating cell
4 Arrhenius law migration restricted to the border

-M Type of division
0 migration to randomly selected free points, shift
to shortest distance
1 migration and shift to randomly selected free points
2 migration and shift to the free points with the longest distance
3 migration and shift to the free point with the
lowest coordination number
4 migration and shift to the free point with the
highest coordination number

-N prefactor for Arrhenius migration
-E E0 for Arrhenius migration
-B EB for Arrhenius migration
-z size of lattice to create (100 for 100 × 100 lattice)
-w type of lattice to create

4 square lattice
6 hexagonal lattice
8 octagonal lattice

-C Maximum of cells
-U Maximum of Gyration radius
-Z the factor of mutation of the apoptosis probability
-T maximum of the probability to divide under mutation

(corresponds to an average minimum of the cell cycle time
-K probability to knock out apoptosis
-s seed for random number generator
-o Output rate
-n number of divisions

Table C.2: Short manual for the usage of the tool for cell population evolution
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