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Abstract

Autonomous vehicles (AV) create new opportunities to traffic planners and policy-

makers. In the case of shared autonomous vehicles (SAVs), dynamic pricing, vehicle

routing and dispatch strategies may aim for the maximization of the overall system

welfare instead of the operator’s profit. In this study, an existing congestion pricing

methodology is applied to the SAV transport mode. On the SAV operator’s side,

the routing- and dispatch-relevant cost are extended by the time and link-specific

congestion charge. On the users’ side, the congestion costs are added to the fare.

Simulation experiments are carried out for Berlin, Germany in order to investigate the

impact of SAVs and different pricing setups on the transport system. For the pricing

setup, where SAV users only pay the base fare and there is no congestion charge added

to the user costs, the model predicts an SAV share of 17.7% within the inner-city Berlin

service area. The level of traffic congestion increases, air pollution levels decrease and

noise levels slightly increase in the inner-city area. The SAV congestion charge pushes

users from SAVs to the walk, bicycle and conventional (driver-controlled) private car

(CC) mode. The latter effect is avoided by applying the same congestion charge also

to CC users. Overall, this study highlights the importance to control both, the SAV

and CC mode in order to improve a city’s transport system.
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1 Introduction and problem statement

In the last few years, research on autonomous vehicles (AVs) has increased substantially

and several companies have started the development and real-world application of AVs

(Harris, 2015; Hsu, 2016). A broad market introduction of shared autonomous vehicles

(SAVs), also referred to as autonomous taxis or autonomous car-sharing, is expected in

the coming years. According to most studies, one SAV is capable to replace up to approxi-

mately 10 conventional (driver-controlled) private car (CC) trips at a high service quality;

the total mileage is found to increase caused by empty trips to pick up passengers (Spieser

et al., 2014; Fagnant and Kockelman, 2014; Martinez et al., 2014; Burghout et al., 2015;

Bischoff and Maciejewski, 2016a). In the case of pooling (ride sharing) and depending on

the fleet size, even more CC trips may be replaced by one SAV and total mileage may

decrease (see e.g. Burghout et al., 2015).

Analyzing the overall welfare effects of introducing an SAV mode needs to account for

both, the transport users and operators. On the operator’s side, several cost components

need to be considered, e.g. depreciation, fuel, cleaning, navigation fees, maintenance and

wear (see e.g., Bösch et al., 2018; Litman, 2017a). The estimation of average vehicle costs

is addressed in several studies with lower-bound estimates in the range of 0.30 to 0.38 EUR

per passenger-km (Bösch et al., 2018; Trommer et al., 2016) and upper-bound estimates

between 0.40 and 2.00 EUR per passenger-km (Litman, 2017a). Bösch et al. (2018) find

the average costs per passenger-km to be lower for SAVs compared to CCs or private AVs.

In contrast, Litman (2017a) estimates SAVs to cost more than CCs or private AVs.

On the users’ side, increased total mileage may translate into a higher level of traffic

congestion which increases generalized travel costs. The increase in total mileage may

result from empty pick-up trips, vehicle relocations (Fagnant and Kockelman, 2016), mode

shift effects and newly generated trips (Truong et al., 2017; Harb et al., 2018). On the

other hand, SAVs are expected to increase the level of comfort and, thus, to decrease

the marginal costs of traveling. The value of travel time savings (VTTS) is expected to

be reduced by 30-35% (Litman, 2017b; Childless et al., 2015). Furthermore, travel time

may be saved by eliminating parking search (Litman, 2017a). Also, a more fluent flow of

autonomous vehicles, platooning as well as intelligent routing may reduce traffic congestion

(Fagnant and Kockelman, 2015; Litman, 2017a). Shared vehicles are expected to reduce
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car ownership (Litman, 2017a) which translates into a reduction of daily fixed costs for

owning a CC (or a private AV). By avoiding the human error, AVs have the potential

to reduce accident costs (Fagnant and Kockelman, 2015; Litman, 2017a). In case SAVs

are considered to be non-electric vehicles, on the one hand, the increase in total mileage

may increase air pollution costs (Litman, 2017a). On the other hand, eliminated parking

search, reduced cold starts and environmental friendly vehicles (shortened vehicle lifespan)

may decrease air pollution costs (Fagnant and Kockelman, 2014). Furthermore, (S)AVs

may reduce the demand for nearby parking which allows for a new usage of public space

(Fagnant and Kockelman, 2015). On the other hand, additional space may be required

for pick-up and drop-off activities.

Considering mobility as a “normal good”, lower travel costs are expected to increase total

vehicle-kilometers, i.e. the number of trips and/or the trip distances (see e.g., Litman,

2017a). The expected increase in traffic may result in an inefficient usage of resources

and a loss in system welfare. This study investigates optimal price setting strategies for

SAVs and CCs in order to prevent an excessive use of transport resources. Following the

concept of Pigouvian taxation, the system welfare is maximized by internalizing so-called

external effects (Pigou, 1920). By adding the external costs to the generalized travel costs,

the decision-relevant travel costs are corrected and reflect the full costs associated with

the usage of transport resources. For decisions which routes to take, marginal external

costs vary with the road segment and time of day. Consequently, a first-best optimal

tolling scheme to optimize the road usage may be difficult to be fully understood by the

transport users, resulting in failing incentives and welfare losses. Furthermore, the required

tolling technology may be very costly. A more simplified second-best tolling scheme may

reduce tolling costs and be more comprehensible for the transport users, however, also

involve a loss in welfare compared to the first-best solution. A world with (S)AVs creates

new opportunities to traffic planners and policy-makers. Instead of providing incentives to

private car users by means of optimal pricing, traffic management may directly control the

AV operation. In particular, in the case of SAVs, dynamic vehicle routing and dispatch

strategies may aim for the maximization of the overall system welfare instead of the

operator’s profit. This offers a crucial advantage over existing pricing schemes for CCs. For

transport users’ decisions to use the SAV mode or an alternative mode of transportation,

trip-specific marginal external costs may be added to the base fare paid by SAV users.
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There are several studies in which the Pigouvian taxation principle is applied in the con-

text of road traffic (see e.g. Vickrey, 1969; Arnott et al., 1993; Verhoef and Small, 2004;

Kaddoura, 2015; Kaddoura et al., 2017b) or public transport (see e.g. Turvey and Mohring,

1975; Kraus, 1991; Kaddoura et al., 2015). External cost pricing in the context of innova-

tive mobility concepts, e.g. (S)AVs, is investigated to a lesser extent. Sharon et al. (2017)

present a welfare improving tolling approach and discuss its potentials in the context of AV

technology, i.e. computer-controlled route choice, however, neglect transport users’ mode

choice decisions. Most existing studies neglect transport users mode choice reactions and

assume a fixed amount of SAV trips (see e.g. Maciejewski and Bischoff, 2015; Bischoff

and Maciejewski, 2016a,b; Fagnant and Kockelman, 2016). In contrast, Liu et al. (2017)

account for transport users’ mode choice reactions and investigate different fare levels.

The SAV fares are, however, static and not related to the level of traffic congestion. Liu

et al. (2017) also discuss the impact of SAVs on air pollutant emissions and estimate a

reduction of emitted air pollutants, however, without looking into the spatial effects.

The present study picks up the lack of research and investigates optimal price setting

strategies for SAV and CC users. An agent-based simulation framework is used to model

transport users’ reactions to a newly introduced SAV mode in Berlin, Germany. Transport

users are enabled to adjust the mode of transportation, departure time and transport

route. To the best of the authors’ knowledge, this is the first study in which congestion

pricing strategies are investigated in the context of SAVs and transport users’ mode choice

decisions are explicitly taken into account. Furthermore, this study analyzes the impact

of SAVs and the pricing strategy on the environment, i.e. air pollution and noise levels,

and provides a detailed look into the mode switch effects.

The remainder of this paper is organized as follows. Sec. 2 briefly describes the agent-

based simulation framework and presents the SAV pricing methodology. Sec. 3 describes

the Berlin case study, simulation setup and experiments. Sec. 4 describes the simulation

results, Sec. 5 provides the discussion and Sec. 6 concludes this study.
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2 Methodology

2.1 SAV optimization approach

This study proposes an optimal SAV operation approach which builds on the Pigouvian

taxation principal, i.e. the internalization of congestion costs. The congestion charge is

computed for each road segment and 900 sec time interval. The computation of dynamic

congestion prices follows the iterative interval-based list pricing methodology described

in (Kaddoura and Nagel, 2019). A discrete Proportional Controller is applied which sets

the congestion charge proportionally to the average delay. The trip-specific costs are then

taken into account by the SAV operator and users:

• On the SAV operator’s side, the routing- and dispatch-relevant cost are extended by

the time and link-specific congestion costs.

• On the user side, the trip-related congestion costs caused by the SAV are added to

the base fare to be charged from the SAV user. The trip-related congestion costs

also include the external costs incurred during the pick-up trip.

SAV operators are allowed to adjust their vehicle dispatching and routing in order to avoid

the congestion charge. Transport users are enabled to adjust their mode of transportation,

their departure time as well as their transport route. In each iteration the road- and time-

specific congestion cost term is (re-)computed based on the updated delay level applying

the method of successive averages.

2.2 Agent-based transport simulation framework

MATSim overview The proposed optimization approach uses the agent-based and

dynamic transport simulation framework MATSim1 (Horni et al., 2016). In MATSim,

each transport user is modeled as an individual agent. Transport demand adapts to the

transport supply (road network, SAV availability, tolls, fares) applying an evolutionary

iterative approach involving the following three steps:

1. The traffic flow is simulated. SAVs and CCs interact on the same network applying

a queue model which accounts for dynamic congestion and spill-back effects.

1Multi-Agent Transport Simulation, see www.matsim.org
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2. Each agent evaluates his/her daily (travel) behavior taking into consideration (i)

the time spent performing an activity and (ii) travel-related costs, e.g. mode-specific

fixed cost and travel time costs, tolls, fares.

3. The agents are enabled to adjust their travel behavior, i.e. switch to another route

or mode of transportation.

MATSim SAV module The simulation of shared autonomous vehicles uses an exist-

ing module for dynamic vehicle routing problems (Maciejewski, 2016; Maciejewski et al.,

2017) and an existing module for the simulation of autonomous vehicles (Bischoff and

Maciejewski, 2016a). SAV users need to order an SAV once they have left their activity

location, wait for an available SAV to arrive, get on the SAV and get off the SAV at the

destination. SAVs interact with each other vehicles (SAVs and CCs) and may get stuck

in traffic.

3 Case study and simulation experiments

3.1 Case study: Greater Berlin area

The transport supply side contains all roads and public transit lines in the Greater Berlin

area. Travel demand consists of commuters and non-commuters using the car, public

transit, bicycle, ride and walk mode. The synthetic population is calibrated against real-

world traffic data, i.e. car counts, modal split infas and DLR (2010) and trip-distances

Ahrens (2009). To speed up computational performance, in this study, a 10% sample

is used and the SAV fleet size and road capacities are accordingly reduced. A detailed

description of the applied case study is provided in Ziemke et al. (2019). The Berlin case

study is publicly available on https://github.com/matsim-vsp/matsim-berlin (release 5.2).

3.2 SAV setup: Adding SAVs as an additional mode of transportation

A fleet of 10,000 SAVs is added to the existing modes of transportation and may be used for

trips starting and ending within the service area. The service area is set to the inner-city

Berlin area (see Fig. 1). In the first iteration, all vehicles are randomly distributed in the

service area, in all further iterations, vehicles remain on the link where the last passenger
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was dropped off. The vehicle fleet size is set in a way that there are no capacity-related

effects, i.e. there are always vehicles available to serve all passengers.

Figure 1: Case study: Greater Berlin Area. Black line: Berlin city boundary. Blue lines: Road

network, the line width corresponds to the relative traffic volume in the base case. Yellow area:

SAV service area.

3.3 Simulation experiments

The following simulation experiments are carried out.

• Base case (bc-0): There is no SAV mode and there is no congestion charge applied

to any transport mode.

• SAV base fare pricing (SAV-0): The SAV mode is added as an additional mode

of transportation (see Sec. 3.2). SAV users only have to pay the base fare. There is

no congestion charge applied to any transport mode.

• SAV base fare + external cost pricing (SAV-1): The SAV mode is added as

an additional mode of transportation (see Sec. 3.2). The congestion charge is applied

to the SAV mode only. That is, SAV users have to pay the base fare plus road and

time-specific congestion prices.

• SAV base fare + external cost pricing; CC external cost pricing (SAV-2):

The SAV mode is added as an additional mode of transportation (see Sec. 3.2). The

congestion charge is applied to both the SAV and CC mode. That is, SAV users

have to pay the base fare plus road and time-specific congestion prices and also CC

users have to pay road and time-specific congestion prices.
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3.4 Transport users’ choice dimensions

All transport users are allowed to change their transport routes and departure times in

order to avoid traffic congestion or toll payments. In addition, all users are allowed to

change their mode of transportation. For each sub-tour, i.e. trip chains starting and

ending at the same activity location, the transport mode may be changed to only car,

only bicycle (chain-based modes) or a combination of public transit and walk. The ride

mode is fixed, i.e. transport users are not enabled to switch from or to the ride mode.

Each agent’s choice sets is limited to 5 travel plans. All simulation experiments are run

for a total of 200 iterations. During choice set generation (first 160 iterations), in each

iteration the share of agents who change their mode, route and departure time is set to

10%, 5% and 5%. In the final 40 iterations, all agents select from their choice sets based

on a multinomial logit model.

3.5 Transport modes

CC (Conventional Car) CC users’ travel times result from the simulated traffic flows,

including the interaction of SAVs and CCs.

SAV (Shared Autonomous Vehicle) The SAV fleet size is set to 10,000 SAVs (scaled

up to 100%). The SAV service area is set to the inner-city Berlin area, a trip request

starting and/or ending outside the service area is rejected and the agent gets stuck. In

this study, the service does not allow for pooling (ride-sharing). In the first iteration, the

vehicles are randomly distributed in the inner-city Berlin area. Then, vehicles remain on

the link where the last drop off took place. The pick-up duration is set to 2 minutes,

the drop off duration is set to 1 minute. SAVs interact with other SAVs as well as CCs.

Assuming mixed traffic conditions, traffic flow parameters for SAVs are considered to be

equal to CC.

Public Transit Travel times within the public transport mode result from walking times

from and to the transit stop, waiting times and in-vehicle times based on the schedule. In

this simulation setup, buses and tramways do not interact with SAVs, CCs or bicycles.
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Walk, Bicycle, Ride The walk, bicycle and ride mode are simulated in a simplified

way, i.e. teleported from one activity to the next one. That is, transport users do not

interact with each other or users of other modes. For walk and bicycle, the travel times

are computed based on a mode-specific speed (walk: 4 km/h; bicycle: 12 km/h) and a

trip distance resulting from the beeline distance and a beeline distance factor (walk: 1.5;

bicycle: 1.4). For ride, the travel time is computed based on the least cost network route

taking into consideration the (congested) car travel time.

3.6 Cost parameters

System welfare is computed as

W = V +Π+ CCC
toll + CSAV o

toll , (1)

where V is the user benefits, Π is the profit of the SAV operator, and CSAV o
toll and CCC

toll

are the toll revenues earned by the regulator, e.g. the state. The user benefits are

V =
∑

i

(

Vi,activity · β
−1
money − Ci,travel

)

, (2)

where i denotes the person, Vi,activity is the positive utility from performing activities,

betamoney is the marginal utility of money and Ci,travel are the travel related costs com-

puted as

Ci,travel = cCC
trip · n

CC
i + cCC

km · dCC
i + cCC

hour · t
CC
i + CCC

i,toll

+ rSAV u
day + cSAV u

trip · nSAV u
i + cSAV u

km · dSAV u
i + cSAV u

hour · tSAV u
i + CSAV u

i,fare (3)

The profit Π is computed as

Π = CSAV u
fare − CSAV o

toll − CSAV o , (4)

where CSAV u
fare are the revenues, CSAV o

toll are the toll payments paid by the operator and

CSAV o are the SAV operating costs. Inserting Eq. 4 into Eq. 1 yields the following:

W = V + CSAV u
fare + CCC

toll − CSAV o

(5)

The mode-specific cost parameters are given in Tab. 1.
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Table 1: Cost parameters

CC trip-related fixed cost cCC
trip 1.5 EUR per trip (Ziemke et al., 2019)

kilometer-based operating cost rate cCC
km

0.20 EUR per vehicle-kilometer (Ziemke et al.,

2019)

private time cost cCC
h

= betaperf (opportunity cost of time) = 6.0 EUR

per person-hour (Ziemke et al., 2019)

total congestion and noise road charges CCC
toll

see Sec. 2.1

Walk trip-related fixed cost cwalk
trip 0.00 EUR per trip (Ziemke et al., 2019)

private time cost cwalk
h

= betaperf = 6.0 EUR per hour (Ziemke et al.,

2019)

Bicycle trip-related fixed cost cbiketrip 1.85 EUR per trip (Ziemke et al., 2019)

private time cost cbike
h

= betaperf = 6.0 EUR per hour (Ziemke et al.,

2019)

PT trip-related fixed cost c
fastPT
trip 0.60 EUR per trip (Ziemke et al., 2019)

private time cost c
fastPT
h

= betaperf = 6.0 EUR per hour (Ziemke et al.,

2019)

SAV users trip-related fixed cost cSAV u
trip 0 EUR per trip

daily profit for no longer owning a CC rSAV u
day

5.3 EUR (per SAV user who (i) used a CC in the

base case and (ii) has no other CC trip). In (Tab.

8-32 Planco et al., 2015), for an electric vehicle,

i.e. a Citroen C-Zero, vehicle-specific fixed costs

(without costs for the driver) [“Feste Kosten (ohne

Lohn)”] are 1,930 EUR per year; divided by 365

days per year results in 5.3 EUR per day.

private time cost cSAV u
h

= cCC
h

·70% (Litman, 2017b; Childless et al., 2015)

= 4.2 EUR per person-hour

user price (base fare) cSAV u
o = 0.35 EUR per km (estimated user costs based

on Trommer et al. (2016) and Bösch et al. (2018))

total fare payments CSAV u
fare

see Sec. 3.3

SAV operator total congestion road charges CSAV o
toll

see Sec. 2.1

total fare revenues CSAV u
fare

equal to the amount paid by the SAV users
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4 Results

4.1 Average tolls and fares

Tab. 2 depicts the resulting average toll and fare per trip and per kilometer traveled for

the SAV and CC mode. The SAV base fare amounts to 0.35 EUR/km and depending on

the simulation experiment a dynamic congestion charge (see Sec. 2.1) is added to these

costs. For CC users, the operating costs are set to 0.20 EUR per kilometer (see Tab. 1)

and only in simulation experiment SAV-2, a dynamic congestion charge has to be paid.

Low average CC toll payments per kilometer are explained by relatively uncongested, long-

distance trips starting and/or ending outside of Berlin. The congestion charges depend on

Table 2: Tolls and fares paid by CC and SAV users (trip-based analysis)

SAV-0 SAV-1 SAV-2

Base fare (SAV mode) [EUR/km] 0.35 0.35 0.35

Average fare (SAV mode) [EUR/km] 0.35 0.46 0.45

Average fare per SAV trip [EUR] 1.00 1.24 1.23

Average toll (CC mode) [EUR/km] 0.00 0.00 0.04

Average toll per CC trip [EUR] 0.00 0.00 0.44
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Figure 2: Trip frequency for the resulting SAV congestion charges

the level of traffic congestion. Consequently, during peak times and on heavily congested

road segments, the congestion charge is at a higher level. Fig. 2 depicts the trip frequency

for the resulting SAV congestion charges. For a few trips, SAV users only pay the base

fare and the congestion charge is zero. For approximately 95% of all trips, the congestion

charge ranges from 0.05 EUR/km to 0.30 EUR/km. For some trips the congestion charge

is even much higher and reaches up to a maximum of 7.16 EUR/km (Exp. SAV-1) or

5.03 EUR/km (Exp. SAV-2).
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4.2 Mode shift effects

The aggregated mode shift effect is depicted in Fig. 3. For each simulation experiment,

Table 3: Modal split analysis

bc-0 SAV-0 SAV-1 SAV-2

Total CC trip share [%] 43.2 42.5 42.6 39.4

Total PT trip share [%] 14.0 13.6 13.7 14.8

Total Bicycle trip share [%] 13.4 13.3 13.3 15.2

Total Walk trip share [%] 20.2 19.6 19.7 19.8

Total Ride trip share [%] 9.2 9.2 9.2 9.2

Total SAV trip share [%] - 1.8 1.5 1.6

SAV trip share within service area [%] - 17.7 14.8 15.8

SAV trips (upscaled to full population size) - 326,420 272,620 292,080

the mode-specific trip share is given taking into consideration all trips (i.e. trips inside and

outside of Berlin). The overall low total SAV trip shares are explained by the small service

area and relatively small number of SAV trips compared to the total trip number. With

respect to a total of 1,847,310 trips starting and ending within the SAV service area (see

Fig. 1), the SAV trip share amounts to 17.7% in experiment SAV-0, 14.8% in experiment

SAV-1 and 15.8% in experiment SAV-2.

Fig. 3 depicts the person-specific mode shift effects in two simulation experiments. The

line width is proportional to the number of users that have switched from one mode to

the other or that have used the same mode of transportation in both cases. All figures

refer to the potential SAV users, i.e. individuals with at least one trip starting and ending

inside the service area.

Comparing simulation experiment SAV-0 and bc-0 (Fig. 3a), the overall observation is

that the SAV mode attracts users from all possible modes of transportation (CC, PT,

bicycle, walk), in particular from the CC, walk and PT mode. A comparison of simulation

experiment SAV-1 and SAV-0 (Fig. 3c) reveals that SAV pricing pushes users from the SAV

mode to other modes. The simultaneous SAV and CC congestion pricing scheme pushes

transport users from both the CC and SAV mode to other modes, in particular to the PT

and bicycle mode. The disaggregated analysis reveals that there are always mode shift

effects into both directions, e.g. from the CC to the PT mode and vice versa. Comparing

experiment SAV-0 and bc-0, a closer look into the numbers reveals that there are slightly
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(a) bc-0 → SAV-0

(b) bc-0 → SAV-1
(c) SAV-0 → SAV-1

(d) bc-0 → SAV-2
(e) SAV-0 → SAV-2

Figure 3: Mode switch analysis (all trips by potential SAV users)
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more users switching from CC to PT and bicycle compared to the users switching from

PT and bicycle to CC. This indicates that the SAV mode is not only attracting transport

users from the CC mode but also makes the CC mode relatively less attractive and pushes

towards the PT and bicycle mode. A comparison of Fig. 3c and Fig. 3e reveals the change

in mode switch patterns in the different pricing experiments. Comparing experiment SAV-

1 and SAV-0 (Fig. 3c), the most dominant mode switch effect is from SAV (back) to CC

as well as to PT and walk. In contrast, comparing experiment SAV-2 to SAV-0 (Fig. 3e),

the most dominant mode switch effect from SAV to PT and walk. That is, the additional

pricing of the CC mode, makes the CC mode less attractive for users switching from the

SAV mode to alternative modes.

4.3 Travel time

For each mode switch effect described in the previous section, Fig. 4 depicts the change

in average beeline speed. The beeline speed is computed as the beeline distance between

the trip’s origin and destination divided by the travel time. A first observation is that
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bicycle → walk 
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walk → bicycle 
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(a) bc-0 → SAV-0
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SAV → SAV
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CC → PT
CC → CC

CC → bicycle
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(b) SAV-0 → SAV-1
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(c) SAV-0 → SAV-2

Figure 4: Change in average beeline speed per trip for each mode switch effect [km/h]; only

potential SAV users

changes in the beeline speed are mainly related to the mode switch type, i.e. the currently

and previously used mode of transportation. Transport users switching from the bicycle

and CC mode to the SAV mode decrease their beeline speed, whereas, users switching

from PT and walk to the SAV mode increase their travel speed (experiment SAV-0 vs.

bc-0, Fig. 4a). Changes in beeline speed of transport users remaining within the same

transport mode are much smaller compared to users switching between different modes.
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For users remaining within the CC and SAV mode, the change in average beeline speed and

travel time per trip are provided in Tab. 4 and may be used as an indicator for the traffic

congestion level. The introduction of the SAV mode is observed to increase the traffic

Table 4: Changes in average beeline speed and travel time per trip; transport users remaining

within their transport modes; only potential SAV users

mode switch type bc-0 → SAV-0 SAV-0 → SAV-1 SAV-0 → SAV-2

Change in average beeline speed [km/h]

CC → CC −0.16 (−1.13%) +0.02 (+0.15%) +0.56 (+4.03%)

SAV → SAV - +0.02 (+0.32%) +0.16 (+2.30%)

Change in average travel time [sec]

CC → CC +16 (+1.22%) -2 (-0.14%) -65 (-4.51%)

SAV → SAV - -4 (-0.41%) -25 (-2.54%)

congestion level (SAV-0 vs. bc-0). The pricing schemes counteract this effect and reduce

the traffic congestion level compared to the unregulated SAV market (increase in beeline

speed in SAV-1 vs. SAV-0 and SAV-2 vs. SAV-0). Applying the congestion charge to

the SAV mode only (experiment SAV-1) yields a very small reduction in traffic congestion

(increase in beeline speed below 1% for both the CC and SAV mode). In contrast, applying

the congestion charge to both the SAV and CC mode (experiment SAV-2) yields a very

strong reduction in traffic congestion.

Next, the change in average beeline distance of all potential SAV users is analyzed over

all mode switch types. Introducing the SAV mode increases the beeline speed by 0.82

km/h (+9.24%) compared to the base case (SAV-0 vs. bc-0). This may be explained by

the mode shift effect from slow modes (e.g. walk and PT) to the much faster SAV mode.

Simulation experiment SAV-1 reduces the beeline speed by 0.07 km/h (−0.72%) compared

to experiment SAV-0 since transport users are pushed (back) to slower modes. Simulation

experiment SAV-2 increases the average beeline speed by 0.05 km/h (+0.48%) compared

to experiment SAV-0 which may be explained by the increase in overall system efficiency.

4.4 Traffic volume

Fig. 5 depicts the changes in daily traffic volume (sum of CC and SAV) per road segment.

Overall, introducing the SAV mode (experiment SAV-0) increases the traffic volume in the

inner-city area compared to the base case (see Fig. 5a). Charging a congestion charge from
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(a) Exp. SAV-0 vs. bc-0.

(b) Exp. SAV-1 vs. bc-0. (c) Exp. SAV-1 vs. SAV-0.

(d) Exp. SAV-2 vs. bc-0. (e) Exp. SAV-2 vs. SAV-0

Figure 5: Change in daily traffic volume (sum of CC and SAV) per road segment

SAV users reduces this effect and fewer individuals use the SAV mode which translates

into a reduced number of SAV vehicles in the service area compared to experiment SAV-0

(see Fig. 5b and 5c). Additionally applying the congestion charge to CC users yields a

significant reduction in daily traffic volume on most road segments compared to the base
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case. However, on some road segments, in particular in the city center area, traffic volumes

increase (see Fig. 5d and 5e). Fig. 6 investigates this effect in more detail and depicts the

change in traffic volume for different vehicle types. This shows that the observed increase

 < -5000 

 -5000 to -2000 

 -2000 to -1000 

 -1000 to +1000 

 +1000 to +2000 

 +2000 to +5000 

 > +5000

(a) Change in CC

 < -5000 

 -5000 to -2000 

 -2000 to -1000 

 -1000 to +1000 

 +1000 to +2000 

 +2000 to +5000 

 > +5000

(b) Change in SAV

Figure 6: Change in traffic volume per vehicle type; Exp. SAV-2 vs. bc-0.

in daily traffic volume in the inner-city center area is caused by SAV operations. The

number of CC are observed to decrease for most road segments, also in the inner-city

center area which is explained by the overall reduction in CC users.

4.5 SAV performance

Fig. 7 depicts the SAV operation performance parameters during the course of the day.

In all simulation experiments, throughout the day, approximately half of the SAV fleet
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(c) Exp. SAV-2
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Figure 7: SAV time profile: Number of SAVs (10% sample size) per time of day. Green: stay and

wait for a trip request. Yellow: passenger drop off. Gray: occupied drive. Orange: passenger pick

up. Blue: empty drive.

is available and waits for a trip request. That is, there are no trip request rejections

caused by capacity constraint effects and waiting times are rather short compared to a

reduced fleet size. In simulation experiment SAV-0, the average waiting time per SAV
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trip amounts to 185 sec and the average in-vehicle time per SAV trip amounts to 740 sec.

A reduced number of SAV users and less traffic congestion translates into a decrease in

average waiting time (169 sec in experiment SAV-1; 170 sec in experiment SAV-2).

4.6 System welfare

Tab. 5 depicts the changes in system welfare compared to the base case (bc-0). System

welfare is defined as the sum of the travel related user benefits, monetary payments and

SAV operating costs. Environmental effects are separately analyzed in Sec. 4.7 and not

accounted for in the aggregated welfare analysis. In all simulation experiments with SAV,

Table 5: Aggregated results: Change in system welfare; comparison with the base case; upscaled

to full population size

Change in... SAV-0 vs. bc-0 SAV-1 vs. bc-0 SAV-2 vs. bc-0

travel related user benefits (incl. tolls/fares) [k EUR] 323.67 201.82 -2440.20

monetary payments [k EUR] 329.00 338.94 3590.01

change in SAV operating costs [k EUR] 389.85 303.33 331.76

system welfare [k EUR] 262.81 237.44 818.06

system welfare increases compared to the base case (bc-0). In simulation experiment

SAV-1, system welfare decreases compared to the unregulated SAV market (experiment

SAV-0). Regulating both the CC and SAV market (simulation experiment SAV-2) yields

the largest increase in system welfare.

4.7 Environmental effects

This section analyzes the air pollution, in particular nitrogen oxides (NOx) emissions

and noise (day-evening-night index, Lden) effects caused by road traffic. The air pol-

lution emission computation follows the methodology described in Hülsmann et al.

(2011) and Kickhöfer et al. (2013). The computation approach accounts for vehicle char-

acteristics (vehicle type, age, cubic capacity, fuel type etc.), dynamic attributes (parking

duration, distance travelled, speed, traffic state) and road types are used to get the cold

and warm emissions from HBEFA2 database. The computation of air pollution emissions

is based on the assumption that all CC have combustion engines and all SAV are electric.

2Handbook Emission Factors for Road Transport’, Version 3.2, see www.hbefa.net (INFRAS, 2010)
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For the propagation of air pollution to the the surrounding area, a Gaussian distance

weighting function is used (Agarwal, 2017, Appendix A). The noise computation fol-

lows the methodology described in Kaddoura et al. (2017a) which is based on the German

RLS-90 approach (‘Richtlinien für den Lärmschutz an Straßen’, FGSV, 1992) taking into

account the traffic volume, the share of heavy goods vehicles and the speed level. For

speed levels above 30 km/h, an electric vehicle is assumed to have an effect approximately

similar to a vehicle with a combustion engine. Therefore, the applied noise computation

does not differentiate between SAV and CC. The absolute environmental effect in the base

case (experiment bc-0) is shown in Fig. 8. Overall, along the inner-city motorway as well
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90 - 100
> 100
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> 100

Figure 8: Absoulte NOx and noise Lden levels; City center area

as main roads, absolute NOx and noise levels are much higher compared to areas along

smaller roads.

Impact on air pollution Fig. 9 depicts the changes in NOx levels resulting from the

different simulation experiments. In experiment SAV-0 some users are shifted from the CC

mode to the electric SAV mode (see Sec. 4.2). Consequently, NOx levels are observed to

decrease in the inner-city area (see Fig. 9a). In experiment SAV-1, a more expensive SAV

mode decreases the number SAV users, thus, the previous effect is reduced (see Fig. 9b)

andNOx levels slightly increase compared to experiment SAV-0 (see Fig. 9c). Additionally

applying the congestion charge to CC users significantly reduces the air pollution levels in

the entire Berlin area, in particular along the inner-city motorway and main roads as well

as in the inner-city center area (see Fig. 9d and 9e).

Impact on noise Fig. 10 depicts the changes in noise (Lden) levels resulting from the

different simulation experiments. Therefore, the increase in traffic volume (see Fig. 5a)
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(e) Exp. SAV-2 vs. SAV-0.

Figure 9: Change in daily NOx levels [kg per sqkm]; City center area

translates into slightly higher noise levels in the inner-city Berlin area (experiment SAV-0

vs. bc-0; see Fig. 10a). The logarithmic scale of noise yields a much higher elasticity for

roads with lower traffic volumes. Thus, experiment SAV-1 only has a minor effect on the

noise levels and changes in noise levels compared to experiment SAV-0 are indiscernible
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Figure 10: Change in noise (Lden; day-evening-night index); City center area

(see Fig. 10b and 10c). The large reduction in CC users in experiment SAV-2 yields a

strong reduction in noise levels compared to the base case (see Fig. 10d) and experiment

SAV-0 (see Fig. 10e) along several road corridors. Nevertheless, the increase in noise

resulting from the additional SAV traffic is only partly compensated and overall noise

levels still increase along minor roads in the inner-city area (see Fig. 10d).
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5 Discussion

In this study, the applied pricing scheme only accounts for the traffic congestion externality.

Further external effects such as air pollution and noise are analyzed, but not included into

the pricing. This could be easily changed if of interest. Adding noise damage costs to

the SAV pricing scheme for example would probably push traffic from minor roads in

residential areas to major roads, to less densely populated areas, or to other modes of

transportation (Kaddoura and Nagel, 2018).

The SAV fleet size is deliberately set to a very high level of 10,000 SAVs in order to

avoid rejections of trip requests caused by fleet size constraint effects. As shown in pre-

vious studies, above a certain threshold value, changing the vehicle fleet size only yields

a minor change in service quality, see e.g. Maciejewski and Bischoff (Fig. 5, demand-

supply-balancing strategy, 2015) and Bischoff (Fig. 6.1, 2019). Thus, reducing the vehicle

fleet size to the maximum level of simultaneously required vehicles (5,000−6,000 SAVs,

see Fig. 7) would not have a significant effect on the overall service quality and simulation

outcome.

The applied German RLS-90 methodology does not explicitly account for speed levels be-

low 30 km/h where engine noise dominates over rolling and aerodynamic noise and, thus,

the vehicle engine type may have a significant effect on the noise level. Considering SAVs

to be electric, the observed increase in noise levels caused by SAV traffic (see Fig. 10a)

may be overestimated, in particular along smaller roads with speed levels below or around

30 km/h. Further research is required to develop or apply a more suitable noise compu-

tation approach in order to correctly account for electric vehicles and predict the impact

on the environmental noise.

In the existing base scenario of the Greater Berlin area, daily mode-specific fixed costs such

as for owning a car or a public transit annual ticket are not explicitly accounted for. In

order to compensate for this, a reward for no longer owning a car was instead implemented

for the present study (see Tab. 1). Future base scenarios should rather include a separate

parameter for daily fixed cost if a certain mode is used at all. For the CC mode, the daily

cost of owning a vehicle may approximately be set to 5.3 EUR (Tab. 8-32, Planco et al.,

2015, see also Tab. 1 in the present study). For the public transit mode, daily monetary

costs may be set to the daily share of an annual ticket, e.g. 2.1 EUR (761.00 EUR annual
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ticket fare Berlin; divided by 365 days per year).

6 Conclusion and outlook

In this study, congestion pricing is applied to the shared autonomous vehicle (SAV) trans-

port mode. Several simulation experiments (see Sec. 3.3) are carried out in order to

investigate the effects of different pricing setups on the overall transport system and

the environment. In experiment SAV-0, SAV users only have to pay the base fare of

0.35 EUR/km. In experiment SAV-1, SAV users additionally have to pay a congestion

charge. In experiment SAV-2, both the SAV and conventional (driver-controlled) private

car (CC) users have to pay a congestion charge.

For SAV-0, where SAV users only pay the base fare of 0.35 EUR/km and there is no

congestion charge added to the user costs, the model predicts an SAV share of 17.7% within

the service area (inner-city Berlin area, see Fig. 1). This number is higher compared to

Trommer et al. (2016) who estimate an SAV trip share of 10% by the year 2035, however,

referring to all of Germany. Thus, a higher SAV trip share in an urban area seems plausible.

With congestion pricing, the SAV trip share amounts to 14.8% (experiment SAV-1; con-

gestion pricing for SAV users only) and 15.8% (experiment SAV-2; congestion pricing for

SAV and CC users) of all trips within the service area (inner-city center area).

Introducing the SAV mode yields an increase in traffic in the in the inner-city Berlin

area. Consequently, the level of traffic congestion increases. Since SAV are assumed to

be electric and CC to have a combustion engine, a mode shift from CC to the SAV mode

translates into lower air pollution concentrations in the inner-city area. In contrast, noise

levels slightly increase in the inner-city area, in particular along minor roads in residential

areas.

Applying a congestion charge to the SAV mode (experiment SAV-1) only slightly reduces

the level of traffic congestion compared to the case where SAV users only pay the base fare.

A significant reduction in travel time is only obtained in the case where the congestion

charge is applied to both the SAV and CC mode (experiment SAV-2). The latter pricing

scheme also significantly reduces air pollution levels in the entire Berlin area. Along certain

corridors, noise levels are observed to decrease, however, still increase along smaller roads
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in residential areas.

Overall, this study highlights the importance to control both, the SAV and CC mode,

in order to improve a city’s transport system. Charging congestion prices from both

SAV and CC users (experiment SAV-2) results in the largest increase in system welfare

and strongest reduction in environmental effects. Regulating no or only one transport

mode (experiments SAV-0 and SAV-1) increases system welfare compared to the base

case (bc-0), however, results in a lower system welfare compared to experiment SAV-2.

Charging congestion cost fees from SAV users but not from CC users (experiment SAV-1)

even results in a lower system welfare compared to the unregulated SAV and CC mode

(experiment SAV-0).

This study recommends pricing policies to develop integrated pricing schemes for all modes

of transportation, in particular the CC and the SAV mode. A fare above operating costs

will decrease the number of transport users switching from bicycle and walk to the SAV

mode which may be a desired effect. However, without an increase in costs for CC users,

a higher SAV fare also pushes users from the SAV to the CC mode. Furthermore, to

tackle the increase in traffic volume on minor roads in residential areas, SAV operators or

regulators should re-think door-2-door service, and instead possibly define virtual pick-up

points that are located conveniently for users and well accessible for SAV operators. Both

Berlkönig by BVG in Berlin and MOIA in Hamburg and Hannover show tendencies in this

direction.

Future studies will address the model’s sensitivity regarding changes in cost parameters,

e.g. the daily profit for no longer owning a CC (rSAV u
day ) and the value of travel time savings

for using the SAV (cSAV u
h ), as well as SAV operation parameters, i.e. the service area and

the SAV fleet size. Furthermore, existing studies on regulative measures, e.g. a ban on

private cars in the city center area (Bischoff and Maciejewski, 2016b), should be extended

and combined with different pricing schemes as well as analyzed with regard to mode

switch effects and the environmental impact.

Acknowledgements

A previous version of this paper was presented at the 6th Symposium of the European Association for

Research in Transportation (hEART 2017) in Haifa, Israel (September, 12th 2017). The authors wish to

thank William (Billy) Charlton for providing the visualization tool used to generate Fig. 3.

24



References

Agarwal, A. Mitigating negative transport externalities in industrialized and industrializing countries. PhD thesis,

TU Berlin, Berlin, 2017.

Ahrens, G.-A. Endbericht zur Verkehrserhebung Mobilität in Städten – SrV 2008 in Berlin. Technical report,
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