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. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Fredholm Properties of Unbounded Operators on Interpolation Spaces 37

3.1 The Operators S∆
0
, S∆

1
and S∆

Σ
. . . . . . . . . . . . . . . . . . . . . . . 37

3.2 S0, S1, S∆, SΣ and Unbounded Operators on Arbitrary Interpolation Spaces 40

3.3 Complex and Real Interpolation spaces . . . . . . . . . . . . . . . . . . . . 44

3.4 Unbounded Operators on Complex and Real Interpolation Spaces . . . . . 49

III



IV Contents

4 The Local Uniqueness-of-Inverse (U.I.) Properties 53

4.1 The Local U.I. Properties for Bounded Operators . . . . . . . . . . . . . . 54

4.1.1 The Local U.I. Property for the Complex Interpolation Method . . 54

4.1.2 The Local U.I. Property for the Real Interpolation Method . . . . . 61

4.2 The Local U.I. Properties for Unbounded Operators . . . . . . . . . . . . . 64

4.2.1 The Local U.I. Property for the Complex Interpolation Method . . 65

4.2.2 The Local U.I. Property for the Real Interpolation Method . . . . . 67

5 Example - Ordinary Differential Operators 71

5.1 Restricted, Minimal and Maximal Operators . . . . . . . . . . . . . . . . . 71

5.2 Restricted, Minimal, Maximal and Induced Operators . . . . . . . . . . . . 83

5.3 Fredholm Properties and Local U.I. Properties . . . . . . . . . . . . . . . . 85

List of Symbols 89

Bibliography 91



Preface

The present thesis generalizes the concept and results of the classical interpolation theory.
Usually, this theory deals with bounded linear operators. We extend the classical interpola-
tion theory by introducing corresponding not necessarily bounded linear operators. These
operators are investigated in this thesis. Of particular interest are spectral properties,
Fredholm properties and the generalization of the local uniqueness-of-resolvent condition
of T.J. Ransford and the local real uniqueness-of-resolvent condition of M. Krause. Finally,
we examine ordinary differential operators as an example for unbounded linear operators
on interpolation spaces.

The spaces considered in this thesis are Banach spaces and all the operators are linear.
Like S. Goldberg or T. Kato (see [Gol66, p. 4], [Kat66, p. 127]), we assume that the
dimension of the Banach spaces is greater than zero.

Chapter 1 provides two tools to generalize results of the classical interpolation theory. In
the first part, we introduce abstract Sobolev spaces of closable linear operators. With the
abstract Sobolev spaces, we construct bounded operators corresponding to not necessarily
bounded but closable operators. Several properties of these operators are related; i.e.
instead of examining unbounded operators, it will often suffice to study the corresponding
bounded operators.
Since we mainly consider induced operators in this thesis, we look at these operators in
more detail in the second part of Chapter 1.

In Chapter 2, we introduce operators on interpolation spaces, which are not necessarily
bounded. If the operators are bounded, then they coincide with the operators considered
in the classical interpolation theory.
We investigate these operators. Of particular interest will be the spectra.

Fredholm properties of the operators appearing in the classical interpolation theory are
well-known. In Chapter 3, we generalize results of the classical interpolation theory from
E. Albrecht, M. Krause and K. Schindler by examining the Fredholm properties of the
operators introduced in Chapter 2.

The local uniqueness-of-resolvent condition for the complex interpolation method from
T.J. Ransford is well-known. E. Albrecht and V. Müller showed that this condition holds
always. They, as well as M. Krause, proved similar results for the real interpolation method
(e.g. that the local real uniqueness-of-resolvent of M. Krause is always fulfilled). All
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VI Preface

these investigations for the complex and the real interpolation method dealt with bounded
operators.
In Chapter 4, we study corresponding properties for not necessarily bounded operators.
Moreover, we look at these properties under different perturbations.

Chapter 5 gives a classical example for unbounded linear operators on interpolation spaces.
We examine ordinary differential operators on Lp-spaces as well as on the intersection and
sum of two Lp-spaces. From the theory of the previous chapters, we obtain results on the
Fredholm properties and the local U.I. properties of certain differential operators.

My deep gratitude goes to my supervisor Prof. Dr. K.-H. Förster for his guidance and
support during my work. Moreover, I would like to thank Prof. Dr. P. Wittbold and Prof.
Dr. V. Müller.
I am grateful for the financial support of the grant ‘NaFöG’.
Finally, I wish to thank my family.



Chapter 1

Basic Concepts

Chapter 1 introduces two tools, which we will need throughout this thesis.
In Section 1.1, we construct bounded linear operators from not necessarily bounded and
closable linear operators by using abstract Sobolev spaces. It is shown that several prop-
erties of these operators are closely related to each other.
In Section 1.2, we examine induced operators, where we confine ourselves to the theory
that is used in further chapters.
We will apply the theory of the abstract Sobolev spaces and the induced operators particu-
larly in Chapter 3 and Chapter 4, where we generalize results of the classical interpolation
theory for bounded linear operators to not necessarily bounded linear operators.

Let E, F be Banach spaces and S : E ⊇ D(S) −→ F , T : E ⊇ D(T ) −→ F be linear. If
D(S) ⊆ D(T ) and Sx = Tx for all x ∈ D(S), then we call S a restriction of T (and T an
extension of S) and we write S ⊆ T . By S = T , we mean that S ⊆ T and S ⊇ T .
The following, well-known lemma will be used frequently.

Lemma 1.1. Let E be a Banach space, z ∈ C and S : E ⊇ D(S) −→ E be linear.

(i) The operator S is closable if and only if z − S is closable.
In this case, we have z − S = z − S.

(ii) The operator S is closed if and only if z − S is closed.

1.1 Abstract Sobolev Spaces

In this section, we just state facts, which are needed in later considerations.

Definition 1.2. Let E, F be Banach spaces and S : E ⊇ D(S) −→ F be linear and
closable. We define the abstract Sobolev space ES by

ES :=
{

D(S), ‖ · ‖S

}

,

1



2 Basic Concepts

where ‖ · ‖S denotes the graph norm of S, i.e. ‖x‖S = ‖x‖E +
∥

∥Sx
∥

∥

F
for all x ∈ D(S).

Obviously, the abstract Sobolev space is a Banach space.

Definition 1.3. Let E, F be Banach spaces and S : E ⊇ D(S) −→ F be linear and
closable. We define iS : ES −→ E with

iSu := u for all u ∈ ES.

The operator iS in Definition 1.3 is well defined, linear, bounded and injective and we have
the following situation.

E _?
S //

iS

?�

F

ES

OO

k
K

SiS

88
q

q
q

q
q

q
q

q
q

q
q

q
q

From the definition of ES and iS, we obtain the next proposition.

Proposition 1.4. Let E, F be Banach spaces and S : E ⊇ D(S) −→ F be linear and
closable. Then

(i) SiS : ES ⊇ D(S) −→ F is bounded,

(ii) SiS = SiS = SiS,

(iii) N(S) = iS {N(SiS)},

(iv) R(S) = R(SiS).

In particular, S is semi-Fredholm (Fredholm) if and only if SiS is semi-Fredholm (Fred-
holm); in this case, the dimensions of the kernels or the codimensions of ranges (the indices)
of S and SiS are equal (see [Kat66, p. 230] for the definition of semi-Fredholm, Fredholm
and the index).

Let E, F be Banach spaces and S : E ⊇ D(S) −→ F be linear. The operator S is said to
be continuously invertible if S is injective, surjective and S−1 is bounded.

Theorem 1.5. Let E, F be Banach spaces and S : E ⊇ D(S) −→ F be linear. Then S is
continuously invertible if and only if S is closed and SiS is continuously invertible.
In this case, the operator SiS is an isomorphism.

Proof. If S is continuously invertible, then S is closed. Since iS is injective, the theorem
follows from Proposition 1.4 (i), (ii) and (iii).
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1.2 Induced Operators

Let E and F be Banach spaces. An everywhere defined, linear, injective and bounded
operator from E into F is called a continuous embedding. If there exists a continuous
embedding from E into F , then we say that E is continuously embedded in F .

Definition 1.6. Suppose E, F , Ě and F̌ are Banach spaces and iE : Ě −→ E, iF : F̌ −→
F are embeddings. Let S : E ⊇ D(S) −→ F be linear. Define ŠĚ,F̌ : Ě ⊇ D(ŠĚ,F̌ ) −→ F̌
by

D(ŠĚ,F̌ ) :=
{

x̌ ∈ Ě : iEx̌ ∈ D(S) and SiEx̌ ∈ R(iF )
}

,

ŠĚ,F̌ x̌ := y̌ if and only if SiEx̌ = iF y̌

for all x̌ ∈ D(ŠĚ,F̌ ). Then we say that ŠĚ,F̌ is induced by S and call ŠĚ,F̌ the induced

operator of S corresponding to Ě and F̌ .

Since iF in Definition 1.6 is injective, the induced operator is well defined and linear. More-
over, it depends on the embeddings; since in all the following situations, the embeddings
are clear, we will not mention them in the notation of the induced operator.

The situation in Definition 1.6 is shown in the following commutative diagram.

E _?
S //

iE

?�

F

iF

?�

Ě
_?

ŠĚ,F̌
//

OO

F̌

OO

The proofs of the next two results are straightforward.

Lemma 1.7. Suppose E, F , Ě and F̌ are Banach spaces and iE : Ě −→ E, iF : F̌ −→ F
are embeddings. Let S : E ⊇ D(S) −→ F be linear.

(i) Suppose R : Ě ⊇ D(R) −→ F̌ is linear. Then iF R ⊆ SiE if and only if R ⊆ ŠĚ,F̌ .

(ii) It holds iE
{

N(ŠĚ,F̌ )
}

= N(S) ∩ R(iE) and iF
{

R(ŠĚ,F̌ )
}

⊆ R(S) ∩ R(iF ).

(iii) Let T : E ⊇ D(T ) −→ F be linear such that S ⊆ T . Then ŠĚ,F̌ ⊆ ŤĚ,F̌ .

Proposition 1.8. Suppose E, F , Ě and F̌ are Banach spaces and iE : Ě −→ E, iF :
F̌ −→ F are embeddings. Let S : E ⊇ D(S) −→ F be linear.

(i) If S is injective, then ŠĚ,F̌ is injective.

(ii) If S is closed, then ŠĚ,F̌ is closed.

(iii) If S is closable, then ŠĚ,F̌ is closable.



4 Basic Concepts

Proposition 1.9. Suppose E, F , Ě and F̌ are Banach spaces and iE : Ě −→ E, iF :
F̌ −→ F are embeddings. Let S : E ⊇ D(S) −→ F be linear and closable. Then

ŠĚ,F̌ ⊆ ŠĚ,F̌ .

Proof. It holds ŠĚ,F̌ ⊆ ŠĚ,F̌ by Lemma 1.7 (iii). Then we obtain the proposition from
Proposition 1.8 (ii).

Let E, F be Banach spaces and S : E ⊇ D(S) −→ F be linear and injective. Then the
inverse S−1 : F ⊇ D(S−1) −→ E has domain R(S) and for all y ∈ R(S), we have S−1y = x
if and only if x ∈ D(S) such that Sx = y.

Proposition 1.10. Suppose E, F , Ě and F̌ are Banach spaces and iE : Ě −→ E, iF :
F̌ −→ F are embeddings. Let S : E ⊇ D(S) −→ F be linear and injective. Then it holds

(̌S−1)F̌ ,Ě = (ŠĚ,F̌ )−1.

Proof. From Proposition 1.8, we know that ŠĚ,F̌ is injective. Then the proof is straight-
forward.

Let E, F be Banach spaces and S : E ⊇ D(S) −→ F and T : E ⊇ D(T ) −→ F be
linear. The operator S + T : E ⊇ D(S + T ) −→ F is defined on D(S) ∩ D(T ) with
(S + T )x = Sx + Tx for all x ∈ D(S) ∩ D(T ). Obviously, this operator is linear.

From the definition of the operators, we obtain Proposition 1.11 and Proposition 1.12.

Proposition 1.11. Suppose E and Ě are Banach spaces, z ∈ C and iE : Ě −→ E is an
embedding. Let S : E ⊇ D(S) −→ E be linear. Then

(̌z − S)Ě,Ě = z − ŠĚ,Ě.

Proposition 1.12. Suppose E, F , G, Ě, F̌ , Ǧ are Banach spaces, z ∈ C and iE :
Ě −→ E, iF : F̌ −→ F , iG : Ǧ −→ G are embeddings. Let S : E ⊇ D(S) −→ F ,
T : E ⊇ D(T ) −→ F and R : F ⊇ D(R) −→ G be linear with R(S) ⊆ D(R) and
R(ŠĚ,F̌ ) ⊆ D(ŘF̌ ,Ǧ). Then it holds

(i) ŠĚ,F̌ + ŤĚ,F̌ ⊆ (̌S + T )Ě,F̌ ,

(ii) zŠĚ,F̌ = (̌zS)Ě,F̌ ,

(iii) ŘF̌ ,ǦŠĚ,F̌ ⊆ (̌RS)Ě,Ǧ.



Chapter 2

Interpolation Theory of Linear
Operators

This chapter is devoted to the extension of the classical interpolation theory to linear
operators, which are not necessarily bounded.
After introducing compatible couples in Section 2.1, we mainly investigate the operators
S0, S1, S∆ and SΣ in Section 2.2. These operators are not necessarily bounded. If S0, S1,
S∆ and SΣ are bounded, then they coincide with the operators usually considered in the
classical interpolation theory.
Section 2.3 gives a brief introduction to the classical interpolation theory for bounded linear
operators in terms of induced operators. Of special interest are two everywhere defined
and bounded linear operators, which coincide on the intersection of their domains. In
Subsection 2.3.1, we show that these operators form an interpolation morphism.
We see that interpolation operators are induced operators in Subsection 2.3.2. Therefore
the theory for not necessarily bounded, induced operators on interpolation spaces extends
the classical interpolation theory for bounded linear operators.
In Section 2.4, we show that the abstract Sobolev spaces of S0 and S1 form a compatible
couple under certain assumptions. With the corresponding continuous embeddings iS0 and
iS1, we construct interpolation morphisms. This is the main step to obtain results on not
necessarily bounded linear operators from the classical interpolation theory for bounded
linear operators, see Chapter 3 and Chapter 4.
In Section 2.5, we examine the relation of the operators S0, S1, S∆, SΣ and other induced
operators on interpolation spaces in more detail. This leads to results on the extended
spectrum of these operators, see Section 2.6 and Section 2.7. In particular, we obtain
that the spectrum of not necessarily bounded, induced operators on different interpolation
spaces and the spectrum of S0 and S1 are equal under certain assumptions, see Subsection
2.7.1.
The last section of this chapter deals with two particular spaces. Under slight assumptions,
one of the spaces is contained in the other space. If these spaces are equal, we obtain better
results in Chapter 3 and Chapter 4. We show that under certain assumptions, which are
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6 Interpolation Theory of Linear Operators

connected with investigations in Section 2.5 and Section 2.6, equality follows. Moreover, we
examine operators on these spaces in Section 2.8. The results will be essential in Chapter 3
and Chapter 4.

Let E and F be Banach spaces. If x ∈ E implies that x ∈ F , then we say E ⊆ F . We
write E = F , when E ⊆ F and F ⊆ E. If E ⊆ F and ‖x‖F ≤ C ‖x‖E for a constant
C > 0 and for all x ∈ E, then we say E ⊆ F with continuous inclusion.

Throughout this chapter, the induced operators are constructed with continuous embed-
dings, which correspond to continuous inclusions. For instance, assume Ě, F̌ , E and F are
Banach spaces such that Ě ⊆ E and F̌ ⊆ F with continuous inclusions. Let iE and iF be
the corresponding embeddings, i.e. iE : Ě −→ E and iF : F̌ −→ F with

iEx̌ := x̌, x̌ ∈ Ě,

iF y̌ := y̌, y̌ ∈ F̌ .

Assume S : E ⊇ D(S) −→ F is linear. Then the induced operator ŠĚ,F̌ always corresponds
to iE and iF in this chapter.
As usual in the classical interpolation theory, we identify the domain with the range of
these continuous embeddings to simplify the notation throughout this chapter, i.e. we
identify iEx̌ with x̌ and iF y̌ with y̌ for x̌ ∈ Ě, y̌ ∈ F̌ .

2.1 Compatible Couples

In the following, we repeat some standard notations from the classical interpolation theory.

Definition 2.1. Let E0 and E1 be Banach spaces.

(i) Assume E0 and E1 are continuously embedded in a Hausdorff topological vector space.
Then the pair (E0, E1) is said to be a compatible couple (of Banach spaces).

(ii) If E0 = F0, E1 = F1, then the two compatible couples (E0, E1) and (F0, F1) are said
to be equal. In this case, we write (E0, E1) = (F0, F1).

Definition 2.2. Let (E0, E1) be a compatible couple. We define the vector spaces

(i) E∆ := E0 ∩ E1 with the norm

‖x∆‖E∆
:= max

{

‖x∆‖E0
, ‖x∆‖E1

}

, x∆ ∈ E∆,

(ii) EΣ := E0 + E1 with the norm

‖xΣ‖EΣ
:= inf

xΣ=x0+x1

{

‖x0‖E0
+ ‖x1‖E1

}

, xΣ ∈ EΣ,

where x0 ∈ E0 and x1 ∈ E1.

The spaces E∆ and EΣ in Definition 2.2 are Banach spaces, see [BL76, p. 24, Lemma
2.3.1]. Moreover, it holds E∆ ⊆ Ej ⊆ EΣ with continuous inclusions for j ∈ {0, 1}.
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2.2 The Unbounded Operators (S0, S1)Σ, S0, S1, S∆ and

SΣ

In this section, we introduce linear operators (S0, S1)Σ, S0, S1, S∆ and SΣ, which are not
necessarily bounded. The connection to the classical interpolation theory for bounded
linear operators is shown. Moreover, we investigate the relation between SΣ and S in more
detail.

Let E, F be Banach spaces and S : E ⊇ D(S) −→ F be linear. Assume L is a subspace of
E. Then the operator

S|L : L ⊇ D(S|L) −→ F

has domain L ∩ D(S) and S|Lx = Sx for all x ∈ L ∩ D(S).

Definition 2.3. Let (E0, E1), (F0, F1) be compatible couples. Assume S0 : E0 ⊇ D(S0) −→
F0 and S1 : E1 ⊇ D(S1) −→ F1 are linear such that S0 and S1 agree on E∆, i.e.

S0|E∆
= S1|E∆

,

where the values of these operators are considered in FΣ.
Then the operator (S0, S1)Σ : EΣ ⊇ D((S0, S1)Σ) −→ FΣ is defined by

D((S0, S1)Σ) := D(S0) + D(S1),

(S0, S1)ΣxΣ := S0x0 + S1x1,

where xΣ := x0 + x1 for x0 ∈ D(S0), x1 ∈ D(S1).

From S0|E∆
= S1|E∆

, we see that (S0, S1)Σ in Definition 2.3 is well defined. Obviously,
(S0, S1)Σ is linear.

For simplifying the notation, we introduce the following operators S0, S1, S∆ and SΣ.
Unless otherwise stated, these operators are related to S as in Definition 2.4 throughout
this thesis.

Definition 2.4. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear. We define the linear operators

S0 : E0 ⊇ D(S0) −→ F0 with S0 := ŠE0,F0,
S1 : E1 ⊇ D(S1) −→ F1 with S1 := ŠE1,F1,
S∆ : E∆ ⊇ D(S∆) −→ F∆ with S∆ := ŠE∆,F∆

,
SΣ : EΣ ⊇ D(SΣ) −→ FΣ with SΣ := (S0, S1)Σ,

where the induced operators are constructed with the continuous embeddings, which corres-
pond to the continuous inclusions.
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We have the following situation in Definition 2.4,

EΣ
_?

S, SΣ //

?�

FΣ

?�

Ej
_?

Sj
//

?�

OO

Fj

?�

OO

E∆
_?

S∆ //

OO

F∆

OO

where j ∈ {0, 1} and the injective operators in the diagram correspond to the continuous
inclusions.
The assumptions in Definition 2.4 imply that S0|E∆

= S1|E∆
. Thus SΣ is well defined.

If S is injective (closable, closed), then Sj is injective (closable, closed) for j ∈ {0, 1,∆}.
This is a consequence of Proposition 1.8. In this case, SΣ is injective (closable, but in
general not closed).

The classical interpolation theory usually considers operators S defined as in Definition 2.4
such that S0 and S1 are everywhere defined and bounded.

From the definition of the operators, we obtain the following two propositions.

Proposition 2.5. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be a linear operator. For j ∈ {0, 1}, we have

D(S0) ∩ D(S1) = D(S∆),

N(S∆) = N(Sj) ∩ E∆ = N(SΣ) ∩ E∆ = N(S) ∩ E∆,

N(Sj) = N(SΣ) ∩ Ej = N(S) ∩ Ej ,

N(S0) ∩ N(S1) = N(S∆),

N(S0) + N(S1) ⊆ N(SΣ),

R(S0) ∩ R(S1) ⊇ R(S∆),

R(S0) + R(S1) = R(SΣ).

Proposition 2.6. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be a linear operator. It holds

(i) SΣ ⊆ S,

(ii) (̌SΣ)Ek,Fk
= Sk for k ∈ {0, 1,∆,Σ},

(iii) (̌Sj)E∆,F∆
= S∆ for j ∈ {0, 1}.

(iv) If (E0, E1) = (F0, F1), then z − SΣ = (z − S)Σ for all z ∈ C.
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Assume (E0, E1), (F0, F1) are compatible couples and S : EΣ ⊇ D(S) −→ FΣ is linear. It
holds N(SΣ) = N(S) and R(SΣ) = R(S) if and only if SΣ = S. We have only to prove
that N(SΣ) = N(S) and R(SΣ) = R(S) imply SΣ = S. Let x ∈ D(S). Then there exists
x̃ ∈ D(SΣ) such that Sx = SΣx̃. Hence x − x̃ ∈ N(S) = N(SΣ). Therefore x ∈ D(SΣ).
Since SΣ ⊆ S by the previous proposition, the operators SΣ and S coincide.
In general, the operators SΣ and S are not equal as the next example demonstrates.
For 1 ≤ p ≤ ∞, let (Lp(I), ‖ · ‖Lp) be defined as in [DS67, p. 241].

Example 2.7. Let I ⊆ R be an interval such that µ(I) ≤ 1, where µ denotes the Lebesgue
measure. Since I is fix in this example, we simply write Lr instead of Lr(I) for all 1 ≤ r <
∞. Suppose 1 ≤ p0 < p1 < ∞ and

(E0, E1) := (Lp0, Lp1),

(F0, F1) := (Lp1, Lp0).

Since µ(I) ≤ 1, we have Lp0 ⊃ Lp1 and ‖f‖Lp0 ≤ ‖f‖Lp1 for all f ∈ Lp1. Therefore

‖fΣ‖Lp0+Lp1 = inf
f=f0+f1

{‖f0‖Lp0 + ‖f1‖Lp1} = ‖fΣ‖Lp0

for fΣ ∈ Lp0 + Lp1 = Lp0 with fj ∈ Lpj , j ∈ {0, 1}, and f0 + f1 = fΣ. It follows that

EΣ = FΣ = Lp0 .

Let the operator S : Lp0 + Lp1 −→ Lp0 + Lp1 be defined by

S := idLp0+Lp1 = idLp0 .

Then S0 : Lp0 ⊇ D(S0) −→ Lp1 with

D(S0) = Lp1 and S0f0 = f0 for f0 ∈ Lp1

and S1 : Lp1 −→ Lp0 with

D(S1) = Lp1 and S1f1 = f1 for f1 ∈ Lp1.

We conclude that SΣ : Lp0 + Lp1 ⊇ D(SΣ) −→ Lp0 + Lp1 with

D(SΣ) = Lp1 and SΣfΣ = fΣ for fΣ ∈ Lp1.

Thus SΣ 6= S.
Note that E∆ = F∆ = Lp1 and S∆ : Lp0 ∩ Lp1 −→ Lp0 ∩ Lp1 with

S∆ := idLp0∩Lp1 = idLp1 .
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In the previous example, the operators S, S1 and S∆ are bounded. But S0 is only closed
by Proposition 1.8 (ii). Since SΣ ⊆ S, see Proposition 2.6, we know that SΣ is closable.
Furthermore, the closure of SΣ equals S.

It is possible to generalize Example 2.7 to compatible couples (E0, E1) and (F0, F1) :=
(E1, E0) such that E0 ⊃ E1. If we choose S := idE0 , then

S0 : E0 ⊇ D(S0) −→ E1 with D(S0) = E1, S0f0 = f0 for f0 ∈ D(S0),

S1 : E1 −→ E0 with D(S1) = E1, S1f1 = f1 for f1 ∈ D(S1).

Therefore

SΣ : E0 ⊇ D(SΣ) −→ E0 with D(SΣ) = E1, SΣfΣ = fΣ for fΣ ∈ D(SΣ)

and S do not coincide.
Note that S∆ = idE1 .
If E1 ⊂ E0 with continuous inclusion, then S−1

0 = S1 is the continuous embedding corre-
sponding to the continuous inclusion.

Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ be linear. Con-
sidering SΣ and S, the unbounded case differs from the bounded case. If S0 and S1 are
everywhere defined and bounded, then SΣ = S is everywhere defined and bounded, see
Theorem 2.8 (i).

Theorem 2.8. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ be
linear.

(i) If S0 and S1 are everywhere defined and bounded, then S∆ and SΣ = S are everywhere
defined and bounded and it holds

‖S∆‖ ≤ max {‖S0‖ , ‖S1‖} ,

‖SΣ‖ = ‖S‖ ≤ max {‖S0‖ , ‖S1‖} .

(ii) If S∆ and SΣ are everywhere defined and bounded, then S0 and S1 are everywhere
defined and bounded.

Proof. (i) Assume S0 and S1 are everywhere defined and bounded. From Proposition 2.5,
we obtain D(S∆) = E∆ and D(SΣ) = EΣ. Since SΣ ⊆ S by Proposition 2.6 (i), it follows
that D(S) = EΣ and SΣ = S. With the definition of the operators, the inequalities for the
norms are obtained.

(ii) Assume S∆ and SΣ are everywhere defined and bounded. Let j ∈ {0, 1}. Since SΣ is
closed, it follows that Sj is closed by Proposition 1.8 (ii) and Proposition 2.6 (ii). From

D(S0) + D(S1) = D(SΣ) = EΣ,

we obtain that D(Sj) = Ej . Hence S0 and S1 are bounded.
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Assume we have a situation as in Theorem 2.8 and S0 and S1 are everywhere defined and
bounded. Then it follows that D(S) = EΣ and S = SΣ is bounded. Therefore, when having
these situations, we can (and will) assume that S is everywhere defined and bounded.

2.3 Interpolation Theory of Linear Operators

In this section, we state some basic definitions and results on the classical interpolation
theory for bounded linear operators in terms of induced operators.

2.3.1 Interpolation Morphisms

As usual in the classical interpolation theory, we define an interpolation morphism in the
following way.

Definition 2.9. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ −→ FΣ be every-
where defined, linear and bounded such that S0 and S1 are everywhere defined and bounded.

(i) The pair (S0, S1) is said to be an interpolation morphism (corresponding to S with
respect to (E0, E1) and (F0, F1)); we define the norm

‖(S0, S1)‖Mor := max {‖S0‖ , ‖S1‖} .

(ii) Assume T : EΣ −→ FΣ is everywhere defined, linear and bounded such that T0 and
T1 are everywhere defined and bounded. If S0 = T0 and S1 = T1, then we write
(S0, S1) = (T0, T1)

In Chapter 3 and Chapter 4, we consider everywhere defined and bounded linear operators
S0 and S1 such that S0 and S1 coincide on the intersection of their domains. In Theorem
2.10, we find an everywhere defined and bounded linear operator such that S0 and S1 are
induced by this operator. Therefore the pair (S0, S1) is an interpolation morphism.

Theorem 2.10. Let (E0, E1), (F0, F1) be compatible couples. Assume S0 : E0 −→ F0 and
S1 : E1 −→ F1 are everywhere defined, linear and bounded such that S0|E∆

= S1|E∆
.

(i) The operator (S0, S1)Σ is linear and it holds (̌(S0, S1)Σ)Ej ,Fj
= Sj for j ∈ {0, 1}.

(ii) We have (̌Sj)E∆,F∆
= (̌(S0, S1)Σ)E∆,F∆

for j ∈ {0, 1}.

(iii) The operator (S0, S1)Σ is everywhere defined and bounded.

(iv) The pair
(S0, S1) =

(

(̌(S0, S1)Σ)E0,F0 , (̌(S0, S1)Σ)E1,F1

)

is an interpolation morphism (corresponding to (S0, S1)Σ).
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Proof. (i) Obviously, (S0, S1)Σ is linear. Then we obtain (i) from the definition of the
operators.

(ii) For j ∈ {0, 1}, it holds

(̌Sj)E∆,F∆
= ˇ((̌(S0, S1)Σ)Ej ,Fj

)

E∆,F∆
= (̌(S0, S1)Σ)E∆,F∆

by (i) and Proposition 2.6 (iii).

(iii) From (i) and Theorem 2.8 (i), we know that (S0, S1)Σ is everywhere defined and
bounded.

(iv) This follows from (i) and (iii).

Theorem 2.11. Let (E0, E1), (F0, F1) and (G0, G1) be compatible couples and z ∈ C.
Assume S, T : EΣ −→ FΣ and R : FΣ −→ GΣ are linear such that (S0, S1), (T0, T1) and
(R0, R1) are interpolation morphisms. Then

(S0 + T0, S1 + T1) = ((S + T )0, (S + T )1),

(R0S0, R1S1) = ((RS)0, (RS)1),

(zS0, zS1) = ((zS)0, (zS)1)

are interpolation morphisms.

Proof. Since (R0, R1) is an interpolation morphism, we have R(S) ⊆ D(R) and R(Sj) ⊆
D(Rj) for j ∈ {0, 1}. Then the theorem follows from Proposition 1.12.

The theorem above leads to the following definition.

Definition 2.12. Let (E0, E1), (F0, F1) and (G0, G1) be compatible couples and z ∈ C.
Assume S, T : EΣ −→ FΣ and R : FΣ −→ GΣ are linear such that (S0, S1), (T0, T1) and
(R0, R1) are interpolation morphisms. Then we define the interpolation morphisms

(S0, S1) + (T0, T1) := (S0 + T0, S1 + T1),

(R0, R1)(S0, S1) := (R0S0, R1S1),

z(S0, S1) := (zS0, zS1).

Remark 2.13. Let (E0, E1) be a compatible couple, z ∈ C and S : EΣ −→ EΣ be linear.

(i) The pair (z idE0 , z idE1) is an interpolation morphism.

(ii) The pair (S0, S1) is an interpolation morphism if and only if (z − S0, z − S1) is an
interpolation morphism.
This follows from (i) and Theorem 2.11.
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2.3.2 Intermediate Spaces, Interpolation Spaces, Interpolation
Operators

We define interpolation spaces as in [BL76, p. 27]. Sometimes, interpolation spaces are
defined corresponding to just one compatible couple, see [BS88, p. 105, Definition 1.14] or
[KPS82, p. 20, Definition 4.2] (cf Definition 2.14 (iii)). But there are even other definitions
for interpolation spaces; for instance in [EE87, p. 68], see also [Kra96, Definition 3.5.1].

Definition 2.14. Let (E0, E1) be a compatible couple.

(i) Assume E is an Banach space such that E∆ ⊆ E ⊆ EΣ with continuous inclusions.
Then the space E is called an intermediate space with respect to (E0, E1).

Now, let (F0, F1) be a compatible couple and E, F be intermediate spaces corresponding to
(E0, E1) and (F0, F1), respectively.

(ii) Assume that for each linear operator S : EΣ −→ FΣ such that (S0, S1) is an interpo-
lation morphism, the induced operator ŠE,F corresponding to the inclusions mappings
is everywhere defined and bounded. Then E and F are said to be interpolation spaces
with respect to (E0, E1) and (F0, F1).

(iii) If (E0, E1) = (F0, F1) and E = F in (ii), then E is said to be an interpolation space
with respect to (E0, E1).

(iv) Let S : EΣ −→ FΣ be linear such that (S0, S1) is an interpolation morphism and
E and F be interpolation spaces with respect to (E0, E1) and (F0, F1). Then the
interpolation operator (S0, S1)E,F corresponding to the interpolation spaces E and F
is defined to be

(S0, S1)E,F := ŠE,F .

The spaces Ej and Fj in Definition 2.14 are interpolation spaces with respect to (E0, E1)
and (F0, F1) for j ∈ {0, 1}. Moreover, the interpolation operator in Definition 2.14 (iv)
coincides with the interpolation operator usually considered in the classical interpolation
theory.

In the next theorem, we see that it is convenient to denote the interpolation operator as
in Definition 2.14.

Theorem 2.15. Let (E0, E1), (F0, F1) be compatible couples. Assume S0 : E0 −→ F0 and
S1 : E1 −→ F1 are everywhere defined, linear and bounded such that S0|E∆

= S1|E∆
. Let E

and F be interpolation spaces with respect to (E0, E1) and (F0, F1). Then

(̌(S0, S1)Σ)E,F

is the interpolation operator corresponding to E, F (and (S0, S1)Σ).
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Proof. This follows from Theorem 2.10 (iv).

We have a different situation in the unbounded case. Indeed, let (E0, E1), (F0, F1) be
compatible couples and S : EΣ ⊇ D(S) −→ FΣ be a linear operator. Then S0|E∆

= S1|E∆
.

Suppose E and F are interpolation spaces corresponding to (E0, E1) and (F0, F1). Then it
holds

(̌SΣ)E,F ⊆ ŠE,F

by Lemma 1.7 (iii) and Proposition 2.6 (i). But the operators are not equal in general, see
Example 3.18.

Lemma 2.16. Let (E0, E1) be a compatible couple and F , G be intermediate spaces with
respect to (E0, E1). Then (F,G) is a compatible couple.

Proof. Since F ,G are Banach spaces and F,G ⊆ EΣ with continuous inclusions, the lemma
follows.

Proposition 2.17. Let (E0, E1), (F0, F1) and (G0, G1) be compatible couples and z ∈ C.
Assume S, T : EΣ −→ FΣ and R : FΣ −→ GΣ are linear such that (S0, S1), (T0, T1) and
(R0, R1) are interpolation morphisms. Suppose� E and F are interpolation spaces with respect to (E0, E1) and (F0, F1),� F and G are interpolation spaces with respect to (F0, F1) and (G0, G1),� E and G are interpolation spaces with respect to (E0, E1) and (G0, G1).

Then it holds

(S0, S1)E,F + (T0, T1)E,F = (S0 + T0, S1 + T1)E,F ,

(R0, R1)F,G(S0, S1)E,F = (R0S0, R1S1)E,G,

z(S0, S1)E,F = (zS0, zS1)E,F .

Proof. This follows from Proposition 1.12 and Theorem 2.11.

2.4 Compatible Couples of Abstract Sobolev Spaces

and Related Interpolation Morphisms

In this section, we show that the abstract Sobolev spaces form compatible couples under
certain assumptions and we construct interpolation morphisms with the corresponding
continuous embeddings, see Proposition 2.18 and Theorem 2.22.

Proposition 2.18. Let (E0, E1) and (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→
FΣ be linear such that S0 and S1 are closable. Then ((E0)S0, (E1)S1) is a compatible couple.
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Proof. Let j ∈ {0, 1}. Since Sj is closable, the abstract Sobolev space (Ej)Sj
with the

corresponding operator iSj
exist. Obviously, (Ej)Sj

= (D(Sj), ‖ ‖Sj
) is a Banach space.

Since iSj
is bounded, it follows that (Ej)Sj

⊆ Ej ⊆ EΣ with continuous inclusions and the
proposition is proved.

In the following, we formulate an extended version of the definition of restricted operators
(cf. page 1).
Let the Banach spaces E, F be subspaces of a vector space and the Banach spaces G, H
be subspaces of another vector space. Suppose S : E ⊇ D(S) −→ G, T : F ⊇ D(T ) −→ H
are linear. If x ∈ D(S) implies that x ∈ D(T ) and Sx = Tx, then we write S ⊆ T . As
usual, we have S = T , when S ⊆ T and S ⊇ T .

Lemma 2.19. Let (E0, E1) and (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear.

(i) If S0 and S1 are closable, then (E∆)S∆
⊆ (E0)S0 ∩ (E1)S1 with continuous inclusion.

(ii) If SΣ is closable, then (E0)S0 + (E1)S1 ⊆ (EΣ)SΣ
with continuous inclusion.

(iii) If S0 and S1 are closed, then (E∆)S∆
= (E0)S0 ∩ (E1)S1 with equivalent norms.

(iv) If SΣ is closed, then (E0)S0 + (E1)S1 = (EΣ)SΣ
with equivalent norms.

Proof. From Proposition 2.18, we know that the intersection and the sum of the abstract
Sobolev spaces (E0)S0 and (E1)S1 is well defined.

(i) From Proposition 1.8 (iii) and Proposition 2.6 (iii), it follows that S∆ is closable. Let
j ∈ {0, 1}. We have

S∆ ⊆ (̌Sj)E∆,F∆
⊆ Sj

by Proposition 1.9 and Proposition 2.6 (iii). Thus (E∆)S∆
⊆ (E0)S0 ∩ (E1)S1.

Since
‖u‖S∆

≥ ‖u‖(E0)S0
∩(E1)S1

for all u ∈ (E∆)S∆
, we obtain (i).

(ii) Let j ∈ {0, 1}. Since the operator SΣ is closable, we obtain that Sj is closable by
Proposition 1.8 (iii) and Proposition 2.6 (ii). It holds

Sj ⊆ (̌SΣ)Ej ,Fj
⊆ SΣ

by Proposition 1.9 and Proposition 2.6 (ii). Hence (E0)S0 + (E1)S1 ⊆ (EΣ)SΣ
.

Let u ∈ (E0)S0 + (E1)S1. From

‖u0‖S0
+ ‖u1‖S1

= ‖iSΣ
u0‖E0

+ ‖iSΣ
u1‖E1

+
∥

∥SΣiSΣ
u0

∥

∥

F0
+

∥

∥SΣiSΣ
u1

∥

∥

F1

≥ ‖iSΣ
(u0 + u1)‖EΣ

+
∥

∥SΣiSΣ
(u0 + u1)

∥

∥

FΣ
= ‖u‖SΣ
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for all u0 ∈ (E0)S0 and u1 ∈ (E1)S1 with u = u0 + u1, we obtain (ii).

(iii) If S0 and S1 are closed, then the operator S∆ is closed by Proposition 1.8 (ii) and
Proposition 2.6 (iii). Since D(S∆) = D(S0) ∩ D(S1), see Proposition 2.5, we obtain (iii)
from (i).

(iv) Since SΣ is closed, it follows that S0 and S1 are closed from Proposition 1.8 (ii) and
Proposition 2.6 (ii). We have D(S0) + D(S1) = D(SΣ). Thus (iv) follows from (ii).

Example 2.21 shows that the norms in Lemma 2.19 (iii) and (iv) are not equal in general.

Obviously, the next lemma holds.

Lemma 2.20. Let (E0, E1) be a compatible couple such that E0 = E1 with equal norms.
Then E0 = E1 = E∆ = EΣ with equal norms.

Example 2.21. Let

E0 := (C, | · |), E1 := (C, 2 | · |).

Then

E∆ = E1, EΣ = E0.

Let F0 := E1, F1 := E0 and S : EΣ −→ FΣ with S := idEΣ
. From above, we conclude that

(E0)S0 = (E1)S1 = (C, 3 | · |),

(E∆)S∆
= (C, 4 | · |),

(EΣ)SΣ
= (C, 2 | · |).

We see that the norms in Lemma 2.19 (iii) and (iv) are not equal with Lemma 2.20.

Theorem 2.22. Let (E0, E1) and (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear such that S0 and S1 are closable.

(i) It holds
iS0 |(E0)S0

∩(E1)S1
= iS1 |(E0)S0

∩(E1)S1

and (iS0, iS1) is an interpolation morphism.

(ii) Assume SΣ is closable. Then

S0iS0 |(E0)S0
∩(E1)S1

= S1iS1 |(E0)S0
∩(E1)S1

and (S0iS0, S1iS1) is an interpolation morphism.
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(iii) Assume S0 and S1 are closed. Then

S0iS0 |(E0)S0
∩(E1)S1

= S1iS1 |(E0)S0
∩(E1)S1

and (S0iS0, S1iS1) is an interpolation morphism.

Proof. From Proposition 2.18, we know that ((E0)S0, (E1)S1) is a compatible couple.

(i) Obviously,
iS0 |(E0)S0

∩(E1)S1
= iS1 |(E0)S0

∩(E1)S1
.

Since iS0 and iS1 are bounded, (i) follows from Theorem 2.10 (iv).

(ii) It holds
Sj ⊆ (̌SΣ)Ej ,Fj

⊆ SΣ

for j ∈ {0, 1} by Proposition 1.9 and Proposition 2.6 (ii). We have

S0iS0 |(E0)S0
∩(E1)S1

= SΣiSΣ |(E0)S0
∩(E1)S1

= S1iS1 |(E0)S0
∩(E1)S1

.

From Proposition 1.4 (ii), we know that S0iS0 and S1iS1 are bounded. Thus (S0iS0, S1iS1)
is an interpolation morphism by Theorem 2.10 (iv).

(iii) It holds
S∆ = (̌Sj)E∆,F∆

⊆ Sj

for j ∈ {0, 1}, see Proposition 2.6 (iii). The operator S∆ is closed by Proposition 1.8 (ii)
and Proposition 2.6 (iii). Since we have (E∆)S∆

= (E0)S0 ∩ (E1)S1 from Lemma 2.19 (iii),
it follows that

S0iS0 |(E0)S0
∩(E1)S1

= S0iS0 |(E∆)S∆
= S∆iS∆ |(E∆)S∆

= S1iS1 |(E∆)S∆
= S1iS1 |(E0)S0

∩(E1)S1
.

The operators S0iS0 and S1iS1 are bounded by Proposition 1.4 (i). Then we obtain (iii)
from Theorem 2.10 (iv).

Let j ∈ {0, 1} and Sj be as in Theorem 2.22. If Sj is just closable, then the domain of
SjiSj

is not necessarily (Ej)Sj
. In this case, the pair (S0iS0, S1iS1) does not need to be an

interpolation morphism.

Motivated by Theorem 2.22, we will several times assume that S0 and S1 are closed when
considering interpolation morphisms formed with iS0 and iS1.

Lemma 2.23. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ be
linear.

(i) Assume SΣ is closable. Then (iS0, iS1)Σ ⊆ iSΣ
. If SΣ is closed, then equality holds.

(ii) If S0 and S1 are closed, then SΣ(iS0, iS1)Σ = (S0iS0, S1iS1)Σ.
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(iii) If SΣ is closed, then SΣiSΣ
= (S0iS0, S1iS1)Σ.

(iv) If S0 and S1 are closed, then SjiSj
= (̌(S0iS0, S1iS1)Σ)(Ej)Sj

,Fj
for j ∈ {0, 1,∆}.

Proof. (i) From Proposition 1.8 (iii) and Proposition 2.6 (ii), we know that S0 and S1 are
closable. The operator (iS0, iS1)Σ is well defined by Proposition 2.18 and Theorem 2.22 (i).
Since (E0)S0 + (E1)S1 ⊆ (EΣ)SΣ

by Lemma 2.19 (ii), we obtain (iS0, iS1)Σ ⊆ iSΣ
.

If SΣ is closed, then (E0)S0 +(E1)S1 = (EΣ)SΣ
, see Lemma 2.19 (iv). Thus (iS0, iS1)Σ = iSΣ

.

(ii) The operators (iS0, iS1)Σ and (S0iS0, S1iS1)Σ are well defined, see the proof of (i) and
Theorem 2.22 (iii). Then (ii) follows from the definition of the operators.

(iii) The operators S0 and S1 are closed by Proposition 1.8 (ii) and Proposition 2.6 (ii).
Then (iii) follows from (i) and (ii).

(iv) From Proposition 1.8 (ii) and Proposition 2.6 (iii), we know that S∆ is closed. Then

S∆iS∆
= (̌(S0iS0, S1iS1)Σ)(E∆)S∆

,F∆
.

From Theorem 2.10 (i), we obtain the other equalities.

2.5 Relations between S0, S1, S∆ and SΣ

Lemma 2.24. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ be
linear. If R(SΣ) ∩ F∆ = R(S∆), then N(SΣ) = N(S0) + N(S1).

Proof. Obviously, N(SΣ) ⊇ N(S0) + N(S1), see Proposition 2.5.
Let x ∈ N(SΣ). Then there exist x0 ∈ D(S0) and x1 ∈ D(S1) with x = x0 + x1. Since
SΣx = S0x0 + S1x1 = 0, it follows that S0x0 ∈ F∆ and therefore S0x0 ∈ R(SΣ) ∩ F∆ =
R(S∆). Let x∆ ∈ D(S∆) such that S∆x∆ = S0x0. Then x0 − x∆ ∈ N(S0) and therefore
x1 + x∆ ∈ N(S1). Thus x ∈ N(S0) + N(S1).

Proposition 2.25. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear. The following statements are equivalent.

(i) S∆ and SΣ are injective and surjective,

(ii) Sj and S∆ are injective and surjective, j ∈ {0, 1},

(iii) Sj and SΣ are injective and surjective, j ∈ {0, 1},

(iv) Sj is injective and surjective, j ∈ {0, 1}, and it holds S0
−1

|F∆
= S1

−1
|F∆

,

(v) Sj is injective and surjective, j ∈ {0, 1}, and it holds R(SΣ) ∩ F∆ = R(S∆).
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Proof. (i)=⇒(ii) Since SΣ is injective, we know that S0 and S1 are injective, see Proposition
1.8 (i) and Proposition 2.6 (ii).
To show that S0 is surjective, let y0 ∈ F0 ⊆ FΣ. Since SΣ is surjective, there exists
xΣ ∈ EΣ such that SΣxΣ = y0. Let x0 ∈ D(S0) and x1 ∈ D(S1) such that x0 + x1 = xΣ.
From y0 = SΣ(x0 + x1) = S0x0 + S1x1, it follows that S1x1 ∈ F∆. Since S∆ is surjective,
there exists x∆ ∈ D(S∆) such that S1x1 = S∆x∆ = S1x∆. The operator S1 is injective.
Therefore x1 = x∆. Then we have y0 = S0x0 + S1x1 = S0x0 + S0x∆. Thus S0 is surjective.
Similarly, we see that S1 is surjective.

(ii)=⇒(iii) Since R(SΣ) = R(S0) + R(S1) = FΣ by Proposition 2.5, we obtain that SΣ is
surjective.
To show that SΣ is injective, let x ∈ D(SΣ) such that SΣx = 0. Choose x0 ∈ D(S0)
and x1 ∈ D(S1) such that x = x0 + x1. Then SΣx = S0x0 + S1x1 = 0 and therefore
S0x0 = −S1x1 ∈ F∆. The operator S∆ is surjective. Hence there exists x∆ ∈ D(S∆) such
that S0x0 = −S1x1 = S∆x∆. Since S0, S1 are injective and S0x∆ = S∆x∆ = S1x∆, it
follows that x∆ = x0 = −x1. Then x = x0 + x1 = 0 and we conclude that SΣ is injective.

(iii)=⇒(iv) Let y∆ ∈ F∆. Since S0 and S1 are surjective, there exist x0 ∈ E0 and x1 ∈ E1

such that Sjxj = y∆ for j ∈ {0, 1}. Then SΣx0 = S0x0 = y∆ and SΣx1 = S1x1 = y∆. Since
SΣ is injective, we conclude that x0 = x1.

(iv)=⇒(v) Obviously, we have R(SΣ) ∩ F∆ ⊇ R(S∆).
Let y ∈ R(SΣ) ∩ F∆. Then S0

−1y = S1
−1y = x ∈ E∆. Thus x ∈ D(S∆) and S∆x = y.

(v)=⇒(i) It holds N(SΣ) = N(S0) + N(S1) = {0}, see Lemma 2.24. Thus SΣ is injective.
Since R(SΣ) = R(S0) + R(S1) = FΣ by Proposition 2.5, we conclude that SΣ is surjective.
From N(S∆) ⊆ N(S0) = {0} and R(S∆) = R(SΣ)∩F∆ = FΣ ∩F∆ = F∆, it follows that S∆

is injective and surjective.

Let E and F be Banach spaces. We denote by B(E,F ) the set of all everywhere defined
and bounded linear operators S : E −→ F . If E = F , we write B(E) for short.

Proposition 2.26. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear. Assume Sj is injective and surjective for j ∈ {0, 1,∆,Σ}. Then the following
statements are equivalent.

(i) (S0)
−1 ∈ B(F0, E0) and (S1)

−1 ∈ B(F1, E1),

(ii) (S∆)−1 ∈ B(F∆, E∆) and (SΣ)−1 ∈ B(FΣ, EΣ).

Proof. Assume (i) holds. From the definition of the norms on E∆, F∆, EΣ and FΣ, we
obtain

∥

∥(S∆)−1
∥

∥ ≤ max
{
∥

∥(S0)
−1

∥

∥ ,
∥

∥(S1)
−1

∥

∥

}

,
∥

∥(SΣ)−1
∥

∥ ≤ max
{
∥

∥(S0)
−1

∥

∥ ,
∥

∥(S1)
−1

∥

∥

}

.
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Conversely, assume (ii) holds. Then SΣ is closed. From Proposition 1.8 (ii) and Proposition
2.6 (ii), we obtain that S0 and S1 are closed. Since S0 and S1 are injective and surjective,
(i) follows.

The following theorem generalizes [Kra96, p. 40, Proposition 3.3.2].

Theorem 2.27. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear. The following statements are equivalent.

(a) S∆ and SΣ are continuously invertible,

(b) Sj and S∆ are continuously invertible for j ∈ {0, 1},

(c) Sj and SΣ are continuously invertible for j ∈ {0, 1},

(d) Sj is continuously invertible for j ∈ {0, 1} and (S0)
−1

|F∆
= (S1)

−1
|F∆

,

(e) Sj is continuously invertible for j ∈ {0, 1} and R(SΣ) ∩ F∆ = R(S∆),

(f) Sj is continuously invertible for j ∈ {0, 1} and ((S0)
−1, (S1)

−1) is an interpolation
morphism.

If one of the statements (a) - (f) holds, then

(i) Sj is closed for j ∈ {0, 1,∆,Σ},

(ii) SjiSj
is an isomorphism for j ∈ {0, 1,∆,Σ},

(iii) ((S0)
−1, (S1)

−1)Σ = (SΣ)−1 and ‖(SΣ)−1‖ ≤ ‖((S0)
−1, (S1)

−1)‖Mor.

(iv) Moreover, assume� E is an intermediate spaces with respect to (E0, E1),� F is an intermediate spaces with respect to (F0, F1).

Then (̌((S0)
−1, (S1)

−1)Σ)F,E = ((̌SΣ)E,F )−1.

Proof. From Proposition 2.25 and Proposition 2.26, we obtain the equivalence of the state-
ments (a) - (e).
Assume (d) is fulfilled. Then the pair ((S0)

−1, (S1)
−1) is an interpolation morphism by

Theorem 2.10 (iv).
Conversely, assume (f) holds. Then (S0)

−1 and (S1)
−1 are induced by an operator with

domain FΣ and (d) follows.

(i) Since (Sj)
−1 ∈ B(Fj , Ej), we obtain that Sj is closed for j ∈ {0, 1,∆,Σ}.

(ii) Since Sj is continuously invertible for j ∈ {0, 1,∆,Σ}, (ii) follows from Theorem 1.5.
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(iii) From (d), we obtain that the operator ((S0)
−1, (S1)

−1)Σ is well defined. Since R(S0)+
R(S1) = R(SΣ) by Proposition 2.5, we see that ((S0)

−1, (S1)
−1)Σ = (SΣ)−1. The inequality

of the norms follows from Theorem 2.8 (i).

(iv) From (iii) and Proposition 1.10, we conclude

(̌((S0)
−1, (S1)

−1)Σ)F,E = (̌(SΣ)−1)F,E = ((̌SΣ)E,F )−1.

We use Theorem 2.27 to examine the extended spectrum of the operators S0, S1, S∆, SΣ

and (̌SΣ)E,F in Section 2.6 and Section 2.7.

In the following, we give an example of an operator that fulfills one of the statements (a)
- (f) of Theorem 2.27.
Let (E0, E1), (F0, F1) be compatible couples such that Fj ⊆ Ej with continuous inclusion
for j ∈ {0, 1}. Suppose S : EΣ ⊇ D(S) −→ FΣ with D(S) = FΣ and Sx = x for all
x ∈ FΣ. Then S0, S1 are invertible and the inverses of S0, S1 coincide with the continuous
embeddings corresponding to the continuous inclusions. Since SΣ = S and FΣ ⊆ EΣ with
continuous inclusion, we obtain that statement (c) of Theorem 2.27 is satisfied.
For instance, it is possible to choose Ej = Lpj , Fj = Lqj , where the corresponding interval
is finite and 1 ≤ pj < qj < ∞, j ∈ {0, 1}.

Theorem 2.28. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear. Then the statements (a) - (f) of Theorem 2.27 are equivalent to

(a’) S0, S1 are closed and S∆iS∆
, (S0iS0, S1iS1)Σ are continuously invertible,

(b’) S0, S1 are closed and SjiSj
, S∆iS∆

are continuously invertible for j ∈ {0, 1},

(c’) S0, S1 are closed and SjiSj
, (S0iS0, S1iS1)Σ are continuously invertible for j ∈ {0, 1},

(d’) S0, S1 are closed, SjiSj
is continuously invertible for j ∈ {0, 1} and we have

(S0)
−1

|F∆
= (S1)

−1
|F∆

,

(e’) S0, S1 are closed, SjiSj
is continuously invertible for j ∈ {0, 1} and we have

R((S0iS0, S1iS1)Σ) ∩ F∆ = R(S∆),

(f ’) S0, S1 are closed, SjiSj
is continuously invertible for j ∈ {0, 1} and the pair

((S0iS0)
−1, (S1iS1)

−1) is an interpolation morphism with respect to the compatible
couples (F0, F1) and ((E0)S0, (E1)S1).

Proof. Firstly, we show that the statements (a’) - (f’) are equivalent. Let S0 and S1 be
closed. Then S∆ is closed by Proposition 1.8 (ii) and Proposition 2.6 (iii). Therefore iS0,
iS1 and iS∆

exist. If S0iS0 and S1iS1 are continuously invertible, then

(S0)
−1

|F∆
= (S1)

−1
|F∆

if and only if (S0iS0)
−1

|F∆
= (S1iS1)

−1
|F∆

,
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see Theorem 1.5. In this case, the pair ((S0iS0)
−1, (S1iS1)

−1) is an interpolation morphism
by Theorem 2.10 (iv). We have R(S∆) = R(S∆iS∆

), see Proposition 1.4 (iv).
Since

SjiSj
= (̌(S0iS0, S1iS1)Σ)(Ej)Sj

,Fj

for j ∈ {0, 1,∆} by Lemma 2.23 (iv), the equivalence of the statements (a’) - (f’) follows
from Theorem 2.27.
If (a) -(e) hold, the Sj and S∆ are closed by Theorem 2.27. Thus (b) and (b’) are equivalent
by Theorem 1.5.

Remark 2.29. Assume we have a situation as in Theorem 2.28 and one of the equivalent
statements (a’) - (f ’) of Theorem 2.28 is fulfilled. Then SΣ is closed by Theorem 2.27 (i)
and Theorem 2.28.
Moreover, it is possible to obtain corresponding results as in Theorem 2.27 (iii), (iv) for
SjiSj

, where j ∈ {0, 1,Σ}.

2.6 The Spectra of S0, S1, S∆ and SΣ

Let E be a Banach space and S : E ⊇ D(S) −→ E be linear. The resolvent set ρ(S) of S
is the set of all z ∈ C such that z − S is injective, surjective and has a bounded inverse.
The complement of ρ(S) in C is said to be the spectrum of S that we denote by σ(S). The
extended resolvent set ρ̃(S) and the extended spectrum σ̃(S) of S are defined by

ρ̃(S) :=

{

ρ(S) ∪ {∞} if S is everywhere defined and bounded,

ρ(S) otherwise,

σ̃(S) := (C ∪ {∞})\ρ̃(S).

Note that ρ̃(S) is an open subset of C ∪ {∞}.

The next corollary is a generalization of [Che01, p. 257, Theorem 2.1].

Corollary 2.30. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be linear.
Define

ρ0 :=
{

z ∈ ρ(S0) ∩ ρ(S1) : (z − S0)
−1

|E∆
= (z − S1)

−1
|E∆

}

,

ρ1 := {z ∈ C : R(z − SΣ) ∩ E∆ = R(z − S∆)} ,

ρ2 :=
{

z ∈ ρ(S0) ∩ ρ(S1) : ((z − S0)
−1, (z − S1)

−1) is an interpolation morphism
}
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and

ρ̃0 :=

{

ρ0 ∪ {∞} if S0 and S1 are everywhere defined and bounded,

ρ0 otherwise,

ρ̃1 :=

{

ρ1 ∪ {∞} if S0 and S1 are everywhere defined and bounded,

ρ1 otherwise,

ρ̃2 :=

{

ρ2 ∪ {∞} if S0 and S1 are everywhere defined and bounded,

ρ2 otherwise.

Then the sets

(i) ρ̃(S∆) ∩ ρ̃(SΣ),

(ii) ρ̃(S0) ∩ ρ̃(S1) ∩ ρ̃(S∆),

(iii) ρ̃(S0) ∩ ρ̃(S1) ∩ ρ̃(SΣ),

(iv) ρ̃0,

(v) ρ̃(S0) ∩ ρ̃(S1) ∩ ρ̃1,

(vi) ρ̃2

are equal.
If this set is not empty, then Sj is closed for j ∈ {0, 1,∆,Σ}.

Proof. If ∞ is in one of the sets of (i) - (vi), then ∞ is in each set by Theorem 2.8.
Assume z ∈ C and j ∈ {0, 1,∆,Σ}. It holds

z − Sj = (z − S)j

by Proposition 1.11 and Proposition 2.6 (iv), respectively. Thus the sets are equal by
Theorem 2.27. From Lemma 1.1 (ii) and Theorem 2.27 (i), we obtain that Sj is closed.

Definition 2.31. We denote the set described in Corollary 2.30 by ρ̃S. Moreover, we
define ρS := ρ̃S\ {∞}.

It holds

ρS = ρ(S∆) ∩ ρ(SΣ) = ρ(S0) ∩ ρ(S1) ∩ ρ(S∆) = ρ(S0) ∩ ρ(S1) ∩ ρ(SΣ)

= ρ0 = ρ(S0) ∩ ρ(S1) ∩ ρ1 = ρ2.

Let E a be Banach space and S : E ⊇ D(S) −→ E be linear. The residual spectrum σr(S)
and the approximate point spectrum σapp(S) are defined by
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σr(S) := {z ∈ σ(S) : z − S is injective and the range is not dense},
σapp(S) := {z ∈ σ(S) : z − S is not injective or

z − S is injective and its inverse is not bounded on R(S)}.

Proposition 2.32. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be
linear. It holds

σapp(S∆)\(σ(S0) ∪ σ(S1)) = ∅

and

σ(S∆)\(σ(S0) ∪ σ(S1)) ⊆
{

z ∈ σr(S∆) : (z − S∆)−1 is bounded on R(S∆)
}

.

Proof. Assume S∆ is not closed. Then S0 and S1 are not closed by Proposition 1.8 (ii) and
Proposition 2.6 (iii). Therefore σ(S0) = C = σ(S1) and the proposition follows.
Suppose S∆ is closed. Then we conclude similarly as in the proof of [HT56, p. 288,
Corollary 6].
Assume z ∈ σapp(S∆)\(σ(S0) ∪ σ(S1)). Then there exists a sequence {xn}n∈N

⊆ D(S∆)
such that

‖xn‖E∆
= 1 and ‖zxn − S∆xn‖E∆

−→ 0,

see [EN00, p. 242, Lemma 1.9]. Suppose it holds ‖xn‖E0
= 1 for infinitely many n ∈ N.

Then there exists a subsequence (xnk
)k∈N of {xn}n∈N

such that

‖xnk
‖E0

= 1 and ‖zxnk
− S∆xnk

‖E0
−→ 0.

Since z /∈ σ(S0), it follows that z − S0 is injective. Thus z ∈ σapp(S0) ⊆ σ(S0). This is a
contradiction.
Similarly, if ‖xn‖E1

= 1 for infinite many n ∈ N, we obtain a contradiction. Thus

σapp(S∆)\(σ(S0) ∪ σ(S1)) = ∅.

Let z ∈ σ(S∆)\(σ(S0) ∪ σ(S1)). From above, we know that z ∈ σr(S∆)\σapp(S∆). Hence
(z − S∆)−1 is bounded.

Corollary 2.33. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be linear
such that ρ̃S 6= ∅. Then

ρ̃S = ρ̃(S0) ∩ ρ̃(S1) ∩ ρ̃(S∆).

Proof. It holds

(ρ(S0) ∩ ρ(S1))\ρ̃S ⊆ σ(S∆),
(

(ρ(S0) ∩ ρ(S1))\ρ̃S

)

∩
(

σ(S0) ∪ σ(S1)
)

= ∅.

From Proposition 2.32, we obtain

(ρ(S0) ∩ ρ(S1))\ρ̃S ⊆ σ(S∆)\(σ(S0) ∪ σ(S1)) ⊆
{

z ∈ σr(S∆) : (z − S∆)−1 is bounded
}

.
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We show that
{

z ∈ σr(S∆) : (z − S∆)−1 is bounded
}

⊆ C\ρ(S∆).

Let z̃ ∈ {z ∈ σ(S∆) : (z − S∆)−1 is bounded}. Obviously, z̃ /∈ ρ(S∆). Since ρ̃S 6= ∅, we
know that z̃−S∆ is closed by Lemma 1.1 and Corollary 2.30. From [Gol66, p. 94, Lemma
IV.1.1], it follows that R(z̃−S∆) is closed. Assume there exists a sequence {zn}n∈N

⊆ ρ(S∆)
such that zn −→ z̃. Then we obtain that z̃ − S∆ is surjective by [Gol66, p. 111, Corollary
V.1.3] and therefore z̃ /∈ ρ(S∆). This is a contradiction. Therefore z̃ /∈ ρ(S∆).
We proved that

(ρ(S0) ∩ ρ(S1))\ρ̃S ⊆ C\ρ(S∆).

Since ∞ /∈ (ρ̃(S0) ∩ ρ̃(S1))\ρ̃S by Theorem 2.8 (i), it follows that

(ρ̃(S0) ∩ ρ̃(S1))\ρ̃S ⊆ (C ∪ {∞})\ρ̃(S∆).

Thus
ρ̃(S∆) ⊆ ρ̃S ∪

(

(C ∪ {∞})\(ρ̃(S0) ∩ ρ̃(S1))
)

.

We conclude that

ρ̃S = ρ̃(S0) ∩ ρ̃(S1) ∩ ρ̃(S∆) ⊆ ρ̃(S0) ∩ ρ̃(S1) ∩ ρ̃(S∆)

⊆

(

ρ̃(S0) ∩ ρ̃(S1) ∩ ρ̃S

)

∪

(

ρ̃(S0) ∩ ρ̃(S1) ∩
(

(C ∪ {∞})\(ρ̃(S0) ∩ ρ̃(S1))
)

)

= ρ̃S.

2.7 The Spectra of Unbounded Operators on Inter-

polation Spaces

The spectra of interpolation operators were often examined, see for instance [BKS88, p.
2081, Section 12], [Alb84, p. 34, Corollary 4.4], [AM00], [AS] or [Kra96, p. 53, Section
3.6].
In this section, we investigate the spectra of not necessarily bounded operators on inter-
polation spaces.

Theorem 2.34. Suppose (E0, E1), (F0, F1) are compatible couples and S : EΣ ⊇ D(S) −→
FΣ is linear such that one of the equivalent statements (a) - (f) of Theorem 2.27 or (a’) -
(f ’) of Theorem 2.28 holds.

(i) Assume� F and E are interpolation spaces with respect to (F0, F1) and (E0, E1).

We have
((S0)

−1, (S1)
−1)F,E = ((̌SΣ)E,F )−1.

In particular, the operator (̌SΣ)E,F is continuously invertible.
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(ii) Suppose� E and F are interpolation spaces with respect to (E0, E1) and (F0, F1),� F and E are interpolation spaces with respect to (F0, F1) and (E0, E1).

If (S0, S1) is an interpolation morphism, then

((S0)
−1, (S1)

−1)F,E = ((S0, S1)E,F )−1.

In particular, the operator (S0, S1)E,F is an isomorphism.

(iii) Assume� (ES) and F are interpolation spaces with respect to ((E0)S0 , (E1)S1) and (F0, F1),� F and (ES) are interpolation spaces with respect to (F0, F1) and ((E0)S0 , (E1)S1).

Then
((S0iS0)

−1, (S1iS1)
−1)F,(ES) = ((S0iS0, S1iS1)(ES),F )−1.

In particular, the operator (S0iS0, S1iS1)(ES),F is an isomorphism.

Proof. (i) From Theorem 2.27 and Theorem 2.28, it follows that ((S0)
−1, (S1)

−1) is an
interpolation morphism. It holds

((S0)
−1, (S1)

−1)F,E = (̌((S0)
−1, (S1)

−1)Σ)F,E = ((̌SΣ)E,F )−1

by Theorem 2.15 and Theorem 2.27 (iv). Since interpolation operators are everywhere
defined and bounded, (i) follows.

(ii) If (S0, S1) is an interpolation morphism, then S = SΣ by Theorem 2.8 (i). Thus we
obtain (ii) from (i).

(iii) From Theorem 2.27 and Theorem 2.28, we know that S0 and S1 are closed. Thus
(S0iS0, S1iS1) is an interpolation morphism, see Theorem 2.22 (iii). Then we conclude
similarly as in the proof of (i), using Remark 2.29.

The next theorem is a generalization of [Che01, p. 258, Lemma 2.3].

Theorem 2.35. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be linear.
Assume E is an interpolation space with respect to (E0, E1). We have

ρ̃S ⊆ ρ̃((̌SΣ)E,E).

Proof. Assume ∞ ∈ ρ̃S. Then the operators S0 and S1 are everywhere defined and
bounded, see Corollary 2.30. Therefore SΣ = S is everywhere defined and bounded by
Theorem 2.8 (i) and (S0, S1) is an interpolation morphism. Thus (̌SΣ)E,E = ŠE,E is an inter-

polation operator and therefore everywhere defined and bounded. Hence ∞ ∈ ρ̃((̌SΣ)E,E).
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Let ∞ 6= z ∈ ρ̃S. Then the equivalent statements (a) - (f) of Theorem 2.27 and (a’) - (f’)
of Theorem 2.28 are fulfilled for z − S by Proposition 1.11. Hence

(̌(z − S0, z − S1)Σ)E,F

is continuously invertible, see Theorem 2.34 (i). Since (z − S0, z − S1)Σ = z − SΣ by
Proposition 2.6 (iv), we obtain from Proposition 1.11 that the operator z − (̌SΣ)E,E is
continuously invertible. Thus the theorem follows.

2.7.1 Constant Spectra

In this subsection, we show that, under certain assumptions, the spectra of induced and
not necessarily bounded operators on different interpolation spaces are equal.
In general, the spectra are not constant when varying the interpolation spaces. For bounded
operators, an example is given in [Dav07, p. 49 Example 2.2.11] or [Jör82, p. 330, Exercise
12.11 a]. If we consider the inverses of the operators investigated in [Jör82, p. 330, Exercise
12.11 a], then we obtain an example for induced, unbounded operators with non-constant
spectra (cf. Lemma 5.33 (i)).
Under certain assumptions, the spectra are constant, see [Dav07, p. 109, Theorem 4.2.15]
for bounded operators or [Zaf73, p. 367 Theorem 4.1] for unbounded operators.
Another example for the constancy of the spectra is given in [Dav07, p. 219, Theorem
8.2.3]. If the spectra of the generators considered in [Dav07, p. 219, Theorem 8.2.3] are
not empty, it is possible to show that this theorem follows from Corollary 2.43 (cf. [EN00,
p. 60, Proposition]).

Theorem 2.36. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be linear.
Then ρ̃S is open and closed in ρ̃(S0) ∩ ρ̃(S1).

Proof. Since ρ̃S = ρ̃(S0) ∩ ρ̃(S1) ∩ ρ̃(SΣ) is open in C ∪ {∞}, it follows that ρ̃S is open in
ρ̃(S0) ∩ ρ̃(S1).
Let {zn}n∈N

⊆ ρ̃S and z ∈ ρ̃(S0) ∩ ρ̃(S1) such that zn −→ z.
If z = ∞, then it follows from ∞ ∈ ρ̃(S0) ∩ ρ̃(S1) that ∞ ∈ ρ̃(SΣ) by Theorem 2.8 (i).
Therefore ∞ ∈ ρ̃S.
Now, suppose z 6= ∞. Without loss of generality, assume zn 6= ∞ for all n ∈ N. Let
x∆ ∈ E∆. From

(zn − S0)
−1x∆ = (zn − S1)

−1x∆

for all n ∈ N and (zn − Sj)
−1x∆ −→ (z − Sj)

−1x∆ for j ∈ {0, 1}, we obtain z ∈ ρ̃S.

Lemma 2.37. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be linear.
Suppose C is a component of ρ̃(S0) ∩ ρ̃(S1). Then C ∩ ρ̃S = ∅ or C ⊆ ρ̃S.

Proof. Assume C ∩ ρ̃S 6= ∅. Then the set C ∩ ρ̃S is open and closed in ρ̃(S0) ∩ ρ̃(S1) by
Theorem 2.36. Since C is connected, we obtain C ∩ ρ̃S = C. Thus C ⊆ ρ̃S.
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Corollary 2.38. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be
linear. Assume ρ̃(S0) ∩ ρ̃(S1) has only one component and ρ̃S 6= ∅. Then we obtain that
ρ̃S = ρ̃(S0) ∩ ρ̃(S1).

Proof. Let C be the only component of ρ̃(S0) ∩ ρ̃(S1). Then C = ρ̃(S0) ∩ ρ̃(S1). Thus
ρ̃S ⊆ C. From Lemma 2.37, we obtain ρ̃S = C.

Some of the results of Proposition 2.39 and Theorem 2.40 were proved in [Che01, p. 258,
Theorem 2.5] and [Che01, p. 258, Lemma 2.6] in a different way.

Proposition 2.39. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be
linear. Assume C is a component of ρ̃(S0) ∩ ρ̃(S1).

(i) Either C ∩ ρ̃(S∆) = ∅ or C ⊆ ρ̃(S∆).

(ii) Either C ∩ ρ̃(SΣ) = ∅ or C ⊆ ρ̃(SΣ).

(iii) Let E be an interpolation space with respect to (E0, E1). If C ∩ ρ̃(S∆) 6= ∅ or
C ∩ ρ̃(SΣ) 6= ∅, then C ⊆ ρ̃((̌SΣ)E,E).

Proof. (i) Assume C ∩ ρ̃(S∆) 6= ∅. Then

∅ 6= C ∩ ρ̃(S∆) = C ∩ ρ̃(S0) ∩ ρ̃(S1) ∩ ρ̃(S∆) = C ∩ ρ̃S

by Corollary 2.30. From Lemma 2.37, we obtain C ⊆ ρ̃S ⊆ ρ̃(S∆).

(ii) We conclude similarly as in (i).

(iii) From the proof of (i), (ii) and Theorem 2.35 (i), we obtain C ⊆ ρ̃S ⊆ ρ̃((̌SΣ)E,E).

Theorem 2.40. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be linear.
Let ρ̃S 6= ∅. Then ρ̃S is a union of components of ρ̃(S0) ∩ ρ̃(S1) and C\ρ̃S is a union of
σ̃(S0) ∪ σ̃(S1) with components of ρ̃(S0) ∩ ρ̃(S1).

Proof. Lemma 2.37 yields
ρ̃S = ∪z∈ρ̃S

Cz,

where Cz denotes the component of ρ̃(S0) ∩ ρ̃(S1) containing z for all z ∈ ρ̃S.
From Theorem 2.36, we obtain that (ρ̃(S0)∩ ρ̃(S1))\ρ̃S is open and closed in ρ̃(S0)∩ ρ̃(S1).
Let z̃0 ∈ (ρ̃(S0)∩ ρ̃(S1))\ρ̃S and Cz̃0 the corresponding component of ρ̃(S0)∩ ρ̃(S1). Assume
Cz̃0 ∩ ρ̃S 6= ∅. Then Cz̃0 ⊆ ρ̃S by Lemma 2.37. This is a contradiction. Hence (ρ̃(S0) ∩
ρ̃(S1))\ρ̃S ⊇ Cz̃0. We conclude that

(ρ̃(S0) ∩ ρ̃(S1))\ρ̃S = ∪z̃∈ρ̃(S0)∩ρ̃(S1))\ρ̃S
Cz̃

by Lemma 2.37, where Cz̃ denotes the component of ρ̃(S0) ∩ ρ̃(S1) containing z̃ for all
z̃ ∈ ρ̃(S0) ∩ ρ̃(S1))\ρ̃S. Thus

C\ρ̃S = σ̃(S0) ∪ σ̃(S1) ∪ (∪z̃∈(ρ̃(S0)∩ρ̃(S1))\ρ̃S
Cz̃).
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Theorem 2.41. Let (E0, E1) be a compatible couple such that E∆ is dense in E0 and
S : EΣ ⊇ D(S) −→ EΣ be linear such that S0 and S1 are closed. Assume σ(S1) 6= ∅ and
ρS = ρ(S0) ∩ ρ(S1). Let C 6= ∅ be a bounded spectral set of S0, i.e. ∅ 6= C ⊆ σ(S0) is a
bounded set such that C is open and closed in σ(S0). Then

C ∩ σ(S1) 6= ∅.

Proof. See [HT56, p. 286, Theorem] and the note after the proof of [HT56, p. 286,
Theorem].

Theorem 2.42. Let (E0, E1) be a compatible couple and E be an interpolation space with
respect to (E0, E1) such that� E∆ is dense in E0 and E1,� E0 ∩ E is dense in E.

Suppose S : EΣ ⊇ D(S) −→ EΣ is linear such that the operators S0, S1 and (̌SΣ)E,E are
closed and have non-empty spectra. Assume σ(S0) and σ(S1) consist of isolated points.
Then

σ(S0) = σ(S1) = σ((̌SΣ)E,E).

Proof. The spectra σ(S0) and σ(S1) consist of isolated points. Thus ρ(S0) ∩ ρ(S1) is
connected. Therefore ρ(S0) ∩ ρ(S1) has only one component. Similar arguments as in
the proof of Corollary 2.38 yield ρS = ρ(S0) ∩ ρ(S1). From Theorem 2.41, it follows that
σ(S0) = σ(S1).
Now, we want to apply Theorem 2.41 to the operators S0 and (̌SΣ)E,E .
From Lemma 2.16, we know that (E0, E) is a compatible couple. Obviously, the space
E∆ ⊆ E0 ∩ E is dense in E0.
Since ρ(S0) = ρS ⊆ ρ((̌SΣ)E,E) by the proof of Theorem 2.35, it follows that σ((̌SΣ)E,E)
consists of isolated points. Let

z ∈ ρ(S0) ∩ ρ((̌SΣ)E,E) = ρ(S0) = ρS.

Then z ∈ ρ(SΣ). It holds

(z − S0)
−1x∆ = (z − SΣ)−1x∆ = (z − (̌SΣ)E,E)−1x∆

for all x∆ ∈ E0 ∩E. Then the theorem follows by applying Theorem 2.41 to the operators
S0 and (̌SΣ)E,E .

Y. Chen investigates the constancy of the spectrum of operators on different interpolation
spaces constructed with the complex interpolation method, see [Che01, p. 261, Corollary
3.3]. In the following corollary, we obtain similar results on the spectrum of operators on
arbitrary interpolation spaces.
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Corollary 2.43. Let (E0, E1) be a compatible couple and E be an interpolation space with
respect to (E0, E1) such that� E∆ is dense in E0 and E1,� E0 ∩ E is dense in E.

Suppose S : EΣ ⊇ D(S) −→ EΣ is linear such that (̌SΣ)E,E is closed and the spectra of S0,

S1 and (̌SΣ)E,F are not empty. Assume S0 and S1 have non-empty resolvent sets and the
resolvents are compact. Then

σ̃(S0) = σ̃(S1) = σ̃((̌SΣ)E,E).

Proof. Since ρ(S0), ρ(S1) 6= ∅, it follows that S0 and S1 are closed, see Lemma 1.1. From
[Kat66, p. 187, Theorem 6.29], we conclude that σ(S0) and σ(S1) consist of isolated points.
Then σ(S0) = σ(S1) = σ((̌SΣ)E,E) follows from Theorem 2.42.
We conclude that the extended spectra are equal with the following. If a normed linear
space has a dense and finite-dimensional subspace, then both spaces are equal and therefore
finite-dimensional.

2.8 The Spaces (ES) and EŠE,F

Let (E0, E1) and (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ be linear such
that S0 and S1 are closed. Then we have the following situation,

(E0)S0
// E0

_?
S0 //

iS0
F0

(ES)

(iS0
,iS1

)(ES),E

%%
EŠE,F

// E
iŠE,F

_?

ŠE,F
// F

(E1)S1
// E1

_?
S1 //

iS1
F1

where (ES), E and F are certain intermediate spaces and ŠE,F is closable.

In this section, we investigate the relation between (ES) and EŠE,F
. Example 3.21 shows

that these spaces are not equal in general. We give criteria such that equality holds in
Theorem 2.48, Theorem 2.49 and Corollary 2.51.
P. Grisvard and M. Zafran investigated the relation of the spaces (ES) and EŠE,F

under
special assumptions, see [Gri66, p. 169, Section 4.3] and [Zaf73, p. 365, Theorem 3.1],
respectively. Theorem 2.48 generalizes their results.

We have many assumptions concerning interpolation spaces in this section. These assump-
tions are redundant, when considering interpolation spaces constructed with the complex
and the real interpolation method, see Remark 3.20.
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31

Definition 2.44. Let E, F , G be Banach spaces, S : E ⊇ D(S) −→ F and A : E ⊇
D(A) −→ G be linear operators with D(S) ⊆ D(A).

(i) Assume there exist constants a, b ≥ 0 such that

‖Ax‖G ≤ a ‖x‖E + b ‖Sx‖F (2.1)

for all x ∈ D(S). Then A is said to be S-bounded.
The S-bound of A is defined to be the infimum of all possible b ≥ 0 such that there
exists a ≥ 0 and (2.1) is fulfilled.

(ii) Assume for any sequence {xn}n∈N
⊆ D(S) such that {xn}n∈N

and {Sxn}n∈N
are

bounded, the sequence {Axn}n∈N
contains a convergent subsequence. Then A is said

to be S-compact.

Assume S, A are defined as in Definition 2.44 and S is closed. Then

A is S-bounded if and only if AiS is bounded,

A is S-compact if and only if AiS is compact.

For our investigations in this section, we only need a special case of the following lemma
that is described in Remark 2.46. But we will apply the results of this lemma in the general
case in Section 4.2.

Lemma 2.45. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ be
linear such that S0 and S1 are closed. Assume A : EΣ ⊇ D(A) −→ FΣ is linear such that
for j ∈ {0, 1},� Aj is Sj-bounded with Sj-bound smaller than 1 or� Aj is Sj-compact.

Suppose T : EΣ ⊇ D(T ) −→ FΣ is linear such that Tj = Sj + Aj for j ∈ {0, 1}. Then the
operator Hj : (Ej)Sj

−→ (Ej)Tj
defined by

Hjuj := uj for all uj ∈ (Ej)Sj

is an isomorphism for j ∈ {0, 1} and we have the following.

(i) The pair (H0, H1) is an interpolation morphism.

(ii) It holds iTj
Hj = iSj

for all j ∈ {0, 1}.

(iii) Moreover, let
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� (ES) and (ET ) be interpolation spaces with respect to ((E0)S0, (E1)S1)
and ((E0)T0 , (E1)T1),� (ET ) and (ES) be interpolation spaces with respect to ((E0)T0 , (E1)T1)
and ((E0)S0, (E1)S1).

Then (H0, H1)(ES),(ET ) : (ES) −→ (ET ) is an isomorphism and (H0, H1)(ES),(ET )u = u
for all u ∈ (ES).

Proof. From Proposition 2.18, we know that ((E0)S0, (E1)S1) is a compatible couple.
Let j ∈ {0, 1}. The operator Tj is closed with D(Sj) = D(Tj) by [Kat66, p. 190, Theorem
1.1] and [Kat66, p. 194, Theorem 1.11], respectively. Therefore ((E0)T0 , (E1)T1) is a com-
patible couple by Proposition 2.18 and Hj is well defined and surjective. Obviously, Hj is
linear and injective.
If Aj is Sj-compact, then Aj is Sj-bounded, see [Kat66, p. 194]. Then there exist constants
aj, bj ≥ 0 such that

‖xj‖Ej
+ ‖Tjxj‖Fj

≤ (1 + aj) ‖xj‖Ej
+ (1 + bj) ‖Sjxj‖Fj

for all xj ∈ D(Sj). Hence Hj is an isomorphism.

(i) Since H0 and H1 are bounded and

H0|(E0)S0
∩(E1)S1

= H1|(E0)S0
∩(E1)S1

,

we conclude that (H0, H1) is an interpolation morphism, see Theorem 2.10 (iv).

(ii) This follows immediately from the definition of the operators.

(iii) Obviously, (H0, H1)(ES),(ET )u = u for all u ∈ (ES).
We have

(̌(H0, H1)Σ)(Ej)Sj
,(Ej)Tj

= Hj

for j ∈ {0, 1} by Theorem 2.10 (i). Since

(H0)
−1

|(E0)T0
∩(E1)T1

= (H1)
−1

|(E0)T0
∩(E1)T1

,

statement (d) in Theorem 2.27 holds. From (i) and Theorem 2.34 (ii), we obtain that
(H0, H1)(ES),(ET ) is an isomorphism.

From [Kra96, p. 40, Proposition 3.3.2], we obtain that (H0, H1) is an invertible element in
the paraalgebra M

(

((E0)S0, (E1)S1), ((E0)T0 , (E1)T1)
)

.

Remark 2.46. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be linear
such that S0, S1 are closed. Set A := z idEΣ

. It holds (Ej)Sj
= (Ej)−Sj

with equal norms.
From (i), Proposition 1.11 and Lemma 2.45, we obtain that� (H0, H1) is an interpolation morphism and
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� (ii), (iii) in Lemma 2.45 hold if we substitute

T with z − S and Tj with z − Sj

in these statements,

where Hj : (Ej)Sj
−→ (Ej)z−Sj

is the isomorphism defined by Hjuj := uj for all uj ∈
(Ej)Sj

and j ∈ {0, 1}.

The following proposition will be essential for considerations in Chapter 3 and Chapter 4.

Proposition 2.47. Let (E0, E1) and (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→
FΣ be linear such that S0 and S1 are closed. Assume� (ES) and E are interpolation spaces with respect to ((E0)S0, (E1)S1) and (E0, E1),� (ES) and F are interpolation spaces with respect to ((E0)S0, (E1)S1) and (F0, F1).

(i) Suppose ŠE,F is closable. It holds (ES) ⊆ (D(ŠE,F ), ‖ · ‖
ŠE,F

) ⊆ EŠE,F
with continuous

inclusions and

(iS0, iS1)(ES),E ⊆ iŠE,F
,

(S0iS0, S1iS1)(ES),F ⊆ ŠE,F iŠE,F
.

(2.2)

(ii) Assume (ES) = EŠE,F
. Then ŠE,F is closed and equality holds in the relations (2.2).

We illustrate the situation in the following diagram.

ES

(iS0
,iS1

)(ES),E

''

(S0iS0
,S1iS1

)(ES),F

66EŠE,F
// E

iŠE,F

_?

ŠE,F
// F

Proof. From Theorem 2.22 (i), (iii), we know that (iS0, iS1) and (S0iS0, S1iS1) are interpo-
lation morphisms.

(i) Since ŠE,F is closable the abstract Sobolev space EŠE,F
exists.

Let u ∈ (ES). Then

(iS0, iS1)(ES),Eu ∈ E,

(S0iS0, S1iS1)(ES),F u ∈ F.

Since
(S0iS0, S1iS1)(ES),F u ∈ D((S0iS0, S1iS1)Σ) = D(SΣ(iS0, iS1)Σ)
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by Lemma 2.23 (ii), we obtain u ∈ (D(ŠE,F ), ‖ · ‖
ŠE,F

) from Proposition 2.6 (i).

Hence
(iS0, iS1)(ES),E ⊆ iŠE,F

. (2.3)

The interpolation operator (iS0, iS1)(ES),E is bounded. Since iŠE,F
is injective and bounded,

it follows that (iŠE,F
)−1(iS0, iS1)(ES),E is everywhere defined and bounded. We conclude

that
(ES) ⊆ (D(ŠE,F ), ‖ · ‖

ŠE,F
)

with continuous inclusion.
Obviously, it holds

(D(ŠE,F ), ‖ · ‖
ŠE,F

) ⊆ EŠE,F

with continuous inclusion.
The interpolation operator (S0iS0, S1iS1)(ES),F has domain (ES) and it holds

(S0iS0, S1iS1)(ES),F = (̌(S0iS0, S1iS1)Σ)(ES),F

by Theorem 2.15. Then

(̌(S0iS0, S1iS1)Σ)(ES),F = (̌SΣ(iS0, iS1)Σ)(ES),F = (̌S(iS0, iS1)Σ)(ES),F ,

see Proposition 2.6 (i) and Lemma 2.23 (ii). Since

(̌S(iS0, iS1)Σ)(ES),F = ŠE,F (̌(iS0, iS1)Σ)(ES),E = ŠE,F (iS0, iS1)(ES),E

by Proposition 1.12 (iii) and Theorem 2.15, we obtain (i) from (2.3).

(ii) We have
EŠE,F

= (ES) ⊆ (D(ŠE,F ), ‖ · ‖
ŠE,F

) ⊆ EŠE,F
.

Therefore ŠE,F is closed. Since the domains of the operators considered in (2.2) are (ES)
and EŠE,F

, respectively, we obtain (ii) from (i).

Assume we have a situation as in Proposition 2.47. Then the proposition holds if we
substitute ŠE,F with (̌SΣ)E,F in Proposition 2.47. This follows from Proposition 2.47

applied to SΣ and the fact that (̌SΣ)Ej ,Fj
= Sj for j ∈ {0, 1}, see Proposition 2.6 (ii).

The following theorem is a generalization of a result of [Gri66, p. 169, Section 4.3] (cf.
[Zaf73, p. 365, Theorem 3.1]).

Theorem 2.48. Let (E0, E1), (F0, F1) be compatible couples and the operator S : EΣ ⊇
D(S) −→ FΣ be linear such that S = SΣ. Assume one of the equivalent statements (a) -
(f) of Theorem 2.27 or (a’) - (f ’) of Theorem 2.28 holds and� (ES) and E are interpolation spaces with respect to ((E0)S0, (E1)S1) and (E0, E1),
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� (ES) and F are interpolation spaces with respect to ((E0)S0, (E1)S1) and (F0, F1),� F and (ES) are interpolation spaces with respect to (F0, F1) and ((E0)S0, (E1)S1),� F and E are interpolation spaces with respect to (F0, F1) and (E0, E1).

Then we have (ES) = EŠE,F
with equivalent norms.

Proof. We know that S0, S1 and S = SΣ are closed by Theorem 2.27 (i). Then ŠE,F is
closed, see Proposition 1.8 (ii). Therefore the abstract Sobolev spaces (E0)S0 , (E1)S1 and
EŠE,F

exist.
The interpolation operator (S0iS0, S1iS1)(ES),F is an isomorphism by Theorem 2.34 (iii).

From Theorem 2.34 (i), we know that (̌SΣ)E,F = ŠE,F is continuously invertible. Thus
ŠE,F iŠE,F

is an isomorphism by Theorem 1.5.
We conclude that (ES) = EŠE,F

with equivalent norms from Proposition 2.47 (i).

Let (E0, E1) and (F0, F1) be compatible couples and the operator S : EΣ ⊇ D(S) −→ FΣ be
linear such that S = SΣ. It is possible to show that, under certain assumptions, ∞ 6= z ∈ ρ̃S

implies that (ES) = EŠE,E
with equivalent norms. But we obtain a more general result,

see Corollary 2.51.

Theorem 2.49 generalizes Theorem 2.48.

Theorem 2.49. Let (E0, E1) and (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear such that S0 and S1 are closed. Assume� (ES) and E are interpolation spaces with respect to ((E0)S0, (E1)S1) and (E0, E1),� (ES) and F are interpolation spaces with respect to ((E0)S0, (E1)S1) and (F0, F1).

Assume ŠE,F is injective, closed and (S0iS0, S1iS1)(ES),F is surjective. Then (ES) = EŠE,F

with equivalent norms.

Proof. It holds (ES) ⊆ EŠE,F
with continuous inclusion by Proposition 2.47 (i). The

operator ŠE,F iŠE,F
is injective. Since (S0iS0, S1iS1)(ES),F is surjective, we conclude that

(S0iS0, S1iS1)(ES),F = ŠE,F iŠE,F

from Proposition 2.47 (i). Thus

iŠE,F
{(ES)} = iŠE,F

{

D
(

(S0iS0, S1iS1)(ES),F

)}

= iŠE,F

{

D(ŠE,F iŠE,F
)
}

= D(ŠE,F ).

The operator ŠE,F is closed. Therefore iŠE,F

{

EŠE,F

}

= D(ŠE,F ). Since iŠE,F
is injective,

the theorem follows.
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Indeed, Theorem 2.49 is a generalization of Theorem 2.48. To see this, suppose the assump-
tions of Theorem 2.48 hold. Then the operator (̌SΣ)E,F = ŠE,F is continuously invertible by
Theorem 2.34 (i) and therefore ŠE,F is injective and closed. Moreover, (S0iS0, S1iS1)(ES),F

is an isomorphism by Theorem 2.34 (iii). Since S0 and S1 are closed by Theorem 2.27 and
Theorem 2.28, the assumptions of Theorem 2.49 are fulfilled.

Theorem 2.50. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be linear
such that S0 and S1 are closed. Let z ∈ C such that� (ES) and (Ez−S) are interpolation spaces with respect to ((E0)S0, (E1)S1)

and ((E0)z−S0, (E1)z−S1),� (Ez−S) and (ES) are interpolation spaces with respect to ((E0)z−S0, (E1)z−S1)
and ((E0)S0 , (E1)S1).

Then (ES) = EŠE,E
with equivalent norms if and only if (Ez−S) = Ez−ŠE,E

with equivalent
norms.

Proof. From Lemma 1.1 (ii), we know that z − Sj is closed for j ∈ {0, 1}. Therefore
((E0)S0, (E1)S1) and ((E0)z−S0, (E1)z−S1) are compatible couples by Proposition 1.11 and
Proposition 2.18.
From Remark 2.46, we conclude that (ES) = (Ez−S) with equivalent norms.
We know that EŠE,E

= Ez−ŠE,E
with equivalent norms from Lemma 1.1 (i).

Thus the lemma follows.

Corollary 2.51. Let (E0, E1) be a compatible couple and S : EΣ ⊇ D(S) −→ EΣ be linear
such that S0 and S1 are closed. Assume that there is an element z ∈ C such that� (Ez−S) and E are interpolation spaces with respect to ((E0)z−S0, (E1)z−S1)

and (E0, E1),� (ES) and (Ez−S) are interpolation spaces with respect to ((E0)S0, (E1)S1)
and ((E0)z−S0, (E1)z−S1),� (Ez−S) and (ES) are interpolation spaces with respect to ((E0)z−S0, (E1)z−S1)
and ((E0)S0 , (E1)S1)

and z− ŠE,E is injective, closed and (ziz−S0−S0iz−S0, ziz−S1−S1iz−S1)(Ez−S),E is surjective.
Then (ES) = EŠE,E

with equivalent norms.

Proof. The operator z − S0 and z − S1 are closed by Lemma 1.1. Then (Ez−S) = Ez−ŠE,E
,

see Proposition 1.11 and Theorem 2.49. Hence the corollary follows from Theorem 2.50.



Chapter 3

Fredholm Properties of Unbounded
Operators on Interpolation Spaces

In this chapter, we investigate Fredholm properties of the operators introduced in Chapter
2. We generalize results of E. Albrecht, M. Krause and K. Schindler for bounded linear
operators by using the theory of the abstract Sobolev spaces and the induced operators,
respectively.

In Section 3.1, we investigate the linear operators S∆
0
, S∆

1
and S∆

Σ
to obtain results on

the Fredholm properties of S0, S1, S∆ and SΣ in Section 3.2. If the operators S∆
0
, S∆

1
and

S∆
Σ

are bounded, then they coincide with corresponding operators introduced in [Kra96,
p. 46].
Moreover, Section 3.2 studies the Fredholm properties of not necessarily bounded linear
operators on arbitrary interpolation spaces. When the spaces are constructed with the
complex or the real interpolation method (see Section 3.3), we obtain further results on
the Fredholm properties of the corresponding not necessarily bounded linear operators, see
Section 3.4.

As before, we simplify the notation. In this chapter, we always construct the induced
operator with continuous embeddings that correspond to the continuous inclusions and
identify the domain with the range of these continuous embeddings (see the beginning of
Chapter 2 for more details).

3.1 The Operators S∆
0
, S∆

1
and S∆

Σ

Definition 3.1. Let (E0, E1) be a compatible couple and j ∈ {0, 1,Σ}.

(i) We define E∆
j

to be the closure of E∆ in Ej. The norm on E∆
j

is defined to be the

restriction of the norm on Ej to the space E∆
j
.

37
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(ii) Moreover, let (F0, F1) be a compatible couple and S : EΣ ⊇ D(S) −→ FΣ be linear
such that Sj is closable. We define

S∆
j
: E∆

j
⊇ D(S∆

j
) −→ F∆

j

by the closure of S∆ considered as an operator from E∆
j

to F∆
j
.

Let j ∈ {0, 1,Σ}. Assume (E0, E1), (F0, F1) are compatible couples and S : EΣ ⊇ D(S) −→

FΣ is linear such that Sj is closable. The space E∆
j

in (i) of the previous definition is a

Banach space. From Proposition 2.6 (ii), (iii), it follows that S∆ ⊆ Sj. Thus S∆
j

is well
defined.
We obtain the following situation,

Ej
_?

Sj
//

?�

Fj

?�

E∆
j _?

S∆
j
, (̌Sj)

E∆
j
,F∆

j

//

OO

?�

F∆
j

OO

?�

E∆

OO

_?
S∆ //F∆

OO

where the injective operators in the diagram correspond to the continuous inclusions.
It is not difficult to show with results of Chapter 1 and Chapter 2 that S∆ = (̌Sj)E∆,F∆

is

closable, (̌Sj)E∆
j
,F∆

j and (̌Sj)E∆,F∆
are closed and

S∆ = (̌Sj)E∆,F∆
= ˇ((̌Sj)E∆

j
,F∆

j

)

E∆,F∆
,

S∆ ⊆ (̌Sj)E∆,F∆
= ˇ((̌Sj)E∆

j
,F∆

j

)

E∆,F∆
,

(S∆)
j
= S∆

j
⊆ (̌Sj)E∆

j
,F∆

j ⊆ Sj.

(3.1)

Moreover, we have (̌Sk)E∆
k
,F∆

k = Š
E∆

k
,F∆

k for k ∈ {0, 1}.

The operator S∆
j

is not necessarily contained in Sj. Indeed, let E0 = E1, F0 = F1 and S
be closable such that S ⊂ S. Then Sj = S = S∆ and

Sj = S ⊂ S = Sj = S∆
j
.

In the following example, the operator SΣ is not closed (see Example 2.7).

Example 3.2. Assume we have a situation as in Example 2.7. Then

E∆
0

= E∆
Σ

= F∆
1

= F∆
Σ

= Lp0,

E∆
1

= F∆
0

= Lp1.

Therefore S∆
0

= S0, S∆
1

= S1 and S∆
Σ

= S ⊃ SΣ.
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Let (E0, E1), (F0, F1) be compatible couples and S : EΣ −→ FΣ be linear such that

(S0, S1) is an interpolation morphism. M. Krause denotes by S∆
j

the operator induced

by S corresponding to the spaces E∆
j

and F∆
j
, see [Kra96, p. 46]. We show that both

definitions coincide in the case that (S0, S1) is an interpolation morphism, see the next
proposition.
In Lemma 3.7, we see that our definition is useful, when studying the Fredholm properties
of not necessarily bounded operators (cf. Proposition 1.4).

Proposition 3.3. Let (E0, E1), (F0, F1) be compatible couples, S : EΣ −→ FΣ be linear

such that (S0, S1) is an interpolation morphism. For j ∈ {0, 1,Σ}, the operators S∆
j

and
Š

E∆
j
,F∆

j are everywhere defined, continuous and it holds

S∆
j
= Š

E∆
j
,F∆

j .

Proof. Let j ∈ {0, 1,Σ}. Since Sj is closed, we obtain that S∆
j
⊆ (̌Sj)E∆

j
,F∆

j , see the third

relation in (3.1). It holds Sj ⊆ S. We conclude from Lemma 1.7 (i) that

(̌Sj)E∆
j
,F∆

j ⊆ Š
E∆

j
,F∆

j .

The operator S∆ is everywhere defined by Theorem 2.8 (i). From S∆ ⊆ Sj, it follows that

S∆ is bounded with respect to the norm of Ej and Fj. Thus S∆
j

is everywhere defined
and bounded and we obtain the proposition.

Lemma 3.4. Let (E0, E1) be a compatible couple. Then E∆ is dense in both E0 and E1 if
and only if E∆ is dense in EΣ.

Proof. This follows from [Kra96, p. 38, Lemma 3.2.1] and [Kra96, p. 39, Lemma 3.2.2].

Let E, F be Banach spaces and S : E ⊇ D(S) −→ F be linear and closed. If D is a
subspace of D(S) such that S|D = S, then D is said to be a core of S.

Lemma 3.5. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ be
linear. Assume j ∈ {0, 1,Σ} and Sj is closable. Then D(S∆) is a core of Sj if and only if
(E∆)S∆

is dense in (Ej)Sj
.

Proof. Since Sj is closable, we know that S∆ is closable by Proposition 1.8 (iii) and Propo-
sition 2.6 (ii), (iii). Thus (E∆)S∆

exists. Then the proof is straightforward.

Lemma 3.6. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ be
linear such that SΣ is closed and D(S∆) is a core of S0 and S1. Then D(S∆) is a core of
SΣ.
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Proof. Since SΣ is closed, it follows that S0 and S1 are closed by Proposition 1.8 (ii) and
Proposition 2.6 (ii). From Lemma 3.5, we know that (E∆)S∆

is dense in (E0)S0 and (E1)S1,
respectively. It holds (E0)S0 + (E1)S1 = (EΣ)SΣ

, see Lemma 2.19 (iv). Thus (E∆)S∆
is

dense in (EΣ)SΣ
by Lemma 3.4. Hence the lemma follows from Lemma 3.5.

Lemma 3.7. Let (E0, E1), (F0, F1) be compatible couples, S : EΣ ⊇ D(S) −→ FΣ be linear
such that SΣ is closed. For j ∈ {0, 1,Σ}, it holds

(̌(S0iS0, S1iS1)Σ)
(E0)S0

∩(E1)S1

j
,F∆

j = S∆
j
i
S∆

j .

Proof. Since SΣ is closed, it follows that the operators S0, S1 and S∆ are closed by Propo-
sition 1.8 (ii) and Proposition 2.6 (ii). Then (S0iS0, S1iS1) is an interpolation morphism by
Theorem 2.22 (iii).
We have (̌(S0iS0, S1iS1)Σ)(Ek)Sk

,Fk
= SkiSk

for k ∈ {0, 1}, see Lemma 2.23 (iv). Therefore
we obtain

D
(

(̌(S0iS0, S1iS1)Σ)
(E0)S0

∩(E1)S1

j
,F∆

j

)

= (E0)S0 ∩ (E1)S1

j

from Proposition 3.3. It holds (E0)S0 ∩ (E1)S1 = (E∆)S∆
, see Lemma 2.19 (iii), and

(E∆)S∆

j
= (D(S∆

j
), ‖ · ‖Sj

) = (D(S∆
j
), ‖ · ‖

S∆
j) = D(S∆

j
i
S∆

j).

For u ∈ D
(

(̌(S0iS0, S1iS1)Σ)
(E0)S0

∩(E1)S1

j
,F∆

j

)

= D(S∆
j
i
S∆

j ), we have

(̌(S0iS0, S1iS1)Σ)
(E0)S0

∩(E1)S1

j
,F∆

ju = SΣiSΣ
u = S∆

j
i
S∆

ju.

Assume (E0, E1), (F0, F1) and S are defined as the previous lemma. Since (E0)S0∩(E1)S1 =
(E∆)S∆

, see the proof above, we have

(̌(S0iS0, S1iS1)Σ)
(E0)S0

∩(E1)S1

j
,F∆

j = (̌(S0iS0, S1iS1)Σ)(E0)S0
∩(E1)S1

,F∆

j

= S∆iS∆

j

for j ∈ {0, 1,Σ} by Lemma 2.23 (iv) and Proposition 3.3.

3.2 S0, S1, S∆, SΣ and Unbounded Operators on Arbi-

trary Interpolation Spaces

This section generalizes results of [Kra96, p. 44, Section 3.4] and [Kra96, p. 52, Section
3.5].

Let E and F be Banach spaces. We denote by FR(E,F ) the set of all operators S ∈
B(E,F ) with dim R(S) < ∞. If E = F , we write FR(E) for short.
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Definition 3.8. Suppose (E0, E1), (F0, F1) are compatible couples and S : EΣ −→ FΣ is
linear such that (S0, S1) is an interpolation morphism. If there exists

� a linear operator T : FΣ −→ EΣ such that (T0, T1) is an interpolation morphism and� operators U ∈ FR(EΣ), V ∈ FR(FΣ) such that

TS + U = idEΣ
,

ST + V = idFΣ
,

then (S0, S1) is said to be Fredholm with respect to (E0, E1) and (F0, F1).

Note that (ǓE0,E0 , ǓE1,E1) and (V̌F0,F0 , V̌F1,F1) are interpolation morphisms.

Let E, F be Banach spaces and S : E ⊇ D(S) −→ F be linear and closed. We denote the
dimension of the kernel of S with α(S) and the codimension of the range of S by β(S). If
S is semi-Fredholm, then κ(S) denotes the index of S, i.e. κ(S) = α(S) − β(S).

Theorem 3.9. Let (E0, E1), (F0, F1) be compatible couples . Assume S : EΣ ⊇ D(S) −→
FΣ is linear such that SΣ is closed. Then the following statements are equivalent.

(i) The interpolation morphism (S0iS0, S1iS1) is Fredholm with respect to
((E0)S0, (E1)S1) and (F0, F1).

(ii) The operators S0, S1, S∆
0
, S∆

1
are Fredholm operators and

κ(S∆
0
) = κ(S∆

1
), α(S∆

0
) = α(S∆

1
),

R(S∆
Σ
) ∩ F∆ = R(S∆), R(SΣ) ∩ F∆ = R(S∆) ⊕ F,

where F is a finite-dimensional subspace.

(iii) The operators S∆, SΣ, S∆
Σ

are Fredholm operators and

κ(S∆) = κ(S∆
Σ
).

Assume (i) - (iii) hold.

(a) We have

N(S∆) = N(S∆
0
) = N(S∆

1
) = N(S∆

Σ
).

(b) If D ⊆ F∆ is dense, then there exists a finite-dimensional subspace H ⊆ D such that

R(S∆) ⊕ H = F∆ and R(S∆
k
) ⊕ H = F∆

k
for k ∈ {0, 1,Σ}.
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Proof. Since SΣ is closed, it follows that S0 and S1 are closed from Proposition 1.8 (ii)
and Proposition 2.6 (ii). Therefore the pair (S0iS0, S1iS1) is an interpolation morphism by
Theorem 2.22 (iii).
Let j ∈ {0, 1} and k ∈ {0, 1,Σ}. It holds

(S0iS0, S1iS1)Σ = SΣiSΣ
,

(̌(S0iS0, S1iS1)Σ)(Ej)Sj
,Fj

= SjiSj
,

(̌(S0iS0, S1iS1)Σ)
(E0)S0

∩(E1)S1

k
,F∆

k = S∆
k
i
S∆

k

by Lemma 2.23 (iii), (iv) and Lemma 3.7. We have (E∆)S∆
= (E0)S0 ∩ (E1)S1, see Lemma

2.19 (iii). Thus
(̌(S0iS0, S1iS1)Σ)(E0)S0

∩(E1)S1
,F∆

= S∆iS∆

by Lemma 2.23 (iv).

From Proposition 1.4, we know that SliSl
(S∆

k
i
S∆

k) is Fredholm if and only if Sl (S∆
k
) is

Fredholm for l ∈ {0, 1,∆,Σ}; in this case, the dimensions of the kernels, the ranges and
the indices coincide. Then the theorem follows from [Kra96, p. 46, Theorem 3.4.4] ap-
plied to the interpolation morphism (S0iS0, S1iS1) corresponding to the compatible couples
((E0)S0, (E1)S1) and (F0, F1).

Corollary 3.10. Let (E0, E1), (F0, F1) be compatible couples such that F∆ is dense in both
F0, F1. Assume S : EΣ ⊇ D(S) −→ FΣ is linear such that SΣ is closed and D(S∆) is a
core of S0 and S1. Then the following statements are equivalent.

(i) The interpolation morphism (S0iS0, S1iS1) is Fredholm with respect to
((E0)S0, (E1)S1) and (F0, F1).

(ii) The operators S0, S1 are Fredholm operators and

κ(S0) = κ(S1), α(S0) = α(S1),

R(SΣ) ∩ F∆ = R(S∆).

(iii) The operators S∆, SΣ are Fredholm operators and

κ(S∆) = κ(SΣ).

Assume (i) - (iii) hold.

(a) We have
N(S0) = N(S1) = N(S∆) = N(SΣ).

(b) Let D ⊆ F∆ be dense. Then there exists a finite-dimensional subspace H ⊆ D with
R(Sk) ⊕ H = Fk for k ∈ {0, 1,∆,Σ}.
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Proof. From Lemma 3.6, we know that D(S∆) is a core of SΣ. The operator SΣ is closed.
Thus S0 and S1 are closed by Proposition 1.8 (ii) and Proposition 2.6 (ii). Since Sj is
closed and D(S∆) is a core of Sj, we obtain that

S∆
j
= Sj

for j ∈ {0, 1,Σ} from the third relation in (3.1). Then the corollary follows from Theorem
3.9.

Theorem 3.11. Let (E0, E1), (F0, F1) be compatible couples such that F∆ is dense in both
F0, F1. Assume that S : EΣ ⊇ D(S) −→ FΣ is linear such that SΣ is closed and D(S∆)
is a core of S0 and S1. Suppose the interpolation morphism (S0iS0, S1iS1) is Fredholm
with respect to ((E0)S0, (E1)S1) and (F0, F1). Let D be dense in F∆. Then there exist
finite-dimensional subspaces N ⊆ iS∆

{(E∆)S∆
} and H ⊆ D such that

N(ŠE,F ) = N,

F = R(ŠE,F ) ⊕ H,

for all intermediate spaces E and F such that ŠE,F is closable and

� EŠE,F
and E are interpolation spaces with respect to ((E0)S0, (E1)S1) and (E0, E1),� EŠE,F
and F are interpolation spaces with respect to ((E0)S0, (E1)S1) and (F0, F1),� F and EŠE,F

are interpolation spaces with respect to (F0, F1) and ((E0)S0, (E1)S1).

In particular, ŠE,F is a Fredholm operator and κ(ŠE,F ) = κ(SΣ).

Proof. Since SΣ is closed, it follows that S0 and S1 are closed by Proposition 1.8 (ii) and
Proposition 2.6 (ii). From Theorem 2.22 (iii), we know that (S0iS0, S1iS1) is an interpolation
morphism. It holds (E∆)S∆

= (E0)S0 ∩ (E1)S1, see Lemma 2.19 (iii). Thus (E∆)S∆
is dense

in both (E0)S0 and (E1)S1 by Lemma 3.5.
From [Kra96, p. 52, Lemma 3.5.2], we know that there exists finite-dimensional subspaces
M ⊆ (E∆)S∆

and H ⊆ D such that

N((S0iS0, S1iS1)EŠE,F
,F ) = M,

F = R((S0iS0, S1iS1)EŠE,F
,F ) ⊕ H,

Proposition 2.47 (i) implies that

(S0iS0, S1iS1)EŠE,F
,F ⊆ ŠE,F iŠE,F

. (3.2)
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The interpolation operator (S0iS0, S1iS1)EŠE,F
,F has domain EŠE,F

. Thus ŠE,F is closed and

equality holds in (3.2).
Since ŠE,F iŠE,F

is Fredholm, we know from Proposition 1.4 that ŠE,F is Fredholm,

iŠE,F
{M} = N(ŠE,F )

and the ranges and the indices of ŠE,F iŠE,F
and ŠE,F coincide.

Since SΣ is closed, we have
(S0iS0, S1iS1)Σ = SΣiSΣ

,

see Lemma 2.23 (iii). Moreover, the operator SΣ is Fredholm by the previous corollary.
Thus κ((S0iS0, S1iS1)Σ) = κ(SΣ) by Proposition 1.4 and the theorem follows.

3.3 Complex and Real Interpolation spaces

In this section, we present two methods to construct particular interpolation spaces. More-
over, we introduce unbounded linear operators on these spaces, which we examine in the
remaining part of this chapter and Chapter 4.

Definition 3.12. We define the strips

S := {z ∈ C : Re z ∈ [0, 1]} ,

S0 := {z ∈ C : Re z ∈ (0, 1)} .

Definition 3.13. Let (E0, E1) be a compatible couple.

(i) We define the space F(E0, E1) (FE for short) by

F(E0, E1) := {f : S −→ EΣ : f bounded and continuous,

f is analytic on S0,

f(j + it) ∈ Ej for all t ∈ R,

t 7→ f(j + it) is continuous with

respect to the norm on Ej,

‖f(j + it)‖Ej
−→ 0 for |t| −→ ∞,

where j ∈ {0, 1}}

with the norm

‖f‖
F(E0,E1)

:= max

{

sup
t∈R

{

‖f(it)‖E0

}

, sup
t∈R

{

‖f(1 + it)‖E1

}

}

for f ∈ F(E0, E1).
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(ii) Let λ ∈ (0, 1). We define the space (E0, E1)λ (Eλ for short) by

(E0, E1)λ := {x ∈ EΣ : ∃f ∈ F(E0, E1) with f(λ) = x}

with the norm

‖x‖λ := inf
f∈F(E0,E1)

{

‖f‖
F(E0,E1)

: f(λ) = x
}

for x ∈ (E0, E1)λ. Then (E0, E1)λ is said to be constructed with the complex interpo-
lation method.

From [BL76, p. 88, Theorem 4.1.2], we see that it is convenient to say that the space Eλ

in Definition 3.13 is the complex interpolation space.

From Hadamard’s three lines theorem, we obtain that ‖ · ‖
FE

is indeed a norm on FE, see
the next remark. Moreover, the space FE equipped with the norm ‖ · ‖

FE
is a Banach

space, see [BL76, p. 88, Lemma 4.1.1].

Remark 3.14. Let (E0, E1) be a compatible couple and f ∈ FE. Then from Hadamard’s
three line theorem, we have

sup
t∈R

{

‖f(λ + it)‖EΣ

}

≤ max

{

sup
t∈R

‖f(it)‖EΣ
, sup

t∈R

‖f(1 + it)‖EΣ

}

for all λ ∈ [0, 1], see for instance [DS67, p. 520, Theorem 3]. Hence ‖f(z)‖EΣ
≤ ‖f‖

FE

for all z ∈ S.

Real interpolation spaces are defined as follows.

Definition 3.15. Let (E0, E1) be a compatible couple, λ ∈ (0, 1) and p ∈ [1,∞].

(i) We define

K(t, x, (E0, E1)) := inf
x=x0+x1

{

‖x0‖E0
+ t ‖x1‖E1

}

,

where x ∈ EΣ, t > 0 and x0 ∈ E0, x1 ∈ E1.

(ii) We define the space (E0, E1)λ,p (Eλ,p for short) by

(E0, E1)λ,p :=















{

x ∈ EΣ :

(

∫ ∞

0

(K(t,x,(E0,E1))
tλ

)p dt
t

)1/p

< ∞

}

if 1 ≤ p < ∞,

{

x ∈ EΣ : sup0<t<∞
K(t,x,(E0,E1))

tλ

}

if p = ∞
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with the norm

‖x‖λ,p :=











(

∫ ∞

0

(K(t,x,(E0,E1))
tλ

)p dt
t

)1/p

if 1 ≤ p < ∞,

sup0<t<∞
K(t,x,(E0,E1))

tλ
if p = ∞.

for x ∈ (E0, E1)λ,p. Then (E0, E1)λ,p is said to be constructed with the real interpola-
tion method.

We say that Eλ,p in Definition 3.15 is the real interpolation space. This legitimate [BL76,
p. 40, Theorem 3.1.2].

Definition 3.16. Let (E0, E1), (F0, F1) be compatible couples, S : EΣ ⊇ D(S) −→ FΣ be
a linear operator and λ ∈ (0, 1), p ∈ [1,∞]. Then we define

(i) Sλ : Eλ ⊇ D(Sλ) −→ Fλ by
Sλ := ŠEλ,Fλ

,

(ii) Sλ,p : Eλ,p ⊇ D(Sλ,p) −→ Fλ,p by

Sλ,p := ŠEλ,p,Fλ,p
.

Definition 3.17. Let (E0, E1), (F0, F1) be compatible couples. Assume that S0 : E0 ⊇
D(S0) −→ F0 and S1 : E1 ⊇ D(S1) −→ F1 are linear such that S0|E∆

= S1|E∆
. Let

λ ∈ (0, 1) and p ∈ [1,∞]. Then we define

(i) (S0, S1)λ : Eλ ⊇ D((S0, S1)λ) −→ Fλ by

(S0, S1)λ := (̌(S0, S1)Σ)Eλ,Fλ
,

(ii) (S0, S1)λ,p : Eλ,p ⊇ D((S0, S1)λ,p) −→ Fλ,p by

(S0, S1)λ,p := (̌(S0, S1)Σ)Eλ,p,Fλ,p
.

As mentioned in the beginning of this chapter, the continuous embeddings used in Defini-
tion 3.16 and Definition 3.17 correspond to the continuous inclusions.

Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ be linear. Then
S0|E∆

= S1|E∆
. Let λ ∈ (0, 1) and p ∈ [1,∞]. Thus� D(Sλ) and D(Sλ,p) are not necessarily contained in D(SΣ),� Sλ and Sλ,p are not necessarily induced operators of SΣ,� (S0, S1)λ and Sλ are not necessarily equal,
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� (S0, S1)λ,p and Sλ,p are not necessarily equal,

see Example 3.18.
If (S0, S1) is an interpolation morphism, then SΣ = S by Theorem 2.8 (i). Therefore
D(Sλ),D(Sλ,p) ⊆ D(SΣ) and Sλ, Sλ,p are induced by SΣ. Furthermore,

(S0, S1)λ = (̌SΣ)Eλ,Fλ
= ŠEλ,Fλ

= Sλ,

(S0, S1)λ,p = (̌SΣ)Eλ,p,Fλ,p
= ŠEλ,p,Fλ,p

= Sλ,p.
(3.3)

The operators considered in (3.3) are interpolation operators.

Example 3.18. Assume we have a situation as in Example 2.7. Let

p :=
2p0p1

p0 + p1
.

It follows that p < p1 and therefore Lp1 ⊂ Lp.

(i) From [BL76, p. 106, Theorem 5.1.1], we know that

(E0, E1) 1
2

= Lp = (F0, F1) 1
2
.

Thus
S 1

2
= idLp .

It follows that D(SΣ) ⊂ D(S 1
2
) from Example 2.7 and (S0, S1) 1

2
= (SΣ) 1

2
⊂ S 1

2
, see

Lemma 1.7 (iii).

(ii) It holds
(E0, E1) 1

2
,p = Lp = (F0, F1) 1

2
,p,

see [BL76, p. 109, Theorem 5.2.1]. Then

S 1
2
,p = idLp

and we obtain D(SΣ) ⊂ D(S 1
2
,p) from Example 2.7 and (S0, S1) 1

2
,p = (SΣ) 1

2
,p ⊂ S 1

2
,p

from Lemma 1.7 (iii).

In the following, we study particular complex and real interpolation spaces.

Definition 3.19. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear such that S0 and S1 are closed. For λ ∈ (0, 1) and p ∈ [1,∞], we define

(ES)λ := ((E0)S0, (E1)S1)λ,

(ES)λ,p := ((E0)S0, (E1)S1)λ,p.
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The spaces in Definition 3.19 are well defined if we just assume that S0 and S1 are closable.
This follows from Proposition 2.18. But in further considerations, we always need to assume
that S0 and S1 are closed.

Remark 3.20. From [BL76, p. 88, Theorem 4.1.2] and [BL76, p. 40, Theorem 3.1.2], it
follows that the results in Section 2.8 hold, when we consider spaces constructed with the
complex and real interpolation method (corresponding to the same λ ∈ (0, 1) and p ∈ [1,∞])
instead of general interpolation spaces.

The following example shows that the spaces (ES) and EŠE,F
considered in Section 2.8 are

not equal in general.

Example 3.21. Assume, we have a situation as in Example 2.7 and let p be defined as in
Example 3.18. Then Lp1 ⊂ Lp.

(i) It holds
((E0)S0 , (E1)S1) 1

2
= (Lp1, Lp1) 1

2
= Lp1,

see Example 2.7 and [BL76, p. 91, Theorem 4.2.1]. Since

(E 1
2
)S 1

2

= (Lp, 2 ‖ · ‖Lp)

by Example 3.18 (i), we obtain that (ES) 1
2

and (E 1
2
)S 1

2

are not equal.

(ii) From Example 2.7 and [BL76, p. 46, Theorem 3.4.1], we know

((E0)S0, (E1)S1) 1
2
,p = (Lp1, Lp1) 1

2
,p = Lp1.

It holds
(E 1

2
,p)S 1

2 ,p
= (Lp, 2 ‖ · ‖Lp),

see Example 3.18 (ii). Then we conclude that (ES) 1
2
,p and (E 1

2
,p)S 1

2 ,p
do not coincide.

It is possible to generalize Example 3.18 and Example 3.21. Let (E0, E1) be a compatible
couple and p ∈ [1,∞] such that

E1 ⊂ E 1
2
⊆ E0,

E1 ⊂ E 1
2
,p ⊆ E0.

Set (F0, F1) := (E1, E0) and assume S := idE0 . Since D(S0) = D(S1) = E1, it follows that

D(SΣ) = E1 ⊂ E 1
2

= D(S 1
2
),

D(SΣ) = E1 ⊂ E 1
2
,p = D(S 1

2
,p)
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from [BL76, p. 46, Theorem 3.4.1] and [BL76, p. 91, Theorem 4.2.1], respectively. Thus

(S0, S1) 1
2

= (SΣ) 1
2
⊂ S 1

2
,

(S0, S1) 1
2
,p = (SΣ) 1

2
,p ⊂ S 1

2
,p.

Moreover, it holds

(ES) 1
2

= E1 = (ES) 1
2
,p,

(E 1
2
)S 1

2

= E 1
2
⊃ E1,

(E 1
2
,p)S 1

2
,p = E 1

2
,p ⊃ E1

by [BL76, p. 46, Theorem 3.4.1] and [BL76, p. 91, Theorem 4.2.1], respectively.

3.4 Unbounded Operators on Complex and Real In-

terpolation Spaces

The theorems in this section are generalizations of [Alb84, p. 34, Corollary 4.4], [AS, p. 4,
Theorem 3], [Kra96, p. 55, Corollary 3.6.6] and [Kra96, p. 54, Lemma 3.6.3].

Recall that the conditions of the form (ES)η = (Eη)Sη
and (ES)η,q = (Eη,q)Sη,q

were inves-
tigated in Section 2.8 (cf. Remark 3.20).

Theorem 3.22. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ be
linear such that S0, S1 are closed. Let λ ∈ (0, 1) such that Sλ is a semi-Fredholm operator
and (ES)η = (Eη)Sη

holds for all η in a neighborhood of λ. Then there exists δ > 0 such
that Sθ is semi-Fredholm and

κ(Sλ) = κ(Sθ),

α(Sλ) ≥ α(Sθ),

β(Sλ) ≥ β(Sθ),

(3.4)

where θ ∈ (λ − δ, λ + δ) ∩ (0, 1).
In particular, if Sλ is continuously invertible, then Sθ is continuously invertible for θ ∈
(λ − δ, λ + δ) ∩ (0, 1).

Proof. The pair (S0iS0, S1iS1) is an interpolation morphism, see Theorem 2.22 (iii). From
Proposition 2.47 (ii) (cf. Remark 3.20), we know that

SλiSλ
= (S0iS0, S1iS1)λ.
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The operator Sλ is closed. We conclude that SλiSλ
is a semi-Fredholm operator by Propo-

sition 1.4. Thus there exists ε > 0 such that (S0iS0, S1iS1)θ is semi-Fredholm and

κ((S0iS0, S1iS1)λ) = κ((S0iS0, S1iS1)θ),

α((S0iS0, S1iS1)λ) ≥ α((S0iS0, S1iS1)θ),

β((S0iS0, S1iS1)λ) ≥ β((S0iS0, S1iS1)θ)

for all θ ∈ (λ − ε, λ + ε) ∩ (0, 1) by [Alb84, p. 34, Corollary 4.4]. Since (ES)η = (Eη)Sη
,

we know that (S0iS0, S1iS1)η = SηiSη
and Sη is closed for all η in a neighborhood of λ, see

Proposition 2.47 (ii) (cf. Remark 3.20). From Proposition 1.4, we obtain the theorem.

Theorem 3.23. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ be
linear such that S0, S1 are closed. Let λ ∈ (0, 1) and p ∈ [1,∞) such that Sλ,p is a Fredholm
operator with (ES)λ,p = (Eλ,p)Sλ,p

. Suppose q ∈ [1,∞] such that (ES)λ,q = (Eλ,q)Sλ,q
. Then

Sλ,q is a Fredholm operator and it holds

N(Sλ,p) = N(Sλ,q),

Fλ,p = F ⊕ R(Sλ,p), Fλ,q = F ⊕ R(Sλ,q),

where F ⊆ Fλ,1.

Proof. The pair (S0iS0, S1iS1) is an interpolation morphism, see Theorem 2.22 (iii).
Similarly as in the proof of Theorem 3.22, we conclude that Sλ,piSλ,p

= (S0iS0, S1iS1)λ,p is
a Fredholm operator. From [AS, p. 4, Theorem 3], we obtain that (S0iS0, S1iS1)λ,q is a
Fredholm operator with

N((S0iS0, S1iS1)λ,p) = N((S0iS0, S1iS1)λ,q)

and there exists F ⊆ Fλ,1 such that

Fλ,q = F ⊕ R((S0iS0, S1iS1)λ,q)

for all q ∈ [1,∞].
Let q ∈ [1,∞] with (ES)λ,q = (Eλ,q)Sλ,q

. Then

(S0iS0, S1iS1)λ,q = Sλ,qiSλ,q

and Sλ,q is closed, see Proposition 2.47 (ii) (cf. Remark 3.20). Thus the theorem follows
from Proposition 1.4.

Theorem 3.24. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear such that S0, S1 are closed. Assume λ ∈ (0, 1) and p ∈ [1,∞] so that (ES)η,p =
(Eη,p)Sη,p

for all η in a neighborhood of λ. Suppose Sλ,p is a semi-Fredholm operator. Then
there exists δ > 0 such that Sθ,p is semi-Fredholm and

κ(Sλ,p) = κ(Sθ,p),

α(Sλ,p) ≥ α(Sθ,p),

β(Sλ,p) ≥ β(Sθ,p),
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where θ ∈ (λ − δ, λ + δ) ∩ (0, 1).
In particular, if Sλ,p is continuously invertible, then Sθ,p is continuously invertible for
θ ∈ (λ − δ, λ + δ) ∩ (0, 1).

Proof. Assume 0 < λ0 < λ < λ1 < 1 such that (ES)η,p = (Eη,p)Sη,p
for all η ∈ [λ0, λ1]. Let

η̃ ∈ (0, 1) and η := (1 − η̃)λ0 + η̃λ1 ∈ (λ0, λ1). From Proposition 2.47 (ii) (cf. Remark
3.20), we know that Sλ0,p, Sλ1,p and Sη,p are closed and the abstract Sobolev spaces exist.
The pairs (Eλ0,p, Eλ1,p) and (Fλ0,p, Fλ1,p) are compatible couples, see Lemma 2.16. It holds

Eη,p = (Eλ0,p, Eλ1,p)η̃, Fη,p = (Fλ0,p, Fλ1,p)η̃

by [BL76, p. 103, Theorem 4.7.2]. Obviously,

Sη,p = Š(Eλ0,p,Eλ1,p)η̃ ,(Fλ0,p,Fλ1,p)η̃
.

Then we conclude that
(

(Eλ0,p)Sλ0,p
, (Eλ1,p)Sλ1,p

)

η̃
=

(

((E0)S0, (E1)S1)λ0,p, ((E0)S0 , (E1)S1)λ1,p

)

η̃

=
(

(E0)S0, (E1)S1

)

η,p
= (Eη,p)Sη,p

=
(

(Eλ0,p, Eλ1,p)η̃

)

Š(Eλ0,p,Eλ1,p)η̃ ,(Fλ0,p,Fλ1,p)η̃

from the assumptions and [BL76, p. 103, Theorem 4.7.2].
Let j ∈ {0, 1}. Since ŠEλ0,p+Eλ1,p,Fλ0,p+Fλ1,p

⊆ S, we obtain

(̌ŠEλ0,p+Eλ1,p,Fλ0,p+Fλ1,p
)Eλj,p,Fλj,p

⊆ Sλj ,p

from Lemma 1.7 (iii). Moreover, it holds ŠEλ0,p+Eλ1,p,Fλ0,p+Fλ1,p
⊇ Sλj ,p. Therefore

(̌ŠEλ0,p+Eλ1,p,Fλ0,p+Fλ1,p
)Eλj,p,Fλj,p

⊇ Sλj ,p

by Lemma 1.7 (i).
Since Š(Eλ0,p,Eλ1,p)

λ̃
,(Fλ0,p,Fλ1,p)

λ̃
is semi-Fredholm, we conclude that

ŠEλ0,p+Eλ1,p,Fλ0,p+Fλ1,p

fulfills the assumptions of Theorem 3.22, where

λ̃ :=
λ − λ0

λ1 − λ0

∈ (0, 1).

From Theorem 3.22, we know that there exists ε > 0 such that

ε < min

{

λ − λ0

λ1 − λ0

,
λ1 − λ

λ1 − λ0

}
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and Š(Eλ0,p,Eλ1,p)ω,(Fλ0,p,Fλ1,p)ω
is a semi-Fredholm operator such that the relations (3.4) hold

for all ω ∈ (λ̃ − ε, λ̃ + ε).
Let

δ := ε(λ1 − λ0).

Then (λ−δ, λ+δ) ⊆ (λ0, λ1). For θ ∈ (λ−δ, λ+δ) and θ̃ := θ−λ0

λ1−λ0
, we have θ̃ ∈ (λ̃−ε, λ̃+ε)

and
Sθ,p = Š(Eλ0,p,Eλ1,p)

θ̃
,(Fλ0,p,Fλ1,p)

θ̃
,

see above. Hence the theorem follows.

Theorem 3.25. Let (E0, E1), (F0, F1) be compatible couples such that F∆ is dense in both
F0, F1. Assume that S : EΣ ⊇ D(S) −→ FΣ is linear such that S0 and S1 are closed and
D(S∆) is a core of S0 and S1. Let λ ∈ (0, 1) and p ∈ [1,∞) such that Sλ,p is a Fredholm
operator and (ES)λ,p = (Eλ,p)Sλ,p

. Suppose q ∈ [1,∞) such that (ES)θ,q = (Eθ,q)Sθ,q
for

all θ in a neighborhood of λ. Then there exist δ > 0 and finite-dimensional subspaces
N ⊆ iS0 {(E0)S0} + iS1 {(E1)S1} and H ⊆ F∆ such that

N(Sλ,p) = N(Sθ,q) = N,

Fλ,p = R(Sλ,p) ⊕ H, Fθ,q = R(Sθ,q) ⊕ H

for all θ ∈ (λ − δ, λ + δ) ∩ (0, 1).
In particular, if Sλ,p is continuously invertible, then Sθ,q is continuously invertible for all
θ ∈ (λ − δ, λ + δ) ∩ (0, 1).

Proof. Let q ∈ [1,∞) such that (ES)θ,q = (Eθ,q)Sθ,q
for all θ in a neighborhood of λ.

The pair (S0iS0, S1iS1) is an interpolation morphism, see Theorem 2.22 (iii). Since D(S∆)
is a core of S0 and S1, it follows that the space (E∆)S∆

is dense in (E0)S0 and (E1)S1 , see
Lemma 3.5. Moreover, we have (E∆)S∆

= (E0)S0 ∩ (E1)S1 by Lemma 2.19 (iii).
Similarly as in the proof of Theorem 3.22, we conclude that

Sλ,piSλ,p
= (S0iS0, S1iS1)λ,p

is a Fredholm operator. From [Kra96, p. 55, Corollary 3.6.6], we know that there exist
ε > 0 and finite-dimensional subspaces M ⊆ (E0)S0 + (E1)S1 and H ⊆ F∆ such that

N((S0iS0, S1iS1)θ,q) = M,

Fθ,q = R((S0iS0, S1iS1)θ,q) ⊕ H

for all θ ∈ (λ − ε, λ + ε) ∩ (0, 1). Since (ES)θ,q = (Eθ,q)Sθ,q
, we obtain

(S0iS0, S1iS1)θ,q = Sθ,qiSθ,q

and that Sθ,q is closed for all θ in a neighborhood of λ. The theorem now follows from
Proposition 1.4.



Chapter 4

The Local Uniqueness-of-Inverse
(U.I.) Properties

T.J. Ransford introduced the following condition, see [Ran86].

Definition 4.1. Let (E0, E1) be a compatible couple and S : EΣ −→ EΣ be linear such
that (S0, S1) is an interpolation morphism. Then S is said to fulfill the local uniqueness-
of-resolvent condition if� whenever λ ∈ (0, 1) and z ∈ C such that z − Sθ is continuously invertible for θ

in a neighborhood of λ, then (z − Sλ)
−1

|E∆
= (z − Sθ̂)

−1
|E∆

for all θ̂ in a (possibly

smaller) neighborhood of λ.

E. Albrecht and V. Müller showed in [AM00] that this condition is always fulfilled. More-
over, they proved the following. Let (E0, E1) be a compatible couple, 0 ≤ α < β ≤ 1 and
S : EΣ −→ EΣ be linear such that (S0, S1) is an interpolation morphism.� Assume Sλ,1 is continuously invertible for all λ ∈ (α, β). Then Sθ,q is continuously

invertible and (Sλ,1)
−1

|E∆
= (Sθ,q)

−1
|E∆

for all λ, θ ∈ (α, β) and q ∈ [1,∞].

This result generalizes a result of M. Krause on the local real uniqueness-of-resolvent
condition, see [Kra96].

In this chapter, we consider similar but more general properties.

Definition 4.2. Let (E0, E1) and (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear. Assume λ ∈ (0, 1) such that Sλ is continuously invertible. If there exists δ > 0
such that

Sθ is continuously invertible and (Sλ)
−1

|F∆
= (Sθ)

−1
|F∆

for all θ ∈ (λ − δ, λ + δ) ∩ (0, 1), then S is said to fulfill the local uniqueness-of-inverse
(U.I.) property (at λ for the complex interpolation method).
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Definition 4.3. Let (E0, E1) and (F0, F1) be compatible couples, 0 ≤ λ0 < λ1 ≤ 1 and
S : EΣ ⊇ D(S) −→ FΣ be linear. Assume p ∈ [1,∞] such that Sλ,p is continuously
invertible for all λ ∈ (λ0, λ1). If

Sθ,q is continuously invertible and (Sλ,p)
−1

|F∆
= (Sθ,q)

−1
|F∆

for all λ, θ ∈ (λ0, λ1) and q ∈ [p,∞], then S is said to satisfy the local uniqueness-of-inverse
(U.I.) property (at λ and p for the real interpolation method).

Section 4.1 investigates the local U.I. properties for bounded operators, i.e. we consider
linear operators S : EΣ −→ FΣ such that (S0, S1) is an interpolation morphism, where
(E0, E1) and (F0, F1) are compatible couples. We show that these properties hold always.
Moreover, we study the local U.I. properties under perturbation with interpolation mor-
phisms in Section 4.1.
Motivated by the results for bounded operators in Section 4.1, we examine the local U.I.
properties for not necessarily bounded operators in Section 4.2. Our main tools to obtain
results from Section 4.1 are the theory of the abstract Sobolev spaces and the induced
operators, respectively. Furthermore, we study the local U. I. properties under relatively
bounded perturbation and under relatively compact perturbation in Section 4.2.

With the results in Section 4.1 and Section 4.2, it is possible to obtain results on the spectra
of linear operators on complex and real interpolation spaces.

As in Chapter 2 and Chapter 3, we simplify the notation and construct the induced opera-
tors always with the continuous embeddings, which correspond to the continuous inclusions
(see the beginning of Chapter 2 for more details).

4.1 The Local U.I. Properties for Bounded Operators

4.1.1 The Local U.I. Property for the Complex Interpolation
Method

E. Albrecht and V. Müller proved the following theorem for the case (E0, E1) = (F0, F1),
see [AM00, p. 810, Theorem 4]. We use ideas of their proof to prove Theorem 4.4.

Theorem 4.4. Let (E0, E1) and (F0, F1) be compatible couples and S : EΣ −→ FΣ be
linear such that (S0, S1) is an interpolation morphism. Assume λ ∈ (0, 1) such that Sλ is
continuously invertible. Then there exists δ > 0 such that

Sθ is continuously invertible and (Sλ)
−1

|F∆
= (Sθ)

−1
|F∆

for all θ ∈ (λ − δ, λ + δ) ∩ (0, 1).

Before proving Theorem 4.4, we introduce some operators and spaces, which we use in the
proof of Theorem 4.4.
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Definition 4.5. Let (F0, F1) be a compatible couple. The operator MidS
: FF ⊇ D(MidS

) −→
FF is defined by

D(MidS
) := {f ∈ FF : ( · )f( · ) ∈ FF} ,

(MidS
f)(z) := zf(z), z ∈ S,

for all f ∈ D(MidS
).

Lemma 4.6. Let (F0, F1) be a compatible couple and w ∈ S0. The operator w idFF
−MidS

is well defined, linear, injective and closed with domain D(MidS
) and R(w idFF

−MidS
) =

{g ∈ FF : g(w) = 0}. This range is closed.

Proof. Obviously, w idFF
−MidS

is well defined and linear with domain D(MidS
).

To show that w idFF
−MidS

is injective, assume f ∈ D(w idFF
−MidS

) with (w − z)f(z) = 0
for all z ∈ S. Since f is continuous, we conclude that f(z) = 0 for all z ∈ S. Hence
w idFF

−MidS
is injective.

Furthermore, w idFF
−MidS

is closed. Indeed, let {fn}n∈N
⊆ D(w idFF

−MidS
) ⊆ FF and

f, g ∈ FF such that fn −→ f in FF and (w idFF
−MidS

)fn −→ g in FF . It holds fn(z) −→
f(z) and (w idFF

−MidS
)fn(z) −→ g(z) in FΣ by Remark 3.14. Therefore

(w − z)f(z) = (w − z) lim
n−→∞

fn(z) = lim
n−→∞

(w − z)fn(z) = g(z)

for all z ∈ S. We obtain that f ∈ D(w idFF
−MidS

) and (w idFF
−MidS

)f = g. Hence
w idFF

−MidS
is closed.

We have R(w idFF
−MidS

) ⊆ {g ∈ FF : g(w) = 0}. Conversely, let g ∈ FF with g(w) = 0.
Since w ∈ S0, there exists a continuous function f : S0 −→ FΣ such that g(z) = (w −
z)f(z) for z ∈ S and f is analytic on S. From w ∈ S0 and g ∈ FF , we conclude that
f ∈ FF . Since g(z) = (w − z)f(z) for z ∈ S, it follows that f ∈ D(w idFF

−MidS
) and

g = (w idFF
−MidS

)f ∈ R(w idFF
−MidS

).
We obtain that R(w idFF

−MidS
) is closed from R(w idFF

−MidS
) = {g ∈ FF : g(w) = 0}

and Remark 3.14.

Remark 4.7. Let (F0, F1) be a compatible couple. For y∆ ∈ F∆, δ > 0 and λ ∈ R, the
function

f(z) := exp(δz2 + λz)y∆, z ∈ S

considered in [Tri78, p. 56, Theorem] is in the domain of MidS
. But MidS

is not everywhere
defined. Indeed, let q ∈ C\S and

g(z) :=
1

z − q
y∆, z ∈ S.

Then g ∈ FF , but itg(it) −→ y∆ for t −→ ±∞. If y∆ 6= 0, we see that ( · )g( · ) /∈ FF and
g /∈ D(MidS

).
Moreover, it follows that f is in the domain of w idFF

−MidS
, but w idFF

−MidS
is not

everywhere defined from Lemma 4.6, where w ∈ S0.
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Definition 4.8. Let (E0, E1) and (F0, F1) be compatible couples and S : EΣ −→ FΣ be
linear such that (S0, S1) is an interpolation morphism. We define the linear operator S̃ :
FE −→ FF by

(S̃f)(z) := S(f(z)), z ∈ S

for all f ∈ FE.

Lemma 4.9. Let (E0, E1) and (F0, F1) be compatible couples and S : EΣ −→ FΣ be linear
such that (S0, S1) is an interpolation morphism.

(i) The operator S̃ is well defined, linear and bounded with ‖S̃‖ ≤ ‖(S0, S1)‖Mor.

(ii) Let w ∈ S. It holds

S̃ {f ∈ FE : f(w) = 0} ⊆ {g ∈ FF : g(w) = 0} .

(iii) If S is injective, then S̃ is injective.

Proof. (i) Let f ∈ FE. Since S is bounded, we obtain that S(f( · )) ∈ FF . Hence S̃ is well
defined. Moreover, the operator S is linear. Therefore S̃ is linear. Since

‖S̃f‖FF
= max

{

sup
t∈R

{

‖S0(f(it))‖F0

}

, sup
t∈R

{

‖S1(f(1 + it))‖F1

}

}

for all f ∈ FE, we conclude that ‖S̃‖ ≤ ‖(S0, S1)‖Mor.

(ii) Let f ∈ FE with f(w) = 0. Then (S̃f)(w) = 0 and (ii) follows.

(iii) Assume S is injective and let S̃f = 0 for f ∈ FE. Then S(f(z)) = 0 for all z ∈ S.
Since S is injective, we conclude that f = 0. Thus S̃ is injective.

Lemma 4.10. Let (E0, E1) be a compatible couple and w ∈ S0.

(i) It holds f(w) ∈ ERe w for all f ∈ FE.

(ii) If x ∈ ERe w, then there exists f ∈ FE such that f(w) = x.

Proof. (i) Let f ∈ FE and f̂(z) := f(z + iIm w) for z ∈ S. Then f̂ ∈ FE and f(w) =
f̂(Re w) ∈ ERe w.

(ii) Since x ∈ ERe w, there exists f̂ ∈ FE such that f̂(Re w) = x. Set f(z) := f̂(z− iIm w)
for z ∈ S. Then f ∈ FE and f(w) = f̂(Re w) = x.

Note that ‖f‖
FE

= ‖f̂‖FE
in the proof of Lemma 4.10.
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Definition 4.11. Let (E0, E1) be a compatible couple and w ∈ S0. We define

(i) the space Nw(E0,E1)
(NwE

for short) by

Nw(E0,E1)
:= {f ∈ FE : f(w) = 0} ,

(ii) the operator Tw(E0,E1)
: FE/NwE

−→ ERe w (TwE
for short) by

Tw(E0,E1)
(f + NwE

) := f(w)

for all f + NwE
∈ FE/NwE

.

In addition, assume (F0, F1) is a compatible couple and S : EΣ −→ FΣ is linear such that
(S0, S1) is an interpolation morphism. We define

(iii) the operator S̃w : FE/NwE
−→ FF /NwF

by

S̃w(f + NwE
) := S̃f + NwF

for all f + NwE
∈ FE/NwE

.

Lemma 4.12. Let (E0, E1), (F0, F1) be compatible couples, w ∈ S0 and S : EΣ −→ FΣ be
linear such that (S0, S1) is an interpolation morphism.

(i) The operator TwE
is well defined and an isometric isomorphism.

(ii) The operator S̃w is well defined, linear and bounded with ‖S̃w‖ ≤ ‖S̃‖ ≤ ‖(S0, S1)‖Mor.
If S is injective, then S̃w is injective.

(iii) Let qE : FE −→ FE/NwE
and qF : FF −→ FF /NwF

be the canonical quotient map-
pings. Then it holds

SRe wTwE
qE = TwF

S̃wqE = TwF
qF S̃

on FE, i.e. the diagram

ERe w
SRe w //

TwE

?�

FRe w

TwF

?�

FE/NwE

S̃w //

qE

OO

FF /NwF

qF

OO

FE
S̃ //

OO

FF

OO

is commutative.
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Proof. (i) Since f(w) ∈ ERe w for all f ∈ FE by Lemma 4.10 (i), we conclude that TwE

is well defined. Obviously, TwE
is linear and injective. The operator TwE

is surjective by
Lemma 4.10 (ii).
We show that for f + NwE

∈ FE/NwE
, the norms

‖f + NwE
‖

FE/NwE
= inf

g∈NwE

{

‖f − g‖
FE

}

,

‖TwE
(f + NwE

)‖ERe w
= inf

h∈FE

{

‖h‖
FE

: h(Re w) = TwE
(f + NwE

)
}

are equal.
Let g0 ∈ NwE

and h0(z) := (f − g0)(z + iIm w) for z ∈ S. Then h0 ∈ FE with h0(Re w) =
(f − g0)(w) = f(w) = TwE

(f + NwE
). Since ‖f − g0‖FE

= ‖h0‖FE
, we obtain

‖f + NwE
‖

FE/NwE
≥ ‖TwE

(f + NwE
)‖ERe w

.

Let h1 ∈ FE with h1(Re w) = TwE
(f + NwE

). Set g1(z) := f(z) − h1(z − iIm w). Then
g1 ∈ FE and g1(w) = f(w)−h1(Re w) = f(w)−TwE

(f +NwE
) = 0. Thus g1 ∈ NwE

. From
‖f − g1‖FE

= ‖h1‖FE
, we conclude that

‖f + NwE
‖

FE/NwE
≤ ‖TwE

(f + NwE
)‖ERe w

.

Therefore TwE
is isometric.

(ii) From Lemma 4.6, we know that NwE
and NwF

are closed. Then we obtain (ii) with
Lemma 4.9.

(iii) This follows immediately from the definition of the corresponding operators.

Let E, F be Banach spaces and S : E ⊇ D(S) −→ F be linear and closed. Then

γ(S) =

{

infx∈D(S)\N(S)

{

‖Sx‖F

dist(x,N(S))

}

if R(S) 6= {0} ,

∞ if R(S) = {0}

denotes the minimum modulus.
For λ ∈ C, we denote by Dλ,δ the set of all w ∈ C such that |w − λ| < δ.

One main step to prove Theorem 4.4 is the following proposition. This proposition is an
immediate consequence of [För66, p. 58] (cf. [Kat58, p. 297, Theorem 3] and [Mül03, p.
119, Corollary 19]).

Proposition 4.13. Let (E0, E1) and (F0, F1) be compatible couples and S : EΣ −→ FΣ be
linear such that (S0, S1) is an interpolation morphism. Suppose that λ ∈ (0, 1) such that
Sλ is surjective. Then there exists δ > 0 such that

Dλ,δ ⊆ S0

and for all k ∈ FF , there exist analytic functions f : Dλ,δ −→ FE and g : Dλ,δ −→ FF such
that for w ∈ Dλ,δ, we have g(w) ∈ D(MidS

) and

S̃(f(w)) + (w idFF
−MidS

)(g(w)) = k.
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Proof. Consider (0, idFF
) : FE × FF −→ FF with

(0, idFF
)(f, g) := g, (f, g) ∈ FE × FF

and (−S̃,MidS
) : FE × FF ⊇ FE × D(MidS

) −→ FF with

(−S̃,MidS
)(f, g) := −S̃f + MidS

g, (f, g) ∈ FE × D(MidS
).

Now, we show that the assumptions of [För66, p. 57] are fulfilled for A := (0, idFF
) and

T := (−S̃,MidS
).

For all (f, g) ∈ FE × FF , it holds

‖A(f, g)‖
FF

= ‖g‖
FF

≤ ‖f‖
FE

+ ‖g‖
FF

.

Since the operator S̃ is bounded by Lemma 4.9 (i) and MidS
is closed by Lemma 1.1 (ii)

and Lemma 4.6, the operator T is closed.
To prove that λA− T is surjective, let g ∈ FF and qE, qF be as in Lemma 4.12 (iii). Since
Sλ is surjective, it follows that S̃λ is surjective from Lemma 4.12 (i). Then there exists
f ∈ FE such that qFg = S̃λqEf . Since S̃λqEf = qF S̃f by Lemma 4.12 (iii), we obtain

g − S̃f ∈ NλF
= R(λ idFF

−MidS
)

from Lemma 4.6. Therefore there exists h ∈ FF with g − S̃f = (λ idFF
−MidS

)h. Hence

g = S̃f + (λ idFF
−MidS

)h ∈ R(λA − T ).

It follows that γ(λA − T ) > 0, see [Gol66, p. 98, Theorem IV.1.6], and

A−1
{

(λA − T ) {FE × D(MidS
)}

}

= A−1 {FF} = FE × FF .

Thus we obtain ν(λA − T : A) = ∞ (see [För66, p. 57]).
Let 0 < γ < γ(λA − T ). Then the proposition follows from [För66, p. 58, (4)] with

δ := min
{

γ
‖A‖

, λ, 1 − λ
}

.

Now, we prove Theorem 4.4.

Proof of Theorem 4.4. Let y ∈ F∆. Set k(z) := exp(z2)y for z ∈ S. Then k ∈ FF . From
Proposition 4.13 and [Alb84, p. 34, Corollary 4.4], we know that there exists δ > 0 such
that� Dλ,δ ⊆ S0,� there exist analytic functions f : Dλ,δ −→ FE and g : Dλ,δ −→ FF such that for

w ∈ Dλ,δ, it holds g(w) ∈ D(w idFF
−MidS

) and

S̃(f(w)) + (w idFF
−MidS

)(g(w)) = k = exp( · 2)y, (4.1)
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� SRe w is continuously invertible for all w ∈ Dλ,δ.

Consider the analytic function f̂ : Dλ,δ −→ EΣ with

f̂(w) := exp(−w2)(f(w))(w), w ∈ Dλ,δ.

Let w0 ∈ Dλ,δ. Since f(w0) ∈ FE, it holds f̂(w0) ∈ ERe w0 by Lemma 4.10 (i). From (4.1),

we obtain S(f̂(w0)) = y. Hence f̂(w0) ∈ D(SRe w0) and SRe w0(f̂(w0)) = y. Since SRe w0 is
continuously invertible, we obtain

f̂(w0) = (SRe w0)
−1y.

Thus f̂ is constant in the imaginary direction and therefore f̂ is constant on Dλ,δ. Hence
(Sθ)

−1y = (Sλ)
−1y holds for θ ∈ Dλ,δ ∩ R.

An immediate consequence of Theorem 4.4 are the following two corollaries.

Corollary 4.14. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ −→ FΣ be linear
such that (S0, S1) is an interpolation morphism. Then

{

(λ, θ) ∈ (0, 1) × (0, 1) : Sλ, Sθ are continuously invertible and (Sλ)
−1

|F∆
= (Sθ)

−1
|F∆

}

is an open subset of (0, 1) × (0, 1).

Corollary 4.15. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ −→ FΣ be linear
such that (S0, S1) is an interpolation morphism. Assume that Sθ is continuously invertible
for all θ ∈ (λ0, λ1), where 0 ≤ λ0 < λ1 ≤ 1. Then (Sθ0)

−1
|F∆

= (Sθ1)
−1

|F∆
for all

θ0, θ1 ∈ (λ0, λ1).

Theorem 4.16. Let (E0, E1), (F0, F1) be compatible couples such that� E∆ is dense in E0 and E1,� F∆ is dense in F0 and F1,

and S : EΣ −→ FΣ be linear such that (S0, S1) is an interpolation morphism. Suppose
0 < λ0 < λ1 < 1 such that Sλ is continuously invertible for all λ ∈ [λ0, λ1] and

(Sλ0)
−1

|Fλ0
∩Fλ1

= (Sλ1)
−1

|Fλ0
∩Fλ1

.

Then there exists δ > 0 such that for all λ, θ ∈ (λ0, λ1),

‖(T0, T1) − (S0, S1)‖Mor < δ

implies that

Tθ is continuously invertible and (Tλ)
−1

|F∆
= (Tθ)

−1
|F∆

for all linear operators T : EΣ −→ FΣ such that (T0, T1) is an interpolation morphism.
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Proof. The pairs (Eλ−δ0 , Eλ1) and (Fλ−δ0 , Fλ1) are compatible couples, see Lemma 2.16.
Let θ0 ∈ [λ0, λ1]. Since E∆ is dense in E0, E1 and F∆ is dense in F0, F1, it holds

Eθ0 = (Eλ0 , Eλ1)η, Fθ0 = (Fλ0, Fλ1)η

for η := θ0−λ0

λ1−λ0
by [BL76, p. 101, Theorem 4.6.1] and [Cwi78, p. 1005, Section I].

The interpolation operators Sλ0 and Sλ1 are everywhere defined, linear and bounded. Thus
(Sλ0 , Sλ1) is an interpolation morphism, see Theorem 2.10 (iv). Obviously,

Sθ0 = (Sλ0 , Sλ1)η.

Since (Sλ0)
−1

|Fλ0
∩Fλ1

= (Sλ1)
−1

|Fλ0
∩Fλ1

, it follows that ((Sλ0)
−1, (Sλ1)

−1) is an interpolation

morphism by Theorem 2.27. Then we obtain

((Sλ0, Sλ1)η)
−1 = ((Sλ0)

−1, (Sλ1)
−1)η

from Theorem 2.27 (iv). Therefore

∥

∥(Sθ0)
−1

∥

∥ =
∥

∥((Sλ0)
−1, (Sλ1)

−1)η

∥

∥ ≤
∥

∥((Sλ0)
−1, (Sλ1)

−1)
∥

∥

Mor

by [BL76, p. 88, Theorem 4.1.2].
Thus

1

δ
:= sup

θ∈(λ0,λ1)

{
∥

∥(Sθ)
−1

∥

∥

}

< ∞.

Let θ ∈ (λ0, λ1) be fix and T : EΣ −→ FΣ such that (T0, T1) is an interpolation morphism
with ‖(T0, T1) − (S0, S1)‖Mor < δ. Then

‖Tθ − Sθ‖ ≤ ‖(T0, T1) − (S0, S1)‖Mor < δ ≤
1

‖(Sθ)−1‖

by Proposition 2.17 and [BL76, p. 88, Theorem 4.1.2]. Since Sθ is continuously invertible,
we conclude that Tθ is continuously invertible, see [Gol66, p. 111, Corollary V.1.3]. Hence
the theorem follows from Corollary 4.15.

4.1.2 The Local U.I. Property for the Real Interpolation Method

Proposition 4.17. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ −→ FΣ be
linear such that (S0, S1) is an interpolation morphism. Assume λ ∈ (0, 1) and p ∈ [1,∞]
such that Sλ,p is continuously invertible. Then Sλ,q is continuously invertible for all q ∈
[1,∞].

Proof. For p ∈ [1,∞), we obtain that Sλ,q is continuously invertible for all q ∈ [1,∞] from
Theorem 3.23.
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If Sλ,∞ is continuously invertible, it is possible to conclude that Sλ,q is continuously invert-
ible for all q ∈ [1,∞] similarly as in the proof of [AS, p. 4, Theorem 3]. Let r ∈ [1,∞]
and Sλ,∞ be continuously invertible. Choose ε > 0 such that 0 < λ − ε < λ + ε < 1. The
pairs (G0, G1) := (Eλ+ε,r, Eλ−ε,r) and (H0, H1) := (Fλ+ε,r, Fλ−ε,r) are compatible couples
by Lemma 2.16. It holds

Eλ,r = (Eλ+ε,r, Eλ−ε,r) 1
2
,r = (G0, G1) 1

2
,r, Fλ,r = (Fλ+ε,r, Fλ−ε,r) 1

2
,r = (H0, H1) 1

2
,r,

see [BL76, p. 50, Theorem 3.5.3]. From [Mal86, p. 47, Corollary 1], we obtain that

Eλ,r = (G0, G1) 1
2
,r = (GΣ, G∆) 1

2
,r, Fλ,r = (H0, H1) 1

2
,r = (HΣ, H∆) 1

2
,r. (4.2)

Let

A0 := (GΣ, G∆) 1
4
,∞, A1 := (GΣ, G∆) 3

4
,∞,

B0 := (HΣ, H∆) 1
4
,∞, B1 := (HΣ, H∆) 3

4
,∞.

Then

(G0, G1) 1
2
,∞ = (GΣ, G∆) 1

2
,∞ = (A0, A1) 1

2
, (H0, H1) 1

2
,∞ = (HΣ, H∆) 1

2
,∞ = (B0, B1) 1

2

by [BL76, p. 103, Theorem 4.7.2]. Thus

Sλ,∞ = Š(A0,A1) 1
2

,(B0,B1) 1
2

is continuously invertible, see (4.2). From [AM00, p. 34, Corollary 4.4], we know that there
exists 0 < δ < 1

2
such that Š(A0,A1)θ,(B0,B1)θ

is continuously invertible for all θ ∈ [1
2
−δ, 1

2
+δ].

Since

(A0, A1)δj
= (GΣ, G∆)θj ,∞, (B0, B1)δj

= (HΣ, H∆)θj ,∞,

it follows that
Š(GΣ,G∆)θj,∞,(HΣ,H∆)θj ,∞

is continuously invertible, where δj := 1
2
− (−1)jδ, θj := 1

4
+

δj

2
=

1−δj

4
+

3δj

4
and j ∈ {0, 1}.

Then θ0 ∈ (1
4
, 1

2
) and θ1 ∈ (1

2
, 3

4
). Since

(GΣ, G∆)θ1,∞ ⊆ (GΣ, G∆)θ0,∞, (HΣ, H∆)θ1,∞ ⊆ (HΣ, H∆)θ0,∞

by [BL76, p. 46, Theorem 3.4.1], it follows that

Š(GΣ,G∆)θ0,∞∩(GΣ,G∆)θ1,∞,(HΣ,H∆)θ0,∞∩(HΣ,H∆)θ1,∞
= Š(GΣ,G∆)θ1,∞,(HΣ,H∆)θ1,∞

is continuously invertible. Therefore

(Š(GΣ,G∆)θ0,∞,(HΣ,H∆)θ0,∞
, Š(GΣ,G∆)θ1,∞,(HΣ,H∆)θ1,∞

)Σ (4.3)
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fulfills statement (b) in Theorem 2.27, see Proposition 2.6 (ii). From Theorem 2.34, we
conclude that the induced operator of the operator (4.3) to the spaces

((GΣ, G∆)θ0,∞, (GΣ, G∆)θ1,∞)η,q, ((HΣ, H∆)θ0,∞, (HΣ, H∆)θ1,∞)η,q

is continuously invertible for all η ∈ (0, 1) and q ∈ [1,∞]. It holds

((GΣ, G∆)θ0,∞, (GΣ, G∆)θ1,∞) 1
2
,q = (GΣ, G∆) 1

2
,q = Eλ,q,

((HΣ, H∆)θ0,∞, (HΣ, H∆)θ1,∞) 1
2
,q = (HΣ, H∆) 1

2
,q = Fλ,q

for all q ∈ [1,∞] by (4.2) and [BL76, p. 50, Theorem 3.5.3]. Thus the proposition
follows.

The next theorem is a generalization of [AM00, p. 812, Theorem 9] and [Kra96, p. 56,
Proposition 3.6.8].

Theorem 4.18. Let (E0, E1), (F0, F1) be compatible couples. Suppose S : EΣ −→ FΣ is
linear such that (S0, S1) is an interpolation morphism and 0 ≤ λ0 < λ1 ≤ 1, p ∈ [1,∞].
Assume that Sλ,p is continuously invertible for all λ ∈ (λ0, λ1). Then

Sθ,q is continuously invertible and (Sλ,p)
−1

|F∆
= (Sθ,q)

−1
|F∆

for all λ, θ ∈ (λ0, λ1), q ∈ [p,∞].

Proof. Let λ, θ ∈ (λ0, λ1), q ∈ [p,∞] and y ∈ F∆.
The operator Sλ,q is continuously invertible by Proposition 4.17. From [BL76, p. 46,
Theorem 3.4.1], we know that E∆ ⊆ Eλ,p ⊆ Eλ,q and F∆ ⊆ Fλ,p ⊆ Fλ,q. Thus (Sλ,p)

−1y =
(Sλ,q)

−1y. Therefore it suffice to show that (Sλ,p)
−1y = (Sθ,p)

−1y.
Without loss of generality, we assume that 0 < λ0 < λ1 < 1. The pairs (Eλ0,p, Eλ1,p) and
(Fλ0,p, Fλ1,p) are compatible couples by Lemma 2.16. Let λ̃ := λ−λ0

λ1−λ0
∈ (0, 1). It holds

(Eλ0,p, Eλ1,p)λ̃ = Eλ,p, (Fλ0,p, Fλ1,p)λ̃ = Fλ,p,

see [BL76, p. 103, Theorem 4.7.2]. The interpolation operators Sλ0,p and Sλ1,p are bounded
with domains Eλ0,p and Eλ1,p, respectively. Since

Sλ0,p|Eλ0,p∩Eλ1,p
= Sλ1,p|Eλ0,p∩Eλ1,p

,

we obtain that (Sλ0,p, Sλ1,p) is an interpolation morphism with respect to the compatible
couples (Eλ0,p, Eλ1,p) and (Fλ0,p, Fλ1,p) by Theorem 2.10 (iv). It holds

(Sλ0,p, Sλ1,p)λ̃ = (̌(Sλ0,p, Sλ1,p)Σ)Eλ,p,Fλ,p
⊆ ŠEλ,p,Fλ,p

= Sλ,p,

see Lemma 1.7 (iii) and Theorem 2.15. Since the interpolation operator (Sλ0,p, Sλ1,p)λ̃ is
everywhere defined, it follows that (Sλ0,p, Sλ1,p)λ̃ = Sλ,p.
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Thus for all η̃ ∈ (0, 1) and η := (1 − η̃)λ0 + η̃λ1 ∈ (λ0, λ1), we obtain that Sη,p =
(Sλ0,p, Sλ1,p)η̃ is continuously invertible. Hence

(Sλ,p)
−1y = ((Sλ0,p, Sλ1,p)λ̃)

−1y = ((Sλ0,p, Sλ1,p)θ̃)
−1y = (Sθ,p)

−1y

by Corollary 4.15, where θ̃ := θ−λ0

λ1−λ0
∈ (0, 1).

Theorem 4.19. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ −→ FΣ be linear
such that (S0, S1) is an interpolation morphism. Assume 0 < λ0 < λ1 < 1 and p ∈ [1,∞]
such that Sλ,p is continuously invertible for all λ ∈ [λ0, λ1] and

(Sλ0,p)
−1

|Fλ0,p∩Fλ1,p
= (Sλ1,p)

−1
|Fλ0,p∩Fλ1,p

.

Then there exists δ > 0 such that for all λ, θ ∈ (λ0, λ1) and q ∈ [p,∞],

‖(T0, T1) − (S0, S1)‖Mor < δ

implies that

Tθ,q is continuously invertible and (Tλ,p)
−1

|F∆
= (Tθ,q)

−1
|F∆

for all linear operators T : EΣ −→ FΣ such that (T0, T1) is an interpolation morphism.

Proof. The pairs (Eλ0,p, Eλ1,p) and (Fλ0,p, Fλ1,p) are compatible couples, see Lemma 2.16.
Let θ0 ∈ [λ0, λ1]. It holds

Eθ0,p = (Eλ0,p, Eλ1,p)η,p, Fθ0,p = (Fλ0,p, Fλ1,p)η,p

for η := θ0−λ0

λ1−λ0
by [BL76, p. 50, Theorem 3.5.3].

Similarly as in the proof of Theorem 4.16, it follows that
∥

∥(Sθ0,p)
−1

∥

∥ =
∥

∥((Sλ0,p)
−1, (Sλ1,p)

−1)η,p

∥

∥ ≤
∥

∥((Sλ0,p)
−1, (Sλ1,p)

−1)
∥

∥

Mor

from [BL76, p. 40, Theorem 3.1.2]. Hence

1

δ
:= sup

θ∈(λ0,λ1)

{
∥

∥(Sθ,p)
−1

∥

∥

}

< ∞.

We conclude similarly as in the proof of Theorem 4.16 by applying Theorem 4.18 and
[BL76, p. 40, Theorem 3.1.2].

4.2 The Local U.I. Properties for Unbounded Opera-

tors

Note that the conditions of the form (ES)η = (Eη)Sη
and (ES)η,q = (Eη,q)Sη,q

appearing in
Subsection 4.2.1 and Subsection 4.2.2 were investigated in Section 2.8 (cf. Remark 3.20).

The following theorem is essential when considering the local U.I. properties under rela-
tively bounded perturbation and relatively compact perturbation.
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Theorem 4.20. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear so that S0 and S1 are closed. Assume A : EΣ ⊇ D(A) −→ FΣ is linear such that
for j ∈ {0, 1},� Aj is Sj-bounded with Sj-bound smaller than 1 or� Aj is Sj-compact.

Suppose T : EΣ ⊇ D(T ) −→ FΣ is linear such that Tj = Sj + Aj for j ∈ {0, 1}. Then
(T0iS0, T1iS1) is an interpolation morphism.

Proof. From [Kat66, p. 190, Theorem 1.1] and [Kat66, p. 194, Theorem 1.11], respectively,
we know that T0 and T1 are closed. Therefore ((E0)T0 , (E1)T1) is a compatible couple by
Proposition 2.18 and (T0iT0, T1iT1) is an interpolation morphism by Theorem 2.22 (iii).
From Theorem 2.11 and Lemma 2.45 (i), (ii), we see that (T0iS0, T1iS1) is an interpolation
morphism.

4.2.1 The Local U.I. Property for the Complex Interpolation
Method

Theorem 4.21. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear such that S0 and S1 are closed.

(i) Assume S is closable and λ ∈ (0, 1) so that (S0iS0, S1iS1)λ is continuously invertible.
Then there exists δ > 0 such that for all y ∈ F∆,

there exists x ∈ EΣ so that x ∈ D(Sθ) and Sλx = y = Sθx

for all θ ∈ (λ − δ, λ + δ) ∩ (0, 1).
In particular, the operator Sθ is surjective for all θ ∈ (λ − δ, λ + δ) ∩ (0, 1).

(ii) Let λ ∈ (0, 1) such that Sλ is continuously invertible and (ES)η = (Eη)Sη
for all η in

a neighborhood of λ. Then there exists δ > 0 such that

Sθ is continuously invertible and (Sλ)
−1

|F∆
= (Sθ)

−1
|F∆

for all θ ∈ (λ − δ, λ + δ) ∩ (0, 1).

Proof. We know that (S0iS0, S1iS1) is an interpolation morphism by Theorem 2.22 (iii).
Let y ∈ F∆.

(i) There exists δ > 0 such that (S0iS0, S1iS1)θ is continuously invertible and

((S0iS0, S1iS1)λ)
−1y = ((S0iS0, S1iS1)θ)

−1y
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for all θ ∈ (λ − δ, λ + δ) ∩ (0, 1), see Theorem 4.4. Since Sθ is closable for all θ ∈
(λ − δ, λ + δ) ∩ (0, 1) by Proposition 1.8 (iii), we obtain (i) from Proposition 2.47 (i) (cf.
Remark 3.20) with x := iSλ

((S0iS0, S1iS1)λ)
−1y.

(ii) The operator SλiSλ
= (S0iS0, S1iS1)λ is continuously invertible by Theorem 1.5 and

Proposition 2.47 (ii) (cf. Remark 3.20). Then there exists ε > 0 such that for all θ ∈
(λ − ε, λ + ε) ∩ (0, 1), the operator (S0iS0, S1iS1)θ = SθiSθ

is continuously invertible and

(SλiSλ
)−1y = (SθiSθ

)−1y,

see Proposition 2.47 (ii) (cf. Remark 3.20) and Theorem 4.4. Thus (ii) follows from
Theorem 1.5.

Theorem 4.22. Let (E0, E1), (F0, F1) be compatible couples such that F∆ is dense in F0

and F1. Suppose S : EΣ ⊇ D(S) −→ FΣ is linear so that S0, S1 are closed and D(S∆) is a
core of S0 and S1. Assume A : EΣ ⊇ D(A) −→ FΣ is linear such that for j ∈ {0, 1},� Aj is Sj-bounded with Sj-bound smaller than 1 or� Aj is Sj-compact.

Let 0 < λ0 < λ1 < 1.

(i) Assume (S0iS0, S1iS1)λ is continuously invertible for all λ ∈ [λ0, λ1] and

((S0iS0, S1iS1)λ0)
−1

|Fλ0
∩Fλ1

= ((S0iS0, S1iS1)λ1)
−1

|Fλ0
∩Fλ1

.

Then there exists δ > 0 such that for all y ∈ F∆,

‖(T0iS0, T1iS1) − (S0iS0, S1iS1)‖Mor < δ (4.4)

implies that

there exists x ∈ EΣ so that x ∈ D(Tθ) and Tλx = y = Tθx

for all λ, θ ∈ (λ0, λ1) and all closable linear operators T : EΣ ⊇ D(T ) −→ FΣ such
that Tj = Sj + Aj for j ∈ {0, 1}.
In particular, the operator Tθ is surjective for all θ ∈ (λ0, λ1) and T as above.

(ii) Assume Sλ is continuously invertible and (ES)λ = (Eλ)Sλ
for all λ ∈ [λ0, λ1] and

(Sλ0)
−1

|Fλ0
∩Fλ1

= (Sλ1)
−1

|Fλ0
∩Fλ1

.

Then there exists δ > 0 such that for all λ, θ ∈ (λ0, λ1), the inequality (4.4) and the
equality (ET )η = (Eη)Tη

for all η ∈ (λ0, λ1) imply that

Tλ and Tθ are continuously invertible and (Tλ)
−1

|F∆
= (Tθ)

−1
|F∆

for all linear operators T : EΣ ⊇ D(T ) −→ FΣ such that Tj = Sj + Aj for j ∈ {0, 1}.
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Proof. Since T0 and T1 are closed by [Kat66, p. 190, Theorem 1.1] and [Kat66, p. 194,
Theorem 1.11], respectively, it is possible to apply Proposition 2.47. We know that
(S0iS0, S1iS1) and (T0iS0, T1iS1) are interpolation morphisms, see Theorem 2.22 (iii) and
Theorem 4.20, respectively.
Since D(S∆) is a core of S0 and S1, we conclude that (E∆)S∆

is dense in (E0)S0 and (E1)S1,
see Lemma 3.5. Moreover, it holds (E∆)S∆

= (E0)S0 ∩ (E1)S1 by Lemma 2.19. Thus
(E0)S0 ∩ (E1)S1 is dense in (E0)S0 and (E1)S1.
Let y ∈ F∆.

(i) There exists δ > 0 such that (T0iS0, T1iS1)θ is continuously invertible and

((T0iS0, T1iS1)λ)
−1y = ((T0iS0, T1iS1)θ)

−1y

for all λ, θ ∈ (λ0, λ1) and for all operators T as in (i) such that the inequality (4.4) holds,
see Theorem 4.16.
Let H0 and H1 be as in Lemma 2.45, θ ∈ (λ0, λ1) and T be fix with the desired properties.
From Theorem 2.11 and Lemma 2.45 (ii), (iii) (cf. Remark 3.20), we know that

(T0iS0, T1iS1)θ = (T0iT0, T1iT1)θ(H0, H1)θ

and (H0, H1)θ is an isomorphism. The operator Tθ is closable by Proposition 1.8 (iii). From
Proposition 2.47 (i) (cf. Remark 3.20), we obtain (ii) with x := iTθ

((T0iT0, T1iT1)θ)
−1y.

(ii) The operator SλiSλ
= (S0iS0, S1iS1)λ is continuously invertible for all λ ∈ [λ0, λ1] and

it holds

((S0iS0, S1iS1)λ0)
−1

|Fλ0
∩Fλ1

= ((S0iS0, S1iS1)λ1)
−1

|Fλ0
∩Fλ1

by Theorem 1.5 and Proposition 2.47 (ii) (cf. Remark 3.20). Similarly as in (i), we conclude
that there exists δ > 0 such that (T0iT0, T1iT1)θ is continuously invertible and

((T0iT0, T1iT1)λ)
−1y = ((T0iT0 , T1iT1)θ)

−1y

for all λ, θ ∈ (λ0, λ1) and for all operators T as in (ii) such that the inequality (4.4) holds.
Assume T is fix with the desired properties and (ET )η = (Eη)Tη

for all η ∈ (λ0, λ1). Then
Tη is closed and

(T0iT0, T1iT1)η = TηiTη

for all η ∈ (λ0, λ1) by Proposition 2.47 (ii) (cf. Remark 3.20). Thus (ii) follows from
Theorem 1.5.

4.2.2 The Local U.I. Property for the Real Interpolation Method

Theorem 4.23. Let (E0, E1) and (F0, F1) be compatible couples. Assume S : EΣ ⊇
D(S) −→ FΣ is linear such that S0 and S1 are closed. Let 0 ≤ λ0 < λ1 ≤ 1 and p ∈ [1,∞].
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(i) Assume S is closable and (S0iS0, S1iS1)λ,p is continuously invertible for all λ ∈ (λ0, λ1).
For all y ∈ F∆,

there exists x ∈ EΣ such that x ∈ D(Sθ,q) and Sλ,px = y = Sθ,qx

for all λ, θ ∈ (λ0, λ1) and q ∈ [p,∞].
In particular, the operator Sθ,q is surjective for all θ ∈ (λ0, λ1) and q ∈ [p,∞].

(ii) Assume Sλ,p is continuously invertible and (ES)λ,p = (Eλ,p)Sλ,p
for all λ ∈ (λ0, λ1).

For all q ∈ [p,∞], the equality (ES)η,q = (Eη,q)Sη,q
for all η ∈ (λ0, λ1) implies that

Sθ,q is continuously invertible and (Sλ,p)
−1

|F∆
= (Sθ,q)

−1
|F∆

for all λ, θ ∈ (λ0, λ1).

Proof. The pair (S0iS0, S1iS1) is an interpolation morphism, see Theorem 2.22 (iii). Let
y ∈ F∆, λ, θ ∈ (λ0, λ1) and q ∈ [p,∞].

(i) From Theorem 4.18, we know that (S0iS0, S1iS1)λ,p and (S0iS0, S1iS1)θ,q are continuously
invertible and

((S0iS0, S1iS1)λ,p)
−1y = ((S0iS0, S1iS1)θ,q)

−1y.

The operators Sλ,p and Sθ,q are closable by Proposition 1.8 (iii). Then we obtain (i) from
Proposition 2.47 (i) (cf. Remark 3.20) with x := iSλ,p

((S0iS0, S1iS1)λ,p)
−1y.

(ii) Assume (ES)η,q = (Eη,q)Sη,q
for all η ∈ (λ0, λ1). The operator Sη,piSη,p

= (S0iS0, S1iS1)η,p

is continuously invertible for all η ∈ (λ0, λ1) by Theorem 1.5 and Proposition 2.47 (ii) (cf.
Remark 3.20). Then (S0iS0, S1iS1)θ,q is continuously invertible and

((S0iS0, S1iS1)λ,p)
−1y = ((S0iS0, S1iS1)θ,q)

−1y,

see Theorem 4.18. From Proposition 2.47 (ii) (cf. Remark 3.20), we know that Sθ,q is
closed and (S0iS0, S1iS1)θ,q = Sθ,qiSθ,q

. Thus (ii) follows from Theorem 1.5.

Theorem 4.24. Let (E0, E1), (F0, F1) be compatible couples and S : EΣ ⊇ D(S) −→ FΣ

be linear and closable so that S0, S1 are closed. Assume A : EΣ ⊇ D(A) −→ FΣ is linear
such that for j ∈ {0, 1},� Aj is Sj-bounded with Sj-bound smaller than 1 or� Aj is Sj-compact.

Let 0 < λ0 < λ1 < 1 and p ∈ [1,∞].

(i) Suppose (S0iS0, S1iS1)λ,p is continuously invertible for all λ ∈ [λ0, λ1] and

((S0iS0, S1iS1)λ0,p)
−1

|Fλ0,p∩Fλ1,p
= ((S0iS0, S1iS1)λ1,p)

−1
|Fλ0,p∩Fλ1,p

.
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Then there exists δ > 0 such that for all y ∈ F∆,

‖(T0iS0, T1iS1) − (S0iS0, S1iS1)‖Mor < δ (4.5)

implies that

there exists x ∈ EΣ so that x ∈ D(Tθ,q) and Tλ,px = y = Tθ,qx

for all λ, θ ∈ (λ0, λ1), q ∈ [p,∞] and for all closable linear operators T : EΣ ⊇
D(T ) −→ FΣ such that Tj = Sj + Aj for j ∈ {0, 1}.
In particular, the operator Tθ,q is surjective for all θ ∈ (λ0, λ1), q ∈ [p,∞] and T as
above.

(ii) Suppose Sλ,p is continuously invertible and (ES)λ,p = (Eλ,p)Sλ,p
for all λ ∈ [λ0, λ1]

and
(Sλ0,p)

−1
|Fλ0,p∩Fλ1,p

= (Sλ1,p)
−1

|Fλ0,p∩Fλ1,p
.

Then there exists δ > 0 such that for all λ, θ ∈ (λ0, λ1) and q ∈ [p,∞], the inequal-
ity (4.5) and

(ET )η,p = (Eη,p)Tη,p
, (ET )η,q = (Eη,q)Tη,q

for all η ∈ (λ0, λ1)

imply that

Tλ,p and Tθ,q are continuously invertible and (Tλ,p)
−1

|E∆
= (Tθ,q)

−1
|E∆

for all linear operators T : EΣ ⊇ D(T ) −→ FΣ such that Tj = Sj + Aj for j ∈ {0, 1}.

Proof. Since T0 and T1 are closed by [Kat66, p. 190, Theorem 1.1] and [Kat66, p. 194,
Theorem 1.11], respectively, it is possible to apply Proposition 2.47. We know that
(S0iS0, S1iS1) and (T0iS0, T1iS1) are interpolation morphisms, see Theorem 2.22 (iii) and
Theorem 4.20, respectively.
Let y ∈ F∆.

(i) There exists δ > 0 such that (T0iS0, T1iS1)θ,q is continuously invertible and

((T0iS0, T1iS1)λ,p)
−1y = ((T0iS0, T1iS1)θ,q)

−1y

for all λ, θ ∈ (λ0, λ1), q ∈ [p,∞] and operators T as in (i) such that the inequality (4.5)
holds, see Theorem 4.19.
Let θ ∈ (λ0, λ1), q ∈ [p,∞] and T be fix with the desired properties. From Theorem 2.11
and Lemma 2.45 (ii), (iii) (cf. Remark 3.20), we know that

(T0iS0, T1iS1)θ,q = (T0iT0 , T1iT1)θ,q(H0, H1)θ,q

and (H0, H1)θ,q is an isomorphism, where H0, H1 are defined as in Lemma 2.45. Since the
operator Tθ,q is closable by Proposition 1.8 (iii), we obtain (i) from Proposition 2.47 (i) (cf.
Remark 3.20) with x := iTθ,q

((T0iT0, T1iT1)θ,q)
−1y.
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(ii) The operator Sλ,piSλ,p
= (S0iS0, S1iS1)λ,p is continuously invertible for all λ ∈ [λ0, λ1]

and
((S0iS0, S1iS1)λ0,p)

−1
|Fλ0,p∩Fλ1,p

= ((S0iS0, S1iS1)λ1,p)
−1

|Fλ0,p∩Fλ1,p
.

by Theorem 1.5 and Proposition 2.47 (ii) (cf. Remark 3.20). Similarly as in (i), we conclude
that there exists δ > 0 such that (T0iT0, T1iT1)θ,q is continuously invertible and

((T0iT0, T1iT1)λ,p)
−1y = ((T0iT0, T1iT1)θ,q)

−1y

for all λ, θ ∈ (λ0, λ1), q ∈ [p,∞] and T as in (ii) such that the inequality (4.5) holds.
Assume T is fix with the desired properties and (ET )η,p = (Eη,p)Tη,p

, (ET )η,q = (Eη,q)Tη,q

for all η ∈ (λ0, λ1), where q ∈ [p,∞]. Then Tη,r is closed and

(T0iT0, T1iT1)η,r = Tη,riTη,r

for all η ∈ (λ0, λ1), r ∈ {p, q} by Proposition 2.47 (ii) (cf. Remark 3.20). Thus (ii) follows
from Theorem 1.5.



Chapter 5

Example - Ordinary Differential
Operators

As an application of the theory of unbounded linear operators on interpolation spaces, we
study ordinary differential operators in this chapter. It is well-known that the classical re-
stricted, minimal and maximal differential operators are unbounded and linear. Moreover,
Lp-spaces are interpolation spaces under certain assumptions.
Section 5.1 expands the theory of the restricted, minimal and maximal operators by intro-
ducing restricted, minimal and maximal operators on the intersection and the sum of two
Lp-spaces. We study these operators on the intersection and the sum of two Lp-spaces and
obtain similar results as for the classical restricted, minimal and maximal operators.
In Section 5.2, we examine induced operators of restricted, minimal and maximal operators.
This will lead to results in Section 5.3, where we investigate the Fredholm properties and
the local U.I. properties of differential operators corresponding to particular differential
expressions.

In this section, we write Lp instead of Lp(I) to simplify the notation.
Moreover, we construct induced operators with the continuous embeddings, which corre-
spond to the continuous inclusions, and we identify certain elements as described in the
beginning of Chapter 2.

5.1 Restricted, Minimal and Maximal Operators

Absolutely continuous functions on compact intervals are defined in [DS67, p. 242].

Definition 5.1. Let I ⊆ R be an open interval and n ∈ N.

(i) We define the set An(I) (An for short)

An(I) := {f : I −→ C : f (n−1) exists and is absolutely continuous

on every compact subinterval of I}.

71
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(ii) We define the differential expression τ (of order n) on I and its formal adjoint τ ⋆ on
I by

(τf)(x) := Σn
k=0ak(D

kf)(x), x ∈ I,

(τ ⋆f)(x) := Σn
k=0(−1)k(Dk(akf))(x), x ∈ I,

where f ∈ An, ak ∈ Ck(I) (i.e. the scalar-valued function ak on I is k-times contin-

uously differentiable on I and a
(j)
k has a continuous extension to I, j ∈ {0, 1, . . . , k})

for k ∈ {0, 1, . . . , n} with an(t) 6= 0 for all t ∈ I and D denotes the operator of
differentiation.

Let τ be a differential expression on an open interval I. From [Gol66, p. 134, Lemma
VI.1.12], we know that (τ ⋆)⋆ = τ .

Definition 5.2. Assume 1 ≤ p0, p1, q0, q1 ≤ ∞ and τ is a differential expression on an
open interval I. Then we define the following maximal operators.

� The maximal operator

Smax
τ,p0,p1,q0,q1,∆ : Lp0 ∩ Lp1 ⊇ D(Smax

τ,p0,p1,q0,q1,∆) −→ Lq0 ∩ Lq1

(Smax
∆ for short) is defined by

D(Smax
τ,p0,p1,q0,q1,∆) := {f ∈ Lp0 ∩ Lp1 : f ∈ An and τf ∈ Lq0 ∩ Lq1} ,

Smax
τ,p0,p1,q0,q1,∆f := τf for f ∈ D(Smax

τ,p0,p1,q0,q1,∆).

� The maximal operator

Smax
τ,p0,p1,q0,q1,Σ : Lp0 + Lp1 ⊇ D(Smax

τ,p0,p1,q0,q1,Σ) −→ Lq0 + Lq1

(Smax
Σ for short) is defined by

D(Smax
τ,p0,p1,q0,q1,Σ) := {f ∈ Lp0 + Lp1 : f ∈ An and τf ∈ Lq0 + Lq1} ,

Smax
τ,p0,p1,q0,q1,Σf := τf for f ∈ D(Smax

τ,p0,p1,q0,q1,Σ).

Let the restricted operator

� SR
τ,p0,p1,q0,q1,∆ (SR

∆ for short) be the restriction of Smax
τ,p0,p1,q0,q1,∆,� SR

τ,p0,p1,q0,q1,Σ (SR
Σ for short) be the restriction of Smax

τ,p0,p1,q0,q1,Σ

to those elements in the domain, which have compact support in the interior of I.
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Here and in the following, we obtain for p0 = p1 = p and q0 = q1 = q the corresponding
concepts and results of [Gol66, Chapter VI]. Indeed, let 1 ≤ p, q ≤ ∞ and τ be a differential
expression on an open interval I. Then we have Lp ∩Lp = Lp + Lp = Lp with equal norms
by Lemma 2.20. Thus

Smax
τ,p,p,q,q,∆ = Smax

τ,p,p,q,q,Σ (SR
τ,p,p,q,q,∆ = SR

τ,p,p,q,q,Σ)

and the operator Tτ,p,q (TR
τ,p,q) defined in [Gol66, p. 128] are equal. This leads to the

following definition.

Definition 5.3. Let 1 ≤ p, q ≤ ∞ and τ be a differential expression on an open interval
I. We define the operators Smax

τ,p,q (Smax
p,q for short) and SR

τ,p,q (SR
p,q for short) by

Smax
τ,p,q := Smax

τ,p,p,q,q,∆ = Smax
τ,p,p,q,q,Σ,

SR
τ,p,q := SR

τ,p,p,q,q,∆ = SR
τ,p,p,q,q,Σ.

For j ∈ {0, 1}, we illustrate the situation in Definition 5.2 and Definition 5.3 in the following
diagram,

Lp0 + Lp1 _?

SR
Σ , Smax

Σ //

?�

Lq0 + Lq1

?�

Lpj
_?

SR
pj,qj

, Smax
pj,qj

//

?�

OO

Lqj

?�

OO

Lp0 ∩ Lp1 _?

SR
∆, Smax

∆ //

OO

Lq0 ∩ Lq1

OO

where the injective operators in the diagram correspond to the continuous inclusions.

Let I be an interval. We denote the set of all continuous scalar-valued functions on I by
C(I). If I is open, then C∞

c (I) denotes the set of all f ∈ C(I) such that f is infinitely
differentiable and has compact support in I (cf. [Con90, p. 116, Example 5.2]).

Lemma 5.4. Let 1 ≤ p0, p1, q0, q1 < ∞ and τ be a differential expression on an open
interval I. Then the restricted and the maximal operators are densely defined.

Proof. The space C∞
c (I) is dense in Lp0 and Lp1, respectively, see [Wal92, p. 340, Satz

9.21]. Similarly, it is possible to show that C∞
c (I) is dense in Lp0 ∩ Lp1 . Since C∞

c (I) is
dense in Lp0 and Lp1, we obtain that C∞

c (I) is dense in Lp0 + Lp1. The domains of the
restricted and the maximal operators contain C∞

c (I). Thus these operators are densely
defined.

Let E, F be Banach spaces and S : F ′ ⊇ D(S) −→ E ′ be linear such that for all 0 6= y ∈ F ,
there exists y′ ∈ D(S) with 〈y, y′〉 6= 0. Then the preconjugate ′S : E ⊇ D(′S) −→ F of S
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has domain

D(′S) = {x ∈ E : there exists y ∈ F with 〈x, Sy′〉 = 〈y, y′〉 for all y′ ∈ D(S)}

and ′Sx = y for x ∈ D(′S) if and only if 〈x, Sy′〉 = 〈y, y′〉 for all y′ ∈ D(S).

Let 1 ≤ p ≤ ∞. We denote by p′ the number satisfying

1 =
1

p
+

1

p′
,

where ‘ 1
∞

’ is defined to be ‘0’. Obviously, 1 ≤ p′ ≤ ∞.

Theorem 5.5. Assume τ is a differential expression on an open interval I. Then

(i)

Smax
τ⋆,q′0,q′1,p′0,p′1,Σ = (SR

∆)′ for 1 ≤ p0, p1, q0, q1 < ∞,

Smax
τ⋆,q′0,q′1,p′0,p′1,Σ = ′(SR

∆) for 1 < p0, p1, q0, q1 ≤ ∞,

(ii)

Smax
τ⋆,q′0,q′1,p′0,p′1∆

= (SR
Σ )′ for 1 ≤ p0, p1, q0, q1 < ∞,

Smax
τ⋆,q′0,q′1,p′0,p′1,∆ = ′(SR

Σ ) for 1 < p0, p1, q0, q1 ≤ ∞.

Proof. Note that Lq′0 + Lq′1 = (Lq0 ∩ Lq1)′ and Lq′0 ∩ Lq′1 = (Lq0 + Lq1)′ by [BL76, p. 32,
Theorem 2.7.1] and the restricted operators are densely defined for 1 ≤ p0, p1, q0, q1 < ∞
by Lemma 5.4. Then we conclude similarly as in the proof of [Gol66, p. 130, Theorem
VI.1.9].

Corollary 5.6. Let 1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞. Assume τ is a
differential expression on an open interval I. Then the maximal operators are closed and
the restricted operators are closable.

Proof. Since the conjugate and the preconjugate considered in Theorem 5.5 are closed
by [Gol66, p. 53, Theorem II.2.6] and [Gol66, p. 126, Lemma VI.1.2], we obtain that
the maximal operators are closed from Theorem 5.5. Thus the restricted operators are
closable.

Definition 5.7. Assume τ is a differential expression on an open interval I. We define
the following minimal operators.� The minimal operator

Smin
τ,p0,p1,q0,q1,∆ : Lp0 ∩ Lp1 ⊇ D(Smin

τ,p0,p1,q0,q1,∆) −→ Lq0 ∩ Lq1
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(Smin
∆ for short) is defined by

Smin
τ,p0,p1,q0,q1,∆ :=

{

SR
∆ if 1 ≤ p0, p1, q0, q1 < ∞,

(Smax
τ∗,q′0,q′1,p′0,p′1,Σ)′ if 1 < p0, p1, q0, q1 ≤ ∞.

� The minimal operator

Smin
τ,p0,p1,q0,q1,Σ : Lp0 + Lp1 ⊇ D(Smin

τ,p0,p1,q0,q1,Σ) −→ Lq0 + Lq1

(Smin
Σ for short) is defined by

Smin
τ,p0,p1,q0,q1,Σ :=

{

SR
Σ if 1 ≤ p0, p1, q0, q1 < ∞,

(Smax
τ∗,q′0,q′1,p′0,p′1,∆)′ if 1 < p0, p1, q0, q1 ≤ ∞.

The next corollary shows that the minimal operators are well defined.

Corollary 5.8. Let 1 < p0, p1, q0, q1 < ∞. Assume τ is a differential expression on an
open interval I. It holds

SR
∆ = (Smax

τ⋆,q′0,q′1,p′0,p′1,Σ)′,

SR
Σ = (Smax

τ⋆,q′0,q′1,p′0,p′1,∆)′.

Proof. The spaces Lr is reflexive for 1 < r < ∞. From [BL76, p. 32, Theorem 2.7.1], we
conclude that Lr0 ∩ Lr1 and Lr0 + Lr1 are reflexive for 1 < r0, r1 < ∞.
Since SR

∆ is densely defined and closable by Lemma 5.4 and Corollary 5.6, it follows that

SR
∆ =

(

(SR
∆)′

)′
= (Smax

τ⋆,q′0,q′1,p′0,p′1,Σ)′

from Theorem 5.5 (i) and [Gol66, p. 56, Theorem II.2.14].
Similarly, we obtain the other equalities with Theorem 5.5 (ii).

Clearly, the minimal operators are closed (see [Gol66, p. 53, Theorem II.2.6]).

Let 1 ≤ p, q < ∞ or 1 < p, q ≤ ∞ and τ be a differential expression on an open interval I.
With Lemma 2.20, we see that

Smin
τ,p,p,q,q,∆ = Smin

τ,p,p,q,q,Σ

coincides with the minimal operator To,τ,p,q defined in [Gol66, p. 135, Definition VI.2.1].
Thus the operator in the following definition is well defined.

Definition 5.9. Let 1 ≤ p, q < ∞ or 1 < p, q ≤ ∞ and τ be a differential expression on
an open interval I. We define the operator Smin

τ,p,q (Smin
p,q for short) by

Smin
τ,p,q := Smin

τ,p,p,q,q,∆ = Smin
τ,p,p,q,q,Σ.
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For j ∈ {0, 1}, we illustrate the situation in Definition 5.7 and Definition 5.9 in the following
diagram,

Lp0 + Lp1 _?

Smin
Σ //

?�

Lq0 + Lq1

?�

Lpj
_?

Smin
pj,qj

//

?�

OO

Lqj

?�

OO

Lp0 ∩ Lp1 _?

Smin
∆ //

OO

Lq0 ∩ Lq1

OO

where the injective operators in the diagram correspond to the continuous inclusions.

The proof of the following lemma is straightforward.

Lemma 5.10. Let E, F be Banach spaces. Assume S : F ′ ⊇ D(S) −→ E ′ and T : F ′ ⊇
D(T ) −→ E ′ are linear such that for all 0 6= y ∈ F , there exists y′ ∈ D(S) with 〈y, y′〉 6= 0.
If S ⊆ T , then ′S ⊇ ′T .

Theorem 5.11. Let 1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞. Assume τ is a
differential expression on an open interval I. Then the minimal operators are restrictions
of the corresponding maximal operators.

Proof. If 1 ≤ p0, p1, q0, q1 < ∞, the theorem follows from Corollary 5.6.
Now, let 1 < p0, p1, q0, q1 ≤ ∞. It holds

Smin
∆ = (Smax

τ⋆,q′0,q′1,p′0,p′1,Σ)′ = (′(SR
∆))′

by Theorem 5.5 (i). Moreover, we have (′(SR
∆))′ ⊆ (′(Smax

∆ ))′, see Lemma 5.10. It holds

Smax
∆ = (SR

τ⋆,q′0,q′1,p′0,p′1,Σ)′

by Theorem 5.5 (ii) and SR
τ⋆,q′0,q′1,p′0,p′1,Σ is closable, see Corollary 5.6. Then we obtain

(′(Smax
∆ ))′ = Smax

∆ from [Gol66, p. 127, Lemma VI.1.5].
Similarly, we conclude that Smin

Σ ⊆ Smax
Σ with Theorem 5.5.

Proposition 5.12. Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and τ be a differential expression of order
n on an open interval I. Then the dimensions of the kernels of the maximal operators
do not exceed n. Consequently, the dimensions of the kernels of the restricted and, if
1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞, the dimensions of the kernels of the
minimal operators do not exceed n.

Proof. From the proof of [Gol66, p. 136, Theorem VI.2.5], we obtain that the dimensions
of the kernels of the maximal operators do not exceed n. Thus the dimensions of the
kernels of the restricted operators do not exceed n.
Now, let 1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞. Then the dimensions of the kernel
of the minimal operator do not exceed n by Theorem 5.11.
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Lemma 5.13. Let 1 ≤ p0, p1, q0, q1 < ∞ and τ be a differential expression on an open
interval I. Then the minimal operators are densely defined.

Proof. From Lemma 5.4, we know that the restricted operators are densely defined.

Proposition 5.14. Let 1 ≤ p0, p1, q0, q1 < ∞ and τ be a differential expression on an open
interval I. It holds

(Smin
∆ )′ = (SR

∆)′ = (SR
∆)′ = Smax

τ⋆,q′0,q′1,p′0,p′1,Σ,

(Smin
Σ )′ = (SR

Σ )′ = (SR
Σ )′ = Smax

τ⋆,q′0,q′1,p′0,p′1,∆.

Proof. Let 1 ≤ p0, p1, q0, q1 < ∞. Then the minimal and the restricted operators are
densely defined, see Lemma 5.4 and Lemma 5.13. Since the restricted operators are closable
by Corollary 5.6, the proposition follows from Theorem 5.5 and [Gol66, p. 54, Theorem
II.2.11].

Proposition 5.15. Let 1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞. Assume τ is a
differential expression on an open interval I.

(i) If one of the operators Smin
∆ , Smin

τ⋆,q′0,q′1,p′0,p′1,Σ, Smax
∆ or Smax

τ⋆,q′0,q′1,p′0,p′1,Σ has a closed range,

then all four operators are Fredholm and it holds

dim
D(Smax

∆ )

D(Smin
∆ )

= κ(Smax
∆ ) − κ(Smin

∆ ).

(ii) If one of the operators Smin
Σ , Smin

τ⋆,q′0,q′1,p′0,p′1,∆, Smax
Σ or Smax

τ⋆,q′0,q′1,p′0,p′1,∆ has a closed range,

then all four operators are Fredholm and it holds

dim
D(Smax

Σ )

D(Smin
Σ )

= κ(Smax
Σ ) − κ(Smin

Σ ).

Proof. We conclude similarly as in the proof of [Gol66, p. 137, Theorem VI.2.7], using
Lemma 5.4, Theorem 5.11, Proposition 5.12 and Proposition 5.14.

The following lemma is an extension of the classical Hölder inequality (p0 = p1 = p and
q0 = q1 = q). The proof follows from the classical Hölder inequality.

Lemma 5.16. Let 1 ≤ p0, p1 ≤ ∞ and I be an open interval. Assume f ∈ Lp0 ∩ Lp1 and
g ∈ Lp′0 + Lp′1. Then

∫

I

|f(x)g(x)| dx ≤ ‖f‖Lp0∩Lp1 ‖g‖Lp′0+Lp′1
.
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Lemma 5.17. Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and τ be a differential expression on I = (b, c),
where −∞ ≤ b < c ≤ ∞. Assume

lim
b̃↓b, c̃↑c

[ n
∑

k=1

k−1
∑

j=0

(−1)j(akg)(j)f (k−1−j)

]c̃

b̃

= 0,

where� f ∈ D(Smax
∆ ) and g ∈ D(Smax

τ⋆,q′0,q′1,p′0,p′1,Σ) or� f ∈ D(Smax
Σ ) and g ∈ D(Smax

τ⋆,q′0,q′1,p′0,p′1,∆).

Then
∫ c

b
(τf)gdx =

∫ c

b
f(τ ⋆g)dx.

Proof. If b < b̃ < c̃ < c, then the Lagrange formular (Green’s formular)

c̃
∫

b̃

(τf)gdx =

[ n
∑

k=1

k−1
∑

j=0

(−1)j(akg)(j)f (k−1−j)

]c̃

b̃

+

c̃
∫

b̃

f(τ ⋆g)dx

holds, see [Gol66, p. 130, Lemma VI.1.8]. The assumptions on f and g and Lemma 5.16
yield (τf)g ∈ L1 and f(τ ⋆g) ∈ L1. Thus

lim
b̃↓b, c̃↑c

c̃
∫

b̃

(τf)gdx =

c
∫

b

(τf)gdx, lim
b̃↓b, c̃↑c

c̃
∫

b̃

f(τ ⋆g)dx =

c
∫

b

f(τ ⋆g)dx

and the lemma follows.

Theorem 5.18. Let 1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞. Assume τ is a
differential expression of order n on I = (b, c), where −∞ ≤ b < c ≤ ∞ . Then f ∈
D(Smin

∆ ) (f ∈ D(Smin
Σ )) if and only if f ∈ D(Smax

∆ ) (f ∈ D(Smax
Σ )) and

lim
b̃↓b, c̃↑c

[ n
∑

k=1

k−1
∑

j=0

(−1)j(akg)(j)f (k−1−j)

]c̃

b̃

= 0 (5.1)

for all g ∈ D(Smax
τ⋆,q′0,q′1,p′0,p′1,Σ) (g ∈ D(Smax

τ⋆,q′0,q′1,p′0,p′1,∆)).

Proof. Let f ∈ D(Smin
∆ ). From Theorem 5.11, we get that f ∈ D(Smax

∆ ). Similar arguments
as in the proof of [Gol66, p. 139, Lemma VI.2.9] together with Proposition 5.14 and Lemma
5.16 yield (5.1).
Conversely, assume f ∈ D(Smax

∆ ) and (5.1) holds. Set

Smax
⋆,Σ := Smax

τ⋆,q′0,q′1,p′0,p′1,Σ.
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Lemma 5.17 implies that

〈τf, g〉 =

c
∫

b

(τf)gdx =

c
∫

b

f(τ ⋆g)dx = 〈f, τ ⋆g〉 (5.2)

for all g ∈ D(Smax
⋆,Σ ).

Let 1 ≤ p0, p1, q0, q1 < ∞. Then (Smin
∆ )′ = Smax

⋆,Σ , see Proposition 5.14. From (5.2), it
follows that f ∈ D(′((Smin

∆ )′)). Since Smin
∆ is closed and densely defined by Lemma 5.4, we

obtain from [Gol66, p. 127, Lemma VI.1.4] that f ∈ D(Smin
∆ ).

Let 1 < p0, p1, q0, q1 ≤ ∞. Then (5.2) implies that f ∈ D((Smax
⋆,Σ )′) = D(Smin

∆ ).
It is possible to conclude similarly as above for Smin

Σ .

Corollary 5.19. Suppose 1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞. Let τ be a
differential expression on an open interval I. The restricted operators are contained in the
corresponding minimal operators.

Proof. This follows from Theorem 5.18.

Theorem 5.20. Let 1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞ and τ be a differential
expression of order n on I = (b, c) such that b ∈ R (c ∈ R) and an(b) 6= 0 (an(c) 6= 0). For
f ∈ D(Smin

Σ ) and k ∈ {0, 1, . . . , n − 1}, it holds

lim
b̃↓b

f (k)(b̃) = 0
(

lim
c̃↑c

f (k)(c̃) = 0
)

.

The same holds for f ∈ D(Smin
∆ ).

Proof. We conclude for f ∈ D(Smin
Σ ) similarly as in the proof of [Gol66, p. 139, Lemma

VI.2.9], using Proposition 5.14 and Lemma 5.16. Since Smin
∆ ⊆ Smin

Σ , the theorem follows.

Theorem 5.21. Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and τ be a differential expression of order n
on I = (b, c) such that b ∈ R (c ∈ R) and an(b) 6= 0 (an(c) 6= 0). For f ∈ D(Smax

Σ ) and
k ∈ {0, 1, . . . , n − 1}, the limit

lim
b̃↓b

f (k)(b̃)
(

lim
c̃↑c

f (k)(c̃)
)

exists. The same holds for f ∈ D(Smax
∆ ).

Proof. It is possible to conclude as in the proof of [Wei03, p. 39, Satz 13.5] (cf. the proof
of [Gol66, p. 140, Theorem VI.3.1]).

Corollary 5.22. Let 1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞ and τ be a differential
expression of order n on I = (b, c) such that b, c ∈ R and an(b) 6= 0, an(c) 6= 0. Then
f ∈ D(Smin

∆ ) (f ∈ D(Smin
Σ )) if and only if f ∈ D(Smax

∆ ) (f ∈ D(Smax
Σ )) and

lim
b̃↓b

f (k)(b̃) = 0 and lim
c̃↑c

f (k)(c̃) = 0. (5.3)
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Proof. If f ∈ D(Smin
∆ ), then f ∈ D(Smax

∆ ) by Theorem 5.11 and the equalities in (5.3) hold
by Theorem 5.20.
Conversely, assume f ∈ D(Smax

∆ ) and the equalities in (5.3) hold. Theorem 5.21 implies
that

lim
b̃↓b, c̃↑c

[ n
∑

k=1

k−1
∑

j=0

(−1)j(akg)(j)f (k−1−j)

]c̃

b̃

= 0

for all g ∈ D(Smax
τ⋆,q′0,q′1,p′0,p′1,Σ). Thus f ∈ D(Smin

∆ ) by Theorem 5.18.

It is possible to conclude similarly for Smin
Σ .

Corollary 5.23. Suppose 1 ≤ p0, p1, p, q0, q1, q ≤ ∞. Let τ be a differential expression of
order n on an open interval I.

(i) It holds N(SR
∆) = N(SR

p,q) = N(SR
Σ ).

Now, let I = (b, c) with b, c ∈ R and an(b) 6= 0, an(c) 6= 0.

(ii) We have N(Smax
∆ ) = N(Smax

p,q ) = N(Smax
Σ ).

(iii) If p0, p1, p, q0, q1, q < ∞ or 1 < p0, p1, p, q0, q1, q, then N(Smin
∆ ) = N(Smin

p,q ) = N(Smin
Σ ).

Proof. (i) Assume f ∈ An has compact support in the interior of I. Then f ∈ Lr for all
r ∈ [1,∞]. We obtain that

{f ∈ An : f has compact support in the interior of I and τf = 0}

= N(SR
∆) = N(SR

p,q) = N(SR
Σ ).

(ii) If f ∈ An such that limb̃↓b f(b̃) and limc̃↑c f(c̃) exist, then f ∈ Lr for all r ∈ [1,∞]. We
obtain that

{

f ∈ An : lim
b̃↓b

f(b̃) and lim
c̃↑c

f(c̃) exist and τf = 0

}

= N(Smax
∆ ) = N(Smax

p,q ) = N(Smax
Σ )

from Theorem 5.21.

(iii) If f ∈ An such that limb̃↓b f(b̃) = 0 and limc̃↑c f(c̃) = 0, then f ∈ Lr for all r ∈ [1,∞].
We obtain that

{

f ∈ An : lim
b̃↓b

f (k)(b̃) = 0 and lim
c̃↑c

f (k)(c̃) = 0 and τf = 0

}

= N(Smin
∆ ) = N(Smin

p,q ) = N(Smin
Σ )

from Corollary 5.22.
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Proposition 5.24. Let τ be a differential expression on I = (b, c) with b ∈ R and an(b) 6= 0
or c ∈ R and an(c) 6= 0.

(i) Let 1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞. Then the minimal operators are
injective.

(ii) Let 1 ≤ p0, p1, q0, q1 < ∞. Then the maximal operators have dense range.

Proof. (i) This follows from Theorem 5.20 and [Gol66, p. 136, Lemma VI.2.4].

(ii) Since
(Smax

∆ )′ = Smin
τ⋆,q′0,q′1,p′0,p′1,Σ,

we obtain that the range of Smax
∆ is dense from (i) and [Gol66, p. 59, Theorem II.3.7].

Similarly, we obtain that the range of Smax
Σ is dense.

Proposition 5.25. Suppose 1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞. Let τ be a
differential expression on I = (b, c) with b ∈ R and an(b) 6= 0 or c ∈ R and an(c) 6= 0.

(i) If one of the operators Smin
∆ , Smin

τ⋆,q′0,q′1,p′0,p′1,Σ, Smax
∆ or Smax

τ⋆,q′0,q′1,p′0,p′1,Σ has a closed range,

then Smin
∆ has a bounded inverse and the operator Smax

∆ is surjective.

(ii) If one of the operators Smin
Σ , Smin

τ⋆,q′0,q′1,p′0,p′1,∆, Smax
Σ or Smax

τ⋆,q′0,q′1,p′0,p′1,∆ has a closed range,

then Smin
Σ has a bounded inverse and the operator Smax

Σ is surjective.

Proof. (i) From Proposition 5.15 (i), it follows that R(Smin
∆ ) and R(Smax

∆ ) are closed. Since
Smin

∆ is closed and injective by Proposition 5.24 (i), we obtain that Smin
∆ has a bounded

inverse from [Gol66, p. 94, Lemma IV.1.1].
If 1 ≤ p0, p1, q0, q1 < ∞, then Smax

∆ is surjective, see Proposition 5.24 (ii).
Assume 1 < p0, p1, q0, q1 ≤ ∞. The operator Smin

τ⋆,q′0,q′1,p′0,p′1,Σ is densely defined, closed and

has a closed range by Lemma 5.13 and Proposition 5.15 (i), respectively. Since it holds

Smax
∆ = (Smin

τ⋆,q′0,q′1,p′0,p′1,Σ)′,

see Proposition 5.14, we get

β(Smax
∆ ) = α(Smin

τ⋆,q′0,q′1,p′0,p′1,Σ)

from [Gol66, p. 102, Theorem IV.2.3]. Then Proposition 5.24 (i) implies that Smax
∆ is

surjective.

(ii) We proceed similarly as in the proof of (i), using Proposition 5.15 (ii).

Proposition 5.26. Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and τ be a differential expression of order n
on I = (b, c) with b, c ∈ R and an(b) 6= 0, an(c) 6= 0. For j ∈ {∆,Σ}, the operator Smax

j is
surjective with α(Smax

j ) = n.
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Proof. Since an(t) > 0, it is possible to assume without loss of generality that an(t) = 1
for all t ∈ [b, c]. Let j ∈ {∆,Σ}, g∆ ∈ Lq0 ∩ Lq1 and gΣ ∈ Lq0 + Lq1. Then gj ∈ L1. We
know from the proof of (i) of [Gol66, p. 140, Theorem VI.3.1] that there exists fj ∈ An

such that fj can be extended to a continuous function on [b, c] and

τfj = gj.

Since the extension of fj on [b, c] is an element of Lq0([b, c]) ∩ Lq1([b, c]), we conclude that
fj ∈ Lq0 ∩ Lq1 ⊆ Lq0 + Lq1. Thus Smax

∆ and Smax
Σ are surjective.

It holds α(Smax
p0,q0

) = n, see [Gol66, p. 140, Theorem VI.3.1]. Then the proposition follows
from Corollary 5.23 (ii).

Corollary 5.27. Let 1 ≤ p0, p1 ≤ ∞, 1 < q0, q1 ≤ ∞ and τ be a differential expression on
I = (b, c) with b, c ∈ R and an(b) 6= 0, an(c) 6= 0.

(i) Suppose T∆ is an injective and closed restriction of Smax
∆ . Then (T∆)−1 is compact.

(ii) Suppose TΣ is an injective and closed restriction of Smax
Σ . Then (TΣ)−1 is compact.

Proof. We proceed similarly as in the proof of [Gol66, p. 145, Corollary VI.3.3], using
Proposition 5.12, Lemma 5.16 and Corollary 5.23 (ii).

We obtain a special situation, when I = (b, c) with b, c ∈ R and 1 ≤ p0 ≤ p1 ≤ ∞,
1 ≤ q0 ≤ q1 ≤ ∞. Suppose these assumptions are fulfilled and τ is a differential expression
of order n on I. Then Lp1 ⊆ Lp0 and Lq1 ⊆ Lq0. Thus

Smax
p0,q0

= Smax
Σ , Smax

p1,q1
= Smax

∆ ,

SR
p0,q0

= SR
Σ , SR

p1,q1
= SR

∆.

Moreover, assume 1 ≤ p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1 ≤ ∞. It follows that

Smin
p0,q0

= Smin
Σ , Smin

p1,q1
= Smin

∆ .

In this case, we have the following situation,

Lp0 _?

Smin
p0,q0

=Smin
Σ , SR

p0,q0
=SR

Σ , Smax
p0,q0

=Smax
Σ //

?�

Lq0

?�

Lp1 _?

Smin
p1,q1

=Smin
∆ , SR

p1,q1
=SR

∆, Smax
p1,q1

=Smax
∆ //

OO

Lq1

OO

where the injective operators in the diagram correspond to the continuous inclusions.
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5.2 Restricted, Minimal, Maximal and Induced Op-

erators

Theorem 5.28. Suppose 1 ≤ p0 ≤ p ≤ p1 < ∞ and 1 ≤ q0 ≤ q ≤ q1 < ∞. Let τ be a
differential expression on an open interval I. Then we have

(i)

(̌SR
Σ )Lp,Lq = SR

p,q,

(̌SR
p,q)Lp0∩Lp1 ,Lq0∩Lq1 = SR

∆,

(̌SR
Σ )Lp0∩Lp1 ,Lq0∩Lq1 = SR

∆,

(ii)

(̌Smax
Σ )Lp,Lq = Smax

p,q ,

(̌Smax
p,q )Lp0∩Lp1 ,Lq0∩Lq1 = Smax

∆ ,

(̌Smax
Σ )Lp0∩Lp1 ,Lq0∩Lq1 = Smax

∆ .

(iii) Assume p1, q1 < ∞ or 1 < p0, q0. If I = (b, c) with b, c ∈ R and an(b) 6= 0, an(c) 6= 0,
then

(̌Smin
Σ )Lp,Lq = Smin

p,q ,

(̌Smin
p,q )Lp0∩Lp1 ,Lq0∩Lq1 = Smin

∆ ,

(̌Smin
Σ )Lp0∩Lp1 ,Lq0∩Lq1 = Smin

∆ .

Proof. Obviously, the spaces Lpj and Lqj are intermediate spaces corresponding to (Lp0, Lp1)
and (Lq0, Lq1), respectively. From [BL76, p. 106, Theorem 5.1.1], we know that Lp and
Lq are intermediate spaces with respect to the compatible couples above. Therefore the
induced operators are well defined.
The proof of the equalities in (i) and (ii) is straightforward.
From (ii) and Corollary 5.22, we obtain (iii).

Corollary 5.29. Suppose 1 ≤ p0 ≤ p ≤ p1 < ∞ and 1 ≤ q0 ≤ q ≤ q1 < ∞. Let τ be a
differential expression of order n on an open interval I. We have N(Smax

∆ ) ⊆ N(Smax
p,q ) ⊆

N(Smax
Σ ).

Proof. Since

D(Smax
∆ ) ⊆ D(Smax

p,q ) ⊆ D(Smax
Σ )

by Theorem 5.28 (ii), the corollary follows.
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The corollary above is also an immediate consequence of Lemma 1.7 (ii). Moreover, the
kernels of the corresponding restricted operators are equal, see Corollary 5.23.

Corollary 5.30. Let 1 ≤ p0 ≤ p ≤ p1 < ∞ and 1 ≤ q0 ≤ q ≤ q1 < ∞ and τ be a
differential expression of order n on I = (b, c) with b, c ∈ R and an(b) 6= 0, an(c) 6= 0.
Then

(Smax
p0,q0

, Smax
p1,q1

)Σ = Smax
Σ .

Proof. Proposition 2.6 (i) and Theorem 5.28 (ii) yield

(Smax
p0,q0

, Smax
p1,q1

)Σ ⊆ Smax
Σ .

From Proposition 2.5, Proposition 5.26 and Theorem 5.28 (ii), we obtain that the kernels
and the ranges of these operators are equal. Then the corollary follows (see the note before
Example 2.7).

Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and τ be a differential expression on I = (b, c) with b, c ∈ R and
an(b) 6= 0, an(c) 6= 0. It holds

(Smax
p0,q0

, Smax
p1,q1

)Σ ⊆ Smax
Σ (5.4)

by Proposition 2.6 (i) and Theorem 5.28 (ii). Thus the surjectivity of (Smax
p0,q0

, Smax
p1,q1

)Σ and
Smax

Σ (cf. Proposition 5.26) is a consequence of Proposition 2.5 and (i) of [Gol66, p. 140,
Theorem VI.3.1].
From the proof of Lemma 5.4, we know that Lq0 ∩Lq1 is dense in Lq0 and Lq1 , respectively.
The space of the infinitely differentiable functions with bounded derivatives are cores of
the classical maximal operators Smax

p0,q0
and Smax

p1,q1
, respectively. Since this space is contained

in D(Smax
∆ ), it follows that D(Smax

∆ ) is a core of Smax
p0,q0

and Smax
p1,q1

, respectively.
We know from Proposition 5.26 that Smax

∆ and Smax
Σ are Fredholm operators. Then (5.4)

yields that

α((Smax
p0,q0

, Smax
p1,q1

)Σ) ≤ α(Smax
Σ ) < ∞.

Since (Smax
p0,q0

, Smax
p1,q1

)Σ is surjective, it follows that (Smax
p0,q0

, Smax
p1,q1

)Σ is Fredholm. We conclude
that Smax

p0,q0
and Smax

p1,q1
are Fredholm operators from Proposition 5.26 and the considerations

after Definition 5.2 (or [Gol66, p. 137, Theorem VI.2.7]).
Hence we see that the results above (and in Corollary 5.23 (ii)) are similar to the results
on the abstract theory in Corollary 3.10.
Note that for p0, p1, q0, q1 < ∞ or 1 < p0, p1, q0, q1, it is possible to obtain from Proposi-
tion 5.24 (i) and Theorem 5.28 (iii) with Proposition 1.8 (i) the result (i) in [Gol66, p. 139,
Theorem VI.2.10]. (Of course, (i) in [Gol66, p. 139, Theorem VI.2.10] follows also from
Proposition 5.24 (i) with the considerations after Definition 5.7.)
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5.3 Fredholm Properties and Local U.I. Properties

From the investigations in this thesis, we obtain results on both the Fredholm proper-
ties and the local U.I. properties of certain differential operators, see Theorem 5.31 and
Theorem 5.34.

Theorem 5.31. Let 1 ≤ p0 < p1 < ∞ and the differential expression τ be of the form
τ(f) = f ′ + a0f for f ∈ A1 on I = (0,∞), where a0 ∈ C.

(i) Assume p ∈ (p0, p1) such that Smax
p,p is a semi-Fredholm operator. Then there exists

δ > 0 such that Smax
q,q is semi-Fredholm and

κ(Smax
p,p ) = κ(Smax

q,q ),

α(Smax
p,p ) ≥ α(Smax

q,q ),

β(Smax
p,p ) ≥ β(Smax

q,q )

for all q ∈ (1,∞) with 1
q
∈ (1

p
− δ, 1

p
+ δ) ∩ ( 1

p1
, 1

p0
).

(ii) Assume p ∈ (p0, p1) such that Smax
p,p is continuously invertible. Then there exists δ > 0

such that Smax
q,q is continuously invertible and

(Smax
p,p )−1

|F∆
= (Smax

q,q )−1
|F∆

for all q ∈ (1,∞) with 1
q
∈ (1

p
− δ, 1

p
+ δ) ∩ ( 1

p1
, 1

p0
).

Proof. Let S := Smax
τ,p0,p1,p0,p1,Σ and z ∈ C such that Re z > Re a0. The solution of

0 = (z − τ)f = (z − a0)f − Df

is
f(t) = c exp

(

(z − a0)t
)

, t ∈ (0,∞),

where c ∈ R is a constant. Since f /∈ Lp0 + Lp1, we conclude that z − S is injective.
Let j ∈ {0, 1}. Proposition 1.11 and Theorem 5.28 (ii) yield

(̌z − S)Lpj ,Lpj = z − Smax
pj ,pj

.

Therefore the operator z − Smax
pj ,pj

is injective by Proposition 1.8 (i) and

(z − Smax
p0,p0

, z − Smax
p1,p1

)Σ

is injective by Proposition 2.6 (i). From [Gol66, p. 163, Theorem VI.7.2], we know that
z − Smax

pj ,pj
is surjective. Then Proposition 2.5 implies that

(z − Smax
p0,p0

, z − Smax
p1,p1

)Σ
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is surjective. Hence
(z − Smax

p0,p0
, z − Smax

p1,p1
)Σ = z − S, (5.5)

see Proposition 2.6 (i). Since the maximal operators are closed by Corollary 5.6, we
conclude that z − Smax

pj ,pj
and z − S are closed with Lemma 1.1. Thus (c) in Theorem 2.27

is fulfilled for z − S.
Therefore

(Ez−S)η = (Eη)z−Sη

for all η ∈ (0, 1), see Theorem 2.48 and (5.5). Since Smax
pj ,pj

is closed by Corollary 5.6, we
obtain that (ES)η = (Eη)Sη

for all η ∈ (0, 1) from Theorem 2.50.
Let λ ∈ (0, 1) such that

1

p
=

1 − λ

p0

+
λ

p1

.

Then (Lp0, Lp1)λ = Lp by [BL76, p. 106, Theorem 5.1.1]. Thus Smax
p,p = ŠLp,Lp = Sλ, see

Theorem 5.28 (ii).

(i) From Theorem 3.22, we know that there exists ε > 0 such that Sθ is a semi-Fredholm
operator and

κ(Sλ) = κ(Sθ),

α(Sλ) ≥ α(Sθ),

β(Sλ) ≥ β(Sθ)

for all θ ∈ (λ − ε, λ + ε) ∩ (0, 1).
Set

δ := ε(
1

p0

−
1

p1

)

and 1
q
∈ (1

p
− δ, 1

p
+ δ) ∩ ( 1

p1
, 1

p0
). Assume ω ∈ (0, 1) such that

1

q
=

1 − ω

p0
+

ω

p1
.

Then ω ∈ (λ − ε, λ + ε) ∩ (0, 1) and (Lp0, Lp1)ω = Lq holds, see [BL76, p. 106, Theorem
5.1.1]. Thus Sω = ŠLq,Lq = Smax

q,q by Theorem 5.28 (ii), which implies (i).

(ii) From Theorem 4.21 (ii), we know that there exists ε > 0 such that Sθ is continuously
invertible and

(Sλ)
−1

|F∆
= (Sθ)

−1
|F∆

for all θ ∈ (λ − ε, λ + ε) ∩ (0, 1).
Set

δ := ε(
1

p0

−
1

p1

).

Then we conclude as in (i).
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Definition 5.32. Let 1 ≤ p0, p1, p < ∞ and I = (0,∞). We define

(i) Tp : Lp ⊇ D(Tp) −→ Lp by

D(Tp) := {f ∈ Lp : f is absolutely continuous on each compact

subinterval of (0,∞) and M 1
id

(Mid2f)′ ∈ Lp},

Tpf := M 1
id

(Mid2f)′

for all f ∈ D(Tp),

(ii) T : Lp0 + Lp1 ⊇ D(T ) −→ Lp0 + Lp1 by

D(T ) := {f ∈ Lp0 + Lp1 : f is absolutely continuous on each compact sub-

interval of (0,∞) and M 1
id

(Mid2f)′ ∈ Lp0 + Lp1},

Tf := M 1
id

(Mid2f)′

for all f ∈ D(T ).

Since f is absolutely continuous on each compact subinterval of (0,∞) if and only if Mid2f
is absolutely continuous on each compact subinterval of (0,∞), it follows that Tp and T in
the previous definition are well defined.

Lemma 5.33. Suppose 1 ≤ p0 < p1 < ∞ and I = (0,∞). Let Tr, r ∈ [1,∞], and T be
defined as in the previous definition.

(i) For all p ∈ [p0, p1], it holds
ŤLp,Lp = Tp.

(ii) The operators Tp0, Tp1 and (Tp0 , Tp1)Σ are continuously invertible.

(iii) The operator T is injective and

(Tp0 , Tp1)Σ = T.

Proof. (i) The proof is straightforward (cf. the beginning of the proof of Theorem 5.28).

(ii) Let j ∈ {0, 1}. From [Jör82, p. 264, Theorem 11.1], we know that the operator
Kpj

: Lpj −→ Lpj defined by

(Kpj
g)(x) :=

x
∫

0

x−2yg(y)dy, x ∈ (0,∞),

for g ∈ Lpj is bounded. Since Tpj
is the inverse of Kpj

, it follows that Tpj
is continuously

invertible and
(Tp0)

−1
|F∆

= Kp0 |F∆
= Kp1 |F∆

= (Tp1)
−1

|F∆
.
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Thus statement (d) in Theorem 2.27 is fulfilled for (Tp0 , Tp1)Σ by Theorem 2.10 (i). Then
Theorem 2.27 implies that (Tp0, Tp1)Σ is continuously invertible.

(iii) The function

f(x) = c
1

x2
, x ∈ (0,∞),

is a solution for M 1
id

(Mid2f)′ = 0, where c ∈ R is a constant. But f /∈ Lp0 + Lp1. Thus T
is injective.
It holds (Tp0, Tp1)Σ ⊆ T by (i) and Proposition 2.6 (i). Since (Tp0 , Tp1)Σ is surjective by (ii)
and T is injective, we conclude that (Tp0 , Tp1)Σ = T .

Theorem 5.34. Suppose 1 ≤ p0 < p1 < ∞ and I = (0,∞). Let Tr, r ∈ [1,∞], be defined
as in Definition 5.32 (i).

(i) Assume p ∈ (p0, p1) such that Tp is a semi-Fredholm operator. Then there exists δ > 0
such that Tq is a semi-Fredholm operator and

κ(Tp) = κ(Tq),

α(Tp) ≥ α(Tq),

β(Tp) ≥ β(Tq)

for all q ∈ (1,∞) with 1
q
∈ (1

p
− δ, 1

p
+ δ) ∩ ( 1

p1
, 1

p0
).

(ii) Assume p ∈ (p0, p1) such that Tp is continuously invertible. Then there exists δ > 0
such that Tq is continuously invertible and

(Tp)
−1

|F∆
= (Tq)

−1
|F∆

for all q ∈ (1,∞) with 1
q
∈ (1

p
− δ, 1

p
+ δ) ∩ ( 1

p1
, 1

p0
).

Proof. Let T be defined as in Definition 5.32 (ii). It holds ŤLpj ,Lpj = Tpj
for j ∈ {0, 1}, see

Lemma 5.33 (i). Since the operators Tp0 , Tp1 and (Tp0 , Tp1)Σ are continuously invertible
by Lemma 5.33 (ii), we conclude that statement (c) of Theorem 2.27 is fulfilled for T . It
holds (Tp0 , Tp1)Σ = T , see Lemma 5.33 (iii). Therefore (ET )η = (Eη)Tη

for all η ∈ (0, 1) by
Theorem 2.48.
Then we conclude similarly as in the proof of Theorem 5.31.



List of Symbols

General Symbols

An see p. 71 α(S) see p. 41
β(S) see p. 41 B(E) see p. 19
B(E,F ) see p. 19 C complex numbers
C(I) see p. 73 Ck(I) see p. 72
C∞(I) see p. 73 Dλ,δ see p. 58
D(S) domain of S E ′ conjugate space
FR(E) see p. 40 FR(E,F ) see p. 40
γ(S) see p. 58 Im z complex part of z ∈ C

κ(S) see p. 41 Lp see p. 9
µ Lebesgue measure N positive integers
N(S) kernel of S p′ see p. 74
R real numbers R(S) range of S
Re z real part of z ∈ C ρ(S) see p. 22
ρ̃(S) see p. 22 ρS see p. 23
ρ̃S see p. 23 S closure of S
S−1 see p. 4 S ′ conjugate of S
′S see p. 73 S|L see p. 7
S see p. 44 S0 see p. 44
σ(S) see p. 22 σ̃(S) see p. 22
σapp(S) see p. 23 σr(S) see p. 23
τ see p. 71 τ ⋆ see p. 71
Z integers ‖ · ‖S graph norm
‖ · ‖Lp see p. 58 E ⊆ F see p. 6
E = F see p. 6 (E0, E1) see p. 6
(E0, E1) = (F0, F1) see p. 6 S ⊆ T see p. 1, p. 15
S + T see p. 4 (S0, S1) see p. 11
(S0, S1) = (T0, T1) see p. 11 (R0, R1)(S0, S1) see p. 12
(S0, S1) + (T0, T1) see p. 12 z(S0, S1) see p. 12

89



90 List of Symbols

Spaces

E∆ see p. 6 E∆
j

see p. 37
Eλ see p. 44 Eλ,q see p. 45
EΣ see p. 6 ES see p. 1
(ES)λ see p. 47 (ES)λ,q see p. 47
(E0, E1)λ see p. 44 (E0, E1)λ,q see p. 45
FE see p. 44 F(E0, E1) see p. 44
NwE

see p. 57 Nw(E0,E1)
see p. 57

Operators

iS see p. 2 MidS
see p. 55

S̃ see p. 56 S̃w see p. 57

S∆
j
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