Article

Variational Bayesian Inference for Nonlinear Hawkes Process
with Gaussian Process Self-Effects

Noa Malem-Shinitski “*, César Ojeda 2 and Manfred Opper >3

check for
updates

Citation: Malem-Shinitski, N.; Ojeda,
C.; Opper, M. Variational Bayesian
Inference for Nonlinear Hawkes
Process with Gaussian Process
Self-Effects. Entropy 2022, 24, 356.
https://doi.org/10.3390/e24030356

Academic Editors: Udo Von Toussaint
and Philip Broadbridge

Received: 27 December 2021
Accepted: 22 February 2022
Published: 28 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Institute of Mathematics, University of Potsdam, 14476 Potsdam, Germany

Artificial Intelligence Group, Technische Universitdt Berlin, 10623 Berlin, Germany;
ojedamarin@tu-berlin.de (C.O.); manfred.opper@tu-berlin.de (M.O.)

Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham,
Birmingham B15 2TT, UK

Correspondence: malem@uni-potsdam.de

Abstract: Traditionally, Hawkes processes are used to model time-continuous point processes with
history dependence. Here, we propose an extended model where the self-effects are of both excitatory
and inhibitory types and follow a Gaussian Process. Whereas previous work either relies on a less
flexible parameterization of the model, or requires a large amount of data, our formulation allows for
both a flexible model and learning when data are scarce. We continue the line of work of Bayesian
inference for Hawkes processes, and derive an inference algorithm by performing inference on
an aggregated sum of Gaussian Processes. Approximate Bayesian inference is achieved via data
augmentation, and we describe a mean-field variational inference approach to learn the model
parameters. To demonstrate the flexibility of the model we apply our methodology on data from
different domains and compare it to previously reported results.

Keywords: Bayesian inference; point process; Gaussian process

1. Introduction

Sequences of self-exciting, or inhibiting, temporal events are frequent footmarks of
natural phenomena: earthquakes are known to be temporally clustered as aftershocks are
commonly triggered following the occurrence of a main event [1]; in social networks, the
propagation of news can be modeled in terms of information cascades over the edges of a
graph [2]; and in neuronal activity, the occurrence of one spike may increase or decrease
the probability of the occurrence of the next spike over some time period [3].

Traditionally, sequences of events in continuous time are modeled by point processes,
of which Cox processes [4], or doubly stochastic processes, use a stochastic process for the
intensity function, which depends only on time and is not effected by the occurrences of the
events. The Hawkes process [5] extends the Cox process to capture phenomena in which
the past events affect future arrivals, by introducing a memory dependence via a memory
kernel, which is also referred to as the causal influence function. When incorporating the
dependence of the process on its own history, due to the superposition theorem of the point
process, new events will depend on either an exogenous rate, which is independent of the
history, or an endogenous rate from past arrivals.

Originally, the dependence on history in the Hawkes process is assumed to be self-
excitatory, and the memory kernel is parameterized by an exponential or power law decay,
which results in a model with low flexibility. Furthermore, assuming only an excitatory
relation between the events does not hold for other phenomena we wish to model. For
example, inhibitory effects between neurons [6], and even self-inhibition [7], are crucial for
regulating the neuronal activity. Thus, the memory kernel should also include inhibitory
relations between the events and by doing so the intensity may become negative. To
ensure that the intensity function is non-negative, a nonlinear link function is applied on
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the memory kernel, and the resulting model is often referred to as a nonlinear Hawkes
process [8-10]. Theoretical results for nonlinear Hawkes processes have been developed
for many years and they include stability estimates [8] as well as convergence rates for
Bayesian estimators [11].

In this work, we present a Nonlinear Hawkes Process with Gaussian Process Self-
Effects (NH-GPS), which extends the class of nonlinear Hawkes processes. As the causal
influence between events can be either excitatory or inhibitory, we use the term self-effects
to refer to the influence of past events on future events.

We choose a semi-parametric approach, which avoids the limiting parameterization of
the memory kernel and the background rate. We assume a Gaussian process (GP) prior
to the exogenous events’ intensity and on the memory kernel, which allows also for an
inhibitory effect between the events. To ensure that the intensity function is non-negative
we use the sigmoid link function. This modeling approach is not only descriptive but
also allows us to obtain a fast inference procedure. The history of self-effects defines an
aggregated Gaussian process, and we perform the inference directly on this aggregation
rather than obtaining a posterior over each self-effect.

While highly flexible approaches to modeling the intensity function of nonlinear
Hawkes processes have been presented before, they mainly rely on deep neural network
solutions [12,13]. These approaches are hindered by the necessity of large datasets. In
contrast, our methodology retains modeling flexibility due to the nonparametric nature of
Gaussian processes, while being able to perform well when data are scarce.

Outline

In Section 2, we describe the NH-GPS model and emphasize how its structure allows
for efficient Bayesian inference. In Section 3, we describe the augmentation scheme and
derive the mean-field variational inference algorithm. In Section 4, we discuss related work
and describe how it relates to ours. In Section 5, we present the results of our experiments
both on synthetic data and different real-world examples, and compare it to existing work
when possible. In Section 6, we conclude by discussing our work and future research
directions.

2. Proposed Model
2.1. Classical Hawkes Process

Let 7; = [0,t] € R. We define the counting measure N(7;) as the number of arrivals in
the interval 7;. Furthermore, we define the history 7{; or the realizations of a given process,
as the set of arrivals in the interval T;, namely H; = {Ty, ..., TN(T,) T, € TINT_1 < T},
and T; corresponds to the time of arrival i. For a temporal point process, the counting
measure N(-) has an associated intensity defined as

/\(t) — AI%TO E[N(ﬂ-&-At)A; N(IE) |Ht] )

The intensity function may depend on the history of the process. An example of
such a process is the Hawkes process, or self-exciting point process [14], which defines
self-excitations [15] around exogenous events. Following Hawkes and Oakes [5], the intensity
of the Hawkes process is defined by

A(tHe) =s(t) + ) gt —ta), ey

ta<t

where s(t) is the base intensity of exogenous arrivals and g(t — t,) is the memory kernel, or
causal influence function, defining the change in the excitation or inhibition value following
each arrival. In the classical Hawkes process, causal influence of only excitatory nature
is allowed and the memory kernel is usually of the form g(t — t,) = e *!!~t) for an
exponentially decaying memory.
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2.2. Nonlinear Hawkes Process with Gaussian Process Self-Effects

In the classical Hawkes process, the memory kernel g in Equation (1) must be non-
negative, to prevent the intensity function from being negative. As a result the history
of the model has only excitatory effect on future events. We are interested in a model
that includes inhibition between events, and we release the constraint over g so it can be
negative, and define the following nonlinear intensity function

A(t) = Ao(¢(t)) )
o(¢(t) = 1+expl(—4>(t)) 3)
P(t) = S(t)+t2tg(f — tn) exp(—a(t — tn)). 4)

Here, we choose the sigmoid function to ensure that the intensity function A(-) is
non-negative. A is the intensity bound and we refer to ¢(-) as the linear intensity function.

We explicitly add the exponential decay to enforce the forgetting constraint, which
is essential for most realistic processes. Although we choose here a specific parameteri-
zation of the memory decay, one can choose other forms of memory decay with minimal
adaptation to the learning procedure of the model parameters.

Besides & and A, the functions s(-) and g(-) are the unknown parameters of the model
to be inferred from the data. In this paper, we will use a nonparametric Bayesian inference
approach based on the definition of a prior probability measure over these functions.
In contrast to alternative Bayesian models for Hawkes processes where the positive rate
function is directly modeled by a Dirichlet process, in our case we have to deal with random
functions which are not constrained to be positive. This suggests that we should use a
simple, but still highly flexible approach by modeling the two functions independently as
realizations of Gaussian random processes. We write symbolically:

s ~ GP(0,K®) ®)
g ~ GP(0,K$) (6)
t — t|?
K*/8(ty,ty) = ay/q - exp <—H122|> @)
Sy

The corresponding Gaussian prior measures are uniquely defined by the mean func-
tions (which we set to be equal to zero) and the second moments given by the covariance
kernel functions K8/. The latter are defined by the prior expectations

[s(t1)s(t2)] 8)
[g(t1)g(t2)] )

By a proper choice of kernels, we can encode further prior beliefs on typical realizations
of s(+) and g(-). Throughout the paper, we will work with the so-called RBF kernels from
Equation (7). This kernel corresponds to the prior assumptions that the Gaussian processes
are stationary (the kernels depend on time differences only) and that the functions s(-) and
<(+) are infinitely often differentiable. The kernels depend on two hyperparameters a and
o, which reflect the typical amplitude and length scale of the functions. The reasonable
values of these hyperparameters will also be inferred from the data.

Finally, we assume a prior distribution also on the upper intensity bound

A ~ Gamma(wg, Bo)-

and we identify the hyperparameters of the model as {cg, a¢, «, 05, as }.
In this work, we propose Bayesian inference for fitting the model to data. Due to the
nonlinearity over ¢(-), we are no longer able to easily utilize the branching structure of the
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Hawkes process, which allowed for the estimation of s(-) and g(-) [16,17]. Thus, a natural
solution is to perform the inference directly on ¢(-).

Next, we identify the prior over the entire linear intensity p(¢). From Equation (4) we
see that the linear intensity function ¢ is nothing but the sum of GPs, and as such it is also
a GP:

¢ ~ GP(0,K) (10)
Ky = Kj + Z Z K(tg]—t,',tk—tj eXp(—lX(tl — b+t — fj)). (11)
t,‘<tl t]'<tk
Multivariate Model

We propose an extension of the model to multiple dimensions. This is useful in
applications where different types of events are observed, or the events originate from
different processes that affect each other. We define an R-dimensional point process with
intensity in dimension r

A (t) =Ao(¢'(t))
R
Pr(t) =s"(t) + Z Z Grm(t — 1) exp(—arm(t — 7))

m=1 <t

where 1 is the time of event number # of type m. We assume that every dimension has its
own intensity bound A* and background rate s’ (-). The different dimensions interact with
each other via the self-effects term. g, (-) defined the effects of the events of type m on the
events of type r. As in the univariate case, this effect may change over time.

Given the observations, the different dimensions are independent of each other and we
can learn their parameters separately. Thus, in the following section we present the inference
for the univariate model, and the extension to the multivariate case is straight forward.

3. Inference

Conditioned on the intensity function A(-), the likelihood of observations {t1,...tx}
from a Hawkes process is [18]

N
({1, .. .t }|A()) = exp{— /OTA(t’)dt/} lle(t”)'

In order to obtain posterior distributions for the latent variables either in the form of
a Gibbs sampler or through approximate posteriors in variational inference, we require
certain computations that are not tractable or efficient under the current form of the like-
lihood. Similarly to previous work on Cox and Hawkes processes [17,19,20], we follow
an augmentation procedure. We do so via the introduction of auxiliary variables, which
expand the model to a different likelihood form. Under the marginalization of the afore-
mentioned auxiliary variables, the new likelihood will conserve the form of the original
model likelihood. The new form of the likelihood is constructed such that the computations
required for the inference procedure are either tractable, computationally fast, or both.

3.1. Model Augmentation

The first step we take in treating the likelihood function is using the Pélya-Gamma
(PG) augmentation scheme. Following Theorem 1 in Polson et al. [21], we can rewrite the
nonlinear intensity function as

o(g(t)) = /0 ~ /@91 PG (w; 1,0)dw (12)

2

Flawg(t) = -2 L 2 gy 13)
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As we augment each observation with a variable w,, from a PG distribution, the joint
likelihood of the observed events {t, } and PG variables {w, } is

p({t s {wnhale 1) = (14)
exp (— /O ! Ao (p(t) )dt) : ﬁ Aef (@it) PG (w,;1,0)

n=1

with
T
exp{— /O /\0(4>(t))dt} - (15)
T poo
exp(/o /0 APG(w;1,0) (1ef(w'_‘7’(t)))dwdt).

where we used 0(t) =1 — o (—t).
Next, we utilize the Campbell’s theorem [14], which states that for a Poisson process
I'T with intensity ¢

Ey (H exp(h(x))) =

xell
oxp (1= exp(h(x)) ol )

Looking at Equation (15), we identify x = (t,w) and ¢(t,w) = APG(w|1,0) is the
intensity of a marked Poisson process in 7 with marks w ~ PG(0,1). Furthermore, we
determine h(x) = f(w, —¢(t)). We can now rewrite the exponential in Equation (14) as

exp{ - /OT A(T(gb(t))dt} =E, (ﬁ ef(w""f”’)> (16)

for realizations {fy,, Wm }ML .

We substitute Equation (16) into Equation (14), which results in the full augmented
likelihood. Given the prior distributions over ¢ and A, we can now write the model’s
posterior distribution as

p({Em, @m}, {wn}, ¢, Al{ta}) & exp(=AT)x (17)

M . .
H /\ef(wm/*gb(tm))PG(wm; 1, 0) X
m=1

N
[T ref@ntta) PG (w,;1,0) x p(¢)p(A).

n=1

To summarize, we augment the model with two sets of variables—the PG variables
{wy}, which augment the actual realizations, and the tuples {f,, @}, which are the
realizations and marks of the auxiliary marked Poisson process.

As mentioned above, we intend to learn directly the linear intensity function ¢(-). This
allows us to utilize the mean-field variational inference previously introduced in Donner
and Opper [19] and Donner and Opper [22]. Next, we go through the steps of the algorithm,
and we refer the reader to the two papers mentioned above for further details. As a baseline
we compare the performance of the variational inference algorithm to a Gibbs sampler. The
details of the Gibbs sampler can be found in Appendix A and Algorithm 2.
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3.2. Variational Inference

In the variational inference [23,24] we define a tractable distribution family and adapt
it to approximate the posterior by maximizing the lower bound £(Q) defined below. This
procedure minimizes the Kullback-Leibler divergence between the unknown posterior and
the proposed approximating distribution. The posterior density is approximated by

P({fmr W}, {wn}, ¢, /\|{tn})
~ q1(P, A)q2 ({wn}nN:v {Em, wm}%:l)

This leads to the following lower bound on the evidence

1og{ p({bn, @n}, {wn}, @, Al {tn}) H
71(¢, A)QZ({wn}nNzy {Em, wm}%ﬂ)

Here, Q refers to the probability measure of the variational posterior. We can maximize
the bound by alternating the maximization over each of the factors [24]. The optimal
solution for each factor is

£(Q) = Eq

logq1 (¢, A) = (18)
]qu({wn }y:l,{fm,z?)m}%zl) [log P({Em’ wm}’ {wn}’ (P/ A’ {tn})]
log g3 ({wn }hoy, (s o }hy ) = (19)

qu(¢,/\) [log P({fmz wm}/ {wn}/ ¢, A {tn})]

Thus, to obtain the optimal distribution of one of the factors, one must calculate the
expectations of the logarithm of the joint distribution over the remaining factors in the
approximation, resulting in an iterative algorithm.

In the following subsections, we explicitly express the functional form of the optimal
distributions, and obtain the corresponding expectations required for updating the factors.

3.3. Optimal Q4
We find that the optimal gq; is factorized as
71(¢,A) = q1(A)q1(¢9)
The first factor is identified as a Gamma distribution
g1(A) = Gamma(a, B) (20)
N =« +N—|—/ Ay, (t, w)dtdw
0 TeW ﬂz( )
B=po+T

with known expectations.
The optimal distribution for the second factor is of the form

5 e~ U(9)+logp(9)
U(p) = 5 [ A0~ [ b(e)p()d
AW) = Tzt = ta) + {0 ()) g A (1)

b(t) = Z%(S(t —ty) — %A,ﬁ(t).
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Generally, the integrals above cannot be evaluated analytically. Thus, we resort
to another variational approximation, where we approximate the likelihood term, by a
distribution that depends only on a finite set of inducing point {c}, (¢c, ¢) = p(¢|dc)q(dc),

the ELBO is
g eflog<u(‘f)>p(¢\4’c)p(¢c)
4(¢c) ]

and we use the notation (p); = E,(p). The optimal §(¢.) is given by

T (¢e) o B Wioa p(g).

From here, using the known results of conditional GPs and sparse variational
GPs [25,26], we have

7 (¢c) = N(¢elpe, Zc) (21)
-1
S = Ux(t)TA(t)K(t)dHK;l]

e = ZC(/b(t)K(t)dt>

with K. the covariance kernel between the inducing points, () = k.(t) TKZ1 and k.(t) is
the kernel between the inducing points and another set of points (either the real data or
the integration points), such that k. (t) = (K(t,t1),...,K(t, 1)) with t1,...,#,...,t are the
inducing points. The mean and the variance of the sparse approximated GP are

{@(£)
o (9(t)

i (1) phe (22)
K(t, t) - K(t)ch(t) + K(t)TZcK(t) (23)

3.4. Optimal Q,

Similarly to the previous section, we find that the optimal g, is factorized as

q2 <{wn}nN:1/ H) =1q2 ({wn}yﬂ) 92 ({?m/ Zbm})

Given Equation (17), we define the first factor as

2 *
g5 (wy) < exp <—@n2>qlwn> PG(wy|1,0),

which corresponds to a tilted PG distribution

g3 (wn) = PG (wal1, \/(¢3)y: ) 4)

with known expectations [21].
The second factor takes the form

QE({fmzwm}%:l)

M ) 2V
. 1—_Ilexp (_ <¢2>€]1 _ <¢2>q1 wm) i exp((lru\*)cﬁ).
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It can be shown that this distribution corresponds to a Poisson process with intensity
function

Ag, (f,0) (25)

()
= exp((ln /\>lﬁ) ZCOSh(WPG (wm|1, <‘P2>q{>

where to simplify the notation we write ¢ instead of ¢ ().
The VI algorithm is summarized in Algorithm 1.

Algorithm 1: NH-GPS Variational Inference.

Input: Observed Events {tn}nN:p hyperparameters{cy, «, as, 05, xo, Bo }
Output: Mean and variance of ¢
Initialize. while £ not converged do

=

2 Estimate the mean and covariance of the GP over the inducing points as in
Equation (21)
3 Estimate the mean and variance of the GP over the observations as in

Equations (22) and (23)
4 Estimate the mean intensity bound as in Equation (20)

5 Estimate the mean and variance of the augmenting PG variables as in
Equation (24)

6 | Estimate the intensity function over the augmenting events as in Equation (25)

7 end

Hyperparameters Tuning

The Variational Inference does not tune the hyperparameters of the model. In order to
achieve a better model, we wish to tune the hyperparameters of the model and to improve
the likelihood of the model. Thus, we perform one step of gradient descent with respect to
the ELBO at each iteration. The derivatives of the ELBO are given in Donner and Opper [19]
(Appendix F). Notice that hyperparameter training, or tuning, is an implicit form of model
selection, in that we are selecting among different models through the evaluation of the
likelihoods.

3.5. Identifying the Background Rate and the Self-Effects Function

For some applications we may be interested in the specific shape of the background
rate function s and the self-effects function g. At a first glance it is not entirely clear how to
recover them from the inference, and we next describe how to do so.

Upon the convergence of the variational inference algorithm, we have an expression
for the posterior mean and variance of the linear intensity function ¢, as described in
Equations (22) and (23). It is useful to define

§(1) = g(t) exp (~at) 6)
and we similarly define
R8(t,t') = K8 (t,t') exp (—a(t —t')). (27)
We can rewrite the posterior mean in Equation (22) as

(@) =kt e+ Y Y Y RS(t—tit — 1) fil (28)

I t<tti<t
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where we defined jI. = K; . and used the fact that k.(t) can be written explicitly as

K+ Y Y RS(t—ti,ty—t)

<t tj<t[

with ki (t) being the kernel K° between data point f and all the inducing points.
From Equation (28) we can identify the posterior mean of s and g as

(s(t)) = k() " fic (29)
(g() =Y Y RE(t.t; — t;)fiy. (30)
1

ti<t
To identify the covariance of s and g we start with the posterior covariance of ¢
cov(p(t) 9 (t')) = E(t#) = K(t,t') — k() Bke(t) (31)
B=K.-!—K %K1
Using again the explicit form of k.(t) we rewrite the equation above as
£(t,t') =K + RS — K5, BK;, — 2K, " BRS, — R&" BRS, (32)

where K:/g is the kernel matrix between the data points, Kfc/ ¢ is the kernel between the
data points and the set of inducing points, and we defined

Re(tt) = 3 3 Relt—tit' = ty).

Li<tti<t/

From the expression above we can identify the marginal covariances of s and g sepa-
rately, as well as their joint covariance. To sample s and § from their posterior distribution
we would need the full expression of the covariance, including both the marginal and cross
covariances. For analyzing the model’s ability to recover s and § we are interested in the
marginal covariances, which can be expressed as

cov(s(t),s(t)) = Ki — K3, BK},, (33)
cov((t),§(t') = Kf =3 3 Ko(t:tr = ) BiuRe (¢, tn — ).
I,m f]'<fl
ti<tm

4. Related Work

Before presenting the results of the experiment for our model, we go through recent
developments in the field. We start with a short overview of Bayesian inference for Cox
and Hawkes processes and then focus on the three models to which we later compare
our approach.

Bayesian approaches to Cox processes model the intensity with a Gaussian process
prior, which is then passed through a link function to ensure its positivity. A common choice
of the link function is the exponential or the quadratic functions [27,28]. Another choice,
which is more relevant to our work, is the sigmoid link function, resulting in the sigmoidal
Gaussian Cox process. Inference in this model was first done empirically in study [29], as well
as with moment-based parameters estimators [30]. Markov chain Monte Carlo methods
were also developed [31], as well as variational inference [19].

In our work, we use a Bayesian semi-parametric inference approach. Earlier work,
which introduces Bayesian nonparametric approaches to point processes, includes, among
others, Ishwaran and James [32], who define kernel mixtures of Gamma measures for the
intensity, Wolpert and Ickstadt [33], who define inhomogeneous Gamma random fields,
and Taddy and Kottas [34], where joint nonparametric mixtures are introduced.
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As for the Hawkes process, first attempts to perform Bayesian inference relied on
the definition in terms of a marked Poisson cluster process and identifying the branching
structure of the self-excitation [16]. One model that uses this approach is the mutually
regressive point process (MRPP) [20]. MRPP is designed to model neuronal spike trains. In
this work, the classical self-excitatory Hawkes Process intensity function is augmented by
a probability term. This term induces inhibition when it is close to zero. In a sense, this
model includes two memory kernels—one excitatory only, which appears in the intensity
function, and another which can also induce inhibition in the augmenting probability term.
Different from the MRPP, in our work, we achieve such flexibility of the self-effects in a
simpler fashion by assuming the GP prior on the self-effects. As mentioned before, this
also allows for the type of effect to change over time, which does not appear in the work of
Apostolopoulou et al. [20].

A highly flexible approach to estimating the intensity function of the Hawkes process
relies on GP priors [35-37]. A recent adaptation of this approach is the model described
in Zhou et al. [17]. Similar to the model described in our work, the authors avoid the
limiting parameterization of the memory kernel by using GPs. Different from our work,
Zhou et al. [17] remain in the linear Hawkes process regime and assume that the effects
of past events are only excitatory, whereas our approach allows both excitatory and in-
hibitory effects.

The last variation we describe is a sigmoid nonlinear multivariate Hawkes process
(SNMHP) [38]. In this work, Zhou et al. describe a multivariate nonlinear HP, where, simi-
larly to our work, the chosen link function is a sigmoid; however, we chose a nonparametric
approach to model the causal influence function with a weighted mixture of basis functions
from a certain family. Similar to the MRPP model, SNMHP was designed to model neuronal
activity. A common assumption in this field is that each neuron is affected only by a subset
of the other neurons in the network. Zhou et al. incorporate this assumption directly to
their model by including a sparsity-inducing prior over the weights. In terms of inference,
Zhou et al. proposed an expectation maximization algorithm, whereas we propose a fully
Bayesian approach.

5. Experiments

In this section, we demonstrate the performance of our model and inference algorithm
in different fields. First, we establish that the variational inference algorithm described in
Section 3 is reasonable, using synthetic data as ground truth. Next, we apply the model
and the inference algorithm to real-world datasets in the field of neuroscience and crime
prediction. In these examples, the data are time series of events. We feed these events
to the model and perform inference to estimate the underlying intensity function. The
inferred intensity function can be used in different ways. For one, we use it to estimate the
performance of the model (by calculating the log-likelihood or other metrics) and compare it
to competing models. We also use it to simulate data from the model, which helps us assess
whether the model is a reasonable candidate to describe the data (see Section 5.2.2). In the
case of multivariate data, we use the inferred intensity function to assess the interaction
between the different components of the data (see Section 5.2.3).

All the algorithms and experiments for this work are implemented in Python and are
available online. To parallelize the computation over the available computing resources,
we used the JAX package [39]. In the Gibbs sampler, the sampling of the PG variables was
done using the PyPélyaGamma package [40]. The code and data are publicly available. See
the Data Availability Statement.

5.1. Synthetic Data

To assess the performance of the inference algorithms presented in Section 3, we
learn the parameters of the data generated by the model, namely the intensity function
and the intensity bound, and compare the learned parameters to the ground truth. To
generate data, we start by sampling the memory GP and the background GP, based on
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Equations (5) and (6). We generate events from the model using Poisson thinning [41].
First, we sample the number of candidates | ~ Poisson(AT), and sample candidate events
{t1,...t;} uniformly. Next, we chronologically iterate through the candidates and accept

them with probability w

The results for the synthetic data are included in Figure 1. The time window used
was one second, and the dataset includes 91 events. In panel (a), the comparison between
the ground truth predictive intensity and the one inferred by the learning algorithms
demonstrates the accuracy of the inference methods. We compare the ground truth to the
mean of the Gibbs samples, and the mean of the approximating distribution of the VI.

—— Ground Truth Gibbs
— VI I Observations
2
>
G >
(0] = 14
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Figure 1. (a) Comparison of the ground truth predictive intensity and the one sampled from the VI
and Gibbs inference. (b) Comparison of the ground truth linear intensity ¢(-) and the one learned by
the VI and Gibbs sampler. (¢) Comparison of the ground truth intensity bound and the one learned
by the inference, and the prior distribution. (d) The autocorrelation of the intensity bound Gibbs
samples. (e) The variational lower bound as a function of the algorithm iteration. (f) Comparison of
the test log-likelihood of the Gibbs sampler and the VI.

Panel (b) compares the ground truth value of the linear intensity and the one inferred
by the two learning algorithms. In this example, the linear intensity is negative in some
of the time points. Unlike for the predictive density, the Gibbs sampler is more accurate
than the VI. Panel (c) presents the inference results for the intensity bound. As expected,
the approximated distribution by the VI is much more narrow than the distribution of the
Gibbs samples.

Panels (d) and (e) show the autocorrelation of the intensity bound and the ELBO
through the Gibbs samples and VI iterations. In this example the convergence of the ELBO
is very fast, and the autocorrelation of the Gibbs sample vanishes only after a few thousand
iterations. We use the test log-likelihood per data point, averaged over ten datasets, to
quantify the performance of the two inference algorithms. The Gibbs sampler and the VI
achieve very similar results.

In the experiment presented above, the data were generated from the model, where s
and g were sampled from a GP. When dealing with real data, we cannot expect that the data
follow the model exactly. To demonstrate that our model can fit data that were not sampled
from it directly, we infer the intensity when the data is generated from a slightly different
model. In this case we take s(t) = B1cos (61t) and g(t) = B, cos (62t). The results can be
found in Figure 2. We perform the same analysis presented in Figure 1. Similarly, both the
Gibbs sampler and the VI algorithm recover the underlying intensity very well. Both inference
methods achieve comparable results in terms of log-likelihood averaged over 10 test datasets.
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As the VI algorithm achieves similar results to the Gibbs sampler in a much faster computation
time, in the next sections we present the results only for the VI algorithm.
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Figure 2. (a) Comparison of the ground truth predictive intensity and the one sampled from the VI
and Gibbs inference. (b) Comparison of the ground truth linear intensity ¢(-) and the one learned by
the VI and Gibbs sampler. (c) Comparison of the ground truth intensity bound and the one learned
by the inference, and the prior distribution. (d) The autocorrelation of the intensity bound Gibbs
samples. (e) The variational lower bound as a function of the algorithm iteration. (f) Comparison of
the test log-likelihood of the Gibbs sampler and the VI.

In Section 3.5, we discussed the identifiability of the background rate function and the
self-effects function from the inferred linear intensity. In Figure 3, we present the results
of the inference of these functions from synthetic data. Both functions are recovered from
the inference results of the linear intensity. In panel ¢, we can see that § goes to zero for
longer time differences, as expected from the integration of the exponential decay into the
self-effects kernel.
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Figure 3. (a) Comparison of the ground truth linear intensity and the one inferred by the VI algorithm.
(b) Comparison of the ground truth background rate function s and the one inferred by the VI
algorithm. (c) Comparison of the ground truth self-effects function g and the one inferred by the
VI algorithm.
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It is important to notice that the stationarity conditions for nonlinear Hawkes processes
are not sustained in our simulation procedure, as we ignore the past of the process, and
time t < 0. There are no events prior to the beginning of the simulation that will have
self-effects. In this case, we generate a transient version rather than the stationary version
of the process.

When t is big enough, we would expect to attain a stationary version of the process.
However, the full conditions of stationarity for our process are not well-defined, and they
are out of the scope of the current work. Nonetheless, conditioned on a given sample
from the GP, to attain stationarity one only needs to ensure that fooo g(t)dt < oo [8], as the
intensity is bounded by A.

Notably, our inference procedure is independent of the stationary nature of the driving
GP, which might itself not be stationary, depending on the kernels used to define it. This
implies that for these conditions to hold, we must study the process in a per-kernel basis.

5.2. Real Data
5.2.1. Crime Report Data

Our model assumes both inhibitory and excitatory self-effects, but it should also be
able to capture phenomena where only one of the two types of effects exist. To test this, we
fit our model to crime report data, where it is assumed that past events have an excitatory
effect on future events [42].

In criminology, it is known that crimes are clustered events. For example, burglars
will repeatedly attack nearby targets in order to take advantage of known vulnerabilities,
and gang-conflict shootings may incite or encourage retaliatory violence from the opposing
gang in the local territory of the rivals. The nature of such retaliatory events, as well as the
exploitation of resources by the burglars, are highly random and context-based phenomena,
since this will depend on the criminals, location, or gang at hand. Hence, a highly flexible
approach is required, and our methodology is able to express the inhomogeneity of each
crime pattern through the unknown function g and s.

We use the same two datasets described in Zhou et al. [17], and follow their data
processing procedure. Each dataset contains one type of crime, and so we use the univariate
version of the model.

An example of the results of the inference process is presented in Figure 4. It includes
the inferred linear intensity of the fitted model over the first 80 events in the Vancouver
crime dataset.
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Figure 4. Inferred linear intensity ¢ for the first 80 events in the Vancouver crime dataset. The linear
intensity is estimated only for the observed events and the dashed line between the dots is merely
linear interpolation.

Table 1 compares the test log-likelihood of our NH-GPS model to the one reported
in Zhou et al. [17]. The work of Zhou et al. [17] includes several inference methods and
we compare our results to the results of their reported mean-field variational inference
approach as it is the closest to our inference procedure. We perform the experiment five
times and report the mean and variance of the test log-likelihood. As expected, our model
performs similarly to the semi-parametric Hawkes process presented by Zhou et al. [17].
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Table 1. Crime report data test log-likelihood.

Dataset Zhou et al. (2020) [17] NH-GPS
Vancouver 453.11 +-8.94 453.8 £12.2
NYPD —200.7 £3.32 —202.8 +£7.54

5.2.2. Neuronal Activity Data

One of the motivating real-world phenomena behind our work is the spiking activity
of neurons, where it is known that the process has both self-excitatory and self-inhibitory
effects. Having a reliable model that captures the data accurately is useful to identify and
analyze different physiological mechanisms that drive the neuronal activity.

As an example for our model’s ability to capture neuronal activity we use the datasets
that were first presented in Gerhard et al. [43] (Figure 2b,c). One dataset includes ten
recordings from a single neuron in a monkey cortex, with a duration of one second each,
and the other includes ten recordings from a single neuron in a human cortex for a duration
of ten seconds each. In this work, point process generalized linear models were used to fit
the data, and the data generated from it yielded unrealistic spiking patterns. This hints the
need for a nonlinear model to describe the data.

The dataset described above were further analyzed in Apostolopoulou et al. [20]
(Figure 5), where the mutually regressive point process (MR-PP) is introduced. The fitted
MR-PP model produced realistic spike trains and we use it as a comparison for our model.

We fit the model to the multitrial single neuron datasets and infer the intensity of
the assumed underlying point process. Figure 5 presents the results for one trial from
each dataset. In both cases, the inferred linear intensity obtains both positive and negative
values, which implies both excitatory and inhibitory spiking patterns.
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Figure 5. Inferred intensity for single neuron data. Upper panel—results for trial number 9 from
the dataset recorded from monkey cortex. Lower panel—results for trial number 7 from the dataset
recorded from human cortex. The linear intensity is estimated only for the observed events and the
dashed line between the dots is merely linear interpolation.

In Figure 6, we assess the ability of the model to capture the data. The left column
includes the raster plot of the real data and the middle plot the raster plot generated from
the fitted model. Similarly to the real data, the generated data displays both excitation, in
the form of clustered events, and inhibition.
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Figure 6. Upper row—single neuron recordings from monkey cortex. Lower row—single neuron
recordings from human cortex. Left column—recorded data. Middle column—data generated from
the learned models. Right column—results of the Kolmogorov-Smirnov test. The NH-GPS generates
data that resembles the real data, and passes the goodness of fit test.

To quantify how suitable the model is to the data, we apply the random time change
theorem [18] to the inferred intensity and the experimental data. The theorem states that
realizations from a general point process can be transformed to realizations from a homoge-
neous Poisson process with a unit rate. Similarly to the work of Apostolopoulou et al. [20],
we further transform the exponential realizations to those from a uniform distribution,
following Brown et al. [44]. We then use the Kolmogorov—-Smirnov test to compare the
quantiles of the distribution of the transformed realizations to the quantiles of the uniform
distribution. The results of this test are displayed in Figure 6 in the right column. The
comparison relies on 95% confidence bounds, which are indicated by the dashed lines. The
model passes the goodness-of-fit test (p-value > 0.05), and the p-value is higher than the
one achieved by the MR-PP. We compare the reported p-value achieved by the MR-PP
model for the two datasets in Table 2. For both datasets, our model achieves higher a
p-value than the MR-PP.

Table 2. p-Value of the KS Test on neuronal activity data.

Dataset MR-PP NH-GPS
Monkey Cortex 0.103 0.23
Human Cortex 0.096 0.175

5.2.3. Multi-Neurons Data

Last, we demonstrate the performance of the multivariate version of our model. We
use the data presented in Zhou et al. [38]. This dataset includes spike trains simultaneously
recorded from 25 neurons in the primary visual cortex of an anesthetized cat.

One application of our model for the use-case of multi-neuron recording, is the analysis
of the interactions between the different neurons. As presented in Section 3.5, after fitting
the model to the data we can recover the function g, which describes the effects of past
events on future events. In the case of a multivariate model, this function is defined for
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every pair of dimensions, and describes the interaction between them. An example of this
can be found in Figure 7. On the left is the recorded data, and on the right is the interactions
between two neurons from the dataset.
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Figure 7. (Left)—the recorded activity of 25 neurons. (Right)—example of the recovery of the
influence function g between neuron number 5 and neuron number 7. Both excitatory and inhibitory
influence is observed.

Next, we compare the performance of our model to the model described in Zhou et al. [38],
by looking at the test log-likelihood.. We follow the same train-test split as Zhou et al. [38],
where the first 30 seconds of the recording are used as the training set and the last 30
seconds are used as the test set.

The test log-likelihood can be found in Table 3. We compare our model the the one from
Apostolopoulou et al. [20] (MR-PP) and the model presented in Zhou et al. [38] (SNMHP).
Our model achieves a higher test log-likelihood score than the competing models. This
demonstrates the power in the flexibility of our model and showcases its applicability also
to multivariate data.

Table 3. Test log-likelihood for the multi-neurons datasets for different models.

SNMHP MR-PP NH-GPS
—6.13 x 103 —59 x 10° —5.29 x 103

6. Discussion

In this work, we present the nonlinear Hawkes model with Gaussian process self-
effects (NH-GPS) and a Bayesian variational inference scheme to infer its parameters. We
motivated the development of the new model with the need for a flexible model that can
capture both exciting and inhibiting interactions between events, while maintaining the
ability to learn also when data are scarce. The model includes both a univariate and a
multivariate version.

Due to the structure of the model, we derive an inference algorithm without the
branching structure that is commonly used for Bayesian inference in Hawkes processes. We
propose a mean-field variational inference algorithm, which relies on a data augmenting
scheme. We show that the results of the variational inference are comparable with those of
a Gibbs sampler.

We demonstrate the performance of our model in four different real-world applications.
Due to the flexibility of our model, it achieves good results on data where events have only
excitatory effects and on data where events have both excitatory and inhibitory effects.

Different from recent work on nonlinear Hawkes process inference [38], our work
presents a two-fold advantage. The introduction of the Gaussian Process allows for a wider
range of applications as well as the Bayesian perspective, which lends itself to uncertainty
quantification, model selection, and regularization. All thought that nonlinear Hawkes
processes were ubiquitous in applications for finance, social dynamics, and neuroscience.
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Previous works are tailored with specific applications in mind, whereas our methodology
is of a general nature.

More importantly, the introduction of priors, as well as the GP, allows the practitioner
to easily introduce expert knowledge, as one is able to modify the behavior of the self-effects
by introducing different kernels.

In this work, we did not include results regarding the prediction abilities of the model,
as we leave it for future work. We do believe it is relatively simple to acquire in our model
and we briefly describe how to do so. The inference over the aggregated history function ¢,
which includes both the sum of the Gaussian process associated with the exogenous arrival
rate and the endogenous event rate, allows us to generate estimates for predictions. Once
we sample the value of ¢ conditioned on the previous observed events, we can estimate
the mean arrival time of the next event by estimating the integral E(t, 1) = [;° tP(t|H)
via numerical methods, such as Monte Carlo integration.

We would also like to expand our model to describe its spatio-temporal processes. Our
model can be directly extended to capture events in time and space, as the memory kernel is
reduced to a kernel function of a GP, which can be applied also to multi-dimensional data.
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Appendix A. Gibbs Sampler

We use a blocked Gibbs sampler, which groups two or more variables and samples
them at once. Thus, we need to identify the conditional posterior distribution of all the
relevant groups.

Appendix A.1. Conditional Distribution of the Upper Intensity Bound

The conditional distribution of the upper intensity bound is

P(M{fm/ W}, {wn}, ¢, {tn}) & fAT)\NJrMP(M

which we identify as a Gamma distribution

p (A, @}, {wn}, ¢, {tn}) x Gamma(a, B) (A1)
x=a0+N+M

p=po+T.
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Appendix A.2. Conditional Distribution of the Linear Intensity Function

The conditional distribution of the linear intensity function in the observed and
augmenting events is

p(onm|{Fm, @}, {wn}, ¢, {ta}, A)

N M
x exp ( ;f(wn,qm) + Elf(wm, —47m)> p(PN+Mm),

where we use the shortened notation ¢, instead of ¢(t,) and ¢y instead of
{{o(tn) N1, {9 () 1M, }}. Given Equation (13) in the main text, the likelihood term
in the posterior is a GP with mean

1 1 1 1"
#= (e oz 70
and diagonal covariance matrix
= Diag(ws, ..., wN, D1, Wpr)-
Given the GP prior over ¢ the conditional posterior is also a GP
¢N+m ~ GP(pmiN, Emn) (A2)

UMAN = EnemE
1 1, g1
Sy = KL

Appendix A.3. Conditional Distribution of the PG Variables
The conditional posterior distribution of the augmenting PG variables is

p({wn}, {m})
N 4)2
o J—[lexp(—znwn>
M 2
x PG(wn;1,0) [ ] exp(—q)zmzbm>PG(wm;1,0).
m=1

Using the definition of the tilted PG distribution [21], the posterior distribution for
these parameters is

wy, « PG(1, ¢y)
D & PG(1, ).

Appendix A.4. Conditional Distribution of the Augmenting Events

The conditional posterior of the augmenting events is proportional to

P (L {00, ()i, {won} o, 0,1

M
o [T Aef@m=¢m) PG (w,;1,0).

m=1

We recognize the conditional posterior with the unnormalized density of a marked
inhomogeneous Poisson process with intensity

Iy (@, f) = Aef @mw=9m) PG (w);1,0). (A3)
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The underlying density of the inhomogeneous Poisson process in the realizations
space T is given by

/W Ty (0, /) ddb = Ac(— ).

To sample the augmenting realizations, we use the thinning algorithm [45]. First, we
sample the expected number of events

J ~ Poisson(AT).

Next, | candidates are sampled uniformly over the realizations space 7. To evaluate
the intensity at the candidate points we need to evaluate the linear intensity ¢ in these
points, given its values in the real events and the previously sampled augmenting events.
This can be done using results from GP regression [46]

¢yinm ~ GP (1, K)
p =Ry Ny MRy ON M
K = K} = KN MRS K N
Once we have ¢}, we perform thinning—for each candidate f]- we generate a random

number 7; between 0 and 1. If r; < ¢(—¢;) we accept the candidate f;, otherwise we
discard it.

Algorithm 2: NH-GPS Gibbs Sampler

N
n=1’

Output: R samples of {f}M A, ona,
1 Initialize—M, ¢n M, {’?m}n]\fil randomly. for 7 < 0 to R do
2 | Sample w ~ PG(1,¢nim)
3 | Sample A ~ Gamma(«, B) as in Equation (A1)
4 Sample ¢n+am ~ GP(pn+m, ZN+Mm) as in Equation (A2)

Input: Observed events {t,} hyperparameters {o, &, as, 05, o, Bo }

5 | Sample {f}M  asin Section A 4
6 end

Appendix B. Hyperparameters Learning for the Gibbs Sampler

The augmented model is not conditionally conjugated with respect to the kernel
hyperparameters. This is usually solved by using MCMC within the Gibbs sampler ap-
proach [47,48]. This method applies rejection sampling, such as Metropolis—Hastings
(MH) [49] and Hamiltonian Monte Carlo (HMC) [50], to sample the hyperparameters, and
relies heavily on design choice. A wrong choice of the proposal distribution (for MH) or
the mass matrix (for HMC) may result in a very slow convergence, or prevent the sampler
from converging at all.

We choose the less traditional approach of taking a gradient step within the Gibbs
sampler. This is implemented in the following way—after sampling all the model parame-
ters from the conditional posterior distributions described above, we derive the negative
model log posterior with respect to the hyperparameters and take a step in the direction of
the negative gradient.

This approach can be developed further in the spirit of stochastic gradient descent
(SGD), meaning, rather than updating the hyperparameters after each iteration of the Gibbs
sampler, we perform several steps of sampling, take the gradient of the averaged posterior,
and update the hyperparameters following the averaged gradient.

We include bellow the derivatives with respect for the hyperparameters of the model
0 = og,,aq,0s.
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To learn the hyperparameters, we derive the posterior of the model, which appears in
Equation (17) in the main text. First, we notice that all of the hyperparameters appear in
the prior over the linear intensity

¢ K1

N =

1 _
log p(¢) o —Elogdet(K) —

and all of the hyperparameters appear in the prior kernel.
We next derive an entry in the kernel with respect to the different hyperparameters.

0K |t —ti ||?
das —exp<— o2

S

oK; t—t 12\ I =t |2
l’k:usexp(—| L=t >|| 1t

a0 o2 o3
oK & ¢
- = K 4 h

o t;l t];k it

X exp(—tx(ti —t 4+t = tk)> (tl — i+t — f])

oK x g
2 — K L

dag tigl tj<2tk i

| (1 —t) = (& — t;) Hz‘

3
Og

xexp(—a(ti—t +t—t))
We can plug these results to the chain rule, and we get

Viogp(¢) = —%trace(KAVK) + %QIJTIZ*VKK*HP.
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