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Abstract. Recoverable robustness is a concept to avoid over-conservatism
in robust optimization by allowing a limited recovery after the full data is
revealed.

We investigate two settings of recoverable robust shortest path problems.
In both settings the costs of the arcs are subject to uncertainty. For the first
setting, at most k arcs of the chosen path can be altered in the recovery. In
the second setting, we commit ourselves to a path before the costs are fully
known. Deviating from this choice in the recovery comes at extra costs. For
each setting we consider three different classes of scenario sets.

We show that both problems are NP-hard. For the second setting we give
an approximation algorithm depending on the inflation factor and the rental
factor.

1. Introduction

The shortest path problem asks for a shortest path with respect to a cost func-
tion between two designated nodes s and t in a directed graph. This problem is
one of the most studied combinatorial optimization problems and can be solved ef-
ficiently in its deterministic version with nonnegative arc length. But in real-world
applications like transportation, network design or telecommunication, some data
might be subject to uncertainty. Nevertheless, a decision, in our setting a path, has
to be taken beforehand without the knowledge of the specific scenario that occurs
in the future. We expect uncertainty to be given via a set of scenarios, each defining
a cost function.

There are two classical approaches when dealing with uncertainties: stochastic
programming and robust optimization. In stochastic programming one assumes
to have perfect knowledge about the probability distribution on the scenarios and
seeks for a solution that optimizes some stochastic function. A special case, the
2-stage stochastic programming, defines a first stage decision, which is fixed for all
scenarios, and a second stage decision, taken after all data are known. Together
they must form a feasible solution for the scenario. The general aim is to minimize
the costs for the first decision and the expected costs for the second part. For
example, Minkoff [5] and Ravi [7] applied this method to the shortest path problem
assuming uncertainty not only in the costs but also in the origin and destination.
Yet, in practice many problems tend to be solved only once, therefore the expected
value loses its relevance. Furthermore, a scenario might appear in which the total
costs are much higher then the expected costs. This also results from the fact that
in many applications no stochastic information is given.

Robustness addresses those two problems by neglecting the distribution and
using a min-max-criterion. The robust shortest path problem has been studied,
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among others, by Bertsimas and Sim [2], Yu and Yang [9] and Aissi et al. [1].
In those cases the goal is to find a path that minimizes its maximal costs over
all scenarios. The drawback in those settings are the unacceptably high costs of
an optimal solution. They also ignore the fact that in most problems a recovery
involving at least a minor change to the previously determined solution is possible.

Recoverable robustness has been introduced by Liebchen et al. [6]. This concept
combines and generalizes robust optimization and 2-stage stochastic programming.
In a first stage some decision has to be made. This decision leads to first stage
decision costs and limitations of the feasible solutions in the second stage. We call
those the recovery set of a decision. In the second stage, when the scenario is
known, any solution might be taken from the recovery set. For this solution the
scenario costs have to be paid. An optimal recoverable robust solution is a first
stage decision that minimizes the first stage costs and the maximal scenario costs by
taking the best solution from its recovery set. In contrast to the robust approach,
there exists no unique setting of recoverable robustness. We will introduce two
settings, one in which the recovery set is very limited and one in which the decision
influences the arising cost functions.
k-Arc-RRSP. A natural application of recoverable robustness to the shortest
path problem is to define an (s, t)-path in the first stage, while in the second stage,
a path can be chosen that differs only by k arcs from the first stage path.

Definition 1.1 (k-Arc-RRSP). Let G = (V, A) be a directed graph and s, t
two vertices in V . Furthermore, a first stage cost function cD : A → R

+, a set of
scenarios S, and a recovery constant k ∈ N are given. Each scenario defines scenario
costs cS : A → R

+. Let p ∈ P , where P contains all directed (s, t)-paths in G. The
recovery set Pk

p of p is defined as the set of all paths p′ ∈ P with |p′ \ p| ≤ k and
the robust recovery costs cRR(p) as

cRR(p) := max
S∈S

min
p′∈Pp

k

cS(p′).

An optimal solution p to the k-Arc Recoverable Robust Shortest Path problem (k-
Arc-RRSP) minimizes the total costs c(p) over all (s, t)-paths P , where c(p) is given
by

c(p) = cD(p) + cRR(p).

Note that for k = 0 the k-Arc-RRSP is equivalent to the robust shortest path
problem.

The analysis of the problem highly depends on the given scenario set. We distin-
guish three settings: the discrete scenario set SD, the interval scenario set SI and
the Γ-scenario set SΓ. In the discrete scenario set every scenario is explicitly given
with its cost function [5, 7, 9]. The interval scenario set is an indirect description
of all possible scenarios, where for each arc a a lower and an upper cost bound
ca and ca with 0 ≤ ca ≤ ca are given. For any cost function c : A → R

+ with
ca ∈ [ca, ca] for all a ∈ A, a scenario with this cost function exists in SI . For the
Γ-scenario set again lower and upper cost bounds for the arc costs are given. The
set SΓ contains any scenario S, which cost function deviates at most Γ arc costs
from the lower bound. This set has been introduced by Bertsimas and Sim and has
been extensively studied in robust optimization [2].

We show that the decision version of the k-Arc-RRSP is weakly NP-complete
for |SD| = 2 and constant k by a reduction of 2-Partition. If k is part of the input,
however, we prove that the k-Arc-RRSP with |SD| ≥ 1 is strongly NP-hard and
inapproximable. Since the k-Arc-RRSP with interval scenario set is equivalent
to the k-Arc-RRSP with just one discrete scenario, this problem is also strongly
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NP-hard and inapproximable. For the special graph class of series parallel graphs
we introduce a polynomial algorithm to solve the k-Arc-RRSP with SI .

Concerning the k-Arc-RRSP with SΓ the computation of the total costs for a
given path is already NP-hard, i.e., solving the problem maxS∈SΓ

minp′∈Pk
p

cS(p′)

is NP-hard. This problem remains NP-hard for Pk
p = P due to a reduction from

exact-one-in-three 3SAT. Modifying the reduction to the decision to choose
the optimal first stage path shows the NP-hardness for constant k and gives a lower
bound of

√
2 to the approximation factor for any efficient approximation algorithm,

unless P = NP.
Rent-RRSP. Another setting for the recoverable robust shortest path problem
is the Rent-RRSP. In the first stage an (s, t)-path is chosen for which rental costs,
depending on the rental factor α and the revealed scenario, have to be payed. After
the scenario is known any other path might be chosen as recovery path. For an
arc a that was part of the first stage decision, we have to pay in the second stage
the difference between the scenario costs and the first stage costs of this arc, i.e.,
(1−α) ·cS

a . For any other arc we get extra inflation costs given by the factor (1+β).

Definition 1.2 (Rent-RRSP). Let G = (V, A) be a directed graph and s, t two
vertices in V . Furthermore, a rental factor α ∈]0, 1[, an inflation factor β ≥ 0, and
a set of scenarios S each defining a scenario cost function cS : A → R

+ are given.
As before P contains all (s, t)-paths in G. For a path p ∈ P the rent costs cS

R(p) in
scenario S are defined by cS

R(p) = α · cS(p) and the implementation costs cI(p) by
cS
I (p) = minp′∈P(1−α)cS(p′)+ (α + β)

∑

e∈p′\p cS
e . The goal is to find a path with

minimal total costs c(p), defined as

c(p) = max
S∈S

(

cS
R(p) + cS

I (p)
)

.

As the k-Arc-RRSP, the Rent-RRSP with SD is weakly NP-complete for
bounded |SD| ≥ 2 and strongly NP-complete otherwise. The interval case is solv-
able in polynomial time, since any shortest path due to the upper costs c yields an
optimal solution.

Furthermore, another adjustment of the reduction from
exact-one-in-three 3SAT to maxS∈SΓ

minp∈P cS(p) shows that the Rent-
RRSP is NP-hard for 0 < α < 2

3 and 3α + β < 2. A lower bound for the
approximation factor can be given by solving a nonlinear optimization problem.
We introduce a min( 1

α
, 2 + β)-approximation algorithm, which is tight for α ≥ 0.5.

Overview. Section 2 covers the complexity results of the k-Arc-RRSP. In Sec-
tion 3 we give an overview of the complexity results for the Rent-RRSP and the
approximation algorithm for Γ-scenarios.

2. The Complexity of the k-Arc-RRSP

Discrete Scenario Sets. The decision version of the k-Arc-RRSP is in NP:
Given an (s, t)-path p, the total costs can be calculated by solving a constrained
shortest path (CSP) problem for every scenario S. The cost functions of this CSP-
problem are the scenario cost function and a distance cost function

d(a) =

{

0 if a ∈ p

1 otherwise
.

The cost function d computes |p′\p| for any path p′ and the given (s, t)-path p and
is bounded in the CSP-instance by k. In general the CSP-problem is weakly NP-
hard and can be solved by a labeling Dijkstra in pseudo-polynomial time O(n2L2),
where L is the upper bound on the second costs. Since the bound k is in our case
smaller than n (otherwise the problem is trivial), this CSP-problem is solvable in
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polynomial time. As in the robust setting [9], the k-Arc-RRSP problem is weakly
NP-complete for constant k and bounded scenario set.

Theorem 2.1. The k-Arc-RRSP is weakly NP-complete for constant k and
|SD| ≥ 2.

Proof. Let I be an instance of 2-Partition with n elements a1, . . . , an, ai ∈ N and
∑n

i=1 ai = 2b. The corresponding k-Arc-RRSP instance I ′ consists of the graph
G and the scenarios S1 and S2. The graph G is a chain graph with n + k links,
each link consisting of two parallel arcs (an upper and a lower arc). The first stage
cost function assigns to the last k lower arcs costs of M > 2b. All other arcs get
costs of 0. The cost function to scenario S1 attaches costs ai to the ith upper arc,
i = 1, . . . , n and costs M to the other upper arcs. All lower arcs get 0 costs. The
scenario S2 flips the first n arc costs, i.e., the lower arcs get costs ai and the upper
ones 0 (Fig. 2.1). Choosing M = 2b + 1 the size of the instance I ′ lies polynomial
in I.

In this setting any partition A1∪̇A2 = {a1, . . . , an} and can be represented by a
path p(A1,A2), which uses the upper arc of the ith link, if and only if ai ∈ A1 and
the last k upper arcs. Its total costs are

c(p(A1,A2)) = max{
∑

b∈A1

b,
∑

c∈A2

c}.

On the other hand every path p with total costs smaller then M , defines a partition
of the elements due to the use of upper and lower arcs. Observe that every (s, t)-
path with costs smaller then M uses the last k upper arcs and exchanges them for
the lower arcs in both scenarios. Therefore, it holds: The 2-Partition instance I
is an yes-instance if and only if there exists an optimal solution in I ′ with costs b.

s t
0

0

0 0

0

0

0

0

MM

(0, a1) (0, a2) (0, an)

(a1, 0) (a2, 0) (an, 0) (0, 0)(0, 0)

(M, M)(M, M)

n links k links

Figure 2.1. The cost functions of S1, S2 are given by the vector
(cS1

a , cS2

a ) for every arc, whereas the first stage costs are given as
single values.

�

In [1] Aissi et al. show, that the robust shortest path problem cannot be ap-
proximated with a factor better then 0.5. This proof can be transferred to the
k-Arc-RRSP to show the same lower bound on the approximability for constant
k and unbounded SD.

Theorem 2.2. There exists no approximation algorithm with a factor γ < 2 for
the k-Arc-RRSP with unbounded SD and constant k, unless P = NP.

Proof. We start with a reduction of the Path with Forbidden Pairs on acyclic
graphs to the k-Arc-RRSP with constant k. Note that the reduction from 3SAT to
Path with Forbidden Pairs induces a graph, which is acyclic (see [4]). Hence,
we can restrict ourselves to this graph class, in which every (s, t)-path is a simple
path. Let I be an instance of Paths with Forbidden Pairs, i.e., G = (V, A)
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be a directed acyclic graph, s, t ∈ V , and C ⊆ V \{t} × V \{t} a set of node pairs.
The instance I ′ of the k-Arc-RRSP contains a graph G′ and a scenario set S. To
construct G′, we extend G by adding a new source s′ which is connected to s via
a chain of length k (Fig. 2.2). The first stage costs assign costs of 2 to all upper
arcs of the added chain graph, and costs of 0 otherwise. The set of scenarios S
contains for every pair {ai, bi} ∈ C a scenario Si. Every scenario adds costs of 0 to
the upper arc of the chain from s′ to s and costs of 2 to the lower arcs. The costs
for the other arcs in G′ are defined in the following way:

cSi

a =

{

1 a = (ai, v) or a = (bi, v) ∀v ∈ V

0 otherwise
.

Due to this construction it holds: there exists a feasible path for I if and only if
the optimal path for I ′ has costs smaller then 2.

s′ s

t

G

000

22 2

(0, 0)(0, 0)(0, 0)

(2, 2)(2, 2)(2, 2)

(0, 1)

(0, 1)

(1, 0)

(1, 0)(1, 0)

(1, 0)

Figure 2.2. In the given Path with Forbidden Pairs instance
the red nodes and the blue nodes are the forbidden pairs.

If there exists a feasible path p in I, then the path p′ using the lower arcs of the
chain and the arcs of p from s to t has at most costs of 1: the first stage costs are
0, and in every scenario, the path p′ can exchange the k lower arcs for the k upper
arcs of the chain. Hence, in this part the costs are 0. Since p does not contain a
pair {ai, bi}, in every scenario the costs for p′[s,t] are smaller then two.

On the other hand, every path with costs smaller then 2 has to use the k lower
arcs in the chain and recover theses arcs in every scenario. If the optimal path p′

has costs smaller then 2, then it can not contain a forbidden pair {ai, bi}. Otherwise
the scenario costs of p′ in the scenario Si are greater or equal to 2. Due to this gap
there exists no approximation algorithm with a factor γ < 2, unless P = NP. �

If k is part of the input, however, the decision version of the k-Arc-RRSP is NP-
complete. For the optimization version no approximation algorithm exists, unless
P = NP. This is due to a reduction from 3SAT, in which a feasible assignment to
a given 3SAT instance exists if and only if an optimal solution of the constructed
k-Arc-RRSP instance has total costs of 0.

Theorem 2.3. The k-Arc-RRSP with one scenario, cD, cS ∈ {0, 1} and k ≤
1
4 |V (G)| is strongly NP-complete. No efficient approximation algorithm exists,
unless P = NP.
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Proof. We reduce from 3SAT. Let I be an instance of 3SAT with x1, . . . , xn

variables and C1, . . . , Cm clauses,

Cj = yj1 ∨ yj2 ∨ yj3

and w.l.o.g. n = m.
The graph G′ of the k-Arc-RRSP instance is composed of three parts: the

variable part, the clause part and the connecting part. In the variable part we
introduce for each variable xi two nodes si and ti, which are connected by two
paths of length two (Fig. 2.3). We call the node in the upper path the xi docking
node and the node on the lower path the xi docking node. Furthermore, the nodes
ti and si+1, i = 1, . . . , n − 1, and tn with t are connected via an arc, while s is
connected with s1 via a path of length 5. All arcs in the variable part get costs of
(cD, cS) = (0, 1).

s t

v1
u1

s1 t1

a11

a12

a13

x1

x1

(1, 0) (1, 0)
(0, 0)

(0, 1) (0, 1)

(0, 1)

(cD, cS)

Figure 2.3. The lower part of the graph represents the variables
of I, the upper part its clauses. The dashed arcs form the cycle
C[a12, z12] for the clause C1 = x2 ∨ x1 ∨ x3, i.e., z12 = x1, and the
literal arc a12.

The clause part of G′ contains for every clause Cj two nodes vj and uj, which
are connected via three paths of length 3. We call the middle arc aj` in the `th

path the (j, `)-literal arc. The nodes uj and vj+1, j = 1, . . . n− 1, s and v1, un and
t are connected. The literal arcs have a cost structure of (cD, cS) = (0, 0), while all
other arcs in the clause part of G′ have costs of (1, 0).

The last part, the connecting part of G′, connects the clause part with the
variable part. In general we define the cycle C[a, b] with a = (u, v) being an arc
and b being a node as the cycle (b, u) ∪ a ∪ (v, b) of length 3. The connecting part
of G′ consists of all cycles C[aj`, zj`] with aj` being the (j, `)-literal arc and zj` the
yj` docking node, j = 1, . . . , n and ` ∈ {1, 2, 3}. The arcs in the connecting part,
besides the literal arcs, get costs of (cD, cS) = (0, 1). Hence, the graph G′ contains
12 · n + 6 nodes and 21 · n + 6 arcs. For k ≤ 1

4 · |V (G′)|, we are allowed to change
the first stage path p1 by at most 3n + 1 arcs, as soon as the scenario costs reveal.

An optimal solution to I ′ with total costs 0, i.e., two (s, t)-paths p1 and p2 with
|p2\p1| ≤ 3n + 1, exists if and only if I is a yes-instance.

Let (p1, p2) be an optimal solution with total costs 0. Since p1 has first stage
costs of zero, it just contains arcs of the variable part and of the C[aj`, zj`] cycles.
Therefore, it crosses for every variable xi either the xi docking node or the xi

docking node. We define an assignment x according to p1 by

xi =

{

true if p1 crosses the xi docking node

false if p1 crosses the xi docking node
.
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The path p2 just crosses arcs in the clause part of G′ (otherwise it induces
recovery costs greater than 0). Since p2 is a simple path, it has a length of 4n + 1
and contains exactly n literal arcs. The only arcs in the clause part of G′ with first
stage costs of 0, are the literal arcs. Therefore, p1 has to crosses for every clause
Cj one literal arc aj`, ` ∈ {1, 2, 3}. If the path p1 contains a literal arc aj`, then it
also crosses the yj` docking node. Hence, x verifies every clause Cj , if (p1, p2) have
total costs of 0.

Let now be x an feasible assignment to I. We define the first decision path p1 in
the following way: If xi = true, the path p1 contains the xi docking node and all
cycles C[aj`, zj`] with yj` = xi; If xi = false, the path p1 contains the xi docking
node and all cycles C[aj`, zj`] with yj` = xi. This path is well defined, has first
stage costs of 0 and crosses one literal arc aj` for each clause j. In addition, any
simple (s, t)-path p2 in the clause part containing those literal arcs is a feasible
recovery path of p1 with recovery costs 0. Therefore, a feasible solution (p1, p2)
with total costs 0 exists in I ′, if I is a yes-instance. �

Interval Scenario Sets. Obviously the k-Arc-RRSP with interval scenario sets
is equivalent to the k-Arc-RRSP with one discrete scenario, namely Smax with
cSmax

a = ca. Hence, the problem can be reduced to finding a fist stage path p and a
recovery path p′ with |p′\p| ≤ k minimizing c(p) = cD(p) + cSmax(p′).

As a consequence of Theorem 2.3 the k-Arc-RRSP problem with interval sce-
narios is inapproximable for k being part of the input. Nevertheless, by restricting
the instances to series parallel graphs, the k-Arc-RRSP with SI can be solved in
polynomial time. Let G be a series composition of G1 and G2, two series parallel
graphs. Any optimal solution in G using k arcs as recovery consists of an optimal
solution to G1 using i arcs as recovery and an optimal solution to G2 using j arcs as
recovery with i+ j = k. If G is a parallel composition of G1 and G2, then either the
optimal first stage path p and its recovery path p′ are both part of G1 (or G2), or
p is in Gi and p′ in Gj , j 6= i. In the second case, p is a shortest path according to
cD and p′ is a shortest path according to cSmax with a maximal length of k arcs. A
decomposition of a given series parallel graph into parallel and series compositions
starting from simple arcs can be computed in linear time.

Theorem 2.4. An optimal solution of an k-Arc-RRSP with SI can be calculated
in polynomial time on series parallel graphs.

Γ-Scenario Sets. Considering the k-Arc-RRSP with Γ-scenario sets the com-
putation of the robust recovery costs for a given path p is already NP-hard, i.e.,
computing maxS∈S minp∈Pk

p
cS(p) with Γ scenarios. We call this problem the Max-

Scenario-problem, which is a sub-problem of the recoverable robust shortest path
problems.

Definition 2.5 (Max-Scenario-Problem). Let G = (V, A) be a directed graph,
s, t ∈ V , and let S be a set of scenarios each defining a cost function cS : A →
R≥0. The value value(S) of a scenario S is determined through the shortest path
according to cS , i.e.

value(S) = min
p∈P

cS(p).

An optimal solution to the Max-Scenario-problem is a scenario S ∈ S with a max-
imal value.

The Max-Scenario-problem is easy to solve for discrete scenarios and interval
scenarios. For Γ-scenarios the problem is similar to the discrete time-cost tradeoff
(DTCT) problem with negative processing times and the goal to maximize the
makespan. The proof for the NP-hardness of the DTCT [3] can be transferred to
the Max-Scenario-problem with SΓ.
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Theorem 2.6. The the Max-Scenario-problem with Γ-scenarios is NP-complete.

Proof. In polynomial time the feasibility of any scenario can be tested and its value
value(S) can be computed. Therefore, the decision version of the Max-Scenario-
problem is in NP.

We reduce the NP-hard exact-one-in-three 3SAT problem [8] to the Max-
Scenario-problem with SΓ. Let I be an exact-one-in-three 3SAT instance with
x1, . . . , xn variables and C1, . . . , Cm clauses. Each clause Cj consists of three literals
yj1, yj2, yj3 ∈ {x1, x1, . . . , xn, xn}, i.e.,

Cj = yj1 ∨ yj2 ∨ yj3.

W.l.o.g. xi or xi is contained in a least one clause. A feasible solution to I is a
vector x ∈ {true, false}n, such that exactly one literal in every clause is fulfilled with
true. We construct a Max-Scenario-instance I ′ with Γ-scenarios, i.e., we define a
graph G, lower and upper cost-bounds and Γ. We start with the graph G. For each
variable xi the graph G contains a fork Gxi

with si = s, the origin node in G. A
fork is a graph Gxi

defined by three arcs ai, axi
, axi

and four nodes si, yi, vxi
, vxi

,
with ai = (si, yi), axi

= (yi, vxi
) and axi

= (yi, vxi
). The arcs ai and axi

are block-
arcs. A block-arc (v, w) is an arc representing M parallel (v, w) arcs each having
the same properties, e.g., the lower and upper cost-bound. We call ai the handle
of a fork, axi

the true arm of a fork and axi
the false arm of a fork (Fig. 2.4).

s
t

2

[0, 2]

[0, 2] [0, 4]

an axn

axn

block-arc

Figure 2.4. The arcs an, axn
and axn

form the fork Gxn
. For

every clause Cj , there exist three clause-arcs aj1, aj2 and aj3.

Furthermore, G has three parallel arcs aj1, aj2 and aj3 for each scenario Cj . Each
arc represents a true assignment for Cj , where for aji the ith literal is true. We
call those arcs the clause-arcs. Each clause-arc is connected with t, the destination
node in G. We finish the construction of G by defining the arcs between the fork
arms and clause-arcs. Let aji be a clause-arc to the clause Cj = yj1 ∨ yj2 ∨ yj3.
For ` 6= i and yj` = xk, we connect the true arm of the fork Gxk

with ajk and
if yj` = xk we connect the false arm of Gxk

with aji. For ` = i, we add an arc
between the true arm of Gxk

and aji if yij = xk. If yij = xk, we connect the false
arm of Gxk

with aji (Fig. 2.5).
We continue with the upper and the lower cost bounds in G. The handles, the

true arms and the clause-arcs get upper cost bounds of 2 and the false arms get
bounds of 4. Furthermore, the lower bounds of the true arms are set to 2, i.e., the



RECOVERABLE ROBUST SHORTEST PATH PROBLEMS 9

costs of those arcs are not subject to uncertainties. Every other cost bound is set
to 0 (Fig. 2.4). Note that the size of G is polynomial in the input for M = 2m+ 1.
We set Γ = M · n + 2m.

We will prove, that there exists a Γ-scenario S∗ with value(S∗) = 4 in I ′ if and
only if there is a feasible solution for the instance I.

Let x∗ be a feasible solution to I. We define the cost function of S∗ for all arcs
with uncertainty in the following way: If x∗

i is true, S∗ assigns upper costs to the
handle of Gxi

and lower costs to the false arm. If x∗
i is false, the false arm gets

the upper costs and the handle the lower costs. Note that any (s, t)-path already
has a length of 2 due to this cost assignments. Since x∗ is a feasible solution, in
every clause Cj , there exists exactly one literal i(j) ∈ {1, 2, 3} which has a true
assignment. Scenario S∗ puts the costs of all clause-arcs aji with i 6= i(j) to their
upper bounds and leaves the costs of aji(j) at the lower bound (Fig. 2.5). In total
S∗ changes n block-arcs and 2m clause-arcs, i.e., n · M + 2m arc costs. Therefore,
S∗ is a Γ-scenario. It remains to show that any shortest path in G with cS∗

has a
length of 4.

s

t

y1

y2

y3

0

0

0

0

2

2

2

2

2

2

2

4

aj1

aj2

aj3

G cS∗

Figure 2.5. This graph G is constructed for the instance I with
C1 = x1 ∨ x2 ∨ x3. The scenario S∗ to a feasible solution x∗ =
(true, true, false) has value(S∗) = 4. In Cj the first variable x1

verifies the clause. Therefore, the costs of aj1 are not raised.

Assume that there exists a path p with costs of 2. Then p has to cross a clause-
arc aji(j), since all paths to a clause-arc have already a length of 2. If yji(j) = x`,
then x` has a true assignment. Therefore, any path traversing the true arm of Gx`

has, due to the definition of S∗, length of 4 or more. The same argument works
for yji(j) = x`. If yji = x` for i 6= i(j), then aji(j) is connected to the false handle
of Gx`

. Since the literal yji is false, the variable x∗
` is set to false. Therefore, any

path crossing this arm, has length of at least 4. The same conclusions are valid for
yji = x`. Hence, paths traversing aji(j) have already a length of 4 before they pass
the clause-arc. This is a contradiction.

Let S∗ be a Γ-scenario in I ′ with value(S∗) = 4. Before we start with a con-
struction of x∗, we need some observations.

1. Observation : The scenario S∗ assigns in every fork exactly one block-arc
to the upper cost bound.

Proof : Assume that there is a fork Gx`
in which no block-arc is assigned to

c. Then in the handle block-arc and in the false arm block-arc exists an arc with
costs of 0. An (s, t)-path traversing these two arcs has at most costs of 2. This is
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a contradiction to value(S∗) = 4. Since 2m < M , at most n block-arcs can have
upper bound costs. 4

2. Observation : Exactly two clause-arcs of each clause are moved to their
upper bounds.

Proof : Assume there exists a clause Cj , in which only one clause-arc is changed
to the upper costs. Each one of the three clause-arcs aj1, aj2 and aj3 is connected to
the same forks Gxa

, Gxb
and Gxc

. Since in every fork one of the block-arcs has been
assigned to the upper costs, either a shortest path to the end of the true arm or a
shortest path to the end of the false arm has length of 4. The other one has length
of 2. Let aj1 w.l.o.g. be the one clause, in which the costs have been moved up.
Since the shortest path from s to t has a length of 4 and the other two clause-arcs
aj2 and aj3 have costs of 0, both must be connected to the three arms with the
higher costs (Fig. 2.6). This is a contradiction to the construction of G.

s

t

ya

yb

yc

2

2

2

2

0

0

4

4

4

aj1

aj2

aj3

Figure 2.6. If a scenario S moves just one of three clause-arcs,
then there exists an (s, t)-path in G of length 2.

Since S∗ already changed n ·M arc costs, there are just 2m possibilities left; two
for every clause. 4

Now we define a solution x∗ to the scenario S∗

x∗
i =

{

true if cS∗

(ai) = 2

false otherwise
.

For every clause Cj , there is one clause-arc aji(j) with costs 0. W.l.o.g. i(j) = 1.
If yj1 = x`, then aj1 is connected to the true arm. Every path crossing this arm
has to have a length of 4. Therefore, the handle arc a` has to have costs at the
upper bound and hence x∗

a = true. The same argumentation works for yj1 = xa.
Furthermore, for yji = xbi

or yji = xbi
with i ∈ {2, 3} the two variables are set

such that they neglect the clause. Hence, x∗ is a feasible solution.
This completes the proof of the NP-completeness of the Max-Scenario-problem.

�

In the following we denote the graph G of the reduction from an
exact-one-in-tree 3SAT instance I as GI . Furthermore, we just summa-
rize the most important facts about the reduction: Let I be an instance of
exact-one-in-three 3SAT. We can construct a graph GI with some cost un-
certainties modeled by the intervals [0, 2] and [0, 4] and cD = 0, such that
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(1) if there exists a scenario S ∈ S with minp∈P cS(p) = 4, the instance I is a
yes-instance

(2) if for every S ∈ S there exists a path with costs at most 2, the instance I
is a no-instance

(3) every simple (s, t)-path in GI has a length of 4.

In this reduction any scenario is allowed to change almost half of all uncertain
values to the upper interval costs.

Adding one (s, t) arc a1 to GI with fixed scenario costs 6, it is NP-hard to
compute the total costs of p = a1 for k ≥ 4: In this case Pk

p contains all (s, t)-paths

in GI . For any scenario S ∈ SΓ the shortest path according to cS has at most costs
of 4. Hence, it is better to switch in the second phase to this path. The total costs
of p are equal to 6 + 4 if and only if I is a yes-instance. Therefore, the costs of a
given path in the k-Arc-RRSP cannot be efficiently calculated, if P 6= NP. Since
for a decision problem in NP the costs of any feasible solution have to be calculated
in polynomial time, the decision version of the k-Arc-RRSP is not in NP.

Theorem 2.7. The decision version of the k-Arc-RRSP with SΓ is not in NP,
unless P = NP.

An exact algorithm for the k-Arc-RRSP optimization problem constructs an
optimal path, but not the total costs of this path. Nevertheless, the following
theorem holds:

Theorem 2.8. For constant k ≥ 4 the k-Arc-RRSP with SΓ is strongly NP-hard.

Proof. We reduce from exact-one-in-tree 3SAT. Let I be an
exact-one-in-tree 3SAT instance. To construct an instance of the k-Arc-
RRSP problem I ′, we add a simple (s′, s)-path p(s′,s) with length k − 3 and an
(s′, t)-path p(s′,t) of length k + 1 to GI (Fig. 2.7). The first stage costs adds costs
of 5 to the first k − 3 arcs on the p(s′,s) and the p(s′,t) path. The cost bounds on
the scenario costs are shifted by 4 for all arcs in GI , i.d. the costs of the fork arms
are changed from [0, 2] to [4, 6], from 2 to 6, from [0, 4] to [4, 8], the scenario arcs
are changed from [0, 2] to [4, 6], and all other arcs get costs of 4. The lower bounds
also define the first stage costs. Note that the scenario costs of any (s, t)-path
increases by 16 compared to the costs of this path with the original scenario costs.
The last tree arcs on the p(s′,t) path get costs of [4, 5] and the last arc the costs
of 4. The cost function and all scenario costs satisfy the α[0,1]-deviation condition
and the size of I ′ is polynomial in I.
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s′ t
s

GI

p(s′,t)

5

[4, 6]

[4, 6]

5

[4, 8]

6
4

4

[4, 5]

[4, 5]

[4, 5]

Figure 2.7. The first stage costs are defined by the lower bound
of the interval costs.

To show that the optimal solution of I ′ is the simple (s′, t)-path p(s′,t) if and
only if I is a Yes instance, we need three observations:

• Every simple (s′, t)-path has a length of k + 1 and first stage costs of c =
5 · (k − 3) + 16.

• Since k ≥ 4, the recovery of a simple (s, t)-path p 6= p(s′,t) contains all paths
crossing s.

• The recovery of p(s′,t) consists just of p(s′,t).

If I is a yes-instance, the (s′, t)-path p(s′,t) has total costs of c + 5 · (k − 3) + 19,
while any other simple path has recovery costs of c+5 · (k−3)+20. Any other first
decision G′ ∈ G has at least costs of (c + 4) + 5 · (k − 3)+ 19. On the other hand, if
I is a No-instance, any simple (s′, t)-path crossing s gets costs of c+5 · (k−3)+18,
while p(s′,t) has total costs of c + 5 · (k − 3) + 19 and any other subgraph in G has
costs of at least (c + 4)+ 5 · (k− 3)+18. Hence, p(s′,t) is an optimal solution of the
k-Arc-RRSP instance I ′ if and only if I is a yes-instance.

Note that for k being part of the input the problem is inapproximable due to
Theorem 2.3. �

3. The Rent-RRSP And Its Complexity

Discrete Scenario Sets. The Rent-RRSP with SD is weakly NP-hard for α > 0
and |SD| = 2 and strongly NP-hard for unbounded |SD|.
Theorem 3.1. The Rent-RRSP with SD is strongly NP-hard for α > 0 and
weakly NP-hard for |S| = 2.

The result of weak NP-hardness is due to a reduction from 2 − Partition,
similar to the reduction to Theorem 2.1. The reduction graph G is again a chain
graph with n links of two parallel arcs, where n is the number of elements of the
2-Partition instance. Scenario S1 assigns costs ai to the ith upper arc, 0 otherwise.
The other scenario S2 flips these costs, i.e., the upper arcs get 0 costs. Note that
for any scenario Si there exists a path pi with costs 0. Hence, for every path and
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every scenario the implementation costs are equal to 0. Therefore, the total costs of
a path p reduce to the rent costs c(p) = maxS∈S α ·cS(p). The strong NP-hardness
results from a similar reduction – this time from 3-Partition. Furthermore, we
can replace any arc a of costs ãi = max cSi

a by a path of length ãi. Hence the
problem remains strongly NP-hard for cS

a ∈ {0, 1}.
A lower bound on the approximation factor can also be achieved by a reduction

from Path with Forbidden Pairs.

Theorem 3.2. There exists no approximation algorithm with a factor γ < 2 for
the Rent-RRSP with SD and α > 0, unless P = NP.

Proof. Reduction from Path with Forbidden Pairs. Let I be an instance of
Paths with foridden pairs, i.e., G = (V, A) be a directed graph, s, t ∈ V , and
C ⊆ V \{t}×V \{t} a set of node pairs. For every pair {vi, ui} ∈ C we add an (s, t)-
arc ai to the graph G and a scenario Si to S to define a Rent-RRSP instance I ′.
The scenario Si has the cost function

cSi

a =

{

1 a = (vi, v) or a = (ui, v) ∀v ∈ V

0 otherwise.
.

Due to this construction, in any scenario there exists a path of costs 0. Hence the
total costs of a path reduce to

c(p) = max
S∈S

α · cS(p).

With the same arguments as in the proof to Theorem 2.2 a shortest path in I ′ has
costs less or equal α · 1 if and only if there exists a feasible path to I. Otherwise
the shortest path in I ′ has a length of greater or equal α · 2. �

Interval Scenario Sets. In the Rent-RRSP with interval scenario sets the sce-
nario Smax with cSmax

a = ca dominates all other scenarios. Hence, any shortest path
in terms of this cost function yields an optimal solution for the Rent-RRSP.

Theorem 3.3. Any shortest path in terms of the cost function c yields an optimal
solution for the Rent-RRSP.

Proof. Let pmax be a shortest path due to the cost function c and p ∈ P . Then

c(p) = max
S∈S

min
p′∈P

[αcS(p) + (1 − α)cS(p′) + (α + β)
∑

a∈p′\p

cS
a ]

≥ min
p′∈P

[αc(p) + (1 − α)c(p′)]

≥ c(pmax) = c(pmax)

�

Note that in this case the recovery option is not used at all.
Γ-Scenario Sets. As stated in Theorem 2.7 for the k-Arc-RRSP, in the
Rent-RRSP the total costs for a given path are strongly NP-hard to com-
pute. The reduction is based on the proof mentioned in Section 2 for solving
maxS∈SΓ

minp∈P cS(p). But even without returning the total costs for a given
path, the problem remains NP-hard.

Theorem 3.4. The Rent-RRSP with SΓ is strongly NP-hard for 0 < α < 2
3 and

3α + β < 2.

Proof. We reduce from exact-one-in-three 3SAT. Let I be an instance of that
problem with n variables and m clauses containing the variables xq, xr , xs which are
only used in the clauses Ca = xq ∨xr ∨xs, Cb = xq ∨xr ∨xs and Cc = xq ∨xr ∨xs.
These three clauses are also part of I. Note that the only assignment verifying those
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clauses is xq = true, xr = false and xs = false. Recall from the proof of Theorem
2.6, that for every variable, the graph GI contains a fork (Fig. 2.4). A fork consists
of two block-arcs, which represent M parallel arcs with the same cost structure as for
the block-arc, and one normal arc. One of the block-arcs and a normal arc represent
the two fork arms, the other block-arc the handle. Furthermore, GI contains for
every clause three parallel arcs, each one representing a feasible assignment to the
variables for this clause. We call those 3m arcs clause-arcs. Each one of those
clause-arcs is connected to three fork arms and to t. Remember that there exists
a scenario S̃ with a cost function such that the shortest path has length 4 if and
only if I is a yes-instance. The scenario S̃ is allowed to have at most a little more
than half of all arc costs at their upper bounds, i.e., n ·M + 2m. To this graph GI

we add an arc (s, t) with fixed costs c(s,t) = a and 6 > a > max{4, 6α +2 · (1+β)},
denoting (s, t) also as path p̃. Since 3α + β < 2, such a value a exists.

1. Observation : If I is a no-instance, then the total costs for every path
p ∈ P\{p̃} are bounded by

c(p) ≥ α · 6 + 2 · (1 + β).

Proof : We define the scenario Sp to a path p in the following way: raise the costs
of every clause-arc, of all block-arcs (i.e., all M parallel arcs) the path p is crossing,
and of all fork handles which are connected to the clause-arc p traverses. Altogether
scenario Sp changes the costs of at most 4M + 3m arcs. In this scenario the rent

costs of p are c
Sp

R (p) ≥ α·6 and for every other path we have at least implementation
costs of 2 · (1 + β). Since 3α + β < 2 and I is a no-instance, i.e., in every scenario
there exists a shortest path of length 2, the minimal rent and implementation costs
for Sp are α · 6 + 2 · (1 + β). 4

2. Observation : If I is a yes-instance, there exists a path p ∈ P\p̃ with total
costs

c(p) = max{α · 6 + 2 · (1 + β), 4}.
Proof : Consider the path p crossing the handle of Gxr

, the true arm of Gxr
and the

clause-arc aa1. We divide all scenarios S ∈ SΓ according to their cost assignment
to this path, i.e., SΓ,6 contains all scenarios with cS(p) = 6, etc. We assume there
exists a scenario S ∈ SΓ,6 with cS(p′) ≥ 4 for all p′ ∈ P\{p̃}. Hence, this scenario
defines a true assignment to I, as shown in the proof of Theorem 2.6. But the only
valid assignment sets xr = false. Therefore, S has to move the costs of the false
arm to the upper cost bound. Since S ∈ SΓ,6, at least one arc of the handle has
to be moved to the upper cost bound. This is a contradiction to observation 1 in
Theorem 2.6. Hence, for all S ∈ SΓ,6 there exists a path p′ with cS(p′) = 2.

If S ∈ SΓ,4, the total costs of p are 4 and if S ∈ SΓ,2, the total costs are 2. Thus,

c(p) = max{α · 6 + 2 · (1 + β), 4}.
4

3. Observation : If I is a no-instance, the path p̃ has total costs

c(p̃) = α · a + 2 · (1 + β)

and if I is a yes-instance, the total costs are

c(p̃) = min{a, α · a + 4 · (1 + β)}.
Proof : If I is a no-instance, in every scenario S exists a path p ∈ P\{p̃} with costs
2. Since a > α · 6 + 2 · (1 + β) but a < 6, the total costs of p̃ are

c(p̃) = α · a + 2 · (1 + β) < α · 6 + 2 · (1 + β) < a.

If I is a yes-instance, there exists a scenario S∗ with all paths p ∈ P\{p̃} having
at least costs of 4. A scenario with all of those paths having length of 6 does not
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exist. Therefore, the total costs of c(p̃) are

c(p̃) = min{a, α · a + 4 · (1 + β)}.
4

Due to the previous three observations we get: If I is a no-instance, p̃ is the
optimal solution, i.e.,

c(p̃) = α · a + 2 · (1 + β) < α · 6 + 2 · (1 + β) ≤ c(p) ∀p ∈ P\{p̃}.
If I is a yes-instance, due to the restrictions on a, the path p̃ is not an optimal
solution:

c(p̃) = min{a, α · a + 4 · (1 + β)}
> max{α · 6 + 2 · (1 + β), 4}
= c(p),

with p defined as in the second observation. Therefore, any exact algorithm for the
Rent-RRSP solves the exact-one-in-three 3SAT. �

Since an optimal solution cannot be constructed efficiently if P 6= NP, we are
interested in an approximation algorithm. An approximation algorithm constructs
a first solution p ∈ P and gives for every first solution p and scenario S ∈ S a
recovery strategy, i.e., a rule how to compute the second solution.

Algorithm 1 Optimal Recovery

Input: Directed graph G = (V, A), s, t ∈ V , ca and ca ∀a ∈ A, Γ, α, β.
Output: First decision path p and recovery strategy.
1. Step: Calculate p ∈ P with p = arg minp∈P maxS∈SΓ

cS(p).
Recovery: Choose the shortest path p′ ∈ P to the cost function

c̃a =

{

(1 − α)cS
a ∀a ∈ p

(1 + β)cS
a ∀a /∈ p

.

Theorem 3.5. The approximation algorithm Optimal Recovery calculates a solu-
tion p of total costs

c(p) ≤ min{(2 + β),
1

α
} · OPT .

Proof. The problem minp∈P maxS∈SΓ
cS(p) is a robust shortest path problem with

Γ-scenario sets. This problem is solvable in polynomial time by solving m + 1
shortest path problems [2].

Two lower bounds for the optimal solution are

OPT = min
p∈P

max
S∈S

min
p′∈P

[αcS(p) + (1 − α)cS(p′) + (α + β) ·
∑

a∈p′\p

cS
a ]

≥ α · min
p∈P

max
S∈S

cS(p)

and

OPT ≥ max
S∈S

min
p′∈P

cS(p′).

On the other hand, in each scenario S

cS
R(pA) ≤ α · min

p∈P
max
S∈S

cS(p) and cS
I (pA) ≤ (1 + β) · min

p′∈P
cS(p′).
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Therefore, the total costs for the path pA calculated by Algorithm 1 are bounded
by

c(pA) = max
S∈S

[cS
R(pA) + cS

I (pA)] ≤ OPT+(1 + β) · OPT = (2 + β) · OPT .

Since the recovery chooses the shortest path of the cost function c̃ defined in Algo-
rithm 1

c(pA) ≤ min
p∈P

max
S∈S

cS(pA) ≤ 1

α
· OPT .

Together those bounds give an an approximation factor of min{ 1
α
, (2 + β)}. �

For α ≥ 0.5 the approximation factor is tight. In the Rent-RRSP instance
given by a graph G composed of an (s, t)-arc with the cost-interval [0, 1], also
denoted as path p̃, and a path p from s to t with two arcs, each one having a cost
interval of [0, 0.5], and Γ = 2, the algorithm 1 could choose path p̃. This results in
total costs c(p̃) = min{1, α + (1 + β)1

2} whereas the path p yields the optimal costs

c(p) = max{α, 0.5}. For α ≥ 0.5 we get ALG ≤ 1
α
· OPT.

4. Conclusions

We considered two different settings for the recoverable robust shortest path
problem and investigated their complexity with respect to the most common sce-
nario settings in literature. For all those settings, and k being part of the input, the
k-Arc-RRSP problem is strongly NP-hard and not approximable, unless P = NP.
If k is constant, we introduce a polynomial algorithm to solve the problem with
interval scenarios on series parallel graphs. Whether a polynomial algorithm for
general graphs exists, or the problem is NP-hard with interval scenarios, should be
the focus of further research.

For Γ-scenario sets the k-Arc-RRSP and the Rent-RRSP are NP-hard opti-
mization problems. The strict robust version on the other hand, can be solved in
polynomial time. We give an approximation algorithm for the Rent-RRSP, which
chooses a robust shortest path as first stage decision. In the recovery stage either
this path or any other with less costs is taken. Therefore, in any application it is
better to use the recovery than to stay with the robust solution.
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