Unbounded Linear Operators

on Interpolation Spaces

vorgelegt von
Diplom-Mathematikerin
Kerstin Giinther

von der Fakultat II - Mathematik und Naturwissenschaften
der Technischen Universitat Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

- Dr. rer. nat. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender:  Prof. Dr. R. Wist
Gutachter: Prof. Dr. K.-H. Forster
Gutachter: Prof. Dr. V. Miiller
Gutachter: Prof. Dr. P. Wittbold

Tag der wissenschaftlichen Aussprache: 21. April 2008

Berlin 2008
D&3






Contents

\4

[l Basic Concepts] 1
1.1 Abstract Sobolev Spaced . . . . . . . .. 1
[1.2  Induced Operator§ ............................... 3

2 Interpolation Theory of Linear erator 5

2.1 ompatible Coupled . . . . . . . ..

2.2 The Unboun rator nd Sef. ... ... 7
2.3 Interpolation Theory of Linear Operators . . . . . . . . .. .. .. ... .. 11
2.3.1 Interpolation Morphisms . . . . . . . . . .. ... ... ... .. .. 11
2.3.2 Intermediate Spaces, Interpolation Spaces, Interpolation Operator 13

2.4 Compatible Couples of Abstract Sobolev Spaces and Related Interpolation

Morphisms . . . . . . . .. 14
2. elations between and Syl . . ... 18
2.6 Th ra of nd Sy ... 22
2.7 The Spectra of Unbounded Operators on Interpolation Spaced . . . . . .. 25
2.7.1 nstan TAl . o 27
2.8 The Spaces (Fg) and E T A 30

13 Fredholm Properties of Unbounded Operators on Interpolation Space§ 37

1 Th Ators Sa b Sa aNd Sa ] . e 37
2 and Unbounded Operators on Arbitrary Interpolation Spaced 40

mplex an | Interpolation spaced . . . . . . . ... ... 44
4 Unbounded Operators on Complex and Real Interpolation Spaced . . . . . 49

I1I



IV

Contents

4 _The Local Uniqueness-of-Inverse (U.IL.) Propertie§

4.1  The Local U.I. Properties for Boun r

4.1.1  The Local U.I. Property for the Complex Interpolation Metho

4.1.2  The Local U.L Property for the Real Interpolation Method . . . . .

4.2 The Local U.I. Properties for Un n r

4.2.1  The Local U.I. Property for the Complex Interpolation Metho

14.2.2  The Local U.L Property for the Real Interpolation Method . . . . .

5 Example - Ordinary Differential Operatoré

1 estricted, Minimal and Maximal Operators .

2 ri Minimal, Maximal and In

5.3 Fredholm Properties and Local U.L Propertieé
List of Symbglé

IBibliographyl

53
o4
o4
61

71
71
83
85

89

91



Preface

The present thesis generalizes the concept and results of the classical interpolation theory.
Usually, this theory deals with bounded linear operators. We extend the classical interpola-
tion theory by introducing corresponding not necessarily bounded linear operators. These
operators are investigated in this thesis. Of particular interest are spectral properties,
Fredholm properties and the generalization of the local uniqueness-of-resolvent condition
of T.J. Ransford and the local real uniqueness-of-resolvent condition of M. Krause. Finally,
we examine ordinary differential operators as an example for unbounded linear operators
on interpolation spaces.

The spaces considered in this thesis are Banach spaces and all the operators are linear.
Like S. Goldberg or T. Kato (see [Gol66, p. 4], p. 127]), we assume that the
dimension of the Banach spaces is greater than zero.

Chapter [1] provides two tools to generalize results of the classical interpolation theory. In
the first part, we introduce abstract Sobolev spaces of closable linear operators. With the
abstract Sobolev spaces, we construct bounded operators corresponding to not necessarily
bounded but closable operators. Several properties of these operators are related; i.e.
instead of examining unbounded operators, it will often suffice to study the corresponding
bounded operators.

Since we mainly consider induced operators in this thesis, we look at these operators in
more detail in the second part of Chapter [

In Chapter 2l we introduce operators on interpolation spaces, which are not necessarily
bounded. If the operators are bounded, then they coincide with the operators considered
in the classical interpolation theory.

We investigate these operators. Of particular interest will be the spectra.

Fredholm properties of the operators appearing in the classical interpolation theory are
well-known. In Chapter [3, we generalize results of the classical interpolation theory from
E. Albrecht, M. Krause and K. Schindler by examining the Fredholm properties of the
operators introduced in Chapter 2

The local uniqueness-of-resolvent condition for the complex interpolation method from
T.J. Ransford is well-known. E. Albrecht and V. Miiller showed that this condition holds
always. They, as well as M. Krause, proved similar results for the real interpolation method
(e.g. that the local real uniqueness-of-resolvent of M. Krause is always fulfilled). All
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VI Preface

these investigations for the complex and the real interpolation method dealt with bounded
operators.

In Chapter [ we study corresponding properties for not necessarily bounded operators.
Moreover, we look at these properties under different perturbations.

Chapter Bl gives a classical example for unbounded linear operators on interpolation spaces.
We examine ordinary differential operators on LP-spaces as well as on the intersection and
sum of two LP-spaces. From the theory of the previous chapters, we obtain results on the
Fredholm properties and the local U.L. properties of certain differential operators.

My deep gratitude goes to my supervisor Prof. Dr. K.-H. Forster for his guidance and
support during my work. Moreover, [ would like to thank Prof. Dr. P. Wittbold and Prof.
Dr. V. Miiller.

I am grateful for the financial support of the grant ‘NaFoG’.

Finally, I wish to thank my family.



Chapter 1

Basic Concepts

Chapter [1] introduces two tools, which we will need throughout this thesis.

In Section [I.I] we construct bounded linear operators from not necessarily bounded and
closable linear operators by using abstract Sobolev spaces. It is shown that several prop-
erties of these operators are closely related to each other.

In Section [1.2], we examine induced operators, where we confine ourselves to the theory
that is used in further chapters.

We will apply the theory of the abstract Sobolev spaces and the induced operators particu-
larly in Chapter [3land Chapter [, where we generalize results of the classical interpolation
theory for bounded linear operators to not necessarily bounded linear operators.

Let E, F be Banach spaces and S : E 2 D(S) — F, T : E D D(T) — F be linear. If
D(S) € D(T') and Sz = Tz for all € D(S), then we call S a restriction of 7' (and T an
extension of S) and we write S CT. By S =T, we mean that S C T and S D T.

The following, well-known lemma will be used frequently.

Lemma 1.1. Let E be a Banach space, z € C and S : E D D(S) — E be linear.

(i) The operator S is closable if and only if z — S is closable.
In this case, we have z — S = z — S.

(i) The operator S is closed if and only if z — S is closed.

1.1 Abstract Sobolev Spaces

In this section, we just state facts, which are needed in later considerations.

Definition 1.2. Let E, F' be Banach spaces and S : E O D(S) — F be linear and
closable. We define the abstract Sobolev space Es by

Es = {D(9), |Ils}

—_



2 Basic Concepts
where || - ||z denotes the graph norm of S, i.e. ||x]l5 = ||z||z + ||Sz||, for all z € D(S).

Obviously, the abstract Sobolev space is a Banach space.

Definition 1.3. Let E, F be Banach spaces and S : E DO D(S) — F be linear and
closable. We define ig : Es — E with

isu = u for all u € Eg.

The operator 75 in Definition is well defined, linear, bounded and injective and we have
the following situation.

B—5 . F

Es

From the definition of Eg and ig, we obtain the next proposition.

Proposition 1.4. Let E, I be Banach spaces and S : E D D(S) — F be linear and
closable. Then

(i) Sis: Es 2 D(S) — F is bounded,
(i) Sig = Sig = Siz,
(ii1) N(5) = is {N(Sis)},
(iv) R(S) = R(Sig).
In particular, S is semi-Fredholm (Fredholm) if and only if Sig is semi-Fredholm (Fred-
holm); in this case, the dimensions of the kernels or the codimensions of ranges (the indices)

of S and Sig are equal (see [Kal66, p. 2530] for the definition of semi-Fredholm, Fredholm
and the index).

Let E, F be Banach spaces and S : F D D(S) — F be linear. The operator S is said to
be continuously invertible if S is injective, surjective and S~! is bounded.

Theorem 1.5. Let E, F be Banach spaces and S : E D D(S) — F be linear. Then S is
continuously invertible if and only if S is closed and Sig is continuously invertible.
In this case, the operator Sig is an isomorphism.

Proof. 1f S is continuously invertible, then S is closed. Since g is injective, the theorem
follows from Proposition [L.4] (i), (ii) and (iii). O



Induced Operators 3
1.2 Induced Operators

Let E and F' be Banach spaces. An everywhere defined, linear, injective and bounded
operator from F into F' is called a continuous embedding. If there exists a continuous
embedding from F into F', then we say that E is continuously embedded in F.

Definition 1.6. Suppose E, F, E and I are Banach spaces angl i Ez — E, ip: F —
F are embeddings. Let S : E 2 D(S) — F be linear. Define Spp: E 2 D(Sgp) — F
by

D(Spp) = {& € E: i € D(S) and Sigi € R(ir)},
VE,FSE =9 if and only if SigT = ipy

for all & € D(SEF) Then we say that SEF is induced by S and call SEF the induced
operator of S corresponding to E and .

Since ip in Definition [L.6lis injective, the induced operator is well defined and linear. More-
over, it depends on the embeddings; since in all the following situations, the embeddings
are clear, we will not mention them in the notation of the induced operator.

The situation in Definition is shown in the following commutative diagram.

op S R—

Sip

The proofs of the next two results are straightforward.

Lemma 1.7. Suppose E, F, E and F' are Banach spaces and ip : E — E, ip : I — F
are embeddings. Let S : E D D(S) — F be linear.

(i) Suppose R : ED D(R) — F is linear. Then ipR C Sig if and only if R C SEF
(ii) It holds ip {N(Sg )} = N(S)NR(ig) and ir {R(Szz)} € R(S) NR(iF).
(iii) Let T : E D D(T) — F be linear such that S C T. Then Spp C T .

l?roposition 1.8. Suppose E, F, E and F' are Banach spaces and ip - E — E, ip :
F — F are embeddings. Let S : E D D(S) — F be linear.

(i) If S is injective, then SEF is injective.
(ii) If S is closed, then Sg  is closed.

(111) If S is closable, then SEF is closable.



4 Basic Concepts

l?roposition 1.9. Suppose E, F, E and F' are Banach spaces and ip - E — E, ip :
F — F are embeddings. Let S : E O D(S) — F be linear and closable. Then

Sk r

IN
Al

E,F

Proof. Tt holds S pr C ?E 7 by Lemma [L7 (iii). Then we obtain the proposition from
Proposition (ii). O

Let E, F be Banach spaces and S : E O D(S) — F be linear and injective. Then the
inverse S~ : F' 2 D(S™!) — E has domain R(S) and for all y € R(S), we have S~y =z
if and only if x € D(S) such that Sz = y.

l?roposition 1.10. Suppose E, F, E and F are Banach spaces and ip : E — E, ip :
F — F are embeddings. Let S : E O D(S) — F be linear and injective. Then it holds

(S Vpp=(Spp) "

Proof. From Proposition [.8, we know that S 7. r 1s injective. Then the proof is straight-
forward. m

Let E, F' be Banach spaces and S : £ D D(S) — Fand T : E D D(T) — F be
linear. The operator S+ 7T : E DO D(S 4+ T) — F is defined on D(S) N D(T) with
(S+T)x = Sx+ Tx for all z € D(S) N D(T). Obviously, this operator is linear.

From the definition of the operators, we obtain Proposition [I.11] and Proposition [1.12]

Proposition 1.11. Suppose E and E are Banach spaces, = € C and ig : E — E is an
embedding. Let S : E O D(S) — E be linear. Then

(2= 8)ps=2— S5
Iv’roposition 1.12. Suppose E, I, G, E, F, G are Banach spaces, = € C and ip :
E — E ip: FF — F,ig: G — G are embeddings. Let S : E O D(S) — F,
D

T:E2DT) — Fand R: F 2 D(R) — G be linear with R(S) C D(R) and
R(Sz ) € D(Rpg). Then it holds

(i) Spp+Top C(S+T)gp,
(ii) 2S5 5 = (25) 5.1

(iii) Ry Sy r C (RS)pe-



Chapter 2

Interpolation Theory of Linear
Operators

This chapter is devoted to the extension of the classical interpolation theory to linear
operators, which are not necessarily bounded.

After introducing compatible couples in Section 2.1l we mainly investigate the operators
So, S1, Sa and Sy, in Section 2.2 These operators are not necessarily bounded. If Sy, Sq,
Sa and Sy, are bounded, then they coincide with the operators usually considered in the
classical interpolation theory.

Section 2.3 gives a brief introduction to the classical interpolation theory for bounded linear
operators in terms of induced operators. Of special interest are two everywhere defined
and bounded linear operators, which coincide on the intersection of their domains. In
Subsection [2.3.1] we show that these operators form an interpolation morphism.

We see that interpolation operators are induced operators in Subsection 2.3.2l Therefore
the theory for not necessarily bounded, induced operators on interpolation spaces extends
the classical interpolation theory for bounded linear operators.

In Section 2.4 we show that the abstract Sobolev spaces of Sy and S; form a compatible
couple under certain assumptions. With the corresponding continuous embeddings ig, and
1s,, we construct interpolation morphisms. This is the main step to obtain results on not
necessarily bounded linear operators from the classical interpolation theory for bounded
linear operators, see Chapter [3] and Chapter [4]

In Section 2.5 we examine the relation of the operators Sy, S, Sa, Sy and other induced
operators on interpolation spaces in more detail. This leads to results on the extended
spectrum of these operators, see Section and Section 2.7 In particular, we obtain
that the spectrum of not necessarily bounded, induced operators on different interpolation
spaces and the spectrum of Sy and S; are equal under certain assumptions, see Subsection
2711

The last section of this chapter deals with two particular spaces. Under slight assumptions,
one of the spaces is contained in the other space. If these spaces are equal, we obtain better
results in Chapter [3] and Chapter [4. We show that under certain assumptions, which are



6 Interpolation Theory of Linear Operators

connected with investigations in Section2.5land Section [2.6] equality follows. Moreover, we
examine operators on these spaces in Section 2.8 The results will be essential in Chapter [3]
and Chapter [4]

Let £ and F be Banach spaces. If x € E implies that x € F, then we say £ C F. We
write £ = F, when £ C Frand FF C E. If E C F and ||z||, < C|z| for a constant
C > 0 and for all x € E, then we say F C F with continuous inclusion.

Throughout this chapter, the induced operators are constructed with continuous embed-
dings, which correspond to continuous inclusions. For instance, assume F, F', E and F' are
Banach spaces such that £ C F and F' C F' with continuous inclusions. Let ig and ig be
the corresponding embeddings, i.e. ip : E — FE and ip : F — F with

it =%, i€k,

irj =19, yeF.
Assume S : E D D(S) — Fis linear. Then the induced operator S .7 always corresponds
to 7 and i in this chapter.
As usual in the classical interpolation theory, we identify the domain with the range of

these continuous embeddings to simplify the notation throughout this chapter, i.e. we
identify iz with & and ipy with g for z € E, y € F.

2.1 Compatible Couples

In the following, we repeat some standard notations from the classical interpolation theory.

Definition 2.1. Let Ey and E; be Banach spaces.

(1) Assume Eqy and E; are continuously embedded in a Hausdorff topological vector space.
Then the pair (Eq, E1) is said to be a compatible couple (of Banach spaces).

(i) If By = Fy, E1 = Fy, then the two compatible couples (Ey, E1) and (Fy, Fy) are said
to be equal. In this case, we write (Eqy, E1) = (Fy, F1).

Definition 2.2. Let (Ey, E1) be a compatible couple. We define the vector spaces
(i) Ex = EyN Ey with the norm
lzallg, = max{llzallg, . lzallg }, 2a € Ea,
(i) Ex, = Eq+ Ey with the norm
lesllp, = it {leollg, + loalls, } w5 € B,
where xq € Ey and x1 € B;.

The spaces Ea and Ey in Definition [2.2] are Banach spaces, see [BL76l p. 24, Lemma
2.3.1]. Moreover, it holds Ex C E; C Ex, with continuous inclusions for j € {0, 1}.
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2.2 The Unbounded Operators (S5, S1)s, So, S1, Sa and
Sy,

In this section, we introduce linear operators (Sp, S1)s, So, S1, Sa and Sy, which are not
necessarily bounded. The connection to the classical interpolation theory for bounded
linear operators is shown. Moreover, we investigate the relation between Sy; and S in more
detail.

Let E, F be Banach spaces and S : E' D D(S) — F be linear. Assume L is a subspace of
E. Then the operator
S|L - L 2 D(S|L) — F

has domain L N D(S) and Sjpz = Sz for all x € L N D(S).

Definition 2.3. Let (Ey, E1), (Fy, F1) be compatible couples. Assume Sy : Ey 2 D(Sy) —
Fy and Sy : By O D(S1) — Fy are linear such that Sy and Sy agree on En, i.e.
So0|Ex = S1|Ea

where the values of these operators are considered in F.
Then the operator (Sy, S1)s @ Ex 2 D((So, S1)s) — F is defined by

D((S[), 51)2) = D(SQ) + D(Sl),

(So, S1)was i= Soxo + Sia1,
where xy, := xo + x1 for xg € D(Sy), 1 € D(S1).

From Sy\p, = Sijg,, We see that (Sp,S1)s in Definition 2.3] is well defined. Obviously,
(S(), Sl)g is linear.

For simplifying the notation, we introduce the following operators Sy, S, Sa and Syx.
Unless otherwise stated, these operators are related to S as in Definition [2.4] throughout
this thesis.

Definition 2.4. Let (Ey, E1), (Fy, F1) be compatible couples and S : Ex, O D(S) — Fy,
be linear. We define the linear operators

Sy EO D D(SO) — [y with Sy = Sgy.p,
Sl : 1 ( ) — F1 with Sl = SEhFl?
SA : EA DD( ) —>FA with SA = SEA,FA7
SE : EE D D( ) — FE with SE = (50751)27

where the induced operators are constructed with the continuous embeddings, which corres-
pond to the continuous inclusions.
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We have the following situation in Definition [2.4]

Sa SE
Es>————Fy,

] ]

J J

]

EA)—>FA

where j € {0,1} and the injective operators in the diagram correspond to the continuous
inclusions.

The assumptions in Definition 2.4 imply that So\z, = S1g,. Thus Sy is well defined.

If S is injective (closable, closed), then S; is injective (closable, closed) for j € {0,1, A}.
This is a consequence of Proposition [L.8 In this case, Sy is injective (closable, but in
general not closed).

The classical interpolation theory usually considers operators S defined as in Definition [2.4]
such that Sy and S; are everywhere defined and bounded.

From the definition of the operators, we obtain the following two propositions.

Proposition 2.5. Let (Ey, Ey), (Fy, F1) be compatible couples and S : Ex, O D(S) — Fx,
be a linear operator. For j € {0,1}, we have

D(Sp) N D(S1) = D(Sa),

N(Sa) = N(S;) N Ea = N(Sx) N Ea = N(S) N Ea,
N(S;) = N(Sg) N E; = N(S) N E,

N(Sp) N N(S7) = N(Sa),

N(So) + N(51) € N(Sx),

R(S0) NR(S51) 2 R(Sa),

R(So) + R(S1) = R(Sy).

Proposition 2.6. Let (Ey, E1), (Fy, F1) be compatible couples and S : Ex, O D(S) — Fy,
be a linear operator. It holds

(i) Sx C S,

(it) (5%)E,.p, = Sk for k € {0,1,A, X},

(ZZZ) (Sj>EA,FA = Sa fO?"j € {0, 1}

() If (Ey, Ey) = (Fo, F1), then z — Sy, = (2 — S)yx, for all z € C.
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Assume (Fy, F1), (Fo, Fy) are compatible couples and S : Fy, O D(S) — Fy is linear. It
holds N(Sx) = N(S5) and R(Sx) = R(S) if and only if Sy, = S. We have only to prove
that N(Sy) = N(5) and R(Sy) = R(S) imply Sy, = S. Let 2 € D(S). Then there exists
Z € D(Sy) such that Sz = Syz. Hence x — & € N(S) = N(Sy). Therefore z € D(Sy).
Since Sy, C S by the previous proposition, the operators Sy, and S coincide.

In general, the operators Sy, and S are not equal as the next example demonstrates.

For 1 <p < oo, let (LP(I), ||-||;») be defined as in p. 241].

Example 2.7. Let I C R be an interval such that u(I) < 1, where u denotes the Lebesgue
measure. Since [ is fix in this example, we simply write L" instead of L"(I) for all 1 <r <
00. Suppose 1 < py < p; < oo and

(Eo, Ey) :== (LP°, LP),
(F07F1) = (LIH?LPO).

Since (1) <1, we have LP* D LP* and || f|| 0, < ||f|l; - for all f € LP'. Therefore
ollzsnsin = 8 olln + 13l = 1l
for fy, € LP° 4 LP' = [P with f; € LP7, j € {0,1}, and fo + f1 = fx. It follows that
Ey, = Fy = LP°.
Let the operator S : LP° 4 [P* — [P0 + [P' be defined by
S i=1idpropr = idpeo .
Then Sy : L D D(Sy) — L” with
D(Sp) = LP* and Sy fy = fo for fo € L”*

and Sy : LP! — LP0 with

D(S;) = LP* and S f; = f; for f1 € LP'.
We conclude that Sy, : LP0 4+ LP* O D(Sy) — LP° + LP* with

D(Sy) = LP* and Sy fs, = fx for fg € L.

Thus Sg 7é S.
Note that Eao = Fa = LP* and Sa : LP° N LPY — LPo N [P with

SA = idLﬁomLm = idel .
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In the previous example, the operators S, S; and Sa are bounded. But Sy is only closed
by Proposition [[.§ (ii). Since Sy C S, see Proposition [2.G] we know that Sy is closable.
Furthermore, the closure of Sy; equals S.

It is possible to generalize Example 2.7 to compatible couples (Ey, Ey) and (Fp, Fy) =
(Ey, Ey) such that Ey D Ey. If we choose S := idg,, then

SO : EO 2 D(So) — E1 with D(So) = El, Sofo = fo for f() € D(S()),
Sl : El —_— EO with D(Sl) = Eh Slfl = f1 for f1 S D(Sl)

Therefore
SE : Eo 2 D(SE) — Eo with D(SE) = El, Szfg = fg for fz € D(SE)

and S do not coincide.

Note that Sa = idg,.

If B, C E, with continuous inclusion, then S;' = S is the continuous embedding corre-
sponding to the continuous inclusion.

Let (Ey, E1), (Fo, F1) be compatible couples and S : Fy, O D(S) — Fyx be linear. Con-
sidering Sy, and S, the unbounded case differs from the bounded case. If Sy, and S; are
everywhere defined and bounded, then Sy, = S is everywhere defined and bounded, see
Theorem 2.8 (i).

Theorem 2.8. Let (Fy, E1), (Fy, F1) be compatible couples and S : Ex, 2 D(S) — Fx, be
linear.

(i) If Sy and Sy are everywhere defined and bounded, then Sa and Ss, = S are everywhere
defined and bounded and it holds
15all < max {[[Sol , [151]]},
[Ssll = ISl < max {[[Sol|, |51} -

(ii) If Sa and S, are everywhere defined and bounded, then Sy and Sy are everywhere
defined and bounded.

Proof. (i) Assume S and S are everywhere defined and bounded. From Proposition 2.5]
we obtain D(Sa) = Ea and D(Sy) = Fyx. Since Sy, C S by Proposition (i), it follows
that D(S) = Ey and Sy, = S. With the definition of the operators, the inequalities for the
norms are obtained.

(ii) Assume Sa and Sy are everywhere defined and bounded. Let j € {0,1}. Since Sy, is
closed, it follows that S; is closed by Proposition [L.§ (ii) and Proposition 2.6l (ii). From

D(Sp) + D(S1) = D(Sx) = Ex,
we obtain that D(S;) = E;. Hence Sy and S are bounded. O
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Assume we have a situation as in Theorem and Sy and S; are everywhere defined and
bounded. Then it follows that D(S) = Eyx and S = Sy, is bounded. Therefore, when having
these situations, we can (and will) assume that S is everywhere defined and bounded.

2.3 Interpolation Theory of Linear Operators

In this section, we state some basic definitions and results on the classical interpolation
theory for bounded linear operators in terms of induced operators.

2.3.1 Interpolation Morphisms

As usual in the classical interpolation theory, we define an interpolation morphism in the
following way.

Definition 2.9. Let (Ey, E1), (Fy, F1) be compatible couples and S : Es, — Fy, be every-
where defined, linear and bounded such that Sy and Sy are everywhere defined and bounded.

(i) The pair (S, S1) is said to be an interpolation morphism (corresponding to S with
respect to (Eg, 1) and (Fy, F1)); we define the norm

1050, S)llagor = max {[[Soll , [543

(ii) Assume T : Ex, — Fy, is everywhere defined, linear and bounded such that Ty and
Ty are everywhere defined and bounded. If So = Ty and Sy = Ti, then we write
(SO7 Sl) - (TOJTI)

In Chapter [Bland Chapter 4] we consider everywhere defined and bounded linear operators
So and S such that Sy and S coincide on the intersection of their domains. In Theorem
2.10] we find an everywhere defined and bounded linear operator such that Sy and S; are
induced by this operator. Therefore the pair (Sp, S1) is an interpolation morphism.

Theorem 2.10. Let (Ey, Ey), (Fo, F1) be compatible couples. Assume Sy : Ey — Fy and
Sy By — Fy are everywhere defined, linear and bounded such that Soip, = S1|g, -

(i) The operator (Sy, S1)x is linear and it holds ((So, S1)s)g,,r, = Sj for j € {0,1}.

(ZZ) We have (Sj)EA,FA = ((507SI)E)EA,FA fO’f’j € {0, 1}
(i1i) The operator (Sy, S1)s is everywhere defined and bounded.

(iv) The pair ) )
(S0,51) = (((So, S1)x) B0,k (S0, 51)8) 4 11 )

is an interpolation morphism (corresponding to (So, S1)s).
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Proof. (i) Obviously, (Sp,S1)y is linear. Then we obtain (i) from the definition of the
operators.
(ii) For j € {0,1}, it holds

(Sj)EA,FA = (((S[)?Sl)E)Eijj)E‘A,FA: ((SOvSl)E)EA,FA

by (i) and Proposition (iii).

(iii) From (i) and Theorem (i), we know that (Sp,S1)x is everywhere defined and
bounded.

(iv) This follows from (i) and (iii). O

Theorem 2.11. Let (Ey, E1), (Fy, Fy) and (Go,Gy) be compatible couples and z € C.
Assume S, T : B, — Fx, and R : Fx, — Gy, are linear such that (Sy, S1), (To,T1) and
(Ro, Ry) are interpolation morphisms. Then

(So + To, St +T1) = (S +T)o, (S +T)1),
(RoSo, R151) = ((RS)o, (RS)1),
(ZS(),ZSl) = ((ZS)(), (25)1)

are interpolation morphisms.

Proof. Since (R, Ry) is an interpolation morphism, we have R(S) C D(R) and R(S;) C
D(R;) for j € {0,1}. Then the theorem follows from Proposition [[.12] O

The theorem above leads to the following definition.

Definition 2.12. Let (Ey, E,), (Fy, F1) and (Go, G1) be compatible couples and z € C.
Assume S, T : Ex, — Fx, and R : Fx, — Gy, are linear such that (Sy, S1), (To, T1) and
(Ro, R1) are interpolation morphisms. Then we define the interpolation morphisms

(S(), Sl) -+ (To, Tl) = (S() =+ Tg, Sl + Tl),
(RQ,Rl)(So,Sl) = (RQSO,Rlsl),
2(So, S1) == (250, 251).

Remark 2.13. Let (Ey, E1) be a compatible couple, z € C and S : Es, — FEy, be linear.

(i) The pair (zidg,, zidg,) is an interpolation morphism.

(i) The pair (Sp, S1) is an interpolation morphism if and only if (z — Sy, z — S1) is an
interpolation morphism.

This follows from (i) and Theorem [2.11]
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2.3.2 Intermediate Spaces, Interpolation Spaces, Interpolation
Operators

We define interpolation spaces as in [BL76, p. 27]. Sometimes, interpolation spaces are
defined corresponding to just one compatible couple, see [BS88| p. 105, Definition 1.14] or
p. 20, Definition 4.2] (cf Definition 2.14] (iii)). But there are even other definitions
for interpolation spaces; for instance in [EES7, p. 68], see also [Kra96| Definition 3.5.1].

Definition 2.14. Let (Ey, E1) be a compatible couple.

(i) Assume E is an Banach space such that Ex C E C Ex, with continuous inclusions.
Then the space E is called an intermediate space with respect to (Eq, E1).

Now, let (Fy, Fy) be a compatible couple and E, F be intermediate spaces corresponding to
(Eo, E1) and (Fy, Fy), respectively.

(ii) Assume that for each linear operator S : Ex, — F, such that (Sp, S1) is an interpo-
lation morphism, the induced operator Sg p corresponding to the inclusions mappings

15 everywhere defined and bounded. Then E and F are said to be interpolation spaces
with respect to (Fo, E1) and (Fy, FY).

(iii) If (Eo, E1) = (Fo, F1) and E = F in (ii), then E is said to be an interpolation space
with respect to (Ey, E1).

(iv) Let S : Ex, — F% be linear such that (Sy, S1) is an interpolation morphism and
E and F be interpolation spaces with respect to (Eo, Ey) and (Fy, Fy). Then the
interpolation operator (Sy, S1)gr corresponding to the interpolation spaces E and F

15 defined to be )
(SO> Sl)E,F = SE,F-

The spaces E; and Fj in Definition [2.14] are interpolation spaces with respect to (Ey, Ey)
and (Fy, Fy) for j € {0,1}. Moreover, the interpolation operator in Definition 2.14] (iv)
coincides with the interpolation operator usually considered in the classical interpolation
theory.

In the next theorem, we see that it is convenient to denote the interpolation operator as
in Definition

Theorem 2.15. Let (Ey, Ey), (Fo, F1) be compatible couples. Assume Sy : Ey — Fy and
S 1 By — Fy are everywhere defined, linear and bounded such that SO|EA = Sl|EA' Let B
and F be interpolation spaces with respect to (Ey, E1) and (Fy, F1). Then

<<507 SI)E)E,F

is the interpolation operator corresponding to E, F (and (Sy, S1)s).
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Proof. This follows from Theorem 2.10] (iv). O

We have a different situation in the unbounded case. Indeed, let (Ey, Ey), (Fy, F1) be
compatible couples and S : Ex, D D(S) — Fx be a linear operator. Then Syg, = Si|g, -

Suppose E and F' are interpolation spaces corresponding to (Ey, Ey) and (Fp, F;). Then it
holds

ZSE)E,F C SE,F

by Lemma [L.7] (iii) and Proposition 2.6] (i). But the operators are not equal in general, see
Example [3.18]

Lemma 2.16. Let (Ey, Ey) be a compatible couple and F, G be intermediate spaces with
respect to (Ey, E1). Then (F,G) is a compatible couple.

Proof. Since F,G are Banach spaces and F, G C FEy, with continuous inclusions, the lemma
follows. O

Proposition 2.17. Let (Ey, E,), (Fy, F1) and (Go, G1) be compatible couples and z € C.
Assume S, T : Ex, — Fx, and R : I, — Gy, are linear such that (Sy, S1), (To,Th) and
(Ro, R1) are interpolation morphisms. Suppose

e I and F are interpolation spaces with respect to (Eo, Ey) and (Fy, FY),
e I and G are interpolation spaces with respect to (Fo, F1) and (Go, G1),

e F and G are interpolation spaces with respect to (Ey, Ey) and (Go, G1).

Then it holds

(So, 1) er+ (T0,T1)er = (So+ 10,51 + 1) e F,
(ROa Rl)F,G(‘Sba Sl)E,F = (ROSO7 Rlsl)E,Ga
Z(So, S1)E,F = (ZSO, ZSl)E,F-

Proof. This follows from Proposition [I.12] and Theorem [2.17] O

2.4 Compatible Couples of Abstract Sobolev Spaces
and Related Interpolation Morphisms
In this section, we show that the abstract Sobolev spaces form compatible couples under

certain assumptions and we construct interpolation morphisms with the corresponding
continuous embeddings, see Proposition and Theorem [2.22]

Proposition 2.18. Let (Ey, E1) and (Fy, Fy) be compatible couples and S : Ex, O D(S) —
Fy; be linear such that Sy and Sy are closable. Then ((Ey)s,, (E1)s,) is a compatible couple.
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Proof. Let j € {0,1}. Since S; is closable, the abstract Sobolev space (£;)s, with the

corresponding operator ig, exist. Obviously, (E;)s, = (D(S;), | I5;) is a Banach space.
Since is; is bounded, it follows that (Ej)sj C E; C Ex, with continuous inclusions and the
proposition is proved. ]

In the following, we formulate an extended version of the definition of restricted operators
(cf. page[).

Let the Banach spaces E, F' be subspaces of a vector space and the Banach spaces G, H
be subspaces of another vector space. Suppose S: E 2 D(S) — G, T: F2D(T) — H
are linear. If x € D(S) implies that x € D(T) and Sx = Tz, then we write S C T. As
usual, we have S =T, when S CT and S D T.

Lemma 2.19. Let (Ey, Ey) and (Fo, F1) be compatible couples and S : Ex, O D(S) — Fx,
be linear.

(1) If Sy and Sy are closable, then (Ea)s, C (Eo)s, N (Ey)s, with continuous inclusion.

(ii) If S is closable, then (Ey)s, + (E1)s, C (Fs)ss with continuous inclusion.

(111) If So and Sy are closed, then (Ea)s, = (Eo)s, N (E1)s, with equivalent norms.

(i) If Sx; is closed, then (Fo)s, + (E1)s, = (Ex)ss with equivalent norms.

Proof. From Proposition 2.18], we know that the intersection and the sum of the abstract
Sobolev spaces (Ep)s, and (Ej)g, is well defined.

(i) From Proposition (iii) and Proposition (iii), it follows that Sa is closable. Let
j €40,1}. We have - B
Sa C(Sj)Eara €5
by Proposition [[.9 and Proposition (iii). Thus (Ea)s, € (Eo)s, N (E1)s, -
Since
lullsz = 1wl () syniens,
for all u € (Fa)s,, we obtain (i).

(ii) Let j € {0,1}. Since the operator Sy is closable, we obtain that S; is closable by
Proposition [L.8] (iii) and Proposition (ii). It holds

E C (Sx)E,.F, C Sy,

by Proposition [[.9 and Proposition (ii). Hence (Eoy)s, + (E1)s, C (Ex)sy-
Let v € (Ey)s, + (F1)s,. From

luollss + luallsy = liswuoll g, + lissuall g, + || Ssissuol|, + [[Ssissul| 4

> |Jisy (uo + 1)l g, + || sy (uo + Ul)HFZ = |lulls;
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for all ug € (Ey)s, and uy € (E1)s, with u = ug + uy, we obtain (ii).

(iii) If Sy and Sy are closed, then the operator Sa is closed by Proposition [I.8 (ii) and
Proposition [2.6] (iii). Since D(Sa) = D(Sp) N D(S1), see Proposition 2.5, we obtain (iii)
from (i).

(iv) Since Sy is closed, it follows that Sy and Sy are closed from Proposition [L.8 (ii) and
Proposition 2.6] (ii). We have D(S;) + D(51) = D(Sx). Thus (iv) follows from (ii). O

Example 2.21] shows that the norms in Lemma [2.19 (iii) and (iv) are not equal in general.

Obviously, the next lemma holds.

Lemma 2.20. Let (Fy, E1) be a compatible couple such that Ey = Ey with equal norms.
Then Ey = Ey = EA = Ex; with equal norms.

Example 2.21. Let
Bo:=(C,]-), Ei=(C2]-]).
Then
En=FE,, FEx=E,.
Let Fy := Ey, Fy := Ey and S : By, — Fy with S :=idg,. From above, we conclude that

(Eo)s, = (E1)s, = (C,3]-]),
(EA)SA = (C’4| ) |)7
(Ex)ss = (C,2]-]).

We see that the norms in Lemma (iii) and (iv) are not equal with Lemma [2.201

Theorem 2.22. Let (Ey, Ey) and (Fy, ) be compatible couples and S : Ex, O D(S) — Fy,
be linear such that So and S7 are closable.

(i) It holds
S0|(Eo)syN(E1)s, — US1|(Eo)syN(E1)s,

and (ig,,is,) is an interpolation morphism.

(i1) Assume Sy, is closable. Then
S0iso|(Bo)son(Es, = S8t 1(Eo)syn(Es,

and (Sopis,, Siis,) is an interpolation morphism.



Compatible Couples of Abstract Sobolev Spaces and Related Interpolation Morphisms 17

(11i) Assume Sy and Sy are closed. Then

S0iso|(Bo)syn(Er)s, = O1881|(Bo)sy(E)s,

and (Sois,, Siis,) s an interpolation morphism.

Proof. From Proposition [2.18] we know that ((Ep)s,, (E1)s,) is a compatible couple.
(i) Obviously,
S0 )(Bo)s,N(E1)s, = P511(Bo)syN(EN)s,
Since ig, and ig, are bounded, (i) follows from Theorem (iv).
(ii) It holds

S; € (S2)g,.r, € Sy
for j € {0,1} by Proposition [[.9 and Proposition (ii). We have
50850 |(B0) 5, (Br)sy = ORI (B)spn(B)s, — P10811(Bo) sy (),
From Proposition [I.4] (ii), we know that Syig, and Siig, are bounded. Thus (Spis,, Siis,)

is an interpolation morphism by Theorem (iv).
(iii) It holds

Sa = (Sj)Ea.ra € 5j

for j € {0,1}, see Proposition (iii). The operator Sx is closed by Proposition [L.§] (ii)
and Proposition 2.6] (iii). Since we have (Ea)s, = (Eo)s, N (E1)s, from Lemma 2.9 (iii),
it follows that

SOiSO\(Eo)soﬂ(El)sl - SOiSO\(EA)SA - SAiSA\(EA)sA - Slisl\(EA)sA - Slisl\(EO)soﬁ(El)sl'

The operators Syig, and Siig, are bounded by Proposition [[.4 (i). Then we obtain (iii)
from Theorem (iv). O

Let j € {0,1} and S; be as in Theorem 2.221 If S; is just closable, then the domain of
Sjis, is not necessarily (Ej)g,. In this case, the pair (Spig,, Siis,) does not need to be an
interpolation morphism.

Motivated by Theorem [2.22] we will several times assume that Sy and S; are closed when
considering interpolation morphisms formed with ig, and ig,.

Lemma 2.23. Let (Ey, E1), (Fy, F1) be compatible couples and S : Fx, O D(S) — F, be
linear.

(i) Assume Sy is closable. Then (is,,is,)s C is.. If Sx is closed, then equality holds.
(11) If So and Sy are closed, then Sx(is,,is,)s = (Soisy, Siis, )s-
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(111) If Sy, is closed, then Sxisy, = (Soisy, S1is,)s-

(iv) If So and S, are closed, then Sjis, = ((Soigo,Sligl)z)(Ej)Sj,Fj for j € {0,1,A}.

Proof. (i) From Proposition [L.8 (iii) and Proposition (ii), we know that Sy and S are
closable. The operator (ig,, s, ) is well defined by Proposition 218 and Theorem 2.22] (i).
Since (Ep)s, + (F1)s, € (Ex)s,. by Lemma 219 (ii), we obtain (is,, s, )s C isy..

If Sy, is closed, then (Ey)s, + (E1)s, = (Fx)sy, see Lemmal2.19] (iv). Thus (ig,, is,)s = iy

(ii) The operators (ig,,is,)s and (Spis,, Siis,)s are well defined, see the proof of (i) and
Theorem [2.22] (iii). Then (ii) follows from the definition of the operators.

(iii) The operators Sy and S are closed by Proposition [LL§ (ii) and Proposition (ii).
Then (iii) follows from (i) and (ii).

(iv) From Proposition [L.§] (ii) and Proposition (iii), we know that Sx is closed. Then

SAiSA = ((SOiSoa Sli51)2)(EA)SA7FA‘

From Theorem (i), we obtain the other equalities. O

2.5 Relations between S, 57, San and Sy,

Lemma 2.24. Let (Ey, E'), (Fo, F1) be compatible couples and S : Ex, O D(S) — Fy be
linear. If R(Sy) N Fa = R(Sa), then N(Sx) = N(Sp) + N(51).

Proof. Obviously, N(Ss) 2 N(Sp) + N(51), see Proposition 2.5

Let # € N(Sx). Then there exist o € D(Sy) and z; € D(S;) with x = xy + x;. Since
Ssx = Soxo + S1z1 = 0, it follows that Spzg € Fa and therefore Syzg € R(Sx) N Fa =
R(Sa). Let za € D(Sa) such that Saza = Soxo. Then zy — xa € N(Sp) and therefore
1+ xa € N(S7). Thus = € N(Sp) + N(51). O

Proposition 2.25. Let (Ey, E1), (Fy, F1) be compatible couples and S : Ex, O D(S) — Fy,
be linear. The following statements are equivalent.

(i) Sa and Sx, are injective and surjective,
(11) S; and Sa are injective and surjective, j € {0,1},
(1it) S; and Sy, are injective and surjective, j € {0,1},
(iv) S; is injective and surjective, j € {0,1}, and it holds SO_I‘FA = Sl_l‘FA,

(v) S; is injective and surjective, j € {0,1}, and it holds R(Sx) N Fa = R(Sa).
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Proof. (i)=>(ii) Since Sy, is injective, we know that Sy and Sy are injective, see Proposition
[L.8 (i) and Proposition 2.6] (ii).

To show that Sj is surjective, let yo € Fy C Fyx. Since Sy is surjective, there exists
xy € Fy such that Syry = yo. Let zy € D(S5p) and 1 € D(S) such that xy + 1 = z5.
From yo = Sx(xg + 21) = Soxo + Six1, it follows that Sjzq € Fa. Since Sa is surjective,
there exists xa € D(Sa) such that Sjzy = Saza = Siza. The operator S is injective.
Therefore 1 = xa. Then we have yg = Soxg + S121 = Soxo + Soxra. Thus Sy is surjective.
Similarly, we see that S} is surjective.

(ii)=(iii) Since R(Sx) = R(So) + R(S1) = Fx by Proposition 2.5 we obtain that Sy is
surjective.

To show that Sy is injective, let © € D(Sy) such that Syx = 0. Choose xy € D(Sp)
and z; € D(S)) such that x = zg + ;. Then Syx = Syzg + Sizy = 0 and therefore

Soxg = —S1x1 € Fa. The operator Sy is surjective. Hence there exists x4 € D(Sa) such
that Spxg = —Si1x1 = Saza. Since Sy, S; are injective and Sozra = Sara = Siza, it
follows that xao = 2o = —x1. Then z = 2y + 1 = 0 and we conclude that Sy, is injective.

(ili)=(iv) Let ya € Fa. Since Sy and S; are surjective, there exist xy € Ey and 27 € E;
such that S;xz; = ya for j € {0,1}. Then Syzy = Soxo = ya and Syz1 = S121 = ya. Since
Sy, is injective, we conclude that xy = ;.

(iv)=(v) Obviously, we have R(Ss) N Fa 2 R(Sa).

Let y € R(Sg) N Fa. Then Sy 'y = S; 'y = 2 € Ea. Thus x € D(Sa) and Saz = .
(v)==(i) It holds N(Sx) = N(Sy) + N(S51) = {0}, see Lemma 2.24] Thus Sy, is injective.
Since R(Sx) = R(Sy) + R(S7) = Fy by Proposition 2.5, we conclude that Sy, is surjective.
From N(Sa) € N(Sp) = {0} and R(Sa) = R(Sx) N Fa = Fx N Fa = Fa, it follows that Sa

is injective and surjective. O

Let F and F' be Banach spaces. We denote by B(FE, F') the set of all everywhere defined
and bounded linear operators S : F — F. If E = F| we write B(F) for short.

Proposition 2.26. Let (Fy, E1), (Fy, F1) be compatible couples and S : Ex, O D(S) — Fy,
be linear. Assume S; is injective and surjective for j € {0,1,A,X}. Then the following
statements are equivalent.

(i) (So)™ € B(Fy, Ey) and (S,)"" € B(Fy, Ey),

(ii) (Sa)~" € B(Fa, Ea) and (Sy)™" € B(Fy, Ex).

Proof. Assume (i) holds. From the definition of the norms on Ea, Fa, Fy and Fy, we
obtain

1655) "] < manx {]] (o)™
1699) 7| < max{]|(S0)™!

s~
S
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Conversely, assume (ii) holds. Then Sy; is closed. From Proposition[I.8] (ii) and Proposition
(ii), we obtain that Sy and S; are closed. Since Sy and S are injective and surjective,
(i) follows. O

The following theorem generalizes p. 40, Proposition 3.3.2].

Theorem 2.27. Let (Ey, E1), (Fo, F1) be compatible couples and S : Ex, O D(S) — Fy,
be linear. The following statements are equivalent.

(a) Sa and Sx, are continuously invertible,

(b) S; and Sa are continuously invertible for j € {0,1},

(¢) S; and Sy, are continuously invertible for j € {0,1},

(d) S; is continuously invertible for j € {0,1} and (So) ™", = (S1)7 5,

(e) S; is continuously invertible for j € {0,1} and R(Sx) N Fa = R(Sa),

(f) S; is continuously invertible for j € {0,1} and ((So)™%, (S1)™') is an interpolation
morphism.

If one of the statements (a) - (f) holds, then

(1) S is closed for j € {0,1,A, X},
(ii) Sjis, is an isomorphism for j € {0,1,A, X},

(iii) ((So)™", (S1) ™) = (9) 7" and [|(S2) ™M < [1((S0) ™, (1) ™) lnor-
(iv) Moreover, assume

e F is an intermediate spaces with respect to (Ey, F1),

e Fis an intermediate spaces with respect to (Fy, FY).

Then (((So)™, (S1) )s)ee = ((Se)er) "

Proof. From Proposition and Proposition[2.26] we obtain the equivalence of the state-
ments (a) - (e).

Assume (d) is fulfilled. Then the pair ((Sp)~ ', (S1)"!) is an interpolation morphism by
Theorem (iv).

Conversely, assume (f) holds. Then (Sp)~! and (S;)~! are induced by an operator with
domain Fy, and (d) follows.

(i) Since (S;)~! € B(Fj}, E;), we obtain that S; is closed for j € {0,1, A, X}
(ii) Since S; is continuously invertible for j € {0,1, A, X}, (ii) follows from Theorem [L.5
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(iii) From (d), we obtain that the operator ((Sp)™*, (S1)™!)x is well defined. Since R(Sp) +
R(S1) = R(Sx) by Proposition 2.5, we see that ((Sg)~', (S1)™!)s = (Sg)~!. The inequality

of the norms follows from Theorem 2.§ (i).

(iv) From (iii) and Proposition [[.I0] we conclude

((So) ™ (S) M2)re = ((S2) Nre = ((Se)er)
]

We use Theorem [2.27] to examine the extended spectrum of the operators Sy, S, Sa, Sy

and (Sy)p r in Section and Section [2.7]

In the following, we give an example of an operator that fulfills one of the statements (a)
- (f) of Theorem 2.27]

Let (Eo, E1), (Fo, F1) be compatible couples such that F; C E; with continuous inclusion
for j € {0,1}. Suppose S : Ex O D(S) — Fx with D(S) = Fy and Sz = z for all
r € Fy,. Then Sy, S; are invertible and the inverses of Sy, S; coincide with the continuous
embeddings corresponding to the continuous inclusions. Since Sy = S and Fy, C Ey, with
continuous inclusion, we obtain that statement (c¢) of Theorem [2.27] is satisfied.

For instance, it is possible to choose E; = LP7, F; = L%, where the corresponding interval
is finite and 1 < p; < ¢; < o0, j € {0, 1}.

Theorem 2.28. Let (Ey, E1), (Fy, F1) be compatible couples and S : Ex, O D(S) — Fy,
be linear. Then the statements (a) - (f) of Theorem [2.27 are equivalent to

(a’) So, Si are closed and Sais,, (Sois,, Siis,)s are continuously invertible,
(b’) So, Si are closed and Sjis;, Sais, are continuously invertible for j € {0,1},
(¢’) So, S1 are closed and Sjis;, (Sois,, Siis,)s are continuously invertible for j € {0,1},

(d’) So, Si are closed, Sjis; is continuously invertible for j € {0,1} and we have

(S0) gy = (S1) ks

(e’) So, Si are closed, Sjis, is continuously invertible for j € {0,1} and we have
R((Soisy, Siis,)s) N Fa = R(Sa),

(f’) So, Si are closed, Sjis,; is continuously invertible for j € {0,1} and the pair
((Sois,) ™Y, (Siis,)™h) is an interpolation morphism with respect to the compatible
couples (Fy, Fy) and ((Ey)s,, (£1)s,)-

Proof. Firstly, we show that the statements (a’) - (f’) are equivalent. Let Sy and S} be
closed. Then Sx is closed by Proposition [L.§ (ii) and Proposition (iii). Therefore ig,,
s, and ig, exist. If Syig, and Syig, are continuously invertible, then

(SO)il‘FA = (Sl)illFA if and only if (Soisoyl\FA - (Sli&)il'FA’
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see Theorem [L5l In this case, the pair ((Spis,) ™!, (Siis,) ') is an interpolation morphism
by Theorem (iv). We have R(Sa) = R(Sais, ), see Proposition [[4] (iv).

Since

Sjis; = ((Soiso,Slisl)z)(Ej)sj,Fj

for j € {0,1, A} by Lemma [2.23] (iv), the equivalence of the statements (a’) - (f’) follows
from Theorem 2.271

If (a) -(e) hold, the S; and Sa are closed by Theorem[2.27] Thus (b) and (b’) are equivalent
by Theorem [1.5] O

Remark 2.29. Assume we have a situation as in Theorem[2.28 and one of the equivalent
statements (a’) - (f’) of Theorem[2.28 is fulfilled. Then Sx. is closed by Theorem[2.27 (i)
and Theorem [2.28.

Moreover, it is possible to obtain corresponding results as in Theorem [2.27 (iii), (iv) for
Sjis,;, where j € {0,1,X}.

2.6 The Spectra of Sy, S, Sa and Sy,

Let E be a Banach space and S : E 2O D(S) — FE be linear. The resolvent set p(S) of S
is the set of all z € C such that z — S is injective, surjective and has a bounded inverse.
The complement of p(5) in C is said to be the spectrum of S that we denote by o(S). The
extended resolvent set 5(S5) and the extended spectrum &(S) of S are defined by

_ p(S)U{oco} if S is everywhere defined and bounded,
(5) = .
p(S) otherwise,

(5) := (CU{oo})\p(S).
Note that p(S) is an open subset of C U {oo}.

The next corollary is a generalization of [Che01] p. 257, Theorem 2.1].

Corollary 2.30. Let (Ey, E1) be a compatible couple and S : Ex, 2 D(S) — Ex; be linear.
Define

po = {z € p(So) N p(S1) : (2 = So) ™! g, = (2 — Sl)fllEA} ’
p1={2€C:R(z—Sx)NExr=R(z—5a)},
p2 = {z € p(So) N p(S1) : ((z — So)~", (2 — S1)7") is an interpolation morphism}
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and

- Jpou{oc} if Sy and Sy are everywhere defined and bounded,
po= £0 otherwise,

1 .

{p1 U{oo} if Sy and Sy are everywhere defined and bounded,

p1 otherwise,

. {pg U{oo} if Sy and Sy are everywhere defined and bounded,
P2 =

P2 otherwise.

Then the sets

(1) p(Sa) N p(Sy),

(1) p(So) N p(S1) N p(Sa),
(iii) p(So) N p(S1) N p(Ss),
(iv) po,

(v) p(So) N p(S1) N pr,
(vi) p2

are equal.
If this set is not empty, then S; is closed for j € {0,1, A, X}.

Proof. 1f oo is in one of the sets of (i) - (vi), then oo is in each set by Theorem 2.8
Assume z € C and j € {0,1,A,3}. It holds

z=55=(2=9);

by Proposition [I.11] and Proposition (iv), respectively. Thus the sets are equal by
Theorem 2.271 From Lemma[L.1] (ii) and Theorem 2.27] (i), we obtain that S; is closed. [

Definition 2.31. We denote the set described in Corollary by ps. Moreover, we
define ps = ps\ {oo}.

It holds

ps = p(Sa) N p(Sz) = p(So) N p(S1) N p(Sa) = p(So) N p(S1) N p(Sx)
= po = p(So) N p(S1) N p1 = pa.

Let E a be Banach space and S : E D D(S) — FE be linear. The residual spectrum o,.(.5)
and the approximate point spectrum o,,,(S) are defined by
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0.(S) ={z€0(S):z— S is injective and the range is not dense},
Oapp(S) :={z € 0(S) : z— S is not injective or
z — S is injective and its inverse is not bounded on R(S)}.

Proposition 2.32. Let (Ey, Ey) be a compatible couple and S : Ex. O D(S) — Ex be
linear. It holds

Tapp(Sa)\(0(50) Ua(51)) = &

and
a(Sa)\(0(So) Ua(S1)) € {z € 0,(Sa) : (z— Sa)~" is bounded on R(Sa)} .

Proof. Assume Sy is not closed. Then Sy and Sy are not closed by Proposition [LL8 (ii) and
Proposition 2.6] (iii). Therefore o(Sy) = C = ¢(S;) and the proposition follows.
Suppose Sa is closed. Then we conclude similarly as in the proof of p. 288,
Corollary 6.
Assume z € gy, (Sa)\(0(So) U a(S1)). Then there exists a sequence {z,}, . € D(Sa)
such that

fall iy = 1 and [z, — Sasp, — 0,

see p. 242, Lemma 1.9].  Suppose it holds ||z, |5, = 1 for infinitely many n € N.
Then there exists a subsequence (2, )xen of {2}, oy such that

|Zn g, = 1 and ||z, — Samy, [l g, — 0.

Since z ¢ o(Sp), it follows that z — S; is injective. Thus z € 04p,(S0) € 0(Sp). This is a
contradiction.
Similarly, if [|z,[[ 5, = 1 for infinite many n € N, we obtain a contradiction. Thus

Tapp(Sa)\(0(50) Ua(51)) = &.

Let z € o(Sa)\(c(Sp) Uc(Sy)). From above, we know that z € 0,(Sa)\0app(Sa). Hence
(z — Sa)~! is bounded. O

Corollary 2.33. Let (Ey, Ey) be a compatible couple and S : Ex, O D(S) — FEx, be linear
such that ps # . Then

ps = p(So) N p(S1) N p(Sa).
Proof. 1t holds

(p(So0) N p(S1))\ps € (Sa),
((p(So) N p(S1))\ps) N (0(So) Ua(Sy)) = @.

From Proposition 2.32] we obtain

(p(So) N p(S1))\ps € a(Sa)\(o(So) Ua(S1)) C {z € 0,(Sa): (z— Sa)~" is bounded } .
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We show that
{2z €0,(Sa): (z— Sa)""is bounded} C C\p(Sa).

Let Z € {z € 0(Sa) : (z — Sa)~! is bounded}. Obviously, Z & p(Sa). Since ps # &, we
know that Z — Sx is closed by Lemma[l.Tland Corollary 2.300 From [Gol66, p. 94, Lemma
IV.1.1], it follows that R(Z—Sa) is closed. Assume there exists a sequence {z,}, .y € p(Sa)
such that z, — Z. Then we obtain that Z — S is surjective by p. 111, Corollary
V.1.3] and therefore Z ¢ p(Sa). This is a contradiction. Therefore Z ¢ p(Sa).

We proved that

(p(So) N p(S1))\bs © C\p(5a)-
Since oo ¢ (p(So) N p(S1))\ps by Theorem (i), it follows that

(5(So) N p(S1))\ps € (CU {o0})\p(Sa).
Thus

7(58) € s U ((CU {oo})\(3(So) N A(S1))-
We conclude that

ps = p(So) N p(S1) N p(Sa) € p(So) N p(S1) N p(Sa)

< (a5 (500 s ) U (350) 045D 1 ((CU eGS0 N 7(51)) ) = s

2.7 The Spectra of Unbounded Operators on Inter-
polation Spaces

The spectra of interpolation operators were often examined, see for instance |[BKS8S8| p.
2081, Section 12], p. 34, Corollary 4.4], [AMO00], [AS] or p. 53, Section
3.6].

In this section, we investigate the spectra of not necessarily bounded operators on inter-
polation spaces.

Theorem 2.34. Suppose (Ey, E1), (Fo, F1) are compatible couples and S : Ex, D D(S) —
Fy, is linear such that one of the equivalent statements (a) - (f) of Theorem[2.27 or (a’) -
(f’) of Theorem[2.28 holds.

(i) Assume
e I and E are interpolation spaces with respect to (Fy, F1) and (FEy, E1).

We have )
((So)™", (S1) Nre = (Se)er)

In particular, the operator (Ss)g r is continuously invertible.
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(i1) Suppose
e I and F are interpolation spaces with respect to (Fo, Ey) and (Fy, FY),
e I and E are interpolation spaces with respect to (Fy, F1) and (Fy, E1).

If (So, S1) is an interpolation morphism, then

((So)™, (S ke = ((So, S1)mr) "
In particular, the operator (So, S1)g F is an isomorphism.
(11i) Assume

e (Eg) and F are interpolation spaces with respect to ((Ey)s,, (E1)s,) and (Fy, F),
e I and (Es) are interpolation spaces with respect to (Fy, Fy) and ((Eg)s,, (F1)s,)-

Then
((Soi50)717 (Slisl)il)E(ES) = ((Sgigo, SIZ.S1)(ES)7F>71'

In particular, the operator (Spis,, Slisl)(Es),F 18 an isomorphism.

Proof. (i) From Theorem 227 and Theorem 228 it follows that ((Sp)~', (S;)~!) is an
interpolation morphism. It holds

((So)™, (S1) e = (((So) ™, (S1) e)re = ((S2)er) ™

by Theorem and Theorem 2.27] (iv). Since interpolation operators are everywhere
defined and bounded, (i) follows.

(ii) If (Sp, S1) is an interpolation morphism, then S = Sy by Theorem 2.8 (i). Thus we
obtain (ii) from (i).
(iii) From Theorem 2.27] and Theorem 2.28] we know that Sy and S; are closed. Thus

(Sois,, Siis,) is an interpolation morphism, see Theorem 2.22] (iii). Then we conclude
similarly as in the proof of (i), using Remark O

The next theorem is a generalization of p. 258, Lemma 2.3].

Theorem 2.35. Let (Ey, Ey) be a compatible couple and S : Ex, 2 D(S) — Ex, be linear.
Assume E is an interpolation space with respect to (Fo, Fy). We have

p((S2)E.E)-

Ps

N

Proof. Assume oo € pg. Then the operators Sy and S; are everywhere defined and
bounded, see Corollary 2.30L Therefore Sy, = S is everywhere defined and bounded by
Theorem[2.8] (i) and (Sy, S1) is an interpolation morphism. Thus (Sy)g g = Sk g is an inter-

polation operator and therefore everywhere defined and bounded. Hence co € p((Ss)g.g).
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Let 0o # z € pg. Then the equivalent statements (a) - (f) of Theorem 2.27 and (a’) - (f)
of Theorem [2.2§] are fulfilled for z — S by Proposition [.LT1l Hence

(2= S0,z = S1)s)EF

is continuously invertible, see Theorem 2.34] (i). Since (2 — Sp,z — S1)s = 2z — Sy by
Proposition (iv), we obtain from Proposition [[.I1] that the operator z — (Sx)g g is
continuously invertible. Thus the theorem follows. O]

2.7.1 Constant Spectra

In this subsection, we show that, under certain assumptions, the spectra of induced and
not necessarily bounded operators on different interpolation spaces are equal.

In general, the spectra are not constant when varying the interpolation spaces. For bounded
operators, an example is given in [Dav07, p. 49 Example 2.2.11] or p. 330, Exercise
12.11 a]. If we consider the inverses of the operators investigated in p. 330, Exercise
12.11 al, then we obtain an example for induced, unbounded operators with non-constant
spectra (cf. Lemma(5.33 (i)).

Under certain assumptions, the spectra are constant, see p. 109, Theorem 4.2.15]
for bounded operators or p. 367 Theorem 4.1] for unbounded operators.

Another example for the constancy of the spectra is given in p. 219, Theorem
8.2.3]. If the spectra of the generators considered in [Dav07, p. 219, Theorem 8.2.3] are
not empty, it is possible to show that this theorem follows from Corollary 243 (cf. [ENOO.
p. 60, Proposition]).

Theorem 2.36. Let (Ey, E1) be a compatible couple and S : Ex, O D(S) — Ex, be linear.
Then ps is open and closed in p(Sp) N p(S1).

Proof. Since ps = p(Sp) N p(S1) N p(Sx) is open in C U {oo}, it follows that pg is open in
F(S0) N 3(S).
Let {z,},en € ps and z € p(Sp) N p(Sy) such that z, — z.
If z = oo, then it follows from oo € p(Sp) N p(S1) that co € p(Sx) by Theorem (i).
Therefore oo € pg.
Now, suppose z # oo. Without loss of generality, assume z, # oo for all n € N. Let
A € Ea. From

(2n — So) '2a = (2, — S1) '2a

for all n € N and (2, — S;) " tea — (2 — S5;) 'z for j € {0,1}, we obtain z € pg. O
Lemma 2.37. Let (Ey, E1) be a compatible couple and S : FEx, O D(S) — Ex; be linear.
Suppose C' is a component of p(So) N p(S1). Then C N ps = or C C pg.

Proof. Assume C' N ps # @. Then the set C' N pg is open and closed in p(Sy) N p(S1) by
Theorem Since C' is connected, we obtain C' N pg = C. Thus C' C pg. O



28 Interpolation Theory of Linear Operators

Corollary 2.38. Let (Eg, E1) be a compatible couple and S : FEsx, O D(S) — FEyx be
linear. Assume p(Sp) N p(S1) has only one component and ps # &. Then we obtain that

ps = p(So) N p(S1).

Proof. Let C' be the only component of p(Sy) N p(S1). Then C' = p(Sy) N p(S1). Thus
ps C C. From Lemma [237] we obtain pg = C. O

Some of the results of Proposition and Theorem were proved in [CheQll, p. 258,
Theorem 2.5] and [Che01], p. 258, Lemma 2.6] in a different way.

Proposition 2.39. Let (Ey, Ey) be a compatible couple and S : Ex, O D(S) — Ex be
linear. Assume C' is a component of p(So) N p(S1).

(i) Fither C'N ﬁ(SA) =g orCC ﬁ(SA)
(ii) Either C' N p(Sx) = @ or C C p(Syx).
(i1i) Let E be an interpolation space with respect to (Fo, Ey). If C' N p(Sa) # @ or

cn ﬁ(Sg) 7£ @, then C Q ﬁ((SE)E,E>

Proof. (i) Assume C' N p(Sa) # @. Then
@ # CNp(Sa) =CNp(So) Np(S1) N p(Sa) = CNps
by Corollary 2.300 From Lemma [2.37, we obtain C' C pg C p(Sa).

(ii) We conclude similarly as in (i).

(iii) From the proof of (i), (ii) and Theorem [2.35] (i), we obtain C' C pg C p((Sy)p.e). O
Theorem 2.40. Let (Ey, Ey) be a compatible couple and S : Fx, 2 D(S) — Ex; be linear.

Let ps # &. Then ps is a union of components of p(So) N p(S1) and C\ps is a union of
7(So) U a(S1) with components of p(Sp) N p(Sh).

Proof. Lemma 2.37] yields

ﬁS = UzeﬁsCza
where C, denotes the component of p(Sp) N p(S1) containing z for all z € pg.
From Theorem 2.36, we obtain that (5(Sp) N p(S1))\ps is open and closed in p(Sp) N p(S1).
Let Zy € (p(So)Np(S1))\ps and C3, the corresponding component of 5(Sp)Np(S1). Assume
Cs;, Nps # &. Then C5, C pg by Lemma 237 This is a contradiction. Hence (p(Sp) N
p(51))\ps 2 C5,. We conclude that

(P(S0) N p(S1))\Ps = Uzep(sonatsinss Cz

by Lemma 2.37, where C; denotes the component of p(Sp) N p(S;) containing Z for all
zZ € p(So) N p(S1))\ps. Thus

C\ps = (o) U7 (51) U (Use(p(so)nisi)\ss Cz)-
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Theorem 2.41. Let (Ey, Ey) be a compatible couple such that Ex is dense in Ey and
S : Ex, D D(S) — Ex, be linear such that Sy and Sy are closed. Assume o(S1) # & and
ps = p(So) N p(S1). Let C # @ be a bounded spectral set of Sy, i.e. @ # C C o(Sy) is a
bounded set such that C' is open and closed in o(Sy). Then

Cnao(S) + 2.

Proof. See [HT56, p. 286, Theorem] and the note after the proof of [HT56, p. 286,
Theorem]. O

Theorem 2.42. Let (Ey, E1) be a compatible couple and E be an interpolation space with
respect to (Ey, E1) such that

e FA is dense in Ey and Eq,

e FyNE is dense in K.
Suppose S : Ex, O D(S) — E¥x is linear such that the operators Sy, S1 and ESE)E,E are
closed and have non-empty spectra. Assume o(Sp) and o(Sy) consist of isolated points.
Then

a(So) = 0(51) = o((Ss)e.E).

Proof. The spectra o(Sp) and o(S7) consist of isolated points. Thus p(Sp) N p(S1) is
connected. Therefore p(Sy) N p(S7) has only one component. Similar arguments as in
the proof of Corollary yield ps = p(So) N p(S1). From Theorem 2.41] it follows that
O'(S()) :O'<Sl). 5

Now, we want to apply Theorem [2.41] to the operators Sy and (Sx)g k-

From Lemma 2.16, we know that (Ey, F) is a compatible couple. Obviously, the space
Er C EgN E is dense in Ej.

Since p(Sy) = ps C p((Sx)e.r) by the proof of Theorem 235} it follows that o((Ss)p.s)
consists of isolated points. Let

z € p(So) N p((Ss)E,e) = p(So) = ps-
Then z € p(Sy). It holds

(z—So)‘wa = (2 — Sy)taa = (2 — (Sx)pr) ‘za

for all zp € EyN E. Then the theorem follows by applying Theorem [2.41] to the operators

SQ and (SZ)E,E- ]

Y. Chen investigates the constancy of the spectrum of operators on different interpolation
spaces constructed with the complex interpolation method, see [Che01l p. 261, Corollary
3.3]. In the following corollary, we obtain similar results on the spectrum of operators on
arbitrary interpolation spaces.
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Corollary 2.43. Let (Ey, E1) be a compatible couple and E be an interpolation space with
respect to (Ey, E1) such that

e Fa is dense in Ey and Eq,

o FyNE is dense in E.

Suppose S : Ex, D D(S) — Ex; is linear such that (Sx)g g is closed and the spectra of Sy,

S1 and (Sx)g.r are not empty. Assume Sy and Sy have non-empty resolvent sets and the
resolvents are compact. Then

(50) = 0(51) = o((Ss)e.p)-

Proof. Since p(Sp), p(S1) # @, it follows that Sy and Sy are closed, see Lemma [Tl From
[Kat66, p. 187, Theorem 6.29], we conclude that o(Sy) and o(.S;) consist of isolated points.
Then o(Sy) = 0(S1) = 0((Sx)g.xr) follows from Theorem [2.42]

We conclude that the extended spectra are equal with the following. If a normed linear
space has a dense and finite-dimensional subspace, then both spaces are equal and therefore

finite-dimensional. O

2.8 The Spaces (Fs) and Eg,

Let (Eo, 1) and (Fp, F}) be compatible couples and S : Fx, O D(S) — F; be linear such
that Sy and S; are closed. Then we have the following situation,

isg So

(EO)SO EO Fo
5 (isg0isy)(mg),E :
/\ Smp

(Es) Es,.——FE F
z Ser

(B1)s, & E, 2

where (Eg), F and F are certain intermediate spaces and Sg 5 is closable.

In this section, we investigate the relation between (Eg) and Eg, . Example shows
that these spaces are not equal in general. We give criteria such that equality holds in
Theorem [2.48] Theorem and Corollary 2.5T]

P. Grisvard and M. Zafran investigated the relation of the spaces (Eg) and Eg, . under
special assumptions, see p. 169, Section 4.3] and p. 365, Theorem 3.1],
respectively. Theorem generalizes their results.

We have many assumptions concerning interpolation spaces in this section. These assump-
tions are redundant, when considering interpolation spaces constructed with the complex
and the real interpolation method, see Remark [3.20]
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Definition 2.44. Let E, F, G be Banach spaces, S : E 2 D(S) — F and A : E D
D(A) — G be linear operators with D(S) C D(A).

(i) Assume there exist constants a,b > 0 such that
[Az]l < allzllp + 05zl (2.1)

for all z € D(S). Then A is said to be S-bounded.
The S-bound of A is defined to be the infimum of all possible b > 0 such that there
exists a > 0 and (21)) is fulfilled.

(ii) Assume for any sequence {x,},.y € D(S) such that {x,}, oy and {Sx,}, oy are
bounded, the sequence {Ax,}, . contains a convergent subsequence. Then A is said
to be S-compact.

Assume S, A are defined as in Definition and S is closed. Then

A is S-bounded if and only if Aig is bounded,

A is S-compact if and only if Aig is compact.

For our investigations in this section, we only need a special case of the following lemma
that is described in Remark[2.46l But we will apply the results of this lemma in the general
case in Section [4.2]

Lemma 2.45. Let (Ey, E1), (Fy, F1) be compatible couples and S : Ex, O D(S) — Fx, be
linear such that Sy and Sy are closed. Assume A : Fy, O D(A) — Fy, is linear such that

for j €{0,1},
o A; is Sj-bounded with S;-bound smaller than 1 or

e Aj is S;-compact.

Suppose T : Ex, O D(T) — F, is linear such that T; = S; + A; for j € {0,1}. Then the
operator Hj : (Ej;)s, — (E;)1, defined by

Hjuj = uy for all uj € (E;)s,
is an isomorphism for j € {0,1} and we have the following.
(i) The pair (Hgy, Hy) is an interpolation morphism.
(i) It holds ip, H; = ig, for all j € {0,1}.

(11i) Moreover, let
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e (Eg) and (Er) be interpolation spaces with respect to ((Fo)s,, (E1)s,)
and ((Eo)t,, (E1)1,);

e (Er) and (Es) be interpolation spaces with respect to ((Eo)z,, (E1)1)
and ((EO)Sm (E1>S1)'

Then (Ho, Hy)(g),(Er) © (Es) — (E7) is an isomorphism and (Hoy, Hy)(gg),(Br)t = U
for all uw € (Es).

Proof. From Proposition 2.18] we know that ((Ep)s,, (E1)s,) is a compatible couple.

Let j € {0,1}. The operator T is closed with D(S;) = D(7}) by [Kat66, p. 190, Theorem
1.1] and [Kat66], p. 194, Theorem 1.11], respectively. Therefore ((Ey)r,, (E1)7,) is a com-
patible couple by Proposition and H; is well defined and surjective. Obviously, H; is
linear and injective.

If A; is S;-compact, then A; is S;-bounded, see p. 194]. Then there exist constants
a;,b; > 0 such that

lzill g, + 1Tl g, < (14 ay) ll2sll g, + (1 +05) [[S25]l ,

for all z; € D(S;). Hence H; is an isomorphism.
(i) Since Hy and H; are bounded and

Hoj()s,n(m0)s, = H11(E0)son(B1)s,
we conclude that (Ho, Hy) is an interpolation morphism, see Theorem 2.10] (iv).
(i) This follows immediately from the definition of the operators.
(iii) Obviously, (Ho, H1)(kg),(pryu = u for all u € (Eg).
We have

((Ho, Hl)z)(Ej)Sj’(Ej)Tj = H;
for j € {0,1} by Theorem 2.10I (i). Since

-1 _ -1
(Ho) |(Eo)roN(E )Ty — (H1) |(Eo)oN(E1)Ty ?
statement (d) in Theorem [2.27] holds. From (i) and Theorem [2.34] (ii), we obtain that

(Ho, H)(Eg),(Br) is an isomorphism. O

From p. 40, Proposition 3.3.2], we obtain that (Hy, H;) is an invertible element in
the paraalgebra M(((Eo)sm (E1)s,), ((Eo)T, (El)Tl)).

Remark 2.46. Let (Ey, Ey) be a compatible couple and S : Ex, O D(S) — Ex. be linear
such that Sy, S1 are closed. Set A := zidg,. It holds (E;)s, = (E;)_s, with equal norms.
From (i), Proposition[1.11 and Lemma[2.43], we obtain that

e (Hy, Hy) is an interpolation morphism and
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e (i), (111) in Lemmal[2.45 hold if we substitute
T with z — S and T; with z — S;
i these statements,

where H; @ (Ej)s; — (Ej).—s; is the isomorphism defined by Hju; := u; for all u; €
(Ej)s, and j € {0,1}.

The following proposition will be essential for considerations in Chapter [3] and Chapter [4]

Proposition 2.47. Let (Ey, E1) and (Fy, Fy) be compatible couples and S : Ex, O D(S) —
Fx be linear such that Sy and S; are closed. Assume

e (Es) and E are interpolation spaces with respect to ((Fo)s,, (F1)s,) and (Ey, EY),

e (Es) and F are interpolation spaces with respect to ((Ey)s,, (F1)s,) and (Fo, FY).

(i) Suppose Sg. r is closable. It holds (Es) C (D(Sg.r), ||
inclusions and

. ”E) C Ejg,, . with continuous

(iSoa isl)(ES):E - iS‘E,F’ (2 2)
(SO'L.Soa Slisl)(ES)vF g SEvFiSE,F' ‘

(ii) Assume (Es) = Egs_ . Then Sg.r is closed and equality holds in the relations 2.2).

We illustrate the situation in the following diagram.

(is9is1)(Eg).E

/—_\ S
ES ESE F E 2 F

Bl iv
W

(Soisy,S1isy )(Eg).F

Proof. From Theorem 2.22] (i), (iii), we know that (ig,,ig,) and (Spis,, Siis,) are interpo-
lation morphisms.

(i) Since Sg r is closable the abstract Sobolev space Eg, . exists.
Let u € (Es). Then

<i5'07 isl)(ES),Eu c E,
(Soisy, Siis, ) (Es),Fu € F.

Since
(Soisys S1is, ) (ms),ru € D((Soisy, Siis,)x) = D(Sx(isy, is,)x)
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by Lemma 223 (ii), we obtain u € (D(Sg.r), ||
Hence

. HE) from Proposition 2.6 ().
(Z.So’ iSl)(Es)E - /I:SEJ-T" (23)
The interpolation operator (is,, s, )(zs),z is bounded. Since ig_ _ is injective and bounded,

it follows that (ig, )" (isy, is,)(ms).e i everywhere defined and bounded. We conclude
that

(Es) € (D(Ser). |- I5)

with continuous inclusion.
Obviously, it holds

(D(3e.p). |- llg) € Es,.,

with continuous inclusion.
The interpolation operator (Spis,, Siis,)(rs),r has domain (Eg) and it holds

(Soisy, S1is, ) (ms),F = ((Soisy, Siis,)n)(Es),F

by Theorem Then

((Soisys S1is,)s) (Es),Fr = (Sx(isysis,)n)(Es),F = (S(isy, is,)n)(Es),Fs

see Proposition (i) and Lemma [2.23] (ii). Since

(S(iS()? isl)Z)(Es),F - SE,F((Z.S(M iS&)E)(Eg),E - SE,F(Z.S(N isl)(Es),E

by Proposition [[.12] (iii) and Theorem 2.15] we obtain (i) from (2.3]).
(il) We have

ESE’F - (ES) < (D(SEaF)a || ' HS’E,F) C ESE,F'

Therefore Sg - is closed. Since the domains of the operators considered in (2.2) are (Esg)
and Fg_ _, respectively, we obtain (ii) from (i). O

Assume we have a situation as in Proposition 2.471 Then the proposition holds if we
substitute Sgp with (Sy)gr in Proposition 2471 This follows from Proposition [2.47]
applied to Sy and the fact that (Sx)g, r, = S for j € {0, 1}, see Proposition (ii).

The following theorem is a generalization of a result of [Gri66l p. 169, Section 4.3] (cf.
p. 365, Theorem 3.1]).

Theorem 2.48. Let (Ey, E1), (Fy, F1) be compatible couples and the operator S : Esx D
D(S) — Fx, be linear such that S = Sx.. Assume one of the equivalent statements (a) -

(f) of Theorem[2.27 or (a’) - (f’) of Theorem[2.28 holds and

e (Es) and E are interpolation spaces with respect to ((Eg)s,, (F1)s,) and (Fo, Ey),
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e (Es) and F are interpolation spaces with respect to ((Ey)s,, (F1)s,) and (Fo, FY),
e I and (Es) are interpolation spaces with respect to (Fy, Fy) and ((Eo)s,, (E1)s,),

e I and E are interpolation spaces with respect to (Fy, F1) and (Fy, E1).

Then we have (Es) = Eg,_ . with equivalent norms.

Proof. We know that Sy, S; and S = Sy, are closed by Theorem 2.27] (i). Then S'E,F is
closed, see Proposition (ii). Therefore the abstract Sobolev spaces (Ep)s,, (F1)s, and
Eg, . exist.

The interpolation operator (Spis,, Siis,)(gs),F is an isomorphism by Theorem 2.34] (iii).
From Theorem [2.34] (i), we know that ZSE) EF = S g is continuously invertible. Thus
S B.Fl Sor is an isomorphism by Theorem [1.5]

We conclude that (Eg) = Eg, , with equivalent norms from Proposition 2.47 (i). O

Let (Ey, E1) and (Fy, F}) be compatible couples and the operator S : Es, D D(S) — Fy; be
linear such that S = Sy;. It is possible to show that, under certain assumptions, co # 2z € pg
implies that (Eg) = Eg__ with equivalent norms. But we obtain a more general result,

see Corollary 2.511
Theorem generalizes Theorem [2.48]

Theorem 2.49. Let (Ey, Ey) and (Fy, ) be compatible couples and S : Ex, O D(S) — Fy,
be linear such that Sy and Sy are closed. Assume

e (Es) and E are interpolation spaces with respect to ((Eg)s,, (F1)s,) and (Fo, Ey),

e (Es) and F' are interpolation spaces with respect to ((Ey)s,, (E1)s,) and (Fo, FY).

Assume Sg, is injective, closed and (Syis,, Siis, )(5s)r i surjective. Then (Eg) = Eg_
with equivalent norms.

Proof. 1t holds (Es) C Eg_ . with continuous inclusion by Proposition 2.47 (i). The
operator SE,FiSE .. is injective. Since (Spig,, Siis,)(ms),F is surjective, we conclude that

(Soisy, Stis, )(ms),F = OE,Fig, .

from Proposition 2.47] (i). Thus
ZS’E7F {(ES)} = ZS’E7F {D<<SOZSO7 Sllsl)(ES)uF>} = ZSE’F {D<SE7FZSE’F>} = D<SE7F)

The operator Sp r is closed. Therefore ig {ESE F} = D(Sg,r). Since ig, , is injective,

the theorem follows. O
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Indeed, Theorem[2.491is a generalization of Theorem[2.48 To see this, suppose the assump-
tions of Theorem[2.48 hold. Then the operator (Sx)p r = S . is continuously invertible by
Theorem 234 (i) and therefore Sg r is injective and closed. Moreover, (Spis,, Siis,)(zs).F
is an isomorphism by Theorem 2.34] (iii). Since Sy and S are closed by Theorem 2.27] and
Theorem [2.28] the assumptions of Theorem [2.49] are fulfilled.

Theorem 2.50. Let (Ey, Ey) be a compatible couple and S : Es, O D(S) — Ex be linear
such that Sy and Sy are closed. Let z € C such that

e (Eg) and (E,_g) are interpolation spaces with respect to ((Eo)s,, (E1)s,)
and ((EO)zfsou <E1>2751)7

e (E,_5) and (Es) are interpolation spaces with respect to ((Eo).—sq, (F1)z—s,)
and ((EO)S()’ (El)sl)'

Then (Es) = Eg,_  with equivalent norms if and only if (E._g) = E with equivalent

Z*SE’E
norms.

Proof. From Lemma [IT] (ii), we know that z — S; is closed for j € {0,1}. Therefore
((Eo)s,, (E1)s,) and ((Ep).—s,, (F1).—s,) are compatible couples by Proposition [[.I1] and
Proposition 2.18]

From Remark 2.46] we conclude that (Eg) = (E,_g) with equivalent norms.

We know that Eg, , = E, g, with equivalent norms from Lemma[L1] (i).

Thus the lemma follows. O

Corollary 2.51. Let (Ey, Ey) be a compatible couple and S : Ex, O D(S) — FEy, be linear
such that Sy and S1 are closed. Assume that there is an element z € C such that

e (E, 5) and E are interpolation spaces with respect to ((Fo).—sy, (E1).—s,)
and (Eo, El),

o (Es) and (E,_g) are interpolation spaces with respect to ((Ep)s,, (E1)s;)
and ((EO)Z—Soa (El)z—51)7

e (E, 5) and (Es) are interpolation spaces with respect to ((Eo).—sq, (E1).—s,)
and ((EO)S(N (E1>S1)

and z — Sp g is injective, closed and (2i,_g, —Sol.—sy, Ziz—g, — S1i2—8,)(B._g),E 15 Surjective.
Then (Es) = Eg,_ . with equivalent norms.

Proof. The operator z — Sy and z — Sy are closed by Lemma[lIl Then (E,_s) = E,_g, .
see Proposition[L.IT]and Theorem[2.49] Hence the corollary follows from Theorem[2.50. []



Chapter 3

Fredholm Properties of Unbounded
Operators on Interpolation Spaces

In this chapter, we investigate Fredholm properties of the operators introduced in Chapter
2l We generalize results of E. Albrecht, M. Krause and K. Schindler for bounded linear
operators by using the theory of the abstract Sobolev spaces and the induced operators,
respectively.

In Section 3.1, we investigate the linear operators S_AO, S_Al and S_AE to obtain results on
the Fredholm properties of Sy, Si, Sa and Sy, in Section[3.2] If the operators ﬁo, S_Al and
S—AE are bounded, then they coincide with corresponding operators introduced in [Kra96
p. 46].

Moreover, Section [3.2] studies the Fredholm properties of not necessarily bounded linear
operators on arbitrary interpolation spaces. When the spaces are constructed with the
complex or the real interpolation method (see Section B.3)), we obtain further results on
the Fredholm properties of the corresponding not necessarily bounded linear operators, see

Section B.41

As before, we simplify the notation. In this chapter, we always construct the induced
operator with continuous embeddings that correspond to the continuous inclusions and
identify the domain with the range of these continuous embeddings (see the beginning of
Chapter 2] for more details).

—0 —=1 —
3.1 The Operators Sp , SAa and Sa
Definition 3.1. Let (FEy, E1) be a compatible couple and j € {0,1,%}.

(i) We define E—Aj to be the closure of Ea in Ej. 'The norm on E—Aj 15 defined to be the

restriction of the norm on Ej to the space EN.

37
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(i) Moreover, let (Fy, F1) be a compatible couple and S : Ex, O D(S) — Fyx, be linear
such that S; 1s closable. We define

5B 2 DY) — T
by the closure of Sa considered as an operator from E_Aj to F_Aj.
Let j € {0,1,%}. Assume (Ep, E), (Fo, F1) are compatible couples and S : By, 2 D(S) —

Fy, is linear such that S; is closable. The space EA’ in (i) of the previous definition is a

Banach space. From Proposition (i), (iii), it follows that Sx C S;. Thus 57 is well
defined.
We obtain the following situation,

EjJ F7
i . §j7 Esij)ﬁj 7Kj i
EA’ N

| ]
Ex = Fa

where the injective operators in the diagram correspond to the continuous inclusions.

It is not difficult to show with results of Chapter [Il and Chapter 2] that Sa = (5;) g, F. 1S

closable, ZE)KJ- 7o and (5;)Ea.Fs are closed and

EAFa’ (3.1)

Moreover, we have (S,)— Sprt g for k€ {0, 1},

A ,Kk - Ea
The operator S_AJ is not ne_cessarily contained in S;. Indeed, let £y = Ey, Fy = Fy and S
be closable such that S C S. Then S; =S = Sa and

S;=8SCS=035, =05

In the following example, the operator Sy is not closed (see Example [2.7]).
Example 3.2. Assume we have a situation as in Example 2.7 Then
By’ =Fs =Ta =Fa =17,
BEn' =Fa =1

Therefore ﬁo = S0, S_Al = 5; and ﬁz =5D 5.
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Let (FEo, E1), (Fy, F1) be compatible couples and S : Eyxy, — Fy be linear such that
(Sp, S1) is an interpolation morphism. M. Krause denotes by SA” the operator induced
by S corresponding to the spaces Ea’ and Fa’, see p. 46]. We show that both
definitions coincide in the case that (Sp, S7) is an interpolation morphism, see the next
proposition.

In Lemma [3.7] we see that our definition is useful, when studying the Fredholm properties
of not necessarily bounded operators (cf. Proposition [L.4]).

Proposition 3.3. Let (Ey, E), (Fo, F1) be compatible couples, S : Fs, — Fy, be linear

such that (So, S1) is an interpolation morphism. For j € {0,1,%}, the operators Sa7 and
Sﬂj o are everywhere defined, continuous and it holds

Sx =8

Ex’ P’
Proof. Let j € {0,1,X}. Since S; is closed, we obtain that 5y ¢ ZS]‘)H]' 7+ see the third
relation in ([B.I)). It holds S; € S. We conclude from Lemma [I.7] (i) that

(i) 7 € S5 -
The operator Sa is everywhere defined by Theorem (i). From Sa C Sj, it follows that

Sa is bounded with respect to the norm of F; and F;. Thus SA” is everywhere defined
and bounded and we obtain the proposition. O

Lemma 3.4. Let (Ey, E1) be a compatible couple. Then Ea is dense in both Ey and Ey if
and only if Ea is dense in Ey,.

Proof. This follows from [Kra96l p. 38, Lemma 3.2.1] and [Kra96, p. 39, Lemma 3.2.2]. [J

Let E, F' be Banach spaces and S : E 2 D(S) — F be linear and closed. If D is a
subspace of D(S) such that S;p =S, then D is said to be a core of S.

Lemma 3.5. Let (Ey, E1), (Fo, F1) be compatible couples and S : Ex, 2 D(S) — Fy be
linear. Assume j € {0,1,X} and S; is closable. Then D(Sa) is a core of S; if and only if
(Ea)sy is dense in (Ej)s, .

Proof. Since S; is closable, we know that S is closable by Proposition [I.§] (iii) and Propo-
sition (ii), (iii). Thus (Ea)s, exists. Then the proof is straightforward. O

Lemma 3.6. Let (Ey, E,), (Fy, Fy) be compatible couples and S : Ex, O D(S) — Fx be
linear such that Sy, is closed and D(Sa) is a core of Sy and Sy. Then D(Sa) is a core of
Sy.
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Proof. Since Sy, is closed, it follows that Sy and S; are closed by Proposition (ii) and
Proposition 2.6 (ii). From Lemmal[3.5] we know that (Fa)g, is dense in (Ey)s, and (E)s,,
respectively. It holds (Ep)s, + (E1)s, = (Fx)s., see Lemma (iv). Thus (Ea)s, is
dense in (Ex)g, by Lemma 3.4l Hence the lemma follows from Lemma [B.5] O

Lemma 3.7. Let (Ey, Ey), (Fy, F1) be compatible couples, S : Ex, O D(S) — Fy, be linear
such that Sy, is closed. For j € {0,1,%}, it holds

. . o 7
((Sols()’SIZSI>2)(EO)SOH(E1)S_1j,Kj - SA Zgj.

Proof. Since Sy, is closed, it follows that the operators Sy, S; and Sa are closed by Propo-
sition [L.8] (ii) and Proposition 2.6 (ii). Then (Syig,, Siis,) is an interpolation morphism by
Theorem 2.2 (iii).

We have ((Soisy, Siis,)s)(my)s, . F = Skis, for k € {0,1}, see Lemma 2.23] (iv). Therefore
we obtain

D(((Sois(), SliS1)E>mj,ﬁj) = (EO)SQ N <E1>51J

from Proposition 3.3 It holds (Ey)g, N (E1)s, = (Ea)s,, see Lemma 2.19] (iii), and
s’ = (DG, |- ls) = (DER), |- lls.) = DEig).

For u € D(E(Soigo, Stis,)s) j) = D(S_Ajiﬂj), we have

(EO)SOO(E1)51]7H

((Soisy, Siis,)s) ek i SxigsU = S—AJigju.

(Eo)s,N(E1)

O

Assume (FEy, F1), (Fo, F1) and S are defined as the previous lemma. Since (Ey)s,N(E1)s, =
(Ea)s,, see the proof above, we have

S : e : J —j
((SOZSoaSIZSJE)m{ﬁi = ((SOZSovSIZSJE)(Eo)sOﬂ(El)sl,FA = Sals,

for j € {0,1,%X} by Lemma[2.23] (iv) and Proposition 3.3

3.2 5y, 51, Sa, Sy, and Unbounded Operators on Arbi-
trary Interpolation Spaces

This section generalizes results of p. 44, Section 3.4] and p. 52, Section
3.5].

Let E and F' be Banach spaces. We denote by FR(F, F') the set of all operators S €
B(E, F) with dimR(S) < co. If E = F, we write FR(F) for short.
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Definition 3.8. Suppose (Ey, E1), (Fy, F1) are compatible couples and S : Ex, — FY; is
linear such that (So, S1) is an interpolation morphism. If there exists

e a linear operator T : Fs, — FEy, such that (Ty,T1) is an interpolation morphism and
e operators U € FR(FEy), V € FR(Fy) such that
TS+ U =idg,,
ST +V =idp,,
then (So, S1) is said to be Fredholm with respect to (Ey, E1) and (Fy, FY).

Note that (Ug, .z, Ug,.5,) and (Vi g, Vi .p, ) are interpolation morphisms.

Let E, F' be Banach spaces and S : E D D(S) — F be linear and closed. We denote the
dimension of the kernel of S with «(S) and the codimension of the range of S by 5(5). If
S is semi-Fredholm, then x(S) denotes the index of S, i.e. k(S) = a(S) — B(S5).

Theorem 3.9. Let (Ey, Ey), (Fy, F1) be compatible couples . Assume S : Ex, O D(S) —
Iy, is linear such that Sy, is closed. Then the following statements are equivalent.

(i) The interpolation morphism (Sois,, Siis,) is Fredholm with respect to
((EO)Sm (EI)S1) and (FOJ Fl)

(i1) The operators Sy, S, S—AO, ﬁl are Fredholm operators and
A(Sa’) = A(Sa)), a(Sa’) = a(Sx).
R(Sx )N Fa =R(Sa), R(Ss)NFa=R(Sx)®F,

where F is a finite-dimensional subspace.

(11i) The operators Sa, Ss, EE are Fredholm operators and
-
K(SA) = H(SA )
Assume (i) - (iii) hold.

(a) We have
N(Sa) =N(Sa’) = N(Sa') = N(S1 ).

(b) If D C Fa is dense, then there exists a finite-dimensional subspace H C D such that
R(Sa) ® H = Fa and R(Sx") ® H = Fa" for k € {0,1,%}.
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Proof. Since Sy, is closed, it follows that Sy and S; are closed from Proposition [1.8] (ii)
and Proposition [2.0] (ii). Therefore the pair (Spis,, Siig,) is an interpolation morphism by
Theorem 2.22] (iii).

Let j € {0,1} and k € {0,1,X}. It holds

(SOZS(N 517131) SEiSE7
((SOZSmSlZSl)Z)( Ej)s; Fy — SjiSj7
( )Z)(EO)SOQ(EH)slk,K o
by Lemma 2.23 (iii), (iv) and Lemma[3.71 We have (Ea)s, = (Ep)s, N (E1)s,, see Lemma
(iii). Thus }

((S@iso,slisl) )(Eo)soﬂ(El)sl SAZSA
by Lemma 2.23] (iv).
From Proposition [I.4], we know that Sjig, (Eklﬁk) is Fredholm if and only if .S, (Ek) is
Fredholm for [ € {0,1,A,X}; in this case, the dimensions of the kernels, the ranges and
the indices coincide. Then the theorem follows from p. 46, Theorem 3.4.4] ap-

plied to the interpolation morphism (Syig,, Siis,) corresponding to the compatible couples
((Eo)sos (E1)s,) and (Fp, F1). L]

Corollary 3.10. Let (Ey, E1), (Fy, F1) be compatible couples such that Fa is dense in both
Fy, Fy. Assume S : Ex, D D(S) — F, is linear such that Sy, is closed and D(Sa) is a
core of Sy and Sy. Then the following statements are equivalent.

(i) The interpolation morphism (Sois,, Siis,) is Fredholm with respect to
((Eo)so: (E1)s,) and (Fo, FY).

(i) The operators Sy, S1 are Fredholm operators and

k(So) = k(S1), a(Sy) = a(Sy),
R(Ss) N Fa = R(Sa).

(iii) The operators Sa, Sy, are Fredholm operators and
K(SA) == K(Sg).
Assume (i) - (iii) hold.

(a) We have
N(So) = N(81) = N(S) = N(Ss).

(b) Let D C Fa be dense. Then there exists a finite-dimensional subspace H C D with
R(Sk) ® H = F, for k € {0,1,A, X}
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Proof. From Lemma [3.6] we know that D(Sa) is a core of Sx. The operator Sy, is closed.
Thus Sy and S; are closed by Proposition [L.§ (ii) and Proposition (ii). Since S; is
closed and D(Sa) is a core of S;, we obtain that

5x =5,

for 7 € {0,1,X} from the third relation in (3.I)). Then the corollary follows from Theorem
3.9 0

Theorem 3.11. Let (Ey, E1), (Fo, F1) be compatible couples such that Fa is dense in both
Fy, Fy. Assume that S : Ex, O D(S) — FY% is linear such that Sx, is closed and D(Sa)
is a core of Sy and Sy. Suppose the interpolation morphism (Sois,, Siis,) is Fredholm
with respect to ((Eo)s,, (E1)s,) and (Fo, Fy). Let D be dense in Fa. Then there exist
finite-dimensional subspaces N Cig, {(Ea)s,} and H C D such that

N(Sg.r) = N,
F — R(SE’F) @ H,

for all intermediate spaces E and F such that S’E,F is closable and

o ES’E,F and E are interpolation spaces with respect to ((Ey)s,, (F1)s,) and (Fy, Ey),
o ES‘E,F and F' are interpolation spaces with respect to ((Eo)s,, (F1)s,) and (Fo, F1),

e I' and Eg_  are interpolation spaces with respect to (Fy, 1) and ((Eo)s,, (E1)s,).
In particular, S’EF is a Fredholm operator and /i(gEyp) = k(Sx).

Proof. Since Sy, is closed, it follows that Sy and S; are closed by Proposition (ii) and
Proposition[2.6] (ii). From Theorem [2.22](iii), we know that (Spis,, Siis, ) is an interpolation
morphism. It holds (Ea)s, = (Eo)s, N (E1)s,, see Lemma .19 (iii). Thus (Ea)g, is dense
in both (Ey)s, and (E;)s, by Lemma [3.5]

From [Kra9@, p. 52, Lemma 3.5.2], we know that there exists finite-dimensional subspaces
M C (Ea)s, and H C D such that

N((SOiSO7 SliSl)Eg ,F) = M,
B.F
F = R((Suis,. Siis))g, ) ® H.

Proposition 2.47] (i) implies that

(Sois,, Slisl)ESEFvF C Sprig, - (3.2)
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The interpolation operator (Spis,, Siis, ) s p has domain Eg . Thus Sp.r is closed and
E,F’ ’

equality holds in (3.2]).
Since Sg rig, . is Fredholm, we know from Proposition that Sg p is Fredholm,

ig,  AM} = N(Sg.r)

and the ranges and the indices of Sg rig, . and Sg r coincide.
Since Sy, is closed, we have

(507;507 Slisl)E - SZ'L.SXN

see Lemma [2.23] (iii). Moreover, the operator Sy is Fredholm by the previous corollary.
Thus x((Sois,, Siis,)s) = k(Sx) by Proposition [[L.4] and the theorem follows. O

3.3 Complex and Real Interpolation spaces

In this section, we present two methods to construct particular interpolation spaces. More-
over, we introduce unbounded linear operators on these spaces, which we examine in the
remaining part of this chapter and Chapter [4

Definition 3.12. We define the strips

S :={z€C:Rez€]0,1]},
So:={2€C:Reze(0,1)}.

Definition 3.13. Let (Ey, Ey) be a compatible couple.

(i) We define the space F(Eo, Ev) (g for short) by

S(Eo, Ey) :={f: S — Ex : f bounded and continuous,
f1s analytic on Sy,
f(j+it) € E; for allt € R,
t — f(j+1it) is continuous with
respect to the norm on Ej,
1f (G +it)l|, — 0 for|t] — oo,
where j € {0,1}}

with the norm

1l = e {sup {170, s {171+ 0,

fOT’ f c %(E(), El)
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(11) Let A € (0,1). We define the space (Eo, E1)x (Ey for short) by
(Eo, Ev)y = {z € Ex : 3f € F(Eo, Ev) with f(A) =z}

with the norm

el =it Ll - FO) = 2}

JE€S(Eo,E1)

for x € (Ey, Ey)x. Then (Eo, Ey)y is said to be constructed with the complex interpo-
lation method.

From [BL76, p. 88, Theorem 4.1.2], we see that it is convenient to say that the space F)
in Definition [3.13]is the complex interpolation space.

From Hadamard’s three lines theorem, we obtain that || - ||; is indeed a norm on §g, see
the next remark. Moreover, the space §p equipped with the norm |- || is a Banach

space, see p. 88, Lemma 4.1.1].

Remark 3.14. Let (Ey, Ey) be a compatible couple and f € §g. Then from Hadamard’s
three line theorem, we have

sup {||f(A+it)| g, } < max {Sup 1 (@) g » sup [ (1 + it)HEE}
teR teR teR

for all X € [0,1], see for instance p. 520, Theorem 3]. Hence || f(2)| g, < [Ifll5,
for all z € S.

Real interpolation spaces are defined as follows.

Definition 3.15. Let (Ey, E1) be a compatible couple, X € (0,1) and p € [1, 00].

(i) We define

K(t,2, (Fo, B) = it {Jlaollg, +¢ il }

X
where x € Ex,, t >0 and g € Ey, x1 € E.

(i) We define the space (Eo, E1)xp (Ex, for short) by

1/p
ve By (J(KaBEpe) Tooh if1<p <,
<E07E1))\,p = {

K(t,z,(Eo,E1)) }

{x € Ex 1 SUPgctcoo — ix if p =00
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with the norm

1/p

((esgperiya) T 1<y <o

T =
” H)\,p K(t,z,(Eo,F1))
A

SUP( <4< o0 if p= o0.

for x € (Ey, E1)rp. Then (Ey, Ev)a,p is said to be constructed with the real interpola-
tion method.

We say that E , in Definition is the real interpolation space. This legitimate
p. 40, Theorem 3.1.2].

Definition 3.16. Let (Ey, E1), (Fo, Fi) be compatible couples, S : Ex, O D(S) — Fyx, be
a linear operator and X € (0,1), p € [1,00]. Then we define

(Z) S)\IE)\QD(S,\)—>F/\ by 5
Sy = Sk, Fys

(7,7,) S)vp . E)\,p 2 D(S)\,p) — F)\J, by
Sap = SEA,vaA,p'

Definition 3.17. Let (Ey, E1), (Fo, F1) be compatible couples. Assume that Sy 1 Ey 2
D(So) — Fy and S, : By 2 D(S1) — [y are linear such that Sojp, = Sig,. Let
A€ (0,1) and p € [1,00]. Then we define

(Z) (S(),Sl)A . EA 2 D((S@,Sl))\) —_— F)\ by

(50751)A = ((50751)2)&,&7

(i1) (So, S1)ap : Exp 2 D((So; S1)ap) — Fap by

(S0, S1)ap = ((So, Sl)z)EA,p,FA,p-

As mentioned in the beginning of this chapter, the continuous embeddings used in Defini-
tion and Definition [3.17] correspond to the continuous inclusions.

Let (Eo, E1), (Fy, F1) be compatible couples and S : Fsx, O D(S) — Fy be linear. Then
Soipa = S1ys- Let A€ (0,1) and p € [1,00]. Thus

e D(S)) and D(S),) are not necessarily contained in D(Sy),
e S\ and S, are not necessarily induced operators of Sy,

e (Sp,S1)x and S, are not necessarily equal,
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e (Sp,S1)ap and Sy, are not necessarily equal,

see Example [3.18]

If (So,S1) is an interpolation morphism, then Sy, = S by Theorem 2.8 (i). Therefore

D(S)),D(Sx,) € D(Sx) and Sy, Sy, are induced by Sy,. Furthermore,
(S0, S1)x = (S2)B, = Sy = S,

V : (3.3)
(507 Sl)A,p = (SE)E,\,mF,\,p = SE/\,;mFA,p = SA,P'

The operators considered in (3.3)) are interpolation operators.

Example 3.18. Assume we have a situation as in Example 2.7 Let

o 2pop1
Po + 1

It follows that p < p; and therefore LP* C LP.

(i) From p. 106, Theorem 5.1.1], we know that

(E07E1)% =[P = (F(),Fl)%.
Thus
S% — ide .
It follows that D(Sy) C D(S%) from Example 2.7 and (50,51)% - (Sz)% C S%, see
Lemma [L.7] (iii).

(i) It holds
<E07 El)%’p — LP - (F07 Fl)%’]ﬂ

see [BL76l p. 109, Theorem 5.2.1]. Then

S

ip idgy

and we obtain D(Sy) C D(S
from Lemma [1.7] (iii).

) from Example 2.7 and (So, 51)%,19 = (S%)

(S
S

1
§7p

(NI

In the following, we study particular complex and real interpolation spaces.

Definition 3.19. Let (Ey, E1), (Fy, F1) be compatible couples and S : Ex, O D(S) — Fy,
be linear such that Sy and Sy are closed. For A € (0,1) and p € [1,00], we define

(Es)x = ((E0)sos (E1)s:)x,
(Es)ap = ((Eo)sy, (E1)s)ap-:
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The spaces in Definition are well defined if we just assume that Sy and S; are closable.

This follows from Proposition[2.18 But in further considerations, we always need to assume
that Sy and S are closed.

Remark 3.20. From p. 88, Theorem 4.1.2] and p. 40, Theorem 3.1.2], it
follows that the results in Section [2.8 hold, when we consider spaces constructed with the
complex and real interpolation method (corresponding to the same X € (0,1) andp € [1,0])
instead of general interpolation spaces.

The following example shows that the spaces (Eg) and Eg,_ . considered in Section 2.8 are
not equal in general.

Example 3.21. Assume, we have a situation as in Example and let p be defined as in
Example 3.18 Then LP* C LP.

(i) It holds
((EO)SO,(El)Sl)% — (Lm’Lm)% — I,

see Example 277 and [BL76| p. 91, Theorem 4.2.1]. Since
= (L7 211»)

by Example B.I8 (i), we obtain that (Eg)

(E1)s

1
2

and (E%)Sl are not equal.
2

NI

(ii) From Example 2.7 and p. 46, Theorem 3.4.1], we know

((EO)S()? (E1)51>%,p - (Lpla Lpl) » = LPr.

M=

It holds
(By)s,, = (17.2] ),

see Example [3.18] (ii). Then we conclude that (Eg)1 , and (£

»)s,  do not coincide.
P

N

1
2

(ST

It is possible to generalize Example and Example 321l Let (Ey, E1) be a compatible
couple and p € [1, 00| such that

Ey C B, C By,
By C By, C Ey.

Set (Fy, 1) := (Ey, Ep) and assume S := idg,. Since D(Sy) = D(S1) = Fj, it follows that

D(Ss) = Ey € By = D(Sy),
D(Sz) =F C E%J? = D(S%p)



Unbounded Operators on Complex and Real Interpolation Spaces 49

from p. 46, Theorem 3.4.1] and [BL76], p. 91, Theorem 4.2.1], respectively. Thus

(50751)% = (Sz)% C Su,
(:So, Sl)%’p = (Sz)%’p C S%’p
Moreover, it holds
(ES)% =k = (Es)%,p,
(E1)s, = E1 D Ej,
2 b 2

by p. 46, Theorem 3.4.1] and [BL76], p. 91, Theorem 4.2.1], respectively.

3.4 Unbounded Operators on Complex and Real In-
terpolation Spaces

The theorems in this section are generalizations of [AIb84] p. 34, Corollary 4.4], [AS| p. 4,
Theorem 3], p. 55, Corollary 3.6.6] and [Kra96l p. 54, Lemma 3.6.3].

Recall that the conditions of the form (Eg), = (£;)s, and (Es),, = (Ey4)s,, Were inves-
tigated in Section 2.8 (cf. Remark [3.20]).

Theorem 3.22. Let (Ey, E1), (Fy, F1) be compatible couples and S : Ex, O D(S) — Fy, be
linear such that Sy, Sy are closed. Let X\ € (0,1) such that Sy is a semi-Fredholm operator
and (Es), = (Ey)s, holds for all n in a neighborhood of X. Then there exists 6 > 0 such
that Sy is semi-Fredholm and

R(Sx) = #(5),
a(Sy) > a(Sy), (3.4)
B(Sx) = B(Sh),

where € (A —=38,A+9)N(0,1).

In particular, if Sy is continuously invertible, then Sy is continuously invertible for 6 €

(A= 38,A+6)N(0,1).

Proof. The pair (Spis,, S1is,) is an interpolation morphism, see Theorem 2.22] (iii). From
Proposition 247 (ii) (cf. Remark [3:20), we know that

Sxis, = (Soisy, S1is,)a-
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The operator S) is closed. We conclude that Syig, is a semi-Fredholm operator by Propo-
sition [[L4l Thus there exists € > 0 such that (Syig,, Siis, )s is semi-Fredholm and

k((Soisy, Siis;)a) = k((Soisy, Stis;)a),
a((Soisy, Siis;)a) = a(Soisy, Siis,)e),
B((Soisy, Stis,)a) = B((Soisys Siis,)e)
forall € (A —e,A+¢)N(0,1) by p. 34, Corollary 4.4]. Since (Eg), = (Ey)s,.

we know that (Spis,, Siis, ), = Syis, and S, is closed for all 7 in a neighborhood of A, see
Proposition 247 (ii) (cf. Remark3.20). From Proposition [[L4] we obtain the theorem. [

Theorem 3.23. Let (Ey, F1), (Fy, F1) be compatible couples and S : Ex, O D(S) — Fy, be
linear such that Sy, Sy are closed. Let A € (0,1) and p € [1,00) such that Sy, is a Fredholm
operator with (Es)xp = (Exp)s,,- Suppose q € [1,00] such that (Es)xq = (Exg)s,,- Then
Sh,q 18 a Fredholm operator and it holds

N(Sxp) = N(Sxq),

Fap=F&R(S)p), Fag=F®R(Srg),

where I C F)\ ;.

Proof. The pair (Spis,, Siis,) is an interpolation morphism, see Theorem [2.22 (iii).
Similarly as in the proof of Theorem [3.22] we conclude that Sxplsy, = (Soisy, S1is, )ap 18
a Fredholm operator. From [AS, p. 4, Theorem 3], we obtain that (Spig,, S1%s,)a4 1S &
Fredholm operator with

N((SOZ'Soa Sli51>>\,p) - N((SOiSO7 Sli51)>\,q)

and there exists ' C F); such that
FA,Q =Fa® R((Soigo, SliS1)>\¢I)

for all ¢ € [1, 00].
Let g € [1, OO] with (Es)qu = (ENQ)SA,q' Then

(Soigo, Sli51)>\7q - S)Hqis)\,q

and S, , is closed, see Proposition 2.47] (ii) (cf. Remark [3.20). Thus the theorem follows
from Proposition [1.4] O

Theorem 3.24. Let (Ey, E1), (Fo, F1) be compatible couples and S : Ex, O D(S) — Fx,
be linear such that Sy, Sy are closed. Assume \ € (0,1) and p € [1,00] so that (Eg),, =
(Enp)s,, for alln in a neighborhood of A. Suppose Sy, is a semi-Fredholm operator. Then
there exists 0 > 0 such that Sy, is semi-Fredholm and

K(Sxp) = K(Se),
O‘(Sk,p) > O‘(Sa,p%
6<S>\7p) > 6(‘99710)7
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where § € (A — 3, \+6)N(0,1).
In particular, iof Sy, is continuously wnvertible, then Sp, is continuously invertible for

he(\—38X+0)N(0,1).

Proof. Assume 0 < Ay < A < Ay < 1 such that (Es),, = (E,,)s,, for all n € [Ag, Ai]. Let
n € (0,1) and n := (1 — 7)Ao + 7M1 € (Ao, A1). From Proposition 2.47 (ii) (cf. Remark
[3.20), we know that Sy, ,, S, p and S, , are closed and the abstract Sobolev spaces exist.
The pairs (E), », E), p) and (F), . F), p) are compatible couples, see Lemma [2.16] It holds

EU,P = (E>\07P7 E>\1,p>777 Fmp = (F)\OJ“ F>\1,’P)77

by p. 103, Theorem 4.7.2]. Obviously,

877773 - S(E)\O,vakl,p)ﬁv(Fko,P7F)\1 J’)ﬁ '
Then we conclude that

((E)\pr)sko,p7 (E)‘IJJ)S)\l,p)ﬁ = (((EO)Sm (E1)51))\o,p> ((EO)SO’ (El)Sl)/\lyp)ﬁ
= ((Eo)so; (E1>51>77,p = (Eyp)s,, = ((Brops Exip)i)

(EAo,p’EAl,p)n’(Fko,p’F/\Lp)n

from the assumptions and p. 103, Theorem 4.7.2].
Let j € {0,1}. Since Sk, ,+5y, ,.FayptFy,, & 95 We obtain

(SEAO,p+EA1,p’FAO,p‘i’F)\l,p)E)\j ,pyF/\j,p g S)\j Y

from Lemma [I.7] (iii). Moreover, it holds S Exg ot Erp o FrgptFapp = Sy, p- Therefore

(SEAO,p+EA1,p’FAO,p‘i’F)\l,p)E)\j ,pyF/\j,p 2 S)\j P

by Lemma [L.7] (i).

Slnce S(EAO,PvEM ,;D)" (

Fr o Fr. ); 18 semi-Fredholm, we conclude that
A0 0:P>" AP/ X

SE/\o,pJFEAl,er/\o,pJFF/\Lp
fulfills the assumptions of Theorem [3.22] where

~ A— N
A=
A — No

€ (0,1).

From Theorem [3.22] we know that there exists € > 0 such that

€ < min A=A Az A
A — Mo A — o
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and S Fxg By p)eor(Fag o Fay p)e 1S @ semi-Fredholm operator such that the relations (3.4) hold
forallw e (A —¢g, A +¢).
Let
§:=¢e(A1 — No).

Then (A—38,A+6) C (Ao, A1). For 6 € (A=, A+6) and 6 := £=2 we have 6 € (A—¢, A+e¢)
and )

Sop = S(Eko,vaAl,p)év(F)\o,vakl,p)é’
see above. Hence the theorem follows. O

Theorem 3.25. Let (Ey, E1), (Fo, F1) be compatible couples such that Fa is dense in both
Fy, Fy. Assume that S : Ex, O D(S) — F is linear such that Sy and Sy are closed and
D(Sa) is a core of Sy and Sy. Let X € (0,1) and p € [1,00) such that Sy, is a Fredholm
operator and (Es)xp, = (Exp)s,,- Suppose q € [1,00) such that (Es)gq = (Foq)s,, for
all 6 in a neighborhood of A\. Then there exist 6 > 0 and finite-dimensional subspaces
N Clisy {(Eo)sy} +is, {(E1)s,} and H C Fa such that

N(Sxp) = N(Sp,q) = N,
Frnp =R(S\p) ® H, Fp,=R(Spqy) ®H
forall € (A=6,2+9)N(0,1).

In particular, if Sx, s continuously invertible, then Sy, is continuously invertible for all

0e(N—51+0)N(0,1).

Proof. Let q € [1,00) such that (Es)gq = (Fpq)s,, for all § in a neighborhood of .

The pair (Syig,, Siis,) is an interpolation morphism, see Theorem 2.22] (iii). Since D(Sa)
is a core of Sy and S, it follows that the space (Fa)s, is dense in (Ey)s, and (E7)g,, see
Lemma (3.5l Moreover, we have (Fa)s, = (Fo)s, N (E1)s, by Lemma 2.19] (iii).

Similarly as in the proof of Theorem [3.22] we conclude that

SA,PZ.SA,p - (SOiS()a Slisl))\,p

is a Fredholm operator. From p. 55, Corollary 3.6.6], we know that there exist
e > 0 and finite-dimensional subspaces M C (Ey)s, + (F1)s, and H C F such that

N((SO'L.Soa Sli51)97q> - M,
Fg,q = R’((Soisvb’ Slisl)G,q) S H

forall @ € (A —¢,A+¢)N(0,1). Since (Es)gq = (Foq)s,,, We obtain
(Soiso, Sli51)9,q = Sf)yqise,q

and that Sy, is closed for all ¢ in a neighborhood of A. The theorem now follows from
Proposition [1.4] O



Chapter 4

The Local Uniqueness-of-Inverse
(U.I.) Properties

T.J. Ransford introduced the following condition, see [Ran86].

Definition 4.1. Let (Ey, Ey) be a compatible couple and S : Ex, — FEy, be linear such
that (So, S1) is an interpolation morphism. Then S is said to fulfill the local uniqueness-
of-resolvent condition if

o whenever A € (0,1) and z € C such that z — Sy is continuously invertible for 0
in a neighborhood of \, then (z — S,\)’1|EA = (2 — Sé)71|EA for all 6 in a (possibly
smaller) neighborhood of A.

E. Albrecht and V. Miiller showed in that this condition is always fulfilled. More-
over, they proved the following. Let (Ey, E;) be a compatible couple, 0 < o < § < 1 and
S : By, — FEJ; be linear such that (S, 51) is an interpolation morphism.

e Assume Sy is continuously invertible for all A € («, 5). Then Sy, is continuously
invertible and (Sx1)™" 5, = (Soq) "', for all \,0 € (o, 8) and ¢ € [1, o0].

This result generalizes a result of M. Krause on the local real uniqueness-of-resolvent

condition, see :

In this chapter, we consider similar but more general properties.

Definition 4.2. Let (Ey, Ey) and (Fy, Fy) be compatible couples and S : Ex, O D(S) — Fy,
be linear. Assume X € (0,1) such that Sy is continuously invertible. If there exists 6 > 0
such that

Sy is continuously invertible and (SA)_l'FA = (S@)_l‘FA

for all @ € (A —0,A+9) N (0,1), then S is said to fulfill the local uniqueness-of-inverse
(U.1.) property (at \ for the complex interpolation method).

23
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Definition 4.3. Let (Fy, Ey) and (Fy, Fy) be compatible couples, 0 < \g < Ay < 1 and
S : By, D D(S) — Fx be linear. Assume p € [1,00] such that Sy, is continuously
invertible for all A € (Ao, A1). If

So,q 15 continuously invertible and (S/\7p)_1|FA = (S97q)_1|FA

for all \,0 € (\g, \1) and q € [p, 0], then S is said to satisfy the local uniqueness-of-inverse
(U.1.) property (at X\ and p for the real interpolation method,).

Section [4.1] investigates the local U.I. properties for bounded operators, i.e. we consider
linear operators S : Fy, — F% such that (Sp, S1) is an interpolation morphism, where
(Eo, Ey) and (Fy, Fy) are compatible couples. We show that these properties hold always.
Moreover, we study the local U.I. properties under perturbation with interpolation mor-
phisms in Section [4.1]

Motivated by the results for bounded operators in Section [4.1] we examine the local U.I.
properties for not necessarily bounded operators in Section 4.2l Our main tools to obtain
results from Section [4.1] are the theory of the abstract Sobolev spaces and the induced
operators, respectively. Furthermore, we study the local U. I. properties under relatively
bounded perturbation and under relatively compact perturbation in Section [4.2]

With the results in Section[4.I]and Section[4.2], it is possible to obtain results on the spectra
of linear operators on complex and real interpolation spaces.

As in Chapter[2land Chapter 8] we simplify the notation and construct the induced opera-
tors always with the continuous embeddings, which correspond to the continuous inclusions
(see the beginning of Chapter [2] for more details).

4.1 The Local U.I. Properties for Bounded Operators

4.1.1 The Local U.I. Property for the Complex Interpolation
Method

E. Albrecht and V. Miiller proved the following theorem for the case (Ey, E1) = (Fy, F1),
see [AMOOQ, p. 810, Theorem 4]. We use ideas of their proof to prove Theorem [£.4]

Theorem 4.4. Let (Ey, Ey) and (Fo, Fy) be compatible couples and S : Ey, — Fx be
linear such that (Sp,S1) is an interpolation morphism. Assume X € (0,1) such that Sy is
continuously invertible. Then there exists 6 > 0 such that

Sp is continuously invertible and (S,\)’1|FA = (Sg)’l‘FA

forall® € (A —36,\+6)N(0,1).

Before proving Theorem [4.4] we introduce some operators and spaces, which we use in the
proof of Theorem [4.4]
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Definition 4.5. Let (Fy, Fy) be a compatible couple. The operator My, : §r 2 D(Miq,) —
Sr is defined by

( lds> :

={fedr:(-)f(-) €3r},
(Miq, f)(2) := 2

f(z), zE€S,

for all f € D(Mgq,).

Lemma 4.6. Let (Fy, F1) be a compatible couple and w € Sy. The operator widg, — Mg,
is well defined, linear, injective and closed with domain D(M,) and R(widg, —Mi,) =
{9 € §F : g(w) = 0}. This range is closed.

Proof. Obviously, widg, —Miq, is well defined and linear with domain D(Mq,).

To show that widg, —M,q, is injective, assume f € D(widg, —M,q,) with (w —2)f(z) =0
for all z € S. Since f is continuous, we conclude that f(z) = 0 for all z € S. Hence
widg, —M,q, is injective.

Furthermore, widg, —M,q, is closed. Indeed, let {f,}, .y € D(widg, —Miq,) € §r and
f,9 € §r such that f, — f in §p and (widg, —Mqg,)f, — ¢ in Fp. It holds f,(z) —
f(z) and (widg, —Mia,) fn(2) — ¢(2) in Fx, by Remark [3.14] Therefore

(= 2)f(2) = (w—2) lm_fu(z) = lim (w—2)fu(z) = g(2)

for all z € S. We obtain that f € D(widg, —Miq,) and (widg, —Mq,)f = g. Hence
widg, —Mq, is closed.

We have R(widg, —Miq,) € {g € §r : g(w) = 0}. Conversely, let g € Fp with g(w) = 0.
Since w € Sy, there exists a continuous function f : Sy — Fy such that g(z) = (w —
2)f(z) for z € S and [ is analytic on S. From w € Sy and g € §g, we conclude that
f € §p. Since g(z) = (w — 2)f(z) for z € S, it follows that f € D(widg, —M,q,) and
g = (U) ldgF _Mids)f S R(w ldgF _Midg)'

We obtain that R(widg, —Miq,) is closed from R(widg, —Miq,) = {g € Fr : g(w) =0}
and Remark [3.141

Remark 4.7. Let (Fy, Fy) be a compatible couple. For yn € Fa, 6 > 0 and A € R, the
function
f(2) = exp(62® + A\2)ya, 2 €S
considered in p. 56, Theorem] is in the domain of Miq,. But M, is not everywhere
defined. Indeed, let ¢ € C\S and
1
g(z) = Yn, z €S.
c—q
Then g € §r, but itg(it) — ya fort — £oo. If ya # 0, we see that (-)g(-) ¢ §r and

g ¢ D( lds)
Moreover, it follows that f is in the domain of widg, —Myq,, but widg, —Myq, is not

everywhere defined from Lemmal[4.6, where w € Sy.
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Definition 4.8. Let (Ey, E1) and (Fy, Fy) be compatible couples and S : Ex, — Fx be
linear such that (Sp, S1) is an interpolation morphism. We define the linear operator S :

SE — §r by

forall f € §g.

Lemma 4.9. Let (Ey, Ey) and (Fy, 1) be compatible couples and S : Ex, — Fy, be linear
such that (Sp, S1) is an interpolation morphism.

(i) The operator S is well defined, linear and bounded with ||S|| < ||(So, S1)||yser-

(i) Let w € S. It holds

S{f €8 flw) =0} C{g€Fr:g(w)=0}.
(iii) If S is injective, then S is injective.

Proof. (i) Let f € §g. Since S is bounded, we obtain that S(f(-)) € Fr. Hence S is well
defined. Moreover, the operator S is linear. Therefore S is linear. Since

13l = ma {sup {1So (00, sup {10+ 0}

for all f € g, we conclude that ||S|| < [|(So, S1)ly,-
(ii) Let f € §p with f(w) = 0. Then (Sf)(w) = 0 and (ii) follows.

(iif) Assume S is injective and let Sf = 0 for f € §p- Then S(f(z)) = 0 for all z € S.
Since S is injective, we conclude that f = 0. Thus S is injective. [l

Lemma 4.10. Let (Ey, Ey) be a compatible couple and w € Sy.

(1) It holds f(w) € Ere o for all f € Fp.
(ii) If © € ERe w, then there ezists f € §g such that f(w) = x.

Proof. (i) Let f € §g and f(z) == f(z+idm w) for z € S. Then f € Fp and f(w) =
f(Re w) € ERe w-

(i) Since € Fge v, there exists f € g such that f(Re w) = z. Set f(z) := f(z —ilm w)

~

for z € S. Then f € §g and f(w) = f(Re w) = x. O]

Note that || f||5, = I fll5, in the proof of Lemma A 10
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Definition 4.11. Let (Ey, Ey) be a compatible couple and w € Syg. We define
(i) the space Ny, 4\ (M), for short) by
Moy, o) = L €T flw) = 0},
(ii) the operator Tw(EO,El) ' SE/Nuy — Ere w (Lwy for short) by

Tw(EO,El) (f+ Ny ) = f(w)
for all f+MNy, € Fe/MNuy,-

In addition, assume (Fy, ) is a compatible couple and S : Es, — F, is linear such that
(S0, S1) is an interpolation morphism. We define

(iii) the operator Sy : Se/Nw, — Sr/Nwy by
gw(f—i—me) = Sf+mwF

for all f +MNy, € Fp/Nuy-

Lemma 4.12. Let (Ey, E1), (Fy, F1) be compatible couples, w € Sy and S : Ex, — F, be
linear such that (So, S1) is an interpolation morphism.

(i) The operator T, is well defined and an isometric isomorphism.

(ii) The operator S, is well defined, linear and bounded with [1Swll < I1ST < 11605 S1) llyor -
If S is injective, then S, is injective.

(iii) Let qp : §g — Sp/Nw, and qr : Fr — Fr/Nw, be the canonical quotient map-
pings. Then it holds

SRe wTwEQE - TprwQE - TwFQFSY
on §g, i.e. the diagram

SRe w
ERe w FRe w

§5/ M §p/ Mo,

qET ~ TqF

3 & 3r

18 commautative.
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Proof. (i) Since f(w) € ERre 4 for all f € §g by Lemma (.10l (i), we conclude that T,
is well defined. Obviously, T),, is linear and injective. The operator T,,, is surjective by
Lemma (ii).

We show that for f +N,, € §r/Ny,, the norms

I+ P gy o, =, 306 IS =5, }

T (F + Rl , = it Il < B(Re ) = To (f + M)}

are equal.
Let go € My, and ho(2) := (f — go)(z + iIm w) for z € S. Then hy € Fg with ho(Re w) =
(f = 90)(w) = f(w) = Ty (f + Nuy). Since [|f — gollz, = [lhollz,, we obtain

1+ Mgl o, = 1T (f + Nl g, -

Let hy € §g with hy(Re w) = T, (f + MNuy). Set g1(z) := f(2) — hi(z — iIm w). Then
g1 € §r and g1 (w) = f(w) —hi(Re w) = f(w) — Ty, (f +Ny,) = 0. Thus g; € N,,,.. From
1f = agillz, = [[hll5,, we conclude that

1+ Mgl pon,, < NP (F + o) |, , -
Therefore T,,, is isometric.

(ii) From Lemma [4.6] we know that 91, and M, are closed. Then we obtain (ii) with
Lemma [4.90

(iii) This follows immediately from the definition of the corresponding operators. |
Let E, F' be Banach spaces and S : E O D(S) — F be linear and closed. Then

. Sz .
~(S) = infzen(s)\nN(s) {7&#'@,1&?5))} if R(S) # {0},
00 if R(S) = {0}
denotes the minimum modulus.

For A € C, we denote by D, 5 the set of all w € C such that |w — \| <.

One main step to prove Theorem [4.4] is the following proposition. This proposition is an
immediate consequence of p. 58] (cf. [Kat58, p. 297, Theorem 3| and p.
119, Corollary 19]).

Proposition 4.13. Let (Ey, Ey) and (Fo, F1) be compatible couples and S : By, — Fx, be
linear such that (S, S1) is an interpolation morphism. Suppose that A € (0,1) such that
Sy 18 surjective. Then there exists 6 > 0 such that

Dys €S

and for all k € §p, there exist analytic functions f : 1Dy ; — Fg and g : Dy s — Fr such
that for w € Dy 5, we have g(w) € D(M,q,) and

S(f(w)) + (widg, — M) (9(w)) = k.
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Proof. Consider (0,idz,) : §p X §r — Fp with
(0.idg,)(f.9) =9, (f.9) € e xFr
and (—S, Mig,) : §& X §r 2 F& x D(Mig,) — Fr with
(=S, Mia,)(f,9) = =Sf + Mia,g, (f,9) € T x D(Mg,).

Now, we show that the assumptions of p. 57| are fulfilled for A := (0,idz,) and
T := (_SaMidg)'
For all (f,g9) € § X §F, it holds

1A Dige = llglls, < W15, + llls, -

Since the operator S is bounded by Lemma (i) and Mg, is closed by Lemma [I.1] (ii)
and Lemma [4.6] the operator T is closed.

To prove that AA — T is surjective, let g € Fr and ¢g, gr be as in Lemma [4.12] (iii). Since
S, is surjective, it follows that Sy is surjective from Lemma E12] (i). Then there exists
f € §r such that grg = S\qef. Since Sxggf = qrSf by Lemma 112 (iii), we obtain

g—5f €My, =RAidg, —Mq,)
from Lemma Therefore there exists h € §p with g — Sf = (\idg, —Miq,)h. Hence
g=Sf+ (\Nidg, —Miq.)h € RINA = T).
It follows that y(AA —T') > 0, see p. 98, Theorem IV.1.6], and
AT~ T) {85 x D(Mig,)}} = A~ {3} = § % 5~

Thus we obtain (A — T : A) = oo (see [For66, p. 57]).
Let 0 < v < 7(AMA — T). Then the proposition follows from [F6r66, p. 58, (4)] with

5::min{m,)\,1—)\}. N

Now, we prove Theorem [4.4]

Proof of Theorem[[.]. Let y € Fa. Set k(z) := exp(z?)y for z € S. Then k € Fp. From
Proposition [£.13] and p. 34, Corollary 4.4], we know that there exists 6 > 0 such
that

o D); CSy,

o there exist analytic functions f : Dys — §g and g : D)5 — §F such that for
w € Dy, it holds g(w) € D(widg, —Miq,) and

S(f(w)) + (widg, —Mig)(9(w)) = k = exp(-*)y, (4.1)
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e Sge w 18 continuously invertible for all w € D, 4.

Consider the analytic function f : D)5 — Ex with

f(w) == exp(—w?)(f(w))(w), w € Dys.
Let wg € D, 4. Since f(wg) € Fg, it holds f(wo) € ERe w, by Lemma [4.10] (i). From (4.1),

A ~

we obtain S(f(wp)) = y. Hence f(wy) € D(SRe w,) and Sgre w, (f (wo)) = y. Since Sge w, 18
continuously invertible, we obtain

A

fwo) = (Ske wy) 'y

Thus f is constant in the imaginary direction and therefore f is constant on D) ;. Hence
(Sg)_ly = (S)\)_ly holds for 6 € ]D))\’(; N R. ]

An immediate consequence of Theorem [4.4] are the following two corollaries.

Corollary 4.14. Let (Ey, Ey), (Fo, F1) be compatible couples and S : Ex, — Fy, be linear
such that (Sp, S1) is an interpolation morphism. Then

{()\,0) € (0,1) x (0,1) : Sy, Sy are continuously invertible and (S,\)_1|FA = (Sg)_l‘FA}

is an open subset of (0,1) x (0,1).

Corollary 4.15. Let (Ey, Ey), (Fo, F1) be compatible couples and S : Es, — Fy, be linear
such that (Sy, S1) is an interpolation morphism. Assume that Sy is continuously invertible
for all 0 € (Mo, A1), where 0 < X\g < Ay < 1. Then (Sgo)*l‘FA = (Sgl)*lupA for all
00701 S ()\Oa)\1>-

Theorem 4.16. Let (Ey, Ey), (Fo, F1) be compatible couples such that

e Fa is dense in Ey and Eq,

o F is dense in Fy and Fi,

and S : Ex, — Fs be linear such that (Sy,S1) is an interpolation morphism. Suppose
0 < X < A1 <1 such that Sy is continuously invertible for all X € (Ao, \1] and

(SAO)_1|FAOHF>\1 = (SAl)_1|F)\OﬂF>\1'
Then there ezists 6 > 0 such that for all X\,0 € (Mg, A1),
1(To, T1) = (S0, S1)llgor < 6
implies that
Ty is continuously invertible and (T,\)_l‘FA = (Tg)_l‘FA

for all linear operators T : Ex, — Fyx, such that (Ty, T1) is an interpolation morphism.
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Proof. The pairs (Fy_s,, F,) and (F)\_s,, F\,) are compatible couples, see Lemma [2.16]
Let 0y € [Ao, A1]. Since E is dense in Ey, F; and Fj is dense in Fy, Fi, it holds

Eg, = (E/\()?E/h)na Fy, = (FAO;FAl)n

for n == % by p. 101, Theorem 4.6.1] and [Cwi78| p. 1005, Section I].
The interpolation operators Sy, and Sy, are everywhere defined, linear and bounded. Thus
(Sxgs Sxy) is an interpolation morphism, see Theorem [2.10] (iv). Obviously,

SGO - (Skoa SM)T]'

Since (S)‘O)il\FxoﬂF,\l = (S)‘l)il‘FAOmF)\l’ it follows that ((Sy,)~", (Sy,) ') is an interpolation
morphism by Theorem [2.27, Then we obtain

((SA()? S>\1>77)_1 = ((SAO)_lv (SM)_I)T]

from Theorem 2.27] (iv). Therefore

H(SGO)_lH - ||((S>\0)_17 (S/\1>_1)77H < H((S/\o>_1’ (S)q)_l)HMor

by p. 88, Theorem 4.1.2].

Thus
1

5= s {[[(S) 7|} < oe.
96()\0,)\1)

Let 6 € (Mg, A1) be fix and T': Fs;, — F¥; such that (T, T7) is an interpolation morphism

with H(T07T1) — (SO?Sl)HMor < 0. Then

1
Ty — < \(Ty, Ty) — < —
H 0 50“ = H( 05 1) (SO?Sl)HMor <0< “(SQ)AH

by Proposition 2.17 and [BL76, p. 88, Theorem 4.1.2]. Since Sy is continuously invertible,
we conclude that Ty is continuously invertible, see p. 111, Corollary V.1.3]. Hence
the theorem follows from Corollary [4.15 O

4.1.2 The Local U.I. Property for the Real Interpolation Method

Proposition 4.17. Let (Fy, E1), (Fy, F1) be compatible couples and S : Ex, — Fx be
linear such that (So, S1) is an interpolation morphism. Assume X € (0,1) and p € [1, 0]
such that Sy, is continuously invertible. Then S, is continuously invertible for all q €
[1, 00].

Proof. For p € [1,00), we obtain that S, , is continuously invertible for all ¢ € [1, o] from
Theorem
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If Sy~ is continuously invertible, it is possible to conclude that S} , is continuously invert-
ible for all ¢ € [1, 0] similarly as in the proof of [AS] p. 4, Theorem 3|. Let r € [1, 0]
and S) - be continuously invertible. Choose € > 0 such that 0 < A —e¢ < A+¢ < 1. The
pairs (Go, G1) := (Exier, Ex—cr) and (Ho, Hy) := (Fyyer, Fa—cr) are compatible couples
by Lemma It holds
E)\,r = (E)\+e,r7 E)\fe,r)

%,7‘ = (G07G1>%’r7 F)\,T’ == (F)\+€,T7F)\7€,T)%,r — (H07H1>%’r7

see [BLT76, p. 50, Theorem 3.5.3]. From [Mal8@], p. 47, Corollary 1], we obtain that

Exr = (Go,G1)1, = (Gs,Ga)1 ey Fap = (Ho, Hy)s o = (Hs, Ha)s (4.2)
Let
Ao = (Gx,Ga)1 00, A= (Gx,Ga)s o,
By i= (Hg, Ha)1 By 1= (Hy, Ha)s o
Then

(G07G1)%7oo - (GXHGA)%QO - (A07A1)%a (H07H1)
by p. 103, Theorem 4.7.2]. Thus
Saeo = S(AO,AI)%,(BO,BI)

is continuously invertible, see (£.2). From [AMO0, p. 34, Corollary 4.4], we know that there
exists 0 < § < § such that S(ay,4,),,(B,51), IS continuously invertible for all § € 1 —4, 5 +4].
Since

(Ao, A1)s; = (Gx,GA)o;.00,  (Bo, Bi)s; = (Hs, Ha)o, o0
it follows that

S(GEGA)QJ-,OO,(H&HA)GJ,OQ

is continuously invertible, where §; := % —(=1)74, 0; := i+ % = 1;61 + 3%' and j € {0,1}.

2
Then 6, € (5, 3) and 6; € (3,2). Since

(G2, GA)gy 00 € (GsyGA)oyoos (Hsy HA)oy 00 € (Hyy, HA) gy 0

by [BL76l p. 46, Theorem 3.4.1}, it follows that

S(Gs.Ga)ag,00N(G52,G a0y oo (Hs HA oy o N(Hs HA Yoy o = O (G2,G a )y oo (Hs o HA o, oo

is continuously invertible. Therefore

(S(GEaGA)GO,oo7(H27HA)80,007 S(G27GA)61,007(H27HA)91,00)E (4'3>
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fulfills statement (b) in Theorem 2.27], see Proposition 2.6 (ii). From Theorem [2.34] we
conclude that the induced operator of the operator (£.3)) to the spaces

((GZa GA)Q(),OO) (G27 GA>91,OO>77,(1’ ((H27 HA)GQ,OO; (HZa HA)Ql,OO)n,q

is continuously invertible for all n € (0,1) and ¢ € [1, 00]. It holds

((Gs, Ga)opoo: (Gx, Galoro) 1 g = (Gu,Ga)1 g = Eng,
((HE, HA)Q(),OO) (HE7 HA>91,OO)%7Q - (HZ7 HA)%g - F)\,q

for all ¢ € [1,00] by (@2) and p. 50, Theorem 3.5.3]. Thus the proposition
follows. O]

The next theorem is a generalization of [AMO0, p. 812, Theorem 9] and [Kra96, p. 56,
Proposition 3.6.8].

Theorem 4.18. Let (Ey, E1), (Fo, F1) be compatible couples. Suppose S : Ey, — F, is
linear such that (So, S1) is an interpolation morphism and 0 < A\g < Ay < 1, p € [1,00].
Assume that Sy, is continuously invertible for all X € (Ao, A\1). Then

So,q is continuously invertible and (S/\’p)71|FA = (Sg’q)’llpA

for all \,0 € (Mo, M), q € [p, <]

Proof. Let X\, 0 € (Ao, A1), q € [p,o0] and y € Fha.

The operator Sy, is continuously invertible by Proposition @17 From [BL76, p. 46,
Theorem 3.4.1], we know that Ex C E), C E\, and Fa C F\,, C F\,. Thus (S\,) 'y =
(Sxq) ty. Therefore it suffice to show that (Sy,) 'y = (Sp,) 'y.

Without loss of generality, we assume that 0 < A\g < A; < 1. The pairs (E), ,, E\, ) and

(Fxop» Fi, p) are compatible couples by Lemma 216l Let A := /\’\;’\)f’o € (0,1). Tt holds

(EAOJ” EAMJ)S\ = EA,P? (F>\07p7 F>\17p)5\ = FA,P?

see p. 103, Theorem 4.7.2]. The interpolation operators S, , and Sy, , are bounded
with domains E),, and FE}, ,, respectively. Since

S =5
/\o,p|EAO,meM,p /\17p\EAO,meA1,p7

we obtain that (Sy,,, S\, ) is an interpolation morphism with respect to the compatible
couples (Ey, p, By, p) and (F), p, ), p) by Theorem 2.10] (iv). It holds

(Sxop Snip)i = ((Srops Saip)s)Er i, € SEA,p,FA,p = Sx\p

see Lemma [I.7 (iii) and Theorem 2.15] Since the interpolation operator (Sy,,, Sx, )5 1S
everywhere defined, it follows that (S, ,, Sx p)5 = S p-
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Thus for all 7 € (0,1) and n = (1 — 7)Ao + 7M1 € (Xo, A1), we obtain that S,, =
(Sxg.ps Sx1p)7 1s continuously invertible. Hence

(SA,P)ily = ((S)\O,Z” S>\1,P)5\>71y = ((S)\OJ)? SALP)é)ily = (Se,p)ily

by Corollary .15, where 6 := /\91__’\/\00 € (0,1). O

Theorem 4.19. Let (Ey, Ey), (Fy, Fy) be compatible couples and S : Fy, — Fx, be linear
such that (So, S1) is an interpolation morphism. Assume 0 < A\g < A\ < 1 and p € [1, 0]
such that Sy, is continuously invertible for all X € [\, \1| and

(S)\o,p)ilwxo’meAl’p = (S)\17p)71|F>\0’pr‘|F>\1’p.
Then there exists 0 > 0 such that for all X\,0 € (Mg, A1) and q € [p, 0],
1(To, T1) = (S0, S1)llagor < 6
implies that
Ty, is continuously invertible and (T/\vp)_llFA = (T97q)_1|FA

for all linear operators T : Ex, — Fy, such that (Ty, T1) is an interpolation morphism.

Proof. The pairs (E, ,, Ex, ») and (F), ,, F\, ») are compatible couples, see Lemma 2.161
Let 90 S [)\0, )\1] It holds

EGo,p = (EAo,pv EM,p)n,pv F90,p = (FAoJ% FAl,p)n,p

for n := f\‘i:—f\g by p. 50, Theorem 3.5.3].
Similarly as in the proof of Theorem [4.16] it follows that

H(Sﬁo,p>_lH - ”((S/\o,p)_la (Sx\l,p>_1)mpH < H((S/\o,p>_la (S/\1,p)_1)||Mor
from p. 40, Theorem 3.1.2]. Hence

1 _
S {1[(So.,) 7|} < o0.
96()\0,/\1)
We conclude similarly as in the proof of Theorem by applying Theorem [4.18 and
[BL7G, p. 40, Theorem 3.1.2]. O]

4.2 The Local U.I. Properties for Unbounded Opera-
tors

Note that the conditions of the form (Eg), = (E,)s, and (Es)yq = (Ey4)s,., appearing in
Subsection [£.2.1] and Subsection £.2.2] were investigated in Section 2.8 (cf. Remark 3:20]).

The following theorem is essential when considering the local U.I. properties under rela-
tively bounded perturbation and relatively compact perturbation.
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Theorem 4.20. Let (Ey, E1), (Fo, F1) be compatible couples and S : Ex, O D(S) — Fy,
be linear so that Sy and Sy are closed. Assume A : Esx, D D(A) — Fy; is linear such that

for j €{0,1},
o Aj is S;-bounded with S;-bound smaller than 1 or

o A; is Sj-compact.

Suppose T : Es; O D(T) — Fy, is linear such that T; = S; + A; for j € {0,1}. Then
(Tois,, This,) is an interpolation morphism.

Proof. From [Kat66| p. 190, Theorem 1.1] and [Kat66l p. 194, Theorem 1.11], respectively,
we know that Ty and T; are closed. Therefore ((Eg),, (E1)7,) is a compatible couple by
Proposition and (Tyit,, Tiir,) is an interpolation morphism by Theorem (iii).
From Theorem 211 and Lemma 2.45] (i), (ii), we see that (Tyis,, T1ig,) is an interpolation
morphism. O

4.2.1 The Local U.I. Property for the Complex Interpolation
Method

Theorem 4.21. Let (Ey, Ey), (Fo, F1) be compatible couples and S : Ex, O D(S) — Fy
be linear such that Sy and S7 are closed.

(1) Assume S is closable and X € (0,1) so that (Spis,, S1is,)x S continuously invertible.
Then there exists 6 > 0 such that for all y € Fa,

there exists x € Fy, so that x € D(Sy) and Syx =y = Spx

forall® e (A—35,\+6)N(0,1).
In particular, the operator Sy is surjective for all 6 € (A — 5, X+ )N (0,1).

(ii) Let X € (0,1) such that Sy is continuously invertible and (Es), = (E,)s, for alln in
a neighborhood of . Then there exists 6 > 0 such that

Sp is continuously invertible and (SA)_I‘FA = (S@>_1|FA
forall® € (A —0,A+0)N(0,1).

Proof. We know that (Syig,, Siis,) is an interpolation morphism by Theorem [2.22] (iii).
Let y € Fa.

(i) There exists 6 > 0 such that (Spis,, S1is,)e is continuously invertible and

((Soisy, Siis)x) "'y = ((Soisy, Siis,)e) 'y



66 The Local Uniqueness-of-Inverse (U.I.) Properties

for all & € (A —0,A+0) N (0,1), see Theorem A4l Since Sy is closable for all § €
(A—=0,A+ )N (0,1) by Proposition [L.§ (iii), we obtain (i) from Proposition 2.47] (i) (cf.
Remark 3.20) with = := ig, ((Sois,, S1is,)a) " 'y-

(ii) The operator Syig, = (Sois,, Siis,)r is continuously invertible by Theorem and
Proposition 247 (ii) (cf. Remark B.20). Then there exists € > 0 such that for all § €
(A —e,A+¢)N(0,1), the operator (Spis,, S1is,)s = Seis, is continuously invertible and

(Sxis,) "'y = (Seis,) 'y,

see Proposition 2.47 (ii) (cf. Remark B.20) and Theorem .4l Thus (ii) follows from
Theorem [L.5] O

Theorem 4.22. Let (Ey, E1), (Fo, F1) be compatible couples such that Fa is dense in I
and Fy. Suppose S : Ex, D D(S) — Fy; is linear so that Sy, Sy are closed and D(Sa) is a
core of Sy and Sy. Assume A : Ex, D D(A) — F, is linear such that for j € {0,1},

e Aj is S;-bounded with S;-bound smaller than 1 or

e Aj is S;-compact.
Let 0 < Ay < M\ < 1.
(1) Assume (Syis,, Siis, )x 1S continuously invertible for all X € [Ag, \1| and

((SO'L.S(N Slisl))‘O)_l\FxoﬂF,\l - ((SO/I:S()’ SliSI>/\1>_1‘F>‘OmF)\1 .

Then there exists & > 0 such that for all y € Fa,

||(T0i507T1i51) - (Sgiso, SliSl)”Mor <9 (4'4>

implies that

there exists x € Fy, so that x € D(Ty) and The =y = Tyx

for all X0 € (Xo, A1) and all closable linear operators T : Ex, O D(T) — Fx, such
that T; = S; + A; for j € {0,1}.
In particular, the operator Ty is surjective for all 0 € (Ao, A1) and T as above.

(11) Assume Sy is continuously invertible and (Es)x = (E\)s, for all X € [A\o, \1] and
(S)\O)il‘F/\OﬂFkl = (S)\l)il‘F/\OmFAI'

Then there exists 6 > 0 such that for all \,0 € (Ao, A1), the inequality (A4]) and the
equality (Er), = (Ey)r, for all n € (Xo, A1) imply that

T\ and Ty are continuously invertible and (T,\)_l‘FA = (T9>_1‘FA

for all linear operators T : Ex;, O D(T') — Fy, such that T; = S; + A; for j € {0,1}.
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Proof. Since Ty and T are closed by p. 190, Theorem 1.1] and p. 194,
Theorem 1.11], respectively, it is possible to apply Proposition 247 We know that
(Sois,, Siis,) and (Tyig,, Tiis,) are interpolation morphisms, see Theorem 222 (iii) and
Theorem [4.20] respectively.

Since D(SA) is a core of Sy and S7, we conclude that (Ea)g, is dense in (Fy)g, and (F1)g,,
see Lemma [B.5l Moreover, it holds (Ea)s, = (Eo)s, N (E1)s, by Lemma 219 Thus
(Eo)s, N (E1)s, is dense in (Ep)g, and (EY)g, .

Let Yy e Fa.

(i) There exists 6 > 0 such that (Tyig,, Tiis, )s is continuously invertible and

<<T0i507 T1i51 )A)ily = ((T0i507 Tlisl )9)71y

for all \,0 € (\g, A1) and for all operators T as in (i) such that the inequality (4.4]) holds,
see Theorem

Let Hy and H; be as in Lemmal[2.45] 6 € (Mg, A1) and T be fix with the desired properties.
From Theorem 2.11] and Lemma (ii), (iii) (cf. Remark B.20), we know that

(T()Z.Soa TliS1 )9 - (TOiT(w TIZ'Tl )9(H07 Hl)@
and (Hy, Hy)g is an isomorphism. The operator Tp is closable by Proposition [L.§ (iii). From

Proposition 247 (i) (cf. Remark [3.20), we obtain (ii) with z := iz, ((Toiz,, Tiit, )e) v

(ii) The operator Syis, = (Sois,, S1is,)a is continuously invertible for all A € [Ag, A\;] and
it holds

((Soisy, S1Z’51>/\o)_1|FAOmFA1 = ((Sois,, Sll'S1)>\1)_1|F)\OmF>\1
by Theorem[I.5land Proposition[2.47] (ii) (cf. Remark[3.20). Similarly as in (i), we conclude

that there exists § > 0 such that (Tyir,, Tii7, ) is continuously invertible and

((TOiT07 TliTl))\)ily = ((TOiTov TIiTl)G)ily

for all A\, 6 € (Ao, A1) and for all operators T" as in (ii) such that the inequality (4.4]) holds.
Assume T is fix with the desired properties and (Er), = (E,)z, for all n € (Ao, A1). Then
T, is closed and

(TOiTm TliT1>77 = TniTn

for all n € (Ao, A1) by Proposition 2.47 (ii) (cf. Remark B.20). Thus (ii) follows from
Theorem [1.5] O
4.2.2 The Local U.I. Property for the Real Interpolation Method

Theorem 4.23. Let (Ey, Ey) and (Fy, Fy) be compatible couples. Assume S : Fsy D
D(S) — Fy is linear such that Sy and Sy are closed. Let 0 < \g < Ay < 1 and p € [1,0].
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(1) Assume S is closable and (Spis,, Siis, ), s continuously invertible for all A € (Ao, A1).
For all y € Fa,

there exists x € Ey, such that x € D(Sg4) and Sypx =y = Sy

for all \,0 € (Ao, A1) and q € [p, <].
In particular, the operator Sy, is surjective for all 6 € (Ao, A1) and q € [p, >0].

(i) Assume Sy, is continuously invertible and (Es)xp = (Exp)s,, for all X € (Ao, A1).
For all q € [p, 0], the equality (Es)yq = (Enq)s,, for all n € (Mo, A1) implies that

So,q s continuously invertible and (S’\’P)_IIFA = (,SY(%(I)_I‘FA

Jor all X\, 6 € (Ao, A\1).
Proof. The pair (Spis,, Siis,) is an interpolation morphism, see Theorem [2.22] (iii). Let
y e FAu )\79 € <)\07)\1) and qe [p,OO]

(i) From Theorem [4.18] we know that (Spis,, S1is,)r, and (Spis,, Siis, )s,, are continuously
invertible and

((Soisy, Siis )ap) "y = ((Soisy, Stis,)e.q) ' y.

The operators S, and Sy, are closable by Proposition [L.§ (iii). Then we obtain (i) from
Proposition 247 (i) (cf. Remark B:20) with x := ig, ((Soisy, Siis,)ap) 'y

(ii) Assume (Eg)yq = (Epq)s,, foralln € (Ao, A1). The operator S, yis, , = (Soisy, Siis, )np
is continuously invertible for all € (Ag, A1) by Theorem [L.5l and Proposition 2.47] (ii) (cf.
Remark [3.20). Then (Syis,, Siis, o4 is continuously invertible and

((Soiso, Sli51>>\,p)_1y - ((Soigo, Sli51)9,q>_1y7

see Theorem AI8 From Proposition (i) (cf. Remark [3.20), we know that Sy, is
closed and (Sois,, Siis, )o,q = So4is,,- Thus (ii) follows from Theorem [L.5] O

Theorem 4.24. Let (Ey, E1), (Fo, F1) be compatible couples and S : Ex, O D(S) — Fx,
be linear and closable so that Sy, Sy are closed. Assume A : Fx, O D(A) — F¥, is linear
such that for j € {0,1},

e Aj is S;-bounded with S;-bound smaller than 1 or

o A; is Sj-compact.
Let 0 < \g < Ay <1 andp € [1,00].
(1) Suppose (Sois,, Siis, )rp is continuously invertible for all X € [\, A1 and

((Soisys Stis, )Ao,p)il\FkommFAl’p = ((Soisy, Shis, )Al,p)ilon’meh’p.
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Then there exists & > 0 such that for all y € Fa,
1(Toisy, This,) — (Sotsy, Siisy)llyor < 6 (4.5)
implies that
there ezists x € Ex, so that v € D(Tp,) and Ty,x =y = Ty @

for all \,0 € (Mo, \1), q¢ € [p,00| and for all closable linear operators T : Ex, D
D(T) — Fx, such that T; = S; + A; for j € {0,1}.

In particular, the operator Ty, is surjective for all 0 € (Mo, A1), q¢ € [p,o0] and T as
above.

(i4) Suppose Sy, is continuously invertible and (Es)x, = (Exp)s,, for all X € [Xo, A1
and
(SAo,p)_l\FAO,meAl’p = (SA1,p)_1|FAO,meA1,p'
Then there exists 6 > 0 such that for all X\,0 € (\g, A1) and q € [p, <], the inequal-
ity (43) and
(Er)np = (Enp)t, 0 (ET)ng = (Eng)r,, for alln € (Ao, A1)
imply that
Ty, and Ty, are continuously invertible and (T)"p)il‘EA = (Tg,q)’llEA

for all linear operators T : Es;, O D(T') — Fx, such that T; = S; + A; for j € {0,1}.

Proof. Since Ty and Ty are closed by [Kat66l p. 190, Theorem 1.1] and [Kat66, p. 194,
Theorem 1.11], respectively, it is possible to apply Proposition 247 We know that
(Soisy, Siis,) and (Tois,, Tiis,) are interpolation morphisms, see Theorem (iii) and
Theorem [4.20] respectively.

Let Yy < Fa.

(i) There exists § > 0 such that (Tyis,, Tiis, )oq is continuously invertible and

((Toigo, Tl'isl))vp)_ly = ((TOiSO’ T1i51)9,q)_1y

for all A\,0 € (Ao, A1), ¢ € [p,00] and operators T" as in (i) such that the inequality (4.3)
holds, see Theorem

Let 6 € (A, A1), q € [p,o0] and T be fix with the desired properties. From Theorem [2.11]
and Lemma 2.45] (ii), (iii) (cf. Remark B.20]), we know that

(Toisy, Tiis, )o.q = (Toimy, Thin )o.q(Ho, H1)og

and (Ho, Hy)p,, is an isomorphism, where Hy, H; are defined as in Lemma Since the
operator Ty, is closable by Proposition [I.§ (iii), we obtain (i) from Proposition 2.47 (i) (cf.
Remarklm) with z .= iTqu((TOZ'Toa TliTl)H,q>_1y-
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(ii)dThe operator Sy yis, , = (Sois,, Siis,)ap is continuously invertible for all A € [Ag, A4
an
((Soiso, Slisl>’\0’p)_1|F>\O,pﬂF>\1,p = ((S()Z.Sm Sl'l.S1))\17p)_1|FA0,pﬂF>\1,p'

by Theorem[[.5land Proposition[2.47] (ii) (cf. Remark[3.20). Similarly as in (i), we conclude
that there exists 6 > 0 such that (Toiz,, Tiin )e,q is continuously invertible and

(Toimy, Tvim, )ap) "'y = ((Toizy, Tviny )oq) 'y

for all X\,0 € (Ao, \1), ¢ € [p,o0] and T as in (ii) such that the inequality (435]) holds.
Assume T is fix with the desired properties and (Er),, = (Eyp)1,,, (E1)ng = (Eng)t,.,
for all n € (Ao, A1), where g € [p,00]. Then T, is closed and

(TOZTO7 TlZTl)T]ﬂ“ = Tnﬂ'ZTn,r

for all n € (Ao, A1), r € {p, ¢} by Proposition 2.47 (ii) (cf. Remark [3.20). Thus (ii) follows
from Theorem [L.5l O



Chapter 5

Example - Ordinary Differential
Operators

As an application of the theory of unbounded linear operators on interpolation spaces, we
study ordinary differential operators in this chapter. It is well-known that the classical re-
stricted, minimal and maximal differential operators are unbounded and linear. Moreover,
LP-spaces are interpolation spaces under certain assumptions.

Section [5.1] expands the theory of the restricted, minimal and maximal operators by intro-
ducing restricted, minimal and maximal operators on the intersection and the sum of two
LP-spaces. We study these operators on the intersection and the sum of two LP-spaces and
obtain similar results as for the classical restricted, minimal and maximal operators.

In Section[5.2] we examine induced operators of restricted, minimal and maximal operators.
This will lead to results in Section [5.3] where we investigate the Fredholm properties and
the local U.I. properties of differential operators corresponding to particular differential
expressions.

In this section, we write L? instead of LP(I) to simplify the notation.

Moreover, we construct induced operators with the continuous embeddings, which corre-
spond to the continuous inclusions, and we identify certain elements as described in the
beginning of Chapter 2l

5.1 Restricted, Minimal and Maximal Operators

Absolutely continuous functions on compact intervals are defined in p. 242].
Definition 5.1. Let I C R be an open interval and n € N.

(i) We define the set A,(I) (A, for short)
Ag(I):={f: I — C : f" Y exists and is absolutely continuous

on every compact subinterval of I}.
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(ii) We define the differential expression T (of order n) on I and its formal adjoint T* on

I by

(mf)(@) == Si_gan(D* f)(x), w €1,
(" f)(@) == Diop(=1)*(D*(arf))(2), = €1,

where f € Ay, ar € C*(I) (i.e. the scalar-valued function ay, on I is k-times contin-

uwously differentiable on I and a,(gj) has a continuous extension to I, j € {0,1,...,k})
for k€ {0,1,...,n} with a,(t) # 0 for allt € I and D denotes the operator of
differentiation.

Let 7 be a differential expression on an open interval I. From [Gol66, p. 134, Lemma
VI.1.12], we know that (7%)* = 7.

Definition 5.2. Assume 1 < pg,p1,qo,q1 < o0 and 7 is a differential expression on an
open interval I. Then we define the following maximal operators.

e The mazximal operator
max . Po P1 max q0 q1
Sﬂpo,pl,qo,th PLP AL 2 D( T:p07p17q07q17A) LA L

(SR for short) is defined by

D(SIe A ={felrnlP:feA, andrfe LNL"},

T,P0,P1,90,491,
max R max
Sﬂpo,phqo,thf T Tf for f € D<Sf,po,p1,qo,q1,A)'
e The mazximal operator
max . Po P1 max q0 q1
ST:PO»Z’LQO#LE PLP LMD D( T:p07pl7q07q172) L*® + L

(Sg* for short) is defined by

D(Smaer o) ={felP+L”:fecA, andrf € L?+ L1}

T,P0,P1,90,91,
max e max
ST,PO,pl,(ImQth T Tf f07” f € D(ST’p07p1:QO:QI72>'

Let the restricted operator

R R P ta mazx
o S . (SA for short) be the restriction of STsr, A,

R R P max
o S maas (S5 for short) be the restriction of STwe

to those elements in the domain, which have compact support in the interior of I.
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Here and in the following, we obtain for py = p;1 = p and gy = ¢1 = ¢ the corresponding
concepts and results of Chapter VI|. Indeed, let 1 < p, ¢ < 0o and 7 be a differential
expression on an open interval I. Then we have LP N LP = LP + [P = [P with equal norms
by Lemma Thus

Smaac _ Qmaz (SR :SR )
T,0:0,4,4,A T,0,0,4,4,% T,0,0,4,q,A T,0:P,q,4,2

and the operator Ty, (T ) defined in [Gol66, p. 128] are equal. This leads to the
following definition.

Definition 5.3. Let 1 < p,q < oo and 7 be a differential expression on an open interval
I. We define the operators ST'w% (Sm* for short) and SE, =~ (SF. for short) by

T7p7q T7p7q
Sma:v c— max — Sma:v
.0, T,0,054,q,A T\D,D5q,q,2
R . QR __ QR
S‘f':pﬂ T Sﬂp,p,q,q,A o Sﬂp,p,q,qi'

For j € {0,1}, we illustrate the situation in Definition[5.2land Definition[5.3]in the following
diagram,

S’g, Sgra®
Lpo _|_Lp1 [0 +Lq1
JA Sp5.a5 S0 j
LPi L
J Sﬁ, SR VT
[Po N Pt L0 N L

where the injective operators in the diagram correspond to the continuous inclusions.

Let I be an interval. We denote the set of all continuous scalar-valued functions on I by
C(I). If I is open, then C2°(I) denotes the set of all f € C(I) such that f is infinitely
differentiable and has compact support in I (cf. [Con90l p. 116, Example 5.2]).

Lemma 5.4. Let 1 < po,p1,q0,q1 < o0 and T be a differential expression on an open
interval I. Then the restricted and the maximal operators are densely defined.

Proof. The space C2°(I) is dense in L and LP', respectively, see p. 340, Satz
9.21]. Similarly, it is possible to show that C'°(/) is dense in LP° N LP'. Since C°([) is
dense in LP and LP', we obtain that C2°(I) is dense in LP° + LP'. The domains of the

restricted and the maximal operators contain C2°(I). Thus these operators are densely
defined. ]

Let E, F' be Banach spaces and S : F' D D(S) — E’ be linear such that for all 0 # y € F,
there exists y' € D(S) with (y,y’) # 0. Then the preconjugate 'S : E 2 D('S) — F of S
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has domain
D('S) ={xz € E: there exists y € F with (z,Sy') = (y,¢) for all y € D(S)}

and 'Sz =y for x € D('S) if and only if (z, Sy') = (y,y’) for all y € D(5).
Let 1 < p < oco. We denote by p’ the number satisfying

1 1

]. — — —|— —/,

p p

where ‘é’ is defined to be ‘0’. Obviously, 1 < p’ < co.

Theorem 5.5. Assume 7 is a differential expression on an open interval I. Then

(i)

max _ RN/

STt dmpons = (S8) for 1< po,p1,q0, 1 < oo,
max ! R

ST*,qE),qi,pg,p’l,E ="(Sx) for 1 < po,p1,qo, 1 < 00,

(ii)
RN/
S dimaa = (92)" for 1< po,p1,qo, 1 < 00,
max

7 R
0l d PPl A T (S57) for 1 < po,p1,qo, q1 < 0.

Proof. Note that L% 4+ L% = (L% N L%) and L% N L% = (L% 4+ L%) by [BL76, p. 32,
Theorem 2.7.1] and the restricted operators are densely defined for 1 < pg, p1,qo, 1 < 00
by Lemma [5.4 Then we conclude similarly as in the proof of p. 130, Theorem
VIL.9]. 0

Corollary 5.6. Let 1 < pg,p1,q0, 1 < 00 or 1 < po,p1,q, 1 < o0. Assume T is a

differential expression on an open interval I. Then the maximal operators are closed and
the restricted operators are closable.

Proof. Since the conjugate and the preconjugate considered in Theorem are closed
by [Gol66, p. 53, Theorem I1.2.6] and [Gol66, p. 126, Lemma VI.1.2], we obtain that
the maximal operators are closed from Theorem Thus the restricted operators are
closable. ]

Definition 5.7. Assume 7 is a differential expression on an open interval I. We define
the following minimal operators.

e The minimal operator

Smin A . Lpo N Lp1 2 D(Smln

T,00,P1,40,41, 7,P0,P1,490,q1 ,A

) SN L(IO ﬂLQ1
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(Sxm for short) is defined by

min . {S_IA% Zfl S Po; P15 40,1 < o0,

TvPOvPlyQO,(Il,A T max / .
( T*,qé,qi,pg,pfl,z) if 1< po,p1;qo, 1 < 0.

e The minimal operator

Smm . : Lpo + Lpl 2 D(smm E) — 5 Lo + Lth

T,P0,P1,90,41, T,P0,P1,90,91,

(S&m for short) is defined by

min L {S_g Zf]- S Po, P1,q0,q1 < OO,

T,P0,P1,40,q1,5 " max ’ :
(ST*7q67q/17p67p/17A) Zf 1 < po?pl?QO? ql S Q.

The next corollary shows that the minimal operators are well defined.

Corollary 5.8. Let 1 < pg,p1,qo, 1 < 00. Assume T is a differential expression on an
open interval I. It holds

R __ max /
SA - (ST*,q(),qi,pg,p’l,E) )
R __ max !
SZ - (ST*7Q£)7q/17p€)7p/17A) :

Proof. The spaces L" is reflexive for 1 < r < oo. From p. 32, Theorem 2.7.1}, we
conclude that L™ N L™ and L™ 4 L™ are reflexive for 1 < rg,r < o0.
Since S¥ is densely defined and closable by Lemma [5.4] and Corollary [5.6, it follows that
oR YA max
SR = ((SA)/) = ( T*,qé,qi,pg,p’l,E)/

from Theorem (i) and [Gol66] p. 56, Theorem I1.2.14].
Similarly, we obtain the other equalities with Theorem [5.5] (ii). O

Clearly, the minimal operators are closed (see [Gol66l p. 53, Theorem I1.2.6]).

Let 1 <p,g<ooorl<p,q<ooand T be a differential expression on an open interval /.
With Lemma 2.20] we see that

T,0,0,4,q, A T,0:P,q,4,2

coincides with the minimal operator 7, ., , defined in p. 135, Definition VI.2.1].
Thus the operator in the following definition is well defined.

Definition 5.9. Let 1 < p,q < 00 or 1 < p,q < 0o and 7 be a differential expression on
an open interval I. We define the operator S™" (S™" for short) by

p,q pq

Sﬂp,q T STJLP:Q#LA - ST:PJM]#LE'
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For j € {0,1}, we illustrate the situation in Definition[5.7land Definition[5.9in the following
diagram,

LPo 4 [P1> ng Lo + [¢
LPi L%
J Smin j\

[Po N Pt 2 L0 N L

where the injective operators in the diagram correspond to the continuous inclusions.

The proof of the following lemma is straightforward.

Lemma 5.10. Let E, I be Banach spaces. Assume S : F' O D(S) — E' and T : F' D
D(T) — E' are linear such that for all 0 # y € F, there ezists y' € D(S) with (y,y') # 0.
If SCT, then'S D'T.

Theorem 5.11. Let 1 < po,p1,q90, 1 < o0 or 1 < po,p1,q0, 1 < 0o. Assume 7 is a
differential expression on an open interval I. Then the minimal operators are restrictions
of the corresponding maximal operators.

Proof. If 1 < pg, p1,qo, g1 < 00, the theorem follows from Corollary [5.6]
Now, let 1 < pg, p1,90,q1 < oo. It holds
SA™ = (Sp ) =((S5))

T*,00,44 0} P4 »
by Theorem (i). Moreover, we have ((SR)) C ((S%**))’, see Lemma [5.10 It holds
SR = (S8 oot )

APV )
7,404,971 P P71

by Theorem (ii) and Sfi’ TR is closable, see Corollary (.60 Then we obtain

('(Sxer)) = SR from [Gol66, p. 127, Lemma VI.1.5].
Similarly, we conclude that SZ" C S%® with Theorem [5.5. O

Proposition 5.12. Let 1 < po,p1,q0,q1 < 00 and 7 be a differential expression of order
n on an open interval I. Then the dimensions of the kernels of the mazximal operators
do not exceed n. Consequently, the dimensions of the kernels of the restricted and, if
1 < po,p1,qo,q1 < o0 or 1 < po,p1,q0, 1 < 00, the dimensions of the kernels of the
minimal operators do not exceed n.

Proof. From the proof of p. 136, Theorem VI.2.5], we obtain that the dimensions
of the kernels of the maximal operators do not exceed n. Thus the dimensions of the
kernels of the restricted operators do not exceed n.

Now, let 1 < pg, p1, 0,1 < 00 or 1 < po,p1,qo, q1 < 0o. Then the dimensions of the kernel
of the minimal operator do not exceed n by Theorem O
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Lemma 5.13. Let 1 < po,p1,q0,q1 < o0 and T be a differential expression on an open
interval 1. Then the minimal operators are densely defined.

Proof. From Lemma [5.4] we know that the restricted operators are densely defined. O

Proposition 5.14. Let 1 < pg, p1,qo, q1 < 00 and 7 be a differential expression on an open
interval 1. It holds

(Smln) = (S_ﬁ)/ = (S ) Sm?(f()yqlvpozp1zz7
(S5™) = (SE)' = (S5) = ST a1 sty p

Proof. Let 1 < pg,p1,q0,q1 < oo. Then the minimal and the restricted operators are
densely defined, see Lemmal[5.4land Lemmal[5.13] Since the restricted operators are closable
by Corollary .6}, the proposition follows from Theorem and p. 54, Theorem
I1.2.11]. O

Proposition 5.15. Let 1 < po,p1,q0,q1 < 00 or 1 < po,p1,qo, 1 < 00. Assume 7 is a
differential expression on an open interval 1.

(i) If one of the operators ST, Sﬂﬁovqppomlvx’ SR or S;”Jf;qulypo’pl’ has a closed range,

then all four operators are Fredholm and it holds

) (Smax)
dim ——=2—2 = (ST™) — K(SK™).
D(SX™)
(ii) If one of the operators S&m, 57”1”;07q17p07p17A, Sger or Sﬂfqﬂi)’%po’pl’ has a closed range,

then all four operators are Fredholm and it holds

D(sge) _
D(Sg™)

dim

K(SE) — K(SE™).

Proof. We conclude similarly as in the proof of [Gol66, p. 137, Theorem VI.2.7], using
Lemma, [5.4], Theorem [5.11] Proposition [5.12] and Proposition [5.14]. O

The following lemma is an extension of the classical Holder inequality (py = p1 = p and
do = q1 = q). The proof follows from the classical Holder inequality.

Lemma 5.16. Let 1 < pg,p1 < oo and I be an open interval. Assume f € LPO N LP* and
g € LP + LP. Then

/ @@ de < 1 llsares 190 ot
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Lemma 5.17. Let 1 < pg,p1,qo, 1 < 00 and 7 be a differential expression on I = (b, c),
where —oo < b < ¢ < 00. Assume

where

o f€D(SX*) and g € D(S™, ) or

T*vq 7q1 7p07p17z

o [ € D(SE™) and g € D(S™ ).

T*,40,41 00 P A
Then fbc(Tf)gdx = fbcf(T*g)dx.

Proof. It b < b < ¢ < ¢, then the Lagrange formular (Green’s formular)

n k—1

/E(Tf )gdz —{ZZ (arg) f(klj)EJrjf(T*g)dx

b 1=

holds, see [Gol66] p. 130, Lemma VI.1.8]. The assumptions on f and g and Lemma [5.16
vield (7f)g € L' and f(r*g) € L'. Thus

c c

lim [ (7f)gdx = /(Tf)gdx, lim f TV g)dx = /f TV g)d
blb, &le blb, cTc
3 b
and the lemma follows. O

Theorem 5.18. Let 1 < po,p1,q0, 1 < o0 or 1 < po,p1,q0, 1 < 0o. Assume T is a
differential expression of order n on I = (b,c), where —oo < b < ¢ < oo . Then f €
D(SR™) (f € D(SZ™) ) if and only if f € D(SR) (f € D(S%*)) and

i [ 37 (1) 7] 0 (1)

blb, éle| 1= =5 i

for all g € D(S;”*‘f; ! o ) (g€ D(S;”*‘fq’” a J)O,pl’A))

Proof. Let f € D(S%™). From Theorem [5.11] we get that f € D(S%%*). Similar arguments
as in the proof of [Gol66l p. 139, Lemma VI.2.9] together with Proposition[5.14land Lemma
[5.16] yield (5.0).

Conversely, assume f € D(SR*) and (5.0)) holds. Set

max . Smax
T 7‘107‘11 ,poaplaz
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Lemma [5.17 implies that

(r1,g) = / rf)gdz = / [ g)dz = (f,7*g) (5.2)

b

for all g € D(ST%").

Let 1 < po,p1,q0, 1 < 0o. Then (SX™) = S, see Proposition 5.14l From (5.2)), it
follows that f € D( ((Sx)")). Since ST is closed and densely defined by Lemma [5.4] we
obtain from [Gol66] p. 127, Lemma VI.1.4] that f € D(S%").

Let 1 < po,p1,qo, 1 < oo. Then (5.2) implies that f € D((S7%*)") = D(SX™).

It is possible to conclude similarly as above for S, 0

Corollary 5.19. Suppose 1 < po,p1,q0,q1 < o0 or 1 < po,p1,q0, 1 < 0o0. Let 7 be a
differential expression on an open interval I. The restricted operators are contained in the
corresponding minimal operators.

Proof. This follows from Theorem [5.18] O

Theorem 5.20. Let 1 < pg, p1,qo,q1 < o0 or 1 < pg,p1,q0, 1 < 0o and T be a differential
expression of order n on I = (b,c) such thatb € R (c € R) and a,(b) # 0 (a,(c) #0). For
feD(SZ™) and k € {0,1,...,n— 1}, it holds

lim f® () =0 (lim f® (@) = 0).
blb cle
The same holds for f € D(ST™).

Proof. We conclude for f € D(S%™) similarly as in the proof of p. 139, Lemma
V1.2.9], using Proposition .14 and Lemma Since S7" C S& the theorem follows.
]

Theorem 5.21. Let 1 < pg,p1,q0,q1 < 00 and T be a differential expression of order n
on I = (b,c) such that b € R (¢ € R) and a,(b) # 0 (a,(c) # 0). For f € D(SZ*) and
ke{0,1,...,n—1}, the limit

lim f* ( ) (hmfk)( ))

blb cle
exists. The same holds for f € D(SX).
Proof. Tt is possible to conclude as in the proof of [Wei03| p. 39, Satz 13.5] (cf. the proof

of [Gol66] p. 140, Theorem VI.3.1]). O

Corollary 5.22. Let 1 < pg, p1,qo,q1 < 00 or 1 < pg,p1,q0,q1 < 00 and 7 be a differential
expression of order n on I = (b,c) such that b,c € R and a,(b) # 0, a,(c) # 0. Then
f e DSy (f € D(SZ™)) if and only if f € D(Sm‘“’“’) (f € D(S%*)) and

lim f*)(b) = 0 and lim f® (&) = 0. (5.3)
blb cle
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Proof. If f € D(S%™), then f € D(S%%*) by Theorem [5. 11 and the equalities in (5.3)) hold
by Theorem

Conversely, assume f € D(SX%) and the equalities in (5.3) hold. Theorem [(.21] implies
that

n k-1 é
lim {ZZ(_I)j(akQ)(j)]P(/ﬁ—l—j) —90

blb, &lc

k=1 j=0 b
for all g € D(ST% 0 s))- Thus f € D(Sgi") by Theorem [5.18]
It is possible to conclude similarly for S§". O

Corollary 5.23. Suppose 1 < po, p1,p,qo,q1,q < 00. Let 7 be a differential expression of
order n on an open interval I.

(i) It holds N(SE) = N(SE ) = N(SE),
Now, let I = (b,c) with b,c € R and a,(b) # 0, a,(c) # 0.
(i) We have N(SF*) = N(S)*) = N(Sg®).
(iii) If po, p1, s Gos q1,q < 00 or 1 < po, p1, s 4o, 41, q, then N(SX™) = N(S;4") = N(S5™).

Proof. (i) Assume f € A, has compact support in the interior of I. Then f € L" for all
r € [1,00]. We obtain that

{f € A, : [ has compact support in the interior of I and 7f = 0}
— N(SE) = N(S%,) = N(SE)

(i) If f € A, such that limmbf(l;) and limz, f(¢) exist, then f € L" for all r € [1,00]. We
obtain that

{f € A, : lim f(b) and ll%nf(é) exist and 7f = 0}
blb cle

= N(S3*) = N(Sp®) = N(55")
from Theorem [5.21]

(iii) If f € A, such that limg, f(b) = 0 and limg. f(&) = 0, then f € L" for all 7 € [1, oc].
We obtain that

{f e A, :lim f®(b) = 0 and li%nf(k)(é) =0and 7f = 0}
blb cle
= N(SX™) = N(S") = N(Sg™)

from Corollary [5.22 O
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Proposition 5.24. Let T be a differential expression on I = (b, c) withb € R and a,(b) # 0
or c € R and a,(c) # 0.

(i) Let 1 < po,p1,G0,q1 < 00 or 1 < po,p1,qo,¢1 < oco. Then the minimal operators are
injective.

(i1) Let 1 < po,p1,qo,q1 < 0o. Then the mazimal operators have dense range.

Proof. (i) This follows from Theorem [5.20] and [Gol66, p. 136, Lemma VI.2.4].
(ii) Since '
(SX*) = S:n*l,gg,qi,pé),p’pz’

we obtain that the range of S¥** is dense from (i) and [Gol66| p. 59, Theorem I1.3.7].
Similarly, we obtain that the range of S{"** is dense. Il

Proposition 5.25. Suppose 1 < po,p1,q0,q1 < 00 or 1 < po,p1,q0,q1 < 00. Let 7 be a
differential expression on I = (b,c) with b € R and a,(b) # 0 or ¢ € R and a,(c) # 0.

(i) If one of the operators S, 877362(,)7‘1/1717671/1727 SR or 77'71?;(/)7‘117176713,172 has a closed range,

then ST has a bounded inverse and the operator ST is surjective.
. min min mazx mazx
(11) If one of the operators S3"", ST*7q67qi7p/O7pll7A’ SHr or gl DA has a closed range,
then SE'™ has a bounded inverse and the operator S3** is surjective.

Proof. (i) From Proposition [5.15 (i), it follows that R(S%™) and R(S%*) are closed. Since
S is closed and injective by Proposition [5.24] (i), we obtain that ST has a bounded
inverse from [Gol66] p. 94, Lemma IV.1.1].

If 1 < po,p1,9, 01 < 00, then SR is surjective, see Proposition [5.24] (ii).

Assume 1 < pg, p1,qo, (1 < co. The operator Sfﬁf% ¢yl is densely defined, closed and

has a closed range by Lemma [5.13] and Proposition (i), respectively. Since it holds

SrAnax — (szn E)/’

(AP
T*,qo,ql,po,pl,

see Proposition [5.14] we get

BSEE) = (S 1)

40,91 P P1E
from p. 102, Theorem IV.2.3]. Then Proposition [5.24] (i) implies that SZ** is
surjective.
(il) We proceed similarly as in the proof of (i), using Proposition (ii). O
Proposition 5.26. Let 1 < pg, p1,qo,q1 < oo and T be a differential expression of order n

on I = (b,c) with b,c € R and a,(b) # 0, a,(c) #0. For j € {A, X}, the operator ST is
surjective with a(S7"**) = n.
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Proof. Since a,(t) > 0, it is possible to assume without loss of generality that a,(t) = 1
for all t € [b,c]. Let j € {A, X}, ga € L N L% and gy € L® + L9. Then g; € L*. We
know from the proof of (i) of p. 140, Theorem VI.3.1] that there exists f; € A,
such that f; can be extended to a continuous function on [b, ¢| and

Tfj = gj'

Since the extension of f; on [b, ] is an element of L%([b, c]) N L% ([b, c]), we conclude that
fe LN L C L%+ L9, Thus S{* and S are surjective.

It holds a(S)r%) = n, see p. 140, Theorem VI.3.1]. Then the proposition follows
from Corollary (ii). O

Corollary 5.27. Let 1 < pg,p1 < o0, 1 < qo,q1 < 00 and 7 be a differential expression on
I = (b,c) with b,c € R and a,(b) # 0, a,(c) # 0.

(i) Suppose Ta is an injective and closed restriction of SK. Then (Ta)™' is compact.

(ii) Suppose T, is an injective and closed restriction of ST, Then (Tx)™! is compact.

Proof. We proceed similarly as in the proof of p. 145, Corollary VI.3.3|, using
Proposition [5.12] Lemma and Corollary [5.23] (ii). O

We obtain a special situation, when I = (b,¢) with b,c € R and 1 < py < p; < o0,
1 < qo < ¢1 < o00. Suppose these assumptions are fulfilled and 7 is a differential expression
of order n on I. Then LP* C [P0 and L% C L%, Thus

maxr __ Qmax maxr __ Qmax

SPO:QO - SE ) Spl:Ql —MA
R _ QR R _ QR

Spo,qo - SE’ Sphql - SA'

Moreover, assume 1 < pg, p1,qo, q1 < 00 or 1 < pg, p1,qo, ¢1 < 0o. It follows that

min __ Qmin min __ Qmin
Spoﬂlo - 52 ) Spwh - MA
In this case, we have the following situation,

min _— Qmin R —qR mar —_ Qmaz
SP()»qo*SE ’ ‘5’10()41()752)7 Spovq()*sz

Lro [, 90

j min _— qQmin R —_ QR maxr _ Qmazx \J\
LP Spl,ql _SA ’ SP1¢11 _SA’ Spl,ql _SA Lq
1 1

where the injective operators in the diagram correspond to the continuous inclusions.
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5.2 Restricted, Minimal, Maximal and Induced Op-
erators

Theorem 5.28. Suppose 1 < pg <p<pi<ocoandl1 < q < q¢g<q < oo. Let 7 be a
differential expression on an open interval I. Then we have

(i)
(SS)LP7L(Z - SZI)?(]?
(Sﬁq)LPole’l,qumL% = S§7
(55

> )LPOmLPl JLI0NLI1 — SlA%a
(1)

max _ gmazx
SE )LP7LQ — Sp7q 5

max max
Spq )LPOmLPl,ququ1 = SA )

O N N

Sng)LPo NLP1,LI0NLI1 — SKW .

(11i) Assume py,q1 < o0 or 1 < pg,qo. If I = (b, c) with b,c € R and a,(b) # 0, a,(c) # 0,
then

n _amin
Se™")ee,ne = Spg"

i
Smm) b2 P1 _[,9 g = Smm

p,g )LPONLPL,LI0NLI1 A
i min

Se"™) pronre Laonra = S

N N N

Proof. Obviously, the spaces LPi and L% are intermediate spaces corresponding to (LF0, LP')
and (L%, L9), respectively. From [BL76, p. 106, Theorem 5.1.1], we know that L? and
LY are intermediate spaces with respect to the compatible couples above. Therefore the
induced operators are well defined.

The proof of the equalities in (i) and (ii) is straightforward.

From (ii) and Corollary [5.22] we obtain (iii). O

Corollary 5.29. Suppose 1 < py <p<pr<oocandl < q < q<q < oo. Let T be a
differential expression of order n on an open interval I. We have N(ST**) C N(S]'*) C
N(Sger).

Proof. Since

D(SE™) € D(Sp) € D(SE™)

by Theorem (i), the corollary follows. O
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The corollary above is also an immediate consequence of Lemma [L.7] (ii). Moreover, the
kernels of the corresponding restricted operators are equal, see Corollary [5.23]

Corollary 5.30. Let 1 < pg < p<pr <o andl < g < q < g < oo and T be a
differential expression of order n on I = (b,c) with b,c € R and a,(b) # 0, a,(c) # 0.
Then

(Smaz Smax )2 — SgLaz .

P0,907 T P1,91

Proof. Proposition (i) and Theorem (i) yield

(S, Spie)s € SE.
From Proposition 2.5, Proposition and Theorem [5.2§] (ii), we obtain that the kernels
and the ranges of these operators are equal. Then the corollary follows (see the note before

Example 2.7]). O

Let 1 < po, p1,90, 1 < o0 and 7 be a differential expression on I = (b, ¢) with b, ¢ € R and
an,(b) # 0, a,(c) # 0. It holds

P0,907 T P1,91

by Proposition (i) and Theorem [5.28] (ii). Thus the surjectivity of (S;%, S;%: )s and
Sar (cf. Proposition [£.26]) is a consequence of Proposition 2.5 and (i) of [Gol66] p. 140,
Theorem VI.3.1].

From the proof of Lemmal5.4], we know that L% N L% is dense in L% and L%, respectively.
The space of the infinitely differentiable functions with bounded derivatives are cores of
the classical maximal operators Syt and S;1%", respectively. Since this space is contained

40 P1,91°

in D(SX*), it follows that D(SX**) is a core of S"% and S}, respectively.

We know from Proposition that SX* and S are Fredholm operators. Then (5.4))
yields that

(S S )s) < o SR < oc.

P0,907 ' P1,91
Since (S%, S )s: is surjective, it follows that (S;2%, S )s is Fredholm. We conclude
that S;p%0 and SJ%" are Fredholm operators from Proposition [5.26l and the considerations

after Definition 5.2) (or p. 137, Theorem VI1.2.7]).

Hence we see that the results above (and in Corollary (ii)) are similar to the results
on the abstract theory in Corollary [3.10]

Note that for pg, p1,q0,q1 < oo or 1 < pg, p1,qo, q1, it is possible to obtain from Proposi-
tion[5.24] (i) and Theorem [5.2§] (iii) with Proposition[L.8] (i) the result (i) in [Gol66] p. 139,
Theorem VI.2.10]. (Of course, (i) in [Gol66, p. 139, Theorem VI.2.10] follows also from
Proposition (i) with the considerations after Definition [5.7])
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5.3 Fredholm Properties and Local U.I. Properties

From the investigations in this thesis, we obtain results on both the Fredholm proper-

ties and the local U.I. properties of certain differential operators, see Theorem [5.31] and
Theorem [5.34]

Theorem 5.31. Let 1 < py < p1 < oo and the differential expression T be of the form
7(f) = f +aof for f € Ay on I =(0,00), where ay € C.

(i) Assume p € (po,p1) such that S}'%* is a semi-Fredholm operator. Then there exists
0 > 0 such that 57" is semi-Fredholm and

R(Spy") = K(Sg5");
a(S,5%) = a(Sg4"),
B(Spp”) 2 B(S54")

for all g € (1,00) with % € (%_5’%+5)m(p%’pio>'

(i) Assumep € (po,p1) such that S;'* is continuously invertible. Then there exists § > 0
such that S is continuously invertible and
(S5 iy = (572

|FA [Fa

for all q € (1,00) with % € (%_5’%+5)m(pi1’pio>'

Proof. Let S :=S7W . s and z € C such that Re 2 > Re ag. The solution of
O0=(z=7)f =(2—a))f—-Df
1s
f(t) = cexp((z - CL())t), te (07 00)7

where ¢ € R is a constant. Since f ¢ L + L', we conclude that z — S is injective.
Let j € {0,1}. Proposition [[L.11] and Theorem 5.2 (ii) yield

(Z - S)LP]'7LP]' =z — S;T;iz

Therefore the operator z — SJ'7" is injective by Proposition (i) and

(2 = Shopor # ~ Sprp )%
is injective by Proposition 2.6 (i). From [Gol66, p. 163, Theorem VI.7.2], we know that

z— 5y s surjective. Then Proposition implies that

max max
(Z - Spo,po7 & = Sm,pl)E
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is surjective. Hence

(z —Smax > — Sy =2 -8, (5.5)

Po,po’ P1,P1
see Proposition (i). Since the maximal operators are closed by Corollary 5.6, we
conclude that z — S'%* and 2 — S are closed with Lemma[L.Il Thus (c) in Theorem 2.27]

is fulfilled for z — S.
Therefore

(EZ—S)n = (EU)Z—Sn

for all n € (0,1), see Theorem and (5.5). Since S'9" is closed by Corollary (.6, we
obtain that (Eg), = (E,)s, for all n € (0,1) from Theorem 2.501

Let A € (0,1) such that
1 1-=X A

P P
Then (LPo, LP*)y = LP by p. 106, Theorem 5.1.1]. Thus S}'5* = Sperr = Sy, see
Theorem [5.28] (ii).

(i) From Theorem [3:22] we know that there exists ¢ > 0 such that Sy is a semi-Fredholm
operator and

K(Sx) = £(Sh),
a(Sy) = a(S),

B(Sx) = B(Sh)
foralld € (A —e,A+¢)N(0,1).

Set 1 1
0i=¢e(— — —
(po P1)
and ; € (; — 0,5 +0) N (5, -). Assume w € (0,1) such that

1_1—w w

q Do b1
Then w € (A —¢,A+¢)N(0,1) and (L, LPY), = L7 holds, see p. 106, Theorem
5.1.1]. Thus S, = Spaz« = Sye® by Theorem (i), which implies (i).

(ii) From Theorem [4.27] (ii), we know that there exists € > 0 such that Sy is continuously
invertible and

(S3) "y = (50) iy
foralld € (A —e,A\+¢)N(0,1).
Set

Then we conclude as in (i). O
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Definition 5.32. Let 1 < pg,p1,p < 00 and I = (0,00). We define
(i) T, : LP O D(T,) — L* by
D(T,) :={f € L? : f is absolutely continuous on each compact
subinterval of (0,00) and M (M2 f) € L},
I,f = M%(Mide)/
for all f € D(T,),
(i) T : LP + [P D D(T) — LPo 4 LP* by
D(T) :={f € LP° 4+ LP" : f is absolutely continuous on each compact sub-
interval of (0,00) and M%(Midzf)’ e L+ [P}
Tf:= M%<Mid2f),

for all f € D(T).

Since f is absolutely continuous on each compact subinterval of (0, co) if and only if M,z f
is absolutely continuous on each compact subinterval of (0, 00), it follows that 7}, and T in
the previous definition are well defined.

Lemma 5.33. Suppose 1 < pg < p; < o0 and I = (0,00). Let T,, r € [1,00], and T be
defined as in the previous definition.

(i) For all p € [po, p1], it holds )
TLpJJp = Tp.

(i) The operators Ty, T,, and (Tp,, T, )s are continuously invertible.
(11i) The operator T is injective and

(Tpov Tpl )E =T.

Proof. (i) The proof is straightforward (cf. the beginning of the proof of Theorem [5.28]).

(ii) Let 5 € {0,1}. From p. 264, Theorem 11.1], we know that the operator
K, : LPi — LPi defined by

xT

(K, 9)(x) = / rygy)dy, € (0,00),

for g € L7 is bounded. Since T}, is the inverse of K, , it follows that 7T}, is continuously

invertible and
(Tpo)iluwA =K

PO|Fn

K

P1|Fa :(

T

) s
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Thus statement (d) in Theorem 2.27] is fulfilled for (7,7}, )s by Theorem (i). Then
Theorem 2.27 implies that (7},,, 7}, )s is continuously invertible.
(ili) The function

flx) = cg TE€ (0, 00),

is a solution for M (Mg2f)" = 0, where ¢ € R is a constant. But f ¢ LP° + LP*. Thus T'
is injective.

It holds (7}, T}, )s € T by (i) and Proposition 2.6 (i). Since (7},,,1,,)s is surjective by (ii)
and T is injective, we conclude that (7}, 7}, )s =T O

Theorem 5.34. Suppose 1 < py < p; < o0 and I = (0,00). Let T,, r € [1, 0], be defined
as in Definition[5.32 (i).

(1) Assumep € (po,p1) such that T, is a semi-Fredholm operator. Then there exists o > 0
such that Ty, s a semi-Fredholm operator and

k(T,) = k(Ty),
a(T,) = a(Ty),
B(T) = B(T,)

forallqe(loo)wzth E(——5 +4)N (1p%>‘

(11) Assume p € (po,p1) such that T, is continuously invertible. Then there exists 6 > 0
such that Ty, is continuously invertible and

for all q € (1, oo)wzth E(——5 +4)N (pi pL)

Proof. Let T be defined as in Definition 5.32] (ii). It holds T}r; ori =Ty, for j € {0,1}, see
Lemma (). Since the operators T, T,, and (7},,,7},,)s are continuously invertible
by Lemma [5.33] (ii), we conclude that statement (c¢) of Theorem is fulfilled for 7. Tt
holds (T},,T,,)s = T, see Lemma [5.33 (iii). Therefore (Er), = (E,)r, for all n € (0,1) by

Theorem [2.48]
Then we conclude similarly as in the proof of Theorem [5.31] O
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